

The Visualization
Handbook

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page i

This page intentionally left blank

The Visualization
Handbook

Edited by

Charles D. Hansen
Associate Director, Scientific Computing and Imaging Institute
Associate Professor, School of Computing
University of Utah
Salt Lake City, Utah

Chris R. Johnson
Director, Scientific Computing and Imaging Institute
Distinguished Professor, School of Computing
University of Utah
Salt Lake City, Utah

AMSTERDAM . BOSTON . HEIDELBERG . LONDON

NEW YORK . OXFORD . PARIS . SAN DIEGO

SAN FRANCISCO . SINGAPORE . SYDNEY . TOKYO

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page iii

Elsevier Butterworth–Heinemann

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright � 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (þ44) 1865

843830, fax: (þ44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the

Elsevier homepage (http://elsevier.com), by selecting ‘‘Customer Support’’ and then ‘‘Obtaining Permissions.’’

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

The visualization handbook / edited by Charles D. Hansen, Chris R. Johnson.

p. cm.

Includes bibliographical references and index.

ISBN 0-12-387582-X

1. Information visualization. 2. Computer graphics. I. Hansen, Charles D. II. Johnson, Chris R. III. Title.

TK7882.I6V59 2005

006.6—DC22

2004020457

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 0-12-387582-X

For information on all Elsevier Butterworth–Heinemann publications

visit our Web site at www.books.elsevier.com

05 06 07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page iv

�

Contents

Contributors viii

Preface xiv

Acknowledgments xviii

PART I
Introduction

1. Overview of Visualization

William J. Schroeder

and Kenneth M. Martin 3

PART II
Scalar Field Visualization: Isosurfaces

2. Accelerated Isosurface

Extraction Approaches

Yarden Livnat 39

3. Time-Dependent

Isosurface Extraction

Han-Wei Shen 57

4. Optimal Isosurface Extraction

Paolo Cignoni, Claudio Montani,

Roberto Scopigno, and Enrico Puppo 69

5. Isosurface Extraction Using

Extrema Graphs

Takayuki Itoh and Koji Koyamada 83

6. Isosurfaces and Level-Sets

Ross T. Whitaker 97

PART III
Scalar Field Visualization:
Volume Rendering

7. Overview of Volume Rendering

Arie Kaufman and Klaus Mueller 127

8. Volume Rendering Using Splatting

Roger Crawfis, Daqing Xue, and

Caixia Zhang 175

9. Multidimensional Transfer

Functions for Volume Rendering

Joe Kniss, Gordon Kindlmann,

and Charles D. Hansen 189

10. Pre-Integrated Volume Rendering

Martin Kraus and Thomas Ertl 211

11. Hardware-Accelerated

Volume Rendering

Hanspeter Pfister 229

PART IV
Vector Field Visualization

12. Overview of Flow Visualization

Daniel Weiskopf and

Gordon Erlebacher 261

13. Flow Textures: High-Resolution

Flow Visualization

Gordon Erlebacher, Bruno Jobard,

and Daniel Weiskopf 279

14. Detection and Visualization

of Vortices

Ming Jiang, Raghu Machiraju,

and David Thompson 295

PART V
Tensor Field Visualization

15. Oriented Tensor Reconstruction

Leonid Zhukov and Alan H. Barr 313

16. Diffusion Tensor

MRI Visualization

Song Zhang, David H. Laidlaw,

and Gordon Kindlmann 327

17. Topological Methods for

Flow Visualization

Gerik Scheuermann and

Xavier Tricoche 341

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page v

v

PART VI
Geometric Modeling for Visualization

18. 3D Mesh Compression

Jarek Rossignac 359

19. Variational Modeling Methods

for Visualization

Hans Hagen and Ingrid Hotz 381

20. Model Simplification

Jonathan D. Cohen and

Dinesh Manocha 393

PART VII
Virtual Environments for Visualization

21. Direct Manipulation in

Virtual Reality

Steve Bryson 413

22. The Visual Haptic Workbench

Milan Ikits and J. Dean Brederson 431

23. Virtual Geographic

Information Systems

William Ribarsky 449

24. Visualization Using Virtual

Reality

R. Bowen Loftin, Jim X. Chen,

and Larry Rosenblum 479

PART VIII
Large-Scale Data Visualization

25. Desktop Delivery: Access to

Large Datasets

Philip D. Heermann and

Constantine Pavlakos 493

26. Techniques for Visualizing

Time-Varying Volume Data

Kwan-Liu Ma and Eric B. Lum 511

27. Large-Scale Data Visualization

and Rendering: A Problem-Driven

Approach

Patrick McCormick and

James Ahrens 533

28. Issues and Architectures in

Large-Scale Data Visualization

Constantine Pavlakos and

Philip D. Heermann 551

29. Consuming Network Bandwidth

with Visapult

Wes Bethel and John Shalf 569

PART IX
Visualization Software and Frameworks

30. The Visualization Toolkit

William J. Schroeder and

Kenneth M. Martin 593

31. Visualization in the SCIRun

Problem-Solving Environment

David M. Weinstein, Steven Parker,

Jenny Simpson, Kurt Zimmerman,

and Greg M. Jones 615

32. NAG’s Iris Explorer

Jeremy Walton 633

33. AVS and AVS/Express

Jean M. Favre and Mario Valle 655

34. Vis5D, Cave5D, and VisAD

Bill Hibbard 673

35. Visualization with AVS

W. T. Hewitt, Nigel W. John,

Matthew D. Cooper, K. Yien Kwok,

George W. Leaver, Joanna M. Leng,

Paul G. Lever, Mary J. McDerby,

James S. Perrin, Mark Riding,

I. Ari Sadarjoen,

Tobias M. Schiebeck,

and Colin C. Venters 689

36. ParaView: An End-User Tool for

Large-Data Visualization

James Ahrens, Berk Geveci, and

Charles Law 717

37. The Insight Toolkit: An

Open-Source Initiative in Data

Segmentation and Registration

Terry S. Yoo 733

vi The Visualization Handbook

38. amira: A Highly Interactive

System for Visual Data Analysis

Detlev Stalling, Malte Westerhoff,

and Hans-Christian Hege 749

PART X
Perceptual Issues in Visualization

39. Extending Visualization to

Perceptualization: The Importance of

Perception in Effective

Communication of Information

David S. Ebert 771

40. Art and Science in Visualization

Victoria Interrante 781

41. Exploiting Human Visual

Perception in Visualization

Alan Chalmers and Kirsten Cater 807

PART XI
Selected Topics and Applications

42. Scalable Network Visualization

Stephen G. Eick 819

43. Visual Data-Mining Techniques

Daniel A. Keim, Mike Sips, and

Mihael Ankerst 831

44. Visualization in Weather and

Climate Research

Don Middleton, Tim Scheitlin,

and Bob Wilhelmson 845

45. Painting and Visualization

Robert M. Kirby, Daniel F. Keefe,

and David H. Laidlaw 873

46. Visualization and Natural Control

Systems for Microscopy

Russell M. Taylor II, David Borland,

Frederick P. Brooks, Jr., Mike Falvo,

Kevin Jeffay, Gail Jones, David

Marshburn, Stergios J. Papadakis,

Lu-Chang Qin, Adam Seeger,

F. Donelson Smith, Dianne Sonnenwald,

Richard Superfine, Sean Washburn,

Chris Weigle, Mary Whitton,

Leandra Vicci, Martin Guthold,

Tom Hudson, Philip Williams,

and Warren Robinett 893

47. Visualization for Computational

Accelerator Physics

Kwan-Liu Ma, Greg Schussman,

and Brett Wilson 919

Index 937

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page vii

Contents vii

Contributors

James Ahrens (27, 36)
Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, New Mexico

Mihael Ankerst (43)
The Boeing Company

Seattle, Washington

Alan H. Barr (15)
Department of Computer Science

California Institute of Technology

Pasadena, California

Wes Bethel (29)
Lawrence Berkeley National Laboratory

Berkeley, California

David Borland (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

J. Dean Brederson (22)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Frederick P. Brooks, Jr. (46)
Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Steve Bryson (21)
NASA Ames Research Center

Moffett Field, California

Kirsten Cater (41)
University of Bristol

Bristol, United Kingdom

Alan Chalmers (41)
University of Bristol

Bristol, United Kingdom

Jim X. Chen (24)
George Mason University

Fairfax, Virginia

Paolo Cignoni (4)
Istituto di Scienza e Tecnologie

dell’Informazione

Consiglio Nazionale delle Ricerche

Pisa, Italy

Jonathan D. Cohen (20)
Johns Hopkins University

Baltimore, Maryland

Matthew D. Cooper (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Roger Crawfis (8)
The Ohio State University

Columbus, Ohio

David S. Ebert (39)
School of Electrical and Computer

Engineering

Purdue University

West Lafayette, Indiana

Stephen G. Eick (42)
SSS Research

Warrenville, Illinois

National Center for Data Mining

University of Illinois

Chicago, Illinois

Gordon Erlebacher (12, 13)
Florida State University

Tallahassee, Florida

Thomas Ertl (10)
Visualization and Interactive Systems Group

University of Stuttgart

Stuttgart, Germany

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page viii

viii

Mike Falvo (46)
Curriculum on Applied and Materials Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Jean M. Favre (33)
Swiss National Supercomputing Center

Manno, Switzerland

Berk Geveci (36)
Kitware, Inc.

Clifton Park, New York

Martin Guthold (46)
Department of Physics

Wake Forest University

Winston-Salem, North Carolina

Hans Hagen (19)
University of Kaiserslautern

Kaiserslautern, Germany

Charles D. Hansen (9)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Philip D. Heermann (25, 28)
Sandia National Laboratories

Albuquerque, New Mexico

Hans-Christian Hege (38)
Zuse Institute Berlin

Berlin, Germany

W. T. Hewitt (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Bill Hibbard (34)
University of Wisconsin

Madison, Wisconsin

Ingrid Hotz (19)
University of Kaiserslautern

Kaiserslautern, Germany

Tom Hudson (46)
Department of Computer Science

University of North Carolina at Wilmington

Wilmington, North Carolina

Milan Ikits (22)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Victoria Interrante (40)
Department of Computer Science and

Engineering

University of Minnesota

Minneapolis, Minnesota

Takayuki Itoh (5)
IBM Japan Tokyo Research Laboratory

Tokyo, Japan

Kevin Jeffay (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Ming Jiang (14)
Department of Computer and

Information Science

The Ohio State University

Columbus, Ohio

Bruno Jobard (13)
Université de Pau

Pau, France

Nigel W. John (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Gail Jones (46)
School of Education

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Greg M. Jones (31)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Arie Kaufman (7)
Center for Visual Computing

Stony Brook University

Stony Brook, New York

Contributors ix

Daniel F. Keefe (45)
Department of Computer Science

Brown University

Providence, Rhode Island

Daniel A. Keim (43)
University of Konstanz

Konstanz, Germany

Gordon Kindlmann (9, 16)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Robert M. Kirby (45)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Joe Kniss (9)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Koji Koyamada (5)
Kyoto University Center for the Promotion

of Excellence in Higher Education

Kyoto, Japan

Martin Kraus (10)
Visualization and Interactive Systems Group

University of Stuttgart

Stuttgart, Germany

K. Yien Kwok (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

David H. Laidlaw (16, 45)
Department of Computer Science

Brown University

Providence, Rhode Island

Charles Law (36)
Kitware, Inc.

Clifton Park, New York

George W. Leaver (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Joanna M. Leng (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Paul G. Lever (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Yarden Livnat (2)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

R. Bowen Loftin (24)
Old Dominion University

Norfolk, Virginia

Eric B. Lum (26)
University of California at Davis

Davis, California

Kwan-Liu Ma (26, 47)
University of California at Davis

Davis, California

Raghu Machiraju (14)
Department of Computer and

Information Science

The Ohio State University

Columbus, Ohio

Dinesh Manocha (20)
University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

David Marshburn (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Kenneth M. Martin (1, 30)
Kitware, Inc.

Clifton Park, New York

Patrick McCormick (27)
Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, New Mexico

x The Visualization Handbook

Mary J. McDerby (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Don Middleton (44)
National Center for Atmospheric

Research

Boulder, Colorado

Claudio Montani (4)
Istituto di Scienza e Tecnologie

dell’Informazione

Consiglio Nazionale delle Ricerche,

Pisa, Italy

Klaus Mueller (7)
Center for Visual Computing

Stony Brook University

Stony Brook, New York

Steven Parker (31)
Scientific Computing and

Imaging Institute

University of Utah

Salt Lake City, Utah

Stergios J. Papadakis (46)
Department of Physics and Astronomy

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Constantine Pavlakos (25, 28)
Sandia National Laboratories

Albuquerque, New Mexico

James S. Perrin (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Hanspeter Pfister (11)
Mitsubishi Electric Research Laboratories

Cambridge, Massachusetts

Enrico Puppo (4)
Dipartimento di Informatica e Scienze

dell’Informazione

Universitá degli Studi di Genova

Genova, Italy

Lu-Chang Qin (46)
Department of Physics and Astronomy and

Curriculum on Applied and Materials Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

William Ribarsky (23)
College of Computing

Georgia Institute of Technology

Atlanta, Georgia

Mark Riding (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Warren Robinett (46)
http://www.warrenrobinett.com

Larry Rosenblum (24)
U.S. Naval Research Laboratory

Washington, DC

Jarek Rossignac (18)
College of Computing and Graphics,

Visualization, Usability Center

Georgia Institute of Technology

Atlanta, Georgia

I. Ari Sadarjoen (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Tim Scheitlin (44)
National Center for Atmospheric

Research

Boulder, Colorado

Gerik Scheuermann (17)
University of Kaiserslautern

Kaiserslautern, Germany

Tobias M. Schiebeck (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

William J. Schroeder (1, 30)
Kitware, Inc.

Clifton Park, New York

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xi

Contributors xi

Greg Schussman (47)
University of California at Davis

Davis, California

Roberto Scopigno (4)
Istituto di Scienza e Tecnologie

dell’Informazione

Consiglio Nazionale delle Ricerche

Pisa, Italy

Adam Seeger (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

John Shalf (29)
Lawrence Berkeley National Laboratory

Berkeley, California

Mike Sips (43)
University of Konstanz

Konstanz, Germany

Han-Wei Shen (3)
Department of Computer Science and

Engineering

The Ohio State University

Columbus, Ohio

Jenny Simpson (31)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

F. Donelson Smith (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Dianne Sonnenwald (46)
School of Information and

Library Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Detlev Stalling (38)
Zuse Institute Berlin

Berlin, Germany

Richard Superfine (46)
Department of Physics and Astronomy and

Curriculum on Applied and

Materials Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Russell M. Taylor II (46)
Departments of Computer Science and

Physics and Astronomy and Curriculum

on Applied and Materials Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

David Thompson (14)
Department of Aerospace Engineering

Mississippi State University

Mississippi State, Mississippi

Xavier Tricoche (17)
University of Kaiserslautern

Kaiserslautern, Germany

Mario Valle (33)
Swiss National Supercomputing Center

Manno, Switzerland

Colin C. Venters (35)
Manchester Visualization Centre

The University of Manchester

Manchester, United Kingdom

Leandra Vicci (46)
Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Jeremy Walton (32)
The Numerical Algorithms Group, Ltd.

Oxford, United Kingdom

Sean Washburn (46)
Curriculum on Applied and Materials Science

and Department of Physics and Astronomy

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Chris Weigle (46)
Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xii

xii The Visualization Handbook

David M. Weinstein (31)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Daniel Weiskopf (12, 13)
University of Stuttgart

Stuttgart, Germany

Malte Westerhoff (38)
Zuse Institute Berlin

Berlin, Germany

Ross T. Whitaker (6)
School of Computing

University of Utah

Salt Lake City, Utah

Mary Whitton (46)
Department of Computer Science

University of North Carolina at

Chapel Hill

Chapel Hill, North Carolina

Bob Wilhelmson (44)
National Center for Supercomputing

Applications

University of Illinois

Champaign, Illinois

Phillip Williams (46)
NASA Langley Research Center

Hampton, Virginia

Brett Wilson (47)
University of California at Davis

Davis, California

Daqing Xue (8)
The Ohio State Unversity

Columbus, Ohio

Terry S. Yoo (37)
Office of High Performance Computing and

Communications

The National Library of Medicine, National

Institutes of Health

Bethesda, Maryland

Caixia Zhang (8)
The Ohio State University

Columbus, Ohio

Song Zhang (16)
Department of Computer Science

Brown University

Providence, Rhode Island

Leonid Zhukov (15)
Department of Computer Science

California Institute of Technology

Pasadena, California

Kurt Zimmerman (31)
Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, Utah

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xiii

Contributors xiii

Preface

The field of visualization is focused on creating

images that convey salient information about

underlying data and processes. In the past

three decades, the field has seen unprecedented

growth in computational and acquisition tech-

nologies, which has resulted in an increased

ability both to sense the physical world with

very detailed precision and to model and simu-

late complex physical phenomena. Given these

capabilities, visualization plays a crucial enab-

ling role in our ability to comprehend such large

and complex data—data that, in two, three, or

more dimensions, conveys insight into such di-

verse applications as medical processes, earth

and space sciences, complex flow of fluids, and

biological processes, among many other areas.

The field was aptly described in the 1987 Na-

tional Science Foundation’s Visualization in

Scientific Computing Workshop report, which

explained:

Visualization is a method of computing. It

transforms the symbolic into the geometric,

enabling researchers to observe their simula-

tions and computations. Visualization offers a

method for seeing the unseen. It enriches the

process of scientific discovery and fosters pro-

found and unexpected insights. In many fields

it is already revolutionizing the way scientists

do science . . . The goal of visualization is to

leverage existing scientific methods by provid-

ing new scientific insight through visual

methods.

While visualization is a relatively young field,

the goal of visualization—that is, the creation of

a visual representation to help explain complex

phenomena—is certainly not new. One has only

to look at the Da Vinci notebooks to under-

stand the great power of illustration to bring

out salient details of complex processes. An-

other fine example, the drawing by Charles

Minard (1781–1870) of the ill-fated Russian

campaign by Napoleon’s troops, elegantly in-

corporates both spatial and temporal data in a

comprehensive visualization created by drawing

the sequence of events and the resulting effects

on the troop size.

The discipline of visualization as it is cur-

rently understood was born with the advent of

scientific computing and the use of computer

graphics for depicting computational data. Sim-

ultaneously, devices capable of sensing the

physical world, from medical scanners to geo-

physical sensing to satellite-borne sensing, and

the need to interpret the vast amount of data

either computed or acquired, have also driven

the field. In addition to the rapid growth in

visualization of scientific and medical data,

data that typically lacks a spatial domain has

caused the rise of the field of information visu-

alization.

With this Handbook, we have tried to com-

pile a thorough overview of our young field by

presenting the basic concepts of visualization,

providing a snapshot of current visualization

software systems, and examining research topics

that are advancing the field.

We have organized the book into parts to

reflect a taxonomy we use in our teaching to

explain scientific visualization: basic visualiza-

tion algorithms, scalar data isosurface methods,

scalar data volume rendering, vector data,

tensor data, geometric modeling, virtual envir-

onments, large-scale data, visualization soft-

ware and frameworks, perceptual issues, and

selected application topics including informa-

tion visualization. While, as we say, this tax-

onomy represents topics covered in a standard

visualization course, this Handbook is not

meant to serve as a textbook. Rather, it is

meant to reach a broad audience, including

not only the expert in visualization seeking ad-

vanced methods to solve a particular problem

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xiv

xiv

but also the novice looking for general back-

ground information on visualization topics.

I. Introduction

Part I looks at basic algorithms for scientific

visualization. In practice, a typical algorithm

may be thought of as a transformation from

one data form into another. These operations

may also change the dimensionality of the data.

For example, generating a streamline from a

specified starting point in an input 3D dataset

produces a 1D curve. The input may be repre-

sented as a finite element mesh, while the output

may be a represented as a polyline. Such oper-

ations are typical of scientific visualization

systems that repeatedly transform data into dif-

ferent forms and ultimately into a representa-

tion that can be rendered by the computer

system.

II. Scalar Field Visualization: Isosurfaces

The analysis of scalar data benefits from the

extraction of lines (2D) or surfaces (3D) of con-

stant value. As described in Part I, marching

cubes is the most widely used method for the

extraction of isosurfaces. In this section,

methods for the acceleration of isosurface ex-

traction are presented by the various contribu-

tors. Yarden Livnat introduces the span space, a

representation of acceleration of isosurfaces.

Based on this concept, methods that use the

span space are described. Han-Wei Shen pre-

sents a method for exploiting temporal locality

for isosurface extraction, in recognition of the

fact that temporal information is becoming in-

creasingly crucial to comprehension of time-de-

pendent scalar fields. Roberto Scopigno, Paolo

Cignoni, Claudio Montani, and Enrico Puppo

present a method for optimally using the span

space for isosurface extraction based on the

interval tree. Koji Koyamada and Takayuki

Itoh describe a method for isosurface extraction

based on the extrema graph. To conclude this

section, Ross Whitaker presents an overview

of level-sets and their relation to isosurface

extraction.

III. Scalar Field Visualization: Volume
Rendering

Direction scalar field visualization is accom-

plished with volume rendering, which produces

an image directly from the data without an

intermediate geometrical representation. Arie

Kaufman and Klaus Mueller provide an excel-

lent survey of volume rendering algorithms.

Roger Crawfis, Daqing Xue, and Caixia Zhang

provide a more detailed look at the splatting

method for volume rendering. Joe Kniss,

Gordon Kindlmann, and Chuck Hansen de-

scribe how to exploit multidimensional transfer

functions for extracting the material boundaries

of objects. Martin Kraus and Thomas Ertl de-

scribe a method by which volume rendering can

be accelerated through the precomputation of

the volume integral. Finally, Hanspeter Pfister

provides an overview of another approach to

the acceleration of volume rendering, the use

of hardware methods.

IV. Vector Field Visualization

Flow visualization is an important topic in sci-

entific visualization and has been the subject of

active research for many years. Typically, data

originates from numerical simulations, such as

those of computational fluid dynamics (CFD),

and must be analyzed by means of visualization

to provide an understanding of the flow. Daniel

Weiskopf and Gordon Erlebacher present an

overview of such methods, including a specific

technique for the rapid visualization of flow

data that exploits hardware available on most

graphics cards. Gordon Erlebacher, Bruno

Jobard, and Daniel Weiskopf describe their

method for flow textures in the next chapter.

Ming Jiang, Raghu Machiraju, and David

Thompson then provide an overview and solu-

tion to the problem of gaining insight into flow

fields through the localization of vortices.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xv

Preface xv

V. Tensor Field Visualization

Computational and sensed data can also repre-

sent tensor information. The visualization of

such fields is the topic of this part. Leonid Zhu-

kov and Alan Barr describe the reconstruction

of oriented tensors in a method similar to

streamlines for vector fields. Song Zhang,

Gordon Kindlmann, and David Laidlaw de-

scribe the use of visualization methods for the

analysis of Diffusion Tensor Magnetic Reson-

ance Imaging (DT-MRI or DTI). Finally, Gerik

Scheuermann and Xavier Tricoche describe a

more abstract representation of tensor fields

through the use of topological methods.

VI. Geometric Modeling
for Visualization

Geometric modeling plays an important role in

visualization. For example, in the first chapter

of this part, Jarek Rossignac describes tech-

niques for the compression of 3D meshes,

which can be enormous and which are com-

monly used to represent isosurfaces. Next,

Hans Hagen and Ingrid Hotz present the basic

principles of variational modeling techniques,

already powerful tools for free-form modeling

in CAD/CAM whose basic principles are now

being imported for use in scientific visualization.

To complete this part, Jonathan Cohen and

Dinesh Manocha give an overview of model

simplification, which is critical for interactive

applications.

VII. Virtual Environments
for Visualization

Virtual environments provide a natural inter-

face to 3D data. They are becoming more preva-

lent in the visualization field. Steve Bryson

describes the use of direction manipulation as

a modality of data interaction in the visualiza-

tion process. Milan Ikits and Dean Brederson

explore the use of haptics in visualization. Bill

Ribarsky describes how geographic information

systems can benefit from a virtual environment

interface. And, in the last chapter in this section,

Bowen Loftin provides an overview of virtual

environments for visualization.

VIII. Large-Scale Data Visualization

With the dramatic increase in computational

capabilities in recent years, the problem of visu-

alization of the massive datasets produced by

computation is an active area of research. Philip

Heermann and Constantine Pavlakos describe

the problems involved in providing scientists

with access to such enormous data. Kwan-Liu

Ma and Eric Lum explore methods for time-

varying scalar data. Patrick McCormick and

James Ahrens present an analytical approach

to large data visualization, describing their

own method, which identifies four fundamental

techniques for addressing the large-data prob-

lem. Constantine Pavlakos and Philip Heer-

mann give an overview of the large-data

problem from the DOE ASCI perspective.

Finally, Wes Bethel and John Shalf present a

GRID method for the visualization of large

data across wide-area networks.

IX. Visualization Software
and Frameworks

There are many visualization packages available

to assist scientists and developers in the analysis

of data. Several of these are described in this

part.

X. Perceptual Issues in Visualization

Since the primary purpose of visualization is to

convey information to users, it is important that

visualizers understand and address issues in-

volving perception. To open this section,

David Ebert describes the importance of per-

ception in visualization. Next, Victoria Inter-

rante explores ways in which art and science

have been combined since the Renaissance

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xvi

xvi The Visualization Handbook

to produce inspirational results. In the last

chapter of this section, Alan Chalmers and Kir-

sten Cater discuss the exploitation of human

visual perception in visualization to produce

more effective results.

XI. Selected Topics and Applications

The visualization of nonspatial data is becom-

ing increasingly important. Methods for such

visualization are known as information visual-

ization techniques. This section presents two

applications that employ information visualiza-

tion: the visualization of networks and data

mining. Stephen G. Eick defines the concept of

visual scalability for the visualization of very

large networks, illustrates it with three

examples, and describes techniques to increase

network visualization scalability. Information

visualization and visual data mining can help

with the exploration and analysis of the current

flood of information facing modern society.

Daniel Keim, Mike Sips, and Mihael Ankerst

provide an overview of information visualiza-

tion and visual data-mining techniques, using

examples to elucidate those techniques.

Weather and climate research is an area that

has traditionally employed visualization tech-

niques. Don Middleton, Bob Wilhelmson, and

Tim Scheitlin describe an overview of this appli-

cation area. Then Robert Kirby, Daniel Keefe,

and David Laidlaw explore the relationship be-

tween art and visualization, building on their

work in layering of information for visualiza-

tion. The research group at the University of

North Carolina at Chapel Hill describes the

use of visualization to assist in providing

users with the fine motor control required by

modern microscopy instruments. In the last

chapter of this section, Kwan-Liu Ma, Greg

Schussman, and Brett Wilson present several

novel techniques for using computational accel-

erator physics as an application area for visual-

ization.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xvii

Preface xvii

Acknowledgments

This book is the result of a multiyear effort

of collecting material from the leaders in the

field. It has been a pleasure working with

the chapter authors, though as always the

book has taken longer to bring to publication

than we anticipated. We appreciate the con-

tributors’ patience. We would like to thank

Donna Prisbrey and Piper Bessinger-West for

their superb administration skills, without

which this Handbook would not have seen the

light of day. We also would like to thank all the

students, staff, and faculty of the SCI Institute

for making each and every day an exciting intel-

lectual adventure.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 4:23am page xviii

PART I

Introduction

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:18pm page 1

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:18pm page 2

This page intentionally left blank

1 Overview of Visualization

WILLIAM J. SCHROEDER and KENNETH M. MARTIN

Kitware, Inc.

1.1 Introduction

In this chapter, we look at basic algorithms for

scientific visualization. In practice, a typical al-

gorithm can be thought of as a transformation

from one data form into another. These oper-

ations may also change the dimensionality of the

data. For example, generating a streamline from

a specification of a starting point in an input 3D

dataset produces a 1D curve. The input may be

represented as a finite element mesh, while the

output may be represented as a polyline. Such

operations are typical of scientific visualization

systems that repeatedly transform data into dif-

ferent forms and ultimately transform it into a

representation that can be rendered by the com-

puter system.

The algorithms that transform data are the

heartofdatavisualization.Todescribe thevarious

transformations available, we need to categorize

algorithms according to the structure and type of

transformation. By structure, we mean the effects

that transformation has on the topology and

geometry of the dataset. By type, we mean the

type of dataset that the algorithm operates on.

Structural transformations can be classified in

fourways,dependingonhowtheyaffect thegeom-

etry, topology, and attributes of a dataset. Here,

we consider the topology of the dataset as the

relationship of discrete data samples (one to an-

other) that are invariant with respect to geometric

transformation. For example, a regular, axis-

aligned sampling of data in three dimensions is

referred to as a volume, and its topology is a rect-

angular (structured) lattice with clearly defined

neighborhood voxels and samples. On the other

hand, the topology of a finite element mesh is

represented by an (unstructured) list of elements,

eachdefinedbyanorderedlistofpoints.Geometry

is a specificationof the topology in space (typically

3D), including point coordinates and interpol-

ation functions. Attributes are data associated

with the topology and/or geometry of the dataset,

such as temperature, pressure, or velocity. Attri-

butes are typically categorized as being scalars

(single value per sample), vectors (n-vector of

values), tensor (matrix), surface normals, texture

coordinates, or general field data. Given these

terms, the following transformations are typical

of scientific visualization systems:

. Geometric transformations alter input geom-

etry but do not change the topology of the

dataset. For example, if we translate, rotate,

and/or scale the points of a polygonal dataset,

the topology does not change, but the point

coordinates, and therefore the geometry, do.

. Topological transformations alter input top-

ology but do not change geometry and attri-

bute data. Converting a dataset type from

polygonal to unstructured grid, or from

image to unstructured grid, changes the top-

ology but not the geometry. More often,

however, the geometry changes whenever

the topology does, so topological transform-

ation is uncommon.

. Attribute transformations convert data attri-

butes from one form to another, or create

new attributes from the input data. The

structure of the dataset remains unaffected.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 3

3

Text and images taken with permission from the book The Visualization Toolkit: An Object-Oriented Approach to 3D

Graphics, 3rd ed., published by Kitware, Inc. http://www.kitware.com/products/vtktextbook.html.

Computing vector magnitude and creating

scalars based on elevation are data attribute

transformations.

. Combined transformations change both

dataset structure and attribute data. For

example, computing contour lines or sur-

faces is a combined transformation.

We also may classify algorithms according to

the type of data they operate on. The meaning

of the word ‘‘type’’ is often somewhat vague.

Typically, ‘‘type’’ means the type of attribute

data, such as scalars or vectors. These categories

include the following:

. Scalar algorithms operate on scalar data. An

example is the generation of contour lines of

temperature on a weather map.

. Vector algorithms operate on vector data.

Showing oriented arrows of airflow (direc-

tion and magnitude) is an example of vector

visualization.

. Tensor algorithms operate on tensor matri-

ces. One example of a tensor algorithm is to

show the components of stress or strain in a

material using oriented icons.

. Modeling algorithms generate dataset top-

ology or geometry, or surface normals or tex-

ture data. ‘‘Modeling algorithms’’ tends to be

the catch-all category for algorithms that do

not fit neatly into any single category men-

tioned above. For example, generating glyphs

oriented according to the vector direction and

then scaled according to the scalar value is a

combined scalar/vector algorithm. For

convenience, we classify such an algorithm as

a modeling algorithm because it does not

fit squarely into any other category.

Note that an alternative classification scheme is

to refer to the topological type of the input data

(e.g., image, volume, or unstructured mesh) that

a particular algorithm operates on. In the re-

mainder of the chapter we will classify the type

of the algorithm as the type of attribute data on

which it operates. Be forewarned, though, that

alternative classification schemes do exist and

may be better suited to describing the true

nature of the algorithm.

1.1.1 Generality Vs. Efficiency

Most algorithms can be implemented specific-

ally for a particular data type or, more gener-

ally, for treating any data type. The advantage

of a specific algorithm is that it is usually faster

than a comparable general algorithm. An imple-

mentation of a specific algorithm may also be

more memory-efficient, and it may better reflect

the relationship between the algorithm and the

dataset type it operates on.

One example of this is contour surface cre-

ation.Algorithms for extracting contour surfaces

were originally developed for volume data,

mainly for medical applications. The regularity

of volumes lends itself to efficient algorithms.

However, the specialization of volume-based

algorithms precludes their use for more general

datasets such as structured or unstructured grids.

Although the contour algorithms can be adapted

to these other dataset types, they are less efficient

than those for volume datasets.

The presentation of algorithms in this chapter

favors more general implementations. In some

special cases, authors will describe performance-

improving techniques for particular dataset

types. Various other chapters in this book

also include detailed descriptions of specialized

algorithms.

1.1.2 Algorithms as Filters

In a typical visualization system, algorithms are

implemented as filters that operate on data. This

approach is due in some part to the success of

early systems like the Application Visualization

System [2] and Data Explorer [9] and the popu-

larity of systems like SCIRun [37] and the Visu-

alization Toolkit [36] that are built around the

abstraction of data flow. This abstraction is nat-

ural because of the transformative nature of visu-

alization. The basic idea is that two types of

objects—data objects and process objects—are

connected together into visualization pipelines.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 4

4 Introduction

The process objects, or filters, are the algorithms

that operate on the data objects and in turn

produce data objects as output. In this abstrac-

tion, filters that initiate the pipeline are referred

to as sources; filters that terminate the pipeline

are known as sinks (or mappers). Depending on

their particular implementation, filters may have

multiple inputs and/or may produce multiple

outputs.

1.2 Scalar Algorithms

Scalars are single data values associated with

each point and/or cell of a dataset. Because

scalar data is commonly found in real-world

applications, and because it is so easy to work

with, there are many different algorithms to

visualize it.

1.2.1 Color Mapping

Color mapping is a common scalar visualization

technique that maps scalar data to colors and

displays the colors using the standard coloring

and shading facilities of the graphics library.

The scalar mapping is implemented by indexing

into a color lookup table. Scalar values serve as

indices into the lookup table.

The mapping proceeds as follows. The

lookup table holds an array of colors (e.g., red,

green, blue, and alpha transparency compon-

ents or other comparable representations). As-

sociated with the table is a minimum and

maximum scalar range (min, max) into which

the scalar values are mapped. Scalar values

greater than the maximum range are clamped

to the maximum color, and scalar values less

than the minimum range are clamped to the

minimum color value. For each scalar value si,

the index i into the color table with n entries

(and 0-offset) is given by Fig. 1.1.

A more general form of the lookup table is

called a transfer function. A transfer function

is any expression that maps scalar value into

a color specification. For example, Fig. 1.2

maps scalar values into separate intensity values

for the red, green, and blue color components.

We can also use transfer functions to map scalar

data into other information, such as local trans-

parency. A lookup table is a discrete sampling

of a transfer function. We can create a lookup

table from any transfer function by sampling

the transfer function at a set of discrete points.

Color mapping is a 1D visualization tech-

nique. It maps one piece of information (i.e., a

scalar value) into a color specification. However,

the display of color information is not limited

to 1D displays. Often the colors are mapped

onto 2D or 3D objects. This is a simple way

to increase the information content of the visual-

izations.

The key to color mapping for scalar

visualization is to choose the lookup table

entries carefully. Fig. 1.3 shows four different

lookup tables used to visualize gas density as

fluid flows through a combustion chamber. The

first lookup table is grey-scale. Grey-scale tables

often provide better structural detail to the eye.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 5

rgb0

rgb1

rgb2

colorsi

si < min, i = 0

si > max, i = n − 1

si − min

max − min
i = n

rgbn−1

Figure 1.1 Mapping scalars to colors via a lookup table.

Overview of Visualization 5

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 6

Red Green

Scalar Value

Blue

In
te

ns
ity

Figure 1.2 Transfer function for color components red, green, and blue as a function of scalar value.

Figure 1.3 Flow density colored with different lookup tables. (Top left) Grey-scale; (top right) rainbow (blue to red); (lower

left) rainbow (red to blue); (lower right) large contrast. (See also color insert.)

6 Introduction

The other three images in Fig. 1.3 use different

color lookup tables. The second uses rainbow

hues from blue to red. The third uses rainbow

hues arranged from red to blue. The last image

uses a table designed to enhance contrast. Care-

ful use of colors can often enhance important

features of a dataset. However, any type of

lookup table can exaggerate unimportant details

or create visual artifacts because of unforeseen

interactions among data, color choice, and

human physiology.

Designing lookup tables is as much an art as

it is a science. From a practical point of view,

tables should accentuate important features

while minimizing less important or extraneous

details. It is also desirable to use palettes that

inherently contain scaling information. For

example, a color rainbow scale from blue to

red is often used to represent temperature

scale, since many people associate blue with

cold temperatures and red with hot tempera-

tures. However, even this scale is problematic:

a physicist would say that blue is hotter than

red, since hotter objects emit more blue (i.e.,

shorter-wavelength) light than red. Also, there

is no need to limit ourselves to ‘‘linear’’ lookup

tables. Even though the mapping of scalars into

colors has been presented as a linear operation

(Fig. 1.1), the table itself need not be linear; that

is, tables can be designed to enhance small vari-

ations in scalar value using logarithmic or other

schemes.

1.2.2 Contouring

One natural extension to color mapping is con-

touring. When we see a surface colored with

data values, the eye often separates similarly

colored areas into distinct regions. When we

contour data, we are effectively constructing

the boundary between these regions. A particu-

lar boundary can be expressed as the n-dimen-

sional separating surfaces

F (x) ¼ c (1:1)

between the two regions F (x) < c and F (x) > c,

where c is the contour value and x is an n-dimen-

sional point in the dataset. These two regions

are typically referred to as the inside or outside

regions of the contour.

Examples of 2D contour displays include

weather maps annotated with lines of constant

temperature (isotherms) or topological maps

drawn with lines of constant elevation. 3D

contours are called isosurfaces and can be ap-

proximated by many polygonal primitives.

Examples of isosurfaces include constant med-

ical image intensity corresponding to body

tissues such as skin, bone, or other organs.

Other abstract isosurfaces, such as surfaces of

constant pressure or temperature in fluid flow,

may also be created.

Consider the 2D structured grid shown in Fig.

1.4. Scalar values are shown next to the points

that define the grid. Contouring always begins

when one specifies a contour value defining the

contour line or surface to be generated. To gen-

erate the contours, some form of interpolation

must be used. This is because we have scalar

values at a discrete set of (sample) points in

the dataset, and our contour value may lie be-

tween the point values. Since the most common

interpolation technique is linear, we generate

points on the contour surface by linear interpol-

ation along the edges. If an edge has scalar

values 10 and 0 at its two endpoints, for example,

and if we are trying to generate a contour line of

value 5, then edge interpolation computes that

3

10

6

1

6

3

3

2

7 9 7 3

7 8 6 2

2 3 4 3

1

3

2

1

Figure 1.4 Contouring a 2D structured grid with contour

line value ¼ 5.

Overview of Visualization 7

the contour passes through the midpoint of the

edge.

Once the points on cell edges are generated,

we can connect these points into contours using

a few different approaches. One approach

detects an edge intersection (i.e., the passing of

a contour through an edge) and then ‘‘tracks’’

this contour as it moves across cell boundaries.

We know that if a contour edge enters a cell, it

must exit a cell as well. The contour is tracked

until it closes back on itself or exits a dataset

boundary. If it is known that only a single con-

tour exists, then the process stops. Otherwise,

every edge in the dataset must be checked to see

whether other contour lines exist.

Another approach uses a divide-and-conquer

technique, treating cells independently. This is

called the marching squares algorithm in 2D and

the marching cubes algorithm [23] in 3D. The

basic assumption of these techniques is that a

contour can pass through a cell in only a finite

number of ways. A case table is constructed that

enumerates all possible topological states of a

cell, given combinations of scalar values at the

cell points. The number of topological states

depends on the number of cell vertices and the

number of inside/outside relationships a vertex

can have with respect to the contour value. A

vertex is considered inside a contour if its scalar

value is larger than the scalar value of the con-

tour line. Vertices with scalar values less than

the contour value are said to be outside the

contour. For example, if a cell has four vertices

and each vertex can be either inside or outside

the contour, there are 24 ¼ 16 possible ways

that the contour passes through the cell. In the

case table, we are not interested in where the

contour passes through the cell (e.g., geometric

intersection), just how it passes through the cell

(i.e., topology of the contour in the cell).

Fig. 1.5 shows the 16 combinations for a

square cell. An index into the case table can be

computed by encoding the state of each vertex

as a binary digit. For 2D data represented on a

rectangular grid, we can represent the 16 cases

with a 4-bit index. Once the proper case is

selected, the location of the contour line/cell

edge intersection can be calculated using inter-

polation. The algorithm processes a cell and

then moves, or marches, to the next cell. After

all the cells are visited, the contour will be com-

pleted. In summary, the marching algorithms

proceed as follows:

1. Select a cell.

2. Calculate the inside/outside state of each

vertex of the cell.

3. Create an index by storing the binary state

of each vertex in a separate bit.

4. Use the index to look up the topological

state of the cell in a case table.

5. Calculate the contour location (via interpol-

ation) for each edge in the case table.

This procedure will construct independent

geometric primitives in each cell. At the cell

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 8

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Case 15Case 14Case 13Case 12Case 11Case 10Case 9Case 8

Figure 1.5 Sixteen different marching squares cases. Dark vertices indicate scalar value is above contour value. Cases 5 and 10

are ambiguous.

8 Introduction

boundaries, duplicate vertices and edges may be

created. These duplicates can be eliminated by

use of a special coincident point-merging oper-

ation. Note that interpolation along each edge

should be done in the same direction. If it is not,

numerical round-off will likely cause points to

be generated that are not precisely coincident

and will thus not merge properly.

There are advantages and disadvantages

to both the edge-tracking and the marching

cubes approaches. The marching squares algo-

rithm is easy to implement. This is particularly

important when we extend the technique into

three dimensions, where isosurface tracking be-

comes much more difficult. On the other hand,

the algorithm creates disconnected line seg-

ments and points, and the required merging

operation requires extra computation resources.

The tracking algorithm can be implemented to

generate a single polyline per contour line,

avoiding the need to merge coincident points.

As mentioned previously, the 3D analogy of

marching squares is marching cubes. Here, there

are 256 different combinations of scalar value,

given that there are eight points in a cubical cell

(i.e., 28 combinations). Figure 1.6 shows these

combinations reduced to 15 cases by arguments

of symmetry. We use combinations of rotation

and mirroring to produce topologically equiva-

lent cases. (This is the so-called marching cubes

case table.)

An important issue is contouring ambiguity.

Careful observation of marching squares cases 5

and 10 and marching cubes cases 3, 6, 7, 10, 12,

and 13 show that there are configurations where

a cell can be contoured in more than one

way. (This ambiguity also exists in an edge-

tracking approach to contouring.) Contouring

ambiguity arises on a 2D square or the face of a

3D cube when adjacent edge points are in

different states but diagonal vertices are in the

same state.

In two dimensions, contour ambiguity is

simple to treat: for each ambiguous case, we

implement one of the two possible cases. The

choice for a particular case is independent of all

other choices. Depending on the choice, the

contour may either extend or break the current

contour, as illustrated in Fig. 1.8. Either choice

is acceptable since the resulting contour lines

will be continuous and closed (or will end at

the dataset boundary).

In three dimensions the problem is more com-

plex. We cannot simply choose an ambiguous

case independent of all other ambiguous cases.

For example, Fig. 1.9 shows what happens if we

carelessly implement two cases independent of

one another. In this figure we have used the

usual case 3 but replaced case 6 with its comple-

mentary case. Complementary cases are formed

by exchanging the ‘‘dark’’ vertices with ‘‘light’’

vertices. (This is equivalent to swapping vertex

scalar value from above the isosurface value to

below the isosurface value, and vice versa.) The

result of pairing these two cases is that a hole is

left in the isosurface.

Several different approaches have been taken

to remedy this problem. One approach tessel-

lates the cubes with tetrahedra and uses a

marching tetrahedra technique. This works be-

cause the marching tetrahedra exhibit no am-

biguous cases. Unfortunately, the marching

tetrahedra algorithm generates isosurfaces con-

sisting of more triangles, and the tessellation

of a cube with tetrahedra requires one to make

a choice regarding the orientation of the tetra-

hedra. This choice may result in artificial

‘‘bumps’’ in the isosurface because of inter-

polation along the face diagonals, as shown in

Fig. 1.7. Another approach evaluates the

asymptotic behavior of the surface and then

chooses the cases to either join or break the

contour. Nielson and Hamann [28] have de-

veloped a technique based on this approach

that they call the asymptotic decider. It is based

on an analysis of the variation of the scalar

variable across an ambiguous face. The analysis

determines how the edges of isosurface poly-

gons should be connected.

A simple and effective solution extends the

original 15 marching cubes cases by adding add-

itional complementary cases. These cases are

designed to be compatible with neighboring

cases and prevent the creation of holes in the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 9

Overview of Visualization 9

isosurface. There are six complementary

cases required, corresponding to the marching

cubes cases 3, 6, 7, 10, 12, and 13. The comple-

mentary marching cubes cases are shown in

Fig. 1.10. In practice the simplest approach is

to create a case table consisting of all 256 pos-

sible combinations and to design them in such

a way as to prevent holes. A successful marching

cubes case table will always produce manifold

surfaces (i.e., interior edges are used by exactly

two triangles; boundary edges are used by exactly

one triangle).

We can extend the general approach of

marching squares and marching cubes to other

topological types such as triangles, tetrahedra,

pyramids, and wedges. In addition, although we

refer to regular types such as squares and cubes,

marching cubes can be applied to any cell type

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 10

Case 0 Case 1 Case 2 Case 3

Case 4 Case 5 Case 6 Case 7

Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14

Figure 1.6 Marching cubes cases for 3D isosurface generation. The 256 possible cases have been reduced to 15 cases using

symmetry. Vertices with a dot are greater than the selected isosurface value.

10 Introduction

topologically equivalent to a cube (e.g., a hexa-

hedron or noncubical voxel).

Fig. 1.11 shows four applications of contour-

ing. In Fig. 1.11a we see 2D contour lines of CT

density value corresponding to different tissue

types. These lines were generated using march-

ing squares. Figs 1.11b through 1.11d are iso-

surfaces created by marching cubes. Fig. 1.11b

is a surface of constant image intensity from a

computed tomography (CT) x-ray imaging

system. (Fig. 1.11a is a 2D subset of these

data.) The intensity level corresponds to

human bone. Fig. 1.11c is an isosurface of

constant flow density. Figure 1.11d is an isosur-

face of electron potential of an iron protein

molecule. The image shown in Fig. 1.11b

is immediately recognizable because of our fa-

miliarity with human anatomy. However, for

those practitioners in the fields of computa-

tional fluid dynamics (CFD) and molecular

biology, Figs. 1.11c and 1.11d are equally famil-

iar. As these examples show, methods for con-

touring are powerful, yet general, techniques for

visualizing data from a variety of fields.

1.2.3 Scalar Generation

The two visualization techniques presented thus

far, color mapping and contouring, are simple,

effective methods to display scalar information.

It is natural to turn to these techniques first

when visualizing data. However, often our

data are not in a form convenient to these tech-

niques. The data may not be single-valued (i.e., a

scalar), or they may be a mathematical or other

complex relationship. That is part of the fun

and creative challenge of visualization: we must

tap our creative resources to convert data into a

form on which we can bring our existing tools to

bear.

For example, consider terrain data. We

assume that the data are x-y-z coordinates,

where x and y represent the coordinates in the

plane and z represents the elevation above sea

level. Our desired visualization is to color the

terrain according to elevation. This requires us

to create a color map—possibly using white for

high altitudes, blue for sea level and below, and

various shades of green and brown for different

elevations between sea level and high altitude.

We also need scalars to index into the color

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 11

Iso-value = 2.5

1 2 1 2

4 3 4 3

Figure 1.7 Usingmarching triangles ormarching tetrahedra

to resolve ambiguous cases on rectangular lattice (only the

face of the cube is shown). Choice of diagonal orientation can

result in ‘‘bumps’’ in the contour surface. In two dimensions,

diagonal orientation can be chosen arbitrarily, but in three

dimensions the diagonal is constrained by the neighbor.

(a) Break contour (b) Join contour

Figure 1.8 Choosing a particular contour case will (a) break or (b) join the current contour. The case shown is marching

squares case 10.

Overview of Visualization 11

map. The obvious choice here is to extract the z

coordinate. That is, scalars are simply the z-co-

ordinate value.

This example can be made more interesting by

generalizing the problem. Although we could

easily create a filter to extract the z coordinate,

we can create a filter that produces elevation

scalar values where the elevation is measured

along any axis. Given an oriented line starting

at the (low) point pl (e.g., sea level) and end-

ing at the (high) point ph (e.g., mountain top),

we compute the elevation scalar si at point

pi ¼ (xi, yi, zi) using the dot product as shown

in Fig. 1.12. The scalar is normalized using the

magnitude of the oriented line and may be

clamped between minimum and maximum scalar

values (if necessary). The bottom half of this

figure shows the results of applying this tech-

nique to a terrain model of Honolulu, Hawaii.

A lookup table of 256 points ranging from deep

blue (water) to yellow-white (mountain top) is

used to color map this figure.

Scalar visualization techniques are decep-

tively powerful. Color mapping and isocontour

generation are the predominant methods used

in scientific visualization. Scalar visualization

techniques are easily adapted to a variety of

situations through creation of a relationship

that transforms data at a point into a scalar

value. Other examples of scalar mapping in-

clude an index value into a list of data, comput-

ing vector magnitude or matrix determinant,

evaluating surface curvature, or determining

distance between points. Scalar generation,

when coupled with color mapping or contour-

ing, is a simple yet effective technique for

visualizing many types of data.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 12

Case 3 Case 6c

Figure 1.9 Arbitrarily choosing marching cubes cases leads

to holes in the isosurface.

Case 3c Case 6c Case 7c

Case 10c Case 12c Case 13c

Figure 1.10 Marching cubes complementary cases.

12 Introduction

1.3 Vector Algorithms

Vector data is a 3D representation of

direction and magnitude. Vector data often

results from the study of fluid flow or data

derivatives.

1.3.1 Hedgehogs and Oriented Glyphs

A natural vector visualization technique is to

draw an oriented, scaled line for each vector in

a dataset (Fig. 1.13a). The line begins at the

point with which the vector is associated and is

oriented in the direction of the vector compon-

ents (vx, vy, vz). Typically, the resulting line must

be scaled up or down to control the size of its

visual representation. This technique is often

referred to as a hedgehog because of the bristly

result.

There are many variations of this technique

(Fig. 1.13b). Arrows may be added to indicate

the direction of the line. The lines may be

colored according to vector magnitude or some

other scalar quantity (e.g., pressure or tempera-

ture). Also, instead of using a line, oriented

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 13

Figure 1.11 Contouring examples. (a) Marching squares used to generate contour lines; (b) marching cubes surface of human

bone; (c) marching cubes surface of flow density; (d) marching cubes surface of iron–protein.

Overview of Visualization 13

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 14

si =
(pi − pl) . (ph − pl)

ph − pl
2

pi

pl

si

ph

Figure 1.12 Computing scalars using normalized dot product. The bottom half of the figure illustrates a technique applied to

terrain data from Honolulu, HI. (See also color insert.)

2D Glyphs

3D Glyphs

(b) (c)(a)

Figure 1.13 Vector visualization techniques. (a) Oriented lines; (b) oriented glyphs; (c) complex vector visualization. (See also

color insert.)

14 Introduction

‘‘glyphs’’ can be used. By glyph we mean any

2D or 3D geometric representation, such as an

oriented triangle or cone.

Care should be used in applying these tech-

niques. In three dimensions it is often difficult to

understand the position and orientation of a

vector because of its projection into the 2D

view plane. Also, using large numbers of vectors

can clutter the display to the point where the

visualization becomes meaningless. Figure 1.13c

shows 167,000 3D vectors (using oriented and

scaled lines) in the region of the human carotid

artery. The larger vectors lie inside the arteries,

and the smaller vectors lie outside the arteries

and are randomly oriented (measurement error)

but small in magnitude. Clearly, the details of

the vector field are not discernible from this

image.

Scaling glyphs also poses interesting problems.

In what Tufte [39] has termed a ‘‘visualization

lie,’’ scaling a 2D or 3D glyph results in nonlinear

differences in appearance. The surface area of an

object increases with the square of its scale

factor, so two vectors differing by a factor of

two in magnitude may appear up to four times

different based on surface area. Such scaling

issues are common in data visualization, and

great care must be taken to avoid misleading

viewers.

1.3.2 Warping

Vector data is often associated with ‘‘motion.’’

The motion is in the form of velocity or dis-

placement. An effective technique for displaying

such vector data is to ‘‘warp’’ or deform geom-

etry according to the vector field. For example,

imagine representing the displacement of a

structure under load by deforming the structure.

If we are visualizing the flow of fluid, we can

create a flow profile by distorting a straight line

inserted perpendicular to the flow.

Figure 1.14 shows two examples of vector

warping. In the first example the motion of a

vibrating beam is shown. The original un-

deformed outline is shown in wireframe. The

second example shows warped planes in a struc-

tured grid dataset. The planes are warped

according to flow momentum. The relative

back and forward flows are clearly visible in

the deformation of the planes.

Typically, we must scale the vector field to

control geometric distortion. Too small a dis-

tortion might not be visible, while too large a

distortion can cause the structure to turn inside

out or self-intersect. In such a case, the viewer of

the visualization is likely to lose context, and the

visualization will become ineffective.

1.3.3 Displacement Plots

Vector displacement on the surface of an object

can be visualized with displacement plots. A

displacement plot shows the motion of an object

in the direction perpendicular to its surface. The

object motion is caused by an applied vector

field. In a typical application the vector field is

a displacement or strain field.

Vector displacement plots draw on the ideas

in Section 1.2.3. Vectors are converted to scalars

by computation of the dot product between the

surface normal and vector at each point (Fig.

1.15a). If positive values result, the motion at

the point is in the direction of the surface

normal (i.e., positive displacement). Negative

values indicate that the motion is opposite the

surface normal (i.e., negative displacement).

A useful application of this technique is the

study of vibration. In vibration analysis, we are

interested in the eigenvalues (i.e., natural reson-

ant frequencies) and eigenvectors (i.e., mode

shapes) of a structure. To understand mode

shapes, we can use displacement plots to indicate

regions ofmotion.There are special regions in the

structure where positive displacement changes to

negative displacement. These are regions of zero

displacement. When plotted on the surface of the

structure, these regions appear as the so-called

modal lines of vibration. The study of modal lines

has long been an important visualization tool for

understanding mode shapes.

Figure 1.15b shows modal lines for a vibrating

rectangular beam. The vibration mode in

this figure is the second torsional mode, clearly

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 15

Overview of Visualization 15

indicated by the crossing modal lines. (The alias-

ing in the figure is a result of the coarseness of the

analysis mesh.) To create the figure we combined

the procedure of Fig. 1.15a with a special

lookup table. The lookup table was arranged

with dark areas in the center (corresponding

to zero dot products) and bright areas at the

beginning and end of the table (corresponding

to 1 or �1 dot products). As a result, regions of

large normal displacement are bright and regions

near the modal lines are dark.

1.3.4 Time Animation

Some of the techniques described so far can be

thought of as moving a point or object over a

small time-step. The hedgehog line is an ap-

proximation of a point’s motion over a time

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 16

(a) (b)

Figure 1.14 Warping geometry to show vector field. (a) Beam displacement; (b) flow momentum. (See also color insert.)

(a) (b)

n

v

s = v . n

Figure 1.15 Vector displacement plots. (a) Vector converted to scalar via dot product computation; (b) surface plot of vibrating

plate. Dark areas show nodal lines and bright areas show maximum motion. (See also color insert.)

16 Introduction

period whose duration is given by the scale

factor. In other words, if the vector is con-

sidered to be a velocity ~VV ¼ dx=dt, then the

displacement of a point is

dx ¼ ~VVdt (1:2)

This suggests an extension to our previous tech-

niques: repeatedly displace points over many

time-steps. Fig. 1.16 shows such an approach.

Beginning with a sphere S centered about some

point C, we move S repeatedly to generate the

bubbles shown. The eye tends to trace out a

path by connecting the bubbles, giving the ob-

server a qualitative understanding of the vector

field in that area. The bubbles may be displayed

as an animation over time (giving the illusion of

motion) or as a multiple-exposure sequence

(giving the appearance of a path).

Such an approach can be misused. For one

thing, the velocity at a point is instantaneous.

Once we move away from the point, the velocity

is likely to change. Using Equation 1.2 assumes

that the velocity is constant over the entire step.

By taking large steps, we are likely to jump over

changes in the velocity. Using smaller steps, we

will end in a different position. Thus, the choice

of step size is a critical parameter in constructing

accurate visualization of particle paths in a

vector field.

To evaluate Equation 1.2, we can express it as

an integral:

~xx(t) ¼
ð
t

~VVdt (1:3)

Although this form cannot be solved analytic-

ally for most real-world data, its solution can

be approximated using numerical integration

techniques. Accurate numerical integration is a

topic beyond the scope of this book, but it is

known that the accuracy of the integration is a

function of the step size dt. Because the path is

an integration throughout the dataset, the ac-

curacy of the cell interpolation functions and

the accuracy of the original vector data play

important roles in realizing accurate solutions.

No definitive study that relates cell size or inter-

polation function characteristics to visualiza-

tion error is yet available. But the lesson is

clear: the result of numerical integration must

be examined carefully, especially in regions with

large vector field gradients. However, as with

many other visualization algorithms, the insight

gained by using vector-integration techniques is

qualitatively beneficial, despite the unavoidable

numerical errors.

The simplest form of numerical integration is

Euler’s method,

~xxiþ1 ¼~xxi þ ~VViDt (1:4)

where the position at time~xxiþ1 is the vector sum

of the previous position plus the instantaneous

velocity times the incremental time step Dt.

Euler’s method has error on the order of

O(Dt2), which is not accurate enough for some

applications. One such example is shown in

Fig. 1.17. The velocity field describes perfect

rotation about a central point. Using Euler’s

method, we find that we will always diverge

and, instead of generating circles, will generate

spirals.

In this chapter we will use the Runge-Kutta

technique of order 2 [8]. This is given by the

expression

~xxiþ1 ¼~xxi þ
Dt

2
(~VVi þ ~VViþ1) (1:5)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 17

Initial position

Instantaneous
velocity Final position

Figure 1.16 Time animation of a point C. Although the spacing between points varies, the time increment between each point is

constant.

Overview of Visualization 17

where the velocity ~VViþ1 is computed using

Euler’s method. The error of this method is

O(Dt3). Compared to Euler’s method, the

Runge-Kutta technique allows us to take a

larger integration step at the expense of one

additional function evaluation. Generally, this

tradeoff is beneficial, but like any numerical

technique, the best method to use depends on

the particular nature of the data. Higher-order

techniques are also available, but generally not

necessary, because the higher accuracy is coun-

tered by error in interpolation function or in-

herent in the data values. If you are interested in

other integration formulas, please check the ref-

erences at the end of the chapter.

One final note about accuracy concerns: the

error involved in either perception or computa-

tion of visualizations is an open research area.

The discussion in the preceding paragraph is a

good example of this: there, we characterized

the error in streamline integration using conven-

tional numerical integration arguments. But

there is a problem with this argument. In visu-

alization applications, we are integrating across

cells whose function values are continuous but

whose derivatives are not. As the streamline

crosses the cell boundary, subtle effects may

occur that are not treated by the standard nu-

merical analysis. Thus, the standard arguments

need to be extended for visualization applica-

tions.

Integration formulas require repeated trans-

formation from global to local coordinates.

Consider moving a point through a dataset

under the influence of a vector field. The first

step is to identify the cell that contains the

point. This operation is a search plus a conver-

sion to local coordinates. Once the cell is found,

then the next step is to compute the velocity

at that point by interpolating the velocity

from the cell points. The point is then incremen-

tally repositioned (using the integration formula

in Equation 1.5). The process is then repeated

until the point exits the dataset or the distance

or time traversed exceeds some specified

value.

This process can be computationally

demanding. There are two important steps we

can take to improve performance:

1. Improve search procedures. There are two

distinct types of searches. Initially, the

starting location of the particle must be

determined by a global search procedure.

Once the initial location of the point is de-

termined in the dataset, an incremental

search procedure can be used. Incremental

searching is efficient because the motion of

the point is limited within a single cell, or, at

most, across a cell boundary. Thus, the

search space is greatly limited, and the

incremental search is faster relative to the

global search.

2. Coordinate transformation. The cost of a co-

ordinate transformation from global to local

coordinates can be reduced if either of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 18

(a) Rotational vector field (b) Euler�s method (c) Runge-Kutta

Figure 1.17 Euler’s integration (b) and Runge-Kutta integration of order 2 (c) applied to a uniform rotational vector field (a).

Euler’s method will always diverge.

18 Introduction

following conditions is true: the local and

global coordinate systems are identical to

each other (or vary by x-y-z translation), or

the vector field is transformed from global

space to local coordinate space. The image

data coordinate system is an example of local

coordinates that are parallel to global coord-

inates, and thus a situation in which global-

to-local coordinate transformation can be

greatly accelerated. If the vector field is

transformed into local coordinates (either

as a preprocessing step or on a cell-by-cell

basis), then the integration can proceed com-

pletely in local space. Once the integration

path is computed, selected points along the

path can be transformed into global space

for the sake of visualization.

1.3.5 Streamlines

A natural extension of the previous time anima-

tion techniques is to connect the point position

~xx(t) over many time-steps. The result is a nu-

merical approximation to a particle trace repre-

sented as a line.

Borrowing terminology from the study of

fluid flow, we can define three related line-repre-

sentation schemes for vector fields.

. Particle traces are trajectories traced by fluid

particles over time.

. Streaklines are the set of particle traces at a

particular time ti that have previously passed

through a specified point xi.

. Streamlines are integral curves along a curve

s satisfying the equation

s ¼
ð
t

~VVds, with s ¼ s(x, t) (1:6)

for a particular time t.

Streamlines, streaklines, and particle traces are

equivalent to one another if the flow is steady.

In time-varying flow, a given streamline exists

only at one moment in time. Visualization

systems generally provide facilities to compute

particle traces. However, if time is fixed, the

same facility can be used to compute stream-

lines. In general, we will use the term streamline

to refer to the method of tracing trajectories in

a vector field. Please bear in mind the differ-

ences in these representations if the flow is

time-varying.

Fig. 1.18 shows 40 streamlines in a small

kitchen. The room has two windows, a door

(with air leakage), and a cooking area with a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 19

Figure 1.18 Flow velocity computed for a small kitchen (top and side view). Forty streamlines start along the rake positioned

under the window. Some eventually travel over the hot stove and are convected upwards. (See also color insert.)

Overview of Visualization 19

hot stove. The air leakage and temperature vari-

ation combine to produce air convection cur-

rents throughout the kitchen. The starting

positions of the streamlines were defined by

creating a rake, or curve (and its associated

points). There, the rake was a straight line.

These streamlines clearly show features of the

flow field. By releasing many streamlines simul-

taneously, we obtain even more information, as

the eye tends to assemble nearby streamlines

into a ‘‘global’’ understanding of flow field fea-

tures.

Many enhancements of streamline visualiza-

tion exist. Lines can be colored according to

velocity magnitude to indicate speed of flow.

Other scalar quantities such as temperature or

pressure also may be used to color the lines. We

also may create constant-time dashed lines.

Each dash represents a constant time increment.

Thus, in areas of high velocity, the length of

the dash will be greater relative to regions of

lower velocity. These techniques are illustrated

in Fig. 1.19 for air flow around a blunt fin. This

example consists of a wall with half of a

rounded fin projecting into the fluid flow.

(Using arguments of symmetry, only half of

the domain was modeled.) Twenty-five stream-

lines are released upstream of the fin. The

boundary layer effects near the junction of the

fin and wall are clearly evident from the stream-

lines. In this area, flow recirculation and the

reduced flow speed are apparent.

1.4 Tensor Algorithms

Tensor visualization is an active area of research.

However, there are a few simple techniques that

we can use to visualize 3� 3 real symmetric

tensors. Such tensors are used to describe the

state of displacement or stress in a 3D material.

The stress and strain tensors for an elastic ma-

terial are shown in Fig. 1.20.

In these tensors, the diagonal coefficients are

the so-called normal stresses and strains, and the

off-diagonal terms are the shear stresses and

strains. Normal stresses and strains act perpen-

dicularly to a specified surface, while shear

stresses and strains act tangentially to the sur-

face. Normal stress is either compression or ten-

sion, depending on the sign of the coefficient.

A 3� 3 real symmetric matrix can be char-

acterized by three vectors in 3D called the

eigenvectors and three numbers called the eigen-

values of the matrix. The eigenvectors form a

3D coordinate system whose axes are mutually

perpendicular. In some applications, particu-

larly the study of materials, these axes are also

referred to as the principal axes of the tensor

and are physically significant. For example, if

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 20

Figure 1.19 Dashed streamlines around a blunt fin. Each dash is a constant time increment. Fast-moving particles create longer

dashes than slower-moving particles. The streamlines also are colored by flow density scalar.

Q1

20 Introduction

the tensor is a stress tensor, then the principal

axes are the directions of normal stress and no

shear stress. Associated with each eigenvector is

an eigenvalue. The eigenvalues are often physic-

ally significant as well. In the study of vibration,

eigenvalues correspond to the resonant frequen-

cies of a structure, and the eigenvectors are the

associated mode shapes.

Mathematically we can represent eigenvalues

and eigenvectors as follows. Given a matrix A,

the eigenvector ~xx and eigenvalue l must satisfy

the relation

A �~xx ¼ l~xx (1:7)

For Equation 1.7 to hold, the matrix determin-

ate must satisfy

detjA� lI j ¼ 0 (1:8)

Expanding this equation yields an nth-degree

polynomial in l whose roots are the eigenvalues.

Thus, there are always n eigenvalues, although

they may not be distinct. In general, Equation

1.8 is not solved using polynomial root search-

ing because of poor computational perform-

ance. (For matrices of order 3, root searching

is acceptable because we can solve for the eigen-

values analytically.) Once we determine the

eigenvalues, we can substitute each into

Equation 1.8 to solve for the associated eigen-

vectors.

We can express the eigenvectors of the 3� 3

system as

~vvi ¼ li~eei, with i ¼ 1, 2, 3 (1:9)

with ~eei a unit vector in the direction of the

eigenvalue, and li the eigenvalues of the system.

If we order eigenvalues such that

l 1 � l2 � l3 (1:10)

then we refer to the corresponding eigenvectors

~vv1,~vv2, and ~vv3 as the major, medium, and minor

eigenvectors.

1.4.1 Tensor Ellipsoids

This leads us to the tensor ellipsoid technique

for the visualization of real, symmetric 3� 3

matrices. The first step is to extract eigenvalues

and eigenvectors as described in the previous

section. Since eigenvectors are known to be

orthogonal, the eigenvectors form a local coord-

inate system. These axes can be taken as the

minor, medium, and major axes of an ellipsoid.

Thus, the shape and orientation of the ellipsoid

represent the relative size of the eigenvalues and

the orientation of the eigenvectors.

To form the ellipsoid we begin by positioning

a sphere at the tensor location. The sphere is

then rotated around its origin using the eigen-

vectors, which in the form of Equation 1.9 are

direction cosines. The eigenvalues are used to

scale the sphere. Using 4� 4 transformation

matrices, we form the ellipsoid by transforming

the sphere centered at the origin using the

matrix T:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 21

σx

τyx

τzx

τxy

σy

τzy

τxz

τyz

σz

∂u

+

+

+ +

+

+

∂u

∂y

∂u

∂y
∂u

∂z

∂w

∂x

∂w

∂y

∂v

∂z

∂v

∂z

∂u

∂z

∂w

∂x

∂v

∂z

∂w

∂y
∂w

∂z

∂v

∂z

∂v

∂y

∂x

(a) (b)

Figure 1.20 (a) Stress and (b) strain tensors. Normal stresses in the x-y-z coordinate directions are indicated as sx, sy, sz, and

shear stresses are indicated as tij . Material displacement is represented by u, v, w components.

Overview of Visualization 21

T ¼ TT � TR � TS (1:11)

where

TT ¼

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

2
6664

3
7775

TS ¼

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

2
6664

3
7775

TR ¼

cos yx0x cos yx0y cos yx0z 0

cos yy0x cos yy0y cos yy0z 0

cos yz0x cos yz0y cos yz0z 0

0 0 0 1

2
6664

3
7775

(1:12)

where TT , TS, and TR are translation, scale, and

rotation matrices. The eigenvectors can be dir-

ectly plugged in to create the rotation matrix,

while the point coordinates x-y-z and eigen-

values l1 � l2 � l3 are inserted into the trans-

lation and scaling matrices. A concatenation of

these matrices in the correct order forms the

final transformation matrix T.

Fig. 1.21a depicts the tensor ellipsoid tech-

nique. In Fig. 1.22b we show this technique to

visualize material stress near a point load on the

surface of a semi-infinite domain. (This is the

so-called Boussinesq’s problem.) From Saada

[33] we have the analytic expression for the

stress components in Cartesian coordinates

shown in Fig. 1.21c. Note that the z direction

is defined as the axis originating at the point of

application of the force P. The variable r is the

distance from the point of load application to a

point x-y-z. The orientations of the x and y axes

are in the plane perpendicular to the z axis. The

rotation in the plane of these axes is unimport-

ant since the solution is symmetric around the z

axis. The parameter n is Poisson’s ratio, which

is a property of the material. Poisson’s ratio

relates the lateral contraction of a material to

axial elongation under a uniaxial stress condi-

tion [33,35].

In Fig. 1.22 we visualize the analytical results

of Boussinesq’s problem from Saada. The left-

hand portion of the figure shows the results by

displaying the scaled and oriented principal axes

of the stress tensor. (These are called tensor

axes.) In the right-hand portion we use tensor

ellipsoids to show the same result. Tensor

ellipsoids and tensor axes are a form of glyph

(see Section 1.5.4) specialized to tensor visual-

ization.

A certain amount of care must be taken to

visualize this result, because there is a stress

singularity at the point of contact of the load.

In a real application, loads are applied over a

small area and not at a single point. Plastic

behavior prevents stress levels from exceeding

a certain point. The results of the visualization,

as with any computer process, are only as good

as the underlying model.

1.5 Modeling Algorithms

‘‘Modeling algorithms’’ is the catch-all category

for our taxonomy of visualization techniques.

Modeling algorithms will typically transform

the type of input dataset or use combinations

of input data and parameters to affect their

result.

1.5.1 Source Objects

Source objects begin the visualization

pipeline. Often, source objects are used to create

geometry such as spheres, cones, or cubes to

support visualization context, or are used

to read in data files. Source objects also may

be used to create dataset attributes. Some

examples of source objects and their use are as

follows.

1.5.1.1 Modeling Simple Geometry

Spheres, cones, cubes, and other simple geo-

metric objects can be used alone or in combina-

tion to model geometry. Often, we visualize

real-world applications such as air flow in a

room and need to show real-world objects such

as furniture, windows, or doors. Real-world

objects often can be represented using these

simple geometric representations. These source

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 22

22 Introduction

objects generate their data procedurally. Alter-

natively, we may use reader objects to access

geometric data defined in data files. These data

files may contain more complex geometry, such

as that produced by a 3D Computer-Aided

Design (CAD) system.

1.5.1.2 Supporting Geometry

During the visualization process, we may use

source objects to create supporting geometry.

This may be as simple as three lines to represent

a coordinate axis or as complex as tubes

wrapped around line segments to thicken and

enhance their appearance. Another common

use is as supplemental input to objects such as

streamlines or probe filters. These filters take a

second input that defines a set of points. For

streamlines, the points determine the initial

positions for generating the streamlines. The

probe filter uses the points as the position to

compute attribute values such as scalars, vectors,

or tensors.

1.5.1.3 Data Attribute Creation

Source objects can be used as procedures

to create data attributes. For example, we

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 23

P

(a) Tensor ellipsoid

c) Analytic solution

P 3zx2
− (1 − 2ν)

2πρ2 ρ3

z
+

ρ
x2 (2ρ + z)

ρ(ρ + z)2

ρ
−

ρ + z
σx = −

σy = −

(b) Point load on semi-infinite domain

x

z

r

P 3zy2
− (1 − 2ν)

− (1 − 2ν)

2πρ2 ρ3

z
+

ρ
y2 (2ρ + z)

ρ(ρ + z)2

xy (2ρ + z)

ρ(ρ + z)2

ρ
−

ρ + z

σy = −

τxy = τyx = −

3Pz3

2πρ5

P

2πρ2

3xyz

ρ3

τxz = τzx = −
3Pxz2

2πρ5

τyz = τzy = −
3Pyz2

2πρ5

Figure 1.21 Tensor ellipsoids. (a) Ellipsoid oriented along eigenvalues (i.e., principal axes) of tensor; (b) pictorial description of

Boussinesq’s problem; (c) analytic results according to Saada.

Overview of Visualization 23

can procedurally create textures and texture

coordinates. Another use is to create scalar

values over a uniform grid. If the scalar

values are generated from a mathematical

function, then we can use the visualiza-

tion techniques described here to visualize

the function. In fact, this leads us to a very

important class of source objects: implicit func-

tions.

1.5.2 Implicit Functions

Implicit functions are functions of the form

F (x) ¼ c (1:13)

where c is an arbitrary constant. Implicit func-

tions have three important properties:

. Simple geometric description. Implicit func-

tions are convenient tools to describe

common geometric shapes, including planes,

spheres, cylinders, cones, ellipsoids, and

quadrics.

. Region separation. Implicit functions separate

3D Euclidean space into three distinct

regions. These regions are inside, on, and out-

side the implicit function. These regions are

defined as F (x, y, z) < 0, F (x, y, z) ¼ 0, and

F (x, y, z) > 0, respectively.

. Scalar generation. Implicit functions convert

a position in space into a scalar value. That

is, given an implicit function, we can sample

it at a point (xi, yi, zi) to generate a scalar

value ci.

An example of an implicit function is the equa-

tion for a sphere of radius R

F (x, y, z) ¼ x2 þ y2 þ z2 � R2 (1:14)

This simple relationship defines the three

regions F (x, y, z) ¼ 0 (on the surface of

the sphere), F (x, y, z) < 0 (inside the sphere),

and F (x, y, z) > 0 (outside the sphere). Any

point may be classified inside, on, or outside the

sphere simply by evaluating Equation 1.14.

If you have been paying attention, you will

note that Equation 1.14 is identical to the equa-

tion defining a contour (Equation 1.1). This

should provide you with a clue as to the many

ways in which implicit functions can be used.

These include geometric modeling, selection of

data, and visualization of complex mathemat-

ical descriptions.

1.5.2.1 Modeling Objects

Implicit functions can be used alone or in

combination to model geometric objects.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 24

Figure 1.22 Tensor visualization techniques. (a) Tensor axes; (b) tensor ellipsoids.

24 Introduction

For example, to model a surface described by

an implicit function, we sample F on a dataset

and generate an isosurface at a contour value ci.

The result is a polygonal representation of the

function. Fig. 1.23b shows an isosurface for a

sphere of radius ¼ 1 sampled on a volume. Note

that we can choose nonzero contour values to

generate a family of offset surfaces. This is

useful for creating blending functions and other

special effects.

Implicit functions can be combined to create

complex objects using the Boolean operators

union, intersection, and difference. The union

operation F [G between two functions

F (x, y, z) and G(x, y, z) at a point (x0, y0, z0) is

the minimum value

F [G ¼ min (F (x0, y0, z0),

G(x0, y0, z0))
(1:15)

The intersection between two implicit functions

is given by

F \ G ¼ max (F (x0, y0, z0),

G(x0, y0, z0))
(1:16)

The difference of two implicit functions is given

by

F � G ¼ max (F (x0, y0, z0),

� G(x0, y0, z0))
(1:17)

Fig. 1.23c shows a combination of simple

implicit functions to create an ice cream cone.

The cone is created by clipping the (infinite)

cone function with two planes. The ice cream

is constructed by performing a difference oper-

ation on a larger sphere with a smaller offset

sphere to create the ‘‘bite.’’ The resulting surface

was extracted using surface contouring with iso-

surface value 0.0.

1.5.2.2 Selecting Data

We can take advantage of the properties of

implicit functions to select and cut data. In

particular, we will use the region separation

property to select data. (We defer the discussion

on cutting to Section 1.5.5.)

Selecting or extracting data with an implicit

function means choosing cells and points (and

associated attribute data) that lie within a par-

ticular region of the function. To determine

whether a point x-y-z lies within a region, we

simply evaluate the point and examine the sign

of the result. A cell lies in a region if all its points

lie in the region.

Fig. 1.24a shows a 2D implicit function,

here an ellipse, used to select the data (i.e.,

points, cells, and data attributes) contained

within it. Boolean combinations also can be

used to create complex selection regions, as il-

lustrated in Fig. 1.24b. Here, two ellipses are

used in combination to select voxels within a

volume dataset. Note that extracting data

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 25

(a)

F = 0
F < 0F > 0

(b) (c)

Figure 1.23 Sampling functions. (a) 2D depiction of sphere sampling; (b) isosurface of sampled sphere; (c) Boolean combin-

ation of two spheres, a cone, and two planes. (One sphere intersects the other; the planes clip the cone.)

Overview of Visualization 25

often changes the structure of the dataset. In

Fig. 1.24 the input type is a volume dataset,

while the output type is an unstructured grid

dataset.

1.5.2.3 Visualizing Mathematical
Descriptions

Some functions, often discrete or probabilistic in

nature, cannot be cast into the form of Equation

1.13. However, by applying some creative think-

ing, we can often generate scalar values that can

be visualized.An interesting example of this is the

so-called strange attractor.

Strange attractors arise in the study of non-

linear dynamics and chaotic systems. In these

systems, the usual types of dynamic motion—

equilibrium, periodic motion, and quasi-periodic

motion—are not present. Instead, the system

exhibits chaotic motion. The resulting behavior

of the system can change radically as a result of

small perturbations in its initial conditions.

A classical strange attractor was developed

by Lorenz [24] in 1963. Lorenz developed a

simple model for thermally induced fluid con-

vection in the atmosphere. Convection causes

rings of rotating fluid and can be developed

from the general Navier-Stokes partial differen-

tial equations for fluid flow. The Lorenz equa-

tions can be expressed in nondimensional form

as

dx

dt
¼ s(y� x)

dy

dt
¼ rx� y� xz

dz

dt
¼ xy� bz

(1:18)

where x is proportional to the fluid velocity in

the fluid ring, y and z measure the fluid tem-

perature in the plane of the ring, the parameters

s and r are related to the Prandtl number and

Raleigh number, respectively, and b is a geomet-

ric factor.

Certainly these equations are not in the impli-

cit form of Equation 1.13, so how do we visualize

them? Our solution is to treat the variables x, y,

and z as the coordinates of a 3D space, and

integrate Equation 1.18 to generate the system

‘‘trajectory,’’ that is, the state of the system

through time. The integration is carried out

within a volume and scalars are created by

counting the number of times each voxel is

visited.By integrating long enough,we can create

a volume representing the ‘‘surface’’ of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 26

(a) (b)

Figure 1.24 Implicit functions used to select data: (a) 2D cells lying in ellipse are selected; (b) two ellipsoids combined using the

union operation used to select voxels from a volume. Voxels shrank 50%. (See also color insert.)

26 Introduction

strange attractor, Fig. 1.25. The surface of the

strange attractor is extracted by using marching

cubes and a scalar value specifying the number of

visits in a voxel.

1.5.3 Implicit Modeling

In the previous section, we saw how implicit

functions, or Boolean combinations of implicit

functions, could be used to model geometric

objects. The basic approach is to evaluate

these functions on a regular array of points, or

volume, and then to generate scalar values at

each point in the volume. Then either volume

rendering or isosurface generation is used to

display the model.

An extension of this approach, called implicit

modeling, is similar to modeling with implicit

functions. The difference lies in the fact that

scalars are generated using a distance function

instead of the usual implicit function. The dis-

tance function is computed as a Euclidean dis-

tance to a set of generating primitives such

as points, lines, or polygons. For example, Fig.

1.26 shows the distance functions to a point,

line, and triangle. Because distance functions

are well-behaved monotonic functions, we can

define a series of offset surfaces by specifying

different isocontour values, where the value is

the distance to the generating primitive. The

isocontours form approximations to the true

offset surfaces, but using high-volume reso-

lution we can achieve satisfactory results.

Used alone the generating primitives are

limited in their ability to model complex geom-

etry. By using Boolean combinations of the

primitives, however, complex geometry can be

easily modeled. The Boolean operations union,

intersection, and difference (Equations 1.15,

1.16, and 1.17, respectively) are illustrated in

Fig. 1.27. Fig. 1.28 shows the application of

implicit modeling to ‘‘thicken’’ the line segments

in the text symbol ‘‘HELLO.’’ The isosurface is

generated on a 110� 40� 20 volume at a dis-

tance offset of 0.25 units. The generating primi-

tives were combined using the Boolean union

operator. Although Euclidean distance is

always a nonnegative value, it is possible to

use a signed distance function for objects that

have an outside and an inside. A negative dis-

tance is the negated distance of a point inside

the object to the surface of the object. Using a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 27

Figure 1.25 Visualizing a Lorenz strange attractor by integrating the Lorenz equations in a volume. The number of visits in

each voxel is recorded as a scalar function. The surface is extracted via marching cubes using a visit value of 50. The number of

integration steps is 10 million, in a volume of dimensions 2003. The surface roughness is caused by the discrete nature of the

evaluation function. (See also color insert.)

Overview of Visualization 27

signed distance function allows us to create

offset surfaces that are contained within the

actual surface.

Another interesting feature of implicit model-

ing is that when isosurfaces are generated, more

than one connected surface can result. These

situations occur when the generating primitives

form concave features. Fig. 1.29 illustrates this

situation. If desired, multiple surfaces can be

extracted by using a connectivity segmentation

algorithm.

1.5.4 Glyphs

Glyphs, sometimes referred to as icons, are a

versatile technique to visualize data of every

type. A glyph is an ‘‘object’’ that is affected by

its input data. This object may be geometry, a

dataset, or a graphical image. The glyph may

orient, scale, translate, deform, or somehow

alter the appearance of the object in response

to data. We have already seen a simple form of

glyph: hedgehogs are lines that are oriented,

translated, and scaled according to the position

and vector value of a point. A variation of this is

to use oriented cones or arrows (see Section

1.3.1).

More elaborate glyphs are possible. In one

creative visualization technique, Chernoff [6]

tied data values to an iconic representation of

the human face. Eyebrows, nose, mouth, and

other features were modified according to fi-

nancial data values. This interesting technique

built on the human capability to recognize

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 28

d

d d

Figure 1.26 Distance functions to a point, line, and triangle.

Original Union Intersection Difference

Figure 1.27 Boolean operations using points and lines as generating primitives.

Figure 1.28 Implicit modeling used to thicken a stroked

font. Original lines can be seen within the translucent impli-

cit surface.

28 Introduction

facial expression. By tying appropriate data

values to facial characteristics, rapid identifica-

tion of important data points is possible.

In a sense, glyphs represent the fundamental

result of the visualization process. Moreover, all

the visualization techniques we present can be

treated as concrete representations of an ab-

stract glyph class. For example, while hedge-

hogs are an obvious manifestation of a vector

glyph, isosurfaces can be considered a topo-

logically 2D glyph for scalar data. Delmarcelle

and Hesselink [11] have developed a unified

framework for flow visualization based on

types of glyphs. They classify glyphs according

to one of three categories:

. Elementary icons represent their data across

the extent of their spatial domain. For

example, an oriented arrow can be used to

represent a surface normal.

. Local icons represent elementary informa-

tion plus a local distribution of the values

around the spatial domain. A surface normal

vector colored by local curvature is one

example of a local icon, because local data

beyond the elementary information is en-

coded.

. Global icons show the structure of the com-

plete dataset. An isosurface is an example of

a global icon.

This classification scheme can be extended to

other visualization techniques such as vector

and tensor data, or even to nonvisual forms

such as sound or tactile feedback. We have

found this classification scheme to be helpful

when designing visualizations or creating visu-

alization techniques. Often, it gives insight into

ways of representing data that can be over-

looked.

Fig. 1.30 is an example of glyphing. Small 3D

cones are oriented on a surface to indicate the

direction of the surface normal. A similar ap-

proach could be used to show other surface

properties such as curvature or anatomical

key points.

1.5.5 Cutting

Often, we want to cut through a dataset with a

surface and then display the interpolated data

values on the surface. We refer to this technique

as data cutting or simply cutting. The data cut-

ting operation requires two pieces of informa-

tion: a definition for the surface and a dataset to

cut. We will assume that the cutting surface is

defined by an implicit function. A typical appli-

cation of cutting is to slice through a dataset

with a plane, and color map the scalar data and/

or warp the plane according to vector value.

A property of implicit functions is to convert

a position into a scalar value (see Section 1.5.2).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 29

Isodistance
contours

Figure 1.29 Concave features can result in multiple con-

tour lines/surfaces.

Figure 1.30 Glyphs indicate surface normals on a model of

a human face. Glyph positions are randomly selected. (See

also color insert.)

Overview of Visualization 29

We can use this property in combination with a

contouring algorithm (e.g., marching cubes) to

generate cut surfaces. The basic idea is to gener-

ate scalars for each point of each cell of a data-

set (using the implicit cut function) and then

contour the surface value F (x, y, z) ¼ 0.

The cutting algorithm proceeds as follows.

For each cell, function values are generated by

evaluating F(x, y, z) for each cell point. If all the

points evaluate positive or negative, then

the surface does not cut the cell. However,

if the points evaluate positive and negative,

then the surface passes through the cell. We

can use the cell contouring operation to gener-

ate the isosurface F (x, y, z) ¼ 0. Data-attribute

values can then be computed by interpolating

along cut edges.

Fig. 1.31 illustrates a plane cut through a

structured grid dataset. The plane passes

through the center of the dataset with normal

(�0:287, 0, 0.9579). For comparison purposes,

a portion of the grid geometry is also shown.

The grid geometry is the grid surface k ¼ 9

(shown in wireframe). One benefit of cut

surfaces is that we can view data on (nearly)

arbitrary surfaces. Thus, the structure of the

dataset does not constrain how we view the

data.

We can easily make multiple planar cuts

through a structured grid dataset by specifying

multiple iso-values for the cutting algorithm.

Fig. 1.32 shows 100 cut planes generated per-

pendicular to the camera’s view plane normal.

Rendering the planes from back to front with an

opacity of 0.05 produces a simulation of volume

rendering.

This example illustrates that cutting the volu-

metric data in a structured grid dataset pro-

duces polygonal cells. Similarly, cutting

polygonal data produces lines. Using a single

plane equation, we can extract ‘‘contour lines’’

from a surface model defined with polygons.

Fig. 1.33 shows contours extracted from a sur-

face model of the skin. At each vertex in the

surface model, we evaluate the equation of

the plane F (x, y, z) ¼ c and store the value

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 30

Figure 1.31 Cut through structured grid with plane. The

cut plane is shown solid shaded. A computational plane of

constant k value is shown in wireframe for comparison. The

colors correspond to flow density. Cutting surfaces are not

necessarily planes: implicit functions such as spheres, cylin-

ders, and quadrics can also be used. (See also color insert.)

Figure 1.32 100 cut planes with opacity of 0.05, rendered back-to-front to simulate volume rendering. (See also color insert.)

30 Introduction

of the function as a scalar value. Cutting the

data with 46 iso-values from 1.5 to 136.5 pro-

duces contour lines that are 3 units apart.

1.5.6 Probing

Probing obtains dataset attributes by sampling

one dataset (the input) with a set of one or more

points (the probe), as shown in Fig. 1.34.

Probing is also called resampling. Examples in-

clude probing an input dataset with a sequence

of points along a line, on a plane, or in a

volume. The result of the probing is a new data-

set (the output) with the topological and geo-

metric structure of the probe dataset and point

attributes interpolated from the input dataset.

Once the probing operation is complete, the

output dataset can be visualized with any of the

appropriate techniques described previously.

As Fig. 1.34 indicates, the details of the

probing process are as follows. For every point

in the probe dataset, the location in the input

dataset (i.e., cell, subcell, and parametric coord-

inates) and interpolation weights are deter-

mined. Then the data values from the cell are

interpolated to the probe point. Probe points

that are outside the input dataset are assigned

a nil (or appropriate) value. This process repeats

for all points in the probe dataset.

Probing can be used to reduce data or to view

data in a particular fashion.

. Data is reduced when the probe operation is

limited to a subregion of the input dataset or

the number of probe points is less than the

number of input points.

. Data can be visualized with specialized tech-

niques by sampling on selected datasets. For

example, using a line probe enables x-y plot-

ting along a line, and using a plane probe

allows surface color mapping or line con-

touring on the plane.

Probing must be used carefully or errors may be

introduced. Undersampling data in a region can

miss important high-frequency information or

localized data variations. Oversampling data,

while not creating error, can give false confi-

dence in the accuracy of the data. Thus the

sampling frequency should have a similar dens-

ity as the input dataset, or if higher density, the

visualization should be carefully annotated as to

the original data frequency.

One important application of probing con-

verts irregular or unstructured data to structured

form using a probe volume of appropriate

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 31

Figure 1.33 Cutting a surface model of the skin with a

series of planes produces contour lines. Lines are wrapped

with tubes for visual clarity. (See also color insert.)

Input
dataset

Probe
dataset

r

s

Figure 1.34 Probing data. The geometry of one dataset

(Probe) is used to extract dataset attributes from another

dataset (Input).

Overview of Visualization 31

resolution to sample the unstructured data.

This is useful if volume rendering or another

volume technique is to be used to visualize the

data.

Fig. 1.35 shows an example of three

probes. The probes sample flow density in a

structured grid. The output of the probes is

passed through a contour filter to generate con-

tour lines. As this figure illustrates, we can be

selective with the location and extent of the

probe, allowing us to focus on important

regions in the data.

1.5.7 Data Reduction

One of the major challenges facing the scientific

visualization community is the increasing size of

data. While just a short time ago data sizes of a

gigabyte were considered large, terabyte and

even petabyte data sizes are now available.

Because the value of the visualization process

is tied to its ability to effectively convey infor-

mation about large and complex data, it is ab-

solutely essential to find techniques to address

this situation. A simple but effective approach is

to use methods to reduce data size prior to

the visualization process. The approaches

taken depend on the type of data; for example,

subsampling works well for structured

data. Unstructured data (such as polygonal

meshes) requires more sophisticated techniques.

Since this topic is worth several books on

its own, we present some introductory

approaches to data reduction. Note that the

use of probing is also an excellent data-reduc-

tion tool.

1.5.7.1 Subsampling

Subsampling (Fig. 1.36) is a method that

reduces data size by selecting a subset of the

original data. The subset is specified by choos-

ing a parameter n, specifying that every nth data

point is to be extracted. For example, in

structured datasets such as image data and

structured grids, selecting every nth point

produces the results shown in Fig. 1.36.

Subsampling modifies the topology of a data-

set. When points or cells are not selected, this

leaves a topological ‘‘hole.’’ Dataset topology

must be modified to fill the hole. In structured

data, this is simply a uniform selection across

the structured i-j-k coordinates. In structured

data, the hole must be filled in by using

triangulation or other complex tessellation

schemes. Subsampling is not typically per-

formed on unstructured data because of its

inherent complexity.

1.5.7.2 Decimation

Unstructured data can be reduced in size by

applying a variety of decimation algorithms

(also known as polygon reduction when applied

to polygonal meshes). There are several ap-

proaches to decimation based on differing

operations performed on the mesh (Fig. 1.37).

Vertex removal deletes a vertex and all attached

cells. The resulting hole is then triangulated.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 32

Figure 1.35 Probing data in a combustor. Probes are regu-

lar arrays of 502 points that are passed through a contouring

filter.

Figure 1.36 Subsampling structured data.

32 Introduction

Edge collapse results in merging two vertices into

one. The position of the merged point is

controlled by the particulars of the error metric

and algorithm: choosing one of the two end-

points, or a point on the edge, is common. Some

algorithms compute an optimal merge position

based on minimizing error to the original data.

Finally, some techniques may delete an entire cell

(e.g., triangle) and attached cells and then

retriangulate the resulting hole.

Decimation algorithms depend on the evalu-

ation of an error metric to determine the oper-

ation to apply to the mesh. Simple approaches

such as distance to an ‘‘average’’ plane work

reasonably well. Probably the most widely

used error metric is based on an accumulation

of error represented by a quadric. The so-called

quadric error metric measures the distance to a

set of planes, each plane corresponding to an

original triangle in the input mesh.

1.6 Bibliographic Notes

Color mapping is a widely studied topic in imaging,

computer graphics, visualization, and human factors.

[12,30,42]. You also may want to learn about the

physiological and psychological effects of color on

perception. The text by Wyszecki and Stiles [44]

serves as an introductory reference.

Contouring is a widely studied technique in visu-

alization because of its importance and popularity.

Early techniques were developed for 2D data [43]. 3D

techniques were developed initially as contour con-

necting methods [15]—that is, given a series of 2D

contours on evenly spaced planes, connecting the

contours to create a closed surface. Since the intro-

duction of marching cubes, many other techniques

have been implemented [13,26,28]. A particularly

interesting reference is given by Livnat et al. [22].

They show a contouring method with the addition

of a preprocessing step that generates isocontours in

near-optimal time.

Although we barely touched the topic, the study of

chaos and chaotic vibrations is a delightfully interest-

ing topic. Besides the original paper by Lorenz [24],

the book by Moon [27] is a good place to start.

2Dand3Dvector plots havebeenusedby computer

analysts for many years [16]. Streamlines and stream-

ribbons also have been applied to the visualization of

complex flows [41]. Good general information on

vector visualization techniques is given by Helman

and Hesselink [19] and Richter et al. [31].

Tensor visualization techniques are relatively few

in number. Most techniques are glyph-oriented [10,

18]. We will see more techniques in later chapters.

Blinn [3], Bloomenthal [4,5], and Wyvill [45] have

been important contributors to implicit modeling.

Implicit modeling is currently popular in computer

graphics for modeling ‘‘soft’’ or ‘‘blobby’’ objects.

These techniques are simple, powerful, and becoming

widely used for advanced computer graphics model-

ing.

Polygon reduction is a relatively new field of

study. SIGGRAPH ’92 marked a flurry of interest

with the publication of two papers on this topic [32,

40]. Since then a number of valuable techniques have

been published. One of the best techniques, in terms

of quality of results, is given by Hoppe [21], although

it is limited in time and space because it is based on

formal optimization techniques. Other interesting

methods include those by Hinker and Hansen [20]

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 33

Edge collapse

Vertex deletion

Cell deletion

Figure 1.37 Decimating unstructured data.

Q2

Overview of Visualization 33

and Rossignac and Borel [32]. One promising area of

research is multiresolution analysis, where wavelet

decomposition is used to build multiple levels of

detail (LODs) in a model [14]. The most recent

work in this field stresses progressive transmission

of 3D triangle meshes [21], improved error measures

[17], and algorithms that modify mesh topology

[29,36]. An extensive book on the technology is avail-

able that includes specialized methods for terrain

simplification [25].

References

1. R. H. Abraham and C. D. Shaw. Dynamics: The
Geometry of Behavior. Aerial Press, Santa Cruz,
CA, 1985.

2. C. Upson, T. Faulhaber, Jr., D. Kamins,
D. Laidlaw, and D. Schlegel. The application
visualization system: a computational environ-
ment for scientific visualization. IEEE Computer
Graphics and Applications, 9(4):30–42, 1989.

3. J. F. Blinn. A generalization of algebraic surface
drawing. ACM Transactions on Graphics,
1(3):235–256, 1982.

4. J. Bloomenthal. Polygonization of implicit sur-
faces. Computer Aided Geometric Design.
5(4):341–355, 1982.

5. J. Bloomenthal, Introduction to Implicit
Surfaces. San Francisco, Morgan Kaufmann,
1997.

6. H. Chernoff. Using faces to represent points
in K-dimensional space graphically. J. American
Statistical Association, 68:361–368, 1973.

7. H. Cline, W. Lorensen, and W. Schroeder. 3D
phase contrast MRI of cerebral blood flow and
surface anatomy. J. Computer Assisted Tomog-
raphy, 17(2):173–177, 1993.

8. S. D. Conte and C. de Boor. Elementary Numer-
ical Analysis. New York, McGraw-Hill, 1972.

9. Data Explorer Reference Manual. IBM Corp,
Armonk, NY, 1991.

10. W. C. de Leeuw and J. J. van Wijk. A probe for
local flow field visualization. In Proceedings of
Visualization ’93, pages 39–45, IEEE Computer
Society Press, Los Alamitos, CA, 1993.

11. T. Delmarcelle and L. Hesselink. A unified
framework for flow visualization. In Computer
Visualization Graphics Techniques for Scientific
and Engineering Analysis (R. S. Gallagher, ed.).
Boca Raton, FL, CRC Press, 1995.

12. H. J. Durrett. Color and the Computer. Boston,
Academic Press, 1987.

13. M. J. Durst. Additional reference to marching
cubes. Computer Graphics, 22(2):72–73, 1988.

14. M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multireso-
lution analysis of arbitrary meshes. In Pro-
ceedings SIGGRAPH ’95, pages 173–182,
1995.

15. H. Fuchs, Z. M. Kedem, and S. P. Uselton.
Optimal surface reconstruction from planar
contours. Communications of the ACM,
20(10):693–702, 1977.

16. A. J. Fuller and M. L. X. dosSantos. Computer
generated display of 3D vector fields. Computer
Aided Design, 12(2):61–66, 1980.

17. M. Garland and P. Heckbert. Surface simplifi-
cation using quadric error metrics. In Proceed-
ings SIGGRAPH ’97, pages 209–216, 1997.

18. R. B. Haber and D. A. McNabb. Visualization
idioms: a conceptual model to scientific visual-
ization systems. Visualization in Scientific
Computing (G. M. Nielson, B. Shriver, L. J.
Rosenblum, eds.). IEEE Computer Society
Press, pages 61–73, 1990.

19. J. Helman and L. Hesselink. Representation
and display of vector field topology in fluid
flow data sets. Visualization in Scientific Com-
puting (G. M. Nielson, B. Shriver, L. J. Rosen-
blum, eds.). IEEE Computer Society Press,
pages 61–73, 1990.

20. P. Hinker and C. Hansen. Geometric optimiza-
tion. In Proceedings of Visualization ’93, pages
189–195, 1993.

21. H. Hoppe. Progressive meshes. In Proceedings
SIGGRAPH ’96, pp. 96–108, 1996.

22. Y. Livnat, H. W. Shen, and C. R. Johnson. A
near optimal isosurface extraction algorithm for
structured and unstructured grids. IEEE Trans-
actions on Visualization and Computer Graphics,
2(1), 1996.

23. W. E. Lorensen and H. E. Cline. Marching
cubes: a high-resolution 3D surface con-
struction algorithm. Computer Graphics,
21(3):163–169, 1987.

24. E. N. Lorenz. Deterministic non-periodic flow.
J. Atmospheric Science, 20:130–141, 1963.

25. D. Luebke, M. Reddy, J. Cohen, A. Varshney,
B. Watson, and R. Huebner. Level of Detail for
3D Graphics. San Francisco, Morgan Kauf-
mann, 2002.

26. C. Montani, R. Scateni, and R. Scopigno.
A modified lookup table for implicit disambigu-
ation of marching cubes. Visual Computer,
(10):353–355, 1994.

27. F. C. Moon. Chaotic Vibrations. New York,
Wiley-Interscience, 1987.

28. G. M. Nielson and B. Hamann. The asymptotic
decider: resolving the ambiguity in marching
cubes. In Proceedings of Visualization ’91,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 34

34 Introduction

pages 83–91, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

29. J. Popovic and H. Hoppe. Progressive simplicial
complexes. In Proceedings of SIGGRAPH ’97,
pages 217–224, 1997.

30. P. Rheingans. Color, change, and control for
quantitative data display. In Proceedings of
Visualization ’92, pages 252–259. IEEE Com-
puter Society Press, Los Alamitos, CA, 1992.

31. R. Richter, J. B. Vos, A. Bottaro, and S. Gavri-
lakis. Visualization of flow simulations.
Scientific Visualization and Graphics Simulation
(D. Thalmann, ed.), pages 161–171. New York,
John Wiley and Sons, 1990.

32. J. Rossignac and P. Borrel. Multi-resolution 3D
approximations for rendering complex scenes.
In Modeling in Computer Graphics: Methods
and Applications (B. Falcidieno and T. Kunii,
eds.), pages 455–465. Berlin, Springer-Verlag,
1993.

33. A. S. Saada. Elasticity Theory and Applications.
New York, Pergamon Press, 1974.

34. W. Schroeder, J. Zarge, and W. Lorensen.
Decimation of triangle meshes. Computer
Graphics (SIGGRAPH ’92), 26(2):65–70, 1992.

35. W. Schroeder. A topology modifying pro-
gressive decimation algorithm. In Proceedings of
Visualization ’97. IEEE Computer Society Press,
Los Alamitos, CA, 1997.

36. W. Schroeder, K. Martin, and W. Lorensen.
The Visualization Toolkit: An Object-Oriented

Approach to 3D Graphics, 3rd Edition. Clifton
Park, NY, Kitware, Inc., 2003.

37. SCIRun: A Scientific Computing Problem Solv-
ing Environment. Scientific Computing and
Imaging Institute (SCI), http://software.sci.
utah.edu/scirun.html, 2002.

38. S. P. Timoshenko and J. N. Goodier. Theory of
Elasticity, 3rd Ed. New York, McGraw-Hill,
1970.

39. E. R. Tufte. The Visual Display of Quantitative
Information. Cheshire, CT, Graphics Press,
1990.

40. G. Turk. Re-tiling of polygonal surfaces. Com-
puter Graphics (SIGGRAPH ’92), 26(2): 55–64,
1992.

41. G. Volpe. Streamlines and streamribbons in
aerodynamics. Technical Report AIAA-89-
0140, 27th Aerospace Sciences Meeting, 1989.

42. C. Ware. Color sequences for univariate maps:
theory, experiments and principles. IEEE Com-
puter Graphics and Applications, 8(5):41–49,
1988.

43. D. F. Watson. Contouring: A Guide to the An-
alysis and Display of Spatial Data. Pergamon
Press, New York, 1992.

44. G. Wyszecki and W. Stiles. Color Science: Con-
cepts and Methods, Quantitative Data and For-
mulae. New York, John Wiley and Sons, 1982.

45. G. Wyvill, C. McPheeters, and B. Wyvill. Data
structure for soft objects. Visual Computer,
2(4):227–234, 1986.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 35

Overview of Visualization 35

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:48pm page 36

This page intentionally left blank

PART II

Scalar Field Visualization:
Isosurfaces

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:29pm page 37

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:29pm page 38

This page intentionally left blank

2 Accelerated Isosurface Extraction
Approaches

YARDEN LIVNAT

Scientific Computing and Imaging Institute

University of Utah

2.1 Introduction

The marching cubes [7,15] method demonstrated

that isosurface extraction can be reduced, using

a divide-and-conquer approach to solving a

local triangulation problem. In addition, the

marching cubes method proposed a simple and

efficient local triangulation using a lookup

table. However, the marching cubes did not

address the divide portion of the approach, i.e.,

how to efficiently search a large dataset for these

small local triangulations. In fact, the marching

cubes method checks each and every cell of

the dataset.

In this chapter, we introduce the three main

approaches to accelerate isosurface extraction

(Section 2.2) and present two specific methods.

Section 2.3 introduces the span space meta-

phor and uses it to devise a near-optimal search

method in Section 2.4. Finally, Section 2.5 exam-

ines the view-dependent extraction approach

and presents a particular implementation.

2.2 Isosurface Extraction Approaches

The various approaches to the acceleration

of isosurface extraction fall into three main

categories. Each approach is characterized

based on the space in which it operates, namely,

geometric, value, or image space decompos-

ition. While some methods can be applied to

structured and unstructured datasets, others

lend themselves to only one, usually structured,

grid.

2.2.1 Geometric Space Decomposition

Originally, only structured grids were available

as an underlying geometry. Structured grids

impose an order on the given cell set. By utiliz-

ing this order, methods based on the geometry

of the dataset could take advantage of the co-

herence between adjacent cells.

2.2.1.1 Marching Cubes

Perhaps the best known isosurface extraction

method to achieve high-resolution results is the

marching cubes method introduced by Lorensen

and Cline [7]. The marching cubes method

concentrated on the approximation of the

isosurface inside the cells rather than on

efficient location of the involved cells. Toward

this end, the marching cube method scans the

entire cell set, one cell at a time. The novelty of

the method is the way in which it decides for

each cell whether the isosurface intersects that

cell and, if so, how to approximate it.

2.2.1.2 Octrees

The marching cubes method did not attempt to

optimize the time needed to search for the cells

that actually intersect the isosurface. This issue

was later addressed by Wilhelms and Van

Gelder [14], who employed an octree, effectively

creating a 3D hierarchical decomposition of the

cell set. Each node in the tree was tagged with

the minimum and maximum values of the cells

it represents. These tags, and the hierarchical

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 39

39

nature of the octree, enable one to trim off

sections of the tree during the search and thus

to restrict the search to only a portion of the

original geometric space. Wilhelms and Van

Gelder did not analyze the time complexity of

the search phase of their algorithm. However,

octree decompositions are known to be sensitive

to the underlying data. If the underlying data

contain some fluctuations or noise, most of the

octree will have to be traversed. Livnat et al. [6]

present an analysis of the octree algorithm and

show that the algorithm has a worst-case com-

plexity of O(kþ k log n=k), where n is the

number of cells in the dataset and k is the size of

the extracted isosurface [6]. Finally, octrees have

been applied primarily to structured grids, and

they are not easily adapted to handle unstruc-

tured grids.

2.2.2 Value Space Decomposition

Decomposing the value space, rather than the

geometric space, has two advantages. First, the

underlying geometric structure is of no import-

ance, so this decomposition works well with

unstructured grids. Second, for a scalar field in

three dimensions, the dimensionality of the

search is reduced from three to two.

In general values, space decomposition

methods exhibit worst-case complexity of O(n).

In Section 2.3, we introduce the span space

metaphor, and in Section 2.4, we present a

near-optimal isosurface extraction method

based on the span space with a worst-case com-

plexity of O(kþ
ffiffiffi
n
p

).

2.2.3 Image Space Decomposition

Today’s large datasets pose new challenges.

Datasets of several gigabytes can be found in

many fields (e.g., medicine, flow simulation, and

geosciences). The size of isosurfaces extracted

from these datasets can reach several million

polygons, many of which are less than one

pixel in size. Two problems emerge due to the

large number of polygons. First, due to the sheer

number of cells containing an isosurface, the

computation of all the local triangulations can

be very time-consuming, even if fast acceleration

methods are used. Second, the huge number of

polygons in the extracted isosurface can easily

overwhelm even the most powerful graphics ac-

celerators, leading to poor interaction. In other

words, not only the size, n, of the datasets is very

large, but also the size, k, of the extracted isosur-

face becomes a problem.

One current approach to the large-number-

of-polygons problem is mesh reduction tech-

niques [13,8]. The mesh reduction is applied

to an isosurface either as a postprocess after

the extraction phase or during the extraction

phase itself [11]. However, mesh reduction is

expensive and requires extracting the entire iso-

surface for examination. Furthermore, a change

in the iso-value requires the full extraction of a

new isosurface and the reapplication of the

mesh reduction step.

Another approach is to employ ray-tracing

techniques, which do not create an intermediate

polygonal representation. Ray-tracing, never-

theless, does not take advantage of graphics

hardware and requires a large number of

CPUs to achieve interactivity [9].

View-dependent isosurface extraction [5],

on the other hand, aims to reduce the search,

construction, and rendering times, all at

once. The key to this approach is accessing

only cells that contain the visible portion of

the isosurface from a given viewpoint, i.e.,

based on the image space. The approach is

based on a hierarchical front-to-back traversal

of the dataset while skipping the nonvisible

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 40

Figure 2.1 (Left) The user view. (Right) The same isosur-

face from a 90-degree angle to the user view, illustrating the

incomplete reconstruction. (See also color insert.)

40 Scalar Field Visualization: Isosurfaces

sections of the dataset from the current view-

point. Fig. 2.2 shows the potential savings

of such an approach. Note the large section of

the isosurface that represents the internal

organs in the head yet is not part of the view-

dependent isosurface.

2.3 The Span Space

Let j: G! V be a given field and let D be a

sample set over j, such that

D ¼ {di} di 2 D ¼ G� V (2:1)

where G � Rp is a geometric space and V � R,

for some p 2 Z, is the associated value space.

Also, let d ¼ jDj be the size of the dataset.

2.3.1 Definition: Isosurface Extraction

Given a set of samples D over a field j: G! V ,

and given a single value v 2 V , find

S ¼ {gi} gi 2 G such that

j(gi) ¼ v
(2:2)

Note that S, the isosurface, need not be topo-

logically simple.

Approximating an isosurface, S, as a global

solution to Equation 2.2 can be a difficult task

because of the sheer size, d, of a typical science

or engineering dataset.

Data is often generated from 3D images or

as solutions to numerical approximation tech-

niques, such as from finite difference or finite

element methods. These methods naturally de-

compose the geometric space, G, into a set of

polyhedral cells, C, where the data points define

the vertices. While n ¼ jCj, the number of cells, is

typically an order of magnitude larger than d, the

approximation of the isosurface over C becomes

a manageable task. Rather than finding a global

solution, one can seek a local approximation

within each cell. Hence, isosurface extraction

becomes a two-stage process: locating the cells

that intersect the isosurface and then, locally,

approximating the isosurface inside each such

cell. We focus our attention on the problem of

finding those cells that intersect an isosurface of a

specified iso-value.

On structured grids, the position of a cell can

be represented in the geometric space G. Be-

cause this representation does not require expli-

cit adjacency information between cells,

isosurface extraction methods on structured

grids conduct searches over the geometric

space, G. The problem as stated by these

methods is defined in Section 2.3.2.

2.3.2 Approach: Geometric Search

Given a point v 2 V and given a set C of cells in G

space where each cell is associated with a set of

values {uj} 2 Vspace, find the subset of C that an

isosurface, of value v, intersects.

Efficient isosurface extraction for unstruc-

tured grids is more difficult, as no explicit order

(i.e., position and shape) is imposed on the cells,

only an implicit one that is difficult to utilize.

Methods designed to work in this domain have

to use additional explicit information or revert to

a search over the value space, V. The advantage

of the latter approach is that one needs only to

examine the minimum and maximum values of a

cell to determine whether an isosurface intersects

that cell. Hence, the dimensionality of the prob-

lem reduces to two for scalar fields.

Many methods for isosurface extraction over

unstructured grids, as well as some for struc-

tured grids, view the isosurface extraction prob-

lem as presented in Section 2.3.3.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 41

Figure 2.2 Extracted isosurface: a cut plane through the

full and view-dependent isosurfaces extracted from the same

viewpoint as in Fig. 2.1. Note the large internal structures

that are part of the full isosurface but not part of the view-

dependent isosurface. (See also color insert.)

Accelerated Isosurface Extraction Approaches 41

2.3.3 Approach: The Interval Search

Given a point v 2 Vand given a set of cells repre-

sented as intervals,

I ¼ {[ai, bi]} such that ai, bi 2 V (2:3)

find the subset Is such that

Is � I and ai � v � bi 8(ai,bi) 2 Is (2:4)

Posing the search problem over intervals

introduces some difficulties. If the intervals

are of the same length or are mutually exclusive,

they can be organized in an efficient way suitable

for quick queries. However, it is much less

obvious how to organize an arbitrary set of

intervals. Indeed, what distinguishes these

methods from one another is the way they organ-

ize the intervals rather than the way they per-

form searches.

Our approach is not to view the problem as a

search over intervals in V but rather as a search

over points in V 2. We start with an augmented

definition of the search space.

2.3.4 Definition: The Span Space

Let C be a given set of cells; define a set of points

P ¼ {pi} over V 2 such that

8ci 2 C associate, pi ¼ (ai, bi)

where (2.5)

ai ¼ min
j

{vj}i and bi ¼ max
j

{vj}i

and {vj}i are the values of the vertices of cell i.

Though conceptually not much different

from the interval space, the span space never-

theless leads to a simple and near-optimal

search algorithm. In addition, the span space

enables us to clarify the differences and com-

monalities between previous interval ap-

proaches as shown by Livnat et al. [6].

One key concept is that points in two dimen-

sions exhibit no explicit relations between them-

selves, while intervals tend to be viewed as

stacked on top of each other, so that overlapping

intervals exhibit merely coincidental links.

Points do not exhibit such arbitrary ties and in

this respect lend themselves to many different

organizations. However, as we shall show later,

previous methods grouped these points in very

similar ways because they looked at them from

an interval perspective.

Using our augmented definition, the isosur-

face extraction problem can be stated as in

Section 2.3.5.

2.3.5 Approach: The Span Search

Given a set of cells, C, and its associated set of

points, P, in the span space, and given a value

v 2 V , find the subset Ps � P such that

8(xi, yi) 2 Ps xi < v yi > v (2:6)

We note that 8(xi, yi) 2 Ps, xi < yi and thus the

associated points will lie above the line yi ¼ xi.

A geometric perspective of the span search is

given in Fig. 2.3.

2.4 Near-Optimal Isosurface Extraction
(NOISE)

In this section we present an acceleration

method that is based on the span space decom-

position. Using the span space as our under-

lying domain, we employ a kd-tree as a means

for simultaneously ordering the cells according

to their maximum and minimum values.

2.4.1 Kd-Trees

Kd-trees were designed by Bentley [1] in 1975

as a data structure for efficient associative

searching. In essence, kd-trees are a multi-

dimensional version of binary search trees.

Each node in the tree holds one of the data

values and has two sub-trees as children. The

sub-trees are constructed so that all of the nodes

in one sub-tree, the left one for example, hold

values that are less than the parent node’s value,

while the values in the right sub-tree are greater

than the parent node’s value.

Binary trees partition data according to only

one dimension. Kd-trees, on the other hand,

utilize multidimensional data and partition the

data by alternating between each of the dimen-

sions of the data at each level of the tree.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 42

42 Scalar Field Visualization: Isosurfaces

2.4.2 Search over the Span Space Using
Kd-Trees

Given a dataset, a kd-tree that contains pointers

to the data cells is constructed. Using this kd-

tree as an index to the dataset, the algorithm can

now rapidly answer isosurface queries. Fig. 2.4

depicts a typical decomposition of a span space

by a kd-tree.

2.4.2.1 Construction

The construction of the kd-trees can be carried

out recursively in optimal time O(n log n). The

approach is to find the median of the data

values along one dimension and store it at the

root node. The data is then partitioned accord-

ing to the median and recursively stored in the

two sub-trees. The partition at each level

alternates between the min and max coordi-

nates.

An efficient way to achieve O(n log n) time is

to recursively find the median in O(n), using the

method described by Blum et al. [3], and to

partition the data within the same time bound.

A simpler approach is to sort the data into

two lists according to the maximum and min-

imum coordinates, respectively, in order O(n

log n). The first partition accesses the median

of the first list, the min coordinate, in constant

time, and marks all of the data points with

values less than the median. We then use these

marks to construct the two subgroups, in O(n),

and continue recursively.

Although the above methods have complexity

of O(n log n), they do have weaknesses. Finding

the median in optimal time of O(n) is theoretic-

ally possible yet difficult to program. The

second algorithm requires sorting two lists and

maintaining a total of four lists of pointers.

Although it is still linear with respect to its

memory requirement, it nevertheless poses a

problem for very large datasets.

A simple and elegant solution is to use

a Quicksort-based selection [12]. While this

max

minv

v

Figure 2.3 Search over the span space.

Accelerated Isosurface Extraction Approaches 43

method has a worst case of O(n2), the average

case is only O(n). Furthermore, this selection

algorithm requires no additional memory and

operates directly on the tree.

It is clear that the kd-tree has one node per

cell, or span point, and thus that the memory

requirement of the kd-tree is O(n).

2.4.2.2 Query

Given an iso-value v, we seek to locate all of the

points in Fig. 2.3 that are to the left of the vertical

line at v and are above the horizontal line at v. We

note that we do not need to locate points that are

on these horizontal or vertical lines.

The kd-tree is traversed recursively when

the iso-value is compared to the value stored at

the current node alternating between the

minimum and maximum values at each level. If

the node is to the left (above) of the iso-value

line, then only the left (right) sub-tree should be

traversed. Otherwise, both sub-trees should be

traversed recursively. For efficiency, we define

two search routines, search-min-max and

search-max-min. The dimension we currently

check is the first named, and the dimension that

we still need to search is named second. The

importance of naming the second dimension

will be evident in the next section, when we con-

sider optimizing the algorithm.

Following is a short pseudo-code for the min-

max routine.

search-min-max(iso-value, node)

{

if (node.min < iso-value) {

if (node.max > iso-value)

construct a polygon(s) from node

search-max-min (iso-value,

node.right);

}

search-max-min (iso-value,

node.left);

}

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 44

max

min

root

1

1

2

2 2

2

v

Figure 2.4 A typical decomposition of a span space by a kd-tree.

44 Scalar Field Visualization: Isosurfaces

Estimating the complexity of the query is not

straightforward. Indeed, the analysis of the

worst case was developed by Lee and Wong [4]

only several years after Bentley introduced kd-

trees. Clearly, the query time is proportional to

the number of nodes visited. Lee and Wong

analyzed the worst case by constructing a situ-

ation where all the visited nodes are not part of

the final result. Their analysis showed that the

worst-case time complexity is O(
ffiffiffi
n
p
þ k). The

average case analysis of a region query is still

an open problem, though observations suggest

that it is much faster than O(
ffiffiffi
n
p
þ k) [2,12]. In

almost all typical applications k̂k � n2=3 >
ffiffiffi
n
p

,

which suggests a complexity of only O(k). On

the other hand, the complexity of the isosurface

extraction problem is O(k), because it is bound

from below by the size of the output. Hence, the

proposed algorithm, NOISE, is optimal, y(k),

for almost all cases and is near optimal in the

general case.

2.4.3 Optimization

The algorithm presented in the previous

section is not optimal with regard to both the

memory requirement and the search time. We

now present several strategies to optimize the

algorithm.

2.4.3.1 Pointerless Kd-Trees

A kd-tree node, as presented previously, must

maintain links to its two sub-trees. This intro-

duces a high cost in terms of memory require-

ments. To overcome this, we note that, in our

case, the kd-tree is completely balanced. At each

level, one data point is stored at the node, and the

rest are equally divided between the two sub-

trees. We can, therefore, represent a pointerless

kd-tree as a 1D array of the nodes. The root node

is placed at the middle of the array, while the first

n/2 nodes represent the left sub-tree and the last

(n� 1)=2 nodes the right sub-tree, as shown in

Fig. 2.5.

When we use a pointerless kd-tree, the

memory requirements for our kd-tree, per

node, reduce to two real numbers, for minimum

and maximum values, and one pointer back to

the original cell for later usage. Considering that

each cell, for a 3D application with tetrahedral

cells, has pointers to four vertices, the kd-tree

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 45

RTree

Array

R

Figure 2.5 Pointerless kd-tree.

Accelerated Isosurface Extraction Approaches 45

memory overhead is even smaller than the size

of the set of cells.

The use of a pointerless kd-tree enables one to

compute the tree as an offline preprocess and

load the tree using a single read in time com-

plexity of only O(n). Data acquisition via

CT/MRI scans or scientific simulations is gener-

ally very time consuming. The ability to build

the kd-tree as a separate preprocess allows one

to shift the cost of computing the tree to the

data-acquisition stage. Hence, the impact of the

initialization stage on the extraction of isosur-

faces for large datasets is reduced.

2.4.3.2 Optimized Search

The search algorithm can be further enhanced.

Let us consider again the min-max (max-min)

routine. In the original algorithm, if the iso-

value is less than the minimum value of the

node, then we know we can trim the right sub-

tree. Consider the case where the iso-value is

greater than the node’s minimum coordinate. In

this case, we need to traverse both sub-trees. We

have no new information with respect to the

search in the right sub-tree, but for the search in

the left sub-tree we know that the minimum

condition is satisfied. We can take advantage of

this fact by skipping over the odd levels from

that point onward. To achieve this, we define

two new routines: search-min and search-max.

Adhering to our previous notation, the name

search-min indicates that we are only looking

for a minimum value.

Examining the search-min routine, we note

that the maximum requirement is already satis-

fied. We do not gain new information if the iso-

value is less than the current node’s minimum

and again only trim off the right sub-tree. If the

iso-value is greater than the node’s minimum,

we recursively traverse the right sub-tree, but

with regard to the left sub-tree we now know

that all of its points are in the query’s domain.

We therefore need only to collect them. Using

the notion of pointerless kd-tree as proposed in

Section 2.4.3.1, any sub-tree is represented as a

contiguous block of the tree’s nodes. Collecting

all of the nodes of a sub-tree requires only se-

quentially traversing this contiguous block.

A pseudo-code of the optimized search for

the odd levels of the tree, i.e., searching for

minima, is presented in Fig. 2.6. The code

for even levels, searching for maxima, is essen-

tially the same and uses the same collect routine.

2.4.3.3 Count Mode

Extracting isosurfaces is an important goal, yet

in a particular application one may wish only to

know how many cells intersect a particular

isosurface. Knowing the number of cells that

intersect the isosurface can help one to make a

rough estimate of the surface area of the

isosurface on a structured grid and on a ‘‘well-

behaved’’ unstructured grid. The volume en-

compassed by the isosurface can also be

estimated if one knows the number of cells that

lie inside the isosurface as well as the number of

cells that intersect it.

The above algorithm can accommodate the

need for such particular knowledge in a simple

way. The number of cells intersecting the isosur-

face can be found by incrementing a counter

rather than constructing polygons from a node

and by replacing collection with a single incre-

ment of the counter with the size of the sub-tree,

which is known without the need to traverse the

tree. To count the number of cells that lie inside

the isosurface, one need only look for the cells

that have a maximum value below the iso-value.

The worst-case complexity of the count mode

is only O(
ffiffiffi
n
p

). A complete analysis is presented

by Livnat et al. [6]. It is important to note that

the count mode does not depend on the size of

the isosurface. The count mode thus enables an

application to quickly count the cells that inter-

sect the isosurface and to allocate and prepare

the appropriate resources before a full search

begins.

2.4.4 Triangulation

Once a cell is identified as intersecting the isosur-

face, we need to approximate the isosurface

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 46

46 Scalar Field Visualization: Isosurfaces

inside that cell. Toward this goal, the marching

cubes algorithm checks each of the cell’s vertices

and marks them as either above or below the

isosurface. Using this information and a lookup

table, the algorithm identifies the particular way

the isosurface intersects the cell. The marching

cubes method and its many variants are designed

for structured grids, although they can be applied

to unstructured grids as well.

Livnat et al. [6] have proposed an algorithm

for unstructured grids of tetrahedral cells. We

first note that if an isosurface intersects inside a

cell, then the vertex with the maximum value

must be above the isosurface, and the vertex

with the minimum value must be below it.

To take advantage of this fact, we reorder the

vertices of a cell according to their ascending

values, say v1 to v4, a priori, in the initialization

stage. When the cell is determined to intersect

the isosurface, we need only to compare the iso-

value against, at most, the two middle vertices.

There are only three possible cases: only v1 is

below the isosurface, only v4 is above the isosur-

face, or {v1, v2} are below and {v3, v4} are

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 47

search_min_max(iso_value, node)

{

if (node.min < iso_value) {

if (node.max > iso_value)

construct polygon(s) from node;

search_max_min(iso_value, node.right);

search_max(iso_value, node.left);

} else

search_max_min(iso_value, node.left);

}

search_min(iso_value, node)

{

if (node.min < iso_value) {

construct polygon(s) from node;

search_skip_min(iso_value, node.right);

collect(node.left);

} else

search_skip_min(iso_value, node.left);

}

search_skip_min(iso_value, skip_node)

{

if (skip_node.min < iso_value)

construct polygon(s) from skip_node;

search_min(iso_value, skip_node.right);

search_min(iso_value, skip_node.left);

}

collect(sub_tree)

{

sequentially construct polygons for all nodes

in this sub_tree

}

Figure 2.6 Optimized search.

Accelerated Isosurface Extraction Approaches 47

above (Fig. 2.7). Moreover, the order of the ver-

tices of the approximating triangle(s), such that

the triangle(s) will be oriented correctly with re-

spect to the isosurface, is known in advance at no

cost. We can take further advantage of the fact

that there are only four possible triangles for

each cell and compute their normals a priori.

This option can improve the triangulation time

dramatically, yet it comes with a high memory

price tag.

2.5 View-Dependent Isosurface
Extraction

The view-dependent extraction approach is

based on the observation that isosurfaces ex-

tracted from very large datasets tend to exhibit

high depth complexity for two reasons. First,

since the datasets are very large, the projection

of individual cells tends to be subpixel. This leads

to a large number of polygons, possibly nonover-

lapping, projecting onto individual pixels.

Second, for some datasets, large sections of an

isosurface are internal and thus are occluded by

other sections of the isosurface, as illustrated in

Fig. 2.2. These internal sections, common in

medical datasets, cannot be seen from any dir-

ection unless the external isosurface is peeled

away or cut off. Therefore, if one can extract

just the visible portions of the isosurface, the

number of rendered polygons will be reduced,

resulting in a faster algorithm. Fig. 2.8 depicts a

2D scenario. In a view-dependent method only

the solid lines are extracted, whereas in non-

view-dependent isocontouring, both solid and

dotted lines are extracted.

Our view-dependent approach is based on a

hierarchical traversal of the data and a march-

ing cubes triangulation. We exploit coherency in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 48

v1

v2
v3

v4

v1

v2
v3

v4

v1

v2
v3

v4

Figure 2.7 Triangulation. The vertices are numbered according to ascending values.

Visible Isoline

Nonvisible Isoline

Screen

Figure 2.8 A 2D scenario.

48 Scalar Field Visualization: Isosurfaces

the object, value, and image spaces, as well

as balancing the work between the hardware

and the software. The three-step approach is

depicted in Fig. 2.9.

First, Wilhelms and Van Gelder’s [14] algo-

rithm is augmented by traversing down a hier-

archical tree in a front-to-back order in addition

to pruning empty sub-trees based on the min-

max values stored at the tree nodes. The second

step employs coarse software visibility tests for

each [meta-] cell that intersects the isosurface.

The aim of these tests is to determine whether

the [meta-] cell is hidden from the view point by

previously extracted sections of the isosurface

(thus the requirement for a front-to-back tra-

versal). Finally, the triangulations of the visible

cells are forwarded to the graphics accelerator

for rendering by the hardware. It is at this stage

that the final and exact (partial) visibility of the

triangles is resolved. A data-flow diagram is

depicted in Fig. 2.10.

2.5.1 The Min/Max Tree

Wilhelms and Van Gelder [14] used an octree for

their hierarchical representation of the under-

lying dataset. Each node of the octree contained

the minimum and maximum values of its sub-

tree. In order to reduce the memory footprint,

the octree leaves were one level higher then the

data cells. In other words, each leaf node repre-

sented the min/max values of 8 (2� 2� 2) data

cells. Wilhelms and Van Gelder also introduced

a new octree variant (BON tree) for handling

datasets with sizes that are not a power of two.

The BON tree was adequate for relatively

small datasets of total size less than 228 or

256 MB. In addition, the use of 32-bit pointers

for each node proves to be expensive when the

data are 8 bits per node. In this case, the min/

max values in each node require only 2 bytes but

the pointer to the next node requires 4 bytes. The

alignment of this pointer further increases

the size of each node by 2 bytes, resulting in 8

bytes per node instead of only 2 bytes. As a

result, the BON tree can consume as much

memory as the dataset itself, and sometimes

even more. For large datasets, this is too high a

price to pay.

In the case of view-dependent extraction,

where each node in the hierarchical tree has to

be culled against the virtual framebuffer, each

level in the hierarchy increases the cost of the

traversal. The tradeoff is that deep hierarchy pro-

vides better culling, i.e., pruning of non-visible or

empty sections, but with an increased cost in

terms of both memory and processing time of

each node.

To address these issues, we have implemented

a shallow hierarchy [9]. Each level of the hier-

archy can have a different number of nodes. The

depth of the hierarchy can thus be adapted on a

per-dataset case for optimum memory-vs.-time

configuration.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 49

1 BPP
Screen Mask 1) Traverse

2) Project

3) Forward
to graphics
accelerator

Figure 2.9 The three-step algorithm.

Accelerated Isosurface Extraction Approaches 49

2.5.2 Visibility

Determining whether a meta-cell is hidden and

thus can be skipped is fundamental to this algo-

rithm. Toward this end, we create a virtual

screen with only one bit per pixel. During the

front-to-back traversal of the data we update

this virtual screen with the projection of the

triangles we extract. In effect, the virtual screen

represents a dynamic visibility mask. At each

stage of the traversal, the mask state represents

the areas that are still visible from the user

viewpoint.

Determining whether a meta-cell is visible

is accomplished by projecting the meta-cell

onto the virtual screen and checking if any

part of it is visible, i.e., if any of the pixels it

covers is not set. If the entire projection of the

meta-cell is not visible, none of its children can

be visible.

2.5.3 Hierarchical Framebuffer

It is important to quickly and efficiently classify

a cell as visible. A hidden cell and all of its

children will not be traversed further, and

thus the potential savings can justify the

time and effort invested in the classification.

A visible cell, on the other hand, does not gain

any benefit from this test, and the cost of

the visibility test is added to the total cost

of extracting the isosurface. As such, the cell-

visibility test should not depend heavily on

the projected screen area; otherwise, the

cost would prohibit the use of the test for

meta-cells at high levels of the octree—exactly

those meta-cells that potentially can save the

most.

To achieve fast classification we employ a

hierarchical framebuffer. In particular, each

node in the hierarchy represents 64 (8� 8)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 50

(partial) visible triangles
and points with normals

S
o

ft
w

ar
e

H
ar

d
w

ar
e

Final image

Rendering

Final visibility test (z-buffer)

Graphics Engine

Object Space

Traversal: Hierarchical
and front-to-back

Image Space

Prune nonvisible [meta-] cells

Small [meta-] cells−−> Points with normals
Prune nonvisible triangles of a visible cell Visibility Part I

Visibility Part II

Value Space

Prune empty [meta-] cells

Figure 2.10 The algorithm data flow.

50 Scalar Field Visualization: Isosurfaces

children. The branch factor of 64 was

chosen such that it can be represented in

one word and so that comparison against

the projection of a meta-cell can be done effi-

ciently.

2.5.3.1 Top-Down Visibility Queries

The main purpose of the hierarchical frame-

buffer is to accelerate the classification of a

meta-cell as visible. As such, it is important to

know for each node of the framebuffer hier-

archy if any part of it might be visible.

Therefore, a node in the hierarchy is marked

as opaque if and only if all of its children are

opaque.

Determining whether a meta-cell is visible

can now be done in a top-down fashion.

The meta-cell is first projected onto the frame-

buffer, and an axis-aligned bounding box is

computed. This bounding box is then com-

pared against the hierarchical framebuffer

starting at the root node. The top-down ap-

proach accelerates the classification of the

meta-cell as it can determine, at early

stages, that some portion of the bounding box

is visible.

2.5.3.2 Bottom-Up Updates

In order to keep the hierarchical framebuffer

state current, we must update it as new triangles

are extracted. However, a top-down update of

the hierarchy is not efficient. If the extracted

triangles are small, then each update of the

hierarchy (i.e., rendering of a triangle) requires

a deep traversal of the hierarchy. Such traver-

sals are expensive and generally add only a

small incremental change.

To alleviate the problem of projecting many

small triangles down the hierarchy, we employ a

bottom-up approach. Using this approach, the

contribution of a small triangle is limited to

only a small neighborhood at the lowest level,

and thus only a few updates up the hierarchy

will be necessary.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 51

Figure 2.11 Rendering points. The left image was extracted based on the current viewpoint. The right image shows a close-up

of the same extracted geometry. (See also color insert.)

Accelerated Isosurface Extraction Approaches 51

2.5.4 Scan Conversion of Concave Polygons

Once a data cell is determined to both be visible

and intersect the isosurface, we use the march-

ing cubes method to triangulate the cell. In most

cases, the marching cubes method creates more

than one triangle, but it is not obvious which

one of the triangles is in front of the other. As

such, we need to render each one of them onto

the framebuffer and forward all of them to the

hardware for rendering.

Updating the hierarchical framebuffer one tri-

angle at a time is not efficient, as the triangles

from a single cell are likely to affect only a small

section of the hierarchy and might even overlap.

We thus employ a scan-conversion algorithm,

which can simultaneously project a collection of

triangles and concave polygons. The use of the

scan-conversion algorithm is made particularly

simple due to the bottom-up update approach.

The projected triangles and polygons are scan-

converted at screen resolution at the bottom level

of the framebuffer hierarchy before the changes

are propagated up the hierarchy. Applying the

scan conversion in a top-down fashion would

make the algorithm unnecessarily complex.

Additional acceleration can be achieved by

eliminating redundant edges, projecting each

vertex only once per cell, and using triangle strips

or fans. To achieve these goals, the marching

cubes lookup table is first converted into a tri-

angle fans format. The usual marching cubes

lookup table contains a list of the triangles

(three vertices) per case.

2.5.5 Rendering Points

Another potential savings is achieved by using

points with normals to represent triangles or

(meta-) cells that are smaller than a single

pixel. The use of points in isosurface visualiza-

tion was first proposed as the Dividing Cubes

Method by Lorensen and Cline [7]. Pfister et al.

[10] also used points to represent surface elem-

ents (surfels) for efficient rendering of complex

geometry.

In a view-dependent approach, during the

traversal of the hierarchy, whenever a nonempty

(meta-) cell is determined to have a size less than

two pixels and its projection covers the center

of a pixel, it is represented by a single point.

Note that the size of the bounding box can be

almost two pixels wide (high) and still cover

only a single pixel. Referring to Fig. 2.12, we

require

if (right - left < 2) {

int L = trunc(left);
int R = trunc(right)

if (L == R -1)

// create a point at R + 0.5

else if (L == R)

// too small: does not cover the center

of a pixel

else

// too large : covers more than two

pixels

}

and similarly for the bounding box height.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 52

left

left

right

(a)

left

left

right

(b)

left

left

right

(c)

Figure 2.12 Pixel center and the projected bounding box. A point is created for cases (a) and (b) but not for (c).

52 Scalar Field Visualization: Isosurfaces

Figure 2.11 shows an example in which some

of the projected cells are small enough that

they can be rendered as points. On the left is

the image as seen by the user, while on the right

is a close-up view of the same extracted geometry

(i.e., the user zoomed in but did not re-extract

the geometry based on the new viewpoint).

Notice that much of the image on the left is

represented as points. Points are useful not

only in accelerating the rendering of a large iso-

surface but also in remote visualization because

less geometry needs to be transferred over the

network.

2.5.6 Fast Estimates of a Bounding Box
of a Projected Cell

The use of the visibility tests adds an overhead

to the extraction process that should be minim-

ized. Approximating the screen area covered by

a meta-cell, rather than computing it exactly,

can accelerate the meta-cell visibility tests. In

general, the projection of a meta-cell on the

screen has a hexagon shape with non-axis-

aligned edges. We reduce the complexity of the

visibility test by using the axis-aligned bounding

box of the cell projection on the screen, as seen

in Fig. 2.13. This bounding box is an overesti-

mate of the actual coverage and thus will not

misclassify a visible meta-cell, though the op-

posite is possible.

The problem is in how to find this bounding

box quickly. The simplest approach is to project

each of the eight vertices of each cell onto the

screen and compare them. This process involves

eight perspective projections and either two sorts

(x and y) or 16 to 32 comparisons.

Our solution is to approximate the bounding

box as follows. Let P be the center of the current

meta-cell in object space. Assuming the size of

the meta-cell is (dx, dy, dz), we define the eight

vectors:

D ¼ � dx

2
, � dy

2
, � dz

2
, 0

� �
(2:7)

The eight corner vertices of the cell can be rep-

resented as

V ¼ PþD ¼ P þ
(�Dx, �Dy, �Dz)]

(2:8)

Applying the viewing matrix M to a vertex V

amounts to

VM ¼ (PþD)M ¼ PM þDM (2:9)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 53

Eye

Screen

Bounding box
of the meta-cell
projection

Meta-cell

Figure 2.13 Perspective projection of a meta-cell, the covered area, and the bounding box.

Accelerated Isosurface Extraction Approaches 53

After the perspective projection, the x screen

coordinate of the vertex is

[VM]x
[VM]w

¼ [PM]x þ [DM]x
[PM]w þ [DM]w

(2:10)

To find the bounding box of the projected

meta-cell, we need to find the minimum and

maximum of these projections over the eight

vertices in both x and y. Alternatively, we can

overestimate these extreme values such that we

may classify a nonvisible cell as visible but not

the opposite. Overestimating can thus lead to

more work but will not introduce errors.

The maximum x screen coordinate can be

estimated as follows:

max
[VM]x
[VM]w

� �
� max ([PM]x þ [DM]x)

min ([PM]w þ [DM]w)

� [PM]x þmax ([DM]x)

min ([PM]w þ [DM]w)

� [PM]x þ [DþMþ]x
min ([PM]w þ [DM]w)

where we define the þ operator to mean to use

the absolute value of the vector or matrix elem-

ents.

Assuming that the meta-cells are always in

front of the screen, we have

Vz > 0) Pz �Dþz > 0

) [PM]z � [DþMþ]z > 0
(2:11)

Thus,

max
[VM]x
[VM]w

¼

[PM]x þ [DþMþ]x
[PM]w � [DþMþ]w

if numerator � 0

[PM]x þ [DþMþ]x
[PM]w þ [DþMþ]w

otherwise

8>>>><
>>>>:

Similarly, the minimum x screen coordinate

can be overestimated as

min
[VM]x
[VM]w

�

[PM]x � [DþMþ]x
[PM]w þ [DþMþ]w

if numerator � 0

[PM]x � [DþMþ]x
[PM]w � [DþMþ]w

otherwise

8>>>><
>>>>:

The top and bottom of the bounding box are

computed similarly.

2.6 Summary

In Chapter 2, we classified the various

approaches to the acceleration of isosurface

extraction into three categories, namely geomet-

ric, value-based, and image-based. We also pre-

sented two particular acceleration methods. The

NOISE method is based on the span space repre-

sentation of the value space and exhibits a worst-

case complexity of O(kþ
ffiffiffi
n
p

). The view-depend-

ent method is based on a front-to-back traversal,

dynamic pruning (based on a hierarchical visibil-

ity framebuffer), and point representation of

distant meta-cells.

References

1. J. L. Bentley. Multidimentional binary search
trees used for associative search. Communica-
tions of the ACM, 18(9):509–516, 1975.

2. J. L. Bentley and D. F. Stanat. Analysis of range
searches in quad trees. Info. Proc. Lett.,
3(6):170–173, 1975.

3. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest,
and R. E. Tarjan. Time bounds for selection.
J. of Computer and System Science, 7:448–461,
1973.

4. D. T. Lee and C. K. Wong. Worst-case analysis
for region and partial region searches in multi-
dimensional binary search trees and balanced
quad trees. Acta Informatica, 9(23):23–29, 1977.

5. Y. Livnat and C. Hansen. View-dependent iso-
surface extraction. In Visualization ’98, pages
175–180. ACM Press, October 1998.

6. Y. Livnat, H. Shen, and C. R. Johnson. A near
optimal isosurface extraction algorithm using
the span space. IEEE Trans. Vis. Comp.
Graphics, 2(1):73–84, 1996.

7. W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3D surface construc-
tion algorithm. Computer Graphics, 21(4):163–
169, 1987.

8. K. M. Oh and K. H. Park. A type-merging
algorithm for extracting an isosurface from
volumetric data. The Visual Computer, 12:406–
419, 1996.

9. S. Parker, P. Shirley, Y. Livnat, C. Hansen, and
P. P. Sloan. Interactive ray tracing for isosurface
rendering. In Visualization ’98, pages 233–238.
IEEE Computer Society Press, 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 54

54 Scalar Field Visualization: Isosurfaces

10. H. Pfister, M. Zwicker, J. van Baar, and
M. Gross. Surfels: Surface elements as render-
ing primitives. In Siggraph 2000, Compu-
ter Graphics Proceedings, pages 335–342,
2000.

11. T. Poston, H. T. Nguyen, P. A. Heng, and T. T.
Wong. ‘Skeleton climbing’: fast isosurfaces with
fewer triangles. In Pacific Graphics ’97, pages
117–126, Seoul, Korea, 1997.

12. R. Sedgewick. Algorithms in C þþ. Boston,
Addison–Wesley, 1992.

13. R. Shekhar, E. Fayyad, R. Yagel, and J. F. Corn-
hill. Octree-based decimation of marching cubes
surfaces. In Visualization ’96, pages 335–342.
IEEE Computer Society Press, Los Alamitos,
CA, 1996.

14. J.Wilhelms andA.VanGelder.Octrees for faster
isosurface generation. ACM Transactions on
Graphics, 11(3):201–227, 1992.

15. G. Wyvill, C. McPheeters, and B. Wyvill. Data
structure for soft objects. The Visual Computer,
2:227–234, 1986.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 55

Accelerated Isosurface Extraction Approaches 55

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:52pm page 56

This page intentionally left blank

3 Time-Dependent Isosurface
Extraction

HAN-WEI SHEN

Department of Computer Science and Engineering

The Ohio State University

New challenges for scientific visualization re-

searchers have emerged over the past several

years as the size of data generated from simu-

lations experienced exponential growth. A

major factor that is contributing to the expo-

nential growth in the size of data is scientists’

ability to perform time-varying simulations

with finer temporal resolutions and a larger

number of time-steps. To analyze complex dy-

namic phenomena from a time-varying data-

set, it is necessary to navigate and browse the

data in both the spatial and the temporal

domain, select data at different resolutions, ex-

periment with different visualization param-

eters, and compute and animate selected

features over a period of time. To facilitate

exploratory visual data analysis, it is very im-

portant that the visualization software be able

to compute, animate, and track desired features

at an interactive speed. This chapter discusses

the topic of isosurface extraction for time-

varying data. We will first discuss two isosur-

face cell search data structures that can

minimize the storage overhead while keeping

the search performance high. We will

then discuss the work on extracting time-vary-

ing isosurfaces in 4D space that allows for

smooth animation of isosurfaces in time.

These high-dimensional isosurface extraction

algorithms can also provide several additional

benefits, such as computing the isosurface en-

velopes and interval volumes.

3.1 Space-Efficient Search Data Structure

One of the most commonly used approaches to

computing isosurfaces is the marching cubes

algorithm, proposed by Lorensen and Cline [1].

The marching cubes algorithm is simple and

robust. However, the process of a linear search

for isosurface cells can be expensive. To improve

the performance, researchers have proposed

various schemes that can accelerate the search

process. Examples include Wilhelms and Van

Gelder’s [2] octrees, Livnat et al.’s [3] NOISE

method, Shen et al.’s [4] ISSUE algorithm,

Itoh and Koyamada’s [5,6] Extrema Graph

method, Bajaj et al.’s [7,8] Fast Isocontouring

method, and Cignoni et al.’s [9] Interval Tree

algorithm.

Inevitably, these acceleration algorithms

incur overhead for storing extra search indices.

For a steady scalar field, for example, only a

single time-step of data is present; this extra

space is often affordable, and the highly inter-

active speed of extracting isosurfaces can

compensate for the overhead. However, for

time-varying simulations, a typical solution can

contain a large number of time-steps, and every

simulation step can produce a great amount of

data. The overall storage requirement for the

search index structures can be overwhelming.

Furthermore, when analyzing a time-varying

scalar field, a user may want to explore the

data back and forth in time, with the same or

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 57

57

different iso-values. This will require a signifi-

cant amount of disk I/O for accessing the indices

for data at different time-steps when there is not

enough memory space for the entire time se-

quence. As a result, the performance gain from

the efficient isosurface extraction algorithm

could be offset by the I/O overhead.

Researchers have proposed various methods

for efficient searching of isosurfaces for time-

varying scalar fields. The main focus of the

research is to devise a new search-index struc-

ture for a time-varying field, so that the storage

overhead is kept small while the performance of

the isosurface extraction remains high. In the

following section, I describe two algorithms to

achieve this goal. One is to reduce the storage

overhead by trading the accuracy of time-vary-

ing isosurface searches using a data structure

called a temporal hierarchical index tree. The

other is to extend the octree data structure for

out-of-core processing.

3.1.1 Temporal Hierarchical Index Tree

Given a time interval [i, j] and a time-varying

field, a cell’s temporal extreme values in this

interval can be defined as

min
j
i ¼MIN(mint), t ¼ i::j

max
j
i ¼MAX(maxt), t ¼ i::j

where MIN and MAX are the functions that

compute the minimum and the maximum

values, and mint and maxt are the cell’s extreme

values at the tth time-step; we call them the

cell’s time-specific extreme values. To locate

the isosurface cells in the time-varying field,

one can approximate a cell’s extreme values at

any time-step within the time span [i, j] by the

cell’s temporal extreme values, min
j
i and max

j
i,

and use them to create a single search index.

Using this approximated search index, an iso-

surface at a time-step t, t 2 [i, j] can be com-

puted by first finding the cells that have min
j
i

smaller and max
j
i larger than the iso-value. The

actual scalar data of these cells at the specific

time t is then used to compute the geometry of

the isosurface. Using the approximated search

index can greatly reduce the storage space re-

quired, because only one index is used for all

the j � i þ 1 time-steps. It also guarantees to

find all the isosurface cells, because

if t 2 [i, j] and mint < Viso and maxt > Viso

¼) min
j
i < Viso and max

j
i > Viso

where Viso is the iso-value and t is the time-step

at which the query is issued.

Care should be taken when using the idea just

described because the temporal extreme values

provide only a necessary, not a sufficient, con-

dition to qualify a cell as an isosurface cell. As a

result, many nonisosurface cells are visited as

well.

The goal of the temporal hierarchical index

tree data structure is to provide an adaptive

scheme that can reduce the storage overhead

incurred by the search index for isosurface ex-

traction in time-varying fields without sacrificing

the performance too much. The underlying idea

of the data structure is to classify the cells

according to the amount of variation in the

cell’s values over time. Cells that have a small

amount of variation are placed in a single node of

the tree that covers the entire time span. Cells

with a larger variation are placed in multiple

nodes of the tree multiple times, each for a

short time span. When generating an isosurface,

a simple traversal will retrieve the set of nodes

that contains all cell index entries needed for a

given time-step. The cells in each node can be

organized using existing algorithms developed

for generating isosurfaces from a steady data-

set. In the following section, details about the

data structure are described.

3.1.1.1 Data Structure

The span space [3] is useful for analyzing the

temporal variation of a cell’s extreme values. In

the span space, each cell is represented by a point

whosex coordinate represents itsminimumvalue

and whose y coordinate represents its maximum

value. For a time-varying field, a cell has multiple

corresponding points in the span space, and each

point represents the cell’s extreme values at one

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 58

58 Scalar Field Visualization: Isosurfaces

time-step. To characterize a cell’s scalar variation

over time, the area over which the corresponding

points spread in the span space provides a good

measure—the wider these points spread, the

higher is the cell’s temporal variation. This

variation can be quantified by using the lattice

subdivision scheme of the span space [4], which

subdivides the span space into L� L non–

uniformly spaced rectangles, called lattice ele-

ments. To perform the subdivision, we first sort,

in ascending order, all the distinct extreme values

of the cells in the time-varying field within the

given time interval and establish a list. We then

find Lþ 1 scalar values, {d0, d1, . . . , dL}, in the

list that can evenly separate the list into L sublists

with an equal length. These Lþ 1 scalar values

are used to draw Lþ 1 vertical lines and Lþ 1

horizontal lines to subdivide the span space. The

list di is chosen in this way to ensure that cells can

be more evenly distributed among the lattice

elements. Fig. 3.1 is an example of the lattice

subdivision.

Using the lattice subdivision, the temporal

hierarchical index tree classifies the cells in a

time-varying field based on the temporal vari-

ations of their extreme values. Given a time

interval [i, j] in the time-varying field, the root

node in the temporal hierarchical index tree,

denoted as N
j
i , contains cells that have low

scalar variations in the time interval [i, j]. We

can determine whether a cell has a low temporal

variation by inspecting the locations of the cell’s

j � i þ 1 corresponding points in the span space.

If all of the cell’s corresponding points are lo-

cated within an area of 2� 2 lattice elements, a

cell has a low temporal variation. This cell is

then placed into the node N
j
i and is represented

by its temporal extreme values, min
j
i and max

j
i.

On the other hand, for cells that do not satisfy

the criterion, the time interval [i, j] is split in

half, that is, into [i, i þ (j � i þ 1)=2� 1] and

[i þ (j � i þ 1)=2, j], and continues to classify

the cells recursively into each of the two N
j
i

subtrees that have roots N
iþ (j� iþ 1)=2�1
i and

N
j

iþ (j� iþ 1)=2. The temporal hierarchical tree

has leaf nodes Nt
t , t ¼ i::j. The leaf nodes con-

tain cells that have the highest scalar variations

in time so that the cells’ time-specific extreme

values are used. Cells that are classified into

non-leaf nodes are represented by their tem-

poral extreme values. The use of the temporal

extreme values directly contributes to the reduc-

tion of the overall index size because the tem-

poral extreme values are used to refer to a cell

for more than one time-step. Fig. 3.2 shows an

example of the temporal hierarchical index tree

with a time interval [0,5].

To facilitate an efficient search for isosurface

cells, a search index for each node of the

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 59

max

min

Figure 3.1 In this example, the span space is subdivided into

9� 9 lattice elements. Each lattice element is assigned an

integer coordinate based on its row and column number.

The shaded lattice element in this figurehas a coordinate (2,4).

N 0
5

N 0
2

N 3
5

N 0
0

N 3
3N 1

2
N 4

5

N 4
4

N 5
5N 1

1
N 2

2

Figure 3.2 Cells in a time-varying field are classified into a

temporal hierarchical index tree based on the temporal vari-

ations of their extreme values. In this figure, the tree is built

from a time-varying field with a time interval [0,5].

Time-Dependent Isosurface Extraction 59

temporal hierarchical tree is created. This can

be done by using any existing isosurface extrac-

tion algorithm based on the value-partition para-

digm. Here we propose to use a modified ISSUE

algorithm [4] that can provide optimal perform-

ance. For every node N
j
i in the temporal

hierarchical index tree, cells contained in the

node are represented by their extreme values

(min
j
i, max

j
i). To create the search index, we use

the lattice subdivision described previously and

sort cells that belong to the lattice elements of

each row, excluding the lattice element at the

diagonal line, into a list based on the cells’ repre-

sentative minimum values in ascending order.

Another list in each row is created by sorting

the cells’ representative maximum values in des-

cending order. For those lattice elements at the

diagonal line, the interval tree method [9] is used

to create one interval tree for each element.

3.1.1.2 Isosurface Extraction

Given the temporal hierarchical index tree, this

section describes the algorithm that is used to

locate the isosurface cells at run time. We first

describe a simple traversal method to retrieve

the sets of nodes that contain all cell index

entries needed for a given time-step. We then

describe the isosurface cell search algorithm

used for the lattice search index built in each

node.

Given an isosurface query at time-step t, the

isosurface is computed by first locating the

nodes in the tree that may contain the isosur-

face cells. This is done by recursively traversing

from the root node N
j
i to one of its two child

nodes, Nb
a , such that a � t � b until the leaf

node Nt
t is reached. Along the traversal path,

the isosurface cell search is performed using a

method that will be described later, at each

encountered node. The tree is constructed so

that every cell in the field exists in one of the

nodes in the traversal path. These cells have

their representative extreme values, temporal

or time-specific, as the approximation of their

actual extreme values at time-step t. Fig. 3.3

shows an example of the traversal path.

At every node along the traversal path, the

lattice search index built at the node is used to

locate the candidate isosurface cells. Given an

iso-value Viso, the lattice element with integer

coordinates [I, I] that contains the point

(Viso, Viso) in the span space is first identified.

The isosurface cells are then located in the

upper left corner that is defined by the vertical

line x ¼ Viso and the horizontal line y ¼ Viso as

shown in Fig. 3.4.

The candidate isosurface cells can be collected

from the following three categories:

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 60

N 0
5

N 0
2

N 3
5

N 1
2

N 4
5

N 4
4

N 5
5

N 1
1

N
0
0

N 2
2

N 3
3

Figure 3.3 In this example, tree nodes that are inside the

rectangular boxes are on the traversal path for an isosurface

query at time-step 1.

max

min

(Viso, Viso)

Figure 3.4 In this case, lattice element (4,4) contains the

point (Viso,Viso). Isosurface cells are located in the shaded

area.

60 Scalar Field Visualization: Isosurfaces

1. For every list in the row R, R ¼ I þ 1::L� 1

that was sorted by the cells’ minimum

values, the cells from the beginning of

the list are collected until the first cell

is reached that has a representative

minimum value that is greater than the

iso-value.

2. For the list in row I that was sorted by the

maximum values, the cells from the begin-

ning of the list are collected until the cell is

reached that has a representative max-

imum value that is smaller than the iso-

value.

3. Collect the isosurface cells from the interval

tree built at lattice element [I, I]. The

method and its details are presented by

Cignoni et al. [9].

After the candidate isosurface cells are located,

we use the cells’ actual data at time-step t to

perform triangulation.

The above algorithm has optimal perform-

ance since the isosurface cells in categories

1 and 2 are collected without the need for any

search. The interval tree method used in

category 3 has an optimal efficiency of

O(logN), where N is the number of cells in the

field. In addition, the number of cells in

category 3 is also usually very small.

As mentioned previously, a candidate

isosurface cell may not be an isosurface cell

after all. These nonisosurface cells come from

the non-leaf nodes in the temporal hierarchical

index tree since a cell’s time-specific extreme

values, mint and maxt, may not contain the

given iso-value even though the approximated

extreme values, i.e., the temporal extreme values

min
j
i and max

j
i , do contain the iso-value. Al-

though this problem will not cause a wrong

isosurface to be generated, since the triangula-

tion routine will detect the case and create no

triangles from these cells, it does incur perform-

ance overhead. Actually, this performance over-

head is an expected consequence of using

temporal extreme values as the approximated

extreme values for cells; we trade performance

for storage space.

In fact, the performance overhead is bound

by the resolution of the lattice subdivision in the

span space. In the algorithm, a cell is placed into

the node N
j
i in the temporal hierarchical index

tree in such a way that its representing points at

different time-steps within time interval [i, j]

always reside within an area of 2� 2 lattice

elements in the span space. Therefore, for any

node N
j
i in the tree, the worst case for the

number of the nonisosurface cells being visited

is estimated as the number of cells in the two

rows and two columns of the lattice elements at

the boundary layers of the lattice elements that

are searched for the candidate isosurface cells,

as shown in the shaded area in Fig. 3.5. There-

fore, the user-specified parameter L, in an L� L

lattice subdivision, becomes a control parameter

that is used to determine the tradeoff factor

between the storage space and the isosurface

extraction time.

3.1.1.3 Node Fetching and Replacement

Ideally, if the entire temporal hierarchical index

tree resides in main memory, there is no I/O

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 61

max

min

Figure 3.5 At every tree node, the nonisosurface cells being

unnecessarily visited are confined within the two rows and

two columns of the lattice elements, as shown in the shaded

area. Increasing the resolution of the lattice subdivision can

reduce the number of cells in this area, for the price of a

larger temporal hierarchical index tree.

Time-Dependent Isosurface Extraction 61

required when the user randomly queries for

isosurfaces at different time-steps. However, the

memory requirement is usually too high to

make this practical. To address this issue, the

temporal hierarchical index tree can be output

to a file. When an isosurface at a time-step t is

queried, the traversal path is followed along the

tree as described previously, and only the nodes

being visited are brought into main memory.

Initially, all nodes on the traversal path must be

read in. Subsequently, if the user queries for an

isosurface at a different time-step, the algorithm

traverses the search tree and brings in only

those nodes that are not already in main

memory. In fact, because the nonleaf nodes

contain cell index entries that are shared by

several time-steps, they are very likely to be in

memory already. In this case, only the differ-

ential nodes, a small portion of the index tree,

need to be read in from the disk. As a result, the

amount of I/O required for a subsequent

isosurface query can be considerably smaller.

Fig. 3.6 gives an example.

Although it is always desirable to retain as

many nodes in memory as possible in case the

user needs to go back and forth in time when

querying the isosurfaces, those nodes that are

not in use have to be replaced when the memory

limitation is exceeded. To determine the node

that must be replaced, the temporal hierarchical

index tree algorithm includes a node replace-

ment policy that assigns a priority to each

node, based on its depth in the tree. The smaller

the depth of a node is, the higher is its priority.

For example, the root of a tree has a depth of

zero, and therefore it has the highest priority.

The reason is that the root node contains search

index entries to those cells that have the lowest

temporal variations, and, thus, these index

entries are used by many time-steps. When a

node has to be replaced, we select the node

that has the lowest priority. If there are more

nodes than one with the same priority, we

remove the one that was least recently used

(LRU).

3.1.2 Temporal Branch-on-Need
(T-BON) Trees

Another method for time-varying isosurface ex-

traction is the T-BON algorithm, proposed by

Sutton et al. [10], which extends the branch-on-

need octree (BONO) [2]. The octree is a widely

used data structure for spatial subdivision in

many graphics applications. For isosurface ex-

traction, octrees allow for efficient pruning of

data not containing isosurface patches. An

octree is constructed by recursively bisecting

each dimension of the volume, and thus subdiv-

iding the volume into eight octants each time,

until the leaf nodes reach a predefined size. In

each tree node, the minimum and maximum

values of all the voxels in the corresponding

volume block are stored. At run time, a user-

supplied iso-value is used to compare against

the extreme values stored in the tree nodes. If

there is a node whose min/max values do not

contain the iso-value, the entire branch under

the node can be pruned. The efficiency of the

octree relies on the fact that most of the regions

in the volume do not contain the isosurface and

thus can be quickly rejected. Compared with the

value space partition algorithms [3,4,9], the

space overhead for storing the octree is gener-

ally smaller, although it does not provide opti-

mal search performance [3].

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 62

N
0

5

N
0

2

N
3

5

N
1

2
N4

5

N
4

4
N

5

5
N

1

1

N0

0

N
2

2

N3

3

Figure 3.6 In this case, if the user changes the isosurface

query from time-step 1 to time-step 2, only the node N�2
2

needs to be brought in from the disk.

62 Scalar Field Visualization: Isosurfaces

To minimize the space overhead for the

octree nodes even more, Wilhelms and Van

Gelder [2] proposed the branch-on-need octree

(BONO) data structure, which can reduce the

number of tree nodes when the dimensions of

the volume are not a power of two. In the

BONO method, instead of subdividing the

volume dimensions equally, ‘‘virtual zeros’’ are

padded to the volume to force the dimensions of

the volume to be powers of two, and then an

equal subdivision is performed. This effectively

makes the lower half of the subdivision in each

dimension cover the largest possible power of

two voxels. Fig. 3.7 shows a 2D illustration of

the partition. Note that the zeros are only used

to assist the partition, and thus no actual pad-

ding is performed. Wilhelms and Van Gelder [2]

showed that the ratio of the BONO nodes to the

data is less than .16.

In the T-BON algorithm, Sutton et al. [10]

used the BONO data structure to index data at

every time-step. Since it is assumed that the

volume has the same dimensions in all the

time-steps, only one BONO tree is needed to

keep the spatial subdivision information. For

the data values, the tree node stores a pair of

min/max values for every time-step of the cor-

responding data block. The data associated with

the leaf nodes of the tree is stored as separate

blocks in disk, which are accessed at run time

using a demand-paging technique similar to the

one proposed by Cox and Ellsworth [11].

To reduce the amount of memory required at

run time for keeping the T-BON structure, nodes

are read into main memory only when necessary.

Initially, the entire tree is stored in disk. When

the user queries an isosurface at a particular

time-step, a traversal of the T-BON begins by

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 63

1 Node

4 Node

12 Node

Root

Level 1

Level 2

1 Node

4 Node

9 Node

Figure 3.7 A 2D illustration of BONO partitioning.

Time-Dependent Isosurface Extraction 63

bringing the root node to main memory. If the

root’s min/max values for the time-step intersect

the iso-value, the children of the root are also

read into main memory. This process is repeated

recursively until all the tree nodes that intersect

the isosurface are read. The data blocks at the

time-step associated with the leaf nodes of the

tree containing the isosurface are also read from

the disk for surface extraction. To further min-

imize the input/output (I/O) overhead and the

storage cost, the T-BON algorithm provides

two additional features. One is to avoid redun-

dant read of tree nodes and data blocks that have

already been brought into memory. To ensure

this, two lists are created to index the already in-

core tree nodes and data blocks. The lists are

deleted when the user requests isosurfaces at

different time-steps. The T-BON algorithm also

maintains a predefined memory footprint re-

gardless of the total size of the underlying time-

varying dataset, which is typically equal to one

time-step of the tree and data.

Generally speaking, the T-BON algorithm

provides a practical solution when the under-

lying time-varying data is large. This is because

the storage overhead of the octree data structure

is generally smaller compared to the algorithms

that have theoretically better computation com-

plexity but require more information for an

efficient isosurface search. In addition, the

octree is a more general data structure that can

possibly be shared by other visualization algo-

rithms such as volume rendering in a visualiza-

tion system.

3.2 Extracting Isosurfaces in Four
Dimensions

Displaying isosurfaces at discrete time-steps

may not generate a smooth animation if the

original data does not have enough temporal

resolution. To address this problem, a straight-

forward method is to first interpolate the data

linearly in time to create intermediate time-

steps, and then apply a regular 3D isosurface

extraction algorithm (such as the marching

cubes method) to the interpolated data.

Animating isosurfaces this way, however, can

be expensive because the amount of data inter-

polations required will be in proportion to the

number of intermediate surfaces needed for

the animation, which can be quite large.

Researchers have proposed algorithms to ex-

tract isosurfaces directly from the 4D (space

plus time) data, which can be sliced down to a

sequence of 3D isosurfaces at an arbitrary

temporal resolution. In this case, no inter-

mediate data need to be interpolated. In

the following sections, we discuss two methods

that perform 4D isocontouring. One is the re-

cursive contour-meshing algorithms proposed

by Weigle and Banks [12,13], and the other is a

direct triangulation of hypercubes by Bhanir-

amka et al. [14].

3.2.1 Recursive Contour Meshing

Weigle and Banks [12,13] proposed an isocon-

touring method to extract isosurfaces from n-

dimensional data. Given an n-cell, that is, a cell

in n-dimensional space, their algorithm first

splits the cell into a number of n-simplices. In

2D space, a 2-cell is a square, and a 2-simplex is

a triangle. In 3D space, a 3-cell is a cube, and a

3-simplex is a tetrahedron. Fig. 3.8 shows

examples of n-cells and n-simplices for n equal

to 1, 2, 3, and 4. After splitting the n-cells to n-

simplices, contours are computed from each of

the n-simplices by looping through the faces of

the simplices. Note that each face of a n-simplex

is in fact an (n� 1)-simplex. For example, the

faces of a 3-simplex (tetrahedron) are 2-

simplices, which are triangles. The faces of a

4-simplex are 3-simplices, which are tetrahedra.

From the (n� 1)-simplex faces, recursive con-

touring will be performed to form a polytope

(generalization of a polyhedron) in the n-sim-

plex. This polytope is the isocontour within the

n-simplex.

Extracting isocontours from time-varying

data can be seen as a special case of the

above n-dimensional algorithm, where n is

equal to four. In this case, the time-varying

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 64

64 Scalar Field Visualization: Isosurfaces

field consists of a collection of 4-cells, or hyper-

cubes. Each 4-cell can be subdivided into a

number of 4-simplices. Each 4-simplex has five

3-simplex faces, or five tetrahedral faces. In each

of the tetrahedra, we can compute the contour-

polygons. These contour-polygons collectively

form a polyhedron in four dimensions, which

is the isocontour in the 4-simplex. The polyhe-

dron can be further subdivided into a number of

3-simplices, which are tetrahedra in four dimen-

sions.

When the 4D isosurfaces (3-simplices) are

extracted using the above algorithm, to get a

3D isosurface at an arbitrary time, we can slice

the 3-simplices according to the time values.

That is, we can treat the time coordinate of

each tetrahedron vertex as a scalar value, and

then use the standard marching tetrahedra algo-

rithm to perform triangulations, where the

iso-value is the desired time.

3.2.2 High-Dimensional Triangulation
Tables

The recursive contour-meshing algorithm de-

scribed above can produce an excessive amount

of simplices since the 4-cells need to first be

subdivided into 4-simplices before contouring.

This is analogous to breaking a cube into five or

six tetrahedra in the 3D case and extracting the

isosurface in each of the tetrahedra. Compared

to the marching cubes algorithm, which uses a

precomputed triangulation table, extracting iso-

surfaces after simplicial decomposition will

create more triangles.

To address the problem, Bhaniramka et al.

[14] proposed a method to generate the tri-

angulation table similar to the marching cubes

table for any n-dimensional hypercubes. In

their algorithm, midpoints of the edges of the

hypercube that have one endpoint with a posi-

tive label and one endpoint with a negative

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 65

Figure 3.8 Examples of n-cells and n-simplices for n equal to 1, 2, 3, and 4.

Time-Dependent Isosurface Extraction 65

label are collected. A positive label is assigned

to a vertex when its scalar value is greater than

the iso-value, and the negative label means that

the scalar value is smaller than the iso-value.

Together with the other vertices that have a

positive label (or negative label, if used consist-

ently) in the hypercube, the convex hull of the

points is created. This convex hull is an n-poly-

tope lying in the hypercube. To extract the

isosurface, any faces of the polytope lying on

the boundary of the hypercube, i.e., any faces

that share the vertices of the hypercube, are

removed. The remaining faces comprise the

isosurface in n dimensions, which can be writ-

ten into the table. Note that the remaining faces

of the polytope might not be simplices. In

this case, triangulation needs to be performed.

Care is taken by Bhaniramka et al. [14] to ensure

a consistent triangulation between the adjacent

faces of the hypercube. Fig. 3.9 illustrates a 2D

example of the algorithm.

The above lookup table needs to be created

only once for a given n dimension. Note that

the size of the table increases exponentially as

the dimension of the space increases. For an

n-dimensional hypercube, there are 2n vertices,

and thus there are 22n

total possible cases in

the table. For instance, for a 3D cube, there

are 223 ¼ 256 cases. For a 4D hypercube, there

will be 224 ¼ 65; 536 cases. For a 5D cube,

there will be 225

, which will be over four billion

cases in the table.

Once the triangulation table is created, iso-

surfaces in n dimensions can be generated using

a method similar to the marching cubes algo-

rithm. For a cell that intersects with the isosur-

face, if the value of a cell vertex is greater than

the iso-value, we use one bit to encode the

vertex and assign one to the bit; otherwise, it is

zero. Since we have 2n vertices, we can have 2n

in total possible values, where each value cor-

responds to a particular triangulation case. The

triangulation table is used to decide which edges

intersect with the isosurface.

3.2.3 Additional Applications

In addition to creating smooth animations,

extracting 4D isosurfaces can have additional

applications. For instance, Weigle and Banks

[13] proposed a method to create the envelope

of an isosurface in time. In their method, a 4D

isosurface is first constructed within the desired

time interval. Then, the silhouettes of the 4D

isosurface can be found by locating points on

the surface that have df =dt ¼ 0, where f is the

scalar function and t is the time. This is true

because if we assume that the view vector in 4D

is (0,0,0,1) (along the time direction), then the

silhouettes are the points that have that (df /

dx, df / dy, df / dz, df / dt) (0, 0, 0, 1) ¼ 0, which

implies that df =dt ¼ 0. If we project those points

to 3D space, the silhouettes of the time-varying

isosurface envelope can be visualized.

Another application of 4D isosurfaces is to

extract interval volumes, a method proposed by

Bhaniramka et al. [14]. An interval volume in

3D space in [a,b] is defined by the points that

have a < f (x, y, z) < b. Given a scalar field f, we

can create one field fa ¼ f � a, give this field a

time-step equal to 0, and then create another

field fb ¼ f � b and make this field a time-

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 66

Figure 3.9 A 2D example of Bhaniramka et al.’s triangulation algorithm.

66 Scalar Field Visualization: Isosurfaces

step equal to 1. Then, when creating a 4D iso-

surface for f ¼ 0 in the time range of [0,1],

the isosurface will go through all the points

a < f (x, y, z) < b at time-steps between 0 and

1. If we perform a parallel projection of the

4D isosurface along the (0,0,0,1) direction, tri-

angulation of the interval volume can be suc-

cessfully obtained.

In general, extracting isosurfaces directly in

4D space allows for smooth animation and

tracking of time-varying isosurfaces, which are

typically difficult to achieve when utilizing a

sequence of isosurfaces in 3D space. However,

applying these algorithms for large-scale time-

varying data might not be practical because the

number of tetrahedra generated can be large.

It is also difficult to store the 4D scalar fields

in main memory, so additional care should

be taken.

References

1. W. E. Lorensen and H. E. Cline. Marching
cubes: A high resolution 3d surface construction
algorithm. Computer Graphics, 21(4):163–169,
1987.

2. J. Wilhelms and A. Van Gelder. Octrees for faster
isosurface generation. ACM Transactions on
Graphics, 11(3):201–227, 1992.

3. Y. Livnat, H.-W. Shen, and C. R. Johnson. A near
optimal isosurface extraction algorithm using the
span space. IEEE Transactions on Visualization
and Computer Graphics, 2(1), 1996.

4. H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R.
Johnson. Isosurfacing in span space with utmost
efficiency (ISSUE). InProceedings ofVisualization
’96, pages 287–294. IEEEComputer SocietyPress,
Los Alamitos, CA, 1996.

5. T. Itoh and K. Koyamada. Automatic isosurface
propagation using an extrema graph and sorted

boundary cell lists. IEEE Transactions on Visual-
ization and Computer Graphics, 1(4), 1995.

6. T. Itoh, Y. Yamaguchi, and K. Koyamada.
Volume thinning for automatic isosurface
propagation. In Proceedings of Visualization
’96, pages 303–310. IEEE Computer Society
Press, Los Alamitos, CA, 1996.

7. C. L. Bajaj, V. Pascucci, and D. R. Schikore.
Fast isocontouring for improved interactivity.
In 1996 Symposium for Volume Visualization,
pages 39–46. IEEE Computer Society Press,
Los Alamitos, CA, 1996.

8. M. van Kreveld, R. van Oostrum, C. L. Bajaj,
D. R. Schikore, and V. Pascucci. Contour trees
and small seed sets for isosurface traversal. In
Proceedings of 13th ACM Symposium on Comp.
Geom., pages 212–219, 1997.

9. P. Cignoni, P. Marino, E. Montani, E. Puppo,
and R. Scopigno. Speeding up isosurface extrac-
tion using interval trees. IEEE Transactions
on Visualization and Computer Graphics, 3(2),
1997.

10. P. Sutton, C. Hansen, H.-W. Shen, and D. Schi-
kore. A case study of isosurface extraction algo-
rithm performance. In Proceedings of Joint
EUROGRAPHICS–IEEE TCCG Symposium
on Visualization, 2000.

11. M. Cox and D. Ellsworth. Application-con-
trolled demand paging for out-of-core visualiza-
tion. In Proceedings of Visualization ’97, pages
235–244. IEEE Computer Society Press, Los
Alamitos, CA, 1997.

12. C. Weigle and D. Banks. Complex-valued
contour meshing. In Proceedings of Visualiza-
tion, ’96, pages 173–180. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

13. C. Weigle and D. Banks. Extracting iso-valued
features in 4D scalar fields. In 1998 Symposium
for Volume Visualization, pages 103–108. IEEE
Computer Society Press, Los Alamitos, CA,
1998.

14. P. Bhaniramka, R. Wenger, and R. Crawfis. Iso-
surfacing in higher dimensions. In Proceedings
of Visualization ’00, pages 267–273. IEEE Com-
puter Society Press, Los Alamitos, CA, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 67

Time-Dependent Isosurface Extraction 67

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:39pm page 68

This page intentionally left blank

4 Optimal Isosurface Extraction

PAOLO CIGNONI, CLAUDIO MONTANI, and ROBERTO SCOPIGNO

Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche

ENRICO PUPPO

Dipartimento di Informatica e Scienze dell’Informazione

Universitá degli Studi di Genova

4.1 Introduction

Like Chapter 3, this chapter is entirely dedicated

to the topic of the fast extraction of one or more

isosurfaces from a structured or unstructured

volume dataset by means of a drastic reduction

of the visited cells. In particular, we will show

how the interval tree data structure, an optimally

efficient search data structure proposed by

Edelsbrunner [7] in 1980 to retrieve intervals of

the real line that contain a given query value, can

be effectively used for the fast location of cells

intersected by an isosurface in a volume dataset.

The resulting search method can be applied to

both structured and unstructured volume data-

sets, and it canbeapplied incrementally to exploit

coherence between isosurfaces. In the case of un-

structured grids, the overhead due to the search

structure is compatible with the storage cost of

the dataset, and local coherence in the computa-

tion of isosurface patches is exploited through a

hash table. In the case of a structured dataset, a

conceptual organization called the chess-board

approach is adopted in order to reduce the

memory usage and to exploit local coherence.

The use of these data structures for the fast

extraction of isosurfaces from volume datasets

was first presented by Cignoni et al. [4,5].

Let us introduce the topic by giving

some basic definitions. A scalar volume dataset

is a pair (V,W) where V ¼ {vi 2 IR3, i ¼ 1,

. . . , n} is a finite set of points spanning a domain

O � IR3, and W ¼ {wi 2 IR, i ¼ 1, . . . , n} is a

corresponding set of values of a scalar field

f(x,y,z), sampled at the points of V, i.e.,

wi ¼ f (vi). A mesh S subdividing O into polyhe-

dral cells having their vertices at the points of V

is also given (or computed from V, if the dataset

is scattered): S can be made of hexahedra or

tetrahedra, or it can be hybrid, i.e., made of

tetrahedra, hexahedra, triangular prisms, and

pyramids.

Given an iso-value q 2 IR, the set S(q) ¼
{p 2 O j f (p) ¼ q} is called an isosurface of field f

at value q. For the purpose of data visualization,

an isosurfaceS(q) isapproximatedbya triangular

mesh, defined piecewise on the cells of S: a

cell sj 2 S with vertices vj1, . . . vjh is called active

at q if mini wji � q � maxi wji. An active cell con-

tributes to the approximated isosurface for a

patch made of triangles. Patches are obtained by

joining points on the edges of active cells that

intersect the isosurface (active edges), by assum-

ing linear interpolation of the field along each

edge of the mesh. Such intersection points are

called isosurface vertices. In order to use smooth

shading to render the isosurface, the surface

normal at each surface vertex must also be esti-

mated.

Therefore, the isosurface extraction problem

consists of four main subproblems:

1. Cell selection: finding all active cells in the

mesh S.

2. Cell classification: for each active cell, deter-

mining its active edges and how corres-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 69

69

Q1

ponding isosurface vertices must be con-

nected to form triangles.

3. Vertex computation: for each active edge,

computing the 3D coordinates of its surface

vertex by linear interpolation.

4. Surface normal computation: for each vertex

of the isosurface, computing its correspond-

ing surface normal.

In terms of computational costs, the impact of

cell selection may be relevant to the whole iso-

surface extraction process, in spite of the simpli-

city of operations involved at each cell, because

it involves searching the whole set of cells of S.

Cell classification has a negligible cost because it

is performed only on active cells and it involves

only comparisons of values. Although vertex

and normal computations are also performed

only on active cells, they have a relevant impact,

because they involve floating-point operations.

Besides, such operations can also be redundant

if the dataset is processed on a per-cell basis,

because each active edge is shared by different

cells.

In order to speed up such tasks, it can be

worthwhile to use search structures and tech-

niques that permit traversal of as few nonactive

cells as possible during cell selection, and to

avoid redundant vertex and normal computa-

tions. Speedup techniques can be classified

according to the following criteria:

. Search modality, adopted in selecting active

cells. There are three main approaches: in

space-based methods, the domain spanned

by the dataset is searched for portions inter-

sected by the isosurface; in range-based

methods, each cell is identified with the inter-

val it spans in the range of the scalar field,

and the range space is searched for intervals

containing the iso-value; in surface-based

methods, some facets of the isosurface are

detected first, and the isosurface is traversed

starting at such faces and moving through

face/cell adjacencies.

. Local coherence (or coherence between cells).

This refers to the ability of a method to

avoid redundancy in geometric com-

putations by reusing the results obtained

for an active face or edge at all its incident

cells.

Since additional data structures may involve

nonnegligible storage requirements, it is import-

ant to look for methods and structures that

warrant a good tradeoff between time efficiency

and memory requirements. The overhead due to

auxiliary structures must be compared to the

cost of storing a minimal amount of informa-

tion necessary to support isosurface extraction,

disregarding the computational complexity,

which can be highly variable depending on

whether the dataset considered is structured or

unstructured (i.e., its connectivity is implicitly

given, or it must be stored explicitly, respect-

ively [20]). Therefore, evaluation criteria for a

speedup method must take into account the

following: its range of applicability, i.e., the

type(s) of dataset (structured, unstructured, or

both) for which the method is suitable; its effi-

ciency, i.e., the speedup it achieves with respect

to a nonoptimized reference method; and its

overhead, i.e., the storage cost due to auxiliary

structures.

The simplest speedup methods for cell selec-

tion are based on space partitions (space-based

methods), and they are suitable only for struc-

tured data. Octrees (Velasco and Torres [23],

Livnat and Hansen [13]), branch-on-need

octrees (Wilhelms and Van Gelder [24], Sutton

and Hansen [21]), and pyramids (Montani et

al. [6]) are the most common search data

structures used with this approach. Space-

based techniques cannot be generalized easily

to unstructured data, because spatial indices

rely on the regular structure of the underlying

dataset.

Range-based techniques apply to both struc-

tured and unstructured datasets, but they are

generally more suitable for unstructured data-

sets because they cannot exploit the implicit

spatial information contained in structured

datasets and they have higher memory require-

ments. In the unstructured case, there is no

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 70

Q2

70 Scalar Field Visualization: Isosurfaces

implicit spatial information to exploit, and the

higher storage cost for the input mesh highly

reduces the overhead factor of auxiliary struc-

tures.

The methods proposed by Gallagher [8],

Giles and Haimes [9], Shen and Johnson

[19], Livnat et al. [14], Shen et al. [18], Cignoni

et al. [4,5], and Chiang and Silva [2], for

example, belong to this class. The work by Liv-

nat et al. also introduces the span space, a 2D

space where each point corresponds to an inter-

val in the range domain; the span space is

quite effective in the geometric understanding

of the range-based methods. More details

about range-based methods and the span-space

scheme can be found in chapter 2 in this book,

which is authored by Livnat.

Surface-based approaches rely essentially on

two requirements: the ability to find an active

cell (seed) for each connected component of the

isosurface, and the ability to propagate the sur-

face by traversing the mesh from cell to cell

through adjacencies [20]. The works by Itoh et

al. [10,11] and Bajaj et al. [1] present surface-

based methods (see also Chapter 5).

In this chapter we address the application

of speedup techniques in the various phases

of isosurface extraction from both structured

and unstructured datasets. A highly efficient

technique for cell selection [2,4,5] that is

based on the interval tree [7] is adopted. In

the unstructured case, this technique is associ-

ated with the use of a hash table in order to

exploit local coherence to avoid redundant

vertex computations. In the structured case,

a chess-board approach is adopted in order

to reduce the memory requirements of the

interval tree and to exploit local coherence

intrinsic in the implicit structure of the data-

set. In both cases, we adopt a precomputation

of field gradients at data points in order to

speed up the computation of surface normals.

Moreover, we describe how the interval tree

can be efficiently used to develop an incre-

mental technique that exploits coherence be-

tween isosurfaces.

4.2 Selecting Cells Through Interval
Trees

Let S be the input mesh. Each cell sj 2 S is

associated with an interval Ij whose extremes

aj and bj are the minimum and maximum field

values at the vertices of sj , respectively. Since

sj is active for an iso-value q if and only if

its corresponding interval Ij contains q, the

following general query problem is resolved:

‘‘given a set I ¼ {I1, . . . , Im} of intervals on the

real line of the form [ai, bi] and a query value q,

report all intervals of I that contain q.’’

The problem is effectively visualized using the

span space [14]: each interval Ii ¼ [ai, bi] is rep-

resented as a point in a 2D Cartesian space

using the extremes ai and bi as the x and y

coordinates of the point, respectively. From a

geometrical point of view, the problem of

reporting all intervals that contain the query

value q reduces to collecting the points in the

span space lying in the intersection of the two

half-spaces min � q and max � q.

An optimally efficient solution for the query

problem above is obtained by organizing the

intervals of I into an interval tree [17], a data

structure originally proposed by Edelsbrunner

[7], which is reviewed in the following section.

For each i ¼ 1, . . . , m, let us consider the sorted

sequence of values X ¼ (x1, . . . , xh) corres-

ponding to distinct extremes of intervals (i.e.,

each extreme ai, bi is equal to some xj). The

interval tree for I consists of a balanced binary

search tree T whose nodes correspond to values

of X, plus a structure of lists of intervals

appended to nonleaf nodes of T . The interval

tree is defined recursively as follows. The root of

T has a discriminant dr ¼ xr ¼ xdh
2
e, and I is

partitioned into three subsets:

. I l ¼ {Ii 2 I j bi < dr}

. I r ¼ {Ii 2 I j ai > dr}

. I dt ¼ {Ii 2 I j ai � dr � bi}

The intervals of Idt are arranged into two sorted

lists AL and DR, as follows:

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 71

Q3

Optimal Isosurface Extraction 71

. AL contains all elements of I dt sorted in

Ascending order according to their Left ex-

tremes ai.

. DR contains all elements of I dt sorted in

Descending order according to their Right

extremes bi.

The left and the right subtrees are defined

recursively by considering interval sets I l and

I r, and extreme sets (x1, . . . , xdh2e�1) and

(xdh
2
eþ1, . . . , xh), respectively. The interval tree

can be constructed in O(m log m) time by a direct

implementation of its recursive definition. The

resulting structure is a binary balanced tree with

h nodes and a height of dlog he, plus a collection

of lists of type AL and DR, each attached to a

node of the tree, for a total of 2m list elements.

An exampleof the representationof an interval

tree data structure in the span space is given by

the subdivision in Fig. 4.1 (solid lines). It is note-

worthy that, by construction, the last level of the

tree is generally empty. The intervals of this level,

if they exist, have to be null intervals (in our case,

such intervals are, in fact, associated with cells

having the same values at all vertices).

Given a query value q, the intervals contain-

ing q are retrieved by visiting tree T recursively,

starting at its root:

. If q < dr then list AL is scanned until an

interval Ii is found such that ai > q; all

scanned intervals are reported; the left sub-

tree is visited recursively.

. If q > dr then list DR is scanned until an

interval Ii is found such that bi < q; all

scanned intervals are reported; the right sub-

tree is visited recursively.

. If q ¼ dr then the whole list AL is reported.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 72

max

1
2

3 4

q

min

Figure 4.1 A graphical representation of an interval tree in the span space. By definition, the intervals lying on subdivision lines

belong to the upper level of the tree. The tree search for a value q goes as follows: sectors with dr < q (intersected by the

horizontal line max ¼ q) are visited in a top-down order; sectors with dr > q (intersected by the vertical line min ¼ q) are visited

left to right.

72 Scalar Field Visualization: Isosurfaces

The geometric interpretation of the search in

the span space is also given in Fig. 4.1. The

regions containing the active intervals are

those to the left of and above dotted lines from

q. Each sector of space (node of the tree) that

contains the horizontal dotted line (i.e.,

such that dr � q) is visited from the top down

(scanning the AL list) until such a line is

reached; each sector containing the vertical

dotted line is visited left to right (scanning

the DR list) until such a line is reached. There-

fore, dlog he nodes of the tree are visited, and for

each node, only the intervals reported in output,

plus one, are visited. Hence, if k is the output

size, then the computational complexity of the

search is O(kþ log h). Because log h is the min-

imum number of bits needed to discriminate

between two different extreme values, no query

technique could have a computational complex-

ity smaller than O(log h), hence the computa-

tional complexity of querying with the interval

tree is optimally output-sensitive. It is interest-

ing to note that the time complexity is independ-

ent of the total number m of intervals, i.e., on

the input size: Indeed, it depends only on the

output size and on the number of distinct

extremes.

4.2.1 A General Data Structure

A general data structure for the interval tree can

be devised by assuming that the set of input

intervals is stored independently from the

search structure, while each interval in the set

can be accessed through a pointer. Therefore,

for each element of AL and DR lists, we

store only a pointer to its related interval. All

such lists are packed into two arrays, one for

lists of type AL and one for lists of type DR,

which will be called the big AL and big DR
arrays, respectively. Lists are packed in a con-

sistent order (e.g., by following a depth-first

visit of the tree), in such a way that the AL
and DR lists attached to a given node of the

tree start at the same location in the two big

arrays, respectively. For each node r of the tree,

we store the following:

. The discriminant value dr.

. An index referring to the starting element

of its lists in the two big arrays described

above.

. The length of such lists (recall that both lists

have the same length).

Because the tree is binary balanced, it can

also be stored implicitly by using an array of

nodes.

Therefore, if we assume a cost of a word for

integers, pointers, and floating-point values, we

will have that the bare tree requires 3h words,

while the lists will require 2m words, for a total of

3hþ 2m. It should be taken into account that the

cost of encoding the bare tree is expected to be

small, at least in our application. Indeed, al-

though in general we have h � 2m, in practice

the intervals of I can have extremes only at a

predefined, and relatively small, set of values; for

instance, if data values are encodedby 16 bits, h is

at most 65,536, while m can be several millions.

As for all other range-based methods, the

storage cost of the interval tree is a crucial

issue. In Section 4.3, we will address separately

its application to unstructured and structured

datasets, respectively, and we will discuss the

way storage cost can be optimized by exploiting

special characteristics of the two kinds of data-

sets, respectively.

4.2.2 Exploiting Global Coherence

The interval tree can also be used as an effective

structure to address coherence between isosur-

faces: active cells for a given iso-value q0, suffi-

ciently close to another iso-value q, can be

extracted efficiently by exploiting partial infor-

mation from the set of cells active at iso-value q.

Following Livnat et al. [14], this problem can be

visualized in the span space, as in Fig. 4.2a:

assuming that active cells at iso-value q are

known, the list of active cells at iso-values q0 is
obtained by eliminating all points lying in the

right rectangular strip (dashed) and by adding

all points lying in the bottom rectangular strip

(gridded).

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 73

Optimal Isosurface Extraction 73

In order to perform this task, active cells at q

must be stored in an active list, which is updated

next to obtain the corresponding active list for

iso-value q0. By using an interval tree, the active

list can be maintained in a compressed form, as

a path on the tree, namely, the path that is

traversed when extracting active cells for iso-

value q through the query algorithm described

in Section 4.2. The path starts from the root

node and has a length of log h. For each node

in the path we just need to maintain one flag (1

bit) to discriminate whether the AL or the DR
list was used, one index addressing the first

interval that was not active in such a list, and

one flag (1 bit) to denote whether the next node

is the left or the right child of the current node.

In the example of Fig. 4.1, the path is encoded

as follows (by assuming that list locations

are addressed starting at 0): (DR,4,right),

(AL,4,left),(DR,0,right),(AL,1,null). It is evi-

dent that with a real dataset, the length of such

a path is (on average) considerably smaller than

the actual number of active cells.

The algorithm for computing active cells at

iso-value q0 scans the tree path and updates it by

either adjusting the index associated to each

node or recomputing the node completely. The

traversal algorithm is described in detail by the

pseudo-code in Fig. 4.3. The main principle of

the algorithm is the following: as long as both q

and q0 lie on the same side of the discriminant of

the current node, then the same list is used, and

the same child will follow, while it is sufficient to

adjust the interval index by moving it either

backward or forward depending on whether

q > q0 or q < q0 and AL or DR list is used. In

the example of Fig. 4.2b, this happens for nodes

1 and 2 in the path; in this case, all intervals in

the gridded part of the horizontal stripe are

included simply by advancing the index in the

first triple from 4 to 8, while all intervals in the

dashed part of the vertical stripe are included

simply by backtracking the index in the second

triple from 4 to 1. As soon as a branching node is

found, i.e., a node such that its discriminant lies

between q and q0, the search is continued inde-

pendently of the rest of the active path at q.

Indeed, in this case, the other list for the current

node must be used, while the rest of the path

will certainly not be active at q0. This happens at

node 3 in the example (compare it with Fig. 4.1),

when the DR list was traversed for q, while the

AL list must be traversed for q0. Note that after

visiting such a node, the opposite branch of the

tree (in the example, just the new node 4) must

be visited.

In conclusion, we have that the update has a

small overhead for encoding the list of active

intervals, while it involves only traversing the

intervals that make the difference between q and

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 74

(a)

(b)

q

q'

q

q'

4
3

2
1

Figure 4.2 The active intervals at q0 are obtained by taking

active intervals at q, subtracting those in the dashed strip,

and adding those in the gridded strip (a). Active list update:

node 1 is updated by moving the index forward, in order to

include points in the gridded strip; node 2 is updated by

moving the index backward, in order to remove points in the

dashed strip; tree traversal is repeated for nodes 3 and 4 (b).

74 Scalar Field Visualization: Isosurfaces

q0, plus all of the intervals appended to the

branching node (in the example, node 3). In

the worst case (i.e., when q and q0 lie on opposite

sides of the discriminant of the root node), this

algorithm is totally equivalent to performing the

query from scratch on the interval tree.

4.3 Extraction of Isosurfaces from
Structured and Unstructured Grids

As stated in Section 4.1, the isosurface extrac-

tion problem is not limited to the selection of

active cells. Other important aspects (e.g., cell

classification, vertex and normal computation)

must be taken into account in order to ensure

the efficiency of the whole extraction process.

Moreover, the memory overhead of the auxil-

iary data structure used for cell selection

has to be considered in order to get a good

tradeoff between time efficiency and memory

requirements. While referring to the general

method described in the previous section, we

stress these aspects in the next subsections

by distinguishing between unstructured datasets

(composed of tetrahedra, hexahedra, prisms,

or pyramids), in which connectivity must

be encoded explicitly, and structured datasets

(i.e., Cartesian, regular, rectilinear, curvilin-

ear, and block-structured grids made of

hexahedral cells), in which connectivity is impli-

cit [20].

4.3.1 The Case of Unstructured Grids

In the case of unstructured datasets, the input

mesh is encoded by an indexed data structure

composed of the following elements:

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 75

Figure 4.3 Pseudo-code of the algorithm for active list update.

Optimal Isosurface Extraction 75

. An array of vertices, where, for each vertex,

we maintain its three coordinates and its field

value.

. A list of cells, where, for each cell, we main-

tain its connectivity list. This list is

made of four, five, six, or eight indices ad-

dressing its vertices in the vertex array,

depending on whether the cell is a tetrahe-

dron, a pyramid, a prism, or a hexahedron,

respectively.

The indices in the connectivity list of each cell

are sorted in ascending order, according to the

field value of their corresponding vertices, in

such a way that the minimum and maximum

of the interval spanned by each cell will be

given by the field values of the first and last

vertex in the connectivity list, respectively. For

a hybrid dataset, the list of cells can be encoded

by using up to four different arrays, one for

each type of cell. However, the list can be ad-

dressed as a single array, by assuming a conven-

tional order (e.g., tetrahedra come first, then

pyramids, prisms, and, last, hexahedra), and

by using the length of each list as an offset.

Given a dataset composed of n points, t tetra-

hedra, p pyramids, s prisms, and k hexahedra,

we have a storage cost of 4nþ 4tþ 5pþ 6s

þ8k for the whole dataset. Recall that

tþ pþ sþ k ¼ m is the total number of cells,

that 3hþ 2m is the cost of the interval tree, and

that h � n. Therefore, we have a memory over-

head for the interval tree variable between 25%

and 50%, depending on the number of cells of

each type, 25% being obtained for a dataset

made only of hexahedra and 50% for a dataset

made only of tetrahedra. Extreme values are not

relevant, however, because in the first case the

dataset would probably be a structured one,

while in the second case further optimization

can be adopted, as discussed next.

If the input mesh is a tetrahedralization, the

cost of storing the input mesh is 4nþ 4m. Be-

cause all cells are of the same type, we can sort

the whole array of tetrahedra according to the

order of their corresponding intervals in the big

AL array, described in Section 4.2.1. In this case,

we can avoid storing the big AL array explicitly,

because this comes free from the list of tetrahe-

dra. In this case, we need to maintain only the big

DR array, with a total cost of 3hþm, and hence

less than 25% overhead.

4.3.1.1 Cell Classification

After active cells have been extracted, cell

classification consists of testing the values of the

cell’s vertices with respect to the query value, in

order to devise the topology of the isosurface

patch inside the active cell. Cell classification is

generally not a critical task in the isosurface

extraction process. However, this step can be

slightly improved by exploiting the fact that

indices of vertices in the connectivity list of each

cell can be stored in ascending value of field. In

this case the first and last vertices of the list

correspond to the minimum and maximum

and therefore they are implicitly classified

because the cell is active. This implies that cell

classification can be performed with at most

blog2 (x� 2)c þ 1 tests for a cell with x vertices,

by using bisection (i.e., either two or three tests in

the worst case, depending on the type of cell).

4.3.1.2 Vertex and Normal Computation

Amore critical task is the computationof vertices

and normals. Due to the computational cost of

this task, it is important to exploit the local

coherence in order to avoid redundant computa-

tions. In the case of unstructured datasets, we

adopt a dynamic hash-indexing technique. For

each isosurface extraction, a hash table is built

that is used to efficiently store and retrieve

isosurface vertices and normals. The extracted

isosurface is represented by adopting an indexed

representation: an array of isosurface vertices,

storing coordinates and normal vectors for each

vertex, and an array of isosurface faces, each

storing a connectivity list of three indices to the

vertex array. Each isosurface vertex v is identified

by the active edge v1v2 of the input mesh Swhere

v lies. The indices of v1 and v2 in the array of

vertices of S are used to build the hash key for v:

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 76

Q4

76 Scalar Field Visualization: Isosurfaces

key(v1, v2) ¼ j XOR(v1, v2 � nprim) j hashsize

where nprim is a sufficiently large prime number.

The computational overhead due to the com-

putation of hash indices is therefore small.

When processing an edge during vertex com-

putation, the hash table is inquired to know

whether such computation has been done

before and, if so, to retrieve the index of the

interpolated vertex and normal in the cor-

responding array. Isosurface vertices and

normals are computed explicitly, and inserted

into the hash table, only if the hash search

fails. In this way, each interpolation is done

exactly once.

More details on how to carefully set the

size of the hash table as a function of the

number of active cells can be found in Cignoni

et al. [5].

In order to speed up the computation of sur-

face normals during isosurface extraction, we

compute as a preprocessing step all field gradi-

ents at mesh vertices. Therefore, the surface

normal at an isosurface vertex can be simply

obtained by linear interpolation from the nor-

malized gradients at the endpoints of the cell

edge where the vertex lies. In the case of tetra-

hedral meshes, the gradient of the scalar field

within each cell s of the mesh is assumed to be

constant; i.e., it is the gradient of the linear

function interpolating the field at the four verti-

ces of s. Similar interpolating functions can be

adopted in order to estimate the gradient within

a single cell of the other types. Then, the gradi-

ent at each vertex v of the input mesh is com-

puted as the weighted average of normalized

gradients at all cells incident at v, where the

weight for the contribution of a cell s is given

by the solid angle of s at v. Note that this

optimization on surface normal computation

involves a further 3n storage cost, due to the

need of maintaining gradients for all data points.

The corresponding overhead is highly depend-

ent on the ratio between the number of points n

and the number of cells m. For a tetrahedral

mesh, we have that on average m � 6n, and,

therefore, the overhead will be less than 12.5%.

4.3.2 The Case of Structured Grids

In the case of structured datasets, i.e., grids

based on a hexahedral decomposition and in

which the connectivity information is implicit,

we propose the use of a new conceptual organ-

ization of the dataset that both reduces the

number of intervals to be stored in the interval

tree and allows us to devise a dataset-traversal

strategy that can efficiently exploit the local

coherence. The resulting technique is, in prac-

tice, a compromise between a space-based ap-

proach and a range-based approach that tries to

exploit the advantages of both. Though our

proposal applies to every structured dataset,

we will refer to regular ones in our discussion,

for the sake of simplicity.

The number of intervals stored can be re-

duced on the basis of a simple but effective

observation: in a marching cubes–like algo-

rithm, the vertices of the triangular patches

that form the extracted isosurface lie on the

edges of the cells and, in a regular dataset,

each internal edge is shared by four cells. There-

fore, in order to be sure that every isosurface

parcel will be detected, we only need to store the

intervals of a minimal subset of cells that hold

all the edges of the dataset.

Such a subset can be devised easily if we think

of the volume dataset as a 3D chess board in

which the black cells (Fig. 4.4) are those we are

interested in. In other words, if c[i, j, k] is a

black cell, then its adjacent black cells are

those that share a single vertex with c[i, j, k].

This conceptual arrangement presents some ad-

vantages:

. Given a regular I� J� K dataset (i.e., a

volume of (I� 1)� (J� 1)� (K� 1) cells),

the black cells can be easily indexed as

follows:

[2iþ jkj2, 2jþ jkj2, k],

with i 2 {0, 1, � � � , bI�2�jkj2
2
c}, j 2 {0, 1, � � � ,

bJ�2�jkj2
2
c}, and k 2 {0, 1, � � � , K� 2}, where

terms jkj2 (k modulo 2) make it possible to

compute the indices for the even and odd

layers of cells.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 77

Optimal Isosurface Extraction 77

. The number of black cells in the dataset is

1/4 of the total number of cells, hence

the number of intervals to be stored in

the interval-tree data structure is 1/4 of the

total. This implies not only lower memory

occupancy but also shorter construction and

traversal times for the auxiliary data struc-

ture.

Each black cell has (at most) 18 edge-con-

nected white cells. For each active black cell,

the adjacent white cells that are also active (be-

cause of isosurface intersections occurring at the

edges of the black cell) are determined easily on

the basis of the configuration of the current

black cell (Fig. 4.5). Conversely, if a white cell

is active, there must exist at least a black cell

adjacent to it that is also active (special cases of

white cells lying on the boundary of the dataset

are discussed later). Therefore, once all active

black cells have been located efficiently with an

interval tree, all active white cells can be located

by searching, in constant time, the neighbor-

hood of each active black cell.

The chess board reduces the number of inter-

vals to be stored, but it does not help with

the local coherence. This can be managed

by maintaining, in a compact and easy-to-

access data structure, the information already

computed for vertices and normals of the

isosurface. Such an auxiliary structure would

require a relevant memory overhead, unless

we maintain a sort of locality of the computa-

tions. This simple observation gives the key

to a compromise between a space-based and

a range-based approach: we need to visit

the black cells on the basis of not only the

intervals arrangement but also the topology of

the grid.

In order to achieve this objective, we build an

interval tree for each layer of cells (i.e., the cells

formed by two adjacent slices of data), rather

than building a single interval tree for the whole

dataset. The interval tree for each layer stores

the min-max intervals of the black cells in that

layer. Each tree is then labeled with the Tmin-

Tmax interval, where Tmin [Tmax] represents

the minimum [maximum] of the min [max]

values in the corresponding layer. Therefore,

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 78

A

Y

X

Z

Figure 4.4 The chess-board arrangement: in the case of

structured grids, the data structure used to speed up the

isosurface extraction does not need to store the min-max

intervals of all the cells of the volume. Because each internal

edge belongs to four cells, only the intervals corresponding

to the black cells (as in a 3D chess board) have to be

maintained.

E

Z

X

Y

Figure 4.5 Isosurface extraction is propagated from each

active black cell to the adjacent white cells that share one or

more active edges.

78 Scalar Field Visualization: Isosurfaces

we have a forest of interval trees, and, for each

tree, we can know in constant time whether the

tree contains active cells.

If the interval trees in the forest are visited

according to the sequence of layers in the data-

set, then, during the traversal of the kth tree, we

need to maintain only a compact auxiliary data

structure (called a Vertex&Normal data struc-

ture) for active cells of the three layers indexed

by k� 1, k, and kþ 1. The Vertex&Normal

data structure stores information (e.g., vertices,

normals, and visited cells) being computed at

each active cell, and it avoids redundant geo-

metrical computations. Advancing to the

(kþ 1)-th interval tree simply implies a circular

shift of the indices of the layers in the Vertex&-

Normal data structure. The extraction strategy

and the exploitation of the local coherence (i.e.,

the runtime part of the method) can now be

summarized as follows:

. Interval tree selection: given an iso-value q,

the trees in the forest are tested in sequence

in order to individuate the active trees, i.e.,

the trees for which Tmin � q � Tmax.

Each active interval tree, say, the kth, is

visited using the algorithm presented in

Section 4.2.

. Black cell processing: for each active black

cell, the marching cubes algorithm [15] is

applied: on the basis of the configuration of

the cell (determined with respect to q),

we access the marching cubes lookup table,

and we find the active edges of the current

cell. By exploiting the Vertex&Normal data

structure, we compute (and save) only the

vertices and the normals not already com-

puted during the processing of an adjacent

white cell. On the basis of the configuration

of the cell, we also select the adjacent active

white cells where the isosurface extraction

must be propagated. For example, if a vertex

of the isosurface has been found on the edge

E of the black cell c[i, j, k] of the example

in Fig. 4.5, then the edge-connected white

cells c[iþ 1, j, k], c[iþ 1, j, kþ 1], and

c[i, j, kþ 1] will be examined.

. Active white cells processing: once a black

cell has been processed, the algorithm exam-

ines the connected active white cells that

have not been processed yet. For each

of them, the marching cubes algorithm is

applied as in the previous case. White

cells already examined are individuated

by means of simple flags in the Vertex&Nor-

mal data structures. Note that a propagation

list for the white cells is not necessary be-

cause we individuate all the active white

cells starting from one of the adjacent black

cells.

. Advancing: the algorithm iterates on the next

(kþ 1)-th interval tree (if it is active) by a

simple circular shift of the layers in the

Vertex&Normal data structure: information

for the (k� 1)-th layer is no longer neces-

sary, and it is therefore rewritten by infor-

mation on the (kþ 2)-th layer.

A further remark is necessary for the white

cells that lie on the boundary of the dataset. As

shown in Fig. 4.4, some boundary edges of the

dataset are not captured by black cells (e.g., the

external edges of the cell labeled A in the figure).

However, if all sizes of the dataset are even, no

further information is needed for such edges. It

is easy to see that if an isosurface cuts one or

more edges of a white cell that do not belong to

any black cell, the isosurface must also cut some

edge of the same cell internal to the volume and

hence shared by a black cell.

In case one or more of the sizes I, J, and K of

the dataset are odd numbers, then part of the

edges of at most 2(I� 1)þ 2(J� 1)þ 2(K� 1)

cells (i.e., cells forming 6 of the 12 corners of the

volume) are not captured (not even indirectly)

by the black cells of the chess board (see Fig.

4.6). As shown in the figure, in these situations

small isosurface subsections can be lost. To

solve this problem we can add the following

step to our algorithm:

. Unreachable cells test: Once an active tree

has been visited and the corresponding active

cells processed, the algorithm examines the

(still not processed) white cells of the current

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 79

Optimal Isosurface Extraction 79

layer whose edges are not captured by black

cells.

An alternative solution to the previous step

could be the insertion into the corresponding

interval tree of the black edges of the unreach-

able white cells. However, the small number of

cells to be tested separately does not justify the

effort.

With the chess-board approach, the total

asymptotic time for a query is, in the worst

case, O(
ffiffiffi
n3
p

log nþ k), where k is the output

size, by assuming a dataset with
ffiffiffi
n3
p

layers

(i.e., I ¼ J ¼ K). Note that using a forest rather

than a single interval tree adds an extra factor offfiffiffi
n3
p

to the optimal query time. Therefore, in this

case we trade optimal asymptotic time for

space. However, it should be noted that theffiffiffi
n3
p

log n factor is usually negligible in practice,

while the advantage that derives from exploiting

local coherence is relevant.

As stated for the case of unstructured data-

sets, the complexity in space for the interval-tree

data structures can be expressed in terms of

3hþ 2m, with h the number of distinct interval

endpoints and m the number of intervals to be

stored. For a regular dataset with n data values,

we have to store the intervals corresponding to

the black cells, i.e., m ffi n=4 intervals. Because

in real applications we usually have h
 n, the

requirement for n=2þ 3h storage locations is

very close to one-half of dataset size.

The ratio between the interval-tree memory

requirements and the dataset occupancy be-

comes obviously more propitious in the case of

nonregular structured datasets (e.g., the curvi-

linear ones).

Therefore, the chess board approach helps in

solving the problem of the memory occupancy

of the interval-tree data structure together with

the problem of the local coherence.

4.4 Assessment

The presented data structures were proposed in

Cignoni et al. [4,5] and tested on a number of

different structured and unstructured datasets.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 80

Z

X

Y

Figure 4.6 Some of the cells of a dataset with two odd sizes are not captured by the chess board. Small parts of the two

isosurfaces could be lost.

80 Scalar Field Visualization: Isosurfaces

The speedup method for isosurface extraction

based on the use of the interval-tree data struc-

ture considerably improves the performance of

the traversal phase with respect to the standard

marching tetrahedra and marching cubes algo-

rithms. Optimal output-sensitive time complex-

ity in extracting active cells is achieved. Memory

overhead, according to the general interval-tree

representation proposed, is 3hþ 2m words, with

h the number of distinct extremes of intervals

and m the number of cells.

To reduce space occupancy, which becomes a

critical factor in the case of high-resolution

datasets, two different strategies, oriented to

the two different data classes, can be used: (a)

an optimized interval-tree representation for

unstructured datasets, in order to reduce space

occupancy to 3hþm, and therefore enabling

less than 25% overhead; and (b) a partial repre-

sentation of the cell intervals, based on the

chess-board approach, to reduce the number of

intervals stored in the interval trees in the case

of structured datasets. All of the active cells not

represented directly are here detected by propa-

gation. Although the reduced number of inter-

vals are encoded, the speedups obtained are

very similar to those obtained with the naı̈ve

interval-tree implementation, which encodes all

of the intervals.

References

1. C. L. Bajaj, V. Pascucci, and D. R. Schikore.
Fast isocontouring for improved interactivity.
In 1996 Symposium on Volume Visualization
Proc., pages 39–46, 1996.

2. Y. J. Chiang and C. T. Silva. I/O Optimal iso-
surface extraction. Visualization ’97 Conference
Proceedings, pages 293–300, 1997.

3. P. Cignoni, C. Montani, E. Puppo, and R. Sco-
pigno. Multiresolution modeling and visualiza-
tion of volume data. Technical Report 95–22,
Istituto CNUCE–CNR, Pisa, Italy, 1995.

4. P. Cignoni, C. Montani, E. Puppo, and R. Sco-
pigno. Optimal isosurface extraction from ir-
regular volume data. In 1996 Symposium on
Volume Visualization Proc., pages 31–38, 1996.

5. P. Cignoni, P. Marino, C. Montani, E. Puppo,
and R. Scopigno. Speeding up isosurface extrac-

tion using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 3(2):158–
170, 1997.

6. C. Montani, R. Scateni, and R. Scopigno.
Decreasing isosurface complexity via discrete
fitting. Computer Aided Geometric Design,
17:207–232, 2000.

7. H. Edelsbrunner. Dynamic data structures for
orthogonal intersection queries. Technical
Report F59, Inst. Informationsverarb., Tech.
Univ. Graz, Graz, Austria, 1980.

8. R. S. Gallagher. Span filter: an optimization
scheme for volume visualization of large finite
element models. In IEEE Visualization ’91 Conf.
Proc., pages 68–75, 1991.

9. M. Giles and R. Haimes. Advanced interactive
visualization for CFD. Computing Systems in
Engineering, 1:51–62, 1990.

10. T. Itoh, Y. Yamaguchi, and K. Koyamada.
Volume Thinning for Automatic Isosurface
Propagation. In IEEE Visualization ’96 Conf.
Proc., pages 303–310, 1991.

11. T. Itoh and K. Koyamada. Automatic isosur-
face propagation using an extrema graph and
sorted boundary cell lists. IEEE Transactions
on Visualization and Computer Graphics,
1(4):319–327, 1995.

12. M. Laszlo. Fast generation and display of iso-
surfaces wireframe. CVIGP: Graphical Models
and Image Processing, 54(6):473–483, 1992.

13. Y. Livnat and C. Hansen. View dependent iso-
surface extraction. Visualization ’98 Conference
Proceedings, Research Triangle Park, pages
175–180, 1998.

14. Y. Livnat, H. Shen, and C. Johnson. A
near optimal isosurface extraction algorithm for
structured and unstructured grids. IEEE Trans-
actions on Visualization and Computer Graphics,
2(1):73–84, 1996.

15. W. Lorensen and H. Cline. Marching cubes:
a high resolution 3D surface construction
algorithm. ACM Computer Graphics (SIG-
GRAPH ’87 Conf. Proc.), 21(4):163–170, 1987.

16. C. Montani, R. Scateni, and R. Scopigno. Dis-
cretized marching cubes. In Visualization ’94
Conf. Proc., IEEE Computer Society Press,
pages 281–287, 1994.

17. F. Preparata and M. Shamos. Computational
Geometry: an Introduction. Springer-Verlag,
1985.

18. H. Shen, C. D. Hansen, Y. Livnat, and C. R.
Johnson. Isosurfacing in span space with utmost
efficiency (ISSUE). In Visualization ’96 Conf.
Proc., pages 287–294, 1996.

19. H. Shen and C. Johnson. Sweeping simplices: a
fast iso-surface extraction algorithm for un-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 81

Q5

Optimal Isosurface Extraction 81

structured grids. In IEEE Visualization ’95 Con-
ference Proceedings, pages 143–150, 1995.

20. D. Speray and S. Kennon. Volume probes:
interactive data exploration on arbitrary grids.
ACM Computer Graphics (1990 Symposium
on Volume Visualization Proceedings), 24(5):5–
12, 1990.

21. P. M. Sutton and C. Hansen. Accelerated iso-
surface extraction in time-varying fields. IEEE
Transactions on Visualization and Computer
Graphics, 6(2):98–107, 2000.

22. M. van Kreveld. Efficient methods for isoline
extraction from a digital elevation model based

on triangulated irregular networks. In Sixth
International Symposium on Spatial Data Hand-
ling Proc., pages 835–847, 1994.

23. F. Velasco and J. C. Torres. Cells octree: a new
data structure for volume modeling and visual-
ization. In Vision, Modeling, and Visualization
Conf. Proc., pages 151–158, 2001.

24. J. Wilhelms and A. Van Gelder. Octrees for
faster isosurface generation. ACM Transaction
on Graphics, 11(3):201–227, 1992.

25. G. Wyvill, C. McPheeters, and B. Wyvill. Data
structures for soft objects. The Visual Computer,
2(4):227–234, 1986.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:10pm page 82

82 Scalar Field Visualization: Isosurfaces

5 Isosurface Extraction Using
Extrema Graphs

TAKAYUKI ITOH

IBM Japan Tokyo Research Laboratory

KOJI KOYAMADA

Kyoto University Center for the Promotion of Excellence in Higher Education

5.1 Introduction

Visualizing isosurfaces is one of the most effect-

ive techniques for understanding elements of

scalar fields, such as the results of 3D numerical

simulations and the results of 3D measurements

in the medical field. An isosurface is usually

approximated as a set of triangular facets [1]

and displayed as a set of edges of triangles or

as a set of filled triangles.

In the numerical simulation field, visualiza-

tion tools that support a function for the con-

tinuous generation of isosurfaces with changing

scalar values are used to understand the distri-

bution of scalar fields. When a volume is huge

and contains an enormous number of cells, the

cost of generating an isosurface may be high. It

may even prevent the user from understanding

the distribution of the scalar field, because a

long time is necessary to generate an isosurface

from a huge volume of data. Fast isosurfacing

methods are therefore needed to facilitate

understanding of scalar fields.

In a basic isosurfacing procedure, all cells are

visited, and those intersected by an isosurface,

so-called isosurface cells, are extracted. Poly-

gons inside the isosurface cells are then gener-

ated, and finally the positions and normal

vectors of the polygon vertices are calculated.

Some fast isosurfacing techniques focus on

the acceleration of polygonization and the

rendering processes, such as parallelization

[2], graphics acceleration by generation of

triangular strips [3], and geometric approxima-

tion [4]. However, it seems that the most effect-

ive technique for developing fast isosurfacing

algorithms is the reduction of visits to nonisosur-

face cells. In our experience, the ratio of the

number of nonisosurface cells to the number

of isosurface cells is usually large.

Actually, many techniques have been pro-

posed for reducing the number of nonisosurface

cells that are visited. Algorithms that classify or

sort cells according to their scalar values [5,6,7]

have been proposed, but the number of cells

visited in these algorithms is still estimated as

O(n), where n is the total number of cells. Algo-

rithms that classify cells by using space subdiv-

ision [8,9] have also been proposed, but they are

difficult to apply to unstructured volumes.

Many efficient isosurfacing algorithms have

been developed that can be applied to unstruc-

tured volumes, and whose computation time for

isosurfacing processes is much less than O(n).

They can be categorized into two approaches:

range-based search methods and seed-set gener-

ation methods. The first approach uses an inter-

val [a,b] of a scalar range, where a is a cell’s

minimum value and b is its maximum value.

The cell is intersected by an isosurface if the

interval satisfies a � C and C � b, where C is

a constant value of the isosurface, the so-called

iso-value. Such cells are efficiently extracted

by traditional searching algorithms [10,11,12].

Livnat et al. [11] proposed an algorithm using a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 83

83

Q1

Kd-tree method, whose isosurfacing cost is esti-

mated as O(n1=2 þ k), where k is the number of

isosurface cells (see Chapter 2 for more). Shen et

al. [12] proposed an algorithm using a lattice

classification, whose isosurfacing cost is esti-

mated as O(log n
L
þ n1=2

L
þ k), where L is a user-

specified parameter. Cignoni et al. [10] proposed

an algorithm using an interval tree, whose iso-

surfacing cost is estimated as O(log nþ k) (see

Chapter 4 for more). These can be applied to

unstructured volumes, and they are more effi-

cient than the previously mentioned methods,

since the numbers of cells visited in the algo-

rithms are much less than O(n). However, these

algorithms involve costs of over O(n) for con-

structing substructures in preprocessing, since

they use sorting processes. The lattice classifica-

tion can be implemented without the sorting pro-

cess; however, it is desirable to include the

sorting process in order to make the ranges of

classifications vary in order to have a similar

number of cells in each lattice.

The second approach generates small groups

of cells, the so-called seed set, which includes at

least one isosurface cell for every isosurface

[13,14]. This approach uses isosurface propaga-

tion algorithms, which recursively visit adjacent

isosurface cells [15,16,17,18], starting from iso-

surface cells extracted from the seed set. Here, an

adjacent cell means a cell that shares a face with

the visited cell. When an isosurface consists of

multiple disjoint parts, the approach extracts iso-

surface cells in all disjoint parts of the isosurface

from the seed set. Bajaj et al. [13] reported a

method for generating smaller groups of cells

that sweeps cells in a grid space and removes

many cells whose ranges of values are entirely

shared by their adjacent cells. Kreveld et al. [14]

reported a method for generating a contour tree

that connects extreme and saddle points. The

method solves the aforementioned problem, but

it requires over O(n) computation time for gener-

ating the contour tree.

Here let us summarize the key points for the

development of fast isosurfacing algorithms

that reduce the number of visits to nonisosur-

face cells:

. Application to unstructured volumes.

. Much less than O(n) complexity for visiting

isosurface cells.

. Reduction of complexity for preprocessing

(hopefully O(n)).

This chapter introduces efficient isosurfacing

techniques that can be applied to unstructured

volumes as well as structured volumes. The tech-

niques can be categorized as the second ap-

proach, which extracts seed sets and then

propagates isosurfaces. Section 5.2 describes iso-

surface propagation techniques [15,17,18] that

recursively visit adjacent isosurface cells, and it

also describes acceleration of the propagation

techniques [16], which eliminates the polygon–

vertex identification process from the isosurface

propagation algorithm. Section 5.3 describes the

technique that uses an extrema graph [19]. An

extrema graph connects extreme points in a

volume by means of arcs, and cells through

which the arcs pass are registered. The technique

extracts seed sets from the cells registered in the

extrema graph and cells on the boundary, and

then generates isosurfaces by the propagation

methods. Section 5.4 describes the technique

that generates an extrema skeleton [20,21],

which is an extension of an extrema graph [19],

as a small seed set. An extrema skeleton consists

of cells and connects all extreme points like an

extrema graph. The technique generates an ex-

trema skeleton by the volume thinning method,

which is an extensionof the thinningmethodused

for image recognition, in the preprocessing. It

then extracts isosurface cells from the extrema

skeleton and generates an isosurface by the

propagation method. Section 5.5 discusses the

applications of the volume-thinning method for

the extraction of numeric features of the volume

date. Section 5.6 concludes this chapter.

5.2 Isosurface Propagation

5.2.1 Isosurface Propagation

An isosurface is efficiently generated by recur-

sively visiting adjacent isosurface cells and skips

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 84

Q2

84 Scalar Field Visualization: Isosurfaces

the visits of nonisosurface cells. Such recursive

polygonization algorithms were originally pro-

posed for efficient polygonization of implicit

functions [15,18], and have then been applied

to volume datasets [17]. This chapter calls such

techniques ‘‘isosurface propagation,’’ because

the process looks as if it propagates isosurfaces

by generating polygons one by one.

Typical isosurface propagation algorithms

extract isosurface cells by breadth-first tra-

verses. The algorithms first insert several

isosurface cells into a first-in-first-out (FIFO)

queue. They then extract the isosurface cells

from the FIFO and generate polygons inside

the cells. At the same time, the algorithms insert

isosurface cells adjacent to the extracted cells

into the FIFO. They repeat the above process

until the FIFO queue becomes empty, and

finally the isosurface is constructed.

Fig. 5.1 shows an example of a typical isosur-

face propagation algorithm. When the algo-

rithm first constructs the polygon P1, it inserts

four adjacent isosurface cells, C2, C3, C4, and

C5, into the FIFO. When the algorithm extracts

these cells from the FIFO, it constructs four

polygons, P2, P3, P4, and P5. When the algo-

rithm constructs P2, it similarly inserts adjacent

isosurface cells C6, C7, and C8 into the FIFO.

The algorithm similarly constructs polygons

P6, P7, and P8 when it extracts C6, C7, and

C8 from the FIFO.

5.2.2 Polygon-Vertex Identification for
Isosurface Polygons

When polygons in an isosurface are generated

by a conventional isosurface generation tech-

nique such as the marching cubes method [1],

all their polygon vertices lie on cell edges, and are

mostly shared by several polygons. If a volume

data structure contains all cell-edges data and

then polygon vertices are linked to the cell

edges, the technique can immediately extract

the shared vertices by referring to cell edges of

visited cells. However, cell-edge data is not usu-

ally preserved in a volume data structure, owing

to the limited memory space. Therefore, a vertex-

identification process should be implemented so

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 85

FIFO queue

C2, C3, C4, C5

C6, C7, C8

Extract

Extract

Insert

Insert

P1

C4

C3

C2

C5

Vb

Va

Vc

Vd

P8
P7

Vb

P1

P5
P4

P3P2

P6 Va

Vc

Vd

P1

P5
P4

P3P2

C6

C7

C8

Vb

Va

Vc

Vd

Figure 5.1 Isosurface propagation.

Isosurface Extraction Using Extrema Graphs 85

that polygons of isosurfaces can share polygon

vertices.

An example of a vertex-identification process

is as follows. Given an iso-value of an isosurface

C, the implementation first determines the sign

of S(x,y,z) – C at nodes of a cell, where S(x,y,z)

denotes the scalar value at a node. If all the signs

are equal, the cell is not an isosurface cell and the

calculation of the action value is skipped. Other-

wise, the process extracts isosurface cell edges

from a cell. Here, a cell edge is represented as a

pair of nodes. When a polygon vertex is gener-

ated on a cell edge, it is registered to the hash

table with the pair of nodes that denotes the cell

edge. When another isosurface cell that shares

the same cell edge is visited, the polygon vertex is

extracted from the hash table, by inputting the

pair of nodes. In the implementation, all isosur-

face cell edges are registered to the hash table

with the polygon vertices of an isosurface.

Fig. 5.2 shows an example of this process.

When polygon P1 is first constructed, vertices

Va, Vb, Vc, and Vd are registered in a hash

table with pairs of nodes. For example, vertex

Vb is registered with a pair of nodes, n1 and n2,

that denote a cell edge that Vb lies on. When

polygon P2 is then constructed, vertex Vb is

extracted from the hash table by inputting the

pair of nodes, n1 and n2.

Note that the vertex identification process is

still necessary in the isosurface propagation al-

gorithm. For example, polygon vertices of

P1, Va, Vb, Vc, and Vd in Fig. 5.1 are regis-

tered into a hash table when P1 is generated.

The polygon vertex Vb is then extracted from the

hash table when P2, P3, and P8 are generated.

5.2.3 Accelerated Isosurface
Propagation Without Polygon-Vertex
Identification

This vertex-identification process occupies a

large part of computation time in isosurface

generation methods. Recently an accelerated

isosurface propagation technique that shares

polygon vertices without using the vertex-identi-

fication process [16] has been proposed.

Fig. 5.3 shows the overview of the new isosur-

face propagation technique. The technique as-

sumes that at least one isosurface cell is given. It

first generates a polygon P1 inside the given cell,

and allocates its polygon vertices, Va, Vb, Vc, and

Vd . It then visits all cells that are adjacent to

polygon vertices of P. In Fig. 5.3, cells that are

adjacent to Vb are visited, and polygons P2, P3,

and P4 are generated. Note that polygon vertices

of the three new polygons are not allocated at

that time. It then assigns Vb to the three poly-

gons. Vb is no longer required in this algorithm,

because all polygons that share Vb have been

generated at that time. It means that the search

algorithm is not necessary for the vertex identifi-

cation in the method. Similarly, in Fig. 5.3, cells

that are adjacent to Va are then visited. Polygons

P5 and P6 are generated at that time, and Va is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 86

Hash table

Vertex Node pair

….

(n1, n2)

P1

n1

n2

Vb

P2

Va

Vb

Vc

Vd

Va

Vb

Vc

Vd

P1

n1 n2

Figure 5.2 Polygon-vertex identification using a hash table.

86 Scalar Field Visualization: Isosurfaces

assigned to them. Fig. 5.4 shows the pseudo-code

of the technique. The technique visits most of the

isosurface several times (the for loop (3) in Fig.

5.4), and a polygon is constructed at the first visit.

The cells are also visited when they are extracted

from the FIFO (the for loop (1) in Fig. 5.4), and

all polygon vertices of the polygons inside the

extracted cells are set at the moment. The method

processes a cell several times; however, experi-

mental tests [16] showed that its computational

time was less than that for the existing propaga-

tion technique.

5.3 Isosurface Generation Using an
Extrema Graph

5.3.1 Overview

Isosurface propagation techniques have the

great advantage of reducing the number of

visited nonintersecting cells; however, they also

have the problem that the starting isosurface

cells must first be specified. Efficient automatic

extraction of the starting cells was previously

difficult, especially when the isosurface was sep-

arated into many disconnected parts. This

section describes a technique that automatically

extracts isosurface cells from all disconnected

parts of the isosurface.

The technique introduced in this section [19]

uses the following rule (see Fig. 5.5) as the key

to searching for intersected cells:

There is at least one extreme point, or ex-

tremum, inside a closed isosurface (unless there

is no interior point inside the isosurface, or the

scalar field is flat inside the isosurface). There is

at least one boundary cell intersected by an open

isosurface.

According to this rule, at least one isosurface

cell of a closed isosurface canbe foundby travers-

ing cells across the graph connecting all extreme

points in a volume. Also, at least one isosurface

cell of anopen isosurface canbe foundby travers-

ing cells on the boundary of a volume. Fig. 5.5

shows the overview of the above idea.

The preprocessing of the technique consists

of three technical components: (1) extraction of

extreme points, (2) construction of an extrema

graph, and (3) collection of boundary cells. The

technique needs to execute the preprocessing

only once, and then isosurfaces are quickly gen-

erated by referring to the extrema graph and the

collection of boundary cells.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 87

P1

Vb

Va

Vc

Vd

P1

Vb

Va

Vc

Vd

P2

P3

P4

P1

Vb

Va

Vc

Vd

P2

P3

P4

P5
P6

Figure 5.3 Isosurface propagation without the vertex identification process.

Isosurface Extraction Using Extrema Graphs 87

5.3.2 Extraction of Extreme Points

In this chapter, extreme points are defined as

grid-points whose scalar values are higher or

lower than the values of all adjacent grid-points

that are connected by cell edges. Here we inter-

preted the above definition as follows:

An extreme point is a grid-point whose scalar

value is maximum or minimum in all cells that

share the grid-point.

This definition is available for both structured

and unstructured volumes.

The technique visits all cells once to extract

extreme points and compares the scalar values

of all grid-points for each cell. The technique

then marks all grid-points except the maximum-

valued ones as ‘‘not maximum.’’ Similarly, it

marks all grid-points except theminimum-valued

ones as ‘‘not minimum.’’ Intermediate-valued

grid-points are thus marked as both ‘‘not min-

imum’’ and ‘‘not maximum.’’ After comparing

the values in all cells, the technique extracts only

grid-points that have either a ‘‘not maximum’’ or

a ‘‘not minimum’’ mark as extreme points.

Simply applying the above algorithm, all

grid-points in a cloud of equivalued local min-

imum or maximum points are registered as ex-

treme points; however, not all grid-points in the

cloud are necessary for the extraction of seed

cells. After all the cells in a volume have been

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 88

void Isosurfacing() {

 for (each given isosurface cell Ci){insert Ci into FIFO;}

 /* for-loop (1) */

 for (each cell Ci extracted from FIFO){

 if(polygon Pi in Ci is not constructed){Construct Pi in Ci;}

 /* for-loop (2) */

 for (each intersected edge En){

 if(a polygon-vertex Vn on En is not added into Pi) {

 Allocate Vn into Pi in Ci;

 Register Vn into Pi in Ci;

 /* for-loop (3) */

 for(each cell Cj that shares En){

 if(Pj in Cj is not constructed){Construct Pj in Cj;}

 Register Vn into Pj in Cj;

 if (Cj has never been inserted into FIFO){insert Cj into FIFO;}

 } /* end for-loop(3) */

 } /* end if(there is not Vn) */

 } /* end for-loop(2) */

 } /* end for-loop(1) */

 for(each polygon-vertex Vn){Calculate position and normal vector;}

} /* end Isosurfacing() */

Figure 5.4 Pseudo-code of accelerated isosurface propagation technique.

88 Scalar Field Visualization: Isosurfaces

visited, the technique recursively visits adjacent

cells that share the extreme points again and

erases unnecessary extreme points.

5.3.3 Construction of an Extrema Graph

This section describes an algorithm that con-

structs a group of arcs that connect a pair of

extreme points to construct an extrema graph.

To generate an arc, the algorithm first selects

an extreme point as a ‘‘start’’ point and then

selects another extreme point as a ‘‘goal’’ point.

Here, we assume the total cost of a graph is

reduced when closer extreme points are con-

nected by a graph, where we estimate the cost

of a graph by the number of cells intersected by

the arcs of the graph. In accordance with this

assumption, several closer extreme points are

enqueued as candidate goal points.

To generate an arc, the algorithm extracts one

of the enqueued candidate goal points and cal-

culates the vector of the arc connecting the start

and goal points. Starting from a cell that in-

cludes the start point, the algorithm traverses

cells intersected by the arc through their adja-

cency, as shown in Fig. 5.6 (left). This process is

repeated until the traverse arrives at the cell that

touches the goal point, and the algorithm regis-

ters the traversed cells to the arc during the

process. If the arc goes outside the volume, as

shown in Fig. 5.6 (center), the algorithm termin-

ates the traverse and starts a similar traverse

after extraction of the next candidate goal point.

If no extreme points are connected with the

start point, the algorithm extracts the closest

candidate goal point again. Starting from a cell

that includes the start point, the algorithm

repeats the visit of adjacent cells that share the

face whose sum of distances to the goal point is

minimum. This process is repeated until it ar-

rives at a cell that includes the goal point, and

registers the visited cells to the arc, as shown in

Fig. 5.6 (right). This distance-based process ne-

cessarily connects the chosen extreme points,

but it is not always efficient because of the cost

of calculating the distance for each grid-point. It

should therefore be carried out after traversal of

straight arcs.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 89

: extreme point

There is at least one
extreme point inside
a closed isosurface.

There is at least one
isosurface cell of an open
isosurface on the boundary.

At least one arc of an
extrema graph intersects
with a closed isosurface.

: iso-value line

: arc of an extrema graph

Figure 5.5 (Left) Rule between isosurfaces and extreme points. (Right) Extrema graph for extraction of isosurface cells.

Isosurface Extraction Using Extrema Graphs 89

5.3.4 Collection of Boundary Cells

In this chapter, boundary cells are defined as a

group of cells that have one or more faces not

connected to any other cells. The proposed tech-

nique first collects the boundary cells, and then

defines maximum and minimum values of the

boundary cells. The technique finally generates

two boundary cell lists; one preserves the bound-

ary cells in the order of the maximum values, and

the other preserves them in the order of the min-

imum values.

5.3.5 Isosurface Generation Using an
Extrema Graph

Given an iso-value, the proposed technique

searches isosurface cells by traversing one of

the boundary cell lists and arcs of the extrema

graph. If polygons inside the extracted isosur-

face cell have not yet been generated, the ex-

tracted cell is put into the FIFO queue and an

isosurface is then propagated. The technique

drastically reduces the number of visits of non-

isosurface cells because the technique visits only

cells from an extrema graph and a boundary-

cell list, and then recursively visits isosurface

cells but skips all other cells.

The computation time of preprocessing

of the extrema graph method is estimated

as O(n)þO(m2 log mþ n1=3m)þO(n2=3 log n2=3),

where m denotes the number of extreme points.

In our experiments, the cost is shown to be

linear in many cases. However, the process

may be costly when a volume is very noisy and

therefore has an enormous number of extreme

points. The computation time for the isosurfa-

cing process of the extrema graph method is

estimated as O(n2=3 þ n1=3mþ k), where k is

the number of isosurface cells. Here we estimate

the complexity of algorithms with the following

assumptions:

. The number of cells on the boundary of a

volume is estimated to be O(n2=3).

. The maximum degree of any node is

bounded by a constant.

. The number of faces, edges, and nodes is

O(n) for all.

5.4 Isosurface Generation Using an
Extrema Skeleton

5.4.1 Overview

The technique described in Section 5.3 has

bottlenecks in computation time as follows:

. Its preprocessing may be costly when the

number of m is large.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 90

Figure 5.6 (Left) To generate a straight arc, two extreme points are selected as start and goal points, and cells intersected by the

arc are traversed though their adjacency. (Center) It is possible that the arc goes outside the volume and cells cannot therefore be

traversed. (Right) If no goal points can be connected by a straight arc, the algorithm connects the extreme points by polygonal

cell traverse.

90 Scalar Field Visualization: Isosurfaces

. Its isosurface generation is not always effi-

cient when the number of boundary cells is

large.

Here we consider the necessity of boundary

cells to find isosurface cells. Unstructured

volumes may have through-holes or voids. In

this chapter, a through-hole is defined as a topo-

logical feature that causes a genus of a bound-

ary. A void is defined as an empty space

enclosed by a disjoint part of the boundary of

a volume.

An isosurface separates a volume into several

subdomains. There are extreme points in all of

the subdomains, and an extrema graph there-

fore always connects all of the subdomains. An

isosurface may also consist of several disjoint

parts. If two adjacent subdomains share only

one part of an isosurface, an arc of an extrema

graph necessarily intersects the part. On the

other hand, it is possible that the two subdo-

mains share two or more disjoint parts of an

isosurface if a volume has through-holes. In this

case, arcs of the extrema graph do not always

intersect all the parts of the isosurface. This

means that an extrema graph may not find the

intersection with several parts of an isosurface

when a volume has through-holes. In other

words, the extrema graph needs to preserve the

topology of through-holes so that it intersects

with all disjoint parts of every isosurface.

This chapter introduces an extension of the

extrema graph, the extrema skeleton, which pre-

serves the topology of through-holes so that it

intersects with all disjoint parts of every isosur-

face [20,21]. It accelerates the isosurfacing pro-

cess because boundary cell lists are no longer

necessary to find seed cells from all the disjoint

parts of isosurfaces. During the preprocessing

to construct the extrema skeleton, the extended

technique first extracts extreme points by using

the algorithm described in Section 5.3.3, and

then generates the extrema skeleton by the

volume thinning method. An extrema skeleton

is a set of cells that connects all extreme points

while it intersects all disjoint parts of every

isosurface.

The preprocessing of the technique intro-

duced in this section consists of two technical

components: (1) extreme point extraction and

(2) volume thinning. The preprocessing is per-

formed only once, and the extrema skeleton can

be used while isosurfaces are generated over and

over. Given an iso-value, the technique extracts

isosurface cells from the extrema skeleton, and

the isosurface is generated by the propagation

technique.

The computation time of preprocessing is es-

timated as O(n), because both the extrema point

extraction and the volume-thinning processes

visit most of the cells once. This is the main

feature of the technique, since most of the fast

isosurface generation techniques introduced in

Section 5.1 require more than O(n) computation

time for their preprocessing. The computa-

tion time of the isosurfacing process is estimated

as O(n1=3mþ k), where k denotes the number

of isosurface cells and m denotes the number of

extreme points.

5.4.2 Volume Thinning for Extrema
Skeleton Generation

The volume-thinning method [20,21] is an ex-

tension of the previously reported image-thin-

ning method. While the image-thinning method

that generates a skeleton of a painted area of an

image consists of pixels, the volume-thinning

method generates an extrema skeleton of a

volume that consists of cells. The method ini-

tially assumes that a seed set of a volume con-

tains all cells in the volume. It then marks each

cell that touches an extreme point, as shown in

Fig. 5.7a. The marked cells will never be elimin-

ated from the seed set during the process. The

method then visits unmarked cells on the

boundary of the noneliminated cells and elimin-

ates many of them from the seed set, as shown

in Fig. 5.7b. Finally the seed set forms a one-

cell-wide skeleton, while the cells in the skeleton

preserve the connectivity of the marked cells.

The visit procedure is similar to the image-thin-

ning algorithm, which visits pixels at the bound-

ary of a painted area and eliminates many of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 91

Isosurface Extraction Using Extrema Graphs 91

them until a one-pixel-wide skeleton is gener-

ated. The skeleton preserves the topological fea-

tures of the volume, such as through-holes

and voids. Cycles of cells are generated

around through-holes, since the skeleton con-

tains the cycle of the through-holes. Bubble-

like layers of cells are generated around the

voids, since the skeleton retains any disjoint

boundary faces around voids, as shown in Fig.

5.7c. The bubble-like layers occupy a large part

of an extrema skeleton. However, we do not

need to preserve the layers, because we need

only the topology of the through-holes to find

seed cells from all disjoint parts of isosurfaces.

As shown in Fig. 5.7d, our implementation

eliminates such bubble-like layers of cells to

reduce the number of cells in the extrema skel-

eton.

The shape of the skeleton and the number of

cells in it strongly depend on the order of

visiting cells. However, we do not consider opti-

mizing the order, because the optimization

causes a more complicated implementation

and only slightly reduces the number of seed

cells.

Fig. 5.8 shows an example of how the

volume-thinning process eliminates many of

the cells from the extrema skeleton. The fourth

image in Fig. 5.8 shows that there is a bubble-

like layer, and the final image shows that most

of the cells in the layer are then eliminated.

The initialization stage of the volume-thin-

ning method first classifies cells according to

the number of their adjacent cells n, where

n ¼ 0, 1, 2, 3 for tetrahedral cells and

n ¼ 0, 1, 2, 3, 4, 5 for hexahedral cells. It

then allocates FIFO queues for Cn cells that

are on the boundary of the noneliminated cells

and inserts such cells into the FIFOs. At that

time, C4 tetrahedral cells or C6 hexahedral cells

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 92

Eliminate!

Eliminate!
Through-hole Void

(a) (b) (c) (d)

Figure 5.7 Overview of the volume-thinning method. (a) Cells that touch extreme points are marked. (b) Many cells are

eliminated from a seed set. (c) An extrema skeleton with a bubble-like layer around a void. (d) An extrema skeleton after

removal of the bubble-like layer.

Figure 5.8 Example of the volume-thinning process. (See also color insert.)

92 Scalar Field Visualization: Isosurfaces

are not inserted into FIFOs, but most of them

will be inserted during the volume-thinning

process, because their classification will be

changed when their adjacent cells are eliminated

from the seed set.

The main loop of the volume-thinning process

extracts cells from FIFOs and checks the con-

nectivity between the extracted cells and their

adjacent cells, according to the conditions de-

scribed by Itoh et al. [21]. The cells are eliminated

from the seed set, if the connectivity of their

adjacent cells can be preserved without them. At

that time, the classifications of the eliminated

cells are changed to C0. When a cell is eliminated,

the process changes the classifications of its adja-

cent noneliminated cells from Cn to Cn�1 if n > 0,

and inserts them into the Cn�1 FIFO.

In our implementation, all C1 cells are first

extracted from a FIFO. An extracted C1 cell is

unconditionally eliminated from the seed set,

since the connectivity of its adjacent nonelimi-

nated cell is not changed by the elimination.

When the C1 FIFO becomes empty, C2 cells

are extracted. When both C1 and C2 FIFOs

become empty, C3 cells are extracted. In the

case of hexahedral cells, C4 or C5 cells are

similarly extracted when all FIFOs up to C3

or C4, respectively, become empty.

When all FIFOs become empty, the noneli-

minated cells form a skeleton that connects all

extreme points. Our implementation then elim-

inates bubble-like layers of cells around voids to

reduce the number of cells in the extrema skel-

eton. It first finds disjoint parts of boundary

faces of the extrema skeleton, and eliminates

several cells that share the boundary faces, to

prick the bubble-like layers. By inserting those

several cells into FIFOs, the volume-thinning

process eliminates many of the cells in the

bubble-like layers. The detail of the implemen-

tation is described by Itoh et al. [21].

Fig. 5.9 shows a pseudo-code of the volume-

thinning process for volumes consisting of tetra-

hedral cells. Pseudo-code for hexahedral cells is

very similar, except it includes the processes for

C4 and C5 cells after the processes for C1 to C3

cells.

5.5 Skeleton Generation for the
Extraction of Numerical Features

The extrema skeleton, introduced in the previ-

ous section, has contributed to the high-per-

formance processing searches for isosurfacing

cells within volume datasets. Next, we would

like to propose using the volume skeleton to

search for volume datasets with some features

among a very large number of volume datasets.

In this case, we expect the skeleton to act as a

search index, which is a simplified representa-

tion of a volume dataset.

To represent a volume dataset using the

volume skeleton, the skeleton should retain the

physical features of the original volume dataset.

One possible skeleton is composed of all the

volume cells intersecting the critical-point

graph, which is an extension of our extrema

graph. The critical-point graph is defined as

the scalar topology of a scalar field of S, which

is composed of the local maxima, the local

minima, the saddle points of the scalar gradient

field, and integral curves joining each of the

critical points. Integral curves are defined as

curves that are everywhere tangent to the gradi-

ent field. The initial positions of the calculations

for the integral curves are set a small distance

from the critical point along the appropriate

eigenvector of the velocity gradient tensor [22].

This critical-point graph can also be used as

a seed set for isosurface cells. Fig. 5.10 (left)

shows an example of a critical-point graph,

and Fig. 5.10 (right) shows an isosurface gener-

ated by using the critical-point graph as a seed

set. A similar idea has been proposed by Bajaj et

al. [13].

Since we might have a volume dataset contain-

ing a very large number of critical points, we will

develop a technique for constructing a critical-

point graph based on our volume-thinning algo-

rithm. We extend our original volume-thinning

algorithm so that the resulting skeleton can con-

tain the saddle points and become parallel to

the integral curves, and evaluate the degree

to which the resulting skeleton coincides with

the critical-point graph, so that the number of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 93

Isosurface Extraction Using Extrema Graphs 93

volume cells in the skeleton is increased com-

pared to the original skeleton.

5.6 Conclusion

This chapter introduced techniques for fast

isosurface generation. Section 5.2 introduced an

isosurface propagation technique that recur-

sively visits isosurface cells. Section 5.3 intro-

duced an extrema graph that connects all

extreme points in a volume. By traversing the

cells intersected by the extrema graph and the

cells on the boundaries of those cells, the isosur-

face cells are extracted from all of the disjoint

parts of an isosurface, and the isosurface is

propagated efficiently. Section 5.4 introduced

an extrema skeleton generated by a volume-thin-

ning method, which connected all of the extreme

points and preserved the topology of the volume.

The extrema skeleton makes the traversal of the

boundary cells unnecessarywhile propagating all

disjoint parts of the isosurfaces. In contrast to

many existing fast isosurface-generation tech-

niques, the technique proposed in Section 5.4

satisfies the following three requirements:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 94

void VolumeThinning(){

 /* Initialization */
 Classify cells that touch extreme points as C−1,
 and other cells as C1, C2, C3, and C4;
 Insert C1, C2, and C3 cells into FIFOs;
 Assign boundary ID to boundary faces and nodes;

 /* Main loop */
 while (1) {
 if(a C1 cell ei is extracted) { EliminateCell(ei); }
 else if(a C2 cell ei is extracted) {
 if(ei cannot be eliminated) continue; EliminateCell(ei);
 } else if(a C3 cell ei is extracted) {
 if(ei cannot be eliminated) continue; EliminateCell(ei);
 } else if(there are bubble-like layers around voids) {
 Select three cells to prick a layer;
 for(each above selected cells ei) { EliminateCell(ei); }
 } else break;
 } /* end of main loop */

 /* Postprocessing */
 Register non-C0 cells to a seed set list;
}

void EliminateCell(ei){
 Change the classification ci into C0;
 Assign the same boundary ID
 to all faces and nodes of ei;
 for(each adjacent cell ei,j) {
 if(ci,j = C0 ci,j = C−1) continue;
 Update the classification ci,j;
 Insert ei,j to a FIFO;
 }
}

=

Figure 5.9 Pseudo-code of the volume-thinning process for tetrahedral cells.

94 Scalar Field Visualization: Isosurfaces

. Can be applied to unstructured volumes.

. Is much lower than O(n) complexity for

visiting isosurface cells.

. Has O(n) complexity for preprocessing.

We think that the volume-thinning method

can be applied not only to fast isosurface gener-

ation but also to other purposes. Section 5.5

discussed the extension of the volume-thinning

method for the extraction of numeric features as

critical-point graphs.

References

1. W. E. Lorenson and H. E. Cline. Marching cubes:
a high resolution 3D surface construction algo-
rithm. Computer Graphics, 21(4):163–169, 1987.

2. C. D. Hansen and P. Hinker. Massively parallel
isosurface extraction. Proceedings of IEEE Visu-
alization ’92, pages 77–83, 1992.

3. C. T. Howie and E. H. Blake. The mesh propa-
gation algorithm for isosurface construction.
Computer Graphics Forum (Eurographics),
13(3):C65–C74, 1994.

4. J. W. Durkin and J. F. Hughes. Nonpolygonal
isosurface rendering for large volume.Proceedings
of IEEE Visualization ’94, pages 293–300, 1994.

5. R. S. Gallagher. Span filtering: an optimization
scheme for volume visualization of large finite
element models. Proceedings of IEEE Visualiza-
tion ’91, pages 68–74, 1991.

6. M. Giles and R. Haimes. Advanced interactive
visualization for CFD. Computer Systems in En-
gineering, 1(1):51–62, 1990.

7. H. Shen and C. R. Johnson. Sweeping simplices:
a fast iso-surface extraction algorithm for un-
structured grids. Proceedings of IEEE Visualiza-
tion ’95, pages 143–150, 1995.

8. D. Silver and N. J. Zabusky. Quantifying visu-
alization for reduced modeling in nonlinear sci-
ence: extracting structures from data sets.
Journal of Visual Communication and Image
Representation, 4(1):46–61, 1993.

9. J. Wilhelms and A. Van Gelder. Octrees for fast
isosurface generation. ACM Transactions on
Graphics 11(3):201–227, 1992.

10. P. Cignoni, P. Marino, C. Montani, E. Puppo,
and R. Scopigno. Speeding up isosurface extrac-
tion using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 3(2):158–
170, 1997.

11. Y. Livnat, H. Shen, and C. R. Johnson. A near
optimal isosurface extraction algorithm using
the span space. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2(1):73–84, 1996.

12. H. Shen, C. D. Hansen, Y. Livnat, and C. R.
Johnson. Isosurfacing in span space with utmost
efficiency (ISSUE). Proceedings of IEEE Visual-
ization ’96, pages 287–294, 1996.

13. C. L. Bajaj, V. Pascucci, and D. R. Schikore.
Fast isocontouring for improved interactivity.
Proceedings of ACM Symposium on Volume
Visualization ’96, pages 39–46, 1996.

14. M. Kreveld, R. Oostrum, C. L. Bajaj, V. Pas-
cucci, and D. R. Schikore. Contour trees and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 95

Figure 5.10 (Left) Example of a critical-point graph. (Right) Example of an isosurface generated by using the critical-point

graph as a seed set. (See also color insert.)

Q3

Isosurface Extraction Using Extrema Graphs 95

small seed sets for isosurface traversal. Proceed-
ings of 13th ACM Symposium of Computational
Geometry, pages 212–219, 1997.

15. J. Bloomenthal. Polygonization of implicit sur-
faces. Computer Aided Geometric Design,
5(4):341–355, 1988.

16. T. Itoh, Y. Yamaguchi, and K. Koyamada. Fast
isosurface generation using the cell-edge
centered propagation algorithm. International
Symposium on High Performance Computing
(ISHPC), pages 547–556, 2000.

17. D. Speray and S. Kennon. Volume probe: inter-
active data exploration on arbitrary grids. Com-
puter Graphics, 24(5):5–12, 1990.

18. G. Wyvill, C. McPheeters, and B. Wyvill. Data
structure for soft objects. The Visual Computer,
2(4):227–234, 1986.

19. T. Itoh and K. Koyamada. Automatic isosur-
face propagation by using an extrema graph and
sorted boundary cell lists. IEEE Transactions on
Visualization and Computer Graphics, 1(4):319–
327, 1995.

20. T. Itoh and K. Koyamada. Volume thinning for
automatic isosurface propagation. Proceedings
of IEEE Visualization ’96, pages 303–310, 1996.

21. T. Itoh, Y. Yamaguchi, and K. Koyamada. Fast
isosurface generation using an extrema skeleton
and cell-edge-centered propagation. IEEE
Transactions on Visualization and Computer
Graphics, 7(1):32–46, 2001.

22. K. Koyamada and T. Itoh. Seed specification
for displaying a streamline in an irregular
volume. Engineering with Computers, 14:73–80,
1998.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:55pm page 96

96 Scalar Field Visualization: Isosurfaces

6 Isosurfaces and Level-Sets

ROSS T. WHITAKER

School of Computing

University of Utah

6.1 Introduction

This chapter describes the basic differential

geometry of isosurfaces and the method of ma-

nipulating the shapes of isosurfaces within

volumes, called level-sets. Deformable isosur-

faces, implemented with level-set methods, have

demonstrated a great potential in visualization

for applications such as segmentation, surface

processing, and surface reconstruction. This

chapter begins with a short introduction to iso-

surface geometry, including curvature. It con-

tinues with a short explanation of the level-set

partial differential equations. It also presents

some practical details for how to solve these

equations using upwind-scheme and sparse-cal-

culation methods. This chapter also presents a

series of examples of how level-set surface mo-

dels are used to solve problems in graphics and

vision.

6.1.1 Motivation

This chapter describes mechanisms for analyzing

and processing volumes in a way that deals

specifically with isosurfaces. The underlying phil-

osophy is to use isosurfaces as a modeling tech-

nology that can serve as an alternative to

parameterized models for a variety of important

applications in visualization and computer

graphics. Level-set methods [1] rely on partial

differential equations (PDEs) to model deform-

ing isosurfaces. These methods have applications

in a wide range of fields, such as visualization,

scientific computing, computer graphics, and

computer vision [2,3]. Applications in visualiza-

tion include volume segmentation [4,5,6], surface

processing [7,8], and surface reconstruction

[9,10].

This chapter presents the mathematics and nu-

merical techniques for describing the geometry

of isosurfaces and manipulating their shapes in

prescribed ways. It starts with a basic introduc-

tion to the notation and fundamental concepts

and then presents the geometry of iso surfaces.

It then describes the method of level-sets, i.e.,

moving isosurfaces, and presents the mathemat-

ical and numerical methods they entail.

6.1.2 Isosurfaces

6.1.2.1 Modeling Surfaces with Volumes

When considering surface models for graphics

and visualization, one is faced with a staggering

variety of options including meshes, spline-based

patches, constructive solid geometry, implicit

blobs, and particle systems. These options can be

divided into two basic classes—explicit (para-

meterized) models and implicit models. With an

implicit model, one specifies the model as a level-

set of a scalar function,

f: U
x, y, z

7!IR
k

(6:1)

where U � IR3 is the domain of the volume (and

the range of the surface model). Thus, a surface

S is

S ¼ {xjf(x) ¼ k} (6:2)

The choice of k is arbitrary, and f is sometimes

called the embedding.Notice that surfacesdefined

in this way divide U into a clear inside and out-

side—such surfaces are always closed wherever

they donot intersect the boundary of the domain.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 97

97

Choosing this implicit strategy raises the

question of how to represent f. Historically,

implicit models are represented using linear

combinations of basis functions. These basis or

potential functions usually have several degrees

of freedom, including 3D position, size, and

orientation. By combining these functions,

one can create complex surface models. Typ-

ical models might contain several hundred to

several thousand such primitives. This is the

strategy behind the blobby models proposed by

Blinn [11].

While such an implicit modeling strategy

offers a variety of new modeling tools, it

has some limitations. In particular, the global

nature of the potential functions limits one’s abil-

ity to model local surface deformations. Con-

sider a point x 2 S where S is the level surface

associated with a model f ¼
P

i ai, and ai is one

of the individual potential functions that com-

prise thatmodel. Suppose onewishes to move the

surface at the point x in a way that maintains

continuity with the surrounding neighborhood.

With multiple, global basis functions one must

decide which basis function or combination of

basis functions to alter and at the same time

control the effects on other parts of the surface.

The problem is generally ill posed—there are

many ways to adjust the basis functions so that

x will move in the desired direction, and yet it

may be impossible to eliminate the effects of

those movements on other disjoint parts of the

surface. These problems can be overcome, but

the solutions usually entail heuristics that tie the

behavior of the surface deformation to, for

example, the choice of representation [12].

An alternative to using a small number of

global basis functions is to use a relatively large

number of local basis functions. This is the

principle behind using a volume as an implicit

model. A volume is a discrete sampling of the

embedding f. It is also an implicit model with a

very large number of basis functions, as shown in

Fig. 6.1. The total number of basis functions is

fixed; their positions (grid-points) and extent are

also fixed. One can change only the magnitude of

each basis function, i.e., each basis function has

only one degree of freedom. A typical volume

of size 128� 128� 128 contains over a million

such basis functions. The shape of each basis

function is open to interpretation—it depends

on how one interpolates the values between

the grid-points. A tri-linear interpolation,

for instance, implies a basis function that is a

piecewise cubic polynomial with a value of one

at the grid-point and zero at neighboring grid-

points. Another advantage of using volumes as

implicit models is that for the purposes of analy-

sis we can treat the volume as a continuous func-

tion whose values can be set at each point

according to the application. Once the continu-

ous analysis is complete, we can map the algo-

rithm into the discrete domain using standard

methods of numerical analysis. The sections that

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 98

x

f

Basis function

k

Figure 6.1 A volume can be considered as an implicit model with a large number of local basis functions.

98 Scalar Field Visualization: Isosurfaces

follow discuss how to compute the geometry of

surfaces that are represented as volumes and

how to manipulate the shapes of those surfaces

by changing the grey-scale values in the volume.

6.1.2.2 Isosurface Extraction and
Visualization

This chapter addresses the question of how to

use volumes as surface models. Depending on

the application, however, a 3D grid of data (i.e.,

a volume) may not be a suitable model

representation. For instance, if the goal is to

make measurements of an object or visualize its

shape, an explicit model might be necessary. In

such cases it is beneficial to convert between

volumes and other modeling technologies.

For instance, the literature proposes several

methods for scan-converting polygonal meshes

or solid models [13]. Likewise, a variety of

methods exist for extracting parametric models

of isosurfaces from volumes. The most preva-

lent method is to locate isosurface crossings

along grid lines in a volume (between voxels

along the 3 cardinal directions) and then to

link these points together to form triangles and

meshes. This is the strategy of marching cubes

[14] and other related approaches. However,

extracting a parametric surface is not essential

for visualization, and a variety of direct

methods [15,16] are now computationally feas-

ible and arguably superior in quality. This chap-

ter does not address the issue of extracting or

rendering isosurfaces; it rather studies the

geometry of isosurfaces and how to manipulate

them directly by changing the grey-scale values

in the underlying volume. Thus, we propose

volumes as a mechanism for studying and

deforming surfaces, regardless of the ultimate

form of the output. There are many ways

of rendering or visualizing them, and these tech-

niques are beyond the scope of this discussion.

6.2 Surface Normals

The surface normal of an isosurface is given by

the normalized gradient vector of f. Typically,

we identify a surface normal with a point in the

volume domain U . That is,

n(x) ¼ rf(x)

jrf(x)j where x 2 D (6:3)

The convention regarding the direction of this

vector is arbitrary; the negative of the normal-

ized gradient magnitude is also normal to the

isosurface. The gradient vector points toward

that side of the isosurface that has greater values

(i.e., is brighter). When rendering, the conven-

tion is to use outward-pointing normals, and the

sign of the gradient must be adjusted accord-

ingly. However, for most applications any con-

sistent choice of normal vector will suffice. On a

discrete grid, one must also decide how to ap-

proximate the gradient vector (i.e., first partial

derivatives). In many cases central differences

suffice. However, in the presence of noise, espe-

cially when volume rendering, it is sometimes

helpful to compute first derivatives using some

smoothing filter (e.g., convolution with a

Gaussian). Alternatively, when calculating

high-order geometry, one should use a polyno-

mial or spline, with the appropriate degree

of continuity [17]. When using the normal

vector to solve certain kinds of partial differen-

tial equations, it is sometimes necessary to ap-

proximate the gradient vector with discrete,

one-sided differences, as discussed in Section

6.6.1.

Note that a single volume contains families

of nested isosurfaces, arranged like the layers

of an onion. We specify the normal to an isosur-

face as a function of the position within

the volume. That is, n(x) is the normal of the

(single) isosurface that passes through the point

x. The k value associated with that isosurface is

f(x).

6.3 Second-Order Structure

In differential geometric terms, the second-

order structure of a surface is characterized

by a quadratic patch that shares first- and

second-order contact with the surface at a point

(i.e., tangent plane and osculating circles). The

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 99

Isosurfaces and Level-Sets 99

principal directions of the surface are those asso-

ciated with the quadratic approximation, and

the principal curvatures k1, k2 are the curvatures

in those directions.

As described by Kindlmann et al. [17], the

second structure of the isosurface can be com-

puted from the first- and second-order structure

of the embedding, f. All of the isosurface shape

information is contained in a field of normals

given by n(x). The 3� 3 matrix of derivatives of

this vector is

N ¼ � [nx ny nz] (6:4)

The projection of this derivative onto the tan-

gent plane of the isosurface gives the shape

matrix, b. Let P denote the normal projection

operator, which is defined as

P ¼ n� n ¼ 1

krfk2

f2
x fxfy fxfz

fyfx f2
y fyfz

fzfx fzfy f2
z

0
BB@

1
CCA (6:5)

The tangential projection operator is I � P, and

thus the shape matrix is

b ¼ NT ¼ THfT (6:6)

where Hf is the Hessian of f. The shape matrix

b has 3 real eigenvalues, which are

e1 ¼ k1, e2 ¼ k2, e3 ¼ 0 (6:7)

The corresponding eigenvectors are the princi-

pal directions of the surface (i.e., in the tangent

plane) and the normal, respectively.

The mean curvature is the mean of the two

principal curvatures, which is one-half of the

trace of b, which is equal to the trace of N:

H ¼ k1 þ k2

2
� 1

2
Tr(N)

f2
x(fyy þ fzz)þ f2

y(fxx þ fzz)

þ f2
z(fxx þ fyy)� 2fxfyfxy

�
�2fxfzfxz � 2fyfzfyz

2(f2
x þ f2

y þ f2
z)

3=2

(6:8)

The Gaussian curvature is the product of the

principal curvatures:

K ¼ k1k2¼ e1e2þ e1e3þ e2e3¼ 2Tr(N)2�1

2
kNk

¼f2
z(fxxfyy�fxyfxy)þf2

y(fxxfzz�fxzfxz)

þf2
x(fyyfzz�fyzfyz) þ2(fxfy(fxzfyz�fxyfzz)

þfxfz(fxyfyz�fxzfyy)þfyfz(fxyfxz�fyzfxx))

(f2
xþf2

yþf2
z)

2

(6:9)

The total curvature, also called the deviation

from flatness D [18], is the root sum of squares

of the two principal curvatures, which is the

Euclidean norm of the matrix b.

Notice these measures exist at every point

in U, and at each point they describe the

geometry of the particular isosurface that passes

through that point. All of these quantities

can be computed on a discrete volume using

finite differences, as described in successive

sections.

6.4 Deformable Surfaces

This section begins with mathematics for de-

scribing geometric surface deformations on

parametric models. The result is an evolution

equation for a surface. Any term in this geomet-

ric evolution equation can be reexpressed in a

way that is independent of the parameteriza-

tion. Finally, the evolution equation for a para-

metric surface gives rise to an evolution

equation (differential equation) on a volume,

which encodes the shape of that surface as a

level-set.

6.4.1 Surface Deformation

A regular surface S � IR3 is a collection

of points in 3D that can be represented locally

as a continuous function. In geometric model-

ing, a surface is typically represented as a two-

parameter object in a 3D space. That is to say, a

surface is local to a mapping S:

S: V
r

�V
S
7! IR3

x, y, z
(6:10)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 100

Q1

100 Scalar Field Visualization: Isosurfaces

where V � V IR2, and the bold notation refers

specifically to a parameterized surface (vector-

valued function). A deformable surface exhibits

some motion over time. Thus S ¼ S(r, s, t),

where t 2 IRþ. We assume second-order-con-

tinuous, orientable surfaces; therefore, at every

point on the surface (and in time) there is sur-

face normal n ¼ n(r, s, t). We use St to refer to

the entire set of points on the surface.

Local deformations of S can be described

by an evolution equation, i.e., a differential

equation on S that incorporates the position of

the surface, local and global shape properties,

and responses to other forcing functions.

That is,

@S

@t
¼ G(S, Sr,Ss,Srr,Srs,Sss, . . .) (6:11)

where the subscripts represent partial deriva-

tives with respect to those parameters. The evo-

lution of S can be described by a sum of terms

that depends on both the geometry of S and the

influence of other functions or data.

There is a variety of differential expressions

that can be combined for different applications.

For instance, the model could move in response

to some directional forcing function [19,20],

F: U 7! IR3, that is,

@S

@t
¼ F(S) (6:12)

Alternatively, the surface could expand and

contract with a spatially varying speed. For

instance,

@S

@t
¼ G(S)n (6:13)

where G: IR3 7! IR is a signed speed function.

The evolution might also depend on the surface

geometry itself. For instance,

@S

@t
¼ Srr þ Sss (6:14)

describes a surface that moves in a way that

becomes more smooth with respect to its own

parameterization. This motion can be combined

with the motion of Equation 6.12 to produce a

model that is pushed by a forcing function but

maintains a certain smoothness in its shape and

parameterization. There are myriad terms that

depend on both the differential geometry of the

surface and outside forces or functions to con-

trol the evolution of a surface.

6.5 Deformation: The Level-Set
Approach

The method of level-sets, proposed by Osher and

Sethian [21] and described extensively by

Sethian [2] and Fedkiw and Osher [3], provides

the mathematical and numerical mechanisms for

computing surface deformations as time-varying

iso-values of f by solving a partial differential

equation on the 3D grid. That is, the level-set

formulation provides a set of numerical methods

that describe how to manipulate the grey-scale

values in a volume, so that the isosurfaces of f
move in a prescribed manner (Fig. 6.2).

We denote the velocity of a point on a surface

as it deforms as dx/dt, and we assume that this

motion can be expressed in terms of the position

of x 2 U and the geometry of the surface at that

point. In this case, there are generally two

options for representing such surface move-

ments implicitly.

Static: A single, static f(x) contains a family

of level-sets corresponding to surfaces as

different times t. That is,

f(x(t)) ¼ k(t)) rf(x) � @x
@t
¼ dk(t)

dt
(6:15)

To solve this static method requires construct-

ing a f that satisfies Equation 6.15. This is a

boundary-value problem, and it can be solved

somewhat efficiently, starting with a single sur-

face using the fast marching method of Sethian

[22]. This representation has some significant

limitations, however, because (by definition) a

surface cannot pass back over itself over time,

i.e., motions must be strictly monotonic—

inward or outward.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 101

Isosurfaces and Level-Sets 101

Dynamic: The approach is to use a one-

parameter family of embeddings, in which

f(x, t) changes over time, x remains on the k

level-set of f as it moves, and k remains con-

stant. The behavior of f is obtained by

setting the total derivative of f(x(t), t) ¼ k

to zero. Thus,

f(x(t), t) ¼ k) @f
@t
¼ �rf � dx

dt
(6:16)

This approach can accommodate models that

move forward and backward and cross back

over their own paths (over time). However, to

solve this requires solving the initial value prob-

lem (using finite forward differences) on

f(x, t)—a potentially large computational

burden. The remainder of this discussion

focuses on the dynamic case, because of its su-

perior flexibility.

All surface movements depend on position

and geometry, and the level-set geometry is ex-

pressed in terms of the differential structure of

f. Therefore, the dynamic formulation from

Equation 6.16 gives a general form of the partial

differential equation on f:

@f
@t
¼ �rf � dx

dt

¼ �rf � F(x, Df, D2f, . . .)

(6:17)

where Dnf is the set of order-n derivatives of f
evaluated at x. Because this relationship applies

to every level-set of f, i.e., all values of k, this

equation can be applied to all of U, and there-

fore the movements of all the level-set surfaces

embedded in f can be calculated from Equation

6.17.

The level-set representation has a number of

practical and theoretical advantages over con-

ventional surface models, especially in the con-

text of deformation and segmentation. First,

level-set models are topologically flexible; they

can easily represent complicated surface shapes

that can, in turn, form holes, split to form mul-

tiple objects, or merge with other objects to

form a single structure. These models can in-

corporate many (millions of) degrees of free-

dom, and therefore they can accommodate

complex shapes. Indeed, the shapes formed by

the level-sets of f are restricted only by the

resolution of the sampling. Thus, there is no

need to reparameterize the model as it under-

goes significant deformations.

Such level-set methods are well documented

in the literature [21,23] for applications such as

computational physics [24], image processing

[25,26], computer vision [5,27], medical image

analysis [4,5], and 3D reconstruction [28,29].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 102

Figure 6.2 Level-set models represent curves and surfaces implicitly using grey-scale images. (Left) An ellipse is represented as

the level-set of an image. (Right) To change the shape we modify the grey-scale values of the image.

102 Scalar Field Visualization: Isosurfaces

For instance, in computational physics, level-

set methods are a powerful tool for modeling

moving boundaries between different materials

(see Osher and Fedkiw [24] for a nice over-

view of recent results). Two examples are

water–air and water–oil interfaces. In such

cases, level-set methods can be used to compute

deformations that minimize surface area

while preserving volumes for surfaces that

split and merge in arbitrary ways. The method

can be extended to multiple, nonoverlapping

objects [30].

Level-set methods have also been shown to

be effective in extracting surface structures

from biological and medical data. For instance,

Malladi et al. [5] propose a method in which

the level-sets form an expanding or contracting

contour that tends to cling to interesting fea-

tures in 2D angiograms. At the same time the

contour is also influenced by its own curvature,

and therefore remains smooth. Whitaker et al.

[4,31] have shown that level-sets can be used to

simulate conventional deformable surface

models, and they demonstrated this by ex-

tracting skin and tumors from thick-sliced

(e.g., clinical) MR data and by reconstructing

a model of a fetus from 3D ultrasound. A var-

iety of authors [26,32,33,34] have presented

variations on the method and presented results

for 2D and 3D data. Sethian [2] gives several

examples of level-set curves and surfaces for

segmenting CT and MR data.

6.5.1 Deformation Modes

In the case of parametric surfaces, one can

choose from a variety of different expressions

to construct an evolution equation that is ap-

propriate for a particular application. For each

of those parametric expressions, there is a cor-

responding expression that can be formulated

on f, the volume in which the level-set models

are embedded. In computing deformations of

level-sets, there can be no reference to the

underlying surface parameterization (terms

depending on r and s in Equations 6.10–6.14).

This has two important implications: (1) only

those surface movements that are normal to the

surface are represented—any other movement is

equivalent to a reparameterization; (2) all of the

derivatives with respect to surface parameters r

and s must be expressed in terms of invariant

surface properties that can be derived without a

parameterization.

Consider the term Srr þ Sss from Equation

6.14. If r,s is an orthonormal parameterization,

the effect of that term is based purely on surface

shape, not on the parameterization, and the

expression Srr þ Sss is twice the mean curvature,

H, of the surface. The corresponding level-set

formulation is given by Equation 6.8.

Table 6.1 shows a list of expressions used in

the evolution of parameterized surfaces and

their equivalents for level-set representations.

Also given are the assumptions about the para-

meterization that give rise to the level-set ex-

pressions.

6.6 Numerical Methods

By taking the strategy of embedding surface

models in volumes, we have converted equa-

tions that describe the movement of surface

points to nonlinear, partial differential equa-

tions defined on a volume, which is generally a

rectilinear grid. The expression un
i, j, k refers

to the nth time-step at position i,j,k, which has

an associated value in the 3D domain of

the continuous volume f(xi, yj, zk). The goal

is to solve the differential equation consisting

of terms from Table 5.1 on the discrete grid

un
i, j, k.

The discretization of these equations raises

two important issues. First is the availability of

accurate, stable numerical schemes for solving

these equations. Second is the problem of com-

putational complexity and the fact that we have

converted a surface problem to a volume prob-

lem, increasing the dimensionality of the

domain over which the evolution equations

must be solved.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 103

Isosurfaces and Level-Sets 103

The level-set terms in Table 6.1 are combined,

based on the needs of the application, to create a

partial differential equation on f(x, t). The solu-

tions to these equations are computed using finite

differences. Along the time axis, solutions are

obtained using finite forward differences, begin-

ning with an initial model (i.e., volume) and step-

ping sequentially through a series of discrete

time-steps (which are denoted as superscripts

on u). Thus, the update equation is

unþ1
i, j, k ¼ u n

i, j, k þ DtDun
i, j, k (6:18)

The term Du n
i, j, k is a discrete approximation to

@f=@t, which consists of a weighted sum of

terms such as those in Table 6.1. Those terms

must, in turn, be approximated using finite dif-

ferences on the volume grid.

6.6.1 Upwind Schemes

The terms in Table 6.1 fall into two basic cat-

egories: the first-order terms (items 1 and 2) and

the second-order terms (items 3 through 5). The

first-order terms describe a moving wave front

with a space-varying velocity (expression 1) or

speed (expression 2). Equations of this form

cannot be solved using conventional central-

difference schemes for spatial derivatives. Such

schemes tend to overshoot, and they are un-

stable. To address this issue, Osher and Sethian

[1] proposed an upwind scheme. The upwind

method relies on a one-sided derivative that

looks in the upwind direction of the moving

wave front, and thereby avoids the overshooting

associated with finite forward differences.

We denote the type of discrete difference

using superscripts on a difference operator,

i.e., d(þ) for forward differences, d(�) for back-

ward differences, and d for central differences.

For instance, differences in the x direction on a

discrete grid ui, j, k with domain X and uniform

spacing h are defined as

d(þ)
x ui, j, k � (uiþ1, j, k � ui, j, k)=h, (6:19)

d(�)
x ui, j, k � (ui, j, k � ui�1, j, k)=h, and (6:20)

dxui, j, k � (uiþ1, j, k � ui�1, j, k)=(2h) (6:21)

where we have left off the time superscript for

conciseness. Second-order terms are typically

computed using the tightest-fitting central dif-

ference operators. For example,

dxxui, j, k � (uiþ1, j, k þ ui�1, j, k

� 2ui, j, k)=h
2,

(6:22)

dzzui, j, k � (ui, j, kþ1 þ ui, j, k�1

� 2ui, j, k)=h
2, and

(6:23)

dxyui, j, k � dxdyui, j, k (6:24)

The discrete approximations to the first-order

terms in Table 6.1 are computed using

the upwind scheme proposed by Osher and

Sethian [21]. This strategy avoids overshoot-

ing by approximating the gradient of f using

a one-sided difference in the direction that

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 104

Table 6.1 A list of evolution terms for parametric models has a corresponding expression on the embedding, f, associated

with the level-set models.

Effect

Parametric

evolution

Level-Set

evolution

Parameter

assumptions

1 External force F F � rf None

2 Expansion/contraction G(x)N G(x)jrf(x, t)j None

3 Mean curvature Srr þ Sss Hjrfj Orthonormal

4 Gauss curvature Srr � Sss Kjrfj Orthonormal

5 Second order Srr or Sss H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p� �

jrfj Principal curvatures

104 Scalar Field Visualization: Isosurfaces

is upwind of the moving level-set, thereby en-

suring that no new contours are created in

the process of updating un
i, j, k (Fig. 6.3). The

scheme is separable along each axis (x, y, and z).

Consider Term 1 in Table 6.1. If we use

superscripts to denote the vector components,

i.e.,

F(x, y, z) ¼ (F (x)(x, y, z), F (y)(x, y, z),

F (z)(x, y, z))
(6:25)

the upwind calculation for a grid-point un
i, j, k

is

F(xi, yi, zi) � rf(xi, yj , zk, t) �X
q2{x, y, z}

F (q)(xi, yi, zi)

dþq un
i, j, k F (q)(xi, yi, zi) < 0

d�q un
i, j, k F (q)(xi, yi, zi) > 0

8<
:

(6:26)

The time-steps are limited—the fastest-moving

wave front can move only one grid unit per

iteration. That is,

DtF �
1P

q2{x, y, z} supi, j, k2X{jrF (q)(xi, yj , zk)j}
(6:27)

For Term 2 in Table 6.1 the direction of the

moving surface depends on the normal, and

therefore the same upwind strategy is applied

in a slightly different form.

G(xi, yj , zk)jrf(xi, yj , zk, t)j �X
q2{x, y, z}

G(xi, yi, zi)

max2 (dþq un
i, j, k, 0)þmin2 (d�q un

i, j, k, 0)

G(xi, yi, zi) < 0

min2 (dþq un
i, j, k, 0)þmax2 (d�q un

i, j, k, 0)

G(q)(xi, yi, zi) > 0

8>>><
>>>:

(6:28)

The time-steps are, again, limited by the fastest-

moving wave front:

DtG �
1

3supi, j, k2X{jrG(xi, yj , zk)j}
(6:29)

To compute the approximation of the update to

the second-order terms in Table 6.1 requires

only central differences. Thus, the mean curva-

ture is approximated as

Hn
i, j, k ¼

1

2
dxu

n
i, j, k

� �2

þ dyu
n
i, j, k

� �2

þ dzu
n
i, j, k

� �2
� ��1

�

dyu
n
i, j, k

� �2

þ dzu
n
i, j, k

� �2
� �

dxxu
n
i, j, k

�

þ dzu
n
i, j, k

� �2

þ dxu
n
i, j, k

� �2
� �

dyyu
n
i, j, k

þ dxu
n
i, j, k

� �2

þ dyu
n
i, j, k

� �2
� �

dzzu
n
i, j, k

�2dxu
n
i, j, kdyu

n
i, j, kdxyu

n
i, j, k�2dyu

n
i, j, kdzu

n
i, j, kdyzu

n
i, j, k

�2dzu
n
i, j, kdxu

n
i, j, kdzxu

n
i, j, k

�
(6:30)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 105

Level-set motion

xi

ui

Dui
Upwind

difference

Downwind
difference

Downwind Upwind

xi

ui

∆t∆ui limited by
upwind difference

Overshoot creates
“new” level-sets

(b)(a)

Figure 6.3 The upwind numerical scheme uses one-sided derivatives to prevent overshooting and the creation of new level-sets.

Isosurfaces and Level-Sets 105

Such curvature terms can be computed by using

a combination of forward and backward differ-

ences as described by Whitaker and Xue [35]. In

some cases this is advantageous, but the details

are beyond the scope of this chapter.

For the second-order terms, the time-steps are

limited, for stability, by the diffusion number, to

DtH �
1

6
(6:31)

When combining terms, the maximum number

of time-steps for each term is scaled by one over

the weighting coefficient for that term.

6.6.2 Narrow-Band Methods

If one is interested in only a single level-set, the

formulation described previously is not efficient.

This is because solutions are usually computed

over the entire domain of f. The solutions

f(x, t) describe the evolution of an embedded

family of contours. While this dense family of

solutions might be advantageous for certain ap-

plications, there are other applications that re-

quire only a single surface model. In such

applications the calculation of solutions over a

dense field is an unnecessary computational

burden, and the presence of contour families

can be a nuisance because further processing

might be required to extract the level-set that is

of interest.

Fortunately, the evolution of a single level-set,

f(x, t) ¼ k, is not affected by the choice of em-

bedding. The evolution of the level-sets is such

that they evolve independently (to within the

error introduced by the discrete grid). Further-

more, the evolution of f is important only in the

vicinity of that level-set. Thus, one should per-

form calculations for the evolution of f only in a

neighborhood of the surface St¼{xjf(x,t)¼k}.

In the discrete setting, there is a particular subset

of grid-points whose values control a particular

level-set (Fig. 6.4). Of course, as the surface

moves, that subset of grid-points must change

to account for its new position.

Adalsteinson and Sethian [36] propose a

narrow-band approach, which follows this line

of reasoning. The narrow-band technique con-

structs an embedding of the evolving curve or

surface via a signed distance transform. The

distance transform is truncated, i.e., computed

over a finite width of only m points that lie

within a specified distance to the level-set. The

remaining points are set to constant values to

indicate that they do not lie within the narrow

band, or tube, as they call it. The evolution of

the surface (they demonstrate it for curves in the

plane) is computed by calculating the evolution

of u only on the set of grid-points that are within

a fixed distance to the initial level-set, i.e., within

the narrow band. When the evolving level-set

approaches the edge of the band (Fig. 6.5), they

calculate a new distance transform (e.g., by

solving the Eikonal equation with the fast

marching method), which creates a new embed-

ding, and they repeat the process. This algo-

rithm relies on the fact that the embedding is

not a critical aspect of the evolution of the level-

set. That is, the embedding can be transformed

or recomputed at any point in time, so long as

such a transformation does not change the pos-

ition of the kth level-set, and the evolution

will be unaffected by this change in the embed-

ding.

Despite the improvements in computation

time, the narrow-band approach is not optimal

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 106

Figure 6.4 A level curve of a 2D scalar field passes through

a finite set of cells. Only those grid-points nearest to the level

curve are relevant to the evolution of that curve.

106 Scalar Field Visualization: Isosurfaces

for several reasons. First it requires a band of

significant width (m ¼ 12 in the examples of

Adalsteinson and Sethian [36]) where one

would like to have a band that is only as wide as

necessary to calculate the derivatives of u near

the level-set (e.g., m ¼ 2). The wider band is ne-

cessary because the narrow-band algorithm

trades off two competing computational costs.

One is the cost of stopping the evolution and

computing the position of the curve and distance

transform (to sub-cell accuracy) and determining

the domain of the band. The other is the cost of

computing the evolution process over the entire

band. The narrow-band method also requires

additional techniques, such as smoothing, to

maintain the stability at the boundaries of the

band, where some grid-points are undergoing the

evolution and nearby neighbors are static.

6.6.3 The Sparse-Field Method

The basic premise of the narrow-band algo-

rithm is that computing the distance transform

is so costly that it cannot be done at every

iteration of the evolution process. Another

strategy is to use an approximation to the dis-

tance transform that makes it feasible to recom-

pute the neighborhood of the level-set model at

each time-step. Computation of the evolution

equation is done on a band of grid-points that is

only one point wide. The embedding is extended

from the active points to a neighborhood

around those points that is precisely the width

needed at each time. This extension is done via a

fast distance transform approximation.

This approach has several advantages. First,

the algorithm does precisely the number of cal-

culations needed to compute the next position

of the level curve. It does not require explicit

recalculation of the positions of level-sets and

their distance transforms. Because the number

of points being computed is so small, it is feas-

ible to use a linked list to keep track of them.

Thus, at each iteration the algorithm visits only

those points adjacent to the k-level curve. This is

important because for large 3D datasets, the

very process of incrementing a counter and

checking the status of all of the grid-points is

prohibitive.

The sparse-field algorithm is analogous to a

locomotive engine that lays tracks before it and

picks them up from behind. In this way the

number of computations increases with the sur-

face area of the model rather than the resolution

of the embedding. Also, the sparse-field ap-

proach identifies a single level-set with a specific

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 107

Narrow band/tube

Surface model (level-set)

Time passes“Outside”−not
computed

Boundary interference
Recompute band

Figure 6.5 The narrow-band scheme limits computation to the vicinity of the specific level-set. As the level-set moves near the

edge of the band, the process is stopped and the band recomputed.

Isosurfaces and Level-Sets 107

set of points whose values control the position

of that level-set. This allows one to compute

external forces to an accuracy that is better

than the grid spacing of the model, resulting in

a modeling system that is more accurate for

various kinds of model-fitting applications.

The sparse-field algorithm takes advantage of

the fact that a k-level surface, S, of a discrete

image u (of any dimension) has a set of cells

through which it passes, as shown in Fig. 6.4.

The set of grid-points adjacent to the level-set is

called the active set, and the individual elements

of this set are called active points. As a first-

order approximation, the distance of the level-

set from the center of any active point is pro-

portional to the value of u divided by the gradi-

ent magnitude at that point. Because all of the

derivatives (up to second order) in this ap-

proach are computed using nearest-neighbor

differences, only the active points and their

neighbors are relevant to the evolution of the

level-set at any particular time in the evolution

process. The strategy is to compute the evolu-

tion given by Equation 6.17 on the active set

and then update the neighborhood around the

active set using a fast distance transform. Be-

cause active points must be adjacent to the level-

set model, their positions lie within a fixed dis-

tance to the model. Therefore, the values of u

for locations in the active set must lie within

a certain range. When active-point values

move out of this active range, they are no

longer adjacent to the model. They must be

removed from the set, and other grid-points,

those whose values are moving into the active

range, must be added to take their place. The

precise ordering and execution of these oper-

ations is important to the operation of the algo-

rithm.

The values of the points in the active set can

be updated using the upwind scheme for first-

order terms and central differences for the

mean-curvature flow, as described in the previ-

ous sections. In order to maintain stability, one

must update the neighborhoods of active grid-

points in a way that allows grid-points to enter

and leave the active set without those changes

in status affecting their values. Grid-points

should be removed from the active set when

they are no longer the nearest grid-point to

the zero crossing. If we assume that the embed-

ding u is a discrete approximation to the dis-

tance transform of the model, then the distance

of a particular grid-point xm ¼ (i, j, k) to the

level-set is given by the value of u at that

grid-point. If the distance between grid-points

is defined to be unity, then we should remove a

point from the active set when the value of u at

that point no longer lies in the interval � 1
2
, 1

2

� 	
(Fig. 6.6). If the neighbors of that point main-

tain their distance of 1, then those neighbors

will move into the active range just as xm is

ready to be removed.

There are two operations that are significant

to the evolution of the active set. First, the

values of u at active points change from one

iteration to the next. Second, as the values of

active points pass out of the active range, they

are removed from the active set and other,

neighboring grid-points are added to the active

set to take their place. Whitaker [29] gives

some formal definitions of active sets and

the operations that affect them. These defin-

itions show that active sets will always form a

boundary between positive and negative

regions in the image, even as control of the

level-set passes from one set of active points

to another.

Because grid-points that are near the active

set are kept at a fixed value difference from the

active points, active points serve to control the

behavior of nonactive grid-points to which they

are adjacent. The neighborhoods of the active

set are defined in layers, Lþ1, . . . LþN and

L�1, . . . L�N , where the i indicates the distance

(city-block distance) from the nearest active

grid-point, and negative numbers are used for

the outside layers. For notational convenience,

the active set is denoted L0.

The number of layers should coincide with

the size of the footprint or neighborhood used

to calculate derivatives. In this way, the inside

and outside grid-points undergo no changes in

their values that affect or distort the evolution

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 108

108 Scalar Field Visualization: Isosurfaces

of the zero set. Most of the level-set work relies

on surface normals and curvature, which re-

quire only second-order derivatives of f.

Second-order derivatives are calculated using

a 3� 3� 3 kernel (city-block distance 2

to the corners). Therefore, only 5 layers are

necessary (2 inside layers, 2 outside layers,

and the active set). These layers are denoted

L1, L2, L�1, L�2, and L0.

The active set has grid-point values in the

range � 1
2
, 1

2

� 	
. The values of the grid-points

in each neighborhood layer are kept 1 unit

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 109

zero crossing

Active cell
Inside cell
(layer 1)

Inside cell
(layer 2)

Outside cell
(layer -1)

Outside cell
(layer -2)

Direction of
active cell

value change

Direction of zero-
crossing movement

Outside Inside

Spatial dimension (x)

1 unit

1 unit

1 unit

1 unit

1 unit

−2.5

0

G
rid

-P
oi

nt
 V

al
ue

 (
In

te
ns

ity
)

G
rid

-P
oi

nt
 V

al
ue

 (
In

te
ns

ity
)

2.5

0

2.5

(a)

−2.5

zero crossing

Active cell
Inside cell
(layer 1)

Inside cell
(layer 2)

Outside cell
(layer -1)

Outside cell
(layer -2) Inside

Spatial dimension (x)

1 unit

1 unit

1 unit

1 unit

(b)

Figure 6.6 The status of grid-points and their values at two different points in time show that as the zero crossing moves,

activity is passed from one grid-point to another.

Isosurfaces and Level-Sets 109

from the layer next closest to the active set (Fig.

6.6). Thus the values of layer Li fall in the

interval i � 1
2
, i þ 1

2

� 	
. For 2N þ 1 layers, the

values of the grid-points that are totally inside

and outside are N þ 1
2
and �N � 1

2
, respectively.

The procedure for updating the image and the

active set based on surface movements is as

follows:

1. For each active grid-point, x ¼ (i, j, k), do

the following:

(a) Calculate the local geometry of the

level-set.

(b) Compute the net change of ux, based on

the internal and external forces, using

some stable (e.g., upwind) numerical

scheme where necessary.

2. For each active grid-point xj, add the change

to the grid-point value and decide if the new

value unþ1
x falls outside the � 1

2
, 1

2

� 	
interval.

If so, put x on a list of grid-points that are

changing status, called the status list;

S1 or S�1, for unþ1
x > 1 or unþ1

x < �1, re-

spectively.

3. Visit the grid-points in the layers Li in the

order i ¼ �1, . . .�N, and update the grid-

point values based on the values (by adding

or subtracting one unit) of the next inner

layer, Li	1. If more than one Li	1 neighbor

exists, then use the neighbor that indicates a

level curve closest to that grid-point, i.e., use

the maximum for the outside layers and

minimum for the inside layers. If a grid-

point in layer Li has no Li	1 neighbors,

then it gets demoted to Li�1, the next level

away from the active set.

4. For each status list S�1, S�2, . . . , S�N , do

the following:

(a) For each element x on the status list Si,

remove x from the list Li	1 and add it

to the list Li, or, in the case of

i ¼ �(N þ 1), remove it from all lists.

(b) Add all Li	1 neighbors to the Si�1 list.

This algorithm can be implemented efficiently

using linked-list data structures combined with

arrays to store the values of the grid-points and

their states, as shown in Fig. 6.7. This requires

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 110

1 1 1
1

1
1
1
1

1
1111

11
1

11
1
1
1

1
1 1

1
1
1
12 2 2

2
2
2
2

2222
22

2
22

2
2

2 2
2

2
2
2

3
3 3 3 3

3
3

3
3
3
3

3
3

3333
33

3
33

3
3
3
3

3
3

3 3
3
3

Layer −1 Active List Layer 1

Cell Values

Cell Status

Figure 6.7 Linked-list data structures provide efficient access to those grid-points with values and status that must be updated.

110 Scalar Field Visualization: Isosurfaces

only those grid-points whose values are

changing, the active points and their neighbors,

to be visited at each time-step. The computation

time grows as mn�1, where m is the number of

grid-points along one dimension of x (some-

times called the resolution of the discrete sam-

pling). Computation time for a dense-field

approach increases as mn. The mn�1 growth in

computation time for the sparse-field models is

consistent with conventional (parameterized)

models, for which computation times increase

with the resolution of the domain, rather than

the range.

Another important aspect of the performance

of the sparse-field algorithm is the larger time-

steps that are possible. The time-steps are

limited by the speed of the fastest-moving

level curve, i.e., the maximum of the force

function. Because the sparse-field method

calculates the movement of level-sets over a

subset of the image, time-steps are bounded

from below by those of the dense-field case.

That is,

sup

x 2 A � X

(g(x)) � sup

x 2 X

(g(x))
(6:32)

where g(x) is the space-varying speed function

and A is the active set.

Results from previous work by Whitaker [29]

have demonstrated several important aspects of

the sparse-field algorithm. First, the manipula-

tions of the active set and surrounding layers

allow the active set to track the deformable

surface as it moves. The active set always div-

ides the inside and outside of the objects it

describes (i.e., it stays closed). Empirical results

show significant increases in performance rela-

tive to both the computation of the full domain

and the narrow-band method, as proposed in

the literature. Empirical results also show that

the sparse-field method is about as accurate as

both the full, discrete solution and the narrow-

band method. Finally, because the method pos-

itions level-sets to sub-voxel accuracy, it avoids

aliasing problems and is more accurate than

these other methods when it comes to fitting

level-set models to other surfaces. This sub-

voxel accuracy is an important aspect of the

implementation and will significantly impact

the quality of the results for the applications

that follow.

6.7 Applications

This section describes several examples of how

level-set surface models can be used to address

problems in graphics, visualization, and com-

puter vision. These examples are a small

selection of those available in the literature.

6.7.1 Surface Morphing

This section summarizes the work of Breen

and Whitaker [8], which describes the use of

level-set surface models to perform 3D shape

metamorphosis. The morphing of 3D surfaces

is the process of constructing a series of 3D

models that constitute a smooth transition

from one shape to another (i.e., a homotopy).

Such a capability is interesting for creating ani-

mations and as a tool for geometric modeling

[37,38,39,40,41,42].

Level-set models provide an algorithm for 3D

morphing, which is a natural extension of the

mathematical principles discussed in previous

sections. The strategy is to allow a free-form

deformation of one surface (called the initial

surface) using the signed distance transform of

a second surface (the target surface). This free-

form deformation is combined with an under-

lying coordinate transformation that gives

either a rough global alignment of the two sur-

faces, or one-to-one relationships between a

finite set of landmarks on both the initial and

the target surfaces. The coordinate transform-

ation can be computed automatically or using

user input.

The distance transform gives the nearest Eu-

clidean distance to a set of points, curve, or

surface. For closed surfaces in three dimensions,

the signed distance transform gives a positive

distance for points inside and negative distance

for points outside (one can also choose the op-

posite sign convention). If two connected shapes

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 111

Isosurfaces and Level-Sets 111

overlap, then the initial surface can expand or

contract using the distance transform of the

target. The steady state of such a deformation

process is a shape consisting of the zero set of the

distance transform of the target. That is,

the initial object becomes the target. This is the

basis of the proposed 3D morphing algorithm.

Let D(x) be the signed distance transform of

the target surface, B, and let A be the initial

surface. The evolution process, which takes a

model S from A to B, is defined by

@x

@t
¼ ND(x) (6:33)

where x(t) 2 St and St¼0 ¼ A. The free-form de-

formations are combined with an underlying

coordinate transformation. The strategy is to

use a coordinate transformation as follows. A

coordinate transformation is given by

x0 ¼ T(x, a) (6:34)

where 0 � a � 1 parameterizes a continuous

family of these transformations that begins

with identity, i.e., x ¼ T(x, 0). The evolution

equation for a parametric surface is

@x

@t
¼ ND(T(x, 1)) (6:35)

and the corresponding level-set equation is

@f(x, t)

@t
¼ jrf(x, t)jD(T(x, 1)) (6:36)

This process produces a series of transition

shapes (parameterized by t). The coordinate

transformation can be a global rotation, transla-

tion, or scaling, or it might be a warping of the

underlying 3D space [40]. Incorporating user

input is important for any surface-morphing

technique, because in many cases finding the

best set of transition surfaces depends on con-

text. Only users can apply semantic consider-

ations to the transformation of one object to

another. However, this underlying coordinate

transformation can, in general, achieve only

some finite similarity between the warped initial

model and the target, and even this may require a

great deal of user input. In the event that a user is

not able or willing to define every important

correspondence between two objects, some

other method must fill in the gaps remaining

between the initial and target surfaces. Lerios et

al. [40] propose alpha blending to achieve that

smooth transition—really just a fading from

one surface to the other. Level-sets allow the

use of the free-form deformations to achieve a

continuous transition between the shapes that

result from the underlying coordinate trans-

formation.

Fig. 6.8 shows a 3D model of a jet that was

built using a CSG modeling system. Lerios et al.

[40] demonstrate the transition of a jet to a dart,

which was accomplished using 37 user-defined

correspondences, roughly 100 user-defined

parameters. Fig. 6.9 shows the use of level-set

models to construct a set of transition surfaces

between a jet and a dart. The triangle mesh is

extracted from the volume using the method of

marching cubes [14].

The application in this section shows how

level-set models moving according to the first-

order term given in expression 2 in Table 6.1 can

fit other objects by moving with a speed that

depends on the signed distance transform of the

target object. The application in the next section

relies on expression 5 of Table 6.1, a second-

order flow that depends on the principal curva-

tures of the surface itself.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 112

Figure 6.8 A 3D model of a jet that was built using a CSG

modeling system.

112 Scalar Field Visualization: Isosurfaces

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 113

Figure 6.9 The deformation of the jet to a dart using a level-set model moving with a speed defined by the signed distance

transform of the target object.

Isosurfaces and Level-Sets 113

6.7.2 Surface Editing

This section gives a brief summary of the results

in Museth et al. [44], who describe a system for

surface editing based on level-sets. The creation

of complex models for such applications as

movie special effects, graphic arts, and com-

puter-aided design can be a time-consuming,

tedious, and error-prone process. One of the

solutions to the model creation problem is 3D

photography, i.e., scanning a 3D object directly

into a digital representation (http://www.tacc.

utexas.edu/~reyes/tacc_personal/self/3D_fax.html).

However, the scanned model is rarely in a final

desired form. The scanning process is imperfect

and introduces errors and artifacts, or the object

itself may be flawed. In order to overcome these

difficulties, one can use a level-set approach to

implementing operators for locally and globally

editing closed surfaces.

Museth et al. [44] describe a number of surface-

editing operators within the level-set framework

bydefininga collectionofdifferent level-set speed

functions. The cut-and-paste operator gives

the user the ability to copy, remove, and merge

level-set models (using volumetric CSG oper-

ations) and automatically blends the intersection

regions. The smoothing operator allows a user to

define a region of interest and smooths the en-

closed surface to a user-defined curvature value.

They also describe a point-attraction operator, in

which a regionally constrained portion of a level-

set surface is attracted to a single point. By defin-

ing line segments, curves, polygons, patches, and

3D objects as densely sampled point sets, the

single-point attraction operator may be com-

bined to produce a more general surface-emboss-

ing operator. Morphological operators, such as

openingandclosing, canalsobe implemented ina

level-set framework [45]. Such operations are

useful for performing global blending (closing)

and smoothing (opening) on level-setmodels. Be-

cause all of the operators accept and produce the

same volumetric representation of closed sur-

faces, the operators may be applied repeatedly

to produce a series of surface-editing operations,

as shown in Fig. 6.10.

6.7.3 Antialiasing Binary Volumes

This section presents a summary of results from a

previous article [46] that addresses the question

of using level-sets to reduce aliasing artifacts in

binary volumes. Binary volumes are interesting

for several practical reasons. First, in some cases,

such as medical imaging, a volume dataset can be

segmented to produce a set of voxels that corres-

pond to some particular object (or anatomy).

This segmentation can be manual, in which case

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 114

Figure 6.10 (a) Positioning the (red) wing model on the dragon model. (b) The models are pasted together (by CSG union

operation), producing sharp, undesirable creases, a portion of which is expanded in the box. (c) The same region after automatic

blending based on mean curvature. The blending is constrained to move only outwards. The models are rendered with flat-

shading to highlight the details of the surface structure. (See also color insert.)

114 Scalar Field Visualization: Isosurfaces

a user identifies (usually with the aid of aGUI) all

of the voxels that belong to a certain object. The

segmentation can also be automated, relying on

methods such as pattern classification, flood fill,

and morphological watersheds, which produce

segmentations that are hard, i.e., binary. Binary

volumes are also important when using a 3D

imaging device that produces data with very

high contrast. In such cases the measured data

is essentially binary with regard to both the infor-

mation it contains and the problems it presents in

rendering. Binary volumes can be important

when visualizing mathematical expressions,

such as fractals, that cannot be evaluated as con-

tinuous functions. Binary volumes are also inter-

esting because they require so little data, and,

with the use of run length encoding, are very

well suited to compression.

The strategy presented here is related to the

work of Gibson [47], who uses a deformable-

surface approach to reducing aliasing artifacts.

Gibson dealt with the problem of extracting

surfaces from binary volumes with an insightful

strategy: treat the binary data as a constraint on a

surface that is subject to a regularization process.

She proposes a several-step algorithm called

constrained surface nets that embodies this strat-

egy. The algorithm begins by extracting a sur-

face mesh from the volume. This initial mesh

consists of a vertex in each cell (an eight-voxel

neighborhood arranged in a cube) whose

corners indicate a transition from inside to

out. This mesh undergoes an iterative process

of deformation, where each vertex moves to

the mean of its neighbors but is prohibited

from moving outside of its original cell.

The resulting surface can be converted back

into a volume by computing a discrete

sampling of the distance transform to the set

of triangles associated with the final mesh.

Constrained surface nets have some very

useful properties. They are essentially the solu-

tion of a constrained minimization of surface

area. Constrained surface nets are capable of

creating flat surfaces through sequences of dis-

tant terraces or jaggies, which are not easily

spanned by a filter or interpolating function.

The final solution is guaranteed to lie within

a fixed distance of the original mesh, thus

preserving small details, and even discon-

tinuities, that can be lost through other anti-

aliasing techniques such as those that rely on

filtering [48,49] or surface approximation

[50,51,52].

Using level-sets, one can implement the basic

philosophy of constrained surface nets while

eliminating the need for an intermediate surface

mesh—i.e., operate directly on the volume. The

result is a transformation of a binary volume to

a grey-scale volume, and thus it is a kind of

nonlinear filtering process. The zero set of the

same volume that results from the algorithm has

the desirable properties of the constrained sur-

face net. However, the algorithm makes no ex-

plicit assumptions about the topology of the

surface, but instead allows the topology of the

surface to develop from the constrained mini-

mization process.

Binary volumes are often visualized through

treatment as implicit functions and render-

ing of the surfaces that correspond to the zero

sets of interpolated version of B :D 7! {� 1, 1},

the binary volume. Alternatively, one could

treat a binary volume, regardless of its

origins, as a threshold (or binarization) of

a discrete sampling of an embedding. That is,

f(x, y, z) �!discretization
fi, j, k �!threshold Bi, j, k (6:37)

From this point of view, the problem of

extracting surfaces from a binary volume is

really the problem of estimating either f or f
and extracting surfaces from one of those func-

tions. However, the loss of information (i.e.,

projection) associated with the binary sampling

leaves the inverse problem ill posed—that is, for

a given binary volume, there are infinitely many

embeddings from which it could have been

derived.

The strategy in this section is to construct a

discrete sampling of a f that could have given

rise to B. We say an estimate of the embedding,

f̂f, is feasible if

f̂f(x)Bx
 0 8 x 2 D (6:38)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 115

Isosurfaces and Level-Sets 115

That is, Bx and f̂f(x) must have the same sign

at the grid-points of D. This is the same

as saying that the zero set of f̂f must enclose

all of those points indicated by the binary

volume as inside and none of the points that

are outside.

The ill-posed nature of the problem is

addressed by imposing some criterion, a regu-

larization, to which f̂f must conform. In the

case of surface estimation, a natural criterion

is to choose the surface with minimal area.

Often, but not always, surfaces with less

area are qualitatively smoother. In the level-

set formulation, the combined surface area

of all of the level-sets of f is the integral of

the level-set density (which is the gradient mag-

nitude of f) over the domain D. Thus, using

level-sets, the constrained minimization prob-

lem for reconstructing surfaces from binary

data is

f̂f ¼ arg min
f

Z
D

jrf(x)jdx

� �

such that f(x)Bx
 0 8 x 2 D
(6:39)

Using the method of undetermined multipliers,

construct the Lagrangian:

F (f,l) ¼
Z

D

jrf(x)jdxþ
X
xi2D

lif(xi)Bxi (6:40)

where li � 0.

The Kuhn–Tucker [53] conditions describe the

behavior of the solution. For points in the

domain that are not on the grid, the level-sets

of the solution are flat or hyperbolic (saddle

points) with the principal curvatures offsetting

one another. For points in the domain that fall

on one of the grid-points, there are two cases: the

level-sets off are convex at places with B(xi) > 0

and concave where B(xi) < 0, which is consistent

with a solution that is stretched around the posi-

tive and negative constraints. Also, when the

curvature is nonzero at a grid-point,

B(xi)f(xi) ¼ �f(xi) ¼ 0 (6:41)

which means that the zero set falls through grid-

points of D except in those areas where the

solution is flat.

This analysis leads to a gradient-descent strat-

egy with an evolution parameter t. Starting with

an initial estimate that is feasible, one can

update f in such a way that it minimizes

the surface area but does not violate the

constraints:

@f
@t
¼

0 For x¼xi 2D,f(x)¼0

and H(x)Bx>0

H(x) otherwise

8<
: (6:42)

Because the solution must remain near the con-

straints, the full sparse-field solution is unneces-

sary, and one can instead use a static narrow

band. The appropriate narrow-band algorithm

is as follows:

1. Construct an initial solution u0
i, j, k ¼ Bi, j, k.

2. Find all of the grid-points in u0
i, j, k that

lie adjacent to one or more grid-points of

opposite sign. Call this set A0.

3. Find the set of all of the grid-points that

are adjacent to A0 and denote it A1.

Repeat this for A2,A3, . . . ,AM , to create a

band that is 2M þ 1 wide. The union of

these sets, A ¼ [M
i¼0Ai, is the active set.

4. For each (i, j, k) 2 A calculate Dun
i, j, k using

a central difference approximation to the

mean curvature.

5. For each (i, j, k) 2 A update the value of

unþ1
i, j, k according to Equation 6.42.

6. Find the average change for points in the

active set:

cn ¼ 1

jAj
X
A

unþ1
i, j, k � un

i, j, k

2

 !1
2

(6:44)

7. If cn is below some predefined threshold,

then the algorithm is complete; otherwise,

increment n and go to step 4.

Figs. 6.11a and 6.11b show the zero sets of grey-

scale and binary volumes of a cube. The grey-

scale volume is the distance transform. The

cubes shown are rotated 22.58 around each

axis (in order to create significant aliasing arti-

facts in the binary version), and each cube edge

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 116

116 Scalar Field Visualization: Isosurfaces

has a length of 50 grid units. Fig. 6.11c shows

the zero set of the solution to the constrained

minimization problem with a stopping thresh-

old of 0.002 using a narrow band of M ¼ 4.

These results show significant improvements in

the aliasing, especially along the flat faces where

the minimum-surface-area approach is most

appropriate. On the corners and edges, artifacts

remain because the algorithm is trying to stretch

the minimal surface across the constraints,

which contain jaggies. The algorithm converges

rapidly, in about 20 iterations. Experiments

show that the choices of bandwidth and stop-

ping threshold do not affect the results in any

significant way, provided that the width is suffi-

ciently large and the stopping threshold is suffi-

ciently small.

Fig. 6.12 shows a series of before (left)

and after (right) isosurface renderings. Gener-

ally the algorithm succeeds in reducing aliasing

artifacts with a minimal distortion of the

shapes. For some shapes, such as the low-

resolution torus, the aliasing is reduced, but

only marginally so, which demonstrates a fun-

damental limitation of the proposed algorithm:

the minimal surface criterion does not always get

the solutions close to the ideal. Instead, the solu-

tion is stretching across the rather coarse fea-

tures formed by the binary volumes. This is

especially bad in cases such as a torus, which

includes points for which one principal curva-

ture is significantly greater than the other, caus-

ing the surface to pucker inward, leaving

pronounced aliasing artifacts. On flat surfaces

or those with higher resolution, the aliasing

effects are virtually eliminated.

6.7.4 Surface Reconstruction and
Processing

The ability to compute free-form surface

deformations independent of topology or com-

plexity opens up new possibilities in reconstruct-

ing and processing surfaces. For instance, in

building 3D models from multiple laser range

(ladar) images, one can express the likelihood of

a closed surface as a function of an integral over

the enclosed solid [29,54]. Using a gradient des-

cent to minimize the likelihood gives rise to a

data-driven deformation that fits a surface

model to a collection of noisy ladar data. Com-

bining the likelihood with an area or curvature-

based prior and embedding the motion in the

level-set framework generates a PDE for 3D

surface reconstruction:

@f
@t
¼ jrfjG(x, nf)þ bjfjP (6:45)

where G, the fitting term, depends on the set of

input data and a sensor model, while P, which

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 117

Figure 6.11 (a) An ideal grey-scale embedding of a cube (i.e., distance transform) results in a smooth, accurate isosurface. (b) A

binary volume yields significant aliasing artifacts. (c) The surface estimation from the binary data with M ¼ 4 and a stopping

threshold of 0.002 shows a quality that is comparable to the ideal.

Isosurfaces and Level-Sets 117

depends on derivatives of f, is the first variation

of the log prior. For example, P is the mean

curvature in the case of a surface area prior.

Fig. 6.13 shows a surface rendering of noisy

range data and a 3D reconstruction using a

level-set model and the curvature-based prior

described by Tasdizen and Whitaker [55]. The

ability to systematically combine data from dif-

ferent points of view and incorporate a

smoothing prior that preserves creases results

in 3D reconstructions that exceed the accuracy

of the laser range finder.

This same strategy applies to other imaging

modalities. For instance, the problem of recon-

structing 3D interfaces from tomographic pro-

jections leads to a formulation very similar to

Equation 6.44, in which the data term depends

on the set of input data and the shape of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 118

Figure 6.12 (Left) Binary input volumes. (Right) Results of surface estimation. (Top) Lower-resolution torus. (Bottom)

Higher-resolution torus.

118 Scalar Field Visualization: Isosurfaces

surface estimate [9]. This is an important prob-

lem in situations where one is given limited or

incomplete tomographic data, such as in trans-

mission electron microscopy (TEM). Fig. 6.14

shows a TEM surface reconstruction of a spiny

dendrite using this strategy. The application of

level-sets for this problem is important, because

the complex topology of this model changes

during the fitting process.

A problem with relating the reconstruction is

that of surface processing, which has gained im-

portance as the number of 3Dmodels grows. One

would like to have the same set of tools for ma-

nipulating surfaces as exists for images. This

would including cutting and pasting, blending,

enhancement, and smoothing tools. This is espe-

cially important in visualization, where the 3D

models are often derived from measured data

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 119

Figure 6.13 (a) A surface rendering of a noisy range image. (b) A 3D reconstruction obtained by fitting a level-set model to 12

noisy range images from different points of view.

Figure 6.14 (a) An initial model constructed from a backprojection. (b) The model deforms to minimize the discrepancy with

the projected data and forms new connections in the process.

Isosurfaces and Level-Sets 119

and are therefore noisy or incomplete or some-

how imperfect. Level-set models provide some

mechanisms for filtering surfaces in a way that

does not depend on a particular parameteriza-

tion or topology. Tasdizen et al. [7] describe a

strategy for filtering level-set surfaces that relies

on processing a fourth-order geometric flow.

Using this strategy one can generalize a wide

range of image-processing algorithms to sur-

faces. Fig. 6.15 shows a generalization of aniso-

tropic diffusion [56] to surfaces in a way that

enhances sharp creases. Fig. 6.16 shows a gener-

alization of unsharp masking (a form of high-

boost filtering), which brings out surface detail.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:58pm page 120

Figure 6.15 (a) A noisy isosurface obtained from an MRI volume. (b) Processing with feature-preserving smoothing alleviates

noise while enhancing sharp features. (See also color insert.)

Figure 6.16 (a) A volumetric surface model is enhanced via (b) unsharp masking. (See also color insert.)

120 Scalar Field Visualization: Isosurfaces

6.8 Summary

Volumes provide a powerful tool for modeling

deformable surfaces, especially when one is

dealing with measured data. With measured

data, the shape, topology, and complexity of

the surface are dictated by the application

rather than the user. Implicit deformable sur-

faces, implemented as level-sets, provide a nat-

ural mechanism for processing such data in

a manner that relieves the user of having to

decide on an underlying parameterization. This

technology easily handles the many degrees of

freedom that are important to capturing the fine

detail of measured data. Furthermore, the level-

set approach provides a powerful mechanism

for constructing geometric flows that results in

output that depends only on the shape of input

(and the resolution) and does not produce arti-

facts that are tied to an arbitrary, intermediate

parameterization.

References

1. S. Osher and J. Sethian. Fronts propagating with
curvature-dependent speed: algorithms based on
Hamilton–Jacobi formulations. Journal of Com-
putational Physics, 79:12–49, 1988.

2. J. A. Sethian. Level Set Methods and Fast
Marching Methods Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Com-
puter Vision, and Materials Science. Cambridge
University Press, 1999.

3. R. Fedkiw and S. Osher. Level Set Methods and
Dynamic Implicit Surfaces. Berlin, Springer-
Verlag, 2002.

4. R. T. Whitaker. Volumetric deformable models:
active blobs. In Visualization In Biomedical Com-
puting 1994, pages 122–134, SPIE, 1994.

5. R. Malladi, J. A. Sethian, and B. C. Vemuri.
Shape modeling with front propagation: a level-
set approach. IEEE Transactions on Pattern An-
alysis and Machine Intelligence, 17(2):158–175,
1995.

6. R. Whitaker, D. Breen, K. Museth, and N.
Soni. A framework for level-set segmentation
of volume datasets. In Proceedings of ACM
Intnl. Wkshp. on Volume Graphics, pages 159–
168, 2001.

7. T. Tasdizen, R. Whitaker, P. Burchard, and
S. Osher. Geometric surface processing via

normal maps. ACM Trans. on Graphics,
22(4):1012–1033, 2003.

8. D. Breen and R. Whitaker. A level-set approach
to 3D shape metamorphosis. IEEE Transactions
on Visualization and Computer Graphics,
7(2):173–192, 2001.

9. R. Whitaker and V. Elangovan. A direct
approach to estimating surfaces in tomographic
data. Medical Image Analysis, 6:235–249, 2002.

10. K. Museth, D. Breen, L. Zhukov, and R. Whi-
taker. Level-set segmentation from multiple
non-uniform volume datasets. In IEEE Visual-
ization 2002, pages 179–186, 2002.

11. J. Blinn. A generalization of algebraic surface
drawing. ACM Trans. on Graphics, 1:235–256,
1982.

12. S. Muraki. Volumetric shape description of
range data using ‘‘blobby model.’’ Computer
Graphics (SIGGRAPH ’91 Proceedings),
25:227–235, 1991.

13. D. E. Breen, S. Mauch, and R. T. Whitaker. 3D
scan conversion of CSG models into distance
volumes. In The 1998 Symp. on Volume Visual-
ization, pages 7–14, 1998.

14. W. Lorenson and H. Cline. Marching cubes: a
high resolution 3D surface construction algo-
rithm. Computer Graphics, 21(4):163–169, 1982.

15. M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions, 9(3):245–261, 1990.

16. R. Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering. Computer Graphics,
22(4):65–74, 1988.

17. G. Kindlmann, R. Whitaker, T. Tasdizen, and
T. Möller. Curvature-based transfer functions
for direct volume rendering: methods and appli-
cations. In Proc. IEEE Visualization 2003, pages
513–520, 2003.

18. J. J. Koenderink. Solid Shape. Cambridge, MA,
MIT press, 1990.

19. M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: active contour models. International
Journal of Computer Vision, 1:321–323, 1987.

20. D. Terzopoulos and K. Fleischer. Deformable
models. The Visual Computer, 4:306–331, 1988.

21. S. Osher and J. Sethian. Fronts propagating
with curvature-dependent speed: algorithms
based on Hamilton–Jacobi formulations. Jour-
nal of Computational Physics, 79:12–49, 1988.

22. J. A. Sethian. A fast marching level-set method
for monotonically advancing fronts. Proc. Nat.
Acad. Sci., 93(4):1591–1595, 1996.

23. J. A. Sethian. Level Set Methods: Evolving Inter-
faces in Gometry, Fluid Mechanics, Computer
Vision, and Material Sciences. Cambridge, Eng-
land, Cambridge University Press, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:59pm page 121

Isosurfaces and Level-Sets 121

24. S. Osher and R. Fedkiw. Level set methods: an
overview and some recent results. Tech. Rep.
00–08, UCLA Center for Applied Mathematics,
Department of Mathematics, University of
California, Los Angeles, 2000.

25. L. Alvarez and J.-M. Morel. A morphological
approach to multiscale analysis: from principles
to equations. In Geometry-Driven Diffusion
in Computer Vision, pages 4–21, 1994.

26. V. Caselles, R. Kimmel, and G. Sapiro. Geo-
desic active contours. In Fifth International Con-
ference on Computer Vision, pages 694–699,
IEEE Computer Society Press, 1995.

27. R. Kimmel and A. Bruckstein. Shape offsets via
level sets. Computer Aided Design, 25(5):154–
162, 1993.

28. R. Whitaker and D. Breen. Level-set models for
the deformation of solid objects. In The Third
International Workshop on Implicit Surfaces,
pages 19–35, Eurographics, 1998.

29. R. T. Whitaker. A level-set approach to 3D
reconstruction from range data. International
Journal ofComputerVision, pages 203–231, 1998.

30. T. Chan and L. Vese. A multiphase level-set
framework for image segmentation using the
Mumford and Shah model. International Jour-
nal of Computer Vision, 50(3):271–293, 2000.

31. R. T. Whitaker. Algorithms for implicit deform-
able models. In Fifth International Conference
on Computer Vision, IEEE Computer Society
Press, 1995.

32. S. Kichenassamy, A. Kumar, P. Olver, A. Tan-
nenbaum, and A. Yezzi. Gradient flows and geo-
metric active contour models. In Fifth Int. Conf.
on Comp. Vision, pages 810–815. Los Alamitos,
CA, IEEE Computer Society Press, 1995.

33. A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver,
and A. Tannenbaum. A geometric snake model
for segmentation of medical imagery. IEEE
Transactions on Medical Imaging, 16:199–209,
1997.

34. L. Lorigo, O. Faugeraus, W. Grimson, R. Ker-
iven, and R. Kikinis. Segmentation of bone in
clinical knee MRI using texture-based geodesic
active contours. In Medical Image Computing
and Computer-Assisted Intervention (MICCAI
’98), pages 1195–1204, 1998.

35. R. Whitaker and X. Xue. Variable-conductance,
level-set curvature for image denoising. In IEEE
International Conference on Image Processing,
pages 142–145, 2001.

36. D. Adalsteinson and J. A. Sethian. A fast level-
set method for propagating interfaces, Journal
of Computational Physics, pages 269–277,
1995.

37. J. Kent, W. Carlson, and R. Parent. Shape
transformation for polyhedral objects. Com-
puter Graphics (SIGGRAPH ’92 Proceedings),
26:47–54, 1992.

38. J. Rossignac and A. Kaul. AGRELS and BIPs:
metamorphosis as a bezier curve in the space of
polyhedra. Computer Graphics Forum (Euro-
graphics ’94 Proceedings), 13(9):C-179–C-184,
1994.

39. J. Hughes. Scheduled fourier volume morphing.
Computer Graphics (SIGGRAPH ’92 Proceed-
ings), 26(7):43–46, 1992.

40. A. Lerios, C. Garfinkle, and M. Levoy. Feature-
based volume metamorphosis. In SIGGRAPH
’95 Proceedings, pages 449–456, 1995.

41. B. Payne and A. Toga. Distance field manipula-
tion of surface models. IEEE Computer Graphics
and Applications, 12(1):65–71, 1992.

42. D. Cohen-Or, D. Levin, and A. Solomivici. 3D
distance field metamorphosis. ACM Transac-
tions on Graphics, 17(2):117–140, 1998.

43. P. Getto and D. Breen. An object-oriented
architecture for a computer animation system.
The Visual Computer, 6(3):79–92, 1990.

44. K. Museth, D. Breen, R. Whitaker, and A. Barr.
Level-set surface editing operators. In ACM
SIGGRAPH, pages 330–338, 2002.

45. P. Maragos. Differential morphology and image
processing. IEEE Transactions on Image Pro-
cessing, 5(6):922–937, 1996.

46. R. Whitaker. Reducing aliasing artifacts in iso-
surfaces of binary volumes. In IEEE Symp. on
Volume Visualization and Graphics, pages 23–32,
2000.

47. S. Gibson. Using distance maps for accurate
surface representation in sampled volumes. In
1998 Symposium on Volume Graphics, pages 23–
30, ACM SIGGRAPH, 1991.

48. S. Wang and A. Kaufman. Volume-sampled 3D
modeling. IEEE Computer Graphics and Aplica-
tions, 14(5):26–32, 1994.

49. S. Wang and A. Kaufman. Volume-sampled
voxelization of goemetric primitives. In Pro-
ceedings of the 1993 Symposium on Volume Visu-
alization, pages 78–84, ACM SIGGRAPH,
1993.

50. U. Tiede, T. Schiemann, and K. Höhne. High
quality rendering of attibuted volume data.
In IEEE Visualization 1998, pages 255–262,
1998.

51. M. I. Miller and B. Roysam. Bayesian image
reconstruction for emission tomography incorp-
orating Good’s roughness prior on massively
parallel processors. Proc. Natl. Acad. Sci.,
88:3223–3227, 1991.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:59pm page 122

122 Scalar Field Visualization: Isosurfaces

52. T. McInerney and D. Terzopoulos. Deformable
models in medical image analysis: a survey.
Medical Image Analysis, 1(2):91–108, 1996.

53. L. Cooper and D. Steinberg. Introduction to
Methods of Optimization. New York, W.B.
Saunders Company, 1970.

54. R. Whitaker and J. Gregor. A maximum likeli-
hood surface estimator for dense range data.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(10):1372–1387, 2002.

55. T. Tasdizen and R. Whitaker. Higher-order
nonlinear priors for surface reconstruction.
IEEE Trans. on Pattern Recognition and Ma-
chine Intelligence, 26(7):878–891, 2004.

56. P. Perona and J. Malik. Scale-space and edge
detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis Machine Intel-
ligence, 12:629–639, 1990.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:59pm page 123

Isosurfaces and Level-Sets 123

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 6:59pm page 124

This page intentionally left blank

PART III

Scalar Field Visualization:
Volume Rendering

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:53pm page 125

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 10:53pm page 126

This page intentionally left blank

7 Overview of Volume Rendering

ARIE KAUFMAN and KLAUS MUELLER

Center for Visual Computing

Stony Brook University

7.1 Introduction

Volume visualization is a method of extracting

meaningful information from volumetric data

using interactive graphics and imaging. It is

concerned with volume data representation,

modeling, manipulation, and rendering [31,

100,101,176]. Volume data are 3D (possibly

time-varying) entities that may have informa-

tion inside them, may not consist of tangible

surfaces and edges, or may be too voluminous

to be represented geometrically. They are

obtained by sampling, simulation, or modeling

techniques. For example, a sequence of 2D

slices obtained from magnetic resonance im-

aging (MRI), computed tomography (CT),

functional MRI (fMRI), or positron emission

tomography (PET) is 3D-reconstructed into a

volume model and visualized for diagnostic

purposes or for planning of treatment or sur-

gery. The same technology is often used with

industrial CT for nondestructive inspection of

composite materials or mechanical parts. Simi-

larly, confocal microscopes produce data

that is visualized to study the morphology

of biological structures. In many computa-

tional fields, such as computational fluid dy-

namics (CFD), the results of simulations

typically running on a supercomputer are

often visualized as volume data for analysis

and verification. Recently, the area of volume

graphics [104] has been expanding, and many

traditional geometric computer graphics appli-

cations, such as CAD and flight simulation,

have been exploiting the advantages of volume

techniques.

Over the years many techniques have been

developed to render volumetric data. Since

methods for displaying geometric primitives

were already well established, most of the early

methods involve approximating a surface con-

tained within the data using geometric primi-

tives. When volumetric data are visualized

using a surface-rendering technique, a dimen-

sion of information is essentially lost. In re-

sponse to this, volume rendering techniques

were developed that attempt to capture the

entire 3D data in a single 2D image. Volume

rendering conveys more information than

surface-rendered images, but at the cost of

increased algorithm complexity and conse-

quently increased rendering times. To improve

interactivity in volume rendering, many opti-

mization methods both for software and for

graphics-accelerator implementations, as well

as several special-purpose volume rendering

machines, have been developed.

7.2 Volumetric Data

A volumetric dataset is typically a set V of

samples (x,y,z,v), also called voxels, represent-

ing the value v of some property of the data, at a

3D location (x,y,z). If the value is simply a 0 or

an integer i within a set I, with a value of 0

indicating background and the value of i indi-

cating the presence of an object Oi, then the

data is referred to as binary data. The data

may instead be multivalued, with the value rep-

resenting some measurable property of the data,

including, for example, color, density, heat, or

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 127

127

pressure. The value v may even be a vector,

representing, for example, velocity at each loca-

tion or results from multiple scanning modal-

ities, such as anatomical (CT, MRI) and

functional imaging (PERT, fMRI), or color

(RGB) triples, such as the Visible Human cryo-

section dataset [91]. Finally, the volume data

may be time-varying, in which case V becomes

a 4D set of samples (x,y,z,t,v).

In general, the samples may be taken at purely

random locations in space, but in most cases the

set V is isotropic, containing samples taken at

regularly spaced intervals along three orthog-

onal axes. When the spacing between samples

along each axis is a constant, but there are three

different spacing constants for the three axes, the

set V is anisotropic. Since the set of samples is

defined on a regular grid, a 3D array (also called

the volume buffer, 3D raster, or simply volume) is

typically used to store the values, with the elem-

ent location indicating position of the sample on

the grid. For this reason, the set V will be referred

to as the array of values V(x,y,z), which is defined

only at grid locations. Alternatively, either recti-

linear, curvilinear (structured), or unstructured

grids are employed (e.g., Spearey and Kennon

[240]). In a rectilinear grid the cells are axis-

aligned, but grid spacings along the axes

are arbitrary. When such a grid has been nonli-

nearly transformed while preserving the grid

topology, the grid becomes curvilinear. Usually,

the rectilinear grid defining the logical organiza-

tion is called computational space, and the

curvilinear grid is called physical space. Other-

wise the grid is called unstructured or irregular.

An unstructured or irregular volume data is

a collection of cells whose connectivity has to

be specified explicitly. These cells can be of arbi-

trary shapes, such as tetrahedra, hexahedra, or

prisms.

7.3 Rendering via Geometric Primitives

To reduce the complexity of the volume

rendering task, several techniques have been

developed that approximate a surface contained

within the volumetric data by way of geometric

primitives, most commonly triangles, which can

then be rendered using conventional graphics-

accelerator hardware. A surface can be defined

by applying a binary segmentation function B(v)

to the volumetric data, where B(v) evaluates to

1 if the value v is considered part of the object,

and evaluates to 0 if the value v is part of the

background. The surface is then contained in

the region where B(v) changes from 0 to 1.

Most commonly, B(v) is either a step func-

tion, B(v) ¼ 1, 8v � viso (where niso is called the

iso-value), or an interval [v1, v2] in which B(v) ¼
1, 8v 2 [v1, v2] (where [v1, v2] is called the iso-

interval). For the former, the resulting surface

is called the isosurface, while for the latter, the

resulting structure is called the iso-contour. Sev-

eral methods for extracting and rendering iso-

surfaces have been developed; a few are briefly

described here. The marching cubes algorithm

[136] was developed to approximate an iso-

valued surface with a triangle mesh. The algo-

rithm breaks down the ways in which a surface

can pass through a grid cell into 256 cases,

based on the B(v) membership of the 8 voxels

that form the cell’s vertices. By ways of sym-

metry, the 256 cases reduce to 15 base topolo-

gies, although some of these have duals, and a

technique called asymptotic decider [185] can be

applied to select the correct dual case and thus

prevent the incidence of holes in the triangle

mesh. For each of the 15 cases (and their

duals), a generic set of triangles representing

the surface is stored in a lookup table. Each

cell through which a surface passes maps to

one of the base cases, with the actual triangle

vertex locations determined using linear inter-

polation of the cell vertices on the cell edges

(Fig. 7.1). A normal value is estimated for each

triangle vertex, and standard graphics hardware

can be utilized to project the triangles, resulting

in a relatively smooth shaded image of the iso-

valued surface.

When rendering a sufficiently large dataset

with the marching cubes algorithm, with an

average of 3 triangles per cell, millions of tri-

angles may be generated, and this can impede

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 128

128 Scalar Field Visualization: Volume Rendering

interactive rendering of the generated polygon

mesh. To reduce the number of triangles, one

may either postprocess the mesh by applying

one of the many mesh-decimation methods

[63,88,220] or produce a reduced set of primi-

tives in the mesh-generation process, via a fea-

ture-sensitive octree method [223] or discretized

marching cubes [170]. The fact that during

viewing many of the primitives may map to a

single pixel on the image plane led to the devel-

opment of screen-adaptive surface-rendering al-

gorithms that use 3D points as the geometric

primitive. One such algorithm is dividing cubes

[36], which subdivides each cell through which a

surface passes into subcells. The number of div-

isions is selected such that the subcells project

onto a single pixel on the image plane. Another

algorithm that uses 3D points as the geometric

primitive is the trimmed voxel lists method [235].

Instead of subdividing, this method uses one 3D

point (with normal) per visible surface cell, pro-

jecting that cell on up to three pixels of the

image plane to ensure coverage in the image.

The traditional marching cubes algorithm

simply marches across the grid and inspects

every cell for a possible isosurface. This can be

wasteful when users want to interactively change

the iso-value viso and isosurface to explore the

different surfaces embedded in the data. By real-

izing that an isosurface can only pass through a

cell if at least one voxel has a value above or

equal to viso and at least one voxel has a value

below or equal to viso, one can devise data struc-

tures that only inspect cells where this criterion is

fulfilled (Fig. 7.2). Examples are the NOISE

algorithm [135], which uses a kd-tree embedded

into span space for quickly identifying the can-

didate cells (this method was later improved by

Cignoni et al. [35], who used an interval tree), as

well as the ISSUE algorithm [224]. Finally, since

triangles are often generated that are later oc-

cluded during the rendering process, it is advis-

able to visit the cells in front-to-back order and

only extract and render triangles that fall outside

previously occluded areas [62].

7.4 Direct Volume Rendering: Prelude

Representing a surface contained within a volu-

metric dataset using geometric primitives can be

useful in many applications; however, there are

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 129

90

110

200 100

8050

70

Figure 7.1 A grid cell with voxel values as indicated, inter-

sected by an isosurface (iso-value ¼ 125). This is base case

#1 of the marching cubes algorithm: a single triangle separ-

ating surface interior (black vertex) from exterior (white

vertices). The positions of the triangle vertices are estimated

by linear interpolation along the cell edges.

νmax

νmin

νiso

νiso

Candidate cells

Figure 7.2 Each grid cell is characterized by its lowest (vmin)

and its highest (vmax) voxel value, and represented by a point

in span space. Given an iso-value viso, only cells that satisfy

both vmin � viso and vmax � viso contain the isosurface and

are quickly extracted from a kd-tree [135] or interval-tree

[35] embedding of the span-space points.

Overview of Volume Rendering 129

several main drawbacks to this approach. First,

geometric primitives can only approximate sur-

faces contained within the original data. Ad-

equate approximations may require an

excessive amount of geometric primitives.

Therefore, a tradeoff must be made between

accuracy and space requirements. Second, since

only a surface representation is used, much of

the information contained within the data is lost

during the rendering process. For example, in

CT-scanned data, useful information is con-

tained not only on the surfaces, but within the

data as well. Also, amorphous phenomena, such

as clouds, fog, and fire, cannot be adequately

represented using surfaces and therefore must

have a volumetric representation and must be

displayed using volume rendering techniques.

However, before moving to techniques that

visualize the data directly without going through

an intermediate surface-extraction step, we first

discuss in the next section some of the general

principles that govern the theory of discretized

functions and signals, such as the discrete

volume data. We also present some specialized

theoretical concepts that are more relevant in

the context of volume visualization.

7.5 Volumetric Function Interpolation

The volume grid V only defines the value

of some measured property f (x,y,z) at discrete

locations in space. If one requires the value

of f(x,y,z) at an off-grid location (x,y,z), a pro-

cess called interpolation must be employed

to estimate the unknown value from the

known grid samples V(x,y,z). There are many

possible interpolation functions (also called

filters or filter kernels). The simplest interpol-

ation function is known as zero-order inter-

polation, which is actually just a nearest-

neighbor function. That is, the value at any

location (x,y,z) is simply that of the grid sample

closest to that location:

f (x, y, z)

¼ V (round(x), round(y), round(z))
(7:1)

which gives rise to a box filter (black curve in Fig.

7.4). With this interpolation method there is a

region of constant value around each sample in

V. The human eye is very sensitive to the jagged

edges and unpleasant staircasing that result from

a zero-order interpolation, and therefore this

kind of interpolation gives generally the poorest

visual results (see Fig. 7.3a).

Linear or first-order interpolation (the

magenta curve in Fig. 7.4) is the next-best

choice, and its 2D and 3D versions are called

bi-linear and tri-linear interpolation, respect-

ively. It can be written as three stages of seven

linear interpolations, since the filter function is

separable in higher dimensions. The first four

linear interpolations are along x:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 130

(a) (b)

Figure 7.3 Magnification via interpolation with (a) a box filter and (b) a bi-linear filter. The latter gives a much more pleasing

result.

130 Scalar Field Visualization: Volume Rendering

f (u, v0, 1,w0, 1) ¼ (1� u)

(V (0, v0, 1, w0, 1)þ uV (1, v0, 1,w0, 1))
(7:2)

Using these results, 2 linear interpolations along

y follow:

f (u, v,w0, 1) ¼ (1� v)f (u, 0,w0, 1)

þ vf (u, 1, w0, 1)
(7:3)

One final interpolation along z yields the inter-

polation result:

f (x, y, z) ¼ f (u, v, w)

¼ (1� w)f (u, v, 0)þ wf (u, v, 1)
(7:4)

Here u,v,w are the distances (assuming a cell of

size 13, without loss of generality) of the sample

at (x, y, z) from the lower, left, rear voxel in the

cell containing the sample point (e.g., the voxel

with value 50 in Fig. 7.1). A function interpol-

ated with a linear filter no longer suffers from

staircase artifacts (see Fig. 7.3b). However, it

has discontinuous derivatives at cell boundaries,

which can lead to noticeable banding when the

visual quantities change rapidly from one cell to

the next.

A second-order interpolation filter that

yields a f (x, y, z) with a continuous first deriva-

tive is the cardinal spline function, whose ID

function is given by (see blue curve in Fig. 7.4):

h(u) ¼
(aþ 2)juj3 � (aþ 3)juj2 þ 1 0 � juj < 1

ajuj3 � 5ajuj2 þ 8ajuj � 4a 1 � juj � 2

0 juj > 2

8><
>:

(7:5)

Here, u measures the distance of the sample

location to the grid-points that fall within the

extent of the kernel, and a ¼ �0:5 yields the

Catmull–Rom spline, which interpolates a dis-

crete function with the lowest third-order error

[107]. The 3D version of this filter h(u, v, w) is

separable, i.e., h(u, v, w) ¼ h(u)h(v)h(w), and

therefore interpolation in 3D can be written as

a 3-stage nested loop.

A more general form of the cubic function

has two parameters, and the interpolation results

obtained with different settings of these param-

eters has been investigated by Mitchell and

Netravali [165]. In fact, the choice of filters

and their parameters always presents tradeoffs

between the sensitivity to noise, sampling fre-

quency ripple, aliasing (see below), ringing, and

blurring, and there is no optimal setting that

works for all applications. Marschner and

Lobb [151] extended the filter discussion to

volume rendering and created a challenging

volumetric test function with a uniform fre-

quency spectrum that can be employed to visu-

ally observe the characteristics of different

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 131

0.2

0.4

0.6

0.8

1

0123 321
x

Figure 7.4 Popular filters in the spatial domain: box (black), linear (magenta), cubic (blue), Gaussian (red). (See also color insert.)

Overview of Volume Rendering 131

filters (see Fig. 7.5). Finally, Möller et al. [167]

applied a Taylor series expansion to devise a set

of optimal nth order filters that minimize the

(nþ 1)-th order error.

Generally, higher filter quality comes at the

price of wider spatial extent (compare Fig. 7.4)

and therefore larger computational effort. The

best filter possible in the numerical sense is the

sinc filter, but it has infinite spatial extent and

also tends to noticeable ringing [165]. Sinc filters

make excellent, albeit expensive, interpolation

filters when used in truncated form and multi-

plied by a window function [151,252], possibly

adaptive to local detail [148]. In practice, first-

order or linear filters give satisfactory results for

most applications, providing good cost–quality

tradeoffs, but cubic filters are also used. Zero-

order filters give acceptable results when the

discrete function has already been sampled at a

very high rate, e.g., in high-definition function

lookup tables [270].

All filters presented thus far are grid-interpol-

ating filters, i.e., their interpolation yields

f (x, y, z) ¼ V (x, y, z) at grid-points [254]. When

presented with a uniform grid signal they also

interpolate a uniform f (x, y, z) everywhere. This

is not the case with a Gaussian filter function

(red curve in Fig. 7.4), which can be written as

h(u, v,w) ¼ b � e�a(u2þv2þw2) (7:6)

Here, a determines the width of the filter and b

is a scale factor. The Gaussian has infinite con-

tinuity in the interpolated function’s derivative,

but it introduces a slight ripple (about 0.1%)

into an interpolated uniform function. The

Gaussian is most popular when a radially sym-

metric interpolation kernel is needed [268,183]

and for grids that assume that the frequency

spectrum of f (x, y, z) is radially bandlimited

[253,182].

It should be noted that interpolation cannot

restore sharp edges that may have existed in

the original function forg(x, y, z) prior to sam-

pling into the grid. Filtering will always

smooth or lowpass the original function some-

what. Nonlinear filter kernels [93] or transform-

ations of the interpolated results [180] are

needed to recreate sharp edges, as we shall see

later.

A frequent artifact that can occur is aliasing.

It results from inadequate sampling and gives

rise to strange patterns that did not exist in

the sampled signal. Proper prefiltering (bandli-

miting) has to be performed whenever a signal

is sampled below its Nyquist limit, i.e., twice

the maximum frequency that occurs in the

signal. Filtering after aliasing will not undo

these adverse effects. Fig. 7.6 illustrates this

by way of an example, and the interested

reader may consult standard texts such as

Wolberg [281] and Foley et al. [57] for more

detail.

The gradient of f (x, y, z) is also of great

interest in volume visualization, mostly for

the purpose of estimating the amount of

light reflected from volumetric surfaces towards

the eye (for example, strong gradients indicate

stronger surfaces and therefore stronger reflec-

tions). There are three popular methods to

estimate a gradient from the volume data

[166]. The first computes the gradient vector

at each grid-point via a process called central

differencing:

gx

gy

gz

2
64

3
75 ¼

V (x� 1, y, z)

V (x, y� 1, z)

V (x, y, z� 1)

2
64

3
75�

V (xþ 1, y, z)

V (x, yþ 1, z)

V (x, y, zþ 1)

2
64

3
75

(7:7)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 132

Figure 7.5 Marschner–Lobb test function, sampled into a

203 grid: (a) the whole function; (b) close-up, reconstructed,

and rendered with a cubic filter. (See also color insert.)

132 Scalar Field Visualization: Volume Rendering

and then interpolates the gradient vectors at a

(x,y,z) using any of the filters described above.

The second method also uses central differen-

cing, but it does it at (x,y,z) by interpolating

the required support samples on the fly. The

third method is the most direct and employs a

gradient filter [11] in each of the three axis

directions to estimate the gradients. These

three gradient filters could be simply the

(u,v,w) partial derivatives of the filters de-

scribed already or they could be a set of opti-

mized filters [166]. The third method gives the

best results since it performs only one interpol-

ation step, while the other two methods have

lower complexity and often have practical ap-

plication-specific advantages. An important ob-

servation is that gradients are much more

sensitive to the quality of the interpolation

filter because they are used in illumination cal-

culations, which consist of higher-order func-

tions that involve the normal vectors, which in

turn are calculated from the gradients via nor-

malization [167].

7.6 Volume Rendering Techniques

In the next subsections various fundamental

volume rendering techniques are explored.

Volume rendering or direct volume rendering is

the process of creating a 2D image directly from

3D volumetric data, hence it is often called

direct volume rendering. Although several of

the methods described in these subsections

render surfaces contained within volumetric

data, these methods operate on the actual data

samples, without generating the intermediate

geometric primitive representations used by the

algorithms in the previous section.

Volume rendering can be achieved using

an object-order, image-order, or domain-based

technique. Hybrid techniques have also been

proposed. Object-order volume rendering tech-

niques use a forward mapping scheme where the

volume data is mapped onto the image plane. In

image-order algorithms, a backward mapping

scheme is used where rays are cast from each

pixel in the image plane through the volume

data to determine the final pixel value. In a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 133

(d)(a)

(c) (e)(b)

Figure 7.6 Anti-aliasing. (a) Original image. (b) Reduction by simple subsampling—disturbing patterns emerge, caused by

aliasing the higher frequency content. (c) Blurring of (b) does not eliminate patterns. (d) Prefiltering (blurring) of the original

image reduces its high-frequency content. (e) Subsampling of (d) does not cause aliasing, due to the prior bandlimiting

operation.

Overview of Volume Rendering 133

domain-based technique, the spatial volume

data is first transformed into an alternative

domain, such as compression, frequency, or

wavelet, and then a projection is generated dir-

ectly from that domain.

7.6.1 Image-Order Techniques

There are four basic volume rendering modes:

x-ray rendering, maximum intensity projection

(MIP), isosurface rendering, and full volume

rendering, where the third mode is just a special

case of the fourth. These four modes share two

common operations: (1) They all cast rays from

the image pixels, sampling the grid at discrete

locations along their paths, and (2) they all

obtain the samples via interpolation, using the

methods described in the previous section. The

modes differ, however, in how the samples

taken along a ray are combined. In x-ray

rendering, the interpolated samples are simply

summed, giving rise to a typical image obtained

in projective diagnostic imaging (Fig. 7.7a),

while in MIP only the interpolated sample

with the largest value is written to the pixel

(Fig. 7.7b). In full volume rendering (Figs. 7.7c

and 7.7d), on the other hand, the interpolated

samples are further processed to simulate the

light transport within a volumetric medium

according to one of many possible models. In

the remainder of this section, we shall concen-

trate on the full volume rendering mode since it

provides the greatest degree of freedom, al-

though rendering algorithms have been pro-

posed that merge the different modes into a

hybrid image-generation model [80].

The fundamental element in full volume

rendering is the volume rendering integral.

In this section we shall assume the low-albedo

scenario, in which a certain light ray only scat-

ters once before leaving the volume. The low-

albedo optical model was first described by Blinn

[14] and Kajiya and Herzen [98], and then for-

mally derived by Max [152]. It computes, for

each cast ray, the quantity Il(x, r), which is the

amount of light of wavelength l coming from

ray direction r that is received at point x on the

image plane:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 134

(a)

(c)

(b)

(d)

Figure 7.7 CT head rendered in the four main volume rendering modes: (a) x-ray; (b) MIP; (c) isosurface; (d) translucent. (See

also color insert.)

134 Scalar Field Visualization: Volume Rendering

Il(x, r) ¼
ðL

0

Cl(s)m(s) exp

�
ðs

0

m(t)dt

� �
ds

(7:8)

Here L is the length of ray r. We can think of

the volume as being composed of particles

with certain mass density values m (Max [152]

calls them light extinction values). These

values, as well as the other quantities in this

integral, are derived from the interpolated

volume densities f (x,y,z) via some mapping

function. The particles can contribute light to

the ray in three different ways: via emission

[215], transmission, or reflection [258], thus

Cl(s) ¼ El(s)þ Tl(s)þ Rl(s). The latter two

terms, Tl and Rl, transform light received

from surrounding light sources, while the

former, El, is due to the light-generating cap-

acity of the particle. The reflection term takes

into account the specular and diffuse material

properties of the particles. To account for the

higher reflectivity of particles with larger mass

densities, one must weight Cl by m. In low-

albedo, we track only the light that is received

on the image plane. Thus, in Equation 7.8, Cl is

the portion of the light of wavelength l avail-

able at location s that is transported in the

direction of r. This light then gets attenuated

by the mass densities of the particles along

r, according to the exponential attenuation

function.

Rl(s) is computed via the standard illumin-

ation equation [57]:

R(s) ¼ kaCa þ kdClC0(s)(N(s) � L(s))

þ ksCl(N(s) �H(s))ns (7:9)

where we have dropped the subscript l for

reasons of brevity. Here, Ca is the ambient

color, ka is the ambient material coefficient, Cl

is the color of the light source, C0 is the color of

the object (determined by the density–color

mapping function), kd is the diffuse material

coefficient, N is the normal vector (determined

by the gradient), L is the light direction vector,

ks is the specular material coefficient, H is the

halfvector, and ns is the Phong exponent.

Equation 7.8 models only the attenuation of

light from s to the eye (see Fig. 7.8). But the

light received at s is also attenuated by the

volume densities on its path from the light

source to s. This allows us to develop the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 135

Light source

Delivered light

Sample point s

Eye

Reflected light

Figure 7.8 Transport of light to the eye. (See also color insert.)

Overview of Volume Rendering 135

following term for C1 in Equation 7.9, which is

now dependent on the location s:

Cl(s) ¼ CL exp �
ðT

s

m(t)dt

0
@

1
A (7:10)

Here, CL is the color of the light source and T is

the distance from s to the light source (see

Fig. 7.8). The inclusion of this term into Equa-

tion 7.9 produces volumetric shadows, which

give greater realism to the image [191,290] (see

Fig. 7.9). In practice, applications that compute

volumetric shadows are less common, due to the

added computational complexity, but an inter-

active hardware-based approach has been pro-

posed [113,114].

The analytic volume rendering integral can-

not, in the general case, be computed efficiently,

if at all, and therefore a variety of approxima-

tions are in use. An approximation of Equa-

tion 7.8 can be formulated using a discrete

Riemann sum, where the rays interpolate a set

of samples, most commonly spaced apart by a

distance Ds:

Il(x, r) ¼
XL=Ds� 1

i¼0

Cl(iDs)m(iDs)Ds

Yi�1

j¼0

exp (� m(jDs)Ds)

(7:11)

A few more approximations make the com-

putation of this equation more efficient. First,

the transparency t(iDs) is defined as exp (�m
(iDs)Ds). Transparency assumes values in the

range [0.0,1.0]. The opacity a(iDs) ¼ (1� t

(iDs)) is the inverse of the transparency. Fur-

ther, the exponential term in Equation 7.11

can be approximated by the first two terms of

its Taylor series expansion: t(iDs) ¼ exp (�m
(iDs)Ds) � 1� m(iDs)Ds. Then, one can write

m(iDs)Ds � 1� t(iDs) ¼ a(iDs). This transforms

Equation 7.11 into the well known compositing

equation

Il(x, r) ¼
XL=Ds�1

i¼0

Cl(iDs)a(iDs) �
Yi�1

i¼0

(1� a(jDs))

(7:12)

This is a recursive equation in (1� a) and gives

rise to the recursive front-to-back compositing

formula [127,207]:

c ¼ C(iDs)a(iDs)(1� a)þ c

a ¼ a(iDs)(1� a)þ a
(7:13)

Thus, a practical implementation of the volu-

metric ray would traverse the volume from front

to back, calculating colors and opacities at each

sampling site, weighting these colors and opa-

cities by the current accumulated transparency

(1� a), and adding these terms to the accumu-

lated color and transparency to form the terms

for the next sample along the ray. An attractive

property of the front-to-back traversal is that a

ray can be stopped once a approaches 1.0,

which means that light originating from struc-

tures farther back is completely blocked by the

cumulative opaque material in front. This pro-

vides for accelerated rendering and is called

early ray termination. An alternative form of

Equation 7.13 is the back-to-front compositing

equation:

c ¼ c(1� a(iDs))þ C(iDs)

a ¼ a(1� a(iDs))þ a(iDs)
(7:14)

Back-to-front compositing is a generalization of

the Painter’s algorithm and does not enjoy

speedup opportunities of early ray termination

and is therefore less frequently used.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 136

Figure 7.9 CT lobster rendered without shadows (left) and

with shadows (right). The shadows on the wall behind the

lobster and the self-shadowing of the legs create greater

realism. (See also color insert.)

136 Scalar Field Visualization: Volume Rendering

Equation 7.12 assumes that a ray interpolates

a volume that stores at each grid-point a color

vector (usually a (red,green,blue) ¼ RGB triple)

as well as an a value [127,128]. There, the colors

are obtained by shading each grid-point using

Equation 7.9. Before we describe the alternative

representation, let us first discuss how the voxel

densities are mapped to the colors Co in Equa-

tion 7.9.

The mapping is implemented as a set of map-

ping functions, often implemented as 2D tables,

called transfer functions. By way of the transfer

functions, users can interactively change the

properties of the volume dataset. Most applica-

tions give access to four mapping functions:

(Rd), G(d), B(d), A(d), where d is the value of

a grid voxel, typically in the range of [0,255] for

8-bit volume data. Thus, users can specify semi-

transparent materials by mapping their densities

to opacities < 1:0, which allows rays to acquire

a mix of colors that is due to all traversed

materials. More advanced applications also

give users access to transfer functions that map

ks(d), kd(d), ns(d) and others. Wittenbrink

et al. [280] pointed out that the colors and opa-

cities at each voxel should be multiplied prior to

interpolation to avoid artifacts on object

boundaries.

The model in Equation 7.12 is called the pre-

classification model, since voxel densities are

mapped to colors and opacities prior to inter-

polation. This model cannot resolve high-

frequency detail in the transfer functions (see

Fig. 7.10 for an example), and it also typically

gives blurry images under magnification [180].

An alternative model that is more often used is

the post-classification model. Here, the raw

volume values are interpolated by the rays,

and the interpolation result is mapped to color

and opacity:

Il(x, r) ¼
XL=Ds�1

i¼0

Cl(f (iDs), g(iDs))

a(f (iDs))
Yi�1

j¼0

(1� a(f (jDs)))

(7:15)

The function value f (iDs) and the gradient

vector g(iDs) are interpolated from fd(x, y, z)

using a 3D interpolation kernel, and Cl and

a are now the transfer and shading func-

tions that translate the interpolated volume

function values into color and opacity. This

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 137

Density

Color

d1 d2
Sampling site s

d12

df
db

(a)
(b)

d1

d2

Figure 7.10 Transfer-functionaliasing.Whenthevolume is renderedpreclassified, thenboththe red (densityd1, toprowin (b))and

the blue (density d2, bottomrow) voxels receive a color of zero, according to the transfer function shownon the left.At ray sampling

this voxelneighborhoodat swould then interpolateacolorof zeroaswell.Ontheotherhand, inpost-classificationrendering, the ray

at s would interpolate a density close to d12 (between d1 and d2) and retrieve the strong color associated with d12 in the transfer

function. (See also color insert.)

Overview of Volume Rendering 137

generates considerably sharper images (see

Fig. 7.11).

A quick transition from 0 to 1 at some density

value di in the opacity transfer function selects

the isosurface diso ¼ di. Thus, isosurface render-

ing is merely a subset of full volume rendering,

where the ray hits a material with d ¼ diso and

then immediately becomes opaque and termin-

ates.

Post-classified rendering eliminates only some

of the problems that come with busy transfer

functions. Consider again Fig. 7.10a, and now

assume a very narrow peak in the transfer func-

tion at d12. With this kind of transfer function, a

ray point sampling the volume at s may easily

miss to interpolate d12, but might have inter-

polated it had it just sampled the volume at

sþ ds. Preintegrated transfer functions [55]

solve this problem by precomputing a 2D table

that stores the analytical volume rendering inte-

gration for all possible density pairs (df , db).

This table is then indexed during rendering by

each ray sample pair (db, df), interpolated at

sample locations Ds apart (see Fig. 7.10b). The

preintegration assumes a piecewise linear func-

tion within the density pairs and thus guaran-

tees that no transfer function detail falling

between two interpolated (df , db) fails to be con-

sidered in the discrete ray integration.

7.6.2 Object-Order Techniques

Object-order techniques decompose the volume

into a set of basis elements or basis functions,

which are individually projected to the screen

and assemble into an image. If the volume

rendering mode is x-ray or MIP, then the basis

functions can be projected in any order, since in

x-ray and MIP the volume rendering integral

degenerates to a commutative sum or MAX

operation. In contrast, depth ordering is re-

quired when solving for the generalized volume

rendering integral in Equation 7.8. Early work

represented the voxels as disjoint cubes, which

gave rise to the cuberille representation [68,83].

Since a cube is equivalent to a nearest neighbor

kernel, the rendering results were inferior.

Therefore, more recent approaches have turned

to kernels of higher quality.

To better understand the issues associated

with object-order projection, it helps to view

the volume as a field of basis functions h, with

one such basis kernel located at each grid-point

where it is modulated by the grid-point’s value

(see Fig. 7.12, where two such kernels are

shown). This ensemble of modulated basis func-

tions then makes up the continuous object

representation, i.e., one could interpolate a

sample anywhere in the volume by simply

adding up the contributions of the modulated

kernels that overlap at the location of the

sample value. Hence, one could still traverse

this ensemble with rays and render it in image

order. However, a more efficient method

emerges when realizing that the contribution of

a voxel j with value dj is given by dj �
Ð

h(s)ds,

where s follows the line of kernel integration

along the ray. Further, if the basis kernel is

radially symmetric, then the integrationÐ
h(s)ds is independent of the viewing direction.

Therefore, one can perform a preintegration ofÐ
h(s)ds and store the result into a lookup table.

This table is called the kernel footprint, and the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 138

Figure 7.11 Pre-classified (left column) vs. post-classifica-

tion (right column) rendering. The latter yields sharper

images since the opacity and color classification is performed

after interpolation. This eliminates the blurry edges intro-

duced by the interpolation filter. (See also color insert.)

138 Scalar Field Visualization: Volume Rendering

kernel projection process is referred to as kernel

splatting or simply splatting. If the kernel is a

Gaussian, then the footprint is a Gaussian as

well. Since the kernel is identical for all voxels,

we can use it for all voxels. We can generate an

image by going through the list of object voxels

in depth order and performing the following

steps for each (see again Fig. 7.12): (1) Calculate

the screen-space coordinate of the projected

grid-point; (2) Center the footprint around

that point and stretch it according to the

image magnification factor; (3) Rasterize the

footprint to the screen, using the preintegrated

footprint table and multiplying the indexed

values by the voxel’s value [268,269,270]. This

rasterization can either be performed via fast

DDA procedures [147,174], or, in graphics

hardware, by texture-mapping the footprint

(basis image) onto a polygon [42].

There are three types of splatting: composite-

only, axis-aligned sheet-buffered, and image-

aligned sheet-buffered (IASB) splatting. The

composite-only method was proposed first

[269] and is the most basic one (see Fig. 7.12).

Here, the object points are traversed in either

front-to-back or back-to-front order. Each is

first assigned a color and opacity using the

shading equation (Equation 7.9) and the trans-

fer functions. Then, each point is splatted into

the screen’s color and opacity buffers and the

result is composited with the present image

(Equation 7.13). In this approach, color bleed-

ing and slight sparkling artifacts in animated

viewing may be noticeable since the interpol-

ation and compositing operations cannot be

separated due to the preintegration of the basis

(interpolation) kernel [270].

An attempt to solve this problem gave way

to the axis-aligned sheet-buffered splatting ap-

proach [268] (see Fig. 7.13a). Here, the grid-

points are organized into sheets (basically the

volume slices most parallel to the image plane),

assigned a color and opacity, and splatted into

the sheet’s color and opacity buffers. The im-

portant difference is that now all splats within

a sheet are added and not composited, while

only subsequent sheets are composited. This

prevents potential color bleeding of voxels lo-

cated in consecutive sheets, due to the more

accurate reconstruction of the opacity layer.

The fact that the voxel sheets must be formed

by the volume slices most parallel to the

viewing axis leads to a sudden switch of the

compositing order when the major viewing dir-

ection changes, and an orthogonal stack of

volume slices must be used to organize the

voxels. This causes noticeable popping artifacts

where some surfaces suddenly reflect less light

and others more [173]. The solution to this

problem is to align the compositing sheet with

the image plane at all times, which gives rise to

the image-aligned sheet-buffered splatting ap-

proach [173] (see Fig. 7.13b). Here, a slab is

advanced across the volume and all kernels

that intersect the slab are sliced and projected.

Kernel slices can be preintegrated into foot-

prints as well, and thus this sheet-buffered ap-

proach differs from the original one in that

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 139

composite

splat

screen

Figure 7.12 Object-order volume rendering with kernel splatting implemented as footprint mapping. (See also color insert.)

Overview of Volume Rendering 139

each voxel has to be considered more than

once. The image-aligned splatting method pro-

vides the most accurate reconstruction of the

voxel field prior to compositing and eliminates

both color bleeding and popping artifacts. It is

also best suited for post-classification rendering

since the density (and gradient) field is recon-

structed accurately in each sheet. However, it is

more expensive due to the multiple splatting of

a voxel.

The divergence of rays under perspective

viewing causes undersampling of the volume

portions farther away from the viewpoint (see

Fig. 7.14). This leads to aliasing in these areas.

As was demonstrated in Fig. 7.6, lowpassing

can eliminate the artifacts caused by aliasing

and replace them by blur (see Fig. 7.15). For

perspective rendering, the amount of required

lowpassing increases with distance from the

viewpoint. The kernel-based approaches can

achieve this progressive lowpassing by simply

stretching the footprints of the voxels as a func-

tion of depth, since stretched kernels act as low-

pass filters (see Fig. 7.14). EWA (Elliptical

Weighted Average) Splatting [293] provides a

general framework to define the screen-space

shape of the footprints, and their mapping into

a generic footprint, for generalized grids under

perspective viewing. An equivalent approach

for ray-casting is to split the rays in more distant

volume slices to always maintain the proper

sampling rate [190]. Kreeger et al. [118] pro-

posed an improvement of this scheme that splits

and merges rays in an optimal way.

A major advantage of object-order methods

is that only the points (or other basis primitives,

such as tetrahedral or hexagonal cells [273]) that

make up the object must be stored. This can be

advantageous when the object has an intricate

shape, with many pockets of empty space [159].

While ray-casting would spend much effort tra-

versing (and storing) the empty space, kernel-

based or point-based objects will not consider

the empty space, neither during rendering nor

for storage. However, there are tradeoffs; since

the rasterization of a footprint takes more time

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 140

add

composite

add

composite

(a) (b)

Figure 7.13 Sheet-buffered splatting. (a) Axis-aligned—the entire kernel within the current sheet is added. (b) Image-aligned—

only slices of the kernels intersected by the current sheet-slab are added. (See also color insert.)

zk

Figure 7.14 Stretching the basis functions in volume layers

z > zk, where the sampling rate of the ray grid is progres-

sively less than the volume resolution. (See also color insert.)

140 Scalar Field Visualization: Volume Rendering

than the commonly used tri-linear interpolation

of ray samples, since the radially symmetric

kernels employed for splatting must be larger

than the tri-linear kernels to ensure proper

blending. Hence, objects with compact structure

are more favorably rendered with image-order

methods or hybrid methods (see next section).

Another disadvantage of object-order methods

is that early ray termination is not available to

cull occluded material early from the rendering

pipeline. The object-order equivalent is early

point elimination, which is more difficult to

achieve than early ray termination. Finally,

image-order methods allow the extension of

ray-casting to ray-tracing, where secondary

and higher-order rays are spawned at reflection

sites. This facilitates mirroring on shiny sur-

faces, inter-reflections between objects, and

soft shadows.

There are a number of ways to store and

manage point-based objects. These schemes

are mainly distinguished by their ability to ex-

ploit spatial coherence during rendering. The

lack of spatial coherence requires more depth

sorting during rendering and also means more

storage for spatial parameters. The least spatial

coherence results from storing the points sorted

by density [41]. This has the advantage that

irrelevant points, being assigned transparent

values in the transfer functions, can be quickly

culled from the rendering pipeline. However, it

requires that (x,y,z) coordinates, and possibly

gradient vectors, are stored along with the

points since neighborhood relations are com-

pletely lost. It also requires that all points be

view-transformed before they can be culled due

to occlusion or exclusion from the viewing

pyramid. The method also requires that the

points be depth-sorted during rendering, or at

least tossed into depth bins [177]. A comprom-

ise is struck by Ihm and Lee [94], who sort

points by density within volume slices only,

which gives implicit depth-ordering when

used in conjunction with an axis-aligned

sheet-buffer method. A number of approaches

exist that organize the points into run length

encoded (RLE) lists, which allow the spatial

coordinates to be incrementally computed

when traversing the runs [108,182]. However,

these approaches do not allow points to be

easily culled based on their density value.

Finally, one may also decompose the volume

into a spatial octree and maintain a list of

voxels in each node. This provides depth

sorting on the node-level.

A number of surface-based splatting

methods have also been described. These do

not provide the flexibility of volume explor-

ation via transfer functions, since the original

volume is discarded after the surface has been

extracted. They only allow a fixed geometric

representation of the object that can be viewed

at different orientations and with different

shadings. A popular method is shell-rendering

[259], which extracts from the volume (possibly

with a sophisticated segmentation algorithm) a

certain thin or thick surface or contour and

represents it as a closed shell of points. Shell-

rendering is fast since the number of points is

minimized and its data structure used has high

cache coherence. More advanced point-based

surface rendering methods are QSplat [214],

Surfels [201], and Surface Splats [292], which

have been predominantly developed for point-

clouds obtained with range scanners, but can

also be used for surfaces extracted from

volumes [293].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 141

Figure 7.15 Anti-aliased splatting. (Left) A checkerboard

tunnel rendered in perspective with equal-sized splats. Alias-

ing occurs at distances beyond the black square. (Right) The

same checkerboard tunnel rendered with scaled splats. The

aliasing has been replaced by blur. (See also color insert.)

Overview of Volume Rendering 141

7.6.3 Hybrid Techniques

Hybrid techniques seek to combine the advan-

tages of the image-order and object-order

methods, i.e., they use object-centered storage

for fast selection of relevant material (which is a

hallmark of object-order methods) and they use

early ray termination for fast occlusion culling

(which is a hallmark of image-order methods).

The shear-warp algorithm [120] is such a

hybrid method. In shear-warp, the volume is

rendered by a simultaneous traversal of RLE-

encoded voxel and pixel runs, where opaque

pixels and transparent voxels are efficiently

skipped during these traversals (see Fig. 7.16a).

Further speed comes from the fact that sam-

pling only occurs in the volume slices via bi-

linear interpolation, and that the ray grid reso-

lution matches that of the volume slices, and

therefore the same bi-linear weights can be

used for all rays within a slice (see Fig. 7.16b).

The caveat is that the image must first be

rendered from a sheared volume onto a so-

called base-plane, which is aligned with the

volume slice most parallel to the true image

plane (Fig. 7.16b). After completing the base-

plane rendering, the base-plane image must be

warped onto the true image plane and the

resulting image is displayed. All of this com-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 142

Nontransparent RLE run

Skip

Opaque run
Base plane

Post-rendering warp

Work Skip Work Work Skip

Image plane

Ray sample points within slice

(a)

(b)

Figure 7.16 The shear-warp algorithm. (a) Mechanism; (b) interpolation scheme.

142 Scalar Field Visualization: Volume Rendering

bined enables frame rates in excess of 10 frames/s

on current PC processors, for a 1283 volume.

There are a number of compromises that had to

be made in the process:

. Since the interpolation occurs within only

one slice at a time, more accurate tri-linear

interpolation reduces to less accurate bi-

linear interpolation and the ray sampling

distance varies between 1 and
ffiffiffi
3
p

, depending

on the view orientation. This leads to alias-

ing and staircasing effects at viewing angles

near 458.
. Since the volume is run length encoded, one

needs to use three sets of voxel encodings (but

it could be reduced to two [249]), one for each

major viewing direction. This triples the

memory required for the runs, but in return,

the RLE saves considerable space.

. Since there is only one interpolated value per

voxel-slice 4-neighborhood, zooming can

only occur during the warping phase and

not during the projection phase. This leads

to considerable blurring artifacts at zoom

factors greater than 2. This post-rendering

magnification, in fact, is a major source of

the speedup for the shear-warp algorithm.

An implementation of the shear-warp algo-

rithm is publicly available as the volpack pack-

age [90] from Stanford University.

7.6.4 Domain Volume Rendering

In domain rendering, the spatial 3D data is first

transformed into another domain, such as the

compression, the frequency, or the wavelet

domain, and then a projection is generated dir-

ectly from that domain or with the help of infor-

mation from that domain. The frequency

domain rendering applies the Fourier slice pro-

jection theorem, which states that a projection

of the 3D data volume from a certain view

direction can be obtained by extracting a 2D

slice perpendicular to that view direction out

of the 3D Fourier spectrum and then inverse-

Fourier-transforming it. This approach obtains

the 3D volume projection directly from the 3D

spectrum of the data, and therefore reduces the

computational complexity for volume rendering

from O(N3) to O(N2 log (N)) [50,149,256]. A

major problem of frequency domain volume

rendering is the fact that the resulting projection

is a line integral along the view direction that

does not exhibit any occlusion and attenuation

effects. Totsuka and Levoy [256] proposed a

linear approximation to the exponential attenu-

ation [215] and an alternative shading model to

fit the computation within the frequency-

domain rendering framework.

The compression domain rendering performs

volume rendering from compressed scalar data

without decompressing the entire dataset and

therefore reduces the storage, computation,

and transmission overhead of otherwise large

volume data. For example, Ning and Hesselink

[187,188] first applied vector quantization in the

spatial domain to compress the volume and

then directly rendered the quantized blocks

using regular spatial domain volume rendering

algorithms. Fowler and Yagel [58] combined

differential pulse-code modulation and Huff-

man coding and developed a lossless volume-

compression algorithm, but their algorithm is

not coupled with rendering. Yeo and Liu [288]

applied the discrete cosine transform-based

compression technique on overlapping blocks

of the data. Chiueh et al. [33] applied the 3D

Hartley transform to extend the JPEG still-

image compression algorithm [261] for the

compression of sub-cubes of the volume, and

performed frequency domain rendering on the

sub-cubes before compositing the resulting sub-

images in the spatial domain. Each of the 3D

Fourier coefficients in each sub-cube is then

quantized, linearly sequenced through a 3D

zig-zag order, and then entropy encoded. In

this way, they alleviated the problem of lack of

attenuation and occlusion in frequency domain

rendering while achieving high compression

ratios, fast rendering speed compared to spatial

volume rendering, and improved image quality

over conventional frequency domain rendering

techniques. More recently, Guthe et al. [73] and

Sohn and Bajaj [239] have used principles from

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:04pm page 143

Overview of Volume Rendering 143

MPEG encoding to render time-varying data-

sets in the compression domain.

Rooted in time-frequency analysis, wavelet

theory [34,46] has gained popularity in recent

years. A wavelet is a fast-decaying function with

zero averaging. The nice features of wavelets are

that they have local property in both spatial and

frequency domain and can be used to fully rep-

resent volumes with small numbers of wavelet

coefficients. Muraki [181] first applied wavelet

transform to volumetric data sets, Gross et al.

[71] found an approximate solution for the

volume rendering equation using orthonormal

wavelet functions, and Westermann [266] com-

bined volume rendering with wavelet-based

compression. However, not all of these algo-

rithms have focused on the acceleration of

volume rendering using wavelets. The greater

potential of wavelet domain, based on the ele-

gant multiresolution hierarchy provided by the

wavelet transform, is to exploit the local fre-

quency variance provided by wavelet transform

to accelerate the volume rendering in homoge-

neous areas. Guthe and Strasser [74] have re-

cently used the wavelet transform to render very

large volumes at interactive frame rates on tex-

ture-mapping hardware. They employ a wavelet

pyramid encoding of the volume to reconstruct,

on the fly, a decomposition of the volume into

blocks of different resolutions. Here, the reso-

lution of each block is chosen based on the local

error committed and the resolution of the screen

area the block is projected onto. Each block is

rendered individually with 3D texture-mapping

hardware, and the block decomposition can be

used for a number of frames, which amortizes

the work spent on the inverse wavelet transform

to construct the blocks.

7.7 Acceleration Techniques

The high computational complexity of volume

rendering has led to a great variety of ap-

proaches for its acceleration. In this section,

we will discuss general acceleration techniques

that can benefit software as well as hardware

implementations. We have already mentioned a

few acceleration techniques in the previous

section, such as early ray termination [127],

post-rendering warps for magnified viewing

[120], and the splatting of preintegrated voxel

basis functions [270]. The latter two gave rise to

independent algorithms, that is, shear-warp

[120] and splatting [270]. Acceleration tech-

niques generally seek to take advantage of prop-

erties of the data, such as empty space, occluded

space, and entropy, as well as properties of the

human perceptional system, such as its insensi-

tivity to noise over structural artifacts.

A number of techniques have been proposed

to accelerate the grid traversal of rays in image-

order rendering. Examples are the 3D DDA

(Digital Differential Analyzer) method [1,59],

in which new grid positions are calculated by

fast integer-based incremental arithmetic, and

the template-based method [284], in which tem-

plates of the ray paths are precomputed and

used during rendering to quickly identify the

voxels to visit. Early ray termination can be

sophisticated into a Russian Roulette scheme

[45] in which some rays terminate with lower

and others with higher accumulated opacities.

This capitalizes on the human eye’s tolerance to

error masked as noise [146]. In the object-order

techniques, fast differential techniques to deter-

mine the screen-space projection of the points as

well as to rasterize the footprints [147,174] are

also available.

Most of the object-order approaches deal well

with empty space—they simply don’t store and

process it. In contrast, ray-casting relies on the

presence of the entire volume grid since it re-

quires it for sample interpolation and addresses

computation during grid traversal. Although

opaque space is quickly culled, via early ray

termination, the fast leaping across empty

space is more difficult. A number of techniques

are available to achieve this (see Fig. 7.17 for an

illustration of the methods described in the

following text). The simplest form of space leap-

ing is facilitated by enclosing the object into a

set of boxes, possibly hierarchical, and first

quickly determining and testing the rays’ inter-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 144

144 Scalar Field Visualization: Volume Rendering

section with each of the boxes before engaging

into more time-consuming volumetric traversal

of the material in Kay and Kajiya [105]. A

better geometrical approximation is obtained

by a polyhedral representation, chosen crudely

enough to still maintain ease of intersection. In

fact, one can utilize conventional graphics hard-

ware to perform the intersection calculation,

where one projects the polygons twice to create

two z-(depth) buffers. The first z-buffer is

the standard closest-distance z-buffer, while the

second is a farthest-distance z-buffer. Since

the object is completely contained within the

representation, the two z-buffer values for a

given image plane pixel can be used as the

starting and ending points of a ray segment on

which samples are taken. This algorithm has

been known as PARC (Polygon Assisted Ray

Casting) [237] and it is part of the VolVis

volume visualization system [4,5], which also

provides a multialgorithm progressive refine-

ment approach for interactivity. By using avail-

able graphics hardware, the user is given the

ability to interactively manipulate a polyhedral

representation of the data. When the user is

satisfied with the placement of the data, light

sources, and viewpoint, the z-buffer informa-

tion is passed to the PARC algorithm, which

produces a ray-cast image.

A different technique for empty-space leaping

was devised by Zuiderfeld et al. [291] as well as

Cohen and Shefer [37], who introduced the con-

cept of proximity clouds. Proximity clouds

employ a distance transform of the object to

accelerate the rays in regions far from the object

boundaries. In fact, since the volume densities

are irrelevant in empty volume regions, one can

simply store the distance transform values in

their place, and therefore storage is not in-

creased. Since the proximity clouds are the iso-

distance layers around the object’s boundaries,

they are insensitive to the viewing direction.

Thus, rays that ultimately miss the object are

often still slowed down. To address this short-

coming, Sramek and Kaufman [241] proposed a

view-sensitive extension of the proximity-clouds

approach. Wan [262] places a sphere at every

empty voxel position, where the sphere radius

indicates the closest nonempty voxel. They

apply this technique for the navigation inside

hollow volumetric objects, as occurring in vir-

tual colonoscopy [87], and reduce a ray’s space

traversal to just a few hops until a boundary

wall is reached. Finally, Meissner [160] sug-

gested an algorithm that quickly recomputes

the proximity cloud when the transfer function

changes.

Proximity clouds only handle the quick leap-

ing across empty space, but methods are also

available that traverse occupied space faster

when the entropy is low. These methods gener-

ally utilize a hierarchical decomposition of the

volume where each nonleaf node is obtained by

low-pass filtering its children. Commonly this

hierarchical representation is formed by an

octree [155] since these are easy to traverse and

store. An octree is the 3D extension of a quad-

tree [218], which is the 2D extension of a binary

tree. Most often a nonleaf node stores the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 145

Figure 7.17 Various object approximation techniques.

(Blue) Isosurface of the object. (Lightly shaded) Discretized

object (proximity cloud ¼ 0). (Red) Bounding box. (Green)

Polygonal hull used in PARC. (Darker shaded areas) Prox-

imity clouds with grey level indicating distance to the object.

Note also that, while the right magenta ray is correctly sped

up by the proximity clouds, the left magenta ray is missing,

and the object is unnecessarily slowed down. (See also color

insert.)

Overview of Volume Rendering 145

average of its children, which is synonymous

with a box filtering of the volume, but more

sophisticated filters are possible. Octrees

don’t have to be balanced [274] nor fully

expanded into a single root node or into

single-voxel leaf nodes. The latter two give rise

to a brick-of-bricks decomposition, where the

volume is stored as a flat hierarchy of bricks

of size n3 to improve cache-coherence in the

volume traversal. Parker et al. [194,195] utilize

this decomposition for the ray-casting of very

large volumes, and they also give an efficient

indexing scheme to quickly find the memory

address of the voxels located in the 8-neighbor-

hood required for tri-linear interpolation.

When octrees are used for entropy-based

rendering, the nonleaf nodes store either an en-

tropy metric of its children, such as standard

deviation [45], minimum-maximum range [274],

or Lipschitz range [242], or a measure of the

error committed when the children are not

rendered, such as the root mean square or the

absolute error [74]. The idea is either to have the

user specify a tolerable error before the frame is

rendered, or to make the error dependent on the

time maximally allowed to render the frame,

which is known as time-critical rendering. In

either case, the rays traversing the volume

will advance across the volume, but also tran-

scend up and down the octree, based on the

metric used, which will either accelerate or decel-

erate them on their path. A method called b-

acceleration will also make this traversal sensi-

tive to the ray’s accumulated opacity so far. The

philosophy here is that the observable error from

using a coarser node will be relatively small when

it is weighted by a small transparency.

Octrees are also easily used with object-order

techniques, such as splatting. Laur and Hanra-

han [124] have proposed an implementation

that approximates nonleaf octree nodes by

kernels of a radius that is twice the radius of

the children’s kernels, which gives rise to a mag-

nified footprint. They store the children’s aver-

age as well as an error metric based on their

standard deviation in each parent node and

use a preset error to select the nodes during

rendering. While this approach uses nonleaf

nodes during rendering, other splatting ap-

proaches only exploit them for fast occlusion

culling. Lee and Ihm [125] as well as Mora et

al. [171] store the volume as a set of bricks,

which they render in conjunction with a dynam-

ically computed hierarchical occlusion map to

quickly cull voxels within occluded bricks from

the rendering pipeline. Hierarchical occlusion

maps [289] are continuously updated during

the rendering and thus store a hierarchical

opacity man of the image rendered so far.

Regions in which the opacity is high are tagged,

and when octree nodes fall within such a region,

all voxels contained in them can be immediately

culled. If the octree node does not fall into a

fully opaque region, then it has to be subdivided

and its children are subjected to the same test.

An alternative scheme that performs occlusion

culling on a finer scale than the box-basis of an

octree decomposition is to calculate an occlu-

sion map in which each pixel represents the

averageofall pixelswithin thebox-neighborhood

covered by a footprint [177]. Occlusion of a

particular voxel is then determined by indexing

the occlusion map with the voxel’s screen-space

coordinate to determine if its footprint must be

rasterized. One could attempt to merge these

two methods to benefit both from the large-

scale culling afforded by the octree-nodes and

from the fine-scale culling of the average-occlu-

sion map.

Hierarchical decomposition is not the only

way to reduce the number of point primitives

needed to represent an object for rendering. An

attractive solution that does not reduce the

volume’s frequency content, by ways of aver-

aging, is to exploit more space-efficient grids

for storage. The most optimal regular lattices

are the face-centered cartesian (FCC) lattices

(see Fig. 7.19) [39]. The FCC lattices give the

densest packings of a set of equal-sized spheres.

If the frequency spectrum of the signal repre-

sented in the volume is spherical (and many of

them are due to the sampling kernel used for

volume generation), then they can be packed in

the FCC lattice (see Fig. 7.18 for the 2D equiva-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 146

146 Scalar Field Visualization: Volume Rendering

lent, the hexagonal lattice). The FCC lattice’s

dual in the spatial domain is the body-centered

cartesian (BCC) lattice, and the spacing of

samples there is the reciprocal of that in the

frequency domain, according to the Fourier

scaling theorem [17]. This BCC grid gives rise

to two interleaved CC grids, each with a sam-

pling interval of
ffiffiffi
2
p

and 1=(
ffiffiffi
2
p

) apart, which

implies that a volume, when sampled into a

BCC grid, only requires
ffiffiffi
2
p

=2 ¼ 71% of the

samples of the usual cubic cartesian (CC) grid

[182,253] (see Fig. 7.19 for an illustration of the

grid and Fig. 7.20 for images). The theorem

extends to higher dimensions as well; for exam-

ple, a time-varying (4D) volume can be stored in

a 4D BCC at only 50% of the 4D CC samples.

The BCC grids are best used in conjunction with

point-based object-order methods, since these

use the spherical (radially symmetric) filter

required to preserve the spherical shape of the

BCC grid-sampled volume’s frequency spec-

trum. The reconstruction of a BCC grid with a

tri-linear filter can lead to aliasing since the tri-

linear filter’s frequency response is not radially

symmetric and therefore will include higher

spectra when used for interpolation.

A comprehensive system for accelerated soft-

ware-based volume rendering is the UltraVis

system devised by Knittel [115]. It can render a

2563 volume at 10 frames/s. It achieves this by

optimizing cache performance during both

volume traversal and shading, which is rooted

in the fact that good cache management is key

to achieve fast volume rendering, since the data

are so massive. As we have mentioned before,

this was also realized by Parker et al. [194,195],

and it plays a key role in both custom and

commodity hardware approaches as well, as

we shall see later. The UltraVis system manages

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 147

Figure 7.18 (Left) The cartesian grid vs. (Right) the hex-

agonal grid: two possible frequency-domain lattices. The

latter provides the tightest packing of a discrete 2D signal’s

circularly bounded frequency spectrum. (Here, the dark

circle contains the main spectrum, while the others contain

the replicas or aliases.)

21/ 2
2

6

2
2.0

1/ fN=1

y

x

z

1.0

(a) (b) (c)

Figure 7.19 Various grid cells, drawn in relative proportions. We assume that the sampling interval in the CC grid is T ¼ 1. (a)

Cubic cartesian (CC) for cartesian grids (all other grid cells shown are for grids that can hold the same spherically bandlimited,

signal content). (b) Face-centered cubic cartesian (FCC). (c) Body-centered cubic cartesian (BCC).

Overview of Volume Rendering 147

the cache by dividing it into four blocks: one

block each for volume bricks, transfer function

tables, image blocks, and temporary buffers.

Since the volume can only map into a private

cache block, it can never be swapped out by a

competing data structure, such as a transfer-

function table or an image-tile array. This re-

quires that the main memory footprint of the

volume be four times as high since no volume

data may be stored in an address space that

would map outside the volume’s private cache

slots. By using a bricked volume decomposition

in conjunction with a flock of rays that are

traced simultaneously across the brick, the

brick’s data will only have to be brought in

once before it can be discarded when all rays

have finished its traversal. A number of add-

itional acceleration techniques give further

performance.

Another type of acceleration is achieved by

breaking the volume rendering integral of Equa-

tion 7.12 or 7.15 into segments and storing the

composited color and opacity for each partial

ray into a data structure. The idea is then to

recombine these partial rays into complete rays

for images rendered at viewpoints near the one

for which the partial rays were originally

obtained (see Fig. 7.21). This saves the cost for

fully integrating all rays for each new viewpoint

and reduces it to the expense of compositing a

few partial segments per ray, which is much

lower. This method falls into the domain of

image-based rendering (IBR) [29,30,154,221]

and is, in some sense, a volumetric extension

of the lumigraph [69] or lightfield [129], albeit

dynamically computed. However, one could

just as well store a set of partial rays into a static

data structure to be used for volumetric-style

lumigraph rendering. This idea of using a

cache of partial rays for accelerated rendering

was exploited by Brady et al. [19,20] for the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 148

Figure 7.20 Foot dataset rendered on (left) a cubic carte-

sian (CC) grid and (right) a body-centered cubic cartesian

(BCC) grid. The renderings are almost identical, but the BCC

rendering took 70% of the time of the CC rendering. (See

also color insert.)

Object

Slab 3

Slab 2

Slab 1

Billboard 3

Billboard 2

Billboard 1

Va
Vb

Vb
(b)(a)

Figure 7.21 (a) The volume is decomposed into slabs, and each slab is rendered into an image from view direction Va. The ray

integrals for view direction Vb can now be approximated with higher accuracy by combining the appropriate partial ray integrals

from view Va (stored in the slab image). Interpolation is used to obtain partial integrals at nongrid positions. (b) The three

billboard images can be composited for any view, such as Vb, shown here.

148 Scalar Field Visualization: Volume Rendering

volume rendering at great perspective distor-

tions, such as found in virtual endoscopy appli-

cations [87]. Mueller et al. [178] stored the rays in

form of a stack of depth-layered images and

rendered these images warped and composited

from novel viewpoints within a 308 view cone,

using standard graphics hardware (see Fig.

7.22a). Since gaps may quickly emerge when the

layers are kept planar, it helps to also compute,

on the fly, a coarse polygonal mesh for each layer

that approximates the underlying object, and

then map the images onto this mesh when

rendering them from a new viewpoint (see Figs.

7.22b and 7.22c). An alternative method that

uses a precomputed triangle mesh to achieve

similar goals for isosurface volume rendering

was proposed by Chen et al. [28], while Yagel

and Shi [286] warped complete images to nearby

viewpoints, aided by a depth buffer.

7.8 Classification and Transfer Functions

In volume rendering we seek to explore the

volumetric data using visuals. This exploration

process aims to discover and emphasize interest-

ing structures and phenomena embedded in

the data, while de-emphasizing or completely

culling away occluding structures that are cur-

rently not of interest. Clipping planes and more

general clipping primitives [264] provide geo-

metric tools to remove or displace occluding

structures in their entirety. On the other hand,

transfer functions that map the raw volume

density data to color and transparencies, can

alter the overall look and feel of the dataset in

a continuous fashion.

The exploration of a volume via transfer

functions constitutes a navigation task, which

is performed in a 4D transfer-function space,

assuming three axes for RGB color and one

for transparency (or opacity). It is often easier

to specify colors in HSV (Hue, Saturation,

Value) color space, since it provides separate

mappings for color and brightness. Simple algo-

rithms exist to convert the HSV values into the

RGB triples used in the volume rendering [57].

Fig. 7.23 shows a transfer-function editor that

also allows the mapping of the other rendering

attributes in Equation 7.9.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 149

(a) (b) (c)

Figure 7.22 IBR-assisted volume rendering. (a) On-the-fly computed mesh derived from the slab’s closest-voxel buffer; (b) head

rendered from original viewpoint; (c) head rendered from a view 308 away. (See also color insert.)

Figure 7.23 A transfer function editor with an HSV color

palette and a mapping of densities to various material

properties. (See also color insert.)

Overview of Volume Rendering 149

A generalization of the usual RGB color

model has been pursued in spectral volume

rendering [197], where the light transport occurs

within any number of spectral bands. Noord-

mans [189] employed this concept to enable

achromatic, elastic, and inelastic light scatter-

ing, which facilitates the rendering of inner

structures through semitransparent, yet solid

(i.e., nonfuzzy) exterior structures. Bergner et

al. [12] described a spectral renderer that

achieves interactive speeds by factoring the illu-

mination term out of the spectral volume

rendering integral and using post-illumination

for the final lighting (a related technique, in

RGB space and using a Fourier series approach,

was presented by Kaneda et al. [99]). They de-

scribe a system that allows designers of a guided

visualization to specify a set of lights and ma-

terials, whose spectral properties allow users to

emphasize, de-emphasize, or merge specific

structures by simply varying the intensity of

the light sources.

Given the large space of possible settings,

choosing an effective transfer function can be a

daunting task. It is generally more convenient to

gather more information about the data before

the exploration via transfer functions begins.

The easiest presentation of support data is in

the form of 1D histograms, which are data stat-

istics collected as a function of raw density, or

some other quantity. A histogram of density

values can be a useful indicator to point out

dominant structures with narrow density

ranges. A fuzzy classification function [48] can

then be employed to assign different colors and

opacities to these structures (Fig. 7.24). This

works well if the data are relatively noise-free,

the density ranges of the features are well isol-

ated, and not many distinct materials, such as

bone, fat, and skin, are present. In most cases,

however, this is not the case. In these settings, it

helps to also include the first and second deriva-

tive in the histogram-based analysis [109]. The

magnitude of the first derivative (the gradient

strength) is useful since it peaks at densities

where interfaces between different features

exist (Fig. 7.25). Plotting a histogram of first

derivatives over density yields an arc that

peaks at the interface density (Fig. 7.26). Know-

ing the densities at which feature boundaries

exist narrows down the transfer-function ex-

ploration task considerably: One may now visu-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 150

Air Fat Bone Metal
Soft

Tissue

Density

Opacity and color
transfer function

N
um

be
r

of
 v

ox
el

s

Figure 7.24 Histogram and a fuzzy classification into different materials.

150 Scalar Field Visualization: Volume Rendering

alize these structures by assigning different

colors and opacities within a narrow interval

around these peaks. Levoy [127] showed that

a constant width of (thick) surface can be

obtained by making the width of the chosen

density interval a linear function of the gradi-

ent strength (see Fig. 7.27). Kindlmann and

Durkin [109] proposed a technique that

uses the first and second derivative to generate

feature-sensitive transfer functions automatic-

ally. This method provides a segmentation of

the data, where the segmentation metric is a

histogram of the first and second derivative.

Tenginakai and Machiraju [251] extended the

arsenal of metrics to higher-order moments

and computed from them additional measures,

such as kurtosis and skew, in small neighbor-

hoods. These can provide better delineations

of features in histogram space. Another pro-

posed analysis method is based on maxima

in cumulative Laplacian-weighted density

histograms [198].

There are numerous articles (we can only

reference a few here) on the topic of automatic

segmentation of images and higher-dimensional

datasets, using neural network-type approaches

[142], statistical classifiers [222], region growing

[117], the watershed algorithm [229], and many

others. To that end, Tiede [255] describes an

algorithm for rendering the tagged and seg-

mented volumes at high quality. However, des-

pite the great advances that have been made,

automated segmentation of images and

volumes remains a difficult task and is also, in

many cases, observer and task dependent. In

this regard, semi-supervised segmentation algo-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 151

x

f (x)

f �(x)

f ��(x)

Figure 7.25 The relationship of densities and their first and second derivatives at a material interface.

(a) (b)

Figure 7.26 Histograms of (a) first- and (b) second-deriva-

tive strengths over density. In the concentric ring image (top

row), the first arc is due to the background–outer ring

interface, the second arc is due to the outer ring–inner ring

interface, and the large arc is due to the background–inner

ring interface that spans the widest density range. The

second row shows the results of the same analysis for the

CT engine volume.

Overview of Volume Rendering 151

rithms where users guide the segmentation

process in an interactive fashion have a com-

petitive edge. There are two examples for such

systems: the PAVLOV architecture, which

implements an interactive region-grow to

delineate volumetric features of interest [117],

and the dual-domain approach of Kniss et al.

[111,112], who embed Kindlmann’s algorithm

into an interactive segmentation application.

Here, users work simultaneously within two

domains, the histogram-coupled transfer-func-

tion domain and the volume rendering domain,

to bring out certain features of interest. To be

effective, an interactive (hardware-based)

volume renderer is required, and the technique

could embed more advanced metrics as well

[251].

Another way to analyze the data is to look for

topological changes in the iso-contours of the

volume, such as a merge of split of two contours

(see Fig. 7.28). These events are called critical

points. By topologically sorting the critical

points as a function of density, one can con-

struct a contour graph, contour tree, or Hyper

Reeb Graph that yields a roadmap for an ex-

ploration of the volume [7,26,60,119,227,250].

One can either use the contour graph to come

up with an automatic transfer function (simply

position an isosurface between two nodes), or

one can use it to guide users in the volume-

exploration process. A large number of critical

points is potentially generated, especially when

the data are noisy.

There has also been a significant body of work

on more specific segmentation and volume-

analysis processes, which aim to identify, track,

and tag particular features of interest, such as

vortices, streamlines, and turbulences [9,10,

233,234,279]. Once extracted, the features can

then be visualized in form of icons, glyphs,

geometry, or volumetric objects. These data-

mining methods are particularly attractive for

the exploration of very large datasets, where

volume exploration with conventional means

can become intractable.

All of the methods presented so far base the

transfer function selection on a prior analysis of

the volume data. Another suggested strategy has

been to render a large number of images with

arbitrary transfer-function settings and present

these to the user, who then selects a subset of

these for further refinement by application of

genetic algorithms. This approach has been

taken by the Design Galleries project [150],

which is based, in part, on the method published

by He et al. [81]. A good sample of all of the

existing approaches (interactive trial-and-error,

metric-based, contour graph, and design galler-

ies) was squared off in a symposium panel [199].

7.9 Volumetric Global Illumination

In the local illumination equation (Equation

7.9), the global distribution of light energy is

ignored and shading calculations are performed

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 152

Density

Opacity

Gradient stre
ngth

Figure 7.27 Gradient strength-dependent density range for isosurface opacities [127].

152 Scalar Field Visualization: Volume Rendering

assuming full visibility of and a direct path to all

light sources. While this is useful as a first ap-

proximation, the incorporation of global light

visibility information (shadows, one instance of

global illumination) adds a great deal of intuitive

information to the image. This low-albedo

[98,236] lighting simulation has the ability to cast

soft shadows by volume density objects. Gener-

ous improvements in realism are achieved by

incorporating a high-albedo lighting simulation

[98,236], which is important in a number of ap-

plications (e.g., clouds [152], skin [75], and stone

[47]). While some of these use hierarchical and

deterministic methods, most of these simulations

use stochastic techniques to transport lighting

energy among the elements of the scene. We

wish to solve the illumination transport equation

for the general case of global illumination. The

reflected illumination I(g, v) in direction v at any

voxel g can be described as the integral of all

incident radiation from directions v0, modulated

by the phase function q(v, v0):

I(g, v) ¼
ð

V

ð
G

q(v, v0)I(g, v0)dv0dn (7:16)

where G is the set of all directions and V is the

set of all voxels v. This means that the illumin-

ation at any voxel is dependent upon the illu-

mination at every other voxel. In practice, this

integral equation is solved by finite-repeated

projection of energy among voxels. This leads

to a finite energy transport path, which is gener-

ally sufficient for visual fidelity.

In physics, equations of this sort are solved

via Monte Carlo simulations. A large set of rays

is cast from the energy sources into the volume,

and at each voxel a ‘‘die is rolled’’ to determine

how much energy is absorbed and how much

energy is scattered and into what direction.

After many iterations the simulation is

stopped, and a final scattering of the radiosity

volume is performed towards an arbitrarily pos-

itioned eye point. A practical implementation

of this process is volumetric backprojection.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 153

10 10

30

Contour plot

Contour graph

60

50

4030

20
10 10

20

30

Figure 7.28 Simple contour graph. The first topological event occurs when the two inner contours are born at an iso-value of

10. The second topological event occurs at the iso-value at which the two inner contours just touch and give way to a single

contour at iso-value ¼ 30.

Overview of Volume Rendering 153

Backprojection is usually performed on a voxel-

by-voxel basis, since this is the most obvious

and direct method of computation. For

example, in volumetric ray tracing [236], as illu-

mination is computed for a volume sample, rays

are cast toward the light sources, sampling the

partial visibility of each. In computing high-

albedo scattering illumination, Max [152] used

the method of discrete ordinates to transport

energy from voxel to voxel. For calculations

of volumetric radiosity, voxels are usually

regarded as discrete elements in the usual radio-

sity calculation on pairs of elements, thereby

computing on a voxel-by-voxel basis [213,

236]. Particle tracing methods for global illu-

mination track paths of scattered light energy

through space starting at the light sources [97].

In many cases, the backprojection can be re-

organized into a single sweep through the

volume, processing slice by slice. Because sun-

light travels in parallel rays in one direction

only, Kajiya and Von Herzen [98] calculated

the light intensity of a cloud-like volume one

horizontal slice at a time. A similar technique

was demonstrated as part of the Heidelberg ray-

tracing model [157], in which shadow rays were

propagated simultaneously slice-by-slice and

in the same general direction as rendering.

Dachille et al. [44] described a backprojection

approach that scatters the energy in the volume

by a multi-pass slice-by-slice sweep at random

angles. He also devised a custom hardware

architecture for a cache-efficient implementa-

tion of this algorithm.

Kniss et al. [113,114] proposed a single-pass

algorithm that approximates the scattering of

light within a volume by a recursive slice-blur-

ring operation, starting at the light source. The

profile of the blurring filter is determined by the

user-specified phase function. The method ex-

ploits 3D texture-mapping hardware in con-

junction with a dual image buffer and runs at

interactive frame rates. One buffer, the repeat-

edly blurred (light) buffer, contains the trans-

ported and scattered light energy on its path

away from the source, and the other (frame)

buffer holds the energy headed for the eye and

is attenuated by the densities along the path to

the eye. At each path increment, energy is trans-

ferred from the light buffer to the frame buffer.

7.10 Rendering on Parallel Architectures

Much research towards parallel ray-casting has

been reported in the literature, primarily due to

the simplicity of the algorithm. To avoid

volume data redistribution costs, researchers

have proposed the distribution of data to pro-

cessing nodes, where each node processes its

own data for all frames or views. Each node

generates a partial image with its data, which

are then accumulated and composited into the

final image [89,144,145,170,194,195].

Researchers have also investigated partition-

ing screen space into square tiles or contiguous

scanlines, to be used as the basic task to be sent

or assigned to processing nodes. For better load

balancing, the task queue can be ordered in

decreasing task size, such that the concurrency

gets finer until the queue is exhausted [27]. Load

balancing can also be achieved by having nodes

steal smaller tasks from other nodes, once they

have completed their own tasks [184,271].

Finally, time-out stamps for each node can be

added, such that if the node cannot finish its

task before the time-out, it takes the remnant

of the task, repartitions it, and redistributes it

[40].

A parallel shear-warp implementation on

shared-memory architectures has been reported

in Lacroute [121], with decent timing bench-

marks. Amin et al. [2] ported the shear-warp

algorithm onto a distributed memory architec-

ture by partitioning in sheared volume space

and using an adaptive load balancing. The par-

allel shear-warp implementation has been im-

proved on distributed memory architectures by

dividing the volume data after the shear oper-

ation into subvolumes parallel to an intermedi-

ate image plane of the shear-warp factorization

[219].

Splatting and cell-projection methods have

also been parallelized using a sort-last paradigm

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 154

154 Scalar Field Visualization: Volume Rendering

[168]. The community has researched parallel

splatting algorithms [133] that do not utilize

occlusion-based acceleration. The volume data

is distributed in either slices (axis-aligned

planes) [54] or blocks [145] to processing

nodes. Those are then rendered, in parallel, to

partial images that are composited for the final

image by the master node. Speedups can further

be achieved by only passing the nonempty parts

of the partial images [54] or by parallelizing the

final compositing stage using a screen space

partitioning [133]. Hierarchical data structures

such as a kd-tree can be applied to facilitate

prompt compositing and occlusion culling

[145]. Machiraju and Yagel [147] report a paral-

lel implementation of splatting, where the tasks

are defined by subvolumes. Each processor is

assigned a subvolume. The images are compos-

ited together in depth-sort order, also per-

formed in parallel. This implementation splats

all voxels, no matter if they are empty or oc-

cluded, while Huang [92] presents a parallel

splatting algorithm that takes into account visi-

bility and occlusion, which is considerably more

challenging for load-balancing. PVR [230] is a

parallel ray-casting kernel that exploits image-

space, object-space, and time-space parallelism.

See also [143] for a tutorial article on two highly

scalable, parallel software volume rendering al-

gorithms for unstructured grids.

7.11 Special-Purpose Rendering
Hardware

The high computational cost of direct volume

rendering makes it difficult for sequential imple-

mentations and general-purpose computers to

deliver the targeted level of performance, al-

though the recent advances in commodity

graphics hardware have started to blur these

boundaries (as we shall see in the next section).

This situation is aggravated by the continuing

trend towards higher and higher resolution

datasets. For example, to render a dataset of

10243 16-bit voxels at 30 frames/s requires 2

GB of storage, a memory transfer rate of 60

GB/s and approximately 300 billion instructions

per second, assuming 10 instructions per voxel

per projection.

The same way as the special requirements

of traditional computer graphics lead to high-

performance graphics engines, volume visual-

ization naturally lends itself to special-purpose

volume-renderers that separate real-time image

generation from general-purpose processing.

This allows for stand-alone visualization envir-

onments that help scientists to interactively

view their data on a single user workstation,

augmented by a volume rendering accelerator.

Furthermore, a volume rendering engine inte-

grated in a graphics workstation is a natural

extension of raster based systems into 3D

volume visualization.

Several researchers have proposed special-

purpose volume rendering architectures (Chap-

ter 6) [67,96,102,116,152,162,163,192,245,246,

287].

Most recent research focuses on accelerators

for ray-casting of regular datasets. Ray-casting

offers room for algorithmic improvements while

still allowing for high image quality. More

recent architectures [84] include VOGUE,

VIRIM, Cube, and VIZARD. The VolumePro

board [200] is a commercial implementation of

the Cube architecture.

VOGUE [116], a modular add-on accelerator,

is estimated to achieve 2.5 frames/s for 2563

datasets. For each pixel a ray is defined by the

host computer and sent to the accelerator. The

VOGUE module autonomously processes the

complete ray, consisting of evenly spaced

resampling locations, and returns the final pixel

color of that ray to the host. Several VOGUE

modules can be combined to yield higher-

performance implementations. For example,

to achieve 20 projections per second of 5123

datasets requires 64 boards and a 5.2 GB/s

ring-connected cubic network.

VIRIM [72] is a flexible and programmable

ray-casting engine. The hardware consists of

two separate units, the first being responsible

for 3D resampling of the volume using lookup

tables to implement different interpolation

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 155

Overview of Volume Rendering 155

schemes. The second unit performs the ray-cast-

ing through the resampled dataset according

to user-programmable lighting and viewing

parameters. The underlying ray-casting model

allows for arbitrary parallel and perspective

projections and shadows. An existing hardware

implementation for the visualization of 256�
256� 128 datasets at 10 frames/s requires 16

processing boards.

The Cube project aims at the realization of

high-performance volume rendering systems

for large datasets and has pioneered several

hardware architectures. Cube-1, a first-gener-

ation hardware prototype, was based on a spe-

cially interleaved memory organization [103],

which has also been used in all subsequent gen-

erations of the Cube architecture. This inter-

leaving of the n3 voxels enables conflict-free

access to any ray parallel to a main axis of n

voxels. A fully operational printed circuit

board (PCB) implementation of Cube-1 is

capable of generating orthographic projections

of 163 datasets from a finite number of predeter-

mined directions in real time. Cube-2 was a

single-chip VLSI implementation of this proto-

type [8].

To achieve higher performance and to further

reduce the critical memory-access bottleneck,

Cube-3 introduced several new concepts

[203,205,206]. A high-speed global communica-

tion network aligns and distributes voxels from

the memory to several parallel processing units,

and a circular cross-linked binary tree of voxel

combination units composites all samples into

the final pixel color. Estimated performance for

arbitrary parallel and perspective projections is

30 frames/s for 5123 datasets. Cube-4 [202,204]

has only simple and local interconnections,

thereby allowing for easy scalability of perform-

ance. Instead of processing individual rays,

Cube-4 manipulates a group of rays at a time.

As a result, the rendering pipeline is directly

connected to the memory. Accumulating com-

positors replace the binary compositing tree. A

pixel-bus collects and aligns the pixel output

from the compositors. Cube-4 is easily scalable

to very high resolutions of 10243 16-bit voxels

and true real-time performance implementa-

tions of 30 frames/s.

EM-Cube [193] marked the first attempt to

design a commercial version of the Cube-4 archi-

tecture. Its VLSI architecture features four

rendering pipelines and four 64 Mbit SDRAMs

to hold the volume data. VolumePro 500 was

the final design, in the form of an ASIC, and

was released to market by Mitsubishi Electric

in 1999 [200]. VolumePro has hardware for gra-

dient estimation, classification, and per-sample

Phong illumination. It is a hardware implemen-

tation of the shear-warp algorithm, but with

true tri-linear interpolation, which affords very

high quality. The final warp is performed on

the PC’s graphics card. The VolumePro streams

the data through four rendering pipelines,

maximizing memory throughput by using a

two-level memory block- and bank-skewing

mechanism to take advantage of the burst mode

of its SDRAMs. No occlusion-culling or voxel-

skipping is performed. Advanced features such

as gradient magnitude modulation of opacity

and illumination, supersampling, cropping, and

cut planes are also available. The system renders

500 million interpolated, Phong, illuminated,

composited samples per second, which is suffi-

cient to render volumes with up to 16 million

voxels (e.g., 2563 volumes) at 30 frames/s.

While the VolumePro uses a brute-force

rendering mode in which all rays are cast across

the volume, the VIZARD II architecture [162]

implements an early ray-termination mechan-

ism. It has been designed to run on a PCI

board populated with four FPGAs, a DSP, and

SDRAM and SRAM memory. In contrast to

the VolumePro, it supports perspective render-

ing, but it uses a table-based gradient vector

lookup scheme to compute the gradients at

sample positions. The VIZARD II board is an-

ticipated to render a 2563 dataset at interactive

frame rates. The VolumePro 1000 [282] is the

successor of the VolumePro 500 and employs a

different factorization of the viewing matrix,

termed shear-image order ray-casting, which is

a method of ray-casting that eliminates shear-

warp’s intermediate image and final warp step

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 156

156 Scalar Field Visualization: Volume Rendering

while preserving its memory-access efficiency.

VolumePro 1000 uses empty space skipping

and early ray termination, and it can render up

to 109 samples/s.

The choice of whether one adopts a general-

purpose or a special-purpose solution to volume

rendering depends upon the circumstances. If

maximum flexibility is required, general-purpose

appears to be the best way to proceed. However,

an important feature of graphics accelerators is

that they are integrated into a much larger envir-

onment where software can shape the form of

input and output data, thereby providing the

additional flexibility that is needed. A good

example is the relationship between the needs

of conventional computer graphics and special-

purpose graphics hardware. Nobody would dis-

pute the necessity for polygon graphics acceler-

ation despite its obvious limitations. The exact

same argument can be made for special-purpose

volume rendering architectures. The line be-

tween general-purpose and special-purpose,

however, has become somewhat blurred in the

past couple of years with the arrival of advanced,

programmable commodity graphics processing

units (GPUs). Although these boards do not,

and perhaps never will, provide the full flexibility

of a CPU, they gain more generality as a general

computing machine with every new product

cycle. In the following section, we will discuss

the recent revolution in GPUs in light of their

impact on interactive volume rendering and

processing.

7.12 General-Purpose Rendering
Hardware

Another opportunity to accelerate volume

rendering is to utilize the texture-mapping cap-

ability of graphics hardware. The first such im-

plementation was devised by Cabral et al. [24]

and ran on SGI Reality Engine workstations.

There are two ways to go about this. Either one

represents the volume as a stack of 2D textures,

one texture per volume slice, or as one single

3D texture, which requires more sophisticated

hardware. In the former case, three texture

stacks are needed, one for each major viewing

direction. An image is then rendered by choos-

ing the stack that is most parallel to the image

plane, and rendering the textured polygons to

the screen in front-to-back or back-to-front

order. If the machine has 3D texture capabil-

ities, then one specifies a set of slicing planes

parallel to the screen and composites the inter-

polated textures in depth order. The 3D textur-

ing approach generally provides better images

since the slice distance can be chosen arbitrarily,

and no popping caused by texture-stack switch-

ing can occur. While the early approaches did

not provide any shading, Van Gelder and Kim

[65] introduced a fast technique to preshade the

volume on the fly and then slice and composite a

RGB volume to obtain an image with shading

effects. Meißner et al. [161] provided a method

to enable direct diffuse illumination for semi-

transparent volume rendering. However, in

this case, multiple passes through the rasteriza-

tion hardware led to a significant loss in

rendering performance. Instead, Dachille et al.

[43] proposed a one-pass approach that employs

3D texture hardware interpolation together

with software shading and classification. Wes-

termann and Ertl [267] introduced a fast multi-

pass approach to display shaded isosurfaces.

Both Boada et al. [15] and LaMar et al. [122]

subdivide the texture space into an octree,

which allows them to skip nodes of empty

regions and use lower-resolution textures

for regions far from the viewpoint or of lower

interest.

The emergence of advanced PC graphics

hardware has made texture-mapped volume

rendering accessible to a much broader commu-

nity at less than 2% of the cost of the worksta-

tions that were previously required. However,

the decisive factor stemming the revolution that

currently dominates the field was the manufac-

turers’ (e.g., NVidia, ATI, and 3DLabs) deci-

sion to make two of the main graphics pipeline

components programmable. These two com-

ponents are the vertex shaders (the units re-

sponsible for the vertex transformations in the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 157

Overview of Volume Rendering 157

GLs Modelview matrix), and the fragment sha-

ders, which are the units that take over after the

rasterizer GLs Projection matrix. The first im-

plementation that used these new commodity

GPUs for volume rendering was published by

Rezk-Salama et al. [209], who used the stack-

or-textures approach since 3D texturing was not

supported at that time. They overcame the

undersampling problems associated with the

large interslice distance at off-angles by inter-

polating, on the fly, intermediate slices using the

register combiners in the fragment-shader com-

partment. Engel et al. [55] replaced this tech-

nique by the use of preintegrated transfer-

function tables (see our previous section on

transfer functions). The implementation can

perform fully shaded semitransparent and iso-

surface volume rendering at 1–4 frames/s for

2563 volumes, using an NVidia GeForce3.

To compute the gradients required for

shading, one must also load a gradient volume

into the texture memory. The interpolation of a

gradient volume without subsequent normaliza-

tion is generally incorrect, but the artifacts

are not always visible. Meißner and Guthe

[158] use a shading cube texture instead, which

eliminates this problem. Even the most recent

texture-mapping hardware cannot reach the

performance of the specialized volume

rendering hardware, such as the VolumePro500

and the new VolumePro 1000, at least not

when volumes are rendered by brute force.

Therefore, current research efforts have con-

centrated on reducing the load for the fragment

shaders. Level-of-detail (LOD) methods have

been devised that rasterize lower-resolution tex-

ture blocks whenever the local volume detail or

projected resolution allow them to do so

[74,126]. Li and Kaufman [130,131] proposed

an alternative approach that approximates the

object by a set of texture boxes, which effi-

ciently clips empty space from the rasterization.

Commodity graphics hardware also found

much use for the rendering of irregular grids

and for nonphotorealistic rendering, as will be

discussed shortly. In addition, GPUs have also

been extensively used for other nongraphics

tasks, such as matrix computations [123], nu-

merical simulations and computed [16,79,132],

tomography [283]. These applications view the

GPUs as general purpose SIMD machines, with

high compute and memory bandwidth, and the

latest feature, floating-point precision. It should

be noted, however, that the limited capacity of

the texture memory (currently 128 MB to

256 MB) and the slow CPU-GPU AGP bus

bandwidth currently present the bottlenecks.

7.13 Irregular Grids

All the algorithms discussed above handle only

regular gridded data. Irregular gridded data

come in a large variety [240], including curvilin-

ear data or unstructured (scattered) data, where

no explicit connectivity is defined between cells

(one can even be given a scattered collection of

points that can be turned into an irregular grid

by interpolation [186,153]). Fig. 7.29 illustrates

the most prominent grid types.

For rendering purposes, manifold (locally

homeomorphic to R3) grids composed of

convex cells are usually necessary. In general,

the most convenient grids for rendering pur-

poses are tetrahedral grids and hexahedral

grids. One disadvantage of hexahedral grids is

that the four points on the side of a cell may not

necessarily lie on a plane, forcing the rendering

algorithm to approximate the cells by convex

ones during rendering. Tetrahedral grids have

several advantages, including easier interpol-

ation, simple representation (especially for con-

nectivity information, because the degree of the

connectivity graph is bounded, allowing for

compact data-structure representation), and

the fact that any other grid can be inter-

polated to a tetrahedral one (with the possible

introduction of Steiner points). Among their

disadvantages are that the sizes of the datasets

tend to grow as cells are decomposed into tetra-

hedra and that sliver tetrahedra may be gener-

ated. In the case of curvilinear grids, an accurate

(and naive) decomposition will make the cell

complex contain five times as many cells.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 158

158 Scalar Field Visualization: Volume Rendering

As compared to regular grids, operations for

irregular grids are more complicated and the

effective visualization methods are more sophis-

ticated in all fronts. Shading, interpolation,

point location, etc., are all harder (and some

even not well defined) for irregular grids. One

notable exception is isosurface generation [136],

which even in the case of irregular grids is

fairly simple to compute given suitable interpol-

ation functions. Slicing operations are also

simple [240].

Volume rendering of irregular grids is a hard

operation and there are several different ap-

proaches to this problem. The simplest and

most inefficient is to resample the irregular grid

to a regular grid. In order to achieve the neces-

sary accuracy, a high-enough sampling rate has

to be used that in most cases will make the

resulting regular grid volume too large for stor-

age and rendering purposes, not mentioning the

time to perform the resampling. To overcome

the need to fix the resolution of the regular grid

to the smallest cell in the irregular grid, one can

sample the data into a detail-adaptive octree

whose local height is determined by the local

granularity of the grid [126]. The octree decom-

position also allows the grid to be rendered

within a time-critical rendering framework.

One approach for rendering irregular grids is

the use of feed-forward (or projection) methods,

where the cells are projected onto the screen one

by one, accumulating their contributions incre-

mentally to the final image [153,228,273,275].

The projection algorithm that has gained popu-

larity is the projected tetrahedra (PT) algorithm

by Shirley and Tuchman [228]. It uses the pro-

jected profile of each tetrahedron with respect to

the image plane to decompose it into a set of

triangles. This gives rise to four classes of projec-

tions, which are shown in Fig. 7.30. The color

and opacity values for each triangle vertex are

approximated using ray integration through the

thickest point of the tetrahedron. The resulting

semitransparent triangles are sorted in depth

order and then rendered and composited using

polygonal graphics hardware. Stein et al. [243]

sort the cells before they are split into tetrahedra,

and they utilize 2D texture-mapping hardware

to accelerate opacity interpolation and provide

the correct per-pixel opacity values to avoid ar-

tifacts. While their method can handle only

linear transfer functions without artifacts, Rött-

ger et al. [211] introduced the concept of preinte-

grated volume rendering to allow for arbitrary

transfer functions.Theycreateda3Dtexturemap

to provide hardware support in interpolating

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 159

Cubic Anisotropic Rectilinear Rectilinear

Curvilinear Unstructured

Figure 7.29 Various grid types in two dimensions.

Overview of Volume Rendering 159

along the ray between the front and back faces of

a tetrahedral cell. In this texture map, two of the

three coordinates correspond to values at the cell

entry and exit points, with the third coordinate

mapping to the distance through the cell.

This texture map is then approximated using

2D texture mapping.

Cell-projection methods require a sorted list

of cells to be passed to the hardware. Starting

with Max et al.’s [153] and Williams’s [276]

works, there has been substantial progress in

the development of accurate visibility-ordering

algorithms [38,232]. A graphics hardware archi-

tecture was also proposed, but not yet realized,

by King et al. [110], which can both rasterize

and sort tetrahedral meshes in hardware.

An alternative technique to visualize irregular

grids is by ray-casting [64,260]. Ray-casting

methods tend to be more exact than projective

techniques since they are able to ‘‘stab’’ or inte-

grate the cells in depth order, even in the presence

of cycles. This is generally not possible in cell-

by-cell projection methods. Many ray-casting

approaches employ the plane-sweep paradigm,

which is based on processing geometric entities in

an order determined by passing a line or a plane

over the data. It was pioneered by Giertsen [66]

for use in volume rendering. It is based on a

sweep plane that is orthogonal to the viewing

plane (e.g., orthogonal to the y-axis). Events in

the sweep are determined by vertices in the data-

set and by values of y that correspond to the pixel

rows. When the sweep plane passes over a vertex,

an active cell list (ACL) is updated accordingly,

so that it stores the set of cells currently inter-

sected by the sweep plane. When the sweep plane

reaches a y-value that defines the next row of

pixels, the current ACL is used to process that

row, casting rays corresponding to the values of

x that determine the pixels in the row through a

regular grid (hash table) that stores the elements

of the ACL. This method has three major advan-

tages: It is unnecessary to explicitly store the

connectivity between the cells; it replaces the

relatively expensive operation of 3D ray-casting

with a simpler 2D regular grid ray-casting; and it

exploits coherence of the data between scan lines.

Since then, there have been a number of works

that employ the sweep paradigm, most using a

sweep plane that is parallel to the image plane.

Some of these methods are assisted by hardware

[267,285], while others are pure software imple-

mentations [22,56,231]. The ZSweep [56] algo-

rithm is very fast and has excellent memory

efficiency. It sweeps the plane from front to

back and rasterizes the cell faces as they are

encountered by the sweep plane. This keeps the

memory footprint low since only the active cell

set has be held in memory. Finally, Hong and

Kaufman [85,86] proposed a very fast ray-cast-

ing technique that exploits the special topology

of curvilinear grids.

7.14 Time-Varying and High-
Dimensional Data

A significant factor contributing to the growth

in the size of computational science datasets is

the fact that the time-steps in the simulations

have become increasingly finer in recent years.

There have been significant developments in the

rendering of time-varying volumetric datasets.

These typically exploit time-coherency for com-

pression and acceleration [3,74,141,225,247,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 160

Class 1

Class 2

Class 3

Class 4

Figure 7.30 The four classes in tetrahedral projection.

160 Scalar Field Visualization: Volume Rendering

266], but other methods have also been designed

that allow general viewing [6,13,76,77,78,106,

263] of high-dimensional (n-dimensional) data-

sets and require a more universal data decom-

position.

In n-dimensional viewing, the direct projec-

tion from n-dimensional to 2D (for n > 3) is

challenging. One major issue is that there are

an infinite number of orderings to determine

occlusion (for n ¼ 3 there are just two, the

view from the front and the view from the

back). In order to simplify the user interface

and to eliminate the amount of occlusion ex-

plorations a user has to do, Bajaj et al. [6]

performed the n-dimensional volume renderings

as an x-ray projection, where ordering is irrele-

vant. The authors demonstrated that, despite

the lack of depth cues, much useful topological

information of the n-dimensional space can be

revealed in this way. They also presented a scal-

able interactive user interface that allows the

user to change the viewpoint into n-dimensional

space by stretching and rotating a system of n

axis vectors.

On the other end of the spectrum are algo-

rithms [13,263] that first calculate an n-dimen-

sional hypersurface (a tetrahedral grid in 4D) for

a specific iso-value, which can then be inter-

actively sliced along any arbitrary hyperplane

to generate an opaque 3D polygonal surface for

hardware-accelerated view-dependent display.

This approach is quite attractive as long as the

iso-value is kept constant. However, if the iso-

value is modified, a new iso-tetrahedralization

must be generated, which can take on the order

of tens of minutes [13].

Since 4D datasets can become quite large, a

variety of methods to compress 4D volumes

were proposed in recent years. Researchers

used wavelets [73], DCT-encoding [141], RLE-

encoding [3], and images [224,225]. All are lossy

to a certain degree, depending on a set toler-

ance. An alternative compression strategy is the

use of more efficient sampling grids, such as

the BCC grids. Neophytou and Mueller

[182] extended these grids for 4D volume

rendering and used a 3D hyperslicer to extract

3D volumes for shaded and semitransparent

volume visualization with occlusion ordering.

Early work on 4D rendering includes a paper

by Ke and Panduranga [106], who used the

hyperslice approach to provide views onto the

on-the-fly computed 4D Mandelbrot set. An-

other early work is a paper by Rossignac [212],

who gave a more theoretical treatment of the

options available for the rendering of 4D hyper-

solids generated, for example, by time-animated

or colliding 3D solids. Hanson et al. [76,77,78]

wrote a series of papers that use 4D lighting in

conjunction with a technique that augments 4D

objects with renderable primitives to enable

direct 4D renderings. The images they provided

[77] are somewhat reminiscent of objects

rendered with motion blur. The 4D isosurface

algorithms proposed by Weigle and Banks [263]

and Bhaniramka et al. [13] both use a marching

cubes–type approach and generalize it into n

dimensions.

Methods that focus more on the rendering

of the time-variant aspects of 3D datasets have

stressed the issue of compression and time-

coherence to facilitate interactive rendering

speeds. Shen and Johnson [226] used difference

encoding of time-variant volumes to reduce stor-

age and rendering time. Westermann [266] used a

wavelet decomposition to generate a multiscale

representation of the volume. Shen et al. [225]

proposed the time-space partitioning (TSP) tree,

which allows the renderer to cache and reuse

partial (node) images of volume portions static

over a time interval. It also enables the renderer

to use data from subvolumes at different spatial

and temporal resolutions. Anagnostou et al. [3]

extended the RLE of the shear-warp algorithm

[120] into four dimensions, inserting a new run

block into the data structure whenever a change

was detected over time. They then composited

the rendered run block with partial rays of tem-

porally unchanged volume portions. Sutton and

Hansen [247] expanded the branch-on-need

octree (BONO) approach of Wilhelms and Van

Gelder [274] to time-variant data to enable fast

out-of-core rendering of time-variant isosur-

faces. Lum, Ma, and Clyne [141] advocated an

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 161

Overview of Volume Rendering 161

algorithm that DCT-compresses time-runs of

voxels into single scalars that are stored in a

texture map. These texture maps, one per volume

slice, are loaded into a GPU graphics board.

Then, during time-animated rendering, the tex-

ture maps are indexed by a time-varying color

palette that relates the scalars in the texture map

to the current color of the voxel they represent.

Although the DCT affords only a lossy compres-

sion, their rendering results are quite good and

can be produced interactively. Another compres-

sion-based algorithm was proposed by Guthe

and Straßer [74], who used a lossy MPEG-like

approach to encode the time-variant data. The

data were then decompressed on the fly for dis-

play with texture-mapping hardware.

7.15 Multichannel and Multimodal
Data

So far, we have assumed that a voxel has a scalar

density value from which other multivariate

properties can be derived, e.g., via transfer-

function lookup. We shall now extend this

notion to datasets where the voxel data come

originally in the form of multivariate vectors.

In the context of this discussion, we shall distin-

guish between vectors of physical quantities,

such as flow and strain, and vectors that store a

list of voxel attributes. There is a large body of

literature to visualize the former, including line

integral convolution [23], spot noise [272],

streamlines and stream-balls [21], glyphs, texture

splats [42], and many more. In this section, we

shall focus on the latter scenario, that is, volumes

composed of attribute vectors. These can be

(1) multichannel, such as the RGB color

volumes obtained by cryosectioning the Visible

Human [91] or multispectra remote sensing sat-

ellite data, or (2) multimodal, that is, volumes

acquired by scanning an object with multiple

modalities, such as MRI, PET, and CT.

The rendering of multimodal volumes re-

quires the mixing of the data at some point in

the rendering pipeline. There are at least three

locations at which this can happen [25]. For the

following discussion, let us assume a set of two

collocated volumes, but this is not a limitation.

The simplest mixing technique is image-level

intermixing, i.e., to render each volume separ-

ately as a scalar dataset and then blend the two

images according to some weighting function

that possibly includes the z-buffer or opacity

channel (see Fig 7.32a). This method is attract-

ive since it does not require a modification of

the volume renderer, but as Fig. 7.32a (top)

shows, it gives results of limited practical value

since depth ordering is not preserved. This can

be fixed by intermixing the rendering results at

every step along the ray, which gives rise to

accumulation-level intermixing. Here, we assign

separate colors and opacities for each volume’s

ray sample, and then combine these according

to some mixing function (see Fig. 7.32a

(bottom)). A third method is illumination-

model level intermixing, where one combines

the ray samples before colors and opacities are

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 162

Traversing

Sampling and Interpolation

Accumulation

Volume 2 Volume 1

Illumination

Mixed
volume

Illumination-model-
level intermixing

Image-level
intermixing

Accumulation-level
intermixing

Figure 7.31 Levels in the volume rendering pipeline at

which data mixing can occur.

162 Scalar Field Visualization: Volume Rendering

computed. One could just use a weighted sum of

the two densities to look up opacities and

colors, or one could have one of the volumes

act as an emission volume and the other as an

attenuation volume. This would work quite nat-

urally, for example, for the visualization of the

emissive metabolic activities in a SPECT

volume within the spatial context of a CT at-

tenuation volume. Cai and Sakas [25] demon-

strate this method in the scenario of dose

planning in radiation therapy, where they visu-

alize an emissive radiation beam embedded in

an attenuating CT volume.

Multichannel data, such as RGB data

obtained by ways of photographing slices of

real volumetric objects, have the advantage

that there is no longer a need to search for

suitable color transfer functions to reproduce

the original look of the data. On the other

hand, the photographic data do not provide an

easy mapping to densities and opacities, which

are required to compute normals and other par-

ameters needed to bring out structural object

detail in surface-sensitive rendering. One can

overcome the perceptional nonlinearities of the

RGB space by computing gradients and higher

derivatives in the perceptionally uniform color

space L�u�v� [51]. In this method, the RGB data

are first converted into the L�u�v� space, and

the color distance between two voxels is calcu-

lated by their Euclidian distance in that color

space. A gradient can then be calculated as

usual via central differences but by replacing

the voxel densities by the color distances. Al-

though one cannot determine the direction of

the normal vector with this method, this is not a

limiting factor in practice. One can also derive

more descriptive quantities, such as tensor gra-

dients, since we are now dealing with vectors

and not with densities in the gradient calcula-

tion. These can be used for segmentation, tex-

ture analysis, and others. Finally, opacities can

be computed by using different functions of

higher-level gradients to bring out different tex-

tural and structural aspects of the data [172].

7.16 Nonphotorealistic Volume
Rendering

Nonphotorealistic volume rendering (NPVR) is

a relatively recent branch of volume rendering.

It employs local image processing during the

rendering to produce artistic and illustrative

effects, such as feature halos, tone shading, dis-

tance color blending, stylized motion blur,

boundary enhancements, fading, silhouettes,

sketch lines, stipple patterns, and pen-and-ink

drawings [52,53,95,137,138,140,139,244,257].

The overall goal of NPVR is to go beyond the

means of photorealistic volume rendering and

produce images that emphasize critical features

in the data, such as edges, boundaries, depth,

and detail, to provide the user with a better

appreciation of the structures in the data. This

is similar to the goals of medical and other

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 163

(a)

(b)

(c)

Figure 7.32 Multimodal rendering with data intermixing.

(a) One time-step of a time-varying volume (magenta) and

volume motion-blurred across 10 time-steps (blue). (Top)

Image-level intermixing. (Bottom) Accumulation-level inter-

mixing [182]. (b) Accumulation-level intermixing of the Vis-

ible Man’s CT and an MRI dataset. Here we assign blue if CT

>MRI and green if MRI>CT. (Left) Gradients specified on

CT while MRI is rendered as a point cloud. (Right) Surfaces

rendered with gradient modulation [70]. (c) Accumulation-

level intermixing of the Visible Man’s CT and an MRI

dataset, rendered in inclusive opacity mode, i.e., a ¼ 1�
(1� aCT)(1� aMRI). (Left) Unweighted product of CT and

MRI. (Right) More CT than MRI [70]. (See also color insert.)

Overview of Volume Rendering 163

illustrators, as well as related efforts in general

computer graphics [216,217,277,278]. Since the

set of parameters that can be tuned in NPVR is

even larger than the set for traditional volume

rendering, interactive rendering of the NPVR

effects is crucial, and indeed a number of re-

searchers have proposed interactive implemen-

tations that exploit the latest generations of

commodity-programmable graphics hardware

[139, 244].

References

1. J. Amanatides and A. Woo. A fast voxel tra-
versal algorithm for ray tracing. Eurographics
’87, pages 1–10, 1987.

2. M. Amin, A. Grama, and V. Singh. Fast volume
rendering using an efficient, scalable parallel
formulation of the shear-warp algorithm. Proc.
Parallel Rendering Symposium ’95, pages 7–14,
1995.

3. K. Anagnostou, T. Atherton, and A. Waterfall.
4D volume rendering with the shear warp fac-
torization. Symp. Volume Visualization and
Graphics ’00, pages 129–137, 2000.

4. R. Avila, L. Sobierajski, and A. Kaufman. To-
wards a comprehensive volume visualization
system. Proc. of IEEE Visualization ’92, pages
13–20, 1992.

5. R. Avila, T. He, L. Hong, A. Kaufman, H.
Pfister, C. Silva, L. Sobierajski, and S. Wang.
VolVis: A diversified system for volume visual-
ization. Proc. of IEEE Visualization ’94, 1994.

6. C. Bajaj, V. Pascucci, and D. Schikore. The
contour spectrum. Proc. IEEE Visualization
’97, pages 167–175, 1997.

7. C. Bajaj, V. Pascucci, G. Rabbiolo, and D.
Schikore. Hypervolume visualization: A chal-
lenge in simplicity. Proc. 1998 Symposium on
Volume Visualization ’98, pages 95–102, 1998.

8. R. Bakalash, A. Kaufman, R. Pacheco, and H.
Pfister. An extended volume visualization
system for arbitrary parallel projection. Proc.
of Eurographics Workshop on Graphics Hard-
ware ’92, 1992.

9. D. Banks and B. Singer. Vortex tubes in turbu-
lent flows; identification, representation recon-
struction. Proc. of IEEE Visualization ’94, pages
132–139, 1994.

10. D. Bauer and R. Peikert. Vortex tracking in
scale-space, Joint EUROGRAPHICS–IEEE
TCVG Symposium on Visualization (2002), Vis-
Sym ’02, 2002.

11. M. Bentum, B. B. A. Lichtenbelt, and T. Mal-
zbender. Frequency analysis of gradient estima-
tors in volume rendering. IEEE Trans. on
Visualization and Computer Graphics ’96,
2(3):242–254, 1996.

12. S. Bergner, T. Möller, M. Drew, and G. Finlay-
son. Interactive spectral volume rendering. Proc.
of IEEE Visualization ’02, pages 101–108, 2002.

13. P. Bhaniramka, R. Wenger, and R. Crawfis.
Isosurfacing in higher dimensions. Proc. of
IEEE Visualization ’00, pages 267–273, 2000.

14. F. Blinn. Light reflection functions for simula-
tion of clouds and dusty surfaces. Proc. of SIG-
GRAPH ’82, pages 21–29, 1982.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 164

(a) (b)

(c) (d)

Figure 7.33 Rendering of multichannel (photographic)

data. (a) The L� component (related to brightness). (b)

The u� component (related to the chromatic change in red-

green colors). (c) Color difference gradient computed

in RGB color space. (d) Gradients computed in L�u�v�

space, using the second derivative along the gradient

direction to compute opacity. (Images from Gosh et al.

[70]). (See also color insert.)

164 Scalar Field Visualization: Volume Rendering

15. I. Boada, I. Navazo, and R. Scopigno.
Multiresolution volume visualization with a
texture-based octree. The Visual Computer,
17(3):185–197, 2001.

16. J. Bolz, I. Farmer, E. Grinspun, and P. Schrö-
der. The GPU as numerical simulation engine.
SIGGRAH’03, pages 917–924, 2003.

17. R. Bracewell. The Fourier Transform and its
Applications, 3rd Ed., McGraw-Hill, 1999.

18. M. Brady, K. Jung, H. Nguyen, and T. Nguyen.
Interactive volume navigation. IEEE Transac-
tions on Visualization and Computer Graphics,
4(3):243–256, 1998.

19. M. Brady, K. Jung, H. Nguyen, and T. Nguyen.
Two-phase perspective ray-casting for inter-
active volume navigation. Visualization ’97,
pages 183–189, 1997.

20. M. Brady, W. Higgins, K. Ramaswamy, and
R. Srinivasan. Interactive navigation inside
3D radiological images. Proc. of Biomedical
Visualization ’99, Proc. of IEEE Visualization
’99, pages 33–40 and page 85 (color plate),
1995.

21. M. Brill, V. Djatschin, H. Hagen, S.V. Kli-
menko, and H.-C. Rodrian. Streamball tech-
niques for flow visualization. Proc. of IEEE
Visualization ’94, pages 225–231, 1994.

22. P. Bunyk, A. Kaufman, and C. Silva. Simple,
fast, and robust ray-casting of irregular grids.
Scientific Visualization, pages 30–36, 1997.

23. B. Cabral and L. Leedon. Imaging vector fields
using line integral convolution. Proc. of SIG-
GRAPH ’93, pages 263–272, 1993.

24. B. Cabral, N. Cam, and J. Foran. Accelerated
volume rendering and tomographic recon-
struction using texture mapping hardware.
Symp. on Volume Visualization ’94, pages 91–98,
1994.

25. W. Cai and G. Sakas. Data intermixing and
multi-volume rendering. Computer Graphics
Forum (Eurographics ’99), 19(3):359–368, 1999.

26. H. Carr, J. Snoeyink, and U. Axen. Computing
contour trees in all dimensions. Computational
Geometry Theory and Applications ’02, 24(2):
75–94, 2003.

27. J. Challinger. Scalable parallel volume ray-cast-
ing for nonrectilinear computational grids.
Proc. of Parallel Rendering Symposium ’93,
pages 81–88, 1993.

28. B. Chen, A. Kaufman, and Q. Tang. Image-
based rendering of surfaces from volume data.
Workshop on Volume Graphics ’01, pages 279–
295, 2001.

29. E. Chen. QuickTime VR: an image-based ap-
proach to virtual environment navigation. Proc.
of SIGGRAPH ’95, pages 29–38, 1995.

30. E. Chen and L. Williams. View interpolation for
image synthesis. Proc. of SIGGRAPH ’93, pages
279–288, 1993.

31. M. Chen, A. Kaufman, and R. Yagel (Eds.)
Volume Graphics. Springer, London, 2000.

32. K. Chidlow and T. Möller. Rapid emission
volume reconstruction. Volume Graphics Work-
shop ’03, pages 15–26, 2003.

33. T. Chiueh, T. He, A. Kaufman, and H. Pfister.
Compression domain volume rendering. Tech-
nical Report 94.01.04, Computer science, SUNY
Stony Brook, 1994.

34. C. Chui. An Introduction To Wavelets. Boston,
Academic Press, 1992.

35. P. Cignoni, C. Montani, E. Puppo, and R. Sco-
pigno. Optimal isosurface extraction from
irregular volume data. Symposium on Volume
Visualization ’96, pages 31–38, 1996.

36. H. Cline, W. Lorensen, S. Ludke, C. Crawford,
and B. Teeter. Two algorithms for the 3D re-
construction of tomograms. Med. Phys.,
15:320–327, 1988.

37. D. Cohen and Z. Shefer. Proximity clouds: an
acceleration technique for 3D grid traversal.
The Visual Computer, 10(11):27–38, 1994.

38. J. Comba, J. Klosowski, N. Max, J. Mitchell,
C. Silva, and P. Williams. Fast polyhedral cell
sorting for interactive rendering of unstructured
grids. Computer Graphics Forum, 18(3):369–376,
1999.

39. J. Conway and N. Sloane. Sphere Packings,
Lattices and Groups, 2nd Ed. Berlin, Springer,
1993.

40. B. Corrie and P. Mackerras. Parallel volume
rendering and data coherence. Proc. of Parallel
Rendering Symposium ’93, pages 23–26, 1993.

41. R. Crawfis. Real-time slicing of data space.
Proc. of IEEE Visualization ’96, pages 271–277,
1996.

42. R. Crawfis and N. Max. Texture splats for 3D
scalar and vector field visualization. Proc. of
IEEE Visualization ’93, pages 261–266, 1993.

43. F. Dachille, K. Kreeger, B. Chen, I. Bitter, and
A. Kaufman. High-quality volume rendering
using texture mapping hardware. SIGGRAPH/
Eurographics Workshop on Graphics Hardware
’98, pages 69–77, 1998.

44. F. Dachille, K. Mueller and A. Kaufman. Volu-
metric back-projection. Volume Visualization
Symposium ’00, pages 109–117, 2000.

45. J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. Workshop on Volume
Visualization, pages 91–98, 1992.

46. I. Daubechies. Ten lectures on wavelets.
CBMS-NSF Reg. Conf. Ser. Appl. Math.
SIAM, 1992.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 165

Overview of Volume Rendering 165

47. J. Dorsey, A. Edelman, H. Jensen, J. Legakis,
and H. Pederson. Modeling and rendering of
weathered stone. Proc. of SIGGRAPH ’99,
pages 225–234, 1999.

48. R. Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering. Proc. of SIGGRAPH ’88,
22(4):65–74, 1988.

49. D. Dudgeon and R. Mersereau. Multi-dimen-
sional Digital Signal Processing. Englewood
Cliffs, NJ, Prentice-Hall, 1984.

50. S. Dunne, S. Napel, and B. Rutt. Fast reprojec-
tion of volume data. Proc. of IEEE Visualization
in Biomed. Comput., pages 11–18, 1990.

51. D. Ebert, C. Morris, P. Rheingans, and T. Yoo.
Designing effective transfer functions for
volume rendering from photographics volumes.
IEEE Trans. on Visualization and Computer
Graphics, 8(2):183–197, 2002.

52. D. Ebert and P. Rheingans. Volume illustration:
non-photorealistic rendering of volume models.
IEEE Transactions on Visualization and Com-
puter Graphics, pages 253–265, 2001.

53. D. Ebert and P. Rheingans. Volume illustration:
non-photorealistic rendering of volume models.
Proc. of IEEE Visualization ’00, pages 195–202,
2000.

54. T. Elvins. Volume rendering on a distributed
memory parallel computer. Proc. of Parallel
Rendering Symposium ’93, pages 93–98, 1993.

55. K. Engel, M. Kraus, and T. Ertl. High-quality
pre-integrated volume rendering using hard-
ware-accelerated pixel shading. Proc. of SIG-
GRAPH Graphics Hardware Workshop ’01,
pages 9–16, 2001.

56. R. Farias, J. Mitchell, and C. Silva. ZSWEEP:
An efficient and exact projection algorithm for
unstructured volume rendering. ACM/IEEE
Volume Visualization and Graphics Symposium,
pages 91–99, 2000.

57. J. Foley, A. Dam, S. Feiner, and J. Hughes.
Computer Graphics: Principles and Practice,
2nd Ed. Addison-Wesley, 1996.

58. J. Fowler and R. Yagel. Lossless compression of
volume data. Symp. of Volume Visualization ’94,
pages 43–50, 1994.

59. A. Fujimoto, T. Tanaka, and K. Iwata. ARTS:
accelerated ray-tracing system. IEEE Computer
Graphics and Applications, 6(4):16–26, 1986.

60. I. Fujishiro, Y. Takeshima, T. Azuma, and S.
Takahashi. Volume data mining using 3D field
topology analysis. IEEE Computer Graphics &
Applications, 20(5):46–51, 2000.

61. A. Gaddipati, R. Machiraju, and R. Yagel.
Steering image generation using wavelet based
perceptual metric. Computer Graphics Forum
(Proc. Eurographics ’97), 16(3):241–251, 1997.

62. J. Gao and H. Shen. Parallel view-dependent
isosurface extraction using multi-pass occlusion
culling. ACM/IEEE Symposium on Parallel and
Large Data Visualization and Graphics, pages
67–74, 2001.

63. M. Garland and P. Heckbert. Surface simplifi-
cation using quadric error metrics. Proc. 24th
Annual Conference on Computer Graphics
and Interactive Techniques, pages 209–216,
1997.

64. M. Garrity. Raytracing irregular volume data.
Computer Graphics, pages 35–40, November
1990.

65. A. Van Gelder and K. Kim. Direct volume
rendering via 3D texture mapping hardware.
Proc. of Vol. Rend. Symp. ’96, pages 23–30, 1996.

66. C. Giertsen. Volume visualization of sparse
irregular meshes. IEEE Computer Graphics and
Applications, 12(2):40–48, 1992.

67. S. Goldwasser, R. Reynolds, T. Bapty, D. Bar-
aff, J. Summers, D. Talton, and E. Walsh. Phys-
ician’s workstation with real-time performance.
IEEE Computer Graphics & Applications,
5(12):44–57, 1985.

68. D. Gordon and R. Reynolds. Image-space
shading of 3-D objects. Computer Vision,
Graphics, and Image Processing, 29:361–376,
1985.

69. S. Gortler, R. Grzeszczuk, R. Szeliski, and
M. Cohen. The lumigraph. Proc. of SIG-
GRAPH ’96, pages 43–54, 1996.

70. A. Gosh, P. Prabhu, A. Kaufman, and K. Muel-
ler. Hardware assisted multichannel volume
rendering. Computer Graphics International ’03,
2003.

71. M. Gross, R. Koch, L. Lippert, and A. Dreger.
A new method to approximate the volume
rendering equation using wavelet bases and
piecewise polynomials. Computers & Graphics,
19(1):47–62, 1995.

72. T. Guenther, C. Poliwoda, C. Reinhard, J. Hes-
ser, R. Maenner, H. Meinzer, and H. Baur.
VIRIM: a massively parallel processor for real-
time volume visualization in medicine. Proc. of
the 9th Eurographics Hardware Workshop, pages
103–108, 1994.

73. S. Guthe, M. Wand, J. Gonser, and W. Strasser.
Interactive rendering of large volume datasets.
Proc. of IEEE Visualization ’02, pages 53–60,
2002.

74. S. Guthe and W. Straßer. Real-time decompres-
sion and visualization of animated volume data.
Proc. of IEEE Visualization ’01, pages 349–372,
2001.

75. P. Hanrahan and W. Krueger. Reflection from
layered surfaces due to subsurface scattering.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 166

166 Scalar Field Visualization: Volume Rendering

Computer Graphics (Proc. of SIGGRAPH ’93),
pages 165–174, 1993.

76. A. Hanson and P. Heng. 4D views of 3D scalar
fields. Proc. of IEEE Visualization ’92, pages 84–
91, 1992.

77. A. Hanson and P. Heng. Illuminating the fourth
dimension. IEEE Computer Graphics & Applica-
tions, 12(4):54–62, 1992.

78. A. Hanson and R. Cross. Interactive visualiza-
tion methods for four dimensions. Proc. of
IEEE Visualization ’93, pages 196–203, 1993.

79. M. Harris, G. Coombe, T. Scheuermann, and
A. Lastra. Physically based visual simulation on
graphics hardware. Proc. of 2002 SIGGRAPH/
Eurographics Workshop on Graphics Hardware,
pages 109–118, 2002.

80. H. Hauser, L. Mroz, G. Bischi, and M. Gröller.
Two-level volume rendering-flushing MIP and
DVR. Proc. of IEEE Visualization ’00, pages
211–218, 2000.

81. T. He, L. Hong, A. Kaufman, and H. Pfister.
Generation of transfer functions with stochastic
search techniques. Proc. of IEEE Visualization
’96, pages 227–234, 1996.

82. G. Herman and H. Liu. 3D display of human
organs from computed tomograms. Comput.
Graphics Image Process, 9(1):1–21, 1979.

83. G. Herman and J. Udupa. Display of 3D dis-
crete surfaces. Proceedings SPIE, 283:90–97,
1981.

84. J. Hesser, R. Maenner, G. Knittel, W. Strasser,
H. Pfister, and A. Kaufman. Three architectures
for volume rendering. Computer Graphics
Forum, 14(3):111–122, 1995.

85. L. Hong and A. Kaufman. Accelerated ray-
casting for curvilinear volumes. Proc. of IEEE
Visualization ’98, pages 247–253, 1998.

86. L. Hong and A. Kaufman. Fast projection-
based ray-casting algorithm for rendering curvi-
linear volumes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(4):322–332,
1999.

87. L. Hong, S. Muraki, A. Kaufman, D. Bartz,
and T. He. Virtual voyage: interactive naviga-
tion in the human colon. Proc. of ACM SIG-
GRAPH ’97, pages 27–34, 1997.

88. H. Hoppe. Progressive meshes. Proc. of SIG-
GRAPH ’96, pages 99–108, 1996.

89. W. Hsu. Segmented ray-casting for data parallel
volume rendering. Proc. of Parallel Rendering
Symposium ’93, pages 93–98, 1993.

90. http://graphics.stanford.edu/software/volpack/
91. http://www.nlm.nih.gov/research/visible/visible_

human.html
92. J. Huang, N. Shareef, R. Crawfis, P. Sadayap-

pan, and K. Mueller. A parallel splatting algo-

rithm with occlusion culling. 3rd Eurographics
Workshop on Parallel Graphics and Visuali-
zation, 2000.

93. J. Huang, R. Crawfis, and D. Stredney. Edge
preservation in volume rendering using splat-
ting. IEEE Volume Vis. ’98, pages 63–69, 1998.

94. I. Ihm and R. Lee. On enhancing the speed of
splatting with indexing. Proc. of IEEE Visual-
ization ’95, pages 69–76, 1995.

95. V. Interrante. Illustrating surface shape in
volume data via principal direction-driven 3D
line integral convolution. Proc. of SIGGRAPH
’97, pages 109–116, 1997.

96. D. Jackel. The graphics PARCUM system: a
3D memory based computer architecture
for processing and display of solid models.
Computer Graphics Forum, 4(1):21–32, 1985.

97. H. Jensen and P. Christensen. Efficient simula-
tion of light transport in sciences with partici-
pating media using photon maps. Proc. of
SIGGRAPH ’98, pages 311–320, 1998.

98. J. Kajiya and B. Herzen. Ray tracing volume
densities. Proc. of SIGGRAPH ’84, pages 165–
174, 1994.

99. K. Kaneda, Y. Dobashi, K. Yamamoto, and
H. Yamashita. Fast volume rendering with ad-
justable color maps. 1996 Symposium on
Volume Visualization, pages 7–14, 1996.

100. A. Kaufman. Volume Visualization, IEEE
Computer Society Press Tutorial, Los Alami-
tos, CA.

101. A. Kaufman. Volume visualization. ACM
Computing Surveys, 28(1):165–167, 1996.

102. A. Kaufman and R. Bakalash. CUBE – an
architecture based on a 3-D voxel map. Theor-
etical Foundations of Computer Graphics and
CAD, (R.A. Earnshaw, Ed.), Springer-Verlag,
pages 689–701, 1985.

103. A. Kaufman and R. Bakalash. Memory
and processing architecture for 3-D voxel-
based imagery. IEEE Computer Graphics &
Applications, 8(6):10–23, 1988. Also in Japan-
ese, Nikkei Computer Graphics, 3(30):148–160,
1989.

104. A. Kaufman, D. Cohen, and R. Yagel. Volume
graphics. IEEE Computer, 26(7):51–64, 1993.

105. T. Kay and J. Kajiya. Ray tracing complex
scenes. Proc. of SIGGRAPH ’86, pages 269–
278, 1986.

106. Y. Ke and E. Panduranga. A journey into the
fourth dimension. Proc. of IEEE Visualization
’89, pages 219–229, 1989.

107. R. Keys. Cubic convolution interpolation for
digital image processing. IEEE Transactions.
on Acoustics, Speech, and Signal Processing,
29(6):1153–1160, 1981.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 167

Overview of Volume Rendering 167

108. S. Kilthau and T. Möller. Splatting optimiza-
tions. Technical Report, School of Computing
Science, Simon Fraser University, (SFU-
CMPT-04/01-TR2001-02), 2001.

109. G. Kindlmann and J. Durkin. Semi-automatic
generation of transfer functions for direct
volume rendering. Symp. Volume Visualization
’98, pages 79–86, 1998.

110. D. King, C. Wittenbrink, and H. Wolters. An
architecture for interactive tetrahedral volume
rendering. International Workshop on Volume
Graphics ’01, pages 101–112, 2001.

111. J. Kniss, G. Kindlmann, and C. Hansen. Inter-
activevolumerenderingusingmultidimensional
transfer functions and direct manipulation
widgets. Proc. of IEEE Visualization ’01, pages
255–262, 2001.

112. J. Kniss, G. Kindlmann, and C. Hansen.
Multidimensional transfer functions for inter-
active volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 8(3):270–
285, 2002.

113. J. Kniss, S. Premoze, C. Hansen, P. Shirley, and
A.McPherson.Amodel for volume lighting and
modeling. IEEE Transactions on Visualization
and Computer Graphics, 9(2):150–162, 2003.

114. J. Kniss, S. Premoze, C. Hansen, and D. Ebert.
Interactive translucent volume rendering and
procedural modeling. Proc. of IEEE Visualiza-
tion ’02, pages 109–116, 2002.

115. G. Knittel. The ULTRAVIS system. Proc. of
Volume Visualization and Graphics Symposium
’00, pages 71–80, 2000.

116. G. Knittel and W. Strasser. A compact volume
rendering accelerator. Volume Visualization
Symposium Proceedings, pages 67–74, 1994.

117. K. Kreeger and A. Kaufman. Interactive
volume segmentation with the PAVLOV archi-
tecture. Proc. of Parallel Visualization and
Graphics Symposium ’99, pages 61–68, 1999.

118. K. Kreeger, I. Bitter, F. Dachille, B. Chen, and
A. Kaufman. Adaptive perspective ray-casting.
Volume Visualization Symposium ’98, pages
55–62, 1998.

119. M. Kreveld, R. Oostrum, C. Bajaj, V. Pas-
cucci, and D. Schikore. Contour trees and
small seed sets for isosurface traversal. Proc.
of the 13th ACM Symposium on Computational
Geometry, pages 212–220, 1997.

120. P. Lacroute and M. Levoy. Fast volume
rendering using a shear-warp factorization of
the viewing transformation. Proc. of SIG-
GRAPH ’94, pages 451–458, 1994.

121. P. Lacroute. Analysis of a parallel volume
rendering system based on the shear-warp fac-

torization. IEEE Trans. of Visualization and
Computer Graphics, 2(3):218–231, 1996.

122. E. LaMar, B. Hamann, and K. Joy. Multire-
solution techniques for interactive texture-
based volume visualization. Proc. of IEEE
Visualization ’99, pages 355–361, 1999.

123. E. Larsen and D. McAllister. Fast matrix
multiplies using graphics hardware. Supercom-
puting ’01, pages 43–49, 2001.

124. D. Laur and P. Hanrahan. Hierarchical splat-
ting: a progressive refinement algorithm for
volume rendering. Proc. of SIGGRAPH ’91,
pages 285–288, 1991.

125. R. Lee and I. Ihm. On enhancing the speed of
splatting using both object and image-space
coherence. Graphical Models and Image Pro-
cessing, 62(4):263–282, 2000.

126. J. Leven, J. Corso, S. Kumar, and J. Cohen.
Interactive visualization of unstructured grids
using hierarchical 3D textures. Proc. of Sym-
posium on Volume Visualization and Graphics
’02, pages 33–40, 2002.

127. M. Levoy. Display of surfaces from volume
data. IEEE Comp. Graph. & Appl., 8(5):29–37,
1988.

128. M. Levoy. Efficient ray tracing of volume data.
ACM Trans. Comp. Graph., 9(3):245–261,
1990.

129. M. Levoy and P. Hanrahan. Light field
rendering. Proc. of SIGGRAPH ’96, pages
31–42, 1996.

130. W. Li and A. Kaufman. Accelerating volume
rendering with texture hulls. IEEE/Siggraph
Symposium on Volume Visualization and
Graphics 2002 (VolVis’02), pages 115–122,
2002.

131. W. Li and A. Kaufman. Texture partitioning
and packing for accelerating texture-based
volume rendering. Graphics Interface ’03,
pages 81–88, 2003.

132. W. Li, X. Wei, and A. Kaufman. Implement-
ing lattice Boltzmann computation on graphics
hardware. The Visual Computer, 2003.

133. P. Li, S. Whitman, R. Mendoza, and J. Tsiao.
ParVox—a parallel splatting volume rendering
system for distributed visualization. Proc. of
Parallel Rendering Symposium ’97, pages
7–14, 1997.

134. B. Lichtenbelt, R. Crane, and S. Naqvi.
Volume Rendering. Prentice-Hall, 1998.

135. Y. Livnat, H. Shen, and C. Johnson. A near
optimal isosurface extraction algorithm for
structured and unstructured grids. IEEE
Trans. on Vis. and Comp. Graph., 2(1):73–84,
1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 168

168 Scalar Field Visualization: Volume Rendering

136. E. Lorensen and H. Cline. Marching cubes:
a high resolution 3D surface construction
algorithm. Proc. of SIGGRAPH ’87, pages
163–169, 1987.

137. A. Lu, C. Morris, D. Ebert, P. Rheingans,
and C. Hansen. Non-photorealistic volume
rendering using stippling techniques. Proc.
of IEEE Visualization ’02, pages 211–217,
2002.

138. A. Lu, C. Morris, J. Taylor, D. Ebert,
P. Rheingans, C. Hansen, and M. Hartner.
Illustrative interactive stipple rendering. IEEE
Transactions on Visualization and Computer
Graphics, pages 127–138, 2003.

139. E. Lum and K. Ma. Hardware-accelerated par-
allel non-photorealistic volume rendering.
International Symposium on Nonphotorealistic
Rendering and Animation ’02, 2002.

140. E. Lum and K. Ma. Nonphotorealistic
rendering using watercolor inspired textures
and illumination. Pacific Graphics ’01, 2001.

141. E. Lum, K. Ma, and J. Clyne. Texture hard-
ware assisted rendering of time-varying volume
data, Proc. of IEEE Visualization ’01, pages
262–270, 2001.

142. F. Ma, W. Wang, W. Tsang, Z. Tang, and
S. Xia. Probabilistic segmentation of volume
data for visualization using SOM-PNN classi-
fier. Symposium on Volume Visualization ’98,
pages 71–78, 1998.

143. K. Ma and S. Parker. Massively parallel soft-
ware rendering for visualizing large-scale data-
sets. IEEE Computer Graphics & Applications,
pages 72–83, 2001.

144. K. Ma. Parallel volume ray-casting for
unstructured-grid data on distributed-memory
architectures. Proc. of Parallel Rendering Sym-
posium ’95, pages 23–30, 1995.

145. K. Ma and T. Crockett. A scalable parallel
cell-projection volume rendering algorithm
for 3D unstructured data. Proc. of Parallel
Rendering Symposium ’97, 1997.

146. R. Machiraju, A. Gaddipati, and R. Yagel.
Detection and enhancement of scale coherer-
ent structures using wavelet transform prod-
ucts. Proc. of the Technical Conference on
Wavelets in Signal and Image Processing V,
pages 458–469, 1997.

147. R. Machiraju and R. Yagel. Efficient feed-
forward volume rendering techniques for
vector and parallel processors, Supercomputing
’93, pages 699–708, 1993.

148. R. Machiraju and R. Yagel. Reconstruction
error and control: a sampling theory approach.
IEEE Transactions on Visualization and
Graphics, 2(3), 1996.

149. T. Malzbender and F. Kitson. A Fourier tech-
nique for volume rendering. Focus on Scientific
Visualization, pages 305–316, 1991.

150. J. Marks, B. Andalman, P. A. Beardsley,
W. Freeman, S. Gibson, J. Hodgins, T. Kang,
B. Mirtich, H. Pfister, and W. Rum. Design
galleries: a general approach to setting para-
meters for computer graphics and animation.
Proc. of SIGGRAPH ’97, pages 389–400, 1997.

151. S. Marschner and R. Lobb. An evaluation of
reconstruction filters for volume rendering.
Proc. of IEEE Visualization ’94, pages 100–
107, 1994.

152. N. Max. Optical models for direct volume
rendering. IEEE Trans. Vis. and Comp.
Graph., 1(2):99–108, 1995.

153. N. Max, P. Hanrahan, and R. Crawfis. Area
and volume coherence for efficient visualiza-
tion of 3D scalar functions. Computer
Graphics, 24(5):27–33, 1990.

154. L. McMillan and G. Bishop. Plenoptic model-
ing: an image-based rendering system. Proc. of
SIGGRAPH ’95, pages 39–46, 1995.

155. D. Meagher. Geometric modeling using octree
encoding. Computer Graphics and Image Pro-
cessing, 19(2):129–147, 1982.

156. D. Meagher. Applying solids processing
methods to medical planning. Proc. of NCGA
’85, pages 101–109, 1985.

157. H. Meinzer, K. Meetz, D. Scheppelmann,
U. Engelmann, and H. Baur. The Heidelberg
raytracing model. IEEE Computer Graphics &
Applications, 11(6):34–43, 1991.

158. M. Meißner and S. Guthe. Interactive lighting
models and pre-integration for volume render-
ing on PC graphics accelerators. Graphics
Interface ’02, 2002.

159. M. Meißner, J. Huang, D. Bartz, K. Mueller
and R. Crawfis. A practical comparison of
popular volume rendering algorithms. Sympo-
sium on Volume Visualization and Graphics
2000, pages 81–90, 2000.

160. M. Meißner, M. Doggett, U. Kanus, and
J. Hirche. Efficient space leaping for ray-cast-
ing architectures. Proc. of the 2nd Workshop on
Volume Graphics, 2001.

161. M. Meißner, U. Hoffmann, and W. Straßer.
Enabling classification and shading for 3D tex-
ture mapping based volume rendering using
OpenGL and extension. Proc. of IEEE Visual-
ization ’99, 1999.

162. M. Meißner, U. Kanus, and W. Straßer.
VIZARD II: A PCI-card for real-time volume
rendering. Proc. of Siggraph/Eurographics
Workshop on Graphics Hardware ’98, pages
61–67, 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 169

Overview of Volume Rendering 169

163. M. Meißner, U. Kanus, G. Wetekam, J.
Hirche, A. Ehlert, W. Straßer, M. Doggett, and
R. Proksa. A reconfigurable interactive volume
rendering system. Proc. of SIGGRAPH/
Eurographics Workshop on Graphics Hardware
’02, 2002.

164. J. Ming, R. Machiraju, and D. Thompson. A
novel approach to vortex core detection. Proc.
of VisSym ’02, pages 217–225, 2002.

165. D. Mitchell and A. Netravali, Reconstruction
filters in computer graphics. Proc. of SIG-
GRAPH ’88, pages 221–228, 1988.

166. T. Möller, R. Machiraju, K. Mueller, and
R. Yagel. A comparison of normal estimation
schemes. Proc. of IEEE Visualization ’97,
pages 19–26, 1997.

167. T. Möller, R. Machiraju, K. Mueller, and
R. Yagel. Evaluation and design of filters
using a Taylor series expansion. IEEE Trans-
actions on Visualization and Computer
Graphics, 3(2):184–199, 1997.

168. S. Molnar, M. Cox, D. Ellsworth, and
H. Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics and Appli-
cations, 14(4):23–32, 1994.

169. C. Montani, R. Scateni, and R. Scopigno. Dis-
cretized marching cubes. Proc. of IEEE Visual-
ization ’94, pages 281–287, 1994.

170. C. Montani, R. Perego, and R. Scopigno. Par-
allel volume visualization on a hypercube
architecture. Proc. of Volume Visualization
Symposium ’92, pages 9–16, 1992.

171. B. Mora, J. Jessel, and R. Caubet. A new
object-order ray-casting algorithm. Proc. of
IEEE Visualization ’02, pages 203–210, 2002.

172. C. Morris and D. Ebert. Direct volume
rendering of photographic volumes using
multi-dimensional color-based transfer func-
tions, EUROGRAPHICS IEEE TCVG Symp.
on Visualization ’02, pages 115–124, 2002.

173. K. Mueller and R. Crawfis, Eliminating pop-
ping artifacts in sheet buffer-based splatting.
Proc. of IEEE Visualization ’98, pages 239–
245, 1998.

174. K. Mueller and R. Yagel. Fast perspective
volume rendering with splatting by using a
ray-driven approach. Proc. of IEEE Visualiza-
tion ’96, pages 65–72, 1996.

175. K. Mueller and R. Yagel. Rapid 3D cone-
beam reconstruction with the algebraic recon-
struction technique (ART) by using texture
mapping hardware, IEEE Transactions on
Medical Imaging, 19(12):1227–1237, 2000.

176. K. Mueller, M. Chen, and A. Kaufman (Eds.)
Volume Graphics ’01. London, Springer,
2001.

177. K. Mueller, N. Shareef, J. Huang, and
R. Crawfis. High-quality splatting on rectilin-
ear grids with efficient culling of occluded vox-
els. IEEE Transactions on Visualization and
Computer Graphics, 5(2):116–134, 1999.

178. K. Mueller, N. Shareef, J. Huang, and
R. Crawfis. IBR assisted volume rendering.
Proc. of IEEE Visualization ’99, pages 5–8,
1999.

179. K. Mueller, T. Moeller, J. E. Swan, R. Crawfis,
N. Shareef, and R. Yagel. Splatting errors
and antialiasing. IEEE Transactions on Visual-
ization and Computer Graphics, 4(2):178–191,
1998.

180. K. Mueller, T. Möller, and R. Crawfis. Splat-
ting without the blur. Proc. of IEEE Visualiza-
tion ’99, pages 363–371, 1999.

181. S. Muraki. Volume data and wavelet trans-
form, IEEE Comput. Graphics Appl.,
13(4):50–56, 1993.

182. N. Neophytou and K. Mueller. Space-time
points: 4D splatting on efficient grids. Sympo-
sium on Volume Visualization and Graphics ’02,
pages 97–106, 2002.

183. N. Neophytou and K. Mueller. Post-
convolved splatting. Joint Eurographics–IEEE
TCVG Symposium on Visualization ’03, pages
223–230, 2003.

184. J. Nieh and M. Levoy. Volume rendering on
scalable shared-memory MIMD architectures.
Proc. of Volume Visualization Symposium,
pages 17–24, 1992.

185. G. Nielson and B. Hamann. The asymptotic
decider: resolving the ambiguity in marching
cubes. Proc. of IEEE Visualization ’91, pages
29–38, 1991.

186. M. Nielson. Scattered data modeling. IEEE
Computer Graphics and Applications, 13(1):
60–70, 1993.

187. P. Ning and L. Hesselink. Fast volume
rendering of compressed data. Proc. of IEEE
Visualization ’93, pages 11–18, 1993.

188. P. Ning and L. Hesselink. Vector quantization
for volume rendering. Proc. of IEEE Visualiza-
tion ’92, pages 69–74, 1992.

189. H. Noordmans, H. Voort, and A. Smeulders.
Spectral volume rendering. IEEE Transactions
on Visualization and Computer Graphics,
6(3):196–207, 2000.

190. L. Novins, F. X. Sillion, and D. P. Greenberg.
An efficient method for volume rendering
using perspective projection. Computer
Graphics, 24(5):95–100, 1990.

191. M. Nulkar and K. Mueller. Splatting with
shadows. International Workshop on Volume
Graphics ’01, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 170

170 Scalar Field Visualization: Volume Rendering

192. T. Ohashi, T. Uchiki, and M. Tokyo. A 3D
shaded display method for voxel-based repre-
sentation. Proc. of EUROGRAPHICS ’85,
pages 221–232, 1985.

193. R. Osborne, H. Pfister, H. Lauer, T. Ohkami,
N. McKenzie, S. Gibson, and W. Hiatt. EM-
cube: an architecture for low-cost real-time
volume rendering. Proc. of Eurographics Hard-
ware Rendering Workshop ’97, pages 131–138,
1997.

194. S. Parker, M. Parker, Y. Livnat, P. Sloan,
C. Hansen, and P. Shirley. Interactive ray
tracing for volume visualization. IEEE Trans-
actions on Visualization and Computer
Graphics, 5(3):238–250, 1999.

195. S. Parker, P. Shirley, Y. Livnat, C. Hansen,
and P. Sloan. Interactive ray tracing for isosur-
face rendering. Proc. of IEEE Visualization ’98,
pages 233–238, 1998.

196. V. Pascucci and K. Cole-McLaughlin. Efficient
computation of the topology of level sets. Proc.
of IEEE Visualization ’02, pages 187–194,
2002.

197. S. Peercy. Linear color representations for full
spectral rendering. Computer Graphics,
27(3):191–198, 1993.

198. V. Pekar, R. Wiemker, and D. Hempel. Fast
detection of meaningful isosurfaces for volume
data visualization. Proc. of IEEE Visualization
’01, pages 223–230, 2001.

199. H. Pfister, B. Lorensen, C. Bajaj, G. Kindl-
mann, W. Schroeder, L. Avila, K. Martin,
R. Machiraju, and J. Lee. The transfer func-
tion bake-off. Proc. of IEEE Computer
Graphics & Applications, 21(3):16–22, 2001.

200. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer,
and L. Seiler. The VolumePro real-time ray-
casting system. Proc. of SIGGRAPH ’99, pages
251–260, 1999.

201. H. Pfister, M. Zwicker, J. Baar, and M. Gross.
Surfels: surface elements as rendering primi-
tives. Proc. of SIGGRAPH ’00, pages 335–
342, 2000.

202. H. Pfister, A. Kaufman, and F. Wessels. To-
wards a scalable architecture for real-time
volume rendering. Proc. of 10th Euro-
graphics Workshop on Graphics Hardware ’95,
pages 123–130, 1995.

203. H. Pfister, A. Kaufman, and T. Chiueh. Cube-
3: a real-time architecture for high-resolution
volume visualization. Symposium of Volume
Visualization ’94, pages 75–82, 1994.

204. H. Pfister and A. Kaufman. Cube-4: a scalable
architecture for real-time volume rendering.
Proc. of Volume Visualization Symposium ’96,
pages 47–54, 1996.

205. H. Pfister, F. Wessels, and A. Kaufman,
Sheared interpolation and gradient estimation
for real-time volume rendering. Computer
Graphics, 19(5):667–677, 1995.

206. H. Pfister, F. Wessels, and A. Kaufman.
Sheared interpolation and gradient estimation
for real-time volume rendering. Proc. of 9th
Eurographics Workshop on Graphics Hardware
’94, 1994.

207. T. Porter and T. Duff. Compositing digital
images. Computer Graphics (Proc. Siggraph
’84), pages 253–259, 1984.

208. R. Reynolds, D. Gordon, and L. Chen. A
dynamic screen technique for shaded graphics
display of slice-represented objects. Computer
Graphics and Image Processing, 38:275–298,
1987.

209. C. Rezk-Salama, K. Engel, M. Bauer, G. Grei-
ner, and T. Ertl. Interactive volume rendering
on standard PC graphics hardware using
multi-textures and multi-stage rasterization.
Proc. of SIGGRAPH/Eurographics Workshop
on Graphics Hardware ’00, pages 109–118,
2000.

210. S. Roettger and T. Ertl. A two-step approach
for interactive pre-integrated volume rendering
of unstructured grids. Proc. of VolVis ’02,
pages 23–28, 2002.

211. S. Roettger, M. Kraus, and T. Ertl. Hardware-
accelerated volume and isosurface rendering
based on cell-projection. Proc. of IEEE Visual-
ization ’00, pages 109–116, 2000.

212. J. Rossignac. Considerations on the interactive
rendering of 4D volumes. Chapel Hill Work-
shop on Volume Visualization, pages 67–76,
1989.

213. H. Rushmeier and E. Torrance. The zonal
method for calculating light intensities in the
presence of a participating medium. Computer
Graphics, 21(4):293–302, 1987.

214. S. Rusinkiewicz and M. Levoy. QSplat: a mul-
tiresolution point rendering system for large
meshes. Proc. of SIGGRAPH ’00, 2000.

215. P. Sabella. A rendering algorithm for visualiz-
ing 3D scalar fields. ACM SIGGRAPH Com-
puter Graphics, 22(4):51–58, 1988.

216. M. Salisbury, C. Anderson, D. Lischinski, and
D. Salesin. Scale-dependent reproduction of
pen-and-ink illustrations. Proc. of SIGGRAPH
’96, pages 461–468, 1996.

217. M. Salisbury, M. Wong, J. Hughes, and D.
Salesin. Orientable textures for image-based
pen-and-ink illustration. Proc. of SIGGRAPH
’97, pages 401–406, 1997.

218. H. Samet. Application of Spatial Data Struc-
tures. Reading, PA, Addison-Wesley, 1990.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 171

Overview of Volume Rendering 171

219. K. Sano, H. Kitajima, H. Kobayashi, and
T. Nakamura. Parallel processing of the
shear-warp factorization with the binary-swap
method on a distributed-memory multiproces-
sor system, Proc. of Parallel Rendering Sympo-
sium ’97, pages 87–95, 1997.

220. W. Schroeder, J. Zarge, and W. Lorensen.
Decimation of triangle meshes. ACM
SIGGRAPH Computer Graphics, 26(2):65–70,
1992.

221. J. Shade, S. Gortler, Li-Wei He, and R. Sze-
liski. Layered depth images. Proc. of SIG-
GRAPH ’98, pages 231–242, 1998.

222. N. Shareef, D. Wang, and R. Yagel. Segmen-
tation of medical images using LEGION.
IEEE Transactions on Medical Imaging,
18(1):74–91, 1999.

223. R. Shekhar, E. Fayyad, R. Yagel, and J. Corn-
hill. Octree-based decimation of marching
cubes surfaces. Proc of IEEE Visual Conf.,
pages 335–342, 1996.

224. H. Shen, C. Hansen, Y. Livnat, and C. John-
son. Isosurfacing in span space with utmost
efficiency (ISSUE). Proc. of IEEE Visualiza-
tion ’96, pages 287–294, 1996.

225. H. Shen, L. Chiang, and K. Ma. A fast volume
rendering algorithm for time-varying fields
using a time-space partitioning tree. Proc. of
IEEE Visualization ’99, pages 371–377, 1999.

226. H. Shen and C. Johnson. Differential volume
rendering: a fast volume visualization tech-
nique for flow animation. Proc. Visualization
’94, pages 180–187, 1994.

227. Y. Shinagawa and T. Kunii. Constructing a
reeb graph automatically from cross sections.
IEEE Computer Graphics and Applications,
11(6):45–51, 1991.

228. P. Shirley and A. Tuchman. A polygonal ap-
proximation to direct scalar volume rendering.
Computer Graphics, 24(5):63–70, 1990.

229. J. Sijbers, P. Scheunders, M. Verhoye,
A. Linden, D. Dyck, and E. Raman. Water-
shed-based segmentation of 3D MR data for
volume quantization. Magnetic Resonance Im-
aging, 15:679–688, 1997.

230. C. Silva, A. Kaufman, and C. Pavlakos. PVR:
high-performance volume rendering. IEEE
Computational Science and Engineering, pages
18–28, 1996.

231. C. Silva and J. Mitchell. The lazy sweep ray-
casting algorithm for rendering irregular grids.
IEEE Transactions on Visualization and Com-
puter Graphics, 3(2):142–157, 1997.

232. C. Silva, J. Mitchell, and P. Williams. An
exact interactive time visibility ordering algo-
rithm for polyhedral cell complexes. Volume

Visualization Symposium ’98, pages 87–94,
1998.

233. D. Silver and X. Wang. Tracking scalar fea-
tures in unstructured datasets. Proc. of IEEE
Visualization ’98, pages 79–86, 1998.

234. D. Silver and X. Wang. Tracking and visualiz-
ing turbulent 3D features. IEEE Transactions
on Visualization and Computer Graphics, 3(2),
1997.

235. L. Sobierajski, D. Cohen, A. Kaufman,
R. Yagel, and D. Acker. A fast display method
for volumetric data. Visual Computer,
10(2):116–124, 1993.

236. L. Sobierajski and A. Kaufman. Volumetric
raytracing. Symposium on Volume Visualiza-
tion ’94, pages 11–18, 1994.

237. L. Sobierajski and R. Avila. A hardware accel-
eration method for volumetric ray tracing.
Proc. of IEEE Visualization ’95, pages 27–35,
1995.

238. L. Sobierajski, D. Cohen, A. Kaufman,
R. Yagel, and D. Acker. A fast display
method for volumetric data. Visual Comput.,
10(2):116–124, 1993.

239. B. Sohn, C. Bajaj, and V. Siddavanahalli. Fea-
ture based volumetric video compression for
interactive playback. VolVis ’02, pages 89–96,
2002.

240. D. Spearey and S. Kennon. Volume probes:
interactive data exploration on arbitrary grids.
Computer Graphics, 25(5):5–12, 1990.

241. M. Sramek and A. Kaufman. Fast ray-tracing
of rectilinear volume data using distance trans-
forms. IEEE Transactions on Visualization and
Computer Graphics, 3(6):236–252, 2000.

242. B. Stander and J. Hart. A Lipschitz method for
accelerated volume rendering. Proc. of the
Symposium on Volume Visualization ’94, pages
107–114, 1994.

243. C. Stein, B. Becker, and N. Max. Sorting and
hardware assisted rendering for volume visual-
ization. Symposium on Volume Visualization
’94, pages 83–90, 1994.

244. A. Stompel, E. Lum, and K. Ma. Feature-
enhanced visualization of multidimensional,
multivariate volume data using non-photorea-
listic rendering techniques. Proc. of Pacific
Graphics ’02, pages 394–402, 2002.

245. M. Stytz and O. Frieder. Computer systems for
3D diagnostic imaging: an examination of the
state of the art. Critical Reviews in Biomedical
Engineering, pages 1–46, 1991.

246. M. Stytz, G. Frieder, and O. Frieder. 3D med-
ical imaging: algorithms and computer
systems. ACM Computing Surveys, pages
421–499, 1991.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 172

172 Scalar Field Visualization: Volume Rendering

247. P. Sutton and C. Hansen. Isosurface extraction
in time-varying fields using a temporal branch-
on-need tree (T-BON). Proc. of IEEE Visual-
ization ’99, pages 147–153, 1999.

248. E. Swan, K. Mueller, T. Moller, N. Shareef,
R. Crawfis, and R. Yagel. An anti-aliasing
technique for splatting. Proc. of IEEE Visual-
ization ’97, pages 197–204, 1997.

249. J. Sweeney and K. Mueller. Shear-warp
deluxe: the shear-warp algorithm revisited.
Joint Eurographics–IEEE TCVG Symposium
on Visualization ’02, pages 95–104, 2002.

250. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L.
Kunii, and M. Ueda. Algorithms for extracting
correct critical points and constructing topo-
logical graphs from discrete geographical
elevation data. Computer Graphics Forum,
14(3):181–192, 1995.

251. S. Tenginakai, J. Lee, andR. Machiraju. Salient
isosurface detection with model-independent
statistical signatures. Proc. of IEEE Visualiza-
tion ’01, pages 231–238, 2001.

252. T. Theußl, H. Hauser, and M. Gröller.
Mastering windows: improving reconstruction.
Proc. of IEEE Symposium on Volume Visual-
ization ’00, pages 101–108, 2000.

253. T. Theußl, T. Möller, and E. Gröller. Optimal
regular volume sampling. Proc. of IEEE Visu-
alization ’01, 2001.

254. P. Thévenaz, T. Blu, and M. Unser. Interpol-
ation revisited. IEEE Transactions on Medical
Imaging, 19(7):739–758, 2000.

255. U. Tiede, T. Schiemann, and K. Hoehne. High
quality rendering of attributed volume data.
Proc. of IEEE Visualization ’98, pages 255–
262, 1998.

256. T. Totsuka and M. Levoy. Frequency domain
volume rendering. Proc. of SIGGRAPH ’93,
pages 271–278, 1993.

257. S. Treavett and M. Chen. Pen-and-ink
rendering in volume visualization. Proc. of
IEEE Visualization ’00, pages 203–210, 2000.

258. H. Tuy and L. Tuy. Direct 2D display of 3D
objects. IEEE Computer Graphics & Applica-
tions, 4(10):29–33, 1984.

259. J. Udupa and D. Odhner. Shell rendering.
IEEE Computer Graphics and Applications,
13(6):58–67, 1993.

260. S. Uselton. Volume rendering for computa-
tional fluid dynamics: initial results. Tech
Report RNR-91-026, NASA Ames Research
Center, 1991.

261. G. Wallace. The JPEG still picture compres-
sion standard. Communications of the ACM,
24(4):30–44, 1991.

262. M. Wan, Q. Tang, A. Kaufman, Z. Liang, and
M. Wax. Volume rendering based interactive
navigation within the human colon. Proc. of
IEEE Visualization ’99, pages 397–400, 1999.

263. C. Weigle and D. Banks. Extracting iso-valued
features in 4-D datasets. Proc. of IEEE Visual-
ization ’98, pages 103–110, 1998.

264. D. Weiskopf, K. Engel, and T. Ertl. Volume
clipping via per-fragment operations in tex-
ture-based volume visualization. Proc. of
IEEE Visualization ’02, pages 93–100, 2002.

265. R. Westermann. A multiresolution framework
for volume rendering. Proc. of Symp. on
Volume Visualization ’94, pages 51–58, 1994.

266. R. Westermann. Compression domain render-
ing of time-resolved volume data. Proc. of
IEEE Visualization ’95, pages 168–174, 1995.

267. R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering
applications. Proc. of SIGGRAPH ’99, pages
169–177, 1999.

268. L. Westover. Footprint evaluation for volume
rendering. Proc. of SIGGRAPH ’90, pages
367–376, 1990.

269. L. Westover. Interactive volume rendering.
Chapel Hill Volume Visualization Workshop,
pages 9–16, 1989.

270. L. Westover. SPLATTING: A parallel, feed-
forward volume rendering algorithm. Ph.D.
Dissert. UNC-Chapel Hill, 1991.

271. S. Whitman. A task adaptive parallel graphics
renderer. Proc. of Parallel Rendering Sympo-
sium ’93, pages 27–34, 1993.

272. J. Wijk. Spot noise-texture synthesis for data
visualization. Proc. of SIGGRAPH ’91,
25(4):309–318, 1991.

273. J. Wilhelms and A. Van Gelder. A coherent
projection approach for direct volume render-
ing. Proc. of SIGGRAPH ’91, 25(4):275–284,
1991.

274. J. Wilhelms and A. Van Gelder. Octrees for
faster isosurface generation. ACM Transac-
tions on Graphics, 11(3):201–227, 1992.

275. P. Williams. Interactive splatting of nonrecti-
linear volumes. Proc. of IEEE Visualization
’92, pages 37–44, 1992.

276. P. Williams. Visibility ordering meshed poly-
hedra. ACM Transaction on Graphics,
11(2):103–125, 1992.

277. G. Winkenbach and D. Salesin. Computer-
generated pen-and-ink illustration. Proc. of
SIGGRAPH ’94, pages 91–100, 1994.

278. G. Winkenbach and D. Salesin. Rendering
parametric surfaces in pen and ink. Proc. of
SIGGRAPH ’96, pages 469–476, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 173

Overview of Volume Rendering 173

279. T. Wischgoll and G. Scheuermann. Detection
and visualization of closed streamlines in planar
flows. IEEE Transactions on Visualization and
Computer Graphics, 7(2):165–172, 2001.

280. C. Wittenbrink, T. Malzbender, and M. Goss.
Opacity-weighted color interpolation for
volume sampling. Symposium on Volume Visu-
alization ’98, pages 135–142, 1998.

281. G. Wolberg. Digital Image Warping. IEEE
Computer Society Press, Los Alamitos, CA,
1990.

282. Y. Wu, V. Bhatia, H. Lauer, and L. Seiler.
Shear-image ray-casting volume rendering.
ACM SIGGRAPH Symposium on Interactive
3D Graphics ’03, pages 152–162, 2003.

283. F. Xu and K. Mueller. A unified framework
for rapid 3D computed tomography on com-
modity GPUs. Proc. of IEEE Medical Imaging
Conference ’03, 2003.

284. R. Yagel and A. Kaufman. Template-based
volume viewing. Computer Graphics Forum,
11(3):153–167, 1992.

285. R. Yagel, D. Reed, A. Law, P.-W. Shih, and
N. Shareef. Hardware assisted volume
rendering of unstructured grids by incremental
slicing. Volume Visualization Symposium ’96,
pages 55–62, 1996.

286. R. Yagel and Z. Shi. Accelerating volume ani-
mation by space-leaping. Proc. of IEEE Visu-
alization ’93, pages 62–69, 1993.

287. R. Yagel and A. Kaufman. The flipping cube
architecture. Tech. Rep. 91.07.26, Computer
Science, SUNY at Stony Brook, 1991.

288. B. Yeo and B. Liu. Volume rendering of DCT-
based compressed 3D scalar data. IEEE Trans.
Visualization Comput. Graphics, 1(1):29–43,
1995.

289. H. Zhang, D. Manocha, T. Hudson, and
K. Hoff. Visibility culling using hierarchical
occlusion maps. Proc. of SIGGRAPH ’97,
pages 77–88, 1997.

290. C. Zhang and R. Crawfis. Volumetric shadows
using splatting. Proc. of IEEE Visualization
’02, pages 85–92, 2002.

291. K. Zuiderveld, A. Koning, and M. Viergever.
Acceleration of ray-casting using 3D distance
transforms. Visualization in Biomedical Com-
puting ’92, pages 324–335, 1992.

292. M. Zwicker, H. Pfister, J. Baar, and M. Gross.
Surface splatting. Proc. of SIGGRAPH ’01,
pages 371–378, 2001.

293. M. Zwicker, H. Pfister, J. Baar, and M. Gross.
EWA volume splatting. Proc. of IEEE Visual-
ization ’01, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:05pm page 174

174 Scalar Field Visualization: Volume Rendering

8 Volume Rendering Using Splatting

ROGER CRAWFIS, DAQING XUE, and CAIXIA ZHANG

The Ohio State University

8.1 The Theory

8.1.1 Reconstruction and Integration

In order to understand volume rendering and

splatting, we must first have an appreciation of

the continuous reconstruction of functions from

discrete or sampled data. Typically, we are given

the discrete data without any additional meta-

data that can be used to help reconstruct the

original underlying function from which it was

derived. Thus, many assumptions are made

about the data, and different reconstruction

kernels give rise to different continuous func-

tions. Sampling theory will tell you that if you

assume your function was periodic and rather

smooth, in fact, so smooth that the fixed sam-

pling of the function captured any rapid oscilla-

tions in the function, then using the well-known

sinc function as your reconstruction operator

will reproduce the original function. This, of

course, is rarely true for most 3D objects,

where there is an abrupt change from one mater-

ial to another, such as from muscle to bone, or

from air to tree bark. Even fuzzy phenomena

rarely exhibit this band-limited behavior. Clouds

have a fractal-like characteristic to them, and

turbulent flow is chaotic. However, the data on

the computer comes to us in two forms. The first

possibility is that it was calculated using a simu-

lation package, in which case a careful computa-

tional scientist has gone to great efforts to ensure

a reasonable sampling. Most simulation pack-

ages attempt to control the maximum time step

that can be taken and still produce reasonably

accurate results. Extremely high gradients are

still possible across a cell or between samples.

The second possibility is that the discrete data

was acquired through some analog-to-digital

device, where the continuous analog signal is

usually low-pass filtered before being sampled,

removing any high frequencies. A primary ques-

tion to ask in visualizing such data is how we

should represent the abstract 3D field. First of

all, we need to ask what signal we are recon-

structing. Should we reconstruct the output of

the A-D converter, or make additional assump-

tions about the samples and try to reconstruct

the original function?

The term splat means to spread flat or flatten

out. Lee Westover [13] first used this term for

the deposition of a single 3D reconstruction

kernel being projected and integrated onto the

image screen. In his paper, he refers to these

as footprints, implying the extent to which a

single voxel or reconstruction kernel covers the

image plane. Fig. 8.1 shows the same situation

in two dimensions. Here, a radially symmetric

image-reconstruction kernel is being integrated

along the direction perpendicular to the line

AB. This converts the 2D function to a 1D

function along the line. In this case, a compact

reconstruction kernel is used, and the function

quickly goes to zero (represented as black in

the figure). This also allows the footprint func-

tion to go to zero rapidly. Finally, by using a

radially symmetric kernel, the same 1D func-

tion is obtained regardless of the direction of

integration.

Mathematically, we first center the recon-

struction kernel over every discrete value in

our 3D volume. This produces the continuous

function f (x,y,z):

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 175

175

f (x, y, z) ¼
X

i

X
j

X
k

fi, j, k h(x� i, y� j, z� k)

(8:1)

The particular choice of h(x,y,z) is a well-

studied subject and includes issues associated

with practically implemented kernels as well as

theoretical properties under ideal conditions.

We will not address these issues here explicitly,

other than to mention some design goals leading

to the most effective kernels for splatting. The

integral of our continuous function along any

ray t is given by

ðL

0

f (x(t), y(t), z(t))dt

¼
ðL

0

X
i

X
j

X
k

fi, j, kh(x(t)� i, y(t)� j, z(t)� k)dt

¼
X

i

X
j

X
k

fi, j, k

ðL

0

h(x(t)� i, y(t)� j, z(t)� k)dt

(8:2)

This allows for a separation of the underlying

discrete data values from the reconstruction

kernel. A change of variables and a projec-

tion of our reconstruction kernel along t

allow the computation of a single footprint

for the reconstruction kernel centered at the

origin.

Let

(u, v) ¼ proj(x, y, z)

then (8.3)

footprintt(u, v) ¼
ðL

0

h(x(t)� i, y(t)� j, z(t)� k)dt

This footprint can be either view-dependent,

as denoted by the subscript t, or, for the case of

radially symmetric kernels, view-independent.

For now, we will consider orthographic pro-

jections. The continuous footprint function

encodes all possible rays through a radially sym-

metric function, but it needs to be sampled dif-

ferently for perspective projections. Thus, our

final form for the integral of f (x,y,z) over the

image plane can be represented by the continu-

ous function

ðL

0

f (x(t), y(t), z(t))dt ¼
X

i

X
j

X
k

fi, j, kfootprintt

(proj(x(t)� i, y(t)� j, z(t)� k))

(8:4)

This formula states that the integral is the

summation of many translated copies of the

footprint function, weighted by the discrete

data. This integral formula was the basis for

Westover’s original volume renderings. We will

now examine the illumination or volume

rendering integral.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 176

B

A

Figure 8.1 Flattening out of a reconstruction kernel to

produce a 1D footprint or splat.

176 Scalar Field Visualization: Volume Rendering

8.1.2 The Volume Rendering Integral

8.1.2.1 X-Rays and the Absorption-Only
Model

For x-ray modeling, the function, f(x,y,z), can

be mapped to an extinction coefficient, t, that

controls the rate at which light is occluded. Max

[3] derives the mathematical formula for this

simple model. The differential change in the

intensity along the ray can be written as

dI

ds
¼ �t(s)I(s) (8:5)

where s is a length parameter along a ray in the

direction of the light flow.

This equation states that the change in the

intensity (dI/ds) decreases (hence the negative

multiplier) proportionally to the incoming

intensity, as determined by the extinction coeffi-

cient. The analytical solution for this formula is

simply

I(s) ¼ I0e
�
Ðs
0

t(t)dt

(8:6)

This indicates the attenuation of the high

energy source or backlight as it propagates

from the background, s ¼ 0, towards the eye.

If t is zero along the ray, then no attenuation

occurs and the intensity at the pixel is I0. If t is a

constant along the ray, then the attenuation is

given by

I(s) ¼ I0e
�
Ðs
0

tdt

¼ I0e
�ts (8:7)

Using a Taylor series expansion for the

exponential and simplifying for the case where

ts is small leads to the familiar compositing

operator, over, from Porter and Duff [10]:

I0e
�ts ¼ I0 1� tsþ (ts)2

2!
� (ts)3

3!
þ . . .

 !

� I0(1� ts)

(8:8)

Here, ts represents the opacity, a, expressed as a

function of the ray length. As Max [3] and

Wilhelms and Van Gelder [14] point out, this

relationship of increased opacity for longer ray-

integration segments is crucial when considering

different sampling resolutions of the volume.

This equation also points out that for volume

rendering using relatively low-opacity values,

the simple over operator is probably sufficient.

Where volume rendering tries to replace sur-

face-based rendering, the approximation is not

very valid. However, in these cases, an x-ray

model is also not desired.

So, how does this relate to splatting? Most

other volume rendering techniques use the ap-

proximation above and a rather poor Riemann

sum to approximate the x-ray integral. Splatting

offers an analytical solution to this problem,

provided that an analytical integration of the

reconstruction kernel is obtainable. Combining

Equations 8.4 and 8.6 for the ray from the

background, t¼0, to the eye at ray length L,

produces the following formula:

I ¼ I0e
�
P

i

P
j

P
k

fi, j, kfootprinttð proj(x(t)�i, y(t)�j, z(t)�k))

(8:9)

To integrate the volume along an arbitrary

viewing direction, w, using an x-ray model, we

first transform the volume into eye space:

V (u, v,w) ¼
X

(s, t, r)2Vol

~ff (s, t, r)h(s� u, t� v, r� w)

(8:10)

Here, ~ff (s, t, r) ¼ ~ff ((i, j, k)MT) ¼ f (i, j, k), and M

is the transformation matrix to the eye space.

We calculate the integral, D(u,v), of the volume,

V(u,v,w), along w as follows:

D(u,v)¼
ð X

(s, t, r)2Vol

~ff (s, t, r)h(s� u, t� v, r�w)dw

¼
X

(s, t,r)2Vol

~ff (s, t, r)

ð
h(s� u, t� v, r�w)dw

(8:11)

It can be rewritten as follows [15]:

D(u, v) ¼
X

(s, t)2vol

~ppw(s, t) footprinthw(s� u, t� v)

¼ ~ppw(u, v)� footprinthw(u, v)

(8:12)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 177

Volume Rendering Using Splatting 177

Here, * is the convoluting operation, and ~ppw(u, v)

is the projection function of ~ff (s, t, r) along the w

direction, as follows:

~ppw(u, v) ¼
X

(s, t, r)2vol

f (s, t, r)d(s� u, t� v) (8:13)

Here, d is a comb function. This implies that for

x-ray models, we can pass a 2D convolution

kernel (footprint) across the projected set of

impulses.

8.1.2.2 Sabella Model: Absorption with
Single Scattering

The absorption-plus-emission model is used by

Sabella [11] and elaborated by Max [3]. The

volume rendering integral for this model is

I(s) ¼ I0e
�
Ðs
0

t(r)dr

þ
ðs

0

g(t)e
�
Ðs
t

t(r)dr

dt (8:14)

Here, the background light is attenuated, as in

the x-ray model, but new energy is scattered to-

wards the eye along the ray according to the glow

function, g(t). This newly added energy is then

attenuated based on the length of material that

still exists between it and the eye. Integrating the

function separately, as in the previous section,

does not work for this model since the limits of

integration are not fixed on the inner integral. See

the paper by Mueller et al. [8] for more details on

the inaccuracies involved in applying this

scheme. The solution to this can be viewed by

partitioning the integral.

I(s) ¼ I0e
�
Ðs
0

t(r)dr

þ
ðx1

0

g(t)e
�
Ðs
t

t(r)dr

dt

þ . . .þ
ðs

xk�1

g(t)e
�
Ðs
t

t(r)dr

dt

(8:15)

Here, the limits of integration in the exponent

do not change, since each slice’s scattered

energy still needs to be occluded by the

entire portion of the volume remaining on the

ray. By partitioning the inner integrals as well,

we can factor out all but the most current parti-

tion.

I(xn) ¼ I0e
�
Ðxn

0

t(r)dr

þ
ðx1

0

g(t)e
�
Ðx1

t

t(r)drþ
Ðxn

x1

t(r)dr

� �
dt

þ ...þ
ðxn

xn�1

g(t)e
�
Ðxn

t

t(r)dr

dt

¼ I0e
�
Ðxn

0

t(r)dr

þe

�
Ðxn

x1

t(r)dr

�
ðx1

0

g(t)e
�
Ðx1

t

t(r)dr

dt

þ ...þ
ðxn

xn�1

g(t)e
�
Ðxn

t

t(r)dr

dt

¼ e

�
Ðxn

x1

t(r)dr

I0e
�
Ðx1

0

t(r)dr

þ
ðx1

0

g(t)e
�
Ðx1

t

t(r)dr

dt

0
B@

1
CA

þ ...þ
ðxn

xn�1

g(t)e
�
Ðxn

t

t(r)dr

dt

(8:16)

This leads to the recursion formula:

T0 ¼ 1

Ti ¼ e

�
Ðxi

xi�1

t(t)dt

Ti�1

Ii ¼ TiIi�1 þ
ðxi

xi�1

g(t)e
�
Ðxi

t

t(s)ds

dt

(8:17)

In Equation 8.4, the limits of integration are

really assumed to be the full extent of the recon-

struction kernel. Here, we may need to integrate

over only a small portion of the reconstruction

kernel. This requires many different footprint

functions to be calculated, since the voxel loca-

tion may be arbitrarily oriented in regards to the

partitioning. Mueller et al. [8] provide details on

this implementation, termed image-aligned

sheet-based splatting or IASB splatting.

8.2 Image-Aligned Sheet-Based Splatting

In splatting, each voxel is represented by a 3D

kernel weighted by the voxel value. The 3D

kernels are integrated into a generic 2D foot-

print along the traversing ray from the eye. This

footprint can be efficiently mapped onto the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 178

178 Scalar Field Visualization: Volume Rendering

image plane; the final image is obtained by

the collection of all projected footprints

weighted by the voxel values. This splatting

approach is fast, but it suffers from color bleed-

ing and popping artifacts due to incorrect

volume integration.

Mueller et al. [8] eliminate these problems

by aligning the sheets to be parallel to the

image plane (Fig. 8.2). All the voxel kernels

that overlap a slab are clipped to the slab and

summed into a sheet buffer. The sheet buffers

are composited front-to-back to form the

final image. While this significantly improves

image quality, it requires much more composit-

ing and several footprint sections per voxel

to be scan-converted. Using a front-to-back

traversal, this method can make use of the

culling of occluded voxels by keeping an

occlusion map and checking whether the

pixels that a voxel projects have reached full

opacity [2].

Traditionally, splatting classifies and shades

the voxels prior to projection. Projecting the

fuzzy color balls leads to a blurry appearance of

object edges. Splatting using post-classification,

which performs the color and opacity classifica-

tion and shading process after the voxels have

been projected onto the screen, was proposed by

Mueller et al. [6] to generate images with crisp

edges and well-preserved surface details. Now,

after the projection of the voxels, each slice con-

tains a small integral of the reconstructed func-

tion. After normalization, the integral represents

the mean value of the function between two adja-

cent slices. For post-classification, we need a per-

pixel transfer function to classify the function

value at each pixel to the color and opacity

values. The transfer function is designed by

users to display the regions that they are inter-

ested in and display the regions in the way they

like. Usually, we create a transfer function table

that stores, for example, 256 entries of color and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 179

Current

Sheet-Buffer / Slicing

Interpolation Kernel Contributing
Kernel

Slicing Slabs

Im
age Plane

Slab W
idth

Sheet-B
uffe

r

Composit
ing

Figure 8.2 Image-aligned sheet-based splatting.

Volume Rendering Using Splatting 179

opacity values. Then, the normalized integral

value at each pixel is used to look up the transfer

function table to get the corresponding color and

opacity for the pixel.

For the purpose of the shading calculation,

we calculate per-pixel gradient using central

differences in the projected image space. Three

components of a pixel’s gradient can be calcu-

lated using its six neighbor pixels in the three

directions. Assume the viewing direction is

along the z axis, and the image is in the x-y

plane. Once we have three sheets of the function

reconstructed, the z-component can be calcu-

lated using the following formula for ortho-

graphic projections:

f 0z ¼ (f (pzþDb
i, j)� f (pz�Db

i, j))=(2 � Db) (8:18)

where Db is the distance between two adjacent

slices, also called slab width.

The x and y components are calculated using

the neighbor pixels in the current sheet. A

simple way is to just use its nearest pixels to

calculate the x and y components. But one

problem encountered with this was the numer-

ical errors for extremely close-up views. If the

voxels project to a large screen space, then the

difference between adjacent pixels becomes

zero. To avoid this problem, we use a central

difference operation with a step size equal to

the number of pixels corresponding to the

image-space voxel spacing. We can express

the calculation of the x and y components

of the gradient, using the following formula:

f
0

x ¼ (f (pz
iþDp, j)� f (pz

i�Dp, j))=(2 � Dn)

f
0

y ¼ (f (pz
i, jþDp)� f (Pz

i, j�Dp))=(2 � Dn)
(8:19)

where Dp is the number of pixels corresponding

to the image-space voxel spacing, and Dn is the

distance between two adjacent voxels in world

space.

The normal at each pixel is obtained by nor-

malizing the gradient (f 0x, f
0
y, f
0
z) and is used in

the per-pixel shading calculation. Figs. 8.3 and

8.4 are two images for uncBrain and blood

vessel datasets, respectively. The images are

generated using IASB splatting with post-

classification and per-pixel shading.

8.3 Splatting with Shadows

Shadows are essential to realistic and informa-

tive images. We use sheet-based splatting with

post-classification to keep track of the per-pixel

contribution to the light attenuation and to

generate per-pixel shadows.

8.3.1 Basic Shadow Algorithm Using
Splatting

Visibility algorithms and shadow algorithms are

essentially the same. The former determine the

visibility from the eye, and the latter determine

the visibility from the light source. However, it

is hard to implement shadows, especially accur-

ate shadows, in volume rendering, since the light

intensity is continuously attenuated as the light

traverses the volume. The fundamental prob-

lem, therefore, is not determining whether a

point is visible from the light, but rather to

determine the light intensity arriving at the

point being illuminated.

In the shadow algorithm using splatting [16],

we implement shadows by traversing the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 180

Figure 8.3 uncBrain. (See also color insert.)

180 Scalar Field Visualization: Volume Rendering

volume only once to generate per-pixel accurate

shadows. The same splatting algorithm is used

for both the viewer and the light source. For

each footprint, while adding its contribution to

the sheet buffer, as seen from the eye, we also

add its contribution to a shadow buffer, as seen

from the light source. In the sheet-based splat-

ting, the light passing through the front sheets

will be attenuated and cause shadows on the

back sheets along the light rays. At the current

sheet, the light intensity is attenuated by all

front sheets. If the light source resides behind

the object with respect to the viewer, then a

back-to-front compositing order of the sheets

is taken.

One limitation of IASB splatting to imple-

ment shadows is in dealing with light sources

perpendicular to the eye vector. The image-

aligned splatting makes it difficult to keep

track of accurate opacities as seen from the per-

pendicular light source. To generate shadows

using splatting, we propose a new non-image-

aligned sheet-based splatting to keep track of

accurate light attenuation [16]. We first calcu-

late the halfway vector between the eye vector

and the light vector. Rather than slicing the

reconstruction kernels via planes parallel to the

image plane, we chop the volume by slices per-

pendicular to the direction of the halfway

vector. We keep the image buffer aligned with

the eye and the shadow buffer aligned with the

light source (Fig. 8.5) to avoid sampling and

resolution problems. This non-IASB splatting

along the halfway vector will not have the pop-

ping artifacts mentioned for the volume-aligned

sheet-based splatting in Mueller and Crawfis [8],

since the splatting direction changes continu-

ously with the eye vector and/or the light vector.

Therefore, a consistent ray integration is gener-

ated with accurately reconstructed sheets.

For high-quality rendering, we use per-pixel

post-classification and illumination. This im-

plies the need to also support per-pixel

shadowing. During the rendering, when we cal-

culate the illumination for a pixel at the current

sheet, we look up the accumulated opacity

for the pixel from the shadow buffer by map-

ping the pixel to the shadow buffer (Fig. 8.5).

The pixel (i,j) at the current image buffer is first

transferred back to the point x in the eye space

using the current sheet’s z-value. It is then pro-

jected to the pixel (i0, j0) at the shadow buffer,

aligned with the light source.

The light intensity arriving at the point x

is calculated using the accumulated opacity

stored at the corresponding pixel (i0, j0) on the

shadow buffer:

I(x) ¼ (1:0� a(x)) � Ilight (8:20)

where a(x) is the accumulated opacity at x,

which is the value at (i0, j0) on the shadow buffer,

and Ilight is the original intensity of the light

source.

This shadow buffer has accumulated the

energy loss from all the sheets in front of

the current sheet. In this way, the light attenu-

ation is accurately modeled. For a given

point x, we get its a(x) by choosing its nearest

pixel’s opacity value in the shadow buffer, or

using bi-linear interpolation of the opacity

values of nearby pixels in the shadow buffer.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 181

Figure 8.4 Blood vessel.

Volume Rendering Using Splatting 181

Since the shadow buffer is generated in lock-

step with the image for each view, we can easily

guarantee correct sampling of the shadow

buffer.

Compared to splatting without shadows,

two more buffers are needed in the shadow

algorithm: a 2D shadow buffer to store the

accumulated opacity from the light to the cur-

rent sheet, and a working 2D sheet shadow

buffer to which the current slab of voxel foot-

prints is added. Then, a per-pixel classification is

applied to the sheet shadow buffer, which is

then composited into the accumulated shadow

buffer.

The sheet-based splatting algorithm with

shadows is demonstrated with the pseudo-code

in Fig. 8.6.

8.3.2 Shadow Results

Using the above algorithm, we have imple-

mented shadows for two different types of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 182

Image plane

Eye

Light

Shadow Buffer Plane

Halfway Vector

Slices

Pixel to
the eye, (i,j)

Pixel corresponding
to the light, (i ’,j ’)

Figure 8.5 Non-image-aligned sheet-based splatting.

1. Transform each voxel to the coordinate system having

the halfway vector as the z-axis;

2. Bucket-sort voxels according to the transformed z-

values;

3. Initialize opacity map to zero;

4. Initialize shadow buffer to zero;

5. For each sheet in front-to-back order

6. Initialize image sheet buffer;

7. Initialize shadow sheet buffer,

8. For each footprint

9. Rasterize and add the footprint to the cur-

rent image sheet buffer;

10. Rasterize and add the footprint to the cur-

rent shadow sheet buffer;

11. End for;

12. Calculate the gradient for each pixel using central

difference;

13. Classifyeachpixel in thecurrent imagesheetbuffer;

14. Map pixel to the shadow buffer and get its opacity;

15. Calculate the illumination to obtain the final color;

16. Composite the current image sheet buffer to the

frame buffer;

17. Classify each pixel on current shadow sheet buffer

andcomposite it to theaccumulatedshadowbuffer;

18. End for;

Figure 8.6 Pseudo-code of the sheet-based splatting algo-

rithm with shadows.

182 Scalar Field Visualization: Volume Rendering

light sources: parallel light sources and point

light sources.

The shadow of the rings composed of

torus primitives is shown in Fig. 8.7. Notice

how the per-pixel classification algorithm pro-

duces sharp shadows. In Fig. 8.8, we have a

scene of a smoky room with a floating cube

inside.

Fig. 8.9 is the HIPIP (high-potential

iron-sulfur protein) dataset, which describes

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 183

Figure 8.7 Rings with shadows. (See also color insert.) Figure 8.8 A smoky room with a cube inside. (See also

color insert.)

Figure 8.9 A scene of the HIPIP dataset. (Left) Without shadow; (Right) with shadow. (See also color insert.)

Volume Rendering Using Splatting 183

a one-electron orbital of a four-iron and

eight-sulfur cluster found in many natural pro-

teins. The data is the scalar value of the wave

function ‘psi’ at each point. Shadows provide

spatial-relationship information.

The splatting algorithm has been extended

to support hypertextures. Fig. 8.10 shows

the shadow of a hypertextured object, which

is constructed using Perlin’s turbulence

function [9].

Figs. 8.11, 8.12, and 8.13 provide more

results from the splatting algorithm with

shadows. Fig. 8.11 is the Teddy bear, Fig.

8.12 is the Bonsai tree, and Fig. 8.13 is

the uncBrain, with and without shadows.

The insets (Figs. 8.13c and 8.13d) are close-

up renderings in which precise curved

shadows are generated. Again, notice that the

shadows are calculated per pixel rather than per

voxel.

These images are generated using a front-

to-back rendering. If the light source is behind

the objects, this algorithm proceeds as normal,

but the compositing direction is changed from

front-to-back to back-to-front. The room scene

in Fig. 8.14 is an example of back-to-front

rendering: light comes into the room through

the window from the back. A desk and a chair

reside in the room filled with a light haze, and

they cast shadows.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 184

Figure 8.10 A hypertextured object with shadow. (See also

color insert.)

Figure 8.11 Teddy bear. (Left) Without shadow; (Right) with shadow. (See also color insert.)

184 Scalar Field Visualization: Volume Rendering

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 185

Figure 8.12 Bonsai tree. (Left) Without shadow; (Right) with shadow. (See also color insert.)

Figure 8.13 uncBrain. (a) Without shadow. (b) With shadow. (c) and (d) Close-up rendering of the specific patch. (See also

color insert.)

Volume Rendering Using Splatting 185

When light is attenuated, the running time is

longer than the time without shadows, because

footprint evaluation and shadow-buffer com-

positing need to be done with respect to the

light source. The algorithm with shadows takes

less than twice the time of that without

shadows.

8.3.3 Projective Textured Lights

Projective textures can be added for special

effects. A light screen is used to get the effect

of the ‘‘light window’’ or slide projector and

map the light pattern to the scene. The range

of the shadow buffer is determined by project-

ing the light screen to the shadow-buffer plane.

The light screen is then given an initial image.

The projective textured lights are modeled as

in Fig. 8.15. Now, the light intensity at point x

depends not only on the light attenuation, but

also on the light color.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 186

Figure 8.14 Room scene (an example of back-to-front

rendering). (See also color insert.)

Transparent light screen
with some texture on it

Light Region

Figure 8.15 A schematic of projective textured light models. (Left) Point light; (Right) parallel light.

186 Scalar Field Visualization: Volume Rendering

I(x) ¼ Ilight � light color(x) � (1:0� a(x)) (8:21)

A room scene in Fig. 8.16 is lit by a light with

an image of the logo of The Ohio State Univer-

sity. Shadows are generated by the robot and

the rings that reside in the room.

In Fig. 8.17, a parallel area light with a grid

texture casts the grid pattern on a HIPIP scene.

By controlling the grid pattern, we get some

dimension information about the object.

Fig. 8.18 compares images with light beams

passing through a semi-transparent cube. Three

light beams with red, green, and blue colors enter

the cube at the right top, traverse the cube, and

come out from the left bottom. The left image is

without consideration of light attenuation, while

the right one is with light attenuation. The light

intensity exiting the cube is the same as the ori-

ginal intensity entering the cube in the left image,

while the resulting light intensity is lower than

the original light intensity due to attenuation as

the light traverses the cube in the right image.

8.4 Future Work

Future work has progressed on extending the

shadow algorithm to deal with extended light

sources to generate soft shadows with penum-

bra and umbra [17], and extending the splatting

algorithm to render mixed polygonal and volu-

metric objects. We are implementing the splatt-

ing using modern consumer-level graphics

hardware to gain interactivity for volume

rendering.

Acknowledgments

Our project was supported by the DOE ASCI

program and the NSF Career Award received

by Dr. Roger Crawfis. We also acknowledge the

University of North Carolina (Chapel Hill) for

providing the uncBrain dataset, the University

of Erlangen-Nuremberg for providing the teddy

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 187

Figure 8.16 A room scene for a light screen with an image

of the OSU logo. (See also color insert.)

Figure 8.17 HIPIP with grid pattern. (See also color

insert.)

Volume Rendering Using Splatting 187

bear and bonsai tree datasets, and Philips Re-

search in Germany for providing the blood

vessel dataset.

References

1. R. Crawfis and J. Huang. High quality splatting
and volume synthesis. Data Visualization: The
State of the Art (F.H. Post, G.M. Nielson and
G.-P. Bonneau, Eds.), pages 127–140, 2002.

2. J. Huang, K. Mueller, N. Shareef, and R. Crawfis.
FastSplats: optimized splatting on rectilinear
grids. Visualization 2000, pages 219–227, 2000.

3. N. Max. Optical models for direct volume
rendering. IEEE Transactions on Visualization
and Computer Graphics, 1(2):99–108, 1995.

4. M. Meissner, J. Huang, D. Bartz, K. Mueller,
and R. Crawfis. A practical evaluation of popular
volume rendering algorithms. 2000 Symposium
on Volume Rendering, pages 81–90, 2000.

5. K. Mueller, T. Moeller, J. E. Swan, R. Crawfis,
N. Shareef, and R. Yagel. Splatting errors
and antialiasing. IEEE Transactions on Visuali-
zation and Computer Graphics, 4(2):178–191,
1998.

6. K. Mueller, T. Moeller, and R. Crawfis. Splatting
without the blur. Proc. Visualization ’99, pages
363–371, 1999.

7. K. Mueller, N. Shareef, J. Huang, and R. Crawfis.
High-quality splatting on rectilinear grids with
efficient culling of occluded voxels. IEEE

Transactions on Visualization and Computer
Graphics, 5(2):116–134, 1999.

8. K. Mueller and R. Crawfis. Eliminating pop-
ping artifacts in sheet buffer-based splatting.
Proc. Visualization ’98, pages 239–245, 1998.

9. K. Perlin and E. M. Hoffert. Hypertexture.
Proc. SIGGRAPH ’89, pages 253–262, 1989.

10. T. Porter and T. Duff. Compositing digital
images. Computer Graphics, 18(3):253–259,
1984.

11. P. Sabella. A rendering algorithm for visualizing
3D scalar fields. Computer Graphics, 22(4):
51–58, 1988.

12. L. Westover. Interactive volume rendering.
Proceedings of Volume Visualization Workshop
(Chapel Hill, N.C., May 18–19), pages 9–16,
1989.

13. L. Westover. Footprint evaluation for volume
rendering. Proc. SIGGRAPH ’90, pages 367–
376, 1990.

14. J. Wilhelms and A. Van Gelder. A coherent pro-
jection approach for direct volume rendering.
Computer Graphics, 25(4):275–284, 1991.

15. D. Xue and R. Crawfis. Efficient splatting using
modern graphics hardware. Journal of Graphics
Tools, 8(3):1–21, 2003.

16. C. Zhang and R. Crawfis. Volumetric shadows
using splatting. Proc. Visualization 2002, pages
85–92, 2002.

17. C. Zhang and R. Crawfis. Shadows and soft
shadows with participating media using splat-
ting. IEEE Transactions on Visualization and
Computer Graphics, 9(2):139–149, 2003.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:14pm page 188

Figure 8.18 A scene with beams of light that pass through the semi-transparent cube. (Left) Without attenuation; (Right) with

attenuation. (See also color insert.)

188 Scalar Field Visualization: Volume Rendering

9 Multidimensional Transfer
Functions for Volume Rendering

JOE KNISS, GORDON KINDLMANN, and CHARLES D. HANSEN

Scientific Computing and Imaging Institute

University of Utah

9.1 Introduction

Direct volume rendering has proven to be an

effective and flexible visualization method for

3D scalar fields. Transfer functions are funda-

mental to direct volume rendering because their

role is essentially to make the data visible: by

assigning optical properties like color and

opacity to the voxel data, the volume can be

rendered with traditional computer graphics

methods. Good transfer functions reveal the

important structures in the data without obscur-

ing them with unimportant regions. To date,

transfer functions have generally been limited

to 1D domains, meaning that the 1D space of

scalar data value has been the only variable to

which opacity and color are assigned. One

aspect of direct volume rendering that has re-

ceived little attention is the use of multidimen-

sional transfer functions.

Often, there are features of interest in volume

data that are difficult to extract and visualize

with 1D transfer functions. Many medical data-

sets created from CT or MRI scans contain a

complex combination of boundaries between

multiple materials. This situation is problematic

for 1D transfer functions because of the poten-

tial for overlap between the data-value intervals

spanned by the different boundaries. When one

data value is associated with multiple boundar-

ies, a 1D transfer function is unable to render

them in isolation. Another benefit of higher

dimensional transfer functions is their ability

to portray subtle variations in properties of a

single boundary, such as thickness. When

working with multivariate data, a similar diffi-

culty arises with features that can be identified

only by their unique combination of multiple

data values. A 1D transfer function is simply

not capable of capturing this relationship.

Unfortunately, using multidimensional trans-

fer functions in volume rendering is complicated.

Even when the transfer function is only 1D,

finding an appropriate transfer function is gen-

erally accomplished by trial and error. This is one

of the main challenges in making direct volume

rendering an effective visualization tool. Adding

dimensions to the transfer-function domain only

compounds the problem. While this is an on-

going research area, many of the proposed

methods for transfer-function generation and

manipulation are not easily extended to higher-

dimensional transfer functions. In addition, fast

volume rendering algorithms that assume the

transfer function can be implemented as a

linear lookup table (LUT) can be difficult to

adapt to multidimensional transfer functions

due to the linear interpolation imposed on such

LUTs.

This chapter provides a detailed exposition of

the multidimensional transfer function concept,

a generalization of multidimensional transfer

functions for both scalar and multivariate

data, as well as a novel technique for the inter-

active generation of volumetric shadows. To

resolve the potential complexities in a user inter-

face for multidimensional transfer functions, we

introduce a set of direct manipulation widgets

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 189

189

that make finding and experimenting with trans-

fer functions an intuitive, efficient, and informa-

tive process. In order to make this process

genuinely interactive, we exploit the fast render-

ing capabilities of modern graphics hardware,

especially 3D texture memory and pixel-textur-

ing operations. Together, the widgets and the

hardware form the basis for new interaction

modes that can guide users towards transfer-

function settings appropriate for their visualiza-

tion and data-exploration interests.

9.2 Previous Work

9.2.1 Transfer Functions

Even though volume rendering as a visualiza-

tion tool is more than 10 years old, only recently

has research focused on making the space of

transfer functions easier to explore. He et al.

[12] generated transfer functions with genetic

algorithms driven either by user selection of

thumbnail renderings or by some objective

image-fitness function. The Design Gallery [23]

creates an intuitive interface to the entire space

of all possible transfer functions based on auto-

mated analysis and layout of rendered images.

A more data-centric approach is the Contour

Spectrum [1], which visually summarizes the

space of isosurfaces in terms of metrics like

surface area and mean gradient magnitude,

thereby guiding the choice of iso-value for iso-

surfacing, and also providing information

useful for transfer-function generation. Another

recent paper [18] presents a novel transfer-

function interface in which small thumbnail ren-

derings are arranged according to their relation-

ship with the spaces of data values, color, and

opacity.

The application of these methods is limited to

the generation of 1D transfer functions, even

though 2D transfer functions were introduced

by Levoy in 1988 [22]. Levoy introduced two

styles of transfer functions, both 2D and both

using gradient magnitude for the second dimen-

sion. One transfer function was intended for the

display of interfaces between materials, the other

for the display of iso-value contours in more

smoothly varying data. The previous work

most directly related to our approach for visual-

izing scalar data facilitates the semiautomatic

generation of both 1D and 2D transfer functions

[17,29]. Using principles of computer-vision edge

detection, the semiautomatic method strives to

isolate those portions of the transfer function

domain that most reliably correlate with the

middle of material-interface boundaries. Other

work closely related to our approach for visual-

izing multivariate data uses a 2D transfer func-

tion to visualize data derived from multiple MRI

pulse sequences [20].

Scalar volume rendering research that uses

multidimensional transfer functions is relatively

scarce. One paper discusses the use of transfer

functions similar to Levoy’s as part of visualiza-

tion in the context of wavelet volume represen-

tation [27]. More recently, the VolumePro

graphics board uses a 12-bit 1D lookup table

for the transfer function, but also allows opacity

modulation by gradient magnitude, effectively

implementing a separable 2D transfer function

[28]. Other work involving multidimensional

transfer functions uses various types of second

derivatives in order to distinguish features in the

volume according to their shape and curvature

characteristics [15,34].

Designing color maps for displaying non-

volumetric data is a task similar to finding

transfer functions. Previous work has developed

strategies and guidelines for color map creation,

based on visualization goals, types of data, per-

ceptual considerations, and user studies

[3,32,36].

9.2.2 Direct Manipulation Widgets

Direct manipulation widgets are geometric

objects rendered with a visualization and are

designed to provide the user with a 3D interface

[5,14,31,35,38]. For example, a frame widget

can be used to select a 2D plane within a

volume. Widgets are typically rendered from

basic geometric primitives such as spheres, cy-

linders, and cones. Widget construction is often

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 190

190 Scalar Field Visualization: Volume Rendering

guided by a constraint system that binds elem-

ents of a widget to one another. Each sub-part

of a widget represents some functionality of the

widget or a parameter to which the user has

access.

9.2.3 Hardware Volume Rendering

Many volume rendering techniques based on

graphics hardware utilize texture memory to

store a 3D dataset. The dataset is then sampled,

classified, rendered to proxy geometry, and

composited. Classification typically occurs in

hardware as a 1D table lookup.

2D texture-based techniques slice along the

major axes of the data and take advantage of

hardware bi-linear interpolation within the slice

[4]. These methods require three copies of the

volume to reside in texture memory, one per

axis, and they often suffer from artifacts caused

by under-sampling along the slice axis. Tri-linear

interpolation can be attained using 2D textures

with specialized hardware extensions available

on some commodity graphics cards [6]. This

technique allows intermediate slices along the

slice axis to be computed in hardware. These

hardware extensions also permit diffuse shaded

volumes to be rendered at interactive frame rates.

3D texture-based techniques typically sample

view-aligned slices through the volume, lever-

aging hardware tri-linear interpolation [11].

Other elements of proxy geometry, such as

spherical shells, may be used with 3D texture

methods to eliminate artifacts caused by perspec-

tive projection [21]. The pixel texture OpenGL

extension has been used with 3D texture tech-

niques to encode both data value and a diffuse

illumination parameter that allows shading

and classification to occur in the same lookup

[25]. Engel et al. [10] showed how to significantly

reduce the number of slices needed to adequately

sample a scalar volume, while maintaining a

high-quality rendering, using a mathematical

technique of preintegration and hardware

extensions such as dependent textures.

Another form of volume rendering graphics

hardware is the Cube-4 architecture [30] and the

subsequent Volume-Pro PCI graphics board

[28]. The VolumePro graphics board imple-

ments ray-casting combined with the shear

warp factorization for volume rendering [19].

It features tri-linear interpolation with super-

sampling, gradient estimation, and shaded

volumes, and provides interactive frame rates

for scalar volumes with sizes up to 5123.

9.3 Multidimensional Transfer Functions

Transfer-function specification is arguably the

most important task in volume visualization.

While the transfer function’s role is simply to

assign optical properties such as opacity and

color to the data being visualized, the value

of the resulting visualization will be largely

dependent on how well these optical properties

capture features of interest. Specifying a good

transfer function can be a difficult and tedious

task for several reasons. First, it is difficult to

uniquely identify features of interest in the

transfer-function domain. Even though a fea-

ture of interest may be easily identifiable in the

spatial domain, the range of data values that

characterize the feature may be difficult to isol-

ate in the transfer-function domain due to the

fact that other, uninteresting regions may con-

tain the same range of data values. Second,

transfer functions can have an enormous

number of degrees of freedom. Even simple 1D

transfer functions using linear ramps require

two degrees of freedom per control point.

Third, typical user interfaces do not guide the

user in setting these control points based on

dataset-specific information. Without this type

of information, the user must rely on trial

and error. This kind of interaction can be espe-

cially frustrating since small changes to the

transfer function can result in surprisingly

large and unintuitive changes to the volume

rendering.

Rather than classifying a sample based on a

single scalar value, multidimensional transfer

functions allow a sample to be classified based

on a combination of values. Multiple data

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 191

Multidimensional Transfer Functions for Volume Rendering 191

values tend to increase the probability that a

feature can be uniquely isolated in the transfer-

function domain, effectively providing a larger

vocabulary for expressing the differences be-

tween structures in the dataset. These values

are the axes of a multidimensional transfer func-

tion. Adding dimensions to the transfer func-

tion, however, greatly increases the degrees of

freedom necessary for specifying a transfer

function and the need for dataset-specific

guidance.

In the following sections, we demonstrate the

application of multidimensional transfer func-

tions to two distinct classes of data: scalar data

and multivariate data. The scalar-data applica-

tion is focused on locating surface boundaries in

a scalar volume. We motivate and describe the

axes of the multidimensional transfer function

for this type of data. We then describe the use

of multidimensional transfer functions for multi-

variate data. We use two examples, color

volumes and meteorological simulations, to

demonstrate the effectiveness of such transfer

functions.

9.3.1 Scalar Data

For scalar data, the gradient is a first-derivative

measure. As a vector, it describes the direction

of greatest change. The normalized gradient is

often used as the normal for surface-based

volume shading. The gradient magnitude is a

scalar quantity that describes the local rate of

change in the scalar field. For notational con-

venience, we will use f 0 to indicate the magni-

tude of the gradient of f, where f is the scalar

function representing the data.

f 0 ¼ k f k (9:1)

This value is useful as an axis of the transfer

function since it discriminates between homo-

geneous regions (low-gradient magnitudes) and

regions of change (high-gradient magnitudes).

This effect can be seen in Fig. 9.1. Fig. 9.1a

shows a 1D histogram based on data value and

identifies the three basic materials in the

Chapel Hill CT Head: air (A), soft tissue (B),

and bone (C). Fig. 9.1b shows a log-scale

joint histogram of data value versus gradient

magnitude.

Since materials are relatively homogeneous,

their gradient magnitudes are low. They can be

seen as the circular regions at the bottom of

the histogram. The boundaries between the

materials are shown as the arches—air and

soft tissue boundary (D), soft tissue and bone

boundary (E), and air and bone boundary (F).

Each of these materials and boundaries can be

isolated using a 2D transfer function based on

data value and gradient magnitude. Fig. 9.1c

shows a volume rendering with the corres-

ponding features labeled. The air–bone bound-

ary (F), in Fig. 9.1, is a good example of a

surface that cannot be isolated using a simple

1D transfer function. This type of boundary

appears in CT datasets as the sinuses and mas-

toid cells. Often, the arches that define material

boundaries in a 2D transfer function overlap.

In some cases this overlap prevents a material

from being properly isolated in the transfer

function. This effect can be seen in the circled

region of the 2D data value–gradient magni-

tude joint histogram of the human tooth CT in

Fig. 9.2a. The background–dentin boundary

(F) shares the same ranges of data value and

gradient magnitude as portions of the pulp–

dentin (E) and the background–enamel (H)

boundaries. When the background–dentin

boundary (F) is emphasized in a 2D transfer

function, the boundaries (E) and (H) are erro-

neously colored in the volume rendering, as

seen in Fig. 9.2c. A second derivative measure

enables a more precise disambiguation of com-

plex boundary configurations such as this.

Some edge-detection algorithms (such as

Marr–Hildreth [24]) locate the middle of an

edge by detecting a zero crossing in a second

derivative measure, such as the Laplacian. We

compute a more accurate but computationally

expensive measure, the second directional de-

rivative along the gradient direction, which in-

volves the Hessian (H), a matrix of second

partial derivatives. We will use f 00 to indicate

this second derivative.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 192

192 Scalar Field Visualization: Volume Rendering

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 193

A B C

A B C

fD E

F

DataValue

B

C

E

D

F

(a) A 1D histogram. The black region
represents the number of data value
occurrences on a linear scale; the
grey is on a log scale. The colored
regions (A, B, C) identify basic materials.

(b) A log-scale 2D joint histogram
showing the location of materials
(A, B, C) and material boundaries (D, E, F).

(c) A volume rendering showing all of the materials and boundaries
identified above, except air (A), using a 2D transfer function.

Figure 9.1 Material and boundary identification of the Chapel Hill CT Head with data value alone (a) versus data value and

gradient magnitude (f 0), seen in (b). The basic materials captured by CT, air (A), soft tissue (B), and bone (C) can be identified

using a 1D transfer function, as seen in (a). 1D transfer functions, however, cannot capture the complex combinations of

material boundaries: air and soft tissue boundary (D), soft tissue and bone boundary (E), and air and bone boundary (F), as seen

in (b) and (c). (See also color insert.)

Multidimensional Transfer Functions for Volume Rendering 193

f 00 ¼ 1

k f k2
(rf)THfrf (9:2)

More details on these measurements can be

found in previous work on semiautomatic trans-

fer function generation [16,17]. Fig. 9.2b shows

a joint histogram of data value versus this

second directional derivative. Notice that the

boundaries (E), (F), and (G) no longer overlap.

By reducing the opacity assigned to nonzero

second-derivative values, we can render the

background–dentin boundary in isolation, as

seen in Fig. 9.2d. The relationship between

data value, gradient magnitude, and the second

directional derivative is made clear in Fig. 9.3.

Fig. 9.3a shows the behavior of these values

along a line through an idealized boundary be-

tween two homogeneous materials (inset).

Notice that at the center of the boundary, the

gradient magnitude is high and the second de-

rivative is zero. Fig. 9.3b shows the behavior of

the gradient magnitude and second derivative as

a function of data value. This shows the curves

as they appear in a joint histogram or a transfer

function.

9.3.2 Multivariate Data

Multivariate data contains, at each sample point,

multiple scalar values that represent different

simulated or measured quantities. Multivariate

data can come from numerical simulations that

calculate a list of quantities at each time step, or

from medical scanning modalities such as MRI,

which can measure a variety of tissue character-

istics, or from a combination of different scan-

ning modalities, such as MRI, CT, and PET.

Multidimensional transfer functions are an obvi-

ous choice for volume visualization of multivari-

ate data, since we can assign different data values

to the different axes of the transfer function. It is

often the case that a feature of interest in these

datasets cannot be properly classified using any

single variable by itself. In addition, we can com-

pute a kind of first derivative in the multivariate

data in order to create more information about

local structure. As with scalar data, the use of a

first derivative measure as one axis of the multi-

dimensional transfer function can increase the

specificity with which we can isolate and visualize

different features in the data.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 194

0

Data Value

+

−

A C D

E

F
G

E
F

H

G

H

(a)

(b)

B

(c) (d)

F

G

H

E

f'

f''

Figure 9.2 Material and boundary identification of the human tooth CT with (a) data value and gradient magnitude (f 0) and

(b) data value and second derivative (f 00). The background–dentin boundary (F) cannot be adequately captured with data value

and gradient magnitude alone. (c) The results of a 2D transfer function designed to show only the background–dentin (F) and

dentin–enamel (G) boundaries. The background–enamel (H) and dentin–pulp (E) boundaries are erroneously colored. Adding

the second derivative as a third axis to the transfer function disambiguates the boundaries. (d) The results of a 3D transfer

function that gives lower opacity to nonzero second-derivative values. (See also color insert.)

194 Scalar Field Visualization: Volume Rendering

One example of data that benefits from multi-

dimensional transfer functions is volumetric

color data. A number of volumetric color data-

sets are available, such as the Visible Human

Project’s RGB data. The process of acquiring

color data by cryosection is becoming common

for the investigation of anatomy and histology.

In these datasets, the differences in materials are

expressed by their unique spectral signatures. A

multidimensional transfer function is a natural

choice for visualizing this type of data. Opacity

can be assigned to different positions in the 3D

RGB color space.

Fig. 9.4a shows a joint histogram of the RGB

color data for the Visible Male; regions of this

space that correspond to different tissues are

identified. Regions (A) and (B) correspond to

the fatty tissues of the brain, white and gray

matter, as seen in Fig. 9.4b. In this visualization,

the transition between white and grey matter is

intentionally left out to better emphasize these

materials and to demonstrate the expressivity of

the multidimensional transfer function Fig. 9.4c

shows a visualization of the color values that

represent the muscle structure and connective

tissues (C) of the head and neck with the skin

surface (D), given a small amount of opacity for

context. In both of these figures, a slice of the

original data is mapped to the surface of the

clipping plane for reference.

The kind of first derivative that we compute in

multivariate data is based on previous work in

color image segmentation [7,8,33]. While the

gradient magnitude in scalar data represents

the magnitude of local change at a point, an

analogous first-derivative measure in multivari-

ate data captures the total amount of local

change, across all the data components. This

derivative has proven useful in color image seg-

mentation because it allows a generalization of

gradient-based edge detection. In our system, we

use this first-derivative measure as one axis in the

multidimensional transfer function in order to

isolate and visualize different regions of a multi-

variate volume according to the amount of local

change, analogous to our use of gradient magni-

tude for scalar data.

If we represent the dataset as a multivariate

function f(x,y,z): R
3 !R

m
, so that

f(x, y, z) ¼ (f1(x, y, z), f2(x, y, z),

. . . , fm(x, y, z))

then the derivative Df is a matrix of first partial

derivatives:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 195

υ5
υ4

υ3

υ2
υ1

υ1 υ2 υ3 υ4 υ5

f 0(x) f 9(x) f (x)

x

(a) (b)

f(x)

Figure 9.3 The behavior of primary data value (f), gradient magnitude (f 0), and second directional derivative (f 00) as a

function of position (a) and as a function of data value (b). (See also color insert.)

Multidimensional Transfer Functions for Volume Rendering 195

Df ¼

@f1
@x

@f1
@y

@f1
@z

@f2
@x

@f2
@y

@f2
@z

..

.

@fm
@x

@fm
@y

@fm
@z

2
66666666664

3
77777777775

By multiplying Df by its transpose, we can

form a 3� 3 tensor G that captures the direc-

tional dependence of total change:

G ¼ (Df)TDf (9:3)

In the context of color edge detection [7,8,33],

this matrix (specifically, its 2D analog) is used as

the basis of a quadratic function of direction n,

which Cumani [7] terms the squared local con-

trast in direction n:

S(n) ¼ nTGn

S(n) can be analyzed by finding the principal

eigenvector (and associated eigenvalue) of G to

determine the direction n of greatest local con-

trast, or fastest change, and the magnitude of

that change. Our experience, however, has been

that in the context of multidimensional transfer

functions, it is sufficient (and perhaps prefer-

able) to simply take the L2 norm of G, kGk,

which is the square root of the sum of the

squares of the individual matrix components.

As the L2 norm is invariant with respect to

rotation, this is the same as the L2 norm of the

three eigenvalues of G, motivating our use of

kGk as a directionally independent (and rota-

tionally invariant) measure of local change.

Other work on volume rendering of color data

has used a non–rotationally invariant measure

of G [9]. Since it is sometimes the case that the

dynamic range of the individual channels (fi)

differ, we normalize the ranges of each channel’s

data value to be between zero and one. This

allows each channel to have an equal contribu-

tion in the derivative calculation.

9.4 Interaction and Tools

While adding dimensions to the transfer func-

tion enhances our ability to isolate features of

interest in a dataset, it tends to make the already

unintuitive space of the transfer function even

more difficult to navigate. This difficulty can be

considered in terms of a conceptual gap between

the spatial and transfer-function domains. The

spatial domain is the familiar 3D space for

geometry and the volume data being rendered.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 196

Red

Gre
en

B
lu

e A

B

C

D

E

(a) (b) (c)

A

B

C

D

Figure 9.4 The Visible Male RGB (color) data. The opacity is set using a 3D transfer function, and color is taken directly from

the data. The histogram (a) is visualized as projections on the primary planes of the RGB color space. (b) The white (A) and grey

(B) matter of the brain. (c) The muscle and connective tissues (C) of the neck, showing skin (D) for reference. (See also color

insert.)

196 Scalar Field Visualization: Volume Rendering

The transfer-function domain, however, is more

abstract. Its dimensions are not spatial (i.e., the

ranges of data values), and the quantities at each

location are not scalar (i.e., opacity and three

colors). It can be very difficult to determine the

regions of the transfer function that correspond

to features of interest, especially when a region

is very small. Thus, to close this conceptual

gap, we developed new interaction techniques,

which permit interaction in both domains

simultaneously, and a suite of direct manipula-

tion widgets that provide the tools for such inter-

actions. Fig. 9.5 shows the various direct

manipulation widgets as they appear in the

system.

In a typical session with our system, the user

creates a transfer function using a natural pro-

cess of exploration, specification, and refine-

ment. Initially, the user is presented with a

volume rendering using a predetermined trans-

fer function that is likely to bring out some

features of interest. This can originate with an

automated transfer function generation tool

[16], or it could be the default transfer function

described later in Section 9.6. The user would

then begin exploring the dataset.

Exploration is the process by which a user

familiarizes him or herself with the dataset.

A clipping plane can be moved through the

volume to reveal internal structures. A slice of

the original data can be mapped to the clipping

plane, permitting a close inspection of the entire

range of data values. Sample positions are

probed in the spatial domain, and their values,

along with values in a neighborhood around

that point, are visualized in the transfer-

function domain. This feedback allows the user

to identify the regions of the transfer function

that correspond to potential features of interest,

made visible by the default transfer function or

the sliced data. Once these regions have been

identified, the user can then begin specifying a

custom transfer function.

During the specification stage, the user creates

a rough draft of the desired transfer function.

While this can be accomplished by manually

adding regions to the transfer function, a simpler

method adds opacity to the regions in the trans-

fer function at and around locations queried in

the spatial domain. That is, the system can

track, with a small region of opacity in the trans-

fer-function domain, the data values at the

user-selected locations, while continually updat-

ing the volume rendering. This visualizes, in

the spatial domain, all other voxels with similar

transfer-function values. If the user decides that

an important feature is captured by the current

transfer function, he or she can add that region

into the transfer function and continue querying

and investigating the volume.

Once these regions have been identified, the

user can refine them by manipulating control

points in the transfer-function domain to better

visualize features of interest. An important fea-

ture of our system is the ability to manipulate

portions of the transfer function as discrete en-

tities. This permits the modification of regions

corresponding to a particular feature without

affecting other classified regions.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 197

Data Probe

Clipping Plane

Light
Widget

Transfer Function

Classification Widgets

Reprojected Voxel

Queried Value

Figure 9.5 The direct-manipulation widgets. (See also color

insert.)

Multidimensional Transfer Functions for Volume Rendering 197

Finally, this is an iterative process. Users

continue the exploration, specification, and re-

finement steps until they are satisfied that all

features of interest are made visible. In the re-

mainder of this section, we introduce the inter-

action modalities used in the exploration and

specification stages and briefly describe the indi-

vidual direct manipulation widgets.

9.4.1 Probing and Dual-Domain
Interaction

The concept of probing is simple: the user

points at a location in the spatial domain and

visualizes the values at that point in the transfer-

function domain. We have found this feedback

to be essential for making the connection be-

tween features seen in the spatial domain and

the ranges of values that identify them in the

transfer-function domain. Creating the best

transfer function for visualizing a feature of

interest is only possible with an understanding

of the behavior of data values at and around

that feature. This is especially true for multidi-

mensional transfer functions where a feature

is described by a complex combination of

data values. The value of this dataset-specific

guidance can be further enhanced by automatic-

ally setting the transfer function based on these

queried values.

In a traditional volume rendering system, set-

ting the transfer function involves moving the

control points (in a sequence of linear ramps

defining color and opacity), and then observing

the resulting rendered image. That is, interaction

in the transfer-function domain is guided by

careful observation of changes in the spatial

domain. We prefer a reversal of this process, in

which the transfer function is set by direct inter-

action in the spatial domain, with observation of

the transfer-function domain. Furthermore, by

allowing interaction to happen in both domains

simultaneously, we significantly lessen the con-

ceptual gap between them, effectively simplify-

ing the complicated task of specifying a

multidimensional transfer function to pointing

at a feature of interest. We use the term ‘‘dual-

domain interaction’’ to describe this approach to

transfer-function exploration and generation.

The top of Fig. 9.6 illustrates the specific steps

of dual-domain interaction. When a position

inside the volume is queried by the user with the

data probe widget (a), the values associated with

that position (multivariate values, or the data

value, first and second derivative) are graphically

represented in the transfer function widget (b).

Then, a small region of high opacity (c) is tem-

porarily added to the transfer function at the

data values determined by the probe location.

The user has now set a multidimensional transfer

function simply by positioning a data probe

within the volume. The resulting rendering (d)

depicts (in the spatial domain) all the other loca-

tions in the volume that share values (in the

transfer-function domain) with those at the

data probe tip. If the features rendered are of

interest, the user can copy the temporary transfer

function to the permanent one (e), by, for in-

stance, tapping the keyboard space bar with the

free hand. As features of interest are discovered,

they can be added to the transfer function

quickly and easily with this type of two-handed

interaction. Alternately, the probe feedback

can be used to manually set other types of classi-

fication widgets (f), which are described later.

The outcome of dual-domain interaction is

an effective multidimensional transfer function

built up over the course of data exploration. The

widget components that participated in this pro-

cess can be seen in the bottom of Fig. 9.6, which

shows how dual-domain interaction can help

volume render the CT tooth dataset. The remain-

der of this section describes the individual

widgets and provides additional details about

dual-domain interaction.

9.4.2 Data Probe Widget

The data probe widget is responsible for

reporting its tip’s position in volume space and

its slider sub-widget’s value. Its pencil-like shape

is designed to give the user the ability to point at

a feature in the volume being rendered. The other

end of the widget orients the widget about its tip.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 198

198 Scalar Field Visualization: Volume Rendering

When the volume rendering’s position or orien-

tation is modified, the data probe widget’s tip

tracks its point in volume space. A natural exten-

sion is to link the data probe widget to a haptic

device, such as the SensAble PHANTOM,

which can provide a direct 3D location and

orientation [26].

9.4.3 Clipping Plane Widget

The clipping plane is responsible for reporting

its orientation and position to the volume ren-

derer, which handles the actual clipping when it

draws the volume. In addition to clipping, the

volume widget will also map a slice of the data

to the arbitrary plane defined by the clip widget,

and blend it with the volume by a constant

opacity value determined by the clip widget’s

slider. It is also responsible for reporting the

spatial position of a mouse click on its clipping

surface. This provides an additional means of

querying positions within the volume, distinct

from the 3D data probe. The balls at the corners

of the clipping plane widget are used to modify

its orientation, and the bars on the edges are

used to modify its position.

9.4.4 Transfer-Function Widget

The main role of the transfer-function widget is

to present a graphical representation of the

transfer-function domain, in which feedback

from querying the volume (with the data probe

or clipping plane) is displayed, and in which the

transfer function itself can be set and altered.

The balls at the corners of the transfer-function

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 199

(a)

User moves
probe in
 volume

Position is
queried, and

values displayed
in transfer
function

(b)

(f)

(e)

(c)

(d)
User sets

transfer function
by hand

Changes
are observed
in rendered

volume

Region is
temporarily

set around value
 in transfer

function

Queried
region can be
permanently

set in transfer
function

Figure 9.6 Dual-domain interaction. (See also color insert.)

Multidimensional Transfer Functions for Volume Rendering 199

widget are used to resize it, as with a desktop

window, and the bars on the edges are used to

translate its position. The inner plane of the

frame is a polygon texture-mapped with the

lookup table containing the transfer function.

A joint histogram of data, seen with the images

in Section 9.3, can also be blended with the

transfer function to provide valuable informa-

tion about the behavior and relationship of data

values in the transfer-function domain.

The data values at the position queried in the

volume (via either the data probe or the clipping

plane widget) are represented with a small ball

in the transfer-function widget. In addition to

the precise location queried, the eight data

sample points at the corners of the voxel con-

taining the query location are also represented

by balls in the transfer-function domain, and

are connected together with edges that reflect

the connectivity of the voxel corners in the

spatial domain. By ‘‘reprojecting’’ a voxel from

the spatial domain to a simple graphical repre-

sentation in the transfer-function domain, the

user can learn how the transfer-function vari-

ables (data values at each sample point) are

changing near the probe location. The values

for the third, or unseen, axis are indicated by

colorings on the balls. For instance, with scalar

data, second-derivative values that are negative,

zero, and positive are represented by blue,

white, and yellow balls, respectively. When the

projected points form an arc, with the color

varying through these assigned colors, the

probe is at a boundary in the volume as seen

in Fig. 9.5. When the reprojected data points are

clustered together, the probe is in a homoge-

neous region. As the user gains experience with

this representation, he or she can learn to

‘‘read’’ the reprojected voxel as an indicator of

the volume characteristics at the probe location.

9.4.5 Classification Widgets

In addition to the process of dual-domain inter-

action described above, transfer functions can

also be created in a more manual fashion by

adding one or more classification widgets to

the main transfer-function window. Classifica-

tion widgets are designed to identify regions

of the transfer function as discrete entities.

Each widget type has control points that modify

its position or size. Optical properties, such as

opacity and color, are modified by selecting the

widget’s inner surface. The opacity and color

contributions from each classification widget

are blended together to form the transfer func-

tion. We have developed two types of classifica-

tion widget: triangular and rectangular.

The triangular classification widget, shown in

Figs. 9.5, 9.6, and 9.8, is based on Levoy’s ‘‘iso-

value contour surface’’ opacity function [22].

The widget is an inverted triangle with a base

point attached to the horizontal data value axis.

The triangle’s size and position are adjusted

with control points. There are an upper and a

lower threshold for the gradient magnitude, as

well as a shear. Color is constant across the

widget; opacity is maximal along the center of

the widget, and it linearly ramps down to zero at

the left and right edges.

The triangular classification widgets are par-

ticularly effective for visualizing surfaces in

scalar data. More general transfer functions,

for visualizing data that may not have clear

boundaries, can be created with the rectangular

classification widget. The rectangular region

spanned by the widget defines the data values

that receive opacity and color. Like the triangu-

lar widget, color is constant, but the opacity is

more flexible. It can be constant or fall off in

various ways: quadratically as an ellipsoid with

axes corresponding to the rectangle’s aspect

ratio, or linearly as a ramp, tent, or pyramid.

As noted in the description of the transfer-

function widget, even when a transfer function

has more than two dimensions, only two dimen-

sions are shown at any one time. For 3D trans-

fer functions, classification widgets are shown as

their projections onto the visible axes. In this

case, a rectangular classification widget be-

comes a box in the 3D domain of the transfer

function. Its appearance to the user, however, as

2D projections, is identical to the rectangular

widget. When the third axis of the transfer func-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 200

200 Scalar Field Visualization: Volume Rendering

tion plays a more simplified role, interactions

along this axis are tied to sliders seen along the

top bar of the transfer function. For instance,

since our research on scalar data has focused on

visualizing boundaries between material

regions, we have consistently used the second

derivative to emphasize the regions where the

second-derivative magnitude is small or zero.

Specifically, maximal opacity is always given to

zero second derivatives and decreases linearly

towards the second-derivative extrema values.

How much the opacity changes as a function

of second-derivative magnitude is controlled

with a single slider, which we call the ‘‘boundary

emphasis slider.’’ With the slider in its left-most

position, zero opacity is given to extremal

second derivatives; in the right-most position,

opacity is constant with respect to the second

derivative. We have employed similar tech-

niques for manipulating other types of third-

axis values using multiple sliders.

While the classification widgets are usually set

by hand in the transfer-function domain, based

on feedback from probing and reprojected vox-

els, their placement can also be somewhat auto-

mated. This further reduces the difficulty of

creating an effective higher-dimensional transfer

function. The classification widget’s location

and size in the transfer-function domain can be

tied to the distribution of the reprojected voxels

determined by the data probe’s location. For

instance, the rectangular classification widget

can be centered at the transfer-function values

interpolated at the data probe’s tip, with the size

of the rectangle controlled by the data probe’s

slider. The triangular classification widget can be

located horizontally at the data value queried by

the probe, with the width and height determined

by the horizontal and vertical variance in the

reprojected voxel locations. This technique pro-

duced the changes in the transfer function for the

sequence of renderings in Fig. 9.6.

9.4.6 Shading Widget

The shading widget is a collection of spheres

that can be rendered in the scene to indicate

and control the light direction and color. Fixing

a few lights in view space is generally effective

for renderings; therefore, changing the lighting

is an infrequent operation.

9.4.7 Color-Picker Widget

The color picker is an embedded widget that is

based on the hue-lightness-saturation (HLS)

color space. Interacting with this widget can be

thought of as manipulating a sphere with hues

mapped around the equator, gradually becom-

ing black at the top and white at the bottom. To

select a hue, the user moves the mouse horizon-

tally, rotating the ball around its vertical axis.

Vertical mouse motion tips the sphere toward or

away from the user, shifting the color towards

white or black. Saturation and opacity are

selected independently using different mouse

buttons with vertical motion. While this color

picker can be thought of as manipulating an

HLS sphere, no geometry for this is rendered.

Rather, the triangular and rectangular classifi-

cation widgets embed the color picker in the

polygonal region, which contributes opacity

and color to the transfer-function domain. The

user specifies a color simply by clicking on

that object and then moving the mouse horizon-

tally and vertically until the desired hue and

lightness are visible. In most cases, the desired

color can be selected with a single mouse-click

and gesture.

9.5 Rendering and Hardware

While this chapter is conceptually focused on

the matter of setting and applying higher-

dimensional transfer functions, the quality of

interaction and exploration described would

not be possible without the use of modern

graphics hardware. Our implementation relies

heavily on an OpenGL extension known as de-

pendent texture reads. This extension can be

used for both classification and shading. In

this section, we describe our modifications to

the classification portion of the traditional 3D

texture-based volume rendering pipeline. We

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 201

Multidimensional Transfer Functions for Volume Rendering 201

also describe methods for adding interactive

volumetric shading and shadows to the pipeline.

Our system supports volumes that are stored

as 3D textures with one, two, or four values per

texel. This is due to memory-alignment restric-

tions of graphics hardware. Volumes with three

values per sample utilize a four-value texture,

where the fourth value is simply ignored.

Volumes with more than four values per sample

could be constructed using multiple textures.

9.5.1 Dependent Texture Reads

Dependent texture reads are hardware exten-

sions that are similar but more efficient imple-

mentations of a previous extension known as

pixel texture [10,13,25,37]. Dependent texture

reads and pixel texture are names for operations

that use color fragments to generate texture co-

ordinates and replace those color fragments with

the corresponding entries from a texture. This

operation essentially amounts to an arbitrary

function evaluation with up to three variables

via a lookup table. If we were to perform this

operation on an RGB fragment, each channel

value would be scaled between zero and one,

and these new values would then be used as

texture coordinates of a 3D texture. The color

values produced by the 3D texture lookup re-

place the original RGB values. The nearest-

neighbor or linear-interpolation methods can

be used to generate the replacement values. The

ability to scale and interpolate color channel

values is a convenient feature of the hardware.

It allows the number of elements along a dimen-

sion of the texture containing the new color

values to differ from the dynamic range of the

component that generated the texture coordin-

ate. Without this flexibility, the size of a 3D

dependent texture would be prohibitively large.

9.5.2 Classification

Dependent-texture reads are used for the trans-

fer-function evaluation. Data values stored

in the color components of a 3D texture are

interpolated across some proxy geometry (a

plane, for instance). These values are then con-

verted to texture coordinates and used to

acquire the color and alpha values in the trans-

fer-function texture per-pixel in screen space.

For eight-bit data, an ideal transfer-function

texture would have 256 color and alpha values

along each axis. For 3D transfer functions,

however, the transfer-function texture would

then be 2563 � 4 bytes. Besides the enormous

memory requirements of such a texture, the

size also affects how fast the classification

widgets can be rasterized, thus affecting the

interactivity of transfer-function updates. We

therefore limit the number of elements along

an axis of a 3D transfer function based on its

importance. For instance, with scalar data, the

primary data value is the most important,

the gradient magnitude is secondary, and the

second derivative serves an even more tertiary

role. For this type of multidimensional transfer

function, we commonly use a 3D transfer-func-

tion texture with dimensions 256� 128� 8 for

data value, gradient magnitude, and second de-

rivative, respectively. 3D transfer functions can

also be composed separably as a 2D and a 1D

transfer function. This means that the total size

of the transfer function is 2562 þ 256. The trade-

off, however, is in expressivity. We can no

longer specify a transfer function based on the

unique combination of all three data values.

Separable transfer functions are still quite

powerful. Applying the second derivative as a

separable 1D portion of the transfer function is

quite effective for visualizing boundaries be-

tween materials. With the separable 3D transfer

function for scalar volumes, there is only one

boundary-emphasis slider that affects all classi-

fication widgets, as opposed to the general case

where each classification widget has its own

boundary-emphasis slider. We have employed

a similar approach for multivariate data visual-

ization. The meteorological example used a sep-

arable 3D transfer function. Temperature and

humidity were classified using a 2D transfer

function and the multiderivative of these values

was classified using a 1D transfer function.

Since our specific goal was to show only regions

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 202

202 Scalar Field Visualization: Volume Rendering

with high values of kGk, we needed only two

sliders to specify the beginning and ending

points of a linear ramp along this axis of the

transfer function.

9.5.3 Surface Shading

Shading is a fundamental component of volume

rendering because it is a natural and efficient

way to express information about the shape of

structures in the volume. However, much previ-

ous work with texture-memory-based-volume

rendering lacks shading. Many modern graphics

hardware platforms support multitexture and

a number of user-defined operations for blend-

ing these textures per pixel. These operations,

which we will refer to as fragment shading, can

be leveraged to compute a surface-shading

model.

The technique originally proposed by Rezk-

Salama et al. [6] is an efficient way to compute

the Blinn–Phong shading model on a per-pixel

basis for volumes. This approach, however, can

suffer from artifacts caused by denormalization

during interpolation. While future generations

of graphics hardware should support the square

root operation needed to renormalize on a per-

pixel basis, we can utilize cube map dependent

texture reads to evaluate the shading model.

This type of dependent texture read allows an

RGB color component to be treated as a vector

and used as the texture coordinates for a cube

map. Conceptually, a cube map can be thought

of as a collection of six textures that make up

the faces of a cube centered about the origin.

Texels are accessed with a 3D texture coordin-

ate (s,t,r) representing a direction vector. The

accessed texel is the point corresponding to the

intersection of a line through the origin in the

direction of (s,t,r) and a cube face. The color

values at this position represent incoming dif-

fuse radiance if the vector (s,t,r) is a surface

normal or specular radiance if (s,t,r) is a reflec-

tion vector. The advantages of using a cube map

dependent texture read is that the vector (s,t,r)

does not need to be normalized, and the cube

map can encode an arbitrary number of lights

or a full environment map. This approach, how-

ever, comes at the cost of reduced performance.

A per-pixel cube map evaluation can be as much

as three times slower than evaluating the dot

products for a limited number of light sources

in the fragment shader stage.

Surface-based shading methods are well

suited for visualizing the boundaries between

materials. However, since the surface normal is

approximated by the normalized gradient of a

scalar field, these methods are not robust for

shading homogeneous regions, where the gradi-

ent magnitude is very low or zero and its meas-

urement is sensitive to noise. Gradient-based

surface shading is also unsuitable for shading

volume renderings of multivariate fields. While

we can assign the direction of greatest change

for a point in a multivariate field to the eigen-

vector (e1) corresponding to the largest eigen-

value (l1) of the tensor G from Equation 9.3, e1

is a valid representation of only orientation, not

the absolute direction. This means that the sign

of e1 can flip in neighboring regions even though

their orientations may not differ. Therefore, the

vector e1 does not interpolate, making it a poor

choice of surface normal. Furthermore, this

orientation may not even correspond to the

surface normal of a classified region in a multi-

variate field.

9.5.4 Shadows

Shadows provide important visual queues relat-

ing to the depth and placement of objects in

a scene. Since the computation of shadows

does not depend on a surface normal, they pro-

vide a robust method for shading homogeneous

regions and multivariate volumes. Adding sha-

dows to the volume lighting model means that

light gets attenuated through the volume before

being reflected back to the eye.

Our approach differs from previous hardware

shadow work [2] in two ways. First, rather than

creating a volumetric shadow map, we utilize

an off-screen render buffer to accumulate the

amount of light attenuated from the light’s

point of view. Second, we modify the slice axis

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 203

Multidimensional Transfer Functions for Volume Rendering 203

to be the direction halfway between the view

and light directions. This allows the same slice

to be rendered from both the eye and the light

points of view. Consider the situation for com-

puting shadows when the view and light direc-

tions are the same, as seen in Fig. 9.7a. Since the

slices for both the eye and the light have a one-

to-one correspondence, it is not necessary to

precompute a volumetric shadow map. The

amount of light arriving at a particular slice is

equal to one minus the accumulated opacity of

the slices rendered before it. Naturally, if the

projection matrices for the eye and the light

differ, we need to maintain a separate buffer

for the attenuation from the light’s point of

view. When the eye and light directions differ,

the volume would be sliced along each direction

independently. The worst-case scenario happens

when the view and light directions are perpen-

dicular, as seen in Fig. 9.7b. In this case, it

would seem necessary to save a full volumetric

shadow map that can be resliced with the data

volume from the eye’s point of view providing

shadows. This approach, however, suffers from

an artifact referred to as attenuation leakage.

The visual consequences of this are blurry

shadows and surfaces that appear much darker

than they should due to the image-space high

frequencies introduced by the transfer function.

The attenuation at a given sample point is

blurred when light intensity is stored at a coarse

resolution and interpolated during the observer

rendering phase. This use of a 2D shadow buffer

is similar to the method described in Chapter 8

except we address slice-based volume rendering

while they address splatting.

Rather than slice along the vector defined by

the view direction or the light direction, we

modify the slice axis to allow the same slice to

be rendered from both points of view. When the

dot product of the light and view directions is

positive, we slice along the vector halfway be-

tween the light and view directions (Fig. 9.7c).

In this case, the volume is rendered in front-to-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 204

(a) (b)

(d)(c)

l

l

l

l

v

v

v

v −v

S

qS

q1
2−

q1
2−

Figure 9.7 Modified slice axis for light transport.

204 Scalar Field Visualization: Volume Rendering

back order with respect to the observer. When

the dot product is negative, we slice along the

vector halfway between the light and the

inverted-view directions (Fig. 9.7d). In this

case, the volume is rendered in back-to-front

order with respect to the observer. In both

cases the volume is rendered in front-to-back

order with respect to the light. Care must be

taken to ensure that the slice spacing along the

view and light directions are maintained when

the light or eye positions change. If the desired

slice spacing along the view direction is dv and

the angle between v and l is y, then the slice

spacing along the slice direction is

ds ¼ cos
y
2

� �
dv (9:4)

This is a multipass approach. Each slice is

first rendered from the observer’s point of view

using the results of the previous pass from the

light’s point of view, which modulates the

brightness of samples in the current slice. The

same slice is then rendered from the light’s point

of view to calculate the intensity of the light

arriving at the next layer.

Since we must keep track of the amount of

light attenuated at each slice, we utilize an off-

screen render buffer, known as a pixel buffer.

This buffer is initialized to 1 – light intensity. It

can also be initialized using an arbitrary image

to create effects such as spotlights. The projec-

tion matrix for the light’s point of view need not

be orthographic; a perspective projection matrix

can be used for point light sources. However,

the entire volume must fit in the light’s view

frustum. Light is attenuated by simply accumu-

lating the opacity for each sample using the over

operator. The results are then copied to a tex-

ture that is multiplied with the next slice from

the eye’s point of view before it is blended into

the frame buffer. While this copy-to-texture op-

eration has been highly optimized on the cur-

rent generation of graphics hardware, we have

achieved a dramatic increase in performance

using a hardware extension known as render to

texture. This extension allows us to directly bind

a pixel buffer as a texture, avoiding the unneces-

sary copy operation.

This approach has a number of advantages

over previous volume shadow methods. First,

attenuation leakage is no longer a concern be-

cause the computation of the light transport

(slicing density) is decoupled from the reso-

lution of the data volume. Computing light at-

tenuation in image space allows us to match the

sampling frequency of the light transport with

that of the final volume rendering. Second, this

approach makes far more efficient use of

memory resources than those that require a

volumetric shadow map. Only a single add-

itional 2D buffer is required, as opposed to a

potentially large 3D volume. One disadvantage

of this approach is that, due to the image-space

sampling, artifacts may appear at shadow

boundaries when the opacity makes a sharp

jump from low to high. This can be overcome

by using a higher resolution for the light buffer

than for the frame buffer. We have found that

30–50% additional resolution is adequate.

As noted at the end of the previous section,

surface-based shading models are inappropriate

for homogeneous regions in a volume. However,

it is often useful to have both surface-shaded and

shadowed renderings regardless of whether

homogeneous regions are being visualized. To

ensure that homogeneous regions are not sur-

face-shaded, we simply interpolate between

surface-shaded and unshaded using the gradient

magnitude. Naturally, regardless of whether a

particular sample is surface-shaded, it is still

modulated by the light attenuation providing

shadows. In practice we have found that inter-

polating based on 1� (1� krf k)2 produces

better results, since midrange gradient magni-

tudes can still be interpreted as surface features.

Fig. 9.8 shows a rendering that combines surface

shading and shadows in such a way. Fig. 9.1

shows a volume rendering using shadows with

the light buffer initialized to simulate a spotlight.

Fig. 9.2 shows volume rendering using only sur-

face-based shading. Fig. 9.4 uses only shadows

for illumination.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 205

Multidimensional Transfer Functions for Volume Rendering 205

9.6 Discussion

Using multidimensional transfer functions

heightens the importance of densely sampling

the voxel data in rendering. With each new

axis in the transfer function, there is another

dimension along which neighboring voxels can

differ. It becomes increasingly likely that the

data sample points at the corners of a voxel

straddle an important region of the transfer

function (such as a region of high opacity)

instead of falling within it. Thus, in order for

the boundaries to be rendered smoothly, the

distance between view-aligned sampling planes

through the volume must be very small. Most

of the figures in this paper were generated

with rates of about 3 to 6 samples per voxel.

At this sample rate, frame updates can take

nearly a second for a moderately sized (256�
256� 128) shaded and shadowed volume. For

this reason, we lower the sample rate during

interaction and rerender at the higher sample

rate once an action is completed. During inter-

action, the volume rendered surface will

appear coarser, but the surface size and loca-

tion are usually readily apparent. Thus, even

with lower volume sampling rates during inter-

action, the rendered images are effective feed-

back for guiding the user in transfer-function

exploration.

While the triangular classification widget is

based on Levoy’s iso-contour classification

function, we have found it necessary to have

additional degrees of freedom, such as a shear.

Shearing the triangle classification along the

data value axis, so that higher values are em-

phasized at higher gradients, allows us to follow

the center of some boundaries more accurately.

This is a subtle but basic characteristic of

boundaries between a material with a narrow

distribution of data values and another material

with a wide value distribution. This pattern can

be observed in the boundary between soft tissue

(narrow value distribution) and bone (wide

value distribution) of the Visible Male CT,

seen in Fig. 9.9. Thresholding the minimum

gradient magnitude allows better feature dis-

crimination.

While multidimensional transfer functions

are quite effective for visualizing material

boundaries, we have also found them to be

useful for visualizing the materials themselves.

For instance, if we attempt to visualize the

dentin of the Human Tooth CT using a 1D

transfer function, we erroneously color the

background–enamel boundary, seen in Fig.

9.10a. The reason for this can be seen in

Fig. 9.2a, where the range of data values

that define the background–enamel boundary

overlap with the dentin’s data values. We can

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 206

Figure 9.8 Volume renderings of the Visible Male CT (frozen) demonstrating combined surface shading and shadows. (See also

color insert.)

206 Scalar Field Visualization: Volume Rendering

easily correct this erroneous coloring with a 2D

transfer function that gives opacity only to

lower-gradient magnitudes. This can be seen in

Fig. 9.10b.

A further benefit of dual-domain interaction

is the ability to create feature-specific multidi-

mensional transfer functions, which would be

extremely difficult to produce by manual place-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 207

(a)

Soft Tissue Bone

(b)

Figure 9.9 The soft tissue–bone boundary of the Visible Male CT. It is necessary to shear the triangular classification widget to

follow the center of this boundary. (See also color insert.)

(a) A 1D transfer function (b) A 2D transfer function

Figure 9.10 The dentin of the Human Tooth CT (a) shows that a 1D transfer function, simulated by assigning opacity to data

values regardless of gradient magnitude, will erroneously color the background–enamel boundary. A 2D transfer function

(b) can avoid assigning opacity to the range of gradient magnitudes that define this boundary. (See also color insert.)

Multidimensional Transfer Functions for Volume Rendering 207

ment of classification widgets. If a feature can

be visualized in isolation with only a very small

and accurately placed classification widget, the

best way to place the widget is via dual-domain

interaction.

Dual-domain interaction has utility beyond

setting multidimensional transfer functions.

Dual-domain interaction also helps answer other

questions about the limits of direct volume

rendering for displaying specific features in the

data. For example, the feedback in the transfer-

function domain can show the user whether a

certain feature of interest detected during spatial

domain interaction is well-localized in the trans-

fer function domain. If reprojected voxels from

different positions in the same feature map to

widely divergent locations in the transfer-func-

tion domain, then the feature is not well local-

ized, and it may be hard to create a transfer

function that clearly visualizes it. Similarly, if

probing inside two distinct features indicates

that the reprojected voxels from both features

map to the same location in the transfer-function

domain, then it may be difficult to selectively

visualize one or the other feature.

Acknowledgments

The authors would like to thank Al McPherson

from the ACL at LANL for fruitful and pro-

vocative conversations about volumetric

shadows. This research was funded by grants

from the Department of Energy (VIEWS

0F00584), the National Science Foundation

(ASC 8920219, MRI 9977218, ACR 9978099),

and the National Institutes of Health National

Center for Research Resources (1P41RR12553-

2). We would also like to thank NVIDIA, ATI,

and SGI for making their latest generations of

hardware available.

References

1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The
contour spectrum. In Proceedings IEEE Visual-
ization 1997, pages 167–173, 1997.

2. U. Behrens and R. Ratering. Adding shadows
to a texture-based volume renderer. In 1998
Volume Visualization Symposium, pages 39–46,
1998.

3. L. D. Bergman, B. E. Rogowitz, and L. A.
Treinish. A rule-based tool for assisting color-
map selection. In IEEE Proceedings Visualiza-
tion 1995, pages 118–125, 1995.

4. B. Cabral, N. Cam, and J. Foran. Acceler-
ated volume rendering and tomographic recon-
struction using texture mapping hardware. In
ACM Symposium On Volume Visualization,
1994.

5. D. B. Conner, S. S. Snibbe, K. P. Herndon, D. C.
Robbins, R. C. Zeleznik, and A. van Dam.
3D widgets. In Proceedings of the 1992 Sympo-
sium on Interactive 3D Graphics, pages 183–188,
1992.

6. C. Rezk-Salama, K. Engel, M. Bauer, G. Grei-
ner, and T. Ertl. Interactive volume rendering on
standard PC graphics hardware using multi-tex-
tures and multi-stage rasterization. In SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware 2000, 2000.

7. A. Cumani, P. Grattoni, and A. Guiducci. An
edge-based description of color images. GMIP,
53(4):313–323, 1991.

8. S. Di Zenzo. A note on the gradient of a multi-
image. Computer Vision, Graphics, and Image
Processing, 33(1):116–125, 1986.

9. D. Ebert, C. Morris, P. Rheingans, and T. Yoo.
Designing effective transfer functions for
volume rendering from photographic volumes.
IEEE TVCG, 2002.

10. K. Engel, M. Kraus, and T. Ertl. High-quality
pre-integrated volume rendering using hard-
ware-accelerated pixel shading. In SIGGRAPH/
Eurographics Workshop on Graphics Hardware
2001, 2001.

11. A. Van Gelder and K. Kim. Direct volume
rendering with shading via 3D textures. In
ACM Symposium On Volume Visualization,
pages 23–30, 1996.

12. T. He, L. Hong, A. Kaufman, and H. Pfister.
Generation of transfer functions with stochastic
search techniques. In Proceedings IEEE Visual-
ization 1996, pages 227–234, 1996.

13. W. Heidrich, R. Westermann, H.-P. Seidel, and
T. Ertl. Applications of pixel textures in visual-
ization and realistic image synthesis. In Proceed-
ings of the 1999 Symposium on Interactive 3D
Graphics, 1999.

14. K. P. Hernandon and T. Meyer. 3D Widgets for
exploratory scientific visualization. In Proceed-
ings of UIST ’94 (SIGGRAPH), pages 69–70,
1994.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 208

208 Scalar Field Visualization: Volume Rendering

15. J. Hladůvka, A. König, and E. Gröller. Curva-
ture-based transfer functions for direct volume
rendering. Spring Conference on Computer
Graphics 2000, 16(5):58–65, 2000.

16. G. Kindlmann. Semi-automatic generation of
transfer functions for direct volume rendering.
Master’s thesis, Cornell University, Ithaca,
NY, 1999 (http://www.cs.utah.edu/~gk/MS).

17. G. Kindlmann and J. W. Durkin. Semi-auto-
matic generation of transfer functions for direct
volume rendering. In IEEE Symposium On
Volume Visualization, pages 79–86, 1998.

18. A. König and E. Gröller. Mastering transfer
function specification by using VolumePro tech-
nology. Spring Conference on Computer
Graphics 2001, 17(4): 279–286, 2001.

19. P. Lacroute and M. Levoy. Fast volume
rendering using a shear-warp factorization of
the viewing transform. In ACM Computer
Graphics (SIGGRAPH ’94 Proceedings), pages
451–458, 1994.

20. D. H. Laidlaw. Geometric model extraction
from magnetic resonance volume data. PhD
thesis, California Institute of Technology,
1995.

21. E. LaMar, B. Hamann, and K. I. Joy.
Multiresolution techniques for interactive tex-
ture-based volume visualization. In IEEE, Pro-
ceedings Visualization ’99, pages 355–361, 1999.

22. M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics & Applications,
8(5):29–37, 1988.

23. J. Marks, B. Andalman, P. A. Beardsley, and H.
Pfister. Design galleries: a general approach
to setting parameters for computer graphics
and animation. In ACM Computer Graphics
(SIGGRAPH ’97 Proceedings), pages 389–400,
1997.

24. D. Marr and E. C. Hildreth. Theory of edge
detection. Proceedings of the Royal Society of
London, B 207:187–217, 1980.

25. M. Meissner, U. Hoffmann, and W. Strasser.
Enabling classification and shading for 3D tex-
ture mapping based volume rendering using
OpenGL and extensions. In IEEE Visualization
1999, pages 207–214, 1999.

26. T. Miller and R. C. Zeleznik. The design of 3D
haptic widgets. In Proceedings 1999 Symposium

on Interactive 3D Graphics, pages 97–102,
1999.

27. S. Muraki. Multiscale volume representation by
a DoG wavelet. IEEE Trans. Visualization and
Computer Graphics, 1(2):109–116, 1995.

28. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer,
and L. Seiler. The VolumePro real-time ray-
casting system. In ACM Computer Graphics
(SIGGRAPH ’99 Proceedings), pages 251–260,
1999.

29. H. Pfister, C. Bajaj, W. Schroeder, and G.
Kindlmann. The transfer function bake-off. In
Proceedings IEEE Visualization 2000, pages
523–526, 2000.

30. H. Pfister and A. E. Kaufman. Cube-4: a scalable
architecture for real-time volume rendering. In
IEEE Symposium On Volume Visualization,
pages 47–54, 1996.

31. J. T. Purciful. 3D widgets for scientific visual-
ization and animation. Master’s thesis, Univer-
sity of Utah, 1997.

32. P. Rheingans. Task-based color scale design. In
Proceedings Applied Image and Pattern Recogni-
tion. 1999.

33. G. Sapiro. Color Snakes. CVIU 68(2):247–253,
1997.

34. Y. Sato, C.-F. Westin, and A. Bhalerao. Tissue
classification based on 3D local intensity struc-
tures for volume rendering. IEEE Transactions
on Visualization and Computer Graphics,
6(2):160–179, 2000.

35. P. S. Strauss and R. Carey. An object-oriented
3D graphics toolkit. In ACM Computer
Graphics (SIGGRAPH ’92 Proceedings), pages
341–349, 1992.

36. C. Ware. Color sequences for univariate maps:
theory, experiments, and principles. IEEE Com-
puter Graphics and Applications, 8(5):41–49,
1988.

37. R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering applica-
tions. In ACM Computer Graphics (SIGGRAPH
’98 Proceedings), pages 169–176, 1998.

38. R. C. Zeleznik, K. P. Herndon, D. C. Robbins,
N. Huang, T. Meyer, N. Parker, and J. F.
Hughes. An interactive toolkit for constructing
3D widgets. Computer Graphics, 27(4):81–84,
1993.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 209

Multidimensional Transfer Functions for Volume Rendering 209

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:15pm page 210

This page intentionally left blank

10 Pre-Integrated Volume Rendering

MARTIN KRAUS and THOMAS ERTL

Visualization and Interactive Systems Group

University of Stuttgart

10.1 Introduction to Pre-Integrated
Volume Rendering

The basic idea of pre-integrated volume

rendering is the precomputation of parts of the

volume rendering integral. In this sense, it is

similar to volume rendering using splatting and

even more similar to the accelerated evaluation

of the volume rendering integral within a tetra-

hedron proposed by Max et al. [12]. However,

pre-integrated volume rendering is a more gen-

eral concept that can be applied to many volume

rendering algorithms (Section 10.2) and sup-

ports several different rendering techniques

(Section 10.4). There is also particular research

interest in acceleration techniques for pre-inte-

grated volume rendering, which are discussed in

Section 10.3.

In this section, we describe the foundation of

pre-integrated volume rendering, i.e., pre-inte-

grated classification, and discuss its relation to

the volume rendering integral and its numerical

evaluation.

10.1.1 Volume Rendering Integral

In principle, any direct volume renderer

performs an (approximate) evaluation of the

volume rendering integral for each pixel, i.e., the

integration of attenuated colors and extinction

coefficients along each viewing ray. While this is

obvious for ray-casting algorithms, many other

volume rendering algorithms do not explicitly

represent viewing rays. Instead, viewing rays

are often defined implicitly by the positions of

the eye point and the view plane. Also, the

volume rendering integrals are not always evalu-

ated one by one; rather, the integrals for all pixels

may be evaluated simultaneously. For example,

all object-order algorithms compute the contri-

butions of parts of the volume to all ray integrals

and then update the preliminary values of these

integrals, usually by updating an intermediate

image. In this larger sense, the evaluation of

volume rendering integrals is common to all

volume rendering algorithms.

We assume that a viewing ray x(l) is para-

meterized by the distance l to the eye point,

and that color densities color(x) together with

extinction densities extinction(x) may be calcu-

lated for any point in space x. The units of color

and extinction densities are color intensity per

lengthandextinction strengthper length, respect-

ively.However,wewill refer to themascolors and

extinction coefficients when the precise meaning

is clear from the context. The volume rendering

integral for the intensity I of one viewing ray is

then

I ¼
Z D

0

color(x(l))

� exp �
Z l

0

extinction(x(l0))dl0
� �

dl

with the maximum distance D, i.e., there is no

color density color(x(l)) for l greater than D. In

other words, color is emitted at each point x

according to the function color(x), and attenu-

ated by the integrated function extinction(x) be-

tween the eye point and the point of emission.

Unfortunately, this form of the volume

rendering integral is not useful for the

visualization of a continuous scalar field s(x)

because the calculation of colors and extinction

coefficients is not yet specified. We distinguish

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 211

211

two steps in the calculation of these colors

and extinction coefficients: the classification is

the assignment of a primary color and an extinc-

tion coefficient. (The term primary color

is borrowed from OpenGL terminology [30] in

order to denote the color before shading.) This

classification is achieved by introducing transfer

functions for color densities ~cc(s) and extinction

densities t(s), which map scalar values s ¼ s(x)

to colors and extinction coefficients. In general, ~cc
is a vector specifying colors in a color space,

while t is a scalar extinction coefficient.

The second step is called shading and calcu-

lates the color contribution of a point in space,

i.e., the function color(x). The shading depends,

of course, on the primary color, but it may also

depend on other parameters, e.g., the gradient

of the scalar field rs(x), ambient and diffuse

lighting parameters, etc. (See also Section

10.4.2.) In the remainder of this section we will

not be concerned with shading but only with

classification; therefore, we choose a trivial

shading, i.e., we identify color(x) with the pri-

mary color ~cc(s(x)) assigned in the classification.

Analogously, extinction(x) is identified with

t(s(x)). The volume rendering integral is then

written as

I ¼
Z D

0

~cc(s(x(l)))

� exp �
Z l

0

t(s(x(l0)))dl0
� �

dl

(10:1)

10.1.2 Pre-Classification and
Post-Classification

Direct volume rendering techniques differ con-

siderably in the way they evaluate Equation 10.1.

One important and very basic difference is the

computation of ~cc(s(x)) and t(s(x)). The scalar

field s(x) is usually defined by a mesh with

scalar values si defined at each vertex vi of the

mesh in combination with an interpolation

scheme, e.g., linear interpolation in tetrahedral

cells or tri-linear interpolation in cubic cells.

The ordering of the two operations, interpol-

ation and the application of transfer functions,

defines the difference between pre-classification

and post-classification. Post-classification is

characterized by the application of the transfer

functions after the interpolation of s(x) from

the scalar values at several vertices (as

suggested by Equation 10.1), while pre-classifica-

tion is the application of the transfer functions

before the interpolation step, i.e., colors ~cc(si) and

extinction coefficients t(si) are calculated in a

preprocessing step for each vertex vi and then

used to interpolate ~cc(s(x)) and t(s(x)) for the

computation of the volume rendering integral.

(The difference is also illustrated in Figs. 10.3a

and 10.3b).

10.1.3 Numerical Integration

An analytic evaluation of the volume rendering

integral is possible in some cases, in particular

for linear interpolation and piecewise linear

transfer functions [27,28]. However, this ap-

proach is not feasible in general; therefore, a

numerical integration is usually required.

The most common numerical approximation

of the volume rendering integral in Equation

10.1 is the calculation of a Riemann sum for n

equal ray segments of length d :¼ D=n. (See

also Figs. 10.1 and 10.2 and Section IV.A in

Max [10].) It is straightforward to generalize

the following considerations to unequally

spaced ray segments.

We will approximate the factor

exp �
Z l

0

t(s(x(l0)))dl0
� �

in Equation 10.1 by

exp �
Xbl=dc
i¼0

t(s(x(id)))d

 !
¼

¼
Ybl=dc
i¼0

exp (� t(s(x(id)))d) �
Ybl=dc
i¼0

(1� ai)

where the opacity ai of the ith ray segment is

defined by

a i :¼ 1� exp �
Z i(dþ1)

id

t(s(x(l0)))dl0
� �

(10:2)

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 212

212 Scalar Field Visualization: Volume Rendering

and approximated by

a i � 1� exp (� t s(x(id)))d)ð

This approximation assumes a piecewise

constant value of s(x(l)); as illustrated in

Fig. 10.1. The result is often further approxi-

mated to

a i � t(s(x(id)))d

We will call 1� ai the transparency of the ith ray

segment. Similarly, the color ~CCi emitted in the

ith ray segment is defined by

~CCi:¼
Z i(dþ1)

id

~cc(s(x(l)))

� exp �
Z l

id

t(s(x(l0)))dl0
� �

dl

(10:3)

By neglecting the self-attenuation within the ith

ray segment and again assuming a piecewise

constant value of s(x(l)), ~CCi may be approxi-

mated by

~CCi � ~cc(s(x(id)))d (10:4)

Thus, the approximation of the volume

rendering integral in Equation 10.1 is

I �
XbD=dc
i¼0

~CCi

Yi�1

j¼0

(1� aj) (10:5)

Therefore, a back-to-front compositing algo-

rithm will implement the equation

~CC0i ¼ ~CCi þ (1� ai)~CC0iþ1 (10:6)

where ~CC0i is the color accumulated from all

ray segments j with j � i. The compositing equa-

tions for a front-to-back compositing algorithm

are

~CC
00

i ¼ ~CC
00

i�1 þ (1� a
00

i�1)
~CCi and

a
00

i ¼ a
00

i�1 þ (1� a
00

i�1)ai

(10:7)

where the color accumulated in the first i ray

segments is denoted by ~CC
00
i and the accumulated

opacity is denoted by a
00
i .

~cc(s) is often specified by a product of two

transfer functions t(s)c(s). (See Max [10] for a

comparison between a direct specification of the

transfer function ~cc(s) and the specification of

c(s).) Substituting ~cc(s) by t(s)c(s) in Equation

10.3 leads to the approximation

~CCi � t(s(x(id)))c(s(x(id)))d

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 213

d

s(x(λ))

s(x((i + l)d))

x((i + l)d)

(i + l)d

s(x(i d))

x(i d) x(λ)

i d λ

s(x(λ))

sb = s(x((i + l)d))

x((i + l)d)

(i + l)d

sf = s(x(i d))

x(i d)

i d λ

Figure 10.1 Piecewise constant approximation of the Figure 10.2 Piecewise linear approximation of the function

function s(x(l)) along a viewing ray. s(x(l)) along a viewing ray.

Pre-Integrated Volume Rendering 213

In this case, it is more common to use non-

associated colors Ci:¼ ~CCi=ai, i.e.,

~CCi ¼ aiCi with Ci � c(s(x(id)))

This results in the approximation

I �
XbD=dc
i¼0

aiCi

Yi�1

j¼0

(1� aj)

with the corresponding back-to-front composit-

ing equation

~CC0i ¼ aiCi þ (1� ai)~CC0iþ1 (10:8)

and the front-to-back compositing equations

~CC
00

i ¼ ~CC
00

i�1 þ (1� a
00

i�1)aiCi and

a
00

i ¼ a
00

i�1 þ (1� a
00

i�1)ai

(10:9)

These compositing equations indicate that ~CC cor-

responds to apremultiplied coloraC, which is also

called opacity-weighted color (see [29]) or associ-

ated color. According to Blinn [1], associated

colors have their opacities associated with them,

i.e., they are regular colors composited on black.

Blinn also notes that some intensity computa-

tions result in associated colors, although they

are not explicitly multiplied by an opacity. In

this sense, the transfer function ~cc(s) is, in fact, a

transfer function for an associated color density.

The discrete approximation of the volume

rendering integral will converge to the correct

result for d ! 0, i.e., for high sampling rates

1=d. According to the sampling theorem, a cor-

rect reconstruction is possible onlywith sampling

rates greater than the Nyquist frequency. How-

ever, nonlinear features of transfer functionsmay

considerably increase the sampling rate required

for a correct evaluation of the volume rendering

integral, as this sampling rate depends on the

product of the Nyquist frequencies of the scalar

field s(x) and the maximum of the Nyquist fre-

quencies of the two transfer functions ~cc(s) and

t(s), or of the product c(s)t(s). (See Schulze et al.

[19] and Section 2.4.3 in Kraus [7] for details.)

Thus, it is by no means sufficient to sample

the volume rendering integral with the Nyquist

frequency of the scalar field if nonlinear transfer

functions are employed. Artifacts resulting from

this kind of undersampling are frequently ob-

served unless they are avoided by very smooth

transfer functions, i.e., transfer functions with

small Nyquist frequencies.

10.1.4 Pre-Integrated Classification

In order to overcome the limitations discussed

above, the approximation of the volume render-

ing integral has to be improved. In fact, many

improvements have been proposed, e.g., higher-

order integration schemes, adaptive sampling,

etc. However, these methods do not explicitly

address the problem of high sampling frequen-

cies required for nonlinear transfer functions.

With pre-integrated classification, these high

sampling frequencies are avoided by recon-

structing a piecewise linear, continuous scalar

function along the viewing ray and evaluating

the volume rendering integral between each pair

of successive samples of the scalar field by table

lookups. This allows us to avoid the problem-

atic product of Nyquist frequencies mentioned

in the previous section, since the sampling rate

for the reconstruction of the scalar function

along the viewing ray is independent of the

transfer functions.

For the purpose of pre-integrated classifica-

tion, the sampled values of the 3D scalar field on

a viewing ray define a 1D, piecewise linear scalar

field, which approximates the original scalar field

along the viewing ray. The volume rendering in-

tegral for this piecewise linear scalar field is effi-

ciently computed by one table lookup for each

ray segment. The three arguments of this table

lookup for the ith ray segment from x(i) to x(id)

are the scalar value at the start (front) of the

segment sf :¼ s(x(id)), the scalar value at the end

(back) of the segment sb:¼ s(x((i þ 1)d)), and the

length of the segment d (Fig. 10.2). For the pur-

pose of illustration, we assume that the lengths of

the segments are all equal to a constant d. In

this case, the table lookup is independent of d.

More precisely spoken, the opacity ai of the

ith segment defined in Equation 10.2 is approxi-

mated by

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 214

214 Scalar Field Visualization: Volume Rendering

ai � 1� exp �
Z 1

0

t((1� !)sf þ !sb)dd!

� �

(10:10)

Thus, ai is a function of sf , sb, and d (or of sf and

sb if the lengths of the segments are equal).

The (associated) color ~CCi defined in Equation

10.3 is approximated correspondingly:

~CCi �
Z 1

0

~cc((1� !)sf þ !sb)

� exp �
Z !

0

t((1� !0)sf þ !0sb)

�
dd!0

�
dd!

(10:11)

Analogously to ai, ~CCi is a function of sf , sb,

and d.

Thus, pre-integrated classification will ap-

proximate the volume rendering integral by

evaluating Equation 10.5.

I �
XbD=dc
i¼0

~CCi

Yi�1

j¼0

(1� aj)

with colors ~CCi precomputed according to Equa-

tion 10.11 and opacities ai precomputed

according to Equation 10.10.

For nonassociated color-transfer functions,

i.e., if ~cc(s) is substituted by t(s)c(s), we will also

employ Equation 10.10 for the approximation

of ai and the following approximation of the

associated color ~CCt
i :

~CCt
i �
Z 1

0

t((1� !)sf þ !sb)c((1� !)sf þ !sb)

� exp �
Z !

0

t((1� !0)sf þ !0sb)dd!0
� �

dd!

(10:12)

Note that pre-integrated classification always

computes associated colors, whether a transfer

function for associated colors ~cc(s) or for non-

associated colors c(s) is employed.

In both cases, pre-integrated classification

allows us to sample a continuous scalar field s(x)

without the need to increase the sampling rate

for any nonlinear transfer function. Therefore,

pre-integrated classification has the potential to

improve the accuracy (by less undersampling)

and the performance (by fewer sampling oper-

ations) of a volume renderer at the same time.

Figure 10.3c summarizes the basic steps of

pre-integrated classification and compares

them with pre-classification (Fig. 10.3a) and

post-classification (Fig. 10.3b).

10.2 Pre-Integrated Volume Rendering
Algorithms

Pre-integrated classification is not restricted to a

particular volume rendering algorithm; rather, it

may replace the post-classification step of vari-

ous algorithms as demonstrated by several pub-

lications in recent years. Instead of discussing

these pre-integrated variants of well-known

volume rendering algorithms in detail, this

section attempts to give an overview of the

literature on pre-integrated volume rendering

algorithms.

10.2.1 Pre-Integrated Cell Projection

Cell projection is probably the most common

method of exploiting graphics hardware for

the rendering of tetrahedral meshes and un-

structured meshes in general. Three different

pre-integrated cell-projection algorithms are de-

scribed in this section.

10.2.1.1 Shading Polyhedra

For the special case of a constant color per

polyhedral cell, pre-integrated volume rendering

is very similar to the shading of polyhedral cells

suggestedbyMaxet al. [12]. Inournomenclature,

the algorithm scan converts the front and back

faces of a polyhedron in order to compute the

scalar values sf on the front faces, sb on the back

faces, and the distance d between front and back

faces (i.e., the thickness of the cell) for each pixel.

Instead of tabulating the opacity a(sf , sb, d) of

Equation 10.10, the algorithm employs a tabu-

lated integral function of t(s) to compute

a(sf , sb, d). (This evaluation corresponds to

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 215

Pre-Integrated Volume Rendering 215

Equation10.15.)For a constant transfer function

for color c(s) ¼: C, Equation 10.12 is given by

~CCt(sf , sb, d) ¼ C

Z 1

0

t((1� !)sf þ !sb)

� exp �
Z !

0

t((1� !0)sf þ !0sb)dd!0
� �

dd!

¼ C 1� exp �
Z 1

0

t((1� !0)sf þ !0sb)dd!0
� �� �

¼ Ca(sf , sb, d)

Thus, the computation of colors is basically

free.

10.2.1.2 Projected Tetrahedra Algorithm

The first cell-projection algorithm that exploited

graphics hardware efficiently was the Projected

Tetrahedra (PT) algorithm by Shirley and

Tuchman [20].

The original algorithm, which is restricted

to tetrahedral cells, classifies each tetrahedron

according to its projected profile and decom-

poses the projected tetrahedron into smaller

triangles (Fig. 10.4). Colors and opacities

are calculated only for the triangle vertices

using ray integration in software, while graphics

hardware is employed to interpolate these

colors and opacities linearly within the triangles.

This, however, is an approximation that leads

to rendering artifacts [11,12].

A pre-integrated variant of the PT algorithm

was published by Röttger et al. [18]. In fact, pre-

integrated volume rendering is particularly

useful for tetrahedral cells, since scalar values

are usually interpolated linearly within tetrahe-

dra, i.e., the scalar field along a viewing ray

varies linearly between two samples. Fig. 10.5

depicts the intersection of a viewing ray with a

tetrahedral cell. More precisely spoken, this par-

ticular tetrahedron corresponds to a triangle

generated by the PT decomposition. The goal

is to render this tetrahedron by rasterizing its

front face. For orthographic projections, sf , sb,

and d vary linearly on the projected front face;

thus, these parameters may be specified as tex-

ture coordinates at the vertices of the front face.

Graphics hardware is then employed to linearly

interpolate these texture coordinates and to per-

form a texture fetch in a 3D texture that con-

tains pre-integrated colors ~CC ¼ ~CC(sf , sb, d) and

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 216

Scalar data at vertices

Classification & shading

RGBA tuples at vertices

Interpolation

RGBA tuple for one point

(a)

Scalar data at vertices

Interpolation

Scalar value at one point

Classification & shading

RGBA tuple for one point

(b)

Scalar data at vertices

Two interpolations

Scalar values at two points

Table lookup

RGBA tuple for line segment

(c)

Figure 10.3 Data-flow schemes for (a) pre-classification, (b) post-classification, and (c) pre-integrated classification.

216 Scalar Field Visualization: Volume Rendering

opacities a ¼ a(sf , sb, d) (see Equations 10.10–

10.12). Thus, the texture fetch implements the

lookup in a pre-integrated lookup table.

As discussed in Section 10.3.3, there are ap-

proximations that allow us to replace the 3D

lookup table by a 2D lookup table. Implemen-

tations of these approximations for pre-inte-

grated cell projection with 2D textures are

discussed by Röttger et al. [18] and Guthe

et al. [4]. Moreover, the 3D texture can be

replaced by a set of 2D textures with the help

of a particular transformation of texture co-

ordinates as demonstrated by Roettger and

Ertl [16].

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 217

Class 1a Class 1b Class 2

Figure 10.4 Classification of nondegenerate projected tetrahedra (top row) and the corresponding decompositions (bottom

row) [20].

d

s
f

sb

Figure 10.5 Intersection of a viewing ray with a tetrahedron corresponding to one of the triangles of the PT decomposition. sf

and sb are the scalar values on the entry (front) face and exit (back) face, respectively; d denotes the thickness of the cell for this

ray.

Pre-Integrated Volume Rendering 217

10.2.1.3 View-Independent Cell Projection

The main disadvantage of the projected tetrahe-

dra algorithm is the need to perform the decom-

position of tetrahedra in software. View-

independent cell projection, on the other hand,

allows thegraphicshardware toperformthecom-

plete projection; thus, bandwidth requirements

are dramatically reduced, provided that the

tetrahedra data are stored on the graphics board.

A pre-integrated, view-independent projec-

tion of tetrahedra was discussed by Weiler et

al. [22]. The basic idea is to rasterize only front

faces of tetrahedra while the rasterization of

back faces is avoided by back-face culling. For

each pixel, the rasterization of a front face has

to compute the entry and exit point of a viewing

ray for the corresponding tetrahedron. Then,

the scalar values sf and sb at these points, and

the distance d between them, can be calculated.

As demonstrated by Weiler et al. [22], all these

computations can be performed by program-

mable graphics hardware. Based on sf , sb, and

d, the color and opacity of the tetrahedron can

be determined with the help of texture mapping,

as discussed in Section 10.2.1.2.

10.2.2 Pre-Integrated Texture-Based
Volume Rendering

Texture-based volume rendering rasterizes a

stack of textured slices with either a stack of

2D textures (Fig. 10.6a, [15]) or one 3D texture

(Fig. 10.6b, [2]).

Engel et al. [3] published a pre-integrated vari-

ant of texture-based volume rendering that may

be characterized by the idea of rendering slabs

instead of slices. For each rasterized pixel, pre-

integrated classification requires the scalar data

at the front and the back slice of each slab (Fig.

10.7a) between two adjacent slices (either object

aligned or view aligned). Thus, the textures of the

two slices have to be mapped onto one slice—

either the front or the back slice; the latter case is

illustrated in Fig. 10.7b. This mapping of the two

textures onto one slice requires multitexturing

and an appropriate calculation of texture coord-

inates. In this way, the scalar values of both slices

are fetched for every pixel of the slice correspond-

ing to one slab. These two scalar values are neces-

sary for a third texture lookup operation, which

fetches pre-integrated colors and opacities. As

this texture lookupdependsonpreviously fetched

data, it is called a dependent texture lookup.

This approach is one of the most popular pre-

integrated volume rendering algorithms; it has

also been employed, for example, by Meißner et

al. [13] and Roettger et al. [17].

10.2.3 Pre-Integrated Ray-Casting

Ray-casting is the most important image-order

volume rendering algorithm. While the evalu-

ation of the volume rendering integral discussed

in Section 10.1.3 is less obvious for many

other volume rendering algorithms, ray-casting

usually computes just one volume rendering

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 218

Eye point

View plane 2D textured slices

(a)

Eye point

View plane 3D textured slices

(b)

Figure 10.6 (a) Direct volume rendering with 2D textured slices. The slices are aligned to the volumetric object. (b) Direct

volume rendering with 3D textured slices. The slices are usually aligned to the view plane.

218 Scalar Field Visualization: Volume Rendering

integral per pixel in order to determine the pixel’s

color. Therefore, the discussion of pre-integrated

classification in Section 10.1.4 already covers its

application to ray-casting algorithms.

A pre-integrated ray-casting system in soft-

ware was described by Knittel [6], while a hard-

ware solution with pre-integrated classification

was presented by Meißner et al. [14]. Ray-

casting algorithms have also been implemented

in programmable graphics hardware. A pre-

integrated variant for unstructured meshes was

published by Weiler et al. [23]. As the computa-

tion of each cell’s color and opacity is very simi-

lar to the view-independent cell projection

described in Section 10.2.1.3, we will not discuss

any details here. Roettger et al. [17] published an

implementation of a pre-integrated ray-casting

algorithm for uniform meshes in programmable

graphics hardware. They also introduce an ex-

tension, called adaptive pre-integration, that

chooses a step length depending on measures

precomputed for each voxel.

10.2.4 Pre-Integrated Shear-Warp
Algorithm

The shear-warp algorithm is a popular soft-

ware volume rendering algorithm [8]. This

algorithm is conceptually close to a software

implementation of object-aligned texture-based

volume rendering (see Section 10.2.2).

A pre-integrated variant of the shear-warp

algorithm was published by Schulze et al. [19].

Similarly to texture-based volume rendering, the

pre-integrated version renders slabs instead of

slices; therefore, Schulze et al. introduce an add-

itional slice buffer in order to have access to both

scalar values, the value on the front slice and the

value on the back slice of each slab.

10.3 Accelerated Pre-Integration

The primary drawback of pre-integrated classi-

fication in general is the required precomputa-

tion of the lookup tables that map the three

integration parameters (scalar value at the

front sf , scalar value at the back sb, and distance

between samples d) to pre-integrated colors
~CC ¼ ~CC(sf , sb, d) defined by Equation 10.11 (or
~CCt ¼ ~CCt(sf , sb, d) defined by Equation 10.12)

and opacities a ¼ a (sf , sb, d) defined by Equa-

tion 10.10. As these tables depend on the transfer

functions, any modification of the transfer func-

tions requires an update of the lookup tables.

This might be no concern for games and enter-

tainment applications, but it strongly limits

the interactivity of applications in the domain

of scientific volume visualization, which often

depends on user-specified transfer functions.

Therefore, several techniques have been de-

veloped to accelerate the pre-integration step.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 219

sf
sb

Front slice
Back slice

Projection
center

Front slice Back slice(a) (b)

Figure 10.7 (a) A slab of the volume between two slices. The scalar value on the front (or back) slice for a particular viewing ray

is called sf (or sb). (b) Projection of the front slice onto the back slice of a slab.

Pre-Integrated Volume Rendering 219

Note that many of these techniques not only

accelerate the pre-integration but also reduce

the size of pre-integrated lookup tables.

10.3.1 Local Updates of Lookup Tables

A local modification of transfer functions for a

particular scalar value s does not require one to

update the complete corresponding lookup

table. In fact, only the entries ~CC(sf , sb, d) and

a(sf , sb, d) with sf � s � sb or sf � s � sb have

to be updated; i.e., about half of the pre-inte-

grated lookup table has to be updated in the

worst case.

10.3.2 Particular Optical Models

There are several interesting optical models that

can be implemented with 2D lookup tables. As

there is only one entry in these tables for each

pair of sf and sb (instead of many entries for

different values of d), their computation is usu-

ally far less costly.

10.3.2.1 Maximum Intensity Projection

Maximum intensity projection (MIP) computes

the maximum intensity along each viewing ray.

In our notation, ~CC(sf , sb, d) has to be the

maximum intensity between scalar values sf

and sb. As this maximum intensity ~CC(sf , sb, d)

is independent of d, a 2D table is sufficient for
~CC. Note that the back-to-front compositing for

maximum intensity projection is given by the

following (compare Equation 10.6):

~CC0i ¼ max (~CCi, ~CC0iþ1)

10.3.2.2 Emission Only

If there is no absorption (i.e., t(s) ¼ 0 for all

s), a(sf , sb, d) is always 0 and ~CC(sf , sb, d)

becomes

~CC(sf , sb, d) ¼ d

Z 1

0

~cc((1� !)sf þ !sb)d!
0)

Thus, there is only a linear dependency on d,

and a 2D lookup table for ~CC(sf , sb, d)=d is suffi-

cient. (See also Section 10.3.3.)

10.3.2.3 Absorption Only

If there is no emission (i.e., ~cc(s) ¼ 0 for all s),
~CC(sf , sb, d) is 0. In this case, the opacity

a(sf , sb, d) should be evaluated in two steps, as

suggested by Max et al. [12]:

t0(sf , sb) ¼
Z 1

0

t((1� !)sf þ !sb)d! (10:13)

a(sf , sb, d) ¼ 1� exp (� t0(sf , sb)d) (10:14)

Thus, the integration can be replaced by a 2D

lookup table for t0(sf , sb). In order to evaluate

Equation 10.14, a 2D lookup table for

a (t, d) ¼ 1� exp (� td)

can be employed as proposed by Stein et al. [21].

10.3.3 Pre-Integration for a Single
Sampling Distance

In some cases, it is possible to reduce the dimen-

sionality of pre-integrated lookup tables from

three to two (only sf and sb) by assuming a con-

stant sampling distance, i.e., a constant length of

the ray segments. Obviously, this applies to ray-

casting with equidistant samples. It also applies

to 3D texture-based volume visualization with

orthographic projection and is a good approxi-

mation for most perspective projections.

Even if different sampling distances occur, the

dependency on the sampling distance is often

approximated by a linear dependency, as sug-

gested by Roettger et al. [17,18] or by a more

accurate opacity correction, as suggested by

Schulze et al. [19]: Assuming that opacities

a(sf , sb, d
0) have been computed for a constant

sampling distance d 0 according to Equation

10.14, the corrected opacity a(sf , sb, d) for a dif-

ferent sampling distance d may be computed by

a(sf , sb, d) ¼ 1� exp (� t0(sf , sb)d)

¼ 1� exp (� t0(sf , sb)d
0)d=d

0

¼ 1� (1� a(sf , sb, d
0))d=d

0

This correction can be efficiently computed by a

lookup table for the mapping

a 7!1� (1� a)d=d
0

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 220

220 Scalar Field Visualization: Volume Rendering

If colors ~CC(sf , sb, d
0) have also been precom-

puted for a constant sampling distance d 0, they

have to be corrected by the same factor

a(sf , sb, d)=a(sf , sb, d
0) [19].

Another way of exploiting Equations 10.13

and 10.14 is to precompute a 2D lookup table

for t0(sf , sb), as defined by Equation 10.13, and

evaluate Equation 10.14 for a(sf , sb, d) only when

it is required. Guthe et al. [4] show how to employ

dependent textures for this task. As there is no

corresponding formula for pre-integrated colors,

Guthe et al. suggest a linear approximation, as

mentioned above, or a more general polynomial

approximation. However, the latter requires the

computation of pre-integrated colors for several

different segment lengths.

10.3.4 Pre-Integration Without Self-
Attenuation of Segments

For small ray segments, the preintegration may

be greatly accelerated by evaluating the inte-

grals in Equations 10.10–10.12 with the help

of integral functions for t(s),~cc(s) and t(s)c(s),
respectively. This technique neglects the self-

attenuation of segments (as in Equation 10.4

for post-classification) and was published by

Engel et al. [3]. A similar technique was first

published by Max et al. [12]; see Section

10.2.1.1. More specifically, Equation 10.10 for

a(sf , sb, d) can be rewritten as

a(sf ,sb,d) � 1�exp �
Z 1

0

t((1�!)sf þ!sb)dd!

� �

¼ 1�exp � d

sb�sf

Z sb

sf

t(s)ds

 !

¼ 1�exp � d

sb�sf

(T(sb)�T(sf))

� �
(10:15)

with the integral function T(s) :¼
R s

0
t(s0)ds0,

which is easily computed in practice, as the

scalar values s are usually quantized.

Equation 10.11 for ~CC(sf , sb, d) may be ap-

proximated analogously; however, this requires

one to neglect the attenuation within a ray seg-

ment. In fact, this is a common approximation

for post-classified volume rendering and is well

justified for small products t(s)d, i.e., for small

distances d.

~CC(sf , sb, d) �
Z 1

0

~cc((1� !)sf þ !sb)dd!

¼ d

sb � sf

Z sb

sf

~cc(s)ds

¼ d

sb � sf

(K(sb)� K(sf))

(10:16)

with the integral function K(s) :¼
R s

0
~cc(s0)ds0.

For the nonassociated color transfer function

c(s), we approximate Equation 10.12 by

~CCt(sf , sb, d) �
Z 1

0

t((1� !)sf þ !sb)

� c((1� !)sf þ !sb)dd!

¼ d

sb � sf

Z sb

sf

t(s)c(s)ds

¼ d

sb � sf

(Kt(sb)� Kt(sf))

(10:17)

with Kt(s) :¼
R s

0
t(s0)c(s0)ds0.

Thus, instead of numerically computing the

integrals in Equations 10.10–10.12 for each

combination of sf , sb, and d, it is possible to

compute the integral functions T(s), K(s),

or Kt(s) only once and employ these to evaluate

colors and opacities according to Equations

10.15, 10.16, or 10.17 without any further inte-

gration. Moreover, 2D lookup tables are suffi-

cient for ~CC(sf , sb, d)=d and ~CCt(sf , sb, d)=d. The

opacity a(sf , sb, d) may also be evaluated with

the help of 2D lookup tables, as mentioned in

the dicussion of Equation 10.14.

10.3.5 Hardware-Accelerated
Pre-Integration

Pre-integrated lookup tables are often imple-

mented with hardware-accelerated texture

mapping. In this case, the computation of pre-

integrated lookup tables in graphics hardware

as suggested by Roettger and Ertl [16] is par-

ticularly beneficial because the transfer of the

lookup table from main memory into texture

memory is avoided.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 221

Pre-Integrated Volume Rendering 221

The basic idea is to evaluate the entries of a

pre-integrated lookup table for all values of sf

and sb (but a constant d) at the same time. These

entries form a 2D image that is computed in the

frame buffer and then transferred to texture

memory before processing the next value of d.

The RGBA color of each pixel is given by Equa-

tions 10.10 and 10.11 (or Equations 10.10 and

10.12). The integrals in these equations are dis-

cretized as discussed in Section 10.1.3. Note in

particular that Equations 10.6 and 10.8 can be

implemented by hardware-accelerated blending

operations.

10.3.6 Incremental Pre-Integration

Incremental pre-integration is another acceler-

ation technique for the computation of a(sf , sb,

d), ~CC(sf , sb, d), and ~CCt(sf , sb, d) (see Equations

10.10–10.12). Provided that a lookup table has

been calculated for all entries with a sampling

distance less than or equal to d 0, the entries for

the next segment length d ¼ d 0 þ Dd can

be calculated by splitting the integrals

into one part of length Dd and one part of

length d 0. The scalar value sp at the split point

is interpolated linearly between sf and sb, i.e.,

sp ¼ (d 0 sf þ Dd sb)=(Dd þ d 0). As the integrals

for these parts are already tabulated, the evalu-

ation is reduced to table lookups and a blending

operation. More specifically, a(sf , sb, d 0 þ Dd)

may be computed as

a(sf , sb, d
0 þ Dd) ¼ a(sf , sp, Dd)

þ (1� a(sf , sp, Dd)) a(sp, sb, d
0)

~CC(sf , sb, d) and ~CCt(sf , sb, d) are given by

~CC(sf , sb, d
0 þ Dd) ¼ ~CC(sf , sp, Dd)

þ (1� a(sf , sp, Dd))~CC(sp, sb, d
0)

and

~CCt(sf , sb, d
0 þ Dd) ¼ ~CCt(sf , sp, Dd)

þ (1� a(sf , sp, Dd))~CCt(sp, sb, d
0)

Incremental pre-integration was first pub-

lished by Weiler et al. [23]. However, a very simi-

lar technique was independently developed by

Guthe for the ray caster described by Roettger

et al. [17].

More recently, a further optimization for the

generation of the pre-integrated lookup table,

which is incremental in sf and sb instead of d,

was suggested by Lum et al. [9].

10.4 Pre-Integrated Rendering
Techniques

Pre-integrated volume rendering not only im-

proves the accuracy of volume rendering algo-

rithms but is also suitable for several particular

rendering techniques. Some of these, namely

isosurface rendering, volume shading, and vo-

lume clipping, are discussed in this section.

10.4.1 Isosurface Rendering

Rendering of isosurfaces is only a special case of

direct volume visualization with appropriate

transfer functions. For pre-integrated volume

rendering, these transfer functions correspond

to particularly simple, 2D pre-integrated lookup

tables, which can be derived as follows.

10.4.1.1 Lookup Tables for Isosurface
Rendering

In order to render the isosurface for an iso-

value siso, the opacity transfer function t(s)
should be defined by t(s) ¼ 0 for s 6¼ siso and

‘‘t(siso) ¼ 1’’. Formally, we set t(s) ¼ xd
(s� siso) with a constant x and Dirac’s delta

function d(x) [24]; multiple isosurfaces corre-

spond to a sum of delta functions. As ~cc(siso) and

c(siso) are constant, we are only interested in the

value of a as defined in Equation 10.10:

1� a ¼ exp �
Z 1

0

t((1�!)sf þ!sb)dd!

� �

¼ exp �
Z 1

0

xd((1�!)sf þ!sb � siso)dd!

� �

¼ exp �
Z 1

0

x
1

sb � sf

����
����d !� siso � sf

sb � sf

� �
dd!

� �

¼ exp �x0H siso� sf

sb � sf

� �
H 1� siso� sf

sb � sf

� �� �

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 222

222 Scalar Field Visualization: Volume Rendering

with x0 ¼ x 1
sb�sf

���
���d and the Heaviside step func-

tion H(x) [24]. Thus, for x!1 we obtain

a ¼ H
siso � sf

sb � sf

� �
H

sb � siso

sb � sf

� �

which is independent of d. The dependency on

sf and sb results in a checkerboard-like lookup

table, which is visualized in Fig. 10.8 for three

different values of siso. These 2D lookup tables

are in fact special cases of the 3D lookup table

defined by Equation 10.10. An alternative der-

ivation of this result, which is closer to the

previous work by Westermann and Ertl [25], is

given by Röttger et al. [18].

The resulting lookup table may also be de-

scribed as follows: its a-component, i.e., the

opacity, has to be 1 for opaque isosurfaces if

either sf or sb (but not both) is less than the

iso-value, and 0 otherwise (see Fig. 10.8).

Usually, the RGB components of these

lookup tables are constant and define the (uni-

form) color of an isosurface. However, if the

colors of the two faces of an isosurface are

different, the two rectangular regions in these

lookup tables have to have different colors, as

shown in Fig. 10.8c.

Unfortunately, the limited accuracy of the

pre-integrated lookup table for isosurfaces will

usually cause rendering artifacts. Holes in iso-

surfaces can be avoided by slightly modifying the

lookup table, effectively ‘‘thickening’’ the isosur-

face. This eliminates artifacts for opaque iso-

surfaces; for partially transparent isosurfaces,

however, this will visually enhance the sampling

pattern by rasterizing some of the pixels of an

isosurface more than once. Removing these arti-

facts for partially transparent isosurfaces in gen-

eral is an open problem. For the special case of a

single, semitransparent isosurface, these arti-

facts can be avoided by additional rendering

passes [3,7]. More recent research suggests that

at least some of these artifacts are due to the

use of incorrect interpolation for perspective

projection.

10.4.1.2 Multiple Isosurfaces

When rendering multiple isosurfaces, the 2D

lookup tables of the individual isosurfaces have

to be combined. An example of a combined

lookup table is sketched in Fig. 10.9a, which

shows the combination of the lookup tables from

Fig. 10.8. The ‘‘visibility ordering’’ is easy to

understand: for sf < sb (upper left half) we view

along the gradient of the scalar field; thus,

isosurfaces for smaller iso-values occlude those

for greater iso-values, and vice versa for sf > sb.

Assuming that the whole volume is rendered,

the number of isosurfaces does not affect the

rendering time. This feature is shared with, for

example, Westermann’s algorithm for multiple

isosurfaces [26].

10.4.1.3 Shaded Isosurfaces

The shading calculation for isosurfaces is

usually based on the normalized gradient of

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 223

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3

0.3

sb sb

sf

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.5

0.5

sf

(b)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.75

0.75

sb

sf

(c)

Figure 10.8 2D pre-integrated lookup tables for three iso-values: (a) iso-value 0.3, (b) iso-value 0.5, and (c) iso-value 0.75, with

different shadings for the two faces of an isosurface.

Pre-Integrated Volume Rendering 223

the scalar field, because gradients are perpendi-

cular to isosurfaces. Note that shading of

isosurfaces is closely related to volume shading,

which is discussed in Section 10.4.2.

For a single pre-integrated isosurface, there

are basically two different approaches to

shading. The first is to perform the shading cal-

culation at the sampling positions and to linearly

interpolate the two resulting colors, say Cf at the

start of the ray segment and Cb at the end. This

interpolation results in the shaded color Ciso of

the isosurface. The interpolation weight !
depends on the position of the intersection of

the isosurface with the ray segment, i.e., it

depends on the position of the iso-value siso

within the interval between sf and sb:

Ciso ¼ !Cf þ (1� !)Cb with ! ¼ siso � sb

sf � sb

The second approach determines the normal-

ized gradients at the sampling positions, say gf

and gb (see also Fig. 10.10). The shading calcu-

lation for one ray segment is then based on a

linearly interpolated and normalized gradient

giso:

giso ¼
!gf þ (1� !)gb

j!gf þ (1� !)gbj
with ! ¼ siso � sb

sf � sb

In both cases a weight ! ¼ !(sf , sb, siso) is

required that may be tabulated in a lookup

table; an example is depicted in Fig. 10.9b. The

first approach was employed for cell projection

[18,25], while the second approach (without the

normalization) was employed for texture-based

volume rendering [3].

10.4.1.4 Mixing Isosurfaces with
Semitransparent Volumes

Pre-integrated isosurfaces can be combined

with semitransparent volumes either with sepa-

rate or with combined lookup tables. In the

former case, the semitransparent volume must

be clipped in order to hide those parts of the

volume that are occluded by isosurfaces (see

Section 10.4.3). In the latter case, pre-integrated

lookup tables are computed by allowing for iso-

values in the evaluation of Equations 10.10,

10.11, or 10.12. That is, for opaque isosurfaces

the ray integration has to be stopped as soon as

one of the iso-values is reached [18]. Both

approaches can be generalized to partially

transparent isosurfaces.

10.4.2 Volume Shading

Volume shading applies illumination models

(particularly Phong illumination) to volume

rendering. For this purpose, the surface normal

is usually replaced by the normalized gradient

of the scalar field (see also Section 10.4.1.3).

A detailed discussion of volume shading in the

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 224

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3 0.5 0.75

0.3

0.5

0.75

sb

sf

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3

0.3

sb

sf

(b)

Figure 10.9 (a) The correct combination of the lookup tables from Fig. 10.8 in a single lookup table for multiple isosurfaces. (b)

A modulation of the lookup table depicted in Fig. 10.8a with the weights ! ¼ siso�sb

sf�sb
for siso ¼ 0:3.

224 Scalar Field Visualization: Volume Rendering

context of pre-integrated volume rendering is

given by Meißner et al. [13]. In fact, pre-integra-

tion is not restricted to colors and opacities but

may also be applied, for example, to material

properties. Here, however, we discuss only the

pre-integrated interpolation of a gradient for

multiple, semitransparent isosurfaces, i.e., for a

ray segment with scalar values sf and sb, gradi-

ents gf and gb, and n iso-values s
(1)
iso, . . . , s(n)

iso

within the interval [sf , sb] according to Fig. 10.10.

As discussed in Section 10.4.1.3, the weight !
for the interpolation of a gradient for a single

isosurface is given by (siso � sb)=(sf � sb). In the

case of multiple isosurfaces, there is one weight

!(i) for each iso-value s
(i)
iso:

! (i) ¼ s
(i)
iso � sb

sf � sb

These weights have to be weighted according to

the transparencies a(i)
iso of the isosurfaces. Thus,

the interpolation weight !mult for multiple iso-

surfaces is given by

!mult ¼
Pn

i¼1 !(i)a(i)
isoPi�1

j¼1 1� a(j)
iso

� �� �

1�Pn
j¼1 1� a(j)

iso

� �

and the interpolated gradient is

g iso ¼
!multgf þ (1� !mult)gb

j!multgf þ (1� !mult)gbj

Analogously to the case of a single isosurface,

the weights !mult depend on sf and sb, but not

on the sampling distance d. Therefore, they can

be tabulated in a 2D lookup table.

10.4.2.1 Note from the Authors

After this chapter had been written, we learned

about a completely different approach to

volume shading for pre-integrated volume

rendering suggested by Lum et al. [9]. We

regret that we were not able to include a more

detailed description of their method in this

section.

10.4.3 Volume Clipping

A pre-integrated technique for volume clipping

was published by Roettger et al. [17]. The basic

idea is to define a second volumetric scalar field

w ¼ w(x) that defines the volumetric clip region;

for example, the volume is clipped where w < 0:5.

The pre-integration parameters (scalar values

s0f and s0b, and segment length d 0) of a clipped ray

segment may be computed from the parameters

of the unclipped segment (sf , sb, and d) and the

values of w at the start (wf) and at the end (wb) of

the unclipped segment (Fig. 10.11). For example,

in the case of wf < 0:5 and wb > 0:5 (Fig. 10.11a),

the scalar value s0f at the start of the clipped seg-

ment is closer to sb than sf and the length of the

clipped segment d 0 is smaller than the original

length d, while the scalar value at the end of the

segmentisunchanged, i.e., sb equalss0b.The actual

calculation of s0f , s
0
b, and d 0 is straightforward:

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 225

s (1)
iso ... s (N)

iso

d

Raysf sb

gf

gb

Figure 10.10 Some of the parameters used for shading a ray segment intersected by multiple isosurfaces.

Pre-Integrated Volume Rendering 225

s0f ¼ !f sf þ (1� !f)sb

with !f ¼
wb � 0:5

wb � wf

if wf < 0:5 < wb

1 else.

8<
:

s0b ¼ !bsb þ (1� !b)sf

with !b ¼
wf � 0:5

wf � wb

if wf > 0:5 > wb

1 else.

8<
:

d 0 ¼ !dd

with !d ¼

wb � 0:5

wb � wf

if wf < 0:5 < wb

wf � 0:5

wf � wb

if wf > 0:5 > wb

1 else.

8>>>>><
>>>>>:

Since the weights !f ,!b, and !d depend only on

wf and wb, they may be tabulated in 2D lookup

tables.

In summary, a ray segment is colored by

first determining sf , sb, d, wf , and wb; then

looking up !f ¼ !f (wf , wb),!b ¼ !b(wf , wb), and

!d ¼ !d(wf , wb); after that calculating s0f , s
0
b, and

d 0 by linear interpolation; and eventually deter-

mining the color and opacity of the clipped ray

segment depending on s0f , s
0
b, and d 0. See Roett-

ger et al. [17] for more details and a description

of an implementation in the context of texture-

based volume rendering.

10.5 Open Problems

Pre-integrated volume rendering is a relatively

recent technique in volume graphics that is

still evolving. While many researchers are

convinced of its benefits (in particular for trans-

fer functions with high frequencies), the dis-

cussion about the theoretical foundation of

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:56pm page 226

d

d ′

Raysf sb =s ′f s ′b

χ
f < 0.5 χb > 0.5χ = 0.5

(a)

s ′b

d

d ′

Raysf = sb

χf > 0.5 χb < 0.5χ = 0.5

(b)

s ′f

Figure 10.11 Two cases of clipping a pre-integrated ray

segment: (a) clipping of the volume at the start (front) and

(b) clipping of the volume at the end (back) of the segment.

Figure 10.12 Volume visualization of a dataset of 128� 128� 30 voxels showing tiny structures of the inner ear. These 128

textured slices were rendered with (a) preclassification, (b) post-classification, and (c) pre-integrated classification. The images

appear courtesy of Klaus Engel.

226 Scalar Field Visualization: Volume Rendering

these benefits is not yet closed. We have

not joined this discussion here, as it is (and

probably should be) focused on the appropri-

ate sampling rate for volume rendering with

post-classification [7,19].

Another open issue is the pre-integration

of multidimensional transfer functions. Al-

though the approach published by Kniss et al.

[5] is feasible under many circumstances, a gen-

eral solution to this problem still has to be

found.

Further open problems related to pre-

integrated volume rendering are, for example:

. Applications to other volume rendering al-

gorithms, e.g., splatting.

. Additional acceleration techniques.

. Extensions to further illumination models,

higher-order interpolation, etc.

Additionalfiguresappear in thecolor insert section.

References

1. J. F. Blinn. Jim Blinn’s corner—compositing,
part I: theory. IEEE Computer Graphics and Ap-
plications, 14(5):83–87, 1994.

2. B. Cabral, N. Cam, and J. Foran. Accelerated
volume rendering and tomographic recon-
struction using texture mapping hardware. In
Proceedings 1994 Symposium on Volume Visual-
ization, pages 91–98, 1994.

3. K. Engel, M. Kraus, and T. Ertl. High-quality
pre-integrated volume rendering using hard-
ware-accelerated pixel shading. In Proceedings
Graphics Hardware 2001, pages 9–16, 2001.

4. S. Guthe, S. Roettger, A. Schieber, W. Strasser,
and T. Ertl. High-quality unstructured volume
rendering on the PC platform. In Proceed-
ings Graphics Hardware 2002, pages 119–125,
2002.

5. J. Kniss, S. Premoze, M. Ikits, A. Lefohn,
C. Hansen, and E. Praun. Gaussian transfer
functions for multi-field volume visualization. In
Proceedings Visualization 2003, pages 497–504,
2003.

6. G. Knittel. Using pre-integrated transfer func-
tions in an interactive software system for
volume rendering. In Proceedings Short Pre-
sentations EUROGRAPHICS 2002, pages
119–123, 2002.

7. M. Kraus. Direct volume visualization of geo-
metrically unpleasant meshes. Dissertation,
University of Stuttgart, 2003.

8. P. Lacroute and M. Levoy. Fast volume
rendering using a shear-warp factorization of
the viewing transformation. In Proceedings
SIGGRAPH 94, pages 451–458, 1994.

9. E. B. Lum, B. Wilson, and K.-L. Ma. High-
quality lighting and efficient pre-integration for
volume rendering. In Proceedings Visualization
Symposium (Vis Sym) ’04, pages 25–34, 2004.

10. N. Max. Optical models for direct volume
rendering. IEEE Transactions on Visualization
and Computer Graphics, 1(2):99–108, 1995.

11. N. Max, B. Becker, and R. Crawfis. Flow
volumes for interactive vector field visualiza-
tion. In Proceedings Visualization ’93, pages
19–24, 1993.

12. N. Max, P. Hanrahan, and R. Crawfis. Area
and volume coherence for efficient visualization
of 3D scalar functions. ACM Computer
Graphics (Proceedings San Diego Workshop on
Volume Visualization), 24(5):27–33, 1990.

13. M. Meißner, S. Guthe, and W. Straßer. Inter-
active lighting models and pre-integration for
volume rendering on PC graphics accelerators.
In Proceedings Graphics Interface 2002, pages
209–218, 2002.

14. M. Meißner, U. Kanus, G. Wetekam, J. Hirche,
A. Ehlert, W. Straßer, M. Doggett, P. Forth-
mann, and R. Proksa. VIZARD II: A reconfi-
gurable interactive volume rendering system. In
Proceedings Graphics Hardware 2002, pages
137–146, 2002.

15. C. Rezk-Salama, K. Engel, M. Bauer, G. Grei-
ner, and T. Ertl. Interactive volume rendering
on standard PC graphics hardware using
multi-textures and multi-stage rasterization. In
Proceedings Graphics Hardware 2000, pages
109–118, 2000.

16. S. Roettger and T. Ertl. A two-step approach
for interactive pre-integrated volume rendering
of unstructured grids. In Proceedings Volume
Visualization and Graphics Symposium 2002,
pages 23–28, 2002.

17. S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,
and W. Strasser. Smart hardware-accelerated
volume rendering. In Proceedings Symposium
on Visualization (VisSym) ’03, pages 231–238,
2003.

18. S. Röttger, M. Kraus, and T. Ertl. Hardware-
accelerated volume and isosurface rendering
based on cell-projection. In Proceedings Visual-
ization 2000, pages 109–116, 2000.

19. J. P. Schulze, M. Kraus, U. Lang, and T. Ertl.
Integrating pre-integration into the shear-warp

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:57pm page 227

Pre-Integrated Volume Rendering 227

algorithm. In Proceedings Volume Graphics
2003, pages 109–118, 2003.

20. P. Shirley and A. Tuchman. A polygonal ap-
proximation to direct scalar volume rendering.
ACM Computer Graphics (Proceedings San
Diego Workshop on Volume Visualization),
24(5):63–70, 1990.

21. C.M.Stein,B.G.Becker, andN.L.Max. Sorting
and hardware assisted rendering for volume
visualization. In Proceedings 1994 Symposium
on Volume Visualization, pages 83–89, 1994.

22. M. Weiler, M. Kraus, M. Merz, and T. Ertl.
Hardware-based view-independent cell projec-
tion. In IEEE Transactions on Visualization
and Computer Graphics, 9(2):163–175, 2003.

23. M. Weiler, M. Kraus, M. Merz, and T. Ertl.
Hardware-based ray-casting for tetrahedral
meshes. In Proceedings Visualization 2003,
pages 333–340, 2003.

24. E. W. Weisstein. Eric Weisstein’s world of math-
ematics. http://mathworld.wolfram.com/

25. R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering applica-

tions. In Proceedings SIGGRAPH 98, pages
169–177, 1998.

26. R. Westermann, C. Johnson, and T. Ertl.
A level-set method for flow visualization. In
Proceedings Visualization 2000, pages 147–154,
2000.

27. P. L. Williams and N. Max. A volume density
optical model. In Proceedings 1992 Workshop on
Volume Visualization, pages 61–68, 1992.

28. P. L. Williams, N. L. Max, and C. M. Stein.
A high accuracy volume renderer for unstruc-
tured data. IEEE Transactions on Visualization
and Computer Graphics, 4(1):37–54, 1998.

29. C. M. Wittenbrink, T. Malzbender, and M. E.
Goss. Opacity-weighted color interpolation for
volume visualization. In Proceedings 1998 Sym-
posium on Volume Visualization, pages 135–142,
1998.

30. M. Woo, J. Neider, T. Davis, and D. Shreiner.
OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2, 3rd Ed. Addi-
son-Wesley, 1999.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 4:57pm page 228

228 Scalar Field Visualization: Volume Rendering

11 Hardware-Accelerated
Volume Rendering

HANSPETER PFISTER

Mitsubishi Electric Research Laboratories

11.1 Introduction

Over the last decade, volume rendering has

become an invaluable visualization technique

for a wide variety of applications in medicine,

biotechnology, engineering, astrophysics, and

other sciences. Examples include visualization

of 3D sampled medical data (CT, MRI), seismic

data from oil and gas exploration, and computed

finite element models. While volume rendering

is very popular, the lack of interactive frame

rates has long limited its widespread use. Fortu-

nately, advances in graphics hardware have lead

to interactive and even real-time volume

rendering performance, even on personal com-

puters.

High frame rates are essential for the investi-

gation and understanding of volume datasets.

Real-time rotation of 3D objects in space under

user control makes the renderings appear more

realistic due to kinetic depth effects [103]. Im-

mediate visual feedback allows for interactive

experimentation with different rendering par-

ameters, such as transfer functions [88]. Dynam-

ically changing volume data can now be

visualized, for example, data from interactive

surgical simulation or real-time 3D ultrasound.

And the image quality of hardware-accelerated

volume rendering rivals or equals that of the

best software algorithms.

In this chapter, we review different hardware-

accelerated methods and architectures for

volume rendering. Our discussion will focus on

direct volume rendering techniques. A survey of

isosurface methods can be found elsewhere in

this book. Direct volume rendering has the abil-

ity to give a qualitative feel for the density

changes in the data. It precludes the need to

segment the data [58]—indeed, it is particularly

adept at showing structurally weak and ‘‘fuzzy’’

information.

Section 11.2 reviews the basics of direct

volume rendering. It provides background and

terminology used throughout this chapter. The

following sections then describe several ap-

proaches to volume rendering that have been

successfully accelerated by hardware. We will

discuss ray-casting, 3D and 2D texture slicing,

shear-warp rendering and its implementation

on VolumePro, and splatting. We will focus

on the underlying rendering algorithms and

principles and refer to the literature for imple-

mentation details. The chapter ends with con-

clusions and an outlook on future work in

Section 11.9.

11.2 Volume Rendering Basics

11.2.1 Volume Data

A volumetric dataset consists of information at

sample locations in some space. The informa-

tion may be a scalar (such as density in a com-

puted tomography (CT) scan), a vector (such as

velocity in a flow field), or a higher-order tensor

(such as energy, density, and momentum in

computational fluid dynamics (CFD)). The

space is usually 3D, consisting of either three

spatial dimensions or another combination of

spatial and frequency dimensions.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 229

229

In many applications the data is sampled on a

rectilinear grid, represented as a 3D grid of

volume elements, so-called voxels. Voxels are

assumed to be zero-dimensional scalar values

defined at integer coordinates. This is in con-

trast to an alternative definition, where a voxel

is interpreted as a small unit cube of volume

with a constant value. There are many good

arguments as to why such a definition may

lead to errors and confusion [101]. To describe

voxels as volume points in 3D is consistent with

signal-processing theory [76] and makes it easy

to combine them with point-sampled surface

models [137].

If all the voxels are spaced identically in each

dimension, the dataset is said to be regular.

Otherwise, the data is called anisotropic. Aniso-

tropic volume data is commonly found in med-

ical and geophysical applications. For example,

the spacing of CT slices along the axis of the

patient is determined by the (adjustable) speed

of the table, while the spacing within a slice is

determined by the geometry of the scanner. In

addition, the gantry of a CT scanner may be

tilted with respect to the axis of the patient. The

resulting (rectilinear or anisotropic) data is

called sheared because the axes are not at right

angles.

Other types of datasets can be classified into

curvilinear grids, which can be thought of as

resulting from a warping of a rectilinear grid,

and unstructured grids, which consist of arbi-

trarily shaped cells with no particular relation

to rectilinear grids [104]. We restrict our discus-

sion in this chapter to hardware-accelerated

rendering of scalar voxels stored on a rectilinear

volume grid, including anisotropic and sheared

data.

11.2.2 Coordinate Systems and
Transformations

Every volume rendering technique maps the

data onto the image plane through a sequence

of intermediate steps in which the data is trans-

formed to different coordinate systems. We

introduce the basic terminology in Fig. 11.1.

Note that the terms space and coordinate system

are synonymous. The volume data is stored in

source space. The correction transformation C

transforms source space to object space, correct-

ing for anisotropy and shear in the volume data.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 230

Model
Transformation

Projective
Mapping

Volume
Classification

and Integration

Viewport
Transformation

Volume
Dataset

Output
Image

Object
Space

Camera
Space

Ray
Space

Screen
Space

Viewport

Correction
Transformation

Source
Space

Viewing
Transformation

World
Space

Figure 11.1 The volume rendering pipeline.

230 Scalar Field Visualization: Volume Rendering

The model transformation M transforms object

space to world space. This transformation

allows one to place multiple volume and poly-

gon objects in the scene. To render the scene

from an arbitrary viewpoint, the world space is

mapped to camera space using the viewing

transformation V. The camera coordinate

system is defined such that its origin is at the

center of projection.

The volume rendering algorithm projects

the data and evaluates the volume rendering

integral. The details of this integration will be

discussed in Section 11.2.3. For now, we use the

projection transformation P to transform the

data to ray space (Fig. 11.2). Ray space is a

noncartesian coordinate system that enables an

easy formulation of the volume rendering inte-

gral. In ray space, the viewing rays are parallel

to a coordinate axis, facilitating analytical inte-

gration of the volume function. We denote a

point in ray space by a vector x ¼ (x0, x1, x2)
T ,

where the first two coordinates specify a point in

screen space and can be abbreviated as

x̂x ¼ (x0, x1)
T . The third coordinate x2 specifies

the Euclidean distance from the camera to a

point on the viewing ray. Because the projection

transformation P is similar to the projective

transform used in rendering pipelines such as

OpenGL, it is also called the projective mapping.

For orthographic or parallel projection, P is the

identity matrix.

Evaluating the volume rendering integral

results in a 2D image in screen space. In the

final step, this image is transformed to viewport

coordinates using the viewport transformation

VP. We will ignore the viewport transformation

in the remainder of this chapter.

11.2.3 The Volume Rendering Integral

Volume rendering algorithms typically rely

on the low-albedo approximation to how the

volume data generates, scatters, or occludes

light [10,44,68,125]. Effects of the light inter-

action are integrated along the viewing rays

in ray space according to the volume render-

ing integral. The equation describes the light

intensity Il(x̂x) at wavelength l that reaches

the center of projection along the ray x with

length L:

Il(x̂x ¼
Z L

0

cl(x̂x, x)g(x̂x, x)e�
R x

0
g(x̂x,m)dm

dx (11:1)

where g(x) is the extinction function that

models the attenuation of light per unit

length along the ray due to scattering or extinc-

tion. cl(x) is an emission coefficient, modeling

the light added per unit length along the ray,

including self-emission, scattered, and reflected

light.

The exponential term can be interpreted as an

attenuation factor that models the absorption of

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 231

x2

(t0,t1)

t2

xk

(x0,x1)

tktk

Figure 11.2 Transforming the volume from camera to ray space. (Left) Camera space; (Right) ray space.

Hardware-Accelerated Volume Rendering 231

light between a point along the ray and the eye.

The product cl(x)g(x) is also called the source

term [68,125], describing the light intensity scat-

tered in the direction of the ray x at the point x2.

In the remainder of this chapter we will omit the

parameter l, implying that Equation 11.1 has to

be evaluated for different wavelengths separ-

ately.

We now assume that the extinction function

is given as a weighted sum of coefficients gk and

reconstruction kernels rk(x):

g(x) ¼
X

k

gkrk(x) (11:2)

This corresponds to the source-attenuation

physical model [68] where the volume consists

of individual particles that absorb and emit

light. The reconstruction kernels rk reflect pos-

ition and shape of individual particles. The par-

ticles can be irregularly spaced and may differ in

shape, so the model is not restricted to regular

datasets.

Depending on how Equation 11.1 is evalu-

ated, volume rendering algorithms can be

divided into backward-mapping and forward-

mapping methods. Backward-mapping algo-

rithms shoot rays through pixels on the image

plane into the volume data, and forward-

mapping algorithms map the data onto the

image plane.

11.2.4 Backward-Mapping Algorithms

Backward-mapping (or image-order) algorithms

iterate over all pixels of the output image and

determine the contributions of the integral to

the current pixel [22,58,99]. Ray-casting is the

most commonly used backward-mapping tech-

nique. It simulates optical projections of light

rays through the dataset, yielding a simple and

visually accurate mechanism for volume

rendering.

The integral (Equation 11.1) can be evaluated

using a Riemann sum approximation. By ap-

proximating the exponential function with the

first two terms of its Taylor expansion

(e�x � 1� x), we arrive at this equation:

I(x̂x)¼
XL
l¼0

c(xl)
X

k

gkrk(xl)
Yl�1

j¼0

(1�
X
m

gmrm(xj))

 !

(11:3)

The inner summation
P

k gkrk(xl) computes the

sum of volume reconstruction kernels using

Equation 11.2 at position xl on the viewing

ray. As described in Section 11.3.2, this is typic-

ally implemented by tri-linear interpolation.

The product over j is the attenuation due to all

sample points xj that lie in front of the current

position xl . The weighted sums of reconstruc-

tion kernels are typically replaced with the

opacity a at the sample position. Thus we arrive

at the familiar equation:

I(x̂x) ¼
XL

l¼0

c(xl)al

Yl�1

j¼0

(1� aj)

 !
(11:4)

11.2.5 Forward-Mapping Algorithms

Forward-mapping (or object-order) algorithms

iterate over the volume data and determine

the contribution of each reconstruction kernel

to the screen pixels. The traditional forward-

mapping algorithm is splatting, introduced by

Westover [124]. It convolves every voxel in

object space with the reconstruction kernel and

accumulates their contributions on the image

plane.

Because of the linearity of integration, substi-

tuting Equation 11.2 into Equation 11.1 yields

I(x̂x) ¼
X

k

gk

Z L

0

c(x̂x, x)rk(x̂x, x)
�

Y
j

e
�gj

R x

0
rj (x̂x,m)dm

dxÞ
(11:5)

which can be interpreted as a weighted sum of

projected reconstruction kernels.

To compute this integral numerically, splat-

ting algorithms make a couple of simplifying

assumptions. Usually, the reconstruction

kernels rk(x) have local support. The splatting

approach assumes that these local support areas

do not overlap along a ray, and that the recon-

struction kernels are ordered front to back. We

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 232

232 Scalar Field Visualization: Volume Rendering

also assume that the emission coefficient is con-

stant in the support of each reconstruction

kernel along a ray, hence we have ck(x̂x) ¼ c(x).

Again, we approximate the exponential func-

tion with the first two terms of its Taylor expan-

sion, thus e�x � 1� x. Finally, we ignore self-

occlusion. Under these assumptions, we can re-

write Equation 11.5 to

I(x) ¼
X

k

gkck(x)qk(x̂x)
Yk�1

j¼0

(1� gjqj(x̂x))

 !
(11:6)

where qk(x̂x) denotes an integrated reconstruc-

tion kernel:

qk(x̂x) ¼
Z

r

rk(x̂x, x2)dx2 (11:7)

The difference between backward and for-

ward mapping is apparent when one compares

Equations 11.3 and 11.6. In backward mapping,

the evaluation of the volume rendering integral

(Equation 11.1) is a Riemann sum along

viewing rays. In forward mapping, we assume

that the reconstruction kernels do not overlap

and can be integrated separately using Equation

11.7. The volume rendering integral Equation

11.1 is then a sum of preintegrated reconstruc-

tion kernels, also called footprints.

11.3 The Volume Rendering Pipeline

Volume rendering can be viewed as a set of

pipelined processing steps. Pipelining is an

important concept in hardware design and

for the design of efficient parallel algorithms

with local communication. A pipeline consists

of a sequence of so-called stages through which

a computation and data flow. New data is

input at the start of the pipeline while other

data is being processed throughout the pipe-

line. In this section we look in more detail at

the pipeline stages that are commonly found

in volume rendering algorithms. The order in

which these stages are arranged varies among

implementations.

11.3.1 Data Traversal

A crucial step of any volume rendering algo-

rithm is to generate addresses of resampling lo-

cations throughout the volume. The resampling

locations in object space are most likely not

positioned on voxel locations, which requires

interpolation from surrounding voxels to esti-

mate sample values at noninteger positions.

11.3.2 Interpolation

Interpolation at a resampling location involves

a convolution of neighboring voxel values with a

reconstruction filter (Equation 11.2). There is

a wealth of literature that deals with the theory

and application of appropriate reconstruc-

tion filters in computer graphics [32,130] and

volume visualization [6,76,82]. In practice, due

to the prohibitive computational cost of higher-

order filters, the most commonly used filters

for ray-casting are nearest neighbor interpolation

and linear interpolation in three dimensions,

also called tri-linear interpolation. Note that

tri-linear interpolation is a nonlinear, cubic

function in three dimensions [76]. This has con-

sequences for the order of volume classification,

as discussed below.

11.3.3 Gradient Estimation

To approximate the surface normals necessary

for shading and classification requires the com-

putation of a gradient. Given a continuous func-

tion f(x, y, z), the gradient rf is defined as the

partial derivative with respect to all three coord-

inate directions. Due to the sampled nature of

volumetric data, the computation of this con-

tinuous gradient has to be approximated using

discrete gradient filters.

Most gradient filters are straightforward

3D extensions of the corresponding 2D edge-

detection filters, such as the Laplacian, Prewitt,

or Zucker–Hummel [134] operators. The Sobel

operator [102] is one of the most widely used

gradient filters for volume rendering. In prac-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 233

Hardware-Accelerated Volume Rendering 233

tice, and due to computational considerations,

most volume rendering algorithms use the cen-

tral-difference gradient, which is computed by

local differences between voxel or sample

values in all three dimensions [41]. Detailed an-

alysis of several gradient filters for volume

rendering can be found in several references

[6,33,61,75].

11.3.4 Classification

Classification is the process of mapping physical

properties of the volume, such as different

material types, to the optical properties of the

volume rendering integral, such as emission

(color, RGB) and absorption (opacity, a). We

distinguish between pre- and post-classification,

depending on whether the voxel values of

the volume are classified before or after

interpolation.

11.3.4.1 Pre-Classification

In pre-classification, voxels may be mapped

directly to RGBa values, which are then inter-

polated. Alternatively, voxels may be augmented

by attributes that correspond to disjoint materi-

als [24], which is common for medical image

data that contains separate anatomical parts.

Typically, these attributes are computed in a

separate segmentation process using accurate

statistical methods [23,120]. Such segmentation

prevents partial voluming [43], one of the main

sources of error in direct volume rendering. In

partial voluming, single voxels ostensibly repre-

sent multiple materials, or tissue types in the

case of medical data. Segmented volumes con-

tain indices and associated probabilities for

different material types, which can then be

mapped to different colors and opacities during

pre-classification [109].

However, the individual interpolation of

color and opacity after pre-classification can

lead to image artifacts [129]. The solution is to

premultiply the color of each voxel with its

opacity before interpolation. The resulting

vector (Ra, Ga, Ba, a) is called associated color

or opacity-weighted color [11,24]. If we denote

original colors with C, we will use the nota-

tion ~CC ¼ Ca for associated colors. Witten-

brink et al. [129] present an efficient method

to interpolate associated colors. Interpol-

ation with associated colors is also necessary

for preintegration techniques (see Section

11.4.3).

11.3.4.2 Post-Classification

In post-classification, the mapping to RGBa
values is applied to a continuous, interpolated

scalar field. Post-classification is easier to

implement than pre-classification and mostly

used in the hardware-accelerated algorithms

described below. Note that post-classification

does not require one to use associated colors,

although it is still possible to do so. In that case,

the transfer functions (see below) are stored for

associated colors.

As discussed by Engel et al. [25], pre-

classification and post-classification produce

different results because classification is in gen-

eral a nonlinear operation. The nonlinearity of

tri-linear interpolation may lead to artifacts if it

is applied to pre-classified data. For post-classi-

fication, the evaluation of the nonlinear classifi-

cation function in a linearly interpolated scalar

field produces the correct result [6,82]. However,

as noted above, pre-classification remains a very

important tool in medical imaging, and it is im-

portant that the hardware-accelerated volume

rendering method be able to support both

options.

11.3.4.3 Transfer Functions

The mapping that assigns a value for optical

properties like g(x) or c(x) is called a transfer

function. The transfer function for g(x) is called

the opacity transfer function, typically a con-

tinuously varying function of the scalar value s

along the ray g(x) ¼ To(s(x)). Often it is useful

to include the gradient magnitude jrsj as an

additional parameter for classification. This

approach has been widely used in the visualiza-

tion of bone or other tissues in medical datasets

or for the isosurface visualization of electron

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 234

234 Scalar Field Visualization: Volume Rendering

density maps [58]. In the simplest case, the

opacity is optionally multiplied with the gra-

dient magnitude, which is also called gradient

magnitude modulation, to emphasize surface

boundaries or to minimize the visual impact

of noisy data [30,87] (Fig. 11.3). Kindlmann et

al. [47] and Kniss et al. [48] use higher-order

derivatives for semiautomatic transfer-function

design. Easy transfer-function design still re-

mains one of the main obstacles to make

volume rendering more accessible to nonexpert

users [88].

The emission term c(x) can also be specified

as a transfer function of the scalar s:

c(x) ¼ Tc(s(x)). The simplest emission term is

direction independent, representing the glow of

a hot gas [68]. It may have red, green, and blue

components, with their associated color transfer

functions fred (s), fgreen(s), and fblue(s). More so-

phisticated emission models include multiple

scattering and anisotropic scattering terms

[38,68]—mostly used for rendering of clouds—

and shading effects.

11.3.5 Shading

Volume shading can substantially add to the

realism and understanding of volume data

(Fig. 11.4). Most volume shading is computed

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 235

Figure 11.3 CT scan of a human foot, rendered on Volu-

mePro 1000 with gradient magnitude modulation of opacity.

Image courtesy of Yin Wu and Jan Hardenbergh, TeraRe-

con, Inc. (See also color insert.)

Figure 11.4 CT scan of a human head. (Left) Volume rendering with a simple emission model without shading. (Right)

Including Phong shading. Images rendered on VolumePro 1000; courtesy of Yin Wu and Jan Hardenbergh, TeraRecon, Inc.

(See also color insert.)

Hardware-Accelerated Volume Rendering 235

by the well-known Phong [89] or Blinn–Phong

[9] illumination models. The resulting color is a

function of the gradient, light, and view direc-

tions, as well as the ambient, diffuse, and specu-

lar shading parameters. It is typically added to

the color that results from classification.

Higher-order shading models, which include

the physical effects of light-material interaction

[17], are computationally too expensive to be

considered for volume rendering. There are

other illumination models for interactive

systems [2].

Care has to be taken for sheared and aniso-

tropic volume data. The different voxel spacing

and alignment leads to incorrect gradients be-

cause the vector components are not orthonor-

mal in object space. One remedy is to use full 3D

convolution kernels for gradient computation,

which may be prohibitive in real-time systems.

The alternative is to use separable kernels and

to apply gradient correction before classification

and lighting calculations. For example, gradi-

ents can be transformed from voxel space to

world space, including the correction trans-

formation C. Shading is then computed using

world-space versions of the eye and light vectors

[87]. However, this transformation requires

multiplication with a 3� 3 matrix per gradient

vector.

Alternatively, Wu et al. [131] describe an ele-

gant and efficient solution for gradient correc-

tion using an intermediate lighting space. The

product MC of model and correction trans-

formation is decomposed into a shear-scale

transformation L and a rotation R. Gradients

are transformed to lighting space by (L�1)T ,

similarly to how surface normals are trans-

formed in polygon graphics [27], while light

and eye vectors are transformed from world

space to lighting space by R�1. Note that this

rotation preserves dot products, which en-

ables one to precompute some shading calcula-

tions. The transformation (L�1)T is upper

triangular and requires only six multiplications

per gradient. For anisotropic but nonsheared

volumes, this reduces to three multiplications

per gradient.

11.3.6 Compositing

Compositing is the recursive evaluation of the

numerical integration in Equations 11.4 and

11.6. It was first introduced in the context of

digital image compositing, where it was formu-

lated using the ‘‘over’’ operator [90]. The com-

position of n associated color samples ~CCi ¼ Ciai

is described by:

~CC(0, n�1)¼
Xn�1

x¼0

~CCx

Yx�1

t¼0

(1�at)

¼ ~CC0þ ~CC1(1�a0)þ ~CC2(1�a0)(1�a1)þ...

þ ~CCn�1(1�a0)...(1�an�2)

¼ ~CC0 over ~CC1 over ~CC2 over... ~CCn�1

(11:8)

Because of the associativity of the ‘‘over’’

operator, the composition of—for example—

four samples ~CCi can be computed in three dif-

ferent ways [127]:

Front-to-back: ~CC ¼ (((~CC1over~CC2)over~CC3)over~CC4)

Back-to-front: ~CC ¼ (~CC1over(~CC2;over(~CC3;over~CC4)))

Binary tree: ~CC ¼ ((~CC1;over~CC2);over(~CC3;over~CC4))

The front-to-back or back-to-front formulations

are used in most volume rendering algorithms.

The last formulation as a binary tree is espe-

cially useful for parallel implementations algo-

rithms, where partial results of segments along

the ray can be computed on different processors

[42,86,128]. The final composition of the partial

results yields the same image as sequential com-

positing along the ray.

Compositing is expressed algorithmically

using recursion. The front-to-back formulation

is

t̂t0 ¼ (1� a0);ĈC0 ¼ ~CC0

ĈCi ¼ ĈCi�1 þ t̂ti�1
~CCi

t̂ti ¼ t̂ti�1(1� ai)

(11:9)

where ĈCi, t̂ti indicate the results of the current

iteration, ĈCi�1, t̂ti�1 the accumulated results of

the previous iteration, and ~CCi and ai the associ-

ated sample color and opacity values at the

current resampling location. Note that t̂t is

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 236

236 Scalar Field Visualization: Volume Rendering

the accumulated transparency. Substituting

t̂ti ¼ (1� âai) leads to the less efficient—but

more familiar—formulation with accumulated

opacities âai.

When compositing back to front, the accu-

mulated transparencies of Equation 11.9 do

not need to be maintained. However, they are

useful if the final image is composited over

a new background or for mixing volumes

and polygons (see Section 11.4.5). The recur-

sive back-to-front formulation for n sample

points is

t̂tn ¼ (1� an);ĈCn ¼ ~CCn

ĈCi ¼ ĈCi�1(1� ai)þ ~CCi

t̂ti ¼ t̂ti�1(1� ai)

(11:10)

Because the extinction coefficient measures

the volumetric light absorption per unit length,

the opacity value must be adapted to the distance

between interpolated samples. This scaling is

called opacity correction. If opacities are defined

for a distance dold , and samples are spaced by a

distance dnew, the scaling becomes [55]:

acorrected ¼ 1� (1� astored)
dold
dnew (11:11)

This can be efficiently implemented using a pre-

computed lookup table that stores acorrected as a

function of astored and dnew.

As discussed by Schulze et al. [100], associ-

ated colors have to be corrected correspond-

ingly:

~CCcorrected ¼ ~CCstored

acorrected

astored

(11:12)

Orthographic projections typically lead to

constant sample distances throughout the

volume. Maintaining constant sample distance

for perspective projections leads to spherical

shells of samples around the center of projection

(Fig. 11.2). While some approaches have used

spherical shell sampling [56] for uniform

sample spacing, it is more common to correct

opacities by evaluating Equations 11.11 and

11.12.

There are several alternatives to volumetric

compositing that have proven useful. In x-ray

or weighted-sum projections, the value of the

pixel equals the sum of the intensities. Max-

imum intensity projections (MIPs) project the

maximum intensity along the ray into a pixel.

Other options include first opaque projection and

minimum intensity projection [28].

11.4 Advanced Techniques

Given the high performance requirements of

volume rendering, it becomes clear that a

brute-force implementation requires an exces-

sive amount of processing. It is therefore not

surprising that many optimizations have been

developed.

11.4.1 Early Ray Termination

Early ray termination is a widely used method to

speed up ray-casting [3,22,59]. The accumula-

tion of new samples along a ray is terminated

as soon as their contribution to the currently

computed pixel becomes minimal. Typically,

the ray is terminated as soon as the accumulated

ray opacity reaches a certain threshold, since

any further samples along the ray would be

occluded. More general methods terminate

rays according to a probability that increases

with increasing accumulated ray opacity [3,22]

or decreases the sampling rate as the optical

distance to the viewer increases [22]. The per-

formance of early ray termination is dataset and

classification dependent.

11.4.2 Space Leaping

Empty or transparent regions of the volume

data may be skipped using precomputed data

structures. In content-based space leaping,

samples are skipped that are invisible by virtue

of opacity assignment or filtering. Typically, the

opacity transfer function is used to encode

nontransparent areas of the data into hierarch-

ical [22,59,69,106] or run-length encoded [54,93]

data structures. Inherent problems of content-

based space leaping are that its performance is

classification dependent and that changes of the

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 237

Hardware-Accelerated Volume Rendering 237

opacity transfer function lead to lengthy recom-

putation of the data structures.

In contrast, geometry-based space leaping

skips empty space depending on the position

of samples, not based on their values. Levoy

[59] uses an octree data structure to skip empty

subvolumes of the data during ray-casting.

Avila et al. [4] use convex polyhedral shapes as

bounding volumes and graphics hardware to

efficiently skip space by rendering the bounding

volume into the depth buffer. Other methods

use precomputed distance functions to indicate

the radial distance from each voxel in the data

[105,135] or fast discrete line algorithms to pro-

gress quickly through empty regions [133].

11.4.3 Preintegration

The discrete approximation of Equation 11.1

will converge to the correct results only for

high volume sampling rates, i.e., if the spacing

between samples is sufficiently small. As dis-

cussed by Engel et al. [25], the Nyquist fre-

quency for correct sampling is roughly the

product of the Nyquist frequencies of the scalar

field and the maximum of the Nyquist frequen-

cies of the two transfer functions for g(x) and

c(x). In other words, nonlinear transfer func-

tions require very high sampling rates. Artifacts

may still occur unless the transfer functions are

smooth and the volume is band-limited.

To address the problem, Max et al. [67] and

Roettger et al. [97] introduced a technique called

preintegration (see Chapter 10). The volume

rendering integral between two samples is a func-

tion of their interpolated values and the distance

between the samples. For each combination of

scalar values, the integration of the opacity or

color transfer function is precomputed and

stored in a 2D lookup table (for constant sam-

pling distance). The computation of the integral

can be accelerated by graphics hardware [35,96].

The value of the preintegrated opacity or color

values is looked up during post-classification.

Meissner et al. [73] also apply preintegration to

the ambient, diffuse, and specular lighting par-

ameters of the Phong shading model.

Despite preintegration, artifacts may still

occur from high frequencies that are present in

the scalar field [50]. Consequently, the distance

between samples needs to be decreased to over-

sample the volume. Roettger et al. [98] suggest

that four-times over-sampling yields the best

quality-performance tradeoff in practice.

11.4.4 Volume Clipping

Volume clipping is an important operation that

helps the understanding of 3D volumetric data.

Clippinghelps touncover importantdetails in the

data by cutting away selected parts of the volume

based on the position of clip geometry. The sim-

plest clip geometries are one or more clipping

planes that reveal slices and cross-sections of the

volume data. Cropping is an easy way of specify-

ing a rectilinear region of interest with multiple

clipping planes parallel to the volume faces [87].

During cropping, cross-sections of the volume

maybe combinedby taking intersections, unions,

and inverses to define elaborate regions of visibil-

ity of the volume dataset. In its most general

form, volume clipping uses arbitrary clip geom-

etry that may be defined by a polygon mesh or by

an additional volume (Fig. 11.9). Weiskopf et al.

[119] provide a good overview of volume clip-

ping methods.

11.4.5 Mixing Polygons and Volumes

The incorporation of polygonally defined

objects into a volumetric scene is often import-

ant, especially in medical applications such

as virtual endoscopy [29]. Volume data—such as

CT or MR images—can be directly combined

with synthetic objects, such as surgical instru-

ments, probes, catheters, prostheses, and land-

marks displayed as glyphs. In some instances,

preoperatively derived surface models for cer-

tain anatomical structures such as skin can be

more efficiently stored and better visualized as

polygon meshes. A straightforward way of

mixing volume and polygons is to convert the

polygonal models into sampled volumes and

then render them using a volume rendering

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 238

238 Scalar Field Visualization: Volume Rendering

method [46]. Another way is to simultaneously

cast rays through both the polygonal and

volume data, at the same sample intervals,

and then composite the colors and opacities in

depth sort order [60]. Bhalerao at al. [8] provide

an overview of recent methods and propose a

hardware-accelerated method for static views.

All of the techniques described in this chapter

are amenable to mixing volumes with polygons,

although some with less efficiency than others.

We will now discuss several hardware-accel-

erated volume rendering algorithms for rectilin-

ear grids: ray-casting, texture slicing, shear-

warp and shear-image rendering, and splatting.

Our discussion will focus on how these methods

implement each stage of the volume rendering

pipeline (Section 11.3) followed by an overview

of the available extensions (Section 11.4).

Throughout the chapter, we will rarely quote

performance numbers, unless we are confident

they will not change over time. For an add-

itional comparison between most of these algo-

rithms, including image-quality evaluations, see

Meissner et al. [72].

11.5 Ray-Casting

Ray-casting is the most commonly used image-

order technique. It simulates optical projections

of light rays through the dataset, yielding a

simple and visually accurate mechanism for

volume rendering [58].

Data Traversal: Rays are cast from the view-

point (also called center of projection) through

screen pixels into the volume. The ray directions

can be computed from the model and viewing

transformations using standard computer-

graphics techniques [27]. Empty space between

the viewing plane and the volume can be skipped

by rendering a polygonal bounding box of the

volume into a depth buffer [4]. The ray starting

points and their normalized directions are then

used to generate evenly spaced resampling loca-

tions along each ray (Fig. 11.5).

Interpolation: At each resampling location,

the data is interpolated, typically by tri-linear

interpolation in cells of 2� 2� 2 voxels. Note

that tri-linear interpolation can be efficiently

evaluated using caching of cell data among

neighboring rays [87].

Gradient Estimation: Gradient vectors are

usually precomputed at voxel locations and

stored with the volume data. Alternatively,

they are computed during rendering using the

central difference gradient filter. The gradient

vectors of a cell are interpolated to the nearest

resampling locations. Optionally, the gradient

magnitude is computed for gradient magnitude

modulation during post-classification.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 239

Figure 11.5 Ray-casting sample generation.

Hardware-Accelerated Volume Rendering 239

Classification: If scalar values were interpol-

ated, color and opacity are assigned to each

sample using a post-classification lookup. Op-

tionally, the sample opacity is modulated by the

gradient magnitude. If the data has been pre-

classified, no further classification of the inter-

polated associated colors is necessary.

Shading: Using the gradient as the surface-

normal approximation and the classified color

as the emitted (or primary) color, a local

shading model is applied to each sample. For

example, the Phong illumination model for dir-

ectional lights can be efficiently implemented

using pre-computation and table lookup in so-

called reflectance maps [114]. The reflectance

map implementation supports an unlimited

number of directional light sources, but no pos-

itional lights.

Compositing: All samples along the ray are

composited into pixel values—typically in

front-to-back order—to produce the final

image. For higher image quality, multiple rays

per pixel are cast and combined using high-

quality image filters [27].

Ray-casting offers high image quality and is

conceptually easy to implement. Unfortunately,

these advantages come at the price of high com-

putational requirements. The volume data is not

accessed in storage order because of the arbi-

trary traversal direction of the viewing rays.

This leads to poor spatial locality of data refer-

ences, especially for sample and gradient inter-

polation.

There has been a lot of research on special-

purpose hardware for volume ray-casting.

There are general surveys on early work in this

field [40,91]. The Cube project at SUNY Stony

Brook resulted in VolumePro 500 (see Section

11.7.1), the first commercial real-time volume

rendering engine, and various proposals for im-

provements [20,51,52] The VIZARD project

[49,70] at the University of Tübingen led to the

successful implementation of the VIZARD II

hardware [74]. VIZARD II uses reconfigurable

field-programmable gate arrays (FPGAs) for

fast design changes and low-cost development.

The system can be configured for high-quality

perspective ray-casting of volume data or for

medical image reconstruction.

Roettger et al. [98] presented the first imple-

mentation of volume ray-casting on off-the-shelf

graphics hardware (Fig. 11.6). All rays are pro-

cessed in parallel in front-to-back order. The

bounding box of the volume is rendered to

provide starting locations for all rays. The par-

ameters for ray traversal are stored in floating-

point textures, which are subsequently updated.

The optimal step size for each ray is precom-

puted and stored in a so-called importance

volume. The step size depends on the pre-

integrated emission and opacity value as well

as second-order gradients. This technique,

called adaptive preintegration, is a form of

space leaping (see Section 11.4.2). Rays are ter-

minated early or when they leave the volume by

setting the z-buffer for the corresponding pixels

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 240

Figure 11.6 Hardware-accelerated ray-casting of a CT scan

of a bonsai (1283) with adaptive preintegration. Image cour-

tesy of Stefan Roettger, University of Stuttgart, Germany.

(See also color insert.)

240 Scalar Field Visualization: Volume Rendering

such that further computation is avoided.

Additional rendering passes are necessary to

determine if all rays have terminated.

The number of rendering passes for this ap-

proach is 2n� 1, where n is the maximum

number of samples along a ray. Consequently,

the performance is not interactive, but compar-

able to a software ray caster without preintegra-

tion. However, the image quality is higher

than comparable texture slicing methods

(see Section 11.6), and performance increases

can be expected with future hardware improve-

ments.

11.6 Texture Slicing

Texture slicing on programmable graphics

processing units (GPUs) [62] is the predom-

inant hardware-accelerated volume rendering

method. Texture-based volume rendering ap-

proaches can be implemented using 3D or 2D

texture-mapping functionality.

11.6.1 3D Texture Slicing

3D texture methods traverse the volume using

image-aligned texture slices [1,13,19,34,126]

(Fig. 11.7).

Data Traversal: The volume is stored in 3D

texture memory and sampled during rendering

by polygons parallel to the image plane.

The view-aligned polygons are generated on

the CPU and clipped against the volume

bounding box. The clipping operation, which

has to be performed for each frame, requires

an efficient algorithm [95]. The texture coordin-

ates of each polygon vertex with respect to the

3D texture parameters in the range [0,1] are

computed.

Interpolation: The polygons with associated

3D texture coordinates are projected by the

graphics hardware using the standard trans-

formations of the polygon graphics pipeline

(see Section 11.2.2). The volume data is auto-

matically resampled by the 3D texture hardware

during polygon projection using tri-linear inter-

polation. Note that the sampling rate along

viewing rays for orthographic projections is

constant, whereas the sampling rate varies per

ray for perspective projections [95]. This may

lead to some artifacts, depending on the transfer

functions and the data.

Gradient Estimation: Current GPUs do not

support the computation of 3D gradients in

hardware. Gradients are precomputed, scaled

and biased into the range [0,1], and stored in

the 3D texture. Typically, the RGB channel is

used for the volume gradients, while the scalar

values are stored in the alpha channel [121].

Since gradients are projected and interpolated

the same way as scalar values, subsequent

shading operations are computed per pixel in

screen space.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 241

Figure 11.7 Image-aligned 3D texture slicing.

Hardware-Accelerated Volume Rendering 241

Gradients can also be stored using an integer

encoding of the quantized gradient vector

[26,30,31]. However, a nonlinear shading

function is very sensitive to quantization

errors of the gradients. Another alternative is

to use a shading approximation without gradi-

ents by pairwise subtracting coplanar texture

slices, one shifted in direction of the light

source [84].

Classification: Most texture-mapping meth-

ods use post-classification (Fig. 11.8) by storing

a 1D or higher transfer function as a texture

[71]. The interpolated scalar value is stored as

a texture, which is then used as a lookup coord-

inate into the transfer-function texture. This is

also called dependent texture lookup because the

texture coordinates for the second texture are

obtained from the first texture. If pre-classifica-

tion is used, a 3D texture with associated colors

is stored in addition to a 3D gradient texture.

Alternatively, paletted textures can be used,

where the texture format is defined by an index

to a color palette that maps scalar values to

colors [7]. Opacity correction is applied based

on the distance between texture slices. It can be

implemented using a dependent lookup into a

1D floating point texture.

Shading: Before the introduction of program-

mable graphics hardware, shading of volumes

stored as 3D textures was either ignored or

performed in a preprocessing step [30]. How-

ever, preshaded volumes need to be recomputed

whenever the light position and viewing direc-

tion change. A more fundamental problem is

that classification and shading are in general

nonlinear operations. Interpolation of the pre-

computed values degrades the image quality

when compared to the evaluation of the non-

linear functions in a linearly interpolated scalar

field [6,82].

Dachille et al. [21] use hardware for interpol-

ation and compositing and compute shading on

the CPU during volume rendering. Westermann

and Ertl [121] introduced a hardware-accelera-

ted ambient and diffuse shading technique for

isosurface rendering. Meissner et al. [71] first

expanded this technique for semitransparent

volume data and then proposed an efficient

technique to compute the full Phong illumin-

ation model using cube maps [73]. They also

point out the need for normalized gradients

in shading computations and propose an effi-

cient solution for preintegrated classification.

Engel et al. [25] compute diffuse and specular

lighting for isosurface rendering. They observe

that memory requirements can be reduced for

static lighting by storing the dot products of

light and gradient vectors per voxel in lumi-

nance-alpha textures. Behrens et al. [5] add

shadows to the lighting model. Their multi-

pass method works with 2D and 3D texture-

mapping hardware.

Compositing: The resampled RGBa textures

are accumulated into the frame buffer using

back-to-front compositing [90]. If front-to-back

compositing is used, accumulated opacities need

to be stored for each pixel in the image.

Engel et al. [25] apply preintegration of opa-

city and color transfer functions to texture sli-

cing. Theirmethod produces high-quality images

for semitransparent and isosurface volume

rendering. The preintegration takes the scalar

values at the entry and exit points and the dis-

tance between the slices into account.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 242

Figure 11.8 CT Angiography of a human brain

(5122 � 128). Rendered on an ATI Radeon 9700 with 3D

texture slicing and postclassification using dependent tex-

tures. Image courtesy of Christof Rezk-Salama, Siemens,

Germany. (See also color insert.)

242 Scalar Field Visualization: Volume Rendering

Weiskopf et al. [118,119] propose several

techniques for volume clipping in 2D and 3D

texture-slicing methods. Arbitrary clip geom-

etry can be defined by polygons, voxelized

geometry, or the isosurface of another volume.

They also present a high-quality shading tech-

nique for clip boundaries (Fig. 11.9). Roettger

et al. [98] extend some of their methods to work

with preintegrated classification.

Kreeger and Kaufman [53] developed a tex-

ture-slicing method that renders opaque and

translucent polygons embedded within volumes.

Thin slabs of translucent polygons are rendered

between volume slices and composited in the

correct order.

A significant amount of texture memory is

required to store the volume gradients. Typic-

ally, the storage increases by a factor of two to

three. Visualization of very large volume data is

also an issue for the limited memory of today’s

GPUs. Meissner et al. [73] use lossy texture com-

pression to compress the volume with a corres-

ponding loss in image quality. LaMar et al. [56]

propose a multiresolution framework based on

an octree, where each node is rendered using 3D

texture slicing. Weiler et al. [115] improve this

algorithm to prevent discontinuity artifacts be-

tween different multiresolution levels. Guthe et

al. [36] use a hierarchical wavelet decomposition,

on-the-fly decompression, and 3D texture

slicing. Their implementation is able to render

very large datasets at interactive rates on PCs,

although with a loss in image quality.

11.6.2 2D Texture Methods

Historically, 3D texture-mapping was not avail-

able on PC graphics cards, and 2D texture-

mapping methods had to be used instead

[13,94]. For example, Brady et al. [12] present

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 243

Figure 11.9 Volume clipping applied to (left) a CT scan of an engine (2562 � 110) and (right) an MRI scan of a human head

(2563). The cutting surface of the engine is enhanced by combining surface-based and volumetric shading. Image courtesy of

Daniel Weiskopf, University of Stuttgart, Germany. (See also color insert.)

Hardware-Accelerated Volume Rendering 243

a technique for interactive volume navigation

that uses ray-casting accelerated with 2D

texture mapping. Despite the availability of

3D texture mapping on all modern GPUs, 2D

texture slicing is still used for volume rendering

today, and it outperforms 3D texture slicing for

large volumes.

2D texture methods traverse the volume using

object-aligned texture slices [13,19,34] (Fig.

11.10).

Data Traversal: Similar to 3D texture

methods, each texture slice is defined by a poly-

gon. In 2D texture slicing the polygons are

always parallel to the face of the volume data

that is most parallel to the viewing plane, which

is also called the base plane. It can be easily

determined by computing the minimum angle

between viewing direction and face normals

[95]. An arbitrary choice can be made in case

of a tie at 458. Each polygon vertex is assigned

the texture coordinates of the corresponding

2D volume slice in texture memory. In contrast

to 3D texture methods, three copies of the

volume have to be stored in texture memory,

one for each slicing direction.

Interpolation: The texture mapped slices are

interpolated by the graphics hardware during

projection of the polygon to screen space.

Object-aligned 2D texture slicing requires only

bi-linear instead of tri-linear interpolation,

which leads to higher performance due to the

coherent memory accesses.

The lack of interpolation between slices may

lead to aliasing artifacts if the scalar field or

transfer functions contain high frequencies

[55]. Rezk-Salama et al. [94] improve the image

quality by interpolating additional slices during

rendering using multiple texture units in one

pass (Fig. 11.11). The tri-linear interpolation

of in-between slices is decomposed into two bi-

linear interpolations (performed by 2D texture

units in the graphics hardware) and one linear

interpolation between slices (performed in the

pixel shader of the GPU).

Gradient Estimation and Classification: Gra-

dients and classification are computed similar as

in 3D texture slicing. Precomputed gradients are

stored in the RGB channel and bi-linearly inter-

polated to screen space during polygon raster-

ization. Classification can take place before or

after interpolation.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 244

Figure 11.10 Object-aligned 2D texture slicing.

Figure 11.11 CT scan of a carp (5123) rendered on an

ATl Radeon 9700 with 2D multitextures and post-classifica-

tion. Image courtesy of Christof Rezk-Salama, Siemens,

Germany. (See also color insert.)

244 Scalar Field Visualization: Volume Rendering

For opacity correction, Rezk-Salama et al.

[94] show that scaling the opacities linearly

according to the distance between samples is a

visually adequate approximation. They also de-

scribe an algorithm for fast shaded isosurface

display using multistage rasterization (Fig.

11.12). Engel et al. [25] improve the quality of

2D texture methods with preintegrated classifi-

cation.

Shading and Compositing: The same methods

are used for shading and compositing as in 3D

texture slicing. For high image quality, the gra-

dients need to be normalized by the fragment

shader after projection [73]. The texture-

mapped slices are composited onto the image

plane using the texture blending modes of the

graphics hardware.

When the viewing direction suddenly changes

from one slicing direction to another, the sam-

pling through the volume changes as well. This

may lead to popping artifacts, which are sudden

changes in pixel intensity with changes in slicing

direction (Fig. 11.13). The problem is worse for

anisotropic volume data. Note that 3D texture-

slicing methods avoid popping artifacts by grad-

ually adjusting the slice directions with the

viewing angle. Rezk-Salama et al. [94] virtually

eliminate popping artifacts in 2D texture slicing

by interpolating and shifting in-between slices

such that the sample spacing along viewing rays

is practically constant independent of the

viewing direction.

11.7 Shear-Warp Rendering

Shear-warp rendering algorithms resample the

volume data from object space to the image co-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 245

Figure 11.12 CT angiography of a human brain

(5122 � 128). Transparent rendering of a nonpolygonal

shaded isosurface with 2D multitextures on an NVIDIA

GeForce-4Ti. Image courtesy of Christof Rezk-Salama, Sie-

mens, Germany. (See also color insert.)

Figure 11.13 Popping artifacts in 2D texture slicing. The samples along rays may not be aligned after a small change in viewing

angle leads to a change of slicing direction. The superimposition on the right shows that the location of resampling locations

abruptly changes,which leads to sudden changes in pixel intensity. Figure suggested byChristofRezk-Salama, Siemens,Germany.

Hardware-Accelerated Volume Rendering 245

ordinate space so that the resampled voxels line

up on the viewing axis in image space [24,110]

(Fig. 11.14). The interpolated samples are then

composited onto the viewing plane along axis-

aligned viewing rays. The 3D affine transform-

ation between object space and image space can

be decomposed into three sequential 1D shear

operations [37]. Alternatively, the viewing trans-

formation can be decomposed into a shear and a

2D image warping operation [54,93]. Perspective

projections require an additional transform-

ation, typically in the form of a scale operation

of the sheared data slices [54,112]. Shear-warp

algorithms are very efficient due to the combin-

ation of object-order volume traversal and scan

line–order resampling. More recently, they have

been extended for improved image quality [108]

and preintegration [100].

11.7.1 VolumePro 500

The VolumePro 500 system [87] is based on the

Cube-4 architecture developed at SUNY Stony

Brook [85]. Mitsubishi Electric licensed the

technology, improved it [83], and started pro-

duction shipments of the VolumePro 500 in

1999 [87]. The technology was subsequently ac-

quired by TeraRecon Inc., which released the

VolumePro 1000 system in 2002 [131].

Data Traversal: VolumePro 500 uses the

standard shear-warp factorization [54,93] for

orthographic projections. Instead of casting

rays from image space, rays are sent into the

dataset from pixels on the base plane. The ray-

traversal mechanism ensures that ray samples

are aligned on slices parallel to the base plane

[132]. A key feature of the VolumePro architec-

ture is the special memory address arithmetic

called 3D skewing [45] and a highly optimized

memory interface [83]. This enables one to effi-

ciently read any blocks and axis-aligned voxel

slices while storing only one copy of the volume

data.

Interpolation: To prevent undersampling,

VolumePro 500 uses tri-linear interpolation be-

tween volume slices. On-chip slice buffers and

the axis-aligned processing order allow max-

imum memory-coherent accesses. The viewing

rays can start at sub-pixel locations, which pre-

vents popping artifacts during base-plane

switches and allows over-sampling of the

volume in the x, y, or z direction.

Gradient Estimation: VolumePro 500 has

hardware for on-the-fly central-difference gradi-

ent estimation at each voxel. The gradients

are then tri-linearly interpolated to resampling

locations. The hardware includes gradient cor-

rection and gradient magnitude computation.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 246

Project

Warp

Shear

Project

Warp

Shear & Scale

(a) (b)

Figure 11.14 Shear-warp factorization. (a) Parallel projections; (b) perspective projections.

246 Scalar Field Visualization: Volume Rendering

The gradient magnitude is mapped by a lookup

table to a user-specified piece-wise linear func-

tion. This function can be used to highlight

particular gradient magnitude values or to at-

tenuate the modulation effect. The lookup table

is also used to automatically correct the gradi-

ent magnitudes in anisotropic volumes.

Classification: VolumePro 500 implements

post-classification using a 4k� 36-bit classifica-

tion lookup table that outputs 24-bit color and

12-bit a values. That precision is necessary for

high accuracy during rendering of low-opacity

volumes. Because of the uniform sample

spacing, opacity correction can be applied in

soft-ware for each frame. The opacity and

color lookup tables can be dynamically loaded

using double buffering in hardware.

Shading: The hardware implements Phong

shading at each sample point at the rate of

one illuminated sample per clock cycle. The

diffuse and specular illumination are looked

up in reflectance maps, respectively [111,114].

Each reflectance map is a precomputed table

that stores the amount of illumination due

to the sum of all of the light sources of the

scene. Reflectance maps need to be reloaded

when the object and light positions change

with respect to each other, or to correct

the eye vector for anisotropic volumes (Fig.

11.15).

Compositing: The ray samples are accumu-

lated into base-plane pixels using front-to-back

alpha blending MIPs. The warping and display

of the final image is performed by an off-the-

shelf 3D graphics card using 2D texture map-

ping.

VolumePro 500 renders 2563 or smaller

volumes at 30 frames. Due to the brute-force

processing, the performance is independent of

the classification or data. In order to render a

larger volume, the driver software first parti-

tions the volume into smaller blocks. Each

block is then rendered independently, and their

resulting images are automatically combined to

yield the final image. VolumePro 500 also pro-

vides various volume clipping and cropping fea-

tures to visualize slices, cross-sections, or other

regions of interest in the volume.

11.7.2 VolumePro 1000

The VolumePro 1000 system [131] uses a novel

shear-image order ray-casting approach (Fig.

11.16).

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 247

Figure 11.15 CT scan of a human head (2563) rendered on VolumePro 500 with Phong shading and different transfer functions.

(See also color insert.)

Hardware-Accelerated Volume Rendering 247

Data Traversal: Shear-image ray-casting

casts rays directly through the centers of pixels

but keeps the slices parallel to the base plane,

similar to 2D texture-mapping methods. How-

ever, the 3D viewing transformation is explicitly

decomposed into two matrices: a transformation

from voxel coordinates to an intermediate coord-

inate system called sample space, and a trans-

formation to adjust the depth values of sample

points to reflect their distance from the image

plane. A detailed derivation of these transform-

ations is given by Wu et al. [131].

Sample space is coherent with image and voxel

space, and the final image does not have to be

warped because samples are aligned along

viewing rays from image-plane pixels. This

leads to higher image quality than in the trad-

itional shear-warp factorization (Fig. 11.17).

Interpolation and Gradient Estimation: Simi-

lar to VolumePro 500, the resampling of the

volume proceeds in object space for high

memory coherence. VolumePro 1000 performs

tri-linear interpolation of the volume data and

computes gradient vectors in hardware. Similar

to VolumePro 500 and the 2D texture slicing

method of Rezk-Salama et al. [94], additional

interpolated slices can be generated between

original voxel slices. Since slices can be shifted

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 248

Figure 11.16 Shear-image order ray-casting. Grey samples are interpolated between original volume slices.

Figure 11.17 Comparison of (left) shear-warp (rendered by VolumePro 500) and (right) shear-image order (rendered by

VolumePro 1000) ray-casting. Images courtesy of Yin Wu and Jan Hardenbergh, TeraRecon, Inc. (See also color insert.)

248 Scalar Field Visualization: Volume Rendering

with sub-pixel accuracy, this method avoids

popping artifacts and keeps the ray spacing

and sample spacing constant; it also does this

for anisotropic and sheared volumes.

Classification: VolumePro 1000 uses a set

of cascaded lookup tables that can be combined

by a hierarchy of arithmetic–logic units [28].

Voxels can have up to four fields, and each

field is associated with its own lookup table.

The classification, and interpolation stage

are cross-connected to allow the application

to choose pre-or post-classification (Fig.

11.18). The hardware also supports opacity cor-

rection and gradient magnitude modulation of

opacity.

Shading: VolumePro 1000 uses Phong

shading hardware similar to that in VolumePro

500. Great care is taken to ensure correct gradi-

ent and Phong shading calculations for sheared

and anisotropic data using lighting space [131]

(see Section 11.3.5).

Compositing: In addition to the blending

modes of VolumePro 500, the hardware also

supports early ray termination for increased

performance. VolumePro 1000 also implements

geometry-based space leaping, volume clipping

and cropping, and perspective projections using

a variation of the shear-warp transformation.

VolumePro 1000 is capable of rendering 109

samples per second.

For embedding of polygons into the volume

data, the depth of volume samples can be com-

pared with a polygon depth buffer (Fig. 11.19).

The implementation uses multiple rendering

passes: first, the polygons are rendered into

the depth buffer. Next, rays are cast into the

volume starting at the image plane and ending

at the captured depth buffer. The color buffers

of the polygon and volume rendering are

then blended. In the second pass, rays are ini-

tialized with the result of the blending pass.

They start at the depth buffer and end at the

background to render the portion of the volume

behind the polygon. The result is an image of

the volume with embedded polygons. Volume-

Pro 1000 also supports embedding of multiple

translucent polygons using dual depth buffers

[131].

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 249

Figure 11.18 CT scans of a human torso, pre-classified with different transfer functions per material type. Images courtesy of

Yin Wu and Jan Hardenbergh, TeraRecon, Inc. (See also color insert.)

Hardware-Accelerated Volume Rendering 249

11.8 Splatting

Splatting, introduced by Westover [124], con-

volves every voxel in object space with a 3D

reconstruction filter and accumulates the voxels’

contribution on the image plane (see Chapter 8

and Fig. 11.20).

Data Traversal: Data traversal in splatting

depends on the compositing method (see

below). In its simplest form, voxels are traversed

in object space and projected onto the screen

(Fig. 11.20a). However, this leads to the wrong

compositing order of the projected splats. Typ-

ically, traversal proceeds through the volume

slice by slice, in approximate back-to-front

order, similar to 2D texture slicing. For more

advanced splatting methods, such as image-

aligned sheet buffers, the traversal order is simi-

lar to 3D texture slicing (Fig. 11.20b).

Interpolation: Splatting is attractive because

of its efficiency, which it derives from the use

of preintegrated reconstruction kernels. For

simple splatting, the 3D kernel can be preinte-

grated into a generic 2D footprint that is stored

as a 2D texture.

Splatting also facilitates the use of higher-

quality kernels with a larger extent than tri-

linear kernels. 3D Gaussian reconstruction

kernels are preferable because they are closed

under convolution and integration [138]. That

is, the convolution of two Gaussians is another

Gaussian, and the integration of a 3D Gaussian

is a 2D Gaussian.

Additional care has to be taken if the 3D

reconstruction kernels are not radially symmet-

ric, as is the case for sheared, anisotropic, curvi-

linear, or irregular grids. In addition, for an

arbitrary position in 3D, the contributions

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 250

Figure 11.19 Embedding a polygon prosthesis into a CT scan of a human hip. Images courtesy of Yin Wu and Jan Hard-

enbergh, TeraRecon, Inc. (See also color insert.)

250 Scalar Field Visualization: Volume Rendering

from all kernels must sum up to one in the

image. Zwicker et al. [137] discuss these issues

in more detail and present a solution for Gauss-

ian reconstruction kernels.

Gradient Estimation, Classification, and

Shading: Typically, splatting uses pre-classifica-

tion and preshading of the volume data. Each

voxel stores the resulting RGBa values, which

are then multiplied with the footprint before

projection. Mueller et al. [80] propose a method

for post-classification and shading in screen

space. The gradients are either projected to

screen space using so-called gradient splats, or

they are computed in screen space using central

differencing.

Compositing: Compositing is more compli-

cated for splatting than for other volume

rendering methods. While the principle is

easy, it is more difficult to achieve high image

quality.

The easiest compositing approach is called

splat-every-sample (Fig. 11.20a). The 2D foot-

print of the kernel is multiplied by the scalar

voxel value, projected to screen space, and

blended onto the image plane using graphics

hardware [18]. However, this leads to visible

artifacts, such as color bleeding from back-

ground objects, because of incorrect visibility

determination [122].

To solve this problem, Westover [123] intro-

duces sheet buffer splatting. 2D footprints are

added (not composited) onto sheet buffers that

are parallel to the base plane. Traversal pro-

ceeds in back-to-front order, and subsequent

sheet buffers are composited onto the image

plane. The approach solves color bleeding, but

similar to 2D texture slicing, it introduces pop-

ping artifacts when the slice direction suddenly

changes.

Mueller and Crawfis [77] proposed to use

image-aligned sheet buffers (Fig. 11.20b). A

slicing slab parallel to the image plane traverses

the volume. The contributions of 3D recon-

struction kernels between slab planes are

added to the slab buffer, and the result is

composited onto the image plane. This tech-

nique is similar to 3D texture slicing (see Section

11.6) and resolves the popping artifacts. But

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 251

Figure 11.20 Splatting algorithm. (Left) In the splat-every-sample method, 3D reconstruction kernels are integrated into 2D

footprints, projected, and composited onto the image plane. (Right) Image-aligned sheet buffers slice through the kernels. The

contributions of 3D reconstruction kernelswithin a slab are added. The result of each slab is then composited onto the image plane.

Hardware-Accelerated Volume Rendering 251

intersecting the slicing slab with the 3D recon-

struction kernels has a high computational cost.

Mueller and Yagel [78] combine splatting

with ray-casting techniques to accelerate render-

ing with perspective projection. Laur and Han-

rahan [57] describe a hierarchical splatting

algorithm enabling progressive refinement

during rendering. Furthermore, Lippert [63]

introduced a splatting algorithm that directly

uses a wavelet representation of the volume

data. For more extensions, see Chapter 8.

Westover’s original framework does not deal

with sampling-rate changes due to perspective

projections. Aliasing artifacts may occur in

areas of the volume where the sampling rate of

diverging rays falls below the volume-grid sam-

pling rate. The aliasing problem in volume

splatting has first been addressed by Swan et

al. [107] and Mueller et al. [79]. They use a

distance-dependent stretch of the footprints to

make them act as low-pass filters.

Zwicker et al. [137] develop EWA splatting

along lines similar to the work of Heckbert [39],

who introduced EWA filtering to avoid aliasing

of surface textures. They extended his frame-

work to represent and render texture functions

on irregularly point-sampled surfaces [136] and

to volume splatting [138]. EWA splatting results

in a single 2D Gaussian footprint in screen

space that integrates an elliptical 3D Gaussian

reconstruction kernel and a 2D Gaussian low-

pass filter. This screen-space footprint is analyt-

ically defined and can efficiently be evaluated.

By flattening the 3D Gaussian kernel along the

volume gradient, EWA volume splats reduce to

surface splats that are suitable for high-quality

isosurface rendering.

Ren et al. [92] derive an object-space formu-

lation of the EWA surface splats and describe

its efficient implementation on graphics hard-

ware. For each point in object space, quadrilat-

erals that are texture-mapped with a Gaussian

texture are deformed to result in the correct

screen-space EWA splat after projection.

A similar idea can be applied to EWA volume

splatting, as shown in Fig. 11.21. The EWA

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 252

Figure 11.21 CT scan of a human head (2562 � 129) and of an engine (2562 � 128) rendered with hardware-accelerated EWA

volume splatting on a GeForce FX Ultra 5900. Image courtesy of Wei Chen, Zhejian University, China, and Liu Ren, Carnegie

Mellon University. (See also color insert.)

252 Scalar Field Visualization: Volume Rendering

volume splat is evaluated in screen space by

deforming a texture-mapped screen-space quad-

rilateral. The projection of samples and the de-

formation of the screen-space quads can be

performed efficiently on modern GPUs [15].

11.9 Conclusions

Without a doubt, the availability of program-

mable graphics hardware on PCs has changed

the field of hardware-accelerated volume

rendering. It is has led to the great popularity

of texture-slicing methods. More recently, it has

become feasible to implement ray-casting on the

GPU, including space leaping and early ray

termination. The rapid progress of GPU hard-

ware will address some remaining performance

and image-quality issues soon. The recent intro-

duction of procedural shading languages [66]

will increase productivity and portability of

code across hardware from different vendors.

A more serious issue is the continuing growth

of volume data compared to the limited memory

on the GPU and its low download–upload band-

width. The availability of increasingly powerful

computers and high-resolution scanners results

in highly accurate and detailed data. For

example, CT scanners now capture thousands

of images with 512� 512 resolution, supercom-

puters are producing terabytes of simulation

data, and seismic scans for the oil and gas indus-

try contain gigabytes or terabytes of data [113].

All of the GPU-accelerated algorithms presented

in this chapter, such as texture slicing, multiply

these memory requirements many times by stor-

ing gradients and other auxiliary volumes. Inter-

esting directions to solve these problems are

multiresolution techniques [36,56], compres-

sion-domain volume rendering [16], and image-

based volume rendering (IBVR) [14,38,81].

On the high end, VolumePro remains the only

commercially available solution. In its current

incarnation it can store up to 1 GB of volume

data on board; that memory size will undoubt-

edly increase with new releases. The business

challenge is to make this hardware widely avail-

able in dedicated, high-end visualization

systems, such as PACS or geophysical worksta-

tions, and 3D ultrasound systems. This chal-

lenge will increase with the continuing pressure

from cheap, ever-stronger GPUs.

As hardware-accelerated techniques for recti-

linear volumes mature, researchers focus their

attention on the interactive or real-time render-

ing of unstructured volume data [35,116,117],

time-varying data [65], and nontraditional, illus-

trative volume rendering [64]. If the rapid pace

of innovation continues, the chapter on hard-

ware-accelerated volume rendering will have to

be expanded in the very near future.

Acknowledgments

I would like to thank the many people who pro-

vided images for this chapter, namely (in alpha-

betical order) Wei Chen, Tom Ertl, Jan

Hardenbergh, Liu Ren, Christof Rezk-Salama,

Stefan Roettger, Manfred Weiler, Daniel Weis-

kopf, and Yin Wu. A big thank you goes to

Matthias Zwicker and Christof Rezk-Salama

for stimulating and enlightening discussions.

I also would like to thank the editors—Chuck

Hansen and Chris Johnson—and Piper West for

theopportunity to contribute to this bookand for

their tremendous patience. Finally, I would like

to thank Lilly Charlotte Pfister for coming into

the world—I could not have wished for a more

beautiful excuse to procrastinate this project.

References

1. K. Akeley. RealityEngine graphics. In Computer
Graphics, Proceedings of SIGGRAPH ’93, pages
109–116, 1993.

2. T. Akenine-Möller and E. Haines. Real-Time
Rendering, 2nd ed. A. K. Peters Ltd., 2002.

3. J. Arvo and D. Kirk. Particle transport and
image synthesis. In Computer Graphics, Proceed-
ings of SIGGRAPH ’90, pages 63–66, 1990.

4. R. Avila, L. Sobierajski, and A. Kaufman. To-
wards a comprehensive volume visualization
system. In Proceedings of Visualization ’92, pages
13–20, 1992.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 253

Hardware-Accelerated Volume Rendering 253

5. U. Behrens and R. Ratering. Adding shadows
to a texture-based volume renderer. In IEEE
Symposium on Volume Visualization, ACM
Press, pages 39–46, 1998.

6. M. Bentum. Interactive Visualization of Volume
Data. PhD thesis, University of Twente, En-
schede, The Netherlands, 1995.

7. C. Berger, M. Hadwiger, and H. Hauser. A
flexible framework for hardware-accelerated
high-quality volume rendering. Tech. Rep. TR
VRVIS 2003 001, Austria, 2003.

8. A. Bhalerao, H. Pfister, M. Halle, and R. Kiki-
nis. Fast re-rendering of volume and surface
graphics by depth, color, and opacity buffering.
Journal of Medical Image Analysis 4, pages 235–
251, 2000.

9. J. Blinn. Models of light reflection for computer
synthesized pictures. Computer Graphics 11,
Annual Conference Series, pages 192–198,
1977.

10. J. Blinn. Light reflection functions for simula-
tion of clouds and dusty surfaces. In Computer
Graphics, 16:21–29, 1982.

11. J. Blinn. Compositing: theory. Computer
Graphics & Applications 14(5):83–87, 1994.

12. M. Brady, K. Jung, H. T. Nguyen, and
T. P. Nguyen. Interactive volume navigation.
IEEE Transactions on Visualization and Com-
puter Graphics, 4(3):243–257, 1998.

13. B. Cabral, N. Cam, and J. Foran. Accelerated
volume rendering and tomographic reconstruc-
tion using texture mapping hardware. In 1994
Workshop on Volume Visualization, pages 91–
98, 1994.

14. B. Chen, A. Kaufman, and Q. Tang. Image-
based rendering of surfaces from volume
data. In Volume Graphics 2001, pages 279–295,
2001.

15. W. Chen, L. Ren, M. Zwicker, and H. Pfister.
Hardware-accelerated adaptive EWA volume
splatting. In Proceedings of IEEE Visualization
2004, 2004.

16. T. Chiueh, T. He, A. Kaufman, and H. Pfister.
Compression domain volume rendering. Tech.
Rep. TR.94.01.04R, State University of New
York at Stony Brook, 1994.

17. R. L. Cook and K. E. Torrance. A reflectance
model for computer graphics. ACM Transac-
tions on Graphics, 1(1):7–24, 1982.

18. R. Crawfis and N. Max. Direct volume visual-
ization of 3D vector fields. Workshop on Volume
Visualization, pages 55–50, 1992.

19. T. J. Cullip and U. Neumann. Accelerating
volume reconstruction with 3D texture mapping
hardware. Tech. Rep. TR93-027, University of
North Carolina at Chapel Hill, 1993.

20. F. Dachille and A. Kaufman. Gi-cube: An archi-
tecture for volumetric global illumination and
rendering. In SIGGRAPH/EUROGRAPHICS
Workshop On Graphics Hardware, pages 119–
128, 2000.

21. F. Dachille, K. Kreeger, B. Chen, I. Bitter, and
A. Kaufman. High-quality volume rendering
using texture mapping hardware. In Euro-
graphics/SIGGRAPH Workshop on Graphics
Hardware, pages 69–76, 1998.

22. J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. In Workshop on Volume
Visualization, A. Kaufman and W. L. Lorensen,
Eds., pages 91–98, 1992.

23. J. Dengler, S. Warfield, J. Zaers, C. Guttmann,
W. Wells, G. Ettinger, J. Hiller, and R. Kikinis.
Automatic identification of grey matter struc-
tures from MRI to improve the segmentation
of white matter lesions. In Proceedings of Med-
ical Robotics and Computer Assisted Surgery,
pages 140–147, 1995.

24. R. A. Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering. ComputerGraphics, 22(4):65–
74, 1988.

25. K. Engel, M. Kraus, and T. Ertl. High-
quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In Proceed-
ings of the ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 9–16,
2001.

26. P. A. Fletcher and P. K. Robertson. Interactive
shading for surface and volume visualization on
graphics workstations. In Proceedings of Visual-
ization ’93, pages 291–298, 1993.

27. S. Francis and J. Hill. Computer Graphics Using
OpenGL, 2nd Ed. Prentice Hall, 2000.

28. C. Gasparakis. Multi-resolution multi-field ray
tracing: a mathematical overview. In Proceed-
ings of IEEE Visualization ’99, pages 199–206,
1999.

29. B. Geiger and R. Kikinis. Simulation of endos-
copy. In Comp. Vision Virtual Reality and Ro-
botics in Medicine, pages 227–281, 1995.

30. A. Van Gelder and K. Kim. Direct volume
rendering with shading via 3D textures. In
ACM/IEEE Symposium on Volume Visualiza-
tion, pages 23–30, 1996.

31. A. S. Glassner, Ed. Graphics Gems V. New
York, Academic Press, pages 257–264, 1990.

32. A. S. Glassner. Principles of Digital Image
Synthesis. Morgan Kaufmann, 1995.

33. M. E. Goss. An adjustable gradient filter for
volume visualization image enhancement. In
Graphics Interface ’94, pages 67–74, 1994.

34. S. Guan and R. Lipes. Innovative volume
rendering using 3D texture mapping. In Image

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 254

254 Scalar Field Visualization: Volume Rendering

Capture, Formatting, and Display, SPIE 2164,
1994.

35. S. Guthe, S. Roettger, A. Schieber, W. Strasser,
and T. Ertl. High-quality unstructured volume
rendering on the PC platform. In Eurographics/
SIGGRAPH Graphics Hardware Workshop,
pages 119–125, 2002.

36. S. Guthe, M. Wand, J. Gonser, and W. Strasser.
Interactive rendering of large volume data sets.
In Proceedings of IEEE Visualization ’02, pages
53–60, 2002.

37. P. Hanrahan. Three-pass affine transforms for
volume rendering. Computer Graphics, 24(5):71–
78, 1990.

38. M. J. Harris and A. Lastra. Real-time cloud
rendering. In Computer Graphics Forum
(Eurographics 2001 Proceedings), 20, 2001.

39. P. Heckbert. Fundamentals of Texture Mapping
andImageWarping.Master’s thesis,Universityof
California at Berkeley, Department of Electrical
Engineering and Computer Science, 1989.

40. J. Hesser, R. Männer, G. Knittel, W. Strasser,
H. Pfister, and A. Kaufman. Three architectures
for volume rendering. In Proceedings of Euro-
graphics ’95, pages C-111–C-122, 1995.

41. K. H. Höhne and R. Bernstein. Shading 3D-
images from CT using gray-level gradients.
IEEE Transactions on Medical Imaging,
5(1):45–47, 1986.

42. W. M. Hsu. Segmented ray-casting for data par-
allel volume rendering. InProceedings of the 1993
Parallel Rendering Symposium, pages 7–14, 1993.

43. J. Jacq and C. Roux. A direct multi-volume
rendering method aiming at comparisons of
3-D images and models. IEEE Transactions on
Information Technology in Biomedicine, 1(1):30–
43, 1997.

44. J. T. Kajiya and B. P. V. Herzen. Ray tracing
volume densities. In Computer Graphics, SIG-
GRAPH ’84 Proceedings, 18:165–174, 1984.

45. A. Kaufman and R. Bakalash. Memory and
processing architecture for 3D voxel-based im-
agery. IEEE Computer Graphics & Applications,
8(6):10–23, 1988.

46. A. Kaufman, R. Yagel, and D. Cohen. Inter-
mixing surface and volume rendering. In 3D
Imaging in Medicine: Algorithms, Systems, Ap-
plications, K.H. Höhne, H. Fuchs, and S.M.
Pizer, Eds., pages 217–227, 1990.

47. G. Kindlmann and J. Durkin. Semi-automatic
generation of transfer functions for direct
volume rendering. In Proceedings 1998 IEEE
Symposium on Volume Visualization, pages
79–86, 1998.

48. J. Kniss, G. Kindlmann, and C. Hansen. Inter-
active volume rendering using multi-dimen-

sional transfer functions and direct
manipulation widgets. In Proceedings of IEEE
Visualization, pages 255–262, 2001.

49. G. Knittel and W. Strasser. Vizard—visualiza-
tion accelerator for real-time display. In Proceed-
ings of the SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 139–146, 1997.

50. G. Knittel. Using pre-integrated transfer func-
tions in an interactive software system for
volume rendering. In Eurographics 2002 Short
Presentations, pages 119–123, 2002.

51. K. Kreeger and A. Kaufman. Pavlov: A pro-
grammable architecture for volume processing.
In Proceedings of SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 77–85,
1998.

52. K. Kreeger and A. Kaufman. Hybrid volume
and polygon rendering with cube hardware.
In SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 15–24, 1999.

53. K. Kreeger and A. Kaufman. Mixing translu-
cent polygons with volumes. In Proceedings of
IEEE Visualization ’99, pages 191–198, 1999.

54. P. Lacroute and M. Levoy. Fast volume
rendering using a shear-warp factorization of
the viewing transform. In Computer Graphics:
Proceedings of SIGGRAPH ’94, pages 451–457,
1994.

55. P. Lacroute. Fast Volume Rendering Using
a Shear-Warp Factorization of the Viewing
Transform. PhD thesis, Stanford University, De-
partments of Electrical Engineering and Com-
puter Science, 1995.

56. E. LaMar, B. Hamann, and K. Joy. Multireso-
lution techniques for interactive texture-based
volume visualization. In Proceedings of the
1999 IEEE Visualization Conference, pages
355–362, 1999.

57. D. Laur and P. Hanrahan. Hierarchical splat-
ting: a progressive refinement algorithm for
volume rendering. In Computer Graphics, SIG-
GRAPH ’91 Proceedings, pages 285–288, 1991.

58. M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics & Applications,
8(5):29–37, 1988.

59. M. Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics, 9(3):245–261,
1990.

60. M. Levoy. A hybrid ray tracer for rendering
polygon and volume data. IEEE Computer
Graphics & Applications, 10(2):33–40, 1990.

61. B. Lichtenbelt, R. Crane, and S. Naqvi. Intro-
duction to Volume Rendering. Los Angeles,
Prentice Hall, 1998.

62. E. Lindholm, M. Kilgard, and H. Moreton. A
user-programmable vertex engine. In Computer

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 255

Hardware-Accelerated Volume Rendering 255

Graphics: SIGGRAPH 2001 Proceedings, pages
149–158, 2001.

63. L. Lippert and M. Gross. Fast wavelet based
volume rendering by accumulation of transpar-
ent texture maps. In Computer Graphics Forum,
Proceedings of Eurographics ’95, C-431–C-443,
1995.

64. A. Lu, C. Morris, J. Taylor, D. Ebert, C. Han-
sen, P. Rheingans, and M. Hartner. Illustrative
interactive stipple rendering. IEEE Transactions
on Visualization and Computer Graphics,
9(2):127–138, 2003.

65. K.-L. Ma. Visualizing time-varying volume
data. IEEE Transactions on Visualization and
Computer Graphics, 5(2):34–42, 2003.

66. B. Mark, S. Glanville, K. Akeley, and M. Kil-
gard. Cg: A system for programming graphics
hardware in a C-like language. In Proceedings of
SIGGRAPH 2003, 2003.

67. N. Max, P. Hanrahan, and R. Crawfis. Area
and volume coherence for efficient visualization
of 3D scalar functions. Computer Graphics,
24(5):27–34, 1995.

68. N. Max. Optical models for direct volume
rendering. IEEE Transactions on Visualization
and Computer Graphics, 1(2):99–108, 1995.

69. D. Meagher. Efficient synthetic image gener-
ation of arbitrary 3D objects. In Proceedings of
IEEE Computer Society Conference on Pattern
Recognition and Image Processing, 1982.

70. M. Meissner, U. Kanus, and W. Strasser.
Vizard II, a PCI card for real-time volume
rendering. In Proceedings of SIGGRAPH/Euro-
graphics Workshop on Graphics Hardware,
pages 61–68, 1998.

71. M. Meissner, U. Hoffmann, and W. Strasser.
Enabling classification and shading for 3D tex-
ture mapping based volume rendering using
OpenGL and extensions. In Proceedings of the
1999 IEEE Visualization Conference, pages 207–
214, 1999.

72. M. Meissner, J. Huang, D. Bartz, K. Mueller,
andR.Crawfis.Apractical evaluationofpopular
volume rendering algorithms. In IEEE Sympo-
sium on Volume Visualization, pages 81–90, 2000.

73. M. Meissner, S. Guthe, and W. Strasser. Inter-
active lighting models and pre-integration for
volume rendering on PC graphics accelerators.
In Proceedings of Graphics Interface 2002, pages
209–218, 2002.

74. M. Meissner, U. Kanus, G. Wetekam, J.
Hirche, A. Ehlert, W. Strasser, M. Doggett,
and R. Proksa. A reconfigurable interactive
volume rendering system. In Proceedings of
SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 2002.

75. T. Möller, R. Machiraju, K. Mueller, and R.
Yagel. A comparison of normal estimation
schemes. In Proceedings of IEEE Visualization
’97, pages 19–26, 1997.

76. T. Möller, R. Machiraju, K. Mueller, and R.
Yagel. Evaluation and design of filters using a
Taylor series expansion. IEEE Transactions on
Visualization and Computer Graphics, 3(2):184–
199, 1997.

77. K. Mueller and R. Crawfis. Eliminating pop-
ping artifacts in sheet buffer–based splatting.
IEEE Visualization ’98, pages 239–246, 1998.

78. K. Mueller and R. Yagel. Fast perspective
volume rendering with splatting by utilizing a
ray-driven approach. IEEE Visualization ’96,
pages 65–72, 1996.

79. K. Mueller, T. Moeller, J. Swan, R. Crawfis,
N. Shareef, and R. Yagel. Splatting errors
and antialiasing. IEEE Transactions on Visual-
ization and Computer Graphics, 4(2):178–191,
1998.

80. K. Mueller, T. Moeller, and R. Crawfis. Splat-
ting without the blur. In Proceedings of the 1999
IEEE Visualization Conference, pages 363–370,
1999.

81. K. Mueller, N. Shareef, J. Huang, and R. Craw-
fis. IBR assisted volume rendering. In Proceed-
ings of IEEE Visualization Late Breaking Hot
Topics, pages 5–8, 1999.

82. U. Neumann. Volume Reconstruction and Paral-
lel Rendering Algorithms: A Comparative Analy-
sis. PhD thesis, University of North Carolina at
Chapel Hill, 1993.

83. R. Osborne, H. Pfister, H. Lauer, N. McKenzie,
S. Gibson, W. Hiatt, and T. Ohkami. EM-Cube:
An architecture for low-cost real-time volume
rendering. In Proceedings of the SIGGRAPH/
Eurographics Workshop on Graphics Hardware,
pages 131–138, 1997.

84. M. Peercy, J. Airey, and B. Cabral. Efficient
bump mapping hardware. In Computer
Graphics, Proceedings of SIGGRAPH ’97,
pages 303–306, 1997.

85. H. Pfister and A. Kaufman. Cube-4—A scalable
architecture for real-time volume rendering. In
1996 ACM/IEEE Symposium on Volume Visual-
ization, pages 47–54, 1996.

86. H. Pfister, A. Kaufman, and T. Chiueh. Cube-3:
A real-time architecture for high-resolution
volume visualization. In 1994 ACM/IEEE Sym-
posium on Volume Visualization, pages 75–83,
1994.

87. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer,
and L. Seiler. The VolumePro real-time ray-
casting system. In Proceedings of the 26th
Annual Conference on Computer Graphics and

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 256

256 Scalar Field Visualization: Volume Rendering

Interactive Techniques (SIGGRAPH ’99),
pages 251–260, 1999.

88. H. Pfister, W. Lorensen, C. Bajaj, G. Kindl-
mann, W. Schroeder, L.S. Avila, K. Martin, R.
Machiraju, and J. Lee. The transfer function
bake-off. IEEE Computer Graphics and Appli-
cations, pages 16–22, 2001.

89. B. T. Phong. Illumination for computer gener-
ated pictures. Communications of the ACM,
1(18):311–317, 1975.

90. T. Porter and T. Duff. Compositing digital
images. Computer Graphics, 18(3), 1984.

91. H. Ray, H. Pfister, D. Silver, and T. A. Cook.
Ray-casting architectures for volume visualiza-
tion. IEEE Transactions on Visualization and
Computer Graphics, 5(3):210–223, 1999.

92. L. Ren, H. Pfister, and M. Zwicker. Object-
spaceEWAsurface splatting:Ahardware accel-
erated approach tohighquality point rendering.
InComputerGraphics Forum, 21:461–470, 2002.

93. R. A. Reynolds, D. Gordon, and L.-S. Chen.
A dynamic screen technique for shaded
graphics display of slice-represented objects.
Computer Vision, Graphics, and Image Process-
ing, 38(3):275–298, 1987.

94. C. Rezk-Salama, K. Engel, M. Bauer, G. Grei-
ner, and T. Ertl. Interactive volume rendering
on standard PC graphics hardware using
multi-textures and multi-stage rasterization.
In Eurographics/SIGGRAPH Workshop on
Graphics Hardware, pages 109–118, 2000.

95. C. Rezk-Salama. Volume Rendering Tech-
niques for General Purpose Graphics Hardware.
PhD thesis, University of Erlangen, Germany,
2001.

96. S. Roettger and T. Ertl. A two-step approach
for interactive preintegrated volume rendering
of unstructured grids. In IEEE Symposium on
Volume Visualization. Boston, ACM Press,
pages 23–28, 2002.

97. S. Roettger, M. Kraus, and T. Ertl. Hardware-
accelerated volume and isosurface rendering
based on cell-projection. In Proceedings of
IEEE Visualization, pages 109–116, 2000.

98. S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,
and W. Strasser. Smart hardware-accelerated
volume rendering. In Eurographics/IEEE
TCVG Symposium on Visualization 2003, 2003.

99. P. Sabella. A rendering algorithm for visualiz-
ing 3D scalar fields. Computer Graphics,
22(4):59–64, 1988.

100. J. Schulze, M. Kraus, U. Lang, and T. Ertl.
Integrating preintegration into the shear-warp
algorithm. In Proceedings of the Third Inter-
national Workshop on Volume Graphics, pages
109–118, 2003.

101. A. R. Smith. A pixel is not a little square, a
pixel is not a little square, a pixel is not a little
square! (and a voxel is not a little cube!) Tech.
Rep., Microsoft, Inc., 1995.

102. I. Sobel. An isotropic 3� 3� 3 volume gradi-
ent operator. Unpublished manuscript, 1995.

103. R. L. Sollenberg and P. Milgram. Effects of
stereoscopic and rotational displays in a 3D
path tracing task. In Human Factors, pages
483–499, 1993.

104. D. Speary and S. Kennon. Volume probes:
Interactive data exploration on arbitrary
grids. Computer Graphics, 24:5–12, 1990.

105. M. Sramek. Fast surface rendering from raster
data by voxel traversal using chessboard dis-
tance. In Proceedings of Visualization ’94,
pages 188–195, 1994.

106. K. R. Subramanian and D. S. Fussell. Apply-
ing space subdivision techniques to volume
rendering. In Proceedings of Visualization ’90,
pages 150–159, 1990.

107. J. E. Swan, K. Mueller, T. Möller, N. Shareef,
R. Crawfis, and R. Yagel. An anti-aliasing
technique for splatting. In Proceedings of the
1997 IEEE Visualization Conference, pages
197–204, 1997.

108. J. Sweeney and K. Mueller. Shear-warp
deluxe: the shear-warp algorithm revisited. In
Eurographics/IEEE TCVG Symposium on
Visualization, pages 95–104, 2002.

109. U. Tiede, T. Schiemann, and K. Höhne. High
quality rendering of attributed volume data.
In Proceedings of IEEE Visualization, pages
255–262, 1998.

110. C. Upson and M. Keeler. V-BUFFER: Visible
volume rendering. Computer Graphics,
22(4):59–64, 1988.

111. J. van Scheltinga, J. Smit, and M. Bosma.
Design of an on-chip reflectance map. In Pro-
ceedings of the 10th Eurographics Workshop on
Graphics Hardware, pages 51–55, 1995.

112. G. Vézina, P. Fletcher, and P. Robertson.
Volume rendering on the MasPar MP-1. In
1992 Workshop on Volume Visualization, pages
3–8, 1992.

113. W. Volz. Gigabyte volume viewing using split
software/hardware interpolation. In Volume
Visualization and Graphics Symposium 2000,
pages 15–22, 2000.

114. D. Voorhies and J. Foran. Reflection vector
shading hardware. In Computer Graphics, Pro-
ceedings of SIGGRAPH ’94, pages 163–166,
1994.

115. M. Weiler, R. Westermann, C. Hansen, K.
Zimmerman, and T. Ertl. Level-of-detail
volume rendering via 3D textures. In Volume

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 257

Hardware-Accelerated Volume Rendering 257

Visualization and Graphics Symposium 2000,
pages 7–13, 2000.

116. M. Weiler, M. Kraus, M. Merz, and T. Ertl.
Hardware-based ray-casting for tetrahedral
meshes. In Proceedings of IEEE Visualization,
2003.

117. M. Weiler, M. Kraus, M. Merz, and T. Ertl.
Hardware-based view-independent cell projec-
tion. IEEE Transactions on Visualization and
Computer Graphics, 9(2):163–175, 2003.

118. D. Weiskopf, K. Engel, and T. Ertl. Volume
clipping via per-fragment operations in tex-
ture-based volume rendering. In Visualization
2002, pages 93–100, 2002.

119. D. Weiskopf, K. Engel, and T. Ertl. Interactive
clipping techniques for texture-based volume
visualization and volume shading. IEEE
Transactions on Visualization and Computer
Graphics, 9(3):298–313, 2003.

120. W. Wells, P. Viola, H. Atsumi, S. Nakajima,
and R. Kikinis. Multi-modal volume regis-
tration by maximization of mutual informa-
tion. Medical Image Analysis, 1(1):35–51,
1996.

121. R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering appli-
cations. In Computer Graphics, SIGGRAPH
’98 Proceedings, pages 169–178, 1998.

122. L. Westover. Interactive volume rendering. In
Proceedings of the Chapel Hill Workshop on
Volume Visualization, pages 9–16, 1989.

123. L. Westover. Footprint evaluation for volume
rendering. In Computer Graphics, Proceedings
of SIGGRAPH ’90, pages 367–376, 1990.

124. L. A. Westover. Splatting: A Parallel, Feed-
Forward Volume Rendering Algorithm. PhD
thesis. The University of North Carolina
at Chapel Hill, Technical Report TR91-029,
1991.

125. P. L. Williams and N. Max. A volume density
optical model. Workshop on Volume Visualiza-
tion, pages 61–68, 1992.

126. O. Wilson, A. V. Gelder, and J. Wilhelms.
Direct volume rendering via 3D textures.
UCSC-CRL-94-19, University of California
at Santa Cruz.

127. C. Wittenbrink and M. Harrington. A scalable
MIMD volume rendering algorithm. In Eighth
International Parallel Processing Symposium,
pages 916–920, 1994.

128. C. Wittenbrink and A. Somani. Permutation
warping for data parallel volume rendering. In
Parallel Rendering Symposium, Visualization
’93, pages 57–60, 1993.

129. C. Wittenbrink, T. Malzbender, and M. Goss.
Opacity-weighted color interpolation for
volume sampling. In Symposium on Volume
Visualization, pages 135–142, 1998.

130. G. Wolberg. Digital Image Warping. IEEE
Computer Society Press, Los Alamitos, Cali-
fornia, 1990.

131. Y. Wu, V. Bhatia, H. C. Lauer, and L. Seiler.
Shear-image order ray-casting volume
rendering. In Symposium on Interactive 3D
Graphics, pages 152–162, 2003.

132. R. Yagel and A. Kaufman. Template-based
volume viewing. Computer Graphics Forum,
Proceedings of Eurographics ’92, 11(3):153–
167, 1992.

133. R. Yagel, D. Cohen, and A. Kaufman. Dis-
crete ray tracing. IEEE Computer Graphics &
Applications, pages 19–28, 1992.

134. S. W. Zucker and R. A. Hummel. A 3D edge
operator. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 3(3):324–331,
1981.

135. K. Z. Zuiderveld, A. H. J. Koning, and M. A.
Viergever. Acceleration of ray-casting using
3D distance transform. In Proceedings of Visu-
alization in Biomedical Computing, 1808:324–
335, 1992.

136. M. Zwicker, H. Pfister, J. Van Baar, and M.
Gross. Surface splatting. In Computer
Graphics, SIGGRAPH 2001 Proceedings,
pages 371–378, 2001.

137. M. Zwicker, H. Pfister, J. Van Baar, and M.
Gross. EWA splatting. IEEE Transactions on
Visualization and Computer Graphics, 8(3):223–
238, 2002.

138. M. Zwicker, H. Pfister, J. van Baar, and M.
Gross. Ewa volume splatting. IEEE Visualiza-
tion 2001, pages 29–36, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 12:00pm page 258

258 Scalar Field Visualization: Volume Rendering

PART IV

Vector Field Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:09pm page 259

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:09pm page 260

This page intentionally left blank

12 Overview of Flow Visualization

DANIEL WEISKOPF

University of Stuttgart

GORDON ERLEBACHER

Florida State University

12.1 Introduction

Flow visualization is an important topic in scien-

tific visualization and has been the subject of

active research for many years. Typically, data

originates from numerical simulations, such as

those of computational fluid dynamics, and

needs to be analyzed by means of visualization

to gain an understanding of the flow. With the

rapid increase of computational power for simu-

lations, the demand for more advanced visualiza-

tionmethodshas grown.This chapter presents an

overview of important and widely used ap-

proaches to flow visualization, along with refer-

ences tomore detailed descriptions in the original

scientific publications. Although the list of refer-

ences covers a large body of research, it is by no

means meant to be a comprehensive collection of

articles in the field.

12.2 Mathematical Description of a
Vector Field

We start with a rather abstract definition of a

vector field by making use of concepts from

differential geometry and the theory of differen-

tial equations. For more detailed background

information on these topics, we refer to text-

books on differential topology and geometry

[45,46,66,81]. Although this mathematical ap-

proach might seem quite abstract for many ap-

plications, it has the advantage of being a

flexible and generic description that is applic-

able to a wide range of problems.

We first give the definition of a vector field. Let

M be a smooth m-manifold with boundary, let

N be an n-dimensional submanifold with

boundary (N �M), and let I � IR be an open

interval of real numbers. A map

u : N � I ! TM

is a time-dependent vector field provided that

u(x, t) 2 TxM

An element t 2 I serves as a description for time;

x 2 N is a position in space. TM is a tangent

bundle—the collection of all tangent vectors,

along with the information of the point of tan-

gency. Finally, TxM is the tangent space associ-

ated with x. The vector field maps a position in

space and time, (x, t), to a tangent vector located

at the same reference point x. For a tangential

time-dependent vector field, the mapping remains

in the tangent bundle TN and therefore does not

contain a normal component. That is,

u : N � I ! TN

For a nontangential vector field, a related tan-

gential vector field can be computed by projec-

tion from TxM to TxN, i.e., by removing the

normal parts from the vectors.

Integral curves are directly related to vector

fields. Let u : N � I ! TN be a continuous (tan-

gential) vector field. Let x0 be a point in N and

J � I be an open interval that contains t0. The

C1 map

xx0, t0 : J ! N

with

xx0, t0 (t0) ¼ x0 and
dxx0, t0 (t)

dt
¼ u(xx0, t0 (t), t)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 261

261

is an integral curve for the vector field with

initial condition x ¼ x0 at t ¼ t0. The subscripts

in the notation of xx0, t0 denote this initial condi-

tion. These integral curves are usually referred

to as pathlines, especially in the context of flow

visualization. If u satisfies the Lipschitz condi-

tion, the differential equation for xx0, t0 has a

unique solution.

In all practical applications of flow visualiza-

tion, the data is given on a manifold of two or

three dimensions. To investigate a vector field

on an arbitrary curved surface, the above for-

malism is necessary and, for example, the issue

of describing the surface by charts has to be

addressed. Very often, however, N is just a

Euclidean space. This allows us to use a simpler

form of the tangential vector field given by

u :O� I�!IRn, (x, t) 7! u (x, t)

The vector field is defined on the n-dimensional

Euclidean space O � IRn and depends on time

t 2 I . We use boldface lowercase letters to

denote vectors in n dimensions. The reference

point x is no longer explicitly attached to the

tangent vector. In this modified notation, the

integral curve is determined by the ordinary dif-

ferential equation

dxpath (t;x0, t0)

dt
¼ u (xpath(t;x0, t0), t) (12:1)

We assume that the initial condition xpath

(t0;x0, t0) ¼ x0 is given at time t0, i.e., all integral

curves are labeled by their initial conditions

(x0, t0) and parameterized by t. By construction,

the tangent to the pathline at position x and

time t is precisely the velocity u(x, t). In more

general terms, the notation x(t;x0, t0) is used to

describe any curve parameterized by t that con-

tains the point x0 for t ¼ t0.

12.3 Particle Tracing in Time-Dependent
Flow Fields

Integral curves play an important role in visual-

izing the associated vector field and in under-

standing the underlying physics of the flow.

There exist two important additional types of

characteristic curves: streamlines and streak-

lines. In steady flows, pathlines, streamlines,

and streaklines are identical. When the vector

field depends explicitly on time, these curves are

distinct from one another.

In a steady flow, a particle follows the stream-

line, which is a solution to

dxstream (t;x0, t0)

dt
¼ u (xstream (t;x0, t0))

In an unsteady context, we consider the instant-

aneous vector field at fixed time t. The particle

paths associated with this artificially steady, vir-

tually frozenfield are the streamlines governedby

dxstream (t;x0, t0)

dt
¼ u (xstream (t;x0, t0), t)

Here, t and t0 are just parameters along the

curve and do not have the meaning of physical

time, in contrast to the physical time t. A third

type of curve is produced by dye released into

the flow. If dye is released continuously into a

flow from a fixed point x0, it traces out a streak-

line. For example, smoke emanating from a lit

cigarette follows a streakline.

It is instructive to derive integrated equations

for pathlines, streamlines, and streaklines. The

solution to the ordinary differential equation

(Equation 12.1) is obtained by formal integra-

tion, which gives the pathline

xpath (t ; x0, t0) ¼ x0 þ
Z t

t0

u (xpath (s ; x0, t0), s) ds

Similarly, streamlines at time t can be computed

by

xstream (t ; x0, t0) ¼ x0 þ
Z t

t0

u (xstream(s ; x0, t0), t) ds

To obtain the snapshot of a streakline at time

t, a set of particles is released from x0 at

times s 2 [tmin, t] and the particles’ positions

are evaluated at time t:

xstreak(s ; x0, t) ¼ xpath(t ; x0, s)

The streakline is parameterized by s, and tmin is

the first time that particles are released.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 262

262 Vector Field Visualization

12.4 Classification of Visualization
Approaches

There exist many different vector-field visualiza-

tion techniques, which can be distinguished

according to their properties with respect to a

number of categories. The following classifica-

tion should be considered rather a collection of

important issues than a complete taxonomy.

These issues should be taken into account

when choosing a visualization approach.

In one classification scheme, techniques are

distinguished by the relationship between a

vector field and its associated visual repre-

sentation. Point-based direct visualization ap-

proaches take into account the vector field at a

point, and possibly also its neighborhood, to

obtain a visual representation. The vector field

is directly mapped to graphical primitives in the

sense that no sophisticated intermediate pro-

cessing of data is performed. Another class is

based on characteristic curves obtained by par-

ticle tracing. The third class thoroughly prepro-

cesses data to identify important features, which

then serve as a basis for the actual visualization.

Another type of property is the density of

representation: the domain can be sparsely or

densely covered by visualization objects. Dens-

ity is particularly useful for subclassing particle-

tracing approaches. Related to density is the

distinction between local and global methods.

A global technique essentially shows the com-

plete flow, whereas important features of

the flow could possibly be missed by a local

technique.

The choice of a visualization method is also

influenced by the structure of the data. The

dimensionality of the manifold on which the

vector field is defined plays an important role.

For example, strategies that work well in 2D

might be much less useful in 3D because of

perception issues. The recognition of orienta-

tion and spatial position of graphical primitives

is more difficult, and important primitives could

be hidden by others. Dimensionality also affects

performance; a 3D technique has to process

substantially more data. If visualization is re-

stricted to slices or more general hypersurfaces

of a 3D flow, the projection of vectors onto

the tangent spaces of the hypersurfaces has to

be considered. Moreover, a distinction has to be

made between time-dependent and time-inde-

pendent data. A steady flow is usually much

less demanding since frame-to-frame coherence

is easy to achieve and streamlines, streaklines,

and pathlines are identical. Finally, the type of

grid has to be taken into account. Data can be

provided, for example, on uniform, rectilinear,

curvilinear, or unstructured grids. The grid type

affects the visualization algorithms with respect

to mainly data storage and access mechanisms

or interpolation schemes. Ideally, the final

visual representation does not depend on the

underlying grid.

It should be noted that there is no ‘‘ideal’’

technique that is best for all visualization

tasks. Therefore, it is often useful to combine

different approaches for an effective overall

visualization. Nevertheless, we focus on describ-

ing the methods individually. The techniques

are roughly ordered according to their classifi-

cation: point-based direct methods, sparse

representations for particle-tracing techniques,

dense representations based on particle tracing,

and feature-based approaches. The other types

of properties are discussed along with the de-

scriptions of the individual methods.

This chapter is meant to provide an overview

of flow visualization. For more detailed de-

scriptions, we refer to [18,40,82,88,99] and to

the other flow visualization chapters of this

book.

12.5 Point-Based Direct Flow
Visualization

The traditional technique of arrow plots is a

well-known example for direct flow visualiza-

tion based on glyphs. Small arrows are drawn

at discrete grid-points, showing the direction of

the flow and serving as local probes for the

velocity field (Fig. 12.1a). In the closely related

hedgehog approach, the flow is visualized by

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 263

Overview of Flow Visualization 263

directed line segments whose lengths represent

the magnitude of the velocity. To avoid possible

distracting patterns for a uniform sampling by

arrows or hedgehogs, randomness can be intro-

duced in their positions [29]. Arrow plots can be

directly applied to time-dependent vector fields

by letting the arrows adapt to the velocity field

for the current time. For 3D representations,

the following facts have to be considered: the

position and orientation of an arrow is more

difficult to understand due to the projection

onto the 2D image plane, and an arrow might

occlude other arrows in the background. The

problem of clutter can be addressed by high-

lighting arrows with orientations in a range spe-

cified by the user [9], or by selectively seeding

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 264

Figure 12.1 Comparison of visualization techniques applied to the same 2D flow: (a) arrow plot, (b) streamlets, (c) line integral

convolution (LIC), and (d) topology-based. Image 12.1d courtesy of Gerik Scheuermann.

264 Vector Field Visualization

the arrows. Illumination and shadows serve

to improve spatial perception; for example,

shadowing can be applied to hedgehog visual-

izations on 2D slices of a 3D flow [65].

More complex glyphs [26] can be used to

provide additional information on the flow at

a point of the flow (Fig. 12.2). In addition to the

actual velocity, information on the Jacobian of

the velocity field is revealed. The Jacobian is

presented in an intuitive way by decomposing

the Jacobian matrix into meaningful compon-

ents and mapping them to icons based on easily

understandable metaphors. Typical data en-

coded into glyphs comprise velocity, acceler-

ation, curvature, local rotation, shear, and

convergence. Glyphs can also be used to repre-

sent information on the uncertainty of the

vector-field data [134]. Glyph-based uncertainty

visualization is also covered by Lodha et al. [69]

and Pang et al. [86], who additionally discuss

uncertainty representations for other visualiza-

tion styles.

Another strategy is to map flow properties

to a single value and apply techniques known

from the visualization of scalar data. Typically,

the magnitude of the velocity or one of the

velocity components is used. For 2D flow visu-

alization, a mapping to color or to iso-lines

(contour lines) is often applied. Volume-

visualization techniques have to be employed

in the case of 3D data. Direct volume rendering,

which avoids occlusion problems by selective

use of semitransparency, can be applied to

single-component data derived from vector

fields [30,120]; recent developments are specific-

ally designed for time-dependent data

[16,36,85].

12.6 Sparse Representations for
Particle-Tracing Techniques

Another class of visualization methods is based

on the characteristic lines obtained by particle

tracing. Among these are the aforementioned

pathlines, streamlines, and streaklines. In add-

ition, time lines, constructed from particles re-

leased at the same time from different points

along a curve, can be used. All these lines are

quite intuitive because they represent some kind

of transport along the flow. In this section, we

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 265

Figure 12.2 Glyph-based 3D flow visualization, combined with illuminated streamlines. (See also color insert.)

Overview of Flow Visualization 265

discuss sparse representations, in which the

spatial domain is not densely covered.

A traditional particle-based approach com-

putes characteristic curves and draws them as

thin lines. Since many researchers handle time-

independent vector fields, the notion of stream-

lines is used frequently. The visualization con-

cepts can often be generalized to pathlines,

streaklines, or time lines, even if not explicitly

mentioned. Streamlines just serve as a role

model for the other characteristic lines. Particles

traced for a very short time generate short

streamlines or streamlets.

Streamlines and streamlets can be used in 2D

space, on 2D hypersurfaces of an underlying

3D flow, and for 3D flows. Hypersurfaces typ-

ically are sectional slices through the volume,

or they are curved surfaces such as boundaries

or other characteristic surfaces. It is important

to note that the use of particle traces for vector

fields projected onto slices may be misleading,

even within a steady flow: a streamline on a

slice may depict a closed loop even though no

particle would ever traverse the loop. The

problem is caused by the fact that flow com-

ponents orthogonal to the slice are neglected

during flow integration. For 3D flows, percep-

tual problems might arise due to distortions

resulting from the projection onto the image

plane. Moreover, issues of occlusion and clut-

ter have to be considered. An appropriate solu-

tion is to find selective seed positions for

particle traces that still show the important

features of the flow, but do not overcrowd the

volume; for example, a thread of streamlets

along characteristic structures of 3D flow [71]

can be used. The method of illuminated

streamlines [136], based on illumination in di-

verse codimensions [1], improves the percep-

tion of those lines, and it also increases

depth information and addresses the problem

of occlusion by making the streamlines par-

tially transparent. An example is shown in

Fig. 12.2.

In 2D, particle traces are usually represented

by thin lines, although the width of a line is

sometimes modified to represent further infor-

mation. Fig. 12.1b shows an example with a

collection of streamlets. In 3D applications,

however, the additional spatial dimension

allows more information to be encoded into

the graphical representation through the use of

geometric objects of finite extent perpendicular

to the particle trace. Examples of such an exten-

sion of streamlines in 3D are streamribbons and

streamtubes. A streamribbon is the area swept

out by a deformable line segment along a

streamline. The strip-like shape of a streamrib-

bon displays the rotational behavior of a

3D flow. Fig. 12.3 shows a visualization of

a 3D fluid simulation combining streamribbons,

streamlines, arrows, and color coding [104]. An

iconic streamtube [119] is a thick tube-shaped

streamline whose radial extent shows the expan-

sion of the flow. As a further extension of

streamtubes, dash tubes [33] provide animated,

opacity-mapped tubes. Stream polygons [103]

trace arbitrary polygonal cross-sections along

a streamline and thus are closely related to

streamtubes and streamribbons. The properties

of the polygons, such as the size, shape, and

orientation, reflect properties of the vector

field, including strain, displacement, and rota-

tion. Streamballs [10] use their radii to visualize

divergence and acceleration in a flow. Other

geometric objects such as tetrahedra [110] may

be used instead of spheres. Another extension

of streamlines is provided by stream surfaces,

which are everywhere tangent to the vector

field. A stream surface can be modeled by an

implicit surface [123] or approximated by expli-

citly connecting a set of streamlines along time

lines. Stream surfaces present challenges related

to occlusion, visual complexity, and interpret-

ation, which can be addressed by choosing an

appropriate placement and orientation based on

principal stream surfaces [15] or through user

interaction [47]. Ray casting can be used to

render several stream surfaces at different

depths [32]. Stream arrows [72] cut out arrow-

shaped portions from a stream surface and thus

provide additional information on the flow,

such as flow direction and convergence or diver-

gence. Stream surfaces can also be computed

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 266

266 Vector Field Visualization

and visualized based on surface particles [122],

which are subject to less occlusion than is a full-

bodied surface.

The generalization of the concept of particles

released from single discrete points (for stream-

lines or streaklines) or from several points on a

1D line (for stream surfaces) leads to flow

volumes [78]. A flow volume is a region of a

3D flow domain traced out by a 2D patch over

time. The resulting volume can be visualized by

volume rendering techniques. Since any flow

volume can be (at least approximately) repre-

sented by a collection of tetrahedral cells,

volume rendering techniques for unstructured

grids can be applied, such as hardware-acceler-

ated cell projection [93,107]. Flow volumes can

be extended to unsteady flows [6], yielding the

analog of streaklines. Finally, time surfaces

extend time lines to surfaces that are built

from particles released from a 2D patch. The

evolution of time surfaces can be handled by a

level-set approach [131].

A fundamental issue of all particle-based

techniques is an appropriate choice of initial

conditions—seed-point positioning—in order

to catch all relevant features of the flow. Two

main strategies can be identified: interactive or

automatic placement of seed points. The inter-

active approach leaves the problem to the user

and, in this sense, simplifies the problem from

an algorithmic point of view. Nevertheless,

the visualization system should be designed to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 267

Figure 12.3 A combination of streamlines, streamribbons, arrows, and color coding for a 3D flow. Image courtesy of BMW

Group and Martin Schulz. (See also color insert.)

Overview of Flow Visualization 267

help the user identify appropriate seed points.

For example, the virtual wind tunnel [11] is an

early virtual-reality implementation of a flow-

visualization system where particles can be

interactively released by the user.

A useful approach for the automatic place-

ment of seed points is to construct a uniform

distribution of streamlines, which can be

achieved for 2D vector fields [55,118] or for

surfaces within curvilinear grids of a 3D flow

[74]. The idea behind a uniform distribution of

streamlines is that such a distribution very likely

will not miss important features of the flow.

Therefore, this approach can be regarded as a

step towards a completely dense representation,

which is discussed in the following section.

Equally spaced streamlines can be extended to

multiresolution hierarchies that support an

interactive change of streamline density, while

zooming in and out of the vector field [58].

Moreover, with this technique, the density of

streamlines can be determined by properties of

the flow, such as the magnitude of the velocity

or the vorticity. Evenly spaced streamlines for

an unsteady flow can be realized by correlating

instantaneous streamline visualizations for sub-

sequent time-steps [57]. Seeding strategies may

also be based on vector-field topology; for

example, flow structures in the vicinity of crit-

ical points can be visualized by appropriately

setting the initial conditions for particle tracing

[126].

Since all particle-tracing techniques are based

on solving the differential equation for particle

transport, issues of numerical accuracy and

speed must be addressed. Different numerical

techniques known from the literature can be

applied for the initial value problem of ordinary

differential equations. In many applications, ex-

plicit integration schemes such as nonadaptive

or adaptive Runge-Kutta methods are used.

The required accuracy for particle tracing

depends on the visualization technique; for

example, first-order Euler integration might be

acceptable for streamlets but not for longer

streamlines. A comparison of different integra-

tion schemes [111] helps to judge the tradeoff

between computation time and accuracy. Be-

sides the actual integration scheme, the grid on

which the vector field is given is very important

for choosing a particle-tracing technique. Point

location and interpolation depend heavily on

the grid and therefore affect the speed and ac-

curacy of particle tracing. Both aspects are

detailed by Nielson et al. [82], along with a

comparison between C-space (computational-

space) and P-space (physical-space) approaches.

The numerics of particle tracing is discussed,

for example, for the tetrahedral decomposition

of curvilinear grids [62], especially for the de-

composition of distorted cells [94], for unstruc-

tured grids [119], for analytical solutions in

piecewise linearly interpolated tetrahedral

grids [83], for stiff differential equations origin-

ating from shear flows [111], and for sparse

grids [113].

12.7 Dense Representations for
Particle-Tracing Methods

Another class of visualization approaches is

based on a representation of the flow by a

dense coverage through structures determined

by particle tracing. Typically, dense representa-

tions are built upon texture-based techniques,

which provide images of high spatial resolution.

A detailed description of texture-based flow

visualization and, in particular, its support

by graphics hardware is discussed in Chapter

13. A summary of research in the field of dense

representations can be found in the surveys [40,

99].

The distinction between dense and sparse

techniques should not be taken too rigidly be-

cause both classes of techniques are closely re-

lated by the fact that they form visual structures

based on particle tracing. Therefore, dense

representations also lead to the same intuitive

understanding of the flow. Often, a transition

between both classes is possible [125]; for

example, texture-based techniques with only

few distinct visual elements might resemble a

collection of few streamlines and, on the other

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 268

268 Vector Field Visualization

hand, evenly spaced streamline seeding can be

used with a high line density.

An early texture-synthesis technique for

vector-field visualization is spot noise [121],

which produces a texture by generating a set of

spots on the spatial domain. Each spot repre-

sents a particle moving over a short period of

time and results in a streak in the direction of

the flow at the position of the spot. Enhanced

spot noise [27] improves the visualization of

highly curved vector fields by adapting the

shape of the spots to the local velocity field.

Spot noise can also be applied on boundaries

and surfaces [20,114]. A divide-and-conquer

strategy makes possible an implementation of

spot noise for interactive environments [19]. As

an example application, spot noise was applied

to the visualization of turbulent flow [21].

Line integral convolution (LIC) [14] is a widely

used technique for the dense representation of

streamlines in steady vector fields. An example

is shown in Fig. 12.1c. LIC takes as input a

vector field and a white-noise texture. The noise

texture is locally smoothed along streamlines by

convolution with a filter kernel. This filtering

leads to a high correlation between the grey-

scale values of neighboring pixels along stream-

lines and to little or no correlation perpendicu-

lar to streamlines. The contrast and quality of

LIC images can be improved by postprocessing

techniques, such as histogram equalization,

high-pass filtering, or a second pass of LIC [84].

Both spot noise and LIC are based on dense

texture representations and particle tracing and

are, from a more abstract point of view, tightly

related to each other [22]. The original LIC

technique does not show the orientation and

the magnitude of the velocity field, an issue

that is addressed by variants of LIC. Periodic

motion filters can be used to animate the flow

visualization, and a kernel phase-shift can be

applied to reveal the direction and magnitude

of the vector field [31]. Oriented Line Integral

Convolution (OLIC) [128] exploits the existence

of distinguishable, separated blobs in a rather

sparse texture and smears these blobs into the

direction of the local velocity field by convolu-

tion with an asymmetric filter kernel to show the

orientation of the flow. By sacrificing some ac-

curacy, a fast version of OLIC (FROLIC) [127]

is feasible. In another approach, orientation is

visualized by combining animation and adding

dye advection [105]. Multifrequency noise for

LIC [64] visualizes the magnitude of the velocity

by adapting the spatial frequency of noise.

Other visualization techniques achieve LIC-

like images by applying methods not directly

based on LIC. For example, fur-like textures

[63] can be utilized by specifying the orientation,

length, density, and color of fur filaments

according to the vector field. The integrate and

draw [90] approach deposits random grey-scale

values along streamlines. Pseudo LIC (PLIC)

[125] is a compromise between LIC and sparse

particle-based representations and therefore

allows for a gradual change between dense and

sparse visualizations. PLIC uses LIC to generate

a template texture in a preprocessing step. For

the actual visualization, the template is mapped

onto thin or thick streamlines, thus filling the

domain with LIC-like structures. The idea of

LIC textures applied to thick streamlines can

be extended to an error-controlled hierarchical

method for a hardware-accelerated level-of-

detail approach [8].

LIC can be extended to nonuniform grids and

curved surfaces, for example, to curvilinear

grids [31] and to 2D unstructured or triangular

meshes [4,76,112]. Multigranularity noise as the

input for LIC [75] compensates for the noniso-

metric mapping from texture space to the cells

of a curvilinear grid that differ in size. The

projection of the normal component of the

vector field needs to be taken into account for

LIC-type visualizations on hypersurfaces [100].

Unsteady Flow LIC (UFLIC) [106] and its

accelerated version [68] incorporate time into

the convolution to visualize unsteady flow.

The issue of temporal coherence is addressed

by successively updating the convolution results

over time. Forssell and Cohen [31] present a

visualization of time-dependent flows on curvi-

linear surfaces. Dynamic LIC (DLIC) [109] is

another extension of LIC, one that allows for

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 269

Overview of Flow Visualization 269

time-dependent vector fields, such as electric

fields. A LIC-like image of an unsteady flow

can also be generated by an adaptive visualiza-

tion method using streaklines, where the seeding

of streaklines is controlled by the vorticity [98].

Since LIC has to perform a convolution for

each element of a high-resolution texture, com-

putational costs are an issue. One solution to

this problem utilizes the coherence along

streamlines to speed up the visualization process

[42,108]. Parallel implementations are another

way of dealing with high computational costs

[13,137]. Finally, implementations based on

graphics hardware can enhance the perform-

ance of LIC [43].

From a conceptional point of view, an exten-

sion of LIC to 3D is straightforward. The con-

volution along streamlines is performed within

a volume; the resulting grey-scale volume can be

represented by volume-visualization techniques,

such as texture-based volume rendering. How-

ever, computational costs are even higher than

in 2D, and therefore, interactive implementa-

tions of the filtering process are hard to achieve.

Even more importantly, possibly severe occlu-

sion issues have to be considered: in a dense

representation, there is a good chance that im-

portant features will get hidden behind other

particle lines. A combination of interactive clip-

ping and user intervention is one possible solu-

tion [89]. Alternatively, 3D LIC volumes can be

represented by selectively emphasizing import-

ant regions of interest in the flow, enhancing

depth perception and improving orientation

perception [48,49,50] (Fig. 12.4).

Another related class of dense representations

is based on texture advection. The basic idea is

to represent a dense collection of particles in a

texture and transport that texture according to

the motion of particles [77,80]. For example, the

Lagrangian coordinates for texture transport

can be computed by a numerical scheme for

convection equations [7]. The motion map [56]

is an application of the texture-advection con-

cept for animating 2D steady flows. The motion

map contains a dense representation of the flow

and the information required for animation.

Lagrangian–Eulerian advection (LEA) [54] is a

scheme for visualizing unsteady flows by inte-

grating particle positions (i.e., the Lagrangian

part) and advecting the color of the particles

based on a texture representation (i.e., the

Eulerian aspect). LEA can be extended to visu-

alizing vertical motion in a 3D flow by means of

time surfaces [38]. Texture advection is directly

related to the texture-mapping capabilities of

graphics hardware and therefore facilitates effi-

cient implementations [53,129,130]. Another

advantage of texture advection is the fact that

both noise and dye advection can be handled in

the same framework. Texture advection can

also be applied to 3D flows [59,130].

Image-based flow visualization (IBFV) [124] is

a recently developed variant of 2D texture ad-

vection. Not only is the (noise) texture trans-

ported along the flow, but a second texture is

also blended into the advected texture at each

time step. IBFV is a flexible tool that can imitate

a wide variety of visualization styles. Another

approach to the transport of a dense set of

particles is based on nonlinear diffusion [28].

An initial noise image is smoothed along inte-

gral lines of a steady flow by diffusion, whereas

the image is sharpened in the orthogonal direc-

tion. Nonlinear diffusion can be extended to

the multiscale visualization of transport in

time-dependent flows [12].

Finally, some 3D flow-visualization tech-

niques adopt the idea of splatting, originally

developed for volume rendering [132]. Even if

some vector-splatting techniques do not rely on

particle tracing, we have included them in this

section because their visual appearance resem-

bles dense curve-like structures. Anisotropic

‘‘scratches’’ can be modeled onto texture splats

that are oriented along the flow to show the

direction of the vector field [17]. Line bundles

[79] use the splatting analogy to draw each

data point with a precomputed set of rendered

line segments. These semitransparent line

bundles are composited together in a back-to-

front order to achieve an anisotropic volume

rendering result. For time-dependent flows,

the animation of a large number of texture-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 270

270 Vector Field Visualization

mapped particles along pathlines can be used

[39]. For all splatting approaches, the density

of representation depends on the number of

splats.

12.8 Feature-Based Visualization
Approaches

The visualization concepts discussed so far op-

erate directly on the vector field. Therefore, it is

the task of the user to identify the important

features of the flow from such a visualization.

Feature-based visualization approaches seek to

compute a more abstract representation that

already contains the important properties in a

condensed form and suppresses superfluous in-

formation. In other words, an appropriate

filtering process is chosen to reduce the amount

of visual data presented to the user. Examples

for this more abstract data are flow topology

based on critical points, other flow features such

as vortices and shock waves, or aggregated flow

data via clustering.

After features are computed, the actual visual

representation has to be considered. Different

features have different attributes; to emphasize

special attributes for each type of feature, suit-

able representations must be used. Glyphs or

icons can be employed for vortices or for critical

points and other topological features. Examples

are ellipses or ellipsoids to encode the rotation

speed and other attributes of vortices. A com-

prehensive presentation of feature-extraction

and visualization techniques can be found in

the survey [88].

Topology-based 2D vector-field visualization

[44] aims to show only the essential information

of the field. The qualitative structure of a vector

field can be globally represented by portraying

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 271

Figure 12.4 3D LIC with enhanced depth perception. Image courtesy of Victoria Interrante. (See also color insert.)

Overview of Flow Visualization 271

its topology. The field’s critical points and

separatrices determine the nature of the flow.

From a diagram of the topology, the complete

flow can be inferred. Fig. 12.1d shows an

example of a topology-based visualization.

From a numerical point of view, the interpol-

ation scheme is crucial for identifying critical

points. Extended versions of topology-based

representations make use of higher-order singu-

larities [101] and C1-continuous interpolation

schemes [102]. Another extension is based on

the detection of closed streamlines, a global

property that is not detected by the aforemen-

tioned algorithms [133]. Topology-based visual-

ization can also be extended to time-dependent

vector fields by topology tracking [117]. The

original topology-based techniques work well

for datasets with small numbers of critical

points. Turbulent flows computed on a high-

resolution grid, however, may show a large

number of critical points, leading to an over-

loaded visual representation. This issue is ad-

dressed by topology-simplification techniques

[23,24,25,115,116,135], which remove some of

the critical points and leave only the important

features. For the visualization of 3D topology,

suitable visual representations need to be used.

For example, streamlines that are traced from

appropriate positions close to critical points

connect to other critical points or the boundary

to display the topology, while glyphs can be

used to visualize the various classes of critical

points [37]. Topology can also serve as a means

for determining the similarity between two dif-

ferent vector fields [3,67].

Vector-field clustering is another way to

reduce the amount of visualization data.

A large number of vectors of the original high-

resolution field are combined into fewer vectors

that approximately represent the vector field at a

coarser resolution, leading to a visualization

of aggregated data. An important issue is to

establish appropriate error measures to control

the way vectors are combined into clusters

[70,114]. The extension of vector-field clustering

to several levels of clustering leads to hierarch-

ical representations [34,35,41]. In related

approaches, segmentation [28], multiscale visu-

alization [12], or topology-preserving smoothing

based on level-set techniques [131] reduce the

complexity of the displayed vector fields.

An important class of feature-detection algo-

rithms is based on the identification of vortices

and their respective vortex cores. Vortices are

useful for identifying significant features in

a fluid flow. One way of classifying vortex-

detection techniques is the distinction between

point-based, local techniques, which operate dir-

ectly on the vector data set, and geometry-based,

global techniques, which examine the properties

of characteristic lines around vortices [97]. Local

techniques build a measure for vortices from

physical quantities of a fluid flow. An overview

of these techniques [2,91] and more recent contri-

butions [5,52,61,92] are available. A mathemat-

ical framework [87] makes it possible to unify

several vortex-detection methods. Point-based

methods are rather simple to compute but are

more likely to miss some vortices. For example,

weak vortices, which have a slow rotational com-

ponent compared to the velocity of the core, are

hard to detect by these techniques. Geometry-

based, global methods [51,95,96] are usually as-

sociated with higher computational costs but

allow a more robust detection or verification of

vortices. A more detailed description of vortex-

detection techniques can be found in Chapter 14.

Shock waves are another important feature of

a fluid flow because they can increase drag and

even cause structural failure. Shock waves are

characterized by discontinuities in physical

quantities, such as pressure, density, and vel-

ocity. Therefore, shock-detection algorithms

are related to edge-detection methods known

from image processing. A comparison of differ-

ent techniques for shock extraction and visual-

ization is available [73]. Flow separation and

attachment, which occur when a flow abruptly

moves away from or returns to a solid body, are

other interesting features of a fluid flow. Attach-

ment and separation lines on surfaces in a 3D

flow can be automatically extracted based on a

local analysis of the vector field by means of

phase plane analysis [60].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 272

272 Vector Field Visualization

Vortex cores, shock waves, and separation

and attachment lines are examples of features

that are tightly connected to an underlying

physical model and cannot be derived from a

generic vector-field description. Therefore, a

profound understanding of the physical prob-

lem is necessary to develop measures for these

kinds of features. Accordingly, a large body of

research on feature extraction can be found in

the literature on related topics of engineering

and physics. Since a comprehensive collection

of techniques and references on feature extrac-

tion is beyond the scope of this chapter, we refer

to the survey [88] for more detailed information.

Acknowledgments

We would like to thank the following people for

providing us with images: Victoria Interrante

(University of Minnesota) for the image in Fig.

12.4; Gerik Scheuermann (Universität Kaisers-

lautern) for Fig. 12.1d; BMW Group and Martin

Schulz for Fig. 12.3.

The first author thanks the Landesstiftung

Baden-Württemberg for support; the second

author acknowledges support from NSF under

grant NSF-0083792.

References

1. D. C. Banks. Illumination in diverse codimen-
sions. In Proceedings of ACM SIGGRAPH ’94,
pages 327–334, 1994.

2. D. C. Banks and B. A. Singer. Vortex tubes in
turbulent flows: identification, representation,
reconstruction. In IEEE Visualization ’94,
pages 132–139, 1994.

3. R. Batra and L. Hesselink. Feature compari-
sons of 3-D vector fields using earth mover’s
distance. In IEEE Visualization ’99, pages 105–
114, 1999.

4. H. Battke, D. Stalling, and H.-C. Hege. Fast
line integral convolution for arbitrary surfaces
in 3D. In Visualization and Mathematics (H.-C.
Hege and K. Polthier, Eds.), pages 181–195.
Berlin, Springer, 1997.

5. D. Bauer and R. Peikert. Vortex tracking in
scale-space. In EG/IEEE TCVG Symposium on
Visualization ’02, pages 233–240, 2002.

6. B. Becker, D. A. Lane, and N. Max. Unsteady
flow volumes. In IEEE Visualization ’95, pages
329–335, 1995.

7. J. Becker and M. Rumpf. Visualization of time-
dependent velocity fields by texture transport.
In EG Workshop on Visualization in Scientific
Computing, pages 91–101, 1998.

8. U. Bordoloi and H.-W. Shen. Hardware accel-
erated interactive vector field visualization: a
level of detail approach. In Eurographics ’02,
pages 605–614, 2002.

9. E. Boring and A. Pang. Directional flow visual-
ization of vector fields. In IEEE Visualization
’96, pages 389–392, 1996.

10. M. Brill, H. Hagen, H.-C. Rodrian,
W. Djatschin, and S. V. Klimenko. Streamball
techniques for flow visualization. In IEEE Visu-
alization ’94, pages 225–231, 1994.

11. S. Bryson and C. Levit. The virtual wind tunnel.
IEEE Computer Graphics and Applications,
12(4):25–34, 1992.

12. D.Bürkle, T. Preußer, andM.Rumpf. Transport
and anisotropic diffusion in time-dependent flow
visualization. In IEEE Visualization ’01, pages
61–67, 2001.

13. B. Cabral and C. Leedom. Highly parallel vector
visualization using line integral convolution. In
SIAM Conference on Parallel Processing for Sci-
entific Computing, pages 802–807, 1995.

14. B. Cabral and L. C. Leedom. Imaging vector
fields using line integral convolution. In
Proceedings of ACM SIGGRAPH ’93, pages
263–270, 1993.

15. W. Cai and P.-A. Heng. Principal stream sur-
faces. In IEEE Visualization ’97, pages 75–80,
1997.

16. J. Clyne and J. M. Dennis. Interactive direct
volume rendering of time-varying data. In EG/
IEEE TCVG Symposium on Visualization ’99,
pages 109–120, 1999.

17. R. Crawfis and N. Max. Texture splats for 3D
scalar and vector field visualization. In IEEE
Visualization ’93, pages 261–266, 1993.

18. R. Crawfis, H.-W. Shen, and N. Max. Flow
visualization techniques for CFD using volume
rendering. In 9th International Symposium on
Flow Visualization, pages 64/1–64/10, 2000.

19. W. C. de Leeuw. Divide and conquer spot noise.
In Supercomputing ’97 Conference, pages 12–24,
1997.

20. W. C. de Leeuw, H.-G. Pagendarm, F. H. Post,
and B. Walter. Visual simulation of experimen-
tal oil-flow visualization by spot noise images
from numerical flow simulation. In EG Work-
shop on Visualization in Scientific Computing,
pages 135–148, 1995.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 273

Overview of Flow Visualization 273

21. W. C. de Leeuw, F. H. Post, and R. W. Vaat-
stra. Visualization of turbulent flow by spot
noise. In EG Workshop on Virtual Environments
and Scientific Visualization ’96, pages 286–295,
1996.

22. W. C. de Leeuw and R. van Liere. Comparing
LIC and spot noise. In IEEE Visualization ’98,
pages 359–365, 1998.

23. W. C. de Leeuw and R. van Liere. Collapsing
flow topology using area metrics. In IEEE Visu-
alization ’99, pages 349–354, 1999.

24. W. C. de Leeuw and R. van Liere. Visualization
of global flow structures using multiple levels of
topology. In EG/IEEE TCVG Symposium on
Visualization ’99, pages 45–52, 1999.

25. W. C. de Leeuw and R. van Liere. Multi-level
topology for flow visualization. Computers and
Graphics, 24(3):325–331, 2000.

26. W. C. de Leeuw and J. J. van Wijk. A probe for
local flow field visualization. In IEEE Visualiza-
tion ’93, pages 39–45, 1993.

27. W. C. de Leeuw and J. J. van Wijk. Enhanced
spot noise for vector field visualization. In IEEE
Visualization ’95, pages 233–239, 1995.

28. U. Diewald, T. Preußer, and M. Rumpf. Aniso-
tropic diffusion in vector field visualization on
Euclidean domains and surfaces. IEEE Trans-
actions on Visualization and Computer Graphics,
6(2):139–149, 2000.

29. D. Dovey. Vector plots for irregular grids. In
IEEE Visualization ’95, pages 248–253, 1995.

30. D. S. Ebert, R. Yagel, J. Scott, and Y. Kurzion.
Volume rendering methods for computational
fluid dynamics visualization. In IEEE Visualiza-
tion ’94, pages 232–239, 1994.

31. L. K. Forssell and S. D. Cohen. Using line
integral convolution for flow visualization:
Curvilinear grids, variable-speed animation,
and unsteady flows. IEEE Transactions on Visu-
alization and Computer Graphics, 1(2):133–141,
1995.

32. T. Frühauf. Raycasting vector fields. In IEEE
Visualization ’96, pages 115–120, 1996.

33. A. Fuhrmann and E. Gröller. Real-time tech-
niques for 3D flow visualization. In IEEE Visu-
alization ’98, pages 305–312, 1998.

34. H. Garcke, T. Preußer, M. Rumpf, A. Telea,
U. Weikard, and J. J. van Wijk. A phase
field model for continuous clustering on
vector fields. IEEE Transactions on Visualiza-
tion and Computer Graphics, 7(3):230–241,
2001.

35. H. Garcke, T. Preußer, M. Rumpf, A. Telea,
U. Weikard, and J. van Wijk. A continuous
clustering method for vector fields. In IEEE
Visualization ’00, pages 351–358, 2000.

36. T. Glau. Exploring instationary fluid flows by
interactive volume movies. In EG/IEEE TCVG
Symposium on Visualization ’99, pages 277–283,
1999.

37. A. Globus, C. Levit, and T. Lasinski. A tool for
visualizing the topology of 3D vector fields. In
IEEE Visualization ’91, pages 33–40, 1991.

38. J. Grant, G. Erlebacher, and J. O’Brien. Case
study: visualizing ocean flow vertical motions
using Lagrangian–Eulerian time surfaces. In
IEEE Visualization ’02, pages 529–532, 2002.

39. S. Guthe, S. Gumhold, and W. Straßer. Inter-
active visualization of volumetric vector fields
using texture based particles. In WSCG 2002
Conference Proceedings, pages 33–41, 2002.

40. R. S. Laramee, H. Hauser, H. Doleisch, B. Vro-
lijk, F. H. Post, and D. Weiskopf. The state of
the art in flow visualization: dense and texture-
based techniques. Computer Graphics Forum,
23(2):143–161, 2004.

41. B. Heckel, G. Weber, B. Hamann, and K. I. Joy.
Construction of vector field hierarchies. In
IEEE Visualization ’99, pages 19–25, 1999.

42. H.-C. Hege and D. Stalling. Fast LIC with pie-
cewise polynomial filter kernels. Mathematical
Visualization (H.-C. Hege and K. Polthier,
Eds.), pages 295–314. Berlin, Springer, 1998.

43. W. Heidrich, R. Westermann, H.-P. Seidel, and
T. Ertl. Applications of pixel textures in visual-
ization and realistic image synthesis. In ACM
Symposium on Interactive 3D Graphics, pages
127–134, 1999.

44. J. Helman and L. Hesselink. Representation
and display of vector field topology in fluid
flow data sets. Computer, 22(8):27–36, 1989.

45. M. W. Hirsch. Differential Topology, 6th Ed.
Berlin, Springer, 1997.

46. M. W. Hirsch and S. Smale. Differential Equa-
tions, Dynamical Systems, and Linear Algebra.
New York, Academic Press, 1974.

47. J. P. M. Hultquist. Interactive numerical flow
visualization using stream surfaces. Computing
Systems in Engineering, 1(2–4):349–353, 1990.

48. V. Interrante. Illustrating surface shape in
volume data via principal direction-driven 3D
line integral convolution. In Proceedings of
ACM SIGGRAPH 97, pages 109–116, 1997.

49. V. Interrante and C. Grosch. Strategies for
effectively visualizing 3D flow with volume
LIC. In IEEE Visualization ’97, pages 421–424,
1997.

50. V. Interrante and C. Grosch. Visualizing 3D
flow. IEEE Computer Graphics and Applications,
18(4):49–53, 1998.

51. M. Jiang, R. Machiraju, and D. Thompson.
Geometric verification of swirling features in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 274

274 Vector Field Visualization

flow fields. In IEEE Visualization ’02, pages
307–314, 2002.

52. M. Jiang, R. Machiraju, and D. Thompson. A
novel approach to vortex core region detection.
In EG/IEEE TCVG Symposium on Visualization
’02, pages 217–225, 2002.

53. B. Jobard, G. Erlebacher, and M. Y. Hussaini.
Hardware-accelerated texture advection for un-
steady flow visualization. In IEEE Visualization
’00, pages 155–162, 2000.

54. B. Jobard, G. Erlebacher, and M. Y. Hussaini.
Lagrangian–Eulerian advection for unsteady
flow visualization. In IEEE Visualization ’01,
pages 53–60, 2001.

55. B. Jobard and W. Lefer. Creating evenly spaced
streamlines of arbitrary density. In EG Work-
shop on Visualization in Scientific Computing,
pages 43–55, 1997.

56. B. Jobard and W. Lefer. The motion map: effi-
cient computation of steady flow animations. In
IEEE Visualization ’97, pages 323–328, 1997.

57. B. Jobard and W. Lefer. Unsteady flow visual-
ization by animating evenly spaced streamlines.
In Eurographics ’00, pages 31–39, 2000.

58. B. Jobard and W. Lefer. Multiresolution flow
visualization. In WSCG 2001 Conference Pro-
ceedings, pages P34–P37, 2001.

59. D. Kao, B. Zhang, K. Kim, and A. Pang. 3D
flow visualization using texture advection. In
IASTED Conference on Computer Graphics and
Imaging 01 (CGIM), pages 252–257, 2001.

60. D. N. Kenwright. Automatic detection of open
and closed separation and attachment lines. In
IEEE Visualization ’98, pages 151–158, 1998.

61. D. N. Kenwright and R. Haimes. Automatic
vortex core detection. IEEE Computer Graphics
and Applications, 18(4):70–74, 1998.

62. D. N. Kenwright and D. A. Lane. Interactive
time-dependent particle tracing using tetrahe-
dral decomposition. IEEE Transactions on Visu-
alization and Computer Graphics, 2(2):120–129,
1996.

63. L. Khouas, C. Odet, and D. Friboulet. 2D
vector field visualization using furlike texture.
In EG/IEEE TCVG Symposium on Visualization
’99, pages 35–44, 1999.

64. M.-H. Kiu and D. C. Banks. Multi-frequency
noise for LIC. In IEEE Visualization ’96, pages
121–126, 1996.

65. R. V. Klassen and S. J. Harrington. Shadowed
hedgehogs: A technique for visualizing 2D slices
of 3D vector fields. In IEEE Visualization ’91,
pages 148–153, 1991.

66. S. Lang. Differential and Riemannian Manifolds,
3rd Ed. New York, Springer, 1995.

67. Y. Lavin, R. Batra, and L. Hesselink. Feature
comparisons of vector fields using Earth
mover’s distance. In IEEE Visualization ’98,
pages 103–109, 1998.

68. Z. P. Liu and R. J. Moorhead. AUFLIC: An
accelerated algorithm for unsteady flow line in-
tegral convolution. In EG/IEEE TCVG Sympo-
sium on Visualization ’02, pages 43–52, 2002.

69. S. K. Lodha, A. Pang, R. E. Sheehan, and C. M.
Wittenbrink. UFLOW: visualizing uncertainty
in fluid flow. In IEEE Visualization ’96, pages
249–254, 1996.

70. S. K. Lodha, J. C. Renteria, and K. M. Roskin.
Topology preserving compression of 2D vector
fields. In IEEE Visualization ’00, pages 343–350,
2000.

71. H. Löffelmann and E. Gröller. Enhancing the
visualization of characteristic structures in dy-
namical systems. In EG Workshop on Visualiza-
tion in Scientific Computing, pages 59–68, 1998.

72. H. Löffelmann, L. Mroz, E. Gröller, and
W. Purgathofer. Stream arrows: enhancing the
use of stream surfaces for the visualization of
dynamical systems. The Visual Computer,
13(8):359–369, 1997.

73. K.-L. Ma, J. V. Rosendale, and W. Vermeer. 3D
shock wave visualization on unstructured grids.
In 1996 Volume Visualization Symposium, pages
87–94, 1996.

74. X. Mao, Y. Hatanaka, H. Higashida, and
A. Imamiya. Image-guided streamline place-
ment on curvilinear grid surfaces. In IEEE Visu-
alization ’98, pages 135–142, 1998.

75. X. Mao, L. Hong, A. Kaufman, N. Fujita, and
M. Kikukawa. Multi-granularity noise for
curvilinear grid LIC. In Graphics Interface,
pages 193–200, 1998.

76. X. Mao, M. Kikukawa, N. Fujita, and A. Ima-
miya. Line integral convolution for 3D surfaces.
In EG Workshop on Visualization in Scientific
Computing, pages 57–69, 1997.

77. N. Max and B. Becker. Flow visualization using
moving textures. In Proceedings of the ICASE/
LaRC Symposium on Visualizing Time-Varying
Data, pages 77–87, 1995.

78. N. Max, B. Becker, and R. Crawfis. Flow
volumes for interactive vector field visualiza-
tion. In IEEE Visualization ’93, pages 19–24,
1993.

79. N. Max, R. Crawfis, and C. Grant. Visualizing
3D velocity fields near contour surfaces. In
IEEE Visualization ’94, pages 248–255, 1994.

80. N. Max, R. Crawfis, and D. Williams. Visualiz-
ing wind velocities by advecting cloud textures.
In IEEE Visualization ’92, pages 179–184, 1992.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 275

Overview of Flow Visualization 275

81. J. W. Milnor. Topology from the Differentiable
Viewpoint. Charlottesville, VA, University Press
of Virginia, 1965.

82. G. M. Nielson, H. Hagen, and H. Müller. Sci-
entific Visualization: Overviews, Methodologies,
and Techniques. Los Alamitos, CA, IEEE Com-
puter Society Press, 1997.

83. G. M. Nielson and I.-H. Jung. Tools for com-
puting tangent curves for linearly varying vector
fields over tetrahedral domains. IEEE Transac-
tions on Visualization and Computer Graphics,
5(4):360–372, 1999.

84. A. Okada and D. Kao. Enhanced line integral
convolution with flow feature detection. In Pro-
ceedings of IS&T/SPIE Electronic Imaging ’97,
pages 206–217, 1997.

85. K. Ono, H. Matsumoto, and R. Himeno. Visu-
alization of thermal flows in an automotive
cabin with volume rendering method. In EG/
IEEE TCVG Symposium on Visualization ’01,
pages 301–308, 2001.

86. A. T. Pang, C. M. Wittenbrink, and S. K.
Lodha. Approaches to uncertainty visualiza-
tion. The Visual Computer, 13(8):370–390, 1997.

87. R. Peikert and M. Roth. The ‘‘parallel vectors’’
operator—a vector field visualization primitive.
In IEEE Visualization ’99, pages 263–270, 1999.

88. F. H. Post, B. Vrolijk, H. Hauser, R. S. Lara-
mee, and H. Doleisch. The state of the art in
flow visualization: feature extraction and
tracking. Computer Graphics Forum, 22(4):
775–792, 2003.

89. C. Rezk-Salama, P. Hastreiter, C. Teitzel, and
T. Ertl. Interactive exploration of volume line
integral convolution based on 3D-texture map-
ping. In IEEE Visualization ’99, pages 233–240,
1999.

90. C. P. Risquet. Visualizing 2D flows: integrate
and draw. In EG Workshop on Visualization in
Scientific Computing (Participant Edition),
pages 57–67, 1998.

91. M. Roth and R. Peikert. Flow visualization for
turbomachinery design. In IEEE Visualization
’96, pages 381–384, 1996.

92. M. Roth and R. Peikert. A higher-order method
for finding vortex core lines. In IEEE Visualiza-
tion ’98, pages 143–150, 1998.

93. S. Röttger, M. Kraus, and T. Ertl. Hardware-
accelerated volume and isosurface rendering
based on cell projection. In IEEE Visualization
’00, pages 109–116, 2000.

94. I. A. Sadarjoen, A. J. de Boer, F. H. Post, and
A. E. Mynett. Patricle tracing in s-transformed
grids using tetrahedral 6-decomposition. In EG
Workshop on Visualization in Scientific Comput-
ing, pages 71–80, 1998.

95. I. A. Sadarjoen and F. H. Post. Geometric
methods for vortex extraction. In EG/IEEE
TCVG Symposium on Visualization ’99, pages
53–62, 1999.

96. I. A. Sadarjoen and F. H. Post. Detection,
quantification, and tracking of vortices using
streamline geometry. Computers and Graphics,
24(3):333–341, 2000.

97. I. A. Sadarjoen, F. H. Post, B. Ma, D. C.
Banks, and H.-G. Pagendarm. Selective visual-
ization of vortices in hydrodynamic flows. In
IEEE Visualization ’98, pages 419–422, 1998.

98. A. Sanna, B. Montrucchio, and R. Arina.
Visualizing unsteady flows by adaptive streak-
lines. In WSCG 2000 Conference Proceedings,
pages 84–91, 2000.

99. A. Sanna, B. Montrucchio, and P. Montuschi.
A survey on visualization of vector fields by
texture-based methods. Recent Res. Devel. Pat-
tern Rec., 1:13–27, 2000.

100. G. Scheuermann, H. Burbach, and H. Hagen.
Visualizing planar vector fields with normal
components using line integral convolution. In
IEEE Visualization ’99, pages 255–261, 1999.

101. G. Scheuermann, H. Hagen, H. Krüger,
M. Menzel, and A. Rockwood. Visualization
of higher order singularities in vector fields. In
IEEE Visualization ’97, pages 67–74, 1997.

102. G. Scheuermann, X. Tricoche, and H. Hagen.
C1-interpolation for vector field topology visu-
alization. In IEEE Visualization ’99, pages
271–278, 1999.

103. W. J. Schroeder, C. R. Volpe, and W. E. Lor-
ensen. The stream polygon: A technique for
3D vector field visualization. In IEEE Visual-
ization ’91, pages 126–132, 1991.

104. M. Schulz, F. Reck, W. Bartelheimer, and T.
Ertl. Interactive visualization of fluid dynamics
simulations in locally refined Cartesian grids.
In IEEE Visualization ’99, pages 413–416,
1999.

105. H.-W. Shen, C. R. Johnson, and K.-L. Ma.
Visualizing vector fields using line integral con-
volution and dye advection. In 1996 Volume
Visualization Symposium, pages 63–70, 1996.

106. H.-W. Shen and D. L. Kao. A new line integral
convolution algorithm for visualizing time-
varying flow fields. IEEE Transactions on Visu-
alization and Computer Graphics, 4(2):98–108,
1998.

107. P. Shirley and A. Tuchman. A polygonal ap-
proximation to direct scalar volume rendering.
In Workshop on Volume Visualization ’90,
pages 63–70, 1990.

108. D. Stalling and H.-C. Hege. Fast and reso-
lution independent line integral convolution.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 276

276 Vector Field Visualization

In Proceedings of ACM SIGGRAPH ’95, pages
249–256, 1995.

109. A. Sundquist. Dynamic line integral convolu-
tion for visualizing streamline evolution. IEEE
Transactions on Visualization and Computer
Graphics, 9(3):273–282, 2003.

110. C. Teitzel and T. Ertl. New approaches for
particle tracing on sparse grids. In EG/IEEE
TCVG Symposium on Visualization ’99, pages
73–84, 1999.

111. C. Teitzel, R. Grosso, and T. Ertl. Efficient
and reliable integration methods for
particle tracing in unsteady flows on dis-
crete meshes. In EG Workshop on Visualiza-
tion in Scientific Computing, pages 31–41,
1997.

112. C. Teitzel, R. Grosso, and T. Ertl. Line inte-
gral convolution on triangulated surfaces. In
WSCG 1997 Conference Proceedings, pages
572–581, 1997.

113. C. Teitzel, R. Grosso, and T. Ertl. Particle
tracing on sparse grids. In EG Workshop on
Visualization in Scientific Computing, pages
81–90, 1998.

114. A. Telea and J. J. van Wijk. Simplified repre-
sentation of vector fields. In IEEE Visualiza-
tion ’99, pages 35–42, 1999.

115. X. Tricoche, G. Scheuermann, and H. Hagen.
Continuous topology simplification of planar
vector fields. In IEEE Visualization ’01, pages
159–166, 2001.

116. X. Tricoche, G. Scheuermann, and H. Hagen.
A topology simplification method for 2D
vector fields. In IEEE Visualization ’00, pages
359–366, 2000.

117. X. Tricoche, T. Wischgoll, G. Scheuermann,
and H. Hagen. Topology tracking for the
visualization of time-dependent 2D flows.
Computers and Graphics, 26(2):249–257,
2002.

118. G. Turk and D. Banks. Image-guided stream-
line placement. In Proceedings of ACM SIG-
GRAPH ’96, pages 453–460, 1996.

119. S.-K. Ueng, C. Sikorski, and K.-L. Ma. Effi-
cient streamline, streamribbon, and stream-
tube constructions on unstructured grids.
IEEE Transactions on Visualization and Com-
puter Graphics, 2(2):100–110, 1996.

120. S. P. Uselton. Volume rendering for computa-
tional fluid dynamics: initial results. Technical
Report RNR-91-026, NASA Ames Research
Center, 1991.

121. J. J. van Wijk. Spot noise—texture synthesis
for data visualization. Computer Graphics
(Proceedings of AGM SIGGRAPH ’91),
25:309–318, 1991.

122. J. J. van Wijk. Flow visualization with surface
particles. IEEE Computer Graphics and Appli-
cations, 13(4):18–24, 1993.

123. J. J. van Wijk. Implicit stream surfaces. In
IEEE Visualization ’93, pages 245–252, 1993.

124. J. J. van Wijk. Image based flow visualization.
ACM Transactions on Graphics, 21(3):745–754,
2002.

125. V. Verma, D. Kao, and A. Pang. PLIC:
bridging the gap between streamlines and
LIC. In IEEE Visualization ’99, pages 341–
348, 1999.

126. V. Verma, D. Kao, and A. Pang. A flow-
guided streamline seeding strategy. In IEEE
Visualization ’00, pages 163–170, 2000.

127. R. Wegenkittl and E. Gröller. Fast oriented
line integral convolution for vector field visu-
alization via the Internet. In IEEE Visualiza-
tion ’97, pages 309–316, 1997.

128. R. Wegenkittl, E. Gröller, and W. Purgatho-
fer. Animating flow fields: Rendering of
oriented line integral convolution. In Computer
Animation ’97, pages 15–21, 1997.

129. D. Weiskopf, G. Erlebacher, M. Hopf, and
T. Ertl. Hardware-accelerated Lagrangian–
Eulerian texture advection for 2D flow visual-
ization. In Vision, Modeling, and Visualization
VMV ’02 Conference, pages 77–84, 2002.

130. D. Weiskopf, M. Hopf, and T. Ertl. Hardware-
accelerated visualization of time-varying 2D
and 3D vector fields by texture advection via
programmable per-pixel operations. In Vision,
Modeling, and Visualization VMV ’01 Confer-
ence, pages 439–446, 2001.

131. R. Westermann, C. Johnson, and T. Ertl. Top-
ology-preserving smoothing of vector fields.
IEEE Transactions on Visualization and Com-
puter Graphics, 7(3):222–229, 2001.

132. L. Westover. Footprint evaluation for volume
rendering. Computer Graphics (Proceedings of
ACM SIGGRAPH ’90), 24:367–376, 1990.

133. T. Wischgoll and G. Scheuermann. Detection
and visualization of closed streamlines in
planar flows. IEEE Transactions on Visualiza-
tion and Computer Graphics, 7(2):165–172,
2001.

134. C. M. Wittenbrink, A. T. Pang, and S. K.
Lodha. Glyphs for visualizing uncertainty in
vector fields. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2(3):266–279,
1996.

135. P. C. Wong, H. Foote, R. Leung, E. Jurrus,
D. Adams, and J. Thomas. Vector field simpli-
fication—a case study of visualizing climate
modeling and simulation data sets. In IEEE
Visualization ’00, pages 485–488, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 277

Overview of Flow Visualization 277

136. M. Zöckler, D. Stalling, and H.-C. Hege.
Interactive visualization of 3D-vector fields
using illuminated stream lines. In IEEE Visu-
alization ’96, pages 107–113, 1996.

137. M. Zöckler, D. Stalling, and H.-C. Hege. Par-
allel line integral convolution. In EG Workshop
on Parallel Graphics and Visualisation, pages
111–127, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:17pm page 278

278 Vector Field Visualization

13 Flow Textures: High-Resolution
Flow Visualization

GORDON ERLEBACHER

Florida State University

BRUNO JOBARD

Université de Pau

DANIEL WEISKOPF

University of Stuttgart

13.1 Introduction

Steady and unsteady vector fields are integral to

many areas of scientific endeavor. They are gen-

erated by increasingly complex numerical simu-

lations and measured by highly resolved

experimental techniques. Datasets have also

grown in size and complexity, motivating the de-

velopment of a growing number of visualization

techniques tobetterunderstand their spatio–tem-

poral structure. As explained in Chapter 12, they

are often characterized by their integral curves,

also known as pathlines. They can be best under-

stood as the time evolution of massless particles

released into the flow. In time-dependent flows,

pathlines depend strongly on where the particles

are released in space and time. Moreover, they

can intersect when viewed in the physical

domain, which often makes reliable interpret-

ation of the flow field quite difficult and prone to

error.

Rather than visualize a collection of pathlines

within a single slice, it is advantageous to consider

instead the instantaneous structure of the flow

and its temporal evolution. For example, par-

ticles can be released along a planar curve and

tracked.The time-dependent curve formedby the

particles as theyare convectedby theflow is called

a time line. Visualizations of streaklines, timesur-

faces, etc., are other viable approaches based on

integral curves. The extreme approach is to re-

lease a dense collection of particles, covering the

physical domain, into the flow. At any point in

time, due to flow divergence or strain, the par-

ticles form spatial patterns with varying degrees

of complexity, and their temporal evolution be-

comes of interest. These patterns may become

nonuniform under the effect of flow divergence,

convergence, or strain. A dense, if not uniform,

coverage is maintained by tracking a sufficiently

largenumberofparticles. If aproperty is assigned

to each particle, and if the number of particles is

sufficiently large, one can construct a continuous

time-dependent distribution of the particle prop-

erty over the physical domain.

Textures are a well known graphic representa-

tion with many useful properties, and they have

been well supported on graphics hardware since

the mid-1990s. They execute a wide variety of

operations in hardware, including filtering, com-

pression, and blending, and offer the potential to

greatly accelerate many advanced visualization

algorithms. Their main function is to encode

detailed information without the need for large-

scale polygonal models. In this chapter, we dis-

cuss flow-texture algorithms,which encode dense

representations of time-dependent vector fields

into textures and evolve those representations in

time. These algorithms have the distinctive prop-

erty that the update mechanism for each texel is

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 279

279

identical. They are ideally suited to modern

graphics hardware that relies on a single instruc-

tion multiple data (SIMD) architecture. Two

algorithms can be viewed as precursors to flow

textures: spot noise [18] and moving textures [14].

Spot noise tracks a dense collection of particles,

represented as discs of finite radius. These two

algorithms motivated the development of dense

methods and their eventual mapping onto

graphics hardware. A key component of flow-

texture algorithms is a convolution operator

that acts along some path in a noise texture.

This approach to dense vector-field representa-

tionwas first applied to steadyflows [5] and called

line integral convolution (LIC). It has seen many

extensions (see Chapter 12), some for unsteady

flows, such as unsteady flow LIC (UFLIC) [16],

dynamic LIC (DLIC) [17], Lagrangian–Eulerian

advection (LEA) [10], image-based flow visual-

ization (IBFV) [19], and others [3,14]. Fig. 13.1

illustrates the application of LEA to the evolu-

tion of unsteady vector fields on timesurfaces [8].

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 280

Figure 13.1 Application of flow textures to the advection of timesurfaces in the Gulf of Mexico [8]. (Top row) LEA on a slice;

(middle row) timesurfaces viewed as shaded surfaces; (bottom row) flow texture superimposed on the timesurface. Each row

represents three frames from an animation. Data courtesy of James O’Brien.

280 Vector Field Visualization

Rather than enumerate existing algorithms

along with their advantages and disadvantages,

we present a conceptual framework within

which these algorithms can be described and

understood. We limit ourselves to 2D flow

fields, although the strategies presented below

have straightforward (albeit much more expen-

sive) extensions to 3D.

The chapter is structured as follows: Section

13.2 describes a framework that abstracts the

salient features of flow-texture algorithms, in

particular those related to temporal and spatial

correlation. This is followed in Section 13.3 by a

discussion of integration accuracy, texture gen-

eration, and the development of recurrence re-

lations for easy mapping onto graphics

hardware. Finally, we cover the details neces-

sary to port the leading algorithms to current

graphics hardware in Section 13.4.

13.2 Underlying Model

Most of the existing flow-texture algorithms

derive from different approximations to a phys-

ical model that we now describe. Consider a

single particle in an unsteady flow u(r, t) and its

trajectory, henceforth defined as a curve in a 3D

coordinate system with two spatial axes r and a

time axis t. As illustrated in Fig. 13.2, the projec-

tion of the particle trajectory onto the (x, y) plane

is a pathline of the underlying flow. The volume

spanned by r and t is denoted by V. So that we

can understand the temporal dependence of the

flow, the 3D reference frame is densely filled with

particle trajectories. The intersection of the

volume with a 2D spatial plane then yields a

dense collection of points (also referred to as

particles). As this slice translates along the time

axis, their spatial coordinates change continu-

ously, thus ensuring temporal coherence. Local

regions of flow strain or divergence create

pockets of increased and reduced particle

density, which form distinct macroscopic

patterns. These patterns persist in time when

collections of neighboring particles travel

together.

All methods must address the following chal-

lenges:

1. Maintain a time-independent particle dens-

ity without destroying the mechanisms re-

sponsible for changes in the particle density

and without sacrificing temporal coherence;

i.e., particle trajectories must be sufficiently

long.

2. Develop a good strategy for adding and

removing particles.

3. Introduce spatial correlation into each

frame that encodes information from a

short time interval to generate macroscopic

structures representative of the flow.

4. These macroscopic structures should be

correlated in time to simulate flow motion.

5. Steady flow should result as a special case of

unsteady flow.

13.2.1 Particle Features

Particles released into the flow are subject to

several constraints. They are identified by an

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 281

Figure 13.2 Illustration of a trajectory in the space–time

domain V and a pathline viewed as its projection onto a

spatial slice.

Flow Textures: High-Resolution Flow Visualization 281

invariant tag, along with one or more time-

dependent properties. In most implementations

that target visualization, one of these properties

is color, often kept constant. To accentuate par-

ticle individuality, the colors can have a random

distribution. Alternatively, to simulate the re-

lease of dye into the flow, all particles initially

within a local volume are assigned the same

color. Particles are constrained to lie on particle

paths imposed by an underlying vector field.

Finally, particles can enter and exit the physical

domain, accumulate at sinks, or diverge from

sources. Additional time-dependent properties,

such as opacity, can be assigned to particles.

These might be used to enhance the clarity of

any macroscopic patterns that emerge.

At a given time, particles occupy a spatial

slice through V and lie on separate trajectories.

The challenge is to develop strategies that main-

tain a uniform distribution of particles for all

time. We address this next.

13.2.2 Maintaining a Regular and Dense
Distribution of Particles

Under the above constraints, one is left with the

task of generating particle trajectories that

sample space uniformly and densely, and prop-

erly take into account effects of inflow/outflow

boundaries. In a direct approach, a large

number of particles is seeded randomly across

a spatial slice and tracked in time. Particle co-

ordinates are maintained in some continuously

updated data structure. Generally, one seeks to

maximize the length of individual trajectories.

However, this requirement must be balanced

against the need for particle uniformity, which

is easily destroyed as a result of boundary

effects and finite velocity gradients. Particles

near inflow boundaries are transported into

the domain, leaving behind regions of reduced

coverage. On the other hand, particles that exit

the domain must be removed. Particle injection

and destruction strategies are essential to coun-

teract this effect. Control of particle density is

also necessary within the interior of the physical

domain.

We now present three strategies that achieve

the above objectives, and we relate them to

existing flow-texture algorithms:

1. All particles have a finite life span t to

ensure their removal from the system before

nonhomogeneities become too severe.

A new distribution of particles is generated

at constant time intervals. The density of

particles is chosen to achieve a dense cover-

age of the spatial domain. This approach

is at the heart of UFLIC [16] and time-

dependent spot noise [6]. In UFLIC, the

time between consecutive particle injections

is smaller than t. On the other hand, they

are injected at intervals of t for the spot-

noise approach. Aliasing errors are allevi-

ated by having the initial particle injection

distributed in time.

2. Keeping the previous approach in mind, we

now seek to explicitly control the density of

particles. The spatial slice is partitioned into

bins within which the particle density will

remain approximately constant. Particles

are removed or injected into a bin when

their number exceeds or falls below pre-

scribed thresholds. We maximize the min-

imum length of trajectories by removing the

oldest particles first. In this approach, a

reduced number of particles is exchanged

against more complex code logic. Acceler-

ated UFLIC [13] and DLIC [17] are

examples of this approach.

3. Particle tracking is abandoned in favor of

an Eulerian point of view. The properties of

a dense collection of particles on a spatial

slice are sampled on a discrete grid. Their

values are updated by following particle

paths. This was the initial approach of

Max and Becker [14]. More recent imple-

mentations are at the basis of LEA [10] and

IBFV [19].

13.2.3 Temporal Correlation

To better understand the nature of temporal

correlation, consider a single illuminated par-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 282

282 Vector Field Visualization

ticle. This particle traces out a trajectory in

space–time. Only a single dot is visible at any

time. In the absence of temporal correlation, the

resulting image would be a set of dots distrib-

uted randomly. Temporal correlation is thus a

consequence of the continuity of particle paths.

The human visual system [4] can integrate the

smooth motion of a single bright dot and infer

its direction and approximate speed. There is a

range of speed that maximizes the effectiveness

of this correlation. If the particle moves too

rapidly, the visual system is incapable of correl-

ating successive positions, and the trajectory

information is lost. If the motion if too slow,

information about the particle motion cannot

be established.

Whatever the visualization technique used,

the objective is to simultaneously represent the

structure of the flow in a spatial slice through

spatial correlation and the temporal evolution

of these structures along particle trajectories. In

the next section, we discuss a general framework

to introduce flow patterns within a spatial slice.

This general framework subsumes all known

flow-texture methodologies.

13.2.4 Spatial Correlation

To achieve spatial correlation, consider an in-

tensity function I(r, t) defined over the 3D

space–time volume V introduced earlier. We

define a filtered spatial slice

Dt(r) ¼
Z 1
�1

k(s)I(Z(t� s; r, t)) ds (13:1)

as a convolution along a trajectory Z(s; r, t)

through V. The subscript on Dt is a reminder

that the filtered image depends on time. Trajec-

tories are denoted by scripted variables and

have three components: two spatial and one

temporal. Z(s; r, t) is parameterized by its first

argument and passes through the point (r, t)

when s ¼ t. For generality, we perform the con-

volution along the entire time axis and rely on

the definition of the filter kernel k(s) to restrict

the domain of integration. We must introduce

some correlation into V. To this end, we define

the intensities in V to be either constant or

piecewise continuous along another family of

trajectories Y(s; r, t). The structure of Dt is thus

characterized by the triplet [Y,Z, k].

13.2.4.1 Line Integral Convolution

LIC introduces coherence into a 2D random

field through a convolution along the stream-

lines x(s; r, t) of a steady vector field [5]. An

equivalent formulation is possible within the 3D

framework when I(r, t) is constant along lines

parallel to the time axis with a random intensity

across a spatial slice. Thus, Y(s; r, t) ¼ (r, s) and

I(r, t) ¼ f(r), where f(r) 2 [0, 1] is a random

function. The convolution is computed along

Z(s; r, t) ¼ (x(s; r, t), s), i.e., the streamlines of

the steady vector field. With these definitions,

spatially correlated patterns produced by LIC

are defined by

Dt(r) ¼
Z 1
�1

k(s)f(x(t� s; r, t)) ds

13.2.4.2 Image-Based Flow Visualization

IBFV [19] takes an approach similar to that of

LIC, with two exceptions. First, the convolu-

tion trajectories are based on the pathlines

x(s; r, t) of u(r, t). Second, the intensity function

defined in LIC is modulated according to a

time-dependent periodic function w(t) along the

trajectories Y(s; r, t) ¼ (r, s) that define I(r, t).

Thus, the volume intensity distribution becomes

I(r, t) ¼ w((tþ f(r)) mod 1) (13:2)

where f(x) 2 [0, 1] is now interpreted as a

random phase. With the definitions in Equation

13.2, the convolution is given by Equation 13.1

with Z(s; r, t) ¼ (x(s; r, t), s).

Consider the case when a single trajectory

from Y is illuminated with an intensity propor-

tional to w(t mod 1). The only points visible

in Dt(r) lie on trajectories that pass through

(r, s) for some s within the support of the kernel.

When the kernel is a monotonically decreasing

function of jsj, the segment of the curve that

corresponds to s > 0 is a streakline segment,

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 283

Flow Textures: High-Resolution Flow Visualization 283

with maximum intensity at r and decaying inten-

sity away from r. It should be noted that in the

limit of steady flow, the resulting streamline in-

tensity remains unsteady, unless w(t) is constant.

13.2.4.3 Lagrangian–Eulerian Advection

LEA [10] seeks to model the effect of a

photograph taken with a long exposure setting.

Under such conditions, an illuminated particle

forms a streak whose points are spatially

correlated. This result is modeled by performing

the convolution along trajectories Z(s; r, t) ¼
(r, s) parallel to the time axis with constant

intensity along the trajectories Y(s; r, t) ¼
(x(s; r, t), s) associated with u(r, t). The resulting

display is then

Dt(r) ¼
Z 1
�1

k(s)I(r, t� s) ds (13:3)

To identify the patterns formed by the spatial

correlation, it is expedient to rewrite Dt(r)

as a convolution along some curve through

a spatial slice of V. Since I(r, t) is constant

along trajectories of u(r, t), it follows that

I(x(s; r, t), s) ¼ I(x(0; r, t), 0) and

Dt(r) ¼
Z 1
�1

k(s)I(x(0; r, t� s), 0) ds (13:4)

This is a convolution along the curve x(0; r, s) in

the t ¼ 0 slice and parameterized by s. If

k(s) ¼ 0 for s > 0, all points on this path lie on

trajectories that pass through r at some time

s � 0, which is a streakline of the flow u(r, t)

after time reversal. The curves x(0; r, s), para-

meterized by s, are precisely the spatially correl-

ated features we seek.

A comparison of Equations 13.1 and 13.4

shows that IBFV and LEA are, in a sense,

dual to each other. IBFV constructs V from

lines parallel to the time axis and convolves

along trajectories, while LEA constructs V

from trajectories and performs the convolution

along lines parallel to the time axis. This duality

is shown in Fig. 13.3.

From the above discussion, we find that it

is important to distinguish carefully between

the curves along which the convolution is

computed and the resulting patterns formed in

Dt(r). In general, the projection of Z(s; r, t) onto

Dt(r) differs from the resulting spatial patterns.

If the kernel support is sufficiently small, the

patterns are visually indistinguishable from

short streamlines (streamlets). When u(r, t) is

steady, both IBFV and LEA produce stream-

lines.

13.2.4.4 Dynamic LIC

Not all vector fields derive from the velocity

field of a fluid. For example, electric fields

driven by time-dependent electric-charge dis-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 284

Figure 13.3 Duality between IBFV (left) and LEA (right). For IBFV, volume intensity is constant along vertical lines, and the

convolution is along pathlines. For LEA, intensity is constant along pathlines, while convolution is along vertical lines.

284 Vector Field Visualization

tributions should be represented as successions

of LIC images correlated in time. In DLIC [17],

the motion of the electric field u(r, t) is

determined by a secondary flow field, v(r, t),

with pathlines y(s; r, t). The generation of the

sequence of LIC images is achieved by building

I(r, t) from the pathlines of the motion field,

i.e., Y(s; r, t) ¼ (y(s; r, t), s), and taking the con-

volution along the streamlines of u(r, t), i.e.,

Z(s; r, t) ¼ (x(s; r, t), t). The filtered display be-

comes as follows:

Dt(r) ¼
Z 1
�1

k(s)I(Z(t� s; r, t))ds

The resulting structures are streamlines of u(r, t)

transported in time along the pathlines of v(r, t).

13.3 Implementing the Dense Set of
Particles Model

Several ingredients are necessary to implement a

flow-texture algorithm:

1) The physical domain.

2) A time-dependent flow field defined over

the physical domain (and perhaps a second

vector field to determine trajectories in non-

flows simulations).

3) A mechanism to generate noise texture

(suitably preprocessed).

4) An integration scheme.

There are several issues that have to be ad-

dressed in all methods: 1) accuracy; 2) sampling;

3) inflow boundaries; 4) uniformity of the noise

frequency; and 5) contrast (see Section 13.4).

13.3.1 Integration Scheme and Accuracy

The position x(t) of a single particle subject to a

velocity field u(r,t) satisfies

dx(t)

dt
¼ u(x(t), t) (13:5)

(In what follows, we no longer refer to the

starting location along a path unless necessary

for clarity.) In practical implementations of

flow-texture methods, the time axis is subdiv-

ided into uniform intervals Dt. Integration of

Equation 13.5 over the time interval [tk, tkþ1]

yields the relation

x(tkþ1) ¼ x(tk)þ
Z tkþ1

tk

u(x(s), s) ds (13:6)

between particle positions. At the discrete level,

the particle position at tk becomes pk ¼ p(tk). A

first-order forward discretization of Equation

13.6 relates the positions of a particle at times

tk and tkþ1:

pkþ1 ¼ pk þ Dt u(pk, tk)

Similarly, a backward integration relates par-

ticle positions between times tk and tk�1:

pk�1 ¼ pk � Dt u(pk, tk)

A first-order scheme is sufficient when integrat-

ing noise textures; errors accumulate only over

the length of a correlated streak. These errors

are, in general, sufficiently small that they are

not visible. When constructing long streaklines

through dye advection (Fig. 13.4 and Section

13.3.3), this is no longer true. High-order inte-

gration methods are then necessary to achieve

accurate results [15,10].

13.3.2 Sampling

The property field is sampled onto a texture that

serves as a background grid. In a flow-texture

algorithm, it is necessary to update the value of

the particle property on each cell (i.e., each

texel). The most general formulation is to com-

pute a filtered spatial integration of the property

at the previous time-step over the physical

domain, according to

Ct(rij) ¼
Z

physical
domain

K(rij�r)Ct�Dt(x(t�Dt;r,t))dr

(13:7)

where K(r) is some smoothing kernel. Different

approximations to Equation 13.7 lead to trade-

offs between speed and quality. Many subsam-

pling schemes, along with supporting theory,

are described by Glassner [7]. The simplest ap-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 285

Flow Textures: High-Resolution Flow Visualization 285

proximation, and the fastest to execute, is point

sampling, which takes the form

Ct(rij) ¼ Ct�Dt(rij � Drij) (13:8)

where

Drij ¼
Z t

t�Dt

u(x(s; rij , t), s) ds

However, direct application of this formula

may generate aliasing errors. LEA evaluates

Ct�Dt(rij � Drij) using nearest-neighbor interpol-

ation; all other methods use bi-linear interpol-

ation.

13.3.3 Texture Generation

Visual effects possible with flow-texture algo-

rithms depend strongly on the textures that are

advected. Noise textures lead to dense represen-

tations of time-evolving streaks; dye advection

results from overlaying a smooth background

texture with local regions of color and letting

these regions advect with the flow. Some tech-

niques, such as IBFV, explicitly construct a

time-dependent noise texture. In all cases, it is

essential to pay attention to the quality of the

textures generated in order to minimize aliasing

artifacts produced by improper relationships

between the properties of the velocity field, the

spatial and temporal sampling rates, and the

frequency content of the input textures.

13.3.3.1 Texture for Noise Advection

We begin by illustrating the relationship be-

tween filtering and sampling through a simple

1D example. Consider a uniform velocity field u

and a noise texture I(x) filtered by convolution:

D(x) ¼
Z 1
�1

k(s)I(x� us) ds (13:9)

If I(x) is sampled onto a uniform grid xi with

spacing Dx, a first-order approximation of

Equation 13.9 yields

D(x) �
X1

i¼�1
k(iDs)I(x� id)Ds

where I(x� id) is estimated from Ii ¼ I(xi) via

some reconstruction algorithm and Ds is the

time-sampling interval. By considering the

properties of D(x) when a single cell is illumin-

ated, we derive a condition that relates Ds and

d ¼ uDs, the distance traveled by a particle over

the sampling interval. Using the Heaviside func-

tion H(x) ¼ 1 for x > 0 and zero elsewhere, the

texture has the representation

I(x) ¼ H(xþ Dx)�H(x)

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 286

Figure 13.4 Flow in the Gulf of Mexico. (Left) Time lines visualized by dye advection; (Right) LEA with masking to emphasize

regions of strong currents. Data courtesy of James O’Brien. (See also color insert.)

286 Vector Field Visualization

which leads to a filtered texture

D(x)¼
X1

i¼�1
k(iDs)[H(xþDx� id)�H(x� id)]Ds

We assume that the kernel is symmetric about

s ¼ 0. When i ¼ 0, the term in brackets is a

pulse of width Dx. When i ¼ 1, the support of

the pulse lies in [d � Dx, d]. To ensure overlap

between these pulses, it is necessary that Dx

exceed d. When this condition is violated, D(x)

is a series of disconnected pulses whose ampli-

tudes follow k(iDs).

One way to avoid, or at least reduce, such

aliasing effects is to ensure that high-frequency

components are removed from I(x) by a prefil-

tering step. Good filters have a short support in

Fourier and physical space, making the Gauss-

ian filter, of infinite support but exponential

decay, a strong candidate. Multifrequency

filtering has been proposed as a means to link

the characteristics of spatial patterns in Dt(r) to

properties of the flow, such as velocity magni-

tude [12]. In the context of flow textures, it has

been shown that if a 1D texture with a single

illuminated texel is prefiltered with a triangular

pulse of width greater than d, the resulting image

is a smoothly decaying function that follows k(s)

[19]. Simple 2D filters are isotropic, so that

spatial correlations introduced into the texture

are independent of orientation. Unfortunately,

control is lost over the width of the streaks

formed in the final image. Anisotropic filters

can be designed to prefilter the texture only

in the direction of the instantaneous flow

field, while leaving the direction normal to the

streamline untouched. None of the techniques

addressed in this paper implements such an

approach, although LEA does use a LIC algo-

rithm as an anisotropic filter to remove aliasing

in a postprocessing step. Glassner [7] provides a

thorough discussion of issues related to sam-

pling, filtering, and reconstruction.

13.3.3.2 Temporal Correlation

As explained in Section 13.2.4, I(r, t) is an

intensity distribution defined over a space–time

domain. It is important to ensure that the

temporal sampling interval Ds is consistent with

the frequency content of the volume. IBFV and

LEA address this problem differently. In IBFV

[19], the intensity map is constructed indepen-

dently of the underlying vector field. The

temporal component is introduced through the

periodic function w(t mod 1) described by

Equation 13.2. High contrast is achieved when

w(t) varies sharply over some small t interval.

To avoid aliasing effects, w(t) should be filtered

so that the time discretization satisfies the

Nyquist criterion. Since w(t) is applied to all

points with different initial phase, the filtering

should be performed analytically. Van Wijk [19]

advocates the use of w(t) ¼ (1� t) mod 1, which

emulates the effects of Oriented LIC [20].

13.3.3.3 Texture for Dye Advection

Dye advection is treated similarly to noise

advection, although the objective is different.

When advecting noise, we seek to visualize

streak patterns representative of the magnitude

and direction of vectors in the velocity field.

Instead, dye-advection techniques emulate the

release of colored substance into a fluid and

track its subsequent evolution over short or long

time intervals. This process is simulated by

pairing aconnected regionof the texture (referred

to as dye) with a constant property value. When

injecting dye, the texels located at the injection

position are set to the color of the dye. Once

released, the dye is advected with the flow.

13.3.4 Spatial Correlation

In this section, we discretize the convolution in-

tegrals (Equations 13.1 and 13.4) for IBFV and

LEA respectively, and we transform them into

simple recurrence relations that can be imple-

mented efficiently. A kernel that satisfies the

multiplicative relation k(s)k(t� s) ¼ k(t) for

s � t leads to a recurrence relation between the

filtered display at two consecutive time-steps.

The exponential filter k(s) ¼ be�bsH(s), normal-

ized to unity, satisfies this relation. Although

such a filter does not have compact support, the

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 287

Flow Textures: High-Resolution Flow Visualization 287

ease of implementing exponential filters through

blending operations makes them very popular.

Using the normalized exponential filter,

Equation 13.1 is discretized according to

Dn(rij) ¼ b
Xn

k¼0

e�bsk DsI(Z(tn � sk; rij , tn)) (13:10)

where the subscript n on Dn refers to tn, sk ¼
kDs, tn ¼ nDt and t0 ¼ 0. In general, Ds ¼ Dt.

We next specialize the above relation to IBFV

and LEA.

13.3.4.1 Image-Based Flow Visualization

IBFV uses trajectories

Z(tn � sk; rij , tn) ¼ (x(tn � sk; rij , tn), tn � sk)

associated with u(r, t) passing through the center

rij of texel ij. Substitution into Equation 13.10

yields

Dn(rij) ¼ bDs
Xn

k¼0

e�bsk I(x(tn � sk; rij , tn), tn � sk)

(13:11)

Although IBFV defines I(r, t) through Equation

13.2, we can derive a more general relation-

ship valid for a time-dependent intensity func-

tion. Using the relation x(s; rij, tn) ¼ x(s; rij�
Drij, tn�1) and some straightforward algebra, a

simple relation emerges between Dn(rij) and

Dn�1(rij � Drij), namely

Dn(rij) ¼ e�bDsDn�1(rij � Drij)þ bDsI(rij , tn)

(13:12)

13.3.4.2 Lagrangian–Eulerian Advection

In the case of LEA, Z(tn � sk; rij, tn) ¼ (rij,

tn � sk). The discretization

Dn(rij) ¼ bDs
Xn

k¼0

e�bsk I(rij , tn � sk) (13:13)

of Equation 13.3 can be recast into the recur-

rence relation

Dn(rij) ¼ e�bDsDn�1(rij)þ bDsI(rij , tn) (13:14)

The second term is evaluated by following the

trajectory Y(s; rij, tn) ¼ (x(s; rij, tn), s) from

t ¼ tn to the previous time tn�1, i.e.,

I(rij , tn) ¼ I(rij � Drij , tn�1) (13:15)

13.3.4.3 Dynamic Line Integral Convolution

As explained in Section 13.2.4, DLIC constructs

an intensity map based on the pathlines of the

motion field v(r, t), updates it according to

Equation 13.15, and performs the LIC along

the streamlines of u(x, t). In the actual software

implementation, a large number of individual

particles, represented by discs of finite radius, is

accurately tracked. The particles are allowed to

overlap. Care is taken to ensure a uniform

coverage of the physical domain, which in turn

ensures good temporal correlation. The final

LIC is of high quality. Note that LIC can also

be implemented in graphics hardware [9].

13.3.5 Inflow Boundaries

All flow-texture algorithms have difficulties

with inflow boundaries, i.e., points along the

boundary where the velocity points into the

physical domain (Fig. 13.5). The recurrence re-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 288

Buffer Zone

IBFV

LEA

u(x,t)

noise

Figure 13.5 Inflow boundary treatment of LEA and IBFV.

288 Vector Field Visualization

lations derived above for LEA and IBFV clarify

the issues. In LEA, as evident from Equation

13.14, particles that lie near an inflow boundary

may lie outside the physical domain at the pre-

vious time. Should this occur, a random prop-

erty value is assigned to that particle and

blended into the display at the current time.

IBFV, on the other hand, must access the

value of the spatially correlated display at

rij � Drij . Simply replacing this value by a

random value would destroy the spatial correl-

ation near the inflow boundaries, which would

then contaminate the interior of the domain.

For such points, one possible update equation is

Dn(rij) ¼ e�bDsDn�1(rij)þ bDsI(rij , tn)

13.4 GPU-Based Implementation

In this section, we demonstrate how the differ-

ent flow-visualization techniques described pre-

viously can be realized by exploitation of

graphics hardware. The principal reason for

using graphics processing units (GPUs) is to

achieve a much higher processing speed, poten-

tially two to three orders of magnitude higher

than a comparable CPU-based implementation.

Performance is an important issue because it

might make the difference between a real-time

GPU-based visualization, which allows for ef-

fective user interaction, and a noninteractive

CPU version. We start with an abstract view

on the capabilities of GPUs and how visualiza-

tion techniques can benefit, followed by a dis-

cussion of specific details of IBFV and LEA

implementations.

13.4.1 Generic GPU-Based
Texture Advection

All implementations have to address the problem

of how data structures and operations applied to

them canbemapped to graphics hardware. From

a generic point of view, the algorithmic structure

of texture-advection techniques consists of the

following steps (Fig. 13.6). First, (noise) textures

and possibly other auxiliary data structures are

initialized. Then, each iteration step has to take

into account the following:

1. The advection, based on the integration of

pathlines.

2. A compositing operation, which combines

information from the previous and cur-

rent time-steps to introduce spatial coher-

ence.

3. Optional postprocessing to improve image

quality.

4. The final display on the screen.

The textures that represent the particles can

be stored on the GPU by means of standard 2D

or 3D textures, depending on the dimensionality

of the domain. We assume that the particles are

given on a uniform grid. In purely hardware-

based implementations, the velocity field is also

stored in a 2D or 3D texture. For hybrid CPU

and GPU-based implementations, the vector

field may be held in main memory and pro-

cessed by the CPU. The advection step com-

prises both the integration of particle paths for

one time-step (based on Equation 13.6) and the

transport of the texture along these paths (based

on Equation 13.8). Typically, an explicit first-

order Euler integration is employed, which is

executed either by the CPU for a hybrid ap-

proach or by the GPU. Texture transport

is based on an appropriate specification of tex-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 289

Initialization

Advection

Compositing

Postprocessing

Final Display

Vector
Field

Next Iteration

Figure 13.6 Flowchart for generic texture advection.

Flow Textures: High-Resolution Flow Visualization 289

ture coordinates, which can be done either on

a per-vertex basis (for hybrid CPU–GPU ap-

proaches) or on a per-fragment basis (i.e.,

purely GPU-based). The compositing operation

is directly supported on the GPU by the

blending of operations working on the frame-

buffer or within fragment programs.

Hardware-based implementations are very

fast for the following reasons. GPUs realize a

SIMD architecture, which allows efficient pipe-

lining. In addition, bandwidth to texture

memory is very high, which leads to a fast tex-

ture access. Finally, a transfer of visualization

results to the graphics board for the final display

is superfluous for GPU-based implementations.

Since texture advection is compatible with the

functionality of today’s GPUs, a high overall

visualization performance can be achieved.

However, the following issues have to be con-

sidered. First, the accuracy of GPUs is usually

limited and might vary during the complete

rendering pipeline. For example, color channels

in the framebuffer or in textures have a typical

resolution of only eight bits, whereas fragment

processing may take place at higher precisions.

Even floating-point accuracy within textures

and fragment processing, provided by modern

GPUs, is not comparable to double-precision

numbers, available on CPUs. Second, the

number of instructions might be limited. There-

fore, the algorithms have to be designed to

enable a rather concise implementation—some-

times at the cost of accuracy—or a less efficient

multipass rendering technique has to be applied.

Similarly, the number of indirection steps in

fragment processing (i.e., so-called dependent

texture lookups) may be restricted. A third

issue concerns the choice of APIs for program-

ming the GPU. OpenGL [2] and DirectX [1], the

two widespread graphics APIs, have specific

advantages and disadvantages. The main ad-

vantage of OpenGL is its platform (i.e., operat-

ing system) independence. However, at the time

of writing, sophisticated features of the GPUs

can only be accessed by GPU-specific OpenGL

extensions. The situation might improve in the

future with standardized interfaces for fragment

programs. The main advantages of DirectX are

a GPU-independent API and the support for a

fast render-to-texture functionality, which is ex-

tremely useful for multipass rendering and itera-

tive processes like texture advection. On the

downside, DirectX is available only on the

Windows platform. Finally, for vertex or frag-

ment programming, higher-level programming

languages, such as NVidia’s Cg (C for graphics)

or the HLSL (high-level shading language) of

DirectX, can be used to replace the assembler-

like programming with OpenGL extensions or

DirectX vertex- and pixel-shader programs. We

try to keep the following discussion as API-

independent as possible in order to allow a

mapping to current and future programming

environments.

13.4.2 Image-Based Flow Visualization

Visualization techniques based on the idea of

IBFV implement 2D flow visualization ac-

cording to the recurrence relation

Dn(r) ¼ (1� a)Dn�1(r� Dt u(r, tn))þ aIn(r)

(13:16)

which approximates Equation 13.12 by first-

order integration of the particle path and by

first-order approximation of the exponential

function. Both Dn and In can be implemented

by 2D textures. To alleviate the notation, D and

I will henceforth refer to any of the Dn, In tex-

tures, and rij is replaced by r. The first term of

Equation 13.16 requires access to the texture D

at the previous time-step at the old particle

position r� Dt u(r, tn). Three possible solutions

can be employed for this advection.

The first solution implements advection on a

per-fragment basis. Here, a fragment program

computes the old position r� Dt u(r, tn) by ac-

cessing the vector field stored in another 2D

texture. Then a lookup in Dn�1 is performed

by interpreting the old position as a set of tex-

ture coordinates. This texture-fetch operation is

an example of a dependent texture lookup. Fig.

13.7 shows the DirectX pixel-shader code for

this advection. The fragments are generated by

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 290

290 Vector Field Visualization

rendering a single quadrilateral that spans the

spatial domain. Texture coordinates t0 and t1
are specified in such a way as to exactly cover

the domain by the textures. The dependent tex-

ture lookup takes the result of the previously

fetched vector field u(r, tn), scales this result

by a constant value (a parameter that is speci-

fied outside the fragment program and that

takes into account �Dt), and adds the scaled

value to the texture coordinates t0 to obtain

the coordinates for the lookup in the texture

Dn�1.

The second solution implements a similar

backward advection on a per-vertex basis [14].

The domain is covered by a mesh, with veloci-

ties assigned at its vertices. On the CPU, the old

positions r� Dt u(r, tn) are computed for the

vertices by accessing the vector field in main

memory. Once again, the old positions are in-

terpreted as texture coordinates for a lookup in

D. The domain is rasterized by drawing the

entire mesh.

The third solution implements a forward ad-

vection on a per-vertex basis [19]. This tech-

nique differs from the previous one in that the

vertex coordinates are changed instead of the

texture coordinates, i.e., a forward Euler inte-

gration rþ Dt u(r, tn) yields the vertex coordin-

ates for a distorted triangle mesh. The results

differ from backward integration because the

Euler method is not symmetric with respect to

the evolution of time. Nevertheless, first-order

forward and backward integration are both

first-order approximations of the true solutions,

and forward mapping is an acceptable approxi-

mation to the advection in Equation 13.16.

In all three implementations, the texture

lookup with shifted texture coordinates makes

use of bi-linear interpolation. An interpolation

scheme is required because pathline integration

usually results in texture coordinates that do not

have a one-to-one correspondence to the texels.

The artificial smearing-out by bi-linear interpol-

ation does not invalidate the final images be-

cause their effects are continuously blended

out by compositing, according to Equation

13.16.

This compositing operation can be achieved

by a two-pass rendering [19]. The first pass

writes the result of the above advection to the

framebuffer. In the second pass, texture I is

blended into the framebuffer by using a
blending with weights a and (1� a), respect-

ively. Alternatively, the advected texture D and

I can be combined by multitexturing within a

fragment program. Finally, the framebuffer is

saved in a texture to obtain the input for the

subsequent iteration. In addition to noise-based

visualization, IBFV emulates dye advection

by interactively drawing additional dye sources

into the framebuffer during each rendering

step.

13.4.3 Lagrangian–Eulerian Advection

LEA is based on the recurrence relation in

Equation 13.14, leading to

Dn(r) ¼ (1� a)Dn�1(r)þ aIn�1(r� Dt u(r, tn))

(13:17)

where I is computed from the property of the

particle at the previous time-step. When com-

pared to IBFV, the roles of textures D and I are

exchanged with respect to advection. A GPU-

based algorithm [11,21] implements a per-frag-

ment advection of I analogously to the frag-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 291

ps.1.1 // We are fine with pixel shader V1.1
tex t0 // Accesses vector field u
texbem t1,t0 // Dependent tex lookup in D with shifted tex coords
mov r0, t1; // Outputs results

Figure 13.7 Pixel-shader code for backward advection.

Flow Textures: High-Resolution Flow Visualization 291

ment-based backward mapping for D in the case

of IBFV. However, since no a blending is im-

posed onto the transported noise texture I, a bi-

linear interpolationwould cause an unacceptable

smearing and a fast loss of both contrast and

high frequency. Therefore, a nearest-neighbor

sampling is employed during the backward inte-

gration step. Unfortunately, a direct implemen-

tation of nearest-neighbor sampling would not

permit subtexel motion of particles because a

texel is virtually repositioned to the center of

the respective cell after each iteration, i.e., small

magnitudes of the velocity field would result in

an erroneously still image [10]. The Lagrangian

aspect of LEA makes possible subtexel motion:

in addition to noise values, 2D coordinates of

particles are stored in a texture; these coordinates

are also updated during the particle integration

and allow particles to eventually ‘‘jump’’ across

texel boundaries, even at small velocities. Add-

itional discussions concerning numerical accur-

acy onGPUs can be found inWeiskopf et al. [21].

Similarly to IBFV, textures D and I are com-

bined by an a blending operation in the frame-

buffer or fragment program, and the

framebuffer is saved in a texture to obtain the

input for the subsequent iteration. Dye advec-

tion is included by a separate process that is

based on per-fragment advection with bi-linear

interpolation. The final image is constructed

from advected noise and dye textures through

blending.

13.4.4 Postprocessing

The results of IBFV and LEA can be improved

by postprocessing. Since both techniques apply

a summation of different noise textures by

blending, image contrast is reduced. Postproces-

sing by histogram equalization [19] or high-pass

filtering [16] could be applied to increase con-

trast. Aliasing artifacts occur in LEA when the

maximum texture displacement is excessive (see

Section 13.3.3). These artifacts can be avoided

by imposing LIC as a postprocessing filter [10].

As specifically designed for dye advection, arti-

ficial blurring caused by bi-linear interpolation

can be reduced by applying a filter that steepens

the fuzzy profile at the boundary of the dye, i.e.,

a nonlinear mapping of the unfiltered grey-scale

values [10]. Finally, velocity masking can be

used to change the intensity or opacity

depending on the magnitude of the underlying

velocity field [10,21]. In this way, important

regions with high velocities are emphasized.

Note that, with the exception of velocity

masking [21], GPU-based implementations of

the postprocessing methods discussed here

have not yet been reported in the literature.

13.5 Conclusions

We have presented the leading flow-texture tech-

niques within a single framework, first from a

physical perspective based on a space–time

domain filled with a dense collection of particle

trajectories. This was followed by a formulation

that explains how to derive the visualization

techniques based on properly chosen convolu-

tions within the volume. We feel that flow-tex-

ture algorithms are well understood in 2D planar

flows, although some research remains to be

done for flows on 2D curved manifolds. Flow-

texture algorithms in 3D remain a formidable

challenge. Straightforward extensions to 2D al-

gorithms are prohibitively expensive. The dis-

play of dense 3D datasets introduces several

perceptual issues, such as spatio–temporal co-

herence, depth perception, and orientation, that

remain largely unsolved. Mechanisms for user

interaction and navigation remain in their in-

fancy. The holy grail of 3D flow-texture algo-

rithms is the development of a real-time system

to display high-quality dense representations

with an interactively changing region of interest.

Acknowledgments

The first author thanks the National Science

Foundation for support under grant NSF-

0083792. The third author acknowledges sup-

port from the Landesstiftung Baden-Württem-

berg.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 292

292 Vector Field Visualization

References

1. DirectX, http://www.microsoft.com/directx
2. OpenGL, http://www.opengl.org
3. J. Becker and M. Rumpf. Visualization of time-

dependent velocity fields by texture transport.
In Visualization in Scientific Computing ’98,
pages 91–102, 1998.

4. R. Blake and S.-H. Lee. Temporal structure in
the input to vision can promote spatial
grouping. In Biologically Motivated Computer
Vision 2000, pages 635–653, 2000.

5. B. Cabral and L. Leedom. Imaging vector fields
using line integral convolution. In Proceedings
of ACM SIGGRAPH ’93, pages 263–272, 1993.

6. W. C. de Leeuw and R. van Liere. Spotting
structure in complex time dependent flows. In
Scientific Visualization, Proceedings: Dagstuhl
’97, pages 47–53, 1997.

7. A. S. Glassner. Principles of Digital Image Syn-
thesis. San Francisco, Morgan Kaufmann,
1995.

8. J. Grant, G. Erlebacher, and J. J. O’Brien.
Case study: visualization of thermoclines in
the ocean using Lagrangian-Eulerian timesur-
faces. In IEEE Visualization ’02, pages 529–
532, 2002.

9. W. Heidrich, R. Westermann, H.-P. Seidel, and
T. Ertl. Applications of pixel textures in visual-
ization and realistic image synthesis. In ACM
Symposium on Interactive 3D Graphics, pages
127–134, 1999.

10. B. Jobard, G. Erlebacher, and M. Hussaini.
Lagrangian–Eulerian advection for unsteady
flow visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 8(3):211–222,
2002.

11. B. Jobard, G. Erlebacher, and M. Y. Hussaini.
Tiled hardware-accelerated texture advection
for unsteady flow visualization. In Proceedings
of Graphicon 2000, pages 189–196, 2000.

12. M.-H. Kiu and D. C. Banks. Multi-frequency
noise for LIC. In Visualization ’96, pages 121–
126, 1996.

13. Z. Liu and R. Moorhead. AUFLIC—An accel-
erated algorithm for unsteady flow line integral
convolution. In EG/IEEE TCVG Symposium on
Visualization ’02, pages 43–52, 2002.

14. N. Max and B. Becker. Flow visualization using
moving textures. In Proceedings of the ICASE/
LaRC Symposium on Visualizing Time-Varying
Data, pages 77–87, 1995.

15. H.-W. Shen, C. R. Johnson, and K.-L. Ma.
Visualizing vector fields using line integral
convolution and dye advection. In 1996
Volume Visualization Symposium, pages 63–70,
1996.

16. H.-W. Shen and D. L. Kao. A new line integral
convolution algorithm for visualizing time-
varying flow fields. IEEE Transactions on Visu-
alization and Computer Graphics, 4(2):98–108,
1998.

17. A. Sundquist. Dynamic line integral convolu-
tion for visualizing stream-line evolution. IEEE
Transactions on Visualization and Computer
Graphics, 9(8):273–282, 2003.

18. J. J. van Wijk. Spot noise—texture synthesis for
data visualization. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH ’91), 25:309–
318, 1991.

19. J. J. van Wijk. Image based flow visualization.
ACM Transactions on Graphics, 21(3):745–754,
2002.

20. R. Wegenkittl, E. Gröller, and W. Purgathofer.
Animating flow fields: rendering of oriented line
integral convolution. In Computer Animation
’97, pages 15–21, 1997.

21. D. Weiskopf, G. Erlebacher, M. Hopf, and
T. Ertl. Hardware-accelerated Lagrangian–
Eulerian texture advection for 2D flow visual-
ization. In Vision, Modeling, and Visualization
VMV ’02 Conference, pages 439–446, 2002.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 293

Flow Textures: High-Resolution Flow Visualization 293

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 3:59pm page 294

This page intentionally left blank

14 Detection and Visualization of
Vortices

MING JIANG and RAGHU MACHIRAJU

Department of Computer and Information Science

The Ohio State University

DAVID THOMPSON

Department of Aerospace Engineering

Mississippi State University

14.1 Introduction

In general, a feature can be defined as a pattern

occurring in a dataset that is the manifestation

of correlations among various components of

the data. For many features that occur in scien-

tific data, these correlations can be defined pre-

cisely. For other features, they are not well

understood or do not lend themselves to precise

definitions. Surprisingly, the swirling feature in

flow fields, commonly referred to as a vortex, is

an example of a feature for which a precise

definition does not exist.

By most accounts [1–3], a vortex is character-

ized by the swirling motion of fluid around a

central region. This characterization stems from

our visual perception of swirling phenomena

that are pervasive throughout the natural

world. However, translating this intuitive de-

scription of a vortex into a formal definition

has been quite a challenge.

Lugt [1] proposed the following definition for

a vortex: A vortex is the rotating motion of a

multitude of material particles around a common

center. The problem with this definition is that it

is too vague. Although it is consistent with

visual observations, it does not lend itself read-

ily to implementation in a detection algorithm.

In light of this, Robinson [3] attempted to pro-

vide a more concrete definition of a vortex by

specifying the conditions for detecting swirling

flows in three dimensions:

A vortex exists when instantaneous streamlines

mapped onto a plane normal to the vortex core

exhibit a roughly circular or spiral pattern, when

viewed from a reference frame moving with the

center of the vortex core.

The primary shortcoming of this second op-

erational definition is that it is self-referential:

the existence of a vortex requires a priori know-

ledge of the orientation and motion of its core.

Despite the lack of a formal definition, vari-

ous detection algorithms have been imple-

mented that can adequately identify vortices

in most computational datasets. In this paper,

we present an overview of existing detection

methods; in particular, we focus on nine methods

that are representative of the state of the art.

Although this is not a complete listing of vortex-

detection algorithms, the range of relevant

issues covered by these nine methods is compre-

hensive in scope. The methods are these:

. Helicity method, by Levy et al. [4]

. Swirl Parameter method, by Berdahl and

Thompson [5]

. Lambda2 method, by Jeong and Hussain [6]

. Predictor–Corrector method, by Banks and

Singer [7]

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 295

295

. Eigenvector method, by Sujudi and Haimes

[8]

. Parallel Vectors method, by Roth and

Peikert [9]

. Maximum Vorticity method, by Strawn et al.

[10]

. Streamline method, by Sadarjoen et al. [11]

. Combinatorial method, by Jiang et al. [12]

We first present three taxonomies for classify-

ing these nine detection methods, in Section 14.2.

We then describe each algorithm in Section

14.3, along with pseudo-code where appropriate.

Next, we describe a recently developed verifica-

tion algorithm for swirling flows in Section 14.4.

In Section 14.5, we discuss the different visualiza-

tion techniques for vortices. Finally, we conclude

with highlights of future directions in this field.

14.2 Taxonomy

Almost every paper published on the subject of

vortex detection has presented a classification of

its predecessors in some fashion. One of the

most comprehensive classifications of vortex-

detection methods was proposed by Roth [13].

In this section, we present three taxonomies for

classifying existing detection methods. These

taxonomies are based on how the vortex is de-

fined, whether the detection method is Galilean

invariant, and the local or global nature of the

identification process.

The first taxonomy classifies detection

methods based on the definition of a vortex.

A vortex can be defined either as a region or as

a line. A region-based vortex definition specifies

criteria for identifying contiguous grid nodes (or

cells) that belong to either the vortex or its core.

A line-based vortex definition, on the other

hand, specifies criteria for locating vortex core

lines. A set of contiguous line segments consti-

tutes the vortex core line. In general, detection

algorithms corresponding to region-based defin-

itions are easier to implement and computation-

ally cheaper than their line-based counterparts.

Line-based algorithms must precisely locate

points where the vortex core line intersects the

grid cells. However, line-based algorithms pro-

vide more compact representations of vortices

and can easily distinguish between individual

vortices in close proximity. The latter is prob-

lematic for region-based approaches. Column

1 of Table 14.1 categorizes the nine detection

methods based on this criterion.

The second taxonomy classifies detection

methods based on whether they are Galilean

(Lagrangian) invariant. Most detection methods

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 296

Table 14.1 Taxonomies of vortex-detection algorithms.

Method 1 Region/Line 2 Galilean 3 Local/Global 4

Helicity Line Not Invariant Local

Swirl Parameter Region Not Invariant Local

Lambda2 Region Invariant Local

Predictor–Corrector Line Invariant Global

Eigenvector Line Not Invariant Local

Parallel Vectors Line Not Invariant Local

Maximum Vorticity Line Invariant Local

Streamline Region Not Invariant Global

Combinatorial Region Not Invariant Local

296 Vector Field Visualization

were designed under the assumption that steady

flow fields and vortices move much more slowly

than the average fluid particle within the flow. In

a time-varying flow field, a vortex exhibits

swirling motion only when viewed from a refer-

ence frame that moves with the vortex [1,3]. In

order to detect vortices in unsteady (time-de-

pendent) flows, it is necessary for the method to

satisfy Galilean invariance. A detection method

is Galilean invariant if it produces the same

results when a uniform velocity is added to the

existing velocity field. Thus, methods that do not

depend directly on the velocity, such as pressure

or vorticity, are Galilean invariant. This is an

important property, especially in the context of

tracking vortices in time-varying flow fields.

Column 2 of Table 14.1 categorizes the nine de-

tection methods based on this criterion.

The third taxonomy classifies detection

methods based on the local or global nature of

the identification process. A detection method

is considered local if the identification process

requires operations only within the local neigh-

borhood of a grid cell. Methods that rely on the

velocity gradient tensor are usually local

methods. On the other hand, a global method

requires examination of many grid cells in order

to identify vortices. Methods that involve tracing

streamlines in velocity or vorticity fields are con-

sidered global. From the definitions in the pre-

ceding section, it is apparent that a vortex is a

global feature. It may be preferable to detect glo-

bal features using global methods; however, on

the basis of computation, global detection meth-

ods tendtobemoreexpensive than localmethods.

However, in order to verify the accuracy of the

detected results, a global approach is necessary.

We describe this aspect in more detail in Section

14.4. Column 3 of Table 14.1 categorizes the nine

detection methods based on this criterion.

14.3 Vortex-Detection Algorithms

14.3.1 Helicity Method

Levy et al. [4] introduced the use of normalized

helicity, Hn, for extracting vortex core lines,

though they were not the first to identify the

strong correlation between helicity and coherent

structures in turbulent flow fields. Hn is a scalar

quantity defined everywhere except at critical

points:

Hn ¼
v � !
jvk!j (14:1)

Hn is the cosine of the angle between velocity, v,

and vorticity, !. The underlying assumption is

that near vortex core regions, the angle between

v and ! is small. In the limiting case, where

vk!, Hn ¼ �1, and the streamline that passes

through that point has zero curvature (it is a

straight line). The authors suggested an ap-

proach to extract vortex core lines by first

locating maximal points of Hn on cross-

sectional planes, which are also points of min-

imal streamline curvature, and then growing the

core line by tracing a streamline from the max-

imal points.

The sign of Hn indicates the direction of swirl

(clockwise or counterclockwise) of the vortex

with respect to the streamwise velocity compon-

ent. It switches whenever a transition occurs

between the primary and secondary vortices.

The authors successfully used this feature

with corresponding colors to distinguish be-

tween the primary and secondary vortices in

the hemisphere-cylinder and ogive-cylinder

datasets. However, the extracted core line may

not always correspond to the actual vortex core

line [13].

14.3.2 Swirl-Parameter Method

Berdahl and Thompson [5] presented a vortex-

detection method based on the connection be-

tween swirling motion and the existence of com-

plex eigenvalues in the velocity gradient tensor

J. The authors introduced the intrinsic swirl

parameter t, defined by the ratio of the convec-

tion time tconv (the time for a fluid particle to

convect through the region of complex eigen-

values RC) to the orbit time torbit (the time for a

fluid particle to return to the same angular pos-

ition). Thus,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 297

Detection and Visualization of Vortices 297

tconv ¼
2p

jIm(lC)j torbit ¼
L

jvconvj
(14:2)

where Im(lC) is the imaginary part of the com-

plex conjugate pair of eigenvalues, L is the char-

acteristic length associated with the size of RC ,

and vconv is the convection velocity aligned

along L. From Equation 14.2, t can be written

as

t ¼ tconv

torbit

¼ jIm(lC)jL
2pjvconvj

(14:3)

When t! 0, the fluid particle convects too

rapidly through RC to be ‘‘captured’’ by the

vortex. Thus, t is nonzero in regions containing

vortices and attains a local maximum in the

vortex core. For three dimensions, the length

and orientation of L are unknown, because in

general there is no single plane of swirling flow.

The authors suggest using the plane normal to

either the vorticity vector ! or the real eigenvec-

tor eR, which are local approximations to the

actual vortex core direction vector. The con-

vective velocity vconv is computed by projecting

the local velocity vectors onto this plane:

vconv ¼ v� (v � n)n (14:4)

where n is the plane normal computed from

either ! or eR.

Figure 14.1 illustrates the results when this

method is applied to the propeller dataset. In

the left image, the intensity of t is described by a

color map. In the right image, isosurfaces are

generated showing the path of the tip vortex as

well as a ring vortex that was shed from the

propeller base. However, selecting the right

threshold for t in order to distinguish individual

vortices is often difficult.

14.3.3 Lambda2 Method

Jeong and Hussain [6] proposed a definition

for a vortex that is commonly referred to as

the l2 definition. They begin with the premise

that a pressure minimum is not sufficient as a

detection criterion. The problems are due to

unsteady irrotational straining, which can

create a pressure minimum in the absence of a

vortex, and viscous effects, which can eliminate

the pressure minimum within a vortex. To

remove these effects, the authors decompose

the velocity gradient tensor J into its symmetric

part, the rate of deformation or strain-rate

tensor S, and its antisymmetric part, the spin

tensor V, and consider only the contribution

from S2 þV2.

S ¼ Jþ JT

2
V ¼ J� JT

2
(14:5)

They define a vortex as a connected region

where S2 þV2 has two negative eigenvalues.

Because S2 þV2 is real and symmetric, it has

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 298

Figure 14.1 Swirl parameter. Images courtesy of Michael Remotigue, Mississippi State University. (See also color insert.)

298 Vector Field Visualization

only real eigenvalues. Let l1, l2, and l3 be the

eigenvalues such that l1 � l2 � l3. If l2 is nega-

tive at a point, then that point belongs to a

vortex core. Through several analytical

examples and direct numerical-simulation data-

sets, the authors demonstrated the effectiveness

of the l2 definition compared to others. How-

ever, in situations where several vortices exist, it

can be difficult for this method to distinguish

between individual vortices.

14.3.4 Predictor–Corrector Method

The vorticity-predictor, pressure-corrector

method for detecting vortex core lines was pro-

posed by Banks and Singer [7,14]. Their under-

lying assumption is that vortical motion is

sustained by pressure gradients and indicated

by vorticity !. The algorithm extracts a skeleton

approximation to the vortex core by tracing

vorticity lines and then correcting the prediction

based on local pressure minimum. In order to

find the initial set of seed points for tracing

vorticity lines, they consider grid-points with

low pressure and high vorticity magnitude.

However, as the authors pointed out, it is

possible for a grid-point to satisfy both condi-

tions without being part of a vortex core. An

outline of the algorithm is provided in Algo-

rithm 14.1.

For the predictor step, vorticity integration

can be performed using fourth-order Runge-

Kutta. The authors suggested, instead, a simpli-

fication whereby they relate the step size to the

smallest dimension of the local grid cell. For the

corrector step, the steepest-descent method is

used to find the local pressure minimum, with

the step size being, again, the smallest grid cell

dimension.

Algorithm 14.1 terminates when the min-

imum pressure point is too far from the pre-

dicted point; however, the method is not

guaranteed to terminate in every case, because

the growing skeleton can form closed loops,

which is not ideal for real vortices. Further-

more, special care must to be taken in order to

minimize the number of skeletons approximat-

ing the same vortex core line, since the skeleton

grown from each seed point may end up de-

scribing the same vortex core.

14.3.5 Eigenvector Method

The eigenvector method for detecting vortex

core lines was first proposed by Sujudi and

Haimes [8]. The method is based on critical-

point theory, which asserts that the eigenvalues

and eigenvectors of the velocity gradient tensor

J, evaluated at a critical point, define the local

flow pattern about that point. As the authors

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 299

1: locate seed points with low pressure and high j!j
2: for all seed points do
3: repeat
4: compute !i at current skeleton point

5: step in !i direction to predict next point

6: compute !iþ1 at predicted point P!
7: locate minimum pressure Pp on plane ? !
8: if dist (P!,Pp) < threshold then
9: correct next point to Pp

10: else
11: terminate skeleton growth

12: end if
13: eliminate seed points within distancer

14: until skeleton exits domain or is too long

15: end for

Algorithm 14.1 Predictor–corrector method.

Detection and Visualization of Vortices 299

point out, there are swirling flows that do not

contain critical points within their centers. In

order to handle these cases, velocity vectors

are projected onto the plane normal to the

eigenvector of the real eigenvalue (assuming

the other two eigenvalues are complex conju-

gate pairs) to see if they are zero. If they are,

then the point must be part of the vortex

core. An outline of the algorithm is given in

Algorithm 14.2.

Initially, all mesh elements are decomposed

into tetrahedral cells. Linear interpolation of

v within the cell follows, which induces a con-

stant J. The reduced velocity vr is computed by

subtracting the velocity component in the direc-

tion of eR; this computation is equivalent to

projecting v onto the plane normal to eR. Find-

ing the zero locations on the plane requires

setting up a system of three equations using

the linearly interpolated components of vr,

which can be solved using any two of the three

linearly independent equations. The solution is

a straight line of zero vr.

This method was successfully applied to

detecting vortex cores in numerous CFD

applications [15,16]. Fig. 14.2 illustrates one

such example taken from Kenwright and Haimes

[16]. The yellow line segments represent the

vortex cores extracted from a transient F/A-18

simulation dataset. However, as the authors

pointed out, producing contiguous vortex core

lines is not always possible because the under-

lying interpolant may not be linear or line

segments may not meet up at shared faces. Modi-

fications to the original algorithm are proposed

in Haimes and Kenwright [17] to address this

issue and improve its performance.

14.3.6 Parallel-Vectors Method

The parallel-vectors operator was first intro-

duced by Roth and Peikert [9] as a higher-

order method for locating vortex core lines.

They recast the first-order eigenvector method

into a parallel alignment problem between v and

its first derivative Jv (i.e., reduced velocity is

zero when v is parallel to the real eigenvector

of J). In order to better capture the slowly

rotating curved vortices that are typical in

turbomachinery flow fields, they use the second

derivative of v, which is defined as

w ¼ D2v

Dt2
¼ D(Jv)

Dt
¼ JJvþ Tvv (14:6)

where T is a 3� 3� 3 tensor. Essentially, a

vortex core line is the locus where v is parallel

to w: {x : v(x)� w(x) ¼ 0}. An outline of the

algorithm is given in Algorithm 14.3.

Due to discretization errors, excessive fluctu-

ations may result from computing the higher-

order derivatives. To avoid this, the authors

recommend smoothing the vector-field data as

a preprocessing step. Roth and Peikert [13,18]

present other approaches for finding parallel

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 300

1: decompose grid cells into tetrahedral cells

2: for all tetrahedral cells do
3: linearly interpolate v to produce J
4: compute all three eigenvalues of J
5: if two eigenvalues are complex conjugates then
6: compute eigenvector eR for the real eigenvalue

7: project v onto eR ! reduced velocity vr

8: compute the zero vr straight line gz
9: if gz intersects cell twice then
10: add line segment to vortex core

11: end if
12: end if
13: end for

Algorithm 14.2 Eigenvector method.

300 Vector Field Visualization

vectors along with post priori criteria for remov-

ing line segments that might be of insufficient

strength (speed of local rotation) or quality

(angle between velocity at core and core line).

Fig. 14.3 illustrates the results for the Francis

turbine runner dataset and the stator of a re-

versible pump-turbine dataset. The black line

segments indicate the locations of detected

vortex core lines. Note the existence of gaps in

the detected core lines, which are mainly due to

the large number of raw solution lines produced

by the higher-order method [13].

14.3.7 Maximum-Vorticity Method

Strawn et al. [10] define a vortex core as a local

maximum of vorticity magnitude j!j in the

plane normal to !. This technique is applicable

for free-shear flows, but not for shear layers,

which have high j!j but no local j!j maxima.

The motivation for this approach comes from

situations where multiple vortices with the

same orientation and overlapping cores are in

close proximity. The resulting velocity field

would only exhibit a single rotational center.

To address this issue, the authors introduced

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 301

Figure 14.2 Eigenvector approach (�1998 IEEE). Image courtesy of Robert Haimes, Massachusetts Institute of Technology.

(See also color insert.)

1: for all grid points do
2: calculate J and compute v 0 ¼ Jv
3: calculate J 0 and compute W ¼ Jv 0

4: end for
5: for all grid faces do
6: find zero of function v � w
7: use Newton iterations starting from face center

8: if zero lies on face then
9: connect with straight line to previous zero

10: end if
11: end for

Algorithm 14.3 Parallel-vectors method.

Detection and Visualization of Vortices 301

the maximum-vorticity method, which is out-

lined in Algorithm 14.4.

For the preprocessing step, ! is transformed

into computational space, where the search for

j!j maxima is done on a uniform grid. The

gradient of j!j is assumed to vary bi-linearly

over the grid face. Finding the solution points

where rj!j ¼ 0 requires solving a pair of quad-

ratic equations derived from the bi-linear inter-

polation function. The authors also suggest

using two thresholds in order to eliminate

some of the weaker vortex centers. The first

threshold eliminates cell faces with low j!j, and

the second threshold eliminates cell faces whose

normal may be misaligned with !. This method

was successfully applied to distinguish individ-

ual vortices in the delta-wing dataset (primary,

secondary, and tertiary vortices) and the V-22

tiltrotor blades dataset (tip and root vortices

from each rotor blade).

14.3.8 Streamline Methods

Sadarjoen et al. [11] proposed an efficient algo-

rithm for detecting vortices using the winding-

angle method. This technique was first proposed

by Portela [2] in a mathematically rigorous but

computationally expensive fashion. Essentially,

given a 2D streamline, the winding angle meas-

ures the amount of rotation of the streamline

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 302

Figure 14.3 Parallel vector operator. Images courtesy of Martin Roth, Swiss Federal Institute of Technology, Zürich. (See also

color insert.)

1: compute ! at all grid nodes

2: for all cell faces do
3: examine its 4 � 4 surrounding nodes

4: if9 maximum j!j in central nodes then
5: mark grid face as candidate face

6: end if
7: end for
8: for all candidate faces do
9: compute rj!j using central difference at nodes

10: compute solution points where rj!j ¼ 0

11: if points are within face and are local maxima then
12: mark them as vortex core points

13: end if
14: end for

Algorithm 14.4 Maximum-vorticity method.

302 Vector Field Visualization

with respect to a point. Sadarjoen et al.

[11,19,20] simplified the definition and proposed

an efficient algorithm for extracting 2D vortices

based on it. By their definition, the winding

angle a! of a streamline is a measure of the

cumulative change of direction of streamline

segments.

a! ¼
XN�2

i¼1

ff(pi�1, pi, piþ1) (14:7)

In Equation 14.7, pi are the N streampoints of

the streamline and ff(pi�1, pi � piþ1) measures the

signed angle between the two line segments de-

limited by pi�1, pi, and piþ1; counterclockwise

rotation is positive and clockwise rotation is

negative. Therefore, a vortex exists in a region

where a! � 2p for at least one streamline. For

slowly rotating vortices, the 2p winding criter-

ion can be relaxed appropriately. An outline of

the method is given in Algorithm 14.5.

Once the winding streamlines are marked, a

clustering algorithm, based on the distance be-

tween center point and cluster, is used to group

the streamlines that belong to the same vortex.

The location of each cluster is taken to be the

location of the vortex core. Various attributes of

the vortex, such as shape and orientation, are

used to quantitatively visualize the vortices.

Fig. 14.4 depicts the results when the method

is applied to a slice of the tapered-cylinder data-

set. Elliptical icons are used to represent the

shape of the extracted vortices, and the two

colors (green and red) are used to represent the

two different orientations.

Yet another streamline method is the curva-

ture density center method for locating vortex

cores in 2D flow fields [11,19,20]. Pagendarm et

al. [21] extended this method for 3D flow fields.

The underlying assumption behind this ap-

proach is that the center of curvature for each

point on a winding streamline should form a

tight cluster, within which the local maximum

is identified as the vortex core. By our comput-

ing the curvature center at each sample point

throughout the domain, a density field is formed

whose peaks are the locations of vortex cores.

As pointed out in [11,19,20], this approach lacks

the robustness to work well for noncircular

flows, such as the elliptically shaped vortices

illustrated in Fig. 14.4.

14.3.9 Combinatorial Method

Jiang et al. [12] presented a method for ex-

tracting vortex core regions based on ideas

from combinatorial topology. In this approach,

a combinatorial labeling scheme based on Sper-

ner’s Lemma is applied to the velocity vector

field in order to identify centers of swirling

flows. The origin of Sperner’s Lemma lies in

the fixed-point theory of combinatorial top-

ology. The connection between vortices and

fixed points (i.e., critical points) is well known

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 303

1: select an initial set of seed points

2: for all seed points do
3: trace its streamline and compute a!
4: if ja!j � 2p and initial point is near end point then
5: mark streamline as winding

6: end if
7: end for
8: for all winding streamlines do
9: compute its center point c (geometric mean)

10: if c 62 vortex clusters then
11: add c to vortex clusters

12: end if
13: end for

Algorithm 14.5 Winding-angle method.

Detection and Visualization of Vortices 303

[22,23]. Whereas Sperner’s Lemma labels the

vertices of a simplicial complex and identifies

the fixed points of the labeled subdivision, the

proposed method labels the velocity vectors at

grid nodes and identifies the grid cells that are

most likely to contain critical points.

Each velocity vector v is labeled according to

the direction range in which it points. It is

sufficient to examine the surrounding nodes

of a grid cell for the existence of revolving vel-

ocity vectors. The number of direction ranges

corresponds to the number of surrounding

nodes. (For a quadrilateral mesh, there are

four direction ranges, each spanning 908.) For

2D flow fields, a grid cell belongs to a vortex

core region if each of the four velocity vectors

from the surrounding nodes points in a unique

direction range, or satisfies the direction-

spanning criterion. For 3D flow fields, it is ne-

cessary to approximate the local swirling

plane at each grid cell and then project the

surrounding velocity vectors onto this plane.

An outline of the 3D algorithm is given in

Algorithm 14.6.

The authors use a simple region growth algo-

rithm along with Algorithm 14.6 in order to

segment the individual vortex core regions.

What makes this method effective is its insensi-

tivity to approximations to the local swirl plane

normal n. Fig. 14.5 shows the results from this

method on the blunt fin dataset. The yellow

regions are detected vortex core regions, visual-

ized using isosurfaces. The blue lines are the

streamlines seeded near the detected vortex

cores, and they serve to demonstrate the success

of this approach by showing that the detected

vortex cores actually lie in the center of the

swirling flow. However, this approach can pro-

duce false positives [24].

14.4 Swirling Flow Verification

The main deficiency common to all these detec-

tion algorithms is not the false positives they

may produce, but rather their inability to auto-

matically distinguish between the false positives

and the actual vortices. Imprecise vortex defin-

itions and numerical artifacts are just two of the

reasons these false positives occur. The funda-

mental problem is that most detection algo-

rithms employ local operators (e.g., velocity-

gradient tensor J) for detecting global features.

As pointed out by Thompson et al. [25], these

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 304

Figure 14.4 Winding-angle method. Image courtesy of I. Ari Sadarjoen. (See also color insert.)

304 Vector Field Visualization

local operators are problematic because they do

not incorporate the necessary global informa-

tion into the detection process.

The most direct approach for verifying if a

candidate feature is indeed a vortex is by visual

inspection. The primary problem with this ap-

proach is that it requires human intervention, a

process that is contrary to the automatic nature

of the detection algorithms. The geometric veri-

fication algorithm proposed by Jiang et al. [24]

addresses this issue by automating the verifica-

tion process. By identifying the swirling stream-

lines surrounding a candidate vortex core, the

verification algorithm can arbitrate the presence

or absence of the vortex most consistent with

visual scrutiny.

As a postprocessing step, the verification al-

gorithm can work with any detection algorithm.

Given a candidate vortex core, the goal is to

identify the swirling streamlines surrounding it

by using various differential geometry proper-

ties of the streamlines. The algorithm was

designed for 3D flow fields; in the 2D case,

using the winding angle method discussed in

Section 14.3.8 to verify planar swirling stream-

lines is sufficient. Identifying 3D swirling

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 305

1: for all grid cells do
2: compute swirl plane normal n at cell center

3: project v from surrounding nodes

4: for all vp in swirl plane do
5: compute its angle a from local x-axis

6: label direction range for a
7: end for
8: if all direction ranges are labeled then
9: mark grid cell as vortex core

10: end if
11: end for

Algorithm 14.6 Combinatorial method.

Figure 14.5 Combinatorial method (�2002 IEEE). (See also color insert.)

Detection and Visualization of Vortices 305

streamlines is nontrivial, since vortices can bend

and twist in various ways. An outline of the

verification algorithm for a candidate vortex

core is given in Algorithm 14.7.

The verification algorithm begins by locating

the upstream extent (tip) of the candidate vortex

core. For candidate core lines, this is trivial; for

candidate core regions, Jiang et al. [24] pro-

posed a bounding box heuristic. The initial pos-

ition is the tip of the candidate vortex core. Seed

points are distributed uniformly on a circle in

the swirl plane at the start position. Once the

projected tangent vectors complete a full revo-

lution around the z-axis in the (x,y)-plane (i.e.,

satisfy the 2p swirling criterion), the candidate

vortex core is accepted as an actual vortex core.

Fig. 14.6 depicts the results for the delta-wing

dataset. In the left image, the yellow regions are

actual vortex cores and the green regions are false

positives, artifacts from the combinatorial

method. The middle image depicts the swirling

streamlines surrounding theverifiedvortex cores.

The right image shows the manner in which Al-

gorithm 14.7 confirms that the identified candi-

date is indeed a vortex core. The cyan arrows

represent the tangent vectors and the orange

arrows represent the probe vectors. The bottom

image on the right illustrates the projected tan-

gent vectors revolving in the (x,y)-plane.

14.5 Visualization of Vortices

Methods used to visualize vortices are inextrica-

bly linked to the manner in which the vortices are

detected. For example, line-based algorithms

produce results that can best be visualized as

line segments, as shown in Fig. 14.2. In contrast,

results generated by region-type algorithms

can best be visualized using color maps or isosur-

faces, as shown in Fig. 14.1. Additionally, iconic

representations, such as the elliptical icons shown

inFig.14.4, canbeused toquantitativelyvisualize

various attributes of vortices.

By our seeding the streamlines near vortex

cores, the swirling patterns that are generally

associated with vortices can be visualized. This

is one of the primary techniques used to ascer-

tain the accuracy of detected results, either

manually or automatically (see Section 11.4).

Fig. 11.7 illustrates how some of the pioneers

in this field leverage this technique to validate or

invalidate results from detection algorithms.

The top left image illustrates the Pacific Ocean

dataset where streamlines (cyan lines) are

seeded throughout the domain to show regions

of winding streamlines. The intent [11] was to

demonstrate the ineffectiveness of the curvature

center density method. The density peaks (grey

isosurfaces) do not correspond well to the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 306

1: uniformly distribute seed points at start position

2: for all seed points do
3: for i ¼0 to N do
4: trace next streampoint

5: compute tangent vector t and probe vector

6: probe vortex core for swirl plane normal n
7: align n to z-axis and save transformation

8: apply transformation to t! ta

9: project ta on (x,y)-plane ! tp

10: if ff(t0
p,ti

p) � 2p then
11: accept candidate vortex core

12: end if
13: end for
14: end for

Algorithm 14.7 Geometric verification algorithm.

306 Vector Field Visualization

winding streamlines. The top right image

depicts the vortical flow in the blunt-fin dataset.

Vortex core lines (white lines) were extracted

using the parallel-vectors method. In this case

[9], the intent was to demonstrate the effective-

ness of their method for extracting vortex core

lines that correspond exactly to the center of

swirling streamlines (black lines).

Besides seeding streamlines, the cutting plane

technique is also an effective method to visualize

vortices. Each cutting plane takes a sample slice

of the dataset along a certain direction, and the

visualization method can be isocontours of a

scalar quantity or line integral convolution

(LIC) [26] of velocity vectors. The bottom

image of Fig. 14.7 depicts the wing-tip dataset

where vortex core lines (red line segments) were

extracted using the eigenvector method. Sample

slices were taken along the detected vortex core

[16] to demonstrate the correspondence between

the isocontours and the extracted core line.

14.6 Conclusion

Throughout the past decade, there has been a

steady stream of scholarly work on the subject

of vortex detection. We presented an overview

of nine detection algorithms that are represen-

tative of the state of the art. Each detection

algorithm is classified based on how it defines

a vortex, whether it is Galilean invariant, and

the local or global nature of its identification

process. Although many of the algorithms

share similarities, each has its own advan-

tages and disadvantages. A recently developed

verification algorithm that can be used in con-

junction with any detection method, was also

overviewed, as were various techniques for visu-

alizing detected vortices.

Although much progress has been made to-

wards detecting vortices in steady flow fields,

there is still a paucity of methods that can do

the same in unsteady (time-varying) flow fields.

None of the detection methods described in this

paper can adequately address all of the issues

unique to unsteady vortical flows. A major chal-

lenge will be to develop efficient and robust

vortex-detection and vortex-tracking algorithms

for unsteady flow fields.

Acknowledgments

This work is partially funded by the National

Science Foundation under the Large Data

and Scientific Software Visualization Program

(ACI-9982344), the InformationTechnologyRe-

search Program (ACS-0085969), an NSF Early

Career Award (ACI-9734483), and a grant from

the US Army Research Office (DAA-D19-00-1-

0155).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 307

Figure 14.6 Geometric verification (� 2002 IEEE). (See also color insert.)

Detection and Visualization of Vortices 307

References

1. H. J. Lugt. Vortex flow in nature and technology.
New York, Wiley, 1972.

2. L. M. Portela. Identification and characteriza-
tion of vortices in the turbulent boundary layer.
PhD thesis, Stanford University, 1997.

3. S. K. Robinson. Coherent motions in the turbu-
lent boundary layer. Ann. Rev. Fluid Mechanics,
23:601–639, 1991.

4. Y. Levy, D. Degani, and A. Seginer. Graphical
visualization of vortical flows by means of heli-
city. AIAA J., 28(8):1347–1352, 1990.

5. C. H. Berdahl and D. S. Thompson. Education
of swirling structure using the velocity gradient
tensor. AIAA J., 31(1):97–103, 1993.

6. J. Jeong and F. Hussain. On the identification of
a vortex. J. Fluid Mechanics, 285:69–94, 1995.

7. D. C. Banks and B. A. Singer. A predictor–
corrector technique for visualizing unsteady
flow. IEEE Trans. on Visualization and Com-
puter Graphics, 1(2):151–163, 1995.

8. D. Sujudi and R. Haimes. Identification of
swirling flow in 3D vector fields. In AIAA 12th
Computational Fluid Dynamics Conference,
Paper 95–1715, 1995.

9. M. Roth and R. Peikert. A higher-order method
for finding vortex core lines. In IEEE Visualiza-
tion ’98, pages 143–150, 1998.

10. R. C. Strawn, D. N. Kenwright, and J. Ahmad.
Computer visualization of vortex wake systems.
AIAA J., 37(4):511–512, 1999.

11. I. A. Sadarjoen, F. H. Post, B. Ma, D. C. Banks,
and H.-G. Pagendarm. Selective visualization of
vortices in hydrodynamic flows. In IEEE Visu-
alization ’98, pages 419–422, 1998.

12. M. Jiang, R. Machiraju, and D. S. Thompson.
A novel approach to vortex core region detec-
tion. In Joint Eurographics–IEEE TCVG
Symposium on Visualization, pages 217–225,
2002.

13. M. Roth. Automatic extraction of vortex core
lines and other line-type features for scientific
visualization. PhD thesis, Swiss Federal Insti-
tute of Technology Zürich, 2000.

14. D. C. Banks and B. A. Singer. Vortex tubes in
turbulent flows: identification, representation
and reconstruction. In IEEE Visualization ’94,
pages 132–139, 1994.

15. D. N. Kenwright and R. Haimes. Vortex iden-
tification applications in aerodynamics. In IEEE
Visualization ’97, pages 413–416, 1997.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 308

Figure 14.7 Visualization of vortices (� 1998 IEEE). Top left image courtesy of I. Ari Sadarjoen, Delft University of

Technology. Top right image courtesy of Martin Roth, Swiss Federal Institute of Technology. (See also color insert.)

308 Vector Field Visualization

16. D. N. Kenwright and R. Haimes. Automatic
vortex core detection. IEEE Computer Graphics
and Applications, 18(4):70–74, 1998.

17. R. Haimes and D. N. Kenwright. On the vel-
ocity gradient tensor and fluid feature extrac-
tion. In AIAA 14th Computational Fluid
Dynamics Conference, Paper 99–3288, 1999.

18. R. Peikert and M. Roth. The ‘‘parallel vectors’’
operator—a vector field visualization primitive.
In IEEE Visualization ’99, pages 263–270, 1999.

19. I. A. Sadarjoen and F. H. Post. Geometric
methods for vortex extraction. In Joint Euro-
graphics–IEEE TCVG Symposium on Visualiza-
tion, pages 53–62, 1999.

20. I. A. Sadarjoen. Extraction and visualization of
geometries in fluid flow fields. PhD thesis, Delft
University of Technology, 1999.

21. H.-G. Pagendarm, B. Henne, and M. Rütten.
Detecting vortical phenomena in vector data by
medium-scale correlation. In IEEE Visualiza-
tion ’99, pages 409–412, 1999.

22. M. S. Chong, A. E. Perry, and B. J. Cantwell. A
general classification of 3D flow fields. Phys.
Fluids, A, 2(5):765–777, 1990.

23. A. E. Perry and M. S. Chong. A description of
eddying motions and flow patterns using critical
point concepts. Ann. Rev. Fluid Mechanics,
19:125–155, 1987.

24. M. Jiang, R. Machiraju, and D. S. Thompson.
Geometric verification of swirling features in
flow fields. In IEEE Visualization ’02, pages
307–314, 2002.

25. D. S. Thompson, R. Machiraju, M. Jiang,
J. Nair, G. Craciun, and S. Venkata. Physics-
based feature mining for large data exploration.
IEEE Computing in Science & Engineering,
4(4):22–30, 2002.

26. V. Verma, D. Kao, and A. Pang. PLIC:
Bridging the gap between streamlines and LIC.
In IEEE Visualization ’99, pages 341–351, 1999.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 309

Detection and Visualization of Vortices 309

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:18pm page 310

This page intentionally left blank

PART V

Tensor Field Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:18pm page 311

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:18pm page 312

This page intentionally left blank

15 Oriented Tensor Reconstruction

LEONID ZHUKOV and ALAN H. BARR

Department of Computer Science

California Institute of Technology

15.1 Introduction

Directional tracking through vector fields has

been a widely explored topic in visualization

and computer graphics [5,19,20]. The standard

streamline technique advects massless particles

through the vector field and traces their location

as a function of time. Analogously, a hyper-

streamlines approach has been proposed to

trace changes through tensor fields, following

the dominant eigenvector direction [7]. These

methods work best on ‘‘clean’’ datasets, which

are usually produced as a result of simulations;

these methods typically do not handle raw ex-

perimental data very well, due to noise and

resolution issues.

Recently, attention has been given to the

visualization of 2D [12] and 3D [10] diffusion

tensor fields from DT-MRI data. Although

these methods provide significant visual cues,

they do not attempt to recover the underlying

anatomical structures, which are the white

matter fiber tracts (bundles of axons) found

within the brain. (The white matter constitutes

the ‘‘wiring’’ of the brain; the grey matter con-

stitutes the computational components of the

brain.)

Several previous endeavors have been made to

recover the underlying structure by extracting

fibers through the application of modified

streamline algorithms. Examples include tensor

lines [21] and streamtubes [6,24]. A direct fiber-

tractography method has been developed [2].

Other work suggests separate regularization of

eigenvalues and eigenvectors in the tensor fields

before fiber tracing [14]. Another method uses

level-sets with the front propagation approach

[16]. These algorithms have had some success in

recovering the underlying structures, but some

problems still remain due to the complexity of

the tensor field, voxelization effects, and the sig-

nificant amount of noise that is omnipresent in

experimental data. Recent work has concen-

trated on deriving a continuous tensor field ap-

proximation [15] and using signal-processing

techniques (for example, Kalman filtering [8])

to clean up the data.

The goal of this chapter is to develop a stable

tensor-tracing technique, which will allow the

extraction of the underlying continuous ana-

tomical structures from experimental diffusion

tensor data. The proposed technique uses a

moving local regularizing filter that allows the

tracing algorithm to cross noisy regions and

gaps in the data while preserving directional

consistency.

This chapter is based on the results first pre-

sented in an IEEE Visualization 2002 paper by

Zhukov and Barr [26].

15.2 Method

15.2.1 Diffusion Tensors

Diffusion-tensor magnetic resonance imaging

(DT-MRI) [1] is a technique used to measure

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 313

313

Portions reprinted, with permission, from Zhukov and Barr [26]. Copyright � 2002, IEEE.

the anisotropic diffusion properties of the water

molecules found within biological tissues as a

function of the spatial position within the

sample. Due to differing cell shape and cell-

membrane properties, the diffusion rates of the

water molecules are different in different direc-

tions and locations.

For instance, neural fibers are comprised

mostly of bundles of long cylindrical cells that are

filled with fluid and are bounded by less-water-

permeable cell membranes. The average diffu-

sion rate (at a spatial location) is fastest in the

3D axis direction along the length of the neuron

cells, since more of the water molecules are free

to move in this direction. The average diffusion

rate is slowest in the two transverse directions,

where the cell membrane interferes, reducing

and slowing down the movement of the water

molecules.

Other parts of the brain, such as the ven-

tricles, are composed primarily of fluid without

cell membranes. Here the average diffusion rate

is larger and more uniform (almost the same in

all directions).

The diffusion properties can be represented

with a symmetric second-order tensor �3� 3

matrix:

T ¼
Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

0
@

1
A (15:1)

The six independent values (the tensor is sym-

metric) of the tensor elements vary continuously

with spatial location.

The 3D local axis direction of the neuron

fibers will correspond to the dominant eigenvec-

tor of the tensor. There should be one large

eigenvalue and two small eigenvalues. This can

be seen from the physical interpretation of the

diffusion tensor, which can be thought of as a

vector-valued function whose input is the local

3D concentration gradient and whose output

is the 3D directional vector flux of the water

molecules. (Vector flux measures a quantity

per unit area per time, in the direction perpen-

dicular to the area.) The function is evaluated

by multiplying the 3� 3 matrix by the 3� 1 con-

centration gradient, producing the 3� 1 vector

flux of the water molecules. Water will diffuse

fastest in the direction along the axis of the

neurons and slowest in the two transverse

directions.

For the ventricles, a dominant eigenvector

should not exist: the three eigenvalues of the

tensor should have roughly the same value.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 314

Figure 15.1 Human brain pathways recovered from DT-MRI data using the oriented tensor reconstruction algorithm.

314 Tensor Field Visualization

Water will diffuse roughly at the same speed in

all directions. Hence, we can use the diffusion

tensor to distinguish tissues with a primary dif-

fusion axis from parts that do not.

In this chapter, the experimental dataset con-

tains sampled values of the diffusion tensor on a

regularly spaced grid of 121� 88� 60 (cubic)

voxels. We will denote these given tensor values

as T
ab
ijk, where a and b are the 3D tensor compon-

ents {xx, xy, . . . , zz}, and i, j, k are traditional

integer indices into the regular grid volume.

Also, when no upper indices are provided, the

operations are assumed to be performed on the

entire tensor component-wise T � Tab, i.e., on

each of the six independent values of the tensor.

15.2.2 Tensor Classification

Geometrically, a diffusion tensor can be

thought of as an ellipsoid with its three axes

oriented along the tensor’s three perpendicular

eigenvectors and semi-axis lengths proportional

to the square root of eigenvalues of the tensor –

mean diffusion distances [1].

In general, eigenvalues l and eigenvectors e

can be found as a solution to the eigen-equation

Tei ¼ liei (15:2)

Since the tensor is symmetric, its eigenvalues are

always real numbers, and the eigenvectors are

orthogonal and form a Cartesian vector basis

{e1, e2, e3}. This basis (frame of reference) can

be used to represent the tensor in diagonal form

and to specify directions with respect to the

‘‘world coordinate’’ system

T ¼ {e1, e2, e3}

l1 0 0

0 l2 0

0 0 l3

0
@

1
A(e1, e2, e3}

T

(15:3)

Using the ellipsoidal interpretation, one can

classify the diffusion properties of tissue

according to the shape of the ellipsoids, with

extended ellipsoids corresponding to regions

with strong linear diffusion (long, thin cells),

flat ellipsoids to planar diffusion, and spherical

ellipsoids to regions of isotropic media (such as

fluid-filled regions like the ventricles). The quan-

titative classification can be done through the

coefficients c‘, cp, cs (linear, planar, spherical)

first proposed in [22,23]:

c‘ ¼
l1 � l2

l1 þ l2 þ l3

(15:4)

cp ¼
2(l2 � l3)

l1 þ l2 þ l3

(15:5)

cs ¼
3l3

l1 þ l2 þ l3

(15:6)

These coefficients are normalized to the range

of [0..1] and could be interpreted as barycentric

coordinates. For example, values of c‘ close

to 1 choose the regions with strong linear

(l1 >> l2 � l3) diffusion.

15.2.3 Data Interpolation

We start by reconstructing a continuous tensor

field in the volume through tri-linear interpol-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 315

Figure 15.2 Sagittal and axial slices of anisotropy measure

c‘ of the dataset. The lighter regions correspond to stronger

anisotropyareas found in thewhitematter. SeeEquation15.4.

Oriented Tensor Reconstruction 315

ation. In this scheme, the value of a tensor at

any point inside the voxel is a linear combin-

ation of the eight values at its corners and

is completely determined by them. Since the co-

efficients of this linear combination are inde-

pendent of the tensor indices, the linear

combination of the tensors can be done com-

ponent-wise.

T(x, y, z) ¼ Tijk(1� x)(1� y)(1� z)

þ Tiþ1, jk x(1� y)(1� z)þ Ti, jþ1, k(1� x)y(1� z)

þ Tij, kþ1(1� x)(1� y)zþ Tiþ1, kþ1x(1� y)z

þ Ti, jþ1, kþ1 (1� x)yzþ Tiþ1, jþ1, kxy(1� z)

þ Tiþ1, jþ1, kþ1xyz

(15:7)

We can use tri-linear component-wise inter-

polation because symmetric tensors form a

linear subspace in the tensor space: any linear

combination of symmetric tensors remains a

symmetric tensor, i.e., symmetric tensors are

closed under linear combination (the manifold

of symmetric tensors is not left). Component-

wise interpolation is sufficient for our purposes;

more sophisticated interpolation methods, how-

ever, would better preserve the eigenvalues

along an interpolation path [14].

On the other hand, component-wise interpol-

ation of eigenvectors and eigenvalues them-

selves would not lead to correct results, since a

linear interpolation between two unit vectors is

not a unit vector anymore—the interpolated

eigenvector value would leave the manifold of

unit vectors. In addition, there can be a corres-

pondence problem in the order of the eigen-

values.

Various types of tensor interpolation are dis-

cussed by, for example, Kindlmann et al. [11].

15.2.4 Regularization: Moving Least
Squares

To perform a stable fiber tracing on experimen-

tal data, the data needs to be filtered. A simple

global box or Gaussian filter will not work well,

since it will blur (destroy) most of the direc-

tional information in the data. We want the

filter to be adjustable to the data and we want

to be able to put more weight on the data in the

direction of the traced fiber, rather than be-

tween fibers. We also want the filter to have an

adjustable local support that could be modified

according to the measure of the confidence level

in the data. Finally, we want the filter to pre-

serve sharp features (ridges) where they exist but

eliminate irrelevant noise if it can. Thus, the

behavior of the filter at some voxel in space

should depend on the ‘‘history of the tracing’’

(where it came from), so the filtering needs to be

tightly coupled with the fiber-tracing process.

Due to these reasons, we chose to use a

moving least-squares (MLS) approach. The

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 316

Figure 15.3 Comparison of nonfiltered (left) and MLS-filtered (right) fibers. Note the smoother and more regular behavior of

the filtered fibers on the right image. (See also color insert.)

316 Tensor Field Visualization

idea behind this local regularization method is

to find a low-degree polynomial that best fits the

data, in the least-squares sense, in the small

region around the point of interest. Then we

replace the data value at that point by the

value of the polynomial at that point

T(xp, yp, zp)! �TTp. Thus, this is a data approxi-

mation rather than an interpolation method.

The measure of ‘‘fitness’’ will depend on the

filter location, orientation, and history of

motion. The 1D MLS method was first intro-

duced in signal-processing literature [9,17].

We start the derivation by writing a func-

tional e that measures the quality of the polyno-

mial fit to the data in the world coordinate

system. To produce ", we integrate the squared

difference between F, which is an unknown

linear combination of tensor basis functions,

and T, the known continuous tri-linear inter-

polated version of given tensor data. We inte-

grate over all of the 3D space and use weighting

function G to create a region of interest centered

at chosen 3D point rp with coordinates

(xp, yp, zp):

"(rp) ¼
Z 1
�1

G(r� rp;Tp)[F(r� rp)� T(r)]2dr3

(15:8)

The second argument Tp (value of the tensor at

the center point) of the weighting function G

determines the weighting function’s size and

orientation.

The square of the tensor difference in Equa-

tion 15.8 is a scalar, defined by the double-dot

(component-wise) product [3,4]:

(F� T)2 ¼ (F� T) : (F� T)T ¼X
ab

(Fab � Tab)(Fba � Tba) ¼
X
ab

(Fab � Tab)2

(15:9)

Within the functional ", the tensor function

F is a linear combination of tensor basis

functions that we will use to fit the data. The

function G is the moving and rotating aniso-

tropic filtering window, centered at the point rp

(Fig. 15.4).

We felt it was more convenient to perform the

computations in the local frame of reference

connected to a particular filtering window than

to do so in world coordinates. It is straightfor-

ward to transform Equation 15.8 to a local

frame of reference using a change of variables

involving the following translation and rotation

transformation:

z
Z
y

0
@

1
A ¼ R�1

p

x� xp

y� yp

z� zp

0
@

1
A ¼ R�1

p (r� rp) (15:10)

where Rp ¼ {e1, e2, e3} is a rotation matrix

formed by the eigenvectors of the tensor Tp at

the point rp. Then, in the local frame of refer-

ence {z, Z, y}, Equation 15.8 becomes

" ¼
Z

v

[F(Rp{z, Z, y})� T(rp þ Rp{z, Z, y})]2

G(Rp{z, Z, y};Tp)dzdZdy

(15:11)

Integration is performed over the parts of space

where G has been chosen to be nonzero.

We now instantiate F and G in the local (ro-

tated and translated) frame of reference. These

functions can be thought of as functions of

{z, Z, y} only, since the rotation matrix Rp is

independent of the integration variables.

For F we will use a polynomial function of

degree N in the variables z, Z, and y:

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 317

P

Yp

Y

Xp

X

h

z

Figure 15.4 Coordinate systems used by linear transform-

ation (Equation 15.10) to change from the {x, y, z} coordin-

ates in Equation 15.8 into the {z, Z, y} coordinates in

Equation 15.11.

Oriented Tensor Reconstruction 317

F(Rp{z, Z, y}) � f(A; z, Z, y) (15:12)

where

f(A; z, Z, y) ¼
XN
mnp

Amnpz
mZnyp (15:13)

To instantiate G, we also use a function of

variables z, Z, and y:

G(Rp{z, Z, y}; Tp) � g(z, Z, y; li
p) (15:14)

The function g is clipped to zero at some low

threshold value to create a finite integration

volume, and li
p are eigenvalues of the tensor

Tp.

Substituting the expressions in Equations

15.13 and 15.14 into Equation 15.11, we get

" ¼
Z

v

X
mnp

Amnpz
mZnyp � T(rp þ Rp{z, Z, y})

" #2

g(z, Z, y; li
p)dzdZdy

(15:15)

The least-squares fitting procedure reduces to

minimization of functional " with respect to

tensor elements Aab
rst. To minimize it, we differ-

entiate Equation 15.15 with respect to each one

of the A coefficients and tensor components,

equate the result to zero, and linearly solve to

find the unknown As:

@e=@Aab
rst ¼ 0 (15:16)

This gives us the following linear system for the

unknown As:
X
mnp

Mmnp, rstA
ab
mnp ¼ Bab

rst (15:17)

where elements of the matrix Mmnp, rst and right-

hand-side values of the system Brst are com-

puted through the following integrals:

Mmnp, rst ¼
Z

V

zmþrZnþsypþtg(z, Z, y; li
p) dzdZdy

(15:18)

Bab
rst ¼

Z
V

Tab(rp þ Rp{z, Z, y})zTZsyt

g(z, Z, y; li
p)dzdZdy

(15:19)

These integrals can be evaluated numerically for

any specific choice of g. (For Gaussian filter g,

the integral in Equation 15.18 can be expanded

over the entire domain and evaluated analytic-

ally using Gamma functions.)

Equation 15.17 is just a ‘‘regular’’ linear system

to find the As. Written out component-wise

for the tensors A, B, and M with contracted

indexing

Aab
mnp � A

ab
mþNnþN2p

¼ a
ab
j

Bab
rst � B

ab
rþNsþN2t

¼ b
ab
i

Mmnp, rst �MmþNnþN2p, eþNsþN2t ¼Mij

(15:20)

the system in Equation 15.17 becomes
X

j

Mija
ab
j ¼ b

ab
i (15:21)

This type of system is also known as a system of

‘‘normal equations’’ for the least-squares opti-

mization.

The optimization procedure allows us to

compute the polynomial coefficients for best

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 318

Figure 15.5 Oriented moving least-squares (MLS) tensor

filter. The smallest ellipsoids represent the interpolated

tensor data; the largest ellipsoid represents the domain of

the moving filter g() described in Equation 15.8. The dark

ellipsoid represents the computed filtered tensor. The filter

travels continuously along the fiber line; the grid shows

initial sampling of the tensor data.

318 Tensor Field Visualization

approximation of the tensor data within a

region of a chosen point by a chosen degree of

polynom. Then the tensor value at the point rp,

which is the origin in the {z, Z, y} frame of ref-

erence, can be easily calculated using Equations

15.13 and 15.20:

�TTab
p ¼

X
mnp

Aab
mnpz

mZnypjz¼Z¼y¼0 ¼ A
ab
000 ¼ a

ab
0

(15:22)

It is important to notice that the value of A000

depends on the order of polynomial used for

fitting.

We also notice that using a zero-order poly-

nomial approximation (i.e., N ¼ 0) is equivalent

to finding the weighted average of a tensor func-

tion within the filter volume:

�TTp ¼
Z

V

T(rp þ Rp{z, Z, y})g(z, Z, y; l
i
p)dzdZdy

(15:23)

The major advantage of the higher-order ap-

proximation is that it better preserves the abso-

lute magnitude of the features in the areas that

have maxima or minima, compared to simple

averaging, which tends to lower the height of

the maxima and the depth of the minima.

Finally, for the filter function g, we have

chosen an anisotropic Gaussian weighting func-

tion G with axes aligned along the eigenvector

directions and ellipsoidal semi-axes (the radii)

proportional to the square root of correspond-

ing eigenvalues.

g(z, Z, y; li
p) ¼

1

V
exp (� (z=(sa))2 � (Z=(sb))2 � (y=(sc))2)

(15:24)

with

a ¼
ffiffiffiffiffiffiffi
l1

p,

q
b ¼

ffiffiffiffiffiffiffi
l2

p,

q
c ¼

ffiffiffiffiffi
l3

p

q
(15:25)

The variable l1
p is the largest eigenvalue of the

diffusion tensor Tp at the location rp, l
2
p is the

second largest, etc. The value s is a parameter

that can enlarge or contract all of the ellipsoid

radii. It is important to notice that since we are

trying to trace fibers, i.e., to extract structures

with very strong directional information, the

filter is typically much more influenced by the

data points ‘‘in front’’ and ‘‘behind’’ than those

on the side. Thus, usually, a >> b, c.

Also note that in Equation 15.14 for the filter

function g(), we have a choice of values for the

diffusion tensor Tp. In our algorithm, we use the

filtered tensor value from the previous time step,
�TTp�1, to determine the weighting-function ellips-

oid to use for the current time-step.

15.2.5 Streamline Integration

The fiber-tract trajectory s(t) can be computed

as a parametric 3D curve through linear inte-

gration of the filtered principal eigenvector:

s(t) ¼
Z t

0

�ee1(t)dt (15:26)

where t is a parameter of the curve and has

corresponding t ¼ t(x, y, z) values and �ee1 is the

MLS-filtered principal direction (unit) eigenvec-

tor as a function of position.

�TT�ee1 ¼ �ll1�ee1 (15:27)

The discrete integration can be done numeric-

ally using explicit or implicit methods depend-

ing on the converging/diverging nature of the

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 319

Figure 15.6 Height plot for anisotropy measure (‘‘moun-

tain’’ function) described in Section 15.2.6 for an axial slice

of the data. The higher portions correspond to stronger an-

isotropy. See Equation 15.30. (See also color insert.)

Oriented Tensor Reconstruction 319

tensor field. The simplest approaches are for-

ward (for diverging fiber fields):

rnew ¼ rold þ �ee1[�TT(rold)]Dt (15:28)

or inverse Euler schemes (for converging fiber

fields):

rnew ¼ rold þ �ee1[�TT(rnew)]Dt (15:29)

One can easily employ higher-order integration

schemes, but they should still be chosen

according to the local properties of the tensor

field (converging or diverging) that are associ-

ated with the ‘‘stiffness’’ of the differential equa-

tion, bifurcations, and the desired geometry.

15.2.6 The ‘‘Mountain’’ Function

For the continuous tensor field, we use an anisot-

ropy measure height function c‘(x, y, z), defined

using a continuous version of Equation 15.4

c‘(x, y, z) ¼ l1 � l2

l1 þ l2 þ l3

(15:30)

where li are eigenvalues of T(x, y, z). Metaphor-

ically, we call this a ‘‘mountain function’’ be-

cause we initiate the fibers at the high points—

the peaks of the mountain (the most highly

directional portions of a region)—and grow

them following the major eigenvector direc-

tions. The metaphor continues as the anisotropy

measure decreases; we let the fibers grow until

they go ‘‘under water’’ into the lakes (corres-

ponding to a chosen lower value for the anisot-

ropy measure); the low anisotropy values

indicate an absence of fibers.

15.2.7 Fiber-Tracing Algorithm

The algorithm starts when the user selects a

rectangular starting region. The fibers are traced

starting only from the points where the anisot-

ropy measure is bigger than the threshold,

i.e., points that are high enough on the moun-

tainside.

The initial direction will be determined by the

‘‘largest’’ eigenvector of locally filtered tensor

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 320

main
for each P 2 Seed – region

do

Tp ¼ filter (T,P,sphere);

cl ¼ anisotropy (Tp);

if (cl > eps)

then

e1 ¼ direction (Tp);

trace1 ¼ fibertrace (P,e1);

trace2 ¼ fibertrace (P, � e1);

trace ¼ trace1þ trace2;

8><
>:

8>>>>>>><
>>>>>>>:

procedure FIBERTRACE (P, e)

trace� > add(P);

cl ¼ anisotropy(Tp)

while (cl > eps)

do

Pn ¼ integrate forward (P,e1,dt);

Tp ¼ filter (T,Pn,ellipsoid,e1);

cl ¼ anisotropy (Tp)

if (cl > eps) return (trace)

then
trace� > add (Pn);

P ¼ Pn;

e1 ¼ direction (Tp);

8<
:

8>>>>>>>><
>>>>>>>>:

Algorithm 15.1 Fiber trace (seed region).

320 Tensor Field Visualization

field. At this point the filter is not oriented. The

tracing will proceed in two opposite directions

along the ‘‘largest’’ eigenvector.

The tracing procedure integrates forward

from the provided initial point and initial direc-

tion using the forward or the inverse Euler

method. It then computes a filtered value of the

tensor at the new point using the oriented filter

(orientation and width of the filter are deter-

mined from the previous position: the filter is

oriented along the ‘‘largest’’ eigenvector and is

shaped according to the eigenvalues, with largest

semi-axis along the ‘‘largest’’ eigenvector). If the

anisotropy of the new point is greater than

threshold value, the point is accepted and the

tracing continues; otherwise, the tracing is fin-

ished. The tracing routine also chooses the direc-

tion of tracing consistent with previous steps—

no turn of more than 908 is allowed.

We have also incorporated some simple

mechanisms to ignore very short fibers and to

stop tracing when the length of the fiber exceeds

an allowed limit. The starting points are usually

generated on a grid within user-defined regions.

We use numerical integration to evaluate the

integrals in Equations 15.18 and 15.19 inside

the filter. We use SVD and LU factorization

routines from the ‘‘Numerical Recipes’’ [17] to

compute eigenvalues and eigenvectors in Equa-

tion 15.27 and solve the linear system (15.21).

Evaluation of the tensor function T at the center

of the filter (origin) requires only the first coeffi-

cient of the polynomial expansion in Equation

15.13, so we use only a single back-substitution

procedure in LU factorization.

15.3 Discussion

15.3.1 Algorithm Validation

To validate our algorithm, we constructed an

artificial tensor dataset that emulates a pair of

‘‘wound’’ fiber bundles (Fig. 15.7). We derived

parametric equations that describe the bundle

directions and control the size of the features

(twist). We constructed a 3D tensor field by

sampling the directional derivatives of the

bundle on a regular 3D grid. We tested various

combinations of sampling and reconstruction

parameters.

Accurate continuous reconstruction of the

double helix was achieved when the sampling

was at least one-third of the characteristic length

(the scale of change); the integration step in re-

construction was one-fifth of the voxel size, and

the MLS filter had a radius of two to three vo-

xels. Increasing the radius of the reconstruction

filter leads to oversmoothing and loss of features.

15.3.2 Human Brain Structure

The human brain structures consist of three

physically different tissue types and materials:

white matter, grey matter, and cerebrospinal

fluid (CSF). A wealth of blood vessels permeate

the brain tissue, to continually supply it with

needed oxygen and nutrients.

CSF has the simplest microstructure. It

consists primarily of cell-free fluid, contained

within a few large hollow chambers in the

brain called ventricles. The water molecules

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 321

Figure 15.7 Double helix reconstructed using MLS method

from artificial tensor data. (See also color insert.)

Oriented Tensor Reconstruction 321

diffuse rapidly in all directions within the

CSF.

Grey matter serves as the ‘‘computational’’

part of the brain. It consists of dense irregular

groupings of structures, including cell bodies

and many interdigitating and unaligned den-

drites from many different nerve cells. In the

grey matter, water molecules diffuse slowly in

all directions because the water molecules are

impeded in virtually all directions by the mem-

branes of the nerve cells.

White matter serves as the ‘‘wiring’’ of the

brain, and it allowsneural signals tobe communi-

cated across long distances, from one part of the

brain to another. In the cerebral cortex, there are

about 3 � 1010 neurons,whichare highly intercon-

nected with approximately 1014 synapses.

Physically, white matter consists of the axons

of many microscopic nerve cells, each with its

own cell membrane and coated with an insulat-

ing sheath of myelin. Each axon can be viewed

as a long, electrically insulated microscopic tube

of conductive cellular fluid, with a diameter on

the order of approximately a few microns and

with a length of a few centimeters to several feet

(such as from the neck to the toe). In the white

matter, the axons are aligned and are bundled

together to create a long macroscopic fiber.

Anatomically, the macroscopic white-matter

fibers are immediately adjacent to one another

and are quite delicate and fragile.

A diffusion-tensor MRI distinguishes between

white matter, grey matter, and CSF due to the

different microstructures within the tissues

and fluids: it measures the movement of water

molecules in different preferential directions

for a given concentration gradient. Water

molecules have difficulty in crossing cell

membranes, and it is much easier for them to

diffuse to different parts within the same cell

than it is for them to cross cell membranes into

a different cell.

In white matter, water molecules diffuse in a

preferential direction, up and down the length

of the fiber, because the axons are aligned.

Along the length of the fiber, there are no im-

peding cell membranes, while there are many

membranes separating the cells across the

width of the fiber.

Due to these diffusion properties, white

matter will be characterized by one large eigen-

value of the diffusion tensor, whose eigenvector

is associated with the axial direction of the fiber

and two small eigenvalues; the eigenvectors for

these should be perpendicular to the direction of

the fiber. Grey matter should have three small

eigenvalues, while CSF should have three large

eigenvalues.

15.3.3 Results

The DT-MRI dataset we used for this chapter

has 121� 88� 60 voxels, which provides a reso-

lution of roughly 1mm3, which is sufficient

to resolve fiber bundles. We used various orders

of polynomial approximation from zero (aver-

age within the filter) up to third order (see Equa-

tion 15.13) to trace bundles of fibers that

correspond to well known anatomical structures.

We present the results of fiber tracing on a

human brain in the figures that follow. In these

figures, the yellow boxes show the seed region

for the fiber-tracking algorithm. Color coding

indicates orthogonal directions in the amount of

red for X, green for Y, and blue for Z.

White-matter fibers communicate informa-

tion into and out of the major brain structures:

. The corona radiata (projection fibers) con-

nect the cortical surface (grey matter) to the

lower levels of the neural system and are

visible in both hemispheres in Figs. 15.8

and 15.9.

. Long association fibers such as the longitu-

dinal fasciculus and the cingulum connect

cortical areas in the same hemisphere and

are shown in Fig. 15.10.

. The cingulum bundle that connects the

frontal lobe with the temporal-lobe regions

and lies on top of the ventricle and above the

corpus callosum fibers is clearly seen in Fig.

15.12.

. Short association fibers (U-shaped fibers),

which are responsible for local communica-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 322

322 Tensor Field Visualization

tion between the areas of cortical surface in

the same hemisphere, are shown in Fig.

15.11.

. Anterior and posterior forceps of the

frontal lobe are shown in Figs. 15.10 and

15.12.

. The corpus callosum, which is a commis-

sural fiber and is a major communication

band between the left and right hemi-

spheres, is seen in Fig. 15.13 (also see Fig.

15.1).

Finally, the last figure, Fig. 15.13, combines

white-matter fibers with other brain struc-

tures—the ventricle, eye sockets, and pockets

of CSF on the top of the brain. The left figure

shows corpus callosum fibers; the right figure

shows corona radiata together with long associ-

ation fibers. The surface models cover volumes

of large uniform diffusion values and were

obtained using isosurfacing [13] on isotropic

part cs (see Equation 15.6) of the same DT-

MRI dataset. A more detailed discussion on

isotropic and anisotropic tissue-model extrac-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:21pm page 323

Internal
capsule

Optic
radiation

Cerebellum

Pyramid

Pons

Optic tract

Cerebral peduncle

Corona radiata

Figure 15.8 Brain structures: corona radiata. (Left) A diagram from Pritchard and Alloway [18]. (Right) The fibers are

reconstructed from DT-MRI data using our oriented tensor reconstruction (OTR) algorithm. The corona radiata is visible in

both hemispheres.

Figure 15.9 Right-hemisphere corona radiata shown from opposite directions. The yellow boxes show the seed region for the

OTR fiber-tracing algorithm. Color coding indicates orthogonal directions in the amount of RGB (XYZ). (See also color insert.)

Oriented Tensor Reconstruction 323

tion from DT-MRI data using a combination of

isosurfacing and level-set methods is given by

Zhukov et al. [25].

15.4 Conclusions

In this paper we developed a new technique

for tracing anatomical fibers from 3D DT-

MRI tensor fields, recovering identifiable

anatomical structures that correspond to

many of the white matter brain-fiber path-

ways.

We found that simple component-wise inter-

polation of the tensors, forming a crude con-

tinuous approximate tensor field, worked well

for extracting brain-fiber directions when com-

bined with an MLS filtering approach.

The initial results seem promising; we feel

that noninvasive DT-MRI brain-mapping tech-

niques could have many important future

diagnostic applications, ranging from research

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:22pm page 324

Uncinate
fasciculus

Inferior longitudinal
fasciculus

Arcuate
fasciculus

Superior
longitudinal
fasciculus

U-shaped fibers

A

Figure 15.10 Brain structures: association fibers. (Left) A diagram from Pritchard and Alloway [18]. (Right) Longitudinal and

uncinate fasciculus of the optic tract. Color coding is the same as for Fig. 15.9. (See also color insert.)

Figure 15.11 Brain structures: Fibers near the cortical surface and U-shaped fibers on the left; U-shaped fibers, parts of corona

radiata, and corpus callosum are on the right. (See also color insert.)

324 Tensor Field Visualization

techniques for determining the wiring in a live

human brain to clinical applications for patients

with disruption of fiber tracts due to brain in-

juries such as stroke or physical trauma.

Acknowledgments

We would like to thank Yarden Livnat for the

initial discussion, Gordon Kindlmann and SCI

Institute for the data, and David Breen for sug-

gestions.

This work was supported by National Science

Foundation grants #ASC-89-20219 and #ACI-

9982273, and the National Institute on Drug

Abuse and the National Institute of Mental

Health, as part of the Human Brain Project.

References

1. P. J. Basser, J. Mattiello, and D. LeBihan. MR
diffusion tensor spectroscopy and imaging. Bio-
physical Journal, 66:259–267, 1994.

2. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and
A. Aldroubi. In vivo fiber tractography using DT-
MRI data. Magnetic Resonance in Medicine,
44:625–632, 2000.

3. P. J. Basser and C. Pierpaoli. Microstructural
and physiological features of tissues elucidated
by quantitative-diffusion-tensor MRI. J. Magn.
Res. Ser. B, 111:209–219, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:22pm page 325

Figure 15.12 Brain structures. (Left) A side view of the right hemisphere cingulum bundle on the background of corresponding

cl anisotropy; (Right) the same structure together with 3d models of the ventricle and CSF extracted by isosurfacing [13] on

isotropic part cs (see Equation 15.6) of the same DT-MRI dataset. (See also color insert.)

Figure 15.13 Brain structures: corpus callosum (left) and corona radiata (right) shown together with isotropic brain structures—

ventricle, eye sockets, and pockets of CSF on the top of the brain. Cutting planes show isotropic cs values. (See also color insert.)

Oriented Tensor Reconstruction 325

4. A. I. Borisenko and I. E. Tarapov. Vector and
Tensor Analysis. New York, Dover, 1979.

5. B. Cabral and L. Leedom. Imaging vector
fields using line integral convolution. In Pro-
ceedings of SIGGRAPH 93, pages 263–272,
1993.

6. M. J. da Silva, S. Zhang, C. Demiralp, and
D. H. Laidlaw. Visualizing diffusion tensor
volume differences. In IEEE Visualization 01
Proceedings, Work in Progress, 2001.

7. T. Delmarcelle and L. Hesselink. Visualization
of second order tensor fields and matrix data.
In IEEE Visualization 92 Proceedings, pages
316–323, 1992.

8. C. Gossl, L. Fahrmeir, B. Putz, L. M. Auer, and
D. P. Auer. Fiber tracking from DTI using
linear state space models: detectability of the
pyramidal tract. NeuroImage, 16:378–388, 2002.

9. R. W. Hamming. Digital Filters. Prentice-Hall,
1983.

10. G. Kindlmann and D. Weinstein. Hue-balls and
lit-tensors for direct volume rendering of diffu-
sion tensor fields. In IEEE Visualization ’99
Proceedings, pages 183–189, 1999.

11. G. Kindlmann, D. Weinstein, and D. Hart.
Strategies for direct volume rendering of diffu-
sion tensor fields. IEEE Trans. on Visualization
and Computer Graphics, pages 124–138, 2000.

12. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, R. E. Jacobs, and C. Readhead. Visual-
izing diffusion tensor images of the mouse
spinal cord. In IEEE Visualization ’98 Proceed-
ings, pages 127–134, 1998.

13. W. Lorenson and H. Cline. Marching cubes: a
high resolution 3D surface construction algo-
rithm. In Computer Graphics (Proceedings of
SIGGRAPH ’87), 21:163–169, 1987.

14. O. Coulon, D. C. Alexander, and S. R. Arridge.
A regularization scheme for diffusion tensor
magnetic resonance images. In IPMI 2001,
XVIth International Conference on Information
Processing in Medical Imaging, in Lecture
Notes in Computer Science, 2082:92–105, 2001.

15. S. Pajevic, A. Aldroubi, J. Duda, and P. J.
Basser. A continuous tensor field approxima-
tion of discrete DT-MRI data for extracting
microstructural and architectural features of
tissues. Journ. Magn. Res., 154:85–100, 2002.

16. G. J. M. Parker, C. A. M. Wheeler-Kingshott,
and G. J. Barker. Distributed anatomical brain
connectivity derived from diffusion tensor im-
aging. In IPMI 2001, XVIth International Con-
ference on Information Processing in Medical
Imaging, 2082:106–120, 2001.

17. W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Numerical Recipes in C.
Cambridge, England, Cambridge University
Press, 1992.

18. T. C. Pritchard and K. D. Alloway. Medical
Neuroscience. Fence Creek Publishing, 1999.

19. B. Steve and C. Levit. The virtual wind tunnel:
an environment for the exploration of 3D un-
steady flows. In IEEE Visualization ’91 Proceed-
ings, pages 17–24, 1991.

20. G. Turk and D. Banks. Image guided streamline
placement. In Proceedings of SIGGRAPH ’96,
pages 453–460, 1996.

21. D. Weinstein, G. Kindlmann, and E. Lundberg.
Tensorlines: advection-diffusion based propaga-
tion through diffusion tensor fields. In IEEE
Visualization ’99 Proceedings, pages 249–253,
1998.

22. C.-F. Westin, S. E. Maier, B. Khidhir, P. Ever-
ett, F. A. Jolesz, and R. Kikinis. Image process-
ing for diffusion tensor magnetic resonance
imaging. In Proceedings of MICCAI ’99, pages
441–452, 1999.

23. C.-F. Westin, S. Peled, H. Gubjartsson, R. Kiki-
nis, F. A. Jolesz, and R. Kikinis. Image process-
ing for diffusion tensor magnetic resonance
imaging. In Proceedings of ISMRM ’97, 1997.

24. S. Zhang, C. Curry, D. Morris, and D. Laidlaw.
Streamtubes and streamsurfaces for visualizing
diffusion tensor MRI volume images. In IEEE
Visualization ’00 Proceedings, 2000.

25. L. Zhukov, K. Museth, D. Breen, A. H. Barr,
and R. Whitaker. Level set modeling and seg-
mentation of diffusion tensor magnetic reson-
ance imaging brain data. Journal of Electronic
Imaging, 12(1):125–133, 2003.

26. L. E. Zhukov and A. H. Barr. Oriented tensor
reconstruction: tracing neural pathways from
diffusion tensor MRI. In IEEE Visualization
2002 Proceedings, pages 387–394, 2002.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 1:22pm page 326

326 Tensor Field Visualization

16 Diffusion Tensor MRI Visualization

SONG ZHANG and DAVID H. LAIDLAW

Department of Computer Science

Brown University

GORDON KINDLMANN

Scientific Computing and Imaging Institute

University of Utah

16.1 Introduction

Diffusion tensor magnetic resonance imaging

(DT-MRI or DTI) is emerging as an important

technology for elucidating the internal structure

of the brain and for diagnosing conditions

affecting the integrity of nervous tissue. DTI

measurements of the brain exploit the charac-

teristic microstructure of the brain’s neural

tissue, which constrains the diffusion of water

molecules. The direction of fastest diffusion is

aligned with fiber orientation in a pattern that

can be numerically modeled by a diffusion

tensor. Since DTI is the only modality for non-

invasively measuring diffusion tensors in living

tissue, it is especially useful for studying the

directional qualities of brain tissue. Application

areas include neurophysiology, neuroanatomy,

and neurosurgery, as well as the diagnosis of

edema (swelling), ischemia (brain damage from

restricted blood flow), and certain types of brain

tumors.

One of the fundamental problems in working

with diffusion tensor data is its 3D and multi-

variate nature. Each sample point in a DTI scan

can be represented by six interrelated values,

and many features of interest are described in

terms of derived scalar and vector fields that are

overlaid logically on the original tensor field.

Thus, the central tasks of DTI visualization

include the following:

1. Determining which aspects of the tensor

field will be graphically conveyed.

2. Determining where that information must

be displayed and where it can be ignored.

3. Visually abstracting the DTI quantities into

the graphics primitives by which the visual-

ization is ultimately expressed.

This chapter introduces the acquisition and

mathematics of diffusion tensor imaging and

then surveys the current repertoire of visualiza-

tion methods used with DTI. We finish by dis-

cussing some open questions.

16.2 Diffusion Tensor Imaging

Appreciating the origin and physical signifi-

cance of any acquired scientific data is the first

step in a principled approach to its visualiza-

tion. This section briefly reviews the physical

and mathematical underpinnings of diffusion

tensor imaging.

Scientific understanding of the physical basis

of diffusion converged at the beginning of the

nineteenth century. In 1827, Robert Brown dis-

covered Brownian motion, which underlies

the thermodynamic model of diffusion: he ob-

served that pollen grains suspended in water ex-

hibit a zigzag ‘‘random walk.’’ This motion was

hypothesized by Desaulx in 1877 to arise when

thermally energetic water molecules repeatedly

collide with pollen grains. Einstein confirmed

this hypothesis in 1905as part of thedevelopment

of his mathematical model of diffusion as a

dynamically expanding Gaussian distribution

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 327

327

[14]. The path of the pollen grain suspended in

water is a visible indicator of the similar Brown-

ian motion of all liquid water molecules, whether

in pure water, a porous medium, or biolog-

ical tissue.

The intrinsic structural properties ofmanyma-

terials constrain diffusion so that diffusivity is

anisotropic: greater in some directions than in

others. If diffusion rates do not vary direction-

ally, the diffusion is called isotropic. Biological

tissues are often anisotropic because cell mem-

branes and large protein molecules limit the

motion of water molecules; Cooper et al. [9] call

this restricted diffusion. Dissections and his-

tological studies have shown that the grey matter

of the brain is largely isotropic at the scale of MR

scans, while the brain’s white matter is more an-

isotropic because of the alignment of myelinated

neuronal axons, which preferentially constrain

water diffusion along the axon direction. Thus,

via the mechanism of diffusion, the physical

microstructure of white-matter tissue makes it

possible to image theneural pathways connecting

the brain. DTI imaging measurements have been

validated within acceptable error on the fibrous

muscle tissue of the heart [16,28].

Diffusion in biological tissue is measured by

magnetic resonance imaging (MRI). In 1946,

Purcell [27] and Block [7] independently dis-

covered the nuclear magnetic resonance

(NMR) effect. Water molecules contain hydro-

gen nuclei with uncoupled spins. In a strong

magnetic field, the uncoupled spins cause the

nuclei to align with and precess around the

magnetic field direction, generating, in turn, a

weak magnetic field aligned with the stronger

ambient magnetic field. A second outside mag-

netic field can perturb this weak magnetic field

so as to produce a magnetic resonance signal.

In 1950, Erwin Hahn discovered an import-

ant NMR signal called the spin echo [15] whose

signal was perturbed by the diffusion of water

molecules. Diffusion MR exploits this effect to

measure hydrogen self-diffusivity in vivo. It is

generally believed that the quantities measured

with diffusion MR are a mixture of intracellular

diffusion, intercellular diffusion, and the ex-

change between the two sides of the cell mem-

brane [29,30,31].

In 1973, Lauterbur described the principles of

NMR imaging [20]. He encoded positioning in-

formation on NMR signals using gradient mag-

netic fields and an imaging-reconstruction

algorithm, so that NMR imaging pinpoints the

location where the signal is generated. This in-

vention led to a new medical diagnostic instru-

ment. In 1985, Bushel and Taylor combined the

diffusion NMR and MR imaging techniques to

create diffusion-weighted imaging [32]. A diffu-

sion-weighted image (DWI) is a scalar-valued

image that usually captures diffusion-rate infor-

mation in one direction. In a DWI, the effect of

diffusion on an MRI signal is an attenuation;

the measured image intensity can be related to

the diffusion coefficient by the following equa-

tion [21]:

~II(x, y) ¼ I0(x, y) exp (bD) (16:1)

where Io(x, y) represents the voxel intensity in

the absence of diffusion weighting, b charac-

terizes the diffusion-encoding gradient pulses

(timing, amplitude, shape) used in the MRI se-

quence, and D is the scalar diffusion coefficient.

Anisotropic diffusion information cannot be

effectively represented in a scalar-valued DWI.

In 1992, Basser et al. described the estimation of

the diffusion tensor from the NMR spin echo

[3]. The diffusion tensor, D, captures directional

variation in the diffusion rate. D is a 3� 3

positive symmetric matrix:

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
@

1
A (16:2)

b is also now a 3� 3 matrix that represents the

diffusion encoding. The equation becomes

~II(x, y) ¼ I0(x, y) exp �
X3

i¼1

X3

j¼1

bijDij

 !
(16:3)

A diffusion tensor has three real eigenvalues,

l1, l2, and l3, each of which has a correspond-

ing eigenvector, v1, v2, or v3. A diffusion tensor

is geometrically equivalent to an ellipsoid whose

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 328

328 Tensor Field Visualization

radii are the three eigenvectors of the diffusion-

tensor matrix. This ellipsoid matches the shape

to which water diffuses from a given data point

in a fixed amount of time. The ellipsoids in Fig.

16.1 depict the three types of spatial diffusion.

In regions of complex-diffusion anisotropy,

such as where two fiber bundles touch or cross

each other, a tensor does not model the diffu-

sion process accurately. These areas of ambigu-

ity can be addressed with a diffusion model with

more degrees of freedom than a second-order

tensor. Tuch et al. acquire diffusion information

in hundreds of directions to resolve ambiguity

[33,34].

16.3 Approaches to Visualizing DTI
Datasets

16.3.1 Overview

DTI visualization is challenging because the data

has high information content and no single well

established method exists to display the 3D pat-

terns of matrix values that a tensor field con-

tains. Another challenge for DTI visualization

methods is keeping the results properly

grounded in the specific application domain in

which the data was originally acquired. Without

such grounding, a visualization is unlikely to

generate new hypotheses or provide answers

about scientific problems.

Many DTI visualization approaches combine

scalar, vector, and tensor methods by contract-

ing the tensor to appropriate scalars or vectors

for a particular application. These derived fields

can be used in many ways in visualization appli-

cations and are, in some cases, sufficient alone.

From a practical standpoint, the use of derived

fields is also important in keeping the informa-

tion in the visualization to its essential min-

imum. Much of 3D DTI visualization struggles

with precisely this issue—that is, which regions

in the tensor field are useful in the final visual-

ization. The design of a visualization method

is often a compromise between being informa-

tive and being legible. Part of what makes DTI

visualization design an exciting research topic is

that its rules and strategies are still being dis-

covered.

16.3.2 Scalar Metrics

A common visualization approach involves

contracting each tensor in a DTI to a scalar,

thus reducing a DTI dataset to a scalar dataset.

A carefully designed scalar metric can highlight

useful information while reducing the effect

of noise. Some scalar metrics are rotationally

invariant, i.e., they do not depend on the coord-

inate system in which the tensor was measured.

This property is often useful; without it, know-

ledge of the coordinate system must always be

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 329

(a) (b) (c)

Figure 16.1 Ellipsoids represent diffusion tensors according to the eigensystem of the tensor: the eigenvalues are the radii of the

ellipsoid, while the eigenvectors determine the axes’ orientations. (a) Linear anisotropic diffusion; (b) planar anisotropic

diffusion; (c) isotropic diffusion.

Diffusion Tensor MRI Visualization 329

carried along with the metric for proper inter-

pretation.

For instance, the trace of the diffusion tensor

Tr(D) ¼ D11 þD22 þD33 measures the mean

diffusivity and is rotationally invariant. It has

been demonstrated that, after a stroke, images

representing the trace of the diffusion tensor

delineate the affected area much more accur-

ately than images representing the diffusion in

only one direction [35].

Many of the scalar metrics derived from DTI

measure diffusion anisotropy in different ways.

Douek et al. defined an anisotropic diffusion

ratio (ADR) ADRxz ¼ Dxx=Dzz for the anisot-

ropy index [12]. Van Gelderen et al. [35] calcu-

lated a measure of diffusion anisotropy as the

standard deviation of the three diffusion coeffi-

cients A ¼
ffiffi
1
6

q ffi
(Dxx�Dav)

2 þ (Dyy�Dav)
2 þ (Dzz�Dav)

2
p

Dav
.

Both of these metrics are rotationally variant.

Basser et al. have calculated rotationally in-

variant anisotropy metrics from the diffusion

tensor [4]: for relative anisotropy,

RA ¼ffi
(l1� < l >)2

q
þ

ffi
(l2� < l >)2

q
þ

ffi
(l3� < l >)2

q
ffiffiffi
3
p

< l >
(16:4)

and for fractional anisotropy,

FA ¼
ffiffiffi
3

2

r ffi
(l1� < l >)2

q
þ

ffi
(l2� < l >)2

q
þ

ffi
(l3� < l >)2

q
ffi
l2

1 þ l2
2 þ l2

3

q

(16:5)

where < l >¼ l1þl2þl3

3
:

Pierpaoli et al. showed that rotationally in-

variant metrics consistently show a higher

degree of anisotropy than their variant analogs

[25]. But because RA and FA are calculated over

one diffusion tensor, they are still susceptible to

noise contamination. Pierpaoli et al. then calcu-

lated an intervoxel anisotropy index, the lattice

index (LI), which locally averages inner prod-

ucts of diffusion tensors in neighboring voxels.

LI has a low error variance and is less suscep-

tible to bias than are other rotationally invari-

ant metrics.

Scalar anisotropy metrics such as FA and RA

convey the anisotropy of a given diffusion dis-

tribution, but they do not convey whether the

anisotropy is linear, planar, or some combin-

ation of the two. In terms of ellipsoid glyphs,

cigar-shaped and pancake-shaped ellipsoids can

have equal FA while their shapes differ greatly.

Westin et al. [38] modeled diffusion anisotropy

more completely with a set of three metrics that

measure linear, planar, and spherical diffusion:

cl ¼ l1�l2

l1þl2þl3
, cp ¼ 2(l2�l3)

l1þl2þl3
, and cs ¼ 3l3

l1þl2þl3
, re-

spectively. By construction, cl þ cp þ cs ¼ 1.

Thus, these three metrics parameterize a bary-

centric space in which the three shape extremes

(linear, planar, and spherical) are at the corners

of a triangle, as shown in Fig. 16.2.

Fig. 16.3 shows one way to qualitatively com-

pare some of the metrics described above by

sampling their values on a slice of brain DTI

data. Notice that the trace (Tr) is effective at

distinguishing between the cerebrospinal fluid

(where Tr is high) and the brain tissue (lower

Tr) but fails to differentiate between different

kinds of brain tissue. High fractional anisotropy

FA, on the other hand, indicates white matter,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 330

Figure 16.2 Barycentric space of diffusion tensor shapes.

330 Tensor Field Visualization

because the directionality structure of the axon

bundles permits faster diffusion along the

neuron fiber direction than across it. FA is

highest inside thick regions of uniformly aniso-

tropic diffusion, such as inside the corpus callo-

sum, the bridge between the two hemispheres of

the brain. Finally, while both cl and cp indicate

high anisotropy, their relative values indicate

the shape of the anisotropy.

16.3.3 Eigenvector Color Maps

When diffusion tensors are measured with MRI,

each tensor is represented by a 3� 3 symmetric

matrix; the matrix values are measured relative

to the coordinate frame of the MRI scanner.

Because they are real-valued, diffusion tensors

have three real eigenvalues and three orthogonal

eigenvectors. The eigenvalues are all nonnega-

tive, because negative diffusivity is physically

impossible. The eigenvectors define the orienta-

tion of the diffusion tensor. The major or princi-

pal eigenvector is associated with the largest

eigenvalue and defines the direction of fastest

diffusion. This direction can have significant

physical meaning. In DTI scans of nervous

tissue, for instance, the principal eigenvector is

aligned with the coherent fibers.

A common visualization goal is to depict

the spatial patterns of the principal eigenvec-

tor only in regions where it is meaningful,

rather than depicting all the tensor information.

Visualizing these patterns is often important in

verifying that a given DTI scan has succeeded in

resolving a feature of interest. A simple spher-

ical color map of the principal eigenvector is

the standard tool for this task, which first

assigns an (R,G,B) color according to the

(X,Y,Z) components of the principal eigenvec-

tor, v1,

R ¼ abs(v1x), G ¼ abs(v1y), B ¼ abs(v1z),

and then modulates the saturation of the RGB

color with an anisotropy metric. The direction

of the principal eigenvector is numerically ill

defined when the tensor is isotropic or has

mostly planar anisotropy. In such cases, the visu-

alization should not imply a particular direction

with the hue of the RGB color. Thus, the satur-

ation is modulated by cl . Also, note that by

design, the same color is assigned to v and �v.

This also has a mathematical justification. The

sign of eigenvectors is not defined. Numerical

routines for their calculation may return either

of two opposing vectors, and both should be

visualized identically. Fig. 16.4 shows three

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 331

(a) (b) (c)

Figure 16.3 Different shape metrics applied to one slice of a brain DTI scan. (a) Tr: trace; (b) FA: fractional anisotropy;

(c) CL (green) and CP (magenta). (See also color insert.)

Diffusion Tensor MRI Visualization 331

examples of the eigenvector color map applied to

the principal eigenvector.

16.3.4 Glyphs

A glyph is a parameterized icon that represents

the data by its shape, color, texture, location,

etc. Over the years, researchers have designed

various glyphs for DTI visualization. We review

and compare some of them here.

Diffusion ellipsoids are surfaces of constant

mean-squared displacement of diffusing water

molecules at some time t after their release at

the center of each voxel. Ellipsoids are a natural

choice of glyph to summarize the information

contained in a diffusion tensor [25]. The three

principal radii are proportional to the eigen-

values and the axes are aligned with the three

orthogonal eigenvectors of the diffusion tensor.

The size of an ellipsoid can be associated

with the mean diffusivity, and the preferred dif-

fusion direction is indicated by the orientation

of the ellipsoid. Arrays of ellipsoids can be ar-

ranged in the same order as the data points to

show a 2D slice of DTI data. Laidlaw et al. [19]

normalized the size of the ellipsoids to fit more

of them in a single image (Fig. 16.5). While this

eliminates the ability to show mean diffusivity,

it creates more uniform glyphs that better show

anatomy and pathology.

Laidlaw et al. also exploited the oil-painting

concepts of brushstrokes and layering in visual-

ization. They used 2D brushstrokes both indi-

vidually, to encode specific values, and

collectively, to show spatial connections and tex-

ture and to create a sense of speed corresponding

to the speed of diffusion. Layering and contrast

were used to create depth. The method clearly

showed anatomy and pathology when applied to

sections of spinal cords of mice with experimen-

tal allergic encephalomyelitis (EAE) (Fig. 16.6).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 332

(a) (b) (c)

Figure 16.4 Eigenvector color maps shown on axis-aligned slices with three different slice orientations. The two axes within the

slice are labeled with the anatomical name of the slice orientation. (a) Axial: x and y; (b) coronal: x and z; (c) sagittal: y and z.

(See also color insert.)

Figure 16.5 Arrays of normalized ellipsoids visualize the

diffusion tensors in a single slice. (See also color insert.)

332 Tensor Field Visualization

In a still image, surface shading alone is often

not enough to indicate the shape of an ellipsoid

with only surface shading information. Westin

et al. [37] used a composite of linear, planar, and

spherical components to emphasize the shape of

the diffusion ellipsoids. The components are

scaled to the eigenvalues but can also be scaled

according to the shape measures cl , cp, and

cs. Additionally, the color of the glyph is inter-

polated between the blue linear case, yellow

planar case, and red spherical case (Fig. 16.7).

Kindlmann’s approach adapted superquad-

rics, a traditional surface-modeling technique

[1], as tensor glyphs. He created a class of

shapes that includes spheres in the isotropic

case and emphasizes the differences among the

eigenvalues in the anisotropic cases. As shown

in Fig. 16.8, cylinders are used for linear and

planar anisotropy, and approximation to boxes

represents intermediate forms of anisotropy. As

with ellipsoid glyphs, a circular cross-section

accompanies equal eigenvalues for which dis-

tinct eigenvectors are not defined.

The differences among the glyph methods can

be appreciated by comparison of their results on

a portion of a slice of a DTI brain scan, as

shown in Fig. 16.9. The individual glyphs have

been colored with the principal eigenvector

color map. The directional cue given by the

edges of box glyphs is effective in linearly aniso-

tropic regions, but it can be misleading in

regions of planar anisotropy and isotropy,

since in these cases the corresponding eigenvec-

tors are not numerically well defined. The rota-

tional symmetry of ellipsoid glyphs avoids

misleading depictions of orientation, with the

drawback that different shapes can be hard to

distinguish. The superquadric glyphs combine

the best of the box and ellipsoid methods.

16.3.5 Tractography

In glyph-based methods, each glyph represents

one diffusion tensor. Tractography, a term first

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 333

Figure 16.6 Brushstrokes illustrate the direction and mag-

nitude of the diffusion. The background color and texture

map show additional information. (See also color insert.)

Figure 16.7 The composite shape of linear, planar, and

spherical components emphasizes the shape of the diffusion

tensor. (See also color insert.)

Figure 16.8 Superquadrics as tensor glyphs, sampling the

barycentric space in Fig. 16.2.

Diffusion Tensor MRI Visualization 333

applied to DTI analysis by Basser [2], yields

curves of neural pathways, which are continuous

and hard to represent with discrete glyphs.

Streamlines and their derivatives are widely

used for tractography results. Xue et al. show

the result of fiber projection reconstruction by

hand-selecting seeding points in a region of inter-

est (ROI) and displaying the curves they generate

[39]. The colors represent different groupsof fiber

structures. Zhang et al. used streamtubes and

streamsurfaces to visualize the diffusion tensor

field [41]. Streamtubes visualize fiber pathways

tracked in regions of linear anisotropy. The tra-

jectories of the streamtubes follow the major

eigenvectors in the diffusion tensor field, the

color along the streamtubes represents the mag-

nitude of the linear anisotropy, and the cross-

sectional shape represents the medium and

minor eigenvectors. Streamsurfaces visualize

regions of planar anisotropy. The streamsurfaces

follow the expansionofmajor andmediumeigen-

vectors in the diffusion tensor field, and the color

represents the magnitude of planar anisotropy.

Zhang et al. used a culling algorithm to con-

trol the density of the scene’s streamtubes [41]

so that inside structures are visible and outside

structures are still adequately represented. The

metrics for the culling process include the tra-

jectory length, the average linear anisotropy

along a trajectory, and the similarity between a

trajectory and the group of trajectories already

selected. Combined with quantitative analysis,

streamtubes and streamsurfaces can help eluci-

date structural heterogeneity in a DT-MRI

dataset from a brain-tumor patient [40].

Trajectories calculated by integration have a

serious drawback in regions where the white-

matter structures change quickly: incorrect

spurious connections can easily be generated

[24]. Each diffusion tensor measurement is

made over a small region. If the fiber direction

is coherent throughout that region, then the

measurement will be consistent. Otherwise, the

tensor will be an amalgam of all the different

values in the small region, and the major eigen-

vector may not point along a tract. These prob-

lems happen where tracts cross, diverge, or are

adjacent to other tissues. Tractography is also

sensitive to noise; a small amount of noise can

cause significantly different results.

Some researchers have tried to address these

problems by regularizing diffusion datasets

[6,36,42] or direction maps [10,26]. Some

researchers have explored new ways to find

connectivity. Brun et al. [8] use sequential im-

portance sampling to generate a set of curves,

labeled with probabilities, from each seed point.

Batchelor et al. generate a solution isosurface

by solving for a diffusion-convection equation

[5]. Parker et al. use front propagation in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 334

Figure 16.9 A portion of a brain DTI scan (also used in Figs. 16.3 and 16.4) as visualized by three different glyph methods. The

overall glyph sizes have been normalized. (a) Boxes; (b) ellipsoids; (c) superquadrics. (See also color insert.)

334 Tensor Field Visualization

fast-marching tractography [23]. High-angular-

resolution diffusion imaging is reported to

ameliorate ambiguities in regions of complex

anisotropy [33,34] and may ultimately be the

best solution to this problem.

16.3.6 Volume Rendering

Glyphs and tractography communicate field

structure with discrete geometry: the polyline

or cylinder represents a fiber tract or the faceted

surface of an polygonal ellipsoid, for example.

Direct volume rendering, on the other hand,

obviates the need for intermediate geometry by

mapping and maps ‘‘directly’’ from measured

field properties to optical properties like color

and opacity, which are then composited and

shaded [13,22]. The mapping is performed by a

transfer function, which must be carefully

designed to delineate and emphasize the fea-

tures of interest, while not obscuring them

with unimportant regions. In direct volume

rendering of scalar data, the transfer function

often maps from the scalar data values to

opacity, although greater specificity and expres-

sivity are possible with higher-dimensional and

multivariate transfer functions [18]. Because

transfer functions are applied without respect

to field position, direct volume rendering has

the potential to effectively convey large-scale

patterns across the entire dataset.

Kindlmann et al. have explored various types

of diffusion tensor transfer functions [17]; the

present discussion focuses on transfer functions

of tensor shape because of their intuitive

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 335

Figure 16.10 Tractography with streamlines. Image courtesy of Xue et al. [39]. (See also color insert.)

Figure 16.11 Red streamtubes and green streamsurfaces

show linear and planar anisotropy, respectively, together

with anatomical landmarks for context. (See also color

insert.)

Diffusion Tensor MRI Visualization 335

definition and useful results. The barycentric

space of tensor shapes in Figs. 16.2 and 16.8

captures two important degrees of freedom

(from the total six) in a tensor field: degree and

type of anisotropy. This space does not repre-

sent changes in overall size or orientation, but

these are not crucial for visualizing the structure

of white-matter fiber tracts. Fig. 16.3a indicates

that the trace, Tr, does not vary significantly

between gray and white matter, and, typically,

the structural organization that distinguishes

white matter is interesting irrespective of its

orientation.

Fig. 16.13 shows the results of using the bary-

centric shape space as the domain of transfer

functions that assign opacity only. These ren-

derings were produced with a brute-force ren-

derer that samples each image ray at multiple

points within the field, interpolates the tensor

field componentwise, calculates the eigenvalues

and the shape metrics (cl , cp, cs), and then looks

up the opacity for that sample. On the left-hand

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 336

Figure 16.12 Glyph-based visualization of a volumetric portion of a brain DTI scan (also used in Figs. 16.3, 16.4, and 16.9),

with glyph culling based on three different fractional anisotropy thresholds. (See also color insert.)

Cs

CpCl

Cs

CpCl

Cs

CpCl

Cs

CpCl

Figure 16.13 Four different barycentric opacity maps and the corresponding renderings. (See also color insert.)

336 Tensor Field Visualization

side of Fig. 16.13, the overall shape of the brain

is seen when opacity is assigned to high cs (iso-

tropic) samples, while the shape of the white

matter is visible when opacity is assigned to

high cl values. Arbitrary combinations of

shape can be emphasized with this sort of trans-

fer function (Fig. 16.13, right). Fig. 16.14 shows

how specifying color as a function of bary-

centric shape can create a more informative

rendering: the color variations indicate which

portions of the field are more or less planarly

anisotropic.

16.4 Open Issues

Interest in diffusion tensor visualization has

been steadily increasing with the expanding ap-

plications of tensor imaging, increased compu-

tation and graphics capabilities for display, and

advances in the visualization methods them-

selves. Several important open issues and design

challenges merit further research.

Visual design of glyphs: Glyphs must be para-

meterizable by at least as many variables as they

will display. On the other hand, they should also

be concise and compact, so that multiple glyphs

viewed next to or on top of each other can still

convey useful information. This is a daunting

task for researchers looking to depict complex

3D patterns in the tensor field, but inspiration

may be drawn from different artistic traditions

of painting and technical illustration.

Seeding and culling schemes: While it is easy

to survey information everywhere over a 2D

domain, this is impossible in three dimensions

because of occlusion. Glyph placement, trajec-

tory placement, and selection of any visual ab-

straction are difficult problems of visual

optimization, since the result must be legible in

multiple contradictory ways. The intercon-

nected nature of the white-matter fiber tracts

in the brain further complicates this task. Solv-

ing this optimization may require level-of-

detail (LOD) information and user-defined

regions of interest.

Computational validation: This is perhaps

the hardest aspect of scientifically useful visual-

ization. An unresolved issue in DTI visualiza-

tion is the extent to which the paths calculated

by fiber tracking correspond to the paths of

actual axons in the white matter. Locally, the

fiber direction does correspond to tissue organ-

ization and the major ‘‘trunk lines’’ of connect-

ivity are known from neuroanatomy. However,

tractography methods can produce long and

circuitous paths of purported connectivity

whose actual validity is not, and cannot easily

be, known. Scanning diffusion phantoms (with

known connectivity) might address this, as

would advances in histological preparations.

Display devices and interaction: DTI datasets

are complicated and inherently 3D, and many

visualizations involve large, complex graphical

models. Recent advances in display may help

boost the capabilities and applications of the

visualization. Especially promising is the use of

immersive virtual reality to display complex 3D

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 337

Cs

CpCl

Cs

CpCl

Figure 16.14 Assigning color and opacity with barycentric

transfer function. (See also color insert.)

Diffusion Tensor MRI Visualization 337

fields of neural structures. But questions remain

about the relative value of different display and

interaction environments. For example, a user

study comparing CAVE and fish-tank virtual

reality systems shows that both types of display

have pros and cons for certain tasks and goals

[10].

Visual validation: No one visualization

method stands out as the ‘‘gold standard’’ by

which others are judged. Every method has ad-

vantages and limitations depending on the types

of information it seeks to convey and the specific

techniques used to convey it. Currently, most

visualization methods are judged by their own

inventors. User studies and other validation

methods will both help appraise the methods in

a more objective way and help evaluate different

interaction environments.

Modeling: The interaction between water

molecules and biological structures is vital for

understanding the information contained in dif-

fusion tensor images. It is generally believed

that the sheath outside the neural axons causes

most of the water-diffusion restrictions. Less is

known about locations where fiber bundles di-

verge, cross, or kiss. What are the contributions

of intracellular diffusion, intercellular diffusion,

and exchange between the membranes? A phys-

ically realistic model may help us analyze the

tensor data and then visualize the underlying

structures in a meaningful way.

16.5 Summary

Since DTI technology emerged 10 years ago, the

problems inherent in DTI acquisition, visualiza-

tion, analysis, and application have spurred nu-

merous multidisciplinary efforts. For scientific

visualization students, these problem are espe-

cially intriguing because DTIs are large 3D

multivariate datasets and thus present many

visualization challenges. On the other hand,

these problems have real-world origins, applica-

tions, and challenges: The datasets are noisy,

resolution is never sufficient, and partial-volume

effects limit the results. Perhaps the greatest chal-

lenge is the breadth of knowledge necessary to

truly understand the entire process, from patient

to imaging to computation to visual analysis and

back to patient.

This chapter has given a brief survey of the

last 10 years of visualization-related research,

including some of the outstanding issues. We

expect that over the next 10 years much

more of the tremendous potential of this im-

aging modality will be realized.

References

1. A. Barr. Superquadrics and angle-preserving
transformations. IEEE Computer Graphics and
Applications, 18(1):11–23, 1981.

2. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda,
and A. Aldroubi. In vivo fiber tractography
using DT-MRI data. Magnetic Resonance in
Medicine, 44:625–632, 2000.

3. P. J. Basser, J. Mattiello, and D. LeBihan. Esti-
mation of the effective self-diffusion tensor from
the NMR spin echo. J. Magn. Reson. B,
103(3):247–54, March 1994.

4. P. J. Basser and C. Pierpaoli. Microstructural
features measured using diffusion tensor im-
aging. J. Magn. Reson. B, pages 209–219, 1996.

5. P. G. Batchelor, D. L. G. Hill, D. Atkinson, F.
Calamanten, and A. Connellyn. Fibre-tracking
by solving the diffusion-convection equation. In
Proceedings of ISMRM 2002, page 1135, 2002.

6. M. Bjornemo, A. Brun, R. Kikinis, and C.-F.
Westin. Regularized stochastic white matter
tractography using diffusion tensor MRI. In
MICCAI2002, 2002.

7. F. Bloc. Nuclear induction. Physical Review,
70:460–474, 1946.

8. A. Brun, M. Bjornemo, R. Kikinis, and C.-F.
Westin. White matter tractography using se-
quential importance sampling. In ISMRM
2002, 2002.

9. R. L. Cooper, D. B. Chang, A. C. Young, C. J.
Martin, and B. Ancker-Johnson. Restricted dif-
fusion in biophysical systems. Biophysical Jour-
nal, 14:161–177, 1974.

10. O. Coulon, D. C. Alexander, and S. R. Arridge.
Tensor field regularisation for DT-MR images.
In Proceedings of British Conference on Medical
Image Understanding and Analysis, 2001.

11. C. DeMiralp, D. H. Laidlaw, C. Jackson, D.
Keefe, and S. Zhang. Subjective usefulness of
CAVE and fish-tank VR display systems for a
scientific visualization application. In IEEE

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 338

338 Tensor Field Visualization

Visualization ’03 Poster Compendium, Seattle,
WA, 2003.

12. P. Douek, R. Turner, J. Pekar, N. Patronas, and
D. LeBihan. MR color mapping of myelin
fiber orientation. J. Comput. Assist. Tomogr.,
15:923–929, 1991.

13. R. A. Drebin, L. Carpenter, and P. Hanrahan.
Volume rendering. Computer Graphics, 22(4):
65–74, 1988.

14. A. Einstein. Über die von der molekularkine-
tischen Theorie der Wärme geforderte bewegung
von in ruhenden Flüssigkeiten suspendierten teil-
chen. Annalen der Physik, 17:549–560, 1905.

15. E. L. Hahn. Spin echoes. Physical Review,
80:580–594, 1950.

16. E. W. Hsu, A. L. Muzikant, S. A. Matulevicius,
R. C. Penland, and C. S. Henriquez. Magnetic
resonance myocardial fiber-orientation map-
ping with direct histological correlation. Am. J.
Physiol., 274:H1627–1634, 1998.

17. G. Kindlmann, D. Weinstein, and D. A. Hart.
Strategies for direct volume rendering of diffu-
sion tensor fields. IEEE Transactions on Visual-
ization and Computer Graphics, 6(2):124–138,
2000.

18. J. Kniss, G. Kindlmann, and C. Hansen. Multi-
dimensional transfer functions for interactive
volume rendering. IEEE Transactions on Visual-
ization and Computer Graphics, 8(3):270–285,
2002.

19. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, C. Readhead, and R. E. Jacobs. Visual-
izing diffusion tensor images of the mouse
spinal cord. In Proceedings of IEEE Visualiza-
tion 1998, pages 127–134, 1998.

20. P. C. Lauterbur. Image formation by induced
local interactions: examples employing nu-
clear magnetic resonance. Nature, 242:190–191,
1973.

21. D. LeBihan. Molecular diffusion nuclear mag-
netic resonance imaging. Magn. Reson. Quant.,
17:1–30, 1991.

22. M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions, 8(5):29–37, 1988.

23. G. J. M. Parker, K. E. Stephen, G. J. Barker,
J. B. Rowe, D. G. MacManus, C. A. M.
Wheeler-Kingshott, O. Ciccarelli, R. E. Passing-
ham, R. L. Spinks, R. N. Lemon, and R. Turner.
Initial demonstration of in vivo tracing of axonal
projections in the macaque brain and compari-
son with the human brain using diffusion tensor
imaging and fast marching tractography. Neu-
roImage, 15:797–809, 2002.

24. C. Pierpaoli, A. S. Barnett, S. Pajevic, A. Virta,
and P. J. Basser. Validation of DT-MRI tracto-

graphy in the descending motor pathways of
human subjects. In Proceedings of ISMRM
2001, page 501, 2001.

25. C. Pierpaoli and P. J. Basser. Toward a quanti-
tative assessment of diffusion anisotropy.
Magn. Reson. Med., 36(6):893–906, 1996.

26. C. Poupon, C. A. Clark, V. Frouin, J. Regis,
I. Block, D. LeBihan, and J.-F. Mangin. Regu-
larization of diffusion-based direction maps for
the tracking of brain white matter fascicles.
NeuroImage, 12:184–195, 2000.

27. E. M. Purcell, H. C. Torrey, and R. V. Pound.
Resonance absorption by nuclear magnetic
moments in a solid. Physical Review, 69:37–43,
1946.

28. D. F. Scollan, A. Holmes, R. Winslow, and
J. Forder. Histological validation of myocardial
microstructure obtained from diffusion tensor
magnetic resonance imaging. Am. J. Physiol.,
275:2308–2318, 1998.

29. G. J. Stanisz, A. Szafer, G. A. Wright, and
R. M. Henkelman. An analytical model of re-
stricted diffusion in bovine optic nerve. Magn.
Reson. Med., 37(1):103–11, 1997.

30. G. J. Stanisz and R. M. Henkelman. Tissue
compartments, exchange and diffusion. In
Workshop on Diffusion MRI: Biophysical Issues,
pages 34–37, 2002.

31. A. Szafer, J. Zhong, and J. C. Gore. Theoretical
model for water diffusion in tissues. Magn.
Reson. Med., 33:697–712, 1995.

32. D. G. Taylor and M. C. Bushell. The spatial
mapping of translational diffusion coefficients
by the NMR imaging technique. Physics in
Medicine and Biology, 30:345–349, 1985.

33. D. S. Tuch, T.G. Reese, M. R. Wiegell, N.
Makris, J. W. Bellireau, and V. J. Wedeen.
High angular resolution diffusion imaging
reveals intravoxel white matter fiber heterogen-
eity. Magn. Reson. Med., 48(4):577–582, 2002.

34. D. S. Tuch, R. M. Weisskoff, J. W. Bellireau,
and V. J. Wedeen. High angular resolution dif-
fusion imaging of the human brain. In Proceed-
ings of the 7th Annual Meeting of ISMRM, page
321, 1999.

35. P. van Gelderen, M. H. de Vleeschouwer,
D. DesPres, J. Pekar, P. C. van Zijl, and C. T.
Moonen. Water diffusion and acute stroke.
Magn. Reson. Med., 31:154–63, 1994.

36. D. M. Weinstein, G. L. Kindlmann, and E. C.
Lundberg. Tensorlines: advection diffusion-
based propagation through diffusion tensor
fields. In IEEE Visualization ’99, pages 249–
254, 1999.

37. C.-F. Westin, S. E. Maier, H. Mamata, A.
Nabavi, F. A. Jolesz, and R. Kikinis. Processing

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 339

Diffusion Tensor MRI Visualization 339

and visualization for diffusion tensor MRI.
Medical Image Analysis, 6:93–108, 2002.

38. C. F. Westin, S. Peled, H. Gubjartsson, R. Kiki-
nis, and F. A. Jolesz. Geometrical diffusion
measures for MRI from tensor basis analysis.
In Proceedings of ISMRM, page 1742, 1997.

39. R. Xue, Peter C. M, van Zijl, B. J. Crain, M.
Solaiyappan, and S. Mori. In vivo 3D recon-
struction of rat brain axonal projections by dif-
fusion tensor imaging. Magn. Reson. Med.,
42:1123–1127, 1999.

40. S. Zhang, M. E. Bastin, D. H. Laidlaw, S.
Sinha, P. A. Armitage, and T. S. Deisboeck.

Visualization and analysis of white matter struc-
tural asymmetry in diffusion tensor MR im-
aging data. Magn. Reson. Med., 51(1):140–147,
2004.

41. S. Zhang, C. Demiralp, and D. H. Laidlaw.
Visualizing diffusion tensor MR images using
streamtubes and streamsurfaces. IEEE Transac-
tions on Visualization and Computer Graphics,
9(4):454–462, 2003.

42. L. Zhukov and A. Barr. Oriented tensor recon-
struction: tracing neural pathways from dif-
fusion tensor MRI. In IEEE Conference on
Visualization ’02, pages 387–394, 2002.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:20pm page 340

340 Tensor Field Visualization

17 Topological Methods for Flow
Visualization

GERIK SCHEUERMANN and XAVIER TRICOCHE

University of Kaiserslautern

17.1 Introduction

Numerical simulations provide scientists and

engineers with an increasing amount of vector

and tensor data. The visualization of these large

multivariate datasets is therefore a challenging

task. Topological methods efficiently extract

the structure of the corresponding fields to

come up with an accurate and synthetic depic-

tion of the underlying flow. Practically, the

process consists of partitioning the domain of

study into subregions of homogeneous qualita-

tive behavior. Extracting and visualizing the

corresponding graph permits conveyance of

the most meaningful properties of multivariate

datasets.

Vector and tensor fields are traditionally

objects of major interest for visualization.

They are the mathematical language of many

research and engineering areas, including fun-

damental physics, optics, solid mechanics, and

fluid dynamics, as well as civil engineering, aero-

nautics, turbomachinery, and weather forecast-

ing. Vector variables in this context are velocity,

vorticity, magnetic or electric field, and a force

or the gradient of some scalar field like e.g.,

temperature. Tensor variables might corres-

pond to stress, strain, or rate of deformation,

for instance. From a theoretical viewpoint,

vector and tensor fields have received much at-

tention from mathematicians, leading to a pre-

cise and rigorous framework that constitutes the

basis of specific visualization methods. In par-

ticular, Poincaré’s work [20] at the end of the

19th century laid down the foundations of a

geometric interpretation of vector fields associ-

ated with dynamical systems; the analysis of the

phase portrait provides an efficient and aes-

thetic way to apprehend the information con-

tained in abstract vector data. Nowadays,

following this theoretical inheritance, scientists

typically focus their study on the topology of

vector and tensor datasets provided by numer-

ical simulations or experimental measurements.

A typical and very active application field is

computational fluid dynamics (CFD), in which

complex structural behaviors are investigated in

the light of their topology [3,14,19,27]. It was

shown, for instance, that topological features

are directly involved in crucial aspects of flight

stability like flow separation or vortex genesis

[4]. Informally, the topology is the qualitative

structure of a multivariate field. It leads to a

partition of the domain of interest into subdo-

mains of equivalent nature. Hence, extracting

and studying this structure permits us to focus

the analysis on essential properties. For visual-

ization purposes, the depiction of the topology

results in synthetic representations that tran-

scribe the fundamental characteristics of the

data. Moreover, it permits fast extraction of

global flow structures that are directly related

to features of interest in various practical appli-

cations. Further, topology-based visualization

results in a dramatic decrease in the amount

of data required for interpretation, which

makes it very appealing for the analysis of

large-scale datasets. These ideas are at the

basis of the topological approach, which has

gained an increasing interest in the visualization

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 341

341

community during the last decade. First intro-

duced for planar vector fields by Helman and

Hesselink [9], the basic technique has been con-

tinuously extended since then. A significant

milestone on the way was the work of Delmar-

celle [5], which transposed the original vector

method to symmetric, second-order tensor

fields.

This chapter proposes an introduction to

the mathematical foundations of the topological

approach to flow visualization along with

a survey of existing techniques in this domain.

Note that the focus is on methods related dir-

ectly to the depiction and analysis of the flow

topology itself. In particular, visualization

methods using topology for other purposes,

like streamline seeding [43], data compression

[40,41], smoothing [33], or modeling [42] are

beyond the scope of this presentation.

The contents of this paper are organized

as follows. Vector fields are considered first.

Basic theoretical notions are introduced in

Section 17.2. They result from the qualitative

theory of dynamical systems, initiated by Poin-

caré. Nonlinear and parameter-dependent

topologies are discussed in this section, along

with the fundamental concept of bifurcation.

Tensor fields are treated in Section 17.3.

Following Delmarcelle’s approach, we consider

the topology of the eigenvector fields of sym-

metric, second-order tensor fields. It is shown

that they induce line fields in which tangential

curves can be computed, analogous to stream-

lines for vector fields. We explain how singular-

ities are defined and characterized, and how

bifurcations affect them in the case of unsteady

tensor fields. This completes the framework re-

quired for the description of topology-based

visualization of vector and tensor fields in

Section 17.4. The presentation covers original

methods for 2D and 3D fields, extraction and

visualization of nonlinear topology, topology

simplification for the processing of turbulent

flows, and topology tracking for parameter-

dependent datasets. Finally, Section 17.5

completes the presentation by addressing open

questions and suggesting future research direc-

tions to further extend the scope of topology-

based visualization.

17.2 Vector Field Topology

In this section, we propose a short overview of

the theoretical framework of vector field top-

ology, which we restrict to the requirements of

visualization techniques.

17.2.1 Basic Definitions

We consider a vector field y : U � IRn�
IR!TIRn’IRn, which is a vector-valued func-

tion that depends on a space variable and on an

additional scalar parameter, say time. The vector

field y generates a flow ft: U � IRn ! IRn,

where ft:¼ f(x, t) is a smooth function defined

for (x, t) 2 U � (I � IR) satisfying

d

dt
f(x, t)jt¼t ¼ u(t,f(x, t)) (17:1)

for all (x, t) 2 U � I . Practically we limit our

presentation to the case n ¼ 2 or 3 in the

following. The function f(x0, :) : t! f(x0, t) is

an integral curve through x0. Observe that exist-

ence and uniqueness of integral curves are en-

sured under the assumption of fairly general

continuity properties of the vector field. In the

special but fundamental case of steady vector

fields, i.e., fields that do not depend on the

variable t, integral curves are called streamlines.

Otherwise, they are called pathlines. The

uniqueness property guarantees that stream-

lines cannot intersect in general. The set of all

integral curves is called phase portrait. The

qualitative structure of the phase portrait is

called topology of the vector field. In the

following we focus first on the steady case, and

then we consider parameter-dependent top-

ology.

17.2.2 Steady Vector Fields

The local geometry of the phase portrait is char-

acterized by the nature and position of its crit-

ical points. In the steady case, these singularities

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 342

342 Tensor Field Visualization

are locations where the vector field is zero.

Consequently, they behave as zero-dimensional

integral curves. Furthermore, they are the

only positions where streamlines can intersect

(asymptotically). Basically, the qualitative study

of critical points relies on the properties of

the Jacobian matrix of the vector field at their

position. If the Jacobian has full rank, the

critical point is said to be linear or of first

order. Otherwise, a critical point is nonlinear

or of higher order. Next we discuss the planar

and 3D cases successively. Observe that consid-

erations made for 2D vector fields also apply to

vector fields defined over a 2D manifold embed-

ded in three dimensions, for example, the sur-

face of an object surrounded by a 3D flow.

17.2.2.1 Planar Case

Planar critical points have benefited from great

attention from mathematicians. A complete

classification has been provided by Andronov

et al. [1]. Additional excellent information is

available in Abraham and Shaw [2] and Hirsch

and Smale [12]. Depending on the real and

imaginary parts of the eigenvalues, linear

critical points may exhibit the configurations

shown in Fig. 17.1. Repelling singularities act as

sources, whereas attracting ones are sinks.

Hyperbolic critical points are a subclass of

linear singularities for which both eigenvalues

have nonzero real parts. Thus, a center is

nonhyperbolic. The analysis of nonlinear criti-

cal points, on the contrary, requires us to take

into account higher-order polynomial terms in

the Taylor expansion. Their vicinity is decom-

posed into an arbitrary combination of hyper-

bolic, parabolic, and elliptic curvilinear sectors

(see Fig. 17.2). The bounding curve of a

hyperbolic sector is called a separatrix. Back

in the linear case, separatrices exist only for

saddle points, where they are the four curves

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 343

Saddle Point:
R1 < 0, R2 > 0,
I1 = I2 = 0

Repelling Focus:
R1 = R2 > 0,
I1 = −I2 <> 0

Attracting Focus:
R1 = R2 < 0,
I1 = −I2 <> 0

Repelling Node:
R1, R2 > 0,
I1 = I2 = 0

Attracting Node:
R1, R2 < 0,
I1 = I2 = 0

Figure 17.1 Basic configurations of first-order planar critical points.

C

O

M'
M

S'−
S+

C
O

M'
M

S'+
S+

C

O

M

S

M'

(a) (b) (c)

Figure 17.2 Sector types of arbitrary planar critical points. (a) Hyperbolic; (b) parabolic; (c) elliptic.

Topological Methods for Flow Visualization 343

that reach the singularity, forward or backward

in time. Thus, we obtain a simple definition of

planar topology as the graph whose vertices are

the critical points and whose edges are the

separatrices integrated away from the corre-

sponding singularities. This needs to be com-

pleted by closed orbits that are periodic integral

curves. Closed orbits play the role of sources or

sinks and can be seen as additional separatrices.

It follows that topology decomposes a vector

field into subregions where all integral curves

have a similar asymptotic behavior: they con-

verge toward the same critical points (respective

closed orbits) both forward and backward. We

complete our overview of steady planar topol-

ogy by mentioning the index of a critical point

introduced by Poincaré in the qualitative theory

of dynamical systems. It measures the number

of field rotations along a closed curve that is

chosen to be arbitrarily small around the critical

point. By continuity of the vector field, this is

always a (signed) integer value. The index is an

invariant quantity for the vector field and

possesses several properties that explain its

importance in practice. Among them we have

the following:

1. The index of a curve that encloses no crit-

ical point is zero.

2. The index of a linear critical point is �1 for

a saddle point and þ1 for every other type

(Fig. 17.3).

3. The index of a closed orbit is always þ1:

4. The index of a curve enclosing several critical

points is the sum of their individual indices.

17.2.2.2 3D Case

Similar theoretical results can be found for the

analysis of the 3D case. However, only a few of

them have concrete applications in scientific

visualization so far. Therefore, we address only

linear 3D critical points. Like the planar case,

the analysis is based on the eigenvalues of the

Jacobian. Two main possibilities exist: either

the three eigenvalues are real or two of them are

complex conjugates. Refer to Fig. 17.4 for a

visual impression.

. Three real eigenvalues. One has to distinguish

the case where all three eigenvalues have the

same sign, where we have a 3D node (either

attracting or repelling) from the case where

only two eigenvalues have the same sign: the

two eigenvectors associated with the eigen-

values of the same sign span a plane in which

the vector field behaves as a 2D node and the

critical point is a 3D saddle.

. Two complex eigenvalues. Once again there

are two possibilities. If the common real part

of both complex eigenvalues has the same

sign as the real eigenvalue, one has a 3D

spiral, i.e., a critical point (either attracting

or repelling) that exhibits a 2D spiral struc-

ture in the plane spanned by the eigenspace

related to the complex eigenvalues. If they

have different signs, one has a second kind of

3D saddle.

Analogously to the planar case, a critical

point is called hyperbolic in this context if the

eigenvalues of the Jacobian have all nonzero

real parts. Compared to 2D critical points,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 344

γ

Figure 17.3 Simple closed curve of index �1 (saddle point).

344 Tensor Field Visualization

separatrices in 3D are not restricted to curves;

they can be surfaces, too. These surfaces are

special types of so-called stream surfaces that

are constituted by the set of all streamlines that

are integrated from a curve. The linear 3D top-

ology is thus composed of nodes, spirals, and

saddles that are interconnected by curve and

surface separatrices. Depending on the con-

sidered type, repelling and attracting eigen-

spaces can be 1D or 2D, leading to curves and

surfaces (Figs. 17.4b and 17.4d). Surface separ-

atrices emanate from 3D saddle points spanned

by the eigenvectors associated with the two

eigenvalues of the same sign.

17.2.3 Parameter-Dependent
Vector Fields

The previous sections focused on steady vector

fields. Now, if the considered vector field

depends on an additional parameter, the struc-

ture of the phase portrait may transform as the

value of this parameter evolves: position and

nature of critical points can change along with

the connectivity of the topological graph. These

modifications—called bifurcations in the litera-

ture—are continuous evolutions that bring the

topology from a stable state to another, struc-

turally consistent, stable state. Bifurcations

have been the subject of an intensive research

effort in pure and applied mathematics [7]. The

present section will provide a short introduction

to these notions. Notice that the treatment of

3D bifurcations is beyond the scope of this

paper, since they have not been applied to flow

visualization up till now. We start with basic

considerations about structural stability and

then describe typical planar bifurcations.

17.2.3.1 Structural Stability

As said previously, bifurcations consist of

topological transitions between stable struc-

tures. In fact, the definition of structural

stability involves the notion of structural

equivalence. Two vector fields are said to be

equivalent if there exists a diffeomorphism (i.e.,

a smooth map with smooth inverse) that takes

the integral curves of one vector field to those of

the second while preserving orientation. Struc-

tural stability is now defined as follows: the

topology of a vector field v is stable if any

perturbation of v, chosen small enough, results

in a vector field that is structurally equivalent to

v. We can now state a simplified version of the

fundamental Peixoto’s theorem [7] on structural

stability for 2D flows. A smooth vector field on a

2D compact planar domain of IR2 is structurally

stable if and only if (iff) the number of critical

points and closed orbits is finite and each is

hyperbolic, and if there are no integral curves

connecting saddle points. Practically, Peixoto’s

theorem implies that a planar vector field

typically exhibits saddle points, sinks, and

sources, as well as attracting or repelling closed

orbits. Furthermore, it asserts that nonhyper-

bolic critical points or closed orbits are unstable

because arbitrarily small perturbations can

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 345

(a) (b) (c) (d)

Figure 17.4 Linear 3D critical points. (a) 3D mode; (b) node saddle; (c) 3D spiral; (d) spiral saddle.

Topological Methods for Flow Visualization 345

make them hyperbolic. Saddle connections, as

far as they are concerned, can be broken by

small perturbations as well.

17.2.3.2 Bifurcations

There are two major classes of structural

transitions: local and global bifurcations.

Local Bifurcations: There are two main types

of local bifurcations affecting the nature of a

singular point in 2D vector fields. The first one

is the so-called Hopf bifurcation. It consists of

the transition from a sink to a source with sim-

ultaneous creation of a surrounding closed orbit

that behaves as a sink, preserving local consist-

ency with respect to the original configuration

(Fig. 17.5). At the bifurcation point there is a

center. The reverse evolution is possible too, as

is an inverted role of sinks and sources. A

second typical local bifurcation is called fold

bifurcation and consists of the pairwise annihi-

lation or creation of a saddle and a sink (re-

spectively). This evolution is depicted in Fig.

17.6. Observe that the index of the concerned

region remains 0 throughout the transform-

ation.

Global Bifurcations: In contrast to the cases

mentioned above, global bifurcations are not

restricted to a small neighborhood of a singu-

larity, but they entail significant changes in the

overall flow structure and involve large domains

by modifying the connectivity of the topological

graph. Since global bifurcations remain a chal-

lenging mathematical topic, we mention here

just a typical configuration exhibited by such

transitions: the unstable saddle–saddle connec-

tion (see Peixoto’s theorem). This is the central

constituent of basin bifurcations, where the rela-

tive positions of two separatrices emanating

from two neighboring saddle points are

swapped through a saddle–saddle separatrix.

17.3 Tensor-Field Topology

Making use of the results obtained for vector

fields, we now turn to tensor-field topology. We

adopt for our presentation an approach similar

to the original work of Delmarcelle [5,6] and

focus on symmetric second-order real tensor

fields that we analyze through their eigenvector

fields. We seek here a framework that permits us

to extend the results discussed previously to

tensor fields. However, since most of the re-

search done so far has been concerned with the

2D case, we put the emphasis on planar tensor

fields and point out the generalization to 3D

fields. A mathematical treatment of these

notions can be found in Tricoche [28], where

it is shown how covering spaces allow associ-

ation of a line field with a vector field. In

this section, we first introduce useful nota-

tions in the steady case and also show how

symmetric second-order tensor fields can be in-

terpreted as line fields. This makes possible the

integration of tangential curves called tensor

lines. Next, singularities are considered.

We complete the presentation with tensor bifur-

cations.

17.3.1 Line Fields

17.3.1.1 Basic Definitions

In the following, we call tensor a symmetric

second-order real tensor of dimension 2 or 3.

This is a geometric invariant that corresponds

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 346

Figure 17.5 Hopf bifurcation.

346 Tensor Field Visualization

to a linear transformation and canbe represented

by a matrix in a Cartesian basis. By extension, we

define a tensor field as a map T that associates

every position of a subset of the Euclidean space

IRn with a n� n symmetric matrix. Thus, it is

characterized by 1
2
n(nþ 1) independent, real

scalar functions. Note that an arbitrary second-

order tensor field can always be decomposed into

its symmetric and antisymmetric parts. From the

structural point of view, a tensor field is fully

characterized by its deviator field, which is

obtained by subtracting from the tensor its

isotropic part, that is D ¼ T� 1
n
(tr T)In, where

tr T is the trace of T and In the identity matrix in

IRn. Observe that the deviator has trace zero by

definition. The analysis of a tensor field is based

on the properties of its eigensystem. Since we

consider symmetric tensors, the eigenvectors

always form an orthogonal basis of IRn and the

eigenvalues are real. It is a well known fact that

eigenvectors are defined modulo a nonzero

scalar, which means that they have neither

inherent norm nor orientation. This character-

istic plays a fundamental role in the following

process. Through its corresponding eigensystem,

any symmetric real tensor field can now be

associated with a set of orthogonal eigenvector

fields. We choose the following notations in three

dimensions. Let l1 > l2 > l3 be the real eigen-

values of the symmetric tensor field T (i.e., l1, l2,

and l3 are scalar fields as functions of the

coordinate vector x). The corresponding eigen-

vector fields e1, e2, and e3 are respectively called

major, medium, and minor eigenvector fields.

In the 2D case, there are just major and

minor eigenvectors. We now come to tensor

lines, which are the object of our structural

analysis.

17.3.1.2 Tensor Lines

A tensor line computed in a Lipschitz contin-

uous eigenvector field is a curve that is every-

where tangent to the direction of the field.

Because of the lack of both norm and orienta-

tion, the tangency is expressed at each position

in the domain in terms of lines. For this reason,

an eigenvector field corresponds to a line field.

Nevertheless, except at positions where two (or

three) eigenvalues are equal, integration can be

carried out in a way similar to streamlines for

vector fields by choosing an arbitrary local

orientation. Practically, this consists of deter-

mining a continuous angular function y�

defined modulo 2p that is everywhere equal to

the angular coordinate y of the line field,

modulo p. Considering the set of all tensor

lines as a whole, the topology of a tensor field is

defined as the structure of the tensor lines. It is

important to observe that the topology of a

particular eigenvector field can be deduced

from the topology of the other one through

the orthogonality of the corresponding line

fields.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 347

Figure 17.6 Pairwise annihilation.

Topological Methods for Flow Visualization 347

17.3.2 Degenerate Points

Inconsistencies in the local determination of an

orientation (as described previously) only

occurs in the neighborhood of positions where

several eigenvalues are equal. There, the eigen-

space associated with the corresponding eigen-

values is no longer 1D. For this reason, such

positions are singularities of the line field. To

remain consistent with the notations originally

used by Delmarcelle [5,6], we call them degener-

ate points, though they are typically called umbi-

lic points in differential geometry. Because of

the direction indeterminacy at degenerate

points, tensor lines can meet there, which under-

lines the analogy with critical points.

17.3.2.1 Planar Case

The deviator part of a 2D tensor field is zero iff

both eigenvalues are equal. For this reason,

degenerate points correspond to zero values of

the deviator field. Thus, D can be approximated

as follows in the vicinity of a degenerate point

P0:

D (P0 þ dx) ¼ rD (P0)dxþ o(dx) (17:2)

Where dx ¼ (x, y)T , and where a and b are real

scalar functions over IR2,

D(x, y) ¼
a b

b �a

� �
, and rD (P0)dx ¼

@a
@x

dxþ @a
@y

dy
@b
@x

dxþ @b
@y

dy

@b
@x

dxþ @b
@y

dy � @a
@x

dx� @a
@y

dy

0
BB@

1
CCA

If the condition @a
@x

@b
@y � @a

@y
@b
@x 6¼ 0 holds, the de-

generate point is said to be linear. The local

structure of the tensor lines in this vicinity

depends on the position and number of radial

directions. If y is the local angle coordinate of a

point with respect to the degenerate point,

u ¼ tany is the solution of the following cubic

polynomial:

b2u
3 þ (b1 þ 2a2)u

2 þ (2a1 � b2)u� b1 ¼ 0

(17:3)

with a1 ¼ @a
@x , a2 ¼ @a

@y, and the same for bi. This

equation has either one or three real roots,

which all correspond to angles along which the

tensor lines reach the singularity. These angles

are defined modulo p, so one obtains up to six

possible angle solutions. Since we limit our dis-

cussion to a single (minor/major) eigenvector

field, we are finally concerned with up to three

radial eigenvectors. The possible types of linear

degenerate points are trisectors and wedges

(Fig. 17.7). In fact, the special importance of

radial tensor lines is explained by their interpret-

ation as separatrices. As a matter of fact, like

critical points, the set of all tensor lines in the

vicinity of a degenerate point is partitioned into

hyperbolic, parabolic, and elliptic sectors.

Separatrices are again defined as the bounding

curves of the hyperbolic sectors (compare Fig.

17.7). In fact, a complete definition of the planar

topology involves closed tensor lines too, al-

though they are rare in practice. The analogy

with vector fields may be extended by defining

the tensor index of a degenerate point [5,28] that

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 348

(b)

S1 S1 S2 S1= S2

S3S2 (a)

Figure 17.7 Linear degenerate points in the plane. (a) Trisector; (b) wedge point.

348 Tensor Field Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 349

measures the number of rotations of a particu-

lar eigenvector field along a closed curve sur-

rounding a singularity. Notice that tensor

indices are half integers, due to orientation in-

determinacy: trisectors have index � 1
2

and

wedges have index 1
2
. The nice properties of

Poincaré’s index extend here in a very intuitive

fashion.

17.3.2.2 3D Degenerate Points

In the 3D case, singularities are of two types:

eigenspaces may become 2D or 3D, leading to

tangency indeterminacy in the corresponding

eigenvector fields. To simplify the presentation,

we restrict our considerations to the trace-free

deviator D ¼ (Dij)i, j. The characteristic equa-

tion is �l3 þ blþ c ¼ 0, where �c is the

determinant of D and b ¼ 1
2

P
i Dii þ

P
i<j D

2
ij.

The quantity D ¼ (c
2
)2 � (b

3
)3 determines the

number of distinct real roots of the equation:

D < 0 yields three distinct real roots, while there

are multiple roots iff D ¼ 0 (complex conjugate

roots are impossible, since D is symmetric).

Thus, degeneracies correspond to a maximum

of D, which is everywhere negative, except at

points, lines, or surfaces, where it is zero. Here a

major difference with 3D vector field topology

must be underlined: The loci of singularities are

not restricted to points. Refer to Hesselink et al.

[11] and Lavin et al. [16] for additional

information.

17.3.3 Parameter-Dependent Topology

Again, the natural question that arises at this

stage is the structural stability of topology

under small perturbations of an underlying

parameter. We restrict our considerations to

the simplest cases in 2D of local and global

bifurcations to remain in the scope of the

methods to come. The observations proposed

next are all inspired by geometric consider-

ations.

Following the basic idea behind Peixoto’s

theorem, we see that the only stable degenerate

points must be the linear ones. As a matter of

fact, the asymptotic behavior of tensor lines in

the vicinity of a degenerate point is determined

by the third-order differential rD (thus leading

to a linear degenerate point) except at locations

where it becomes singular. This is, by essence,

an unstable property, since arbitrary small per-

turbations in the coefficients lead to one of the

linear configurations. Continuing our analogy

with the vector case, we conclude that integral

curves are unstable if they are separatrices for

both of the degeneracies they link together. This

is because a small-angle perturbation of the

line field around any point along the separatrix

suffices to break the connection. Using these

elementary results, we review typical planar

bifurcations.

17.3.3.1 Pairwise Creation and
Annihilation

Since a wedge and a trisector have opposite

indices, a closed curve enclosing them has index

0. This simple fact is the basic idea behind

pairwise creations or annihilations. Indeed, the

zero index computed along this closed curve

shows that the combination of both degenerate

points is structurally equivalent to a uniform

flow. Therefore, a wedge and a trisector can

merge and disappear: this is a pairwise annihila-

tion. The reverse evolution is called a pairwise

creation. Both are the equivalent of the fold

bifurcations for critical points. An example is

proposed in Fig. 17.8.

17.3.3.2 Homogeneous Mergings

When two linear degenerate points of the same

nature merge, their half-integer indices are

added and the resulting singularity exhibits a

pattern corresponding to a linear critical point,

e.g., two trisectors lead to a saddle point.

However, according to what precedes, these

new degenerate points are nonlinear and thus

unstable. Details on that topic can be found in

Delmarcelle [5].

17.3.3.3 Wedge Bifurcation

Both existing types of wedges have the same

index, 1
2
. As a consequence, the transition from

Topological Methods for Flow Visualization 349

one type to the other can occur without

modifying structural consistency of the sur-

rounding flow. From a topological viewpoint,

this evolution corresponds to the creation

(respectively disappearance) of a parabolic

sector along with an additional separatrix.

17.3.3.4 Global Bifurcations

To finish this presentation of structural transi-

tions in line fields, we briefly consider the

simplest type of global bifurcation. It is

intimately related to the unstable separatrices

defined above. It occurs when the relative

positions of two separatrices are changed

through a common separatrix.

17.4 Topological Visualization of Vector
and Tensor Fields

The theoretical framework described previously

has motivated the design of techniques that

build the visualization of vector and tensor

fields upon the extraction and analysis of their

topology. We start with a recall of the original

method of Helman and Hesselink [9,10] for

vector fields, later extended by Delmarcelle [5]

to symmetric second-order tensor fields. After

that, we focus on recent advances in topology-

based visualization. New methods designed to

complete the visualization of planar steady

fields are discussed first. Nonlinear topology is

addressed next. Techniques for reducing topo-

logical complexity in turbulent fields are con-

sidered, and the presentation ends with the

topological visualization of parameter-depend-

ent (e.g., unsteady) datasets. Throughout the

presentation, we privilege a simultaneous treat-

ment of vector and tensor techniques, making

natural use of the profound theoretical relation-

ships between their topologies.

17.4.1 Topology Basics

17.4.1.1 Original Methods

Helman and Hesselink pioneered topology-

based visualization in 1989 [9]. They proposed

a scheme for 2D vector fields, restricting the

characterization of critical points to a linear

precision. Remember that this leads to a graph

where saddles, spirals, and nodes are the vertices

and separatrices at the edges, integrated along

the eigendirections of the saddle points. They

extended their technique to tangential vector

fields defined over surfaces embedded in 3D

space [10]. Stream surfaces [13,22] are started

along the separatrices. This was shown to permit

the visualization of separation and attachment

lines in some cases. At the same time, Globus et

al. [8] suggested a similar technique to visualize

the topology of 3D vector fields defined over

curvilinear grids. They did not provide the

separating surfaces associated with 3D saddles,

but used glyphs to depict their structure locally

and draw streamlines from them. Observe that

all these methods require the integration of

streamlines, which is typically carried out nu-

merically, e.g., using Runge-Kutta with adaptive

step size [21]. Analytical methods exist for

piecewise linear vector fields over triangulations,

respectively tetrahedrizations [18].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 350

Figure 17.8 Pairwise annihilation of degenerate points.

350 Tensor Field Visualization

The topological approach for vector fields

inspired Delmarcelle, who extended the original

scheme to symmetric, second-order planar

tensor fields [6] within his work on general tech-

niques for tensor field visualization [5]. Here,

too, analysis is restricted to linear precision.

The missing quantitative information provided

by eigenvalues is inserted into the representa-

tion by means of color coding. Existing at-

tempts to generalize this method to 3D tensor

fields suffer from the inherent difficulty of locat-

ing 3D degenerate points [11,16]. Typically they

lead to complicated polynomial systems of high

degree and lack surfaces to partition the domain

conveniently.

17.4.1.2 Closed Orbits

The original topological method neglects the

importance of closed orbits. As mentioned

previously, these features play a major role in

the flow structure, acting like sinks or sources

and like additional separatrices. Moreover, they

represent a challenging issue for numerical

integration schemes used in practice, since every

streamline that converges toward a closed orbit

will result in an endless computation. A

traditional but inaccurate way to solve this

problem is to limit the number of integration

steps. However, this does not permit us to

distinguish a closed orbit from a slowly

converging spiral, i.e., a spiral with high

vorticity. Furthermore, this might be very

inefficient if the number of iterations is set to

a fairly large value to avoid a premature

integration break. To overcome this deficiency,

Wischgoll and Scheuermann [34] first proposed

a method that properly identifies and locates

closed orbits. Their basic idea is to detect on a

cell-wise basis a periodic behavior during

streamline integration. Practically, once a cell

cycle has been inferred, a control is carried out

over the edges of the concerned cells. This

ensures that a streamline entering the cycle will

remain trapped. If this condition is met and no

critical point is present in the cycle, the

Poincaré-Bendixon theorem [7] ensures that a

closed orbit is contained in it. Precise location is

obtained by looking for a fixed point of the

Poincaré map [2]. The method was generalized

to 3D by Wischgoll and Scheuermann [35].

Note that the extension to tensor fields is

straightforward even if closed tensor lines are

rare in practice.

17.4.1.3 Local Topology

The definition of topology given previously

does not specifically address vector fields

defined over a bounded domain. As a matter

of fact, the idea behind topology visualization is

to partition the domain into subregions where

all streamlines exhibit the same asymptotic

behavior. If the considered domain is infinite,

this is equivalent to looking for subregions

where all streamlines reach the same critical

points, both backward and forward, including a

critical point at infinity [26]. Now, scientific

visualization is typically concerned with do-

mains spanned by bounded grids. In this case,

the boundary must be incorporated into the

topology analysis: outflow parts behave as

sinks, inflow parts as sources, and the points

separating them as half-saddles. Scheuermann

et al. [23] proposed a method that identifies

these regions along the boundaries of planar

vector fields. It assumes that the restriction of

the vector field to the boundary is piecewise

linear. Half saddles are located and separatrices

are started there, forward and backward, to

complete the local topology visualization. Ob-

serve that the same principle can be applied in

3D: half saddles are no longer points but closed

curves from which stream surfaces can be

drawn.

17.4.1.4 Earth Mover’s Distance

Lavin et al. [39] addressed the problem of vector

field registration by automatically comparing

two planar vector fields based on the character-

istics of their critical points. The metric consid-

ered is called Earth mover’s distance and is

traditionally used for image retrieval. This

technique was extended to 3D critical points by

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 351

Topological Methods for Flow Visualization 351

Batra et al. [36]. Observe that in neither case is

the connectivity of the topological graph taken

into account by the metric.

17.4.2 Nonlinear Topology

The methods introduced so far are limited to

linear precision in the characterization of singu-

lar points. We saw previously that nonlinear

critical or degenerate points are unstable. How-

ever, when imposed constraints exist (e.g., sym-

metry or incompressibility of the flow), they can

be encountered. To extend existing methods,

Scheuermann et al. [25] proposed a scheme

for the extraction and visualization of higher-

order critical points in 2D vector fields. The

basic idea is to identify regions where the

index is larger than 1 (or less than �1). In

such regions, the original piecewise linear inter-

polant is replaced by a polynomial approximat-

ing function. The polynomial is designed in

Clifford algebra, based on theoretical results

presented by Scheuermann et al. [24]. This per-

mits us to infer the underlying presence of a

critical point with arbitrary complexity, which

is next modeled and visualized as shown in

Fig. 17.9.

An alternative way to replace several close

linear singularities by a higher-order one is

suggested by Tricoche et al. [29]. It works

with local grid deformations and can be ap-

plied to both tensor and vector fields in 2D.

Moreover, it ensures continuity over the whole

domain. Based on a mathematical background

analogous to that of Scheuermann et al. [25],

Mann and Rockwood presented a scheme for

the detection of arbitrary critical points in three

dimensions [17]. Geometric algebra is used to

compute the 3D index of a vector field, which

is obtained as an integral over the surface of a

cube. Getting back to the original ideas of

Poincaré in his study of dynamical systems,

Trotts et al. [26] proposed a method to extract

and visualize the nonlinear structure of a ‘‘crit-

ical point at infinity’’ when the considered

vector field is defined over an unbounded

domain.

17.4.3 Topology Simplification

Topology-based visualization usually results in

clear and synthetic depictions that ease analysis

and interpretation. Yet turbulent flows, like

those encountered in CFD simulations, lead to

topologies exhibiting many structures of very

small scale. Their proximity and interconnec-

tion in the global picture cause visual clutter

with classical methods. This drawback is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 352

Figure 17.9 Nonlinear topologies.

352 Tensor Field Visualization

worsened by low-order interpolation schemes,

typical in practice, that confuse the results by

introducing artifacts. Therefore, there is a need

for postprocessing methods that permit clarifi-

cation of the topologies by emphasizing the

most meaningful properties of the flow and sup-

pressing local details and numerical noise. The

problem was first addressed by de Leeuw et al.

[38] for planar vector fields. They proposed a

scheme based on the pairwise pruning of inter-

connected critical points along with the corres-

ponding edges. This pruning was first driven by

a distance filter to obtain a multiscale topology

visualization [37,38]. The same authors im-

proved this original work later on by evaluating

the importance of sinks and sources with respect

to the surface of their inflow (respectively out-

flow) basins [15]. Since both methods are graph-

based, the resulting simplified topology lacks a

corresponding vector field description. Tricoche

et al. [29] proposed an alternative approach for

both vector and tensor fields defined in the

plane. Close singularities are merged, resulting

in a higher-order singularity that synthesizes the

structural impact of small-scale features in the

large picture. This reduces the number of singu-

lar points as well as the global complexity of the

graph. The merging effect is achieved by local

grid deformations that modify the vector field.

There is no assumption about grid structure or

interpolation scheme. The same authors pre-

sented a second method that works directly on

the discrete values defined at the vertices of a

triangulation [31]. Angle constraints drive a

local modification of the vector field that re-

moves pairs of singularities of opposite indices.

This simulates a fold bifurcation. Results are

shown in Fig. 17.10 for a vortex breakdown

simulation. A major advantage compared to

the previous method is that the simplification

process can be controlled not only by geometric

considerations but by arbitrary user-prescribed

criteria (qualitative or quantitative, local or

region-based), specific to the considered appli-

cation.

17.4.4 Topology Tracking

Theoretical results show that bifurcations are

the key to understanding and thus properly visu-

alizing parameter-dependent flow fields: they

transform the topology and explain how the

stable structures arise that are observed for dis-

crete values of the parameter. Typical examples

in practice are time-dependent datasets. This

basic observation motivates the design of tech-

niques that permit us to accurately visualize the

continuous evolution of topology. A first at-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 353

Figure 17.10 Turbulent and simplified topologies. (See also color insert.)

Topological Methods for Flow Visualization 353

tempt was the method proposed by Helman and

Hesselink [10]. The 1D parameter space is dis-

played in the third dimension (2D vector fields).

However, the method is restricted to a graphical

connection between the successive positions of

critical points and associated separatrices, lead-

ing to a ribbon if consistency was preserved.

Thus, no connection is made if a structural tran-

sition has occurred: bifurcations are missed. The

same restriction holds for the transposition of

this technique to tensor fields by Delmarcelle

and Hesselink [6]. Tricoche et al. [30,32] attacked

this deficiency. The central idea of their tech-

nique is to handle the mathematical space,

made of the Euclidean space on one hand and

the parameter space on the other hand, as

a continuum. The vector or tensor data is sup-

posed to lie on a triangulation that remains con-

stant. A ‘‘space–time’’ grid is constructed by

linking corresponding triangles through prisms

over the parameter space. The choice of a suit-

able interpolation scheme permits an accurate

and efficient tracking of singular points through

the grid along with the detection of local bifurca-

tions on the way. With the scheme of [34], closed

orbits are tracked in a similar way. Again, the

technique results in a 3D representation. The

paths followed by critical points are depicted as

curves. Separatrices integrated from saddles and

closed orbits span smooth separating surfaces.

These surfaces are further used to detect modifi-

cations in the global topological connectivity:

consistency breaks correspond to global bifurca-

tions. Examples are proposed in Fig. 17.11.

17.5 Future Research

So far, the major limitation of many existing

topological methods is their restriction to 2D

datasets. This is especially true in the case of

tensor fields. In fact, the basic idea behind top-

ology, i.e., the structural partition of a flow into

regions of homogenous behavior, is definitely

not restricted to two dimensions. However, the

theoretical framework requires further research

effort to serve as a basis for 3D visualization

techniques. Now, in the simple case of linear

precision in the characterization of critical

points, topology-based visualization of 3D

vector fields still lacks a fast, accurate, and robust

technique to compute separating surfaces. This

becomes challenging in regions of strong vorti-

city or in the vicinity of critical points, in particu-

lar for turbulent flows. In addition, topology-

based visualization of parameter-dependent, 3D

fields must overcome the limitations human

beings experience in apprehending the informa-

tion contained in 4D datasets.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 354

Figure 17.11 Unsteady vector and tensor topologies. (See also color insert.)

354 Tensor Field Visualization

Dealing with time-dependent vector fields,

there is a fundamental issue with topology.

The technique described in Section 17.4.4 ad-

dresses the visualization of the unsteady stream-

lines’ topology. Remember that streamlines

are defined as integral curves in steady vector

fields. In the context of time-dependent vector

fields, they must be thought of as instantaneous

integral curves, i.e., the paths of particles that

circulate with infinite speed. This might sound

like a weird idea. Actually, this is a typical way

for fluid dynamicists to investigate the structure

of time-dependent vector fields in practice.

Observe that there is no restriction to this tech-

nique for the visualization of parameter-de-

pendent vector fields, this parameter not being

time. Nevertheless, if one is interested in the

structure of pathlines, i.e., the paths of particles

that flow under the influence of a vector field

varying over time, one has to rethink the notion

of topology. As a matter of fact, the asymptotic

behavior of pathlines is not relevant for analysis

since there is no longer infinite time for them to

converge toward critical points. Thus, a new

approach is required to define ‘‘interesting’’ be-

haviors. Furthermore, a structural equivalence

relation must be determined between pathlines,

upon which a corresponding topology can be

built. This too seems to be a promising research

direction in which to extend the scope of topo-

logical methods in the future.

References

1. A. A. Andronov, E. A. Leontovich, I. I. Gordon,
and A. G. Maier. Qualitative theory of second-
order dynamic systems. Israel Program for Scien-
tific Translations, Jerusalem, 1973.

2. R. H. Abraham and C. D. Shaw. Dynamics: the
Geometry of Behavior, I-IV. Aerial Press, 1982,
1983, 1985, 1988.

3. M. S. Chong, A. E. Perry, and B. J. Cantwell. A
general classification of 3D flow fields. Physics
of Fluids, A2(5):765–777, 1990.

4. U. Dallmann. Topological structures of 3D flow
separations. DFVLR-AVA Bericht Nr. 221–82
A 07, Deutsche Forschungs-und Versuchsanstalt
für Luft-und Raumgfahrt e. V., 1983.

5. T. Delmarcelle. The Visualization of Second-
Order Tensor Fields. PhD Thesis, Stanford Uni-
versity, 1994.

6. T. Delmarcelle and L. Hesselink. The topology
of symmetric, second-order tensor fields. IEEE
Visualization ’94 Proceedings, pages 140–147,
1994.

7. J. Guckenheimer and P. Holmes. Nonlinear
oscillations, dynamical systems and linear alge-
bra. New York, Springer, 1983.

8. A. Globus, C. Levit, and T. Lasinski. A tool for
the topology of 3D vector fields. IEEE Visual-
ization ’91 Proceedings, pages 33–40, 1991.

9. J. L. Helman and L. Hesselink. Representation
and display of vector field topology in fluid flow
data sets. Computer, 22(8):27–36, 1989.

10. J. L. Helman and L. Hesselink. Visualizing
vector field topology in fluid flows. IEEE Com-
puter Graphics and Applications, 11(3):36–46,
1991.

11. L. Hesselink, Y. Levy and Y. Lavin. The top-
ology of symmetric, second-order 3D tensor
fields. IEEE Transactions on Visualization and
Computer Graphics, 3(1):1–11, 1997.

12. M. W. Hirsch and S. Smale. Differential Equa-
tions, Dynamical Systems, and Linear Algebra.
New York, Academic Press, 1974.

13. J. P. M. Hultquist. Constructing stream surfaces
in steady 3D vector fields. IEEE Visualization
’92 Proceedings, pages 171–178, 1992.

14. M. J. Lighthill. Attachment and separation in
3D flow. Laminar Boundary Layers II. Oxford,
Oxford University Press, pages 72–82, 1963.

15. W. C. de Leeuw and R. van Liere. Collapsing
flow topology using area metrics. IEEE Visual-
ization ’99 Proceedings, pages 349–354, 1999.

16. Y. Lavin, Y. Levy, and L. Hesselink. Singular-
ities in nonuniform tensor fields. IEEE Visual-
ization ’97 Proceedings, pages 59–66, 1997.

17. S. Mann and A. Rockwood. Computing singu-
larities of 3D vector fields with geometric
algebra. IEEE Visualization ’02, pages 283–289,
2002.

18. G. M. Nielson and I.-H. Jung. Tools for com-
puting tangent curves for linearly varying vector
fields over tetrahedral domains. IEEE Transac-
tions on Visualization and Computer Graphics,
5(4):360–372, 1999.

19. A. E. Perry and M. S. Chong. A description of
eddying motions and flow patterns using critical
point concepts. Ann. Rev. Fluid Mech., pages
127–155, 1987.

20. H. Poincaré. Sur les courbes définies par une
équation différentielle. J. Math. 1:167–244, 1875,
2:151–217, 1876, 7:375–422, 1881, 8:251–296,
1882.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 355

Topological Methods for Flow Visualization 355

21. W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Numerical Recipes in C, 2nd
ed. Cambridge, England, Cambridge University
Press, 1992.

22. G. Scheuermann, T. Bobach,H.Hagen,K.Mah-
rous, B. Hahmann, K. I. Joy, and W. Kollmann.
A tetrahedra-based stream surface algorithm.
IEEE Visualization ’01 Proceedings, pages 151–
158, 2001.

23. G. Scheuermann, B. Hamann, K. I. Joy, and W.
Kollmann. Visualizing local topology. Journal
of Electronic Imaging 9(4), 2000.

24. G. Scheuermann, H. Hagen, and H. Krüger. An
interesting class of polynomial vector fields. In
Mathematical Methods for Curves and Surfaces
II, pages 429–436. Nashville, TN, Vanderbilt
University Press, 1998.

25. G. Scheuermann, H. Krüger, M. Menzel, and
A. P. Rockwood. Visualizing nonlinear vector
field topology. IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(2):109–116, 1998.

26. I. Trotts, D. Kenwright, and R. Haimes. Crit-
ical points at infinity: a missing link in vector
field topology. NSF/DoE Lake Tahoe Workshop
on Hierarchical Approximation and Geometrical
Methods for Scientific Visualization, 2000.

27. M. Tobak and D. J. Peake. Topology of 3D
separated flows. Ann. Rev. Fluid Mech., 14:81–
85, 1982.

28. X. Tricoche. Vector and tensor topology simplifi-
cation, tracking, and visualization. Ph.D. thesis,
Schriftenreihe FB Informatik 3, University of
Kaiserslautern, Germany, 2002.

29. X. Tricoche, G. Scheuermann, and H. Hagen.
Vector and tensor field topology simplification
on irregular grids. Data Visualization 2001—
Proceedings of the Joint Eurographics – IEEE
TCVG Symposium on Visualization, pages
107–116, 2001.

30. X. Tricoche, G. Scheuermann, and H. Hagen.
Tensor topology tracking: a visualization
method for time-dependent 2D symmetric tensor
fields. Eurographics ’01 Proceedings, Computer
Graphics Forum, 20(3):461–470, 2001.

31. X. Tricoche, G. Scheuermann, and H. Hagen.
Continuous topology simplification of 2D vector
fields. IEEE Visualization ’01 Proceedings, 2001.

32. X. Tricoche, T. Wischgoll, G. Scheuermann,
and H. Hagen. Topology tracking for the visu-
alization of time-dependent 2D flows. Com-
puters & Graphics 26:249–257, 2002.

33. R. Westermann, C. Johnson, and T. Ertl. Top-
ology-preserving smoothing of vector fields.
IEEE Transactions on Visualization and Com-
puter Graphics, 7(3):222–229, 2001.

34. T. Wischgoll and G. Scheuermann. Detection
and visualization of closed streamlines in planar
flows. IEEE Transactions on Visualization and
Computer Graphics, 7(2):165–172, 2001.

35. T. Wischgoll and G. Scheuermann. 3D loop
detection and visualization in vector fields. In
‘‘Mathematical Visualization’’ (VisMath 2002
Proceedings), 2003.

36. R. Batra and L. Hesselink. Feature comparisons
of 3D vector fields using Earth mover’s distance.
In Proceedings of IEEE Visualization ’99, pages
105–114, 1999.

37. W. de Leeuw and R. van Liere. Visualization of
global flow structures using multiple levels of
topology. In Data Visualization ’99, Euro-
graphics, pages 45–52, 1999.

38. W. de Leeuw and R. van Liere. Multi-level top-
ology for flow visualization. In Computers and
Graphics, 24(3):325–331, 2000.

39. Y. Lavin, R. Batra, and L. Hesselink. Feature
comparisons of vector fields using Earth mover’s
distance. In Proceedings of IEEE Visualization
’98, pages 103–110, 1998.

40. S. Lodha, J. Renteria, and K. Roskin. Topology
preserving compression of 2D vector fields. In
Proceedings of IEEE Visualization 2000, pages
343–350, 2000.

41. S. Lodha, N. Faarland, and J. Renteria. Top-
ology preserving top-down compression of 2D
vector fields using bintree and triangular quad-
trees. IEEE Transactions on Visualization and
Computer Graphics, pages 433–442, 2003.

42. H. Theisel. Designing 2D vector fields of arbi-
trary topology. In Computer Graphics Forum,
21(3):595–604, 2002.

43. V. Verma, D. Kao, and A. Pang. A flow guided
streamline seeding strategy. In Proceedings of
IEEE Visualization 2000, pages 163–170, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 7:21pm page 356

356 Tensor Field Visualization

PART VI

Geometric Modeling for
Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:33pm page 357

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:33pm page 358

This page intentionally left blank

18 3D Mesh Compression

JAREK ROSSIGNAC

College of Computing and Graphics, Visualization, Usability Center

Georgia Institute of Technology

18.1 Introduction

In this chapter, we discuss 3D compression tech-

niques for reducing the delays in transmitting

triangle meshes over the Internet. We first ex-

plain how vertex coordinates, which represent

surface samples, may be compressed through

quantization, prediction, and entropy coding.

We then describe how the connectivity, which

specifies how the surface interpolates these

samples, may be compressed by compact encod-

ing of the parameters of a connectivity-graph

construction process and by transmission of

the vertices in the order in which they are en-

countered during this process. The storage of

triangle meshes compressed with these tech-

niques is usually reduced to about a byte per

triangle. When the exact geometry and connect-

ivity of the mesh are not essential, the triangu-

lated surface may be simplified or retiled.

Although simplification techniques and the pro-

gressive transmission of refinements may be

used as a compression tool, we focus on recently

proposed retiling techniques designed specific-

ally to improve 3D compression. They are often

able to reduce the total storage, which combines

coordinates and connectivity, to half a bit per

triangle without exceeding a mean squared error

of 1/10,000 of the diagonal of a box that con-

tains the solid.

18.2 Background and Terminology

A triangle mesh is defined by a set of vertices

and by its triangle-vertex incidence graph. The

vertex description comprises geometry (3 coord-

inates per vertex) and optionally photometry

(surface normals, vertex colors, or texture co-

ordinates) [4,12,24], which will not be discussed

here. Incidence (sometimes referred to as ‘‘top-

ology’’) defines each triangle by the 3 integer

indices that identify its vertices. For simplicity

and elegance, we restrict our discussion in this

chapter to simple meshes, which are homeo-

morphic to a triangulation of a sphere. How-

ever, most of the techniques presented here

work for, or have been extended to, more

general meshes with borders, handles, nonmani-

fold degeneracies, and nontriangular faces

[4,15,24,29,33,46,50,64] and even to tetrahedral

meshes [43,59,60].

In what follows, we assume that our triangle

mesh is a connected manifold surface with no

boundary and no handle and that it has v verti-

ces, e edges, and t triangles. To simplify the

formalism, we consider the edges to be the rela-

tively open line segments that do not include

their endpoints. Similarly, we use the term face

to denote the relative interior of a triangle, ex-

cluding its edges and vertices. The surface of the

mesh is the point-set union of its faces, edges,

and vertices, which are all pairwise disjoint.

In order to prove the linear equation linking t

and v and to facilitate the description of several

compression approaches, we will use the follow-

ing terminology. A Vertex-Spanning Tree (VST)

of a triangle mesh is a subset of its edges,

selected so that their union with all the vertices

forms a tree (a connected cycle-free graph).

Consider that a given VST has been selected.

The edges it contains are called the cut-edges.

The union of the cut-edges with all the vertices

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 359

359

is called a cut. Because the VST is a tree, there

are v� 1 cut-edges. The difference between the

surface and its cut is called the web. Edges that

are not cut-edges are called hinge-edges. The

web is composed of all the faces and all the

hinge-edges. Removing the cut, which has no

loop, from the surface of a mesh will not dis-

connect it and will produce a web that is a

(relatively open) triangulated 2D point set in

three-space. Because by definition a simple

mesh has no hole or handle, the web is simply

connected and may be represented by an acyclic

graph, whose nodes correspond to faces and

whose links correspond to hinge edges. Thus

there are t�1 hinge edges. Note that by picking

a leaf of this graph as the root and orienting the

links, we can always turn it into a binary tree,

which we call the Triangle-Spanning Tree

(TST). It is a spanning tree of the dual of

the graph made of the edges and vertices of the

mesh. The TST defines a connected network of

corridors through which one may visit all the

triangles by walking across hinge-edges and

never crossing a cut-edge. Because an edge is

either hinge or cut, the total number of edges,

e, is v� 1þ t� 1. Each triangle uses 3 edges

and each edge is used by 2 triangles. Thus the

number e of edges is also equal to 3t/2. Combin-

ing these two equations yields t ¼ 2v� 4, which

shows that there are roughly twice as many

triangles as vertices.

When 32-bit integers are used to represent

triangle-vertex incidence references and 32-bit

floats to represent vertex coordinates, an uncom-

pressed representation of a simple mesh requires

12v bytes to store the geometry and 12t bytes

(or equivalently 24v–28 bytes) to store the

incidence, which amounts to a total of 144t

bits. Note that, surprisingly, the incidence infor-

mation requires twice as much storage as the

geometry.

18.3 Corner Table Representation

The Corner Table [50,51] is a simple data

structure that simplifies the storage and pro-

cessing of manifold triangle meshes, whether

they are simple or have holes and handles. We

introduce it here and use it in this chapter to

clarify the implementation details of compres-

sion and decompression techniques.

The geometry is stored in the coordinate table,

G, where G[v] contains the triplet of the coord-

inates of vertex number v, and will be denoted

v.g. Note that the order in which the vertices are

listed in G is arbitrary, although once it is

chosen, it defines the integer reference number

associated with each vertex.

Triangle-vertex incidence defines each tri-

angle by the three integer references to its verti-

ces. These references are stored as consecutive

integer entries in the V table. Note that each one

of the 3t entries in V represents a corner (associ-

ation of a triangle with one of its vertices). Let c

be such a corner. Let c.t denote its triangle and

c.v its vertex. Remember that c.v and c.t are

integers in [0, v� 1] and [0, t� 1] respectively.

Let c.p and c.n refer to the previous and

next corners in the cyclic order of vertices

around c.t.

Although G and V suffice to completely spe-

cify the triangles and thus the surface they rep-

resent, they do not offer direct access to a

neighboring triangle or vertex. We chose to use

the reference to the opposite corner, c.o, which

we cache in the O table to accelerate mesh tra-

versal from one triangle to its neighbors. For

convenience, we also introduce the operators c.l

and c.r, which return the left and right neighbors

of c (Fig. 18.1).

Note that we do not need to cache c.t, c.n,

c.p, c.l, or c.r because they may be quickly

evaluated as follows: c.t is the integer division

c.t DIV 3; c.n is c�2, when c MOD 3 is

2, and cþ1 otherwise; c.p is c.n.n; c.l is

c.n.o; and c.r. is c.p.o. Thus, the storage of

the connectivity is reduced to the O and V

arrays.

We assume that all triangles have been con-

sistently oriented so that c.n.v¼c.o.p.v for all

corners c. For example, one may adhere to the

convention that when a triangle c.t is visible by

a viewer outside of the solid (i.e., the finite set

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 360

Ed1

360 Geometric Modeling for Visualization

that is bounded by the triangle mesh), the three

vertices, c.p.v, c.v, and c.n.v, appear in clock-

wise order.

Assume that c.t.m is a Boolean set to TRUE

when the triangle c.t has been visited. The pro-

cedure

visit (c) {

if not c.t.m THEN {

c.t.m:¼true;
visit(c.r);

visit(c.l);

}

}

will visit all the triangles in depth-first order in a

TST.

Given the V table, the entries in O may be

computed by the following:

for c:¼0 to 3t�2 do

for b:¼ c + 1 to 3t�1 do

if(c.n.v¼¼b.p.v)&&(c.p.v¼¼b.n.v)
then{

c.o:¼b;
b.o:¼c

}

A faster approach sorts the triplets

{min(c.n.v,c.p.v), max(c.n.v,c.p.v), c} into bins.

All entries in a bin have the same first record:

min(c.n.v,c.p.v), an integer in [0, v� 1]. There

are rarely more than 20 entries in a bin. Then,

we sort the entries in each bin by the second

record: max(c.n.v,c.p.v). Now, pairs with iden-

tical first record and second record are consecu-

tive and correspond to opposite corners, which

are identified by the third record in each triplet.

Thus, if a sorted bin contains consecutive

entries (a,b,c) and (a,b,d), we set c.o:¼d and

d.o:¼c.

Because it can be easily recreated, the O table

need not be transmitted. Furthermore, the

31� log2 v leading zeros of each entry in the V

table need not be transmitted. Thus, assuming

that floats are used for the coordinates, a com-

pact but uncompressed representation of a tri-

angle mesh requires 48t bits for the coordinates

and 3t log2 v bits for the V table. Note that

Edgebreaker (discussed below) encodes the full

connectivity information contained in both V

and O with a linear cost of less than 2t bits,

and hence eliminates the need for the decom-

pression modules on the client to recompute O

from V.

18.4 Geometry Compression

The compression of vertex coordinates usually

combines three steps: quantization, prediction,

and statistical coding of the residues. We ex-

plain them briefly in this section.

Quantization truncates the vertex coordinates

to a desired accuracy and maps them into inte-

gers that can be represented with a limited

number of bits. To do this, we first compute a

tight (min–max), axis-aligned bounding box

around each object. The minima and maxima

of the x, y, and z coordinates, which define the

box, will be encoded and transmitted with the

compressed representation of each object. Then,

given a desired accuracy, e, we transform each

x coordinate into an integer i ¼ INT((x� xmin)=
(e(xmax � xmin))), which ranges between 0 and

2B, where B ¼ dlog2 ((xmax � xmin)=e)e is the

maximum number of bits needed to repre-

sent the quantized coordinate i. The y and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 361

c.n

c

c.t

c.v
c.l c.r

c.o

c.p

Figure 18.1 Corner operators for traversing a corner table

representation of a triangle mesh.

Ed2

3D Mesh Compression 361

z coordinates are quantized similarly. Choosing

e ¼ max ((xmax� xmin)=2
12, (ymax� ymin)=2

12,

(zmax � zmin)=2
12) yields B � 12 for all coord-

inates and ensures a sufficient geometric fidelity

for most applications and most models. Thus,

this lossy quantization step reduces the storage

cost of geometry from 96v bits to less than 36v

bits.

The next, and most crucial, geometry com-

pression step involves using a vertex predictor.

Both the encoder and the decoder use the same

predictor. Thus, only the residues between the

predicted and the correct coordinates need to

be transmitted. The coherence between neigh-

boring vertices in meshes of finely tiled

smooth surfaces reduces the magnitude of the

residues.

Because most edges are short with respect to

the size of the model, adjacent vertices are gen-

erally close to each other, and the differences

between the coordinates are small. Thus, a new

vertex may be predicted by a previously trans-

mitted neighbor [8].

Instead of using a single neighbor, when ver-

tices are transmitted in VST top-down order,

a linear combination of the 4 ancestors in the

VST may be used [62]. The 4 coefficients of this

combination are computed to minimize the

magnitude of the residues over the entire mesh

and transmitted as part of the compressed

stream.

The most popular predictor for single-rate

compression is based on the parallelogram

construction [64]. Assume that the vertices

of c.t have been decoded. We predict c.o.v.g

using c.n.v.gþc.p.v.g�c.v.g. The parallelo-

gram prediction may sometimes be improved

by predicting the angle between c.t and

c.o.t from the angles of previously encoun-

tered triangles or from the statistics of the

mesh.

Some of the residues may be large. Thus,

good prediction by itself may not lead to com-

pression. For example, if the coordinates have

been quantized to B-bit integers, some of the

coordinates of the corrective vector, c.o.v.g

�c.n.v.g �c.p.v.g þc.v.g, may require Bþ 2

bits of storage. Thus, parallelogram prediction

could, in principle, expand storage rather than

compress it. However, the distribution of the

residues is usually biased towards zero, which

makes them suitable for statistical compression

[52].

In practice, the combination of these steps

compresses vertex location data to about 7t

bits.

18.5 Connectivity Compression

As argued above, geometry may be encoded

efficiently, provided that connectivity infor-

mation is available during geometry decompres-

sion to locate previously decoded neighbors

of each vertex. This section presents tech-

niques for compressing the connectivity infor-

mation from 3t log2 v bits to bt bits, where

b is guaranteed never to exceed 1.80, and in

practice is usually close to 1.0. As a result,

meshes may be encoded with a total of

about 8t bits (7t bits for geometry, 1t bit for

connectivity).

Instead of retracing the chronological evolu-

tion of the research in the field of single-rate

incidence compression, we first describe in detail

Edgebreaker [48], which is arguably the simplest

and one of the most effective single-rate com-

pression approaches. The source code for Edge-

breaker is publicly available [54]. Then, we

briefly review several variants and other ap-

proaches using Edgebreaker’s terminology to

characterize their main differences and respect-

ive advantages or drawbacks.

18.5.1 Edgebreaker

The Edgebreaker compression visits the tri-

angles in a spiraling (depth-first) TST order

and generates the clers string of labels, one

label per triangle, which indicate to the decom-

pression how the mesh can be rebuilt by attach-

ing new triangles to previously reconstructed

ones (Fig. 18.2).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 362

362 Geometric Modeling for Visualization

The pseudo-code for the Edgebreaker com-

pression is shown in the box above. The

following explanations contain in parentheses

the excerpts of the pseudo-code they reference.

Edgebreaker works directly on the Corner

Table and does not require any additional

data structure, except for one bit per vertex

and one bit per triangle to mark those

that have already been processed. In particular,

it does not require us to maintain linked lists

of border edges. It traverses the mesh in depth-

first order of a TST using iteration (REPEAT)

and occasionally recursion (Compress) on

corner indices. It marks all visited vertices

(set(c.v.m)) and triangles (set(c.t.m)). The

current triangle is identified by its tip corner

(c). Note that the current triangle has been

reached though the gate edge joining c.n.v with

c.p.v. By testing the marks of the tip vertex of

the current triangle and of neighboring tri-

angles, it selects the label and appends it to the

clers string.

If the tip vertex (c.v) has not yet been visited

(lc.v.m), its location is encoded (encode(c.v.g))

using the parallelogram prediction and geom-

etry compression, as explained earlier. The label

C is appended to the clers string (WRITE(clers,

C)) and the iteration moves to the right neigh-

bor (c:¼c.r). Note that the vertices are encoded

in the order in which they are encountered by

C-triangles during this traversal. This order

does not usually reflect the order in which the

vertices were listed in the original mesh. Simi-

larly, the triangles are reordered during trans-

mission. A dictionary mapping the original

order on the server to the new order on the

client may be kept on the server to reconcile

vertex or triangle selections between one loca-

tion and the other in subsequent processing.

When the tip of the current triangle has been

previously visited, we distinguish four other

types of triangles: L, R, S, and E (Fig. 18.2).

case L: When the left neighbor has been

visited, but not the right one, we

append the label L to the clers string

and iterate on the right neighbor

(c:¼c.r).

case R: When the triangle on the right has

been visited, but not the one on the

left, we append R to the clers string

and iterate on the left neighbor

(c:¼c.l).

case S: When both neighbors have not-

visited status, we append S to clers,

start a recursive process on the right

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 363

RECURSIVE PROCEDURE Compress (c) { # compresses a simple t-meshes

REPEAT { # traverses TST, stopped by RETURN
set(c.t.m); # mark triangle as visited

IF !c.v.m # test whether tip vertex was visited

THEN { encode(c.v.g); # store location of tip

WRITE(clers, ‘C’); # append C to clers string

set(c.v.m); # mark tip vertex as visited

c:¼ c.r} # continue with the right neighbor

ELSE IF c.r.t.u # test whether right triangle was visited

THEN IF c.l.t.u # test whether left triangle was visited

THEN {WRITE(clers, ‘E’); RETURN } # append code for E and pop or stop

ELSE {WRITE(clers, ‘R’); c:¼ c.l}# append code for R, move to left triangle

ELSE IF c.l.t.u # test whether left triangle was visited

THEN {WRITE(clers, ‘L’); c:¼ c.r}# append code for L, move to right triangle

ELSE {WRITE(clers, ‘S’); # append code for S

Compress(c.r); c:¼ c.l}} } # recurse right, then continue left

Ed3

3D Mesh Compression 363

neighbor (Compress(c.r)), and then

iterate on the left neighbor (c:¼c.l).

case E: When both neighbors have been

visited, we append E to the clers

string and return from recursion or

from the compression process

(RETURN).

The connectivity of the first triangle is impli-

cit. The initialization, detailed in the insert on

the facing page, sets the visited tags (.m) to zero

(not shown here). Then it encodes the first three

vertices and marks them and their triangle. It

calls the compression on one of the corners of

that triangle (Compress (c.o)).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 364

C

v

L

S
o

E

R

?

x

?C

?

x

?L

?

x

? R

? ?

x

E

?

x

S ?

Figure 18.2 The five Edgebreaker situations (C, L, E, R, S) are illustrated top to bottom. On the left, we show the ‘‘before’’ and

‘‘after’’ states for each situation during compression. The current triangle is marked by ‘‘?’’. Previously visited triangles and

vertices are darker. An X marks the triangle through which we came. We encode a C label when the tip vertex of the current

triangle was not marked (top). Otherwise, the label depends on the status of the left and right neighbor triangles. When neither

has been visited, we encode an S (bottom), after which compression goes right via a recursive call and then left. We show this

symbolically by adding the left neighbor to a stack. When both neighbors have been visited previously, we encode and E and exit

the procedure (possibly returning from a recursive call). The right column shows how decompression interprets the CLERS

symbols to reconstruct the connectivity of the mesh. For each symbol in the clers string, Edgebreaker decompression attaches a

new triangle to the gate edge (indicated by a thick line on the left figure, where the state before the insertion of the new triangle is

shown). The gate for the next operation is placed as indicated by a thick line on the right column, which shows the state after the

new triangle was inserted. Decoding a C symbol (top) creates a new vertex (v). When decoding an S symbol (bottom), the

location of the tip of the new triangle is defined by the offset o from the gate around the bounding loop. The S operation puts the

gate on the right edge of the new triangle and proceeds to fill the right hole using a recursive call. Then it sets the gate to the left

edge of the new triangle and resumes the process. The offsets o for each S symbol may be computed from the clers string using

the fact that C and S increment the edge count, L and R decrement it, and E reduces it by 3.

364 Geometric Modeling for Visualization

A typical execution of the compression process

is illustrated in Fig. 18.3.

Because, except for the first two vertices,

there is a one-to-one mapping between each C

triangle and each vertex, the number of C tri-

angles is v� 2. Consequently, the number of

non-C triangles in a simple mesh is t� (v� 2),

which is also v� 2. Thus exactly half of the

triangles are of type C. Hence, Edgebreaker

guarantees that a compressed representation

of the connectivity of a simple triangle mesh

will never exceed 2t bits [48] if we use the

following simple binary code for the labels

(C ¼ 0, L ¼ 110, E ¼ 111, R ¼ 101, S ¼ 100).

Given that the sub-sequences CE and CL are

impossible, a slightly more complex code [28]

may be used to guarantee that the compressed

file will never exceed 1.84t bits. This code uses

(C ¼ 0, S ¼ 10, and R ¼ 11) for symbols that

follow a C, and one of the following 3 codes

for symbols that do not follow a C:

- Code 1: C is 0, S is 100, R is 101, L is 110,

E is 111

- Code 2: C is 00, S is 111, R is 10, L is 110,

E is 01

- Code 3: C is 00, S is 010, R is 011, L is 10,

E is 11

It was proven [28] that one of these 3 codes

always takes less than 11t/6 bits. A 2-bit switch

header is used to identify which code is used for

each model.

Further constraints exist on the clers string.

For example, CCRE is impossible, because

CCR increments the length of the loop, which

must have been at least 3. By exploiting such

constraints to better estimate the probability of

the next symbol, a more elaborate code was

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 365

PROCEDURE initCompression (c){

encode(c.p.v.g); encode(c.v.g);

encode(c.n.v.g); # store first 3 vertices

set(c.v.m, c.p.v.m, c.n.v.m,

c.t.m); # mark first 3 vertices and triangle as

visited

Compress (c.o);} # start compression at opposite corner

C
C

C
C

C

C

C

C

R

R

R

C R

S R

L EC

R
R

R

L

E

a

b

Figure 18.3 In this example of a typical compression situation, Edgebreaker starts with the darker triangle (left) and spirals out

clockwise, filling the beginning of the clers string with CCCCRCCRCRC. It appends the tip of each C triangle to the vertex list.

A typical situation where Edgebreaker finishes compression or closes a hole is shown in the center. It spirals counterclockwise,

appending the label sequence CRSRLECRRRLE to the clers string and adding the vertices (a) and (b) to the vertex list. The

triangles in the rabbit (right) have been shaded according to their Edgebreaker labels. Notice that half of the triangles are C

(white) and about a third are R. (See also color insert.)

3D Mesh Compression 365

developed [16] that guarantees 1.778t bits when

using a forward decoding [49] and 1.776t bits

when using a reverse decoding scheme [25].

Hence, the Edgebreaker encoding of the con-

nectivity of any mesh (homeomorphic to a

sphere) may be compressed down to 1.78t bits.

This brings it within 10% of the proven 1.62t

theoretical lower bound for encoding planar

triangular graphs, as established by Tutte [67],

who by counting all planar triangulations of v

vertices has proven that an optimal encoding

uses at least v log2 (256=7)�3:245v bits for a

sufficiently large v.

These recent developments constitute a sig-

nificant advance in the study of short encod-

ings of planar triangle graphs. They are often

the best solution for compressing small or ir-

regular meshes. For large and fairly regular

meshes, better compression ratios may often

be obtained. For example, one may encode

CC, CS, and CR pairs as single symbols. Each

odd C symbol will be paired with the next

symbol. After an even number of C symbols,

we use the following codes: CR ¼ 01, CC ¼ 00,

CS ¼ 1101, R ¼ 10, S ¼ 1111, L ¼ 1110, E ¼
1100. This encoding guaranteed 2.0t bits, but

usually yields between 1.3t and 1.6t bits [49].

Furthermore, by arranging symbols into

words that each start with a sequence of con-

secutive Cs and by using a Huffman code [52],

we often reduce storage to less than 1.0t bits.

For example, 0.85t bits suffice for the Huffman

codes of the Stanford Bunny. Including the cost

of transmitting the associated 173-word diction-

ary brings the total cost to 0.91t bits. A gzip

compression of the resulting bit stream reduces

it by only 2%.

As shown earlier, the location of the next

vertex may be predicted using previously de-

coded geometry and connectivity. Coors and

Rossignac [6] have proposed to also predict the

connectivity of the next triangle using the same

information. In their Delphi system, compres-

sion and decompression perform the same geo-

metric prediction of the location of the tip-vertex

of the next triangle. Then they estimate the tri-

angle connectivity, and thus its symbol in the

clers string produced by the Edgebreaker com-

pression, by snapping the tip vertex to the nearest

vertex in the active loop, if one lies sufficiently

close. If no bounding vertex lies nearby, the next

clers symbol is estimated to be a C. If the guess is

correct, a single confirmation bit is sufficient.

Otherwise, an entropy-based code is received

and used to select the correct CLERS symbol

from the other four possible ones (or the correct

tip of an S triangle). Reported experiments indi-

cate that, depending on the model, up to 97% of

Delphi’s guesses are correct, compressing the

connectivity to 0.19t bits. When the probability

of a wrong guess exceeds 40%, the Delphi encod-

ing stops being advantageous.

Let us now discuss several approaches to the

decompression of the clers string. All approaches

attach a new triangle, one at a time, to a gate

edge, which so far has only one incident tri-

angle. The next symbol in the clers string defines

where the tip of the new triangle is (Fig. 18.2).

Symbol C indicates that the new triangle will

have as a tip a new vertex. Note that the three

vertices of the previously decoded triangle that

is incident upon the gate have been previously

decoded and may be used in a parallelogram

prediction of the new vertex. Also note that

the numbering of the vertices and hence their

order in the G table of the reconstructed mesh

reflects the order in which the vertices are in-

stantiated as tips of C triangles.

Symbol L indicates that the tip vertex is im-

mediately to the left of the gate along the

boundary of the portion of the mesh decoded

so far. R indicates that the tip is immediately to

the right of the gate. E indicates that the new

triangle will close a hole that must have exactly

3 vertices. S indicates that the tip of the new

triangle is elsewhere on the boundary of the

previously decoded portion of the mesh.

Consider the edge-connected components of

the not-yet-decoded portion of the mesh. Let M

be the component incident upon the gate. Be-

cause by definition of simple meshes M has no

handle, an S triangle will always split it in two

parts. Through a recursive call, Edgebreaker

will first reconstruct the portion of M that is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 366

366 Geometric Modeling for Visualization

incident upon the right edge of S, as seen when

entering the triangle through the gate. Then,

upon return from the recursive call, the recon-

struction of the rest of M will resume.

After the new triangle is attached, the gate is

moved to the right edge of the new triangle for

cases C and L. It is moved to the left edge for

case R. When an S triangle is attached, the gate

is first moved to the right edge of the S triangle

and the right hole is then filled through a recur-

sive call to decompression. Then the gate is

moved to the left edge and the process resumes

as if the S triangle had been an R triangle.

The only challenge in the Edgebreaker de-

compression lies in the location of the tips

of the S triangles. Several approaches have

been proposed, and they are briefly discussed

below.

The integer reference number of the tip of

each S triangle could be encoded using log2 k

bits, where k is the number of previously de-

coded vertices. A more economical approach

encodes an offset, o, indicating the number of

vertices that separate the gate from the tip in the

current loop (Fig. 18.2). Because the current

loop may include a large fraction of the vertices,

one may still need up to log2 k bits to encode the

offset. Although the total cost of encoding

the offsets is linear in the number of triangles

[17], the encoding of the offsets constitutes a

significant fraction of the total size of the com-

pressed connectivity. Hence, several authors

strove to minimize the number of offsets [2],

mostly by using heuristics for selecting gates

with a low probability of being the base of S

triangles.

The breakthrough of Edgebreaker lies in the

discovery that offsets need not be transmitted at

all because they can be recomputed by the de-

compression algorithm from the clers string

itself. The initial solution [48] is based on the

observation that the attachment of a triangle of

each type changes the number of edges in the

current loop by specific amounts (Fig. 18.2). C

increments the edge count. R and L decrement

it. E removes a loop of three edges and thus

decreases the edge count by 3. S splits the cur-

rent loop in two parts, but if we count the edges

in both parts, it increments the total edge count.

Each S label starts a recursive call that will fill in

the hole bounded by the right loop and will

terminate with the corresponding E label.

Thus, S and E labels work as pairs of paren-

theses. Combining all these observations, we

can compute the offset by identifying the sub-

string of the clers string between an S and the

corresponding E, and by summing the edge-

count changes for each label in that substring.

To avoid the multiple traversals of the clers

string, all offsets may be precomputed by way

of reading the clers string once and using a stack

for locating the S of each E.

The elegant Spirale Reversi approach [25] to

decompression of clers strings that have been

created by the Edgebreaker compression avoids

this preprocessing by reading the clers string

backwards and building the triangle mesh in

reverse order (Fig. 18.4). It assigns a reference

number to a vertex not at its creation, but

only when a C triangle incident upon it is

created. The order in which vertices are assigned

reference numbers by the Spirale Reversi de-

compression is reversed from the order in

which they are first encountered by the Edge-

breaker compression. Note that the vertices of

new triangles are initially unlabeled, and they

remain so until the corresponding C triangles

are created.

A third approach, Wrap&Zip [49], also

avoids the preprocessing necessary with Ros-

signac’s method [48] and directly builds a corner

table as it reads the clers string. It does not

require the maintaining of a linked list of border

vertices or edges. For each symbol, as a new

triangle is attached to the gate, Wrap&Zip fills

in the known entries to the V and O tables.

Specifically, it fills in c.o for the tip corner, c,

of the new triangle and for its opposite, c.o. It

assigns vertex reference numbers to the tips of C

triangles as they are created, by simply incre-

menting a vertex counter. It defers assignation

of the reference numbers to other vertices until a

Zip process matches them with vertices that

already have a reference number. Thus, it

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 367

Q1

Ed4

3D Mesh Compression 367

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 368

RRCRCRCRRRCRCRRCRRCCCRRCRCRRCRRRCCRRCC

E

E

1
S

RRRCLR

1

ER

1

2
2

1

1

SRRC

S

EL

Figure 18.4 The connectivity of the remaining portion of the mesh shown on the top is encoded by Edgebreaker in the clers

string: CCRRCCRRRCRRCRCRRCCCRRCRRCRCRRRCRCRCRRSCRRSLERERLCRRRSEE. The order in which the

triangles are visited is shown by the arrows. The Spirale Reversi decompression receives the string reversed. Processing the first

symbol (E) of the reversed string generates the first triangle (bottom left). The arrow leaving the previously reconstructed portion

of the mesh indicates the gate where a new triangle will be attached. Then the next symbol (another E) puts the gate on a stack

(1) and creates a new disconnected triangle with a new gate. Moving clockwise, the next symbol (S) makes a new triangle that

joins the gate with the top of the stack. Reading the symbols RRC creates a right-turning fan that encloses a vertex (large dot),

which will receive the reference number 1. Then the LR symbols are read. The next symbol (E) puts the gate on the stack (1) and

creates an isolated triangle to which another one is attached as we read the next R symbol (top left). This creation, growth, and

merging process continues as shown in the clockwise sequence. (See also color insert.)
Ed5

368 Geometric Modeling for Visualization

produces a web, as defined earlier. The border

edges of the web must be matched into pairs.

The correct matching could be specified by en-

coding the structure of the cut [62,65]. However,

as discovered by Rossignac and Szymczak [49],

the information may be trivially extracted from

the clers string by orienting the border edges of

the web, as shown in Fig. 18.5. Note that these

border orientations are consistent with an

upward orientation of the cut-edges toward the

root of the VST. The pseudo-code for the

Wrap&Zip decompression algorithm is shown

in the frame below. It was extended to meshes

with handles by Lopes et al. [33].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 369

PROCEDURE initDecompression {

GLOBAL V []¼ { 0,1,2,0,0,0,0,0, . . .}; # table of vertex Ids for each corner

GLOBAL O []¼
{�1, � 3, � 1, � 3, � 3, � 3}...; # tableofoppositecornerIdsforeachcorner
GLOBAL T¼ 0; # id of the last triangle decompressed

so far

GLOBAL N¼ 2; # id of the last vertex encountered

DecompressConnectivity(1); # starts connectivity decompression

RECURSIVE PROCEDURE

DecompressConnectivity(c) {

REPEAT { # Loop builds triangle tree and zips it up

Tþþ; # new triangle

O [c]¼ 3T; O[3T]¼ c; # attach new triangle, link opposite

corners

V [3Tþ 1]¼ c.p.v; V [3Tþ 2]¼ c.n.v; # enter vertex Ids for shared vertices

c¼ c.o.n; # move corner to new triangle

Switch decode(READ(clers)) { # select operation based on next symbol

Case C: {O[c.n]¼�1; V[3T]¼þþN;} # C: left edge is free, store ref to new

vertex

Case L: {O[c.n]¼�2; zip(c.n);} # L: orient free edge, try to zip once

Case R: {O[c]¼�2; c¼ c.n} # R: orient free edge, go left

Case S: {DecompressConnectivity(c);

c¼ c.n } # S: recursion going right, then go left

Case E: {O[c]¼�2; O[c.n]¼�2;
zip(c.n); RETURN }}}} # E: zip, try more, pop

RECURSIVE PROCEDURE Zip(c) { # tries to zip free edges opposite c

b¼ c.n; WHILE b.o>¼0 DO b¼b.o.n; # search clockwise for free edge

IF b.o!¼�1 THEN RETURN; # pop if no zip possible

O[c]¼b; O[b]¼c; # link opposite corners

a¼ c.p; V[a.p]¼ b.p.v; # assign co-incident corners

WHILE a.o>¼0 && b!¼a DO {a¼a.o.p;
V[a.p]¼b.p.v};

c¼ c.p; WHILE c.o>¼ 0 && c!¼ b

DO c¼ c.o.p; # find corner of next free edge on right

IF c.o¼¼�2 THEN Zip(c)} # try to zip again

3D Mesh Compression 369

The zipping part matches pairs of adjacent

border edges that are oriented away from their

shared vertices. Only the creation of L and E

triangles opens new zipping opportunities. Zip-

ping the borders of an E triangle may start a

chain of zipping operations (Fig. 18.6). The cost

of the zipping process is linear, since there are as

many zipping operations as edges in the VST

and the number of failed zipping tests equals the

number of E or L triangles.

18.5.2 Other Approaches

The cut-border machine [18] has strong similar-

ities to Edgebreaker. Because it requires the

explicit encoding of the offset of S triangles

and because it was designed to support mani-

fold meshes with boundaries, the cut-border

method is slightly less effective than Edge-

breaker. Reported connectivity compression

results range from 1.7t to 2.5t bits. A context-

based arithmetic coder further improves them

to 0.95t bits [17]. Gumhold [16] proposes a

custom variable-length scheme that guarantees

less than 0.94t bits for encoding the offsets, thus

proving that the cut-border machine has linear

complexity.

Turan [65] noted that the connectivity of a

planar triangle graph can be recovered from the

structure of its VST and TST, which he pro-

posed to encode using a total of roughly 12v

bits. Rossignac [48] has reduced this total cost

to 6v bits by combining two observations: (1)

The binary TST may be encoded with 2t bits

using one bit per triangle to indicate whether it

has a left child and another one to indicate

whether it has a right child. (2) The correspond-

ing (dual) VST may be encoded with 1t bits, one

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 370

C L E R Sseed

Figure 18.5 The borders of the web are oriented clockwise, except for the seed and the C triangles.

C
R

S R

L EC

R
R

R

L

E

C
R

S R

LC

R

L

E

E

R
R

C

S

C
R

R

L

R

L E

R
R

E

Figure 18.6 We assume that the part of the mesh not shown here has already been decoded into a web with properly oriented

borders (exterior arrows). Building the TST (shown by the labeled triangles) for the substring CRSRLECRRRLE produces a

web whose free borders are oriented clockwise for all non-C triangles and counterclockwise for C triangles (left). Each time

Wrap&Zip finds a pair of edges oriented away from their common vertex, it matches them. The result of the first zip operation

(center) enables another zip. Repeating the process zips all the borders and restores the desired connectivity (right).

370 Geometric Modeling for Visualization

bit per vertex indicating whether the node is a

leaf and the other bit per vertex indicating

whether it is the last child of its parent. (Re-

member that 2v ¼ tþ 4.) This scheme does not

impose any restriction on the TST. Note that

for less than the 2t-bits budget needed for en-

coding the TST alone, Edgebreaker [48] encodes

the clers string, which describes not only how to

reconstruct the TST, but also how to orient the

borders of the resulting web so as to define the

VST and hence the complete incidence. This

surprising efficiency seems linked to the restric-

tion of using a spiraling TST.

Taubin and Rossignac have noticed that a

spiraling VST, formed by linking concentric

loops into a tree, has relatively few branches.

Furthermore, the corresponding dual TST,

which happens to be identical to the TST pro-

duced by Edgebreaker, also generally has few

branches (Fig. 18.7). They have exploited this

regularity by Run Length Encoding (RLE) the

TST and the VST. Each run is formed by con-

secutive nodes that have a single child. The

resulting Topological Surgery 3D compression

technique [61,62] encodes the length of each

run, the structure of the trees of runs, and a

marching pattern, which encodes each triangle

run as a generalized triangle strip [10] using one

bit per triangle to indicate whether the next

triangle of the run is attached to the right or to

the left edge of the previous one. An IBM im-

plementation of the topological surgery com-

pression has been developed for the VRML

standard [63] for the transmission of 3D models

across the Internet, thus providing a com-

pressed binary alternative to the original

VRML ASCII format [71], resulting in a 50-to-

1 compression ratio. Subsequently, the topo-

logical surgery approach has been selected as

the core of the Three-Dimensional Mesh

Coding (3DMC) algorithm in MPEG-4 [38],

which is the ISO/IEC multimedia standard de-

veloped by the Moving Picture Experts Group

for digital television, interactive graphics, and

interactive multimedia applications.

Instead of linking the concentric rings of tri-

angles into a single TST, the layered structure

color coded in Fig. 18.7 (left) may be preserved

[4]. The incidence is represented by the total

number of vertex layers, and by the triangula-

tion of each layer. When the layer is simple, its

triangulation may be encoded as a triangle strip,

using one marching bit per triangle, as was ori-

ginally done in the topological surgery ap-

proach. However, in practice, a significant

number of overhead bits is needed to encode

the connectivity of more complex layers. The

topological surgery approach resulted from an

attempt to reduce this additional cost by

chaining the consecutive layers into a single

TST (see Fig. 18.7).

Focusing on hardware decompression, Deer-

ing [8] encodes generalized triangle strips using a

buffer of 16 vertices. One bit identifies whether

the next triangle is attached to the left or the

right border edge of the previous triangle. An-

other bit indicates whether the tip of the new

triangle is encoded in the stream or is still in the

buffer and can hence be identified with only 4

bits. Additional bits are used to manage the

buffer and to indicate when a new triangle

strip must be started. This compressed format

is supported by Java 3D’s Compressed Object

node [26]. Chow [5] has provided an algorithm

for compressing a mesh into Deering’s format

by extending the border of the previously visited

part of the mesh by a fan of not-yet-visited

triangles around a border vertex. When the tip

of the new triangle is a previously decoded

vertex no longer in the cache, its coordinates,

or an absolute or relative reference to them,

must be included in the vertex stream, signifi-

cantly increasing the overall transmission cost.

Therefore, the optimal encoding traverses a

TST that is different from the spiraling TST of

Edgebreaker in an attempt to reduce cache

misses.

Given that there are 3 corners per triangle

and that t ¼ 2v� 4, there are roughly 6 times

as many corners as vertices. Thus, the average

valence, i.e., the number of triangles incident

upon a vertex, is 6. In most models, the valence

distribution is highly concentrated around 6.

For example, in a subdivision mesh, all vertices

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 371

3D Mesh Compression 371

that do not correspond to vertices of the ori-

ginal mesh have valence 6. To exploit this stat-

istic, Touma and Gotsman [64] have developed

a valance-based encoding of the connectivity,

which visits the triangles in the same order as

Edgebreaker does. As in Edgebreaker, they

encode the distinction between the C and the S

triangles. However, instead of encoding the

symbols for L, R, and E, they encode the va-

lence of each vertex and the offset for each S

triangle. When the number of incident triangles

around a vertex is one less than its valence, the

missing L, R, or E triangle may be completed

automatically. For this scheme to work, the

offset must encode not only the number of ver-

tices separating the gate from the tip of the new

triangle along the border (Fig. 18.2), but also

the number of triangles incident on the tip of the

S triangle that are part of the right hole. To

better appreciate the power of this approach,

consider the statistics of a typical case. Only

one bit is needed to distinguish a C from an S.

Given that 50% of the triangles are of type C

and about 5% of the triangles are of type S, the

amortized entropy cost of that bit is around

0.22t bits. Therefore, about 80% of the encoding

cost lies in the valence, which has a low entropy

for regular and finely tessellated meshes and in

the encoding of the offsets. For example, when

80% of the vertices have valence 6, a bit used to

distinguish them from the other vertices has

entropy 0.72 and hence the sequence of these

bits may be encoded using close to 0.36t bits.

The amortized cost of encoding the valence of

the other 20% vertices with 2 bits each is 0.40t

bits. Thus, the valence of all vertices in a rea-

sonably regular mesh may be encoded with

0.76t bits. If 5% of the triangles are of type S

and each offset is encoded with an average of 5

bits, the amortized cost of the offsets reaches

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 372

Figure 18.7 (Left) The Topological Surgery approach merges concentric circles of triangles into a single TST. (Right) That TST

and its dual VST have relatively few runs. (See also color insert.)

372 Geometric Modeling for Visualization

0.25t bits. Note that the offsets add about 25%

to the cost of encoding the C/S bits and the

valence, yielding a total of 1.23t bits. This cost

drops down significantly for meshes with a

much higher proportion of valence-6 vertices.

Although attempts to combine the Edge-

breaker solution that avoids sending the offsets

with the valence-based encoding of the connect-

ivity have failed, Alliez and Desbrun [2] man-

aged to significantly reduce the total cost of

encoding the offsets by reducing the number of

S triangles. They use a heuristic that selects as

gate a border edge incident upon a border

vertex with the maximal number of incident

triangles. To further compress the offsets, they

sort the border vertices in the active loop

according to their Euclidean distances from the

gate and encode the offset values using an arith-

metic range encoder [55]. They also show that if

one could eliminate the S triangles, the valence-

based approach would guarantee compression

of the mesh with less than 1.62t bits, which

happens to be Tutte’s lower bound [67].

An improved Edgebreaker compression ap-

proach was proposed [56,57] for sufficiently

large and regular meshes. It is based on a spe-

cifically designed context-based coding of the

clers string and uses the Spirale Reversi decom-

pression. For a sufficiently large ratio of degree-

six vertices and a sufficiently large t, this ap-

proach is proven to guarantee a worst-case stor-

age of 0.81t bits.

18.6 Retiling

Triangle mesh simplification techniques

[20,36,44] reduce the sampling of the mesh,

while decreasing its accuracy. Recently pro-

posed approaches [11,32,37,41] combine

ordered edge-collapse operations [21,22] with

proximity-based or grid-based vertex clustering

[35,45]. Both merge vertices and eliminate de-

generate triangles. Simplification techniques

have been developed to accelerate hardware-

assisted 3D rasterization, and as such, they

attempt to find the best compromise between

reducing the triangle count and reducing the

error. The error resulting from such a simplifi-

cation process may be estimated using the max-

imum [47] or the sum [12,13,14] of the squared

distances between the new location of displaced

vertices and the planes containing their incident

triangles in the original model. It may also be

evaluated [7] by sampling the original mesh and

computing the distance between the samples

and the simplified mesh. One may combine

these simplification techniques with the 3D

compression approaches described above to

achieve a flexible lossy compression. To support

the transmission of multiresolution scenes, sev-

eral levels of detail (LODs) of each model in the

scene should be generated through simplifica-

tion and compressed. The level at which a

model is downloaded may depend on the scale

at which it is projected on the screen and on the

total bit budget allocated to the transmission.

After the initial transmission of such an ap-

proximation of the scene, compressed higher-

resolution versions of selected models may be

downloaded, either to improve the overall ac-

curacy of the image or to adapt to the motions

of the viewpoint.

When the complexity ratio between one LOD

and the next is large, there is little or no savings

in trying to reuse the lower LOD to reduce the

transmission cost of the next level. When finer

granularity refinements are desired, parameters

to undo the sequence of simplifying edge-col-

lapses in reverse order may be transmitted one

by one [22], or grouped into 6 to 12 batched and

compressed [23,39,40]. A transmission cost of

3.5t bits for connectivity and 7.5t bits for geom-

etry was achieved by using one bit per vertex to

mark which vertices must be split in each batch

[39,40]. Marking the edges, instead of the verti-

ces [68,69,70], allows the method to recover for

free the connectivity of valence-6 portions of

the mesh and in general reduces the cost of the

progressive transmission of connectivity to be-

tween 1.0t bits and 2.5t bits. A series of simplifi-

cation passes [1]—which do not take geometry

into account, but each divide by 3 the number

of vertices through a systematic removal of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 373

3D Mesh Compression 373

vertices of valence less than 7, a retriangulation

of the resulting holes, and a subsequent removal

of vertices of valence 3—permit us to encode

connectivity upgrades with about 1.9t bits.

These simplification or progressive coding

techniques encode a simplified version of the

original connectivity graph and, optionally, the

data necessary to fully restore it to its original

form. When there is no need to preserve that

connectivity, one may achieve better compres-

sion by producing a more regular sampling of

the original mesh at the desired accuracy, so as

to reduce the cost of connectivity compression,

improve the accuracy of vertex prediction, and

reduce the cost of encoding the residues. We

review several such retiling techniques.

An early retiling technique [66] first places

samples on the surface and distributes them

evenly using repulsive forces derived from esti-

mates of the geodesic distances [42] between

samples. Then it inserts these samples as new

vertices in the mesh. Finally, the old vertices are

removed through edge-collapse operations that

preserve topology.

The MAPS algorithm [31] was used [30]

to compute a crude simplified model, which

can be compressed using any of the single-rate

compression schemes discussed above. Once

received and restored by the decompression

module, the crude model is used as the

coarse mesh of a subdivision process. Each sub-

division stage splits each edge into two and each

triangle into four, by the insertion of one

new vertex per edge, in accordance with the

Loop subdivision [34] rules, which split each

edge (c.n.v,c.p.v) by inserting a point (c.v.gþ
c.o.v.gþ3c.n.v.gþ3c.p.v.g)/8 and then displace

the old vertices toward the average of their old

neighbors. After each subdivision stage, the

client downloads a displacement field of correct-

ive vectors and uses them to adjust the vertices,

so as to bring the current-level subdivision sur-

face closer to the desired surface. The distribu-

tion of the coefficients of the corrective vectors

is concentrated around zero and their magni-

tude diminishes as the subdivision progresses.

They are encoded using a wavelet transform

and compressed using a modified version of

the SPIHT algorithm [53] originally developed

for image compression.

Instead of encoding corrective 3D vectors, the

Normal Mesh approach [19] restricts each offset

vector to be parallel to the surface normal esti-

mated at the vertex. Only one corrective dis-

placement value needs to be encoded per

vertex, instead of three coordinates. A Butterfly

subdivision [9] is used. It preserves the old

vertices, and for each pair of opposite corners

c and c.o splits the edge (c.n.v,c.p.v) by insert-

ing a point (8c:n:v:g+8c:p:v:g+2c:v:g+2c:o:v:g+

c:l:v:g+c:r:v:g+c:o:l:v:g+c.o.r.v.g)/16. The cor-

rective displacements of new vertices are

compressed using the unlifted version of the

Butterfly wavelet transform [9,72]. Further sub-

division stages generate a smoother mesh that

interpolates these displaced vertices. The chal-

lenge of this approach lies in the computation of

a suitable crude simplified model and in hand-

ling situations where no suitable displacement

for a new vertex exists along the estimated sur-

face normal. The connectivity of the crude mesh

and the constraint imposed by the regular sub-

division process limit the way in which the retil-

ing can adapt to the local shape characteristics,

and thus may result in suboptimal compression

ratios. For example, regular meshes may lead to

suboptimal triangulations for surfaces with high

curvature regions and saddle points, where ver-

tices of valence different from 6 would be more

appropriate.

In the Piecewise Regular Mesh (PRM) ap-

proach [58], the surface may be algorithmically

decomposed into six reliefs, each one compris-

ing triangles whose normals are closest to one of

the six principal directions (Fig. 18.8, left). Each

relief is resampled along a regular grid of paral-

lel rays (Fig. 18.8, right). Triangles are formed

between samples on adjacent rays and also, to

ensure the proper connectivity, at the junction

of adjacent reliefs. When the sampling rate (i.e.,

the density of the rays) is chosen so that the

resulting PRM has roughly the same number

of vertices as the original mesh, the PRM ap-

proximates the original mesh with the mean

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 374

374 Geometric Modeling for Visualization

squared error of less than 0.02% of the diameter

of the bounding box. Because of the regularity

of the sampling in each relief, the PRM may

be compressed down to a total of about 2t

bits, which accounts for both connectivity

and geometry. PRM uses Edgebreaker com-

pression [48] and the Spirale Reversi decompres-

sion [25] to encode the global relief connectivity

and the triangles that do not belong to the

regular regions. Edgebreaker produces the

clers string, which is then turned into a binary

string using the context-based range coder,

which reduces the uncertainty about the next

symbol for a highly regular mesh. The geometry

of the reliefs is compressed using an iterated 2D

variant of the differential coding. The regular

retiling causes the entropy of the parallelogram

rule residues to decrease by about 40% when

compared to the entropy for the original

models, because, on reliefs, two out of three

coordinates of the residual vectors become

zero. Since this approach does not require

global parameterization, it may be used for

models with complex topologies. It is faster

than the combination of the MAPS algorithm

[31] and the wavelet mesh compression algo-

rithm [19,30] while offering comparable com-

pression rates.

By tracing geodesics, Swing Wrapper [3] par-

titions the surface of an original mesh M into

simply connected regions called triangloids.

From these, it generates a new mesh M0. Each

triangle of M0 is a linear approximation of a

triangloid of M (Fig. 18.9). By construction,

the connectivity of M0 is fairly regular (96% of

the triangles are of type C or R, and 82% of the

vertices have valence 6) and can be compressed

to less than a bit per triangloid using Edge-

breaker. The locations of the vertices of M0 are

encoded with about 6 bits per vertex of M0,
thanks to a new prediction technique that uses

a single correction parameter per vertex. Instead

of using displacements along the surface normal

or heights on a grid of parallel rays, Swing-

Wrapper requires that the left and right edges

of all C triangles have a prescribed length L, so

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 375

Figure 18.8 The reliefs produced by the Piecewise Regular Mesh (PRM) approach are shown (left) and resampled (right) into a

nearly regular triangle mesh. (See also color insert.)

3D Mesh Compression 375

that the correction to the predicted location of

their tip may be encoded using the angle of the

hinge edge. For a variety of popular models, it is

easy to create an M0 with 10 times fewer tri-

angles than M. The appropriate choice of L

yields a total file size of 0.4t bits and a mean

squared error with respect to the original of

about 0.01% of the bounding box diagonal.

18.7 Conclusion

The connectivity of triangle meshes homeo-

morphic to a sphere may always be encoded

with less than 1.8t bits and usually requires less

than 1.0t bits. Their quantized geometry may be

compressed to about 7.0t bits. Compression and

decompression algorithms are extremely simple

and efficient. Progressive transmission doubles

the total cost of connectivity. When the original

connectivity need not be preserved, retiling the

surface of the mesh to enhance regularity often

reduces the storage cost to 0.5t bits with a mean

squared error of less than 1/10,000th the size of

the model. These statistics remain valid for

meshes with relatively few holes and handles.

References

1. P. Alliez and M. Desbrun. Progressive encoding
for lossless transmission of 3D meshes. ACM
SIGGRAPH Conference Proceedings, 2001.

2. P. Alliez and M. Desbrun. Valence-driven con-
nectivity encoding for 3D meshes. EURO-
GRAPHICS, 20(3), 2001.

3. M. Attene, B. Falcidieno, M. Spagnuolo, and
J. Rossignac. SwingWrapper: retiling triangle
meshes for better Edgebreaker compression.
Genova CNR-IMA Tech. Rep. No. 14/2001. In
ACM Transactions on Graphics, 22(4), 2003.

4. C. L. Bajaj, V. Pascucci, and G. Zhuang.
Single resolution compression of arbitrary tri-
angular meshes with properties. Computational
Geometry: Theory and Applications, 14:167–186,
1999.

5. M. Chow. Optimized geometry compression for
real-time rendering. In Proceedings of the Confer-
ence on Visualization ’97, pages 347–354, 1997.

6. V. Coors and J. Rossignac. Guess connectivity:
delphi encoding in edgebreaker. GVU Technical
Report, Georgia University of Technology, 2002.

7. P. Cignoni, C. Rocchini, and R. Scopigno.
Metro: measuring error on simplified surfaces.
Proc. Eurographics ’98, 17(2):167–174, 1998.

8. M. Deering. Geometry compression. In Proceed-
ings of the 22nd Annual ACM Conference on
Computer Graphics, pages 13–20, 1995.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 376

Figure 18.9 The original model (first from the left, courtesy of Cyberware) contains t ¼ 134, 074 triangles. A dense partitioning

of its surface into triangloids (second) was produced by SwingWrapper. The corresponding retiled mesh (third) was generated by

flattening of the triangloids. Its L2 error is about 0.007% of the bounding box diagonal, and its 13642 triangles were encoded

with a total of 3.5 bits per triangloid for both the connectivity and the geometry using Edgebreaker’s connectivity compression

combined with a novel geometry predictor, yielding a compressed file of 0.36t bits. A coarser partitioning (fourth) decomposes

the original surface into 1505 triangloids. The distortion of the corresponding retiled mesh (fifth) is about 0.15%, and the total

file size is 0.06t bits. (See also color insert.)

376 Geometric Modeling for Visualization

9. N. Dyn, D. Levin, and J. A. Gregory. A butter-
fly subdivision scheme for surface interpolation
with tension control. ACM Transactions on
Graphics, 9(2):160–169, 1990.

10. F. Evans, S. S. Skiena, and A. Varshney.
Optimizing triangle strips for fast rendering.
In IEEE Visualization ’96, pages 319–326,
1996.

11. M. Garland and P. Heckbert. Surface simplifi-
cation using quadric error metrics. Proc. ACM
SIGGRAPH ’97, pages 209–216, 1997.

12. M. Garland and P. Heckbert. Simplifying sur-
faces with color and texture using quadratic
error metric. Proceedings of IEEE Visualization,
pages 287–295, 1998.

13. M. Garland. Quadric-Based Polygonal Surface
Simplification. PhD Thesis, Carnegie Mellon
University, 1998.

14. M. Garland. QSlim 2.0 [Computer Software].
University of Illinois at Urbana-Champaign,
UIUC Computer Graphics Lab, 1999. xhttp://
graphics.cs.uiuc.edu/~garland/software/qslim.
html

15. A. Gueziec, F. Bossen, G. Taubin, and C. Silva.
Efficient compression of non-manifold polyg-
onal meshes. In IEEE Visualization, pages
73–80, 1999.

16. S. Gumhold. Towards optimal coding and on-
going research. In 3D Geometry Compression,
Course Notes, SIGGRAPH 2000.

17. S. Gumhold. Improved cut-border machine for
triangle mesh compression. In Erlangen Work-
shop ’99 on Vision, Modeling and Visualization.
IEEE Signal Processing Society, 1999.

18. S. Gumhold and W. Straßer. Real time com-
pression of triangle mesh connectivity. In Pro-
ceedings of the 25th Annual Conference on
Computer Graphics, pages 133–140, 1998.

19. I. Guskov, K. Vidimce, W. Sweldens, and
P. Schroeder. Normal meshes. In SIGGRAPH
’2000 Conference Proceedings, pages 95–102,
2000.

20. P. Heckbert and M. Garland. Survey of polyg-
onal simplification algorithms. In Multi-reso-
lution Surface Modeling Course, ACM
SIGGRAPH Course Notes, 1997.

21. H. Hoppe, T. DeRose, T. Duchamp, J. McDo-
nald, and W. Stuetzle. Mesh optimization. In
Computer Graphics: SIGGRAPH ’93 Proceed-
ings, pages 19–25, 1993.

22. H. Hoppe. Progressive meshes. Computer
Graphics, Annual Conference Series, 30:99–108,
1996.

23. H. Hoppe. Efficient implementation of progres-
sive meshes. Computers and Graphics,
22(1):27–36, 1998.

24. M. Isenburg and J. Snoeylink. Face fixer: com-
pressing polygon meshes with properties. In
SIGGRAPH 2000, Computer Graphics Proceed-
ings, pages 263–270, 2000.

25. M. Isenburg and J. Snoeyink. Spirale reversi:
reverse decoding of the Edgebreaker encoding.
Computational Geometry, 20(1):39–52, 2001.

26. Sun Microsystems. Java3D API Specifica-
tion. http://java.sun.com/products/java-media/
3D, 1999.

27. A. D. Kalvin and R. H. Taylor. Superfaces:
polygonal mesh simplification with bounded
error. IEEE Computer Graphics and Applica-
tions, 16(3):64–67, 1996.

28. D. King and J. Rossignac. Guaranteed 3.67V
bit encoding of planar triangle graphs. 11th
Canadian Conference on Computational Geom-
etry (CCCG ’99), pages 146–149, 1999.

29. D. King, J. Rossignac, and A. Szymczak. Con-
nectivity compression for irregular quadrilateral
meshes. Technical Report TR-99-36, GVU,
Georgia Institute of Technology, 1999.

30. A. Khodakovsky, P. Schroeder, and W. Swel-
dens. Progressive geometry compression. In
SIGGRAPH 2000, Computer Graphics Proceed-
ings, pages 271–278, 2000.

31. A. W. F. Lee, W. Sweldens, P. Schroeder, L.
Cowsar, and D. Dobkin. MAPS: multiresolu-
tion adaptive parametrization of surfaces. In
SIGGRAPH ’98 Conference Proceedings, pages
95–104, 1998.

32. P. Lindstrom. Out-of-core simplification of
large polygonal models. Proc. ACM SIG-
GRAPH, pages 259–262, 2000.

33. H. Lopes, J. Rossignac, A. Safanova, A. Szymc-
zak and G. Tavares. A simple compression
algorithm for surfaces with handles. ACM
Symposium on Solid Modeling, 2002.

34. C. Loop. Smooth spline surfaces over irregular
meshes. Computer Graphics, Annual Conference
Series, 28:303–310, 1994.

35. K-L. Low and T. S. Tan. Model simplification
using vertex clustering. Proc. Symp. Interactive
3D Graphics, pages 75–82, 1997.

36. D. Luebke, M Reddy, J. Cohen, A. Varshney,
B. Watson, and R. Hubner. Levels of Detail for
3D Graphics. Morgan Kaufmann, 2002.

37. D. P. Luebke. View-dependent simplification of
arbitrary polygonal environments. Doctoral
Dissertation, University of North Carolina at
Chapel Hill, 1998. http://www.cs.virginia.edu/
~luebke/simplification.html

38. ISO/IEC 14496-2. Coding of audio-visual
objects: visual. 2001.

39. R. Pajarola and J. Rossignac. Compressed
progressive meshes. IEEE Transactions on

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 377

3D Mesh Compression 377

Visualization and Computer Graphics, 6(1):79–
93, 2000.

40. R. Pajarola and J. Rossignac. Squeeze: Fast
and progressive decompression of triangle
meshes. In Proceedings of Computer Graphics
International Conference, pages 173–182,
2000.

41. J. Popovic and H. Hoppe. Progressive simplicial
complexes. Computer Graphics, 31:217–224,
1997.

42. K. Polthier and M. Schmies. Geodesic flow on
polyhedral surfaces. Proc. Eurographics Work-
shop on Scientific Visualization, 1999.

43. R. Pajarola, J. Rossignac, and A. Szymczak.
Implant sprays: compression of progressive
tetrahedral mesh connectivity. IEEE Visualiza-
tion 1999, pages 24–29, 1999.

44. E. Puppo and R. Scopigno. Simplification,
LOD and multiresolution: principles and appli-
cations. Tutorial at the Eurographics ’97 confer-
ence, 1997.

45. J. Rossignac and P. Borrel. Multi-resolution
3D approximations for rendering complex
scenes. Geometric Modeling in Computer
Graphics. Berlin, Springer Verlag, pages
445–465, 1993.

46. J. Rossignac and D. Cardoze. Matchmaker.
manifold breps for non-manifold r-sets. Pro-
ceedings of the ACM Symposium on Solid Mod-
eling, pages 31–41, 1999.

47. R. Ronfard and J. Rossignac. Full range ap-
proximation of triangulated polyhedra. Proc.
Eurographics ’96, 15(3):67–76, 1996.

48. J. Rossignac. Edgebreaker: connectivity com-
pression for triangle meshes. IEEE Transactions
on Visualization and Computer Graphics,
5(1):47–61, 1999.

49. J. Rossignac and A. Szymczak. Wrap&Zip de-
compression of the connectivity of triangle
meshes compressed with Edgebreaker. Compu-
tational Geometry, Theory and Applications,
14(1/3):119–135, 1999.

50. J. Rossignac, A. Safonova, and A. Syzmczak.
3D compression made simple: Edgebreaker on a
corner-table. Shape Modeling International Con-
ference, Genoa, Italy, 2001.

51. J. Rossignac, A. Safonova, and A. Szymczak.
Edgebreaker on a corner table: a simple tech-
nique for representing and compressing triangu-
lated surfaces. In Hierarchical and Geometrical
Methods in Scientific Visualization (G. Farin,
H. Hagen, and Hamann, Eds. Heidelberg, Ger-
many, Springer-Verlag, 2002.

52. D. Salomon. Data Compression: The Complete
Reference, 2nd Ed. Berlin, Springer Verlag,
2000.

53. A. Said and W. A. Pearlman. A new, fast, and
effcient image codec based on set partitioning in
hierarchical trees. IEEE Trans. Circuits Syst.
Video Technol., 6(3):243–250, 1996.

54. A. Safonova and J. Rossignac. Source
code for an implementation of the Edge-
breaker compression and decompression. http://
www.gvu.gatech.edu/~jarek/edgebreaker/eb

55. M. Schindler. A fast renormalization for arith-
metic coding. In Proceedings of IEEE Data
Compression Conference, page 572, 1998.

56. A. Szymczak, D. King, and J. Rossignac. An
Edgebreaker-based efficient compression scheme
for regular meshes. In Proceedings of 12th Can-
adian Conference on Computational Geometry,
pages 257–264, 2000.

57. A. Szymczak, D. King, and J. Rossignac. An
Edgebreaker-based efficient compression
scheme for connectivity of regular meshes. Jour-
nal of Computational Geometry: Theory and Ap-
plications, 2000.

58. A. Szymczak, J. Rossignac, and D. King.
Piecewise regular meshes: construction and
compression. Graphical Models 64:183–198,
2002.

59. A. Szymczak and J. Rossignac. Grow&Fold:
compressing the connectivity of tetrahedral
meshes. Computer-Aided Design, 32(8/9):527–
538, 2000.

60. A. Szymczak and J. Rossignac. Grow&Fold:
Compression of tetrahedral meshes. Proc.
ACM Symposium on Solid Modeling, pages 54–
64, 1999.

61. G. Taubin and J. Rossignac. Geometric
compression through topological surgery. IBM
Research Report RC-20340, 1996. http://
www.watson.ibm.com: 8080/PS/7990.ps.gz

62. G. Taubin and J. Rossignac. Geometric com-
pression through topological surgery. ACM
Transactions on Graphics, 17(2):84–115, 1998.

63. G. Taubin, W. Horn, F. Lazarus, and J. Ros-
signac. Geometry coding and VRML. Proceed-
ings of the IEEE, 96(6):1228–1243, 1998.

64. C. Touma and C. Gotsman. Triangle mesh com-
pression. In Graphics Interface, pages 26–34,
1998.

65. G. Turan. On the succinct representations of
graphs. Discrete Applied Mathematics, 8:289–
294, 1984.

66. G. Turk. Retiling polygonal surfaces. Proc.
ACM SIGGRAPH ’92, pages 55–64, 1992.

67. W.Tutte.A census of planar triangulations.Can-
adian Journal ofMathematics, pages 21–38, 1962.

68. S. Valette, J. Rossignac, and R. Prost. An effi-
cient subdivision inversion for wavemesh-based
progressive compression of 3D triangle meshes.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 378

378 Geometric Modeling for Visualization

IEEE International conference on Image Pro-
cessing, 1:777–780, 2003.

69. S. Valette. Modeles de maillage deformables 2D
et multiresolution surfacique 3D sur une base
d’ondelettes. Doctoral dissertation, INSA
Lyon, 2002.

70. S. Valette and R. Prost. A wavelet-based pro-
gressive compression scheme for triangle
meshes: wavemesh. IEEE Transactions on

Visualization and Computer Graphics,
10(2):123–129, 2004.

71. ISO/IEC 14772-1, The Virtual Reality Modeling
Language (VRML), 1997.

72. D. Zorin, P. Schroeder, and W. Sweldens.
Interpolating subdivision for meshes with arbi-
trary topology. Computer Graphics, 30:189–192,
1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 379

3D Mesh Compression 379

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:52pm page 380

This page intentionally left blank

19 Variational Modeling Methods
for Visualization

HANS HAGEN and INGRID HOTZ

University of Kaiserslautern

19.1 Introduction

Variational modeling techniques are powerful

tools for free-form modeling in CAD/CAM ap-

plications. Some of the basic principles are

carrying over to scientific visualization. Others

have to be modified and some totally new

methods have been developed over the last

couple of years. This chapter gives an extended

survey of this area.

Surfaces and solids designed in a computer

graphics environment have many applications

in modeling, animation, and visualization. We

concentrate in this chapter mainly on the visu-

alization part. We start with a section on basics

from differential geometry, which are essential

for any variational method. Then we give a

survey on variational surface modeling. Since

the mid-1990s, a ‘‘modeling pipeline’’ has been

state of the art, consisting of data generation,

data enrichment, data reduction, modeling, and

quality analysis. The last step is the visualiza-

tion part of geometric modeling. We discuss this

topic in Section 19.4. In this context, surface

curves like geodesics and curvature lines play

an important role. The corresponding differen-

tial equations are nonlinear, and in most cases

numerical algorithms must be used. To be sure

to visualize features at a high quality, we need

algorithms with an inherent quality control. The

next two sections present our geometric algo-

rithms, which satisfy this demand. The last

section discusses the streamball technique, a

visualization tool for structural features in com-

putational fluid dynamics.

19.2 Fundamentals from Differential
Geometry

A parameterized CTsurface is a CT -differenti-

able map X : M ! S � IE3, where X1 :¼ @X
@u and

X2:¼ @X
@w are linearly independent.

The 2D linear subspace TpX of IE3 generated

by the span {X1
_XX2} is called the tangent space

of X at a point p 2 S. The unit normal field N is

given by

N ¼ [X1,X2]

k[X1,X2]k
(19:1)

where [,]: IE3 � IE3 ! IE3 is the cross-prod-

uct. The moving frame {X1, X2, N} is called

the Gaussian frame. The Gaussian frame is

in general not an orthogonal frame. The bi-

linear form induced on TpX by the inner prod-

uct of IE3 by restriction is called the first funda-

mental form of the surface X. The matrix

representation of the first fundamental form Ip

with respect to the basis {X1, X2} of TpX is

given by

g11 g12

g21 g22

� �
¼ hX1,X1i hX1,X2i
hX2,X1i hX2,X2i

� �
(19:2)

where h , i: IE3 � IE3 ! IR is the dot product.

The first fundamental form Ip is symmetric,

positive definite, and geometric invariant. Geo-

metrically the first fundamental form allows

measurements on the surface (length of curves,

angles between tangent vectors, area of regions)

without referring back to the space IE3 in which

the surface lies.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 381

381

The linear mapping L : TpX ! TpX defined

by L :¼ �dN o dX�1 is called the Weingarten

map. The bi-linear form IIp defined by

IIp(A, B):¼ hL(A), Bi for A, B 2 TpX is called

the second fundamental form of the surface.

The matrix representation of IIp with respect

to the basis {X1, X2} of TpX is given by

h11 h12

h21 h22

� �
¼

h�N1, X1i h�N1, X2i
h�N2, X1i h�N2, X2i

� �

¼
hN,X11i hN, X12i
hN,X21i hN,X22i

� �

(19:3)

where Xij, i, j ¼ 1, 2 are the second partial de-

rivatives. The Weingarten map L is self-adjoint.

The eigenvalues k1 and k2 are therefore real,

and the corresponding eigenvectors are orthog-

onal. The eigenvalues k1 and k2 are called the

principal curvatures of the surface.

K ¼ k1 � k2 ¼ det (L) ¼ det (II)

det (I)
(19:4)

is called the Gaussian curvature, and

H ¼ trace(L) ¼ 1

2
(k1 þ k2) (19:5)

is called the mean curvature.

Let A :¼ Du � X1 þ DwX2 be a surface tangent

vector with kAk ¼ 1. If we intersect the surface

with the plane given by N and A (Fig. 19.1), we

get an intersection curve Y with the following

properties:

_yy(s) ¼ A and e2 ¼ �N (19:6)

where _yy(s) denotes the tangent vector of the

space (and surface) curve y(s) with respect to

arc length, and e2 is the principal normal vector

of the space curve y(s).

The implicit function theorem implies the ex-

istence of this normal section curve. To calcu-

late the extreme values of the curvature of a

normal section curve, we can use the method

of Lagrange multipliers, because we are looking

for the extreme values of the normal section

curvature kn under the condition k _yy(s)k ¼ 1.

As the result of these considerations, we obtain

the following: Unless the normal section curva-

ture is the same for all directions, there are two

perpendicular directions A1 and A2 in which kn

obtains its absolute maximum values. These

directions correspond to the principal curva-

tures k1 and k2.

19.3 Variational Surface Modeling

The process of creating a 3D CAD model from

an existing physical model is called reverse en-

gineering, and it is different from standard

engineering, where a physical model is created

from a CAD model. Both approaches have,

from a mathematical point of view, certain

principles in common. Since the mid-1990s, a

five-step ‘‘modeling pipeline’’ has been the state

of the art, and it consists of the following steps:

. Data generation and data reception: meas-

urements and numerical simulations

. Data enrichment and improvement: filtering

and clustering

. Data analysis and data reduction: structure

recognition, testing of features, etc.

. Modeling: variational design, physically

based modeling, etc.

. Quality analysis and surface interrogation:

reflection lines, isophotes, variable offset-

ting, etc.

The last step is the scientific-visualization part

of the modeling pipeline. We discuss this topic

in detail in Section 19.4. After briefly discussing

the topics of data reduction and segmentation,

we concentrate in this chapter on the modeling

step.

19.3.1 Data Reduction

Physical objects can be digitized using manual

devices, CNC-controlled coordinate measuring

machines, or laser range-scanning systems. In

any case, we get large, unstructured datasets of

arbitrary distributed points.

Let P :¼ {pi 2 IR3ji ¼ 1, . . . , n} be a set of n

distinct points. To reduce P to a smaller set

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 382

382 Geometric Modeling for Visualization

Q :¼ {qi 2 Pjj ¼ 1, . . . , m}, a subdivision into

m distinct clusters will be calculated. Clustering

means grouping similar points by optimizing a

certain criterion function. Subsequently, a single

point out of each cluster is selected as a ‘‘repre-

sentation point’’ for this cluster; these points

build the so-called representation set Q. As a

criterion to verify the quality of the subdivision,

a function Kh is introduced, which assigns a

numerical value to each cluster Ch.

Kn :¼
X
i, j2Ih

i< j

kpi � pjk2 (19:7)

where Ih :¼ {ijpi 2 Ch} and h ¼ 1, . . . , m.

This cost of a cluster is a measure of the distribu-

tion of the points in the cluster. An optimal sub-

division of P is given by minimizing the cost.

That is

Xm
h¼1

Kh ¼
Xm
h¼1

X
i, j2In

i< j

kpi � pjk2 ! min (19:8)

This expression is equivalent to

Xm
h¼1

X
i2Ih
kpi � Shk2 ! min (19:9)

Sh is the center of the cluster Ch. To find a

global minimum of this expression is known to

be NP-complete. Therefore, we have to use a

heuristic method to find an ‘‘optimal’’ solution.

The Schreiber method is based on an inter-

active refinement strategy. The initial subdiv-

ision is the single cluster containing all points

of P. In each step, the cluster with the highest

cost is determined and divided into two new

clusters, so that the cost is optimally reduced

locally. For this purpose, a hyperplane is calcu-

lated orthogonal to the largest eigenvector of

the covariance matrix of the points in a cluster.

The optimal representation point for each clus-

ter is the center point Sh of the cluster, but Sh is

in general not a point of P. If this is a problem,

the point of P nearest to Sk is used as the

representation point. For more details on this

algorithm, see Schreiber [4].

19.3.2 Segmentation

For a segmentation, all points have to be

grouped in such a way that each group repre-

sents a surface (patch) of the final CAD model.

The segmentations criterion is based on a curva-

ture estimation scheme. The curvature at a

point p can be estimated by calculating an ap-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 383

Surface S

N

A

y(s)

Figure 19.1 The intersection curve Y (See Equation 19.6).

Variational Modeling Methods for Visualization 383

proximating function for a local set of points

around p. Hamann [3] uses the osculating para-

boloids as approximating functions in his algo-

rithm. Schreiber [5] extended this approach by

using a general polynomial function to approxi-

mate a local set of points around p. First, a set

of points neighboring p is determined by the

Delaunay triangulation; this set of points is

called the platelet. The platelet consists initially

of all points that share a common edge of a

triangle with p. This platelet is extended by

adding all points that share a common edge

with any platelet points. For a better curvature

estimation, this extension is repeated several

times.

19.3.3 Variational Design

The fourth step in the modeling pipeline is the

final surface construction for a group of points.

Analytical surfaces like planes, cylinders, and

spheres can be created using standard CAD

tools. Furthermore, the fillets with a constant

radius in one parameter direction, as a connect-

ing surface between two given surfaces, can be

generated in a standard way, so the focus of this

section is set to free-form modeling. This tech-

nique offers the possibility for a user to predefine

boundary curves and to select neighboring

surfaces for tangent or curvature continual

transitions. Two approaches have become indus-

try standards over the last couple of years: vari-

ational design and physically based modeling.

The variational design process of Brunnett

et al. [6] combines a weighted least-squares ap-

proximation with an automatic smoothing

of the surface. The chosen smoothing criterion

minimizes the variation of the curvature

along the parameter lines of the designed

surface. This fundamental B-spline approach

was extended for arbitrary degrees and

arbitrary continuity conditions in both param-

eter directions, including given boundary infor-

mation.

The following mathematical models can be

used as variation principles:

(1�ws) �
Xnp

k¼1

wp(F (uk,vk) � pk)
2

()

þws �
Xn

i¼1

Xm
j¼1

wug

Z vjþ1

vj

Z uiþ1

ui

wuij

@3F (u,v)

@u3

����
����du dv

(

þwug

Z vjþ1

vj

Z uiþ1

ui

wvij

@3F (u,v)

@u3

����
����du dvg ! min

(19:10)

where F (u, v) is the representation of the sur-

face, {pkjk ¼ 1, . . . , np} is the group of points,

n and m are the numbers of segments in u and v

directions, and ws, wug
, wvg

, wuij
, and wvij

2 [0, 1]

are the smoothing weights.

A successful alternative is to minimize the

bending energy
Z

S

k2
1 þ k2

2 dS ! min (19:11)

Variational design can to some extent be con-

sidered a part of physically based modeling. The

starting point is always a specific physical

demand of mechanic, electronic, aerodynamic,

or similar origin.

Hamiltonian principle: Let a mechanical

system be described by the functions qi, i ¼
1, . . . , n, where n is the number of degrees of

freedom. The system between a fixed starting

state qi(t0) at starting time t0 and a fixed final

state qi(t1) at final time t1 moves in such a way

that the functions qi(t) make the integral

I ¼
Zt1

t0

L(qi(t), _qqi(t)) dt ¼

Zt1

t0

{T(qi(t), _qqi(t))�U(qi(t), _qqi(t))}dt

(19:12)

stationary, compared with all functions �qqi(t),

which fulfill equal boundary conditions. T is

the kinetic energy, U the potential energy, and

L ¼ T �U the Lagrange function.

The functionals in variational design express

an energy type. One very popular functional for

surface generation describes the energy, which is

stored in a thin, homogeneous, clamped plate

with small deformations:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 384

384 Geometric Modeling for Visualization

F (Z) ¼ h3

2n

Z
E

1� n2

@2Z
@x2
þ @

2Z
@y2

�� �2

� 2(1� n)
@2Z
@x2

@2Z
@y2
þ @2Z
@x@y

� �2
)

dx dy

(19:13)

The deduction of this term grounds on the equi-

librium of volume and surface forces and uses

some linearizations, where h denotes the thick-

ness of the plate, Z denotes the deformation, and

E and n arematerial parameters. Formore details

and applications, see Hagen and Nawotki [2].

19.4 Curve and Surface Interrogation

One of the basic tasks in CAD/CAM is the

design of free-form curves and surfaces. For

quality-control purposes, it is necessary to

inform the designer about certain properties

and behaviors of the investigated curve or sur-

face before entering the numerical control (NC)

process. The detection of discontinuities or un-

desired regions becomes an indispensable tool

for the interrogation.

We concentrate in this chapter on the two

most important techniques:

. Reflection lines

. Variable offsets

The reflection-line method determines un-

wanted curvature regions by irregularities

in the reflecting line pattern of parallel light

lines.

Variable offset surfaces or focal surfaces are

well known in the field of line congruences.

They can be used to visualize many things: the

pressure and heat distribution on an airplane,

temperature, rainfall, ozone over the Earth’s

surface, etc. Given a set of unit vectors E(u, v),

a line congruence is defined in parameter

form:

C(u, v, z) :¼ X (u, v)þ zE(u, v) (19:14)

where X (u, v) represents the surface. In the

special case of E ¼ N (surface normal) and

z ¼ k�1
1 or k�1

2 we get the so-called focal sur-

faces

Fi(u, v) ¼ X (u, v)þ k�1
i �N(u, v) i ¼ 1, 2 (19:15)

Hagen and Hahmann [8] generalized this con-

cept to achieve a surface-interrogation tool:

F (u, v):¼ X(u, v)

þ s � f (k1, k2) �N(u, v) with a 2 IR
(19:16)

The scalar function f (k1, k2) is called the

quality analysis function. For different applica-

tions, different functions are appropriate.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 385

Figure 19.2 Race car reflection lines. (See also color insert.)

Variational Modeling Methods for Visualization 385

convexity test — f ¼ k1 � k2

visualization of flat points — f ¼ k2
1 þ k2

2

For more details see Hagen and Hahmann [8]

and Hagen et al. [11]. We have just recently

generalized these concepts to virtual environ-

ments [7].

19.5 Geodesics

Geodesics play an important role as shortest

connections or straightest lines on curved sur-

faces in geometry and physics. In classical mech-

anics, geodesic curves can be interpreted as

unaccelerated movements. In general relativity,

geodesics are possible world lines of test par-

ticles. Geodesics are given by nonlinear differen-

tial equations for the surface coordinates. In

general, these differential equations are solved

with numerical standard algorithms, whereby

the geometric origin of the problem is lost. We

developed an alternative algorithm that is dir-

ectly connected with the geometric definition of

geodesics. Our approach allows a natural step-

size adaptation without additional effort. This

section consists of two parts. The first part pre-

sents the algorithm for the computation of the

geodesics, and in the second part geodesics are

used to generate local nets on the surfaces as an

application.

19.5.1 Mathematical Definition

There are two approaches to defining geodesics.

The first is geodesics as locally shortest connec-

tions; the second is geodesics as straightest

lines on a surface. For surfaces that are at least

two times differentiable, the two definitions are

equivalent. We consider only the second ap-

proach.

The covariant derivative of a vector field on

a curved surface is the analog to the usual par-

tial differentiation of a vector field defined on a

plane. Let V be a vector field on the surface that

assigns to each p 2 X a vector V (p) 2 TpX .

Further let a(t) ¼ (u(t), w(t)) be a surface curve

parameterized by arc length, with a(0) ¼ p and

_aa(0) ¼ A ¼
P

i AiXi. Restricting the vector field

to the curve a

V (u(t), w(t)) � V (t) ¼ V1(t)X1 þ V2(t)X2 (19:17)

the projection of (dV=dt)(0) on the tangent

plane TpX is called the covariant derivative of

the vector field V at p relative to the vector A. It

is denoted by DV
dt
� DAV . Related to the local

basis {X1, X2}, we have the following:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 386

Figure 19.3 Race car focal analysis. (See also color insert.)

386 Geometric Modeling for Visualization

DAV ¼
X

ij

Ai Vi;jXj with Vi;j :

¼
X2

k¼1

@Vi

@Xj

þ Gi
jkVk

(19:18)

This definition depends not on the choice of

a but only on the direction A. The coefficients

G are the Christoffel symbols. They are a meas-

ure for the variation of the Frenet trihedron

in the directions X1 and X2. The Christoffel

symbols can be expressed in terms of the

coefficients of the first fundamental form and

its derivatives:

Gm
kl ¼

1

2

X
i

gim(gik, l þ gli, k � gkl, i)

m, k, l, i 2 {1, 2}

(19:19)

where gik,m ¼ @<Xi,Xk>
@xm

with x1 ¼ u and x2 ¼ v.

A vector field V along a parameterized curve a is

said to be parallel if DV=dt ¼ 0 for all t 2 I . A

nonconstant, parameterized curve g : I ! S is

said to be a geodesic if the field of its tangent

vectors _gg(t) is parallel along g for all t 2 I ;

that is,

Dt _gg � 0 (19:20)

In local coordinates a curve g(t) with

g0(t) ¼ _uu(t)X1 þ _ww(t)X2 is exactly a geodesic

when it fulfills the following differential equa-

tions:

€uuþ G1
11 _uu2 þ 2G1

12 _uu _vvþ G1
22 _uu2 ¼ 0 (19:21)

€uuþ G2
11 _uu2 þ 2G2

12 _uu _vvþ G2
22 _uu2 ¼ 0 (19:22)

Given a point p 2 X and a vector

A 2 TpX , A 6¼ 0, there exists always an e > 0

and a unique parameterized geodesic

g : (� e, e)! X such that g(0)p and _gg(0) ¼ A.

One gets the same differential equation using a

variational approach.

19.5.2 Geometric Construction of
Geodesics

In general, the differential equations are the

basis for the computation of geodesics. The

most-used method for solving such systems of

differential equations is the classical fourth-

order Runge-Kutta formula. We choose an-

other way, which is based on the geometric

property of the geodesic being the straightest

line on the surface. In contrast to the standard

methods, this method allows a natural adapta-

tion of the step length to the local geometry.

This leads to a very accurate and efficient com-

putation of geodesics on parameterized sur-

faces. Our approach has the advantage that it

does not need the computation of Christoffel

symbols at all.

For an arbitrary curve a on the surface, para-

meterized by its arc length, the algebraic value

of the covariant derivative of its tangent vector

field D _aa(t)=dt ¼ kg is called the geodesic curva-

ture of a at p. Geodesics are thus characterized

as curves whose geodesic curvature is zero.

From a point of view external to the surface,

the absolute value of the geodesic curvature kg

at p is the absolute value of the tangential com-

ponent of the vector €aa(t) ¼ kn, where k is the

curvature of a at p and n is the normal vector of

a at p. It follows that k2 ¼ k2
g þ k2

n. For geode-

sics, this leads to k2 ¼ k2
n. This means that the

normal of a geodesic corresponds to the surface

normal. This allows us to construct the geodesic

locally using the normal section. Explicitly, this

means a projection of the vector A 2 TpX on

the surface.

In this way, the task of computing geodesics

on a surface reduces to projection tangents on

the surface. The main question is how to choose

the length of the tangents to project to keep the

fault small.

19.5.3 The Algorithm

We look at surfaces given by a parameterization

X (u, w) ¼ (x(u, w), y(u, w), z(u, w)), where x, y, z

are differentiable functions of the parameters

u and w.

1. A starting point and starting direction on

the surface are chosen.

2. Depending on the parameter space

(domain) and maximal step length, we

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 387

Variational Modeling Methods for Visualization 387

compute a direction. The minimal step

length is a fixed value.

3. Until the break conditions are fulfilled,

the next point of the geodesic is determined

by projecting (orthogonal to the tangent

plane) the tangent on the surface. Because

in general we do not have the inverse

parameterization functions, the projection

has to be computed numerically. If we

use an angle corresponding to the direction

of the geodesic in the parameter space

as a variable, the projection becomes

an iterative search for zero in one dimension.

Simultaneously, the step length is adapted

to the geometry (the curvature and change

of curvature) of the surface. These entities

are represented by three angles.

Depending on the respective task, there are sev-

eral conditions possible:

. The geodesic reaches the domain border

(always active).

. The geodesic has a given length.

. The number of computed points exceeds a

maximal point number.

. The geodesic intersects itself.

. The geodesic intersects another curve of a list

of curves.

19.5.3.1 Computational Efficiency

Let us have a look at the computational effort

of the computation of one new point. Besides

some scalar products, the most time-consuming

point is the projection step. The costs of one

iteration are dominated by the computation of

surface points, corresponding to an evaluation

of the parameter functions. In our examples, the

number of iterations varied from one to ten.

This is not much in comparison with the

standard fourth-order Runge-Kutta method

with step adaptation, where one has to compute

all six Christoffel symbols at least 11 times.

19.5.4 Geodesics on Discrete Surfaces

In computer graphics, we are often confronted

with discrete surfaces. The definition of the geo-

desics needs not only continuity but at least two

times differentiability. There does not exist a

unique generalization. The two approaches as

shortest and straightest curves are no longer

equivalent.

Our projection algorithm needs, besides the

computation of the surface normal, no deriva-

tives of the surface. Therefore, it can easily be

generalized to discrete surfaces. Because the

projection of vectors to planes is very easy, the

algorithm simplifies essentially. This general-

ization leads to an alternative definition of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 388

N

x

X

z

y

u

w

TpX

P

N

Pi+1

Pi-1

Pi

Figure 19.4 Computation of geodesics by tangent projection. (Left) On a parameterized surface; (Right) on a discrete surface.

388 Geometric Modeling for Visualization

straightest geodesics, which is based on a dis-

crete normal definition in the vertices.

19.5.5 Geodesic Nets

As an application, we consider nets built from

geodesics. Because geodesics are very sensitive

to local variations of the surface, they are not

useful for global nets. But local nets allow an

intuitive visualization and investigation of sur-

faces. A visualization of nets in the parameter

space gives, without the embedded surface, an

intuitive understanding of the geometric prop-

erties of the surface. We followed two different

approaches.

19.5.5.1 Pseudo-Orthogonal Nets

These nets are constructed in the neighborhood

of some point of interest. Two emphasized

orthogonal geodesics, starting at this point, are

computed and are used to determine the

starting points and directions of two families

of geodesics. The starting points are obtained

by dividing the two start geodesics in parts of

equal arc length. The start directions are

orthogonal to these emphasized geodesics.

(Orthogonal means orthogonality on the sur-

face, not in the parameter space.) When the

geodesics intersect themselves or another geo-

desic of the same family, the construction is

interrupted. In the ideal case, we get two

bundles of orthogonal geodesics (e.g., on a

plane or some isometric surface). But in general

the intersections of the ‘‘orthogonal’’ families

are not orthogonal or do not intersect at all.

This means that we do not get nets in the

classical sense.

The behavior of parallel geodesics differs

depending on the Gaussian curvature. From

the theorem of Gauss-Bonnet it follows that

on an orientable surface of negative or zero

curvature, two geodesics starting in one point

cannot meet again in another point on the sur-

face such that they are the boundary of a simple

region. These nets give a good insight into the

local geometry of the surface.

19.5.5.2 Geodesic Polar Coordinates

On a curved surface, one cannot find a

coordinate system such that the Christoffel

symbols Ga
bg
¼ 0 on the entire surface. But for

every point p there exists such a neighborhood.

Special systems with this quality are the normal

coordinate systems. Consider all geodesics

passing one given point p, characterized by

their tangential vectors A 2 TpX , A 6¼ 0. The

points in the neighborhood of p are uniquely

determined by the start direction of the geodesic

passing them and the geodesic distance to p.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 389

Figure 19.5 (Left) Pseudo-orthogonal net on a sphere. (Right) Geodesic polar coordinates on the Enneper minimal surface.

Variational Modeling Methods for Visualization 389

These so-called geodesic polar coordinates can

be used to build a net on the surface around p.

It consists of the geodesic circles, points with

the same geodesic distance to p, and the radial

geodesics. In some neighborhood of p, the

family of the geodesic circles is orthogonal to

the family of the radial geodesics.

The best-known example for usage of geo-

desic polar coordinates to visualize a surface is

the Earth, where the geodesic polar coordinates

correspond to the degrees of longitude and lati-

tude. But in other cases they provide a very

intuitive image of the surface. For more details,

see Hotz and Hagen [9] and Hotz [10].

19.6 Curvature Lines

Curvature lines are curves that follow the max-

imum or minimum normal curvature of the sur-

face. Because the curvature is an essential

surface property, they are very important for

the analysis of surfaces. Nets of curvature lines

allow very good 3D impressions of the surface.

Using local coordinates, they are given by the

following differential equation for the surface

coordinates u and w:

(h12g11 � h11g12) _uu2 þ (h22g11 � h11g22) _uu _vv þ
(h22g12 � h12g22) _vv

2 ¼ 0
(19:23)

19.6.1 Geometric Construction of
Curvature Lines

The standard method for the computation

of the curvature lines is the solution of the dif-

ferential equation with such numerical methods

as Runge-Kutta. After the successful computa-

tion of geodesics with a geometric approach, we

also investigated curvature lines under this

aspect.

The definition of curvature lines as lines

whose tangents are parallel to the principle dir-

ections leads directly to the property that the

ruled surface built up by the curvature line and

the surface normals is developable. This prop-

erty is the basis for our algorithm. For a curva-

ture line a(t), this can be expressed in the

following way:

hN(t), _aa(t)i � _NN(t) ¼ 0 for all t (19:24)

where N(t) are the surface normals along the

curvature line. Generalizing this condition to

finite step length, we get

Detpi(Da) :¼ hNi, Dai � dN

kNi � Dak2
¼ 0 (19:25)

where Ni is the surface normal in the ith point

pi, Da ¼ p� pi and DN ¼ N(p)�Ni. The geo-

metric meaning of this determinate is the devi-

ation of the surface normal in p from the plane

spanned by the surface normal in pi and Da.
Using an angle variable to represent the direc-

tion of Da, the computation of a new point on

the curvature line reduces to a search for zero in

one dimension. Accuracy and efficiency of this

algorithm are comparable to the Runge-Kutta

method with adapted step length.

19.6.2 Nets of Curvature Lines

As an application, we consider nets built of

curvature lines. Besides the geometric meaning

of the curvature lines, as the direction of max-

imum or minimum normal curvature of the sur-

face, nets are very useful for supporting the 3D

effect of a surface. In contrast to geodesics,

curvature lines are totally determined by the

local geometry of the surface. There are exactly

two orthogonal curvature lines passing every

point, with the exception of the umbilical

points. Umbilical points are surface points

where the normal curvature is independent of

the direction. These points are the singular

points of the net, and they determine its top-

ology. The neighborhood of umbilical points

can be divided into areas where the curvature

lines have characteristic behaviors. They can be

separated by the radial curvature lines through

the umbilical points.

These radial curvature lines correspond

exactly to the zeros of the determinant. Thus,

the determinant also allows an easy classifica-

tion of the umbilical points and the detection of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 390

390 Geometric Modeling for Visualization

the separating directions. The separation lines

are then used as a skeleton for the net computa-

tion [10].

19.7 Simulation-Based Solid Modeling

In computational fluid dynamics, visualization

has become an important tool for gaining phys-

ical understanding of the investigated flow. The

visualization is typically performed in a pipeline

process similar to that in reverse engineering:

. Data generation: measurements and numer-

ical simulations.

. Data preparation: filtering, feature recogni-

tion.

. Visualization mapping: generation of visual-

ization primitives, mapping of physical

quantities.

We concentrate on the visualization mapping

part in this section. In CFD, a standard ap-

proach for visualizing flow situations consists

of the construction of graphical objects whose

shape delineates the structure of the flow field

and which are used as a canvas for mapping

physical parameters. The streamball technique

[1] uses positions of particles in the flow for

the construction of skeletons for implicit sur-

faces, which, by blending with each other,

form 3D equivalents of streamlines, stream-

surfaces, etc. The particle positions si are given

by tracing flow lines through a flow field in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 391

r=0.1
r=1

=2π

Det()

0

0 1 2 3 4 5

r=0.1
r=0.05

0

0 π/2 3π/2 2π

Det()

Figure 19.6 Two examples for the determinant function in the neighborhood of umbilical points. (Top left) The monkey

saddle; (Top right) an elliptic paraboloid. Below them are the corresponding nets in the parameter space.

Variational Modeling Methods for Visualization 391

discrete time-steps. Considering the set of all

particle positions along a flow line as a skeleton

S produces a discrete streamball. Connecting

these particle positions by straight lines to

form a polyline and using this as a skeleton

creates a continuous streamball. Depending on

skeletons Sj, a 3D potential field G(x), x 2 IR3

is generated by surrounding each skeleton

with an individual potential field Fj(x) and sum-

ming up the influences of all these individual

fields:

G(x) ¼
X

j

Fj(x) (19:26)

Fj(x) can be seen as a composition of a mono-

tonically decreasing influence function and a

metric to measure the distance between a point

x and the skeleton point.

As 3D objects, streamballs provide a variety

of mapping techniques for the visualization of

physical quantities of the flow. Two classes of

mapping techniques associated with streamballs

can be identified:

. Techniques changing shape (spherical, ellip-

tical, etc.).

. Techniques changing appearance (color,

transparency, etc.).

As an example, we visualize the heat distribu-

tion on an airplane wing. For more details, see

Brill et al. [1].

References

1. M. Brill, H. Hagen, H. C. Rodrian, W.
Djatschun, and S. Klimenko. Streamball tech-
niques for flow visualization, Visualization
’94, pages 225–231, 1994.

2. H. Hagen and A. Nawotki. Variational design
and parameter optimized surface fitting. Com-
puting 13:121–134, 1998.

3. B. Hamann. Visualization and modeling con-
tours of trivariate functions. PhD thesis, Ari-
zona State University, 1991.

4. T. Schreiber. A Voronoi diagram based adap-
tive k-means-type clustering algorithm for
multidimensional weighted data in Nieri-Nolte-
meier. Computational Geometry—Methods, Al-
gorithms and Applications, Springer Lecture
Notes, pages 265–279, 1991.

5. T. Schreiber. Approximation of 3D objects.
Computing 13:67–76, 1998.

6. G. Brunnett, H. Hagen, and P. Santarelli. Vari-
ational design of curves and surfaces. Surv.
Math. Ind. 3:1–27, 1993.

7. H. Hagen, J. Guan, and R. Moorehead. Inter-
active surface interrogation using IPT technol-
ogy, IPT 2002 Symposium, Orlando, FL, 2002.

8. H. Hagen and S. Hahmann. Generalized focal
surfaces: a new method for surface interroga-
tion. Visualization ’92, pages 70–76, 1992.

9. I. Hotz and H. Hagen. Visualizing geodesics.
IEEE Visualization 2000, pages 311–318, 2000.

10. I. Hotz. Geometrische algorithmen zur visuali-
sierung diskreter und kontinuierlicher tensor-
felder. PhD thesis, TU Kaiserslautern, 2003.

11. H. Hagen, T. Schreiber, and E. Geschwind.
Methods for surface interrogation. Visualization
’90, pages 187–193, 1990.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:18pm page 392

Figure 19.7 Airplane wing (streamballs). (See also color insert.)

392 Geometric Modeling for Visualization

20 Model Simplification

JONATHAN D. COHEN

Johns Hopkins University

DINESH MANOCHA

University of North Carolina at Chapel Hill

20.1 Introduction

Interactive visualization is qualitatively different

from generating images or sequences of images

in batch mode; it provides a smooth, user-in-

the-loop visualization process. This interactive

process helps to deal with the challenging prob-

lem of finding the interesting aspects of some

data through manipulations of a large space of

visualization parameters. As the user changes

visualization parameters, he or she sees immedi-

ate feedback, which guides further adjustments.

This interactive discovery process is especially

useful for modifying continuous parameters.

For example, interactively controlling the virtual

camera for 3D navigation of a complex dataset

or modifying scale factors in color-mapping

functions can assist the discovery process by

allowing the user to maintain a mental context

as the parameters change.

Unfortunately, rendering at interactive rates

places a tremendous burden on the visualization

system in terms of both computation and band-

width requirements. We are fortunate today

to have numerous hardware acceleration

options, available at various levels of price and

performance.

However, even with such hardware at our dis-

posal, interactive visualization of today’s large

data remains a challenge. Recent advances in

acquisition and modeling technologies have

resulted in large databases of complex geometric

models. These include large scanned datasets of

real-world scenes, medical datasets, terrain

models, and large synthetic environments created

using modeling systems. These models are repre-

sentedusing polygons or higher-order primitives.

Large models composed of millions of primitives

are commonly used to represent architectural

buildings, urban datasets, complex CAD struc-

tures, or real-world environments.The enormous

size of these models poses a number of challenges

in terms of interactive visualization and manipu-

lation on current graphics systems.

Brute-force application of such hardware is

insufficient for rendering data that fills the core

memory of a modern computer at interactive

rates, and data that is larger than core memory

is now common. One useful approach to solving

this problem is to build faster hardware (e.g.,

build a parallel machine such as a computer

cluster). However, this is expensive and often

has limited scalability. Achieving interactivity

in the most general and cost-effective way re-

quires a more sophisticated approach at the

software level.

The fundamental concept of using hierarch-

ical model representations to trade visual fidel-

ity for interactivity was first proposed by Clark

[12]. A variety of specific model representations

and algorithms have been proposed for this

purpose. The process of building these hierarch-

ies automatically is known as model simplifica-

tion, which builds a multiresolution hierarchy

from a complex model and manages that new

hierarchical representation during the inter-

active rendering process to enable this tradeoff.

Using the model simplification approach, the

user or the application can dynamically balance

the need for interactivity against the need for

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 393

393

high image quality during the image-generation

process to manage both the computational and

the bandwidth resources required at any given

moment.

The last decade has seen a surge of research in

the area of model simplification, producing a

large number of research papers as well as several

surveys [42,64], and recently a dedicated book on

the subject [65]. In this article, we provide an

overview of the concepts related to model simpli-

fication, a high-level look at the range of algo-

rithms employed today, some applications, and

open issues that still exist in this area.

20.2 Model Domains

The particular simplification algorithms and

data structures that are appropriate for a given

application are dependent on the type of input

data to be visualized. Each class of data (shown

in Fig. 20.1) has its own particular challenges,

so it is reasonable for us to begin with a charac-

terization of some typical applications and their

associated data.

20.2.1 Terrain Visualization

Terrain visualization is a classic application of

interactive graphics, with origins in flight simu-

lation. Data may be acquired from satellite im-

aging and LIDAR airborne range imaging, with

typical sample resolution ranging from 1 kilo-

meter down to several meters, and current data

sizes up to 933 million samples.

Terrains acquired in this way are often repre-

sentedas regularheightfields, storedasgrey-scale

images. However, this convenient and compact

representation has some shortcomings, such as

the inability to represent overhangs, caves, etc.,

as well as a general lack of adaptive sampling, so

general triangle meshes (referred to as triangu-

lated irregular networks, or TINs) may also be

used.

Although the regularity of height field terrains

can be used to specialize the algorithms, terrain

data also poses a number of challenges for inter-

active visualization. The data sizes are often large

enough to require out-of-core processing [60,73].

In addition, they may be textured, requiring fur-

ther management of out-of-core texture data

[89]. Moreover, terrains are spatially large, span-

ning a huge range of depths in camera space and

extending well beyond the rendered field of view.

Such data requires crack-free, view-dependent

adaptation of detail across its surface, taxing all

of a computer’s computational and bandwidth

resources.

20.2.2 Visualization of 3D Scanned Models

Another large and growing source of rich

models is laser range scanning. Though smaller

in physical scale than terrains, these data pro-

vide wonderfully detailed representations of

physical objects. The Stanford bunny model,

comprising 70,000 triangles, is a classic test

case for model simplification algorithms. More

recent data are orders of magnitude larger, in-

cluding statues from Stanford’s Digital Michel-

angelo project [59], such as David, at 56 million

triangles, and St. Matthew, at 372 million tri-

angles.

Some simple models may be scanned in a

single pass, and such models are often stored

as cylindrical height fields. Models with more

complex topological structure, or those span-

ning larger physical spaces, require multiple

passes, as well as registration and merging of

the data from each pass. These data are stored

as more general triangle meshes or, in some

cases, as points or point hierarchies [78].

The largest of these data require out-of-core

processing [61]. Fortunately, the small spatial

extent of most scanned models does not require

view-dependent adaptation of detail. However,

as more scanners are used in an outward-facing

rather than an inward-facing fashion, scanning

environments rather than objects, view-depend-

ent adaptation becomes more essential.

20.2.3 Scientific and Medical Visualization

Scientific visualization spans a wide range of

model types. Much of the data actually origin-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 394

394 Geometric Modeling for Visualization

ates as 3D volumetric data, represented as un-

structured grids (tetrahedral meshes), structured

grids (such as warped hexahedral grids), and

regular grids (composed of volume elements,

or voxels). Common origins include computa-

tional fluid dynamic and other simulations,

as well as 3D medical imaging. The National

Library of Medicine’s Visible Female (see http://

www.nlm.nih.gov/research/visible/visible_human.

html) contains measured data at a resolution

of 2048� 1216 � 5600 (i.e., 14 billion voxels).

Similar data resolutions are now possible in

simulation as well. The Department of Energy’s

ASCI project (see http://www.llnl.gov/icc/sdd/

img/viz.shtml) performs material failure simula-

tions in a simulation domain of 1 billion atoms,

and turbulence simulations over a volumetric

mesh of 8 billion samples (see http://

www.llnl.gov/CASC/asciturb).

In some cases, these data are visualized using

direct volume rendering algorithms. In other

cases, an isosurface extraction algorithm is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 395

(a) (b) (c)

(d) (e) (f)

Figure 20.1 Large models from a variety of domains. (a) Yosemite Valley, California, 1.1 million triangles [74]. Copyright �
2001 IEEE. (b) Thomas Jefferson’s Monticello, a fraction of the 19.5 million point samples from a single laser-rangefinder scan,

from the Scanning Monticello project, courtesy of David Luebke (University of Virginia) and Lars Nyland (University of North

Carolina at Chapel Hill). (c) Bones extracted from the Visible Female dataset, 9.9 million triangles before reduction, courtesy of

Bill Lorensen of General Electric (d) St. Matthew, 372 M triangles [59]. Copyright � 2000 Digital Michelangelo Project,

Stanford University. (e) Isosurface from DOE simulation of compressible turbulence, 500 million triangles (average depth

complexity is 50), courtesy of Mark Duchaineau of Lawrence Livermore National Laboratory (f) Newport News double eagle

tanker, 82 million triangles [29]. Copyright � 2001 Association for Computing Machinery, Inc. (See also color insert.)

Model Simplification 395

applied to generate a surface mesh for subse-

quent rendering and computation. These surface

meshes may likewise have from 1 million to 1 bil-

lion elements. These large isosurfaces have many

of the same size and spatial-extent challenges of

terrain data but do not have the inherent regu-

larity. In addition, these data may contain mul-

tiple data attributes and require strong quality

guarantees on the rendered outputs so they may

be effectively analyzed. Furthermore, the simu-

lation data are not typically static, but are actu-

ally time-varying, often with a time resolution

greater than their spatial resolution.

20.2.4 Computer-Aided Design and
Synthetic Environments

CAD models and many large synthetic environ-

ments are substantially different from both

terrain and scientific data. They are manmade,

and the CAD models in particular are designed

to very tight specifications. They exist to proto-

type equipment and perform simulations, as

well as enable interactive visualization as part

of the design process. CAD models may repre-

sent relatively simple machines, like automo-

biles, or complex machine systems, such as

aircrafts, ships, factories, etc. They often exhibit

high geometric complexity, comprising thou-

sands to millions of individual parts that total

millions to billions of primitives. Examples in-

clude the UNC power plant model, with 13

million triangles, the Newport News double-

eagle tanker, with 82 million triangles, and the

Boeing 777 aircraft model, with 190 million

triangles.

When dealing with CAD models, we gener-

ally must maintain functional as well as spatial

organization of the component parts. These

parts exhibit a wide dynamic range of geometry,

spanning large spatial extent but requiring

close tolerances. Even without model simplifica-

tion, such models can tax the accuracy of the

standard Z-buffer rendering hardware. CAD

models contain both sharp and smooth features,

as well as irregular triangulations containing

long, thin triangles. They are typically not

‘‘clean’’ data, exhibiting numerous degeneracies

due either to human error or to numerous con-

versions between representations (such as the

conversion from curved spline patches to tri-

angles). These models tax all manner of geomet-

ric algorithms, including model simplification,

and they are furthermore not the genre of model

used to benchmark modern graphics card

performance.

20.3 Types of Hierarchies

Before looking at how to build a simplification

hierarchy, we should consider the various ways

to store such hierarchies. In particular, we need

to decide what granularity of multiresolution

information we wish to keep around. We clas-

sify hierarchies as discrete, continuous, or view-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 396

Figure 20.2 Four discrete LODs of the armadillo model (2 million triangles) using normal maps [15]. LODs have 250,000, 63,000,

8,000, and 1,000 triangles, respectively. Copyright � 1998 Association for Computing Machinery, Inc. (See also color insert.)

396 Geometric Modeling for Visualization

dependent according to this multiresolution

granularity, as shown in Fig. 20.3.

20.3.1 Discrete

The discrete hierarchy is the simplest and most

common form of simplification hierarchy. It en-

codes multiple levels of detail (LODs) of the ori-

ginal model at a very coarse granularity. Often

these LODs are chosen such that each successive

LOD has half the complexity of its predecessor.

This choice of granularity essentially doubles

the storage requirements of the original high-

resolution model. Each LOD may also contain

some error value describing its quality.

A discrete hierarchy has a number of benefits.

First, each level of detail may be easily compiled

into an optimized form for efficient rendering.

For example, this compilation might include

such processes as triangle strip construction,

reordering of vertices to optimize for hardware

vertex cache size, and storage as indexed vertex

arrays. The ability to perform this compilation

is important, because we want the rendering of

primitives from the hierarchy to be as efficient

as the rendering of primitives from the original

model (resulting in a potential speedup compar-

able to the reduction in primitives). Second, the

management of one or more discrete hierarchies

within the interactive application is not too

computationally expensive. We just choose for

each hierarchy the appropriate discrete level of

detail given the current circumstances (see

Section 20.5.1).

Discrete hierarchies are most useful when the

data comprises one or more objects that are

relatively small in spatial extent. In particular,

if the range of depths of a model’s primitives is

small, then a single choice of resolution for the

entire model may be appropriate. This is often

the case for 3D scanned objects, virtual environ-

ments, and some CAD environments.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 397

Discrete

LOD 0 LOD 0

LOD 0

Obj 0 Obj 1 Obj 2 Obj 3

LOD 1

LOD 2

LOD 3

Continuous View-Dependent HLOD

Figure 20.3 Simplification hierarchies at different granularities with different degrees of control. ‘‘Continuous’’ level of detail

(LOD) is actually a large number of LODs, typically encoded by representing small changes from one LOD to the next. An LOD

in the view-dependent hierarchy is represented as a cut across the tree. Hierarchical level of detail (HLOD) is similar to view-

dependent, but it is much more coarse grained, allowing faster management and more efficient rendering. A cut across an HLOD

hierarchy essentially selects a set of discrete LODs to represent a scene.

Model Simplification 397

20.3.2 Continuous

A continuous hierarchy (a widely accepted mis-

nomer) describes a multiresolution hierarchy

with so many levels of detail that it provides

an effectively continuous progression [45].

Such a hierarchy is well suited for delta encoding

by storing the individual small changes to the

data rather than storing each level of detail as a

complete, stand-alone model.

Themainbenefitsofacontinuoushierarchyare

more exact choice of the number of primitives to

use for an object, it enables more subtle transi-

tions between levels of detail, and it provides a

convenient representation for progressive trans-

mission of data (e.g., over a network or from a

hard disk). The basic continuous representation,

which is a linear progression, does not allow se-

lective refinement across the space of a particular

model, so it is typically useful for the same class of

models as the discrete hierarchy.

20.3.3 View-Dependent

The richest and most complex type of simplifica-

tion hierarchy is the view-dependent hierarchy.

It allows not only fine-grained selection of model

complexity but also the ability to control the

distribution of detail across the model at run-

time. A view-dependent hierarchy is typically

represented by a tree data structure [47,65,99]

or a directed acyclic graph [21]. Like the continu-

ous hierarchy, the view-dependent hierarchy can

represent fine-grained changes to the model.

A complete approximation of the model is typic-

ally extracted from the view-dependent hierarchy

on the fly by means of an appropriate cut through

the hierarchy (as shown in Fig. 20.3). Raising

some portion of the cut reduces the detail on the

corresponding portion of the model, whereas

lowering the cut results in local refinement.

In principle, view-dependent hierarchies allow

the application to select just the right level of

detail at appropriate portions of the model.

Their ability to vary detail across the model is

essential for a number of model domains. In

particular, terrain visualization, large isosurface

visualization, and visualization of some large-

scale CAD structures (especially so-called poly-

gon soup models, which have no connectivity or

structural information) demand some form of

view-dependent simplification. These applica-

tions include one or more models that cannot

be easily decomposed into a set of smaller, inde-

pendent objects and that have a wide span of

depths.

View-dependent simplification involves add-

itional runtime overhead, however. Adjustment

of the detail across the model requires a large

number of cost evaluations and comparisons

across the model as opposed to the single deci-

sion required for a discrete hierarchy. The work

performed in adapting the representation for a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 398

Figure 20.4 View-dependent rendering of the Grand Canyon, 10,013 triangles at 2 pixels of screen-space deviation [47].

Textured, wire-frame, and bird’s-eye views. Copyright � 1998 IEEE. (See also color insert.)

398 Geometric Modeling for Visualization

particular viewpoint may easily dominate the

rendering time, overwhelming the benefit gained

by view-dependent adaptation. In addition,

maintaining optimized rendering structures as

the model is dynamically changing remains a

challenging problem, although some research

has been done in this area [24,44].

20.3.4 Scenes

It is often possible to think of a model as a

scene comprising multiple objects, each of

which may be simplified independently. Each

of these objects may be represented as a dis-

crete, continuous, or view-dependent hierarchy,

as appropriate. For example, spatially large

objects might benefit from the use of a view-

dependent hierarchy, whereas smaller objects

might be usefully represented as discrete

hierarchies.

The benefit to maintaining multiple hierarch-

ies as opposed to merging all objects into a

single hierarchy is that we can keep the effi-

ciency of the discrete hierarchy and achieve

some view-dependent adaptation by adjusting

detail separately for each object. However, for

very large collections of objects, the per-object

overhead will eventually dominate. In this situ-

ation, it is useful to use hierarchical LOD, or

HLOD [29]. HLOD looks like a discrete, view-

dependent hierarchy. This LOD hierarchy is

more coarse-grained than a typical view-de-

pendent hierarchy and roughly corresponds to

the notion of a hierarchical scene-graph struc-

ture. Each leaf node is the finest-resolution

representation of each of the individual objects.

Some number of discrete LODs is stored for

each object, and these objects are eventually

merged together. Each merged object may like-

wise have several discrete LODs before it is

merged with another object, and so on. This

coarse-grained representation scales well to

complex scenes with large numbers of objects,

reducing the per-object overhead for a given

rendering frame both in the LOD selection pro-

cess and in the actual number of primitives

rendered. The LOD hierarchy also integrates

well with occlusion culling algorithms and has

been used for interactive walkthrough of large

and complex CAD environments [4,36].

In fact, given a set of discrete hierarchies for a

scene, we can describe them trivially as an

HLOD hierarchy by adding a virtual root

node with each of the discrete hierarchies as a

child. If we wish to create a more nontrivial

hierarchical structure but do not wish to actu-

ally merge and simplify object geometries, we

can cluster objects together to reduce the work

of the selection process, while still rendering the

objects individually at their selected levels of

detail.

20.4 Building Hierarchies

Most simplification hierarchies are built in a

bottom-up fashion, starting from the highest-

resolution model and gradually reducing the

complexity. For static models, this building pro-

cess is a one-time preprocessing operation per-

formed before interactive visualization takes

place. The simplification operations performed

to achieve the overall reduction may be ordered

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 399

Figure 20.5 Using a 3D grid–based decomposition, HLOD

performs a discrete approximation of the more fine-grained

view-dependent hierarchy [29]. Copyright � 2001 Associ-

ation for Computing Machinery, Inc. (See also color insert.)

Model Simplification 399

to produce either an adaptive or a regular hier-

archy structure. An adaptive hierarchy retains

more primitives in the areas requiring more

detail, whereas a regular hierarchy retains a

similar level of detail across all areas. A

balanced tree structure is implied by a regular

hierarchy, whereas the structure of an adaptive

hierarchy is more unbalanced. In general, adap-

tive hierarchies take longer to build but produce

fewer triangles for a given error bound. In some

cases, the structure of a regular hierarchy allows

optimizations for space requirements or special-

ized management algorithms.

20.4.1 Adaptive Hierarchies Using
Decimation Operations

An adaptive hierarchy is typically built by per-

forming a sequence of simplification operations

in a greedy fashion, guided by a priority queue.

The most common simplification operators in

use today are various forms of vertex-merging

operators. The edge collapse operator [48]

merges together two vertices connected by an

edge of the current model into a single vertex,

discarding the primitives that become degener-

ate. Variants of the edge collapse include the

half-edge collapse [53], which restricts the des-

tination vertex to be one of the two source

vertices; the vertex-pair collapse [33], which can

merge any two connected or unconnected verti-

ces; the triangle collapse [40], which merges three

connected vertices; and the vertex cluster [76],

which merges together any number of vertices.

Another well known operator is the vertex re-

moval [82,91], which removes a vertex and its

adjacent triangles from a mesh and then retrian-

gulates the hole with new triangles. Most sim-

plification algorithms employ some form of

vertex merging, rather than vertex removal, be-

cause they are more easily computed, encoded,

and smoothly interpolated. Half-edge collapses

are often useful because they do not produce

any new vertices, but they produce simplified

surfaces with larger error than those produced

using the edge collapse. Vertex-merging ap-

proaches have also been applied successfully

to the simplification of tetrahedral meshes [10,

88,90,101]. Vertex removal is employed in some

applications of terrain simplification and curved

surface tessellation due to its close ties to incre-

mental Delaunay triangulation.

Depending on the application, it may be de-

sirable to preserve the topological structure of

the original model, or it may be acceptable or

even desirable to modify or simplify the top-

ology. Operators such as edge collapse, triangle

collapse, and vertex removal can be used to

preserve local topological connectivity, and in

some cases have been used to preserve global

topology, preventing surface self-intersections

[16]. Vertex-cluster operations often completely

ignore topological structure, whereas vertex-

pair operations can be used to make small topo-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 400

Vertex
Removal

Edge
Collapse

Vertex-Pair
CollapseTriangle

Collapse

Figure 20.6 Several simplification operators for performing local decimation.

400 Geometric Modeling for Visualization

logical modifications as they become reason-

able. Other approaches may operate in either

the volumetric domain [41,69] or the surface

domain [26,27] to deliberately remove protru-

sions, indentations, and topological holes. Such

topological reductions can improve model qual-

ity for a given primitive count or overcome

topology-imposed lower limits on primitive

counts. Although such reductions are useful

for rendering acceleration, they may not be ap-

plicable to other applications of hierarchical

models, such as scientific computations.

A number of error metrics have been applied

to guide this priority-driven simplification pro-

cess. These include curvature estimates [82,91],

which remove vertices from areas of lower

curvature first; point–surface metrics [48],

which measure mean squared error between

specific points on the original surface and their

corresponding closest points on the simplified

surface; vertex–plane metrics [33,75], which

measure error between vertices of the simpli-

fied surface and their supporting planes from

the original surface; surface–surface metrics,

which bound maximum deviation between all

points on the original and simplified surfaces

[2,14,16,38,52]; image-based metrics [63], which

compare images of the original objects with

images of the simplified objects; and percep-

tually based metrics [66,83,95], which use simple

models of human perception to decide which

operations cause the least noticeable artifacts.

Some metrics also measure error of nongeo-

metric vertex attributes such as colors and

normals [28,32,44,45,98], whereas other algo-

rithms decouple these attributes from the sim-

plification process [11,15]. In recent years, the

vertex–plane, or quadric error, metrics have re-

ceived the most attention due to their combin-

ation of easy implementation, fast execution,

and good-quality results. However, these

metrics do not provide guaranteed maximum

error bounds on the models produced, so appli-

cations requiring such guarantees must use a

different metric, combine it with a different

metric [100], or measure such bounds as a

post-process.

20.4.2 Regular Hierarchies

The image pyramid is a well known form of

regular hierarchy. Each successive level of the

image pyramid generally has half the resolution

of the previous level in each spatial dimension.

The representation is extremely compact be-

cause the parent–child relationships are implicit.

In computer graphics, image pyramids are often

stored as MIP-maps [94], which are used for

efficient filtering of texture images.

Regular geometry hierarchies can leverage

some of the same simplicity. Some terrain data

takes the form of regularly sampled height

fields. These regular terrains are often simplified

using a quadtree [30,56,77] or binary triangle

tree [22,35,71] scheme. Viewed from the top

down, each starts with the entire model as a

single square (or rectangle, etc.). The quadtree

recursively subdivides the square into four

quadrants until the final data resolution is

reached. The binary triangle tree divides the

initial square into two triangles, and then recur-

sively splits each triangle in two by splitting the

longest edge. Notice that neither scheme re-

quires any error measurements to determine

the structure of the hierarchy itself. However,

some height error is typically stored with the

hierarchy to allow view-dependent refinement

during interactive visualization.

The rendering of 3D volumetric data can also

employ regular hierarchies. Volume rendering

of voxel data may be performed hierarchically

using hierarchical splatting [55] or hierarchical

3D texture-based rendering [6,39,54,93]. Isosur-

face extraction may also be performed adap-

tively using a regular octree hierarchy [86].

One approach to dealing with irregular data

is to resample it into a regular form. This can be

particularly effective when combined with com-

pression to reduce the new, redundant data. For

example, a polygon mesh may be cut and

unfolded into a square 2D domain and uni-

formly resampled for storage as a geometry

image [37]. Although the result is not a height

field, it has the same regular structure, allowing

many techniques from terrain visualization to

be applied. Unstructured 3D grids may also be

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 401

Model Simplification 401

uniformly resampled using an octree to enable

hierarchical 3D texture-based volume rendering

[58].

Even when the original geometric data is not

regular, we can still impose regularity on the

hierarchy structure. The most common form of

this is the cell clustering approach to model

simplification [76]. To generate a discrete level

of detail for some model using cell clustering, we

partition the model’s bounding box using a

regular grid of some resolution. All the vertices

of each cell are merged into a single vertex using

a vertex cluster operator. The result is a model

with a number of vertices less than or equal to

the total number of cells. This algorithm can be

very fast compared to adaptive, priority-driven

algorithms, because we do not need to keep

reevaluating the cost of operations as their

neighboring operations are applied to the

model.

We can replace the single-resolution regular

grid of the cell-clustering algorithm with a mul-

tiresolution octree to generate a view-dependent

hierarchy [65]. Although the hierarchy structure

in such a scheme is still not adaptive, we can use

such a hierarchy to provide view-dependent re-

finement within an interactive visualization ap-

plication, also taking into account such effects

as increased refinement around silhouettes.

A hierarchical approach to cell clustering has

also been used to create adaptive hierarchies in

reverse order, simplifying the root node first,

and then splitting nodes according to a priority

queue [7,9].

The cell-clustering approach has also proven

to be useful for simplifying large models that do

not fit in core memory [61,62]. If the output

model is small enough to fit in core memory,

we can make a single pass over the out-of-core

list of input triangles, determining which

become degenerate as they are quantized to the

grid resolution. An optimized vertex position is

determined for each cell by accumulation of a

quadric error metric for each cell as the triangle

list is traversed.

20.4.3 Hybrids

In many cases, we can benefit by combining

adaptive and regular sampling in a hierarchy.

For example, rendering a geometric simpli-

fication hierarchy with mip-mapped textures

uses the geometric primitives to establish an

adaptive sampling, whereas the texture maps

provide image data stored as a regular hierarchy

[15,80].

In general, some small amount of adaptive

sampling may be used as a sort of normalization

across the model, after which it becomes appro-

priate to perform sampling uniformly. This

principle has been applied in a number of

domains, including curved surface tessellation

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 402

Before Simplification After Simplification

Figure 20.7 Cell-clustering simplification using a grid.

402 Geometric Modeling for Visualization

[8], hybrid point–triangle simplification [13],

surface reparameterization [3,50,79], and con-

version of meshes to semiregular subdivision

meshes [23,57]. In each case, some base triangu-

lation adaptively samples a surface, which is

then relatively uniform within each element of

the base structure.

A hybrid approach has recently been

employed to improve the quality of out-of-core

simplification [34]. Regular cell clustering is ap-

plied to bring the model to a small enough size to

fit in corememory, and then an adaptive priority-

queue algorithm is applied to continue the sim-

plification down to the desired final polygon

count. The results are shown to be significantly

better than those obtained from performing a

coarser cell clustering, but this algorithm as-

sumes that the goal is to generate a model that

is significantly smaller than the core memory

size.

Another class of out-of-core simplification

algorithms is the patch-based simplification al-

gorithm. In a vein similar to the cell-clustering

algorithms, a regular grid structure may be used

to assist in the generation of a patch decom-

position for a model, followed by an adaptive

algorithm to simplify each patch in core

memory. Various schemes are possible for deal-

ing with simplification of patch boundaries.

Multiple passes may be used, with a dual patch

decomposition between passes [5], or patches

may be clustered hierarchically at each pass,

allowing for simplification of the boundaries

that become interior at each successive pass [29].

20.4.4 Image-Based Simplifications

Image-based representations and impostors ac-

celerate rendering by providing a drastic simpli-

fication of distant geometry. For example, many

flight-simulation systems use images to represent

terrains and other specialized models. Common

image-based representations include point

primitives, flat images, textured depth meshes,

and depth images. Point primitives [72,78] work

well for over-sampled datasets. Flat images

[1,18,68,81,84,97] are mapped onto planar pro-

jections, but they only display the correct per-

spective when viewed from the location where

the image was created. Textured depth meshes

(TDMs) [17,51,87,97,102] replace the planar

projections used by flat images with simplified

meshes created from sampled depth values. Dec-

oret et al. [19] extended TDMs to handle multi-

ple layers. TDMs are height fields, and many

algorithms have been proposed for simplification

and view-dependent LOD control of such data-

sets [67]. Wilson and Manocha [96] have presen-

ted an algorithm for incrementally computing

sample locations for generating TDMs and

representing them incrementally.

20.5 Managing Hierarchies

Once we have precomputed one or more simpli-

fications or scene hierarchies, one of the main

goals is to use these hierarchical representations

to improve the performance of an interactive

visualization system. A visualization system

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 403

Figure 20.8 Hybrid regular/adaptive simplification process

for the David model (Stanford’s Digital Michelangelo Pro-

ject). (Left) Original model (8 million triangles). (Middle)

Simplified using regular cell clustering (1,157 triangles).

(Right) Simplified using multiphase approach to cell cluster-

ing followed by priority queue–driven edge collapses (1,000

triangles) [34]. Copyright� 2002 IEEE.

Model Simplification 403

usually strikes a balance between manual detail

control and fully automatic control. It will often

permit the user to set several parameters con-

trolling the target LOD and the prioritization

used to reach that target. We next describe basic

algorithms used to select the LOD during the

interactive application as well as some issues

related to managing the data for an entire scene.

20.5.1 LOD Selection

The problem of selecting an LOD is usually

posed in one of two ways. In quality-driven se-

lection, we use parameters corresponding to

image quality, and the algorithm selects model

representations that are as simple as possible

while providing at least the specified quality.

The quality specification could be in object

space, screen space (Fig. 20.10), attribute

space, perceptual space (including velocity and

eccentricity [31,43,70]), etc. Such quality meas-

ures may be further scaled to account for user-

applied semantic importance values. For view-

dependent hierarchies, it is also possible to

account for localized quality considerations

such as preservation of silhouettes [65,98] and

specular illumination effects [98]. Recent work

has even applied perceptual metrics to account

for the combination of screen-space geometric

error, silhouette preservation, illumination, and

texture-map content [95].

The other common way to pose the LOD

selection problem is performance-driven selec-

tion. In this algorithm, the user or application

specifies some parameter directly related to

performance, such as number of primitives or

frame time. It is then the job of the algo-

rithm to select model representations that

maximize the quality while meeting this per-

formance budget. Notice that in this case, too,

some measure of quality is required to perform

prioritization.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 404

Figure 20.9 Comparison of Incremental Textured Depth-Meshes (ITDMs) [96] with regular TDMs and geometric levels of

detail (LODs) on a 12.5M polygon power-plant model. ITDMs generate images almost as well as do static LODs, and at a frame

rate 9 times faster. Moreover, ITDMs do not show the skin artifacts common in TDMs. The TDMs and ITDMs are used as a

simplification of the far geometry. Copyright � 2003 Association for Computing Machinery, Inc. (See also color insert.)

Eye

w

d

p

r

ε

θ

Viewing
Plane

Level of
Detail

Figure 20.10 One way to project error from object space to

screen space, enabling quality specification in pixels of devi-

ation. The object space error, e, is projected to the screen-

space error, p, according to the viewing distance, d, as well as

constant viewing parameters.

404 Geometric Modeling for Visualization

Quality-driven selection is typically much

simpler to implement than performance-driven

selection, but it is insufficient to guarantee a

particular level of interactivity. Given one or

more hierarchies, each hierarchy may independ-

ently adjust its refinement level to just exceed

the specified quality. For discrete hierarchies,

this amounts to a form of switch statement to

select the best LOD from the set of discrete

LODs in the hierarchy. To find the best LOD,

we can proceed from coarsest to finest or finest

to coarsest, or we can maintain a current state

from the previous frame as a starting position.

Continuous hierarchies are no more compli-

cated, although maintaining coherence becomes

more important due to the increase in potential

resolutions. View-dependent hierarchies are the

most complex in practice. Each node may be

treated as an LOD for the purpose of quality

evaluation. A basic algorithm initializes a cut

just beneath the root node. Each child node is

tested against the quality threshold, and if it

passes it is raised above the cut and its children

are tested recursively, and this process is

repeated. A small modification to this algorithm

maintains the cut from the previous frame and

allows it to move upward or downward as

indicated by the quality of nodes above and

below it.

One reason the performance-driven selection

is more complex than the quality-driven selec-

tion is that the desired quality is not constant

from frame to frame. In fact, one way to imple-

ment performance-driven selection is to employ

a quality-driven selection algorithm, but in-

crease or decrease the quality by an amount

indicated by the performance of the preceding

frames. This so-called reactive performance-

management algorithm seems straightforward

at first, but it has some fundamental limitations

and can be difficult to tune in practice. It is a

rather indirect way to control the performance,

and because it relies only on old information, it

is doomed to lag behind the needs of the current

frame as new objects come into view.

Predictive performance-management algo-

rithms, on the other hand, use a model of

system performance to predict how a given

representation of the input data should perform

for the current frame. Such a predictive model

requires some knowledge of the underlying

rendering platform, and a number of param-

eters must be calibrated, but this approach has

been demonstrated to work well. Given a total

time budget and the predicted time required to

render any particular model representation, we

can employ a greedy algorithm to solve a vari-

ant of the well known Knapsack Problem

(which is an NP-complete problem) [31]. We

begin with the lowest quality representation of

all hierarchies. If their sum does not exceed

the time budget, we repeatedly refine the LOD

with the lowest quality until we can no longer

do so without exceeding the time budget.

This algorithm has been demonstrated not

only with discrete hierarchies [31], but with

view-dependent hierarchies as well [22,65]. In

the view-dependent setting, two priority queues

are typically employed to prioritize refinements

and reductions to the current cut.

For discrete and HLOD hierarchies, the time

it takes to select the overall LOD, even in per-

formance-driven mode, is typically small com-

pared to the rendering time [29]. However, for

the more fine-grained, view-dependent hier-

archy, adapting the cut for the current frame

can easily be the bottleneck. Typical implemen-

tations will decouple the updating of the cut for

the current view from the actual rendering,

either by using multiple threads [65] or by

amortizing the update over some number of

frames [46].

20.5.2 Scene Management

Given a large scene described as one or more

hierarchies, an important challenge is to deter-

mine which portions of the scene need to be in

core memory and at what LOD. We need

at least the current cut of view-dependent hier-

archy (or the current LODs of one or more

discrete hierarchies) to make rendering feasible.

We would also like to have in our memory

cache the data needed for rendering the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 405

Model Simplification 405

next one or more frames. This requires reason-

able prediction of the viewing position and orien-

tation for one or more frames in the future. This

prediction is typically accomplished through a

combination of velocity information and know-

ledge of the mode of user input for the specific

application. For example, if a flight simulator

limits the user to the controls of an actual air-

craft, we can use that information to limit the

range of positions and directions for the

following frames. Based on this prediction infor-

mation, we prefetch the data during frames

before we expect to need the data.

In some cases, the user wants to avoid ever

blocking the interactive application while it

waits for data to arrive from disk, so the appli-

cation must always have available some repre-

sentation of any portion of the scene that could

possibly be rendered during the next frame.

One possible approach is to keep the coarsest

LOD for the entire model loaded at all times as

a fallback position. In some cases, it may be

reasonable to keep all LODs that lie above

the current cut, including the coarsest LODs,

in memory at all times. Then it is always pos-

sible to coarsen any portion of the model on

demand, and disk loads are only required for

refinements.

Memory management is relatively straight-

forward with regular terrains [20,46,60],

which are typically arranged in tiles, or hier-

archical volume data [58]. The data for each

LOD of each block can be loaded as the pre-

dictor says it may come into the field of view

or otherwise change LOD. Scenes comprising

multiple objects may be handled in much

the same way, with the various LODs of the

different objects loaded instead of the terrain

tiles (predicting which objects will become vis-

ible due to disocclusion remains a challenging

research problem today). One interesting way

to think of this geometry cache is as a range

of cuts surrounding the cut for the current

frame. As we make predictions about the

frames to come, we adapt these cache cuts,

which tell us which geometry to load from

disk.

In the case of a fine-grained, general-purpose

view-dependent hierarchy, we will be loading

the hierarchy structure as well as the actual

geometry data from disk as we manage the

cache [25]. For more coarse-grained hierarchies,

such as the discrete hierarchy or an HLOD

hierarchy, we may expect to fit the hierarchy

structure entirely in core memory and manage

just the geometry data with our caching algo-

rithm [92,102].

20.5.3 Rendering Efficiency

Whatever the type of hierarchy or management

algorithm, the goal is to achieve a higher level of

rendering performance than we would achieve

without simplification. If using LOD sacrifices

rendering throughput to achieve primitive reduc-

tions, it can be a net slowdown rather than a

speedup for all but the largest data. For discrete

LODs and HLODs, this is not generally a prob-

lem because these coarse-grained, discrete struc-

tures may be optimized for whatever the current

rendering platform requires. It is especially chal-

lenging, however, for continuous and view-de-

pendent hierarchies, which are constantly

making changes to the set of primitives to be

rendered.

In terms of using current graphics hardware,

the primary problem is still one of memory man-

agement. The fastest rendering is possible for

data stored in video memory, local to the graphics

processor. We can treat this memory as another

level of cache for our geometry data and manage

it much as we do the core memory cache.

A secondary factor in performance on today’s

hardware is the ability to use shared vertices and

to reference these shared vertices with enough

locality to maintain their state in an even smaller

vertex cache on the graphics processor. Thus,

maintaining this vertex locality is also an import-

ant consideration for achieving maximum per-

formance. Although some work has been done in

this area [44], it remains a challenging problem to

maintain high rendering throughput in the pres-

ence of dynamically adapting, view-dependent

LOD.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 406

406 Geometric Modeling for Visualization

20.6 Conclusion

Model simplification has been an active area of

research in the last decade. More than 100

papers have been published in this area, and

the techniques are increasingly being used for

interactive visualization of complex datasets

arising from scientific visualization, virtual en-

vironments, real-world scenes, and computer

gaming. Many tools are also available in both

commercial and open-source form. A large list

of such tools, and useful data sets, are currently

available at http://www.lodbook.com.

A number of open problems remain in the

area of model simplification for interactive visu-

alization. Most noteworthy are those involving

dynamic data. Almost all of the current research

has focused on static data, whereas many appli-

cation areas generate time-varying data, either

by real-time acquisition or through simulations

requiring simulation steering. Although some

initial work has been done in this area [85], the

field is still wide open.

References

1. G. D. Aliaga. Visualization of complex models
using dynamic texture-based simplification. Pro-
ceedings of IEEE Visualization ’96, pages 101–
106, 1996.

2. C. Bajaj and D. Schikore. Error-bounded reduc-
tion of triangle meshes with multivariate data.
SPIE, 2656:34–45, 1996.

3. L. Balmelli, F. Bernardini, and G. Taubin.
Space-optimized texture maps. Proceedings of
Eurographics 2002, pages 411–420, 2002.

4. B. Baxter, A. Sud, N. Govindaraju, and
D. Manocha. Gigawalk: interactive walkthrough
of complex 3D environments. Proceedings of
Eurographics Workshop on Rendering 2002,
pages 203–214 and 330, 2002.

5. F. Bernardini, H. Rushmeier, I. M. Martin, J.
Mittleman, and G. Taubin. Building a digital
model of Michelangelo’s Florentine Pieta. IEEE
Computer Graphics and Applications, 22(1):59–67,
2002.

6. I. Boada, I. Navazo, and R. Scopigno. Multi-
resolution volume visualization with a texture-
based octree. The Visual Computer, (17):185–
197, 2001.

7. D. Brodsky and B. Watson. Model simplification
through refinement. Proceedings of Graphics
Interface 2000, pages 221–228, 2000.

8. J. Chhugani and S. Kumar. View-dependent
adaptive tessellation of parametric surfaces.
Proceedings of 2001 Symposium on Interactive
3D Graphics, pages 59–62 and 246, 2001.

9. P. Choudhury and B. Watson. Fully adaptive
simplification of massive meshes. Technical
Report, Northwestern University Department
of Computer Science, 2002.

10. P. Cignoni, D. Constanza, C. Montani, C. Roc-
chini, and R. Scopigno. Simplification of tetra-
hedral meshes with accurate error evaluation.
Proceedings of IEEE Visualization 2000, pages
85–92, 2002.

11. P. Cignoni, C. Montani, C. Rocchini, R. Sco-
pigno, and M. Tarini. Preserving attribute
values on simplified meshes by resampling detail
textures. The Visual Computer, 15(10):519–539,
1999.

12. J. H. Clark. Hierarchical geometric models for
visible surface algorithms. Communications of
the ACM, 19(10):547–554, 1976.

13. J. Cohen, G. D. Aliaga, and W. Zhang. Hybrid
simplification: combining multiresolution poly-
gon and point rendering. Proceedings of IEEE
Visualization 2001, pages 37–44 and 539, 2001.

14. J. Cohen, D. Manocha, and M. Olano. Simpli-
fying polygonal models using successive map-
pings. Proceedings of IEEE Visualization ’97,
pages 395–402, 1997.

15. J. Cohen, M. Olano, and D. Manocha. Appear-
ance-preserving simplification. Proceedings of
SIGGRAPH ’98, pages 115–122.

16. J. Cohen, A. Varshney, D. Manocha, G. Turk,
H. Weber, P. Agarwal, F. Brooks, and W.
Wright. Simplification envelopes. Proceedings
of SIGGRAPH ’96, pages 119–128, 1996.

17. L. Darsa, B. Costa, and A. Varshney. Walk-
throughs of complex environments using
image-based simplification. Computers &
Graphics, 22(1):55–69, 1998.

18. P. Debevec, Y. Yu, and G. Borshukov. Efficient
view-dependent image-based rendering with
projective textures. Proceedings of Eurographics
Workshop on Rendering 1998, pages 105–116,
1998.

19. X. Decoret, G. Schaufler, F. Sillion, and J. Dor-
sey. Multi-layered impostors for accelerated
rendering. Computer Graphics Forum, 18(3):61–
73, 1999.

20. L. DeFloriani, P. Magillo, and E. Puppo. VARI-
ANT:asystemforterrainmodelingatvariablereso-
lution.GeoInformatica,4(3):287–315,2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 407

Model Simplification 407

21. L. DeFloriani, P. Magillo, and E. Puppo.
Building and traversing a surface at variable
resolution. Proceedings of IEEE Visualization
’97, pages 103–110.

22. M. Duchaineau, M. Wolinsky, D. E. Sigeti,
M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein. ROAMing terrain: real-time opti-
mally adapting meshes. Proceedings of Visual-
ization ’97, pages 81–88.

23. M. Eck, T. DeRose, T. Duchamp, H. Hope,
M. Lounsbery, and W. Stuetzle. Multiresolu-
tion analysis of arbitrary meshes. Proceedings
of SIGGRAPH ’95, pages 173–182, 1995.

24. J. A. El-Sana, E. Azanli, and A. Varshney. Skip
strips: maintaining triangle strips for view-de-
pendent rendering. Proceedings of IEEE Visual-
ization ’99, pages 131–138, 1999.

25. J. A. El-Sana and Y. J. Chiang. External
memory view-dependent simplification. Com-
puter Graphics Forum, 19(3):139–150, 2000.

26. J. A. El-Sana and A. Varshney. Controlled
simplification of genus for polygonal models.
Proceedings of IEEE Visualization ’97, pages
403–410, 1997.

27. J. A. El-Sana and A. Varshney. Topology sim-
plification for polygonal virtual environments.
IEEE Transactions on Visualization and Com-
puter Graphics, 4(2):133–144, 1998.

28. C. Erikson and D. Manocha. GAPS: general
and automatic polygonal simplification. Pro-
ceedings of 1999 ACM Symposium on Interactive
3D Graphics, pages 79–88, 1999.

29. C. Erikson, D. Manocha, and W. V. Baxter III.
HLODs for faster display of large static and
dynamic environments. Proceedings of 2001
ACM Symposium on Interactive 3D Graphics,
pages 111–120, 2001.

30. J. S. Falby, M. J. Zyda, D. R. Pratt, and R. L.
Mackey. NPSNET: hierarchical data structures
for real-time 3D visual simulation. Computers
and Graphics, 17(1):65–69, 1993.

31. T. A. Funkhouser and C. H. Sequin. Adaptive
display algorithm for interactive frame rates
during visualization of complex virtual environ-
ments. Proceedings of SIGGRAPH ’93, pages
247–254, 1993.

32. M. Garland and P. Heckbert. Simplifying sur-
faces with color and texture using quadric error
metrics. Proceedings of IEEE Visualization ’98,
pages 263–270, 1998.

33. M. Garland and P. Heckbert. Surface simplifi-
cation using quadric error metrics. Proceedings
of SIGGRAPH ’97, pages 209–216.

34. M. Garland and E. Shaffer. A multiphase
approach to efficient surface simplification.

Proceedings of IEEE Visualization 2002, pages
117–124, 2002.

35. T. Gerstner. Multiresolution visualization and
compression of global topographic data. GeoIn-
formatica, 7(1):7–32, 2003.

36. N. Govindaraju, A. Sud, S.-E. Yoon, and D.
Manocha. Interactive visibility culling in com-
plex environments usingocclusion-switches.Pro-
ceedings of ACM Symposium on Interactive 3D
Graphics 2003, pages 103–112, 2003.

37. X. Gu, S. J. Gortler, and H. Hoppe. Geometry
images. Proceedings of SIGGRAPH 2002, pages
355–361, 2002.

38. A. Guéziec. Locally toleranced surface simplifi-
cation. IEEE Transactions on Visualization and
Computer Graphics, 5(2):168–189, 1999.

39. S. Guthe and W. Strasser. Real-time decom-
pression and visualization of animated volume
data. Proceedings of IEEE Visualization 2001,
pages 349–356, 2001.

40. B. Hamann. A data reduction scheme for tri-
angulated surfaces. Computer Aided Geometric
Design, 11:197–214, 1994.

41. T. He, L. Hong, A. Varshney, and S. Wang.
Controlled topology simplification. IEEE Tran-
sactions on Visualization and Computer
Graphics, 2(2):171–184, 1996.

42. P. Heckbert and M. Garland. Survey of polyg-
onal simplification algorithms. SIGGRAPH ’97
Course Notes, 1997.

43. L. E. Hitchner and M. W. McGreevy.
Methods for user-based reduction of model com-
plexity for virtual planetary exploration. Pro-
ceedings of the SPIE—The International Society
for Optical Engineering, 1913:622–636, 1993.

44. H. Hoppe. Optimization of mesh locality for
transparent vertex caching. Proceedings of SIG-
GRAPH ’99, pages 269–276, 1999.

45. H. Hoppe. Progressive meshes. Proceedings of
SIGGRAPH ’96, pages 99–108, 1996.

46. H. Hoppe. Smooth view-dependent level-of-
detail control and its application to terrain
rendering. Proceedings of Visualization ’98,
pages 35–42, 1998.

47. H. Hoppe. View-dependent refinement of pro-
gressive meshes. Proceedings of SIGGRAPH 97,
pages 189–198, 1997.

48. H. Hoppe, T. DeRose, T. Duchamp, J. McDo-
nald, and W. Stuetzle. Mesh optimization. Pro-
ceedings of SIGGRAPH ’93, pages 19–26, 1993.

49. H. Hoppe. New quadric metric for simplifying
meshes with appearance attributes. Proceedings
of IEEE Visualization ’99, pages 59–66, 1999.

50. A. Hunter and J. D. Cohen. Uniform frequency
images: adding geometry to images to produce

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 408

408 Geometric Modeling for Visualization

space-efficient textures. Proceedings of IEEE
Visualization 2000, pages 243–250 and 563, 2000.

51. S. Jeschke and M. Wimmer. Textured depth
mesh for real-time rendering of arbitrary scenes.
Proceedings of Eurographics Workshop on
Rendering 2002, pages 181–190 and 328, 2002.

52. R. Klein, G. Liebich, and W. Straßer. Mesh
reduction with error control. Proceedings of
IEEE Visualization ’96, pages 311–318, 1996.

53. L. Kobbelt, S. Campagna, and H.-P. Seidel.
A general framework for mesh decimation.
Proceedings of Graphics Interface ’98, pages
43–50, 1998.

54. E. C. LaMar, B. Hamann, and K. I. Joy. Multi-
resolution techniques for interactive texture-
based volume visualization. Proceedings of
IEEE Visualization ’99, pages 355–362, 1999.

55. D. Laur and P. Hanrahan. Hierarchical splat-
ting: a progressive refinement algorithm for
volume rendering. Proceedings of SIGGRAPH
1991, pages 285–288, 1991.

56. Y. G. Leclerc and S. Q. Lau. TeraVision:
a terrain visualization system. Technical
Report 540. Menlo Park, CA, SRI Inter-
national, 1994.

57. A. Lee, H. Moreton, and H. Hoppe. Displaced
subdivision surfaces. Proceedings of SIG-
GRAPH 2000, pages 85–94, 2000.

58. J. Leven, J. Corso, J. Cohen, and S. Kumar.
Interactive visualization of unstructured
grids using hierarchical 3D textures. Proceed-
ings of IEEE/SIGGRAPH Symposium on
Volume Visualization and Graphics 2002, pages
37–44, 2002.

59. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewics,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Gensberg, J. Shade, and D. Fulk.
The digital Michelangelo project: 3D scanning
of large statues. Proceedings of SIGGRAPH
2000, pages 131–144, 2000.

60. P. Lindstrom and V. Pascucci. Visualization of
large terrains made easy. Proceedings of Visual-
ization 2001, pages 363–370 and 574, 2000.

61. P. Lindstrom. Out-of-core simplification of
large polygonal models. Proceedings of
SIGGRAPH 2000, pages 259–262, 2000.

62. P. Lindstrom and C. Silva. A memory insensi-
tive technique for large model simplification.
Proceedings of IEEE Visualization 2001, pages
121–126, 2001.

63. P. Lindstrom and G. Turk. Image-driven sim-
plification. ACM Transactions on Graphics,
19(3):204–241, 2000.

64. D. P. Luebke. A developer’s survey of polyg-
onal simplification algorithms. IEEE Computer
Graphics & Applications, 21(3):24–35, 2001.

65. D. P. Luebke and C. Erikson. View-dependent
simplification of arbitrary polygonal environ-
ments. Proceedings of SIGGRAPH ’97, pages
199–208, 1997.

66. D. Luebke and B. Hallen. Perceptually driven
simplification for interactive rendering. Pro-
ceedings of 2001 Eurographics Rendering Work-
shop, pages 223–234, 2001.

67. D. Luebke, M. Reddy, J. D. Cohen, A. Varsh-
ney, B. Watson, and R. Huebner. Level of Detail
for 3D Graphics. San Francisco, Morgan Kauf-
mann, 2002.

68. P. W. C. Maciel and P. Shirley. Visual naviga-
tion of large environments using textured clus-
ters. Proceedings of 1995 Symposium on
Interactive 3D Graphics, pages 95–102, 1995.

69. F. Nooruddin and G. Turk. Simplification and
repair of polygonal models using volumetric
techniques. Technical Report GIT-GVU-99-37,
Georgia Institute of Technology, 1999.

70. T. Ohshima, H. Yamamoto, and H. Tamura.
Gaze-directed adaptive rendering for interacting
with virtual space. Proceedings of 1996 IEEE
Virtual Reality Annual International Symposium,
pages 103–110, 1996

71. R. Pajarola. Large scale terrain visualization
using the restricted quadtree triangulation.
Proceedings of Visualization ’98, pages 19–26,
1998.

72. H. Pfister, M. Zwicker, J. van Baar, and M.
Gross. Surfels: surface elements as rendering
primitives. Proceedings of SIGGRAPH 2000,
pages 335–342, 2000.

73. M. Reddy, Y. G. Leclerc, L. Iverson, and N.
Bletter. TeraVision II: visualizing massive ter-
rain databases in VRML. IEEE Computer
Graphics and Applications, 19(2):30–38, 1999.

74. M. Reddy. Perceptually optimized 3D graphics.
IEEE Computer Graphics and Applications,
21(5):68–75, 2001.

75. R. Ronfard and J. Rossignac. Full-range ap-
proximation of triangulated polyhedra. Com-
puter Graphics Forum, 15(3):67–76 and 462,
1996.

76. J. Rossignac and P. Borrel. Multi-resolution 3D
approximations for rendering complex scenes.
Technical Report RC 17687–77951, IBM Re-
search Division, 1992.

77. S. Röttger, W. Heidrich, P. Slussallek, and
H.-P. Seidel. Real-time generation of continu-
ous levels of detail for height fields. Proceedings
of 1998 International Conference in Central
Europe on Computer Graphics and Visualization,
pages 315–322, 1998.

78. S. Rusinkiewicz and M. Levoy. QSplat: A mul-
tiresolution point rendering system for large

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 409

Model Simplification 409

meshes. Proceedings of SIGGRAPH 2000, pages
343–352, 2000.

79. P. V. Sander, J. S. Gortler, J. Snyder, and
H. Hoppe. Signal-specialized parametrization.
Proceedings of Eurographics Workshop on
Rendering 2002, pages 87–98 and 321, 2002.

80. P. V. Sander, J. Snyder, J. S. Gortler, and
H. Hoppe. Texture mapping progressive
meshes. Proceedings of SIGGRAPH 2001,
pages 409–416, 2001.

81. G. Schaufler and W. Stuerzlinger. A 3D image
cache for virtual reality. Computer Graphics
Forum, 15(3):C227–C235, 1996.

82. J. W. Schroeder, J. A. Zarge, and W. E. Lor-
ensen. Decimation of triangle meshes. Proceed-
ings of SIGGRAPH ’92, pages 65–70, 1992.

83. R. Scoggins, R. Machiraju, and R. J. Moor-
head. Enabling level of detail matching for ex-
terior scene synthesis. Proceedings of IEEE
Visualization 2000, pages 171–178, 2000.

84. J. Shade, D. Lischinski, D. Salesin, T. DeRose,
and J. Snyder. Hierarchical image caching for
accelerated walkthroughs of complex environ-
ments. Proceedings of SIGGRAPH ’96, pages
75–82, 1996.

85. A. Shamir, V. Pascucci, and C. Bajaj. Multi-
resolution dynamic meshes with arbitrary de-
formations. Proceedings of IEEE Visualization
2000, pages 423–430, 2000.

86. R. Shekhar, E. Fayyad, R. Yagel, and J. F.
Cornhill. Octree-based decimation of marching
cubes surfaces. Proceedings of IEEE Visualiza-
tion ’96, pages 335–344, 1996.

87. F. Sillion, G. Drettakis, and B. Bodelet. Effi-
cient impostor manipulation for real-time visu-
alization of urban scenery. Computer Graphics
Forum, 16(3):207–218, 1997.

88. G. O. Staadt and M. H. Gross. Progressive
tetrahedralizations. Proceedings of IEEE Visual-
ization ’98, pages 397–402, 1998.

89. C. C. Tanner, C. J. Migdal, and M. T. Jones.
The clipmap: a virtual mipmap. Proceedings of
SIGGRAPH ’98, pages 151–158, 1998.

90. J. I. Trotts, B. Hamann, and K. I. Joy. Simplifi-
cation of tetrahedral meshes with error bounds.
IEEE Transactions on Visualization and Com-
puter Graphics, 5(3):224–237, 1999.

91. G. Turk. Re-tiling polygonal surfaces. Proceed-
ings of SIGGRAPH ’92, pages 55–64, 1992.

92. G. Varadhan and D. Manocha. Out-of-core
rendering of massive geometric environments.
Proceedings of IEEE Visualization 2002, pages
69–76, 2002.

93. M. Weiler, R. Westermann, C. Hansen, K.
Zimmerman, and T. Ertl. Level-of-detail
volume rendering via 3D textures. Proceedings
of Volume Visualization and Graphics Sympo-
sium 2000, pages 7–13, 2000.

94. L. Williams. Pyramidal parametrics. Proceed-
ings of SIGGRAPH ’83, pages 1–11, 1983.

95. N. Williams, D. Luebke, J. D. Cohen, M. Kel-
ley, and B. Schubert. Perceptually guided sim-
plification of lit, textured meshes. Proceedings
of ACM Symposium on Interactive 3D Graphics
2003, pages 113–121, 2003.

96. A. Wilson and D. Manocha. Simplifying com-
plex environments using incremental textured
depth meshes. Proceedings of SIGGRAPH
2003, pages 678–688, 2003.

97. A. Wilson, K. Mayer-Patel, and D. Manocha.
Spatially encoded far-field representations for
interactive walkthroughs. Proceedings of ACM
Multimedia 2001, pages 348–357, 2001.

98. J. C. Xia, J. A. El-Sana, and A. Varshney.
Adaptive real-time level-of-detail-based
rendering for polygonal models. IEEE Trans-
actions on Visualization and Computer
Graphics, 3(2):171–183, 1997.

99. J. C. Xia and A. Varshney. Dynamic view-
dependent simplification for polygonal models.
Proceedings of IEEE Visualization ’96, pages
327–334, 1996.

100. S. Zelink and M. Garland. Permission grids:
practical, error-bounded simplification. ACM
Transactions on Graphics, 21(2):207–229, 2002.

101. Y. Zhou, B. Chen, and A. Kaufman. Multi-
resolution tetrahedral framework for visualiz-
ing regular volume data. IEEE Visualization
’97, pages 135–142, 1997.

102. D. Aliaga, J. Cohen, A. Wilson, E. Baker,
H. Zhang, C. Erikson, K. Hoff, T. Hudson,
W. Stuerzlinger, R. Bastos, M. Whitton,
F. Brooks, and D. Manocha. MMR: an inter-
active massive model rendering system using
geometric and image-based acceleration. Pro-
ceedings of 1999 Symposium on Interactive 3D
Graphics, 26–28:199–206 and 237, 1999.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:00pm page 410

410 Geometric Modeling for Visualization

PART VII

Virtual Environments for
Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:48pm page 411

Johnson/Hansen: The Visualization Handbook Final Proof 8.9.2004 11:48pm page 412

This page intentionally left blank

21 Direct Manipulation in Virtual
Reality

STEVE BRYSON

NASA Ames Research Center

21.1 Introduction

21.1.1 Direct Manipulation in Virtual
Reality for Scientific Visualization

Virtual-reality interfaces offer several advan-

tages for scientific visualization, such as the abil-

ity to perceive 3D data structures in a natural

way [1,2,7,11,14]. The focus of this chapter is

direct manipulation, the ability for a user in vir-

tual reality to control objects in the virtual envir-

onment in a direct and natural way, much as

objects are manipulated in the real world. Direct

manipulation provides many advantages for the

exploration of complex, multidimensional data-

sets, by allowing the investigator the ability to

intuitively explore the data environment.

Because direct manipulation is essentially a

control interface, it is better suited for the ex-

ploration and analysis of a dataset than for the

publishing or communication of features found

in that dataset. Thus, direct manipulation is

most relevant to the analysis of complex data

that fills a volume of 3D space, such as a fluid-

flow dataset. Direct manipulation allows the

intuitive exploration of that data, which facili-

tates the discovery of data features that would

be difficult to find using more conventional

visualization methods. Using a direct-manipula-

tion interface in virtual reality, an investigator

can, for example, move a ‘‘data probe’’ about in

space, watching the results and getting a sense

of how the data vary within their spatial

volume.

Throughout this chapter, in order to focus the

discussion, we will use the example of a data

probe of a vector field in 3D space that emits

streamlines of that vector field. The user is

allowed to move the data probe anywhere in

3D space, and in response to that movement

several operations must occur:

. Collision detection: the system must identify

that the user has ‘‘picked up’’ or ‘‘moved’’

the data probe.

. Data access: for a given spatial position of

the data probe, the system must locate the

data (vector data, in our example) for that

location and access that data, as well as all

data involved in the visualization computa-

tion.

. Visualization computation: the geometry of

the visualization (the streamline, in our

example) must be computed.

. Graphical rendering: the entire graphical en-

vironment must be rerendered from the

viewpoint of the user’s current hand pos-

ition.

In order for the user to have a sense that the

object is moving with the user’s hand position,

this process must happen quickly, with low la-

tency. Additional issues include the design of

the data probes by the designer of the visualiza-

tion environment and the possibility that the

virtual environment may be implemented on a

distributed system.

In this chapter we will explore the design

and implementation of direct-manipulation

interfaces useful for scientific visualization.

The steps described above, combined with the

low-latency human-factors requirements, place

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 413

413

demands that result in several design challenges.

After providing a simple model of the visualiza-

tion process, we will develop implementation

strategies tailored for scientific visualization in

virtual environments, including issues of run-

time software architectures, distribution, and

control of time flow. These implementation

strategies will be driven by consideration of the

human factors of interaction.

21.1.2 The Data-Analysis Pipeline

In order to describe the special issues that arise

in the implementation of a direct-manipulation

based scientific visualization system in virtual

reality, we require a conceptual model of a sci-

entific visualization system. There are many

ways to conceptualize scientific visualization,

and we do not claim to present the most com-

plete or optimal conceptualization. We have,

however, found the following model very in-

formative when considering implementation

issues.

We consider the scientific visualization pro-

cess as a pipeline, which in its most generic form

starts with the data to be visualized. From this

data visualization, primitives are extracted.

These primitives may consist of vertices in a

polygonal representation, text for a numerical

display, or a bitmap resulting from, for

example, a direct volume representation. Primi-

tive extraction typically involves many queries

for data values. The extracted primitives are

then rendered to a display. This pipeline allows

user control of all functions, from data selection

through primitive extraction to rendering. We

show this pipeline in Fig. 21.1.

Let us examine the operation of this pipeline

in our example of streamlines of a vector field.

Given a starting point of a streamline, data (the

vectors at that point) are accessed by the

streamline algorithm. The vector value is then

added (sometimes with a complex high-accur-

acy algorithm) to the starting point, creating a

line primitive. This process is iterated to build

up a (typically curved) line with many vertices.

These vertices are the streamline’s extracted

geometrical representation. They are then

rendered in the visualization scene. The extrac-

tion of these primitives may involve significant

computation even though the data may exist as

a precomputed file. Computations like those in

this example will turn out to be a significant

issue in the implementation of scientific visual-

ization in virtual environments.

21.1.3 Advantages of Direct Manipulation
in a Virtual Environment

Direct manipulation in a virtual environment

offers several advantages for many classes of

scientific visualization. 3D interaction tech-

niques common in virtual environments provide

natural ways to control visualization selection

and control in three dimensions. In addition,

our experience has shown that one of the

greatest advantages of scientific visualization in

virtual environments is the inherent ‘‘near-real-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 414

Data Extracted
Primitives

Rendering User

User control

Data queries

Figure 21.1 The data-analysis pipeline.

414 Virtual Environments for Visualization

time’’ responsiveness required by a hand-

tracked direct-manipulation based virtual envir-

onment. This responsiveness allows rapid quer-

ies of data in regions of interest. Maintaining

this responsiveness in a scientific visualization

environment is the most challenging aspect

of such an application and will be one of the

primary foci of this chapter. When designed

well, the combination of 3D display, 3D inter-

action, and rapid response creates an intuitive

environment for exploration and demonstra-

tion.

Fig. 21.2 shows the Virtual Wind Tunnel

[1,5], an example of scientific visualization in

virtual that makes extensive use of direct ma-

nipulation. The Virtual Wind Tunnel is used to

investigate the results of simulations in compu-

tational fluid dynamics. This example exhibits

the use of multiple visualization extracts in a

single environment, all of which are interactive

via visualization widgets.

21.1.4 How Scientific Visualization Differs
from Other VR Applications

The design and development of a scientific visu-

alization application within a virtual environ-

ment is different from most virtual reality

application development. Scientific visualiza-

tion environments are often abstract and in-

volve large amounts of data access and

computation in response to a query. For time-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 415

Figure 21.2 The Virtual Wind Tunnel, a virtual environment for the visualization of results of simulations arising in computa-

tional fluid dynamics. This example shows a variety of visualization widgets with visualizations including streamlines, local

isosurfaces, and local cutting planes. (See also color insert.)

Direct Manipulation in Virtual Reality 415

varying data, different senses of time arise, in

which the data may evolve more slowly or even

backwards relative to user time. Such differ-

ences between scientific visualization environ-

ments and more conventional VR applications

can be generalized into the following areas:

. Greater flexibility in graphical representa-

tion: The inherently abstract nature of

information implies opportunities for sim-

pler, faster graphics, such as representing a

streamline as a simple polyline. Conven-

tional applications, such as training or enter-

tainment, are typically more concerned with

realistic graphical environments, and so may

have less flexibility in the selection of graph-

ical representation. Of course, this is not a

universally applicable rule, as some repre-

sentations of information such as direct

volume rendering can be very graphically

intensive.

. A large amount of numerical computation

may be required: While scientific visualiza-

tion typically addresses preexisting data,

visualization extracts may themselves re-

quire considerable computation. Streamlines

or isosurfaces in the visualization of continu-

ous vector and scalar fields are well-known

examples that require large amounts of

computation. As more sophisticated data-

analysis techniques are used in virtual envir-

onments, more computational demands can

be expected.

. A large amount of data access may be re-

quired: Visualization extracts require access

to data, and some extracts require more data

access than others. Complete isosurfaces, for

example, require traversing an entire dataset

(at a particular time-step for time-varying

data) for the computation of the dataset.

Time-varying datasets can be extremely

large, requiring access to hundreds of giga-

bytes of data in a single analysis session,

albeit a single time-step at a time.

. There may be various senses of time: As will

be discussed in Section 21.3.1, several senses

of time can arise in a scientific visualization

system, particularly when addressing time-

varying datasets. While some of these senses

of time correspond to conventional time in

other VE applications, completely new ways

of thinking of time arise from the fact that a

user may wish to manipulate time flow in a

scientific visualization system.

These differences between a scientific visualiza-

tion virtual environment and other applications

have major impacts on the design of the virtual

environment system. These impacts are the

focus of this chapter.

21.2 Basics of Direct Manipulation

21.2.1 What is Manipulated: Visualization
Widgets

The phrase ‘‘direct manipulation in virtual real-

ity’’ refers to the ability of the user to pick up a

virtual object much as the user would pick up an

object in the real world. This type of manipula-

tion contrasts with ‘‘indirect manipulation,’’

where an object in the environment responds

to controls generated by manipulation of some

other object. A common example of indirect

manipulation is a conventional graphical user

interface (GUI), where buttons or sliders con-

trol some aspect of a visualization. While we

focus on direct manipulation in this chapter,

the strategies we describe to deliver fast respon-

siveness are beneficial to indirect manipulation

as well.

A scientific visualization environment often

does not mimic the real world, so there is some

freedom to choose which objects should be ma-

nipulated and which objects should not. In

some cases, it is not clear what direct manipula-

tion of a visualization means. In our example,

what should it mean to directly manipulate a

streamline? While it conceptually makes sense

to manipulate a streamline by grabbing it at any

point, this can be very difficult if the data is

time-varying and the streamline is rapidly and

dramatically changing shape.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 416

416 Virtual Environments for Visualization

Experience has shown that while in some

cases it makes sense to grab an object, in many

cases it is easier for the user to grab tools that

control a visualization rather than the visualiza-

tion itself. These tools are spatially collocated

with the visualization in some sense, so the

user has the feeling of directly manipulating

the visualization. We call these tools visualiza-

tion widgets. This approach of directly manipu-

lating visualization widgets rather than the

visualizations themselves has several advan-

tages:

. Unified interface: the user has to learn the

interactive behavior of only a small set of

widgets, rather than having to figure out

how each type of visualization is manipu-

lated.

. Affordance: a well designed widget will have

a natural interpretation, facilitating the

user’s knowledge of what the widget does.

. Visualization grouping: it is often desirable

to manipulate groups of visualizations. Such

a group may consist of several streamlines in

a row, or may be heterogeneous, combining

streamlines, cutting planes, and isosurfaces

under the control of one widget.

. Unchanging spatial position: in a time-vary-

ing visualization environment, the visualiza-

tion widgets need not move with the data,

which makes them easier for the user to

pick up.

Of course, the use of visualization widgets does

not preclude the ability to manipulate visualiza-

tions directly, but in our experience caution

is advised. Visualization environments can

become quite rich with many different objects

in the environment. If many of these objects

respond to user grab actions, then grabbing an

object by mistake can become a significant issue.

Restricting manipulation to a relatively small

number of data widgets helps prevent this situ-

ation.

In order for the spatial location (and possibly

orientation) of a visualization widget to control

a visualization, that visualization must use

spatial information in its specification. In our

streamline example, this specification is natural:

the widget controls the location of some

point on the streamline. In our description of

the streamline computation, that point is used

to start both a forward and a backward integra-

tion of the vector field. The result is a streamline

through that point. We will call the spatial loca-

tion used to specify a visualization the seed point

of that visualization.

Some visualizations, however, are not typic-

ally specified by a spatial location. An example

of a non–spatially defined visualization is a

traditional isosurface of a scalar field, which is

specified by a scalar field value. The natural way

to specify such a field value is through indirect

manipulation, via a GUI. One way to convert

such a visualization to a spatially specified local

isosurface is given in Section 21.5.3. This is an

example of the kind of creativity that may be

required in the use of direct manipulation to

control a visualization.

A visualization system need not use virtual

reality to benefit from direct manipulation.

Conventional mouse input can be used to dir-

ectly manipulate objects in a visualization

window, and nearly all of the considerations in

this chapter apply.

21.2.2 Human-Factors Requirements

The act of reaching out and picking up an

object is natural in the real world, but when

the responsiveness of our hand is degraded

by inaccuracy (it doesn’t go where we tell it),

latency (it doesn’t go when we tell it), or a

low update rate (we see our hand in snapshots),

the act of picking up an object can become

difficult. We can summarize this situation as

follows:

. Accurate tracking, fast response to user com-

mands, and smooth feedback are required for

a direct manipulation interface to succeed in

giving the user a sense of directly ‘‘picking up

and moving’’ objects in the virtual environ-

ment.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 417

Direct Manipulation in Virtual Reality 417

In the presence of fast, smooth feedback, a cer-

tain amount of tracking inaccuracy is tolerable.

Fast response and smooth feedback are, how-

ever, critical to the user’s experience of directly

manipulating objects in the virtual environ-

ment. In a scientific visualization environment,

this places performance requirements on the

data access, computation, and graphical

rendering triggered by the manipulation of a

visualization.

How fast the graphics and interaction re-

sponses must be turns out to be both applica-

tion dependent and domain dependent. A

virtual environment for training for real-world

manual tasks such as a flight simulator requires

response times of less than 1/30 of a second in

order to mimic the response times of real-world

objects. Information visualization, however,

does not typically require fidelity to real-world

time scales, so the performance requirements

are driven by the human factors of manual con-

trol [12].

The human-factors issues that turn out to be

important for scientific visualization in virtual

environments are the following:

. Graphics update rate: how fast must the

graphical display update rate (graphical ani-

mation rate) be to preserve a sense of object

presence, the sense that the virtual object has

a position in 3D space independent of the

user? By graphical update rate, we mean

the rate at which frames are drawn to the

graphics framebuffer(s), not the display

device’s refresh rate.

. Interaction responsiveness: how quickly

must objects in the environment respond to

user actions in order to maintain a sense of

presence and direct manipulation?

. Data display responsiveness: how fast must

interactive data-display devices, such as a

data probe, update to give the user a sense

of exploring the data?

While these considerations are usually related,

in a virtual environment they are distinct. The

fast graphics-update rate is required by the vir-

tual-reality requirement of rendering the graph-

ical scene from the user’s current head position

and orientation. Interaction responsiveness

measures how well the interactive objects move

with the user’s hand, and it is a function of the

graphical update rate, the latency of the input

devices that measure the user’s actions, and any

computation that the interactive objects require

to respond. This latter computation is trivial for

visualization widgets. Data-display responsive-

ness measures how quickly the visualizations

respond to the user’s manipulation. The respon-

siveness of the interactive objects and the visu-

alizations they control need not be the same; for

example, the user can position a widget and

subsequently watch the visualizations appear

in response.

The relationships and differences between

these time scales are subtle. The graphics update

rate will limit the interaction and data-display

responsiveness because the interactive displays

cannot be presented faster than the graphics

update rate. Update rate and responsiveness,

however, are very different kinds of measures:

update rate is measured in frames/s, while

responsiveness is the latency, measured in

seconds—the time interval between a user

action and when the system’s response is dis-

played. This latency is determined by all pro-

cesses triggered by the user’s action, from

reading the user tracking devices, through pro-

cessing the user’s commands, through possible

subsequent computation, to the display of the

result.

Experience has shown that the limits on these

time scales are the following:

. The graphics update rate must be greater

than 10 frames/s. While faster update rates

are desirable, 10 frames/s is sufficient to

maintain a sense of object presence even

though the discrete frames of the display

are easily perceptible. Slower update rates

result in a failure of the sense of object

presence, compromising the enhanced 3D

perception advantages of a virtual environ-

ment.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 418

418 Virtual Environments for Visualization

. Interaction responsiveness must be less than

0.1 s. While lower latencies and faster re-

sponsiveness are desirable, a latency of 0.1 s

is fast enough to give the user a good sense

of control of objects in the virtual environ-

ment. Longer latencies typically cause the

user to experience unacceptable difficulty in

selecting and manipulating objects in 3D

space.

. Data-display responsiveness must be less

than about 1/3 s. While faster responsiveness

is desirable, a data-display latency of 1/3 s

maintains a sense of ‘‘exploring’’ the envir-

onment, though the user may use slow move-

ments to adapt to this relatively long latency.

Longer latencies in data display require such

slow movements on the part of the user that

usability is lost.

The graphics update rate and the interaction

responsiveness requirements are similar: only

one graphics frame of latency is allowed in

order to maintain good responsiveness for user

interaction. The data-display responsiveness

requirement, however, is less restrictive. The

difference in latency requirements between

interactivity and data displays is due to the

fact that user interaction (selecting, acquiring,

and moving objects) is a manual task driven by

the human factors of manual control, while ob-

serving data display during movement is an

intellectual task, in which the user observes

what happens as a data probe is moved through

space.

Because the interaction and data-display re-

sponsiveness requirements are different, the pri-

mary design strategy of a direct-manipulation

system is to make the graphics and interaction

processes independent of the visualization–com-

putation processes. In such a system, the

widgets can be made to update with 0.1 s latency

even if the visualizations they control have a

latency of 1/3 s.

A simple set of crosshairs in 3D space, with

an associated streamline of a vector field, is

an example of such a tool. In this example, the

user can ‘‘pick up and move’’ the crosshairs,

which will be very responsive (within the limits

of the graphical update rate) due to their simple

graphical nature. When these crosshairs are

moved, they will trigger the computation of

a streamline at their current location. If the

process computing the streamline runs asyn-

chronously from the process handling user

interaction and graphical display, interaction

responsiveness will be only slightly impacted

by the computation of the streamline (assuming

a preemptive multitasking operating system).

This example shows that the difference in time

scales between the interaction responsiveness

and data-display responsiveness has strong im-

plications for the runtime architecture of the

scientific visualization system. These implica-

tions for the overall system architecture are dis-

cussed in Section 21.3.2.

Interactive time-varying environments poten-

tially present a difficult challenge for the above

requirements: all non-precomputed visualiza-

tion extracts, not just the ones most recently

manipulated, must be computed whenever the

time-step changes. Furthermore, when the time-

step changes, all computations must take place

before any of the extracts can be displayed so

that extracts from different data time-steps are

not displayed at the same time. Experience has

shown that it is acceptable for the data time-

step to change quite slowly, so long as the 10

frames/s graphical update rate and the 1/3 s

data-responsiveness requirements are met.

21.2.3 Input-Device Characteristics

Direct manipulation typically uses two pieces of

information: the position and orientation of the

user’s hand, and some kind of user command

indicating what action to perform at that loca-

tion. In virtual reality systems, this information

is provided by a 3D tracking device that delivers

the hand position and (usually) orientation as

well as a way to sense the user’s command. The

position and orientation data is often subject to

noise, inaccuracies in position/orientation, and

latency, which contribute (along with system

latencies and frame rates) to degradation of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 419

Direct Manipulation in Virtual Reality 419

the user’s ability to directly manipulate objects

in the virtual environment. Care must therefore

be taken to use the highest-quality tracking

device available, within practical constraints.

Latency is minimized by use of the most recent

tracking data, typically delivered by a high-

frequency polling process.

Position-tracking data is typically defined as a

3D vector giving the user’s hand position in

some predefined coordinate system. The orien-

tation data can take several forms. Commercial

trackers typically return three orientation angles

(either roll, pitch, and yaw or Euler angles), a

3� 3 rotation matrix, or a quaternion [13]. A

matrix or quaternion representation is prefer-

able to orientation angles because orientation

angles are unable to describe some orientations

due to singularities (so called gimbal lock).

These singularities are not present in a matrix

representation or quaternions. In any case, the

user’s orientation and position data should be

converted into a 4� 4 graphics transformation

matrix for use. This graphics transformation

matrix should have the same form as transform-

ation matrices used by the graphics system’s

matrix stack. The user data can then be used

directly to transform any graphics objects being

manipulated by the user.

Once the user’s hand position and orientation

are available as a graphics transformation

matrix, it is simple to transform an object

grabbed by the user so that the object appears

to be rigidly attached to the user’s hand. Define

MH as the graphics transformation giving

tracking data for the user’s hand in the current

time frame, and M
0
H as the graphics transform-

ation giving that tracking data in the previous

time frame. Similarly, let M
0
O be the object’s

transformation matrix (from world coordinates)

in the previous time frame. Our task is to com-

pute the object’s transformation matrix for

the current frame MO. Following the method

of Warren Robinett, we have MO ¼MH

(M
0
H)�1M

0
O. This product is recomputed in

each frame.

User commands are typically given via a

device integrated with the hand-position

tracker. Such a command device may be a

simple set of buttons or the result of gesture

recognition via an instrumented glove that

measures the bend of the user’s fingers. In any

case, we assume that the device output is con-

verted into a discrete command state such as

‘‘grab on’’ or ‘‘point on.’’ When no command

states are active, we have a neutral state.

Force-feedback devices are available that

provide both user hand-tracking data as well

as user feedback by restricting the movement

of the tracking device via a mechanically exerted

force. Such devices can be very powerful in

direct manipulation, as they can give the experi-

ence of moving an object among other objects.

Such a capability has shown great promise in

some areas of scientific visualization, e.g., mo-

lecular modeling. Force feedback is an example

of the many possibilities that are available in

interface devices [15].

21.2.4 Collision Detection and User
Commands

Collision detection in the context of direct ma-

nipulation refers to the ability to recognize

when the user is able to ‘‘pick up’’ an object.

In the real world we manipulate objects through

a complicated interplay of muscle interaction,

friction between complex surfaces, and gravity.

Duplicating this interplay in a virtual environ-

ment is a highly nontrivial task. While some

virtual-reality applications, such as task

training, may benefit from detailed mimicking

of real-world interaction, scientific visualization

applications can usually take a much simpler

approach.

The least complicated approach is to have a

small number of active ‘‘grab points’’ contained

in an interactive widget. These points become

active when the user’s hand position is within a

predefined distance. Some kind of feedback is

given to the user to indicate when the user’s

hand is close enough to a grab point to activate

it. Then, if the user commands, for example, a

grab state, then the grab point of the widget

becomes grabbed and the widget reacts appro-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 420

420 Virtual Environments for Visualization

priately. When using this paradigm of inter-

action, it is helpful to provide the user with

unambiguous feedback as to the hand position.

For example, representing the user’s hand as a

3D set of crosshairs gives a better indication of

the user’s hand position than would showing an

abstract hand shape.

More complex approaches can include

using the user’s hand-orientation information

as part of the widget control, or using a more

complex geometry-based collision-detection

method.

21.2.5 Widget Design

The appropriate design of visualization widgets

is critical to the success of a virtual-reality–

based scientific visualization system. Unfortu-

nately, space does not allow a complete

review of this subject, so we will describe a

simple approach that has proven effective in

scientific visualization. For further examples,

see Forsberg et al. [8] and Herndon and

Meyer [10].

Inspired by the discussion at the end of

Section 21.2.2, we discuss the design of simple

widgets that can control a variety of visualiza-

tions. These widgets are constructed based on

some geometry defining the appearance of the

widget, a set of defined grab points by which the

widget may be manipulated, and a set of visual-

ization seed points that are used to specify the

visualizations controlled by the widget. Note

that there can be several visualizations specified

by the same seed point.

We give three examples of simple visualiza-

tion widgets that differ in their spatial dimen-

sions.

. Point widget (zero-dimensional; see Fig.

21.3): geometrical representation: a 3D

set of crosshairs. Grab point: a single point

located at the center of the crosshairs. Visu-

alization seed point: the center of the cross-

hairs.

. Line widget (1D; see Fig. 21.4): geometrical

representation: line in 3D space. Grab

points: one at each end, each of which moves

that end only (allowing control over the

orientation and length of the line), and one

at the line’s center that, when grabbed, rigidly

moves the entire line. Visualization seed

points: a user-defined number are equally dis-

tributed along the length of the line.

. Plane widget (2D; see Fig. 21.5): geomet-

rical representation: a plane in 3D space.

Grab points: one at each corner, each of

which moves that corner only; one in the

center of each edge, each of which moves

that edge holding the opposite edge fixed;

one in the center of the plane, which

moves the plane rigidly. Visualization

seed points: either a single seed point in the

center of the plane (appropriate for local

cutting plane visualizations, possibly re-

stricted to the interior of the plane widget)

or equidistributed on the plane, e.g., as an

n� n array.

These widgets have a common design metaphor

of simple geometry with grab points in the ‘‘ob-

vious’’ places, and the visualization seed points

have a natural association with the widget

geometry. In all cases, the grab points provide

the same graphical feedback to the user. These

examples can be extended or generalized in

obvious ways.

The visualization widgets and their associated

visualizations will have properties that are typ-

ically controlled via a conventional GUI inter-

face. For immersive virtual environments, this

GUI will usually be embedded in the 3D space

of the visualization.

21.3 System Architecture Issues

There are several issues that arise in the design

and implementation of virtual environments for

information visualization. In this section we

examine some of these issues in detail. First,

however, we must classify the types of inter-

action that may occur, which in turn depend

on the time flow of the data.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 421

Direct Manipulation in Virtual Reality 421

21.3.1 Classification of Interaction and
Time Flow

There are two design questions that must be

answered before a decision is made about the

appropriate implementation of a scientific visu-

alization application in virtual reality:

. Is the user allowed to interactively query the

data at run time, generating new visualiza-

tion extracts? If so, the system will likely

have user-driven data accesses and computa-

tion to support extraction of new visualiza-

tion geometry.

. Is the data time-varying? If so, there will be at

least two senses of time in the virtual environ-

ment: user time and data time. The flow of

data time can be put under user control so

that it can be slowed, stopped, reversed, or

randomly accessed at specific time points.

These questions are independent, and both

must be answered in order to determine which

kind of implementation strategy will be appro-

priate. There are four combinations that arise

from the answers to these two questions:

Noninteractive, non-time-varying data: This

is the simplest scientific visualization environ-

ment, where the visualization geometry can be

extracted ahead of time and displayed as static

geometry in a head-tracked virtual environment.

No data-access or computation issues occur in

this case. The user may be able to rotate or move

the static geometry. The design issues that arise

in this case involve only collision detection and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 422

Figure 21.3 A point widget emitting a single streamline. (See also color insert.)

422 Virtual Environments for Visualization

possibly the design of widgets used to control the

geometry.

Noninteractive, time-varying data: In this case,

the visualization extract (VE) geometry can be

precomputed as a time series, which can be

displayed as a 3D animation in the virtual en-

vironment. The user may be given control over

the flow of the animation to slow it down, stop

it, or reverse its direction. Such user-controlled

time flow implies an interface that may include

rate controls to determine the speed and direc-

tion of the data time or a time-step control for

the random access of the extracted geometry at

a particular data time. The issues that arise in

this case are common to most virtual-reality

applications and so will not be considered fur-

ther in this chapter.

Interactive, non-time-varying data: In this

case, the data does not change in time, but the

user specifies the visualization extracts at run

time. In a virtual environment, such extracts

may be specified via a direct-manipulation inter-

face in which the user either specifies a point

or manipulates an object in 3D space. The visu-

alization extract may require significant com-

putation, which will have an impact on the

responsiveness of the system. This impact is

discussed at length in Section 21.3.2. When visu-

alization extracts do not change, they are typic-

ally not recomputed.

Interactive, time-varying data: For this type of

environment, the data itself is changing with

time, so any existing visualization extracts must

be recomputed whenever the data time changes.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 423

Figure 21.4 A line-visualization widget emitting a collection of streamlines. (See also color insert.)

Direct Manipulation in Virtual Reality 423

This can result in a large amount of computa-

tion for each data time-step, the implications of

which are discussed in Section 21.3.2. In add-

ition, the user may be given control over the

flow of data time, allowing it to run more

quickly, more slowly, or in reverse. The user

may wish to stop time and explore a particular

time-step. When time is stopped, the system

should act like an interactive, non-time-varying

data environment, allowing visualization ex-

tracts to be computed in response to user com-

mands.

21.3.2 System Architecture

The observations in the previous section imply

that any implementation of an interactive scien-

tific-visualization virtual environment in which

computation of visualization extracts takes place

should contain at least two asynchronous pro-

cesses: a graphics and interaction process and a

visualization extract-computation process. More

generally, the graphics and interaction tasks may

be performed by a group of processes we shall

call the interaction (process) group, one or more

processes for graphics display, and possibly sep-

arate processes for reading and processing user

tracking data. Similarly, the VE task may be

performed by several processes called the com-

putation (process) group, possibly operating on

multiple processors in parallel. We choose these

groupings because processes in the interaction

group all have the same 10 frames/s and 0.1-s

latency requirements, while the computation

group has the 1/3-s latency requirement (see

Section 21.2.2). This process structure decouples

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 424

Figure 21.5 A plane-visualization widget emitting many streamlines. (See also color insert.)

424 Virtual Environments for Visualization

display and computation, so a slow computation

does not slow down the display process, and the

speed requirements of the display process do not

limit the computation.

The interaction process group passes user

commands to the computation process group,

which triggers the computation of visualization

extracts. These resulting extracts are passed

back to the interaction process group for

display. This basic architecture is outlined in

Fig. 21.6.

In an interactive time-varying environment,

optimal computation and synchronization of

the visualization extracts produced by the

computation process group is a delicate issue,

the resolution of which can be application

dependent. An example of such a resolution is

described by Bryson and Johan [4] and Bryson

et al. [5].

21.4 Distributed Implementation

Distributed data analysis can be highly desirable

for performance, computational steering, or col-

laborative purposes. The use of separate, asyn-

chronous computation and interaction process

groups communicating via buffers, as described

in Section 21.3.2, facilitates a distributed imple-

mentation in which the process groups exist on

separate, possibly remote machines communi-

cating over a network.

21.4.1 Distribution Strategies

There are several strategies for the distribution

of data analysis. These strategies are determined

by the selection of where to place which oper-

ations in the data-analysis pipeline (Fig. 21.1).

These strategies and their advantages and dis-

advantages are as follows:

. Remote data, local extraction and rendering:

in this option, the data exists on a remote

system, and individual data values are

obtained over the network as required by

the local VE algorithm. This strategy has

the advantage of architectural simplicity; all

visualization activities take place on the local

system as if the data were local. This strategy

has the disadvantage of requiring a network

access each time data is required, which can

be very time-consuming. There are tech-

niques to overcome this disadvantage, such

as clever prefetching, where data is delivered

in groupings that anticipate expected future

queries. For many applications, however, it

will not be possible to use this strategy and

meet the performance requirements de-

scribed in Section 21.2.2.

. Remote data and extraction, local

rendering: with this strategy, VE occurs on a

remote system, typically the same system

that contains the data. In an interactive

system, the extraction computations occur

in response to user commands passed from

the user’s local system. The results of the

extraction, typically geometrical descriptions

of 3D visualization objects, are transmitted

to the user’s local system for rendering.

Architecturally, this strategy maps closely

to the runtime architecture illustrated in

Fig. 21.6, with the computation process

group on a remote machine (or remote

machines) and the display and interaction

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 425

Interaction
Process Group

Computation
Process Group

User Commands

Visualization Extracts

Figure 21.6 Runtime process architecture of a scientific visualization system for interactive and/or time-varying data.

Direct Manipulation in Virtual Reality 425

processes on the local system. This strategy

has the advantage that the extraction

algorithms are ‘‘close to the data,’’ so data

access does not suffer from a bottleneck. It

also has the advantage of local rendering,

which allows a head-tracking display for

each participant, as required in virtual envir-

onments. The disadvantages of this strategy

include the fact that response to user com-

mands requires a round trip over the net-

work and that the user’s local system must

be capable of rendering the extract’s geom-

etry.

. Remote data and extraction, distributed

rendering: this strategy is a variation of the

previous strategy (Remote Data and Extrac-

tion, Local Rendering). In this case, the

rendering commands occur on the remote

system and are passed as distributed

rendering calls to the user’s local system for

actual rendering. A local client program is

still required to read the user’s trackers, as

well as to process and send user commands.

This strategy has advantages and disadvan-

tages similar to those of the ‘‘remote data

and extraction, local rendering’’ strategy,

except that the network round-trip time is

now part of the graphics-display loop. This

may introduce unacceptable delays into

head-tracking responsiveness.

. Remote data, extraction, and rendering:

this strategy places all the operations of the

data-analysis pipeline on the remote

system(s), with the final rendered frames

returned to the user’s local system over the

network. This strategy has the advantage

of allowing very powerful remote systems

to be used when the user has a low-power

local system. The disadvantage is that the

rendered frames can be large—for example,

a 1024 � 1024 24-bit RGB-alpha display

requires a 4 MB framebuffer, and two such

framebuffers are required for stereo display.

This implies an 80 MB transfer every second

in our example to maintain the frame rate of

10 frames/s. This bandwidth requirement is

beyond the capabilities of most available

large-area networks. There are also serious

issues of latency control in this strategy be-

cause the network time is part of the display-

responsiveness loop. There are, however,

situations where the local system is incapable

of the kinds of rendering desired and this

strategy may be the only viable option.

Direct volume rendering is an example in

which this strategy may provide the optimal

choice.

These strategies are not exclusive: one may

have remote VE taking place on a second,

remote system while the data resides on a third

system.

21.4.2 Remote Collaboration Strategies

Once a system is distributed, the opportunity

arises for remote collaboration, where two or

more noncollocated users examine the same

data together. Strategies for remote collabor-

ation are related to, but different from, distri-

bution strategies. We briefly summarize the

common remote-collaboration strategies:

. Distributed data: This collaboration strategy

places copies of the data to be examined on

all participants’ client systems. Collabor-

ation is implemented by passing either user

commands or computed VE results among

the participants’ systems. The primary ad-

vantage of this strategy is that the software

used is similar to stand-alone versions of the

same systems. The main disadvantages in-

clude the difficulty of ensuring synchroni-

zation among the participants and the

requirement that each participant’s system

be capable of storing the data and comput-

ing the visualization extracts (at least those

that were locally generated). Many distrib-

uted collaborative VE systems, such as mili-

tary training systems, utilize the distributed

data-collaboration strategy.

. Data server: This collaboration strategy

builds upon the remote data-distribution

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 426

426 Virtual Environments for Visualization

strategy. The data typically resides on a

single remote system and is accessed by the

participant’s local system when needed. The

visualization extracts are computed locally

and are communicated in the same manner

as in the distributed data-collaboration strat-

egy explained previously.

. Visualization extract server: This collabor-

ation strategy builds upon the remote extrac-

tion distribution strategy, in which the

visualization extracts are computed on a

remote system, typically the one where the

data being examined is stored. The extracts

are sent to each participant’s system for local

rendering. The advantages of this strategy

include the following:

. As there is only one set of extracts associ-

ated with each set of data, synchroniza-

tion is greatly simplified.

. Local rendering allows each participant

to render the visualization extracts from

a local point of view, which is required for

head-tracked displays.

. The extract server system can arbitrate

conflicting user commands.

The visualization extract server-collabor-

ation strategy has the disadvantage of poor

scaling to large numbers of users, though this

problem will be alleviated when reliable mul-

ticast technologies become available. The

other disadvantages of this strategy are the

same as those for the remote extraction distri-

bution strategy.

. Scene replication: This collaboration

strategy involves a privileged user whose

view is presented to the other participants.

This collaboration strategy is similar to

the remote-rendering distribution strategy.

This strategy has the same advantages

and disadvantages as the remote data, ex-

traction, and rendering distribution strategy,

with the added disadvantage that all partici-

pants will see the same view, thereby pre-

cluding the use of head tracking for all

participants.

21.5 Time-Critical Techniques

One of the prime requirements of virtual envir-

onments is responsiveness. In Section 21.2.2 we

discussed the performance requirements for

various aspects of a scientific visualization ap-

plication within a virtual environment. These

requirements can be difficult to meet, consider-

ing the possibly complex graphics and extensive

computation required for the computation of

VEs. One is often faced with a conflict between

the requirements for a complete or accurate

visualization and the requirements for respon-

siveness and fast graphical display rates. While

accuracy is often critical in a scientific visualiza-

tion environment, users often prefer fast re-

sponse with a known degradation in accuracy

for purposes of exploration. When a phenom-

enon of interest is found in the more responsive

but less accurate mode, the user can request

that this phenomenon be recomputed and dis-

played more slowly with higher accuracy. The

automatic resolution of the conflict between ac-

curacy and responsiveness, and the search for

the appropriate balance, are collectively known

as ‘‘time-critical design,’’ the topic of this

section.

21.5.1 The Time-Critical Philosophy

Time-critical design attempts to automate the

process of finding a balance between required

accuracy and responsiveness. This approach is

very different from real-time programming,

which guarantees a particular result in a speci-

fied time. Real-time programming typically

operates in a fixed, highly constrained en-

vironment, whereas time-critical programs are

typically highly variable. This variability is

particularly evident in a scientific visualization

environment, where the data and extracts com-

puted and displayed may vary widely within a

single user session. Time-critical design does not

guarantee a particular result; it instead delivers

the best result possible within a given time con-

straint. A successfully designed time-critical

system will provide a graceful degradation of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 427

Direct Manipulation in Virtual Reality 427

quality or accuracy as the time constraint be-

comes more difficult to meet.

Time-critical design for a particular aspect of

a program begins with the creation of a cost–

benefit metric for the task to be completed. The

task is then parameterized in a way that controls

both costs and benefits. When the costs and

benefits of a task are known (as a function of

the task’s parameters) before that task is per-

formed, the appropriate choice of parameters is

selected to maximize the cost:benefit ratio.

There are often many tasks to be performed in

an environment, and the benefit of a particular

task can be a function of the state of that envir-

onment. The solution of this problem is often

approached as a high-dimensional constrained-

optimization problem, maximizing the total

cost:benefit ratio for the sum of the tasks to be

performed, given the constraint of the total time

allowed for all tasks.

As we shall see in Section 21.5.2, however, it

is often very difficult to know the benefits and

costs of a task before that task is performed. In

such situations, hints provided by the user, or

simple principles such as assuming equal benefit

within a set of tasks, are often used.

21.5.2 Time-Critical Graphics

Time-critical techniques were pioneered in com-

puter graphics [9], where objects were drawn

with higher or lower quality depending on

such benefit metrics as position in the field of

view and distance from the user. Such imple-

mentations often used multiple representations

of an object at varying levels of detail (LODs).

In scientific visualization, however, many visu-

alization extracts are already in a minimal form,

such as streamlines defined as a set of points. In

contrast, there are opportunities for graphical

simplification in scientific visualization. For

example, it may be the case that far more primi-

tive elements are used to define a surface than

are necessary for its display. An isosurface con-

taining regions that are close to flat may have

been derived with an algorithm that created

many surface elements in that flat region.

Display of that surface would be faster if the

flat region were represented by fewer surface

elements. A surface might also be represented

in simplified form until it became the focus of

attention, in which case small variations from

flatness would be important. Unfortunately, al-

gorithms that identify such opportunities for

surface simplification are computationally in-

tensive and may therefore be unsuited for

recomputation in every frame.

From similar considerations, we conclude

that, unlike general computer graphics based

on precomputed polygonal models, the use of

time-critical graphics in scientific visualiza-

tion will be highly dependent on the domain-

dependent specifics of the visualization extracts.

It may be very difficult, for example, to assign a

benefit to a particular extract, especially when

that extract may extend to many regions of the

user’s view. While simple benefit metrics such as

the location of the extract on the screen may be

helpful, one should keep in mind that the user’s

head may be pointed in one direction while the

user’s eyes are scanning the entire view. Such

scanning is to be expected in a scientific visual-

ization environment, where the scene may con-

tain many related, extended objects.

From these considerations, few generaliza-

tions can be drawn about the use of time-critical

graphics techniques in information visualiza-

tion. Simple examples of time-critical graphics

techniques that may be useful in scientific visu-

alization include the following:

. Simplified representations, such as wire-

frame rather than polygonal rendering.

. Surfaces represented as 2D arrays, where

simplified versions of the surface may be

obtained by rendering every n points in the

array.

. Techniques that have been developed for

time-critical direct volume rendering [16].

A more general approach to time-critical

graphics is to use multiresolution representa-

tions of the data or the resulting visualization

extracts.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 428

428 Virtual Environments for Visualization

21.5.3 Time-Critical Computation

Computation of visualization extracts can pro-

vide several opportunities for time-critical

design because such computation is often the

most time-consuming aspect of a visualization

system. As in the case of time-critical graphics,

the specifics of time-critical computational

design will be highly dependent on the nature

of the extract computed. We can, however,

make several general observations:

. Both the costs and the benefits of a visualiza-

tion extract can be very difficult to estimate a

priori based on its specification and control

parameters, especially since the extent of an

extract (e.g., where a streamline will be vis-

ible) is difficult to predict based on its speci-

fication alone.

. The cost of an extract can be roughly defined

as the time required for its computation. Ex-

perience has shown that this cost does not

varywidelybetween successive computations.

. The cost of a visualization extract may

be most easily controlled through parameter-

ization of the extent or resolution of the

computation. Techniques that begin their

computation at a particular location in

space, such as a streamline emanating from

a point in space, lend themselves well to con-

trol of their extent in space, which controls the

time required for their computation. The

costs of visualization techniques that rely on

abstract or indirect specification, such as

global isosurfaces, are more effectively con-

trolled by variation of their resolutions.

. Other ways to control the cost of the visual-

ization extract include the choice of compu-

tational algorithm and error metrics for

adaptive algorithms. These control param-

eters have a more discrete nature and may

be set by the user or set automatically via

specific trigger criteria. For examples, see

Bryson and Johan [4].

Given that the benefit of a visualization extract is

hard to predict, one may treat all extracts as

having equal benefit unless specified by the user.

In combination with the observation that costs

do not change dramatically in successive compu-

tations, this allows the following simple solution

to the problem of choosing the control param-

eters. For simplicity, we consider the situation in

which all of the visualization extract’s costs are

controlled through limits on their extent. Here,

each extract computation is assigned a time

budget, and each extract’s computation proceeds

until its budget is used up. Then the time taken to

compute all extracts is compared to the overall

time constraint. Each extract’s time budget is

divided by a scale factor determined by the total

actual time, divided by the total time constraint.

This scale factor may have to take into account

any parallel execution of the extract computa-

tions. If the time required to compute all the

extracts is greater than the time constraint, this

will result in smaller visualization extracts that

will take less time to compute. If the extracts

become too small, a faster but less accurate com-

putational algorithm may be chosen. If the time

required to compute all extracts is smaller than

the time constraint, the time budget of each ex-

tract is increased, resulting in larger visualization

extracts. A similar approach may be used to

choose the resolution with which visualization

extracts may be computed.

It may be evident from this discussion that the

types of control parameters one may use in time-

critical design will be highly dependent on the

nature of the extract and how it is computed.

Clever approaches can significantly enhance the

time-critical aspects of a visualization technique.

As an example, consider isosurfaces of a 3D

scalar field. These isosurfaces are traditionally

specified by selection of a value, resulting in a

surface showing where that value is attained in

the scalar field. Controlling the cost of a trad-

itional isosurface by limiting the time of the com-

putation will have unpredictable results: in the

conventional marching cubes algorithm for com-

puting isosurfaces, the entire dataset is traversed.

If themarching cubes algorithm is stoppedbefore

completion and before regions of the field where

the iso-value is attained are traversed, no isosur-

face will appear at all. It is possible to control the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 429

Direct Manipulation in Virtual Reality 429

cost of the marching cubes algorithm by control-

ling the resolution with which the dataset is tra-

versed, but this strategy does not provide fine

control and may result in a significant degrad-

ation in quality. A different approach to isosur-

faces, local isosurfaces, directly addresses this

problem. Rather than choosing an iso-value

when defining a local isosurface, the user chooses

a point in the dataset; the iso-value is determined

as the value of the scalar field at that point. The

isosurface is then computed (via a variation on

the marching cubes algorithm) so that it eman-

ates from that point in space and is spatially local

to the user’s selection. The cost of a local isosur-

face is controlled by computation of the iso-

surface until that isosurface’s time budget has

been used up. Two examples of local isosurfaces

can be seen in Fig. 20.2.

21.6 Conclusions

Direct manipulation in scientific visualization

provides users with the ability to explore com-

plex environments in a natural and intuitive

way. In order to implement an effective scientific

visualization application in a virtual environ-

ment, however, issues of responsiveness and

fast updates must be addressed. These issues

may be resolved via the use of appropriate system

architectures, design based on human-factors

issues, appropriate time control for time-varying

data, implementation of time-critical techniques

whenever possible, and appropriate choices for

distributed implementations. The details of how

these solutions are implemented will be highly

dependent on the target domain and the specifics

of the visualization techniques used.

References

1. S. Bryson. Virtual reality in scientific visualiza-
tion. CACM 39(5):62–71, 1996.

2. S. Bryson and C. Levit. The virtual wind tunnel:
an environment for the exploration of 3D un-
steady flows. Proceedings of Visualization ’91,
San Diego, CA, 1991.

3. S. Bryson and M. Gerald-Yamasaki. The dis-
tributed virtual wind tunnel. Proceedings of
Supercomputing ’92, Minneapolis, MN, 1992.

4. S. Bryson and S. Johan. Time management sim-
ultaneity and time-critical computation in inter-
active unsteady visualization environments.
Visualization ’96, San Francisco, CA, 1996.

5. S. Bryson, S. Johan, and L. Schlecht. An exten-
sible interactive framework for the virtual wind-
tunnel. VRAIS ’97, Albuquerque, NM, 1997.

6. D. B. Conner, S. S. Knibbe, K. P. Herndon,
D. C. Robbins, R. C. Zeleznik, and A. van
Dam. 3D widgets Computer Graphics,
25(2):183–188, 1992.

7. C. Cruz-Neira, J. Leigh, C. Barnes, S. Cohen,
S. Das, R. Englemann, R. Hudson, M. Papka,
L. Siegel, C. Vasilakis, D. J. Sandin, and T. A.
DeFanti. Scientists in wonderland: a report on
visualization applications in the CAVE virtual
reality environment. Proc. IEEE Symposium on
Research Frontiers in Virtual Reality, 1993.

8. A. S. Forsberg, K. P. Herndon, and R. C. Zelez-
nik. Aperture-based selection for immersive vir-
tual environments. Proc. 1996 ACM Symposium
on User Interface and Software Technology
(UIST), 1996.

9. T. A. Funkhouser and C. H. Sequin. Adaptive
display algorithms for interactive frame rates
during visualization of complex virtual environ-
ments. Computer Graphics (SIGGRAPH ’93),
pages 247–254, 1993.

10. K. P. Herndon and T. Meyer. 3D widgets for
exploratory scientific visualization. Proc. 1994
Symposium on User Interface and Software
Technology (UIST), pages 69–70, 1993.

11. S. G. Parker and C. R. Johnson. SCIRun: a
scientific programming environment for compu-
tational steering. Supercomputing ’95, 1995. See
Chapter 31.

12. T. B. Sheridan and W. R. Ferrill. Man–machine
systems. Cambridge, MA, MIT Press, 1974.

13. K. Shoemake. Animating rotations with quater-
nion curves. Computer Graphics, 19(3):1985.

14. D. Song and M. L. Norman. Cosmic Explorer: A
virtual reality environment for exploring cosmic
data, Proc. IEEE Symposium on Research Fron-
tiers in Virtual Reality, pages 75–79, 1993.

15. R. M. Taylor, W. Robinett, V. L. Chi, F. P.
Brooks, Jr., and W. Wright. The nanoManipu-
lator: a virtual reality interface for a scanning
tunnelling microscope. Computer Graphics: Pro-
ceedings of SIGGRAPH ’93, 27:127–134, 1993.

16. M. Wan, A. E. Kaufman, and S. Bryson. High
performance presence-accelerated ray casting.
IEEE Visualization, pages 379–386, 1999.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:04pm page 430

430 Virtual Environments for Visualization

22 The Visual Haptic Workbench

MILAN IKITS and J. DEAN BREDERSON

Scientific Computing and Imaging Institute

University of Utah

22.1 Introduction

Haptic feedback is a promising interaction

modality for a variety of applications. Successful

examples include robot teleoperation [57], vir-

tual prototyping [63], painting [4], and surgical

planning and training [30,55]. Such applications

are augmented with force or tactile feedback for

two reasons: (1) to increase the realism of the

simulation, and (2) to improve operator per-

formance, which can be measured by precision,

fatigue level, and task completion times.

Even though a great variety of graphical visu-

alization techniques have been developed in the

past, effective display of complex multidimen-

sional and multifield datasets remains a challen-

ging task. The human visual system is excellent

at interpreting 2D images. Understanding

volumetric features, however, is difficult be-

cause of occlusion, clutter, and lack of spatial

cues. Stereoscopic rendering, shadows, and

proper illumination provide important depth

cues that make feature discrimination easier.

Using transparency reduces occlusion and clut-

ter at the price of increasing ambiguity of the

visualization.

In contrast to visual displays, haptic inter-

faces create a tightly coupled information flow

via position sensing and force feedback. Such

coupled information exchange results in more

natural and intuitive interaction and utilizes

some of the user’s additional sensory-channel

bandwidth. When users are presented with

a proper combination of visual and haptic

information, they experience a sensory synergy

resulting from physiological reinforcement of

the displayed multimodal cues [19].

Implementations of the traditional visualiza-

tion pipeline typically provide a limited set of

interactive data-exploration capabilities. Tasks

such as finding and measuring features in the

data or investigating the relationship between

different quantities may be easier to perform

with more natural data-exploration tools. To

develop visualization and exploration tech-

niques that further increase insight and intuitive

understanding of scientific datasets, we designed

and built an integrated immersive visual and

haptic system, the Visual Haptic Workbench

(VHW) [10]. In the following sections, we sum-

marize our experiences with this system, discuss

relevant issues in the context of developing

effective visualization applications for immersive

environments, and describe a haptic rendering

technique that facilitates intuitive exploration

modes for multifield volumetric datasets.

22.2 The Visual Haptic Workbench

The VHW is a testbed system developed primar-

ily for haptic immersive scientific visualization. It

is composed of a SensAble PHANToM 3.0L

haptic device mounted above a Fakespace

Immersive Workbench in an inverted configur-

ation (Fig. 22.1). Head, hand, and stylus pose

measurements are provided by a Polhemus Fas-

trak magnetic position tracker. Stereo images are

generated by an Electrohome Marquee 9500LC

projector and are reflected via folded optics onto

the back of the nonlinear diffusion surface of the

workbench. A pair of Stereographics Crystal-

Eyes LCD shutter glasses, strobed at a 120 Hz

refresh rate, is used for stereoviewing. In a typical

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 431

431

scenario, the user’s dominant hand manipulates

the PHANToM stylus to experience haptic feed-

back from thevirtual scene, and the subdominant

hand is used for system-control tasks such as

navigating a menu interface. A pair of Fakespace

Pinch Gloves and a pair of 5DT Data Gloves are

provided for implementing more complex inter-

action techniques. Our custom additions to the

workbench hardware include a ‘‘step to operate’’

footswitch instead of the original ‘‘push to inter-

rupt’’ switch, which is used as a more convenient

safety mechanism, a registration apparatus for

placing the PHANToM in a fixed position on

the surface of the workbench during encoder ini-

tialization, and an inexpensive 6DOF interaction

device, the I3Stick [9]. The system is constructed

in suchaway that it canbe connected toaPCwith

the latest available graphics card without further

modifications.

Compared to other similar systems, e.g., the

UNC nano Workbench [21] or the CSIRO

Haptic Workbench [68], our setup has the

advantage of facilitating whole-arm interaction,

using a wide-angle head-tracked visual display,

and providing direct (1:1) correspondence

between the visual and haptic workspaces. We

found that tilting the workbench surface at a

208 angle both increases the visual range and

aligns the hotspots of the workspaces [46].

Placing the PHANToM arm in front of the

projection screen has the disadvantage of occlu-

din the view, reducing the size of the available

stereoscopic workspace. A related problem is

that the low stiffness of the arm is apparent dur-

ing hard surface contact, since the PHANToM

end-effector may visually penetrate the virtual

surface. To reduce these problems, we use a

fixed offset between the actual endpoint and its

virtual representation. Mounting the haptic

device behind the screen would also solve these

problems. Unfortunately, this is possible with

front-projection screens only. Using front pro-

jection, however, further reduces the size of the

visual workspace because the projection screen

has to be located closer to the eyes than in other

cases.

There are several important issues to consider

when developing visualization applications for

immersive environments. In the following sub-

sections we discuss some of our observations

and summarize what we have learned from our

experiences with the Visual Haptic Workbench.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 432

Figure 22.1 The Visual Haptic Workbench integrates a large workspace SensAble PHANToM with a Fakespace Immersive

Workbench.

432 Virtual Environments for Visualization

22.2.1 Calibration and Registration

Many immersive virtual-reality applications

benefit from precisely calibrated system compon-

ents. Greater accuracy is desired, though, to pro-

vide users with amore compelling experience and

to increase precision and reduce frustration

during 6DOF interaction tasks. Experimental

test-bed systems require very accurate registra-

tion; otherwise, registration artifacts may be dif-

ficult to separate from other experimental factors

[70]. Visual artifacts caused by registration errors

include misalignment of real and virtual objects,

as well as the notorious ‘‘swimming’’ effect, i.e.,

the motion and changing shape of stationary

objects as the user moves around in the environ-

ment. It is also important to make sure that the

generated visual and haptic cues match by pre-

cisely colocating the various workspaces of the

system.

Registration error sources can be categorized

according to whether they produce geometric or

optical distortions. Geometric errors are the

result of inaccurate tracking, system delay, mis-

alignment of coordinate systems, and imprecise

viewing and interaction parameters. Optical

errors, caused by the limitations of the image-

generation subsystem, are manifested as conver-

gence and aliasing problems, display nonlinea-

rities, and color aberrations. Haptic-rendering

fidelity largely depends on the structural and

dynamic characteristics of the haptic interface,

the accuracy of its kinematic description, the

update rate, and the control algorithm used to

produce reaction forces and torques.

Possible geometric error sources for the VHW

include tracker distortion and the unknown

rigid-body transformations between the coord-

inate frames attached to the tracker transmitter,

the PHANToM base, the display surface, and

the eyepoints and interaction-device hotspots

relative to the tracker sensors. Ideally, we want

to reduce the discrepancies in these parameters

so that the overall registration error does not

exceed a few millimeters. In previous work,

an external measurement device was used for

coregistering the components of the Nano

Workbench [21]. We have experimented with

calibrating the magnetic tracker of our system

using an optical device and found that it is

possible to reduce measurement errors to a

few millimeters within a large portion of the

workspace [27]. We have also developed and

evaluated a method for rapidly calibrating

and registering the system components with-

out using external metrology [26,29]. Our

results indicate that to reach the desired level

of accuracy, we need to replace the magnetic

tracker with an accurate, low-latency optical

solution.

22.2.2 Interaction Techniques

One of the ‘‘grand challenges’’ of using immer-

sive environments for scientific exploration is

‘‘making interaction comfortable, fast, and

effective’’ [72]. Designing and evaluating inter-

action techniques and user interfaces is an im-

portant area of virtual environment research [7].

Even though immersive virtual reality provides

the possibility for more natural interaction,

working with a computer-generated 3D world

is difficult because the haptic cues that are

part of the real world are missing from these

environments. In the past, a variety of complex

interaction techniques that are not particularly

applicable for everyday use have been developed

for immersive environments. In contrast, the

desktop WIMP (Windows, Icons, Menus,

Pointers) paradigm has been very successful

due to its simplicity, robustness, and conveni-

ence. We found that the following guidelines

should be observed when developing interaction

techniques for immersive visualization applica-

tions [64]:

. Avoid complex and cumbersome devices,

e.g., gloves.

. Use intuitive and simple interaction meta-

phors; reserve ‘‘magic’’ techniques for expert

use, e.g., for shortcuts or text input [22,8].

. Utilize two-handed manipulation when pos-

sible, but provide ways to perform the same

task with a single hand.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 433

The Visual Haptic Workbench 433

. Use physical and virtual constraints to

increase precision and reduce fatigue.

Direct manipulation widgets provide a conveni-

ent means for exploring 3D datasets in desktop

applications [15]. Typically, 3D widgets are

implemented using the OpenGL picking and

selection mechanism, or supported by the scene-

graph API upon which the application is built

[69,75]. Widgets are useful for immersive visual-

ization, but the lack of physical constraints can

make them cumbersome to use. We have de-

veloped a library of interface components for

building applications that run in both desktop

and immersive environments without modifica-

tion (Fig. 22.2). Adding haptic feedback to the

interface components is an area of future re-

search.

22.2.3 Software Framework

Creating successful immersive applications is

inherently an interactive process. An active

area of virtual-environment research is making

application development comfortable, fast, and

effective. Application development and evalu-

ation, however, usually happen in two different

workspaces. Ideally, the developer should be

able to run an application on every available

platform without modifications, using an

interface optimized to that particular platform

[33] (Fig. 22.2). Previous efforts to create an

immersive tool that could also run on the desk-

top required significant contributions from the

programmer, because the interface remained

platform-dependent [54]. Currently, most frame-

works do not support this concept, and provide

a simulator mode instead [5,16,37]. In this mode,

a third-person view of the user is presented in

such a way that immersive controls are mapped

to a 2D desktop interface. Even though this

mode is useful for examining how the user’s

actions affect the environment and vice versa,

it prevents the developer from focusing on the

content of the application.

22.2.4 Visualization Methods

Desktop visualization applications are event-

based, and the majority of the events originate

from the user. The viewer is in a fixed position,

so the update rate and latency of interaction are

less critical. In contrast, virtual-environment

applications are built upon a continuous simu-

lation with stringent requirements, including

high update rate and low system latency, similar

to those of computer games [12]. Thus, visual-

ization techniques have to strike a balance

between achievable quality and rendering

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 434

Figure 22.2 (a) A user explores a tornado dataset on the Visual Haptic Workbench. (b) Screenshot of the same application

running in a desktop environment. Dataset courtesy of R. Crawfis, Ohio State University, and N. Max, Visualization

Laboratory, Lawrence Livermore National Laboratory. (See also color insert.)

434 Virtual Environments for Visualization

speed. Adaptations of traditional visualization

methods have relied on multiresolution repre-

sentations to maintain fluid interaction between

the user and the application [13,20,71].

22.3 Haptic Rendering Techniques for
Scientific Visualization

The majority of haptic rendering algorithms are

geometric in nature, since they deal with the

problem of interacting with various surface

representations at real-time update rates. Sur-

face rendering requires a suitable geometric

model, typically combined with a bounding

volume hierarchy, a rapid collision-detection

technique, an incremental surface-tracing algo-

rithm, and a model for generating contact forces

from the probe-surface interaction. Surface-

tracing algorithms exist for a variety of repre-

sentations, including polygonal, parametric,

and implicit surfaces. These algorithms rely

on a combination of global and local distance

queries to track the geometry closest to the

interaction point. Haptic surface rendering

has evolved from simple force-field methods

[43] to constraint-based approaches that utilize

a proxy point [58,77]. More recently, efficient

techniques have emerged for haptic display of

contact between complex polygonal objects

[34,51].

Contact forces are usually modeled by inter-

actions between the probe and a rigid viscoelas-

tic surface. A virtual spring and damper are

used to mechanically couple the probe with the

proxy during contact. From the visualization

point of view, surfaces are represented by a set

of unilateral constraints that prevent the

proxy from penetrating the object. Previous

research has focused on improving the per-

ceived crispness of surfaces and on augmenting

them with various material properties to

create realistic and convincing virtual objects

[40,44,59,61,67].

Early work in haptic visualization used simple

volumetric methods for exploring scalar and

vector fields as well as molecular interactions

[11,32]. The majority of previous methods for

haptic display of volume data properties are

based on a functional relationship between the

reflected force and torque vectors, and the probe

state and local data measures:

~FF ¼ ~FF (X , D, T) (22:1)

where X denotes the state, typically position ~xx
and velocity~xx of the haptic probe, D represents

a set of local data measures at the probe pos-

ition, and T stands for a set of haptic transfer

functions and rendering parameters. We borrow

the term force-field rendering for this class of

techniques. The simplest examples in this

category include density-modulated viscous

drag for scalar data [3,52] and direct display of

vector data [32,42]:

~FF ({~xx, ~xx}, {s(~xx)}, {k(s)}) ¼ �k(s(~xx)) _~xx~xx (22:2)

~FF ({~xx}, {~vv(~xx)}, {k}) ¼ k~vv(~xx) (22:3)

where the gain k is adjusted according to the

scale and magnitude of the data measures and

the capabilities of the haptic interface. Note that

in Equation 22.2 we modulate viscous drag as a

function of data value and in Equation 22.3 we

apply a force directly proportional to the local

field vector.

Even though this approach represents an

important step in the evolution of haptic data-

rendering techniques, it suffers from several

limitations. First, it provides limited expressive

power because it is difficult to display and

emphasize features in a purely functional

form. For example, we found that using com-

plex transfer functions for rendering isosurfaces

is less convincing than traditional surface-

rendering approaches [3,31,39]. The reason for

this is that the notion of memory is missing from

these formulations [41,60]. Second, the device

capabilities are captured implicitly in the

rendering parameters. Applying a force as a

function of the probe state can easily result in

instability, especially when several rendering

modes are combined. In general, it is very diffi-

cult and tedious to tune the behavior of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 435

The Visual Haptic Workbench 435

dynamic system formed by the force-field equa-

tion (Equation 22.1) and the motion equations

of the haptic device by finding an appropriate

set of rendering parameters.

Fortunately, haptic-rendering stability can be

guaranteed with use of a virtual coupling net-

work [1,14]. The coupler acts as a low-pass filter

between the haptic display and the virtual envir-

onment, limiting the maximum impedance that

needs to be exhibited by the device and prevent-

ing the accumulation of energy in the system

[24,56]. Although the coupler is not part of

the environment, the commonly used spring-

damper form had been introduced implicitly in

constraint-based surface-rendering algorithms.

In the next section, we describe a similar

approach to haptic rendering of directional in-

formation in volumetric datasets.

22.4 Data Exploration with Haptic
Constraints

Constraints have been used successfully in both

telerobotics and haptics applications. In early

work, virtual fixtures or guides improved oper-

ator performance in robot teleoperation tasks

[57]. More recently, a haptic-rendering frame-

work was developed with algebraic constraints

as the foundation [25]. Haptic constraints have

helped guide users in a goal-directed task [23].

User interfaces can also benefit from guidance.

Examples include a haptic version of the

common desktop metaphor [47] and a more

natural paradigm for media control [66].

We found that constraints provide a useful

and general foundation for developing haptic-

rendering algorithms for scientific datasets [28].

For example, constrained spatial probing for

seeding visualization algorithms local to the

proxy, e.g., particle advection, typically results

in more cohesive insight than its unconstrained

version. Volumetric constraints are obtained by

augmentation of the proxy with a local refer-

ence frame, and control of its motion according

to a set of rules and transfer functions along

the axes of the frame. This approach has the

advantage of providing a uniform basis for

rendering a variety of data modalities. Thus,

similar or closely related methods can be ap-

plied to seemingly unrelated datasets in such a

way that the result is a consistent interaction

experience. For example, to guide the user in

vector-field data, the proxy can be constrained

along a streamline such that any effort to move

the probe in a direction perpendicular to the

current orientation of the field results in a

strong opposing force (Fig. 22.3b). However, if

the user pushes the probe hard enough, the

proxy could ‘‘pop over’’ to an adjacent stream-

line, allowing the user to move the probe in

three dimensions and still receive strong haptic

cues about the orientation of the flow. We can

use an additional force component along the

streamline to indicate the magnitude of the

field. Alternatively, a secondary constraint can

be added to convey information about the speed

of the flow in the form of haptic ‘‘tickmarks.’’

We found that such techniques result in intui-

tive feedback in exploration of vector-field data.

A study on the effectiveness of various haptic

rendering techniques for CFD datasets reached

a similar conclusion [73].

Algorithms for constrained point-based

3DOF haptic rendering have been developed

for scalar density data [6,41] as well as vector

fields used in computational fluid dynamics

(CFD) visualization and animation motion-con-

trol applications [18,73]. Haptic constraints have

also been successfully used for displaying mo-

lecular flexibility [38]. Applications that require

complex proxy geometry transform the proxy to

a point shell to perform approximate 6DOF

force and torque calculations using the individ-

ual point locations [42,45,53,56]. In recent work,

a spherical approximation of tool–voxel inter-

action was used to speed up intersection calcula-

tions in a bone-dissection task [2].

22.4.1 Haptic Rendering with a
Constrained Proxy Point

In general, haptic volume rendering algorithms

based on a proxy point include four components

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 436

436 Virtual Environments for Visualization

that are executed at every iteration of the haptic

servo loop (Fig. 22.4).

1. Compute local data measures at current

proxy location: Data values and other meas-

ures, e.g., gradient or curvature informa-

tion, are obtained from interpolation of

data elements around the current proxy

location. Typical methods include linear

and tri-linear interpolation, although

higher-order techniques may be more

appropriate depending on the scale and

resolution of the display [62]. Since haptic

rendering is a local process, like particle

advection, point-location algorithms for

vector-field visualization on curvilinear

and unstructured grids are readily applied

[49]. A local reference frame (~ee1, ~ee2, ~ee3) is a

key component of constraint-based tech-

niques. Examples include the frame defined

by the gradient and principal curvature

directions in scalar data and the frame of

eigenvectors in diffusion-tensor data. Note

that the reference frame may be ill-defined

or may not exist. Thus, an important

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 437

(a)

Data
Probe

Field
Vector

Streamline

Force Response

Input Force

(b)

Figure 22.3 (a) A user explores a volumetric vector dataset. (b) The data probe is constrained along a streamline, resulting in

intuitive haptic feedback. (See also color insert.)

X
6

P6

Pk −1

Xk −1
e−1

Data

Proxy
Point

Haptic
Probe

Virtual
Coupler

Local
Frame

e−2

e6

Figure 22.4 Components of constrained point-based 3DOF

haptic data rendering. At time-step k, the state of the haptic

probe has changed from Xk�1 to Xk. The proxy state gets

updated from Pk�1 to Pk, from which the force response

is computed using a virtual coupler. The p-Proxy update is

basedondatameasures at the previous proxy location, aswell

as haptic transfer functions and rendering parameters.

The Visual Haptic Workbench 437

requirement for the algorithm is to compute

a stable force response even when transi-

tioning into and out of homogeneous and

ill-posed regions in the data. For example,

in scalar volumes the reference frame is

poorly defined in regions where the gradient

vanishes. One way to achieve smooth tran-

sitioning is to modulate the force output

as a function of gradient magnitude [41].

Another example is specifying transfer

functions such that isotropic regions are

handled properly in diffusion-tensor data.

In this case, the transfer function has to be

constructed in such a way that the force

output either vanishes or degenerates to an

isotropic point constraint.

2. Evaluate haptic transfer functions to deter-

mine rendering parameters: Similar to that of

graphical visualizations, the goal of haptic

transfer functions is to emphasize and com-

bine features in the data. For example, a

transfer function can be used to specify ap-

parent stiffness and friction for isosurface

regions based on data value and gradient

magnitude [41]. In contrast to visual transfer

functions, the design of haptic transfer func-

tions is an unexplored area. Although it is

possible to faithfully reproduce measured

material properties [50], synthesizing them

from different or abstract data remains diffi-

cult. In the examples presented in Section

22.5 we utilize stiffness and drag threshold

transfer functions ~kk and ~tt to constrain the

motion of the proxy along the axes of the

local reference frame.

3. Update proxy state: In this step, the state of

the proxy is updated according to simple

motion rules. We have chosen a purely geo-

metric approach that updates the proxy loca-

tion based on probe motion and rendering

parameters along the axes of the local frame:

~ppk ¼~ppk�1 þ D~pp ¼~ppk�1 þ
X3

i¼1

Dpi ~eei (22:4)

where Dpi is a function of probe position

relative to the previous proxy location,

Dxi ¼ (~xxk �~ppk�1) �~eei. For example, sur-

face-haptics algorithms locally constrain

the proxy to the tangent plane by setting

the normal component of change to zero.

More sophisticated strategies incorporate

the force response from previous steps as

well as other stated variables. For example,

physically based models assume the proxy

has mass m and is moving in a medium with

viscosity b [65]:

m€ppi þ b _ppi ¼ Fi (22:5)

where Fi is the force component acting on

the proxy point along ~eei. Friction effects

can be incorporated by addition and

moving of a static friction point within the

constraint subspace [61].

Note that the linear approximation used

in Equation 22.4 is not always appropriate

for expressing a nonlinear constraint, such

as staying on a surface or following a

streamline. For example, when tracing

volumetric isosurfaces, the first-order ap-

proximation obtained by projecting the

probe point to the tangent plane defined

by the gradient at the proxy location will

result in the algorithm’s quickly losing track

of the surface. Thus, we find the new proxy

location ~ppk by refining the initial estimate

using Newton-Raphson iteration along the

gradient direction [60]:

D~pp ¼ � (s(~pp)� s0)rs (~pp)

jrs (~pp)j2
(22:6)

where s0 is the target iso-value. The refine-

ment is terminated when the step size jD~ppj
either is sufficiently small or reaches the

maximum number of iterations permitted.

Similarly, higher-order integration schemes,

e.g., the fourth-order Runge-Kutta method,

are necessary for computing the reference

direction when following streamlines in

vector data. For larger step sizes, supersam-

pling and iteration of steps 1–3 may be re-

quired to ensure that constraints are

satisfied accurately [6,60].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 438

438 Virtual Environments for Visualization

Linearized constraints can be applied in

arbitrary order if the reference frame is

orthogonal. For nonlinear constraints and

nonorthogonal reference frames, the order

of application defines which constraint is

considered primary, which is considered

secondary, etc. For example, to follow

streamlines on a surface, we first move the

proxy along the local field direction, then

project it to the tangent plane of the sur-

face. If the vector field has out-of-plane

components, this order of steps corresponds

to projecting the vector field onto the tan-

gent surface. Reversing the order results in

a different proxy location and creates a dif-

ferent haptic effect.

4. Compute force response: When using the

spring-damper form of virtual coupling,

the force response is computed from

~FFk ¼ kc (~xxk �~ppk)� bc (_~xx~xxk � _~pp~ppk) (22:7)

where kc and bc are chosen according to the

device capabilities. The optimal choice

maximizes the coupling stiffness without

causing instability [1]. One problem is that

these parameters may not be constant

throughout the workspace. A choice that

works well in the center may cause instabil-

ity near the perimeter. Nevertheless, we can

tune them by applying a point constraint at

different locations in the workspace and

determining which settings cause the device

to become unstable on its own, i.e., without

a stabilizing grasp. Analysis of the param-

eters could reveal the optimal operational

region within the workspace of the device.

In our implementation, we exclude the

second term from Equation 22.7, since

filtering velocity is difficult without high-

resolution position measurements [14].

22.4.2 Motion Rules and Transfer
Functions

Motion rules allow us to create various haptic

effects that we can further modulate via

haptic transfer functions. One effect simulates

plastic material behavior by generating increas-

ing resistance between the probe and the proxy

until a certain threshold is reached. At this

point, the proxy is allowed to move towards

the probe, keeping the reaction force at the

same level. This effect is expressed succinctly

by the following formula:

Dpi ¼ sgn(Dxi) max (jDxij � ti, 0) (22:8)

This model yields free-space motion when

ti ¼ 0:

Dpi ¼ Dxi (22:9)

and a bilateral constraint when ti > 0. We

use the term drag threshold for ti because

it controls the difficulty of dragging the

proxy along axis~eei. Note that a stationary con-

straint is obtained when ti is sufficiently large,

because it would take considerable effort to

move the probe away from the proxy while

resisting the increasing amount of force between

them.

A unilateral constraint, which is the basis for

surface-rendering algorithms, is obtained by

considering the direction of travel along the

axis:

Dpi ¼
Dxi if Dxi > 0

min (Dxi þ ti, 0) if Dxi � 0

�
(22:10)

A bilateral snap-drag constraint changes the

proxy location in discrete steps:

Dpi ¼
sgn(Dti) if jDxij > ti

0 if jDxij � ti

�
(22:11)

The latter two rules are shown in Fig. 22.5,

along with the resulting force responses.

We can influence proxy motion indirectly by

scaling the force output according to stiffness

transfer function ~kk:

Fk, i ¼ kikc (xk, i � pk, i) (22:12)

where 0 � ki � 1. This reduces the force

required fordragging theproxy.Note that setting

either ti or ki to zero produces no force output

and creates frictionless motion along the axis.

However, it yields two different proxy behav-

iors, since in the first case the proxy follows the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 439

The Visual Haptic Workbench 439

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 440

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

Time (s)

P
os

iti
on

 (
m

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

Time (s)

F
or

ce
 (

N
)

Probe
Proxy

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

Time (s)

P
os

iti
on

 (
m

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4

Time (s)

F
or

ce
 (

N
)

Probe
Proxy

(b)

Figure 22.5 Examples of the 1D motion rule: (a) unilateral drag constraint and (b) bilateral snap-drag constraint. The motion

of the probe and the proxy as a function of time are represented by the filled and empty circles, respectively. The resulting force

responses are shown in the lower parts of the figures. Note that the sampling does not correspond to the haptic update rate.

440 Virtual Environments for Visualization

probe exactly, while in the second case it lags

behind by distance ti. Both parameters are

necessary, because we want to express a range

of effects, from subtle directional hints to stiff

rigid constraints, in addition to both elastic and

plastic material behavior.

22.5 Examples

In the following subsections, we describe how

haptic constraints aid the user in two explora-

tory tasks: (1) investigating the relationship

between cardiac muscle fibers and potential dis-

tributions, and (2) exploring the connectivity of

brain white matter in diffusion-tensor MRI

data.

22.5.1 Tracing Heart Muscle Fibers

Particle advection, i.e., integrating the motion

of massless particles with velocities defined by

the field, is a basic building block of vector-and

tensor-field visualization techniques. The haptic

equivalent is achieved by restriction of the

motion of the proxy along the path of a single

particle (Fig. 22.3a).

This method is easily modified to display

orientation information on isosurfaces. Such a

technique could be useful for investigating the

relationship between heart muscle fiber orienta-

tions and potential distributions resulting from

cardiac bioelectric finite-element simulations

[48]. These simulations are typically carried out

on a curvilinear grid that forms a number of

epicardial and endocardial layers (Fig. 22.6).

In our implementation, we reorganize the data

to an unstructured tetrahedral grid by comput-

ing a Delaunay triangulation of the original

data points. We assign a scalar value to the

nodes in individual layers, in increasing order

from inside to outside, such that isosurfaces of

this scalar field correspond to muscle layers in

the model. The gradient field computed from a

central difference–approximation formula is

used in the iterative refinement Equation 22.6

to make sure the proxy stays on the currently

selected layer.

To avoid singularities when interpolating

fiber orientation vectors within a tetrahedral

element, we use component-wise linear interpol-

ation of the tensor field, obtained by taking the

outer product of the vectors with themselves.

The major eigenvector of the interpolated

tensor yields a smooth orientation field within

a tetrahedral element, even when the vectors at

the nodes point in completely different direc-

tions.

In this example, a local reference frame is

formed by the interpolated fiber-orientation

and gradient vectors. The snap-drag motion

rule allows the user to explore a single layer

and ‘‘pop through’’ to a neighboring layer by

pushing against the surface. In this case, the

drag threshold ti is not used for moving the

proxy after breaking away from the current

surface. Instead, we detect when the probe

crosses a neighboring layer and set the proxy

location to a numerical approximation of the

intersection point. A secondary snap-drag rule

constrains proxy motion along the fibers on the

surface, allowing the user to switch to a nearby

streamline in discrete steps. This method essen-

tially creates a haptic texture on the surface

composed of tiny valleys and ridges correspond-

ing to the muscle fibers. See Fig. 22.6 for an

illustration of this example.

22.5.2 Exploring Diffusion-Tensor
Fields

Diffusion-tensor fields are difficult to compre-

hend because of the increased dimensionality of

the data values and complexity of the features

involved. Direct methods, such as glyphs and

reaction-diffusion textures, work well on 2D

slices, but they are less successful for creating

3D visualizations. Intermediate representations

created by adaptations of vector-field tech-

niques result in intuitive visual representations

but fail to capture every aspect of the field

[17,74]. Interactive exploration has helped

users interpret the complex geometric models

that represent features in the data [76]. Our

goal is to aid the exploration process by adding

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 441

The Visual Haptic Workbench 441

haptic feedback that guides the user according

to the local orientation and anisotropy of the

field.

The rate and directionality of water diffusion

in tissues is indicated by a second-order sym-

metric tensor. Anisotropy of the diffusion pro-

cess can be characterized by the following

barycentric measures [36]:

cl ¼
l1 � l2

l1 þ l2 þ l3

(22:13)

cp ¼
2(l2 � l3)

l1 þ l2 þ l3

(22:14)

cs ¼
3l3

l1 þ l2 þ l3

¼ 1� cl � cp (22:15)

where l1 � l2 � l3 are the sorted eigenvalues

of the diffusion-tensor matrix. These measures

indicate the degree of linear, planar, and spher-

ical anisotropy, respectively. The associated

eigenvectors ~ee1, ~ee2, ~ee3 form an orthonormal

frame corresponding to the directionality of dif-

fusion. Regions with linear and planar anisot-

ropy represent important features in the data,

such as white-matter fiber bundles in brain

tissue.

One way to use haptic feedback to indicate

tensor orientation and degree of anisotropy is to

control proxy motion such that it moves freely

along the direction of the major eigenvector

but is constrained in the other two directions.

We found that setting the drag thresholds to a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 442

Figure 22.6 Exploring epicardial muscle fibers with haptic feedback. The probe is constrained to follow the local fiber orientation

on the surface of a single layer. The user can ‘‘pop through’’ to a neighboring layer by pushing against the surface. Similarly, the

user can choose a different fiber by pushing perpendicular to the currently selected fiber while staying on the surface. This effect

feels as if the surface were textured with tiny valleys and ridges. The image shows the path of the proxy colored according to the

magnitude of the applied force component perpendicular to the fiber orientation and tangent to the surface, from yellow to cyan,

indicating increasing tension between the probe and the proxy. The dataset consists of about 30,000 nodes and 200,000 tetrahedral

elements. Dataset courtesy of P. Hunter, Bioengineering Institute, University of Auckland. (See also color insert.)

442 Virtual Environments for Visualization

function of the anisotropy measures results in

the desired feedback:

t1 ¼ 0 (22:16)

t2 ¼ t(cl) (22:17)

t3 ¼ t(cl þ cp) (22:18)

where t(x) is a monotonically increasing func-

tion on [0 . . . 1]. This choice ensures that the

transfer functions yield a line constraint along

the major eigenvector in regions with linear

anisotropy (cl � cp, cs), yield a plane constraint

in regions with planar anisotropy (cp � cl , cs),

and allow free motion along all three directions

in isotropic areas (cs � cp, cl). Recall that the

three indices sum to one, so when any one index

dominates, the transfer functions emphasize the

corresponding type of anisotropy. Alterna-

tively, we can set the threshold to a constant

value for all three directions and vary the stiff-

ness similarly to Equation 22.18. In our imple-

mentation, we chose a linear ramp for t(x), but

other possibilities may be more appropriate.

The technique is illustrated in Fig. 22.7. We

have observed that it takes little effort to trace

out curves indicating fiber distribution and con-

nectivity. Note that numerical methods for fiber

tractography require careful specification of ini-

tial and stopping conditions and cannot be used

straightforwardly for investigation of connect-

ivity in regions of the data.

22.6 Summary and Future Work

We have designed and built a prototype system

for synergistic display of scientific data. By

developing and demonstrating initial applica-

tions, we have been able to refine our system

and identify several important research issues in

the context of building effective visualization

applications for immersive environments. In the

future, we plan to extend our collection of visu-

alization techniques for the exploration of a var-

iety of multidimensional and multifield datasets.

The presented approach for haptic data ex-

ploration has several desirable properties: it

provides a unified rendering framework for dif-

ferent data modalities, allows secondary effects

such as texture and friction to be easily realized,

makes haptic transfer functions intrinsic to the

algorithm, and allows control parameters to be

tuned to the operational characteristics of the

interface device.

A particular challenge we intend to address in

the future is the issue of synthesizing useful

haptic transfer functions from the underlying

data. Investigating the synergistic relationship

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 443

Figure 22.7 Exploring a 148� 190 DT-MRI slice with

haptic feedback. The ellipses represent local diffusion

anisotropy and orientation. Lighter areas have higher associ-

ated anisotropy. The proxy path is colored according to the

magnitude of the applied force, from yellow to red, indicating

a larger tension between the probe and the proxy. The curves

are tangent to the direction of the major eigenvector of the

diffusion-tensormatrix in anisotropic areas.Dataset courtesy

of G. Kindlmann and A. Alexander, W. M. Keck Laboratory

for Functional Brain Imaging and Behavior, University of

Wisconsin–Madison. (See also color insert.)

The Visual Haptic Workbench 443

between visual and haptic transfer functions is

another interesting research topic. A disadvan-

tage of using the spring-damper form of virtual

coupling is that it is too conservative, meaning

that it may limit the efficient display of subtle

haptic effects. We will experiment with a recent

energy-based approach that uses a time-domain

passivity observer and controller to adaptively

adjust the coupling parameters [24]. In addition,

we plan to extend the haptic rendering method

to 6DOF devices. Transforming the constraint-

based approach to a purely functional formula-

tion would provide a very natural space for

specifying rendering parameters. Finally, the

real challenge for synergistic data display is val-

idation. We intend to quantify the usability of

our techniques and identify specific combin-

ations that are useful to scientists who directly

benefit from synergistic display of their datasets.

Acknowledgments

The authors are grateful to Gordon Kindlmann

for enlightening and refreshing discussions as

well as the Teem toolkit [35], which allowed

efficient dataset probing and manipulation in

this work. We thank Robert MacLeod for sug-

gesting the heart visualization example and

Hope M.F. Eksten for her help with various

construction and fabrication projects. Support

for this research was provided by NSF grant

ACI-9978063, ARO DURIP grant DAAG-

559710065, and the DOE Advanced Visualiza-

tion Technology Center (AVTC).

References

1. R. J. Adams and B. Hannaford. A two-port
framework for the design of unconditionally
stable haptic interfaces. In Proc. IEEE Inter-
national Conference on Intelligent Robots and
Systems, pages 1254–1259, Victoria, BC, 1998.

2. M. Agus, A. Giachetti, E. Gobetti, G. Zanetti,
and A. Zorcolo. Real-time haptic and visual
simulation of bone dissection. Presence: Tele-
operators and Virtual Environments, 12(1):
110–122, 2003.

3. R. S. Avila and L. M. Sobierajski. A haptic
interaction method for volume visualization. In
Proc. IEEE Visualization, pages 197–204, San
Francisco, 1996.

4. W. Baxter, V. Scheib, M. C. Lin, and D., Man-
ocha. DAB: Interactive haptic painting with 3D
virtual brushes. In Proc. ACM SIGGRAPH,
pages 461–468, Los Angeles, 2001.

5. A. Bierbaum, C. Just, P. Hartling, K. Meinert,
A. Baker and C. Cruz-Neira. VR Juggler:
A virtual platform for virtual reality application
development. In Proc. IEEE Virtual Reality,
pages 89–96, Yokohama, Japan, 2001.

6. D. J. Blezek and R. A. Robb. Haptic rendering
of isosurfaces directly from medical images.
In Proc. Medicine Meets Virtual Reality, pages
67–73, San Francisco, CA, 1999.

7. D. A. Bowman, E. Kruijff, J. J. LaViola, Jr.,
and I. Poupyrev. An introduction to 3D user
interface design. Presence: Teleoperators and
Virtual Environments, 10(1):96–108, 2001.

8. D. A. Bowman, C. J. Rhoton, and M. S. Pinho.
Text input techniques for immersive virtual
environments: an empirical comparison. In
Proc. Human Factors and Ergonomics Society
Annual Meeting, pages 2154–2158, 2002.

9. J. D. Brederson. The I3 Stick: an inexpensive,
immersive interaction device. Technical Report
UUCS-99–016, School of Computing, Univer-
sity of Utah, 1999.

10. J. D. Brederson, M. Ikits, C. R. Johnson, and
C. D. Hansen. The visual haptic workbench.
In Proc. PHANToM Users Group Workshop,
Aspen, CO, 2000.

11. F. P. Brooks, M. Ouh-Young, J. J. Batter, and
P. J. Kilpatrick. Project GROPE—haptic dis-
plays for scientific visualization. In Proc. ACM
SIGGRAPH, pages 177–185, Dallas, TX, 1990.

12. S. Bryson. Virtual Reality Applications, pages
3–15. Burlington, MA, Academic Press, 1995.

13. P. Cignoni, C. Montani, and R. Scopigno.
MagicSphere: an insight tool for 3D data visu-
alization. Computer Graphics Forum, 13(3):
317–328, 1994.

14. J. E. Colgate and J. M. Brown. Issues in the
haptic display of tool use. In Proc. IEEE Inter-
national Conference on Intelligent Robots and
Systems, pages 140–145, Pittsburgh, PA, 1995.

15. D. B. Conner, S. S. Snibbe, K. P. Herndon, D.
C. Robbins, R. C. Zeleznik, and A. van Dam.
Three-Dimensional widgets. In Proc. ACM
Symposium on Interactive 3D Graphics, pages
183–188, 1992.

16. C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual real-
ity: the design and implementation of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 444

444 Virtual Environments for Visualization

CAVE. In Proc. ACM SIGGRAPH, pages
135–142, 1993.

17. T. Delmarcelle and L. Hesselink. Visualizing
second order tensor fields with hyperstream-
lines. IEEE Computer Graphics and Applica-
tions, 13(4):25–33, 1993.

18. B. R. Donald and F. Henle. Using haptic vector
fields for animation motion control. In Proc.
IEEE International Conference on Robotics and
Automation, pages 3435–3442, 2000.

19. N. I. Durlach and A. S. Mavor, eds. Virtual
Reality: Scientific and Technological Challenges.
Washington, D.C., National Academy Press,
1994.

20. A. L. Fuhrmann and M. E. Gröller. Real-time
techniques for 3D flow visualization. In Proc.
IEEE Visualization, pages 305–312, 1998.

21. B. Grant, A. Helser, and R. M. Taylor II.
Adding force display to a stereoscopic head-
tracked projection display. In Proc. IEEE Vir-
tual Reality Annual International Symposium,
pages 81–88, 1998.

22. J. Grosjean and S. Coquillart. Command &
control cube: a shortcut paradigm for virtual
environments. In Proc. Eurographics Workshop
on Virtual Environments, pages 39–45, 2003.

23. C. Gunn and P. Marando. Experiments on the
haptic rendering of constraints: guiding the
user. In Proc. Advanced Simulation Technology
and Training Conference, Melbourne, Australia,
1999.

24. B. Hannaford and J.-H. Ryu. Time domain
passivity control of haptic interfaces. IEEE
Trans. Robotics and Automation, 18(1):1–10,
2002.

25. M. Hutchins. A constraint equation algebra as a
basis for haptic rendering. In Proc. PHANToM
Users Group Workshop, Aspen, CO, 2000.

26. M. Ikits. Coregistration of pose measurement
devices using nonlinear least squares parameter
estimation. Technical Report UUCS-00-018,
University of Utah, 2000.

27. M. Ikits, J. D. Brederson, C. D. Hansen, and
J. M. Hollerbach. An improved calibration
framework for electromagnetic tracking devices.
In Proc. IEEE Virtual Reality, pages 63–70,
2001.

28. M. Ikits, J. D. Brederson, C. D. Hansen, and C.
R. Johnson. A constraint-based technique for
haptic volume exploration. In Proc. IEEE Visu-
alization, pages 263–269, 2003.

29. M. Ikits, C. D. Hansen, and C. R. Johnson.
A comprehensive calibration and registration
procedure for the visual haptic workbench.
In Proc. Eurographics Workshop on Virtual
Environments, pages 247–254, 2003.

30. Immersion Corporation. Medical simulators.
http://www.immersion.com/

31. F. Infed, S.V.Brown,C.D.Lee,D.A.Lawrence,
A. M. Dougherty, and L. Y. Pao. Combined
visual/haptic rendering modes for scientific visu-
alization. In Proc. ASME Symposium on Haptic
Interfaces forVirtual Environment andTeleopera-
tor Systems, pages 93–99, 1999.

32. H. Iwata and H. Noma. Volume haptization.
In Proc. IEEE Virtual Reality Annual Inter-
national Symposium, pages 16–23, 1993.

33. J. Kelso, L. E. Arsenault, and R. D. Kriz.
DIVERSE: A framework for building extensible
and reconfigurable device independent virtual
environments. In Proc. IEEE Virtual Reality,
pages 183–192, 2002.

34. Y. J. Kim, M. A. Otaduy, M. C. Lin, and
D. Manocha. Six-degree-of freedom haptic dis-
play using localized contact computations. In
Proc. IEEE Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator
Systems, pages 209–216, 2002.

35. G. L. Kindlmann. The Teem toolkit, 2003.
http://teem.sourceforge.net/

36. G. L. Kindlmann, D. M. Weinstein, and
D. A. Hart. Strategies for direct volume
rendering of diffusion tensor fields. IEEE
Trans. Visualization and Computer Graphics,
6(2):124–138, 2000.

37. M. Koutek and F. H. Post. The responsive
workbench simulator: a tool for application
development and analysis. In Proc. Inter-
national Conference in Central Europe on Com-
puter Graphics, Visualization and Computer
Vision, Plzen, Czech Republic, 2002.

38. A. Kr̆enek. Haptic rendering of molecular flexi-
bility. In Proc. PHANToM Users Research
Symposium, Zurich, Switzerland, 2000.

39. D. A. Lawrence, C. D. Lee, L. Y. Pao, and
R. Y. Novoselov. Shock and vortex visualiza-
tion using a combined visual/haptic interface. In
Proc. IEEE Visualization, pages 131–137, 2000.

40. D. A. Lawrence, L. Y. Pao, A. M. Dougherty,
M. A. Salada, and Y. Pavlou. Rate-hardness:
a new performance metric for haptic interfaces.
IEEE Trans. Robotics and Automation, 16(4):
357–371, 2000.

41. K. Lundin. Natural haptic feedback from volu-
metric density data. Master’s thesis, Linköping
University, Sweden, 2001.

42. A. Mascarenhas, S. Ehmann, A. Gregory,
M. Lin, and D. Manocha. Touch In Virtual
Environments: Haptics and the Design of Inter-
active Systems, Chapter 5: Six degree-of-free-
dom haptic visualization, pages 95–118.
Prentice-Hall, 2002.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 445

The Visual Haptic Workbench 445

43. T. H. Massie. Design of a three degree of free-
dom force-reflecting haptic interface. Bachelor’s
thesis, Massachusetts Institute of Technology,
1993.

44. T. H. Massie. Initial haptic explorations with
the PHANToM: virtual touch through point
interaction. Master’s thesis, Massachusetts In-
stitute of Technology, 1996.

45. W. A. McNeely, K. D. Puterbaugh, and
J. J. Troy. Six degree-of-freedom haptic
rendering using voxel sampling. In Proc. ACM
SIGGRAPH, pages 401–408, 1999.

46. M. Meyer and A. H. Barr. ALCOVE: design
and implementation of an object-centric virtual
environment. In Proc. IEEE Virtual Reality,
pages 46–52, 1999.

47. T. Miller and R. C. Zeleznik. An insidious
haptic invasion: adding force feedback to the
X desktop. In Proc. ACM User Interface Soft-
ware and Technology, pages 59–64, 1998.

48. P. M. F. Nielsen, I. J. LeGrice, B. H. Smaill,
and P. J. Hunter. Mathematical model of geom-
etry and fibrous structure of the heart. In Ameri-
can Journal of Physiology, 260:H1365–H1378,
1991.

49. R. Y. Novoselov, D. A. Lawrence, and L. Y.
Pao. Haptic rendering of data on unstructured
tetrahedral grids. In Proc. IEEE Symposium on
Haptic Interfaces for Virtual Environment and
Teleoperator Systems, pages 193–200, 2002.

50. A. M. Okamura, J. T. Dennerlein, and R. D.
Howe. Vibration feedback models for virtual
environments. In Proc. IEEE International Con-
ference on Robotics and Automation, pages
2485–2490, 1998.

51. M. A. Otaduy and M. C. Lin. Sensation pre-
serving simplification for haptic rendering.
ACM Trans. Graphics, 22(3):543–553, 2003.

52. L. Y. Pao and D. A. Lawrence. Synergistic
visual/haptic computer interfaces. In Proc.
Japan/USA/Vietnam Workshop on Research
and Education in Systems, Computation, and
Control Engineering, pages 155–162, 1998.

53. A. Petersik, B. Pflesser, U. Tiede, K. H. Höhne,
and R. Leuwer. Haptic volume interaction
with anatomic models at sub-voxel resolution.
In Proc. IEEE Symposium on Haptic Inter-
faces for Virtual Environment and Teleoperator
Systems, pages 66–72, 2002.

54. P. J. Rajlich. An object oriented approach to
developing visualization tools portable across
desktop and virtual environments. Master’s
thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 1998.

55. ReachIn Technologies AB. Laparoscopic
Trainer. http://www.reachin.se/

56. M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel,
and G. Hirzinger. Stable haptic interaction with
virtual environments using an adapted voxmap-
pointShell algorithm. In Proc. Eurohaptics,
2001.

57. L. B. Rosenberg. Virtual fixtures: perceptual
tools for telerobotic manipulation. In Proc.
IEEE Virtual Reality Annual International Sym-
posium, pages 76–82, 1993.

58. D. C. Ruspini, K. Kolarov, and O. Khatib. The
haptic display of complex graphical environ-
ments. In Proc. ACM SIGGRAPH, pages
345–352, 1997.

59. S. E. Salcudean and T. D. Vlaar. On the emula-
tion of stiff walls and static friction with a mag-
netically levitated input/output device. In Proc.
ASME Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems,
pages 127–132, 1997.

60. J. K. Salisbury and C. Tarr. Haptic rendering of
surfaces defined by implicit functions. In Proc.
ASME Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems,
pages 61–67, 1997.

61. K. Salisbury, D. Brock, T. Massie, N. Swarup,
and C. Zilles. Haptic rendering: programm-
ing touch interaction with virtual objects. In
Proc. ACM Symposium on Interactive 3D
Graphics, pages 123–130, 1995.

62. G. Sankaranarayanan, V. Devarajan, R. Eber-
hart, and D. B. Jones. Adaptive hybrid inter-
polation techniques for direct haptic rendering
of isosurfaces. In Proc. Medicine Meets Virtual
Reality, pages 448–454, 2002.

63. SensAble Technologies, Inc. FreeForm Model-
ing System. http://www.sensable.com/

64. L. Serra, T. Poston, N. Hern, C. B. Choon, and
J. A. Waterworth. Interaction techniques for a
virtual workspace. In Proc. ACM Virtual Real-
ity Software and Technology, pages 79–90, 1995.

65. S. Snibbe, S. Anderson, and B. Verplank.
Springs and constraints for 3D drawing. In
Proc. PHANToM Users Group Workshop, Ded-
ham, MA, 1998.

66. S. S. Snibbe, K. E. MacLean, R. Shaw, J. Rod-
erick, W. L. Verplank, and M. Scheeff. Haptic
techniques for media control. In Proc. ACM
User Interface Software and Technology, pages
199–208, 2001.

67. M. A. Srinivasan and C. Basdogan. Haptics
in virtual environments: taxonomy, research
status, and challenges. Computers and Graphics,
21(4):393–404, 1997.

68. D. R. Stevenson, K. A. Smith, J. P. McLaugh-
lin, C. J. Gunn, J. P. Veldkamp, and M. J.
Dixon. Haptic workbench: a multisensory vir-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 446

446 Virtual Environments for Visualization

tual environment. In Proc. SPIE Stereoscopic
Displays and Virtual Reality Systems, pages
356–366, 1999.

69. P. S. Strauss and R. Carey. An object-oriented
3D graphics toolkit. In Proc. ACM SIG-
GRAPH, pages 341–349, 1992.

70. V. A. Summers, K. S. Booth, T. Calvert,
E. Graham, and C. L. MacKenzie. Calibration
for augmented reality experimental testbeds.
In Proc. ACM Symposium on Interactive 3D
Graphics, pages 155–162, 1999.

71. T. Udeshi, R. Hudson, and M. E. Papka. Seam-
less multiresolution isosurfaces using wave-
lets. Technical report ANL/MCS-P801-0300,
Argonne National Laboratory, 2000.

72. A. van Dam, A. S. Forsberg, D. H. Laidlaw,
J. J. LaViola, Jr., and R. M. Simpson. Immer-
sive VR for scientific visualization: a progress
report. IEEE Computer Graphics and Applica-
tions, 20(6):26–52, 2000.

73. T. van Reimersdahl, F. Bley, T. Kuhlen, and
C. Bischof. Haptic rendering techniques for the
interactive exploration of CFD datasets in vir-

tual environments. In Proc. Eurographics Work-
shop on Virtual Environments, pages 241–246,
2003.

74. D. M. Weinstein, G. L. Kindlmann, and
E. Lundberg. Tensorlines: advection-diffusion
based propagation through diffusion tensor
fields. In Proc. IEEE Visualization, pages
249–253, 1999.

75. M. Woo, J. Neider, T. Davis, and D. Shreiner.
OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2. Addison
Wesley, 1999.

76. S. Zhang, C. Demiralp, D. Keefe, M. DaSilva,
D. H. Laidlaw, B. D. Greenberg, P. Basser,
C. Pierpaoli, E. Chiocca, and T. Deisboeck.
An immersive virtual environment for DT-
MRI volume visualization applications: a case
study. In Proc. IEEE Visualization, pages 437–
440, 2001.

77. C. B. Zilles and J. K. Salisbury. A constraint-
based god-object method for haptic display. In
Proc. IEEE International Conference on Intelli-
gent Robots and Systems, pages 146–151, 1995.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 447

The Visual Haptic Workbench 447

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:05pm page 448

This page intentionally left blank

23 Virtual Geographic Information
Systems

WILLIAM RIBARSKY

College of Computing

Georgia Institute of Technology

23.1 Introduction

Geospatial data are growing in diversity and

size. Satellite imagery and elevation data at

30 M resolution are readily available for most

of the Earth via Landsat and other sources.

These sources also provide multispectral im-

agery at similar resolutions that distinguishes

land use, vegetation cover, soil type, urban

areas, and other elements. Higher-resolution

aerial or satellite imagery for selected areas can

be obtained. There are photographs at 1M reso-

lution or better that cover most major cities,

with insets at even higher resolution often avail-

able. There are also accurate digital maps.

Tax assessment records and other geolocated

records provide information about the uses of

individual sectors of urban geography. GIS

databases also provide geolocated access to

names, addresses, and uses, and information

about roads, bridges, buildings, and other

urban features. Other GIS databases provide

national, state, and local boundaries; paths of

waterways and locations and extents of lakes;

and boundaries of forests. In addition, tech-

niques are now appearing that will lead to the

automated and accurate collection of 3D build-

ings and streetscapes [20,62,66]. Most major

U.S. and European cities have ongoing digital

cities projects that collect these 3D models [32],

although at the moment modeling is laborious.

Among other things, these models are leading to

a new, more detailed, and more comprehensive

view of the city as it is now and as it is planned

to be. Now detailed 3D, time-dependent atmos-

pheric data are collected for extended areas.

Sources include the 3D Doppler radar systems

that cover the U.S. and Europe, and high-

resolution weather, climate, or pollution simu-

lations, all augmented by specialized satellite

measurements. These weather data and simula-

tions are at such a resolution and accuracy that

detailed terrain elevation and coverage data can

now be useful or necessary. For example,

having detailed terrain-elevation models per-

mits one to predict flood extents and the pro-

gress of flooding rather than just the flood

heights (which is often all that is available

widely). Elevation data are also a necessary

input for high-resolution weather models.

Other geolocated data, such as sources of indus-

trial pollution, traffic congestion, and urban

heat islands, can be important inputs for

weather and pollution models.

Interactive visualization is of prime import-

ance to the effective exploration and, analysis of

the above integrated geospatial data. For

systems dealing with geospatial data of any

extent, the two capabilities of interactive visual-

ization and integrated data organizations are

inextricably intertwined. In this chapter, we

will discuss both capabilities in the context of

virtual geographic information systems (GISs).

One main way in which a virtual GIS differs

from a traditional GIS is that it supports highly

interactive visualization of the integrated geos-

patial data. Visual navigation is a prime way of

investigating these data, and queries are by

direct manipulation of objects in the visual

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 449

449

space. The visualization is thus a visual interface

to the data that is supported by data retrieval

and rendering mechanisms appropriate to mul-

tiscale, multiresolution data.

Virtual GIS systems are almost universally

useful. Their use for the investigation of atmos-

pheric phenomena and their effect on the land

have already been mentioned. With appropriate

urban data, virtual GIS can also be used for

urban planning. Modern urban planning con-

siders the issues of ‘‘smart growth’’ [14], where

existing and already congested urban centers are

redesigned for future development that concen-

trates work, school, shopping, and recreation

to minimize car travel, congestion, and pollu-

tion while improving quality of life. Such pro-

jects are often infill projects with significant

effects on the urban fabric. There are thus

competing groups who often have significantly

different objectives, groups including residents,

businesses, developers, and local or state

governments. This planning process is usually

laborious and involves much negotiation

and many plans vetted, modified, and dis-

carded, missed opportunities, and results that

often still don’t satisfy the multiple groups.

Interactive visualization is an essential new

component for speeding the process, making

alternatives clearer and more fully under-

standable, and reaching better results [19]. As

mentioned above, comprehensive urban data

combined with the visualization capability can

also give a broader, more integrated, and more

detailed view of the city and how multiple plans

fit into it than was possible before.

There are many other uses for virtual GIS.

For example, a highly detailed and interactive

visualization system can be used for emergency

planning and emergency response. Virtual GIS

also has significant educational potential to

show how cities fit with the wider environment,

how the land fits with its natural resources, and

how states and countries relate to each other.

A virtual GIS with a sense of historical time can

show, in context and in detail, the positions and

movements of great battles, migrations of popu-

lations, development of urban areas, and other

events. Finally, there are many additional uses

of virtual GIS, including tourism and entertain-

ment, military operations, traffic management,

construction (especially large-scale projects),

various geolocated and mobile services, citizen–

government relations (when complex civic pro-

jects are vetted), games based on real locations,

and others. The dynamic nature of geospatial

data collection provides all citizens with a

unique capability to track the detailed change

and development of urban areas, areas around

waterways, farms, woodlands, and other areas.

In this chapter I will discuss key work in the

development of current virtual GIS capabilities.

I will then briefly discuss geospatial data-

collecting organizations and multiresolution

techniques. I will review interactive techniques

for navigating and interacting with data at the

wide range of scales in global geospatial

systems. These will be for both tracked and

untracked interaction and for a range of display

environments, from PDAs to large projected

screens. I will then discuss the application of

virtual GIS to urban visualization and to 3D,

time-dependent weather visualization. Finally,

I will present some outstanding questions that

should be addressed in the future.

23.2 Key Work in the Development
of Virtual GIS

Initial work on interactive visualization of geos-

patial data focused on terrain visualization.

Some systems supported virtual environments

[28,42], including the capability for out-of-core

visualization in a distributed networked envir-

onment [42]. These had limited terrain detail

management. The first systems with enough

capabilities to be virtual GIS systems were

then developed [34,37]. These provided inter-

active visualization of terrain models including

elevations and imagery, GIS raster layers, 3D

buildings, moving vehicles, and other objects

in both virtual (using a head-mounted display,

or HMD) and Windows-based environments.

About this time, an interactive system was de-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 450

450 Virtual Environments for Visualization

veloped [54] that integrated highly detailed

phototextures, a terrain elevation map, road

network features, and generic models for build-

ings with appropriate footprints, numbers of

floors, and types. The result was an interactive

visualization of an urban area that had good

graphical quality and retained much informa-

tion from the geographic sources. The initial

work on virtual GIS was followed by the devel-

opment of a system that integrated a standard

GIS database to permit queries and display of

GIS data through direct manipulation of the

visualization [2]. The first reported global vir-

tual GIS with the capability for handling

scalable data, VGIS [18], will be discussed in

detail below. Recently, commercial systems with

the capability to handle global terrain data have

appeared (http://www.keyholecorp.com). There

also continue to be ongoing efforts to study

the interface between computer graphics, visu-

alization, and cartographic and geospatial data,

such as the ACM Carto Project (http://www.

siggraph.org/~rhyne/carto/carto98.html).

Recently there have been thrusts to extend, in

both scale and type, the detailed models that can

be included in virtual GIS and also to broaden its

focus to include new kinds of geospatial data. In

many cases, these thrusts are due to new acquisi-

tion tools (e.g., LIDAR, high-resolution photos,

ground-based range images, 3D Doppler radar,

etc.) that make available streams of data that can

be turned into models of unprecedented scale

and detail. Successfully integrating these models

into a comprehensive, integrated virtual GIS

remains a major challenge. Extended urban

modeling efforts include the Virtual Los Angeles

Project [5,32] and similar efforts to create

extended, interactive urban landscapes (Fig.

23.1). Virtual LA has modeled hundreds to thou-

sandsofbuildings inurbanLosAngeles, aswell as

many street-level features. The buildings typic-

ally consist of a relatively small number of poly-

gons with detail provided by textures that are

usually culled from ground-level photoimagery.

The visualization systemuses scene graphs gener-

ated by SGI Performer or Multigen to navigate

urban areas interactively at ground level.

Extended environments such as Virtual

LA (and the urban models contained in our

VGIS system) clearly demonstrate an import-

ant point: that it is still a painstaking, time-

consuming, hands-on process to produce the

model collection. Fred Brooks [5] has said

that modeling remains one of the major chal-

lenges in virtual environments research. One

line of current research attacks the painstaking

modeling problem while another line produces

models of significantly greater detail. For

example, a LIDAR system permits an airplane

to quickly collect a height field, with lateral

resolution better than 1 M and vertical reso-

lution of inches, for a whole small city in a

few hours. An image of extracted and refined

models from LIDAR data acquired for the

USC campus and environs is shown in Fig.

23.2. The refinement and modeling were ac-

complished with an almost completely auto-

mated set of tools [66]. Concurrently there are

efforts to acquire ground-based urban range

images [20,55] and place them into extended

models. This research uses 3D recovery and

reconstruction from multiple images or from

imagery plus laser range-finding. In either

case, 3D reconstruction of geometry plus ap-

pearance information produces urban scenes

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 451

Figure 23.1 Downtown Los Angeles, from the Virtual LA

project [6]. (See also color insert.)

Virtual Geographic Information Systems 451

(buildings and streetscapes including sidewalks,

lampposts, trees, shrubs, etc.) that can resolve

inch-size geometric features. On the other

hand, there are efforts to automate and enrich

the constructive modeling process with the use

of 3D design tools rather than acquired data.

Promising methods include procedural model-

ing tools that can produce an entire cityscape

of generic buildings that conform either to an

imagined or a real street layout [45]. Ap-

proaches to apply higher-level architectural-

design principles and shape grammars [63]

hold the promise to quickly construct buildings

of much greater 3D architectural detail that

conform to real or imagined structures. The

organization into grammar rules means that

details can be changed at will, perhaps even

interactively (Fig. 21.3). This will be a boon

to advanced urban planning. However, all of

these approaches result in incomplete models.

The acquisition approaches, in particular, are

for only their domains (e.g., street-level façades

for the ground-based methods versus footprints

and top-level detail for the aerial methods)

and must be combined for more complete

models. Ultimately, all approaches should be

combined to produce comprehensive and con-

sistent urban models that will also have the

advantageous capability to be changed and up-

dated. As these models are created and

extended, they must be prepared for interactive

visualization, integrated with terrain data, and

placed in a data organization that can handle

their scale and complexity. This is the focus of

the next sections.

23.3 Global, Comprehensive
Organization of Geospatial Data

Everything on Earth has a time and a location.

The latter is encoded in a global coordinate

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 452

Figure 23.2 High-resolution aerial imagery merged with georeferenced models automatically extracted from LIDAR data [66].

(See also color insert.)

Figure 23.3 3D urban models generated procedurally using

an architectural grammar [63].

452 Virtual Environments for Visualization

system such as latitude and longitude (lat/lon)

or altitude. With the proper geodetic transform-

ation, these coordinates give precise locations

for terrain features or objects anywhere on

Earth (including under the ocean). This is a

fundamental aspect of GIS systems. Including

the altitude coordinate can provide precise loca-

tions to objects or phenomena in the atmos-

phere or under the earth. For virtual GIS, we

must organize data in this global coordinate

system for multiresolution, interactive visualiza-

tion. Once established, such a universal organ-

ization holds the promise of integrating and

handling all geospatial data, whatever their

type or source. Thus, an ultimate goal of virtual

GIS is to go beyond the boundaries of trad-

itional GIS and create a virtual world that en-

compasses all the knowledge of the real world.

In this section we describe structures that can

form the foundation of this virtual world and

that, in particular, support interactive naviga-

tion and exploration in virtual GIS.

23.3.1 Global Hierarchy

We have built a quadtree and shared a cache

data structure that together constitute the basic

components of a global data model. This is the

data structure that is used in our VGIS system.

The global structure is divided into 32 zones,

each 45� � 45� [10,16] (Fig. 23.4). Each zone has

its own quadtree; all are linked so that objects

or terrain-crossing quadrant boundaries can be

rendered efficiently. We chose the number and

extent of zones based on empirical observations

of memory requirements, paging overhead, geo-

metric accuracy, etc. A node in a quadtree cor-

responds to a raster tile of fixed dimensions and

lat/lon resolution according to the level on

which it appears in the quadtree. Quadnodes

are identified by ‘‘quadcodes,’’ which are built

in a manner similar to the indices of representa-

tions of binary trees; that is, the children of a

node with quadcode q are identified by 4qþ 1

through 4qþ 4. In addition, the quadcode con-

tains a quadtree identifier that allows each

quadcode to uniquely identify an area on the

globe. This structure is replicated in the under-

lying disk-management system so that files are

aligned with the quadnodes in the set of linked

quadtrees.

The quadtrees also define the boundaries of

local coordinate systems. If a single, geocentric

coordinate system were used, assuming a 32-bit

single precision floating point were used to de-

scribe object geometries, the highest attainable

accuracy on the surface of the Earth would be

half a meter. Clearly, this is not sufficient to

distinguish features with details as small as a

few centimeters, e.g., features on a building

façade. This lack of precision results in ‘‘wob-

bling’’ as the vertices of the geometry are

snapped to discrete positions, which is present

in other large-scale terrain systems, such as

T_Vision [26]. We have developed an approach

to overcome this problem [18]; we define a

number of local coordinate systems over the

globe, which have their origins displaced to

the (oblate) spheroid surface that defines the

Earth’s sea level. (See Section 23.5 for a more

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 453

Figure 23.4 The Earth divided into 32 zones. The labeled

axes correspond to Earth-centered, Earth-fixed Cartesian

XYZ global coordinate systems for each zone.

Virtual Geographic Information Systems 453

detailed description of this spheroid structure.)

The origins of the top-level coordinate systems

are placed at the geographic centers (i.e., the

means of the boundary longitudes and latitudes)

of the quadtree roots. While the centroid of the

terrain surface within a given zone would result

in a better choice of origin in terms of average

precision, we decided for the sake of simplicity

to opt for the geographic center, noting that the

two are very close in most cases. The z axis of

each coordinate system is defined as the out-

ward normal of the surface at the origin, while

the y axis is parallel to the intersection of the

tangent plane at the origin and the plane de-

scribed by the North and South poles and the

origin. That is, the y axis is orthogonal to the z

axis and locally points due North. The x axis is

simply the cross product of the y and z axes, and

the three axes form an orthonormal area. This

choice of orientation is very natural, as it allows

us to approximate the ‘‘up’’ vector by the local z

axis, which further lets us treat the terrain

height field as a flat-projected surface with little

error. Hence, the height-field level-of-detail

(LOD) algorithm, which is based on vertical

error in the triangulation, does not have to be

modified significantly to take the curvature of

the Earth into account. However, the delta

values [39] must be computed in Cartesian

rather than geodetic coordinates to avoid over-

simplification of areas with constant elevation

but that are curved, such as oceans. Fig. 23.4

shows the local coordinate systems for a few

zones.

Using this scheme, the resulting worst-case

precision for a 45� � 45� zone is 25 cm—not

significantly better than for the Earth-centered

case. We could optionally use a finer subdivision

with a larger number of zones to obtain the

required precision, but this would result in a

larger number of quadtrees, which is undesir-

able since the lowest-resolution datum that can

be displayed is defined by the areal extent of the

quadtree roots. Hence, too much data would be

needed to display the lowest-resolution version

of the globe. Instead, we define additional co-

ordinate systems within each quadtree. In the

current implementation, we have added

256� 256 coordinate systems within each quad-

tree—one coordinate system per node, eight

levels below each root node—resulting in a

1 mm worst-case precision. Fig. 23.5 illustrates

a subset of these nested coordinate systems. The

terrain and object managers keep track of which

coordinate system to use among these thou-

sands of systems and can even transition be-

tween coordinate systems for extended objects.

The general approach to using the hierarch-

ical structure is illustrated in Fig. 23.6. In each

zone, the quadtree is traversed to a certain level

that depends on the type of geospatial data.

Below this level, a nonquadtree detail-manage-

ment scheme is used that depends on the

detailed characteristics of the data. Thus, for

example, buildings and terrain have different

levels at which separate nonquadtree detail-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 454

Figure 23.5 Nested coordinate systems in a quadtree. 8� 8

smaller coordinate systems appear 3 levels below the root

node.

454 Virtual Environments for Visualization

management schemes take over. We describe

these schemes further below.

This global hierarchical, nested structure

will handle the Earth, everything on it, compre-

hensive atmospheric phenomena, and even sub-

surface data at levels of detail from global

overviews to fine-resolution close-ups. Naviga-

tion between these extremes involves changes of

sometimes 10 or more orders of magnitude.

Note that this global structure does not require

that the whole set of data reside in any one

place. Rather, the structure is virtual and as

long as one has appropriate lat/lon and altitude

coordinates (and a procedure for organizing the

particular type of data being handled), one

knows where to store or retrieve the data. In

this view, instead of server/client relations, there

are peer relations. Anyone can collect data or

share data, and servers are just peers that have

more data than others. This flexibility is quite

useful for both distributed applications and

mobile applications [35]. In addition, this struc-

ture is modular and can be efficiently incremen-

ted as new data become available. For example,

terrain data (imagery and elevation) can be

added in a time that is proportional to the

amount of data added rather than to the total

amount of data in the dataset. Furthermore, 3D

weather data can be added in real time (in

seconds, for a 3D Doppler radar system where

the time between collection of successive radar

volumes is typically 5–7 minutes [30,48]).

23.3.2 Caching and Paging

To conserve memory and promote efficiency,

the view-dependent data associated with active

nodes of the hierarchy are stored in a shared

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 455

N Levels
(depending on

data type)

Detailed, data-
dependent

representation

Linked Global
Quadtrees

Q

Q Q Q Q

Q

QQ

Q
Q Q Q QQ

Q
Q

Q
Q

Q

Figure 23.6 General global hierarchy.

Virtual Geographic Information Systems 455

cache. This allows multiple managers for the

various data types to access the data without

having to replicate it. The shared cache consists

of a set of hash tables, one for each data type

(e.g., elevations, phototextures, weather data,

buildings, moving objects, etc.), which have

enough slots to hold all the quadnodes in the

dataset. These slots are initially empty and are

filled with geospatial data whenever a request is

processed by a particular server. If a node is no

longer needed by any of the managers, the space

for it is deallocated. The quadcodes are used as

hash keys for accessing nodes in the hash table.

Since the hash table slots are initialized at

startup, the managers know what nodes exist

externally, so no invalid data requests are

made to the server. To maintain scalability, we

have developed a structure where only the high-

level quadtree tables are loaded at startup, with

an additional paging and caching mechanism

to bring in more detailed portions of the quad-

trees as they are needed. This reduces both

startup time and the amount of memory needed

to run VGIS. However, with the amount of

memory available even on laptop systems and

with preprocessed quadtree structures, we have

found that fairly large datasets (multiple GB for

the data and multiple MB for the hierarchical

structure) can be handled without this paging

mechanism, even on laptops.

To support parallelism and expandability,

there are separate paging threads for the differ-

ent types of geospatial data. Each thread has a

server and a manager. The server loads pages

from disk, while the manager decides which cells

should be loaded (taking into account such

things as user viewpoint and navigational

speed) and passes it along for display or analy-

sis. This communication path supports a

demand-paging approach such as that of Cox

and Ellsworth. When data are needed for a node

in the quadtree, the manager allocates space in

this shared cache and sends a message to the

manager. Message priorities in this queue are

changed dynamically according to the import-

ance of the associated request as determined by

the manager. Thus, requests that gradually

become less important sift toward the end of

the queue and get serviced only when no

higher-priority requests remain in the queue.

We have found that this page-priority proced-

ure sometimes falls short when handling global

data. Users of such data frequently fly quickly

from a global view, where the terrain elevation

and imagery data are at 8KM resolution, to

views close to the ground, where the data are

at 1 M resolution or higher and there may be

hundreds or more buildings in view. If the user

flies in too fast, the traversal of linked quadtrees

by the terrain manager falls well behind the

user’s navigation. The process can stall in these

circumstances, and the pages for the scene cur-

rently in view can take quite long to arrive.

Unfortunately, the system cannot just jump

to the appropriate position in the quadtree. The

quadtree has to be traversed to get important

properties information, especially quadcell link-

ing data, but also geospatial bounding boxes

and other data, that are necessary to determine

if the object or other data should be displayed

or not. To address this problem we created

separate sets of skeleton trees, one set for each

geospatial data type [12,13]. This separate struc-

ture provides properties information, but is

lightweight so it can be traversed quickly.

Large segments of these skeleton trees can

reside in main memory for fast access. With

the flexibility of this scheme, we can skip one

or more levels before paging in object data. A

predictive mechanism is instituted based on user

navigational speed and viewing direction to help

predict where the terrain manager should skip.

This method makes paging of data several times

faster, especially on PCs. Full data for a par-

ticular node are retrieved only when they are

needed for rendering or visual analysis.

It was stated at the beginning of this section

that everything had a time and a location. We

haven’t yet discussed the time coordinate, and,

indeed, in traditional GIS systems it is not

handled with the generality of the spatial coord-

inates. However, this must change in the

future, because time-dependent phenomena

will become more prominent. This will be espe-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 456

456 Virtual Environments for Visualization

cially true for interactive visualization systems.

One application where time is prominent is

weather visual analysis. In this and other phe-

nomena, one must consider the relevant time

scales and how the data are to be used for

each scale. With weather, for example, there is

time within events and time between events.

These scales should be handled with different

queries of the data structure. Within an event,

such as a storm front, one usually wants to

follow the detailed dynamic behavior as an ani-

mation in time. Between events, one may want

to do a different sort of query that gathers infor-

mation about the number and types of storms

during a period of time over an area. This could

then be followed by detailed interaction with

animations of individual storms. Time scales

and how to handle them can emerge for all

types of data in the virtual GIS. Buildings and

urban streetscapes (including tree cover and the

amount of concrete) will have time scales over

which they change. Even terrain and natural

features such as rivers will be dynamic over a

long enough time scale.

23.4 Multiresolution Models

To support interactive visualization and effi-

cient-networked data-passing, the previously

mentioned global data structure must encom-

pass multiresolution models. For large-scale

data, whether terrain, buildings, weather, street

and state boundaries, or something else, there

must be a multiresolution model that fits the

data type and integrates with the other data

types for simultaneous display. These models

must fit into the detailed, data-dependent repre-

sentations of Fig. 23.6.

23.4.1 Terrain

Terrain models have received the most attention

because they are the basis of virtual GIS systems

and are also quite large. For example, the global

terrain model in our VGIS system has, with

high-resolution insets, nearly 100 GB of data

(and it’s growing). We will first review some

key work on the development of multiresolution

models of terrain. Much of this work is in the

context of broader efforts to develop multireso-

lution models of more general complex surfaces.

Terrain is represented as a tessellated height field

in one of two main forms: triangulated irregular

networks (TINs) or regular grids. A number of

different approaches have been developed to

create TINs from height fields using Delaunay

and other triangulations [21,50]. In addition,

hierarchical triangulation representations have

been proposed that lend themselves to multire-

solution LOD algorithms [29]. Regular grids

can also produce efficient hierarchical multireso-

lution representations [15,18,39,40]. A main

advantage of TINs is that they can be set up to

follow irregular terrain features (such as moun-

tain ridges) and thus can represent details

with fewer triangles than regular grids. On the

other hand, regular grids, due to their implicit

structure, are more compact, and their multire-

solution hierarchical structure appears to be sig-

nificantly less time-consuming to compute. In

fact, global scale structures with very large ter-

rain models have only been constructed for regu-

lar grids [18,40]. For these reasons, we have

concentrated on regular grid terrain structures

in VGIS. However, it is possible that a hybrid

multiresolution terrain model could be con-

structed that was mainly regular but had TINs

to efficiently represent fine features [61].

A multiresolution model can be made

most efficient through application of a view-

dependent criterion to determine the level of

detail (LOD) for each of its features [29,39,64].

View dependence works by encoding geometry

(and lately also appearance) errors, which occur

in the transition from a higher to a lower LOD,

into projected screen-space errors. The projec-

tion takes into account the position of the

current viewpoint and thus the distance and

orientation of the error. This error, expressed

in pixels, is a natural measure of the perceptual

fidelity of an approximated scene. Since differ-

ent LODs are chosen dynamically (by frame)

for different parts of a scene, view dependence

can be quite efficient for complex terrain.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 457

Virtual Geographic Information Systems 457

(A factor of a hundred or more reduction in

displayed triangles is possible without any re-

duction in visual fidelity [39].) A final addition

to interactive terrain visualization is on-the-fly

occlusion culling [41]. This can reduce displayed

triangles quite significantly when, for example,

the user is flying between mountains or other

terrain obstacles. View dependence and occlu-

sion culling have now been extended to other

types of multiresolution models, including those

discussed next. Ultimately, the view-dependent

multiresolution terrain is typically organized in

quadtree-aligned triangle blocks for insertion

into the data-dependent structure at the bottom

of Fig. 23.6 [18,29,39]. Progressive edge collapse

or vertex removal (for the case of simplifica-

tion), depending on the method, produces the

final list of triangles for rendering from a given

viewpoint.

23.4.2 3D Structures

For reasons given in the first two sections, a

comprehensive virtual GIS must go beyond

interactive terrain visualization. We need an

approach that handles general models that

might be found in a scene, including highly

detailed buildings, trees, statues, bridges, and

other objects. General view-dependent ap-

proaches for triangle LODs have been developed

by several researchers [17,29,40,66]. Recently,

Qsplat, a point-based method based on multi-

resolution splats, has been developed [49]. This

method permits fast construction of good-qual-

ity, view-dependent models and is especially

useful for models with large amounts of small

detail, such as those acquired with laser range

finding. However, relatively flat or smoothly

curving surfaces, such as those found in build-

ings, are not well represented by Qsplat. Ultim-

ately, one would like a hybrid approach that

combines both triangles and splats. This could

be applied to trees or dense regions of detail on

buildings. Initial research has been done in this

direction [9], but more work must be done.

A promising general approach to good-

quality mesh simplification is the quadric error

approach [22]. The basic method contracts arbi-

trary vertex pairs, not just along edges, to min-

imize surface error (that is, the error between

the approximate surface and the original sur-

face). Thus, unconnected regions of a model

can be joined, which results in a better approxi-

mation both visually and in terms of geometric

error than that obtained from topological sim-

plification methods. The ability to handle non-

manifold surfaces makes the method attractive

for the reconstructive (Fig. 23.2) or constructive

(Fig. 23.3) models described in Section 23.2,

which can often be topologically inconsistent.

Recently we have extended this method to

view-dependent rendering of models with an

emphasis on collections of building models

[31]. Here, the view-dependent metric has both

geometry- and appearance-preserving compon-

ents. The latter is derived from a measure of

texture distortion from the original model as

simplification is applied [8]. The view-dependent

metric is a weighted sum of these two compon-

ents, and the weights can be changed depending

on the model and its appearance characteristics.

This gives flexibility to the view-dependent sim-

plification. This general approach can be ap-

plied to models from diverse sources, such as

procedural models, models reconstructed from

range images, architectural CAD models, and

so on. Fig. 23.7 shows the application of the

approach to a street façade model reconstructed

from ground-based laser range images and asso-

ciated photo textures [20]. Finally, the model

must be constrained to simplify to a few textured

planes. A rectangular office building, for

example, should simplify to a textured rectangu-

lar box. In this way, the virtual GIS can make a

smooth transition from, say, close-up street-level

views to helicopter views over the urban area.

The models are now organized so that they

can be inserted into the global hierarchy, which

in the case of 3D structures is extended as in

Fig. 23.8. Here the customized hierarchy for the

building and streetscape geometry takes advan-

tage of the natural organization of the urban

setting. Buildings are grouped into blocks,

which are typically separated by streets. Each

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 458

458 Virtual Environments for Visualization

block is composed of a set of simple facades, to

which textures and 3D details are attached as

described in the previous paragraph. Accurately

geolocated models from various sources, such

as the ones in Figs. 23.2, 23.3, and 23.7, can be

inserted into this structure. Attached to the

façade are not only details such as window

frames and doorways but also pieces of separ-

ated geometry that may be in front of the build-

ing, such as trees, lampposts, and sidewalks. It is

efficient to construct an object tree for the block

with the façades as first-level children and the

separated objects as their children (Fig. 23.8).

Both the façade and the separated objects have

sub-trees to handle LODs in the manner given

above. This whole structure is attached to the

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 459

Figure 23.7 (Left) Original mesh with and without textures; (Right) same view with 1-pixel threshold. (See also color insert.)

Façade
1

Façade
N

LOD
Hierarchy

Object
M

Object
1

Q QQ Q

Linked Global Quadtree

Block

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .
. . .

. . .

. . .

Figure 23.8 Hierarchical structure of 3D block geometry.

Virtual Geographic Information Systems 459

forest of quadtrees of our global terrain hier-

archy (Fig. 23.6), giving buildings precise

locations in the universal lat/lon coordinate

system. This organizes the blocks and other

3D objects for fast view culling and scalable

retrieval [13].

23.4.3 3D Weather

Atmospheric phenomena, such as weather,

pollution, or climate models, can also be inte-

grated into the virtual GIS. All these phenom-

ena tend to be time-dependent, so time should

also be a part of the structure. We will con-

centrate here on a structure for weather, but

we expect the structures for other atmospheric

phenomena to be similar. This structure is

global in scale and will accept different 3D

data formats. Thus we again start with the

forest of quadtrees in Fig. 23.6. The quadtree

extends to a certain level where a quadtree-

aligned volume tree is inserted. Initial traversal

of the quadtree is efficient because the atmos-

phere is a thin layer with respect to the extent

of the terrain (Fig. 23.9). The quadnode is

divided into Nx�Ny�Nz bins where x, y, z

are the longitude, latitude, and altitude direc-

tions, respectively. The bin sort is fast (O(n),

where n is the number of volumetric data

elements). This is a key step because the bins

provide a structure that is quickly aggregated

into a hierarchy for multiresolution detail

management and for view frustum culling.

However, the data element positions can be

retained in the bins for full resolution

rendering (and analysis), if desired. Such detail

is needed for 3D Doppler radar analysis, as

discussed further below. The hierarchy pro-

vides significant savings in memory space and

retrieval cost, since only the data element co-

ordinates for viewable bins at the appropriate

LOD are retrieved. Note that the bins are not

rectilinear in Cartesian space, a factor that

may affect some analysis or volume rendering

algorithms. In general, the bin widths in each

direction are nonuniform (e.g., each of the

bins in the, say, Nz direction may have a

different width). This allows a useful flexibility

in distributing bins, for example, when atmos-

pheric measurements are concentrated near the

ground with a fall-off in number at higher

altitudes.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 460

O

OO

O

O

O

O

O

O O

OO

OO

O O

O

O O

O

O

O O

O

Q

b b b b

b b b b

b b b b

b b b b

b

Volumetric
Block

Nonuniform
Data

Nx * Ny * Nz Bins

. . .

Weather Event

2-, 4-, or 8-fold
... Time-Step i ...

M Levels

Figure 23.9 Hierarchy for 3D, time-dependent atmospheric data.

460 Virtual Environments for Visualization

Each of the dimensions N in the x, y, z direc-

tions is a power of 2. This permits straightfor-

ward construction of a volume hierarchy that is

binary in each direction. Our tests show that

this restriction does not impose an undue limi-

tation [48], at least for the types of atmospheric

data we are likely to encounter. The number of

children at a given node will be 2, 4, or 8. If all

dimensions are equal, the hierarchy is an octree.

Typically the average number of children is

either 4 or 8. We restrict the hierarchy to the

following construction (others are possible):

Suppose that Nx ¼ 2m, Ny ¼ 2n, and Nz ¼
2p where m > n > p. Then there will be p 8-

fold levels (i.e., each parent at that level has 8

children), n-p 4-fold levels, and m-n 2-fold

levels. If two out of three exponents are equal,

there will be only 8-fold and 4-fold levels. The

placement of 2-, 4-, and 8-fold levels within the

hierarchy will depend on the distribution for the

specific type of volumetric data. The octree

structure and the number of levels depend on

the type of data. The Doppler radar data, for

example, will have more levels in the x, y direc-

tions than a global climate model, but the cli-

mate model will have more levels in the z

direction.

Properties at parent nodes are derived from

weighted averages of child properties. The

parent also carries the following weighting

factors: (1) the total raw volumetric data elem-

ents contained in the children; (2) the total filled

bins contained in the children; and (3) the total

bins contained in the children. The quadnode

level is chosen such that there are between 1 and

10 K bins (i.e., leaf nodes in the volume hier-

archy). This sets a reasonable balance between

the costs of traversing global quadtree and

volume hierarchies and the need to enable ef-

fective handling of volumetric data in the lon/lat

and altitude dimensions. Note that the bin

structure and volume hierarchy are static in

space. We can efficiently apply this structure

even to distributions of volumetric elements

that move in space as long as the range of

local spatial densities and the volume of the

data do not change much over time.

For data incommensurate with the quadtree

bins (e.g., Doppler radar data), the bin sizes are

chosen such that there are at most a few volu-

metric elements in each bin. The reason for this

choice is that we want a smooth transition be-

tween rendering of bin-based levels of detail and

rendering of the raw data. The final step in the

LOD process is the transition from the bins to

the underlying raw data. Because the volume

hierarchy permits fast traversal, this choice is

efficient even for sparse data with holes and

high-density clumps, as shown in Section 23.6.

To support interactive visualization, we fur-

ther organize the volumetric structure as indi-

cated at the bottom of Fig. 23.9. The volume

tree structure goes down to a certain level, after

which the bins are arranged in volumetric

blocks. The block can be either a 3D array

of bins or a list of filled bins, depending on

whether the data distribution is dense or sparse.

We have found in our applications so far that a

block containing one bin gives good results [48].

(In other words, the volume tree goes all the

way to single bin leaf nodes.) However, the

multibin block structure is available if it should

prove efficient for future data distributions. Ul-

timately, we expect that the data distribution

will inform the visualization technique used. It

may be sufficient to use traditional (continuous-

field) volume visualization techniques for dense

or uniform data, but different techniques may

be better for sparse data. This structure is set up

to handle simultaneous, overlapping datasets.

These might include, for example, data from

overlapping Doppler radar sets along with

data from weather simulations, all of which

might have different spatial distributions. In

addition, a view-dependent technique for choos-

ing the appropriate resolution will balance

interactivity and visual quality, as it does for

terrain and buildings. The application in

Section 23.6 demonstrates the ability to handle

overlapping datasets and view dependence.

As discussed in the last section, there are two

levels of time that should be handled in this

structure. One level is time within events and

the other level is time between events. For

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 461

Virtual Geographic Information Systems 461

example, time-dependence within a weather

event such as a storm will be represented by

time-steps that can be handled at the level of

the volume tree, as shown in Fig. 23.9. At this

point, an additional time structure could also be

inserted [52] to provide further efficiency in

rendering through temporal coherence. The

structure that distinguishes between weather

events (e.g., different storms) is at a higher

level in the quadtree structure and contains

lower quadnodes and volume trees for a par-

ticular event, as shown at the top of Fig. 23.9.

These weather events are in turn embedded in a

top-level quadtree structure. This multikey

structure is designed to balance the benefits of

spatial queries and queries based on events [46].

The goal is to efficiently bring forth displayable

data for a query such as, ‘‘Show me the severe

storms (of a certain magnitude of wind or rain-

fall) that occurred over this period of time in

this region.’’ Of course, the structure must re-

flect the nominal size of both a weather event

and the region covered. Individual storm cells

are too small to be considered independent

events; storm fronts over an extent of a few

hundred miles are probably more efficiently

queryable. Even so, there must be annotations

for important, but small, phenomena (such as

tornado signatures) embedded in larger weather

events. With the latter annotation, one could

efficiently query for tornadoes over a certain

region during a certain time period. Since time

at the event level is a never-ending stream, there

should also be a time structure imposed on the

event structure so queries can be made effi-

ciently over longer periods of time. All these

structures should be the subject of further inves-

tigation and evaluation using real data. Identi-

fying and extracting the weather events is also

an area for further study. At present, we use the

weather features (mesocyclones, storm cells, and

tornado signatures) that come as part of the

real-time Doppler radar analysis [16]. Similar

features could be extracted from weather simu-

lations or other observational data (e.g., ground

flooding features). The weather features are dis-

cussed further in Section 23.6.

23.5 Interaction and Display

23.5.1 Interaction

Fast, intuitive, and effective interaction is at the

core of an effective exploratory visualization

system. For such a system, there are three

main modes: navigation, selection, and manipu-

lation [6,57]. The manifestation of these modes

will depend on the type of system and the types

of interaction devices (e.g., tracked, as in

immersive virtual environments, or untracked).

Nonetheless, whatever the type of interaction

device, certain fundamental features of the

interaction mode remain the same.

Navigation is of prime importance in a virtual

GIS because the main way to get to a location

in an extended geospatial database is to ‘‘fly’’

or ‘‘drive’’ there. As shown above, this act of

navigation engenders a continuous act of data

retrieval. The flying or driving, which involves

a sense of moving past some details and

getting closer to others (which then ‘‘unfold’’

to reveal inner details), is an example of focus

þ context. Focus þ context is a main tenet of

the exploratory visualization of extended infor-

mation spaces [1], where one does not usually

know exactly what one is looking for or where

to find it. In virtual GIS, focus þ context

is achieved through continuous, scalable navi-

gation and also through linked overview

windows.

Our VGIS system has three types of naviga-

tion, which operate in both tracked and un-

tracked environments: orbital mode, fly

mode, and walk mode [59]. Through testing and

experience we have found that navigational

degrees of freedom (up to seven, including pos-

ition, orientation, and scale) can be restricted

depending on the mode while still retaining navi-

gational flexibility. Orbital mode presents a

third-person viewpoint and always looks down

from above. Users can zoom in, pan, or rotate

the scene (Fig. 23.10). This mode is good for

positioning from a wide, even global, overview

and then zooming in with continuous position

selection updates. Since extreme changes in scale

are often encountered (one can fly from global

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 462

462 Virtual Environments for Visualization

overviews to 1-foot resolution insets), one may

not know where, say, Atlanta is in a global over-

view and must zoom in, adjusting on the fly as

more detail is revealed. One may conversely be

flying towards the Grand Canyon and notice an

interesting feature along the way to stop and

explore. These are examples of focus þ context

in action. Fly mode has the most degrees of

freedom, and it simulates helicopter-like flight.

The view direction is towards the horizon, and

users can control position (latitude, longitude,

height) plus pitch and yaw. We have removed

roll as an unnecessary and also confusing degree

of freedom. In walk mode, users are restricted to

a ground-following altitude, which can be

changed. Ground position (latitude, longitude),

pitch, and yaw are also under user control.

Through an interactive height adjustment, the

user can also fly at a fixed height in this mode.

When employing tracked interaction, a user can

switch seamlessly between modes without menu

or keyed selection [60]. The switch between or-

bital and fly modes, for example, is accomplished

by turning the ‘‘button stick’’ controller (Fig.

23.11), which has a tracker attached to its shaft,

from horizontal (where it is used like a pointer

with a virtual ray emanating from its end) to

vertical (where it operates like an airplane joy-

stick). The scene automatically switches from the

top-down, orbital mode to fly mode at the same

altitude.

Selection and manipulation modes are used

to select objects (or regions) in 3D space and

then manipulate them. In VGIS, a main mode is

selecting at a distance via intersection with a

virtual ray. One can also select via the cursor,

which is especially effective in orbital mode

but also can be used in fly mode. In this

case, a virtual ray is cast from the viewpoint

(either the head-tracked eyepoint or the default,

screen-centered viewpoint in the untracked

case) through the cursor to intersect the selected

object. Because of the depth of scale, selection

can be difficult since the scene may be cluttered

with many objects that are small because they

are far away. In addition, we can have atmos-

pheric phenomena, which are volume rendered

and thus do not have distinct surfaces to select.

To handle the depth-of-scale problem, one

can use interactivity and fly closer. Overview

windows at different scales with selection cap-

ability in each can also be quite helpful (or

alternatively act as movable ‘‘magic windows’’

for close-ups). The latter problem needs new

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 463

Figure 23.10 Rotation of detailed scene in orbital mode.
Figure 23.11 Button stick (top) and glove with finger con-

tacts (bottom): two modes for 6 DoF interaction. (See also

color insert.)

Virtual Geographic Information Systems 463

techniques, such as selection of a distant point

in space rather than an object. We are working

on techniques to do this, which will also help

with general object selection. Manipulation

modes are restricted within VGIS [57,62]. One

can move a selected object and change its orien-

tation. One can do simple scaling in a body-

oriented direction. Objects such as buildings

and ground vehicles snap so they remain in an

upright orientation. Such manipulations can be

performed in either a tracked or an untracked

environment. We use building manipulation, for

example, as a step in our semi-automated urban

modeling system [62], where newly modeled

buildings are adjusted in VGIS with respect to

other urban models and the street layout before

final insertion into the database. In the future

we expect to need additional manipulation cap-

abilities for our urban planning applications.

23.5.2 Navigation and Selection in
a Global Space

It is worth discussing navigation and selection

in greater detail to show how interactivity is

maintained in a highly scalable global space.

For full details refer to Wartell et al. [59,60].

The accurate global model uses a two-param-

eter ellipsoidal coordinate system commonly

used in geodesy [56]. This coordinate system is

based on a spheroid (Fig. 23.12). The two par-

ameters are the spheroid’s major semi-axis, a,

along X and Y, and the minor semi-axis, b,

along Z. In this system, longitude, l, is equiva-

lent to the longitude in spherical polar coordin-

ates; however, latitude, c, is the angle between

the surface normal and the equatorial plane.

Altitude, h, is measured parallel to the normal

between the point in question, P, and the under-

lying surface point. In this coordinate system,

the quads in the global forest of quadtrees

(Section 23.3) are bounded by meridians and

parallels; the meridians provide East and West

planar faces, while the parallels provide North

and South conical faces (Fig. 23.13) Thus, the

quads are triangles at the poles and quadrilat-

erals elsewhere. (Note that since meridians are

not geodesics, these are not true spheroidal tri-

angles or quadrilaterals. We ignore this distinc-

tion here.) For surface features (terrain,

buildings, vehicles, etc.), each quad is aug-

mented with a height attribute equal to the

maximum spheroidal height of the contained

data; thus, it is a ‘‘spheroidal height quad’’

(Fig. 23.13).

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 464

P

h

NZ
X

−Y
l

y

Figure 23.12 Two-parameter ellipsoidal coordinate system

used for global space.

Upper
Boundary

South Cone
WedgeWest Plane

Wedge

East PlaneWedge

North Cone
Wedge

Base
SpheroidLower

Boundary

Figure 23.13 Quadrilateral height quad.

464 Virtual Environments for Visualization

Using this structure for surface features,

we must provide an efficient method for finding

arbitrary ray-to-surface intersections, since

ray casting is a main mechanism for both free

navigation and selection. Our basic algorithm

traces the XY projection of a ray through the

XY footprints of the spherical height quads.

When the projection enters a height quad, the

entering and exiting z coordinate of the ray is

compared to the height of the quad. If the ray

intersects the quad, the algorithm steps into the

child quads at the next resolution level. Other-

wise, the algorithm steps into the next quad at

the same resolution level. Fig. 23.14 illustrates

this process: it presents a side view with the ray

in red and three levels of height quads. The red

volume is the lowest level intersected by the ray.

At a leaf node, the algorithm checks

for intersection with a surface, e.g., terrain or

building.

The basic algorithm is similar to ones used for

fast, interactive traversal in Cartesian coordin-

ates [7]. However, the spheroidal height quad

complicates matters and requires a general

3D approach to ray–quad intersection. We

construct this approach by considering the

bounding surfaces of the quad. For a quadrilat-

eral height quad, these consist of two plane

wedges and two cone wedges (Fig. 23.13). The

plane side boundaries are functions of the lon-

gitude l, while the cone side boundaries are

functions of the latitude c (Fig. 23.12). The

upper boundary surface of the quad is not a

spheroid. However, for a good approximation,

we can make it a spheroid with major and minor

axes that depend on h. Finally we can model the

lower boundary surface of the quad as a sphere

whose radius equals the distance from the

spheroid center to the closest terrain vertex in

the quad. This ensures that the sphere lies inside

the true lower boundary and also is close to it.

Details are in Wartell et al. [60].

When a user casts a ray, the algorithm first

clips the ray to the volume bounded by a global

upper boundary and a global lower boundary.

The upper boundary is the spheroidal bounding

surface with height equal to the maximum

global surface feature height. The lower bound-

ary is the minimum distance sphere for any

terrain feature. Next the algorithm determines

the zone in the forest of quadtrees that the

ray first enters. Successive quad levels are

stepped through, as described above, until

either an intersection occurs or the ray exits

the global boundaries. Since the upper bound-

ary is curved, it is insufficient to check the

height of the ray’s entering and exiting intersec-

tions with the side boundaries. Instead, we must

compute the ray’s parameter values, t_in and

t_out, at these side intersections; then we com-

pute the ray’s intersection parameters, t_0 and

t_1, with the quad’s upper boundary surface

(Fig. 23.15). If and only if these two parameter

intervals overlap will the ray have entered the

height-quad volume. If the ray intersects the

quad, the algorithm can determine which chil-

dren to check by tracking the parent side

boundaries that are intersected. Note that in

the spheroidal case, a ray may intersect all four

of a quad’s children or may enter a quad twice

(by intersecting a latitude cone side boundary

twice, for example).

This ray-casting method can be used for

any surface modeling method (e.g., voxel, bi-

linear patch, or triangles) or for any 3D objects

upon the surface. However, the traversal of the

individual elements is model-dependent. For

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 465

Figure 23.14 Side view of ray-traversing height quads.

Virtual Geographic Information Systems 465

example, for a regular triangle mesh, the height-

quad tree does not typically recurse down to

the smallest terrain element. Instead, the leaf

quad will contain a fixed-size block of triangles

[18,39], and the algorithm must separately trace

the ray through this block. Triangle models

pose the additional problem that they do not

quite fit the concave spheroidal height quad

boundaries (specifically the latitude cone

boundary in Fig. 23.13). This containment

problem can potentially cause the algorithm to

miss a ray intersection. However, when using

interactive pointing and grabbing in practice, it

is our experience that this case never occurs, and

we thus ignore it [60].

Now we turn to a discussion of how inter-

active display must be controlled in order to use

these techniques most effectively in the global

environment. We discuss interactive display in

the context of zooming, since this is where

changes of scale are greatest. One can also

have panning, rotation, and other navigation

modes.

23.5.3 Interactive Display

We will focus on head-tracked stereoscopic dis-

play for the highly scalable global environment

[59]. This is the most complex display situation.

Issues specific to head-tracked stereo display

include the following: maintaining a good stereo

effect as one moves closer to or farther away

from objects (especially if the change of scale is

great); the need to handle some degrees of free-

dom differently from in monoscopic interfaces;

problems with stereo fusion at certain viewing

positions; collapsing of the stereo effect due to

clipping by the screen boundary or occlusion

by user hands or bodies; and difficulties with

accurate selection and detailed manipulation

caused by the simultaneous stereo images. These

issues apply to a range of stereoscopic display

environments, including virtual workbench,

CAVE, and wall-projected systems. We will

now discuss these issues from the standpoint of

a virtual workbench.

A natural default start position is a global

view. To obtain this, we compute the radius,

R, and offset, O, of the largest sphere that is

contained in the default view volume. Fig. 23.16

shows a side view of the situation. We fix the

sphere center to be in the projection plane in

order to keep half of the planet above the phys-

ical display. This makes the planet as large as

possible while permitting the user to reach as

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 466

Upper
Boundary

Side Boundaries

Play

t0

t1

t_out

t_in

Figure 23.15 Side view of ray intersection.

Frustum

E (Central Eye)

H

WH

SH

D O

R

R

Workbench

BfA

g

Figure 23.16 Side view of a virtual workbench.

466 Virtual Environments for Visualization

much of the planet as possible directly with his

or her hands.

WH is the height of the display surface.

Points A and B represent the edges of the dis-

play area. Lowercase letters represent the illus-

trated angles. Computation is then done in a 2D

coordinate system whose origin is at the display

center. O and R are computed as follows:

O ¼ H

tan e
�D, R ¼ Osin a

Angles e and a can be easily calculated from the

other labeled points in Fig. 23.16. The O and R

values are then used to set the initial user scale

and position.

To manage diplopia (double vision, in this

case due to inability to fuse separate images in

stereo display because of screen parallax), we

initially dynamically adjusted the near clipping

plane to clip out nonfusable terrain [53]. As a

result, when a user moves his or her head too

close to the planet, an upper portion is clipped

out. We informally observed, however, that

clipping the planet’s top as the user leans in is

as distracting as diplopia. We suggest that this

occurs because real-world viewing can yield dip-

lopia but cannot yield the effects of a near clip-

ping plane. People experience diplopia when

trying to view objects immediately in front of

their faces. While real-world and virtual-world

diploptic thresholds and causes differ, people

are nonetheless more familiar with reaching

and avoiding diploptic conditions than they

are with seeing a near clipping plane suddenly

slice through an object. As a result, we do not

dynamically adjust the near clipping plane.

Zooming by scaling must augment zooming

by camera translation within any interface that

employs a head-tracked display, a stereoscopic

display, or direct manipulation with a tracked

device [59]. Thus, there are seven degrees of

freedom for general interactions, as discussed

above. With head-tracking, zooming out by

moving the viewer away from an object will

rapidly increase the sensitivity of the projected

image to head position. Such sensitivity can be

quite distracting. By using an independent scale

dimension, the system can scale down the object

and preserve the object–viewer distance in order

to avoid this problem. In the stereoscopic case,

zooming by moving the viewer toward or away

from an object can bring the object either far

above the display surface or far below the dis-

play surface. In both cases the resulting screen

parallax is likely to grow too large, causing user

diplopia. Scaling the object while keeping

the object near the projection plane solves the

problem. Finally, direct manipulation using a

tracked device will be difficult for large objects.

Manipulating objects is easiest when the user

can see the complete object and the object is

within arm’s reach of the viewer [44]. If, in

order to see the complete object, the viewer

must move away from the object, it is impos-

sible to satisfy both of these requirements.

Again, the solution is to scale so that the object

is small enough to be brought close to the user

and still be viewed in its entirety.

Thus, the zoom technique involves a user-

controlled scale and translation plus an auto-

matic translation. In addition, the zoom is

toward a user-selected position using this ray-

intersection technique. The position can be up-

dated as one zooms in, which is quite useful

when one is zooming over large changes in

scale (e.g., from outer space to a section in a

city). The scale and translation work as follows

in an environment with 6 DoF input. (See Figs.

23.10 and 23.11 for a virtual workbench setup

with tracked pointer input.) When the user

presses the zoom button, the current 6 DoF

pointer position is recorded. As the button is

held and the pointer is moved toward or away

from the projection plane, the magnitude of the

displacement from the initial position is com-

puted. The magnitude determines the zoom

speed. The direction of zoom, either in or out,

is determined by whether the pointer is dis-

placed closer to or farther from the projection

plane. To perform the zoom, we first scale the

platform coordinate system up or down based

on magnitude and direction of the pointer

movement. This has the effect of changing the

physical-world-to-virtual-world scale factor,

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 467

Virtual Geographic Information Systems 467

making the perceived world shrink or grow.

Next, if the pointer ray intersects the terrain,

the platform coordinate system origin is simul-

taneously scaled about this intersection point.

This causes the user to zoom about the selected

point. This technique gives the user control of

zoom speed and direction plus control of the

zoom-in point.

In addition to this scale and translation activ-

ity, the user is automatically repositioned so

that the planet appears to smoothly rotate

about the selected terrain point. In detail, the

planet rotates so that the planet normal at the

selected terrain point becomes perpendicular

to the projection plane. Without this automatic

rotation, a zoom quickly brings too much of the

planet out of the projection plane, leading to

image-fusion problems and severe frame cancel-

lation. Our viewing adjustment step (following)

would only serve to push the planet deeper into

the display plane, driving the target location

farther away. The automatic rotation avoids

these problems.

We need an automatic adjustment step to

maintain good stereoscopic depth. Our goal is

to take maximum advantage of stereoscopic

depth cues while minimizing diplopia, frame

cancellation, and image distortions. Maximizing

stereoscopic depth cues entails keeping the ter-

rain within 1.5 meters, the distance where stereo

is strongest as a depth cue [11]. For an immer-

sive virtual environment, this usually means

keeping the terrain as close as possible, while

still considering image fusability and frame can-

cellation. Also, keeping the terrain slightly

above the display plane puts most objects within

arm’s reach and lets the user contact objects

that are stereoscopically above the display.

The adjustment step works in the following

way. The rendering thread renders display lists

containing terrain (and other object) geometry.

This thread copies a sample of the right-eye

depth buffer generated from the display list,

and then the navigation thread examines this

copy. The navigation thread scans the depth

buffer and finds both the farthest point above

the projection plane and the nearest point.

During the same loop, we also record the

number of pixels, A, above the projection

plane and the number of pixels, P, not equal

to depth buffer clear-screen value. Two rules

then apply. If A/P is less than a threshold

(85%), we move the user along the projection-

plane normal in order to bring the near point to

a predetermined target height, TH, above the

display plane. If A/P is greater than a threshold,

then we move the user along the projection-

plane normal so that the far point is flush with

the display plane.

While the first rule simply draws the terrain

peaks above the display, the second rule coun-

ters a problem. At certain scales and terrain

formations, the first rule can bring an undesir-

able amount of the terrain above the display

plane. For example, a particular dataset might

contain a few peaks and then mostly flat land.

At certain scales, the first rule would cause all of

the flat terrain to be floating above the display.

In effect, there is a large plane that extends far

beyond the window limits hovering above the

display. Even at target heights as small as 5 cm,

the uniformity and extent of this plane create a

strong frame-cancellation effect. In contrast for

the same target height, if the terrain is more

undulating, then the frame-cancellation effect

is less disturbing. We surmise that this occurs

because with undulating terrain only some of

the terrain at the display edges is clipped by

the view frustum, while with the flat planar

terrain all terrain at the display edge is clipped.

Given this situation, the more natural position

for this problematic terrain is with the planar

area flush with the display plane. The second

rule catches such cases—where too much terrain

is above the display plane—and pushes the ter-

rain back down.

For the target height, TH, we use a constant

value that empirically works well. While TH

could be adjusted as a function of the nearest

fusable image plane, this would cause the ter-

rain to be pushed down into the display plane

when the user leans down for a closer look.

We informally observed that such behavior is

more unnatural than diplopic conditions. While

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 468

468 Virtual Environments for Visualization

people experience real-world diplopia when

peering too closely at an object, they do not

experience inanimate objects autonomously

moving away when closely examined. There-

fore, TH is set to 10% of the standard user

height above the workbench, a position within

fusability constraints for the standard eye height

[65]. Finally, we move the user at a logarithmic

rate, rather than instantaneously, towards

the target position. Since our rule pair leads to

opposing motions and since the adjustment step

is switched off above certain scales, a smooth

transition is more appropriate to prevent abrupt

transitions. Such instantaneous movements

have been shown to adversely affect user spatial

awareness [3].

Depending on user activities, depth of objects

above the terrain might need to be considered.

If the user wants to see aircraft, for instance, it is

important to account for their depth values so

that all of them are visible. On the other hand, if

the user is focusing on the terrain, accounting

for the aircraft could be problematic, as it could

push the terrain far below the display plane

when bringing the aircraft into view.

23.6 Some Applications

Several applications have been developed

around the interactive capabilities of virtual

GIS and its ability to integrate diverse data

through visualization [2,6,18,27,32,34,42,47,

48,54]. Here I will highlight the global aspect

of virtual GIS (as discussed in Section 23.3) by

discussing weather visualization and urban visu-

alization, two applications that use quite differ-

ent data but use them in the context of the same

general data organization. As shown below,

these different data can even be displayed and

analyzed together.

23.6.1 Weather Visualization

High-resolution weather data, either from com-

putational models or from data sources such as

3D Doppler radar, are becoming more widely

available and used. Methods for interactively

visualizing and analyzing these 3D data, such

as volume rendering or isosurface extraction,

are of importance. For example, Kniss et al.

[33] have recently applied a multidimensional

transfer function to the volume visualization

and analysis of high-resolution weather models.

Adjustment of the transfer function, which sets

color and opacity values for the 3D scalar field

being visualized, is important in analyzing the

structure of the field. By having a transfer func-

tion that tracks both data values and gradients,

Kniss et al. can better identify frontal zones and

their characteristics. On the other hand, Gerst-

ner et al. have recently used isosurfaces for mul-

tiresolution investigation of local rainfall over

terrain [23]. The rainfall is derived from 3D

radar measurements. Appropriately chosen iso-

surfaces show significant detail in the pattern of

rainfall. (In Fig. 23.17, positioning of rain shafts

and the shape and location of the rain cloud can

be seen clearly.) Both of these techniques could

be integrated into the general multisource, mul-

tiresolution structure described in the previous

sections.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 469

Figure 23.17 Isosurfaces of rainfall patterns over a terrain

model. (See also color insert.)

Virtual Geographic Information Systems 469

Real-time analysis of time-dependent 3D

Doppler radar datasets is of particular interest

because the radar signatures will contain

detailed information about the location, shape,

direction, and intensity of precipitation patterns

and wind shears. The latter are particularly

useful in identifying severe storms, including

tornadoes. The 3D structure of the storm in

the Doppler radar profile can then provide im-

portant information, such as whether the storm

extends to the ground (the most dangerous situ-

ation) or remains above the ground, as well as

specifics of the 3D shape, that further indicate

the severity and type of storm. Up to now, there

has been little analysis of the full 3D structure of

the Doppler data because there has been no

effective means for visualization. Interactive,

real-time 3D visualization of these events and

structures, within the context of the global en-

vironment, has been a focus of both our work

and others’ work [23,30,48].

In our work, we have attacked both the non-

uniform structure of the 3D Doppler radars and

the scalability issue that arises because the U.S.

is covered with more than 140 overlapping

radars [23,48]. One would like to have overview

visualizations and then zoom into a particular

region and show any overlapping radars for

that region. We have found the structure in

Fig. 23.9 well suited for both scalability and non-

uniform data. In addition, of course, it permits

integrated visualization with high-resolution

terrain models. As an example, Fig. 23.18 (left)

shows a visualization of about 40 radars over

the eastern U.S., while Fig. 23.18 (right) shows a

zoomed-in view of a storm front captured by

one of the radars. In the latter figure, storm cells

are also visualized. These are features extracted

from the Doppler data as it is collected, and

they locate positions of possible severe storm

activity [16]. A user can use these as guides to

fly in for a closer look.

We require a visualization method that

retains the nonuniform character of the data at

highest resolution. Important storm features,

such as tornadoes, may only be 1KM or less

across and thus cover only 1 or 2 gates in the

Doppler radar sampling, so retaining a picture

of the original data distribution is essential.

However, typical volume visualization tech-

niques apply to uniform grids, which would

require resampling of the original data. Re-

cently, extensions have been developed that

apply to certain classes of irregular grids, but

the arbitrary overlapping character of the radar

areas makes it unlikely that these techniques

would be generally applicable. We have instead

opted for a multiresolution splatting technique.

Splats can be treated independently and, if de-

sired, without reference to the underlying data

topology. Thus, splats can be applied to irregu-

lar volume datasets [43,67] and even to unstruc-

tured points with no explicit topology. It is then

straightforward to set up a view-dependent

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 470

Figure 23.18 (Left) Overview of more than 40 radars in the eastern U.S.; (Right) close-up of storm front after zoom in. (See also

color insert.)

470 Virtual Environments for Visualization

structure for the splats [30] where the highest

resolution reveals the nonuniform distribution,

and lower resolutions are based on the volume

tree structure of Fig. 23.9. For the latter, a

multiresolution splat hierarchy can be applied

[36]. Some results from interactive navigation of

the splat structure are shown in Fig. 23.19. Here

the user has navigated in fly mode to a view

along the ground. The 3D structure of a severe

storm cell and its relation to the Earth’s surface

are clearly seen.

To permit the user to navigate more quickly to

a weather event of interest and to investigate it

closely, we have recently been working on 3D

decision support tools. Here the user can cast

rays to quickly select a volume in space, then

grab it and pull it close, and finally travel around

it (perhaps with background data turned off so

the structure can be interacted with most quickly

and seen most clearly). An initial version of these

tools is shown in Fig. 23.20, where the user has

placed a lens around a region of interest. The

eventual goal is to get these tools into the hands

of weather forecasters and other decision

makers. These people must often make decisions

in a few minutes. With interactive, comprehen-

sive visualization, they will be able to get to

weather events quickly and observe their time-

dependent, 3D structures closely.

23.6.2 Urban Visualization and Planning

Urban visualization with accurate interactive

visualization of buildings, shrubs and trees,

street layouts, and other city features has been

an important area for virtual GIS. There are

many applications, including urban planning,

education, emergency response, tourism and en-

tertainment, military operations, traffic man-

agement, construction (especially large-scale

projects), various geolocated and mobile ser-

vices, citizen–government relations (when com-

plex civic projects are vetted), games based on

real locations, and others. Recently urban plan-

ning has come to the fore as a prime applica-

tion. This is due to the rise of ‘‘smart growth’’

principles applied to urban planning. Planning

to counteract the effects of urban sprawl, in-

cluding traffic congestion, increased pollution,

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 471

Figure 23.19 (Left) Ground-level view of the 3D structure of a severe storm cell. (Right) Close-up view of the same cell.

Figure 23.20 3D decision support tools.

Virtual Geographic Information Systems 471

and lowered quality of life for citizens, is

centering around higher-density environments

with mixed uses and decreased commuting. Ap-

plying these smart-growth principles means

carefully considering new developments in the

context of the existing city. Furthermore, this

planning is a negotiation between multiple

groups that often have conflicting interests,

such as local residents, developers, business

owners, and government at all levels. Integrated

visualization with efficient access to comprehen-

sive data has been recognized as vital to opti-

mizing this process [19]. The Virtual LA Project

has provided initial evidence of the effectiveness

of navigable visualization for planning [6,32]

(Fig. 23.1). This work included developing and

visualizing redevelopment alternatives for areas

in Los Angeles, such as the Pico Union District

and the Wiltshire-Vermont area. More recently

the project team has helped develop plans for a

mixed-use, master-planned community in Playa

Vista, near Los Angeles.

Different levels of accuracy can apply to 3D

urban visualization. At the lower end, one can

have simple, textured polygonal models with

accurate footprints, locations, and heights, and

with textures extracted from photos of the

actual buildings. This approach has been ap-

plied to extended urban environments with hun-

dreds to thousands of buildings, as indicated in

Figs. 23.1 and 23.2 and in Figs. 23.21 and 23.22.

At the other end, as discussed at the beginning

of this chapter, one can have highly detailed

models either reconstructed from ground-based

or aerial acquisition (Fig. 23.7) or modeled

using traditional CAD or procedural techniques

(Fig. 23.3). In all cases, the modeling process is

laborious, though recently tools have been de-

veloped for semiautomated reconstruction [62]

and more automated procedural construction

[63]. All of these cases can be successfully

inserted in the global hierarchy customized as

in Section 23.4 (Fig. 23.8) and efficiently paged

in, culled, and visualized. Indeed, we have done

this with extended collections of simpler models

for cities such as Atlanta, Los Angeles, San

Francisco, and Savannah. One can fly into any

of these urban environments. As one gets closer,

the buildings in the view frustum are automatic-

ally paged in, and one can then fly around the

cityscape (Figs. 23.21 and 23.22). There is no

obstacle to scaling up this collection of urban

areas so that it contains 3D models for, say, all

cities in the U.S. However, if the number of

buildings concentrated in a single urban area

grows into the tens of thousands or more, or if

the amount of detail per building grows (as in

Fig. 23.3), then new rendering techniques are

needed to maintain interactivity. Urban visual-

izations such as those presented here are already

being used for way-finding, emergency re-

sponse, and other applications. In some cases,

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 472

Figure 23.21 The fly-in to a close-up view of downtown

Atlanta. (See also color insert.)

Figure 23.22 The fly-in to downtown San Francisco. (See

also color insert.)

472 Virtual Environments for Visualization

traditional GIS databases have been attached

and queried from within the visualization [2].

23.7 Conclusions and Future Work

I have described virtual geographic information

systems, which have developed rapidly with the

advent of 3D graphics cards, powerful desktop

and laptop computers, and new algorithms

for acquiring, handling, and visualizing geospa-

tial data. As a result, the applications for inter-

active virtual GIS are rapidly growing. One

of the current areas of intensive investigation is

the handling of large amounts of data from

diverse sources. These include access to much

more extensive terrain models (e.g., 30 M eleva-

tion and image data for the entire U.S. plus

higher-resolution insets, such as 1M image

data for the state of Georgia) plus LIDAR

data for several urban areas. Lately these have

been augmented by methods for ground-based

collection of 3D urban data. All these different

data could be integrated into a common frame-

work by a global geospatial data organization.

However, this data organization must be con-

structed for interactive visualization of scalably

large amounts of data. This means that it must

support multiresolution data structures appro-

priate for each type of data. These structures

are best accessed for visualization through

view-dependent methods that minimize the

amount of detail in a scene while maintaining

visual fidelity. This structure can even be effi-

ciently extended to volumetric data associated

with the Earth, such as atmospheric data or

geophysical data having to do with subsurface

structure. Collection and visualization of real-

time weather data is one application that has

been worked on extensively. Weather visualiza-

tion brings with it the question of what to do

with dynamic events. Here there is at least a

two-level structure, both within events and be-

tween events. Methods have been developed to

organize and visualize consecutive time-steps

within events, but the between-event structure

needs further development.

Fast, intuitive, and effective interaction is

at the core of virtual GIS. The multiresolution

models support interactivity, but we must

also have appropriate interactive tools for

navigating vast geospatial environments and

interacting with objects within them. Effective

navigation aids have been developed that take

into account the large range of scales encoun-

tered. The navigation tools and selection and

manipulation tools must interact with an accur-

ate representation of the Earth. When an

appropriate hierarchical traversal algorithm is

provided with these tools, fast, precise, and dy-

namic interaction is possible.

A variety of display types and interaction

modes are available for virtual GIS. In particu-

lar, since the extended geographic spaces are

naturally immersive, it makes sense to develop

immersive, stereoscopic displays. This has been

done by careful consideration of the issues of

stereo projection and the issue of dynamically

handling scale in a head- and hand-tracked en-

vironment. Scale must be handled in such a way

that objects in the environment can be reached

easily through tracked interaction.

Several applications have been developed for

virtual GIS, and its use in current and new appli-

cations is likely to grow significantly in the

future. Among current applications are emer-

gency planning and response, urban planning,

environmental analysis, and weather analysis

and forecasting. This chapter gave examples of

ongoing applications in high resolution, real-

time weather analysis, and urban visualization

and planning.

23.7.1 Future Work

Virtual GIS is at the threshold of vast new data

resources and newapplications that will require a

range of fundamental advances. The LIDAR

data, 3D range images, and aerial and ground

photoimages discussed here are just the begin-

ning of what will be available. Ways of extracting

models from these data, integrating them, build-

ing high-resolution terrains, and visualizing

them must be significantly extended. In addition,

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 473

Virtual Geographic Information Systems 473

time and dynamic character become factors

in high-resolution models, because as the reso-

lution increases, noticeable changes are more

likely to occur over shorter periods of time.

Thus, a time structure becomes necessary for

all data in the virtual GIS. I have discussed the

time structure for atmospheric data. This must

be significantly extended in terms of an event

structure so that it can be queried for weather

or atmospheric events at particular time ranges

or locations. There must also be a structure

for changes in buildings, tree cover, terrain, etc.

This dynamic character implies that there should

be a mechanism for fast, dynamic updates, too.

Significant new ways of manipulating the geos-

patial data will also be necessary. The results

of these manipulations (e.g., marking the terrain

or moving a building) must be dynamically

added to the database. Such capabilities, espe-

cially for applications like urban planning,

must be significantly extended. Urban-planning

teams will want not only to navigate around 3D

models in the context of the rest of the urban

environment but also to move them, cut off or

add wings and floors, change the external mater-

ials, change the landscaping, and so on. These

manipulations must be easy to perform, and their

results must be available interactively. Finally,

the comprehensive and efficiently accessible ac-

cumulation of data, coupled with interactive

visual analysis, opens the door to new methods

of simulation and modeling. Already this is

happening to some extent with simple terrain

models and weather observations, which are

being used as input for mesoscale weather

models. However, in the future, much more will

be possible. We have discussed using Doppler

radar data (and higher-resolution terrain) as

input to real-time, more accurate weather

models. This is just one of many things that can

be done. Flood models, including damage analy-

sis, or high-resolution air-pollution analyses,

could be run. In addition, many other types of

simulations will be possible from traffic and

pedestrian flow analyses to studies of risk and

urban damage due to fire, earthquakes, or other

disasters.

The availability of ever smaller, faster-net-

worked computers means that mobile visualiza-

tion will be a significant growth area. Work in

this area is already starting [35], but much more

remains to be done. It is now possible to carry

around a large geospatial database in a wear-

able computer while interactively visualizing

both the database and geolocated inputs from

GIS, orientation trackers, and location-aware

services. As the economy improves, the develop-

ment of geolocated services and georeferenced

applications will be significant.

References

1. P. P. Baudisch, N. Good, and P. Stewart. Focus
plus context screens: combining display technol-
ogy with visualization techniques. In Proceed-
ings of ACM UIST 01, pages 31–40, 2001.

2. D. Bhaumik, N. L. Faust, D. Estrada, J.
Linares. 3D urban GIS for Atlanta. Proc.
SPIE—The International Society for Optical En-
gineering, 3085:115–124, 1997.

3. A. Bowman, D. D. Koller, and F. L. Hodges.
Travel in immersive virtual environments: an
evaluation of viewpoint motion control tech-
niques. Proc of IEEE VRAIS 97, 1997.

4. D. Bowman. Interactive techniques for common
tasks in immersive virtual environments: design,
evaluation and application. PhD Thesis, Geor-
gia Institute of Technology, 1999.

5. F. P. Brooks, Jr. What’s real about virtual real-
ity? IEEE Computer Graphics and Applications,
19(6):16–27, 1999.

6. R. Chan, W. Jepson, and S. Friedman. Urban
simulation: an innovative tool for interactive
planning and consensus building. Proc. Ameri-
can Planning Association National Conference,
pages 43–50, 1998.

7. D. Cohen and A. Shaked. Photo-realistic im-
aging of digital terrains. Eurographics ’93,
12(3):363–373, 1993.

8. J. Cohen, M. Olano, and D. Manocha. Appear-
ance-preserving simplification of polygonal
models. Proc. SIGGRAPH ’98, pages 115–122,
1998.

9. J. Cohen, D. Aliaga, and W. Zhang. Hybrid
simplification: combining multi-resolution poly-
gon and point rendering. Proc. IEEE Visualiza-
tion ’01, pages 37–44, 2001.

10. M. Cox and D. Ellsworth. Application-
controlled demand paging for out-of-core

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 474

474 Virtual Environments for Visualization

visualization. Proc. IEEE Visualization ’97,
pages 235–244, 1997.

11. E. J. Cutting. How the eye measures reality and
virtual reality. High-Performance Computing
and Human Vision I: Behavioral Research
Methods, Instruments & Computers, 29(1):
27–36, 1997.

12. D. Davis, T. F. Jiang, W. Ribarsky, and
N. Faust. Intent, perception, and out-of-core
visualization applied to terrain. Proc. IEEE
Visualization ’98, pages 455–458, 1998.

13. D. Davis, W. Ribarsky, T. Y. Jiang, N. Faust,
and S. Ho. Real-time visualization of scalably
large collections of heterogeneous objects, IEEE
Visualization ’99, pages 437–440, 1999.

14. A. Duany and E. Plater-Zyberk. Suburban
Nation: The Rise of Sprawl and the Decline of
the American Dream. North Point Press, 1999.

15. M. Duchaineau, M. Wolinsky, D. E. Sigeti,
M. C. Miller, C. Aldrich, and M. B. Mineev-
Weinstein. ROAMing terrain: real-time opti-
mally adapting meshes. Proc. IEEE Visualiza-
tion ’97, pages 81–88, 1997.

16. M. D. Eilts, J. T. Johnson, E. D. Mitchell, S.
Sanger, G. Stumpf, A. Witt, K. Hondl, and
K. Thomas. Warning decision support system.
11th Inter. Conf. on Interactive Information and
Processing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, pages 62–67,
1995.

17. J. El-Sana and E. Bachmat. Generalized view-
dependent simplification. Proc. IEEE Visualiza-
tion ’02, pages 83–94, 2002.

18. N. Faust, W. Ribarsky, T. Y. Jiang, and T.
Wasilewski. Real-time global data model for
the digital earth. Proc. International Conference
on Discrete Global Grids, 2000.

19. P. S. French. Overcoming the barriers to smart
growth: regional benefits versus neighborhood
concerns. 43rd ACSP Annual Conference, 2001.

20. C. Früh and A. Zakhor. 3D model generation
for cities using aerial photographs and ground
level laser scans. IEEE Computer Vision and
Pattern Recognition Conference, 2001.

21. M. Garland and P. S. Heckbert. Fast polygonal
approximation of terrains and height fields.
Tech. Rep. CMU-CS-95-181, Carnegie Mellon,
1995.

22. M. Garland and P. S. Heckbert. Surface simpli-
fication using quadric error metrics. Proc.
SIGGRAPH ’97, pages 209–216, 1997.

23. T. Gerstner, D. Meetschen, S. Crewell, M. Grie-
bel, and C. Simmer. A case study on multireso-
lution visualization of local rainfall from
weather measurements. IEEE Visualization ’02,
pages 533–536, 2002.

24. G. A. Grell, J. Dhudia, and A. Stauffer. A
description of the fifth-generation Penn State/
NCAR mesoscale model (MM5). NCAR Tech-
nical Note NCAR/TN-398þSTR. NCAR,
Boulder Colorado, 1994.

25. M. H. Gross, V. Kuhn, and N. M. Patrikalakis.
A visualization and simulation system for envir-
onmental purposes. Scientific Visualization of
Physical Phenomena, Proc. CGI ’91, pages
639–654, 1991.

26. G. Grueneis, P. Mayer, J. Sauter, and A. T.
Schmidt. Vision. Visual Proc. of SIGGRAPH
95, page 134, 1995.

27. L. E. Hitchner. Virtual planetary exploration: A
very large virtual environment. ACM SIG-
GRAPH ’92 Tutorial on Implementing Immer-
sive Virtual Environments, 1992.

28. L. E. Hitchner and M. W. McGreevy. Methods
for user-based reduction of model complexity
for virtual planetary exploration. Proc. SPIE
1993, pages 1–16, 1993.

29. H. Hoppe. Smooth view-dependent level-of-
detail control and its application to terrain
rendering. Proc. IEEE Visualization ’98, pages
35–42, 1998.

30. J. Jang, W. Ribarsky, C. Shaw, and N. Faust.
View-dependent multiresolution splatting of
non-uniform data. Eurographics–IEEE Visual-
ization Symposium ’02, pages 125–132, 2002.

31. J. Jang, W. Ribarsky, C. Shaw, and P. Wonka.
Constrained view-dependent visualization of
models. Submitted to IEEE Visualization ’03.
Report GIT-GVU-03-09.

32. W. Jepson, R. Liggett, and S. Friedman. Virtual
modeling of urban environments. Presence,
5(1):72–86, 1996.

33. J. Kniss, C. Hansen, M. Grenier, and T. Robin-
son. Volume rendering multivariate data to
visualize meteorological simulations: a case
study. Eurographics–IEEE Visualization Sympo-
sium ’02, pages 189–194.

34. D. Koller, P. Lindstrom, M. W. Ribarsky,
L.Hodges,N.Faust, andG.Turner.VirtualGIS:
a real-time 3D geographic information system.
Proc. IEEEVisualization ’95, pages94–100,1995.

35. D. M. Krum, W. Ribarsky, C. D. Shaw, L.
Hodges, and N. Faust. Situational visualization.
Proc. ACM Symposium on Virtual Reality Soft-
ware and Technology, pages 143–150, 2001.

36. D. Laur and P. Hanrahan. Hierarchical splat-
ting: a progressive refinement algorithm for
volume rendering. Proc. SIGGRAPH ’91,
pages 285–288, 1991.

37. Y. G. Leclerc and S. Q. Lau Jr. TerraVision:
a terrain visualization system. SRI International
Technical Note No. 540, 1994.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 475

Virtual Geographic Information Systems 475

38. B. Leibe, T. Starner, W. Ribarsky, D. Krum,
L. Hodges, and Z. Wartell. The perceptive work-
bench towards spontaneous and natural inter-
action in semi-immersive virtual environments.
IEEE Virtual Reality 2000, pages 13–20, 2000.

39. P. Lindstrom, D. Koller, W. Ribarsky,
L. Hodges, N. Faust, and G. Turner. Real-
time, continuous level of detail rendering of
height fields. Proc. SIGGRAPH ’96, pages
109–118, 1996.

40. P. Lindstrom and C. Silva. A memory insensi-
tive technique for large model simplification.
Proc. IEEE Visualization ’01, pages 121–126,
2001.

41. B. Lloyd and P. Egbert. Horizon occlusion
culling for real-time rendering of hierarchical
terrains. Proc. IEEE Visualization ’02, pages
403–409, 2002.

42. M. R. Macedonia and M. J. Zyda. NPSNET: a
network software architecture for large scale
virtual environments. PRESENCE: Teleopera-
tors and Virtual Environments, 3:4, 1994.

43. X. Mao. Splatting of curvilinear volumes. IEEE
Trans. on Visualization and Computer Graphics,
2(2):156–170, 1996.

44. M. R. Mine, F. P. Brooks, Jr., and C. H. Sequin.
Moving objects in space: exploiting propriocep-
tion in virtual environment interaction. Com-
puter Graphics (SIGGRAPH ’97), pages 19–26.

45. Y. Parish and P. Muller. Procedural modeling
of cities. Proc. SIGGRAPH ’01, pages 301–308,
2001.

46. B. Plale. Performance impact of streaming dop-
pler radar data on a geospatial visualization
system. Technical Report GIT-CC-01-07, 2001.

47. M. Reddy, Y. Leclerc, L. Iverson, and N. Blet-
ter. TerraVision II: visualizing massive terrain
databases in VRML. IEEE Computer Graphics
& Applications, 19(2):30–38, 1999.

48. W. Ribarsky, N. Faust, Z. Wartell, C. Shaw,
and J. Jang. Visual query of time-dependent
3D weather in a global geospatial environment.
Mining Spatio-Temporal Information Systems
(R. Ladner, K. Shaw, and Mahdi Abdelguerfi,
Eds.) Amsterdam, Kluwer, 2002.

49. S. Rusinkiewicz and M. Levoy. Qsplat: a multi-
resolution point rendering system for large
meshes. Proc. SIGGRAPH 2000, pages 343–
352, 2000.

50. F. Schroder and P. Rossbach. Managing the
complexity of digital terrain models. Computers
& Graphics 18(6):775–783, 1994.

51. C. Shaw, W. Ribarsky, Z. Wartell, and N. Faust.
Building the visual earth. Vol. 4744B, SPIE
16th International Conference on Aerospace/
Defense Sensing, Simulation, and Controls, 2002.

52. H.-W. Shen, L.-J. Chiang, and K. L. Ma. A fast
volume rendering algorithm for time-varying
fields using a time-space partitioning (TSP)
tree. IEEE Visualization ’99, pages 371–378,
1999.

53. A. D. Southard. Viewing model for virtual en-
vironment displays. Journal of Electronic Im-
aging, 4(4):413–420, 1995.

54. M. Suter and D. Nuesch. Automated generation
of visual simulation databases using remote
sensing and GIS. Proc. IEEE Visualization ’95,
pages 86–93, 1995.

55. S. Teller. Toward urban model acquisition from
geo-located images. Proceedings Pacific
Graphics ’98, pages 45–51, 1998.

56. P. Vanicek and E. Krakiwksy. Geodesy: the
concepts. Amsterdam, North Holland, 1982.

57. R. Vanderpol, W. Ribarsky, L. F. Hodges, and
F. Post. Evaluation of interaction techniques on
the virtual workbench. Proceedings of Euro-
graphics Virtual Environments ’99, pages 157–
168, 1999.

58. H. Veron, D.A. Southard, J. R. Leger, and J. L.
Conway. Stereoscopic displays for terrain data-
base visualization. NCGA ’90, 1:16–25, 1990.

59. Z. Wartell, W. Ribarsky, and L. F. Hodges.
Third-person navigation of whole-planet terrain
in a head-tracked stereoscopic environment.
Proceedings of IEEE Virtual Reality ’99, pages
141–148, 1999.

60. Z. Wartell, W. Ribarsky, and L. F. Hodges.
Efficient ray intersection for visualization and
navigation of global terrain. Eurographics—
IEEE Visualization Symposium 99, Data Visual-
ization ’99, pages 213–224, 1999.

61. Z. Wartell, E. Kang, T. Wasilewski, W.
Ribarsky, and N. Faust. Rendering vector data
over global, multiresolution 3D terrain. Euro-
graphics—IEEE Visualization Symposium 2003,
pages 213–222, 2003.

62. T. Wasilewski, N. Faust, and W. Ribarsky.
Semi-automated and interactive construction
of 3D urban terrains. Proceedings of the SPIE
Aerospace/Defense Sensing, Simulation & Con-
trols Symposium, 3694A:31–38, 1999.

63. P. Wonka, M. Wimmer, F. Sillion, and W.
Ribarsky. Instant architecture. ACM Transac-
tions on Graphics, 4(22):669–677, 2003.

64. J. C. Xia and A. Varshney. Dynamic view-
dependent simplification for polygonal models.
Proc. IEEE Visualization ’96, pages 327–334,
1996.

65. Y.-Y. Yeh and L. D. Silverstein. Limits of
fusion and depth judgement in stereoscopic
color displays. Human Factors, 32(1):45–60,
1990.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 476

476 Virtual Environments for Visualization

66. S. You and U. Neumann. Automatic mosaic
creation based on robust image motion estima-
tion. Proc. IASTED Signal and Image Process-
ing, 2000.

67. M. Zwicker, H. Pfister, J. van Baar, and M.
Gross. EWA volume splatting. Proc. IEEE
Visualization ’01, pages 29–36, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 477

Virtual Geographic Information Systems 477

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:22am page 478

This page intentionally left blank

24 Visualization Using Virtual
Reality

R. BOWEN LOFTIN

Old Dominion University

JIM X. CHEN

George Mason University

LARRY ROSENBLUM

U.S. Naval Research Laboratory

24.1 Introduction

24.1.1 Purpose

This chapter provides a brief introduction to

virtual reality, followed by a review of selected

visualization applications implemented in a

virtual-reality environment. The reader is pro-

vided with ‘‘pointers’’ to the major conferences

and to more detailed compilations of research in

virtual-reality-based visualization.

24.1.2 Virtual Reality

What we now often refer to as virtual reality was

first proposed in the 1960s [16,38,39]. In addition

to the term ‘‘virtual reality,’’ many other terms

such as ‘‘virtual environments,’’ ‘‘synthetic en-

vironments,’’ ‘‘virtual worlds,’’ and ‘‘artificial

reality’’ have been used. Virtual reality has the

capability of providing sensory information of

sufficient fidelity that the user can, in some cases,

‘‘suspend disbelief’’ and accept that he or she is

actually somewhere else [10]. Further, the tech-

nology can also support perceptual interaction

with the synthetic environment, enabling the

user to transcend the role of passive observer

and actively participate in shaping events [28].

A thorough, but somewhat dated, review can be

found in the report of a National Research

Council committee chartered to examine virtual

reality in the mid-1990s [13].

For the purpose of this chapter, virtual reality

will be defined as

The use of integrated technologies that provide

multimodal display of and interaction with infor-

mation in real time, enabling a user or users to

occupy, navigate, and manipulate a computer-

generated environment.

Key to an understanding of the potential of vir-

tual reality in visualization is the recognition that

virtual reality is not limited to visual displays and

that it inherently provides those who use it with

the means to navigate and manipulate the infor-

mation that is displayed. An excellent entry into

virtual-reality systems and applications is a re-

cently published handbook on the field [37].

The visual element of virtual reality extends

commonly available 2D computer graphics into

the third dimension. To achieve true 3D

graphics, a stereo image is produced by provid-

ing two slightly different views (images) of the

same object for the user’s two eyes. The provi-

sion of two separate images can be achieved by

a number of methods. In the early days of vir-

tual reality, a head-mounted display was the

method of choice [16,38,39]. These displays

used two image sources, one for each eye, for

stereo viewing of the computer-generated envir-

onment. Subsequently, devices such as the

ImmersaDesk [20,32] or the CAVE Automatic

Virtual Environment [11] were used to produce

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 479

479

stereo images. An ImmersaDesk or CAVE usu-

ally produces only one image on its display sur-

face or surfaces but alternates between an image

for the right eye and one for the left eye (com-

monly at 60 Hz). The viewer wears lightweight

liquid crystal ‘‘shutter’’ or ‘‘active’’ glasses.

These glasses are synchronized with the alternat-

ing displays so that the appropriate eye can view

the image intended for that eye. These devices

can also be used to produce stereo images by

sending two images to the same display such

that each image is polarized differently. The

user then wears ‘‘passive’’ glasses with each lens

polarized to match the image for its eye.

The principal hardware technologies required

for producing a virtual reality are real-time

graphics generators, stereo displays, 3D audio

displays, tracking/interaction systems, and

special display devices (e.g., haptic, vestibular,

and olfactory displays). The development of

effective virtual-reality applications, including

those used for visualization, requires complex

software environments. Commercial products

are available, but many researchers rely on

‘‘home-grown’’ software that may not be widely

supported. A small number of open-source

systems have been created (e.g., VRJuggler

and DIVERSE), as have application program-

mer interfaces (e.g., Java3D) and web-based

graphics formats (e.g., VRML).

24.1.3 Characteristics of Virtual
Environments

What does virtual reality offer visualization that

conventional display technologies do not?

While a number of items could be cited, three

will be examined here: immersion, presence, and

multimodal displays and interaction.

24.1.3.1 Immersion

‘‘Immersion refers to what is, in principle, a

quantifiable description of a technology. It

includes the extent towhich the computer displays

are extensive, surrounding, inclusive, vivid and

matching. The displays are more extensive the

more sensory systems that they accommodate’’

[35]. Immersion is depicted, in this definition, as a

continuum.Theargument is that themore sensory

information provided and the more sensorially

diverse that information, the more ‘‘immersion’’ a

user will experience. Immersion has some proper-

ties that could directly enhance visualization. For

example, immersion implies freedom from dis-

tractions. It also implies that a user’s entire

attention can be brought to bear on the problem

athand.Suchcharacteristics shouldprovideauser

with an increased ability to identify patterns,

anomalies, and trends in data that is visualized.

24.1.3.2 Presence

Our definition of presence is from Slater et al.:

‘‘Our general hypothesis is that presence is an

increasing function of twoorthogonal variables.

The first variable is the extent of the match be-

tween thedisplayedsensorydataandthe internal

representation systems and subjective world

models typically employed by the participant.

Although immersion is increased with the vivid-

ness of the displays . . . , we must also take into

account the extent to which the information dis-

played allows individuals to construct their own

internalmentalmodels of reality.For example, a

vivid visual display system might afford some

individuals a sense of ‘presence’, but be unsuited

for others in the absence of sound.’’ [34]

‘‘The second variable is the extent of the match

between proprioception and sensory data. The

changes to the display must ideally be consist-

ent with and match through time, without lag,

changes caused by the individual’s movement

and locomotion—whether of individual limbs

or the whole body relative to the ground.’’ [35]

Presence can contribute to the ‘‘naturalness’’ of

the environment in which a user works and the

ease with which the user interacts with that

environment. Clearly, the quality of the virtual

reality—as measured by display fidelity, sensory

richness, and real-time behavior—is critical to a

sense of presence.

24.1.3.3 Multimodal Displays

Although the visual sense is arguably the most

powerful sense in humans, it is important to

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 480

480 Virtual Environments for Visualization

note that most humans process inputs simulta-

neously from many senses (visual, auditory,

haptic, vestibular, olfactory, and gustatory).

For example, Fred Brooks and his colleagues at

the University of North Carolina at Chapel Hill

[30] have enabled chemists and biochemists to

view, assemble, and manipulate large, complex

molecules using a combination of visual and

haptic displays. The well known conjecture that

humans can simultaneously grapple with no

more than seven, plus or minus two, separate

items of information [27] does not specifically

explore the human capacity for understanding

multiple variableswhen expressed throughmulti-

ple senses. In spite of this conjecture, themapping

of information onto more than one sensory

modality may well increase the ‘‘human band-

width’’ for understanding complex, multivariate

data. Lacking a theory of multisensory percep-

tion and processing of information, the critical

issue is determining what data best maps onto

what sensory input channel. Virtual reality at

least offers the opportunity to explore this

interesting frontier to find a means of enabling

users to effectively work with more and more

complex information.

24.1.4 Virtual Reality and Visualization

Visualization is a tool that many use to explore

complex (or even simple) data in a large number

of domains. One can think of virtual reality as a

specific means to achieve effective visualizations.

As noted in the preceding section, virtual reality

has a number of features that can contribute to

the success of a visualization application, espe-

cially when that application must address high-

dimensional data, high volumes of data, and/or

highly complex data. One of the great potential

strengths of virtual reality is its stated goal of

giving users more accessible, more intuitive, and

more powerful interaction capabilities. One way

to grasp this concept is to imagine that a user is

given a strange object that can be held in one

hand. What is the natural thing for the user to

do? First, the user will turn the object around to

examine it—just as one can employ virtual reality

to provide users with different viewpoints on an

object or scene. Next, the user may prod or poke

the object to determine some of its properties or

to elicit a behavior—just as one can employ vir-

tual reality to provide users with gesture inter-

faces for direct interaction with virtual objects.

Virtual reality is a powerful display and inter-

action vehicle. It can structure abstract data and

concepts, present the results of computations,

and help researchers understand the unforeseen

or find the unexpected.

24.2 A Visualization Sampler

24.2.1 Key Resources

Virtual reality has, by some measures, been

available since the late 1980s through commer-

cial entities as well as through academic, gov-

ernment, and industrial laboratories. From

the time of the first available commercial

systems, visualization has been linked to virtual

reality. A few examples of visualization in

the context of virtual reality can be found in

SIGGRAPH proceedings, especially in the pro-

ceedings of more specialized conferences and

workshops. Notable are the IEEE Visualization

Conferences and their associated symposia and

the IEEE Virtual Reality Conferences (known

prior to 1999 as the Virtual Reality Annual

International Symposium, or VRAIS). Many

papers from these two conference series address

specific applications of visualization using

virtual reality, or discuss issues of data repre-

sentation, human-computer interaction, or per-

formance that are relevant to the success of such

applications. In addition, the proceedings of the

Eurographics Virtual Environments Workshop

offer more examples of virtual reality applied to

visualization. More recently, a series of meet-

ings known as the Immersive Projection Tech-

nology Workshop (IPT) has been held (with the

location alternating between Europe and the

United States) to address virtual-reality technol-

ogy development and applications. Again,

many of the applications presented there illus-

trate the use of virtual reality in visualization.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 481

Visualization Using Virtual Reality 481

A seminal workshop on visualization was held

in July 1993 at the Fraunhofer Institute for

Computer Graphics in Darmstadt, Germany.

The proceedings of this conference [31] contains

several useful papers, including a paper by Steve

Bryson [7] entitled ‘‘Real-time exploratory scien-

tific visualization and virtual reality’’ that sets

forth many of the benefits and challenges of

using virtual reality for visualization. In May

1994, a group of researchers met for the Dagstuhl

Seminar on Scientific Visualization. The result of

this seminar was the production of a book on

scientific visualization [29] containing chapters

written by some of the most respected research

groups in the world. A number of chapters in this

book treat virtual reality as an approach to visu-

alization. The paper by Helmut Hasse, Fan Dai,

Johannes Strassner, and Martin Göbel (‘‘Immer-

sive Investigation of Scientific Data’’) [17] is im-

portant in providing detailed examples of work

up until that time. A more recent work [9] focuses

on the use of virtual reality in information

visualization.

Another very useful source comes from two

workshops on virtual environments and scien-

tific visualization that were sponsored by Euro-

graphics, in Monte Carlo, Monaco, February

19–20, 1996 and in Prague, Czech Republic,

April 23–23, 1996. The proceedings of these

two workshops [15] provide a very good com-

pilation of the work done through 1995.

24.2.2 Examples

Well over 100 extant publications address the

application of virtual reality in visualization.

Below are brief descriptions of specific projects

that demonstrate the breadth of applicability of

virtual reality to visualization. The examples

below are not meant to be exhaustive or even

to be a uniform sampling of the available litera-

ture. Inclusion or exclusion of a specific appli-

cation does not imply a value judgment on the

part of the authors of this chapter.

24.2.2.1 Archeology

A number of groups have used virtual reality to

visualize archeological data. One group [1] used

a CAVE to visualize the locations of lamps and

coins discovered in the ruins of the Petra Great

Temple site in Jordan.

24.2.2.2 Architectural Design

The Electronic Visualization Laboratory (EVL)

at the University of Illinois in Chicago [23]

has utilized virtual reality in architectural

design and collaborative visualization to exploit

virtual reality’s capability for multiple perspec-

tives on the part of users. These perspectives,

including multiple mental models and multiple

visual viewpoints, allow virtual reality to be

applied in the early phases of the design process

rather than during a walkthrough of the final

design.

24.2.2.3 Battlespace Visualization

Work done at Virginia Tech and the Naval

Research Laboratory [12,18] resulted in virtual-

reality-based Battlespace visualization applica-

tions using both a CAVE and a projection

workbench. The modern Battlespace extends

from the bottom of the ocean into low earth

orbit. Thus, 3D visualizations that support

powerful direct interaction techniques offer

significant value to military planners, trainers,

and operators.

24.2.2.4 Cosmology

Song and Norman [36] demonstrated, as early

as 1993, the utility of virtual reality as a tool for

visualizing numerical and observational cos-

mology data. They have implemented an

application that supports multiscale visualiza-

tion of large, multilevel time-dependent datasets

using both an immersive display and a gesture

interface that facilitates direct interaction with

the data.

24.2.2.5 Genome Visualization

Kano et al. [19] have used virtual reality

to develop an application for pair-wise com-

parison between cluster sets generated from

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 482

482 Virtual Environments for Visualization

different gene expression datasets. Their ap-

proach displays the distribution of overlaps

between two hierarchical cluster sets, based

on hepatocellular carcinomas and hepatoblas-

tomas.

24.2.2.6 Meteorology

Meteorologists typically use 2D plots or text to

display their data. Such an approach makes it

difficult to visualize the 3D atmosphere. Ziegler

et al. [40] have tackled the problem of compar-

ing and correlating multiple layers by using an

immersive virtual environment for true 3D

display of the data.

24.2.2.7 Oceanography

A multidisciplinary group of computer scien-

tists and oceanographers [14] has developed a

tool for visualizing ocean currents. The c-thru

system uses virtual reality to give researchers

the ability to interactively alter ocean para-

meters and communicate those changes to an

ocean model calculating the solution.

24.2.2.8 Protein Structures

Protein structures are large and complex.

Large-format virtual-reality systems support

not only the visualization of such data, but

the collaboration of small teams that analyze

the data. One group [2] has visualized four

geometric protein models: space-filling spheres,

the solvent accessible surface, the molecular

surface, and the alpha complex. Relationships

between the different models are represented via

continuous deformations.

24.2.2.9 Software Systems

Many computer programs now exceed one

million lines of code. The ability to truly

understand programs of such magnitude is

rare. Visualizations of such systems offer a

means of both comprehending the system and

collaboratively extending or modifying it. An

example of such a visualization is the work of

Amari et al. [3]. In this case, a visualization of

static structural data and execution trace data

of a large software application’s functional

units was developed. Further, the visualization

approach supported the direct manipulation of

graphical representations of code elements in a

virtual-reality setting.

24.2.2.10 Statistical Data

A group at Iowa State University [4] has

developed a virtual-reality-based application

for the analysis of high-dimensional statistical

data. Moreover, the virtual-reality approach

proved superior to a desktop approach in terms

of structural-detection tasks.

24.2.2.11 Vector Fields

Real-time visualization of particle traces using

virtual environments can aid in the exploration

and analysis of complex 3D vector fields.

Kuester et al. [21] have demonstrated a scalable

method for the interactive visualization of large

time-varying vector fields.

24.2.2.12 Vehicle Design

The use of increasingly complex finite element

(FE) simulations of vehicles during crashes has

led to the use of virtual-reality techniques to

visualize the results of the computations [22].

A program called VtCrash was designed to

enable intuitive and interactive analyses of large

amounts of crash-simulation data. The applica-

tion receives geometry and physical-properties

data as input and provides the means for the

user to enter a virtual crash and to interact with

any part of the vehicle to better understand the

implications of the simulation.

24.2.2.13 Virtual Wind Tunnel

One of the earliest successful demonstrations

of virtual reality as a visualization tool was the

development of the Virtual Wind Tunnel at

the NASA Ames Research Center [5,6,8]. Steve

Bryson precomputed complex fluid flows

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 483

Visualization Using Virtual Reality 483

around various aerodynamic surfaces. To view

these flow fields, the user employed a tracked,

head-mounted display (Fakespace’s BOOM)

that used relatively high-resolution color dis-

plays, one for each eye. These displays were

attached to the head but were supported by a

counterweighted boom to relieve the user of

bearing the weight of the system. Optical

encoders in the boom joints provided real-time,

precise tracking data on the user’s head posi-

tion. Tools were developed to enable the user to

explore the flow field using a tracked glove (a

DataGlove) on one hand. For example, the user

could use the gloved hand to identify the source

point for streamlines that would allow visuali-

zation of the flow field in specific regions.

A great deal of work went into developing both

the precomputed data and the software that

supported the visualization system. The soft-

ware framework for the virtual wind tunnel

was extensible and had interactive (i.e., real-

time) performance. Fig. 24.1 shows Bryson

examining the flow fields around an experi-

mental vehicle.

Others, for example Severance [33], have

extended the work of Bryson’s group by fusing

the data from several wind-tunnel experiments

into a single, coherent visualization. Given the

high cost of maintaining and operating wind

tunnels and the limited regimes (of both wind

speed and aerodynamic surface size), the virtual

wind tunnel offers a significant potential to

reduce the cost and expand the availability of

wind-tunnel experiments.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 484

Figure 24.1 Steve Bryson interacting with the Virtual Wind Tunnel developed at the NASA Ames Research Center. (See Fig.

21.2 in color insert.)

484 Virtual Environments for Visualization

24.2.2.14 Hydrocarbon Exploration and
Production

In recent years, virtual reality has had a growing

impact on the exploration and production of

hydrocarbons, specifically oil and gas. In 1997,

there were only two large-scale visualization

centers in the oil and gas industry, but by 2000,

the number had grown to more than 20. In spite

of this growth, the use of virtual reality technol-

ogy was largely limited to 3D displays—interac-

tion was still typically done via the keyboard and

mouse. Lin et al. [24,25] created an application

that supported more direct interaction between

the user and the data in a CAVE. Not only could

three to four users share an immersive 3D

visualization, one of them could also interact

directly with the data via natural gestures. Fig.

24.2 shows a user in a CAVE working with

objects representing geophysical surfaces within

a salt dome in the Gulf of Mexico. The user holds

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 485

Figure 24.2 A user in a CAVE interacting with geophysical data describing a salt dome in the Gulf of Mexico. (See also color

insert.)

Visualization Using Virtual Reality 485

a tracked pointing/interaction device in the

dominant hand (the right hand, in the figure)

while a virtual menu is attached to the non-

dominant hand. Studies were done to determine

the effectiveness of this approach when com-

pared with typical desktop applications.

Additional work was done by Loftin et al. [26]

to implement powerful interaction techniques

on a projection workbench. In Fig. 24.3, the

user is again using both hands for navigation,

menu interaction, and detailed manipulation

of the data. The success of these efforts

and similar work by other groups has led the

oil and gas industries to make major investments

in virtual-reality-based visualization systems.

More importantly, these systems have had a

demonstrable return on investment in terms

of improved speed and success of decision

making for both exploration and production ac-

tivities.

24.3 Research Challenges

Although there is strong evidence that virtual-

reality systems can offer significant advantages

over conventional display systems for visualiza-

tion applications, many challenges remain to be

overcome. Below are some of the largest bar-

riers to the use of virtual reality as the principal

platform for visualization in many fields.

. Fidelity. Fidelity has two ‘‘faces’’; in one

sense, fidelity can refer to the resolution of

data and/or displays of that data. One

can think in terms of the resolution of a

dataset or of a display. Another aspect of

fidelity is in the data representation itself.

A primary unanswered question is, ‘‘How

much fidelity is enough?’’ That is, how

much fidelity must an application and/or its

display system have in order to achieve a

specific outcome?

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 486

Figure 24.3 A user interacting with geophysical data on a projection workbench. (See also color insert.)

486 Virtual Environments for Visualization

. Multimodal displays. While visual display

technology is relatively mature and 3D

audio displays are of very high quality,

much work has to be done to advance the

state of the art in displays for other senses

(haptic, olfactory, vestibular, and gustatory)

and in the integration of multimodal displays

to provide a seamless sensory environment

for the user. Perhaps the grandest challenge

of all is the need for a robust theory of multi-

sensory perception that guides the developer

in mapping different types of data to differ-

ent sensory modalities.

. Technical fragility. The hardware and soft-

ware used in virtual reality is still fragile.

The lack of a mass market has hindered

manufacturers’ desire to build more robust

systems and to invest in the research needed

to solve fundamental engineering problems

(such as latency).

. Software inaccessibility. The available soft-

ware systems, even those that are commer-

cially available, are notoriously difficult to

use. One needs great patience as well as a

great deal of experience to become a profi-

cient developer of virtual-reality applications

of any real complexity.

. Cost. Large-scale virtual-reality systems cost

a great deal. As long as it can cost over

$1,000,000 to install the computational, dis-

play, and interaction technologies required

for a sophisticated, multiuser system, many

will choose not to use virtual reality as

a means of implementing visualization

applications.

References
1. D. Acevedo, E. Vote, D. H. Laidlaw, and M. S.

Joukowsky. Archaeological data visualization
in VR: analysis of lamp finds at the great
temple of Petra: a case study. Proceedings of the
2001 Conference on Virtual Reality, pages
493–496, 2001.

2. N. Akkiraju, H. Edelsbrunner, P. Fu, and J.
Qian. Viewing geometric protein structures from
inside a CAVE. IEEE Computer Graphics and
Applications, 16(4):58–61, 1996.

3. H. Amari, T. Nagumo, M. Okada, M. Hirose,
and T. Ishii. A virtual reality application for
software visualization. In Proceedings of the
1993 Virtual Reality Annual International Sym-
posium, pages 1–6, 1993.

4. L. Arms, D. Cook, and C. Cruz-Neira. The
benefits of statistical visualization in an immer-
sive environment. In Proceedings of the 1999
IEEE Virtual Reality Conference, pages 88–95,
1999.

5. S. Bryson and C. Levit. The virtual wind tunnel.
IEEE Computer Graphics and Applications,
12(4):25–34, 1992.

6. S. Bryson. The virtual wind tunnel: a high-
performance virtual reality application. In Pro-
ceedings of the 1993 Virtual Reality Annual
International Symposium, pages 20–26, 1993.

7. S. Bryson. Real-time exploratory scientific
visualization and virtual reality. In Scientific
Visualization: Advances and Challenges.
(L. Rosenblum, R. A. Earnshaw, J. Encarna-
ção, H. Hagen, A. Kaufman, S. Klimenko,
G. Nielson, F. Post, and D. Thalman Eds.).
London, Academic Press, 1994.

8. S. Bryson, S. Johan, and L. Schlecht. An exten-
sible interactive visualization framework for the
virtual wind tunnel. In Proceedings of the 1997
Virtual Reality Annual International Symposium,
pages 106–113, 1997.

9. C. Chen. Information visualization and virtual
environments. Berlin, Springer-Verlag, 1999.

10. J. C. Chung, M. R. Harris, F. P. Brooks, Jr.,
H. Fuchs, M. T. Kelley, J. Hughes, M. Ouh-
Young, C. Cheung, R. L. Holloway, and
M. Pique. Exploring virtual worlds with head-
mounted displays. In Proceedings of the SPIE
Conference on Three-Dimensional Visualization
and Display Technologies, pages 42–52, 1990.

11. C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual real-
ity: the design and implementation of the
CAVE. Computer Graphics, 27:135–142.

12. J. Durbin, J. E. Swan II, B. Colbert, J. Crowe,
R. King, T. King, C. Scannell, Z. Wartell, and
T. Welsh. Battlefield visualization on the re-
sponsive workbench. In Proceedings of the
1998 IEEE Visualization Conference, pages
463–466, 1998.

13. N. Durlach and A. Mavor (Eds). Virtual
Reality: Scientific and Technological Challenges.
Washington, DC, National Academy Press,
1995.

14. K. Gaither, R. Moorhead, S. Nations, and
D. Fox. Visualizing ocean circulation models
through virtual environments. IEEE Computer
Graphics and Applications, 17(1):16–19, 1997.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 487

Visualization Using Virtual Reality 487

15. M. Göbel (Ed.). Virtual environments and sci-
entific visualization. Proceedings of the Euro-
graphics Workshops in Monte Carlo, Monaco,
February 19–20, 1996 and in Prague, Czech Re-
public, April 23–23, 1996. Berlin, Springer-Ver-
lag, 1996.

16. M. R. Hall and J. W. Miller. Head-mounted
electro-ocular display: a new display concept
for specialized environments. Aerospace Medi-
cine, pages 316–318, 1963.

17. H. Hasse, F. Dai, J. Strassner, and M. Göbel.
Immersive investigation of scientific data. In
Scientific visualization: overviews, methods, and
techniques. (G. M. Nielson, H. Hagen, and
H. Müller, Eds.). Los Alamitos, California,
IEEE Computer Society, pages 35–58, 1997.

18. D.Hix, J. E. Swan II, J. L.Gabbard,M.McGree,
J.Durbin, andT.King.User-centered design and
evaluation of a real-time battlefield visualization
virtual environment. In Proceedings of the 1999
IEEE Virtual Reality Conference, pages 96–103,
1999.

19. M. Kano, S. Tsutsumi, and K. Nishimura. Visu-
alization for genome function analysis using
immersive projection technology. In Proceed-
ings of the 2002 IEEE Virtual Reality Confer-
ence, pages 224–231, 2002.

20. W. Krueger and B. Froehlich. The respon-
sive workbench: a virtual work environment.
IEEE Computer Graphics and Applications,
14(3):12–15, 1994.

21. F. Kuester, R. Bruckschen, B. Hamann and
K. I. Joy. Visualization of particle traces in
virtual environments. In Proceedings of the
2001 ACM Symposium on Virtual Reality Soft-
ware and Technology, 2001.

22. S. Kuschfeldt, M. Schultz, T. Ertl, T. Reuding,
and M. Holzner. The use of a virtual environ-
ment for FE analysis of vehicle crash worthi-
ness. In Proceedings of the 1997 Virtual Reality
Annual International Symposium, pages 209 and
1009, 1997.

23. J.Leigh,A.E. Johnson,C.A.Vasilakis, andT.A.
DeFanti. Multi-perspective collaborative design
in persistent networked virtual environments. In
Proceedings of the 1996 Virtual Reality Annual
International Symposium, pages 253–260, 1996.

24. C.-R. Lin, R. B. Loftin, and H. R. Nelson, Jr.
Interaction with geoscience data in an immer-
sive environment. In Proceedings of the 2000
IEEE Virtual Reality Conference, pages 55–62,
2000.

25. C.-R. Lin and R. B. Loftin. VR user interface:
closed world interaction. In Proceedings of the
ACM Symposium on Virtual Reality Software &
Technology 2000, pages 153–159, 2000.

26. R. B. Loftin, C. Harding, D. Chen, C. Lin, C.
Chuter, M. Acosta, A. Ugray, P. Gordon, and
K. Nesbitt. Advanced visualization techniques
in the geosciences. In Proceedings of the Nine-
teenth Annual Research Conference of the Gulf
Coast Section Society of Economic Paleontolo-
gists and Mineralogists Foundation, Houston,
Texas, December 5–8, 1999.

27. G. A. Miller. The magical number seven, plus or
minus two: some limits on our capacity for pro-
cessing information. The Psychological Review,
63:81–97, 1956.

28. M. Minsky, M. Ouh-Young, O. Steele, F. P.
Brooks, Jr., and M. Behensky. Feeling and
seeing: issues in force display. In Proceedings
of Symposium on 3-D Interactive Graphics,
pages 235–241, 1990.

29. G. M. Nielson, H. Hagen, and H. Müller. Sci-
entific Visualization: Overviews, Methods, and
Techniques. Los Alamitos, California, IEEE
Computer Society, 1997.

30. M. Ouh-Young, M. Pique, J. Hughes, N. Srini-
vasan, and F. P. Brooks, Jr. Using a manipulator
for force display in molecular docking. IEEE
publication CH2555-1/88, pages 1824–1829,
1988.

31. L. Rosenblum, R. A. Earnshaw, J. Encarnação,
H. Hagen, A. Kaufman, S. Klimenko, G. Niel-
son, F. Post, and D. Thalman (Eds). Scientific
Visualization: Advances and Challenges.
London, Academic Press, 1994.

32. L. Rosenblum, J. Durbin, R. Doyle, and D.
Tate. The virtual reality responsive workbench:
applications and experience. In Proceedings of
the British Computer Society Conference on Vir-
tual Worlds on the WWW, Internets, and Net-
works, Bradford, UK, 1997.

33. K. Severance, P. Brewster, B. Lazos, and D.
Keefe. Wind tunnel data fusion and immersive
visualization. In Proceedings of the 2001 IEEE
Visualization Conference, pages 505–508, 2001.

34. M. Slater, M. Usoh, and A. Steed. Depth of
presence in immersive virtual environments.
Presence: Teleoperators and Virtual Environ-
ments, 3(2):130–144, 1994.

35. M. Slater, V. Linakis, M. Usoh, and R. Kooper.
Immersion, presence and performance in virtual
environments: an experiment with tri-dimen-
sional chess. In Proceedings of the ACM Virtual
Reality Software and Technology (VRST) Con-
ference, pages 163–172, 1996.

36. D. Song and M. L. Norman. Cosmic explorer: a
virtual reality environment for exploring cosmic
data. In Proceedings of the 1993 IEEE Sympo-
sium on Research Frontiers in Virtual Reality,
pages 75–79, 1993.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 488

488 Virtual Environments for Visualization

37. K. M. Stanney (Ed). Handbook of Virtual
Environments: Design, Implementation, and
Applications. Mahwah, NJ, Lawrence Erlbaum
Associates, 2002.

38. I. E. Sutherland. Head-mounted 3D display. In
Proceedings of the 1998 Fall Joint Computing
Conference, 33:757–764, 1998.

39. D. Vickers. Head-mounted display terminal. In
Proceedings of the 1970 IEEE International

Computer Group Conference, pages 102–109,
1970.

40. S. Ziegler, R. J. Moorhead, P. J. Croft, and D.
Lu. The MetVR case study: meteorological
visualization in an immersive virtual environ-
ment. In Proceedings of the 2001 IEEE Visual-
ization Conference, pages 489–492 and 596,
2001.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 489

Visualization Using Virtual Reality 489

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:23am page 490

This page intentionally left blank

PART VIII

Large-Scale Data Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:00am page 491

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:00am page 492

This page intentionally left blank

25 Desktop Delivery: Access to Large
Datasets

PHILIP D. HEERMANN and CONSTANTINE PAVLAKOS

Sandia National Laboratories

25.1 Introduction

Since the advent of modern digital computing,

the rapid evolution of technology has been

a major aspect of the high-performance com-

puting field. Computer users, however, have

changed less radically, and the desire to com-

pute from their offices is constant. From punch

cards and printouts through dial-in terminals

and network-connected personal computers,

users have enjoyed an increasing ability to inter-

act with supercomputers from their offices.

The major issue in desktop interaction with

supercomputers is the size of the data. For

many years, the primary problem was the size

of the results. Input decks and code were gener-

ally easily handled by desktops. Recently, setup

elements including mesh definitions and the set-

ting of initial and boundary conditions for highly

detailed models have pushed problem setup

needs beyond desktop capabilities. Nevertheless,

the problem remains interacting with datasets

beyond the capabilities available in an office.

For the context of discussion here, large data

will be defined as datasets that are much greater

than the memory capacity of the desktop ma-

chine. More formally, datasets can be described

as follows:

D >> 10MD

where D is the dataset of interest and MD is the

random access memory (RAM) of the desktop

machine. For current high-end machines in the

office, with 2 to 4 gigabytes (GB) of system

memory, a large dataset would be hundreds of

gigabytes to terabytes andperhaps evenpetabytes.

Computer network capabilities are also

greatly strained by large data. Transferring very

large datasets can require hours or days, and the

reality of network errors and machine reboots

can turn a planned 8-hour project into a 5-day

marathon. Supercomputing resources are nor-

mally expensive, so these machines are usually

shared. Often the user is accessing the supercom-

puter at a great distance over a widearea network

(WAN). This adds to interaction latencies and

may increase the chance of network failures.

Thus, the desktop delivery problem is one of

engineering a solution to provide meaningful

interaction with a large dataset using a relatively

small computer connected by a relatively small

network. The use of the word ‘‘relatively’’ is

important because both the network and the

desktop machine are truly superior to the super-

computer technology of the late 1980s. On all

measures of performance (memory, disk, net-

work speed, graphics processing), today’s desk-

top is truly a last-generation supercomputer.

The major problem is that the datasets of inter-

est today still overwhelm their capabilities.

One final point of introduction is to highlight

the true scale of modern large datasets. With

commodity personal computers offering 100-

GB disks and 1-GB memories, computer users

are lulled into a false sense of large data size. A

few GB of data doesn’t seem so large when it is

the camcorder video from a child’s sporting

event. But now answer the question, ‘‘How

many flowering dandelions are on the soccer

field?’’ If the videographer has recorded the

entire game and zoomed in and out sufficiently,

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 493

493

the number of dandelions is probably in the

dataset. Finding them all, however, is the pro-

verbial needle in the haystack.

Many users are considering or working on

datasets a thousand times larger, in the terabyte

range. These datasets are on the same scale as

the U.S. gross domestic product (GDP) (about

$10 trillion in 2001) [1]. At this scale, tables of

unreduced data are uncompressible. Even

simple statistical measures may have little mean-

ing. Graphical representations are critical, re-

quiring multiple views and representations to

fully grasp the data. If one picture is worth

a thousand words, then a terabyte is worth a

billion pictures or one 10,000-hour movie.

For datasets of this size, interactivity is im-

portant or the data will never be fully explored.

If the interactivity is too slow, only what is

expected will be found, and the unexpected

may never be noticed. The needles in the hay-

stack will be found, but a correlation between

their orientations may be missed. Therefore, a

desktop must support a full suite of tools, in-

cluding 3D graphics, 2D plotting, and statistical

tools, and it must provide access to computing

cycles that allow timely analysis.

This chapter will present an approach for

delivering supercomputer results to offices. The

approach was developed to visualize simulation

results produced by the U.S. Department of

Energy’s Accelerated Strategic Computing Ini-

tiative (ASCI). Much of the technology was

developed as a collaborative effort between

Los Alamos, Lawrence Livermore, and Sandia

national laboratories, teaming with leading uni-

versities and industry to develop technology as

needed. The system design presented here is the

instantiation at Sandia National Labs; similar

systems have been implemented at Los Alamos

and Lawrence Livermore national labs.

To begin, several background issues will be

discussed, highlighting nonobvious issues to a

successful solution. Next, a high-level frame-

work will be discussed. The framework organ-

izes the problem and helps to illuminate system

design tradeoffs. The Sandia system design will

be presented, followed by more detailed discus-

sion of each major component. Individual re-

searchers may wish to skip Section 25.8, Large

Enterprise Considerations, which is written to

suggest ways to deliver high-performance super-

computer access to tens or hundreds of users in

a large organization. The last section is a foray

into the dangerous art of predicting the future,

examining technology trends and the some of

the desktop visualization research directions at

Sandia.

25.2 Background

Supercomputer design centers around the all-

important design point of maximizing floating

point operations (FLOPs). Processing of large

datasets, including desktop delivery, certainly

makes use of available FLOPs, but bandwidth

is a performance-limiting factor. Integer per-

formance is important, but seemingly mundane

issues often limit performance, like the number

of copies required to move data through soft-

ware stacks.

25.2.1 Computer Components

For desktop delivery systems, a critical factor is

the bandwidth capability of the motherboard

chip set. The chip set hosts the CPU; it also

commonly provides the path to main memory

and implements the interface buses and ports

like PCI-X and AGP. For a high-performance

desktop, it is highly desirable to be rapidly re-

ceiving data from a high-speed network while

feeding data at full bandwidth to a high-per-

formance graphics card. In practice, the chip

sets are often overloaded. This is made apparent

when running individual benchmarks of net-

work and graphics performance, then running

the benchmarks simultaneously. Desktop per-

formance can be limited simply because the

chip set cannot meet the combined demands.

Disks are the source of another common

bottleneck. Physics dictate that moving heads

and spinning disks cannot keep pace with CPUs

running in the gigahertz (GHz). Disk drive

manufacturers have made tremendous gains in

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 494

494 Large-Scale Data Visualization

disk drive capacity, but the bandwidth to the disk

has not kept pace with the rate of capacity gains.

Networks, however, have made tremendous

gains in performance. High-performance net-

works actually exceed the bandwidth perform-

ance of individual disks. Available networks

severely challenge a CPU’s ability to maintain

pace, and for some local area network (LAN)

situations, software compression techniques

may actually slow the transfer. Consider a

CPU running at 3 GHz feeding a 1-gigabit

(Gbit) Ethernet network. With a properly

tuned application and network, a 1-Gbit Ether-

net line can deliver 70þMB=s. This means

that the CPU has a budget of �43 cycles per

byte of data transferred. So in real-time appli-

cations like dynamic image delivery across a

network, it may take longer to perform image

compression than simply blast the image across

the network. Compression can certainly

improve network performance, but the time of

compression must be balanced with the network

speeds.

25.2.2 Networks

There are myriad networking technologies.

From the desktop delivery perspective, there

are two primary categories: 1) internet protocol

(IP) networks and 2) interconnects. IP networks

are the most widely deployed networks. They

are the networks that comprise the Internet and

are the foundations of most LANs and WANs.

Interconnects are special networks designed to

tightly couple computers together to build

‘‘computer clusters.’’ Examples of intercon-

nects are Myrinet [2], Quadrics [3], and Infini-

band [4].

To understand why there are two types

of networks and their impact on desktop

delivery, one may benefit from a short primer

on network architecture. Central to most net-

working is an architectural idea known as

the OSI (Open System Interconnection) refer-

ence model. A central feature of the model is its

layered structure: it has seven functional layers,

from a physical transport layer at the bottom to

the application at the top. Depending on the

situation, some networks do not implement all

the layers suggested by the OSI model.

Obviously, the physical layer is hardware, but

often the middle layers are implemented in soft-

ware. These software layers are sometimes re-

ferred to collectively as the ‘‘stack’’ or the ‘‘IP

stack.’’ The IP stack is the interface that pro-

vides an applications programming interface

(API) to an application, coordinates network

transfers with the operating system, and pro-

vides the driver software for the network inter-

face card (NIC) hardware.

Knowledge of the IP stack is important be-

cause the number of CPU cycles required to

execute the IP stack is substantial. As a general

rule, it requires about a 1-GHz, 32-bit CPU

to execute an IP stack rapidly enough to keep

a 1-Gbit Ethernet full. This certainly varies with

hardware, operating system, and network stack

implementation, but in general it is true for

optimized IP stacks. This leads to the common

issue of computers that are unable to feed or

receive data at the full network speed. Just be-

cause a fast network is connected to a computer

does not mean that the computer can fully use

it.

The second part of the short network primer

is to understand reliable and unreliable com-

munications. Networks, like IP networks,

implement a connectionless, packet-based com-

munication method. This means that at the

lowest levels of the IP stack, packets of data

are sent with no guarantee that they will arrive.

Higher levels in the stack monitor the flow of

packets and ask for packets to be resent if they

are not properly transferred. Therefore, reliable

communications are systems that have a posi-

tive means by which to ensure that data is prop-

erly transferred, and unreliable communications

rely on the network being ‘‘good enough.’’

For common IP networks, there are two

major protocols in wide use: transmission

control protocol (TCP) and user datagram

protocol (UDP). TCP ensures reliable commu-

nications and, together with its IP foundation, is

referred to as TCP/IP. UDP does not provide

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 495

Desktop Delivery: Access to Large Datasets 495

reliable communications, but it provides fast

transfer with less overhead than TCP (i.e., less

CPU load to communicate data). Unreliable

transmission is not necessarily worthless. For

example, if playing a movie or animation across

a network, a dropped or lost packet might leave

a blemish in the image, but the next frame, in 33

milliseconds, will replace it. This is likely better

than the alternative of a slow-playing anima-

tion.

Interconnect networks are designed to

interconnect hundreds or thousands of com-

puters normally occupying a single room.

Taking advantage of the controlled conditions

of a single room, the hardware can be special-

ized to the situation, and their network ‘‘stack’’

is designed to require much less processing. This

results in two main advantages: lower latency

and increased bandwidth. These allow the

‘‘cluster’’ of computers to communicate more

efficiently and to operate together more readily

on a single task. Leveraging the market base

and resulting economies of scale for IP network-

ing equipment, some clusters are built using IP

networks. These systems, while certainly less

expensive, pay the cost of slower communica-

tion and increased CPU utilization for commu-

nications.

To speed communications, increasing por-

tions of the interconnect ‘‘stack’’ are being

moved onto the NIC, which often includes a

microprocessor. This reduces the CPU load for

each cluster node, leaving more time for useful

work instead of using main CPU cycles for

communicating. These capabilities are begin-

ning to appear in some IP NICs as well. This

certainly reduces the CPU load, but latencies

still remain higher than the specialized networks

due to the heavier weight protocols.

Before leaving networks we want to mention

Fibre Channel. Its primary application is to

connect resources like disk drives or tape drives

to a computer host. Its common protocol

is small computer system interface (SCSI, pro-

nounced ‘‘scuzzy’’). Fibre Channel has the

potential to reach several kilometers in distance,

and Fibre Channel switches are able to support

more complex network topologies than simple

point-to-point. It is commonly used to attach

large RAID disk systems at bandwidths reach-

ing 100MB/s per channel. Due to the available

switches and distance possible, Fibre Channel

can deliver high-performance disk access to

desktops in a campus setting. This supports

the possibility of delivering direct access to

disk systems of tens or hundreds of terabytes

without putting a rack of disks in an office.

25.2.3 Human Factors

Desktop delivery is obviously concerned with

bringing information to a person in his or her

office. Most of the discussion in the chapter

presents methods for generating and delivering

images to leverage the human visual system for

analysis. The best means to use the human

visual system is complex and beyond the scope

of this chapter; however, large data analysis

does present a major human-factors challenge.

The challenge is to provide interaction as rap-

idly as possible. Very large datasets can take a

long time to analyze. If the desktop system re-

quires minutes to create each image or view, the

user will tend to look only where results are

expected. He or she will not take the time to

explore, thus leaving the large dataset not fully

studied.

When thinking about user interactions with

the desktop, it is helpful to consider several

different rates. The highest desired rate is 20–

30 Hz for animation playback. Slightly slower is

the update rate for hand-eye coordination with

the user interface, at a minimum of 10 Hz. This

is the rate of cursor update for mouse move-

ment or view rotation as the mouse is moved.

The slowest is processing a user’s request. For

interactive systems, less than 10 seconds is the

target, but with large data this may stretch

to minutes. If processing takes longer than a

few minutes, then batch preprocessing of the

data for faster interaction is warranted. The

key point is that the design goal is to analyze

the data, and human needs should be con-

sidered.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 496

496 Large-Scale Data Visualization

25.2.4 Market Forces

Historically, supercomputing was the leading

technology developer for computing. For dec-

ades, if a user needed the highest performance

capabilities, they turned to supercomputing

vendors to supply the need. In the last few years,

however, an interesting twist has developed.

Some components in the commodity computing

markets are beginning to exceed the performance

of the niche supercomputer components. In a

sense this is nothing new, because Moore’s Law

has long been a major driving force for more

capability in a given area of silicon real estate.

The market size, however, has become a major

new factor. This is most visible in graphics cards.

For years, the leading performance came from

major workstation/supercomputer graphics

vendors, like Evans Sutherland, Hewlett Pack-

ard, Silicon Graphics, and Sun Microsystems.

Recently, commodity personal computer com-

ponents have exceeded the supercomputer equip-

ment’s performance in several key areas. The

drive behind this has been the tremendous

market of computer gaming. The large markets

attract and maintain larger research investments,

resulting in faster hardware development.

For desktop delivery, it is critical to watch the

markets. Failure to follow the trends can at best

result in poor value for the investment dollar

and at worst deploy a system that cannot be

maintained or expanded due to obsolete com-

ponents or a supplier that goes out of business.

The bottom line is the successful long-term de-

ployment of a desktop delivery system, and this

calls for keeping an eye on the broad computer

marketplace.

25.3 Framing the Problem

It is best to understand whatever problem you

are trying to solve. From a high level, our prob-

lem can be stated as, ‘‘Provide a means for large

dataset analysis in users’ offices.’’ This is a good

goal, but more detail is needed to design a solu-

tion. At Sandia National Laboratories, a chart

was developed to characterize the major activ-

ities in postprocessing results from large engin-

eering physics simulations, but it is useful

beyond the initial application.

The Sandia chart, Fig. 25.1, organizes the sci-

entific visualization process from data sources

on the top to displays on the bottom. Data

Sources represents the input to a visualization

process. This includes simulations, data arch-

ives, and experiments, but it can also include

real-time data from sensors, video feeds, or any

other source of static or dynamic data. The next

step, Data Services, is the process of selecting

what data is to be considered, converting it into

a form more readily analyzed, filtering the data,

or any other step that is necessary to prepare it

for the next step. Information Services takes the

data of interest from the Data Services section

and converts it into a visual representation,

something that can be rendered into an image.

This process might be something along the lines

of generating an isosurface or generating the

polygons that represent the external surfaces of

a finite element model. This information, usually

polygons or voxels, is passed to the Visualization

Service area for conversion to one or more

images. The image data is at last presented to

the user on a display device, which for the dis-

cussion here is an office desktop. Alongside the

main data flow is User Services, the control

aspect for the entire process. This documents

the need to provide a means to tailor and control

each step.

By its very nature, large data cannot reside at

the user’s desktop. The data, therefore, must be

located remotely. Whether the data is down the

hall or across the country, it is located separ-

ately. Similarly, the display must be located with

the user in order to be useful. This separation

between the display and the data must be ac-

commodated somewhere, and Fig. 25.1 suggests

some options.

Distance can be inserted between any two

services or in the middle of a service. There are

some arcane technical reasons to insert distance

in the center of a service, but for the discussion

here the focus will consider distance communi-

cation options between services.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 497

Desktop Delivery: Access to Large Datasets 497

If the distance communication is between

Data Sources and Data Services, this means

simply moving the raw data. This has the draw-

back of generally moving the largest volume of

data. Distance inserted between Data Services

and Information Services is a raw data move

with the benefit of moving only the data that is

of interest. This down-select can greatly reduce

the amount of data moved. Distance between

Information Services and Visualization Services

often provides a significant reduction in data

because only the polygons or voxels that will

contribute to the current image are communi-

cated. The last possibility is to insert distance

between Visualization Services and Display

Modalities. This is simply image or animation

delivery across a distance.

In fact, it is wise to design a system that

supports as many of the options as possible,

often placing distance between several services.

This accommodates different user needs and

provides options for pathological cases. An

example of a pathological case is the common

situation in which the data is reduced by a

factor of 10 or more after conversion to a sur-

face or voxel. However, Sandia researchers have

experienced cases in which the polygon data was

actually larger than the raw data.

For delivery to office desktops, the limited

capabilities available in the office equipment

strongly influence design decisions. Considering

an office system with general computing and

graphics capabilities, Fig. 25.2 gives design

options.

This diagram illustrates the relationship be-

tween dataset size and a memory-limited forcing

of the desktop mode. Dataset Delivery, Geom-

etry Delivery, and Image Delivery modes corres-

pond to inserting distance between Data

Sources and Data Services, Information Services

and Visualization Services, and Visualization

Services and Display Modalities, respectively.

For the smallest datasets, or a dataset com-

prised of many relatively small pieces, the data

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 498

Simulations, Archives, Experiments

Permutation

Visual Representations
Generation (e.g., isosurfaces)

Display Modalities:

Volume Visualization Preparation
(e.g., opacity assignment, resampling...)

Data Algebra
x,y,z→mag/ΨFiltering

Feature Detection and Extraction

Surface rendering Volume Rendering Run-Time Services

Powerwalls

Navigation

Data Sources:

Data Fusion & Comparison

M→N

Visualization
Services:

1D/2D
SubsettingData

Services:

Information
Services:

Format/Representation
Conversion

Data
Reduction

Data
Serving

Multivisualization
Technique Combined

Time Sequence
Generation

Desktop
Display

Theater
Display

Immersive
Stereoscopic

User
Services:

Rendering
Control

Advanced
User Interface

Collaborative
Control

Display
Control

Figure 25.1 Scientific visualization logical architecture.

498 Large-Scale Data Visualization

can simply be brought to the desktop and ana-

lyzed completely on the desktop machine. A

remote Data Service can be very useful for this

mode by providing a data subset function to

pull small pieces out of a large dataset. This

operation actually places the distance between

Data Services and Information Services.

When the data reaches a size that is too large

to be readily handled, or breaking it into many

small pieces is impractical, the Raw Data Limit

(RDL) is reached. At this point, the Information

Service is best performed on a server that has

the memory capacity and I/O speeds to handle

the data. The raw data is reduced to a render-

able form, like polygons or voxels, and passed

across the network. Normally, this provides a

substantial reduction in data and maintains

good interaction rates, since the rendering is

handled locally. An example of a software tool

that uses this mode of operation is Ensight from

CEI [5]. Ensight uses a client–server model with

a data server delivering polygon geometry

across a TCP/IP network for rendering on the

desktop machine.

For yet larger datasets, the data is too large

for the geometry information to fit in the desk-

top machine. This limit is the Geometry Data

Limit (GDL). Large data at this scale must be

handled on large data and visualization server

resources, with image data delivered to the

desktop. This also brings the potential advan-

tage of accelerated rendering supported from a

high-performance rendering service. A major

issue for remote rendering is that interaction

tasks like zooming and rotation must be

handled across the network, which adds latency

between the user and the responding resource.

Both hardware and software systems have dem-

onstrated the feasibility of interacting effectively

with remote rendering resources, but the latency

must be carefully managed. An example of an

image delivery system is a Sandia-developed

hardware solution that provides high frame

rate and rapid interaction across both LAN

and WAN TCP/IP networks [6].

Other factors, like difficult-to-render images

or computation-intensive Information Service

tasks, can drive operations off the desktop

to remote servers. Also, bringing dataset

pieces to the desktop has a potential trap that

does not deliver the best performance. The

trap is that users bring the data across the net-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 499

Desktop Delivery
Mode

Image Delivery

Geometry Delivery

Dataset Delivery

Dataset Size

Large

Medium

Small
Raw Data

Limit

Geometry
Data Limit

Figure 25.2 Effect of dataset size on desktop delivery mode.

Desktop Delivery: Access to Large Datasets 499

work and place it on the local disk for process-

ing. Desktop disk drives deliver sustained

performance levels on the order of tens of mega-

bytes per second. Remember that 1-Gb Ether-

net can deliver 70þ Mb/s. Therefore, it could

easily be faster to access data across the network

from a fast RAID server than to process the

data from the local disk.

25.4 System for Desktop Delivery

This section will present a reference design

for production of large data desktop delivery.

A production system is designed for a group

of users (10 to 100) who need to access and

analyze large data on a daily basis. Examples

of organizations requiring this type of system

are automobile or aerospace manufacturers,

large research projects, and national laborator-

ies. An individual or small group may not need

the entire system, but the criteria for component

selection are still applicable.

The first step in providing a practical produc-

tion desktop delivery system is the realization

that external services are needed to support the

inadequacies of cost-effective desktop hard-

ware. Large computer resources are generally

necessary in order to handle the large

data, and they tend to be expensive. The cost

generally prohibits a design solution like

deploying a large SMP or cluster resource to

support each individual user. This means build-

ing a solution that shares large resources across

many users.

If the large data is from a supercomputer

or collected at one location, moving the users

close to the data should be considered. Gener-

ally, this solution works only with a large cor-

poration, but sabbaticals to another university

or research location could be an option. Usu-

ally, the analyst or researcher desires to work

from his or her current location, so a LAN or

WAN is normally part of the design. Even colo-

cating the users often necessitates a LAN to

reach the users in situations such as college

campuses.

If a large volume of data needs to be moved,

bandwidths and loads of available networks

need to be assessed. If the transfer times are

excessive, physically moving tapes or disks

may solve the problem. There is a common

saying in supercomputing, ‘‘Never underesti-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 500

Vis

Service

Large Data

Data/Info

Service

Data/Info
Service

WAN

Office

Desktops

Data Location User Campus

Data Cache

LAN

Visualization

Service

Large Data

Data/Info
Service

Data/Info
Service

WAN

Office
Desktops

Data Location User Campus

Data Cache

LAN

Figure 25.3 Visualization desktop delivery system.

500 Large-Scale Data Visualization

mate the bandwidth of a station wagon full of

tapes.’’

The scale of the data, however, suggests an

alternative solution. Move the processing to the

data rather than the data to the processing. This

fundamental idea of moving the processing to

the data means moving supercomputer capabil-

ities to the location that has the best access to

the data. That is the foundation of the design

proposed below.

The reference-system design has two primary

locations, the large data site and the user site. If

both are on the same campus, then the WAN

can be eliminated and the LAN supports the

entire system. The services are located next to

the large data or the user, depending on band-

width and latency of communications channels.

The data/information service is located next

to the large data store to maximize access speed

and eliminate block transmission of the entire

dataset. In Fig. 25.3, multiple parallel lines indi-

cate that multiple parallel channels are neces-

sary to provide sufficient bandwidth to the data.

For example, to build a 1-GB/s channel for

multiterabyte data store would require 10–15

Fibre Channel connections. Also, data and in-

formation services have the feature that their

input is the large data but they perform a data

reduction as a normal part of their operation.

This provides a natural ‘‘compression’’ before

transmission across a WAN or LAN.

The resources located at the user campus are

driven primarily by network latency and band-

width concerns. This locates the visualization

service near the deskstop to facilitate interactive

streaming of image data to the desktop. Internet

web sites commonly stream image data across a

WAN, but low-resolution images buffered into

multisecond buffers are not a good solution

for high-resolution interactive visualization. A

smaller data/information service is placed at the

user campus to provide high-bandwidth feeding

of the visualization service and to provide high-

speed network disk service to the desktop.

The next three sections will discuss in more

detail the networks, servers, and desktops that

support this design.

25.5 Networks

The primary focus of this section will be the

LAN and WAN networks for the reference-

system design. The connections within server

systems to disks and between machines will be

discussed in the next section on servers.

The most important item to consider when

selecting the network is the marketplace.

Certainly, the existing deployed networks at

the user campus should be considered, but if

the data is truly large, it is going to overwhelm

the existing networks, so new capability will

need to be deployed. Therefore, what equip-

ment is currently available and the market dir-

ections for the next few years should be a

primary concern. At present, this means TCP/

IP networks for both the WAN and the LAN.

In the WAN setting, TELCOs (long-distance

telephone companies) are building toward their

main growth market, Internet packet data.

What is certain (and certainty is a rare thing in

dynamic industries like communications) is that

for many years to come there will be companies

available to carry IP packets between sites.

The limiting factor in the WAN will most

likely be the bandwidth cost. The TELCOs

have the bandwidth available, but the yearly

access fee must be considered. Access to an

inexpensive or free high-performance research

network is a possibility that should be con-

sidered for university or research-project

systems.

Similarly, the LAN selection is largely based

on the market directions. Here, the governing

cost is often the equipment cost and the avail-

able cabling/fiber infrastructure. The office-to-

LAN network cabling is not immediately obvi-

ous, but it can be a substantial expense. Never-

theless, it makes no sense to buy network

switches and computer NICs if they cannot be

connected.

The network equipment needed is the equip-

ment to light up the fiber or send signals down

the wire. This includes network switches, com-

puter NICs, server NICs, and potentially

routers to bring it all together. For desktop

delivery of large data, this often is leading-edge

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 501

Desktop Delivery: Access to Large Datasets 501

equipment. Cutting-edge equipment can pro-

vide more capability, but often desktops will

not be able to execute their IP stacks rapidly

enough to fill the very fastest networks. The

leading-edge equipment cost falls between the

cutting-edge technology and the less-expensive

commodity, network equipment. For large-data

applications, it is generally worth the increased

cost to purchase the leading-edge equipment, or

the cost will be in wasted time for the large data

analyst. The cutting-edge technology is worth

considering, but only if the desktops or servers

can utilize the extra bandwidth.

Parallel networks may be needed in locations

where single channels provide insufficient band-

width. This is generally not an issue in offices

because the desktop machines have limited

data-handling abilities. In machine rooms be-

tween servers, data archives, or other high-

bandwidth needs, multiple parallel network

channels are certainly a good solution.

It may be desirable to have parallel networks

to an office if each network serves a different

purpose. Extending a Fibre Channel network to

an office can provide higher-speed and -capacity

disk access than can be easily maintained in

an office. If Fibre Channel is deployed to

an office, an IP network connection is still desir-

able to provide access to the data and informa-

tion services. Next-generation interconnects, like

Infiniband, have the potential to provide access

to both an IP network and a disk system, but it is

too early to tell if and when combined features

like this will reach the marketplace.

25.6 Servers

For the past 20 years, server hardware commonly

implied a large shared-memory multiprocessor

(SMP) computer. Recently, cluster systems built

from numerous commodity computers have

gained popularity. The major attraction of these

systems is the high performance available for the

price of the equipment. The cost of integration,

however, is borne directly by the deploying or-

ganization rather than bundled in the cost of the

machine.

Although clusters are gaining in popularity

with researchers and with industry, their instal-

lation and operations still require considerable

expertise. Also, the cluster environment requires

some unique software tools and libraries to

enable a broader range of applications beyond

custom written applications for the environ-

ment.

When selecting components, the place to start

is the motherboard. Commonly each node is a

motherboard or system with 1 to 16 processors.

One or two processors per motherboard are

most commonly seen in commodity clusters.

For data service nodes, CPU performance is

important in the handling of tasks like IP

stack execution or rapid processing of data.

For data serving nodes, many nodes have the

responsibility of passing data from one network

to another. For example, I/O nodes transfer

data from disk to the interconnect fabric. This

elevates the chip set to equal importance with

the CPU. This requirement to process data

through multiple ports simultaneously strains

chip sets and CPUs alike. Only tests of the

actual motherboard and the CPU(s) with the

interfaces installed can determine if the com-

puter system can handle the bandwidth needs.

A primary advantage of cluster systems in

data-serving and rendering applications is their

inherent scalability. Additional nodes can be

added to increase the number of users sup-

ported, enhance the processing capabilities, or

increase the disk bandwidth.

A high-performance interconnect is import-

ant as well. Large amounts of data are flowing

through the cluster, and they all pass across

the interconnect network. Bandwidth is cer-

tainly a key performance measure, since latency

can often be masked by a pipelining software

design. Nevertheless, a low-latency interconnect

network does benefit fine-grain parallel process-

ing and interactive rendering.

Last but not least, security should not be

overlooked. Large datasets are generally valu-

able. Whether the data is a potential break-

through for a researcher or a next-generation

proprietary design, the large dataset was likely

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 502

502 Large-Scale Data Visualization

expensive to compute or collect and it should

be protected. Often security can be greatly

enhanced by use of the operating system’s

security options on each node. The cluster, how-

ever, does present additional challenges to

ensure that nodes are cleaned up before being

passed from one user to the next. Also, the

cluster design can enhance security, and

the designs presented next help support secure

operation.

To aid cluster integrators, the remainder

of this section will present reference designs

for production deployment of a cluster as

data server and a rendering engine. Los Alamos,

Lawrence Livermore, and Sandia National

Laboratories, teaming with university and in-

dustry partners, developed the software tools

and cluster designs. The remainder of this

section will present two cluster-reference

designs.

The data server design has three major node

types: login, processing, and I/O. The login

nodes connect to both the LAN and the cluster

interconnect. The login nodes are the only

nodes that allow user login, and they spawn

and coordinate jobs running on the cluster.

The processing nodes are nodes that provide

the processing for data subsetting, isosurfacing,

or other data processing tasks. They are primar-

ily distinguished as not having two jobs (like a

login node) so that they have CPU cycles and

chip set room to spare for processing. The I/O

nodes move data onto and off of the cluster.

They are the nodes connected to the disk system

and are nodes that provide parallel streaming of

data into the cluster.

The ‘‘Connect to Visualization Server’’ con-

nection is only relevant at the user campus. At

the data location, the LAN IO nodes are the

means to pass data across the WAN to the user

campus. The ‘‘Connect to Visualization Server’’

arrow is shown as a thick bus to illustrate the

tight coupling desired between the data server

and the visualization server. Here it represents

extending the interconnect fabric between the

two systems.

The software environment is parallel process-

ing with MPI message passing between nodes.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 503

LAN

Login Nodes

IO Nodes

Processing Nodes

Cluster
Interconnect

Disk Fabric

Connect to
Visualization

Server

LAN

Login Nodes

IO Nodes

Processing Nodes

Cluster
Interconnect

Disk Fabric

LANLAN

Login Nodes

I/O Nodes

Processing Nodes

Cluster
Interconnect

Disk Fabric

Connect to

Server

Figure 25.4 Data/information server reference design.

Desktop Delivery: Access to Large Datasets 503

Microsoft Windows or Linux operating systems

are viable on the nodes. A current disk system

option is cluster wide NFS service with one file

system per I/O node. Several high-performance

parallel object-based file systems are in develop-

ment that promise to provide a global parallel

file system.

The visualization server is similar in design to

the data server. The visualization server has three

major node types: login, render, and display. The

login nodes, like the data server, connect to the

LAN and the cluster interconnect. The login

nodes are the only nodes that allow user login,

and they spawn and coordinate rendering activ-

ities on the cluster. The render nodes are nodes

that contain commodity graphics cards to pro-

vide a scalable rendering capability. Presently,

a render node’s motherboard differs from the

login and display nodes because they support

an AGP (Advanced Graphics Port) for the

graphics card.

The display nodes are designed to stream

data off of the cluster to a user’s desktop.

Each of the display nodes contains a local

disk to cache results, and the disks can be

used to ensure smooth playback of animations.

The decision to play back animations from the

display nodes or download and play them from

a user’s desktop depends on the balance of

speed between the network and the desktop’s

disks.

The ‘‘Connect to Data Server’’ arrow indi-

cates the tight coupling back to a local data

server. As mentioned in the data-server discus-

sion, a good option for the tight coupling is to

extend the interconnect fabric between the two

systems.

Like the data server, the software environ-

ment is parallel processing with MPI message

passing between nodes. Microsoft Windows

or Linux operating systems are viable on the

nodes. Here the determining factor of the oper-

ating system is the availability of high-perform-

ance drivers for the graphics cards. If a Linux

driver is not available, then Windows may be

the only option.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 504

LAN

Login Nodes

Display Nodes

Rendering Nodes

Cluster
Interconnect

LAN

LANLAN

Login Nodes

Display Nodes

Rendering Nodes

Cluster
Interconnect

LANLAN

Local
Disks

Connect to
Data Server

Figure 25.5 Visualization server design.

504 Large-Scale Data Visualization

The ASCI program has developed software

to aid in constructing render clusters. Two pri-

mary tools are Chromium and ParaView.

Chromium is a library that coordinates Open

GL rendering on a cluster, allowing scalar and

parallel Open GL applications access to cluster

rendering. Chromium [7] was initially developed

at Stanford under an ASCI contract, but it has

transitioned to open-source development and

availability. Similarly, ASCI contracted Kit-

ware to extend the open-source Visualization

Toolkit (VTK) to enable distributed-memory

parallel processing. The resulting application,

ParaView [8], is also open-source available.

Other cluster tools, like Distributed Multihead

X (DMX) [9] for cluster-driven tiled displays,

are under development, and most will be re-

leased as open source.

25.7 Desktop Machine Selection

It is fitting that the section on desktop machine

selection is buried numerous pages after discus-

sions of markets, networks, and servers. When

an office desktop is mentioned, thoughts usually

turn only to the hardware sitting in the office.

The truth, however, is that the desktop machine

is only the tip of the iceberg, and most of the

system necessary to bring large data to a desk-

top is hidden in network closets and machine

rooms.

The first step in selecting a desktop is to

carefully look at the markets. Visualizing and

analyzing large data are, by definition, tasks

well beyond the current desktop abilities. The

consumer markets bring out doublings of per-

formance regularly. If the desktop hardware

and software are properly selected, then an ad-

vantage can be leveraged from the frequent re-

lease of improved technology. Doing this

successfully allows the users to ride the wave,

using the technology advances to propel the

capability forward.

Today, the ride-the-wave technology is com-

modity personal computers. The commodity

machines are matching the performance of trad-

itional scientific workstations at a fraction of

their cost. Proper selection of a desktop ma-

chine centers on testing the machine with the

applications that are intended to be run. Stand-

ard benchmarks are useful to narrow the search,

but in the end, testing before buying is critical.

Because large data comprehension is usually

highly dependent on visualization, the graphics

card is a key component. The fastest vendor

regularly changes in the marketplace, but nearly

all vendors are targeting the PC platform. Here,

benchmarks running the applications of import-

ance to the users are critical. Different graphics

cards from the same vendor and from different

vendors vary greatly in their abilities. Applica-

tion timings are the sure way to find the best one

for users’ applications.

The graphics-card vendors release significant

improvements approximately every 6 months.

Most vendors try to release a new card for the

Christmas holiday, so a card purchased in Oc-

tober is likely to be surpassed by one purchased

in December.

Because the vendors are targeting the PC, the

graphics cards can be readily upgraded. The

cards are relatively inexpensive ($300 to $1500,

with a few above $2000). Due to the low cost,

the graphics card can usually be upgraded at

least annually. During the last few years, an

annual upgrade has delivered nearly a doubling

in performance each year. The more expensive

cards provide extra performance in certain areas

like line drawing. If the users’ applications are

not greatly accelerated by the extra perform-

ance, then buying the most expensive card may

not make the most sense, since it will upgraded

in a year.

Selecting the remainder of the desktop ma-

chine involves choosing a PC that can handle a

high-performance graphics card and a fast NIC.

Currently the PC will need an AGP port for the

graphics card and PCI slot for the NIC. The

chip set must be able to handle operations of

both simultaneously. Tests should be run to

confirm that the NIC and graphics card do not

strongly conflict. It is also important to remem-

ber to include plenty of CPU cycles for execut-

ing an IP stack. Two CPUs can help, if the load

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 505

Desktop Delivery: Access to Large Datasets 505

is more than one can handle. Load the PC with

as much RAM as possible. It is useful for pro-

cessing locally and to help with the playback of

animation.

From the large data perspective, the local

disk is mainly for booting. A large disk is useful,

however, because the PC will probably be used

for more than just large data analysis. If

local animation playback is desired, a small

local RAID can be very useful. Small RAID

controllers are even integrated on some mother-

boards.

The display selection can be summed up in

one phrase, ‘‘Bigger is better.’’ One large screen

is good; multiple screens are often desirable as

well. Construction blueprints are printed on

huge paper for a reason; similarly, a large

high-resolution screen allows viewing of more

information.

In conclusion, buy the latest top-of-the-line

PC. Load it with a fast graphics card, but be

sure to test several to select the best one for your

application. Put in as much memory as the slots

can hold. Then connect it to the world with a

leading-edge IP network.

25.8 Large Enterprise Considerations

Recognizing that the markets that supply desk-

tops, servers, and networks are rapidly deliver-

ing improved technology, the challenge becomes

deploying products rapidly and frequently to

ride the wave. For a small team, the team gen-

erally just does it all themselves. In a large

organization, the do-it-yourself option is pos-

sible, but it is also possible to engage the IT

(Information Technology) organizations to

help deploy to a large number of users.

Supporting a large number of users in add-

ition to handling the large data has benefits and

challenges. The larger user base generally brings

larger budgets to help purchase servers, disk

systems, and networks. The downside is that

there are more users to support and the logistics

of deploying 100 new desktops can be daunting.

Also, large organizations are generally slow to

adapt to change.

A slow rate of adoption for new computer

technology can hinder the ability to ride the

wave. With the availability of faster graphics

cards every 6 months, a corporate practice like

the 3-year refresh cycle for desktops can render

desktops quickly obsolete. A good technique is

to develop a deployment strategy that includes

plans to ride the wave. At Sandia National

Laboratories, by planning for graphics card

refresh, the desktop delivery team has de-

veloped practices that permit upgrade of a

user’s graphics card in 20 minutes. This short

update time allows annual updates of graphics

capabilities.

Another strategy for a large organization to

rapidly deploy and ride the wave is to team with

vendors. Rather than purchase a desktop and

have the internal IT team install the software,

buy the desktop ready, with all the software

installed, including user-specific tools. When

you make the supplier a part of the team, more

personnel are available to speed deployment or

graphics card updates.

Large organizations generally have corpor-

ation-wide teams that supply networking to

everyone. Similarly to the difficulties of

deploying hundreds of desktops, deploying a

new high-performance network can be difficult.

A strategy to assist with deploying an advanced

network is to deploy multilevel networks. The

idea is to supply higher-speed networks to users

that need the service. Telephone companies

supply different levels of service, and it makes

sense to have the same setup within large organ-

izations. This allows the network budget to be

focused on the users that need access to the large

data. The corporate network team often likes

this strategy too, because usually they enjoy the

challenge of the leading-edge technology.

Finally, remember to scale the servers for the

number of users in addition to the size of the

data. Added login nodes may be needed on data

and visualization clusters. Network backbones

may need to be enlarged to handle multiple

users accessing the large data simultaneously.

The large data is still the first-priority problem,

but a large user base complicates the problem.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 506

506 Large-Scale Data Visualization

25.9 Desktop Futures

Predicting the future is a dangerous practice,

but there are some significant trends that are

worth mentioning. The discussion here helps to

illustrate the broad range of technologies that

have the potential to greatly change the office

desktop. The exercise also is useful in the assess-

ment of current desktop ideas in order to avoid

dead-end purchases.

The high-definition television (HDTV) de-

ployment in the United States is not proceeding

as rapidly as expected. Nevertheless, HDTV dis-

plays (i.e., next-generation TV sets) are dropping

in price and the number of broadcast stations

that carry this format is increasing. This growing

marketplace is likely to foster technologies to

deliver relatively high-resolution moving-picture

content. As HDTV production and home dis-

play markets grow, the quality of both sending

and receiving equipment will increase in quality

and decrease in price. Because the television

markets are so large, this technology segment

could deliver components that exceed the cap-

abilities of existing cluster-PC desktop systems.

Thus, a desktop of the future may simply be an

advanced ‘‘closed-circuit’’ HDTV system feed-

ing flat-panel HDTV displays.

The next question should be, what about the

human interface? How will a user interact with

the system? The answer may be sitting in front

of millions of 12-year-olds in game boxes like

the XBox or the Playstation. There are two

trends that point this way.

First, look at the effect of Moore’s Law on

computing. Mainframe computers, like the

large CDC machines, gave way to minicom-

puters, like the DEC VAX. Microcomputers,

like the PC and Apples, have superseded mini-

computers. So the question becomes, what is

next in the lineage? Game boxes are certainly a

major option. The latest game boxes delivered

graphics performance at their release that

exceeded PC capabilities, and with a price of

$300 or less, they could literally be disposable

in an office setting.

Second, recent PC graphics cards have been

bandwidth-limited because they run on PC plat-

forms. Tests of rendering speed run from main

memory are about half the speed of the same

polygons loaded up into the card’s memory. A

solution is to build a special computer to prop-

erly feed the graphics chips, and game boxes are

exactly these machines. Take a game box, add

the increasing availability of broadband IP net-

works to homes, attach an HDTV display, and

you have the perfect environment in which to

deliver computing as a service rather than a

system purchase. A game box has plenty of

processing power to run common applications

like a word processor, Internet browser, and

annual tax software in addition to the usual

suite of games. Provide this all as a service to a

set-top box with no user maintenance, and the

PC could be in trouble. If this proves true, the

next-generation office hardware could easily be

a game box.

Now let us turn to the future of displays. In

the PC markets, the displays have been growing

slowly in size and the resolution has crept up.

However, neither the resolution nor the size of

the display has seen the doubling like CPUs or

graphics processing. The primary market move-

ment has been toward flat-panel displays, but at

similar sizes and resolutions as the CRT moni-

tors.

The ASCI program recognized that some

progress was needed in this area, and it funded

IBM to modify a manufacturing line so

that they could release a major new display.

The result is the IBM T221, a 22:200 flat-panel

display delivering 9.2 million pixels. The T221

delivers extremely crisp images with its 200-

pixels-per-inch resolution. This is certainly a

welcome advance, and other manufacturers

have been releasing large high-resolution flat

panels.

For the future, there are three other technolo-

gies to watch in addition to the flat-panel

market: projectors, OLEDs, and personal dis-

plays. Projectors are certainly improving in

brightness and resolution and decreasing in

size. With microelectronic technologies, small

devices facilitate low costs, and perhaps project-

ors will ride some of this wave. A book-sized

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 507

Desktop Delivery: Access to Large Datasets 507

projector projecting from ceiling to wall might

easily be more inexpensive than the large piece

of glass or plastic that is part of a large flat-

panel display.

Organic light-emitting diode displays

(OLEDs) are another potential challenger to

current flat panels. The display can be manufac-

tured as a very thin sheet, leading to the poten-

tial of a ‘‘wallpaper display.’’ The current

displays are small and of relatively low reso-

lution, but the technology is certainly worth

the time to track.

Another area is personal displays. For years,

a variety of researchers and companies have

demonstrated direct imaging on the retina. To

date, none have made a major market impact.

Nevertheless, small devices can be made inex-

pensively, and a practical solution like a display

integrated into a lightweight pair of glasses

could be successful.

Also, a variety of technologies have been de-

veloped for 3D displays. Some have spinning

screens or stacked flat-panel displays. Today

the resolutions are relatively low, but a good

3D display has the potential to be very useful

for large data visualization and analysis.

The existing and emerging technologies

open opportunities to reengineer the office

workspace. Henry Fuchs, working with other

staff and students at the University of North

Carolina at Chapel Hill, has been exploring

future office environments for many years

[10,11]. The goal is to apply display, telecon-

ferencing, and high-performance graphics tech-

nology to deliver enhanced office work

environments. Sandia National Laboratories

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 508

Figure 25.6 A picture of one of Sandia’s ‘‘Office of the Future’’ test beds. (See also color insert.)

508 Large-Scale Data Visualization

has been teaming with Fuchs’ team and de-

veloping unique solutions for a future office

environment.

Figure 25.6 shows the office test bed with a

large high-resolution display for individual

work and team meetings. A private system (the

laptop) is available for private e-mail or it can act

as an additional display when the user is working

a large problem. On the back wall is a videocon-

ference display and camera to expand inter-

actions beyond the walls of the room. A goal of

this ‘‘Office of the Future’’ test bed is to demon-

strate that a next-generation office should use the

technology to enhance office environments

beyonda single display andakeyboardonadesk.

The future of large data should be con-

sidered. Large datasets today reach beyond a

terabyte. Datasets of this size are certainly diffi-

cult to visualize and analyze. Through innov-

ation, the computer technology is growing to

meet the ever-increasing sizes. The human, how-

ever, has not changed much. Certain databases,

like the Human Genome database, demon-

strate the difficulty in making sense of all the

data.

As datasets reach petabytes, it is likely

that computer systems will play an increasing

role in ‘‘data discovery.’’ Scientific visualization

supports information discovery by presenting

information to the user to analyze, but with

human attention and senses limited, new ways

to better present large datasets will be needed.

Scientific visualization took discovery past

tables of numbers and curve fits. Perhaps scien-

tific visualization will, in the future, evolve into

the related field called Information Visualiza-

tion (Info-Vis).

25.10 Conclusion

According to an old saying, ‘‘By the time an

engineer completes an undergraduate engineer-

ing degree, he knows nothing. All he has learned

is just enough that a senior engineer can now

communicate with him.’’ This chapter echoes

that saying in some ways. Computer technology

is advancing at such a rate that discussions of

specific hardware and software will quickly

become dated. A PC desktop of today may

give way to a game box in each office. The

core methods and concepts, however, will

remain relevant. The goal of this chapter has

been to provide a foundation that spans the

major issues of office desktop delivery to aid

construction of systems today and tomorrow.

Large data does not seem to be going away.

As desktops grow in capability, our desire to

tackle ever-larger problems advances too. For

decades to come, people will likely be working

in their offices or may be at home and looking

to understand large databases. To provide these

capabilities, full systems are likely to be needed.

Networks, servers, and desktops must function

together to bring large data access to the office.

Average consumers, with their combined

spending power, are devouring new technology

and driving rapid advances. Large data analysis

and visualization must find ways to leverage

these technologies or be left in the past with

antiquated equipment. With careful observation

of technology markets and some creative innov-

ation, visualization and computer experts can

find ways to solve the next generation of large-

data visualization and analysis problems. Major

technology changes are a way of life. Success is

dependent on our harnessing this change to

speed the understanding of complex phenomena

hidden in the massive data.

References

1. United States Department of Commerce, Bureau
of Economic Analysis, http://www.bea.gov/bea/
dn/gdplev.xls

2. Myricom Home Page, http://www.myri.com
3. Quadrics Home Page, http://www.quadrics.com
4. Infiniband Trade Association, http://www.infini-

bandta.org/home
5. Computational Engineering International, http://

www.ceintl.com/
6. Sandia News Center, ‘‘Be There Now,’’ http://

www.sandia.gov/news-center/news-releases/
2002/comp-soft-math/remote-viz.html

7. The Chromium Project, http://sourceforge.net/
projects/chromium

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 509

Desktop Delivery: Access to Large Datasets 509

8. Paraview, http://www.paraview.org/HTML/
Index.html

9. Distributed Multihead X, https://sourceforge.
net/projects/dmx/

10. R. Raskar, G. Welch, M. Cutts, A. Lake, L.
Stesin, and H. Fuchs. The office of the future:

a unified approach to image-based modeling
and spatially immersive displays, ACM SIG-
GRAPH 1998, pages 179–188, 1998.

11. Henry Fuchs’ home page, http://www.cs.unc.
edu/�fuchs/

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:24am page 510

510 Large-Scale Data Visualization

26 Techniques for Visualizing
Time-Varying Volume Data

KWAN-LIU MA and ERIC B. LUM

University of California at Davis

26.1 Introduction

Our ability to study and understand complex,

transient phenomena is critical to the solution

of many scientific and engineering problems.

Examples include data from the study of neuron

excitement, crack propagation in a material,

evolution of a thunderstorm, unsteady flow sur-

rounding an aircraft, seismic reflection from

geological strata, and the merging of galaxies.

A typical time-varying dataset from a computa-

tional fluid dynamics (CFD) simulation can

contain hundreds of time-steps, and each time-

step can have more than millions of data points.

Generally, multiple values are stored at each

data point. As a result, a single dataset can

easily require hundreds of gigabytes to even

terabytes of storage space, which creates chal-

lenges for the subsequent data-analysis tasks.

The ability of scientists to visualize time-vary-

ing phenomena is absolutely essential in ensuring

correct interpretation and analysis, provoking

insights, and communicating those insights to

others. For instance, by directly and appropri-

ately rendering a time-varying dataset, we can

produce an animation sequence that illustrates

how the underlying structures evolve over time.

In particular, interactive visualization is the key

that allows scientists to freely explore in both

spatial and temporal domains, as well as in the

visualization parameter space, by changing view,

classification, colors, etc. However, rendering of

time-varying data requires the reading of large

files continuously or periodically throughout the

course of the visualization process, preventing it

from achieving interactive rendering rates.

In this chapter, we describe how time-varying

volume data can be efficiently rendered to

achieve interactive visualization, with a focus

on employing data encoding, hardware acceler-

ation, and parallel pipelined rendering. Careful

encoding of the data can not only reduce stor-

age requirements but also facilitate subsequent

rendering calculations. We provide a survey of

encoding methods for time-varying volume

data. Modern PC graphics cards can be used

to render volume data at highly interactive

rates. When rendering time-varying data, it is

crucial to accelerate the loading of each time-

step of the data into the video memory from

either main memory or disk. A hardware decod-

ing approach makes it possible to transport and

render a much smaller, compressed version of

the data instead, which enables interactive ex-

ploration in the spatial and temporal domains.

Most rendering calculations can be straightfor-

wardly parallelized to increase rendering rates

while maintaining high image quality, but,

again, the I/O issue must be addressed so that

the volume data and image transfer rate can

keep up with the rendering rate. A pipelined

approach coupled with image compression is

demonstrated to reach the highest possible

efficiency.

26.2 Characteristics of Time-Varying
Volume Data

When designing visualization techniques

for time-varying data, one should take the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 511

511

characteristics of the data into consideration.

Features of interest in a time series might ex-

hibit a regular, periodic, or random pattern. A

regular pattern is characterized by a feature that

moves steadily through the volume. The fea-

ture’s structure neither varies dramatically nor

follows a periodic path. Features exhibiting a

periodic pattern appear and disappear over

time. Transient features of interest or features

that fluctuate randomly are common, such as

those found in turbulent flows. Generally, we

can more easily detect and more efficiently

render regular and periodic patterns.

It is also necessary to take into consideration

the data value ranges of the datasets. For

example, large value ranges must be treated

with care; otherwise, many important features

in later time-steps may become invisible. Fig.

26.1 plots the maximum and minimum values

for each time-step of two datasets. The left one

shows values of a turbulence flow dataset that

consists of 81 time-steps. It has an extremely

wide value range. The plot of the other dataset

shows a much smaller value range that would

help simplify some of the temporal-domain

visualization calculations. More detailed statis-

tical information about a dataset, if available,

could provide hints regarding how to derive

more effective visualization in a more efficient

manner.

Ideally, visualizing time-varying data should

be done while data is being generated, so

that users receive immediate feedback on the

subject under study and so that the visualiza-

tion results, rather than the much larger raw

data, can be stored. Even though simulation-

time visualization is a promising approach,

considering the wide variety of possible data

characteristics it is clear that exploratory data

visualization must also be made available. That

is, scientists need to have the capability to re-

peatedly explore the spatial, temporal, and par-

ameter spaces of the data. In particular, most

scientists run their large-scale simulations on

parallel supercomputers operated at national

supercomputer centers and also store the output

data there. Data visualization and understand-

ing are mostly done as post-processing tasks

because either the simulation itself or the data

transport is not real-time and thus does not

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 512

−2

0

2

4

6

8

10

12

14

0 25 50 75 100
Time-Step

Max Value
Min Value

0

1000

5000

11000

0 21 41 61 81
Time-Step

Max Value
Min Value

Figure 26.1 (Left) Maximum and minimum values at each time-step of a dataset from the study of the generation and evolution

of turbulent structures in shear flows. Early time-steps contain values in a very large value range, which makes quantization

more difficult. (Right) Maximum and minimum values at each time-step of a dataset from the study of coherent turbulent vortex

structures. This dataset has a small value range, and the distribution of values is quite uniform.

512 Large-Scale Data Visualization

allow interactive visualization. While this chap-

ter focuses on postprocessing visualization

techniques, some of the techniques we introduce

are also applicable to simulation-time visualiza-

tion.

26.3 Encoding

The size of a time-varying volume dataset can

be reduced and therefore made more manage-

able through the use of either value-based en-

coding or physically based feature extraction

methods. Value-based encoding methods trans-

form (and potentially compress) data by ex-

ploiting coherence. Physically based methods

extract data features, such as vortices or shocks,

and represent them in a compact fashion. This

section discusses value-based encoding tech-

niques for time-varying volume data. Topics in

feature extraction are covered by other chapters

of this book.

First, the reduction in storage requirements

can be used to fit more time-steps into a com-

puter’s main memory, enabling interactive

browsing of the temporal domain of the data.

Second,when the datamust be transferred across

a system bus, like from disk to main memory or

from main memory to video memory, the trans-

fer of reduced data can be done substantially

faster than that of raw data. There are two

basic approaches to value-based compression of

time-varying data. The first approach is to treat

time-varying volume data as 4D data. For

example, the 4D data can be encoded with a 4D

tree (an extension of an octree) and an associated

error/importance model to control compression

rate and image quality [28]. A more refined

design is based on a 4th-root-of-2 subdivision

scheme coupled with a linear B-spline wavelet

scheme for representing time-varying volume

data at multiple levels of detail [12]. Another

way to treat 4D data is to slice or volume-render

in the 4D space. The resulting hyperplane and

hyperprojection present unique space–time fea-

tures [29].

The second approach to time-varying data

encoding is to separate the temporal dimension

from the spatial dimensions. A simple differ-

ence encoding that exploits the data coher-

ence between consecutive time-steps can result

in a significant reduction, but it is limited to

a sequential browsing of the temporal aspect

of the data [25]. A more flexible encoding method

couples nonuniform quantization with octree

encoding for spatial-domain data compression,

and difference encoding for temporal-domain

compression [18]. Rendering can become opti-

mal when neighboring voxels are fused into

macrovoxels, if these voxels have similar values,

and subtrees at consecutive time-steps are

merged if they are identical. Fig. 26.2 displays

the performance of such a renderer compared to

a brute-force renderer for rendering a turbulent

jet dataset. A subsequent design based on a hier-

archical data structure called a time-space parti-

tioning (TSP) tree [24] can achieve further

improvement in utilization of both spatial and

temporal coherence.

The TSP tree is a time-supplemented octree.

The skeleton of a TSP tree is a standard com-

plete octree, which means it recursively subdiv-

ides the volume spatially until all subvolumes

reach a predefined minimum size. To store the

temporal information, each TSP tree node itself

is a binary tree. Every node in the binary time

tree represents a different time span for the

same subvolume in the spatial domain. The ob-

jective of the TSP design is to reduce the

amount of data required to complete the

rendering task and to reduce the volume-

rendering time. Rendering with TSP trees essen-

tially allows efficient traversals of regions with

different spatial and temporal resolutions in

order of increasing fidelity.

Several other techniques are also worth men-

tioning. One is based on wavelet compression

to establish an underlying analysis model

for characterizing time-varying data. Essen-

tially, it involves separate wavelet encoding

of each time-step to derive compressed multi-

scale tree structures [27]. By examining the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 513

Techniques for Visualizing Time-Varying Volume Data 513

resulting multiscale tree structures and wavelet

coefficients, we can perform feature extrac-

tion, tracking, and further compression. It is

also possible to compress time-varying iso-

surfaces and associated volumetric features

with wavelet transforms to allow fast reconstruc-

tion and rendering [26]. Finally, a technique

based on shear-warp volume-rendering exploits

temporal coherence to render only the changed

parts of each slice and uses run-length encod-

ing to compress the spatial domain of the

data [1].

Whether one should treat time-varying

volume data as 4D data depends on the charac-

teristics of the data. For example, if the discrep-

ancy between the temporal resolution and the

spatial resolution is large, it could become very

difficult to locate the temporal coherence in

certain subdomains of the data; consequently,

the time domain should be considered separ-

ately for encoding. Another problem with

using 4D trees is that coupling spatial and tem-

poral domains makes it difficult to locate

regions with temporal coherence but not spatial

coherence.

26.4 Interactive Hardware-Accelerated
Rendering

Commodity PC graphics cards have been effect-

ively used for volume-rendering static volumet-

ric data [4,10,14]. Even though real-time

rendering rates can be achieved, the volumetric

data must be loaded into the video memory

prior to the rendering. Since the access and

transfer of data from main memory across the

graphics bus to the graphics card is relatively

slow compared to the direct access of video

memory, the need to load each time-step of the

data into video memory can limit rendering

performance for time-varying volume data.

Reducing the amount of data that must be

transferred to the video memory seems to be

the most effective way to remove this data-

transport bottleneck. As discussed previously,

time-varying data can be reduced in size and

therefore made more manageable through the

use of compression. However, one key require-

ment here is that the compressed volume data

be uncompressed in the video memory. This

section describes a technique allowing decoding

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 514

0.0 5.0 10.0 15.0 20.0 25.0 30.0
Time-Step

0.0

1.0

2.0

3.0

4.0

5.0

6.0
T

im
e

in
 S

ec
on

ds
Total Rendering Cost

Baseline Renderer

TVVD Renderer with Octree Optimizations

Figure 26.2 (Left) Rendering cost for a turbulent jet dataset using a ray-casting volume renderer. The time is the total time to

process, including reading encoded data from disk, decoding when necessary, calculating the gradient, rendering, and compos-

iting. (Right) One frame from the resulting animation. (See also color insert.)

514 Large-Scale Data Visualization

and rendering of time-varying volume data in

hardware, delivering the desirable interactive

rendering rates [15].

26.4.1 Compression

The advantages of compressing volumetric data

are twofold. First, the compression reduces the

storage requirements needed for the data. This

could allow a dataset to fit in main memory that

might otherwise not fit, eliminating the need to

transfer data from disk. The reduction in stor-

age can also be used to fit relatively small com-

pressed datasets entirely in texture memory,

thus eliminating the need to transfer data across

the graphics bus. The other to benefit of com-

pression is a reduction in I/O. If a compressed

volume fits entirely in main memory, the cost of

transferring compressed data to the graphics

card is lower than the cost of transferring

uncompressed data. If a dataset does not fit

into main memory, the transfer of compressed

data from disk can be substantially faster than

with uncompressed data, allowing for inter-

active visualization from disk.

We therefore treat video and main memory

together as a two-level cache for volume-

rendering. The compression of volumetric data

not only increases the amount of data that can

fit in each level but also decreases the I/O costs

of transfers between these levels. Through the

use of compression, and careful management of

the time costs associated with the transfers be-

tween levels, it is possible to load texture maps

representing volume data into video memory at

rates suitable for interactive visualization.

If a compressed volume is to be rendered

directly, from video memory, it must also be

uncompressed using the graphics hardware.

This is a significant constraint, since the oper-

ations supported in video hardware are ex-

tremely limited compared to those of a

general-purpose CPU. Another constraint is im-

posed by the fact that it is very desirable to

encode the scalar voxel values in terms of their

scalar value rather than as a red, green, blue,

alpha (opacity) set. Using scalar values and

color indexed textures allows a user to manipu-

late the color palette to interactively change the

opacity and color maps, permitting exploration

of the data’s transfer-function space. Storing

voxels in terms of RGBA would require recom-

pression of the entire dataset as parameters are

changed, which can be impractical for very large

datasets. In addition, storing a single scalar

value, rather than four color scalars, reduces

the amount of data by a factor of four.

26.4.2 Palette-Based Decoding

With the limitations of graphics hardware in

mind, we need a method for the temporal en-

coding of indexed volumetric data that can

quickly be decoded in hardware. A viable ap-

proach is to make extensive use of hardware

support for the changing of color palettes with-

out the reloading of textures. The cycling of

color palettes can be used to create simple ani-

mations from static images. Similarly, we can

use color-palette manipulation to allow a single

scalar index to represent grid-points at several

time-steps.

With paletted textures, a single scalar index is

used to represent an RGB or RGBA color. The

palette consists of a limited set of colors that

sample the RGBA color space. Each of these

colors is encoded in a single value, often a single

byte. Consequently, we can encode a sequence

of temporally changing scalar values into a

single index. In this way, the value stored in

each texel represents an approximation of a

sequence of scalar values. Each index is there-

fore a sample in the space of possible time-

varying scalar values. The scalar values that an

indexed texel represents are decoded to its tem-

porally changing values through the frame-to-

frame manipulation of the palette. For each

frame, the color for each palette entry is set to

the color found in the transfer function for the

scalar encoded by that index value during that

frame, as shown in the following pseudo-code,

which renders N time-steps using a single

indexed texture. Note that 8-bit indexed tex-

tures are assumed.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 515

Techniques for Visualizing Time-Varying Volume Data 515

{

// stores color map from the transfer

function

Color color map [256];

// stores the N time-varying scalars

encoded by each

// of the 256 possible texel values.

This array is created

// during the compression process

int decoder [N] [256];

// the color palette to be calculated

for each time-step

Color palette [256];

for each time-step t (0 to N-1) {

for each palette entry i (0 to 255) {

palette [i] ¼color map [decoder

[t] [i]];

}

// set the palette for the current

frame

setPalette (palette);

renderTexture ();

}

}

The textures are rasterized to the screen using

linear interpolation. In contrast to dependent

textures, for paletted textures, post-classified

linear interpolation occurs in terms of RGBA

values after the table lookup. If interpolation

occurred in terms of palette indices, the

resulting images would show severe artifacts

since the mapping between palette indices and

decoded scalar values is not linear.

26.4.3 Temporal Encoding

The encoding process consists of mapping se-

quences of scalars into single scalar indices. This

operation can be approached as a vector quant-

ization problem and can be solved using a var-

iety of techniques. One method for quantizing

the sequences we describe in this section uses

transform encoding, specifically the discrete

cosine transform (DCT) [8,9,23]. Transform en-

coding is a compression method that transforms

data into a set of coefficients that are then

quantized to create a more compact representa-

tion. The transform by itself is reversible and

does not compress the data. Rather, a transform

is selected that puts more energy into fewer

coefficients, thus allowing the less important,

lower-energy coefficients to be quantized more

coarsely, and thus requiring less storage.

The DCT is defined by

C(u) ¼ a(u)
XN�1

x¼0

f (x) cos
(2xþ 1)up

2N

� �
(26:1)

and

a(u) ¼

ffiffiffi
1
N

q
for u ¼ 0ffiffiffi

2
N

q
for u ¼ 1, 2 . . . , N � 1

8<
: (26:2)

where C(u) are the transformed coefficients, N is

the number of input samples, and f(x) are the

input samples. DCT is chosen because it is

known to have good information-packing qual-

ities and tends to have less error at the boundaries

of a sequence [8].

In the encoding process, first a window size is

selected, which will be the length of the time

sequence that will be encoded into a single

value. The longer the window size, the greater

the compression that will be achieved at the ex-

pense of temporal accuracy. For each window of

time-evolving scalars, the DCT is applied. The

result is a set of coefficients equal in number

to the size of the window used. The first coeffi-

cient stores the average value over the window

and tends to be largest in value. The remain-

ing coefficients store increasingly higher fre-

quency components contained in the windowed

sequence. These coefficients tend to represent

decreasing amounts of signal as the frequency

gets higher.

These coefficients are then quantized and

combined into a single scalar value. Bits are

adaptively allocated for each coefficient based

on the variance of each coefficient [23]. Those

coefficients of high variance are allocated more

bits than those coefficients of low variance.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 516

516 Large-Scale Data Visualization

Using this technique, bits are allocated based on

the temporal characteristics of the windowed

sequence of the dataset. For example, a dataset

with minimal amounts of movement would

use fewer bits to store the temporal changes in

the data, allowing more bits to be used to

more precisely represent the stationary values

in the sequence. On the other hand, a sequence

with high speed motion (low temporal

coherence) would use more bits to encode this

motion at the expense of precision for the static

values.

Once bit allocation for the transformed coef-

ficients is determined, the coefficients are quant-

ized to their respective precisions. Uniform

quantization is not well suited for quantizing

these coefficients, since they often have fairly

nonuniform distributions. Instead, quantization

occurs using Lloyd–Max quantization [13,21],

which adaptively selects quantization levels

that minimize mean squared error. The quant-

ized coefficients are then combined into a

single scalar, which is stored as an index in

a paletted texture.

26.4.4 Texture Implementation

As described in the previous section, the

quantization step can be adapted based on

the characteristics of the dataset. Since the tem-

poral properties can vary widely across a

volume, to reduce the amount of error from

quantization it is advantageous to independ-

ently compress small sections of a volume,

each with its own set of palettes. The volume

can be subdivided into 3D blocks stored as 3D

textures, or as view-aligned slabs stored as 2D

textures. Although the palette-based temporal

compression technique can be applied to both

3D and 2D textures, if 3D textures are used and

the volume is subdivided into blocks, the

borders between those blocks can become vis-

ible. This is because the same scalar value can

map to differing colors depending on its block.

Decomposing the volume into view-aligned 2D

slices has the advantage of having these quant-

ization discontinuities occur along the view

direction, which is made less noticeable by the

volume-rendering integral. The 2D texture also

has the advantage of being a feature more

widely supported on more graphics cards,

often with faster rasterization than with 3D

textures. The use of 2D textures has the disad-

vantage of requiring three view-aligned copies

of the dataset for viewing from an arbitrary

direction.

Usually, when bit allocation occurs, most

bits are used for storing the average value over

a windowed sequence. As a result, when the

transition occurs between two compressed

sequences, the shift in average value can cause

a perceived jump in the animation. With 2D

textures, this can be fixed by interleaving the

starting times of the time windows for each

slice. Fig. 26.3 shows such an interleaving

scheme. This decorrelates temporal transitions

so that the jump occurs during every frame, but

for interleaved slices in the volume, rather than

the whole volume. This is analogous to inter-

laced video, except rather than being interlaced

vertically, the textures are interleaved along the

viewing direction. As with per-slice quantiza-

tion, the volume-rendering integral helps to

soften the interleaving effect.

For a transform window of length N, without

interleaving, an entire new compressed volume

must be loaded every N frames. Since the

loading of data across the graphics bus is rela-

tively slow, this can cause a noticeable drop in

frame rate every N frames. This problem can be

solved by loading 1=N of the next compressed

volume every frame but requires storage of a

copy of the next volume in texture memory.

This, however, is not necessary if the textures

are interleaved, since for every frame 1=N of the

volume can be flushed from texture memory

and replaced with a new texture. Thus, by

amortizing data movement costs, interleaving

allows for a more consistent frame rate without

the expense of needing the texture memory to

store a second compressed volume. If the user

moves to an arbitrary frame nonsequentially,

then all textures must be reloaded, and there is

a drop in frame rate.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 517

Techniques for Visualizing Time-Varying Volume Data 517

26.4.5 Performance

Here we present the performance of the renderer

on a low-cost PC configured with an AMD

1.2 GHz Athlon processor, 768 megabytes of

main memory, an Nvidia GeForce 3 based

graphics card with 64 megabytes of texture

memory, and an IDE level 0 Raid (4 drives).

Using the hardware-accelerated decoding and

rendering method, it is possible to render mod-

erate-resolution, time-varying volumetric data-

sets at interactive rates.

The test results were from the rendering of a

quasi-geostrophic (QG) turbulent flow dataset

consisting of 1492 time-steps provided by re-

searchers at the National Center for Atmos-

pheric Research (NCAR). Its spatial resolution

is 256� 256� 256. The QG calculations simu-

late large-scale motions in the Earth’s atmos-

phere and oceans and are representative in size

and complexity of many earth sciences turbu-

lent fluid-flow simulations. Fig. 26.4 shows

selected time-steps of the data.

Table 26.1 shows frame rates for different

compression cases using NCAR’s QG dataset.

Compressing each time-step of a 2563 QG data

set takes between 5 and 15 seconds, depending

on the level of compression, using an approxi-

mation of Lloyd–Max Quantization [9]. The

implementation uses 8-bit paletted textures,

although our technique could be applied to

hardware that supports higher-precision tex-

tures for encoding strategies that allocate more

bits to each transformed coefficient. The results

were obtained when rendering the volume to

a 512� 512 window, with the volume occupying

approximately one-third of the window area.

If a compressed dataset fits entirely in main

memory, then the bottleneck in the rendering

process is the transfer of textures from main

memory to the graphics card. Compression

helps with both of these limitations, not only

increasing the number of time-steps that fit in

main memory, but also decreasing the amount

of time necessary for transferring data across

the graphics bus. If only one set of axis-aligned

textures is stored in main memory, then the

number of time-steps that can be stored in

memory increases by a factor of three at the

expense of the user’s ability to view the dataset

from an arbitrary angle without swapping data

from disk.

In the case of the 2563 volumetric QG data,

using a compression factor of four and 256 axis-

aligned textured polygons, we can fit 140 time-

steps into main memory and sustain a frame

rate of approximately 25.8 frames/s. If 128

axis-aligned textured polygons are used instead,

which requires only half the data to be trans-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 518

.....
9 10 11

10−13
7−10

8−11
9−12

10−13
7−10

10−13

Slices
along the
view direction

6−9
7−10

8−11
9−12

11−14

6−9
7-10

Figure 26.3 When 2D texture interleaving is utilized, for every time-step, every Nth 2D texture is replaced starting with the t

modulo Nth texture slice, where t is the time-step and N is the compression ratio. In this example, N is four. The numbers on

each slice indicate which time-steps the texture stores. The shaded slice is the slice that is updated at time t.

518 Large-Scale Data Visualization

ferred and drawn, the frame rate doubles and

we can render 280 time-steps from memory.

Without compression, the same 140 time-steps

no longer fit into main memory. A memory-

resident subset of the uncompressed data can

be rendered at only about 11.5 frames/s, com-

pared to 25.8 frames/s with compression. We

note that although the amount of data trans-

ferred with compression is one-fourth of that

without, the frame rate does not scale linearly.

This is due to the time required to rasterize the

textured polygons to the screen. The perform-

ance would scale more linearly if a graphics card

with a higher fill rate were used, or if the fill-rate

requirements were reduced by projecting the

volume to a lower-resolution display.

Often the temporal resolution of a dataset is

too large to fit the desired number of time-steps

into main memory, even with compression. In

this case, it is necessary to load and render the

volume from disk. Compression can substan-

tially decrease the amount of data that must be

loaded for each frame, resulting in a noticeably

higher frame rate, as shown in Table 26.1. For

example, all 1492 timesteps of the 2563 QG

dataset can be rendered at 13.4 fps when com-

pressed by a factor of eight, versus only 2.0

frames/s when rendered uncompressed from

disk. Once the user finds a shorter temporal

region of interest, that data can then be loaded

into main memory and rendered at a faster

frame rate or higher image fidelity. Fig. 26.5

shows select visualizations of the QG dataset

for the same time-step using different transfer

functions defined through interactive explor-

ation.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 519

Figure 26.4 Visualizations of time-steps 1120 through 1155 of the QG dataset in 5-time-step intervals. (See also color insert.)

Table 26.1 Frame rates for rendering the QG data with
different compression levels

Compression ratio FPS (Time-steps rendered)

In core Out of core

8� 31.6 (280) 13.4 (1492)

4� 25.8 (140) 6.8 (1492)

2� 17.3 (70) 3.5 (1492)

1� 11.5 (35) 2.0 (1492)

Techniques for Visualizing Time-Varying Volume Data 519

By changing the window size used in the en-

coding step, we can vary the compression ratio

and quality. Table 26.2 shows the peak signal-

to-noise ratio that results from compressing

each dataset over 50 time-steps. Fig. 26.6 shows

volumes that have been rendered using varying

degrees of compression. As the amount of com-

pression increases, some of the more subtle fea-

tures as well as the faster-moving features can

become blurred. Thus, there is a distinct trade-

off between the compression ratio and

rendering performance versus the quality of

the compressed volume. This gives users a

degree of flexibility in choosing compression

ratios that best meet their needs. For example,

if a scientist is interested in viewing a short time

sequence at high quality, a lower compression

ratio can be used. On the other hand, to view a

very long sequence of data at high speeds, a

higher compression rate can be selected. The

scientist can combine compression ratios to pre-

view a dataset at a coarser temporal resolution

and then view a specific time sequence of inter-

est with less compression.

26.4.6 Discussion

The current approach is very scalable with re-

spect to the temporal size of a dataset. With

regard to the size of the dataset in the spatial

domain, the amount of texture memory on a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 520

Figure 26.5 Selected visualizations of the QG dataset produced by varying transfer functions. (See also color insert.)

Table 26.2 NCAR QG dataset error

Compression ratio PSNR (dB)>

2� 41.1

4� 35.5

8� 32.1

520 Large-Scale Data Visualization

single card can be a limiting factor. Only com-

pressing temporally does not reduce the amount

of texture memory utilized to below that which

would be required to render a single static

volume. For out-of-core rendering, the cost of

swapping textures from the graphics card to

main memory is much lower than the cost of

reading from disk; thus, texture memory cap-

acity restraints become less of a concern. One

way to support datasets whose spatial reso-

lutions exceed what a single graphics card is

capable of handling is to cluster multiple PCs

together. Clustering effectively increases the

amount of aggregate texture memory available,

and, just as importantly, increases the aggregate

bandwidth between all the levels in the storage

hierarchy.

The use of compression here presents two

potential shortcomings that are worth address-

ing. First, since the compression scheme is lossy,

there is the potential for modest, but noticeable,

image-quality degradation that increases with

the degree of compression. However, a moder-

ate loss of image fidelity due to compression or

other optimization strategies is an acceptable

tradeoff for enabling interactive exploration

of temporal data, provided the gross features

of evolving structures are preserved, as they

are in the test cases. It is worth noting that

many NCAR researchers commonly perform

crude data reduction using simple zero-order

subsampling in order to accommodate

interactive exploration with the tools presently

available to them. In essence, they have already

demonstrated a willingness to sacrifice image

quality to gain interactive exploration capabil-

ities that are essential for maximizing scientific

productivity. Once a feature of importance

is detected in the reduced dataset, the full-

resolution data may be further analyzed if ne-

cessary. Second, compression requires add-

itional storage (for maintaining both the raw

version and the compressed version of the

data), and it takes time to perform the encoding.

Similar to the loss of image fidelity, researchers

are already bearing these costs by their use of

subsampled data to achieve interactive

rendering.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 521

Figure 26.6 (Top) Visualizations of time-step 210 of the QG dataset at different compression levels. As the level of compression

increases, some of the finer features become blurred. (Bottom) Visualizations of time-step 970. (See also color insert.)

Techniques for Visualizing Time-Varying Volume Data 521

26.4.7 Future Work

Methods based on TSP trees reduce the amount

of texture memory utilized by exploiting

temporal and spatial coherence to reuse textures

[7,24]. They represent several similar textures as

a single static texture. The DCT-based encoding

method stores several time slices in terms of

lower precision averages and differences stored

in a single texel. Through palette manipulation,

these texels dynamically represent several time

slices. This compressed encoding comes at the

expense of the numerical precision used to store

these averages and differences. The method ex-

ploits temporal coherence by using more bits to

represent the average value over a set of slices,

but it also reserves bits for storing the change

over a set of slices. The method could be com-

bined with TSP-based techniques to store tex-

tures at varying degrees of both spatial and

temporal resolution. A preliminary study com-

paring the error that results from the use of the

temporal compression method with the error

produced by storing volumetric datasets at re-

duced spatial resolutions shows that for datasets

with fine features, temporal compression

produces significantly less error than spatial

downsampling for a given bitrate. However,

under some circumstances, spatial downsam-

pling can produce less error, particularly when

the volumetric features are relatively large

and smooth. Often, the characteristics of a

volume are mixed, clearly indicating a future

research direction towards the combination of

the temporal compression technique with vary-

ing degrees of spatial resolution. These results

suggest that the DCT-based hardware-acceler-

ated technique could be combined with the TSP

tree–based methods to achieve better overall

efficiency.

A 3D texture implementation of the DCT-

based method has been done with lighting

added [22]. Its performance then was not com-

parable to the 2D texture version, due to the

higher cost of the rasterization of 3D textured

polygons.

26.5 Parallel Pipelined Rendering

Many scientists are relying on centralized

supercomputing facilities to conduct large-scale

computational studies. The data produced by

their simulations are stored in the mass storage

devices at the supercomputer center. Due to the

size of the datasets, it is convenient to also use a

parallel computer at the supercomputer center

for visualization calculations and to transfer

the smaller images rather than the raw data

to the scientist’s desktop computer for viewing.

This section discusses design criteria for realiz-

ing remote visualization of time-varying volume

data using a parallel computer. The resulting

design is a parallel pipelined renderer that

achieves optimal processor utilization and fast

image-display rates [16].

A typical parallel volume-rendering process

consists of four steps. The data-input step

reads data elements from disk and distributes

them to the processors. Each processor receives

a subset of the volume data. In the following

rendering step, each processor renders the

assigned subvolume into a 2D partial image

that is independent of other processors. Next,

a combining step, which generally requires

interprocessor communication, composites the

set of 2D partial images (according to the view

position) to derive the final 2D projected image.

The final step delivers the final image to a dis-

play or storage device.

When the degree of parallelism is small to

modest, e.g., under 16 nodes, the major portion

of the computational cost is attributed to sub-

volume rendering. However, when the degree of

parallelism is high or when the dataset itself is

large (say 5123 or 10243 voxels per time-step),

3D data distribution would become a significant

performance factor.

Parallel rendering of time-varying data in-

volves rendering multiple data volumes in a

single task. There are three potential perform-

ance metrics: start-up latency, the time until the

rendered image of the first volume appears;

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 522

522 Large-Scale Data Visualization

overall execution time, the time until the

rendered image of the last volume appears;

and interframe delay, the average time between

the appearance of consecutive rendered images.

In conventional volume-rendering applications,

since only one dataset is involved, start-up

latency and overall execution time are the

same, and interframe delay is irrelevant. When

interactive viewing is desired, start-up latency

and interframe delay play a crucial role in

determining the effectiveness of the system.

When visualization calculations are done in a

batch mode, overall execution time should be

the major concern. Different design tradeoffs

should be made for different performance

criteria.

Given a generic parallel volume-renderer and

a P-processor machine, there are three possible

approaches to managing the processors for

rendering time-varying datasets. The first ap-

proach simply runs the parallel volume-renderer

on the sequence of datasets one after another.

At any point in time, the entire P-processor

machine is dedicated to rendering a particular

volume. That is, only the parallelism associated

with rendering a single data volume, i.e., intra-

volume parallelism, has been exploited.

The second approach takes the exact opposite

approach by rendering P data volumes simultan-

eously, each on one processor. This approach

thus only exploits intervolume parallelism, and

is limited by each processor’s main memory

space.

To attain the optimal rendering performance

we should carefully balance two performance

factors, resource utilization efficiency and par-

allelization overhead; this suggests exploiting

both intravolume and intervolume parallelism.

That is, instead of using all the processors to

collectively render one volume at a time, a

pipelined rendering process is formed by parti-

tioning processors into groups to render

multiple volumes concurrently. In this way,

the overall rendering time may be greatly min-

imized because the pipelined rendering tasks

are overlapped with the I/O required to load

each volume into a group of processors (Fig.

26.7); moreover, parallelization overhead may

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 523

R R R R

R

R

R

R R R

R R R

R R

R

R

I/ORendering
Interframe delay

Startup Latency

Time t1 t5 t10

Figure 26.7 Processor grouping and pipelined rendering that overlaps rendering calculations with I/O can achieve optimal

performance.

Techniques for Visualizing Time-Varying Volume Data 523

be reduced as a result of the partitioning of the

processors.

The third approach is thus a hybrid one, in

which P processor nodes are partitioned into L

groups (1 < L < P), each of which renders one

volume (i.e., one time-step) at a time. The opti-

mal choice of L generally depends on the type

and scale of the parallel machine as well as the

size of the dataset. The optimal partitioning

strategy for minimizing the overall rendering

time can be characterized with a performance

model and revealed with an experimental study

[5], which shows that the third approach indeed

performs the best among the three for batch-

mode rendering.

For remote, interactive visualization over a

wide-area network, minimizing interframe delay

becomes more important. The key is to not only

find an optimal processor partitioning (as by

studying the interplay between the rendering

and I/O) but also develop an efficient image com-

pression/transfer mechanism.

26.5.1 Image Transport

The mix of pipelined rendering with processor

grouping makes possible overlapping data

input, rendering, and image output, and there-

fore leads to optimal overall rendering perform-

ance in the absence of parallel I/O and high-

speed network support. We assume that the

volume dataset is local to the parallel supercom-

puting facility and is transmitted to the parallel

renderer through fast local area networks

(LANs). Note that the performance of a pipe-

line is determined by its slowest stage. The cost

of the last stage of the pipeline—image output—

cannot be ignored, since the resulting images

must be assembled and transported to the de-

sired display device(s) with minimal delay, pos-

sibly over a wide-area network. Fig. 26.8 shows

such a setting for parallel pipelined rendering

incorporating the processor grouping strategy.

It is relatively easy to implement the display

program as an X-Window client such that X

takes care of image transport, but the perform-

ance is not acceptable. Except with a very high-

speed network or low-resolution images, a

special display mechanism using compression

and more clever buffering is required to deliver

the desired frame rates.

For parallel rendering applications, we need

image compression techniques that will com-

press with reasonable speed, exhibit good com-

pression with short input strings, accept

arbitrary orderings of input data, and decom-

press rapidly. The choice of a compression tech-

nique will also be influenced by factors such as

rendering performance, network bandwidth,

and image accuracy and quality. To date, ren-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 524

Supercomputing
Facility

Scientist’s Desktop

Mass Storage Device Parallel Computer Display

Processor Partition

WANHigh-Speed LAN

Figure 26.8 A parallel pipelined rendering system.

524 Large-Scale Data Visualization

derer implementations exploiting image com-

pression have mostly adopted relatively simple

lossless schemes that rely on frame-differencing

and run-length encoding, in part because they

satisfy many of the desired criteria. While these

techniques can usually deliver several frames per

second over LANs, their compression ratios are

highly dependent on image content and are in-

sufficient for use on slower wide-area and long-

haul networks.

It is therefore desirable to use lossy (visually

lossless) compression methods capable of pro-

viding acceptable image quality for many appli-

cations, while retaining desirable properties

such as efficient parallelizable compression,

insensitivity to image organization, and, most

importantly, rapid decompression.

26.5.1.1 A Framework for Image Transport

Compression can be done collectively by the

rendering nodes or by a dedicated node for

efficient image transport. Parallel compression

would require decompression of multiple

images at the receiving end, which usually uses

a less powerful machine.

‘‘Parallel compression’’ can be realized in two

different ways. One is to have each processor

compress a portion of the image independent of

other processors. The other is to have all the

processors collectively compress an image,

which would require interprocessor communi-

cation. The latter would give the best compres-

sion results in terms of both quality and

efficiency, but it is a less portable solution. Par-

allelizing compression calculations is itself an

interesting research problem [25], and the goal

is to minimize communication costs as much as

possible. This section only discusses the former

approach, which is easier to implement and can

achieve the needed efficiency for fast image

transport.

The compression-based image output stage is

based on a framework consisting of three parts:

renderer interface, display interface, and display

daemon. The renderer interface provides each

rendering node with image compression (if not

done by the renderer) and communication to

and from the display daemon. We can choose

from a variety of image-compression methods

and transport mechanisms according to visual-

ization requirements.

The display interface provides three basic

functions: image decompression, image assem-

bly, and communication to and from the display

daemon. The communication path can instruct

the system to change the compression method,

start the renderer, or pass a message directly

to the renderer. The display daemon’s main

job is to pass images from the renderer to the

display. It also allows the display to communi-

cate with the renderer. In addition, the display

daemon can accept any number of connections

from the renderer interface and the display

interface.

Interaction with the parallel renderer is pro-

vided by the display application. The user-

interface tasks are split between the local

controlling workstation and the parallel ren-

derer. The display application drives the control

panel display and passes events to the renderer

though the display interface, and through the

display daemon to all renderer interfaces in the

form of ‘‘remote callbacks.’’ The renderer re-

sponds with the appropriate action and may

need to rerender the image.

26.5.1.2 Compression Methods

While image compression is a well developed

field, progress is continuing due to the demand

for higher compression performance from an

increasing number of application areas. For

example, JPEG-2000 [20] is an emerging stan-

dard for still image compression, and MPEG

[11] is a standard for coding moving pictures.

For remote time-varying visualization tasks,

low cost is probably the most relevant selection

criterion; low decompression cost is particularly

important when considering our remote visua-

lization setting because computing resources are

generally low at the receiving end. This elim-

inates JPEG-2000 (based on wavelet transform)

because of its relatively high computational

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 525

Techniques for Visualizing Time-Varying Volume Data 525

complexity, even though it provides signifi-

cantly lower distortion for the same bit rate.

JPEG-2000 also requires more memory than

JPEG.

Rendering time-varying data produces an

animation sequence. MPEG, which is good for

compressing existing videos, is not well suited

for our interactive setting, in which each image

is generated on the fly and is displayed in real

time. Using MPEG is not completely impos-

sible, but the overhead would be too high to

make both the encoding and the decoding effi-

cient in software.

Therefore, we consider three other more fa-

vorable compression methods: LZO, BZIP, and

JPEG. LZO does lossless data compression, and

it offers fast compression and very fast decom-

pression. The decompression requires no extra

memory. In addition, there are slower compres-

sion levels that achieve a quite competitive com-

pression ratio while still decompressing at very

high speed. In summary, LZO is well suitable

for data compression or decompression in real

time, which means it favors speed over compres-

sion ratio.

BZIP has very good lossless compression; it is

better than gzip in compression and decompres-

sion time. BZIP compresses data using the

Burrows-Wheeler block-sorting compression al-

gorithm [3] and Huffman coding. Its compres-

sion is generally considerably better than that

achieved by more conventional LZ77/LZ78-

based compressors, and it approaches the per-

formance of the PPM family of statistical com-

pressors.

JPEG (http://www.jpeg.org/) is designed to

compress full-color images of real-world scenes

by exploiting known limitations of the human

eye, notably the fact that small color changes

are perceived less accurately than small

changes in brightness. The most widely imple-

mented JPEG subset is the ‘‘baseline’’ JPEG,

which provides lossy compression, though

the user can control the degree of loss by

adjusting certain parameters. Another import-

ant aspect of JPEG is that the decoder can

also trade off decoding speed against image

quality by using fast but inaccurate approxima-

tions of the required calculations. Remarkable

speedups for decompression can be achieved in

this way.

Consequently, JPEG provides the flexibility

to cope with the required frame rates. The

newer ‘‘lossless JPEG,’’ JPEG-LS, offers math-

ematically lossless compression. The decom-

pressed output of the ‘‘baseline JPEG’’ can be

visually indistinguishable from the original

image. JPEG-LS gives better compression than

original JPEG, but still nowhere near what one

can get with a lossy method. Further discussion

of compression methods can be found in many

published reports and websites and is beyond

the scope of this chapter.

26.4.2 Performance

A performance study of an implementation of

the proposed parallel pipelined renderer was

done by using parallel computers operated at

the NASA Ames Research Center and a re-

search laboratory in Japan with images dis-

played on a PC in a laboratory at the

University of California at Davis (UCD). A

parallel ray-casting volume-renderer [17] was

used in the experimental study. This renderer

is reasonably optimized and capable of generat-

ing high-quality images. Tests were performed

to reveal the relationship between the overall

execution time and the number of processor

partitions (L). Fig. 26.9 displays the test results

on a logarithmic scale along the x-axis; they

show that an optimal partition does exist for

each processor size. In this case, it is four for

all three processor sizes (16, 32, and 64).

Table 26.3 compares the compressed image

sizes for the three compression methods con-

sidered and also for a combination of them.

When lossy compression is acceptable, JPEG

is the choice because of the excellent compres-

sion it can achieve. Moreover, it is beneficial to

use either LZO or BZIP to compress the output

of JPEG; the result is additional compression,

which may lead to the key reduction required

for achieving the desired frame rates. Such a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 526

526 Large-Scale Data Visualization

two-phase compression approach was imple-

mented in the display system of the parallel pipe-

lined renderer. The compression rates achieved

are 96% and up. Although using LZO adds only

1–2% to compression, reducing the transferred

image size by another couple of kilobytes can

effectively increase frame rates.

Fig. 26.10 compares the time via display

mechanisms using X-Window and the compres-

sion-based setting. Four different image sizes

were used, and it is clear that as the image size

increases, the benefit of using compression

becomes even more dramatic. In this set of

tests, JPEG and LZO are used together to

achieve the best compression rates. The cost of

compression is between 6 milliseconds for 1282

pixels and 500 milliseconds for 10242 pixels. The

decompression cost is between 12 milliseconds

and 600 milliseconds. Note that the decompres-

sion time is long because it was done on a single

PC. Table 26.4 lists the actual frame rates ob-

served during transmission of the resulting

images from NASA Ames to UCD.

With parallel compression, as soon as a

processor completes the sub-image that it is

responsible for compositing, it compresses and

sends the compressed sub-image to the display

daemon. In this case, the step to combine the

sub-images is waived. The daemon forwards

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 527

Overall Time per PC Cluster
600

550

500

450

400

350

300

250

200

150

100
1 2 4 8 16 32 64

Number of Partitions

T
im

e
(s

)

16 Processors for 128 Volumes

32 Processors for 128 Volumes

64 Processors for 128 Volumes

Figure 26.9 The overall execution time versus the number of partitions for three different processor sizes for rendering a 128-

time-step turbulent jet dataset. The test results show that there is, indeed, an optimal partition for each processor size.

Table 26.3 Compressed image sizes (in bytes) with
various compression methods

Method/image size 1282 2562 5122 10242

Raw 49152 196608 786432 3145728

LZO 16666 63386 235045 848090

BZIP 12743 44867 152492 482787

JPEG 1509 3310 9184 28764

JPEGþLZO 1282 2667 6705 18484

JPEGþBZIP 1642 3123 7131 18252

Techniques for Visualizing Time-Varying Volume Data 527

the compressed sub-images it receives fromall the

processors to the display interface because com-

pressing each image piece independent of other

pieces would result in poor compression rates.

Furthermore, with this approach, while com-

pression time is reduced, decompression gener-

ally takes longer because of the overhead of

processing multiple images. As shown in Fig.

26.11, the decompression time increases signifi-

cantly with 16 or more processor (sub-image)

cases. The plot also reveals that decompressing

2, 4, or 8 smaller sub-images is faster than de-

compressing a single larger image. Therefore,

this set of test results suggests that a hybrid

approach might give us the best performance.

That is to say, a small number of sub-images are

combined to form a larger sub-image before

compression. These combined sub-images are

then compressed in parallel and delivered to

the display interface for decompression and

display.

Note that compression performance is also

data- and transfer-function dependent. For

large images, the image-transport and display

time could be longer than the rendering time.

Although the display daemon uses an image

buffer to cope with faster rendering rates,

a more effective compression mechanism is

desired. On the other hand, a large dataset

takes longer to render, making image-transport

cost less of a concern. Even though the speed

of the parallel computers (a PC cluster

with 200 MHz processors and an SGI Origin

2000) and the data sizes (128 time-steps,

1283�2563 voxels) used in the performance

study cannot be compared to today’s technolo-

gies, the test results obtained do adequately

show the expected performance trends. Com-

plete test results can be found in Ma and

Camp [16].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 528

Table 26.4 Actual frame rates (frames/s) from NASA
Ames to UCD

Method/image size 1282 2562 5122 10242

X-Window 7.7 0.5 0.1 0.03

Compression 9 5.6 2.4 0.7

0.5

1

10

25
35

128 256 512 1024

T
im

e
(s

)

Image Size (pixels)

X-Window

Compression

Figure 26.10 Average interframe delay from NASA Ames to UCD via X or the compression-based display daemon. Four

different image sizes were considered.

528 Large-Scale Data Visualization

26.5.3 Discussion

As scientific data resolution continues to in-

crease, the demand for high-resolution imaging

will also increase. We have shown how users of

a supercomputing facility can perform remote,

interactive visualization of time-varying data

stored at the facility by using a combination of

pipelining and image compression. In particu-

lar, the test results show that, in order to keep

up with parallel rendering rates, image compres-

sion plays a key role.

Even though the pipelined setting hides most

of the I/O cost, as rendering rates increase (as a

result of using 3D texture graphics hardware), I/

O will become a bottleneck again. Parallel I/O,

if available, can be incorporated into the pipe-

line rendering process quite straightforwardly

and can improve the overall system perform-

ance. A parallel renderer designed for the visu-

alization of time-varying volume data from

large-scale earthquake simulations employs

not only parallel pipelined rendering to overlap

the rendering calculations with I/O, but also I/O

servers to further cut down the I/O cost [30].

The optimal number of I/O servers can be pre-

determined. The result is a highly efficient ren-

derer with the I/O cost almost completely

hidden, except for the pipeline startup delay.

Refined compression methods can also fur-

ther improve the image transmission rates. In

addition, one potential problem with lossy

methods is that the loss could change between

adjacent frames, as well as in the proposed

setting, between adjacent image blocks, which

could produce a flickering in the final anima-

tion. In the tests performed, we have not experi-

enced such a problem so far, but a feasible

solution would be to parallelize the more expen-

sive but higher-performance lossless compres-

sion methods. The other would be to exploit

frame (temporal) coherence as the frame-

differencing technique demonstrated by Crock-

ett [6].

If the user (client) side possesses some min-

imum graphics capability (e.g., a commodity PC

graphics card), other forms of remote viewing

can also be considered. Instead of just a single

frame for each time-step, ‘‘compressed’’ subset

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 529

2 4 8 16 32 64
0.090

0.100

0.110

0.120

0.130

0.140

0.150

T
im

e
(s

)

Number of Processors

Single Full Image

Multiple Image Pieces

Figure 26.11 Time used to decompress all sub-images to be displayed for cases using up to 64 processors. The overall image size

is 512� 512 pixels.

Techniques for Visualizing Time-Varying Volume Data 529

data can be sent. This subset data can be either a

reduced version of the data or a collection of

prerendered images that can be processed very

efficiently with the user-side graphics hardware.

For example, Bethel [2] demonstrates remote

visualization using an image-based rendering ap-

proach. The server side computes a set of images

by using a parallel supercomputer, ships it to the

user side, and allows the user to explore the data

from viewpoints that can be reconstructed from

this set of images.

26.6 Conclusions

We have shown that time-varying volume data

can be efficiently visualized on a PC by the use

of hardware-assisted decoding and rendering,

and also on a parallel supercomputer using par-

allel pipelined processing. It is feasible to inte-

grate some of the techniques presented in this

chapter into an end-to-end high-performance

solution that would allow scientists to explore

both the temporal and the spatial domains of

their data at the highest possible resolution.

This new explorability, likely not presently

available to most computational scientists,

would help lead to many new discoveries. Com-

putational scientists should reevaluate their

current approaches to data analysis and explor-

ation problems.

There is a growing trend to use adaptive,

unstructured grids in large-scale scientific com-

puting to model problems involving complex

geometries. Even though this chapter is mainly

concerned with data on rectilinear grids, some

of the approaches introduced are applicable to

irregular-grid volume data. For example, the

parallel pipelined approach works equally well

for the rendering of time-varying unstructured-

grid data, as already demonstrated by Ma et al.

[19] for the visualization of large-scale earth-

quake simulation data. Furthermore, the ad-

vanced features of the newer generation of

graphics hardware would also allow us to effi-

ciently render irregular-grid volume data dir-

ectly. An interesting and challenging problem

will be the encoding of irregular-grid data to

facilitate visualization calculations.

Acknowledgments

The authors are grateful for the funding support

provided by the National Science Foundation

and the Department of Energy. The authors

would especially like to thank John Clyne,

Kenji Ono, Gabriel Rosa, and Han-Wei Shen

for the valuable discussions and assistance they

have provided to us.

References

1. K. Anagnostou, T. Atherton, and A. Waterfall.
4D volume rendering with the shear warp
factorization. In Proceedings of Volume Visual-
ization and Graphics Symposium 2000, pages
129–137, 2000.

2. W. Bethel. Visapult: a prototype remote and
distributed visualization application and frame-
work. In Proceedings of the Conference Abstracts
and Applications, ACM SIGGRAPH 2000, 2000.

3. M. Burrows and D. Wheeler. A block-sorting
lossless data compression algorithm. Technical
Report Center Research Report 124, Digital
Equipment Corporation, Palo Alto, CA, 1994.

4. B. Cabral, N. Cam, and J. Foran. Accelerated
volume rendering and tomographic reconstruc-
tion using texture mapping hardware. In 1994
Workshop on Volume Visualization, pages
91–98, 1994.

5. T.-Z. Chiueh, C. K. Yang, T. He, H. Pfister, and
A. Kaufman. Integrated volume compression
and visualization. In Proceedings of the Visual-
ization ’97 Conference, pages 329–336, 1997.

6. T. W. Crockett. Design considerations for par-
allel graphics libraries. In Proc. Intel Supercom-
puter Users Group 1994 Ann. North America
Users Conf., pages 3–14, 1994.

7. D. Ellsworth, L. Chiang, and H.-W. Shen.
Accelerating time-varying hardware volume
rendering using TSP trees and color-based error
metrics. In Proceedings of 2000 Symposium on
Volume Visualization, pages 119–128, 2000.

8. R. Gonzalez and R. Woods. Digital Image Pro-
cessing. Addison Wesley, 1992.

9. A. K. Jain. Fundamentals of Digital Image Pro-
cessing. Prentice Hall, 1989.

10. J. Kniss, P. McCormick, J. McPherson, A.
Ahrens, A. Keahey, and C. Hansen. Interactive

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 530

530 Large-Scale Data Visualization

texture-based volume rendering for large data
sets. IEEE Computer Graphics and Applications,
21(4):52–61, 2001.

11. R. Koenen. MPEG-4—multimedia for our
time. IEEE Spectrum, 36(2):26–33, 1999.

12. L. Linsen, V. Pascucci, M. Duchaineau, B.
Hamann, and K. Joy. Hierarchical representa-
tion of time-varying volume data with ‘4th-root-
of-2’ subdivision and quadrilinear B-spline
wavelets. In Proceedings of the 10th Pacific Con-
ference on Computer Graphics and Applications,
page 346, 2002.

13. S. P. Lloyd. Least squares quantization in
PCM. IEEE Transactions on Information
Theory, IT-28:129–137, 1982.

14. E. Lum and K.-L. Ma. Hardware-accelerated
parallel non-photorealistic volume rendering.
In Proceedings of 2nd International Symposium
on Nonphotorealistic Rendering and Animation,
page 67, 2002.

15. E. Lum, K.-L. Ma, and J. Clyne. A hardware-
assisted scalable solution of interactive volume
rendering of time-varying data. IEEE Transac-
tions on Visualization and Computer Graphics,
8(3):286–301, 2002.

16. K.-L. Ma and D. Camp. High performance
visualization of time-varying volume data over
a wide-area network. In Proceedings of Super-
computing 2000 Conference, article 29, 2000.

17. K.-L. Ma, J. S. Painter, C. Hansen, and M.
Krogh. Parallel volume rendering using binary-
swap compositing. IEEE Computer Graphics
Applications, 14(4):59–67, 1994.

18. K.-L. Ma, D. Smith, M.-Y. Shih, and H.-W.
Shen. Efficient encoding and rendering of time-
varying volume data. Technical Report ICASE
Reprot No. 98–22, Institute for Computer Ap-
plications in Science and Engineering, 1998.

19. K.-L. Ma, A. Stompel, J. Bielak, O. Ghattas,
and E. Kim. Visualizing large-scale earthquake
simulations. In Proceedings of the Supercomput-
ing 2003 Conference, 2003.

20. M. W. Marcellin, M. J. Gormish, A. Bilgin, and
M. P. Boliek. An overview of JPEG-2000. In

Proceedings of 2000 Data Compression Confer-
ence, pages 523–541, 2000.

21. J. Max. Quantizing for minimum distortion.
IEEE Transactions on Information Theory,
IT-06:7–12, 1960.

22. G. Rosa, E. Lum, K.-L. Ma, and K. Ono.
An interactive volume visualization system
for transient flow analysis. In Proceedings of
Volume Graphics 2003 Workshop, pages 137–
144, 2003.

23. K. Sayood. Introduction to Data Compression.
Morgan Kaufmann, 2000.

24. H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast
volume rendering algorithm for time-varying
fields using a time-space partitioning (TSP)
tree. In Proceedings of Visualization ’99, pages
371–377, 1999.

25. H.-W. Shen and C. R. Johnson. Differential
volume rendering: a fast volume visualization
technique for flow animation. In Proceedings
of the IEEE Visualization ’94 Conference, pages
180–187, 1994.

26. B.-S. Sohn, C. Bajaj, and V. Siddavanahalli.
Feature based volumetric video compression
for interactive playback. In Proceedings of
Volume Visualization and Graphics Symposium
2002, pages 89–96, 2002.

27. R. Westermann. Compression time rendering of
time-resolved volume data. In Proceedings of the
Visualization ’95 Conference, pages 168–174,
1995.

28. J. Wilhelms and A. Van Gelder. Multi-
dimensional trees for controlled volume render-
ing and compression. In Proceedings of the 1994
Symposium on Volume Visualization, pages
27–34, 1994.

29. J. Woodring, C. Wang, and H.-W. Shen. High
dimensional direct rendering of time-varying
volumetric data. In Proceedings of the Visualiza-
tion 2003 Conference, pages 417–424, 2003.

30. H. Yu, K.-L. Ma, and J. Welling. A parallel
visualization pipeline for terascale earthquake
simulations. In Proceedings of the Supercomput-
ing 2004 Conference (in press).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:13pm page 531

Techniques for Visualizing Time-Varying Volume Data 531

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:14pm page 532

This page intentionally left blank

27 Large-Scale Data Visualization
and Rendering: A Problem-Driven
Approach

PATRICK MCCORMICK and JAMES AHRENS

Advanced Computing Laboratory

Los Alamos National Laboratory

27.1 Introduction

The performance of computing resources has

grown dramatically over the last 10 years. This

growth has allowed scientists to simulate phys-

ical processes in much greater detail than has

ever been possible. Computed tomography

systems have also been developed that produce

extremely detailed scans. This increased reso-

lution has in turn produced extremely large

datasets that must be analyzed and visualized

to complete the scientific process. In many

cases, the same large computing resources re-

quired for scientific simulations are often

needed to complete these visualization tasks.

The goal of this chapter is to present a classifi-

cation of the various algorithmic approaches

that can be used to visualize and render these

large datasets. This classification provides the

fundamental building blocks for a solution

that is based on techniques used in the design

of parallel algorithms. These techniques focus

on the systems level and are based on the

parallel decomposition of the data and/or the

required tasks. Before describing the classifica-

tion in detail, we present the terminology and

notation that will be used throughout the rest of

the chapter.

In order to characterize our definition of

large-scale data, we consider only situations in

which the datasets are larger than can be pro-

cessed by a single computer. In addition, we

assume that some degree of interactivity, in the

range of 5 to 30 frames/s, is desired to allow

users to effectively explore and analyze the data.

We have visualized datasets that range from

hundreds of megabytes to petabytes in size.

The ability to achieve interactive frame rates

for such large datasets is an open research chal-

lenge. In many cases, new algorithms are re-

quired to appropriately leverage the available

computing resources and effectively handle the

unique properties of a particular dataset. The

techniques presented in this chapter provide a

foundation for the development of these algo-

rithms. In many cases, these techniques will

often work in combination with other methods

(e.g., multiresolution representations) to achieve

adequate interactive performance. In terms of

an algorithmic specification, it is important to

consider the characteristics of the various tasks

that are required. For example, is the algorithm

made up of several independent tasks, or is it

composed of a series of dependent subtasks? By

building upon the answer to this question and

having a detailed knowledge of both the data

and the computing environment, we can begin

to describe a set of techniques for the visualiza-

tion of large-scale data. There are four funda-

mental techniques that can be used to solve the

large-data visualization problem:

. Data streaming.

. Task parallelism.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 533

533

. Pipeline parallelism.

. Data parallelism.

It is also important to note that a combination

of these techniques may be used to construct a

solution. We will refer to these combinations as

hybrid algorithms and will present the details of

such solutions later in the text. The advantages

and disadvantages of each of these four ap-

proaches can often be impacted by the available

hardware (e.g., is the graphics pipeline imple-

mented in software or hardware?). Although

it is not possible to consider the use of every

hardware configuration, we demonstrate the

basic behavior of each technique and highlight

the areas where hardware selection and opti-

mization can play a crucial role in terms of

performance.

We will use a data-flow depiction in the

sections that follow to present the details of

the various classifications. This representation

is used primarily because of its convenience for

illustration and does not necessarily imply that

a strict data-flow implementation is required. At

a high level of abstraction, a network represents

an entire visualization application. Fig. 27.1

shows an example network that contains five

nodes, A, B, C, D, and E, which we will refer

to as modules. These modules represent the in-

dividual algorithmic steps that are used to con-

struct the final application. For the purposes of

our discussion, we will assume that modules

have a well-defined interface, for both inputs

and outputs, and have no side effects. In add-

ition, there are data connections between vari-

ous modules in the network. In Fig. 27.1, the

outputs of modules A, B, and C are all inputs

into module D. Module D sends the result of its

computation to module E. Fig. 27.2 shows a

simple but more specific example of a module

network. In this network, the Read module is

responsible for reading a data file from disk, the

Isosurface module is responsible for creating an

isosurface of the data, and the Render module is

responsible for producing an image of the iso-

surface. In the following sections, we consider

each of the four algorithmic classifications, dis-

cuss their advantages and disadvantages, and

present several case studies that show their use

in practice.

27.1.1 Data Streaming

Data streaming is most commonly used to pro-

cess independent subsets of a larger dataset, one

subset at a time [1]. This is often the only feas-

ible approach in situations where the size of a

dataset exceeds the capacity of the available

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 534

A B

D

E

C

Figure 27.1 This figure shows a module network consisting

of five modules (A, B, C, D, and E) and arrows depicting the

data connections between modules.

Read

Isosurface

Render

Figure 27.2 An example module network for isosurface

computation and rendering.

534 Large-Scale Data Visualization

computing resources (memory and swap space).

For example, it is not uncommon for scientific

datasets, especially time series, to easily exceed

the amount of available memory. The key

advantage of this approach is that any size

dataset can be successfully processed. In some

cases, streaming can also result in more effective

cache utilization, and on busy computers, a

reduction in virtual memory swapping. The

drawback of this technique is that it often

requires a substantial amount of execution time

and does not allow for the interactive exploration

of the data. The use of a high-throughput I/O

subsystem is advantageous for improving the

overall performance of streaming algorithms.

While the streaming of individual time-steps

that fit into memory is a straightforward

process, the streaming of subsets from a single

time-step that exceeds system memory has

different requirements. In order to produce the

correct solution, the algorithms must be result-

invariant—that is, the results must be consistent

regardless of the number of subsets into which

the data is split. This obviously requires that

the algorithms be able to divide the original

dataset into pieces. Many algorithms require a

knowledge of the data values contained in

neighboring cells in order to produce the correct

result. For example, the classic marching cubes

algorithm requires this knowledge [2]. It is

therefore necessary to include these neighboring

cells, known as ghost cells, in the individual

subsets. While the determination of neighboring

cells is a simple and straightforward process

on regularly structured grids, it is more challen-

ging with irregular grid structures. For an

example of using streaming with irregular grid

data, see Ahrens et al. [3]. In the next section, we

consider the use of streaming to visualize two

different sized datasets using a single desktop

computer.

27.1.1.1 Case Study

It is not uncommon to discover that a dataset is

too large for visualization and analysis using

the single desktop PC found in many scientists’

offices. In this case study, we present the details

of how this situation impacts the visualization

and analysis of two different-sized datasets. The

first dataset has been produced as part of the

Terascale Supernova Initiative (TSI) project [4].

The goal of TSI is to develop models of core-

collapse supernovae. Core-collapse supernovae

produce the most powerful explosions known—

they release 1053 erg of energy in the form of

neutrinos at a rate of 1057 neutrinos per second.

The second dataset is a larger version of the TSI

data produced by resampling the data. These

datasets are processed using a dual, 1.2 GHz

Pentium 4 Xeon2 processor system with 2GB
of RAM and an NVIDIA Quadro FX graphics
card (in an AGP 4x slot). The goal of this study
is to understand the impact of dataset size on
streaming performance as well as to highlight
the advantages and disadvantages of the tech-
nique. By using the data streaming features
available in the Visualization Toolkit [11], we
can simulate computers with varying amounts
of RAM. This is done by specifying the number
of pieces into which the original dataset is
subdivided for processing. One drawback to
this approach is that it makes it difficult to
mimic the exact behavior of the operating
system’s virtual memory system. Therefore, all
of the results presented below assume that the
system is mostly idle and that the amount of
available RAM is at or near a maximum.

The TSI dataset contains single-precision

floating-point values that represent the entropy

from a 3D regular grid structure with dimen-

sions of 320 � 320 � 320. This represents

roughly 32 million cells and requires approxi-

mately 131 MB of storage. The second dataset

represents a 426 � 426 � 426 resampled version

of the first dataset. The storage space required

for this dataset is approximately 310 MB. For

our benchmarks, we will use reading the data

file from disk, computing an isosurface of

the entropy, and rendering the resulting polyg-

onal data. This is the process depicted by the

network shown in Fig. 27.2. The series of

images in Fig. 27.3 show the progression of

the streaming computations, with each subset

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 535

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 535

represented as a different color. The bar charts

presented in Fig. 27.4 show the amount of time

required to complete the streaming process as

well as the maximum amount of memory re-

quired for the individual subset sizes. These

performance measures provide what at first

appear to be surprising results. The first result

is that it takes longer to process a single piece of

data than to process multiple subsets of data.

This is primarily a result of the cache perform-

ance gains due to the smaller subsets’ fitting into

cache memory more efficiently. As a measure of

this benefit, our performance studies indicated

that there are approximately 80,000 second-

level cache read misses during processing of

the entire 3203 dataset. In comparison, when

processing the dataset subdivided into eight

pieces, there were only 1,300 cache misses. An-

other interesting result shows that by combining

the performance benefits of data streaming and

the reduction in overall memory usage, it is

possible to use a computer system with a much

lower price point than might initially be

expected to successfully process a large dataset.

Based on the execution times presented in Fig.

27.4, it is clear that a straightforward approach

to data streaming fails to meet the performance

goal of 5 to 30 frames/s. The most important

capability that data streaming has introduced is

the ability to correctly process subsets of a large

dataset, which is critical for supporting further

parallelism by allowing data decomposition.

The advantages of this capability are presented

in section 27.1.4.

27.1.2 Task Parallelism

With task parallelism, independent modules in

an application execute in parallel. In Fig. 27.1,

this would be achieved by having modules A,

B, and C all execute at the same time. This

requires that an algorithm be broken up into

independent tasks and that multiple computing

resources be available. The key advantage of

this technique is that it enables multiple por-

tions of a visualization task to be executed in

parallel. The main disadvantage of this tech-

nique is that the number of independent tasks

that can be identified, as well as the number of

CPUs available, limits the maximum amount

of parallelism. In addition, it can be difficult to

load-balance the tasks, and therefore it can

often be very challenging to take full advantage

of the available resources. Task parallelism is

used effectively in the movie industry, where

several frames in an animated production are

rendered in parallel. Specific hardware choices

for improving the performance of task parallel-

ism are dependent upon the details of the

required tasks.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 536

Figure 27.3 The progression produced by the data streaming of eight subset stages of an entropy isosurface, colored by subset,

from the Terascale Supernova Initiative. (See also color insert.)

536 Large-Scale Data Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 537

14

0

12

10

8

6

4

2

1 2 4 8 16 32 64 128 256 512

Streaming Execution Time

Number of Subsets

T
im

e
(s

)

TSI 320 � 320 � 320 TSI 426 � 426 �426

Streaming Memory Usage

350

400

0

300

250

200

150

100

50

1 2 4 8 16 32 64 128 256 512
Number of Subsets

M
em

or
y

U
sa

ge
 (

M
B

)

TSI 320 � 320 � 320 TSI 426 � 426 � 426

Figure 27.4 Performance and memory usage of the streaming algorithm as the number of pieces increases.

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 537

27.1.2.1 Case Study

In our experience, the use of task parallelism is

rare when dealing with large datasets. However,

one possible application well suited to task

parallelism is that of comparative visualization.

In this case study, we present the use of task

parallelism in exploring the relationship between

data values produced by the Parallel Ocean

Program (POP) at Los Alamos National La-

boratory. The largest dataset produced by POP

represents the Earth’s oceans at a resolution of

one-tenth of a degree. This requires approxi-

mately 350 million cells, and a decade-long

simulation generates about 6 terabytes of data.

Ocean modeling plays an important role in the

prediction of global warming and the explora-

tion of the mechanisms that cause climate

variability. The computational grid for this

simulation has dimensions of 3600 � 2400 �
40; therefore, a single-precision floating-point

variable produced by the model requires ap-

proximately 1.4 GB of storage (given that one

single-precision floating-point value requires

four bytes of storage). In this example, we

investigate the behavior of the Gulf Stream off

the eastern coast of North America. The accurate

simulation of the Gulf Stream is important

for model validation and can be studied by

extracting multiple isosurfaces of the water

temperature.

For this example, we consider two possible

approaches to breaking the processes of compu-

tation and visualization into multiple tasks.

In the first, which we will call the geometry

approach, the individual tasks are responsible

for computing one or more isosurfaces of the

data. In this situation, the resulting geometry is

sent to a single process, which both renders and

displays the results. In the second, which is

called the image approach, the tasks are respon-

sible for both the isosurface computation and

the rendering of the resulting geometry. The

resulting imagery is then similarly sent to a

process for display. Fig. 27.5 presents both of

these tasks as data-flow networks.

In order to focus on the Gulf Stream region

of the global model, the Read module(s)

extract(s) a small portion of the full POP data-

set. This region has dimensions of 150 � 500 �
40 computational cells and contains two vari-

ables, which represent the salt content and the

temperature of the ocean. To understand the

performance characteristics of task parallelism,

we consider the computation and rendering of

16 isosurfaces. These isosurfaces will be com-

puted by both of the approaches depicted in

Fig. 27.5, using a PC cluster comprised of

dual-processor 800MHz Pentium 3 Xeon

systems with 1GB of RAM, a Wildcat 4210

AGP graphics card, and a Myrinet 2000 con-

nection [13]. The parallel infrastructure of the

Visualization Toolkit is used to implement this

example [11]. We consider the performance

results for 2, 4, 8, and 16 processors. The isosur-

face computations are always evenly distributed

among the processors. It is important to note

that the Render module on the lefthand side of

Fig. 27.5 always receives the geometry repre-

senting all 16 isosurfaces, regardless of the

number of processors in use. In contrast, the

Display module on the righthand side of Fig.

27.5 receives one image per task process; there-

fore, the more task processes, the more image

data there is to receive. For this example, all

images contain 1024 � 1024 RGBA pixels.

An important characteristic of both tech-

niques is that they collect the results of several

tasks into a single module. This situation nor-

mally limits the scalability of a parallel solution

because the gathering point acts as a bottle-

neck for performance as the number of inputs,

or the input data size, increases. In the case of

the geometry-based tasks, the amount of data

sent to the Render module is constant regardless

of the number of processors. Overall, the geom-

etry associated with these 16 isosurfaces

requires approximately 36 MB of memory. The

image-based tasks, however, send more data as

the number of processors increases. When we

reach 16 processors, we are sending approxi-

mately 16 � 4MB of image data to the Display

process, in comparison to the 4 MB required for

a single process. Both techniques achieve per-

formance improvements by distributing the

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 538

538 Large-Scale Data Visualization

work of computation among different proces-

sors. The required execution times for both

methods are shown in Fig. 27.6. Fig. 27.7

shows an example of isosurfaces depicting the

Gulf Stream.

Besides the bottleneck in gathering the results

on a single node, the other limitation of both

task-parallel approaches is that they are limited

to 16 total isosurface tasks. This puts a theoret-

ical limit on our performance gains of a factor

of 16 times faster than a single processor imple-

mentation. As the execution time results show,

the task-parallel results are well below this limit.

This performance limitation is the result of the

cost of sending the data from each of the tasks

to the display process as well as the load imbal-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 539

Read Read Read Read Read Read Read Read

IsosurfaceIsosurfaceIsosurfaceIsosurfaceIsosurfaceIsosurfaceIsosurfaceIsosurface

Render Render Render Render Render

Display Display

Figure 27.5 The two networks used in the task parallelism examples. The key difference between the two is the delivery of data

to the display task. The display task on the left receives geometry, while the one on the right receives image data.

Number of Processors

0

20

40

60

80

100

120

1 2 4 8 16

Geometry Images

T
im

e
(s

)

Figure 27.6 The total execution time required for each task-parallel approach on varying numbers of processors.

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 539

ance between the various tasks. For example,

the isosurface times for eight processors, with

each processor computing two isosurfaces,

range from 16.5 seconds to 29.3 seconds for

both networks. Initially, the image network

achieves better performance because the

amount of data that must be sent to the display

process is much lower than that required for the

geometry process. In addition, this network also

allows multiple rendering processes to run in

parallel. The cost of sending the resulting

image data, plus the overhead of reading the

resulting images from the frame buffers on the

graphics cards, introduces an additional over-

head that impacts the initial advantages of this

parallelism.

27.1.3 Pipeline Parallelism

Pipeline parallelism occurs when a number of

modules in an application execute in parallel but

on independent subsets of data (thus distin-

guishing this process from task parallelism). In

Fig. 27.1, this would occur when modules A, D,

and E are all operating on independent portions

of the data. This approach is best suited for

situations where there are multiple, heteroge-

neous tasks. The advantage of this approach

is that it allows parallel use of the overall com-

puting resources. For example, one process

can be reading from disk, another process

computing results using the CPU, and a third

process rendering using a hardware-accelerated

graphics card. The main disadvantage of this

approach is that it can make it difficult to bal-

ance the execution time required by the individ-

ual stages; in an unbalanced pipeline, the

slowest stage directly impacts the overall per-

formance. In addition, the length of the pipeline

directly limits the amount of parallelism that

can be achieved (i.e., you must have as many

processors as there are pipeline stages). In order

to maximize performance, it is necessary to

quickly move data from one stage of the pipe-

line to the next. Examples of this capability

include the use of shared memory architectures

and a high-speed interconnection network be-

tween processors. The following case study

highlights the advantages and disadvantages of

pipeline parallelism.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 540

Figure 27.7 An example of the isosurfaces produced by the task-parallelism example. (See also color insert.)

540 Large-Scale Data Visualization

27.1.3.1 Case Study

In this case study, we consider a simple PC-based

animation application that reads the image files

from disk and displays them on a single monitor.

In order to study both the advantages and the

disadvantages of pipeline parallelism, we com-

pare a serial version of this application to a

multithreaded, pipelined implementation. In the

serial implementation, a single process does all

the work; in the pipelined version, one thread

reads the data from disk and another displays the

images (a classic producer–consumer model). In

order to balance this two-process pipeline, we

must be able to read an image from disk in

approximately the same amount of time it takes

us to display the image. The top graph in Fig.

27.8 shows the amount of time required for each

process as the image data increases in size. It is

important to note that the two tasks require

similar time for small images but the read

operation becomes more costly as the image size

increases. This situation will create an unba-

lanced pipeline for large image sizes, as the

slower read process will hold up the display

process. Fig. 27.8 also shows the performance of

the nonpipelined and the pipelined code. A more

advanced use of pipelined parallelism is pre-

sented in the Hybrid Systems section.

27.1.4 Data Parallelism

With data parallelism, the code within each

module of an application executes in parallel.

Referring to Fig. 27.1, this occurs when the

code within module A runs in parallel. This

requires that a dataset be subdivided and mul-

tiple processes run the same algorithm on the

resulting pieces concurrently. Data parallelism

can be implemented as an extension of the

data-decomposition technique described in the

streaming section. In this case, the data is sub-

divided in the same fashion, but we have the

extra step of assigning a processor to each of

the resulting pieces. This approach is commonly

referred to as a single program–multiple data

(SPMD) model because each process executes

the same program on different subsets of the

data. The biggest advantage of this approach

is that it can achieve a high degree of parallel-

ism; solutions tend to scale well as the number

of processors increases. When there is a large

number of processors available, this approach

is often one of the best ways to achieve in-

creased performance. A possible drawback to

this approach is that scalability can be limited

by interprocess communication costs. In order

to achieve the best possible performance with

data parallelism, it is often important to con-

sider the communication costs and data local-

ities among the processors. In the best possible

situations, there is no dependence between pro-

cessors, and in the worst case every processor is

required to share information with every other.

Fortunately, many visualization algorithms

have few communication dependencies between

processors, and therefore data parallelism is

often one of the most effective techniques for

achieving increased performance.

27.1.4.1 Case Study

In this case study, we visualize a one-tenth-of-a-

degree dataset generated by the Parallel Ocean

Program (POP), previously introduced in Sec-

tion 27.1.2. We investigate the salinity of

the Atlantic by creating and viewing an isosur-

face of salinity colored by temperature. The

computational grid for the dataset has dimen-

sions of 3600� 2400� 40 (referred to as Full);

therefore, a single-precision floating point

variable produced by the model requires ap-

proximately 1.4 GB of storage. Our visualization

requires processing temperature and salinity

variables. To study scalability and performance

at different dataset sizes, we subsampled the full-

resolution dataset to create two additional

datasets: one with dimensions 360� 240� 20

(referred to as Small), and one with dimensions

760� 480� 40 (referred to as Medium). The

isosurface algorithm processes approximately

12 MB for the Small dataset, 111 MB for the

Medium dataset, and 2.8 GB for the Full dataset.

With a data-parallel algorithm, the computa-

tional cost and memory requirements of the

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 541

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 541

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 542

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.018

0.018

T
im

e
(s

)

128 � 128 256 � 256 512 � 512 1024 � 1024 1280 � 1024 1600 � 1200

Image Dimensions (pixels)

Read Display

Execution Times for Pipeline Stages

0

500

1000

1500

2000

2500

3000

3500

128 � 128 256 � 256 512 � 512 1024 � 1024 1280 � 1024 1600 � 1200

Image Dimensions (pixels)

Nonpipelined Pipelined

F
ra

m
es

/s

Nonpipelined vs. Pipelined Performance

Figure 27.8 (Top) The amount of processing time required by each stage of the pipeline as image size increases. (Bottom) The

frames/s performance comparison between nonpipelined and pipelined versions of the code.

542 Large-Scale Data Visualization

isosurface computation are divided over the

number of available processors. These isosur-

faces will be computed using a PC cluster

comprised of 64 nodes, 32 of which contain dual

800 MHz Pentium 3 Xeon processors and 32 of

which contain 1 GHz Xeon processors (all

systems contain 1 GB of RAM). The data-

parallel infrastructure of the Visualization

Toolkit is used to implement this example.

Information about neighboring cells was auto-

matically handled by the reader, and therefore

the isosurfacing algorithm requires no interpro-

cess communication. Fig. 27.9 shows the perfor-

mance of a data-parallel isosurfacing algorithm

on the three datasets. Notice that performance

improves by a factor of two with each doubling

of the number of processors for all dataset sizes.

Notice also that due to the memory requirements

of the full dataset and the resulting graphics

primitives, visualization is only possible when we

use 16 or more processors. Fig. 27.10 shows the

resulting isosurface for the Full POP dataset.

27.1.5 Summary

The preceding sections have outlined a classifi-

cation of techniques based on the decompos-

ition of both tasks and data. The table shown

in Fig. 27.11 presents a mapping from the char-

acteristics of the problem to the supported solu-

tion. The dataset size column describes the

quantity of data to visualize. A dataset is

‘‘Large’’ when it exceeds the resources of a

single machine. The tasks column describes the

type of work. Homogenous tasks are the

same type of work applied to different data.

Independent tasks can be run in parallel at

the same time. Sequential tasks must run one

after another in a fixed order. The resources

column describes the number of resources avail-

able, and the solution column identifies the tech-

nique to use. For example, if you have a large

dataset and only a single CPU, then data

streaming is perhaps the only possible solution

by which you can explore the entirety of the

data.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 543

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64

Number of Processors

Small Medium Full

Data-Parallel Isosurface Performance

S
ec

on
ds

Figure 27.9 Execution times for data-parallel isosurfacing for the three different POP grid sizes. Due to its large size, the Full

POP grid can be run only on 16 or more processors.

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 543

27.2 Hybrid Systems

In several situations, it is possible to take ad-

vantage of many of the described techniques

within the same application. For example, data

streaming and data parallelism were used to

visualize a dataset that was approximately a

petabyte in size [3]. Although using multiple

techniques can lead to a more complex imple-

mentation, it is often a very powerful way to

fully utilize available resources. In this section, a

case study that highlights the successful use of a

combination of several approaches is presented.

27.2.1 Case Study

The specific performance characteristics and

design details of a particular computer architec-

ture can often play an important role in provid-

ing the foundation for an algorithmic solution.

This case study presents an application in which

this detailed knowledge was required to solve a

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 544

Figure 27.10 Salinity isosurface colored by temperature, produced using the Full POP dataset. (See also color insert.)

Dataset Size Tasks Resources Solution

Large Any Single CPU Data streaming

Large Homogenous Multiple CPUs Data parallelism

Any Independent Multiple CPUs Task parallelism

Any Sequential Multiple CPUs Pipeline parallelism

Figure 27.11 Summary table of solution techniques.

544 Large-Scale Data Visualization

large-data visualization problem. TRex is a

hybrid system that uses data streaming, pipelin-

ing, and data parallelism [5]. The primary goal

in designing and developing TRex was to sup-

port the rendering of large, full-resolution, time-

varying, volume datasets at approximately 5

frames/s. Due to the computational expense as-

sociated with software-based volume rendering,

it was necessary to leverage the performance of

hardware-accelerated volume rendering using

3D textures [7,8]. The target platform for this

application was an SGI Origin 2000 containing

InfiniteReality2 (IR2) graphics engines and

128 processors. Although a single IR2 is capable

of supporting hardware-accelerated volume

rendering at rates beyond 5 frames/s, the

amount of available texture memory is well

below the amount required to support large

datasets. It requires the texture memory of

16 IR2 pipes to render a 1024� 1024� 1024

volume without texture paging. Therefore, the

key issue in reaching our performance goal was

not limitation from the graphics performance of

the system, but finding a way to deliver the time-

varying subsets of the data to the IR2 engines at

a fast enough rate to sustain 5 frames/s.

As the section on pipeline parallelism showed,

the process of reading data from disk can often

be a bottleneck in the overall performance of an

application. Initial I/O subsystem tests on the

Origin 2000 revealed that by using a striped

redundant array of inexpensive disks (RAID),

and system routines that bypassed kernel inter-

rupts, we could achieve a data rate of approxi-

mately 140 MB/s. Unfortunately, this rate was

not fast enough to reachour goal of 5 frames/s for

a 10243 dataset. To solve this problem, we were

forced to look more closely at the architectural

design of the Origin 2000 to see if it was possible

to build a customized file system for streaming

volume data from disk and then directly into

texture memory.

Fig. 27.12 shows the topology of a 16-node,

32-processor Origin 2000 system where squares

represent CPU nodes and circles represent

router chips that handle communications be-

tween the nodes. Notice that each node contains

the connections between the CPUs, memory,

and I/O and graphics subsystems. In order to

improve the performance of the I/O system for

better graphics throughput, we collocated the

IR2 pipes and the I/O controllers so that they

share access of the same memory region, and

therefore avoid the routing of data through the

interconnection network. This step not only re-

duces the latency involved in accessing data in

memory, it also provides a balance between the

performance characteristics of all 16 graphics

engines. The data-transfer rate between the

memory and the graphics subsystem is approxi-

mately 300 MB per second. This gives a total

data rate of 5GB per second when taking all

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 545

R R

R

R

RR

R

R

Router

Node

Node
Detail Memory Graphics

XBOW

I/O

I/O

I/O

To Router Hub

CPU CPU

Figure 27.12 (Left) The interconnection topology of the SGI Origin 2000 architecture. (Right) The details of the nodes

(represented as squares in the topology).

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 545

16 IR2 engines into consideration, and it is also

the rate that the I/O subsystem must achieve to

reach a balanced system performance. By

placing four dual-fiber-channel controllers on

each node’s I/O subsystem and having them

each drive 576 disks, we can achieve a data

rate of approximately 70 MB per second per

controller. This allows us to achieve 280 MB

per second per node, which falls 20 MB per

second below our goal. In comparison to our

initial 140 MB-per-second data rate, we are now

much closer to reaching a balanced system per-

formance. In the remainder of this section, we

present the details of the software application

built upon this hardware configuration.

As was previously mentioned, it is necessary

to break a large volume of data into individual

subsets in order to efficiently render the data on

the IR2 engines. In this case, the data decom-

position has the advantage of increasing the

total amount of texture memory available to

our application. This decomposition provides

the foundation for the data parallelism used in

TRex. The network in Fig. 27.13 shows the

overall series of parallel tasks required by

TRex. The Read module takes advantage of

the I/O configuration described above and

reads individual subvolumes from disk. In

order to guarantee peak performance, it is ne-

cessary to assign the read process to one of the

processors within the same node as the graphics

and I/O subsystems. Next, the Render module

takes this data and downloads it as a 3D texture

to the IR2, where it is then rendered. For ad-

equate performance, this process must be

assigned to the remaining processor within the

node. In the next step, the Composite module

takes the resulting images produced by each of

the graphics engines and stitches them together

to form the final image. In the final step, the

Display module receives the composited image

and displays it to the user. By streaming mul-

tiple time-steps of data through the Read

module, the second hybrid characteristic is in-

corporated into TRex. Even though the data

has been divided into subvolumes, this use of

streaming is a basic temporal approach that is

easily achieved by reading one time-step after

another from disk. To introduce the last hybrid

characteristic into TRex, it is important to

notice that each stage of this network produces

output data that is independent from the data

produced by the other modules. In addition, the

streaming of temporal data from disk intro-

duces the ability to have a constant flow of

data. Therefore, it is possible to introduce pipe-

line parallelism into this network and overlap

the execution of each stage. This requires that

the compositing stage be separated from the

other stages. It is often tempting to implement

compositing within the graphics hardware, but

in this situation, doing so would limit the length

of the pipeline in TRex and thus reduce per-

formance, as well as introduce overhead related

to the reading and writing of multiple frame

buffers—a task that is often much more expen-

sive than might be expected. Therefore, TRex

uses a software-based compositing technique

that leverages any remaining processors that

are not already involved in the reading or

rendering portions of the pipeline.

By taking the specific details of a hardware

architecture into consideration and leveraging

the advantages of three of the techniques

presented in this chapter, TRex allows for the

exploration of 10243 datasets at five frames/s.

The biggest drawback of this approach is that

the size of data that can be processed is limited

by the amount of texture memory that can

be placed in the Origin 2000. Examples of

the output produced by TRex are shown in

Fig. 27.14.

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 546

Read Render Composite Display

Figure 27.13 The parallel pipeline used in the TRex volume renderer.

546 Large-Scale Data Visualization

27.3 Rendering

In the previous sections, we have focused pri-

marily on the large-data visualization process

and not on the specific issues related to

rendering the resulting graphics primitives. The

rendering of these primitives is a computation-

ally intensive process and is especially challen-

ging when interactive rendering rates are

desired. In this section, we present a review of

the techniques that are commonly used to

handle the rendering and display of large-scale

datasets.

When we deal with gigabytes or petabytes of

data, it is not uncommon for visualization algo-

rithms to produce millions to billions of

graphics primitives. It is beyond the ability of

a single CPU and graphics accelerator to render

these primitives at interactive rates. The use of

data-parallel rendering methods is required to

achieve adequate interactive performance. For

an introduction to parallel rendering tech-

niques, the reader is referred to Crockett [12].

The most commonly used classification of par-

allel rendering algorithms is based on the loca-

tions in the rendering pipeline where the

graphics primitives are sorted from object

space into screen space [6]. In summary, the

following classifications are introduced: sort-

first, sort-middle, and sort-last. We will briefly

review each of these methods.

27.3.1 Sort-First

Sort-first algorithms begin by distributing

graphics primitives at the start of the rendering

pipeline. We assign primitives to processors by

subdividing the output image and assigning a

processor to handle each resulting region. Once

the primitives have been assigned, each process

completes the entire graphics pipeline to pro-

duce the final sub-image. The initial assignment

of primitives to processors is the key step in

sort-first algorithms. This step requires the

transformation of the primitives into screen-

space coordinates and introduces a computa-

tional overhead to the algorithm. The initial

assignment to processors is generally done in

an arbitrary fashion, but after each processor

completes the transformation stage of the pipe-

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 547

Figure 27.14 Two volume rendered images produced by TRex. The image on the left represents the particle density produced

by a simulation of a linear accelerator model using 300 million particles. The image on the right shows a classic Raleigh-Taylor

fluid dynamics simulation. (See also color insert.)

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 547

line it reassigns primitives to the correct proces-

sors. Additional consideration must be given to

primitives that overlap the subdivided regions

of the final image.

Sort-first is advantageous because the proces-

sors implement the entire rendering pipeline.

This has the advantage of allowing the use of a

commodity-based, hardware-accelerated pipe-

line, and/or better system cache behavior. In

addition, the communication requirements be-

tween the processors can be low, resulting in

lower overhead and higher performance. The

main disadvantage of sort-first is that the initial

distribution of primitives among the processors

can easily lead to a workload imbalance. At-

tempting to redistribute the primitives during

the rendering process can also lead to poor

scalability due to the large amounts of required

messaging traffic.

27.3.2 Sort-Middle

In sort-middle algorithms, the redistribution of

data occurs between the geometry-processing

and scan-conversion stages of the rendering

pipeline. In this case, it is common to describe

the steps as two sets of operations. The first set

of operations handles the geometry portion of

the pipeline (transformations, lighting, etc.),

and primitives are initially assigned in an arbi-

trary fashion. The second set of operations is

assigned contiguous regions of the final output

image, and these operations are responsible for

rasterizing the screen-space primitives produced

by the first set of processors. Note that it is

possible to dedicate processors to each of these

sets separately or to allow all the processors to

perform both tasks. If separate processors are

used, it is possible to create a set of parallel

pipelines. This pipelined approach has the

same advantages and disadvantages discussed

in the pipeline section.

The split in the rendering pipeline is the big-

gest disadvantage of sort-middle, because it

makes it difficult to leverage hardware-acceler-

ated rendering. In addition, the cost of commu-

nicating between the stages of the pipeline scales

with the number of primitives rendered. Finally,

the algorithm can suffer from load imbalance

when the primitives are not evenly distributed

across the output image.

27.3.3 Sort-Last

The sort-last approach delays primitive sorting

until the final stages of the rendering pipeline.

Primitives can be initially assigned in an arbi-

trary fashion, and each processor renders its

portion of the final image. All of these images

are then composited to form the final complete

image. As with sort-middle, it is possible to use

two sets of processors. The first set of processors

is responsible for completing the rendering pipe-

line, and the second set is responsible for creat-

ing the final image. This assignment also allows

for the creation of a parallel pipeline that can be

used to improve overall performance. Since the

rendering stages of sort-last create full-reso-

lution images, the interconnection network be-

tween processors must have very high

bandwidth if interactive rendering is required.

Other techniques can be used to reduce the

amount of traffic required to complete the com-

positing stage [9,10].

The advantages of sort-last include the ability

for processors to implement the entire rendering

pipeline. It is easier to uniformly distribute

primitives to the processors and thus avoid

load-balancing issues. The main disadvantage

of sort-last is the communication requirements

introduced by sending large amounts of data

between the processors. Techniques for redu-

cing the cost of this compositing message traffic

are still an area of active research.

27.3.4 Hardware

It is important to note that all of today’s com-

modity graphics hardware takes advantage

of parallelism in the form of pipeline and

SIMD optimizations. This hardware-supported

parallelism makes the use of the full rendering

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 548

548 Large-Scale Data Visualization

pipeline even more advantageous for both sort-

first and sort-last techniques. It is extremely

difficult to cost-effectively outperform today’s

commodity hardware with pure software-based

rendering. For example, a single NVIDIA

CineFX engine is capable of executing eight

four-way operations per clock tick. With

the graphics processor(s) running at 500 MHz,

this is equivalent to 16 billion floating-point

operations per second. The additional program-

mability that is being built into the recent

graphics hardware also has the potential to pro-

vide even more flexibility in the solution of

the large-data visualization and rendering

challenge.

27.4 Conclusions

This chapter presented a systems-based classifi-

cation of algorithms for dealing with the visual-

ization and rendering of large-scale datasets. By

using these techniques as a foundation for the

development of existing and future algorithms,

we will be able to provide efficient and effective

tools for application scientists to explore simu-

lation results.

Acknowledgments

The authors would like to thank Tony Mezza-

cappa and John Blondin for providing us

with access to the terascale supernova data

and Mat Maltrud for the one-tenth-of-a-degree

POP dataset. Special thanks go to Berk Geveci

and Charles Law for providing us with help in

producing the testing code used in Section 27.1.1.

We also acknowledge the Advanced Computing

Laboratory at Los Alamos National Labora-

tory; the examples presented in this chapter

were computed using resources located at this

facility.

References

1. C. C. Law, K. M. Martin, W. J. Schroeder,
and J. E. Temkin. A multithreaded streaming
pipeline architecture for large structured data
sets, Proc. IEEE Visualization 1999, pages
225–232, 1999.

2. W. E. Lorensen and H. E. Cline. Marching
cubes: a high resolution 3D surface recon-
struction algorithm. Computer Graphics, 21(4):
163–169, 1987.

3. J. Ahrens, K. M. Martin, B. Geveci, and C.
Law. Large-scale data visualization using paral-
lel data streaming. IEEE Computer Graphics and
Applications, 21(4):34–41, 2001.

4. Terascale Supernova Initiative, http://www.
phy.ornl.gov/tsi/

5. J.Kniss,P.McCormick,A.McPherson,J.Ahrens,
J. Painter, A. Keahey, and C. Hansen. TRex:
interactive texture based volume rendering for
extremely large datasets. IEEE Computer Graph-
ics and Applications, 21(4):52–61, 2001.

6. S. Molnar, M. Cox, D. Ellsworth, and H.
Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics and Appli-
cations, 14(4):23–32, 1994.

7. B. Cabral, N. Cam, and J. Foran. Accelerated
volume rendering and tomographic reconstruc-
tion using texture mapping hardware. ACM
Symposium Volume Visualization (A. Kaufman
and W. Krueger, Eds.). New York, ACM Press,
1994.

8. O. Wilson, A. Van Gelder, and J. Wilhelms.
Direct volume rendering via 3D textures. Tech.
Report UCSC-CRL-94-19, Univ. of California
at Santa Cruz, 1994.

9. J. Ahrens and J. Painter. Efficient sort-last
rendering using compression based image com-
positing. Proc. of SecondEurographics Workshop
on Parallel Graphics and Visualization, 1998.

10. B. Wylie, C. Pavlakos, V. Lewis, and K. More-
land. Scalable rendering on PC clusters. IEEE
Computer Graphics and Applications, 21(4):62–
69, 2001.

11. W. J. Schroeder, K. M. Martin, and W. E.
Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Upper
Saddle River, NJ, Prentice Hall, 1996.

12. T. Crockett. An introduction to parallel render-
ing. Parallel Computing, 23(7):819–843, 1997.

13. Myricom home page, http://www.myri.com

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 549

Large-Scale Data Visualization and Rendering: A Problem-Driven Approach 549

Johnson/Hansen: The Visualization Handbook Final Proof 10.9.2004 5:03pm page 550

This page intentionally left blank

28 Issues and Architectures in
Large-Scale Data Visualization

CONSTANTINE PAVLAKOS and PHILIP D. HEERMANN

Sandia National Laboratories

28.1 Introduction

‘‘The purpose of computing is insight—not

numbers.’’ How many times has this quote from

R. W. Hamming been used in the context of sci-

entific visualization? Yet a steady stream of

numbers, and other forms of data, continues to

pour out from computations, experiments, real-

time data capture, historical data capture, etc.

Our ability to generate data continues to grow in

leaps and bounds, and our ability to comprehend

it all continues to encounter great challenges.

‘‘I’ve never seen most of my data—I can’t.’’

This quote, from Professor George Karniada-

kis, appears with Hamming’s quote in the Data

and Visualization Corridors (DVC) technical

report [1], published in 1998 as a result of a

series of workshops on the manipulation and

visualization of large-scale data that was spon-

sored by the Department of Energy (DOE) and

the National Science Foundation (NSF). The

two quotes together are quite telling, one stating

a fundamental objective, the other capturing the

pragmatic frustration of many a computational

scientist.

Lest it appear that the situation is hopeless,

we should point out that there has been pro-

gress. Indeed, the DVC report referred to above

can and should be credited with bringing atten-

tion to the problem of large-scale data visualiza-

tion, as well as with spurring additional research

activity in this area. Among the efforts influ-

enced by this report is the DOE’s Advanced

Simulation and Computing (ASCI) [2] Visual

Interactive Environment for Weapons Simula-

tions (VIEWS) program, which, in recent years,

has figured prominently in the experience base

for the two authors of this chapter.

In this chapter, we take a high-level, end-to-

end, systems view of the large-scale data visual-

ization problem in high-performance computing

environments. The chapter introduces many of

the issues associated with the problem, as well as

solution approaches (many of which receive

more detailed treatment elsewhere in this hand-

book) and architectural features that are either

proven or have promise. Successes in the ASCI

VIEWS program are used to help provide cre-

dence to some of the architectural elements.

28.2 Characterizing the Problem

Today’s supercomputers are capable of comput-

ing at performance levels in the tens of teraflops.

The DOE’s ASCI laboratories currently operate

machines that provide 10–20 teraflops of peak

computing power, and the Earth Simulator ma-

chine built by Japan’s NEC Corporation pro-

vides a peak of 40 teraflops. Such machines are

being used to perform simulations at unpreced-

ented complexity and fidelity in diverse compu-

tational science and engineering applications, in

areas including the biological sciences, environ-

mental sciences, energy research, and defense.

Terabyte datasets are no longer uncommon,

and the existence of petabyte datasets is antici-

pated in the next few years.

The process of analyzing and visualizing

large-scale scientific data is depicted in Fig.

28.1. The process includes a diverse group of

data service functions that may be applied to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 551

551

data prior to visualization, where renderable

objects are generated and converted to images.

It is important to understand that a substantial

portion of the visualization process is often

spent in the manipulation, transformation, and

preparation of data for subsequent rendering.

High-performance rendering by itself is inad-

equate. A complete environment for effective

visualization of large-scale data must include a

rich set of high-performance data services that

can efficiently feed high-performance visualiza-

tion services.

28.2.1 Enabling Data Exploration and
Discovery

An ideal environment for computational scien-

tific and/or engineering analysis would give very

simple answers to complex questions, perhaps

only a yes or no or a single number—in any

case, a definitive answer to whatever the current

question of interest is. In reality, however, we

are faced with the problem of how to discover

simple, definitive answers from a plethora of

bits and bytes. Such discovery suggests the

need for tools and environments that support

the efficient, effective exploration of data. A

robust interactive environment is needed that

enables the scientist or analyst (the user) to

receive timely and useful feedback in the search

for answers.

Equally important, this environment must be

accessible from the office, which is where day-

to-day work is done. The user should be able to

manipulate a complete set of available resources

and tools from the desktop. At the same time,

because of the size of datasets, the ability to

process data demands that one have access to

resources that far exceed the conventional

power of an office computer or workstation.

Ideally, such access should be provided in a

manner that is as seamless as possible.

A rich set of data service functions is key to

support of robust data exploration. These func-

tions should be characterized by the ability to

retrieve, manipulate, scrutinize, and interpret a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 552

Re-partitioning
M ⇒ N

Renderable-Object Generation
(eg., surface extraction)

Visualization
Services:

Display Modalities:

Subsetting

Attribute Specification
(eg., Volume Transfer-function)

Data Algebra
x,y,z ⇒mag/Φ

Data
Services:

Format/Representation
Conversion (e.g., multi-res)

Filtering

Data Simplification

Data Access

Feature Detection,
Extraction, Tracking

Surface rendering Volume rendering

Multi-Visualization
Technique Combine

Time Sequence
Generation

Desktop
Display

Theater
Display

Powerwalls Immersive
Stereoscopic

User
Services:

Navigation

Rendering
Control

Advanced
User Interface

Data Sources: Simulations, Archives, Experiments

Collaborative
Control

Data Fusion &
Comparison

Display
ControlImage-based

Rendering
Plotting

Data
Query

Time History
Generation

Data Mining

Resampling

Figure 28.1 The data analysis and visualization process.

552 Large-Scale Data Visualization

portion of data that is of current interest to the

end user. This implies the ability to efficiently

extract specific data objects from large datasets.

Analysis may also require the derivation of new

data objects from pre-existing data objects; for

large data, such a derivation may demand sig-

nificant computational resources.

It is sometimes useful to change the form or

representation of data in order to enhance the

data-exploration process. One example is to

convert data into a hierarchical or multiresolu-

tion form. Such a form allows data to be ma-

nipulated at various resolutions and/or levels

of detail (LODs) very efficiently. Low-reso-

lution data can be used for highly interactive

analysis or data browsing. When immediate

access to a complete multiresolution representa-

tion can be retained, visualization can be

tailored to the current viewing parameters

and the capabilities of particular visualization

hardware.

Another useful data transformation is the

conversion of data into a form that is optimally

arranged for processing by key visualization

algorithms. More specifically, certain represen-

tations organize data for fast searching and

sorting to enable more interactive visualization

processing (e.g., isosurface extraction). Such

representations are also used to lay out

data very carefully on disk for out-of-core

methods.

Data transforms can be used to resample data

onto a different type of grid. For example, it

may be useful to sample data from a highly

unstructured or irregular volumetric grid onto

a structured, regular, possibly uniform grid in

order to leverage certain high-performing hard-

ware, tools, and/or algorithms that can operate

only on structured grids.

The transformations described above gener-

ally convert data into forms whose sizes are on

approximately the same order of magnitude as

the original data. However, there are cases when

a new representation incurs substantial over-

head in size for data organization or partial

replication, resulting in resource tradeoff deci-

sions with regard to their use.

In contrast, certain other data-service func-

tions can be used to simplify and reduce the

amount of data for subsequent processing.

Once in reduced form, it may be possible to

process the data (e.g., visualize it) using rela-

tively modest-capability resources, including

those at the desktop. One example is enabled

by multiresolution data representations—once a

full multiresolution form has been computed, it

is straightforward to extract a low-resolution

representation of the data, which can be much

smaller than the original data. An alternative is

to use a sub-sampling function, which would

compute a lower-resolution version of the data

from a higher-resolution form upon demand.

Other techniques for reducing data include the

cropping of data to reduce the spatial domain, a

reduction in dimensionality (such as extracting

2D slices from 3D data) and the extraction of

surface data from volumetric data.

When surface geometries are extracted from

very large data, the surface geometries them-

selves may also be very large. As with raw

data, a variety of techniques can be applied to

reduce the LOD needed to represent surface-

geometry approximations—better techniques

make use of error constraints to help ensure

high-quality approximations.

One of the most challenging issues associated

with large, complex data analysis is that of how

to find what one wants, or, more importantly,

needs, to see. Research is underway to develop

tools that would help identify features and char-

acteristics of data that are of special interest,

ultimately helping the user discover information

in the data. Such feature detection, extraction,

and data mining can be performed as part of the

associated computational simulation, or during

postprocessing of results data. Unfortunately,

features of interest tend to be application-

specific, making it difficult to develop general

solutions.

The strategic use of compression–decompres-

sion techniques can be considered to augment

all other data service functions. Compression–

decompression can be applied to raw data, ex-

tracted surface geometries, and images as ap-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 553

Issues and Architectures in Large-Scale Data Visualization 553

propriate in order to improve the data-transmis-

sion characteristics of the end-to-end system.

28.2.2 The Need for Scalable Solutions

The computing resources demanded by com-

plex, high-fidelity simulation applications inher-

ently imply the use of parallel computing. It

should be no surprise that the prospect of ana-

lyzing data produced by such applications

demands that data service and visualization ser-

vice components also leverage extensive paral-

lelism. Additionally, the data interfaces between

parallel components throughout the system

must support parallelism, because any sequen-

tial interfaces result in bottlenecks that degrade

end-to-end system performance.

It is not uncommon for large simulation runs

to produce datasets that have the following

characteristics:

. At full resolution, the visualization data of

current interest do not fit in the memory of a

conventional office visualization system.

. The visualization data of current interest, at

full resolution and level of complexity, are

large enough that conventional office

graphics packages are inadequate.

. The whole dataset does not fit on the local

disk of a conventional office visualization

system; indeed, it may not fit on the local

disk of a large visualization system.

. The visualization data of current interest, at

full resolution and level of complexity, are

large enough that traditional high-perform-

ance graphics systems (e.g., a modest-sized

SMP with modest graphics parallelism, 4–16

graphics pipelines) lack the rendering per-

formance for interactive data exploration

and visualization.

This suggests the need for shareable high-

performance servers that can be applied, as

needed, to analysis and visualization of data at

scale. It also suggests the need for technology

that can be scaled to significant performance

levels, to hundreds (if not more) of processors

and graphics pipelines. The scalability needed is

a function of the maximal visualization or

rendering capability needed for any one problem

and the aggregate capability needed to service a

required number of simultaneous users. Such

systems are also useful for driving multiple dis-

plays in advanced visualization environments,

such as powerwalls and CAVEs.

28.2.3 Some Data Facts and Observations

Table 28.1 presents certain statistics from a

couple of actual simulation runs that were per-

formedonASCIsupercomputingresources.Both

runs shown were performed on the ASCI

‘‘White’’ platform, an IBM massively parallel

supercomputer at Lawrence Livermore National

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 554

Table 28.1 Data statistics from example simulation runs

Computation Number

of cells

Number

of variables

Number

of time dumps

Size of

one variable

Total size of

vis dataset

Anecdotal

isosurface data

PPM SC99

Gordon Bell

(turbulence

simulation)

8 billion 2 273 �8GB

(�550MB

compressed)

4.3TB

(�300GB

compressed)

One surface:

�470M triangles

(�5GB

compressed)

ASCI

simulation

(LANL on

White)

468 million

(maximum)

14–25 364 NA 21 TB Example:

�32M triangles

(�773MB)

(�4% of total

mesh size)

554 Large-Scale Data Visualization

Laboratory. The ASCI run was performed by

scientists from Los Alamos National Laboratory

(LANL).

We offer the following tips:

. Note the size of the datasets.

. Note the size of the huge isosurface extracted

from one of the time-steps in the PPM simu-

lation. While somewhat pathological, it dem-

onstrates that the size of extracted surface

geometry can be very big, in this case sub-

stantially larger than its associated volumet-

ric data. Also, compare the number of

triangles to the number of pixels on a con-

ventional display (�2M). This comparison

suggests the utility of very high-resolution

displays for certain visualizations, as well as

the opportunity for techniques that would

dynamically manage LOD to optimize

rendering against display resolution.

. On the other hand, the ASCI simulation

statistics show that extracting surface geom-

etry can be an effective way to reduce data,

especially for transmission to a remote visu-

alization system. In this dataset, empirical

statistics indicated that an extracted isosur-

face was nominally about 4% to 5% of the

size of the entire 3D geometry.

. Even when datasets are very large, it is often

possible to comfortably fit one or more full-

size data objects on a desktop or laptop local

disk.

Table 28.2 presents some simple statistics relat-

ing to the migration of visualization data. Stat-

istics such as these are particularly relevant in

the consideration of remote data analysis and

visualization of large data, or visualization in

high-performance computing environments that

are distributed (which most are, whether within

a building, across a campus, or across a wide

area). The key observation here is that migra-

tion of entire datasets can be very difficult,

whereas the migration of select data subsets

can be achieved in reasonable time.

28.2.4 Optimizing the End-to-End Process

The research community is attacking the prob-

lem of large-scale visualization by a variety of

approaches. These approaches include the paral-

lelization of visualization and graphics algo-

rithms, data simplification, multiresolution data

representation, out-of-core methods, image-

based modeling and rendering, and data com-

pression and decompression. While all of these

approaches have their own merit for optimizing

portions of the data-analysis and visualization

process, they sometimes also have their costs.

Costs can include time to compute a data trans-

formation, use of a precious resource (e.g., super-

computing cycles), memory/storage overhead,

and even loss of information, as some techniques

use various forms of data interpolation to enable

greater interactivity. It is important that all of

these things be considered within the context of a

complete end-to-end process. A successful end-

to-end process for data analysis and visualiza-

tion optimizes the end user’s time and his or her

ability to accurately complete an analysis.

28.3 An End-to-End Architecture for
Large Data Exploration

In this section we present a functional system

architecture (Fig. 28.2) for high-performance

computing environments that can be used to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 555

Table 28.2 Time to transfer various data parts from a single large dataset.

Data Transfer Full 21 TB dataset 100 GB of selected data objects 1 GB selected data object

@ 100 MB/s �60 hrs. (�2.5 days) �17min. �10 sec.

Issues and Architectures in Large-Scale Data Visualization 555

provide the services and end-to-end system

characteristics described in Section 28.2. The

architecture links the key components of com-

putational resources, data archival, large high-

performance online storage, data service re-

sources, visualization service resources, and the

end user’s display and/or workstation interface.

The diagram shown is functional in the sense

that the functional components can be instanti-

ated in a diversity of actual hardware configur-

ations. In one case, all of the functions may exist

within a single local system, such as a visualiza-

tion supercomputer with locally attached stor-

age and archival. In another case, all of the

functional components may represent separate

pieces of hardware that are attached to the net-

work. In yet another possibility, some of the

components may themselves actually be distrib-

uted. For example, the data service as a whole

may consist of multiple data-manipulation en-

gines, or the visualization service may be distrib-

uted across a network.

For convenience, the architecture diagram is

annotated as follows:

. Objects shown in capital letters represent

large objects, with objects in lower case repre-

senting smaller objects (e.g., ‘‘DATA’’ means

big data, and ‘‘data’’ means smaller data).

. ‘‘R_OBJ’’ and ‘‘r_obj’’ refer to renderable

objects (e.g., polygons, voxels, etc.).

. ‘‘!’’ is an operator that implies a conver-

sion, extraction, or reduction (e.g., ‘‘DATA

! data’’ means large data is subsetted or

reduced to produce smaller data; ‘‘R_OBJ

! r_obj’’ means a large renderable object is

somehow reduced to a smaller representa-

tion; ‘‘r_obj ! images’’ means renderable

objects are converted to images, that is,

rendered).

Note that the data service component generally

provides high-performance services that can

access and process large data into other large

or smaller forms, as well as deliver data to visu-

alization resources, which can include the desk-

top workstation when data is adequately

reduced. The data service component also pro-

vides access to archive services. The visualiza-

tion service component provides services that

are capable enough to produce renderable

objects from large data and render them at

high performance. The visualization service

can also generate smaller renderable objects

for downstream delivery to desktop visualiza-

tion resources.

A key feature of the proposed architecture is

in the shareable access to large data as it resides

in one place, on a high-performance storage

system. The notion is that data services can

access data produced by large-scale simulations

without moving the data—the data is accessible

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 556

data

Compute
Service

Simulate

User
r_obj → images

data → r_obj
data → data

DATA→ DATA
DATA → data
data → data

Archive

R_OBJ/r_obj → images
DATA/data → R_OBJ/r_obj

R_OBJ → r_obj

Data
Service r_obj,

images
DATA/data

Data
Archive

BIG DATA

Visualization
Service

Display/
Workstation

Figure 28.2 A functional system architecture for high-performance computing, data exploration, and visualization.

556 Large-Scale Data Visualization

from the storage onto which it was written by

the simulation. Data services also enable data

object extraction, manipulation, and delivery,

which, again, obviates the need to move and/or

copy entire datasets. The long-standing brute-

force habit of moving entire datasets around to

get them to target systems for further analysis

needs correcting. Users almost never need im-

mediate access to all the data in a large dataset.

When performing interactive analysis at any

point in time, the user is typically interested in

scrutinizing a relatively small percentage of the

data. By providing more direct access to data

subsets and data objects, we can deliver data

more efficiently and we can make better use of

available network bandwidth in the end-to-end

system.

A very rich data service capability would also

track and manage data across a highly distrib-

uted environment. Users would make requests

to a virtual data service, and just the right data

would be delivered to just the right place, trans-

parently repackaging data as needed to enable

efficient data migration and/or preparation for

whatever subsequent processing is planned. The

data service would also catalogue the locations

of various pieces of data, using a relatively

coarse caching scheme to leave data in tempor-

ary distributed locations where it was used,

eliminating the need for redelivery whenever

possible. Concepts like these are being explored

for the Data Grid [3], although the Grid’s Rep-

lica concept is based on managing replication at

the file level rather than at a more abstract data

level.

The desktop itself can receive data in one of

three forms: (1) small- to modest-sized sets of

data objects provided by data services; (2)

small- to modest-sized sets of renderable objects

that can be rendered at acceptable performance

by the local graphics resources; and (3) images

delivered from high-performance visualization

services. This flexibility allows the remote end

user to choose from respective usage modes to

(1) make occasional data-service requests that

deliver data subsets or special representations

(e.g., multiresolution, out-of-core) to the desk-

top for local data analysis and visualization; (2)

use back-end high-performance data and visu-

alization services to occasionally extract and

deliver graphical objects, such as polygonal

surfaces, to the desktop for local interactive

viewing; or (3) use back-end high-performance

data and visualization services to render final

images that are delivered to the end user’s dis-

play (note that this mode, if used with the ex-

pectation of interactive frame rates, demands

high quality of service and sustainable network

bandwidth between the visualization service and

the display and is the most latency-sensitive).

All in all, the end user can leverage back-end

high-performance resources as needed while

also enabling the use of desktop resources,

which are significant in today’s personal com-

puter systems with commodity graphics cards.

28.4 Commodity-Based Scalable
Visualization Systems

The emergence of massively parallel computing

has inevitably resulted in the ability to produce

massive datasets. For many years, efforts to

visualize the largest of datasets were confined

to the use of software implementations of paral-

lel visualization and rendering algorithms on

general-purpose parallel machines. Traditional

high-performance graphics systems did not

offer the required graphics scalability, and, if

they did so now, the cost of such systems

would likely be prohibitive, given the cost of

traditional high-performance graphics hard-

ware.

In recent years, the video-game market has

resulted in a graphics-hardware revolution. The

performance of PC graphics cards for 3D

graphics has been increasing at a rate that

exceeds Moore’s law for general-purpose pro-

cessors. The result is that it is now possible to

buy a commodity graphics card for a few hun-

dred dollars that has greater rendering perform-

ance than that of a $100,000 graphics pipeline

from 5 years ago. The availability of such low-

cost graphics cards, together with cluster com-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 557

Issues and Architectures in Large-Scale Data Visualization 557

puting technology, has provided the opportun-

ity to build scalable visualization systems [4]

that are better matched with today’s scalable

supercomputers.

The architecture for a generic graphics cluster

is shown in Fig. 28.3. The system integrates a

number of computer nodes (generally PCs),

each of which includes an attached graphics

accelerator. The system uses a high-perform-

ance network-interconnect for communication

among the nodes. The compositing infrastruc-

ture is the part of the system that accepts the

image output contributions from all of the inde-

pendent renderers in the system and composites

them into a complete image. The compositing

infrastructure may consist of special-purpose

hardware and a dedicated network for compos-

iting, or it may simply reuse the system’s inter-

connect and general-purpose processors. Note

that the cost of compositing contributes to the

total time to deliver a final image, so the

system’s ability to deliver a new image is min-

imally bounded by the time-to-composite

(TTC). For this reason, the parallel graphics

community is still exploring ways to provide a

dedicated compositing infrastructure [5] that re-

duces the TTC until it becomes negligible. This

is particularly important for real-time inter-

active graphics applications, that is, applica-

tions that demand greater than 30 frames/s.

Each of the graphics cards in a clustered-

rendering system embodies a full 3D rendering

pipeline. Simplistically, a 3D rendering pipeline

implements the following:

[Graphics Primitives]! 3D Geometry Processing!
Rasterization! [Display]

Use of many pipelines to render in parallel re-

quires that data be sorted across the pipelines in

one of three ways [6]: sort-first, sort-middle, or

sort-last. The stages at which each of these sorts

would occur in the overall pipeline are shown

below:

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 558

Compositing
Infrastructure

Target
Display(s)

• • •

R

R

R

In
te

rc
o

n
n

ec
t

D
at

a

Node 1

Node 2

Node n

Figure 28.3 A generic clustered-rendering architecture. Boxes labeled ‘‘R’’ represent renderers, that is, graphics accelerator

cards.

[Graphics Primitives] ! 3D Geometry Processing! Rasterization! [Display]

" " "
Sort-First Sort-Middle Sort-Last

558 Large-Scale Data Visualization

Since sort-middle would impose a sort across

the nodes right in the middle of the HW pipeline

in the graphics cards, it is not a suitable candi-

date for use with commodity-based clustered

systems, so we will ignore it. That leaves us

with sort-first and sort-last, which are shown

in more detail in Fig. 28.4.

In the case of sort-first, the image space is

partitioned into N regions, where N is the

number of renderers, and graphics primitives

(e.g., polygons) are sorted according to their

destination region on the final image. Each ren-

derer renders all of the primitives that impact its

associated image region. Compositing is a

simple matter of collecting all the image parts.

The sorting of graphics primitives is performed

by the general-purpose processors on the cluster

nodes, and primitives are redirected across

the network-interconnect to their appropriate

rendering nodes. The sorting work is load-

balanced across the nodes somehow so that

each does approximately the same amount of

work. Some observations regarding sort-first:

. The amount of communication that has to

happen across the interconnect grows as the

size of the data grows, creating drawbacks for

scalability. For applications where the data is

static from frame to frame and successive

images are relatively small perturbations of

the images that preceded, such as with real-

time viewing and/or animations, this can be

relieved significantly using frame-to-frame

coherence—the distribution of primitives

from the previous frame can be used as the

starting point for the next frame’s sort.

. Any static partitioning of the image space

can result in severe rendering-load imbal-

ances when primitives have very high con-

centrations in certain regions—in the worst

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 559

Renderer

Renderer

Renderer

Renderer

Polygon
Sorter

Polygon
Sorter

Polygon
Sorter

Polygon
Sorter

Network

Sort-
First Display

Composition
Network

Renderer

Renderer

Renderer

Renderer

Sort-
Last

Display

D
A
T
A

D
A
T
A

Figure 28.4 Sort-first and sort-last, the two basic approaches for implementing parallel rendering on a graphics cluster.

Issues and Architectures in Large-Scale Data Visualization 559

case, a single renderer (i.e., graphics card)

renders all of the primitives.

. Sort-first can be applied straightforwardly to

drive tiled displays (i.e., displays that are

constructed from multiple displays, typically

to achieve high resolution).

In the case of sort-last, each graphics node

renders a portion of the graphics primitives

onto the full image space (each renderer pro-

duces a full-resolution image), after which all of

the separate image contributions are used, to-

gether with depth information from each render-

er’s depth buffer (i.e., Z-buffer), to complete a

depth sort that produces the final image. Com-

positing is a more complex matter of performing

the depth sort. If no special-purpose compositing

infrastructure is present, compositing is per-

formed by reading back the data needed from

each of the graphics cards and completing the

composition on the general-purpose processors,

passing image and depth data around as needed.

Some observations regarding sort-last:

. The amount of communication that has to

happen across the interconnect is a function

of image size, rather than data size, so it

scales well as data sizes increase.

. Since each renderer normally renders a full-

resolution image, in its simplest form, sort-

last is limited to final images whose pixel

resolution is no greater than the display

resolution supported by the graphics-card

hardware. Using sort-last to drive very

high-resolution displays (e.g., tiled displays)

takes extra effort.

. Proper handling of transparency is hard.

Accurate transparency, regardless of sort,

requires that primitives be rendered and ac-

cumulated in very precise order for each

pixel in the final image. With sort-last, data

would need to be partitioned spatially in a

manner that allowed the resulting partial

image contributions, once they themselves

have been rendered properly, to be blended

together in a predetermined order that is

view-dependent.

. How data is distributed onto the parallel

nodes for rendering is almost inconsequen-

tial, other than for purposes of trying to

distribute the amount of rendering work

equally. Even a round-robin approach can

be used.

With either sorting approach, when the general-

purpose processors and interconnect are relied

upon to perform compositing, data must be

read back from the graphics cards. While this

capability generally exists, it may not be opti-

mized by graphics-hardware drivers, as there is

no such need in computer gaming. It is also true

that any resources that are being used to retrieve

data from the graphics cards are temporarily

unavailable to contribute to the rendering of a

subsequent frame. This data read-back problem

is worse for sort-last because it requires read-

back of full-size image data and depth-buffer

data. The read-back problem as a whole is one

reason that special-purpose compositing infra-

structures are still being explored.

We have alluded to the use of cluster graphics

systems for driving tiled displays. A common

approach is to directly connect the display inputs

for each of the display tiles to the display outputs

from an equal number of cluster graphics cards.

The compositing step must then ensure that the

proper image parts end up on the proper graphics

cards. If the number of graphics nodes equals the

number of display tiles, and a naı̈ve sort-first (i.e.,

a static image-space partitioning based on the

physical display-tiles) is used, then the cost of

compositing is reduced to zero. This works very

well for small enough data, but not so well for

large data, for reasons discussed above.

A promising emerging feature of commodity

graphics cards is their programmability, which

is increasing. Research [7] is showing that this

programmability can be used to implement

custom functionality that leverages the excep-

tional performance of graphics hardware. It is

anticipated that further research and greater

programmability over the next few years will

result in innovative use of such hardware to

accelerate various algorithms.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 560

560 Large-Scale Data Visualization

An important issue that has yet to be fully

resolved for cluster technology in general is that

of I/O. It is critical that applications running on

a scalable visualization cluster be able to re-

trieve and write data at very high performance,

using parallel I/O streams. The raw ability to

connect to numbers of parallel I/O devices for

high-performance I/O has been demonstrated—

but delivering such raw capability in general-

purpose ways that can be easily leveraged by

parallel applications is another story. Parallel

file systems may ultimately help provide the

solution, but applications or application ser-

vices will likely still have to organize and

manage data judiciously to achieve desired per-

formance scalability.

28.5 Interoperable Component-Based
Solutions—Is There Any Hope?

Interoperability is a highly desirable attribute

for software and systems. The ability to leverage

a wide set of interoperable tools to get a job

done is very powerful, to say the least. This

ability is exemplified in the World Wide Web

(WWW), where an endless, extensible set of

plug-ins can be used to deliver functionality.

Similarly, when applications can be constructed

from reusable software components, new ap-

plications can be developed quickly and func-

tionality can be easily extended. Of course,

interoperability and component-based solutions

ultimately rely on standards (not necessarily in a

formal sense) and canonical interfaces, even if

they are many, as in the WWW environment.

An end-to-end system such as we have de-

scribed is based on the availability of a broad

set of fully integrated services, many of which

have high performance. Wouldn’t it be nice if

this set of fully integrated services could be

realized using interoperable and component-

based solutions? Clearly, the answer is yes, but

when high performance is at stake, this is much

easier said than done.

Interoperability is often achieved using the

software equivalent of an adapter—if the data

is not already in the desired form, then convert

it. This works fine when data is small—the time

to convert is often negligible. When a dataset is

large, however, such conversions are generally

very costly. Occasional conversions of large

data as part of the overall data-analysis and

visualization process are useful only when the

conversion results in a payoff for subsequent

data analysis that substantially outweighs the

cost of the conversion (e.g., perhaps a conver-

sion to multiresolution form). Any large-data

conversions embedded in recurrent processing,

especially within parts of the system that are

meant to deliver quick responses, are generally

unacceptable. High performance is, by neces-

sity, synonymous with minimal large-data

movement, copying, and conversion.

Since conversions are to be avoided, why not

define a single standard scientific data format

that satisfies all application needs and perform-

ance requirements? All scientific codes could

write the data format directly, and all data and

visualization software could be implemented to

process it directly. Some researchers have tried.

Formats such as HDF [8] and NetCDF [9] have

had success, but they are low level. They stand-

ardize a relatively small set of data constructs

that applications then use to define higher-level

data objects, with application-specific semantics

(e.g., they standardize constructs such as an

array, but they do not specify how to interpret

the data in the array). A standard data format

may be achievable in specific application

domains or in-house environments, but experi-

ence suggests that this, too, is sometimes diffi-

cult.

Another conflict for interoperable high-

performance visualization relates to the reliance

of many visualization algorithms on data repre-

sentations that are optimized for a specific

algorithm. For example, suppose a certain iso-

surface extraction algorithm runs very fast

when data is organized just the right way in

memory. Use of this algorithm mandates the

translation of data to produce the proper organ-

ization. In terms of performance, this may be

acceptable if the new organization gets adequate

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 561

Issues and Architectures in Large-Scale Data Visualization 561

reuse, but the overall performance of the algo-

rithm must consider the data translation costs.

In terms of interoperable component-based

software, such data translations add to the com-

plexity of the software system and can result in

memory overhead (especially when multiple

representations have to be kept in memory at

the same time).

We have already observed the need for par-

allelism in large data analysis and visualization.

This means that we need tools for the develop-

ment of component-based parallel software.

The Common Component Architecture (CCA)

[10] is a cooperative R&D effort targeted at

the development of such tools. CCA is a frame-

work that enables the development of high-

performance components—it does not provide

the application components themselves. A

use of CCA for constructing modular high-

performance applications is depicted in Fig.

28.5 (for these purposes, assume a distributed-

memory parallel machine). A set of interoper-

ating components can be developed, from

which various combinations can be loaded to

form an application. When the application exe-

cutes, within any one processor, the merged

components execute as a single process and in

a single memory space. Component interaction

is achieved through direct calls to other com-

ponents—each component ‘‘provides’’ (in CCA

lingo) its own interface, which another compon-

ent ‘‘uses’’ to make calls. We can implement a

data object component that provides a canon-

ical set of data objects, together with associated

methods, that can be used in common by the set

of interoperating components. Through man-

agement of the data objects, the data object

component can point multiple components to

single instantiations of data objects for data

sharing.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 562

...

Data Object
Component

Data Algebra
Component

Data to
Multiresolution

Component

Surface Extract
from

Multiresolution
Component

Visualization
Component

Figure 28.5 A parallel application constructed from CCA components. The components that make up the application are

replicated across the set of processors. Each component runs as a parallel module, using message passing as needed to

communicate between processors. A data object component can provide a sharable data space to all the components on a

processor—the same data, in the same memory location, can be accessible to all of the components. This prevents unnecessary

copying of the data from component to component.

562 Large-Scale Data Visualization

Interoperability and component-based solu-

tions collide with high performance in the

following areas: the complexities associated

with parallelism and parallel interfaces; un-

acceptability of overheads for embedded, recur-

ring data copy and/or conversion (suggesting a

strong reliance on a standard data representa-

tion); the challenges associated with defining

general-purpose, consensus-based standard

interfaces; and conflicts associated with algo-

rithm-specific data representations. Is there

hope? We think so, but much work is still

needed.

28.6 The ASCI/VIEWS Program

The ASCI/VIEWS program was formed in

1998, although many of the activities that

make up the program had their inception with

the start of the ASCI program itself a few years

earlier. The responsibility of the program is to

provide ‘‘see and understand’’ solutions that

support an advanced modeling and simulation-

based capability for DOE’s defense programs.

The program is a tri-laboratory effort involving

Sandia National Laboratories, Los Alamos

National Laboratory, and Lawrence Livermore

National Laboratory. The program has also

engaged a broad community of collaborators

in both industry and academia.

VIEWS has been working to develop scalable

solutions for data analysis and visualization on

a number of fronts. Some of these efforts are

represented in Fig. 28.6 in the form of an end-

to-end, layered software-stack, together with

certain key partnerships.

It all starts with proper access to the data

itself. The ASCI tri-labs are developing a set of

scientific data-management tools and higher-

level data services, which together with system-

level scalable I/O, data transfer, and storage

activities in other closely-cooperating parts of

the ASCI program are targeted at providing the

needed data access and manipulation capabil-

ities. Sandia has a data services development

project that is prototyping the use of CCA as a

framework for delivering high-performance

data-manipulation software.

At the level of visualization applications,

VIEWS is working primarily with two tools or

tool kits. CEI Inc.’s EnSight Gold [11] tool is a

commercial tool that was adopted as a common

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 563

VIS Applications
(EnSight)

Parallel Rendering API
(Chromium, ICE-T)

Graphics HW Drivers

Displays (Desktop, Walls, etc.)

VTK

VIS Applications
(ParaView, VisIt)

OpenGL

Terascale Data

Data Services

ASCI Tri-Labs:
• Sandia National Laboratories
• Lawrence Livermore National
 Laboratory

• Los Alamos National Laboratory

Partners (Past and Present):
• CEI (EnSightGold, parallel EnSight)
• Kitware (ParaView, parallel VTK)
• Stanford University (Chromium)
• NVIDIA (Linux graphics drivers)
• RedHat (Chromium and DMX)
• Hewlett Packard (Compositing
 Infrastructure & Scalable Graphics)
• Princeton University (Scalable
 Displays)
• IBM (“Bertha” displays)

Figure 28.6 ASCI/VIEWS has worked with partners to develop scalable end-to-end solutions for large-data visualization.

Issues and Architectures in Large-Scale Data Visualization 563

tool for the tri-labs in the early years of ASCI.

Since then, VIEWS has guided and supported

development of many features in EnSight Gold,

including parallelization in the form of the

‘‘Server-of-Servers’’ capability. Efforts are still

underway to develop a more complete paralleli-

zation of EnSight that would take fuller advan-

tage of clustered visualization systems.

An important use of EnSight’s distributed

Server-of-Servers capability to support produc-

tion data analysis for ASCI applications is

shown in Fig. 28.7. As proposed during archi-

tectural discussions in Section 28.3, this capabil-

ity allows us to visualize data across great

distances without moving the dataset from

where it was originally written (in this case, on

the large parallel file system connected to the

ASCI White platform at Lawrence Livermore

National Laboratory). The Server-of-Servers

part of EnSight runs on a part of the platform

that is dedicated for VIEWS services and has

direct access to the platform’s parallel file

system. It loads data in parallel, extracts surface

geometries as directed by the end user from the

client side, and sends those geometries together

with associated data on the surface to the client.

Rendering occurs on the client side, so a static

surface geometry can be viewed at will until

different data is desired. Since the surface data

is normally relatively small in comparison to the

full dataset or the full 3D volume of data from

which it is extracted, it can be transmitted

quickly enough to support interactive data-visu-

alization sessions. It should be noted that ASCI

has deployed a dedicated wide-area network

(WAN) between the tri-labs that supports ag-

gregate data transmissions at OC-12 rates, or

approximately 2.5 Gbits/s.

The Visualization Toolkit (VTK) [12] is

an open-source toolkit, well known in the

visualization community, that receives ongoing

maintenance, support, and development from

Kitware, Inc. VIEWS investments have sup-

ported the development of a parallel and dis-

tributed version of VTK, as well as the

ParaView [14] application built on it. Lawrence

Livermore National Laboratory has imple-

mented its own custom end-user application on

top of VTK, which they call VisIt. VTK is at-

tractive to VIEWS as an open-source frame-

work that can be extended directly by the tri-

labs, as well as a framework for at least some of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 564

…

GPFS

ASCI White
Machine VIEWS

Partition

Server-of-
Servers

…

Server

Livermore, CA New Mexico

Visualization
Server

EnSight
Client

Powerwall

Immersive
Environment

...

Desktops

Figure 28.7 Long-haul distributed visualization using EnSight’s Server-of-Servers.

564 Large-Scale Data Visualization

the R&D performed at the laboratories in visu-

alization algorithms and techniques, etc.

To provide parallel rendering for graphics

clusters, the tri-labs have partnered with Stan-

ford University and RedHat to develop and

deliver the open-source Chromium [15,16] soft-

ware, which is gaining popularity in the parallel-

rendering community. Chromium provides an

elegant framework for scalable rendering that

enables customizable implementations. Chro-

mium is based on a streaming-data approach

that is inherently better suited to sort-first par-

allel rendering than to other types. Chromium

has been integrated with EnSight and VTK.

Researchers at Sandia National Laboratories

have developed an alternative parallel-rendering

library known as ICE-T, which uses sort-last

principles [17]. ICE-T has been integrated with

VTK. The two together have been used with a

128-node graphics cluster at Sandia to render a

470-million polygon dataset at rates exceeding

1 billion polygons/s. Both Chromium and ICE-

T are based on the OpenGL standard. Indeed,

Chromium can be used with legacy OpenGL

applications to provide parallel rendering with-

out any changes to the application.

When VIEWS first started working with com-

modity graphics cards, it was recognized that

there were shortcomings for the graphics drivers

in theLinuxdomain. Thiswas addressed through

funding of a couple of efforts to develop and/or

optimize Linux OpenGL graphics drivers, in-

cluding a partnership with NVIDIA. This has

directly resulted in the creation of certain quality

Linux drivers, as well as some heightened aware-

ness of the desire for drivers in the Linux domain.

At the same time, the sustainable availability of

quality Linux-based graphics drivers is still a

question mark, as the gaming industry has no

market demand in the Linux arena. While

VIEWS is strategically pursuing Linux-based

clusters for scalable data and visualization ser-

vices, the labs are also still exploring the use and

integration of Windows-based systems.

VIEWS has also partnered to develop ad-

vanced display technologies. A partnership

with Princeton University has helped explore

and promote the development of cluster-driven

powerwall technologies, or scalable displays

[18]. A diversity of display walls, including a

60-million-pixel wall at Sandia, have been

deployed at the ASCI tri-lab sites. Such a wall

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 565

Figure 28.8 Sandia’s 128-node graphics cluster (left) and 60-million-pixel display wall (right). The wall is driven by graphics-

cluster technology. The image on the wall is a rendering of the 470-million-polygon isosurface extracted from the PPM dataset

described in Section 28.2. (See also color insert.)

Issues and Architectures in Large-Scale Data Visualization 565

is a resource for visualization at superior reso-

lutions that are better matched to the fidelity in

large-scale simulations, a resource for collab-

orative data visualization by a group of people,

and a setting for high-quality presentation. A

separate partnership with IBM was instrumen-

tal in the production of super-resolution office

display technology, namely for the development

of IBM’s ‘‘Bertha’’ display, now more properly

known by model numbers such as T221. The

Bertha is a flat-panel display that delivers more

than 9 million pixels on a 21-inch display.

28.7 Conclusion

In the simple analysis, the power of computers

and their environments continues to grow,

resulting in apropensity by their users to generate

more and more data and larger and larger data-

sets. Can there be any doubt that the terabyte

datasets of today will be dwarfed in the years to

come?At the same time, computing is becoming a

fundamental tool of modern science. Still, the

ability to do effective science is ultimately limited

by the ability to discover and understand results.

Together, these observations suggest a critical

need for tools and environments that enable

effective and efficient data analysis and visual-

ization of large-scale data, in ways that need to

become increasingly intuitive, even as the data

itself continues to grow and become more com-

plex. Features of such tools and environments

include the following:

. The ability to process large data without

moving it all around, and the ability to ma-

nipulate data at an object level rather than at

a complete dataset level.

. A rich functional set of data and visualiza-

tion services that enable data exploration

and discovery.

. The ability to get the right data to the right

place for further processing when needed.

. Wide availability of cost-effective, scalable,

high-performance infrastructures that can be

used to provide intensive data and visualiza-

tion services, proportionate to available

computing resources (i.e., for simulation).

. Parallelism and the ability to support end-to-

end parallelism throughout high-perform-

ance parts of the environment.

. The ability to apply a broad set of diverse

tools, leveraging interoperability.

. The ability to leverage the interactivity and

power of increasing desktop computing and

visualization resources, which are dedicated

to the scientist and analyst.

. The ability to drive the whole environment

from the computational-science laboratory

of choice, namely the office.

In the current state of technology, many piece-

meal solutions are being developed and pro-

vided that target some niche aspect of large-

scale data visualization. Efforts such as

VIEWS are also working to construct end-to-

end environments that integrate key solution

approaches. As environments become more

functional, one future challenge will be to

enable the use of such environments in a rela-

tively seamless, intuitive way.

Acknowledgments

Thanks to Randy Frank at Lawrence Liver-

more National Laboratory for access to PPM

simulation data and statistics. Thanks to Bob

Kares at Los Alamos National Laboratory

for ASCI simulation statistics. Thanks to

Brian Wylie and Rena Haynes for review.

Thanks to many VIEWS coworkers and collab-

orators.

Further Reading

. Special issue on large-scale data visualization,

IEEE Computer Graphics and Applications, 21(4),

IEEE Computer Society, 2001.

. 2001 Symposium on parallel and large-data visu-

alization and graphics, Proceedings, IEEE, Cata-

log Number 01EX520, ACM Order 429017, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 566

566 Large-Scale Data Visualization

. C. Silva, D. Bartz, J. Klosowski, W. Schroeder,

and P. Lindstrom. Tutorial M-9: High Perform-

ance Visualization of Large and Complex Scientific

Datasets. Course Notes, SC 2002, 2002.

. S. Whitman. Multiprocessor Methods for Com-

puter Graphics Rendering. Jones and Bartlett Pub-

lishers, 1992.

References

1. P. H. Smith and J. van Rosendale. Data and visu-
alization corridors. Report on the 1998 DVC
workshop series, Technical Report CACR-164,
California Institute of Technology, 1998.

2. National Nuclear Security Administration’s Ad-
vanced Simulation and Computing Program,
http://www.nnsa.doe.gov/asc/home.htm

3. B. Allcock, S. Tuecke, J. Bester, J. Bresnahan,
A. L. Chervenak, I. Foster, C. Kesselman,
S. Meder, V. Nefedova, and D. Quesnel. Data
management and transfer in high-performance
computational grid environments. Parallel Com-
puting Journal, 28(5):749–771, 2000.

4. B. Wylie, C. Pavlakos, V. Lewis and W. More-
land. Scalable rendering on PC clusters. IEEE
Computer Graphics and Applications, pages
62–70, 2001.

5. A. Heirich and L. Moll. Scalable distributed
visualization using off-the-shelf components.
1999 IEEE Parallel Visualization and Graphics
Symposium Proceedings, pages 55–59, 1999.

6. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs.
A sorting classification of parallel rendering.
IEEE Computer Graphics and Applications,
pages 23–32, 1994.

7. B. Wylie, K. Moreland, L. A. Fisk, and
P. Crossno. Tetrahedral projection using vertex
shaders. Volume Visualization and Graphics Sym-
posium 2002, Proceedings, IEEE, 2002.

8. National Center for Supercomputing Applica-
tions’ Hierarchical Data Format Group, http://
hdf.ncsa.uiuc.edu/

9. Network Common Data Form, http://www.
unidata.ucar.edu/packages/netcdf/

10. R. Armstrong, D. Gannon, A. Geist, K. Kea-
hey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski. Toward a common component
architecture for high-performance scientific
computing. Proc. Eighth IEEE International
Symposium on High Performance Distributed
Computing, IEEE, 1999.

11. Ensight Gold, http://www.ceintl.com/products/
ensightgold.html.

12. Visualization Toolkit, http://www.vtk.org/
13. J. Ahrens, K. Brislawn, K. Martin, B. Geveci,

C. C. Law, and M. Papka. Large-scale data
visualization using parallel data streaming.
IEEE Computer Graphics and Applications,
21(4):34–41, 2001.

14. ParaView, http://www.paraview.org/HTML/
Index.html

15. The Chromium Project, http://sourceforge.net/
projects/chromium

16. G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. SIGGRAPH
Proceedings, ACM, 2002.

17. K. Moreland, B. Wylie, and C. Pavlakos. Sort-
last parallel rendering for viewing extremely
large data sets on tile displays. Proc. 2001 Sym-
posium on Parallel and Large-Data Visualization
and Graphics, IEEE, 2001.

18. K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook,
S. Damianakis, G. Essl, A. Finkelstein, T.
Funkhouser, T. Housel, A. Klein, Z. Liu, E.
Praun, R. Samanta, B. Shedd, J. P. Singh, G.
Tzanetakis, and J. Zheng. Building and using
a scalable display wall system. IEEE Com-
puter Graphics and Applications, 20(4):29–37,
2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 567

Issues and Architectures in Large-Scale Data Visualization 567

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:15pm page 568

This page intentionally left blank

29 Consuming Network Bandwidth
with Visapult

WES BETHEL and JOHN SHALF

Lawrence Berkeley National Laboratory

29.1 Introduction

During the period of the Next Generation Inter-

net Combustion Corridor project (1999–2000),

there was a conundrum: the network research

community declared there were no applications

that could take advantage of high-speed net-

works, yet applications developers were con-

founded by poorly performing networks that

impeded high-performance use. Our goal during

that period was to create an extremely high-

performance visualization application that not

only was capable of pushing the performance

envelope on wide-area networks (WANs) but

was generally useful from a scientific research

perspective. We wanted an application that

would perform remote interactive visualization

of large scientific datasets but that would not

suffer from the delays inherent in network-

based applications. We wanted our application

to use multiple, distributed resources so that

data, user, and required computing machinery

need not be collocated. Such objectives are con-

sistent with the needs of contemporary scientists:

large datasets are often centrally located and

have many remote users needing to view and

analyze the data.

Our answer was to create the Visapult appli-

cation. Visapult is a visualization application

composed of visualization of multiple software

components that execute in a pipelined-parallel

fashion over WANs. By design, Visapult was

tailored for use in a remote and distributed

visualization context. The first use of Visapult

was visualization of turbulent-flow simulation

data computed on supercomputers at the Na-

tional Energy Research Scientific Computing

(NERSC) Center by a researcher located at

Sandia National Laboratories in Livermore,

CA during the early part of 2000. Over time,

we broadened our efforts to include a more

careful study and more deliberate use of net-

working infrastructure, as well as refinement of

the Visapult design to maximize performance

over the network. Visapult is arguably the

world’s fastest performing distributed applica-

tion, consuming approximately 16.8 gigabits per

second (Gbits/s) in sustained network band-

width during the SC 2002 Bandwidth Challenge

over transcontinental network links. Visapult’s

performance is a direct result of architecture,

careful use of custom network protocols, and

application performance tuning.

In this chapter, we reveal the secrets used to

create the world’s highest-performing network

application. In the first section, we present an

overview of Visapult’s fundamental architec-

ture. Next, we present three short case studies

that reflect our experiences using Visapult to win

the SC Bandwidth Challenge in 2000, 2001, and

2002. We conclude with a discussion about

future research and development directions in

the field of remote and distributed visualization.

29.2 Visapult Architecture

Visapult is a highly specialized and extremely

high-performance implementation of and exten-

sion to the Image-Based Rendering Assisted

Volume Rendering (IBRAVR) proposed by

Müller et al. [12]. Visapult consists of two soft-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 569

569

ware components, a viewer and a back-end. The

viewer component implements the IBRAVR

framework using OpenRM Scene Graph [3], an

Open Source scene graph API. The viewer re-

ceives the source images it needs for the IBRAVR

algorithm from the back-end component. Each

of the viewer and back-end components is imple-

mented as a parallel application, and they com-

municate using a custom TCP-based protocol to

exchange information (control data) and images

(payload data). Fig. 29.1 illustrates the architec-

ture, which is discussed in substantially more

detail in an earlier publication [2].

Looking more deeply into each of these com-

ponents, we see that each of the back-end and

viewer components is in turn a parallel applica-

tion. The back-end is a distributed-memory par-

allel software component written using MPI.

Each back-end processing element (PE) is re-

sponsible for reading and rendering a subset of

a 3D volume of data and sending the resulting

image to a peer listener in the viewer. The viewer

is also a parallel application, but it uses threads

and a shared memory model. The viewer creates

one thread per back-end PE to receive image

payload data. Each of these listener threads is

responsible for updating a portion of a thread-

safe scene graph. A detached rendering thread

performs interactions with the user and invokes

the scene graph system’s frame-based rendering

function to generate new images.

Our earliest Visapult deployment tests in late

1999 used data sources that were resident on the

same platform as the back-end PEs, and our

attention was focused upon the wide-area net-

working behavior between the back-end and the

viewer. We wanted to use computational re-

sources located ‘‘close to’’ the data and provide

interactive visualization capabilities to a re-

motely located user. With such requirements,

our primary concern was the network link be-

tween the back-end and the viewer.

However, in preparing to use Visapult for the

SC2000 Bandwidth Challenge, we wanted to

stretch the limits of our design and use the

emerging high-speed network backbones in

order to test the hypothesis that pipelined par-

allelism over a WAN was useful for remote and

distributed visualization. During early field

tests, we had established that Visapult’s pipe-

lined architecture did indeed support interactiv-

ity on the desktop regardless of the performance

of the underlying network. Early in Visapult’s

evolution, the principal developer routinely

used a DSL connection between the back-end

and the viewer. Even with a DSL line, the

viewer was completely interactive on the desk-

top; the listener threads would accumulate the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 570

Source
Volume

Back-end Component

Viewer Component

Figure 29.1 Visapult consists of a viewer component and a back-end component. (See also color insert.)

570 Large-Scale Data Visualization

next frame’s worth of partial prerendering

before updating the scene graph. Meanwhile,

the freely running rendering thread would con-

tinue to operate at desktop rates. This behavior

is possible because of the substantial amount of

data reduction that occurs as scientific data tra-

verses the Visapult pipeline: incoming data is of

size O(n3); the back-end renders data down to

images, resulting in data of size O(n2).

We were motivated to find a way to success-

fully capitalize upon an emerging trend within

the computational science community: a few

high-powered resources are interconnected via

high-speed fabric, and they provide service to

users regardless of location. The idea is that

data produced by simulations is stored on data

caches located near the resource used to perform

the simulation in network space. Similarly, sub-

sequent visualizations are performed by re-

motely located users, leveraging resources that

are interconnected by high-performance net-

works. Ideally, the user need not be aware of

the vagaries of accessing remote resources; all

such connections are automatically ‘‘brokered’’

by an intermediate agent. Visapult’s design—

using IBRAVR to reduce the data load between

the back-end and the viewer by an order of mag-

nitude—fits well within this model. With these

objectives in mind, we begin to explore the use of

high-speed, network-attached data caches.

29.3 Reading Data Over the Network
Using TCP

To begin the process of using such data caches,

we added support in Visapult to use the Distrib-

uted Parallel Storage System (DPSS) [16],

created by the Data Intensive and Distributed

Computing group at Berkeley Lab. The basic

idea behind DPSS is ‘‘RAID-0 over the net-

work.’’ To the DPSS client, for example, each

back-end PE, the DPSS looks like a file that is

accessible through open, seek, and read calls.

DPSS is a block-oriented system composed of

commercial, off-the-shelf components and the

DPSS library (Fig. 29.3). Using the DPSS li-

brary, a client application issues a ‘‘file open’’

call, which in turn results in many different files’

being opened on the DPSS servers, all mediated

by the DPSS master. Next, the client’s ‘‘read’’

calls are routed to the DPSS master, but they

are answered by the DPSS servers. The client

application does not know that it is, in fact,

talking to multiple machines on the network,

since the DPSS libraries encapsulate those

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 571

PE 0

PE 1

PE n

Thread 0

Thread 1

Thread n

Data
Source(s)

Render

Visapult ViewerVisapult Back End

Object
Database/
Scene Graph

Figure 29.2 Visapult’s end-to-end data parallelism: major blocks represent components that can be collocated or separated via

long-haul network connections.

Consuming Network Bandwidth with Visapult 571

details. We’ll discuss the performance character-

istics of DPSS in the section on the SC00 Band-

width Challenge.

During field testing, we used one DPSS system

located in Berkeley and two separate computer

systems located at Sandia National Labora-

tories. One Sandia system was an SGI Origin

system, and the other was the ‘‘CPLANT’’ facil-

ity, which is a large, Alpha-based Linux cluster.

Between the two siteswas an experimentalOC-48

NTON network connection. (NTON—the Na-

tional Transparent Optical Network test bed—

was an experimental WAN that consisted of

dedicated OC-48 (and higher) segments connect-

ing sites on the west coast of the United States.

TheNTONwebsite,http://www.ntonc.org, is now

defunct.) Despite the substantial amount of com-

puting and NIC horsepower, we were not satis-

fiedwith performance results, which indicatedwe

were consuming only a small fraction of a dedi-

cated OC-48 link between two sites (about 10–

15%).

Based upon initial performance data, we

began to perform careful execution profiling of

the Visapult application using a tool called

Netlogger [15]. In order to use Netlogger’s pro-

filing capabilities, you must instrument your

application by inserting subroutine calls to the

Netlogger library. When the instrumented ap-

plication is executed, the Netlogger code in-

voked from the application sends data to a

Netlogger host, which accumulates data (similar

in fashion to the familiar syslog facility in Unix

systems). After a run has been completed,

Netlogger’s analysis and display tool presents

the profile data obtained during the run for

visual inspection. Netlogger’s strength lies in

its ability to perform profiling and execution

analysis of distributed software components.

In Fig. 29.4, we see the results obtained from

profiling the Visapult back-end and viewer for a

sample run. The graph on the top shows the exe-

cution profile of the Visapult viewer. The graph

on the bottom shows the execution profile of the

Visapult back-end. The horizontal axis of the

graph is elapsed time, and the vertical axis repre-

sents instrumentation points in the code. For the

purposes of this discussion, we are concerned

only with the performance of the Visapult back-

end, since the ‘‘heavy payload’’ network link

was between DPSS and Visapult’s back-end.

The profile graph of the back-end is colored so

that even-numbered frames are shown in red and

odd-numbered frames in blue. The observation

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 572

Data Blocks

Data Blocks

DPSS Server

Parallel
Disks

Parallel
Disks

Parallel
Disks

DPSS Server

DPSS Server

Logical-to-physical
block lookup
Access control
Load balancing

DPSS Server

Data BlocksData Blocks

Physical Block

Requests

Logical Block
Requests

Client ApplicationClient Application

Figure 29.3 DPSS Architecture.

572 Large-Scale Data Visualization

we canmake from the performance profile shown

in Fig. 29.4 is that the network performance will

never reach its theoretical maximum value be-

cause I/O is blocked while rendering occurs.

Data is loaded into the back-end between the

vertical axis labels ‘‘BE_LOAD_START’’ and

‘‘BE_LOAD_END.’’ Then, back-end rendering

occurs between ‘‘BE_RENDER_START’’ and

‘‘BE_RENDER_END.’’ The result is ‘‘gaps’’ of

time when there is no network I/O.

As a result of the performance analysis shown

in Fig. 29.4, we modified the Visapult back-end

so that rendering and network I/O were placed

into separate threads of execution. (In MPI-

parallel applications, it is possible for the MPI

application to launch detached threads, but

those threads typically cannot directly partici-

pate in MPI communication—only the parent/

master threads can. The converse is not true.)

By doing so, we were able to maintain a con-

stant load on the network, thereby eliminating

one source of network inefficiency in Visapult.

Fig. 29.5 shows the profile analysis resulting

from having I/O and rendering occur simultan-

eously in the back-end. So long as software

rendering speed exceeds the time required to

load data over the network, the network link

will be kept as full as possible. Furthermore, as

long as the time required for rendering is less

than the time required to send data over the

network, the network will remain completely

filled—or so we thought. The reality turns out

to be quite different.

29.4 The Bandwidth Challenges and
Results

In 2000, anewhigh-performance computing con-

test was announced: the High Performance Net-

work Bandwidth Challenge. The primary

objective of the competition was to use as much

network bandwidth as possible within a window

of time. Secondary objectives included most cre-

ative use of network bandwidth and so forth. The

‘‘real prize,’’ however, was unabashed and glut-

tonous consumption of resources. We felt, based

upon the results of our field tests and perform-

ance analysis, that we had a reasonably good

chance of making a competitive showing at the

Bandwidth Challenge (BWC) using Visapult.

The sections that follow describe our experiences

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 573

BE_LOAD_START

BE_LOAD_END

BE_RENDER_START

BE_RENDER_END

BE_HEAVY_SEND

BE_HEAVY_END

V_FRAME_START

V_LIGHTPAYLOAD_START

V_LIGHTPAYLOAD_END

V_HEAVYPAYLOAD_START

V_HEAVYPAYLOAD_END

V_FRAME_END

0 20 40 60 80 100

Serial L+R (diesel)

backend-master-even
backend-worker-even

backend-master-odd
backend-worker-odd

viewer-master
viewer-worker

Figure 29.4 Visapult duty cycle with serial I/O and rendering. (See also color insert.)

Consuming Network Bandwidth with Visapult 573

in the SC BWC during the years 2000 to 2002. As

we shall show, we learned many lessons during

these competitions.

29.4.1 SC 2000 Bandwidth
Challenge

For the SC 2000 BWC, we teamed with Helen

Chen and Jim Brandt from the Networking

Security Research Group at Sandia National

Laboratories and with Brian Tierney, Jason

Lee, and Dan Gunter of the Data Intensive

and Distributed Computing group at Lawrence

Berkeley National Laboratory (LBL) in Berke-

ley, CA. The resources we used included an

eight-node DPSS system located at LBL, an

OC-48 connection to SC00 in Dallas, TX, and

a pair of hosts on the show floor. One host was

an eight-node SGI Onyx2, located in the ASCI

booth. The other was a small Linux cluster,

located in the SC00 booth of Argonne National

Laboratory (ANL). We ran two separate Visa-

pult back-ends, one on each of these two plat-

forms, and ran Visapult viewers in the LBL

booth (Fig. 29.6).

Fig. 29.7 shows the performance of our appli-

cation as measured in the SCinet NOC during

our run. Despite having adequate computing

power and a dedicated OC-48 link, we were

able to consume only a fraction of the available

network bandwidth. The ‘‘glitch’’ in the middle

of our run occurred because of an application

crash, which required us to restart the DPSS.

During our 60-minute run, we achieved a peak

bandwidth rate of about 1.48 Gbits/s, with a

sustained average of about 582 Mbits/s.

The fundamental reason Visapult was not

able to sustain greater than 25% of the theoret-

ical network capacity on the OC-48 link be-

tween LBL and Dallas, TX was TCP, not

application design. Visapult and DPSS were

able to load the network with data, but the

flow-control algorithm used by TCP resulted

in poor throughput, even on an unloaded net-

work. It is well known that single-stream TCP

performance is poor on high-bandwidth net-

works. The response is to use a multistreamed

approach, which is exactly what we did for our

SC 2000 BWC entry. The TCP congestion-

avoidance algorithm regulates the rate at

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 574

BE_LOAD_START

BE_LOAD_END

BE_RENDER_START

BE_RENDER_END

BE_HEAVY_SEND

BE_HEAVY_END

V_FRAME_START

V_LIGHTPAYLOAD_START

V_LIGHTPAYLOAD_END

V_HEAVYPAYLOAD_START

V_HEAVYPAYLOAD_END

V_FRAME_END

0 20 40 60 80 100

Overlapped L+R (diesel)

backend-worker-even
backend-master-even

backend-worker-odd
backend-master-odd

viewer-master
viewer-worker

Figure 29.5 Visapult duty cycle with overlapped I/O and rendering. (See also color insert.)

574 Large-Scale Data Visualization

which packets are dispatched onto the network

in response to perceived congestion events. It

performs such control on a per-stream basis,

which means that any flow-regulation activities

performed on one stream are independent of all

other streams. In other words, a congestion

event occurring on one stream, along with the

resultant ‘‘TCP backoff’’ (reduction in band-

width usage), will not affect peer TCP streams.

This method creates a network stream that be-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 575

NTON

8 node Storage
Cluster (DPSS)

Network Throughput: 5-second peak 1.48 Gbits/sec (72 streams: 20.5
Mbits/stream); 60-minute sustained average 582 Mbits/sec

C
om

pu
te

 C
lu

st
er

 (
8

no
de

s)

Berkeley Lab:
.75 TB, 4 server DPSS

ANL Booth
Linux Cluster

OC-48OC-48

2 x 1000 BT

HSCC

SGI Origin (8 CPU)

1.5 Gb/s
4 x 1000BT

Qwest
ASCI Booth:

SGI Origin (8 CPU)

4 x 1000BT

Visapult Visualization
Application

File Transfer Application

Figure 29.6 SC 2000 Bandwidth Challenge resource map.

2500

2000

1500

1000

M
b/

s

500

0
22:58 23:03 23:06 23:11 23:14 23:18 23:21 23:25 23:29

Time
23:32 23:36 23:40 23:43 23:47 23:50 23:54 23:

Figure 29.7 SC 2000 Bandwidth Challenge results.

Consuming Network Bandwidth with Visapult 575

haves as a ‘‘bully,’’ because it doesn’t respond as

rapidly to congestion as its peers. As you can see

from the performance graphs in Fig. 29.7, the

result can best be characterized as ‘‘unstable.’’

Such instability has a huge impact on the qual-

ity of interactive visualization applications as

they stutter and halt, while the TCP stream’s

data rate ‘‘thrashes’’ in response to perceived

congestion.

29.4.2 SC 2001 Bandwidth Challenge

Based upon the lesson we learned during SC

2000—namely, that TCP is inadequate as a

high-performance network protocol—we tried

a different approach for 2002. We modified Visa-

pult to use a custom, application-level protocol

based on the User Datagram Protocol (UDP)

method of packet movement. The fundamental

difference between TCP and UDP is that TCP

guarantees delivery of packets in the order sent,

whereas UDP makes no such guarantees. In

UDP, packets could arrive in any order, or they

might not arrive at all. In terms of performance,

TCP uses mechanisms that control the rate at

which packets are sent over the network. In con-

trast, UDP has no such flow regulation. The

flow-congestion avoidance algorithm used by

TCP is widely recognized as the reason TCP-

based flows are unable to realize more than

25–30% of the theoretical line rate. We felt

compelled to use UDP in order to achieve the

maximum possible level of network perform-

ance.

UDP-based flows are ‘‘unregulated’’ in the

sense that there is no flow control provided by

the IP stack. Whereas TCP automatically

adjusts its flow rate in response to environmen-

tal conditions, UDP flow-rate management

must be performed by the application. One can

mimic TCP’s behavior using Madhavi and

Floyd’s TCP-friendly method [10], but in

doing so, one will suffer the same corresponding

performance loss that we’ve come to expect of

TCP. Rather than attempting to infer conges-

tion from packet-loss rates at run time, we de-

cided to carefully select a flow rate based on the

measured end-to-end capacity of these dedi-

cated links, allowing us to realize nearly 100%

of the theoretical line rate. While abandoning

TCP is considered ‘‘cheating’’ in some circles,

we feel that we were merely addressing the prob-

lem at hand in the most direct manner possible.

Under these conditions, we felt that we would

be able to realize much higher rates of band-

width utilization by employing UDP than

would be possible with TCP, and our SC 2001

BWC entry was the field test for our hypothesis.

Unfortunately, replacing TCP with UDP was

not as straightforward as replacing one set of

subroutine calls with another. In our SC 2000

TCP-based implementation, Visapult would re-

quest a large block of data from the DPSS with

a single read call. The large block of data repre-

sented one time-step’s worth of data. Then,

after the data for a given time-step had arrived,

the back-end would begin rendering (and at the

same time, the next time-step’s worth of data

was requested). One of the nice properties of

TCP is that the application can ask that N

bytes of data be moved from one machine to

another. TCP breaks the N bytes of data into

packet-sized chunks on the outbound side, and

reassembles the N bytes of data from individual

packets on the receiver side. In contrast, UDP-

based applications are completely packet-

oriented: there is no mechanism built into the

IP stack that breaks large data blocks into

packets on the sender side, nor is there one

that reassembles packets into blocks on the re-

ceiver side. (In IPv4, large packets are automat-

ically fragmented and reassembled. This activity

is not supported in IPv6.) The maximum amount

of data that can be sent by a UDP-based appli-

cation with one transfer is one packet’s worth of

data. (The size of a network packet is defined

by the Maximum Transmission Unit [MTU],

which is the minimum of the configuration par-

ameter of a Network Interface adapter and the

minimum packet size supported by all interven-

ing switches along a given path on the network.

Typically, the Ethernet MTU is 1500 bytes. So-

called ‘‘jumbo frames’’ use an MTU of 9000

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 576

576 Large-Scale Data Visualization

bytes.) It is up to the application to partition

large data blocks into packets for transmission

by UDP, and then to reassemble the packet

payload data into a large data block on the

receiving end.

Another difference from our previous entry

was the use of a live-running simulation as a

data source rather than use of precomputed

data stored on the DPSS disk cache. The simula-

tionwasbuilt using theAlbertEinstein Institute’s

Cactus framework (http://www.cactuscode.org),

which models the collision of binary black holes

by directly evolving Einstein’s equations for gen-

eral relativity.This particular simulationhas sub-

stantial computational demands, including the

need for exorbitant amounts of physical RAM

and processing power in order to solve a very

large set of equations. More information about

general relativity is provided at http://jean-

luc.aei.mpg.de.

In order to enable use of UDP in Visapult, we

needed to do away with ‘‘frame boundaries,’’

while at the same time using the existing back-

end architecture, which provided for simultan-

eous network I/O and rendering. In addition, we

needed to provide enough information in each

UDP packet so that each packet could be

treated independently. To that end, we encoded

contextual information into the header of each

packet. The information encoded into the

header was sufficient to identify the location in

the computational grid where the data payload

should be placed. In this way, placement of the

payload data, or the actual simulation data we

wanted to visualize, was independent of the

order in which packets arrived. The encoding

scheme we used is described more fully else-

where [13], and it resolved the problem of

packets arriving out of order.

To a large extent, we can avoid creating con-

ditions in which packets are dropped by regu-

lating the rate at which UDP packets are placed

onto the network. Generally speaking, packets

are lost because of unrecoverable bit errors that

are detected by the Cyclic Redundancy Check

(CRC) or because of buffer overflows either at

the endpoints or at congested switch interfaces

in the network core. Our testing showed a very

low rate of packet loss when we manually regu-

lated the flow to match the known end-to-end

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 577

Figure 29.8 Resource map for the SC 2001 Bandwidth Challenge.

Consuming Network Bandwidth with Visapult 577

network capacity. This approach is exactly what

we used in our custom UDP protocol between

Cactus and Visapult. While we can minimize

packet loss through careful flow regulation,

packets are still sometimes dropped. In our ex-

periments and testing, we find the impact of a

few lost packets on the resulting visualization to

be negligible. In fact, we observe that many

well-accepted forms of media are predicated

upon lossy compression methods. JPEG and

MPEG compression, for example, typically pro-

duce 10–80% of information loss during the

compression process, but the resulting images

are visually quite acceptable. On the other

hand, packet loss is entirely unacceptable in

certain critical systems, such as medical applica-

tions. For the purposes of visualization for

remote monitoring, however, consumers of this

technology are well accustomed to lossy repre-

sentations of information. An example of a

Cactus/Visapult visualization complete with

missing data is shown in the ‘‘Lessons Learned’’

section.

The demonstration involved a simple task-

spawning scenario with the Cactus code. In

this case, a large simulation typically runs for a

few days on the 5-teraflop NERSC SP-2 simu-

lating the merger of two black holes. During the

course of the simulation, events such as the

joining of the event horizons of the two black

holes that require additional analysis occur.

Rather than interrupt the current simulation,

Cactus can spawn off the ‘‘horizon finder’’ to

perform the specialized analysis on the SGI

Origin supercomputers at NCSA, as a slave to

the master simulation running at NERSC. Visa-

pult’s distributed-component architecture made

it very simple to use our ‘‘visualization cluster’’

to process large quantities of live data arriving

from multiple, widely distributed simulation re-

sources in real time.

The SCinet network engineers who were

monitoring the performance of our challenge

entry were shocked to see that the ramp-up of

the data stream was instantaneous, whereas a

typical TCP-slow start would take several min-

utes to reach full line rate, even assuming abso-

lutely no packet loss. Within 7 minutes, we were

able to ramp up beyond 3Gbits—double the

performance of the nearest competing applica-

tion (which was also UDP-based). For the first

time in many years, we were able to fully utilize

a dedicated high-bandwidth pipe—a feat that

had been increasingly difficult to achieve, given

TCP’s inadequacies.

29.4.3 SC 2002 Bandwidth Challenge

Because of the success of our SC 2001 entry,

along with results we obtained in the laboratory

during the summer of 2002, our SC 2002 entry

was intended to literally ‘‘flatten’’ any network

we could get our hands on. (In July of 2002,

we were able to completely fill a 10 G network

link using the Cactus/Visapult combination. See

http://www.supercomputingonline.com/article.php?

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 578

2.5G

2.0G

1.5G

1.0G

0.5G

B
its

/s

0.0G
18:00 00:00 06:00 12:00 18:00 00:00 06:00

Average bits in Average bits out

500 M

600 M

400 M

300 M

200 M

100 M

B
its

/s

0
18:00 00:00 06:00 12:00 18:00 00:00 06:00

Average bits in Average bits out

Figure 29.9 These are images of the MRTG performance graphs from the incoming data streams arriving from Esnet OC-48

and NCSA OC-12, respectively, for the SC 2001 Bandwidth Challenge. The challenge took place for approximately 7 minutes at

8:30 a.m. The performance MRTG graphs actually underreport the bandwidth utilization because they use a 5-minute average.

The instantaneous bandwidth (which also included an additional ESNet OC-12) reached 3.3 Gbits/s. The 2þ Gbit peaks on the

ESNet graph were practice runs using Visapult. (See also color insert.)

578 Large-Scale Data Visualization

sid¼2252 for more information.) As it turned

out, garnering resources for the SC 2002 entry

proved to be the real challenge. The result is

reflected in the diversity of team members and

resources we assembled for the SC 2002 run.

The SC 2002 entry was a transglobal collabor-

ation involving supercomputers, networking re-

sources, and people from around the world

drawn from a different project known as the

Global Grid Testbed Collaboration (GGTC).

(The GGTC was organized during the Global

Grid Forum Applications Working Group

Meeting in Chicago in the fall of 2002. The

GGTC includes people and resources from five

continents and over 14 countries that aggre-

gated about 70 machines totaling approximately

7500 processors. Architectures ranged from a 5-

teraflop SP2 system to a Sony Playstation 2

running Linux. See http://scb.ics.muni.cz/static/

SC2002/.)

Our BWC application expanded on the task-

spawning scenario of the SC 2001 entry. In the

task-spawning scenario, the primary simulation

spawns dozens of smaller subtasks during exe-

cution in order to perform a run-time parameter

study with results that feed back to the master

simulation. The master simulation responds by

making adjustment to the spawned simula-

tions—in effect, steering them. For instance,

the master simulation can spawn a parameter

study to determine the effect of adjusting its

courant factor. The result might show improve-

ment in the evolution rate, but it might also

show an unexpected impact on the accuracy

and stability of the numerics. The primary simu-

lation code could actually scan for available

resources worldwide to launch slave simulations

to explore all of those possibilities. Visapult fits

into this framework as a means of visually in-

specting the results of these slave simulations in

real time using volume rendering.

For the purpose of the BWC, we focused our

effort on five well connected sites: NCSA in

Champaign, IL, NERSC in Oakland, CA,

Argonne National Laboratory in Chicago, the

University of Amsterdam, and Masaryk Uni-

versity in the Czech Republic (Fig. 29.11).

During the actual challenge run, we opted to

force manual launching at these strategic sites

in order to reach full bandwidth within the 15

minutes we were allotted for the benchmarked

run. The resulting run managed to push an

unprecedented 16.8 Gbits/s of data to the LBL

cluster on the SC show floor in Baltimore from

these worldwide-distributed simulation sources.

Fig. 29.12 shows the SCinet ‘‘weather map,’’

which depicts the bandwidth consumed over

each of the three inbound WANs used as part

of our run. Note that the sum of bandwidths

across the three WANs totals 17.2 Gbits/s. Our

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 579

Big Run
(Titan, Seaborg)

Grid FTP and
Open DX etc

Cool Viz

Announce to
Mobile Devices

Steer from
Mobile Devices

Test Bed Status

Start Jobs on all
machines (GRAM
and Grid Lab RB)

Steer

Announce

Portal (Announce
Pages, Maps)

Announce
(GSI-SOAP)

Master TF
(AEI Origin)

Communications/
Par Files over

HTTPD

TF Client
(Test Bed)

GAT-Submit
(Fork)

TF Client
(Test Bed)

TF Client
(Test Bed)

Steer (HTTPD or
GSI-SOAP)

GAT_Submit
(Globus)

Figure 29.10 (Left) A map of sites participating in the SC 2002 Bandwidth Challenge Global Grid Testbed Collaboration.

(Right) A the logical workflow of the Grid’s task-farming scenario. The task farmer uses an application-level abstraction layer

for Grid Services called the Grid Application Toolkit (GAT). For more information on the GAT, please refer to http://

www.gridlab.org. (See also color insert.)

Consuming Network Bandwidth with Visapult 579

metered average rate of 16.8 Gbits/s covers a 15-

minute window, and we were ahead of the aver-

age rate at the time Fig. 29.12 was made.

In contrast, Fig. 29.13 shows the bandwidth

measured between the SCinet NOC outbound

to the three 10-Gbit connections to the LBL

booth. Figs. 29.12 and 29.13 are two different

views of the same network traffic. While Fig.

29.12 shows flow rates on each of the inbound

WANs, Fig. 29.13 shows the flow rate on the

LAN side of the SCinet NOC. During the SC

2002 run, we achieved a peak transfer rate of

about 17.21 Gbits/s and had a minimum trans-

fer rate of about 15.04 Gbits/s. During our 15-

minute window, we transferred a total of ap-

proximately 138.26 Tbits of data from the

remote resources into the Visapult back-end.

Visapult itself was extensively rewritten

during the time between the SC 2001 and

SC 2002 BWC events. Whereas the original

Visapult IBR used slices exclusively in the Z

direction to create the illusion of volume

rendering, the SC 2002 version supported

omnidirectional viewing by automatically

changing the choice of compositing slices as a

function of view angle (Fig. 29.14). The Visapult

back-end was rewritten to accommodate block

decomposition to support the new rendering

capabilities and also to improve overall load

balancing and flexibility in the visualization

process.

The Visapult/Cactus protocol was enhanced

significantly to support autonegotiation of load-

balanced data-parallel UDP streams between

the Cactus and the back-end, in contrast to the

static mapping required by the SC 2001 version.

Finally, the accuracy of the packet-rate regula-

tion method used by Cactus was greatly im-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 580

Figure 29.11 SC 2002 Bandwidth Challenge resource map.

580 Large-Scale Data Visualization

proved by being moved from a static inter-

packet delay mechanism to a method based on

error diffusion. Errors from previous packet

sends were carried forward to compute the

interpacket delay of the next packet send,

thereby achieving a high degree of accuracy in

regulation of the flows despite the coarse granu-

larity of available system timers.

Of critical importance is the fact that this

bandwidth challenge was part of a larger fabric

of interconnected Grid services and applica-

tions. For instance, all of the spawned simula-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 581

Figure 29.12 SCinet weather map. (See also color insert.)

Visapult/Cactus SC02 Bandwidth Challenge Results

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 100 200 300 400 500 600 700 800

Time (seconds)

M
eg

ab
it

s

10G-Link-1

10G-Link-2

10G-Link-3

Cumulative

Figure 29.13 SC 2002 Bandwidth Challenge results. (See also color insert.)

Consuming Network Bandwidth with Visapult 581

tion tasks were tracked automatically using a

Grid Portal [17]. We can even follow links

through the portal using a web browser to dir-

ectly connect to the running simulation codes to

monitor its progress, steer it, adjust network

bandwidth, and restart or kill jobs running any-

where in the world. This infrastructure even

allowed us to dynamically attach to running

jobs to perform live/interactive visualization to

the emerging results we obtained with Visapult.

Such access was also available from handheld

devices like iPAQ handheld computers and cell

phones. Some testbed applications would even

leave SMS messages on the scientists’ cell

phones to keep them apprised of their progress

and location. The advances in the emerging

Grid infrastructure and application-level ser-

vices were nearly as exciting and dramatic as

the increased network bandwidth and global

connectivity that such applications engender.

This event gave us a glimpse into a future of

the Grid—a framework composed of independ-

ently developed components that can be tightly

woven together into a pervasively accessible

global infrastructure. Future development of

Visapult and other RDV frameworks at LBL

will focus on this larger view of component

architectures for distributed high-performance

computing on the Grid rather than on any indi-

vidual stand-alone application.

29.5 Lessons Learned

There are two primary lessons we learned while

evolving Visapult to make effective use of the

network in a remote and distributed visualiza-

tion context. First is that TCP, the most com-

monly used network transport protocol, is very

ill suited for use in high-performance network

applications. In order to effectively use high-

bandwidth networks, you must avoid use of

TCP. The ramifications of such a strategy are

profound and far-reaching in terms of applica-

tion design. Second, we learned that using UDP,

which is an alternative to TCP for point-to-

point network communication and is much

better in terms of using available bandwidth,

comes with a set of costs: applications must be

resilient to dropped network packets, and appli-

cations designed for TCP will probably need to

be retooled for use with UDP.

29.5.1 Don’t Bet on TCP for High-
Performance Network Applications

TCP’s algorithm for regulating packet flow

rates is having great difficulty meeting the

needs of high-performance networking. If one

takes a dramatically simplified view of the prob-

lems facing the aging TCP protocol, one could

focus on two causal factors out of a field of

many. First is the TCP congestion-avoidance

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 582

Figure 29.14 Visapult’s new ‘‘Omniview’’ capabilities (left) produce much better visual fidelity than the original IBRAVR

algorithm. (See also color insert.)

582 Large-Scale Data Visualization

algorithm’s assumption that any packet loss in-

dicates network congestion that requires rapid

reduction in the flow rate (a fundamental as-

sumption about the meaning of packet loss).

The second is the slow rate at which TCP

returns to full speed in response to packet

loss. In order to understand why TCP is inad-

equate for today’s high-performance networks,

we must look at how the TCP congestion-

avoidance algorithm works, and how that algo-

rithm is inappropriate for use on modern, high-

performance networks.

Two key parameters used to characterize net-

work performance are latency and bandwidth.

The network latency is affected by buffering in

the network routers and switches as well as by

the responsiveness of the hosts at the endpoint.

However, it is primarily bounded by the funda-

mental limit of the speed of light. Bandwidth,

on the other hand, has been increasing dramat-

ically over the past decade—it has outpaced

Moore’s Law by four times. The TCP conges-

tion-avoidance algorithm was created to deal

with rate management on networks that peaked

at 1–5 Mbits in the late 1980s. When a packet is

lost in a transfer, TCP immediately assumes

that the loss indicates congestion, and it

‘‘backs off’’ to half its current flow rate. The

rate at which it can return to its original flow

rate is bounded by the round-trip time (RTT) of

the network. When the product of the band-

width of the network and the RTT (the ‘‘band-

width-delay product’’) is a small number, as it

was in the late 1980s, the rate of recovery is not

particularly noticeable.

With networks now pushing four orders of

magnitude more bits per second with very simi-

lar latencies, the TCP congestion-avoidance

algorithm is proving to be a hindrance. As

bandwidth increases, so too does the exposure

to the packet loss. Generally speaking, packets

are lost because of unrecoverable bit errors that

are detected by the Cyclic Redundancy Check

(CRC) or because of buffer overflows at either

the endpoints or congested switch interfaces in

the network core. Given the comparatively

large-bandwidth-delay products involved, the

stream cannot quickly recover from lost packets

despite its increased sensitivity to the loss. In

fact, using TCP on a 10 Gbit/s network connec-

tion, it would take 12
3
hours of continuous trans-

mission without a single lost packet to achieve

full line rate (Sally Floyd, http://www. icir.org/

floyd/papers/draft-floyd-tcp-highspeed-02.txt).

Increasing the rate at which TCP can recover

from packet-loss events makes the TCP algo-

rithm most unstable, as it oscillates around its

quiescent noncongestive data rate. Conse-

quently, the Additive Increase Multiplicative

Decrease (AIMD) algorithm employed for

TCP congestion avoidance is necessary for sta-

bility from the control-theoretical standpoint. It

also guarantees increasingly inefficient use of

the network resources as the bandwidth-delay

product increases. Based upon empirical evi-

dence, the asymptotic behavior results in a ten-

dency to send fewer and fewer packets, with the

steady state reaching about 20–25% of the max-

imum line rate. As network bandwidth con-

tinues to increase, these efficiencies will

continue to plummet.

Therefore, the time has come for a fundamen-

tal paradigm shift in the way that congestion is

managed on the WAN. Some have proposed

having the network infrastructure provide direct

feedback to the TCP/IP stacks of the endpoint

hosts regarding current congestive conditions

on the network [6,9,14], but these methods re-

quire dramatic changes to the routers and

switches that comprise our current network in-

frastructure. Other methods attempt to monitor

the end-to-end performance of the network ex-

ternally using probes or instrumented TCP

kernels to provide this information [1,4,5] but

can suffer from incomplete coverage or weak

ability to understand anomalous behavior in

the network core. Since we started using this

fixed-data-rate method for our transport,

we’ve seen a number of other efforts adopt a

similar manual-rate-control methodology, in-

cluding Tsunami and SABUL [7,11]. While we

believe the latter approach is the most effective

given current circumstances, it is not clear how

it will scale as its use becomes more pervasive.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 583

Consuming Network Bandwidth with Visapult 583

In the special case of HPC applications, it is not

uncommon to see dedicated links, and such

manual control is entirely reasonable. However,

over time there will be an increasing need for

brokers to mediate these fixed-bandwidth data

streams.

29.5.2 How Well Does a Lossy
Transport Mechanism Perform for
Visualization?

When using TCP for data transport, one need

not worry about data loss. TCP guarantees

delivery of packets by ordering the packets

and asking for retransmission if they are lost

along the way. The result is that TCP is slow.

When using UDP, which is very fast, for trans-

port, we will occasionally lose packets. Just

how much of an issue is the absence of a few

packets?

The approach we used for encoding data into

UDP packets results in portions of the data from

the computational grid being copied into the

packet. To maximize efficiency on the sender

side, we copy data from adjacent memory loca-

tions into the data-payload portion of the

packet. Typically, these regions consist of partial

‘‘scan lines’’ from the source volume. When a

packet is dropped, we don’t have data for that

particular scan line when doing the visualization.

Instead, what we have is data left over from the

previous time-step that was loaded into memory

on the receiver side. Keep in mind that we use a

single-buffering approach for the receive buffer;

there is no notion of ‘‘frame boundaries,’’ which

correspond to one time-step’s worth of simula-

tion data, so there is no advantage to using a

double-buffered approach on the receive side.

We simply receive data as fast as we can and

asynchronously render it. Due to the asynchron-

ous nature of the receive/render cycle, there is no

design guarantee that, at any given point in time,

the receive buffer will have data from just one

simulation time-step.

Another advantage of this approach is the

nearly immediate delivery of data to the appli-

cation. TCP, in its attempt to enforce the

ordered presentation of data, must actually

hide received data from the application until

all gaps in the packet stream are filled. If there

is a gap in the stream because a packet is lost,

then the receiver is blocked while the source is

notified of the loss and the packet retransmitted.

The result is that the receiver spends a good deal

of time idle, waiting for data that has already

arrived and is simply held by the OS in an

opaque system buffer. For interactive graphics

applications, the application performance is ir-

regular, and it is very noticeable and annoying

to the application. In contrast, UDP always

delivers the information to the application

almost immediately after it arrives. When

using UDP, the application must have a grace-

ful way to deal with loss and ordering issues.

Visapult demonstrates that such management

is possible, and it provides very reasonable

results.

Fig. 29.15 shows six different snapshots of an

evolving simulation. In the upper-left corner,

the simulation has just started. You can see

portions of the receive buffer that have not yet

been filled in with simulation data—the back-

ground is visible through the volume rendering.

Moving to the right, these regions begin to fill in

with data while the simulation continues to

evolve. This particular example was created

using a rate-limited flow of approximately

10 Mbits/s over a 100 Mbits/s link. Since we

were using only a fraction of the total available

bandwidth, the likelihood of packet loss was

quite small.

In the second row, the simulation has evolved

even more. The middle and right-most images

on the bottom row show the effects of how an

asynchronous receive/render strategy can pro-

duce artifacts. In the middle image of the

bottom row, the center of the field has a

region of white that is partially covered with

a light orange, which terminates abruptly.

This is a good example of having data from (at

least) two time-steps loaded into memory

at once. After a few more updates, that artifact

goes away, as seen in the bottom-right

image.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 584

584 Large-Scale Data Visualization

Keep in mind that the visualization we were

performing is of a dynamic, evolving simula-

tion. The artifacts seen in the images we present

here are short lived. If a packet is lost, the

resulting visualization has an artifact that can

be characterized, in this case, as a ‘‘streak.’’ Due

to the nature of the fundamental algorithmic

design, the resulting visualizations have artifacts

caused by the presence of data from more than

one time-step; it is difficult to ascertain whether

any given visual artifact is caused by packet loss

or by regular and normal software execution.

Mitigation of the type of artifacts we have

described can occur on two fronts. The first is

careful rate regulation of UDP flows. We per-

form such regulation as a general practice; the

Cactus interface allows a user to specify the bit

rate used to send packets from Cactus to Visa-

pult. The second is to impose some notion of

‘‘frame boundaries’’ upon the Cactus/Visapult

rendering algorithm. Doing so would ensure

that data from only one time-step is used to

perform visualization. The disadvantage of im-

posing such a restriction is that overall end-to-

end performance will be reduced. For the types

of problems being studied, physicists are able

to quickly ascertain whether a simulation run

is proceeding in ‘‘the right direction’’ by exam-

ination of the large structures seen in the

resulting visualization. Presence of a few visual

artifacts does not cause them concern for gen-

eral questions like ‘‘are my simulation param-

eters grossly incorrect?’’ For situations

requiring more careful visualization and analy-

sis work, lossless data transmission is entirely

appropriate.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 585

Figure 29.15 Visapult renderings of Cactus’s 3D Wave Equation Evolution. (See also color insert.)

Consuming Network Bandwidth with Visapult 585

29.6 Future Directions for High-
Performance Remote and Distributed
Visualization

The work we have described in this chapter

addresses only a small number of topics in

high-performance, remote, and distributed visu-

alization. Generally speaking, our work is simi-

lar in approach to related activities in

distributed visualization: it involves a collection

of custom software components using a custom

protocol on dedicated resources. The future of

research in remote and distributed visualization

must include sweeping changes in basic infra-

structure. For instance, toolkits based upon

standard techniques should be employed to im-

plement flow regulation underneath the applica-

tion. These tools need access to standard

mechanisms to obtain information about net-

work-based resources, such as link bandwidth

and computational and graphics capacity of a

resource and so forth. Without such standards,

each new research project must ‘‘reinvent the

wheel’’ by creating these components that form

the basis for remote and distributed visualiza-

tion applications. With such an infrastructure, a

new world of opportunity opens for transition

of research prototypes into the hands of the

visualization technology consumers.

The UDP method we have described so far

relies on pacing of packets to meet, but not

exceed, network capacity. Indeed, there is no

reason that these fixed-data-rate methods

cannot be applied to reliable transport proto-

cols like TCP. Recent examples of fixed-rate

reliable protocols include the University of

Illinois protocol SABUL [7], which is used to

support data mining, and more recent demon-

strations of Indiana University’s Tsunami file

transport program [11]. In both cases, the

protocols emphasize throughput for a stream-

oriented protocol requiring considerable buffer-

ing. Such buffering is necessary in order to pre-

serve the notion of the stream. Our group is

proposing to separate the stream orientation

from the notion of reliability in a Reliable Inde-

pendent Packet Protocol (RIPP). Such decoup-

ling is critically important for support of the

needs of interactive visualization applications

like Visapult.

Asbandwidth-hungryfixed-data-ratemethods

like network video, SABUL, and Tsunami

become more pervasive, we must consider ways

to provide global mediation of their flow rates.

It is clear that fixed-rate implementations of

both reliable and unreliable protocols can be

disruptive to commodity networks, and they

are most appropriate for use on dedicated net-

work links, Private Virtual Circuits (PVCs), Ex-

perimental Networks, or even scheduled access.

(During our SC 2000 BWC run, the commercial

service provider of the link between NTON and

Dallas asked us to not exceed 1.5 Gbits/s in

transfer rates lest we excessively interfere with

commercial traffic. Our performance numbers

during the SC 2000 run do not reflect any

attempt on our part to limit bandwidth con-

sumption.) While it is unreasonable to assume

that all WAN connections will be dedicated

links, it is quite reasonable to target an architec-

ture where high-performance dedicated or sche-

dulable links will exist between supercomputing

centers and satellite data-analysis centers on

high-performance production and experimental

network backbones. More dynamic shared en-

vironments require continuous adjustment of

the data rates. In this context, there are some

concerns that selecting an appropriate packet

rate for UDP-based methods to minimize loss

is too tedious to be practical.

Ideally, the network switching fabric should

provide detailed quality-of-service hints

through informational packets to the endpoint

hosts to indicate ideal send rates per MIT’s

XCP (eXplicit Congestion control Protocol)

proposal [9], Core-Stateless Fair Queue

(CSFQ) [14], or Explicit Congestion Notifica-

tion (ECN) [6]. We could, for instance, have a

TCP or UDP implementation that uses these

hints to ignore packet loss if the switching fabric

says that it is noncongestive but defaults to the

standard congestion-avoidance algorithm when

no such hints are available. In lieu of the wide

availability of an intelligent network infrastruc-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 586

586 Large-Scale Data Visualization

ture, we are working on Grid-based bandwidth

brokers that monitor current network condi-

tions through SNMPv3 and provide feedback

about network congestion through the Globus

Metacomputing Directory Service (MDS) so as

to avoid congestive loss. Even without intelli-

gent switching fabric or explicit hints about

congestion avoidance, we could create a system

of peer-to-peer feedback/auto-negotiation by

having endpoints multicast their path and cur-

rent packet-rate information on a fixed set of

designated paths. This allows hosts to negotiate

amongst themselves for appropriate packet

rates rather than involving a third party, like a

bandwidth broker or the switching fabric itself.

Ultimately, it is time to explore methods of

coordinating fixed-data-rate flows as an alterna-

tive to current congestion-avoidance methods

that attempt to infer congestion from packet-

loss statistics. The latter methods have clearly

reached their scalability limit!

The primary area of growth in considering

custom UDP protocols is in the development

of fault-tolerant/fault-resilient encoding tech-

niques. The simplest approach provides fault

tolerance by copying data from the previous

time-step to fill in lost data. A more advanced

methodology could use a wavelet or frequency

domain encoding of the data so that any loss is

hidden in missing spatial frequencies (similar to

JPEG compression). For transport of geometric

models, we can look at packet encodings that

support progressively refined meshes using tri-

angle bisection [8]. Such techniques make

packet loss less visually distracting and elimin-

ate the need for data retention on the sending

side. Any reliable technique requires data to be

retained at the source until its receipt is acknow-

ledged. Given the large bandwidth-delay prod-

ucts involved for future Tbit networks, the

window sizes necessary for reliable transport

will be considerable. The buffering required to

support TCP retransmission and large windows

creates noticeable lag in the responsiveness of

remote-visualization applications and produces

low-bandwidth utilization rates. Fast response

times are essential for creating the illusion of

locality, so low-latency connectionless tech-

niques will be essential for Grid visualization

and collaborative interfaces. Overall, there are

many avenues to consider for information en-

coding that make performance-enhancing but

unreliable delivery methods offer graceful deg-

radation of visual quality in response to packet

loss rather than simply settling for degradation

in interactivity.

As mainstream visualization systems start

to move outside the confines of the desktop

workstation, we must begin to consider issues

of the emerging global computing infra-

structure—the emerging ‘‘Grid.’’ Like most

current remote and distributed visualization ap-

plications to date, ours is a one-off prototype

that has little chance of interoperating with com-

ponents or network protocols that we haven’t

explicitly programmed it to understand. Such

interoperability requires standards for inter-

faces and protocols through community consen-

sus. There must be considerable work on basic

architectural frameworks that enable seamless

movement from the desktop to the grid and

that support sharing of components across

RDV component systems and services deve-

loped by different groups who may not be

working on the same code base. Without such

a framework, the entire community will be

so mired in issues of Grid management that

there will be little time left to spend on visual-

ization.

For instance, how does one actually go about

the task of launching remote components in the

emerging Grid infrastructure? In the case of our

custom-built remote and distributed visualiza-

tion applications, we typically use a manual

process of staging the components on the ma-

chines we want to use for a distributed applica-

tion. This approach is entirely impractical in

Grid environments, where there may be hun-

dreds or thousands of resources that constitute

a single application. There must be a notion of a

database or directory service that can distribute

and keep track of components, both executables

and running instances, on heterogeneous re-

sources. Similarly, many contemporary distrib-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 587

Consuming Network Bandwidth with Visapult 587

uted applications employ custom methods

that signal each other to indicate state changes

and to move data. In order to make use of

distributed resources, which could be dynamic

in location and availability, visualization

frameworks must make use of Grid services

that automate the process of resource location

and component launching. Fledgling services

of this form are provided in Grids based upon

the Globus architecture (http://www.globus.org)

in the form of Grid Information Services

(GISs), which are essentially LDAP-based

hierarchical directories of resources for a

given Grid. Such object directories and indexing

infrastructures are necessary to support min-

imal automation for launching distributed

components for a Grid-based visualization

architecture.

As we consider how components are man-

aged for distributed environments, one key ob-

servation about moving to a Grid architecture

is that it isn’t just about components. Grid-

based applications typically involve a fabric of

components and persistent services woven to-

gether into complete applications. Services are

loosely defined as persistent software compon-

ents that are shared by more than one applica-

tion or user. For example, an off-screen

hardware renderer could be a component of a

visualization that is time-shared by multiple

users because there is only one of them available

on the Grid.

Integrating the concept of services into

remote and distributed visualization applica-

tions leads to hard problems in terms of mediat-

ing access and security. Should you have an

external ‘‘broker’’ to ensure fair usage of avail-

able visualization services in a Grid, or should

this be a function of the service itself? What do

you do when the service fails to deliver its prom-

ised performance—a situation referred to as

‘‘contract violation’’? Services must have an in-

ternal authorization and access control model in

order to ensure that these access rules and be-

haviors are even minimally enforceable. Visual-

ization researchers are not accustomed to

dealing with these issues.

The issues described above are merely a

starting point for attacking issues involved in

hiding the incredible complexity of the Grid.

Indeed, we are moving rapidly away from a com-

puting model where you have complete and dedi-

cated control from all of your computing

resources (it is all on the motherboard, to your

computer). The Grid is constantly changing in

performance and capabilities, even as you are

using it. Imagine what it would be like if, while

you were trying to run a visualization application

on some platform, the system administrator were

constantly removing and adding components,

even while you were working. That approxi-

mates your ‘‘Grid’’ experience. The pieces are

distributed over the wide area, and your scope

of control over them is extremely limited relative

to your desktop. If we spend all of our time

focusing on ‘‘stovepipe’’ visualization system

designs, we will never be able to share any

common infrastructure that is needed to tackle

the problem of managing Grid resources!

Now, more than ever, the visualization commu-

nity must come together to work towards

this common goal. One venue for discussing

these topics is the Global Grid Forum (http://

www.gridforum.org), where groups have the op-

portunity to discuss and ratify community stand-

ards that support compatibility between

disparate remote and distributed visualization

implementations and services. Participation by

the visualization community in these forums is

absolutely necessary in order to make wide area

visualization and supercomputing possible.

29.7 Conclusion

Like many research projects, the Visapult effort

has changed over time in response to new and

unanticipated challenges. Visapult began as an

effort to provide highly efficient and scalable

software tools for data visualization to research

scientists. In the relentless pursuit of ever-in-

creasing levels of efficiency and performance,

we learned a lot more about networking tech-

nology than we could have predicted at the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 588

588 Large-Scale Data Visualization

outset. Our accomplishments with this project

include winning the SC BWC for 3 years in a

row and achieving unheard-of levels of band-

width performance for a single application.

Despite these successes, Visapult is still an

island of capability in the larger ocean of remote

and distributed visualization. Much work in

remote and distributed visualization is still

needed before the research efforts of different

programs can begin to work together as a co-

herent whole.

References

1. D. Agarwal. Self-configuring network monitor
project: an infrastructure for passive network
monitoring. Presented at the CITRIS NorCal
Network Research Meeting, Berkeley, CA, 2002.

2. W. Bethel, B. Tierney, J. Lee, D. Gunter, and S.
Lau. Using high-speed WANs and network
data caches to enable remote and distributed
visualization. In Proceedings of the IEEE/ACM
2000 Conference on Supercomputing (CDROM),
Dallas, TX, 2000.

3. W. Bethel, R. Frank, and J. D. Brederson. Com-
bining a multithreaded scene graph system with a
tiled display environment. In Proceedings of the
2002 IS&T/SPIE Conference on Electronic Im-
aging and Technology, San Jose, CA, 2002.

4. The Data Intensive Distributed Computing Re-
search Group, http://www.didc.lbl.gov/DMF/

5. T. Dunigan, M. Mathis, and B. Tierney. A TCP
tuningdaemon. Proceedings of IEEE supercom-
puting 2002 Conference, LBNL-51022, 2002.

6. S. Floyd. TCP and explicit congestion notifica-
tion. ACM Computer Communication Review,
24(5):10–23, 1994.

7. Y. Gu, X. Hong, M. Mazzucco, and R. Gross-
man. SABUL: a high performance data transfer
protocol, 2002.

8. H. Hoppe. Progressive meshes. Proc. 23rd Int’l.
Conf. onComputerGraphics and InteractiveTech-
niques SIGGRAPH ’96, pages 99–108, 1996.

9. D. Katabi and M. Handley. Congestion control
for high bandwidth-delay product networks.
Proceedings of ACM Sigcomm 2002, http://
www.ana.lcs.mit.edu/dina/XCP/

10. J. Madhavi and S. Floyd. TCP-friendly UDP
rate-based flow control. Technical Note 8, http://
www.psc.edu/networking/papers/tcp_friendly.
html, 1997.

11. The Advanced Network Management Lab,
http://www.anml.iu.edu/anmlresearch.html

12. K. Müller, N. Shareef, J. Huang, and R. Craw-
fis. IBR-assisted volume rendering. In Late
Breaking Hot Topics, Proceedings of IEEE Visu-
alization ’99, pages 5–8, 1999.

13. J. Shalf and E. W. Bethel. Cactus and Visapult:
an ultra-high performance grid-distributed visu-
alization architecture using connectionless
protocols. IEEE CG&A, 2003.

14. I. Stoica, H. Zhang, and S. Shenker. Core-state-
less fair queueing: achieving approximately fair
bandwidth allocation in high speed networks.
Proceedings of ACM SIGCOMM ’98, 1998.

15. B. Tierney, W. Johnston, B. Crowley, G. Hoo,
C. Brooks, and D. Gunter. The Netlogger meth-
odology for high performance distributed
systems performance analysis. Proceedings of
IEEE High Performance Distributed Computing
conference (HPDC-7), LBNL-42611, 1998.

16. B. Tierney, J. Lee, B. Crowley, M. Holding, J.
Hylton, and F. Drake. A network-aware distrib-
uted storage cache for data intensive environ-
ments. Proceedings of IEEE High Performance
Distributed Computing conference (HPDC-8),
1999.

17. G. Von Laszewski, M. Russell, G. Allen, G.
Daues, I. Foster, E. Seidel, J. Novotny, and J.
Shalf. The community software development
with the astrophysics simulation collaboratory.
Concurrency in Computation: Practice and Ex-
perience, 2002.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 589

Consuming Network Bandwidth with Visapult 589

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:33pm page 590

This page intentionally left blank

PART IX

Visualization Software and
Frameworks

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:25am page 591

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:25am page 592

This page intentionally left blank

30 The Visualization Toolkit

WILLIAM J. SCHROEDER and KENNETH M. MARTIN

Kitware, Inc.

30.1 Introduction

The Visualization Toolkit (VTK) is an open-

source, object-oriented software system pro-

viding a toolkit of functionality for 3D data

visualization. Because visualization inherently

involves capabilities from computer graphics,

image processing, volume rendering, computa-

tional geometry, human/computer interaction,

and other fields, VTK supports these capabilities

in an integrated, robust manner. More than 850

separate Cþþ classes, including several hundred

data processing filters, are included in the toolkit.

While the core of VTK is implemented in port-

able Cþþ across all major computer hardware/

software configurations, VTK is packaged as

part of a sophisticated development environ-

ment that includes advanced interface, build,

and test tools. (Section 30.2.9 covers language

interfaces; see CMake [1] for information about

the CMake build tool and DART [2] testing

environment.) It is this combination of openness,

extensive features, reliability, and comprehen-

sive development environment that makes

VTK one of today’s premier visualization

tools for academic, research, and commercial

applications.

In this chapter, we provide insight into the

key features of the toolkit. The focus is on

architecture and system concepts; the details of

algorithms and data representations are covered

elsewhere in this handbook. In the remainder of

this introductory section, we provide the motiv-

ation, history, and goals for VTK. The next

section describes important architectural fea-

tures. In the third section, we describe how

VTK is used in large-data visualization, one

of the key challenges facing visualization

systems of the future. We conclude with a brief

survey of important applications developed

using VTK.

30.1.1 Motivation and History

As visualization researchers, the three initial

authors of VTK (Will Schroeder, Ken Martin,

and Bill Lorensen) were interested in creating

a software platform for developing and de-

livering visualization technology to their cus-

tomers, as well as in sharing their knowledge

with students, researchers, and programmers.

Initial efforts focused on writing a textbook [3]

with companion code and exercises. Work

began in late 1993, and the system reached

a usable state late in 1994. The first edition

of the textbook appeared early in 1996 (it

is now available as a third edition from Kit-

ware). Since that time, a large community of

users and developers has emerged, accelerating

the growth of the system to its current state.

While much of the initial work was done

by the authors in their spare time, and many

developers continue to volunteer their services,

commercial firms such as Kitware and GE Re-

search continue to invest and contribute code

to this open-source system. Indeed, prestigious

US National Laboratories such as Los

Alamos, Livermore, and Sandia fund significant

developments of the system, including contrib-

uting software modules created by their own

researchers.

30.1.2 Goals

VTK benefited from early experience with the

proprietary ad hoc graphics and visualization

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 593

593

system LYMB [5]. This experience led to

fundamental decisions about what a good visu-

alization toolkit should be. Some key conclu-

sions and thus goals for VTK include the

following:

. The code should be open-source. Create a

generous copyright for source distribution

for commercial and noncommercial applica-

tion. GPL was deemed too prohibitive; a

BSD variant was chosen instead.

. Create a toolkit, not a system. Design the

software to be embedded into applications,

not to become the application. Modern

software implementations require simultan-

eous usage of multiple software packages;

the software must work well with other

packages.

. The design should be object-oriented. Cþþ
was deemed the best implementation lan-

guage because of its wide acceptance and

efficiency. Conservative usage of object-

oriented features should be employed (e.g.,

avoiding multiple inheritance and excessive

templating). This results in portable, simple

code.

. The GUI is separate from the algorithms.

A clean separation of the GUI allows a

focus on algorithms and data representation.

Furthermore, this approach facilitates offline

processing without the need for a window

manager, etc. The GUI often represents a

sizable part of an application, and there are

many choices for the GUI. We wanted to

avoid this morass and provide hooks to the

GUI instead.

. Support a hybrid compiled/interpreted archi-

tecture. Compiled environments (such as

Cþþ) are efficient. Interpreted environ-

ments (such as Tc1 or Python) are great

for prototyping and application devel-

opment. We realized the best of both by

implementing the core in Cþþ and

automatically wrapping it with interpreted

languages.

. Support a pipeline architecture. In visualiza-

tion, a pipeline architecture (data-flow-based)

works very well. This is because of the flexi-

bility required by a visualization system to

map data into different forms.

. Support parallel processing. Many visualiza-

tion algorithms are computationally expen-

sive and deal with large data. VTK supports

portable multithreading for shared-memory

parallel implementations and portable dis-

tributed parallel processing.

. The code must exist within a comprehensive

build and test environment. Robust, reliable

systems of the size and complexity of VTK

require a formal environment for building

and testing. We use a novel continuous and

nightly process that compiles and tests the

software on dozens of systems located

around the world. The results are posted on

a centralized web page (the so-called ‘‘qual-

ity dashboard’’ [2]) providing immediate

feedback to developers.

. Create consistent code. We strive to main-

tain consistency in code style and implemen-

tation methodology. The goal is to make the

code appear as if it was written by one

person. Consistent code is easy to work

with and understand because the developer

is not encumbered by the need to decipher

variable and method names. The code is also

easier to read once the basic coding style is

learned.

. Embed the documentation into the source

code. Documentation is embedded into all

VTK class header files. The documentation

is automatically extracted (using the open-

source Doxygen system [4]), and HTML is

formatted to produce manual pages.

. Maintain toolkit focus. Successful software

systems have a tendency to grow until they

become unwieldy. Disciplined focus is re-

quired to keep the toolkit vital.

Implementation details addressing some of

these goals are found in the following sections.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 594

594 Visualization Software and Frameworks

30.2 Overview

This section provides an overview of key toolkit

capabilities. We begin with a general description

of the architecture, followed by a description

of the graphics, volume rendering, and visual-

ization pipeline. An example then ties these

concepts together. We end the chapter by de-

scribing important system features, such as the

instantiation process through object factories,

data representation, wrapping into other pro-

gramming languages, callbacks, and memory

management.

30.2.1 Architecture

The architecture of a software toolkit has sig-

nificant impact on its success. A good overall

design improves the capabilities, usability, ex-

tensibility, and maintainability of the toolkit.

VTK’s architecture is based on object-oriented

principles [6] and implemented in Cþþ. In

VTK, an object is an abstraction that encapsu-

lates the properties and behaviors of an entity

in a system. Examples of objects in VTK in-

clude datasets, filters, readers, and writers.

Using an object-oriented architecture can be

confusing to people who are accustomed to

older-style functional libraries. With a func-

tional library, calling the function shows an

immediate result. With an object-oriented

design, instantiating an object typically has

little impact on your data. Only by invocation

of the methods on the object are results actu-

ally produced.

Even during adaptation of an object-oriented

design, there are still a number of decisions to be

made. For VTK we decided to not use multiple

inheritance or public templated classes. While

this limits some of the Cþþ features we can use,

it greatly enhances our ability to work with

other languages, such as Tc1, Python, and

Java. For VTK we decided to have a common

superclass for all objects called vtkObject. This

class provides some common functionality for

runtime interrogation, such as IsA(), IsTypeOf(

), and GetClassName(). It also includes func-

tionality for printing, reference counting, call-

back, and modification time management. It is

too large a class to use for small data structures

like a single three-component vector. In fact,

VTK’s design avoids the use of small classes.

Instead of representing a polygonal mesh with a

vector of polygon objects, VTK represents it

with just two objects: an array of floats for the

point coordinates and an array of connectivity.

This allows VTK classes to have a common

superclass without significantly impacting the

optimal memory footprint for its data struc-

tures.

In an attempt to make VTK as easy to use as

possible, a number of common conventions

have been created to ensure code consistency.

For example, in VTK all method names are

fully spelled out—abbreviations are avoided

unless they are common—and similar termin-

ology is used for concepts. For example, in

VTK, ‘‘ComputeRadius()’’ is used. As a VTK

developer you know that the method will never

be called anything like compute_radius, Cal-

cRadius, CalculateRadius, or compRad, be-

cause they do not follow coding conventions.

This makes it much easier to remember method

names and helps to ensure that the same method

in different classes will have the same name.

Likewise, there is a convention that all mem-

ber variables (also known as instance vari-

ables) are protected or private and can only

be accessed from other classes using Set()

and Get() methods, such as SetVariable() or

GetVariable(). The result is a fairly simple

programming interface where most every com-

mand is of the form instance->Method (argu-

ments).

VTK’s architecture supports cross-platform

development and runs on almost any brand

of UNIX, as well as Microsoft Windows and

Mac OSX. This is achieved through the use

of functional abstractions for both hardware

and software components. For example, many

filters in VTK support multithreaded opera-

tion on multiple CPU systems. Such filters

interface with a generic class that handles

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 595

The Visualization Toolkit 595

multithreading on all platforms so that the filter’s

implementation does not need to consider such

issues. When the differences between the plat-

form hardware or software become significant,

an abstract object-inheritance hierarchy is used

to map the differences to a uniform API. For

example, a class like vtkRenderWindow has

the three subclasses vtkWin32OpenGLRender-

Window, vtkXOpenGLRenderWindow, and

vtkCarbonOpenGLRenderWindow to support

OpenGL-based render windows targeted at dif-

ferent window systems. The application devel-

oper will create and use what looks like a

vtkRenderWindow while actually amore specific

subclass of vtkRenderWindow is instantiated at

run time. This same approach is used in other

VTK subsystems, including parallel processing

using MPI, sockets, or shared memory, and

using different volume rendering techniques. Be-

cause VTK’s architecture is consistent across the

different classes, once you have learned to use

one class you can apply the same approach to

any other class.

30.2.2 Graphics

Now that the architecture has been discussed, it

is worthwhile to see how it is applied to the

graphics engine in VTK. A common source of

confusion for new VTK users is understanding

how it differs from OpenGL. OpenGL is a

stack-based rendering API without any direct

visualization algorithms. In contrast, VTK is a

visualization toolkit with a wide range of visu-

alization techniques, such as streamlines, glyph-

ing, iso-contouring, clipping, and cutting. VTK

does include support for rendering of its results,

typically using OpenGL, but it does not com-

pete with OpenGL. The two serve different pur-

poses.

VTK provides a higher-level API than

OpenGL that simplifies rendering-visualization

results and is more consistent with the toolkit

design. The API consists of objects such as

cameras, lights, and actors. These are all con-

tained within renderers that appear within a

render window (Fig. 30.1). Taken together,

these objects form a scene. When a render

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 596

Instances of vtkRenderWindow
Instances of
vtkRenderer

One vtkCamera defines
view for each renderer

One or more than one
vtkLight illuminates

the scene

vtkProperty defines
actor surface properties

vtkMapper defines
actor geometry

Instances of vtkActor

Figure 30.1 Rendering classes. (See also color insert.)

596 Visualization Software and Frameworks

window is rendered, it sets up the viewports for

each of its renderers and then passes control to

them. They set up the camera and lights and

then render each actor in turn. In VTK, each

actor and its properties are independent from all

other actors. Other approaches, such as scene

graphs, are designed along the concept of a state

machine, where changes in one part of the graph

can impact other parts of the graph.

The VTK rendering process starts by per-

forming view-frustum culling and render-time

allocation based on screen coverage. This

results in a subset of the actors’ acting as targets

for rendering with a time allocation provided to

each. Each remaining actor then has three op-

portunities to render itself in a three-pass

rendering process. The first opportunity is the

‘‘Opaque Geometry’’ pass, where all opaque

geometry should be drawn. Next comes the

‘‘Translucent Geometry’’ pass, followed finally

by the ‘‘Overlay’’ pass for annotations and

markup. This three-pass structure has a number

of advantages for techniques such as volume

rendering. A texture-mapping volume renderer

can simply draw its polygons in the translucent

geometry pass. A ray casting–based volume ren-

derer can also draw in the translucent geometry

pass, but it first retrieves the color and z-buffers

from the opaque geometry pass in order to

properly blend the opaque geometry with the

volume. The opaque geometry can also be

used to perform early ray termination.

The objects in VTK’s graphics API provide

access to a wide range of functionality. Lights

have parameters to simulate infinite lights or

positional lights. Lights can also have color,

spot angles, spot attenuations, and quadratic

attenuation coefficients. Cameras support view

angle, eye separation for stereo rendering, lens

size for depth-of-field effects, and oblique angles

for off-axis projections. There are various

methods to adjust the camera’s position and

orientation, including roll, pitch, yaw, elevation,

azimuth, dolly, and zoom. Both parallel and

perspective cameras are supported. Actors

have a matrix transformation that indicates

their position and scale in world coordinates.

The actor’s properties include ambient, diffuse,

and specular colors, wire-frame versus surface

rendering, and front- or back-face culling.

VTK uses mappers to map visualization data

(see Section 30.2.4) to the graphics engine. In

the simplest case, a mapper takes a polygonal

mesh and calls the appropriate rendering func-

tions to draw the mesh. The mapper handles

issues such as mapping scalar values to colors

with the help of lookup tables or transfer func-

tions. It also manages display-list maintenance

and normal generation for meshes that do not

have normals.

To support interactive rendering rates, VTK

can make use of multiple mappers per actor. In

this case, a single actor (e.g., vtkLODActor) can

have multiple mappers, each with their own

input. When a render is requested of the actor,

the mapper with the best quality that can be

drawn within the allotted rendering time will

be selected and rendered. One nice feature of

this approach is that it provides the application

programmer with significant flexibility in the

design of the levels of detail (LODs). For

example, a polygonal mesh might have LODs

that include a bounding box, reduced point

cloud, wire-frame outline, decimated mesh, or

any other representation appropriate to the

data. While VTK provides default LOD gener-

ation, the application programmer can override

these and set specific LODs as appropriate to

their application.

30.2.3 Volume Rendering

Many visualization algorithms produce and

render polygonal data (points, lines, polygons,

triangle strips, and other linear primitives).

For example, iso-contouring produces dense

triangle or triangle strip meshes. While these

surface-rendering techniques work well in many

applications, volume rendering is a more sophis-

ticated rendering technique used to visualize the

structure within complex 3D image datasets

(i.e., volumes). VTK supports volume rendering

using an object model similar to that of the

surface-rendering architecture described

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 597

The Visualization Toolkit 597

previously (volume, volume mapper, and

volume properties versus actor, mapper, and

actor properties). In fact, VTK’s rendering pro-

cess seamlessly integrates image display, surface

rendering, and volume rendering, which may be

used in arbitrary combination. (Caveat: the sur-

face geometry must be opaque when one

is combining surface graphics with volume

rendering.)

VTK supports several volume rendering

methods through a variety of volume mappers.

Software ray-casting (implemented using multi-

threaded parallel processing) produces the

highest-quality results. Different ray-casting

strategies, such as isosurface, MIP, and com-

posite, can be selected to obtain different effects.

Volume rendering based on texture mapping

takes advantage of modern computer graphics

hardware to produce good-quality results at

high frame rates. Other mappers, such as those

supporting the VolumePro volume rendering

hardware [7], are also available.

Like vtkActor, vtkVolume has a volume prop-

erty associated with it. The volume property con-

trols interpolation methods (nearest-neighbor

or tri-linear), collects transfer functions for

color and opacity (including gradient opacity),

and enables volume shading. Lighting param-

eters such as ambient, specular, and diffuse

may also be set through the volume property.

VTK tightly integrates images, volumes, and

surface primitives into the rendering process

and visualization pipeline. During the three-

pass rendering process described previously,

VTK renders its opaque surface geometry first,

thereby populating the depth and color buffers.

The volume renderer then composites its output

image against these buffers, using the depth

buffer to terminate unnecessary computation

(e.g., terminate ray-casting). The final pass of

the rendering process is used to draw annota-

tion and/or images on top of the results of sur-

face and volume rendering passes. A volume in

VTK is a type of image, so volumes are fully

integrated into the visualization pipeline; this

provides the user with the ability to read, pro-

cess, and then volume render data—along with

surface and image processing and display. This

integration provides a rich environment for cre-

ating compelling visualizations.

30.2.4 Visualization Pipeline

Visualization is inherently a process of trans-

formation: data is repeatedly transformed by a

sequence of filtering operations to produce

images. In this section we will describe the pipe-

line architecture used to accomplish this trans-

formation.

The role of the graphics subsystem described

previously is to transform graphical data into

images. The role of the visualization pipeline is

to transform information into graphical data.

Another way of looking at this is that the visu-

alization pipeline is responsible for constructing

the geometric representation, which is then

rendered by the graphics subsystem. VTK uses

a data-flow approach—also referred to as the

visualization pipeline—to transform informa-

tion into graphical data.

There are two basic types of objects found in

the visualization pipeline: data objects (vtkDa-

taObject) and process objects (vtkProcessOb-

ject). Data objects represent and provide access

to data. Process objects operate on the data and

represent the algorithms in the visualization

system. Data and process objects are connected

together into directed networks (i.e., the visual-

ization pipeline) that indicate the direction of

data flow. The networks execute when data is

requested; a sophisticated execution mechanism

ensures that only those filters requiring execu-

tion are triggered.

At the most abstract level, the class vtkDa-

taObject can be viewed as a general blob of

data (i.e., an array of arrays). Data that has a

formal geometric and topological structure is

referred to as a dataset (class vtkDataSet).

Fig. 30.2 shows the dataset objects supported

in VTK. A vtkDataSet consists of a geometric

and topological structure (points and cells)

as illustrated by the figure, as well as add-

itional attribute data, such as scalars or

vectors. The attribute data can be associated

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 598

598 Visualization Software and Frameworks

with the points and/or cells of the dataset. Cells

are topological organizations of points; cells

form the atoms of the dataset and are used to

interpolate information between points. Figs.

30.3 and 30.4 show the 19 cell types supported

by VTK. Fig. 30.5 shows the attribute data

supported by VTK.

Process objects, also referred to generally as

filters, operate on input data objects to produce

new output data objects. The types of input and

output are well defined, and filters will accept as

input only those types that they can process.

(Note: many filters accept as input vtkDataSet,

meaning they can process any type of data.)

Source process objects are objects that produce

data by reading (reader objects) or constructing

one or more data objects (procedural source

objects). Filters ingest one or more data objects,

and they generate one or more data objects, on

output. Mappers, which we have seen earlier in

the graphics model, transform data objects into

graphics data, which is then rendered by the

graphics engine. A writer is a type of mapper

that writes data to a file or stream.

Process and data objects are connected to-

gether to form visualization pipelines, as

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 599

(a) Image Data (b) Rectilinear Grid

(c) Structured Grid (d) Unstructured Points

(f) Unstructured Grid(e) Polygonal Data

Figure 30.2 Dataset and subclasses.

The Visualization Toolkit 599

shown in Fig. 30.6. The pipeline topology is

constructed using variations of the method.

aFilter->SetInput(anotherFilter->
GetOutput());

It sets the input to the filter aFilter to the

output of the filter anotherFilter. (Filters with

multiple inputs and outputs have similar

methods for setting input and output.) When

data is requested, only those portions of the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 600

(a) Vertex (b) Polyvertex (c) Line

0

1

0

0

2

1

1

1

77 66

4

4

4

4

2

2
2

2

2
55

5

3

3

3

3

3

1

1

1

1

1
0

0

0

0

0

00 1

2
2

1

0

3
3

0
2

3

n

n+1

n-2

n-1

1

n −1

v

(d) Polyline (n lines) (e) Triangle (f) Triangle strip (n triangles)

xj

xi

(g) Quadrilateral (h) Pixel (i) Polygon (n points)

z
y

x

(j) Tetrahedron (k) Hexahedron (l) Voxel

(m) Wedge (n) Pyramid

Figure 30.3 Linear cell types supported by VTK.

600 Visualization Software and Frameworks

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 601

(a) Quadratic Edge

0

0
0

2

1 0
0

5

5
2

2

4

4

1 1

3

3

(b) Quadratic Triangle

6

7

(c) Quadratic Quadrilateral

6

2

9
3

8

1

4

5
7

(d) Quadratic Tetrahedron

16

8

4

11
3

10
1

9
2

17
18

6
13

14

12

19

15
7

(e) Quadratic Hexahedron

Figure 30.4 Higher-order cell types supported by VTK.

s

Scalar: single data value

(u,v,w)

Vector: 3D direction and
magnitude

(nx, ny, nz)
/n/ = 1

Normal: 3D direction

t

s

2D: (u,v)
3D: (u,v,w)

Texture coordinate:
n-dimensional index into texture

map

a11 a12 a13

a21 a22 a23

a31 a32 a33

Tensor:
n � n Matrix

Array 0 Array 1 Array n-1

vtkDataArray

Field Data:
An array of arrays. Each array can be of

different data type (vtkFieldData)

Figure 30.5 Attribute data supported by VTK.

The Visualization Toolkit 601

pipeline necessary to bring the output up to data

are executed. VTK uses a demand-driven, lazy

evaluation scheme (i.e., execution is deferred)

based on an internal modification time for

each object. The modification time is compared

to the time of last execution to determine

whether the filter must execute again. Of course,

any filters downstream of the executing filter

must also execute.

In general, filters may accept as input any

VTK data object type and may produce any of

the VTK data objects. However, the image-

processing pipeline in VTK operates only on

vtkImageData. Because this regular data may

be readily decomposed into subregions, the

pipeline update mechanism supports special fea-

tures such as streaming and multithreaded par-

allel processing. This will be discussed in more

detail in Section 30.3.

30.2.5 Example

VTK has a carefully designed interface that

makes using the classes in the system relatively

easy. The challenge to learning VTK (or any

object-oriented system, for that matter) is learn-

ing the palette of objects and how they interact.

The following Cþþ example shows typical

usage of VTK. The example reads polygonal

data from a data file, decimates it, smooths the

surface, generates surface normals, and then

displays the result.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 602

Source

Source

Filter

Filter Filter

Data Object Data Object

Data Object Data Object Data Object

Multiple Input

Mapper

Graphics Interface

Figure 30.6 Pipeline topology.

vtkBYUReader *byu ¼ vtkBYUReader::New();

byu->SetGeometryFileName(‘‘fran_cut.g);

vtkDecimatePro *deci ¼ vtkDecimatePro::New();

deci->SetInput(byu->GetOutput());

deci->SetTargetReduction(0.9);

deci->PreserveTopologyOn();
deci->SetMaximumError(0.0002);

vtkSmoothPolyDataFilter *smooth ¼ vtkSmoothPolyDataFilter::New();

smooth->SetInput (deci->GetOutput());

smooth->SetNumberOfIterations(20);

smooth->SetRelaxationFactor(0.05);

602 Visualization Software and Frameworks

The pattern outlined in this example is typical

of many small VTK applications. The required

filters are instantiated and connected together to

form the visualization pipeline. (See the next

section for details regarding instantiation with

the object factory New() method.) The mapper

terminates the pipeline, which is then connected

to an actor (or subclass of vtkProp—the objects

drawn in the scene). The actor is associated with

a renderer, which is in turn associated with the

render window. Interactors are often used to

manage the event loop and provide simple

mouse- and keyboard-based interaction. Note

that in this example, lights, cameras, and prop-

erties are not created. VTK generally works

intelligently, provides reasonable default values

when necessary, and does things like instanti-

ating objects such as lights when none have been

explicitly created.

30.2.6 Object Factories and Instantiation

Earlier in this chapter we discussed how an ap-

plication programmer would interact with

a render window while at run time a more spe-

cific subclass of render window would be created

and used. This is accomplished through the use

of object factories. All objects in VTK are

created using a special method called New()

(note the different capitalization from the trad-

itional Cþþ new method). Requiring all objects

to use the New method enables a few different

capabilities in VTK. The first is hardware ab-

straction. When the application creates a render

window with the New() method, VTK deter-

mines at run time what rendering APIs were

compiled in and examines environment variables

to determine what subclass of the render window

to create. On a Mac OSX system, invoking

vtkRenderWindow::New() might create a

vtkCarbonOpenGLRenderWindow, vtkCo-

coaOpenGLRenderWindow, or vtkXOpenGL-

RenderWindow, depending on the system

configuration. This allows the application pro-

grammer to write device-independent applica-

tions using VTK without the typical

conditionals (and knowledge) surrounding all

the device-dependent code.

Object factories can also be used in VTK to

enable dynamic loading of new subclasses. VTK

maintains a collection of object factories that

are queried whenever a class is instantiated

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 603

vtkPolyDataNormals *normals ¼ vtkPolyDataNormals::New();

normals->SetInput(smooth->GetOutput());

vtkPolyDataMapper *mapper ¼ vtkPolyDataMapper::New();

mapper->SetInput(normals->GetOutput());

vtkActor *actor ¼ vtkActor::New();

actor->SetMapper (mapper);

actor-> GetProperty()->SetColor (1.0, 0.49, 0.25);

vtkRenderer *ren1 ¼ vtkRenderer::New();

vtkRenderWindow *renWin ¼ vtkRenderWindow::New();

renWin->AddRenderer(ren1);

vtkRenderWindowInteractor *iren ¼ vtkRenderWindowInteractor ::New();

iren->SetRenderWindow(renWin);

ren1->AddActor(actor);

ren1->SetBackground(1, 1, 1);

renWin->SetSize(500, 500);

iren->Start();

The Visualization Toolkit 603

with New(). Dynamically loaded factories can

replace the existing implementation of a filter at

run time with a new one that includes bug fixes,

optimizations, enhancements, etc. For example,

in a volume rendering application, an attempt

might be made to load an object factory that

contains a volume renderer supporting the

VolumePro hardware. If the object factory suc-

cessfully loads, then the application will sud-

denly start using the VolumePro hardware

instead of the default volume renderer.

30.2.7 Data Representation

A key feature of any visualization system is the

manner in which data is represented. In VTK,

data is represented in native form. That is, data

is not converted to a single canonical type (e.g.,

double). This approach avoids the memory

penalty that would occur when, for example, a

1-byte char value was represented by an 8-byte

double. In addition, conversion of data from

one type to another can introduce precision

errors.

The data types supported by VTK are limited

to the native compiler types found in Cþþ (char,

uchar, short, ushort, int, uint, long, ulong, float,

and double). An additional ID type is used to

index points and cells. This leads to a simple

array-based data model (known in VTK as a

data array). A data array is assumed to consist

of a linear arrangement of tuples, each tuple

having the same number of n components. A

tuple may represent a scalar (1-tuple), point,

vector, or normal (3-tuple), texture coordinate

(1-, 2-, or 3-tuple), color (1-, 2-, 3-, or 4-tuple),

3� 3 tensor (9-tuple), or arbitrary data array (n

is arbitrary). The data is represented by contigu-

ous arrays, which are easy to allocate, delete, and

transport across the network.

Filters may access the data contained in the

array using two different mechanisms. If per-

formance is desired, and the number of types is

limited, Cþþ templated functions are used to

operate on the data. Alternatively, an abstract

interface defined by the class vtkDataArray pro-

vides generic access to its concrete subclasses,

such as vtkUnsignedCharArray, vtkFloatArray,

and so on. This more general approach avoids

the complexities of templating but introduces

overhead due to type conversion and virtual

function access to the data. In VTK, both

methods of data access are used—sometimes in

combination—depending on the complexity and

performance requirements of the filter.

30.2.8 Callbacks (Command/Observer
Design Pattern)

VTK is designed to interoperate with other

systems through a powerful callback mechan-

ism. Callbacks are supported through the use of

the command and observer design patterns [9].

Every object in VTK supports the AddObser-

ver() method, which takes two key arguments:

the event to observe and the command to

invoke when the event is fired. These observers

can be used in a variety of ways, depending on

the events that a particular class invokes on

itself. For example, all filters fire Start, Progress,

and End events that can be used by a GUI to

provide information on what filter is currently

running and how much progress has been made

on the computation. The progress events are

particularly useful because they allow control

to return to the application, at which point the

application can check to see if the computation

should be aborted and, if so, pass that infor-

mation down to the filter. A similar event is

used during rendering to abort a render oper-

ation when, for example, the user presses some-

thing on the GUI. This is particularly valuable

for volume rendering with progressive refine-

ment. The highest levels of quality can take a

significant time to render, and the user may wish

to abort the render and adjust some other prop-

erties instead of waiting for the render to com-

plete.

While VTK is designed to be GUI independ-

ent, there is a connection between the render

window and the GUI. Specifically, GUI events

are typically used to drive camera operations,

redraw the window, handle resizing, and ma-

nipulate 3D widgets. In VTK, there is a render

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 604

604 Visualization Software and Frameworks

window interactor class to handle these

window-system events. Using VTK’s Com-

mand/Observer design pattern, the render-

window interactor simply receives window

system events, translates them into VTK events,

and then fires off these VTK-based events.

There are a number of classes in VTK that

register observers for these events. The most

common are the interactor style (vkInteractor-

Style) classes, which encapsulate different styles

of mouse and keyboard interaction. An example

of an interactor style is the camera trackball

style. This style uses mouse events to manipu-

late the camera as if it were a trackball. There

are a number of other styles that use different

conventions for manipulating the camera,

lights, and actors in VTK. (3D widgets make

extensive use of events; they are discussed in

Section 30.4.)

One advantage of using observers is that

many objects can thereby listen to the same

event. A mouse-down event could first be ana-

lyzed by a 3D widget to determine if it should

respond to it. If so, it might perform the appro-

priate function and then abort further process-

ing of the event, or leave the event for other

observers to process. If not, the event would

eventually be caught and handled by the cur-

rently selected interactor style, or any other

registered observer of that event.

30.2.9 Wrapping

Part of the success of a toolkit depends on its

accessibility. In many cases, the first test of

accessibility is whether the toolkit can be used

from the programmer’s target development lan-

guage. While Cþþ programmers can readily

use VTK, programmers using the languages

Tcl, Java, or Python can use it as well. VTK

supports a thin-layer language binding that en-

ables almost all of VTK’s features to be used by

these languages. The wrapping takes advantage

of the consistency in VTK’s coding style to

determine what methods to wrap and how to

handle reference counting and callbacks. The

object-oriented nature of VTK makes writing

code in any of the languages straightforward.

Consider the following example of creating a

cone and setting its resolution in each of the

four supported programming languages:

Wrapping the Cþþ code into additional pro-

gramming languages has several important ad-

vantages beyond code accessibility. Interpreted

languages like Tcl and Python do not require

compilation or linking, support runtime exten-

sibility, and provide many packages (such as

GUI builders) to extend their capabilities. As a

result, such languages provide a powerful proto-

typing environment while maintaining the effi-

ciency of Cþþ, since the algorithms are written

in Cþþ.

30.2.10 Memory Management

As described previously, the object factory

New() method is used to instantiate classes in

VTK. One of the benefits of this approach is

that it supports reference counting. In order

to minimize memory requirements and pass

objects around the system, all objects in VTK

are reference counted. When a new object is

created with New(), its reference count is ini-

tialized to 1. If another object uses that object, it

will invoke Register() on it to increase its refer-

ence count. Likewise, when an object is done

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 605

In Cþþ
vtkConeSource *cone ¼

vtkConeSource::New();

cone! SetResolution (10);

In Tcl

vtkConeSource cone

cone. SetResolution 10

In Python

cone ¼ vtk.vtkConeSource()

cone.SetResolution(10)

In Java

vtkConeSource cone ¼
new vtkConeSource ();

cone.SetResolution(10);

The Visualization Toolkit 605

using another object, it will UnRegister() it,

which decrements the reference count. When

the reference count of an object falls to zero,

the object is deleted and memory is freed.

A significant advantage of reference counting

in VTK is that it allows data to be shared in-

stead of duplicated. For example, consider a

filter that converts a triangle mesh from inde-

pendent triangles to triangle strips. If the input

data to this filter has scalar values associated at

each point, the output will have the same scalar

values. In this case, the best solution is to pass

the scalar values from input to output by refer-

ence instead of copying them. This is done by

assigning them to the output, which will in-

crease the scalar’s reference count by one.

30.3 Methods in Large-Data
Visualization

In VTK, special attention has been paid to hand-

ling large datasets. Large datasets present a

number of problems, ranging from computation

speed to communication to space limitations.

VTK supports a number of techniques for hand-

ling large data, including data streaming and

distributed parallel processing. The following

sections cover these topics.

30.3.1 Data Streaming

In VTK, data streaming is implemented by

breaking data into smaller pieces, processing

the pieces (either serially or in parallel), and

then combining the results [8]. The ability to

stream data through a visualization pipeline

offers two main benefits. The first is that visual-

ization data that would not normally fit into

memory or system swap space can be processed.

The second is that visualizations can be run with

a smaller memory footprint, resulting in higher

cache hits and little or no swapping to disk. To

accomplish this, the visualization software must

support breaking the dataset into pieces and cor-

rectly processing those pieces. This requires that

the dataset and the algorithms that operate on it

be separable, mappable, and result invariant.

1. Separable. The data must be separable.

That is, the data can be broken into pieces.

Ideally, each piece should be coherent in

geometry, topology, and/or data structure.

The separation of the data should be simple

and efficient. In addition, the algorithms in

this architecture must be able to correctly

process pieces of data.

2. Mappable. In order to control the streaming

of the data through a pipeline, we must be

able to determine what portion of the input

data is required to generate a given portion

of the output. This allows us to control the

size of the data through the pipeline and to

configure the algorithms.

3. Result Invariant. The results should be in-

dependent of the number of pieces and

independent of the execution mode (i.e.,

single-threaded or multithreaded). This re-

quires proper handling of boundaries and

development of algorithms that are multi-

thread safe across pieces that may overlap

on their boundaries.

In VTK’s demand-driven architecture, con-

sumers of data—such as rendering engines or

file writers—make requests for data that are ful-

filled using a three-step pipeline update mechan-

ism. The first step, UpdateInformation(), is used

to determine the characteristics of the dataset.

This request is made by the consumer of the data

and travels upstream to the source of the data.

For structured data, the resulting information

contains the native data type (such as float or

short), the largest possible extent, expressed as

(imin, imax, jmin, jmax, kmin, kmax), the number of

scalar values at each point, and the pipeline-

modification time. The native data type and

number of scalar values at each point are used

to compute how much memory a given piece of

data requires. The largest possible extent is typ-

ically the size of the dataset on disk. This is useful

in determining how to break the dataset into

pieces and where the hard boundaries are (versus

the boundaries of a piece). The pipeline-modifi-

cation time is used to determine when cached

results can be used.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 606

606 Visualization Software and Frameworks

Many algorithms in a visualization pipeline

must modify the information during the Upda-

teInformation() pass. For example, a 2x image-

magnification algorithm would produce a larg-

est possible extent that was twice as large as its

input. A volume-gradient algorithm would pro-

duce three components of output for every

input component.

The second step, UpdateExtents(), is used to

propagate a request for data (the update extent)

up the pipeline (to the data source). As the

request propagates upstream, each algorithm

must determine how to modify the request—

specifically, what input extent is required for

the algorithm to generate its requested update

extent. For many algorithms, this is a simple

one-to-one mapping, but for others, such as a

2x magnification or gradient computation using

central differences, the required input extent is

different from the requested extent. This is the

origin of the requirement that the algorithms be

mappable. A side effect of the UpdateExtents()

pass is that it returns the total memory required

to generate the requested extent. This enables

streaming based on a memory limit. One simple

streaming algorithm is to propagate a large

update extent, and if that exceeds the user spe-

cified memory limit, then to break the update

extent into smaller pieces until it fits. This re-

quires that the dataset be separable. More flex-

ible streaming algorithms can switch between

dividing a dataset by blocks and dividing it by

slabs and by what axis.

The final step, UpdateData(), causes the visu-

alization pipeline to actually process the data

and produce the update extent that was re-

quested in the previous step. These three steps

require a significant amount of code to imple-

ment, but surprisingly their CPU overhead is

negligible. Typically the performance speedup

provided by better cache locality more than

compensates for the additional overhead of con-

figuring the pipeline. The exception is when

boundary cells are recomputed multiple times

because they are shared between multiple pieces.

This is typical in neighborhood-based algo-

rithms, and it creates a tradeoff between piece

size (memory consumption) and recomputing

shared cells (computation).

This entire three-step process is initiated by

the consumer of the data, such as a writer that

writes to disk or a mapper that converts the

data into OpenGL calls. In both of these cases,

the streaming is effective because the entire

result is never stored in memory at one time.

It is either written to disk in pieces or sent to

the rendering hardware in pieces. We can also

stream it in the middle of a visualization pipe-

line if there is an operation that requires a

significant amount of input but produces a

fairly small output.

The use of streaming within VTK is simple.

Consider the following example. First an in-

stance of an analytical volumetric source is

created. It is then connected to a contour filter

that is itself connected to a mapper. Normally

the mapper would request all of its input data

and then convert the data into graphics primi-

tives, but this behavior can be changed by set-

ting the memory limit on the mapper. The

mapper will then initiate streaming if the

memory consumption exceeds that limit. The

only change required to support streaming in

this example is the addition of the call to Set-

MemoryLimit() on the mapper.

30.3.2 Mixed Topologies

The preceding section described how to stream

structured data. Streaming unstructured data or

mixtures of structured and unstructured data

poses several problems. First, an extent must be

defined for unstructured datasets. With regularly

sampled volumetric data, such as images, an

extent defined as (imin, imax, jmin, jmax, kmin, kmax)

can be used, but this does not work with unstruc-

tured data. With unstructured data, there are a

few options. One is to use a geometric extent,

such as (xmin, xmax, ymin, ymax, zmin, zmax), but it

is an expensive operation to collect the cells that

fit into that extent, and such an extent is difficult

to translate into the extents used for structured

data if they are not axis-aligned (consider a curvi-

linear grid).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 607

The Visualization Toolkit 607

A more practical approach is to define an

unstructured extent as piece M out of N pos-

sible pieces. The division of pieces is made based

on cells so that piece 2 of 10 out of a 1000-cell

dataset would contain 100 cells. The approach

for streaming based on a memory limit is the

same as for structured data, except that instead

of splitting the data into blocks or slabs, the

number of pieces, N, is increased. This fairly

basic definition of a piece dictates that there is

not any control over what cells a piece will

contain, only that it will represent about 1/N

of the total cells of the dataset.

This raises the issue of how to support unstruc-

tured algorithms that require neighborhood in-

formation. The solution is to use ghost cells,

which are not normally part of the current extent

but are included because they are required by the

algorithm. To support this, we extend the defin-

ition of an unstructured extent to be piece M

of N with G ghost levels. This requires that any

source of unstructured grid data be capable of

supplying ghost cells. There is a related issue:

some unstructured algorithms, such as contour-

ing, operate on cells, while others, such as glyph-

ing, operate on points. Points on the boundary

between two different extents will be shared,

resulting in duplicated glyphs when processed.

To solve this we indicate which points in an

extent are owned by that extent and which ones

are ghost points. This way, point-based algo-

rithms can operate on the appropriate points

and yet still pass other points through to the

cell-based algorithms that require them. In the

end, both ghost cells and ghost points are re-

quired for proper processing of the extents.

Consider Fig. 30.7, which shows a piece of a

sphere. The requested extent is shown in red,

and two ghost levels of cells are shown in green

and blue. The points are colored based on their

ownership, so all red points are owned by the

requested extent, and the green and blue points

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 608

Figure 30.7 Streaming pieces of a sphere. (See also color insert.)

608 Visualization Software and Frameworks

indicate ownership of the points by other

extents. Note that some cells use a mixture of

points from different extents.

Now that extents have been defined for both

structured and unstructured data, the conver-

sion between them must be defined. For most

operations that take structured data as input

and produce unstructured data, a block-based

division can be used to divide the structured

data into pieces until there are N pieces as re-

quested. If ghost cells are required, the resulting

extent of the block can be expanded to include

them. If ghost point information is required, it

can be generated algorithmically based on the

largest possible extent and some convention

regarding which boundary points belong to

which extent.

An extent can be converted from unstruc-

tured to structured in a similar manner, except

that it is inappropriate for most algorithms

that convert unstructured data to structured.

Consider a Gaussian-splatting algorithm that

takes an unstructured grid and resamples it to

a regular volume. To produce one part of the

resulting volume requires use of all the cells

of the unstructured grid that would splat into

that extent. With our definition of an unstruc-

tured extent, there is no guarantee that the

cells in an extent are collocated or topologically

related. So generation of one extent of struc-

tured output requires that all of the unstruc-

tured data be examined. While this could be

done within a loop, our current implementa-

tion requires that during translation from a

requested structured extent to an unstructured

extent, the entire structured input be requested.

30.3.3 Distributed Parallel Processing

Most large-scale simulations make use of parallel

processing, and the results are often distributed

across many processing nodes. This distribution

requires that the visualization system be capable

of operating in such an environment. Parallelism

support requires some of the same conditions

as streaming, such as data separability and

result invariance. It also requires methods for

data transfer, asynchronous execution, and col-

lection.

Data transfer is implemented in VTK by cre-

ation of input and output port objects that

communicate between filters (i.e., algorithms)

in different processes. Asynchronous execution

is required so that one process is not unneces-

sarily blocked while waiting for input from an-

other process. Consider a pipeline where one of

its filters (FilterA) has two inputs and its first

input is in another process. The first input re-

quires an input and output port for managing

the interprocess communication. Before FilterA

executes, it must make sure that both of its

inputs have generated their data. A naı̈ve ap-

proach would be to simply ask each input to

generate its data in order. The problem is that

the second input of FilterA is idle while waiting

for the first input to compute its data. To solve

this problem, two modifications are made to the

three-step pipeline execution process. The first

modification is to add a nonblocking method to

the update process. This method—TriggerAsyn-

chronousUpdate()—is used to start the execu-

tion of any inputs that are in other processes.

Essentially, this method traverses upstream in

the pipeline, and when it encounters a port, the

port invokes UpdateData() on its input.

The second modification is to use the locality

of inputs to determine in what order to invoke

UpdateData() on each input. The locality of an

input is a measure of how much of a pipeline

resides within the current process. It ranges

from 1.0 if the entire pipeline from that point

back is within the current process to 0 if it is

entirely in another process. This locality is com-

puted as part of the UpdateInformation() call.

So in the earlier example, TriggerAsynchronous

Update() is sent to the first input of FilterA,

which would cause it to start executing because

it is in a different process. The second input

would ignore the TriggerAsynchronousUp-

date() call since there are no ports between it

and FilterA. Then FilterA would call Update-

Data() on its second input first, since it has the

highest locality. Once it has completed execut-

ing, UpdateData() would be called on the first

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 609

The Visualization Toolkit 609

input, since it began executing after the Trigger-

AsynchronousUpdate() call.

In addition to this parallel support in VTK,

process initialization and communication calls

have been encapsulated into a controller class

so that the application programmer does not

have to directly deal with them. Concrete sub-

classes have been created for distributed-memory

and shared-memory processes using MPI and

pthreads. Likewise, a sort-last, parallel rendering

class is provided that uses interprocess communi-

cation to collect and then composite parallel ren-

derings into a final image. For smaller data that

can be collected onto a single node, centralized

rendering is supported by gathering the polyg-

onal data together using ports connected to an

append filter. Parallel rendering can also be im-

plemented using polygon collection followed by

parallel rendering such as WireGL.

Given our parallel data-streaming architec-

ture, we can create a data-parallel program

simply by writing a function that will be exe-

cuted on each processor. Inside that function,

each processor will request a different extent of

the results based on its processor ID. Each pro-

cessor can still take advantage of data streaming

if its local memory is not sufficient, allowing this

architecture to produce extremely large-scale

visualizations.

30.4 VTK in Application

VTK is widely used in research and commercial

applications. This section highlights two such

applications and describes how the toolkit is

integrated into the GUI.

30.4.1 Binding to the GUI

To facilitate the use of VTK in applications

requiring a GUI, VTK includes support for a

number of different widget sets and languages.

For Tcl/Tk, a Tk widget is available so that a

vtkRenderWindow can be directly embedded

into a Tk application. A Python wrapper exists

for the Tk rendering widget so that the same

approach can be used with Tk-based Python

applications. For Java, VTK provides a Java

AWT–based rendering canvas called vtkPanel.

The vtkPanel can be used like any other AWT-

based widget. Similarly, there is support to

direct-embed a VTK render window into GUIs

based on other toolkits including MFC, FLTK,

Qt, and wxWindows. In all of these cases, the

resulting window is a fully accelerated OpenGL

window as long as the platform supports accel-

erated OpenGL. In most of these cases, the

application programmer has the option of

handling windowing system events in their ap-

plication code or using the standard VTK event

loop and command/observer mechanisms.

30.4.2 3D Widgets

The command/observer design pattern and GUI

binding techniques described previously offer

powerful capabilities by which we can build

complex, interactive applications. However,

this functionality is relatively low level and

oriented towards skilled developers. Many

tasks require complex interaction between the

user and the visualization system. For example,

positioning a data probe to obtain numerical

values or clipping data with an oriented plane

requires the user to manipulate and orient

objects in the scene. Programming such func-

tionality requires significant effort with the

tools described previously, and common tasks

have been encapsulated into the concept of

a 3D widget. Similar to the pervasive 2D

widgets found in modern user interfaces, 3D

widgets have the added challenge of operating

in one more depth dimension.

VTK offers a palette of more than a dozen

widgets, as shown inFig. 30.8. VTK’s 3Dwidgets

can be used to position points, lines, planes,

boxes, and spheres. Specialized widgets are used

to view orthogonal planes in volumes, manipu-

late splines, and position scalar bars (i.e., the

color legend associated with scalar values).

Most of the widgets provide positioning and

transformation information. Many also provide

implicit functions (f(x, y, z) ¼ constant), such

as the planes and spheres used in VTK to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 610

610 Visualization Software and Frameworks

cut, clip, and extract data. The widgets also

provide primitives, such as points and lines

that can be used to seed streamlines or probe

data.

3D widgets are subclasses of the abstract class

vtkInteractorObserver. This class observes

mouse and keyboard events that are invoked

by VTK’s render-window class. The widgets

respond to registered events, modify themselves

as appropriate, and invoke higher-level events

that the application can observe. For example,

selecting the endpoint of a line widget allows the

user to interactively position the endpoint. As

the point moves, InteractionEvents are invoked

by the line widget. When the endpoint is re-

leased (on mouse up), an EndInteractionEvent

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 611

0.710

0.582

0.326

0.454

0.198

Temperature

vtk ScalarBar Widget vtkPointWidget vtkLineWidget

vtkPlane Widget vtkImplicitPlaneWidget vtkBoxWidget

vtkImagePlaneWidget vtkSphereWidget vtkSplineWidget

Figure 30.8 Palette showing some of VTK’s 3D widgets. (See also color insert.)

The Visualization Toolkit 611

is invoked. The application can respond to these

events as appropriate—by, for example, seeding

a streamline or producing an x-y plot along a

line.

30.4.3 ParaView

ParaView is an open-source, turnkey application

for general-purpose scientific visualization built

on top of VTK [11]. Primary design goals include

supporting large-data visualization using distrib-

uted parallel processing, as well as serving as a

customizable, extensible platform (via XML-

configured modules and Tcl/Tk scripts) that can

be readily configured to address a variety of ap-

plication areas. ParaView employs a data-paral-

lel model with MPI and supports advanced

rendering functionality including tiled display

[10] support and the ability to automatically

switch to using parallel composite rendering

when data becomes large. ParaView makes ex-

tensive use of the VTK 3D widgets, including the

point, line, plane, and scalar bar widgets. Fig.

30.9 is a screen shot of ParaView in action.

30.4.4 VolView

VolView is a commercial volume-visualization

application built with VTK [12]. It provides an

intuitive, interactive interface that enables re-

searchers and clinicians to quickly explore com-

plex 3D medical or scientific images. Novice

users can easily generate informative images to

include in patient reports and presentations.

Data exploration and analysis are enhanced by

tools such as filtering, contours, measurements,

histograms, and annotation. VolView versions

2.0 and later support a plug-in architecture that

enables complex image processing and segmen-

tation tools to be added to the system at run

time. These plug-ins can be written by the user

and interfaced to VolView using a simple C-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 612

Figure 30.9 Flow over a delta wing visualized with ParaView. (See also color insert.)

612 Visualization Software and Frameworks

language API. VolView takes advantage of

VTK’s integrated image processing, 3D surface

graphics, and volume rendering capabilities to

produce sophisticated visualizations for a var-

iety of medical, scientific, geophysical, and im-

aging applications. Fig. 30.10 is a screenshot of

VolView being used to visualize a portion of the

Visible Human dataset [13].

References

1. W. Hoffman and K. M. Martin. The CMake
build manager. Dr. Dobb’s Journal, 2003.

2. DART software quality regression testing
system, http://public.kitware.com/Dart/HTML/
Index.shtml

3. W. J. Schroeder, K. M. Martin, and W. E. Lor-
ensen. The Visualization Toolkit: An Object-
Oriented Approach to Computer Graphics (3rd
Ed.) Kitware, Inc., 2003.

4. The Doxygen documentation system, http://
www.doxygen.org.

5. W. E. Lorensen and B. Yamrom. Object-oriented
computer animation. Proceedings of IEEE NAE-
CON, 2:588–595, 1989.

6. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modelling and
Design. Englewood Cliffs, NJ, Prentice-Hall,
1991.

7. VolumePro, http://www.rtviz.com/products/volu-
mepro_ prod.html

8. C. C. Law, K. M. Martin, W. J. Schroeder, and
J. E. Temkin. A multi-threaded streaming pipe-
line architecture for large structured data sets.
Proc. of Visualization ’99, 1999.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 613

Figure 30.10 Visible Human dataset visualized with VolView. (See also color insert.)

The Visualization Toolkit 613

9. E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-OrientedSoftware.AddisonWesley,1995.

10. K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook,
S. Damianakis, G. Essl, A. Finkelstein, T.
Funkhouser, A. Klein, Z. Liu, E. Praun, R.
Samanta, B. Shedd, J. P. Singh, G. Tzanetakis,
and J. Zheng. Early experiences and challenges

in building and using a scalable display wall
system. IEEE Computer Graphics and Applica-
tions, 20(4):671–680, 2000.

11. ParaView, http://www.paraview.org
12. VolView, http://www.kitware.com/products/vol-

view.html
13. The Visible Human Project, http://www.nlm.

nih.gov/research/visible/visible_human.html

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:18pm page 614

614 Visualization Software and Frameworks

31 Visualization in the SCIRun
Problem-Solving Environment

DAVID M. WEINSTEIN, STEVEN PARKER, JENNY SIMPSON,

KURT ZIMMERMAN, and GREG M. JONES

Scientific Computing and Imaging Institute

University of Utah

31.1 Introduction to SCIRun

31.1.1 Motivation and History

Located at the crossroads of scientific applica-

tions, computer science, and numerical methods

is the emerging field of computational science.

With strongholds in applications ranging from

chemistry to physics and genetics to astronomy,

computational science is growing into promin-

ence throughout the scientific world, taking a

position next to ‘‘theoretical’’ and ‘‘experimen-

tal’’ as another branch of nearly every scientific

discipline.

Each scientific discipline has its own termin-

ology and its own specific problems of interest.

But from a broader perspective, their similarities

often outnumber their differences. Many prob-

lems of interest are based around a physical

model of some system or domain; these problems

often attempt to predict the result of well defined,

equation-driven processes that take place within

that domain; and the solutions to these problems

are often most easily understood when recast

intoan interactivevisual representation.Further,

it is often not sufficient to run a single simulation

of a system; the scientist typically wants to inves-

tigate and explore the problem space, setting up

different initial conditions, system parameters,

and so on, and then comparing the results.

Because of these common circumstances, it

seems plausible that a general-purpose frame-

work could be designed to assist scientists and

engineers from a broad range of disciplines in

investigating their respective computational sci-

ence problems. Such a framework could be

thought of as a ‘‘computational science work-

bench’’; it would give a scientist a broad range

of tools at hand for modeling, simulating, visual-

izing, and iteratively exploring a problem space.

The framework would be an easy-to-use visual

programming environment where the scientist

could dynamically hook together computational

components, just as a different scientist might

hook together mechanical components in a la-

boratory. And, perhaps most importantly for

scientists working on large-scale problems, the

framework would have to be extremely efficient

in the way it managed and processed data.

At the Scientific Computing and Imaging In-

stitute (SCI) at the University of Utah, we set

out to produce such a computational architec-

ture beginning in the early 1990s. Our frame-

work, called SCIRun (pronounced ‘‘ski-run’’),

was initially developed by a handful of graduate

students, and it was targeted at the simulation

of bioelectric field problems as its initial appli-

cation [6,14]. Through the mid-1990s, SCIRun

grew into a more robust platform as it was

applied to more applications, including cogni-

tive neuroscience and atmospheric simulation

[4,15,23]. In 1997 and 1998, the SCI Institute

was awarded Center grants from the National

Institutes of Health (NIH) and the Department

of Energy (DOE), respectively, to continue the

research, development, and support of the

SCIRun system.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 615

615

31.1.2 Overview: Data-Flow Terminology

As an infrastructure, the SCIRun computational

problem-solving environment is a powerful col-

lection of high-performance software libraries.

These libraries provide many operating system–

type services, such as memory and thread man-

agement and interthread communication and

synchronization, as well as development utilities,

such as geometry, container, scene-graph, and

persistent I/O classes.

While the SCIRun infrastructure is complex

and is likely to be somewhat opaque to those

who are not computer scientists, SCIRun’s ex-

terior layers are, in contrast, easy to use, extend,

and customize. The SCIRun user-level program-

ming environment, described earlier as a ‘‘com-

putational workbench’’, is a visual data-flow

environment that facilitates rapid development.

Fig. 31.1 shows an example of the SCIRun visual

programming environment.

The boxes on the canvas are called modules,

and the wires connecting them are called data-

pipes. Each module encapsulates a function or

algorithm, and the datapipes carry input and

output data between them. Taken as a whole,

the group of modules and datapipes comprise a

dataflow network or net. At run time, users can

interactively instantiate, destroy, and reconnect

new modules. In addition to datapipe I/O, each

module also has the option of exposing add-

itional input and output parameters through a

graphical user interface (GUI). For example, as

shown in Figs. 31.2 and 31.3, the SolveMatrix

module is a linear solver that exposes input

parameters, such as the solver method and the

maximum error tolerance, and also reports

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 616

Figure 31.1 A SCIRun data-flow network. Each module encapsulates a function or algorithm, while the data pipes carry input

and output data between the modules.

616 Visualization Software and Frameworks

output parameters, such as convergence plots

for iterative solvers.

For the SolveMatrix module, we implemented

several solvers natively within SCIRun. We have

also, however, left placeholders for users to link

in other solvers. This coupling of native support

and optional hooks for extensibility has been a

design pattern for SCIRun. In the SolveMatrix

example (Fig. 31.3) we implemented Conjugate

Gradient, Biconjugate Gradient, and Gauss-

Seidel solvers; anyone downloading SCIRun

will have immediate access to these methods.

Then, in order to provide support for additional

solvers, we created a bridge to the PETSc li-

brary. If a user chooses to download and

install PETSc, he or she can configure SCIRun

to use it, and the full set of PETSc solvers can

then be leveraged within SCIRun. We have also

applied this bridging mechanism to allow users

to access the ImageMagick and MPEG libraries

for saving images and movies, respectively.

Additionally, this same bridging solution has

been implemented to allow MATLAB users the

ability to run their MATLAB scripts from

within SCIRun. By leveraging other libraries

and applications, we are able to stay focused

on developing high-performance infrastructure

and easy-to-use interfaces while still providing

support for a wide range of application func-

tionality. Shown in Fig. 31.4 is an example of

one such bridge, where Genesis has been con-

nected to SCIRun for the visualization of a

combined genesis/SCIRun simulation of the

bioelectric field between two Aplysia motor

neurons.

31.1.3 The Visualization Pipeline

Atypical visualization algorithm, suchas stream-

line advection, works by computing sample

positions, evaluating the value of the field at

those positions, and creating a geometric repre-

sentation for those values and positions. This

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 617

Figure 31.2 An example of a SCIRun module. The Solve-

Matrix module is a linear solver that exposes input param-

eters such as the solver method and the maximum error

tolerance and also reports output parameters such as con-

vergence plots for iterative solvers. The ‘‘UI’’ button pro-

duces a module-specific interface, allowing the user to adjust

parameters specific to that module.

Figure 31.3 The SolveMatrix user interface (UI). This UI

allows the user to interact with the model. In this case, the

UI allows the user to chose various solvers, such as the

Conjugate Gradient, Biconjugate Gradient, and Gauss-

Seidel. The convergence of the solver is also displayed in

the UI. In order to provide support for additional solvers,

there is also a bridge to the PETSc library.

Visualization in the SCIRun Problem-Solving Environment 617

three-step process is common to many visual-

ization methods: isosurfacing, streamlining,

volume rendering, tensor-field rendering, sur-

face-potential mapping, cutting-plane rendering,

etc. Typically, a particular visualization algo-

rithm will implement all three of these steps

itself. Such an approach results in substantial

coding inefficiencies. For example, the same geo-

metric representations may be of interest in mul-

tiple visualization techniques (e.g., rendering

pseudo-colored surfaces is common to surface-

potential mapping, cutting-plane rendering, and

often isosurfacing). In the spirit of modular pro-

gramming and reusable components, we have

pipelined (or ‘‘networked’’) the majority of our

visualization methods, and there are inter-

changeable modules available for each of the

three stages.

31.2 SCIRun Visualization Tools

There exist a number of tools that are easily

accessible within the SCIRun system. The

following sections are a rundown of this tool-

set.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 618

Figure 31.4 The simulation of two Aplysia motor neurons using the bridging capabilities between Genesis and SCIRun. First,

Genesis solves the time-dependent Hodgkin-Huxley equations for each compartment in each cell. One result of the Genesis

simulation is a calculation of neuron membrane current density, which is passed to SCIRun through a SQL database. SCIRun

uses the current density to solve the forward field problem in the volume surrounding the cell. In this picture, streamlines show

current flow within the volume; voltage is encoded by color (blue is negative; red is positive). Image courtesy of Chris Butson,

University of Utah, Department of Bioengineering. (See also color insert.)

618 Visualization Software and Frameworks

Tools for the Visualization of Scalar Fields
. Isosurface: Visualize isosurfaces of a volume

or isocontours on a surface. Can use March-

ing Cubes or NOISE algorithm. Can specify

a single iso-value, a list of iso-values, or a

range and quantity for evenly spaced iso-

values.

. Volume rendering/MIP (via 3D textures).

. Cutting plane (via 3D textures).

. Color-mapped geometry (ShowField): Visu-

alizes the geometry that makes up a mesh

inside a field. Where possible, the field takes

its color from the data values that permeate

the field.

Tools for the Visualization of Vector Fields
. Streamlines: The StreamLines module

visualizes vector fields by generating curves

that interpolate the flow of vectors in a

field.

. Vector glyphs (ShowField): The ShowField

module visualizes the geometry that makes

up a mesh inside a field. Where possible, the

field takes its color from the data values that

permeate the field.

. ShowDipoles: The ShowDipoles model

allows the user to edit vector positions and

orientations via widgets.

Tools for the Visualization of Tensor Fields
. Glyphs: ellipsoids, colored boxes.

. Tensorlines.

Tools for Quantitative Visualization
. ShowLeads: The ShowLeads module graphs

a matrix that has rows of potentials.

. ErrorMetric: The ErrorMetric module com-

putes and visualizes error between two

vectors.

. ShowField: The ShowField module visual-

izes the geometry that makes up a mesh

inside a field. Where possible, the field takes

its color from the data values that permeate

the field.

. ShowColorMap: The ShowColorMap mo-

dule creates a geometry overlay containing

the input color map and numerical values for

its range.

31.3 Remote and Collaborative
Visualization

In the last few years, scientists and researchers

have given a great deal of attention to the area of

remote visualization of scientific datasets within

collaborative environments. Remote visualiza-

tion refers to the process of running an applica-

tion on one machine, often a supercomputer,

and viewing the output on another machine in

a different geographical location. Collaborative

visualization is the use of tools (chat windows,

annotations, synchronous viewing controls, etc.)

that enable multiple geographically separated

collaborators to directly exchange and simul-

taneously view information related to specific

visualizations.

The recent interest in these tools has developed

because researchers often use interactive viewing

as their primary method of exploring large data-

sets. Researchers often need to extend this inter-

activity in order to collaborate remotely with

colleagues. Additionally, the ability to use

remote high-end computation resources is also

driving the need for remote visualization tools.

Certainly, visualization on grid based systems is

also a driving demand for remote visualization

tools.

Remote and collaborative visualization is

by no means a new problem. In fact, many

algorithms have been developed as solutions.

General strategies available for achieving

remote visualization fall into four rough cat-

egories:

1. Traditional XWindows remote display.

2. Image pixel streaming.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 619

Visualization in the SCIRun Problem-Solving Environment 619

3. Geometry/texture rendering.

4. Some hybrid of these three methods.

While most remote-visualization tools based on

the aforementioned methods successfully allow

multiple parties to view images from different

locations, most also face problems with effi-

ciency and user interactivity at some level.

In general, popular recent approaches that

have addressed these shortcomings focus on im-

proving two different areas of remote visualiza-

tion:

1. Increasing network bandwidth utilization.

2. Adjusting the amount of rendering per-

formed on a local server versus on a remote

client in order to optimally utilize resources,

such as available bandwidth between the

server and the client.

In particular, researchers and developers often

use the client–server paradigm as a logical

means to partition rendering responsibilities,

efficiently utilizing valuable resources on both

local and remote machines.

31.3.1 Current Work on Remote and
Collaborative Visualization in SCIRun

Ourwork in implementing remote and collabora-

tive visualization functionality in SCIRun has

been largely experimental thus far. To this end,

we built upon a prototype remote-visualization

application that applies the client–server para-

digm, along with several rendering methods,

as an attempt to offer greater flexibility for

remote viewing. In addition to using multiple

rendering methods, we have experimented with

different networking protocols for data transfer

to compare efficiency and accuracy. While we

have learned a great deal from our research

with this prototype application, we have run

into fundamental design problems that have

prompted us to slight our remote visualization

extension for redesign as a component in the

design of the next generation of SCIRun, which

will see the SCIRun system move toward a com-

ponent architecture.

Presently, standard XWindows remote view-

ing is used for remote display of SCIRun.

31.3.2 Future Work on Remote and
Collaborative Visualization in SCIRun

The future of remote and collaborative visual-

ization in SCIRun is closely tied to the

Common Component Architecture (CCA) that

is planned for SCIRun2. Roughly, the long-

term plan for SCIRun (SCIRun2) is to consider

everything to be a component, including the

computing modules and the user interface. Pre-

sumably, the remote client will be a component

that uses a CCA protocol to communicate with

other components.

As for our rendering method, our current

plan is to utilize a hybrid of XWindows remote

display and image streaming to transfer image

data from the computing engine to the remote

client.

In the process of designing the remote visual-

ization component, we will adhere to a list of

user-driven requirements. These include the

following:

. Minimum x frames per second.

. UI that matches SCIRun local UI, both visu-

ally and functionally.

. Synchronized image manipulation for mul-

tiple remote viewers with locked controls.

. Exact representation of models, or level of

detail (LOD) control-usability with ‘‘dumb’’

client machine.

. Usability with limited network bandwidth.

. Chat window.

. Annotation layer.

. Compliance with SCIRun2 architecture and

communication protocols.

. Possible ability to record and replay sessions.

The end goal is to have a remote user interface

that has the same appearance and functionality

as the local SCIRun user interface, but with

added collaborative tools and remote viewing

capabilities.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 620

620 Visualization Software and Frameworks

31.4 SCIRun Applications

As mentioned above, one of the original appli-

cations of SCIRun was in bioelectric field prob-

lems. With the award of our NCRR grant from

the NIH to create the Center for Bioelectric

Field Modeling, Simulation, and Visualization,

we have continued to focus on bioelectricity

with the creation of modules, networks, and

documentation to allow users to investigate

both forward and inverse bioelectric field prob-

lems. In order to keep the core of SCIRun on a

general-purpose level, we have created a separ-

ate package to house the components that are

specific to bioelectricity. Taken together, the

BioPSE Package and the SCIRun architecture

comprise the BioPSE System [21], which is

shown in Fig. 31.5. Similarly, the Uintah Pack-

age [1,9,13] is an extended set of functionality

that targets combustion simulation. In fact, a

number of grants have now leveraged the

SCIRun core, adding specific components to

address the needs of different various applica-

tions. These applications range from bioelectric

fields to combustion simulation to magnetic

fusion. Each of these applications is briefly de-

scribed below.

31.4.1 Modeling, Simulation, and
Visualization of Bioelectric Fields

Our hearts and brains are electric organs. Elec-

tric activation at the cellular level causes the

heart to beat, and it is the basis underlying our

cognitive processes. However, unlike neuro-

transmitters and metabolic processes, electric

patterns can be instantly detected at sites remote

from the position of activation. By placing an

ECG electrode on a patient’s chest, we can

‘‘watch’’ the series of electrical events that

make up a heart beat; by placing EEG elec-

trodes on a patient’s head, we can ‘‘watch’’

the electric activity as the patient thinks and

reacts.

Cardiologists and neurologists are primarily

interested in two types of bioelectric field prob-

lems: the forward problem and the inverse prob-

lem [19]. In the forward problem, the question

at hand is, given a pattern of source activation,

what level of electric activity would result

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 621

BioPSE
Package

Uintah
Software
System SCIRun

BioPSE
Software
System

Uintah
Package

Figure 31.5 The relationship of the core infrastructure of SCIRun to the specialty packages BioPSE and Uintah. In order to

keep the core of SCIRun general purpose, we have created a separate package to house the components that are specific to

bioelectricity. Taken together, the BioPSE Package and the SCIRun architecture comprise the BioPSE System. Similarly, the

Uintah Package is an extended set of functionality targeting combustion simulation.

Visualization in the SCIRun Problem-Solving Environment 621

through the rest of the domain [20] (see Fig.

31.6). Such studies are used in the investigation

of internal implantable defibrillator designs.

The inverse problem is typically more inter-

esting, though it is unfortunately also less

numerically stable: given a set of remote meas-

urements, determine the position and pattern of

source activation that gave rise to those remote

measurements [17] (see Fig. 31.7).

The equations governing the flow of electricity

through a volume conductor are well under-

stood. The goal of the Bioelectric Problem Solv-

ing Environment (BioPSE) is to simulate those

governing equations using discrete numeric ap-

proximations [22]. By building a computational

model of a patient’s body and then mapping

conductivity values over the entire domain, we

can accurately compute how activity generated

in one region would be remotely measured in

another region. The tools for modeling, simulat-

ing, and visualizing these bioelectric field phe-

nomena comprise BioPSE.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 622

Figure 31.6 A visualization of a SolveMatrix convergence. In this case, an electric dipole is placed near the heart inside the

Uintah torso model. The electric field set up by this dipole is visualized by color-mapped streamlines. Also visualized is the surface

potential (indicated by color-mapped spheres on the surface of the torso) and a field potential isosurface (green surface inside the

torso). This visualization was produced using the BioPSE forward-fem net with the movable dipole widget. (See also color insert.)

622 Visualization Software and Frameworks

31.4.2 Visualization for the Study of
Magnetic Fusion

Alternate energy sources are becoming increas-

ingly important as the world’s finite resources,

such as fossil fuels, are depleted. One promising

source of unlimited energy is controlled nuclear

fusion. Magnetic fusion in particular is a type of

nuclear fusion in which scientists harness energy

by using magnetic fields to confine fusion reac-

tions taking place within hot plasma. Since

magnetic fusion research is computationally in-

tensive, many software tools are needed to sup-

port it. Visualization tools are particularly

critical in helping fusion scientists analyze their

data. As part of our work within the DOE and

SciDAC–sponsored National Fusion Colla-

boratory (http://www.fusiongrid.org/), we have

created the Fusion package in SCIRun in

order to help meet this need [3,18].

Specifically, the Fusion package in SCIRun is

designed to satisfy the goal of providing fusion

scientists with visualization software tools that

allow exploration of their data on a Linux

workstation. The Fusion package consists of a

set of SCIRun modules that, in concert with

other standard SCIRun modules, allow the

reading, visualization, and analysis of fusion

data that is in MDSPlus format. The system

provides fusion researchers with flexible visual-

ization options and the feedback they need in

order to properly adjust input parameters for

the next iteration of data processing.

Currently, data generated using theNIMROD

simulation code package [24] is being used as a

test bed for development of the SCIRun Fusion

package, with the extension of the SCIRun

package to other data sources planned in the

near future. The NIMROD package is publicly

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 623

Figure 31.7 A visualization of an inverse EEG simplex search produced by the dipole-localization net. The accuracy of the

solution at each electrode position is also shown (disks show measured voltage; spheres show computed voltage), the view

window shows simplex dipoles as four arrows (connected with lines), and the test dipole is shown as a sphere. Also shown are the

error metrics plotted for this particular solution. (See also color insert.)

Visualization in the SCIRun Problem-Solving Environment 623

available (http://www.nimrodteam.org/) and was

designed to study 3D, nonlinear electromagnetic

activity in laboratory fusion experiments while

allowing a large degree of flexibility in the geom-

etry and physics models used in simulations.

Using the visualization capabilities offered in

the the SCIRun Fusion package makes it

possible to visualize how the magnetic field

moves within the pressure field represented in

a NIMROD dataset. In this paradigm, the

NIMROD simulations are done on supercom-

puters, and then SCIRun running on a Linux

desktop is used to analyze the resulting data in

order to appropriately adjust parameters for the

next simulation.

An instantiation of the visualization pipeline

created for NIMROD data includes the follow-

ing steps. Once the NIMROD data is in SCIRun,

a hexahedron mesh is built using the EditFusion-

Field module, which takes into account toroidal

geometry and then infuses it with the pressure

values at the nodes using the ManageField

module. Next, the data is passed downstream to

several of the visualization modules available in

SCIRun.

The simplest and most general visualization

module is the ShowField module, which dis-

plays a visual representation of the pressure

values. The user can also pass in a ColorMap

to the second port, which will translate the pres-

sure values into colors in the rendering.

The next visualization module in the pipeline is

the Isosurface module. Given a scalar field, the

isosurface module will extract triangular faces

that approximate the ovule surface through the

domain. Since the input is pressure, isobaric sur-

faces are generated using this module. As with

the ShowField module, the pressure values are

again mapped to color via an input ColorMap.

With the help of a user interface, a user can

choose from several different isosurface extrac-

tion algorithms and can set a number of extrac-

tion and display options.

Using this visualization pipeline, researchers

are provided with the feedback needed to adjust

their input parameters for the next iteration of

data processing. In the case of the NIMROD

data, SCIRun makes it possible to visualize how

the magnetic field moves within the pressure

field of the dataset (see Figs. 31.8 and 31.9).

The long-term goals for the Fusion package

are to develop a generalized visualization sys-

tem that can support a wide variety of fusion

data and to bring more of the computing por-

tion of the fusion visualization pipeline into

SCIRun itself.

31.4.3 The Simulation of Accidental Fires
and Explosions

Our work in this area was funded by the DOE

as part of the Accelerated Strategic Computing

Initiative (ASCI) to form the Center for the

Simulation of Accidental Fires and Explosions

(C-SAFE). This work is primarily focused on

the numerical simulation of accidental fires and

explosions, especially within the context of

handling and storage of highly flammable ma-

terials (Fig. 31.10). The objective of C-SAFE is

to provide a system that comprises a problem-

solving environment in which fundamental

chemistry and engineering physics are fully

coupled with nonlinear solvers, optimization,

computational steering, visualization, and ex-

perimental data verification. For this work, a

derivative of SCIRun coined Uintah has been

developed [1,5,13,17]. The Uintah PSE has been

built specifically to handle very large datasets,

which are typical in the C-SAFE work. In this

case, attempting to render an entire dataset can

easily overwhelm the graphics hardware. To

help us explore these datasets, we have incorp-

orated into Uintah/SCIRun a multiresolution

and a multipipe volume renderer.

31.4.3.1 Multiresolution Volume Rendering

Multiresolution techniques enable interactive

exploration of large-scale datasets while provid-

ing user-adjustable resolution levels on a single

graphics pipe. A user can get a feel for the entire

dataset at a low resolution while viewing certain

regions of the data at higher resolutions. A

texture-map hierarchy is constructed in a way

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 624

624 Visualization Software and Frameworks

that minimizes the amount of texture memory

with respect to the power-of-two restriction

imposed by OpenGL implementations. In

addition, our hierarchical LOD representation

guarantees consistent interpolation between

different resolution levels. Special attention

has been paid to the elimination of rendering

artifacts that are introduced by noncorrected

opacities at level transitions. Through adapta-

tion of the sample slice distance with regard to

the desired LOD, the number of texture

lookups is reduced significantly, improving

interaction.

31.4.3.2 Multipipe Volume Rendering

Multipipe techniques allow for interactive ex-

ploration of large-scale data at full resolution.

Textures and color transfer functions are

distributed among several rendering threads

that control the rendering for each utilized

graphics pipe or graphics display. On each draw

cycle, view information and windowing infor-

mation are stored in a shared data structure.

While rendering is performed, compositing

threads are supplied with the composite order

for each partial image. Upon completion of the

rendering, the rendering threads store the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 625

Figure 31.8 A simulation of an experiment inside a Tokomak Fusion Reactor, visualized with the SCIRun Fusion package.

This image is of NIMROD simulation data showing an isosurface of the n ¼ 0 part of the pressure field (yellow), which shows

the 1/1 structure, and an isosurface of the n ¼ 2 part of the toroidal current field (green), which shows the developing 3/2

structure. Between the two isosurfaces is a streamline using the sum of the n ¼ 0, n ¼ 1, and n ¼ 2 modes of the magnetic field

(red). The underlying model consists of a toroidal grid with 737,280 nodes (in 10 arbitrary phi slices) with 22 time-slices. Image

provided by Dr. Allen Sanderson and the National Fusion Collaboratory, with support from the US Department of Energy

SciDAC initiative. (See also color insert.)

Visualization in the SCIRun Problem-Solving Environment 625

resulting image in a local structure. When all

renderers have completed, compositing threads

copy the partial images to a final image buffer,

using alpha blending techniques. Care is taken

to prevent blending of artifacts in the final

image by properly overlapping the texture data

sent to each renderer and by premultiplying the

colors in the transfer function by their corre-

sponding alpha values.

31.4.4 Radiology and Surgical Planning

Most imaging systems currently used in medical

imaging generate scalar values arranged in a

highly structured rectilinear grid. These fields

can be visualized by a variety of methods, in-

cluding isosurface extraction, direct volume

rendering, and maximum intensity projections

(MIPs). The key difference between these tech-

niques is that isosurfacing displays actual sur-

faces, while the direct volume rendering and

MIP methods display some function of the

values seen along a ray throughout the pixel.

Ideally, the display parameters for each tech-

nique are interactively controlled by the user.

Interactivity is fast becoming a fundamental

requirement of medical visualizations. While

just a few years ago, radiologists and surgeons

viewed inherently 3D images as 2D films, the

use of interactive, 3D visualization tools has

recently blossomed in medical imaging. This is

certainly true in the field of surgical navigation.

Interestingly, the radiological exams of today

are generating very large datasets (tens to hun-

dreds of megabytes (MB)), making interactivity

a challenging requirement. While the commod-

ity graphics card is making great strides, it is

only recently that a texture memory of 256 MB

has been introduced. The medical imaging com-

munity is continually increasing the resolution,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 626

Figure 31.9 A simulation of an experiment inside a Tokomak Fusion Reactor, visualized with the SCIRun Fusion package.

This is frame one of two from a time sequence showing the stochastic nature of the real-space magnetic field lines. A comparison

of the two frames shows that the magnetic field lines start to diverge earlier as time progresses. The field lines are overlaid in a

volume rendering of the pressure field, which provides visual cues to the location while rendering the plasma velocity-vector

field. Image provided by Dr. Allen Sanderson and the National Fusion Collaboratory with support from the US Department of

Energy SciDAC initiative. (See also color insert.)

626 Visualization Software and Frameworks

power, and size of their imaging tools, and

consistently outpacing the graphics-card indus-

try. Meanwhile, the medical imaging research

community is now producing datasets in the

multigigabyte range with new-generation small

animal imagers.

Several visualization tools incorporated in

SCIRun have been applied specifically to large

medical datasets. Examples of these tools are

volume bricking and ray-tracing.

31.4.4.1 Volume Bricking

While volume rendering can be performed in

hardware on most modern graphics processing

units (GPUs) via 3D texture mapping, the

amount of memory available on a particular

GPU (commonly referred to as ‘‘texture mem-

ory’’) limits the size of the models that can be

volume-rendered. With large-scale data, it is not

uncommon for adataset to be several times larger

than the available GPU memory. A common

solution is to break the dataset up into smaller

chunks, each of which is small enough to fit into

the memory at hand. This process is known as

bricking [12]. The bricks are then loaded into

texture memory one at a time. After each brick is

loaded, the corresponding texture is mapped to a

series of polygons drawn perpendicular to the

view. To avoid artifacts, bricks are sorted from

farthest to nearest, based on the location of the

viewpoint and the location of the brick.Onemust

also take care to make sure that polygons drawn

in neighboring bricks are aligned, in order to

avoid artifacts at the brick boundaries.Using this

volume-bricking approach, datasets that are

many times larger than the available GPU

memory can be processed and rendered nearly

interactively.

31.4.4.2 Interactive Ray-Tracing

The basic ray-volume traversal method used in

our ray-tracer allows us to implement volume-

visualization methods that find exactly one value

along a ray. Fundamentally, for each pixel of the

image a ray is traced through a volume to

compute the color for that pixel. The computa-

tional demand of ray-tracing is directly depen-

dent upon the number of pixels (i.e., resolution of

the viewing screen) being used, and it is less

dependent on dataset size and allows both

interactive isosurface extraction and MIP on

very large datasets.

The ray-volume traversal method has been

implemented as a parallel ray-tracing system

that runs on both an SGI Reality Monster [12],

which is a conventional shared-memory multi-

processor machine [12], and a Linux cluster with

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 627

Figure 31.10 A simulation of a heptane pool fire. The

simulation was done using the Uintah derivative of SCIRun,

and visualization was done using the ray-tracing package

described in Section 31.4.4.2. This image is courtesy of the

Center for the Simulation of Accidental Fire and Explosions

(C-SAFE), working under funding from the Department of

Energy as part of the Accelerated Strategic Computing Ini-

tiative (ASCI) Academic Strategic Alliance Program

(ASAP). (See also color insert.)

Visualization in the SCIRun Problem-Solving Environment 627

distributed memory [12]. To gain efficiency, sev-

eral optimizations are used, including a volume-

bricking scheme and a shallow data hierarchy.

The graphics capabilities of the Reality Monster

or cluster are used only for display of the final

color image. This overall system is described in a

previous paper [11]. Conventional wisdom holds

that ray-tracing is too slow tobe competitivewith

hardware z-buffers [25]. However, when one is

rendering a sufficiently large dataset, ray-tracing

should be competitive because its low time com-

plexity ultimately overcomes its large time con-

stant [7]. This crossover will happen sooner on

a multiple CPU computer because of ray-

tracing’s high degree of intrinsic parallelism.

The same arguments apply to the volume-tra-

versal problem.

31.4.4.3 Examples of Ray-Tracing of
Large Datasets

. The Visible Female: The Visible Female

dataset, available through the National Li-

brary of Medicine as part of its Visible

Human Project [10], was used to benchmark

this ray-tracing method (Fig. 31.11). Specif-

ically, we used the computed tomography

(CT) data, which was acquired in 1 mm

slices with varying in-slice resolution. This

rectilinear data is composed of 1,734

slices of 512� 512 images at 16 bits. The

complete dataset is 910 MB. For the skin

isosurface, we generated 18,068,534 poly-

gons. For the bone isosurface, we generated

12,922,628 polygons. With these numbers

of polygons, it would be challenging to

achieve interactive rendering rates on con-

ventional high-end graphics hardware. Our

method can render a ray-traced isosurface

of this data at multiple frames/s using

a 512� 512 image on multiple processors

(for exact performance measures, see Parker

et al. [12].

. Small Animal Imaging: A recent example

of ray-tracing is the work done by Dr. Rich-

ard Normann and his group at the Univer-

sity of Utah [8]. In this case, a relatively

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 628

Figure 31.11 A maximum intensity projection (MIP) of the

1-GB Visible Female dataset using ray-tracing. The MIP

algorithm seeks the largest data value that intersects a par-

ticular ray. Ray-tracing allows interactive visualization of

the MIP of this dataset. (See also color insert.)

628 Visualization Software and Frameworks

small dataset of 131 MB was rendered inter-

actively across approximately 20 processors

on an SGI Origin 3800. Again, no graphics

hardware was required for the rendering,

only to display the image. The imaging was

used to examine an implantation of the Utah

Electrode Array (Fig. 31.12, inset) into the

cochlear nerve of a feline. In this case, the

investigators used high-resolution CT im-

aging of the cat’s head to verify the location

of the electrode array in the cochlear nerve.

The imaging was accomplished with a GE

EVS-RS9 small-animal computed tomog-

raphy (CT) scanner. There are distinct CT

values for air, soft tissue, bone, and the elec-

trode array, enabling the use of a combin-

ation of ray-tracing and volume rendering to

visualize the array in the context of the sur-

rounding structures, specifically the bone

surface. Visualization results were improved

when the voxels outside the electrode array

were smoothed in order to better distinguish

the bony structures.

The small-animal imaging systems, such as

the CT scanner used in this work, are capable

of producing extremely large datasets, in the

4- to 6-GB range. Additionally, the combination

of multiple datasets from multiple imaging

modalities, such as micro CT and micro posi-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 629

Figure 31.12 Visualization of the Utah Electrode Array embedded in the cochlear nerve of a cat. The insert is a picture of

the Utah Electrode Array. The 27-micron resolution of the CT scan allows definition of the cochlea, the modiolus (right), the

implanted electrode array, and the lead wires (in purple) that link the array to a head-mounted connector. The resolution of

the scan even allows definition of the shanks and tips of the implanted electrode array. Volume rendering also allows the bone to

be rendered as translucent (as on the left half of this image), enabling the electrode to be clearly viewed. Thus, the combination of

high-resolution scanning, image processing, and interactive visualization tools such as ray-tracing allows noninvasive verification

of the implantation site in an anatomical structure that is completely encased in the thick temporal bone. Data provided by

Dr. Richard Normann and Dr. Charles Keller, University of Utah. (See also color insert.)

Visualization in the SCIRun Problem-Solving Environment 629

tron emission tomography (PET) combinations,

will compound the problem of dataset size.

As scientists begin wanting to interact with

these datasets, methods such as ray-tracing

and distributed visualization will be at the

forefront. It will certainly be quite some time

before stand-alone, commodity graphics cards

will be able to interactively handle this size data-

set.

31.5 Getting Started in SCIRun

SCIRun and a variety of other software pack-

ages from the SCI Institute are available at

the SCI software website, http://software.sci.

utah.edu/. Documentation including download

and installation instructions, sample datasets,

and sample visualization networks are also

available at the website. Following is a brief

description of the SCIRun documentation.

31.5.1 Documentation

One of the greatest efforts in the transformation

of our existing collection of research codes into

a friendly environment for external users was

the generation of the various forms of requisite

documentation. We drafted documentation

standards and investigated tools for integrating

that documentation within and extracting it

from our software system. The result is a hyper-

linked ‘‘living document’’ that can be browsed

from our website and is also included with our

software distribution. The collection of docu-

mentation has been organized into a library of

six manuals: an Installation Guide, a Tutorial, a

User Guide, a Developer Guide, a Reference

Guide, and Frequently Asked Questions (FAQ).

31.5.1.1 The Installation Guide

The Installation Guide provides instructions for

installing SCIRun from RPMs (Linux) and

from Source Code (Linux and SGI), third-party

libraries, the (optional) PETSc library, sample

datasets, and SCIRun documentation. The

PETSc library adds equation solvers to SCIR-

un’s SolveMatrix module (see PETSc Installa-

tion).

31.5.1.2 The SCIRun Tutorial

The SCIRun Tutorial is an interactive introduc-

tion to SCIRun for new users. Since SCIRun is

a large system, this tutorial provides a broad

overview of SCIRun concepts and a core set of

SCIRun user skills. There are seven chapters in

this document. By the end of the tutorial, the

user will have a grasp of data-flow program-

ming, SCIRun architecture, and the specific

modules and data types used along the way.

The tutorial begins with Chapter 1, which

demonstrates the construction of a simple yet

functional SCIRun network. This demonstra-

tion is extended in Chapters 2 through 7 with

additional functionality and complexity.

31.5.1.3 The User Guide

The User Guide describes how to get started

using SCIRun. It includes a discussion of the

data-flow programming paradigm and problem-

solving environments. It explains basic concepts

such as how to run and use SCIRun and how to

write data-flow programs using SCIRun. The

User Guide also includes descriptions of all the

SCIRun modules, including data types used,

functions performed, and explanations of the

user interface elements.

31.5.1.4 The Developer Guide

The Developer Guide contains descriptions of the

various SCIRun programming utilities, includ-

ing our resource-management tools (memory,

threads, persistent objects, exceptions, etc.). For

each tool, we describe how the tool fits into

SCIRun, the philosophy of why and when a

developer would use that tool, and usage

examples.

31.5.1.5 The Reference Guide

The Reference Guide contains the API specifica-

tions for all of the tools in SCIRun. This

information is extracted directly from the source

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 630

630 Visualization Software and Frameworks

code using the Doxygen documentation system.

For each class in SCIRun, the documentation

contains a complete description of the class as

well as cross-referenced hyperlinks to related

classes.

31.5.1.6 Frequently Asked Questions (FAQ)

The last book in the documentation library

is the FAQ. The FAQ has been subdivided

into two sections: Technical and User. The

Technical section contains answers to technical

questions that arise during compilation and

linking of SCIRun and its required third-party

software. The User section contains questions

and answers about the behavior of SCIRun, its

modules, and the various messages the system

issues.

31.5.2 Getting Help

Getting help in SCIRun is relatively easy. We

have built a users’ group email list; if you have

questions at any time, you can email scirun-

users@sci.utah.edu and either a SCIRun soft-

ware engineer or another user will answer your

questions.

References

1. J. D. de St. Germain, J. McCorquodale, S. G.
Parker, and C. R. Johnson. Uintah: A massively
parallel problem solving environment. In Ninth
IEEE International Symposium on High Perform-
ance and Distributed Computing, pages 33–41,
2000.

2. D. E. DeMarle, S. G. Parker, M. Hartner, C.
Gribble, and C. D. Hansen. Distributed inter-
active ray tracing for large volume visualization.
IEEE Symposium on Parallel Visualization and
Graphics, 2003.

3. D. P. Schissel for the National Fusion Collabora-
tory Project. An advanced collaborative environ-
ment to enhance magnetic fusion research.
Workshop on Advanced Collaborative Environ-
ments, 2002.

4. C. R. Johnson, M. Berzins, L. Zhukov, and R.
Coffey. Scirun: Applications to atmospheric dif-
fusion using unstructured meshes. In Numerical
Methods for Fluid Dynamics VI, (M. J. Baines,
Ed.). Oxford University Press, 1998.

5. C. R. Johnson, S. Parker, D. Weinstein, and
S. Heffernan. Component-based problem
solving environments for large-scale scientific
computing. Journal on Concurrency and Compu-
tation: Practice and Experience, (14):1337–1349,
2002.

6. C. R. Johnson and S. G. Parker. A computa-
tional steering model applied to problems in
medicine. In Supercomputing ’94, pages 540–
549, 1994.

7. J. T. Kajiya. An overview and comparison of
rendering methods, A Consumer’s and Develop-
er’s Guide to Image Synthesis, 1988.

8. G. Kindlmann, R. A. Normann, A. Badi,
J. Bigler, C. Keller, R. Coffey, G. M. Jones,
and C. R. Johnson. Imaging of Utah electrode
array, implanted in cochlear nerve. In Digital
Biology: The Emerging Paradigm. NIH-Bio-
medical Information Science and Technology
Initiative Consortium (BIS-TIC), 2003.

9. J. McCorquodale, J. D. de St. Germain,
S. Parker, and C. R. Johnson. The Uintah paral-
lelism infrastructure: a performance evaluation
on the SGI Origin 2000. In High Performance
Computing 2001, 2001.

10. National Library of Medicine Board of
Regents. Electronic imaging: report of the
board of regents, pages 90–2197, 1990.

11. S. Parker, W. Martin, P.-P. Sloan, P. Shirley, B.
Smits, and C. Hansen. Interactive ray tracing.
In Symposium on Interactive 3D Graphics,
1999.

12. S. Parker, M. Parker, Y. Livnat, P. Sloan,
C. Hansen, and P. Shirley. Interactive ray tracing
for volume visualization. IEEE Transactions on
Visualization and Computer Graphics, 1999.

13. S. G. Parker. A component-based architecture
for parallel multi-physics PDE simulation.
International Conference on Computational Sci-
ence, 3:719–734, 2002.

14. S. G. Parker, and C. R. Johnson. SCIRun:
A scientific programming environment for com-
putational steering. In Supercomputing ’95,
1995.

15. S. G. Parker and C. R. Johnson. Scirun: applying
interactive computer graphics to scientific
problems. SIGGRAPH (applications/demo),
1996.

16. O. Portniaguine, D. Weinstein, and C. Johnson.
Focusing inversion of electroencephalography
and magnetoencephalography data. In 3rd
International Symposium On Noninvasive Func-
tional Source Imaging, 46:115–117, Innsbruck,
Austria, 2001.

17. R. Rawat, S. G. Parker, P. J. Smith, and C. R.
Johnson. Parallelization and integration of fire

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 631

Visualization in the SCIRun Problem-Solving Environment 631

simulations in theUintahPSE.Proceedings of the
10th SIAM Conference on Parallel Processing for
Scientific Computing, pages 12–14, 2001.

18. A. R. Sanderson and C. R. Johnson. Display of
vector fields using a reaction-diffusion model.
SCI Institute Technical Report UUSCI-2003-
002, 2003.

19. R. Van Uitert, D. Weinstein, and C. R. John-
son. Volume currents in forward and inverse
magnetoencephalographic simulations using
realistic head models. Annals of Biomedical En-
gineering, 31:21–31, 2003.

20. R. Van Uitert, D. Weinstein, C. R. Johnson,
and L. Zhukov. Finite element EEG and MEG
simulations for realistic head models: quadratic
vs. linear approximations. Journal of Biomedi-
zinische Technik, 46:32–34, 2001.

21. D. Weinstein, P. Krysl, and C. Johnson. The
BioPSE inverse EEG modeling pipeline. In
ISGG 7th International Conference on Numerical

Grid Generation in Computation Field Simula-
tions, pages 1091–1100, 2000.

22. D. M. Weinstein, J. V. Tranquillo, C. S. Henri-
quez, and C. R. Johnson. BioPSE case study:
modeling, simulation, and visualization of 3D
mouse heart propagation. International Journal
of Bioelectromagnetism, 5, 2003.

23. D. M. Weinstein, L. Zhukov, and C. R. Johnson.
An inverse EEG problem solving environment
and its applications to EEG source localization.
In NeuroImage (suppl.), page 921, 2000.

24. A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A.
Gianakon, S. J. Plimpton, M. S. Chu, D. D.
Schnack, and the NIMROD team. The
NIMROD code: a new approach to numerical
plasma physics. Plasma Physics and Controlled
Fusion 41:A747, 1999.

25. E. E. Catmull. A subdivision algorithm for com-
puter display of curved surfaces. Ph.D. Thesis,
University of Utah, 1974.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:20pm page 632

632 Visualization Software and Frameworks

32 NAG’s IRIS Explorer

JEREMY WALTON

The Numerical Algorithms Group, Ltd.

32.1 Introduction

Data visualization can be defined as the gaining

of insight by making a picture out of numbers,

and the important role that it plays in the effect-

ive interpretation and analysis of numerical

data has been recognized for a long time [1].

The type of data to be analyzed can vary from

1D time series (e.g., yearly changes in salary) to

multidimensional vector-based datasets (e.g.,

air flow over an airplane wing). Although the

simpler types of data can be effectively dis-

played using ubiquitous desktop applications

such as Excel, more complex data require

more sophisticated visualization techniques

and applications.

Traditionally, a developer would write one of

these applications in a high-level language such

as Fortran or C. The application would calcu-

late or read in the data and perhaps process or

filter it in some way to isolate the component to

be analyzed. The program would then call rou-

tines from a graphics library to transform the

data into geometry (for example, a line chart,

contour map, or scatter plot, etc.), which is then

rendered. Examples of graphics libraries include

OpenGL (which has been the de facto standard

in 3D graphics for the past decade) [2], Open

Inventor (an object-oriented toolkit that uses

OpenGL for rendering), [3] and the NAG

Graphics Library (a collection of Fortran rou-

tines for plotting and contouring) [4,5]. The use

of libraries in a traditional programming envir-

onment has endured in the developer commu-

nity—partly, no doubt, because of their

incorporation within popular legacy codes that

require maintenance. However, there is also

some evidence [6] that the continued popularity

of the NAG Graphics Library comes from a

user requirement for underlying algorithms

that are reliable, accurate, and well docu-

mented. These are the main features of the

more widely known NAG Numerical Library

(of which the NAG Graphics Library was ori-

ginally a subset), and we highlight in Section

32.4.3 how the use of more reliable algorithms,

such as those from the NAG library, can have

a qualitative effect on the way data is trans-

formed into geometry during the visualization

process.

In spite of the fact that graphics libraries have

great endurance, they can require a steep learn-

ing curve for the developer because of the granu-

larity of the operations that they offer. The

development cycle for applications built with a

graphics library can be lengthy, which causes

some disadvantages for visualization, particu-

larly during the exploratory phase, when the

user may have only a vague idea of what the

picture of the data should look like. (The ex-

ploratory phase differs from the presentation

phase, when the data is well understood by the

user and visualization is being used to convey

this understanding to others.) There may be a

variety of techniques that could be applied to the

data—for example, a 2D dataset can be trans-

formed into a contour plot, a hidden line sur-

face, or an illuminated surface. Even when the

technique has already been selected, there will

usually be a set of parameters such as color,

texture, lighting, and orientation, and other at-

tributes such as text labeling, that must be

selected to produce the best picture of the data.

Clearly, one technique will be more apposite

for certain types of data than others, and the

important things are to provide flexibility in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 633

633

the choice of technique for a given dataset and

to see the results of its application with little

delay. Moreover, this flexibility must be pro-

vided to the end users, since it is they who are

the owners of the data and they who are making

a value judgment about which is the technique

producing the best-looking representation of

their data [7].

Considerations such as these led to the design

and development of so-called modular visualiza-

tion environments (MVEs), which offer the user

a collection of higher-level components that are

connected together to build the application. The

basis for MVE design is the reference model of

the visualization process first set out by Upson

et al. [8] and elaborated by Haber and McNabb

[9]. This represents the formal organization of

the sequence of steps in the visualization process

noted above into a visualization pipeline (Fig.

32.1a).

Users have found the referencemodel to yield a

rather intuitive representation of an application,

especially when coupled with a visual program-

ming interface, which gives a direct display of the

flowof data and control.Here, components (usu-

ally referred to in this context as modules) are

represented on the screen as graphical blocks,

and connections between them as wires. Using

this interface, the application is constructed as a

network by selecting or replacingmodules andby

making or breaking connections via point-and-

click actions. This provides a flexible route to

application building. For example [10], it helps

users to rapidly prototype new applications

by interactively reconfiguring the modules or

changing connections before rerunning the appli-

cation. Because the MVE is dynamic, changes to

the application are seen immediately; the net-

work is always active during the editing process,

leading to optimal prototyping efficiency and

debugging. In addition, the way in which the

modules can be used within many different appli-

cations provides an example of the reuse of code,

another productivity benefit. If the system is ex-

tensible, the user can add his or her own modules;

these can be used in the user’s own applications

and then shared with other users.

The popularity of the visualization reference

model and the visual programming interface is

reflected in the number of MVEs that have been

developed around these bases, including apE

[11], AVS [8], IRIS Explorer [12], IBM’s Visual-

ization Data Explorer [13] (now called Open

DX), and SCIRun [14]. Although subsequent

development of some MVEs has moved away

from data flow (for example, AVS/Express and

SCIRun are based on a data reference model),

we believe that the model still has applicability,

particularly in view of the way it has been re-

cently used in the extension to distributed, col-

laborative applications running in a Grid

environment (see Section 32.6).

Throughout the remainder of this chapter, we

will repeatedly return to the visualization pipe-

line of Fig. 32.1 as new extensions to the model

are introduced and demonstrated with their im-

plementation in the IRIS Explorer visualization

toolkit. In the following section, we introduce

IRIS Explorer, describe its interface, its archi-

tecture, and some of its features, and indicate

ways in which it can be extended through the

addition of new modules. New modules are

created with the aid of supplementary tools,

which we describe in Section 32.2.2. In Section

32.3, we briefly outline the way in which an

IRIS Explorer application can be distributed

across a heterogeneous network of computers,

together with options that are offered for the

simplification of the application’s interface. We

also describe, in Section 32.3.3, its facility for

building collaborative applications in which

data and visualizations can be shared between

workers on separate computers. Section 32.4

discusses some of the technology that underpins

IRIS Explorer, and the way in which this serves

to distinguish this system from other packages

in this field. Section 32.5 highlights a number of

user applications of the package in a variety of

domains, while Section 32.6 describes some ex-

tensions to computational steering, along with

current work that is concentrated on extending

IRIS Explorer into a Grid-based environment,

and shows how this is based on features of its

architecture described in Section 32.3. The final

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 634

634 Visualization Software and Frameworks

section, Section 32.7, collects some conclusions

from this chapter.

32.2 Getting Started with IRIS Explorer

32.2.1 Creating Applications from Modules

As noted above, users of IRIS Explorer create

applications by selecting and connecting soft-

ware modules via a visual programming inter-

face [15]. Each module is a routine that operates

on its input data to produce some output, and

typical functions of a module reflect the steps in

the reference model of the visualization process

in Fig. 32.1a. Thus, a module may, for example,

do the following:

. Read data from a file, a database, or some

other application that is running simultan-

eously.

. Modify or filter data by, say, clamping or

normalizing values.

. Transform the data into geometric objects

that can be displayed (such as slices, lines,

surfaces, etc.).

. Output data to a file, or render geometry to a

display device.

The behavior of each module is controlled by

some set of parameters whose values may be set

by the user while the application is running via a

standard set of widgets—dials, sliders, text

boxes, etc. Examples of parameters include the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 635

read filter transform

(a)

(b)

(d)

(e)

(c)

render

read filter transform render

control simulate transform render

control simulate transform render

control simulate transform render

Grid resources

rendercontrol

render

internet

internet

Figure 32.1 (a) The pipeline associated with the visualization reference model of Haber and McNabb [9]. (b) An extension to

include collaboration (see Section 32.3.3). Data is passed from the original pipeline (top) over the network to a second pipeline

(bottom). Collaboration could be introduced at any point in the pipeline; here, data has been shared following the transform

step. (c) An extension to computational steering (see Section 32.6.1). (d) Adding collaboration to computational steering (see

Section 32.6.1). Control of the simulation parameters is shared with the second pipeline, which also receives the visualization

geometry for display. (e) Moving the simulation engine onto the Grid (see Section 32.6.2). The simulation is controlled by its

interface, which is still part of the pipeline. Collaboration (although not shown in this sketch) is still an option here.

NAG’s IRIS Explorer 635

name of an input file, the threshold value for

which an isosurface is to be calculated, or the

number of contours to be displayed.

Data that is passed between modules is char-

acterized by its type, and IRIS Explorer defines

a small number of basic types, including the

following:

. The lattice, a generalized array used for stor-

ing data values located at points on a regular

mesh in multidimensional space.

. The pyramid, a hierarchical collection of lat-

tices used for storing data values on irregular

meshes, or for data associated with elements

of higher dimensionality than points (i.e.,

edges, faces, or cells).

. The parameter, a single value used to control

the behavior of a module.

. The geometry, used to store objects for dis-

play.

. The pick, used to store information about a

selected point on a geometric object.

All these types are constructed using a data

typing language and built-in compiler. The ex-

tensibility of the module set has been mentioned

above (Section 32.1), and we will describe tools

for adding new modules in Section 32.2.2. Here,

we note that users can also extend the system by

defining new data types [16,17] for the storage

of data structures that cannot be fitted into one

of the existing types. New data types are defined

(in terms of existing types, if necessary) using

the same methods as the definition of the basic

types—via the typing language and compiler—

and each user-defined type is given an automat-

ically generated library of accessor functions to

facilitate its use and to ensure the correctness of

basic functions.

Users build their application in IRIS Ex-

plorer by connecting modules together into a

network, or map. The constituent modules are

first selected from the Module Librarian and

then dragged onto the Map Editor, where the

map is to be assembled. The user does this by

connecting modules’ inputs and outputs by a

series of point-and-click actions. The connec-

tions define the way in which data flows through

the map, and they provide a useful overview of

its structure. Some of these elements of the

architecture and design are illustrated in the

screenshot of an IRIS Explorer session shown

in Fig. 32.2.

Finally, we note that, although the visual

programming interface helps users to visualize

data without conventional programming, it is

not a panacea. Visual displays of applications

can become hard to navigate beyond a few

dozen modules (although this can be simplified

by module grouping—see Section 32.3.2), and

MVEs that present only an interactive interface

can have difficulty communicating with other

applications. For these reasons, IRIS Explorer

can also be driven by a textual scripting lan-

guage that is based on a version of Scheme

[15]. This is more useful for batch processing

of long animation sequences, for the control

of IRIS Explorer sessions lacking user inter-

action (for example, in the Visualization Web

Server [18]—see Section 32.4.2), for interappli-

cation communication (as used, for example,

in collaborative sessions—see Section 32.3.3)

and for automatic testing of IRIS Explorer

applications.

32.2.2 Creating New Modules

Although the module suite provided with IRIS

Explorer is extensive, users will eventually need

new modules. This may be because they have

existing code that they wish to incorporate into

an IRIS Explorer map or because no module

exists with the functionality they require. The

modular nature of the environment makes it

easy to add the missing pieces of their applica-

tion, using the tools that are bundled with the

IRIS Explorer system.

The IRIS Explorer Module Builder [17] is a

graphical user interface (GUI) tool that the

module developer uses to specify the data

types to be input and output by the module,

the interface to the module’s computational

function, and the selection and placement for

the widgets in the module’s control panel, all

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 636

636 Visualization Software and Frameworks

without programming. The user provides the

module’s computational function, writing in

Fortran, C, or Cþþ and calling the IRIS Ex-

plorer API library to create and manipulate

IRIS Explorer data types. In addition to this,

the computational function can call other lib-

raries, interface to files, or connect to external

applications; the only specification of the func-

tion that the Module Builder requires is its

calling sequence. The source of practically

all of the module suite is part of the IRIS

Explorer distribution; this is freely available

to users for modification or extension or as

the starting point for the development of

their own modules. In a similar way, many

users have donated modules that they have de-

veloped to the module repository for use by

others [19].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 637

Figure 32.2 Running a map in IRIS Explorer. The Module Librarian is at top left, and the Map Editor is at top middle. The

map that is currently running is analyzing results from a simulation of oil transport through a permeable medium. The region is

divided up into cells, each of which has a permeability value. The data is read into IRIS Explorer as a pyramid and is then culled

using the CullPyr module to find only those cells whose data values are outside some range—this is an example of the filtering

step in the visualization pipeline of Fig. 32.1. The CullPyr control panel, containing the widgets used to set its parameter values,

is at bottom left, while the large display window comes from the Render module. The small window at top right is an editor for

the headlight in the 3D scene; this is an Open Inventor control that is exposed in IRIS Explorer because it uses Open Inventor for

3D scene generation and display (Section 32.4.1). (See also color insert.)

NAG’s IRIS Explorer 637

The output from the Module Builder is a

module resource file, from which it automatic-

ally generates code wrappers around the com-

putational function that handle module

execution, intermodule communication (which

may be heterogeneously networked—see

Section 32.3.1) and data conversion between

IRIS Explorer data types and user formats.

The code wrappers and the computational func-

tion are compiled together to produce the

module executable, which, together with the

module resource file, constitutes the module

that can be placed in the Module Librarian

and invoked via the Map Editor (see Section

32.2.1).

One of the reasons a user may seek to add

missing functionality is that IRIS Explorer is

intended as a general-purpose visualization

tool to be applicable across several domains

(some of the areas where it has been used in-

clude computational chemistry [20], computa-

tional fluid dynamics (CFD) [21], and high-

energy physics [22]). The consequences of this

for IRIS Explorer and other MVEs are that the

basic system modules perhaps cover the later

steps of the visualization pipeline (render, trans-

form, filter) better than the first step—data

input—because this step, which usually forms

the interface with other applications, is the most

domain specific. Put another way, while it is to

be expected that the basic modules would in-

clude one for isosurface calculation, for

example, to find a module in that set for reading

a specific computational chemistry data format

(say) would perhaps be regarded as serendipit-

ous. This preponderance of the requirement for

data-reader modules is reflected in the add-

itional tools provided for this purpose (although

the general-purpose Module Builder can also be

used for their creation).

The IRIS Explorer DataScribe extends the

visual programming concept of the map editor

(where applications are constructed from

modules) to the construction of reader (or trans-

lator) modules from graphical elements repre-

senting scalars, arrays, and lattices [15].

DataScribe users manipulate these elements

and make connections between them (using the

same point-and-click actions as in the map

editor) to construct a script that, along with

the module resource file (also generated by

DataScribe), comprises the module [23].

QuickLat is an alternative tool for building

readers. Here, the user specifies the IRIS Ex-

plorer data that is to be output from the

module, along with parameters such as file

names. QuickLat then automatically generates

a template (written in C or Fortran) for the

module, which the user then completes by

adding code to read data in from the data file.

The template contains hooks into the IRIS Ex-

plorer data structures, which shield the user

from calling the IRIS Explorer API for the

creation and allocation of data types. Finally,

the Module Builder is used to lay out the con-

trol panel of the module and build it.

32.3 Working with IRIS Explorer

In this section, we briefly describe a few features

that arise naturally from IRIS Explorer’s modu-

lar programming approach, which can be

viewed as a process of breaking the application

down into a small set of interconnecting units

in the spirit of the visualization reference

model.

32.3.1 Distributed Execution of
Applications

If IRIS Explorer is being run in a networked

environment, it might be useful to elect to run

certain modules in the application on the local

machine while others run on remote machines.

Distribution of the application across a network

of machines can be carried out in IRIS Ex-

plorer; moreover, since it is a multiplatform

application, the network can be heterogeneous.

(Originally produced under IRIX by SGI for

their machines, development of IRIS Explorer

was taken over by NAG in 1994, which ported it

to other platforms. IRIS Explorer is currently

available from NAG for Windows, Linux,

Solaris, HP-UX, AIX, Digital Unix, and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 638

638 Visualization Software and Frameworks

IRIX.) Examples of situations where applica-

tion distribution may be desirable include the

following:

. Where some modules must be run on a high-

performance machine.

. Where some degree of coarse-grained paral-

lelism is being introduced into the applica-

tion.

. Where a module must be run on a particular

type of machine because it is only compiled

for that architecture.

. Where a module has to be run on a special

machine because it makes use of resources

(for example, input files) that are only avail-

able on that machine.

A particular feature of the interface to remote

modules is that (apart from a label identifying

the machine on which they are running) it is

exactly the same as that for local modules.

Users make connections to modules and inter-

act with their widgets in the same way irrespect-

ive of their location. This facility, which has

been a part of IRIS Explorer since its original

design, is currently being exploited in the exten-

sion of the system to a Grid environment (see

Section 32.6.2).

32.3.2 Application Building via Module
Grouping

Although the connections between the modules

provide a convenient illustration of the form

of the application, they can sometimes be dis-

tracting to an end user of the application, par-

ticularly if the application contains a large

number of modules. Moreover, it can some-

times be hard to determine which widgets on

the modules provide the most useful or relevant

controls for the application. For these reasons,

a simplified interface to any collection of

modules in the application (including just one

module or all the modules in the map) can be

created on the fly through creation of a module

group. More specifically, the user does the

following:

. Chooses the modules that are to go into the

group.

. Selects the module parameters that are to

appear in the simplified interface.

. Edits the group’s control panel by attaching

suitable widgets to the parameters and pos-

itioning them in suitable locations on the

window.

Grouping can be used to interactively change

the interface of a single module in the map

without requiring the user to return to the

module-building stage. It can also be used to

create an interface to an application consisting

of a single control panel containing widgets at-

tached to parameters from modules throughout

the map (Fig. 32.3).

Although at first glance a group looks the

same as a module, its underlying architecture

is, in fact, the same as the original collection

of separate modules. That is, grouping the

modules only changes their user interface; under-

neath this, they still run as individual executa-

bles, each appearing to the operating system as

a separate process, passing data via shared

memory or sockets. This can carry some advan-

tages over a monolithic process; for example,

if one module in a map crashes, the remaining

modules are generally unaffected. Nevertheless,

the separate processes can sometimes represent

a poor use of resources (such as memory and

CPU), and the communications between the

modules often appear to add significant over-

head to the execution of the group, particularly

if it is composed of a large number of small

modules.

In the latest release of IRIS Explorer (5.0),

these problems are addressed by the introduc-

tion of group compiling. In effect, this allows a

new module to be built by combining existing

ones. Once the group has been created and its

control panel laid out, an additional option

allows the user to compile the separate modules

into a single executable. Once the compilation is

complete, the user can replace the modules in the

group with the new compiled group. The con-

trol panel of the compiled group is the same

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 639

NAG’s IRIS Explorer 639

as that of the old group, so the interface is

unaffected. However, an examination of the

machine’s process space will quickly reveal

that the compiled group is running as a single

process, which consumes less CPU time and

uses less memory than running all of the ori-

ginal separate modules. This yields improved

performance, owing to the more efficient use

of system resources.

As a final step towards application building,

IRIS Explorer can be run in a mode where the

development windows (module librarian, map

editor) do not appear on the screen, leaving

just the application windows for the user to

interact with. Fig. 32.3 illustrates module

grouping with an example taken from visualiza-

tion of financial data.

32.3.3 Collaborative Visualization

Although our discussion so far has been based

upon a single user model, there can arise situ-

ations (particularly in large or geographically

disparate research teams) where data visualiza-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 640

Figure 32.3 Building an application in IRIS Explorer by module grouping. On the left, a map is shown running in the map

editor. The connections between the modules can be seen in the background at the top, and the control panels of several modules

surround the large control panel from the Render module, which contains the visualization. The same application is shown on

the right after the modules have been grouped together (and optionally compiled into a single executable). The group control

panel contains widgets from the original modules’ control panels–including the large window from Render. Here, IRIS Explorer

is running in application mode which hides the development windows from view; the only thing appearing on-screen is the group

control panel. This application is displaying stock market data as a 3D scatter plot. (See also color insert.)

640 Visualization Software and Frameworks

tion and analysis must be performed collabora-

tively.

This problem was addressed by Wood et al.

[24], who considered an extension of the visual-

ization reference model that allowed communi-

cation between two or more pipelines (Fig.

32.1b) allowing users on multiple networked

machines to collaborate. In the implementation

of this model in IRIS Explorer, each user runs

his or her own map but has the opportunity

to make a connection to a collaboratively

aware module that can pass data to and from

the other collaborators’ maps. Since any of the

data types described in Section 32.2.1 can be

shared, the users have a great deal of flexibility

when setting up the collaboration. Thus,

sharing parameters allows for joint control of

modules; sharing lattices or pyramids enables

different visualization techniques to be applied

to the same datasets; and sharing geometry or

pick data facilitates different views of, or inter-

actions with, the same visualization. The choice

of the point(s) at which to introduce collabor-

ation is up to the users, based on their expertise

and interests in the data. External constraints

such as bandwidth and machine resources may

also play a role in this choice—for example, it

might be more efficient to work with local

copies of the original data (which can be shared

once at the start of the collaboration), or to

share the filtered data (which will be smaller),

or to collaborate on the geometry, as in the case

of the scenario sketched in Fig. 32.1b (which

might be smaller still), or just to share control

of duplicated modules in collaborating maps.

In addition, modules, connections, and map

fragments (groups of modules connected to-

gether) can be passed between collaborating

maps. This is achieved using the scripting lan-

guage mentioned in Section 32.2.1. To be more

accurate, what is passed between the sessions

are the commands to start modules, make or

break connections, etc. Management of a col-

laborative session is performed by a central

server, together with local servers on each ma-

chine that control the collaborative modules via

IRIS Explorer scripts.

It is to be noted that collaborative modules

use the same GUI as noncollaborative modules;

no extra skill is required by the user. This is to

be compared with the way in which the inter-

action model for modules running on remote

machines is identical to that for local modules

(see Section 32.3.1).

Wood et al. [24] illustrated the use of the

collaborative visualization system with a scen-

ario involving two doctors collaborating over

the analysis of medical image data. Each

works with a separate instance of IRIS Ex-

plorer, exchanging data and sharing control

over the application. They can explore the data

together, each introducing new visualization

techniques as required and taking advantage of

the other’s complementary expertise. Finally,

having created their collaborative map, they

are able to group all the modules into an appli-

cation for colleagues who require a simpler

interface (see Section 32.3). We describe another

collaborative scenario in somewhat more detail

in Section 32.6.1 within the context of collab-

orative steering.

The collaborative functionality introduced by

Wood et al. [24] proved to be so successful that

it was incorporated into IRIS Explorer 4.0 [25]

and subsequent releases, making this package

one of the first commercial multiuser visualiza-

tion systems in the world [48].

32.4 Underlying Software in IRIS
Explorer

This section briefly describes some of the soft-

ware technologies that underpin IRIS Explorer

and the way in which each is utilized within the

modules and the base system.

32.4.1 Open Inventor—An Object-
Oriented 3D Toolkit

Open Inventor [3] is an object-oriented graphics

library that provides a comprehensive environ-

ment for creating and manipulating 3D scenes in

a database known as a scene graph. It provides

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 641

NAG’s IRIS Explorer 641

a comprehensive software model for developing

interaction with the scene and also defines a

rather intuitive file format for scenes. Open In-

ventor is written in Cþþ, and, as mentioned in

Section 32.1, uses OpenGL [2] for rendering

scenes.

IRIS Explorer uses Open Inventor to create

and manipulate geometry—in fact, the IRIS

Explorer geometry data type (see Section

32.2.1) is an Open Inventor scene graph. This

means that the module developer in IRIS Ex-

plorer can take advantage of all the functional-

ity in Open Inventor—and also OpenGL—

when working with geometry. (See, for example,

Fig. 32.2, in which the Open Inventor control

for editing the direction and intensity of the

headlight is used to enhance the scene displayed

in the Render module.) In addition, scenes

created within IRIS Explorer can be shared

[26] with other Inventor-based applications,

and vice versa. The close relationship between

IRIS Explorer and Open Inventor has also been

exploited in the incorporation of Inventor-

based libraries into IRIS Explorer. An example

is provided by 3D MasterSuite [27] from Tem-

plate Graphics Software, which consisted of a

collection of higher-order Inventor objects re-

lating to efficient graphical plotting; these in-

clude axes, curves, text, and annotation. The

inclusion of modules based on this library facili-

tated the production of higher-quality plots in

IRIS Explorer.

The Open Inventor file format was the basis

for the original version of the Virtual Reality

Modeling Language (VRML), the description

language for 3D scenes on the Web. Basing it

on an extant format hastened the acceptance of

VRML through the leverage of a large amount

of existing content and applications, including

IRIS Explorer. Because IRIS Explorer is based

on Open Inventor, it is very easy to output

any of its visualizations that as VRML and so

publish it on the Web (see Fig. 32.4 for an

example).

A number of examples of the use of VRML

within IRIS Explorer have been reviewed

elsewhere [28]. Here, we recall briefly the work

of Brodlie and his coworkers on a Visualization

Web Server [18] that provides a simplified,

WWW-based interface to a visualization

system. The user accesses a web page and fills

in an HTML form describing the location of his

or her dataset, the visualization techniques that

are to be applied to the data, and any param-

eters that need to be selected for the techniques.

This information is then passed over the Web to

the visualization server, where it is used to as-

semble the application—in the form of a

script—that is to be run by IRIS Explorer. The

resultant geometry is passed back (via the

server) as VRML to the user’s client, where it

is delivered to a browser. The use of the visual-

ization web server has been illustrated [18] with

an application to extract and display environ-

mental data that is periodically posted to the

Web. The system allows the user to select the

data of interest (pollutant, location, time inter-

val) and to display it in 3D—at any time and

from anywhere on the Web.

32.4.2 Image Processing: The Image
Vision Library

IRIS Explorer contains over 50 image-

processing modules based on operators in SGI’s

ImageVision Library (IL) [29]. IL contains oper-

ators for input and output, color conversion,

arithmetic functions, radiometric and geometric

transforms, spatial and nonspatial domain trans-

forms, and edge detection, amongst others. In

addition, it has been designed to deal efficiently

with large images by decomposing them into tiles

and using a demand-driven data pull model of

communication between operations. Thus, only

the part of the image that is currently being pro-

cessed is passed down the IL processing chain. In

this way, chains of image processing commands

can be performed in constant memory for any

size image, assuming operations with local

memory reference patterns (which most IL oper-

ators have).

In addition to these efficiencies, which are

available for all platforms, IL takes advantage

of specific hardware acceleration on SGI

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 642

642 Visualization Software and Frameworks

machines where available. The IL operators

make use of high-speed graphics hardware for

operations such as blurring, exponent computa-

tions, and rotation.

The way in which IRIS Explorer uses the

IL in writing modules goes beyond the trad-

itional module framework in order to preserve

these performance efficiencies in the IL. Simply

wrapping each IL operator into a module would

interfere with both the tiling and the data

pull model. Instead, IRIS Explorer provides a

way to combine a map of image-processing

modules into a single IL-based module that

retains these efficiencies, while preserving IL

hardware acceleration and reduced memory

usage. Used in this way, the IRIS Explorer

Map Editor becomes an efficient IL image-

processing editor. (Note that this method of

combining IL modules is distinct from the

more generic group compilation described in

Section 32.3.2, which works for any set of

modules, not just IL ones.)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 643

Figure 32.4 Using the WriteGeom module to output a scene from IRIS Explorer as VRML 2.0 (a.k.a. VRML97). The Render

window is at bottom left, containing the scene, which consists of an isosurface, probe, and sheet geometry. In the map, the same

inputs are passed to the CombineGeom module, which creates a single scene and passes it to WriteGeom for output to file. The file is

rendered using a VRML browser in the bottom right-hand corner; here, the VRML is being displayed on the same machine as the

original visualization, but publishing it on the Web would, of course, allow it to be displayed anywhere. (See also color insert.)

NAG’s IRIS Explorer 643

32.4.3 The NAG Libraries—for Reliable
Numerics

The current proliferation of visualization soft-

ware [8,11–14], with its promise of easy trans-

formation of complex datasets into images, can

leave unanswered questions of reliability and

accuracy in output that is produced. Misleading

results can arise when the algorithm used within

the visualization is inappropriate, inaccurate, or

unusable. Such questions about the reliability of

visualization become even more important in

the steering of computational processes via the

real-time visualization of their results (see

Section 32.6). Here, decisions about the future

course of the calculation are taken based on

their display, so it is important to ensure that

it is as faithful to the data as possible.

Such questions highlight the importance of

using good-quality algorithms in visualization.

The NAG Numerical Library [30], which con-

tains more than 1000 routines, has been used by

a large community of users for almost 30 years,

and it provides a straightforward way to access

complex algorithms for a variety of problems.

These include minimization, the solution of or-

dinary and partial differential equations, quad-

rature, statistical analysis, and the solution of

linear and nonlinear equations. Using a reliable

numerical library in applications can lead to

savings in development time, and the testing of

the accuracy of the library routines gives confi-

dence in the solution.

The use of the NAG numerical routines

within IRIS Explorer modules has included the

interpolation algorithm in the API and the par-

ticle advection module. Particle advection gen-

erates the path of a particle released into a

vector dataset by solving a differential equation.

Although many algorithms can be used to

obtain a solution, not all are equally accurate

or applicable. Thus, for example, one of the

simplest (the so-called Euler algorithm), al-

though easy to implement, can produce incor-

rect results—sometimes dramatically so [31]. By

contrast, the use of a more sophisticated algo-

rithm from the NAG numerical library pro-

duces a more accurate solution [31,32]. It has

other advantages, also. Besides providing a high

degree of confidence in the knowledge that the

algorithm has been used in a very wide range of

applications, it provides the module with a

ready-made reference for documentation pur-

poses [30], which is key to assessing the accuracy

and applicability of the module.

32.5 Some Applications of IRIS Explorer

In this section, we recall some ways in which

IRIS Explorer has been used in the visualization

of data from a variety of sources and domains.

32.5.1 Oil Recovery Research

The extraction of oil from sand presents several

technical challenges, largely owing to the high

viscosity of the oil. This is a particular issue for

the Athabasca tar sands in Alberta, Canada,

and numerical simulations to help determine

more efficient recovery methods are being

carried out by London [33] and his colleagues

at the Alberta Research Council. They are using

IRIS Explorer as an application builder in the

development of their simulations and for the

visualization of their results [33].

Although commercial reservoir simulation

products have some display functionality for

production use, research cannot present a

finite list of visualization requirements, which

makes a flexible toolkit approach (such as that

offered by IRIS Explorer) more useful in this

context. By incorporating standard modules

into specialized applications, and by adding

suitable data reader modules (see Section

32.2.2), they have found that IRIS Explorer is

a helpful complement to canned purpose-built

packages.

To illustrate the use of IRIS Explorer here,

we will describe one of the applications [33] in

more detail. Pore-scale simulations are directed

at exploring the complicated behavior of the

flow of fluid through the irregular geometries

representative of the channels and pores within

the sand in most heavy oil deposits. The pore

space is modeled as a flow network, paying

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 644

644 Visualization Software and Frameworks

particular attention to the pore-scale geometries

and topologies. Because of the irregular struc-

ture, visualization is an essential part of this

work, not only for viewing the final results but

also for debugging the development and moni-

toring the various stages of modeling. IRIS Ex-

plorer has been used as the framework for all of

these stages (Fig. 32.5).

The starting point for a model of the pore

space is the creation of an artificial packing of

spherical particles of various radii. A simple

algorithm incorporating the idea of particle re-

arrangement in the presence of gravity is en-

coded in an IRIS Explorer module. The final

packing is provided as an IRIS Explorer lattice

that can easily be rendered as geometry using

standard modules. In addition, the intermediate

configurations can be usefully visualized in

order to check on the packing algorithm, and

these results can be assembled into an anima-

tion of the complete process.

Following the creation of the packing, the

pore space is divided into nodes, where phases

mix and flow without hindrance, and channels,

where Stokes flow dominates and phases are

separated by distinct interfaces. The resulting

network is encoded into an IRIS Explorer pyra-

mid, which stores details of the location of the

particles, along with the nodes (with links to

enclosing particles) and channels (with links

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 645

Figure 32.5 Using IRIS Explorer in pore-scale simulations of fluid flow [33]. (a) Creating a sphere pack by ‘‘dropping’’ particles

at randomly chosen locations. The shaded volume is searched for the lowest position. (b) The network of nodes (green) and

channels (pink) found in the sphere pack. The rendering uses simple primitives (cones) to approximate some of the geometrical

information encoded in the pyramid. (c) Multiphase fluid flow through the network. Yellow fluid has displaced purple fluid in

parts of the channels. Nodes, containing a mixture of the two phases, are colored according to pressure. (d) The same network as

in (c), but now with all parts (nodes and channels) colored according to pressure. (See also color insert.)

NAG’s IRIS Explorer 645

to two nodes). Again, a standard module con-

verts the pyramid to a geometry for viewing.

Once the visual check of the network is satis-

factory, another module converts the pyramid to

the ASCII data required by the simulator. Thus,

except for some fluid property descriptions and

boundary conditions, the entire setup is carried

out graphically. The actual flow simulation is run

offline, since it frequently takes days or weeks to

complete.

The simulation output is encoded in a custom

binary format, for which a special data reader is

constructed. The simulator models single-phase

slugs of fluid moving through the channels, with

interfaces between them. This is accommodated

in IRIS Explorer by addition of a slug layer to

the pyramid, with links to the appropriate chan-

nels. Hence, the same module can be used

to display both the input and the output data.

A variety of views are available on output,

including color-mapped pressures and flow

rates.

The final stage of the analysis is the calcula-

tion of macroscopic properties, such as the per-

meability tensor. Again, this part of the

simulation is carried out entirely within the

IRIS Explorer map.

London [33] reports that the flexibility of

IRIS Explorer cannot be matched by any appli-

cation-specific visualization package, and that it

facilitates the production of VRML and other

common graphics files. He says, ‘‘The leverage

gained by incorporating standard modules

allows a single user to harness state-of-the-art

visualization techniques without the services of

a development team.’’

32.5.2 Large-Scale Computational Fluid
Dynamics

Imagine half-filling a glass with water and then

adding an equal amount of a light oil. The two

liquids do not mix (they are immiscible), and, if

the oil is the less dense of the two, it remains

above the water, and the interface between the

oil and the water is planar. Now imagine sealing

the top of the glass (so that no liquid escapes)

and turning it upside down. If the glass is wide

enough, gravity will cause the water to fall into

the lower part of the glass and the oil to rise into

the upper part. The interface becomes distorted

by spikes, bubbles, and other shapes, which is

due to a phenomenon known as the Rayleigh–

Taylor instability. This occurs whenever a light

fluid is accelerated into a heavy one, and it has

been studied widely because of its relationship

to the onset of turbulence and mixing.

Cook [34] carried out a Rayleigh–Taylor

simulation on the ASCI Blue-Pacific machine

at Lawrence Livermore National Laboratories,

using a mesh of dimensions 256 � 512 � 256,

and running for more than 3,000 time-steps.

The simulation generated about a terabyte of

data (each time-step generated about 260 MB),

and Lombeyda et al. [35] used IRIS Explorer to

visualize this, focusing attention on the way in

which the interface between the fluids evolves in

time. One way to display the interface is to

calculate the density isosurface for a threshold

value intermediate between the densities of the

two fluids (Fig. 32.6).

Because the performance of the standard

IRIS Explorer isosurface module with this data-

set was not sufficient to extract and display

isosurfaces dynamically in real time, Lombeyda

et al. wrote a new module that spawned the

isosurface extraction to run in parallel on a

multiprocessor machine. Extraction was per-

formed using a variation of the standard march-

ing cubes algorithm [36], which kept track of

visited cube edges (thus reducing calculation

redundancy) and which was modified for

parallel execution using simple data decompos-

ition. Parallelization was explicated using p-

threads, which could be invoked easily (using a

simple one-line directive in the code) and had

the additional advantage of working with

sockets, which formed the basis of their com-

munications framework.

Performance results were encouraging. Com-

pared to execution using a single thread, they

achieved a speedup factor of about 7.8 when

using eight threads, indicating a high degree of

parallelization. They could then load several

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 646

646 Visualization Software and Frameworks

frames of the dataset into the server, and,

through the use of the module in the map,

were able to dynamically request isosurfaces

across different density thresholds and through

different time-steps.

This work illustrates the way in which

IRIS Explorer can be utilized to drive large com-

putations, taking advantage of parallel process-

ing where necessary, while using a standard

graphics workstation to display the results.

Finally, they noted that embedding their parallel

isosurface module within IRIS Explorer pro-

motes its reuse among the user community,many

members of which have different needs and ac-

cess to a variety of hardware configurations.

32.5.3 Biomechanical Modeling

More than 5000 heart-valve replacements are

performed in the UK each year, and the design

of improved artificial valves is an important

area of research. IRIS Explorer has been used

in the creation of an integrated visualization

and design toolkit [37] that allows the valve

designer to choose the shape and mechanical

properties of a valve before carrying out numer-

ical flow experiments to determine its behavior

within the heart.

Early work [38] was devoted to the design

of so-called mechanical valves, which have

rigid leaflets that open and close to control the

flow of blood. The rigidity makes them com-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 647

Figure 32.6 Using IRIS Explorer to display the results of a simulation of the Rayleigh-Taylor instability in the interface

between two fluids [35]. The upper fluid has a density of 3 units, the lower has a density of 1 unit, and the isosurface has been

calculated for a threshold value of 2; thus, it follows the fluid–fluid interface irrespective of its shape. Here, the simulation cell

has been added to orient the display, and a semitransparent cutting plane has been used to show how density varies in a plane

passing through the interface. Two views of the cell for a given time-step are displayed here that clearly show the characteristic

loops, spikes, and bubbles in the surface. (See also color insert.)

NAG’s IRIS Explorer 647

paratively easy to model and manufacture and

confers durability; however, it also causes dis-

turbances in blood flow, leading to hemolysis.

Accordingly, attention has been more recently

switched to flexible valves, which give better

hemodynamic performance, although the high

bending stresses during the flexing of the leaflets

carry the risk of earlier mechanical failure. This

necessitates improved methods of design, mod-

eling, and manufacture.

The use of the IRIS Explorer–based toolkit

in the design of flexible heart valves has been

described by Fenlon et al. [37]. They chose

a simplified (2D) leaflet model that consists of a

linked assembly of rigid dynamic elements, with

each element connected to its neighbor by a

frictionless pivot, with stiffness and damping

effects. The equation of motion of the leaflet is

then that of an n-tuple pendulum, which can be

integrated using a standard algorithm [30].

Coupling this to a simplified model of the fluid

flow allows the calculation of the leaflet motion

to be carried out in near real time. This, in turn,

enables the rapid testing of leaflets with differ-

ent physical properties (parameterized by the

stiffness and damping terms), based on their

dynamic and mechanical behaviors.

The simulation was embedded in IRIS Ex-

plorer as a module, and its output was visualized

(Fig. 32.7) using a combination of custom-writ-

ten modules and modules from the standard dis-

tribution. Fenlon et al. noted that building their

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 648

Figure 32.7 Setting the initial configuration of the valve leaflet [37]. The module control panel containing the widgets for setting

the angles between the elements and their time derivatives is on the left, while the Render module on the right shows the leaflet in

this configuration in a wireframe representation that clearly displays the elements in the leaflet.

648 Visualization Software and Frameworks

toolkit in a framework like IRIS Explorer (rather

than writing the package from scratch) meant

that applications were easily customized through

the replacement or addition of modules. For

example, they found that the modular approach

meant that, with some judicious design decisions,

many modules could be shared between different

flow models and experiments. In addition, one

could explore alternative approaches such as dif-

ferent solvers by writing them as modules and

then interchanging them in a particular applica-

tion network.

Before the simulation was run, an IRIS

Explorer map was used to set up the initial

configuration of the valve leaflet and to assign

values to its physical parameters. The configur-

ation information was then fed into another

map that solved for the leaflet motion and

fluid flow, displaying results for the leaflet con-

figuration as the simulation progressed in

time. Finally, postprocessing of the results

was performed by a third map, which displayed

the flow around the leaflets in the form of

vector arrows, streamlines, and vortex-wake

surface plots. Other maps produced plots of

the leaflet’s curvature and an animation of the

leaflet opening and closing (Fig. 32.8).

The key feature of this work was the way

in which, by being embedded into IRIS Ex-

plorer, the simulation was tightly coupled with

the visualization, allowing results to be dis-

played in near real time. (We continue with this

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 649

Figure 32.8 Control panel for the module (actually, a module group) used in the production of the leaflet animation. Widgets

allowing the user to select the time-steps for the animation are on the left, and the display window (from the group’s Render

module) is on the right.

NAG’s IRIS Explorer 649

theme in Section 32.6, where we look in more

detail at the use of IRIS Explorer in compu-

tational steering applications.) Changes in the

physical properties of the leaflet (set using the

toolkit framework) were immediately reflec-

ted in its mechanical response under flow, which,

in turn, enables the toolkit user to examine a

broad range of designs in the course of a sin-

gle session.

32.6 Moving IRIS Explorer to
the Grid

32.6.1 Steering and Collaboration

The visualization reference model in Fig. 32.1a

is predicated on the display of a static data

source—data is read from a file in the first step

and then passed down the pipeline for display.

Subsequent datasets could come from other

files, or maybe from the same file if it is over-

written by an external application. Each time a

new dataset is to be displayed, the user has to

reexecute the visualization pipeline. This pro-

cess could be automated by extending the refer-

ence model (Fig. 32.1c) to support a dynamic

data source—for example, a numerical simula-

tion of a time-dependent process. Here, the data

source is incorporated into the visualization

pipeline, its output is displayed as the calcula-

tion proceeds, and feedback from the visualiza-

tion allows the user to control the course of the

simulation by adjusting its control parameters;

this is an example of so-called computational

steering. In the same way that the reference

model can be extended to incorporate steering,

so can systems—such as IRIS Explorer—that

are based upon it.

Before presenting an example of steering

within IRIS Explorer, we will take advantage

of the modular nature of the reference model

and elaborate it still further by adding collabor-

ation, as in Fig. 32.1d. Now the control param-

eters and the geometry are being shared, which

enables one of the participants to control the

simulation (running on a remote machine),

based on the visualization of its output—we

return to this scenario later. Alternatively, if

the output of the simulation can be shared as

lattices or pyramids (see Section 32.3.3), then

users can apply different visualization tech-

niques in their separate locations rather than

looking at a static display provided by one of

the participants. This is a flexible approach that

allows users with different backgrounds and

motivations to explore the results of the simula-

tion in their own way.

Collaborative computational steering within

IRIS Explorer has been demonstrated by Walk-

ley et al. [39], using a simulation of fluid trans-

port aimed at modeling atmospheric dispersion

[40]. This can be represented in simplified form

as passive scalar convection of a single compon-

ent, which may in turn be modeled using a

standard streamline-upwind finite element

method [41]. Realistic modeling requires expert-

ise in both the physical processes involved and

the numerical modeling of those processes, and

Walkley et al. envision a collaboration between

a chemist and a numerical analyst in the investi-

gation of this model.

Typically, the collaborative researchers will

have different motivations in the analysis of

data from such a model. For example, the nu-

merical analyst may wish to view the errors in

the numerical solution at specific points, while

the chemist will want to monitor the concen-

tration of the component throughout the

domain. The real-time display from the simula-

tion can be helpful in debugging the simulation

and in ensuring that only interesting areas of

parameter space are explored.

Incorporating the simulation as a module

into a map allows it to be interactively con-

trolled via the widgets on its control panel.

These may include parameters for the algorithm

(e.g., error tolerance or time-step), or of the

physical model (e.g., density or convection vel-

ocity). In a collaborative scenario, results gener-

ated in any part of the map can be shared with

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 650

650 Visualization Software and Frameworks

other users, while researchers with identical

maps can jointly control any module by wiring

in shared parameter modules at the appropriate

point.

Fig. 32.9 shows a collaborative visualization

session between the two users in the scenario

described above. The numerical analyst (Fig.

32.9a) is hosting the application and viewing

an estimate of the error in the solution. The

mesh has been culled to show only those cells

that have an error exceeding a specified toler-

ance (Fig. 32.2). The output from the simulation

is shared with the chemist, whose view is shown

in Fig. 32.9b, who is viewing an isosurface of

the computed solution. The parameters that

control the simulation are also shared collab-

oratively, thereby allowing either user to steer

the computation.

32.6.2 Bringing in the Grid

One collaborative scenario for steering is one in

which the numerical application—which is gen-

erally computationally intensive—is run on the

most powerful computer, while a remote user,

who may have a relatively small computational

resource, can control the simulation and receive

output to display. In this case, it may be imprac-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 651

Figure 32.9 Performing a collaborative simulation of atmospheric dispersion using IRIS Explorer. The collaboration is

envisioned as being between a numerical analyst—whose screen is displayed in (a)—and a chemist, who sees the screen shown

in (b). The numerical analyst is running the simulation and viewing the error from the solution, while the chemist is viewing the

computed solution as an isosurface. (See also color insert.)

NAG’s IRIS Explorer 651

tical for the remote user to monitor the simula-

tion continuously, but it is also possible to use

the collaborative modules to log in and out of a

simulation. Indeed, the simulation can be run

without human help, and the collaborative

modules can be used to connect or reconnect a

remote user when necessary. In the same way,

computationally intensive visualization trans-

formations (such as isosurface generation) can

also be performed on the most suitable plat-

form.

This transfer of the computationally intensive

part of the application onto the most appropri-

ate resource is reminiscent of the way in which

IRIS Explorer modules can be run on remote

machines (see Section 32.3.1). It is also suggest-

ive of the philosophy behind the computational

Grid, which represents a new paradigm for dis-

tributed computing. Recent research in compu-

tational steering and simulation has been

focused on allowing all, or parts, of an applica-

tion to be distributed in this way [42]. Current

work with IRIS Explorer is focusing on

extending the scenario above with the use of

the Globus middleware [43] to allow the com-

puting to be spread over a network of computa-

tional resources. In the scenario under

development, depicted in Fig. 32.1e, we are

using Globus to interface with Grid resources,

while the user interacts with the simulation and

performs steering and collaboration through the

IRIS Explorer user interface. To do this, we

separate the simulation’s interface (which still

appears in the map as a module control panel)

from its computational engine (which runs on

the Grid). (Note that this is reminiscent of the

separation between the parallel isosurfacing

code and its control described in Section

32.5.2.) Grid authentication and resource dis-

covery are initiated by a specially written set of

Globus modules, whose output is passed to the

simulation interface module that spawns the

engine onto the discovered resource; thus,

much of the complexity associated with the

Grid is hidden from the user.

Work to date includes the porting of the at-

mospheric dispersion model of Section 32.6.1

into the Grid environment; this formed the

basis for a collaborative application demon-

strating simulated pollutant flow over a terrain

[44], and a scenario in which emergency services

and scientists collaborated to track the progress

of the pollution [45]. Other work [46] has taken

an elastohydrodynamic lubrication simulation

used in the modeling of solid deformation in

gears and journal bearings and ported it to the

IRIS Explorer steering environment running on

the Grid. The simulation has been used within

this environment by engineers for the investiga-

tion of solution profiles for particular lubricants

under various operating conditions. Once again,

the coupling of the simulation and visualization

in a steering application yield benefits of effi-

ciency in terms of the exploration of parameter

space for the model.

While this work is ongoing [47,49], the

IRIS Explorer Grid-based modules from the

original pollutant demonstrator are available

for download [44]. The porting of IRIS Ex-

plorer into a Grid-based environment has

been of interest to other research projects on

the Grid, many of which are currently investi-

gating the toolkit as a candidate that may

meet their visualization requirements in this

environment.

32.7 Conclusions

This chapter has been an introduction to IRIS

Explorer as a modular data-visualization

system. We have described some of its features

and indicated ways in which its modular archi-

tecture leads to applications in which the con-

stituent modules may be distributed, compiled

together, or made collaborative. We have also

discussed some of the software that underlies

the system and have selected a few user applica-

tions in diverse fields. Finally, we have indicated

how the basic visualization reference model that

forms the basis of this system can be extended to

collaborative steering on the Grid, and we have

given an account of work that has moved IRIS

Explorer in this direction.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 652

652 Visualization Software and Frameworks

Acknowledgments

I am grateful to the numerous users and develop-

ers of IRIS Explorer responsible for much of

the work described here, particularly Silhacene

Aid, Ken Brodlie, Bob Brown, David Burridge,

Hiro Chiba, Patrick Craig, Arnaud Desitter,

Matt Dougherty, David Foulser, Alan Gay,

Gary Griffin, Haruko Kanjo, Santiago Lom-

beyda, Mike London, Mick Pont, Jamie Shiers,

Sarah Turner, Astrid van Maanen, Jason Wood,

and Helen Wright.

References

1. B. McCormick, T. A. DeFanti, and M. D.
Brown. Visualization in scientific computing.
Computer Graphics, 21(6), 1987.

2. J. Neider, T. Davis, and M. Woo. OpenGL
programming guide. Addison-Wesley, 1993.

3. J. Wernecke, The inventor mentor: program-
ming object-oriented graphics with Open In-
ventor, release 2. Addison-Wesley, 1994.

4. K. W. Brodlie, D. L. Fisher, G. G. Tolton, and
T. W. Lambert. The development of the
NAG graphical supplement. Computer Graphics
Forum, 1(3):133–142, 1982.

5. NAG Graphics Library, http://www.nag.co.uk/
visual/GLGICH.asp

6. B. Ford, personal communication, 1998.
7. J. P. R. B. Walton. Get the picture—new direc-

tions in data visualization. In Animation And
Scientific Visualization: Tools & Applications
(R. A. Earnshaw and D. Watson, Eds.), pages
29–36, Academic Press, 1993.

8. C. Upson, T. Faulhaber, D. Kamins, D. Schle-
gel, D. Laidlaw, J. Vroom, R. Gurwitz, and A.
van Dam. The application visualization system:
a computational environment for scientific visu-
alization. IEEE Computer Graphics and Applica-
tions, 9(4):30–42, 1989.

9. R. B. Haber and D. A. McNabb. Visualization
idioms: a conceptual model for scientific visual-
ization systems. In Visualization In Scientific
Computing (B. Shriver, G. M. Nelson and L. J.
Rosenblum, Eds.), pages 74–93, 1995.

10. H. D. Lord. Improving the application devel-
opment process with modular visualization
environments. Computer Graphics, 29(2):10–12,
1995.

11. D. S. Dyer. A dataflow toolkit for visualization.
IEEE Computer Graphics And Applications,
10(4):60–69, 1990.

12. D. Foulser. IRIS Explorer: a framework for
investigation. Computer Graphics, 29(2):13–16,
1995.

13. B. Lucas, G. D. Abram, N. S. Collins, D. A.
Epstein, D. L. Gresh, and K. P. McAuliffe. An
architecture for a scientific visualization system.
In Proceedings of Visualization ’92 (A. E. Kauf-
mann and G. M. Neilson, Eds.), pages 107–114,
1992.

14. C. R. Johnson and S. G. Parker. Applications
in computational medicine using SCIRun: a
computational steering programming environ-
ment. In Proceedings of Supercomputing ’95
(H. W. Meuer, Ed.), pages 2–19, 1995.

15. The Numerical Algorithms Group, IRIS
Explorer user’s guide, http://www.nag.co.uk/
visual/IE/iecbb/DOC/ html/unix-ieug5-0.htm

16. P. Craig. Implementing a statistical data type in
IRIS Explorer. IRIS Explorer Technical Report
No. IETR/10 (NAG Technical Report No. TR3/
97). http://www.nag.co.uk/doc/TechRep/PS/tr3_
97.ps

17. The Numerical Algorithms Group, IRIS Ex-
plorer module writer’s guide, http://www.nag.
co.uk/visual/IE/iecbb/DOC/html/unix-iemwg5-0.
htm, 2000.

18. J. D. Wood, K. W. Brodlie, and H. Wright.
Visualisation over the world wide web and its
application to environmental data. In Proceed-
ings of Visualization ’96 (R. Yagel and G. M.
Nielson, Eds.), pages 81–86, 1996.

19. User-Donated Module Repository, IRIS Ex-
plorer Center of Excellence, http://www.scs.
leeds.ac.uk/iecoe/main_repository.html

20. O. Casher and H. S. Rzepa. A chemical colla-
boratory using Explorer EyeChem and the
common client interface. Computer Graphics,
29(2):52–54, 1995.

21. D. Knight. CFD visualisation with IRIS Ex-
plorer 3.5. In Render, issue 6. NAG Ltd
(1996). http://www.nag.co.uk/visual/IE/iecbb/
Render/Issue6/CFDVis.html

22. J. Shiers. Analysis of high energy physics data
using IRIS Explorer. In Render, issue 10. NAG
Ltd., (1999). http://www.nag.co.uk/visual/IE/
iecbb/Render/ Issues10/issue10_4.html

23. J. P. R. B. Walton. Visualization of sphere
packs using a dataflow toolkit. J. Mol. Graphics,
12(3):147–154, 1994.

24. J. D. Wood, K. W. Brodlie, and H. Wright.
Collaborative visualization. In Proceedings of
Visualization ’97 (R. Yagel and H. Hagen,
Eds.), pages, 253–259, 1997. http://www.comp.
leeds.ac.uk/vis/jason/vis97/vis97.html

25. The Numerical Algorithms Group, IRIS Ex-
plorer collaborative user’s guide, http://www.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 653

NAG’s IRIS Explorer 653

nag.co.uk/visual/IE/iecbb/DOC/html/unix-iecug
5-0.htm, 2000.

26. J. P. R. B. Walton and M. Dewar. See what I
mean? Using graphics toolkits to visualise nu-
merical data. In Visualization and Mathematics:
Experiments, Simulations and Environments
(H.-C. Hege and K. Polthier, Eds.), pages
279–299. Berlin, Springer, 1997. http://www.
nag.co.uk/doc/TechRep/PS/tr8_96.ps

27. P. Barthelemy and R. Weideman. Open In-
ventor and MasterSuite. In Proceedings of
HEPVIS 96, pages 87–98, 1996. http://www.
cern.ch/Physics/Workshops/hepvis/hepvis96/
papers/p_barthelemy.ps.gz

28. J. P. R. B. Walton. World processing: data
sharing with VRML. In The Internet in 3D:
Information, Images and Interaction (R. A.
Earnshaw and J. Vince, Eds.), pages 237–256,
1997.

29. SGI ImageVision Library, http://www.sgi.com/
software/imagevision/overview.html

30. NAG Numerical Libraries, http://www.nag.co.uk/
numeric/numerical_libraries. asp

31. J. P. R. B. Walton. Visualisation benchmark-
ing: a practical application of 3D publishing.
In Proceedings of Eurographics UK 1996,
2:339–351, 1996. http://www.nag.co.uk/doc/
TechRep/PS/tr9_96.ps

32. A. Lopes and K. W. Brodlie. Accuracy in
3D particle tracing, In Mathematical Visualiza-
tion: Algorithms, Applications and Numerics
(H.-C. Hege and K. Polthier, Eds.), pages
329–341. Berlin, Springer, 1998. http://www.scs.
leeds.ac.uk/vis/adriano/acc_particle.ps.gz

33. M. London. Using IRIS Explorer in oil recovery
research. In Render, issue 12. NAG Ltd, 2000.
http://www.nag.co.uk/visual/IE/iecbb/Render/
Issue12/art7.html

34. A. W. Cook and P. E. Dimotakis. Transition
stages of Rayleigh-Taylor instability between
miscible fluids. J. Fluid Mech., 443:69–99,
2001.

35. S. Lombeyda, J. Pool, and M. Rajan. Parallel
isosurface calculation and rendering of large
datasets in IRIS Explorer. In Render, issue 11.
NAG Ltd, 1999. http://www.nag.co.uk/visual/
IE/iecbb/Render/Issue11/issue11_2.html

36. W. E. Lorensen and H. E. Cline. Marching
cubes: a high resolution 3D surface reconstruc-
tion algorithm. Computer Graphics, 21(4):163–
169, 1987.

37. A. J. Fenlon, T. David, and J. P. R. B. Walton.
An integrated visualization and design toolkit
for flexible prosthetic heart valves. In Proceed-
ings of Visualization 2000, pages 453–456, 2000.

38. C. H. Hsu and T. David. The integrated design
of mechanical bi-leaflet prosthetic heart valves.
Med. Eng. Phys., 18(6):452–462, 1996.

39. M. Walkley, J. Wood, and K. Brodlie. A dis-
tributed co-operative problem solving environ-
ment. In Computational Science—ICCS 2002
(P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra,
and A. G. Hoekstra, Eds.), pages 853–861,
2002. http://www.comp.leeds.ac.uk/vis/kwb/e-
science/paper098.pdf

40. G. Hart, A. Tomlin, J. Smith, and M. Berzins.
Multi-scale atmospheric dispersion modelling
by the use of adaptive gridding techniques. En-
vironmental Monitoring and Assessment 52:225–
228, 1998.

41. C. Johnson. The Finite Element Method. Wiley,
1990.

42. G. Allen, W. Benger, T. Goodale, H.-C. Hege,
G. Lanfermann, A. Merzky, T. Radke, E. Sei-
del, and J. Shalf. The cactus code: a problem
solving environment for the grid. In Proceedings
of Ninth IEEE International Symposium on High
Performance Distributed Computing, 2000.

43. Globus, http://www.globus.org
44. Covisa-G Collaborative Visualization, http://

www.visualization.leeds.ac.uk/CovisaG/
45. K. W. Brodlie, S. Mason, M. Thompson,

M. Walkley, and J. D. Wood. Reacting to a
crisis: benefits of collaborative visualization
and computational steering in a grid environ-
ment. In Proceedings of UK e-Science All Hands
Conference, 2002.

46. C. E. Goodyer and M. Berzins. Eclipse and
ellipse: PSEs for EHL solutions using IRIS Ex-
plorer and SCIRun. In Computational Science
— ICCS 2002, (P. M. A Sloot, C. J. K. Tan, J. J.
Dongarra and A. G. Hoekstra, Eds.), pages
523–532. Berlin, Springer, 2002.

47. Visualization Middleware for e-Science, http://
www.visualization.leeds.ac.uk/gViz/

48. K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P.
R. B. Walton, and J. D. Wood. Distributed and
collaborative visualization. Computer Graphics
Forum, 23(2):223–251, 2004.

49. K. W. Brodlie, D. A. Duce, J. R. Gallop, M.
Sagar, J. P. R. B. Walton, and J. D. Wood.
Visualization ingrid computing environments. In
Proceedings of Visualization 2004, to appear.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:21pm page 654

654 Visualization Software and Frameworks

33 AVS and AVS/Express

JEAN M. FAVRE and MARIO VALLE

Swiss National Supercomputing Center

33.1 Introduction

The introduction of the Application Visualiza-

tion System (AVS) in 1989 marked a milestone

in the visualization environment scene [1]. The

computer industry had seen, at the end of the

1980s, the release of a class of hardware called

‘‘graphics superworkstations,’’ while on the al-

gorithmic side, the series of IEEE Visualization

conferences had just started, bringing to light

numerous visualization techniques and models.

There remained, however, a large gap between

the 3D graphics power and the software tools

available. Graphics libraries available then

(PHIGSþ, GL, GKS, etc.) were too low-level

and required a large programming investment

that scientists were not ready to pay, while ani-

mations packages such as MOVIE.BYU were

too specific and often restricted to the anima-

tion of geometric primitives.

AVS filled this gap by providing an inter-

active visualization framework that would

allow scientists to quickly experiment with a

wide range of visualization techniques, promot-

ing the understanding of their data while reliev-

ing them of low-level programming tasks. The

AVS environment was designed with the

following goals:

. To enable quick application creation. To

understand scientific data, it is critical to be

able to explore and quickly experiment with

visualization and analysis techniques. AVS

provided a direct-manipulation interface to

small software building blocks whose execu-

tion was entirely managed by the system.

. To shield the user from low-level program-

ming, letting him or her concentrate on the

visualization task and not on the program-

ming system’s idiosyncrasies. AVS generated

a simple graphical user interface (GUI) for

each modular component and took care of

assembling all the graphics rendering com-

ponents (e.g., views, cameras, and lights).

. To simplify integration and extension of the

tool. Since visualization scenarios may

change widely based on the application

domain, and since visualization was—and

continues to be—a rapidly evolving field, it

was necessary for a visualization framework

to provide a mechanism to easily include new

user code in its environment.

. To provide a complete and integrated envir-

onment for all stages of the visualization,

from data input and data transformation to

graphics rendering.

. To develop a portable tool available on

many heterogeneous platforms. AVS was

based on standard graphics libraries,

windowing systems, operating systems, and

languages.

It was further recognized that a visualization

tool should address the needs of three different

categories of users:

. The end users want to visualize their data

and experiment with different visualization

techniques with as little programming as

possible. They are typically scientists from

numerical or experimental data production

fields who use the tool without modification

to support their scientific work.

. The power users and visualization developers

are ready to extend the tool’s functionalities

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 655

655

by adding special visualization techniques

and integrating their computational code.

These users have graphics and visualization

backgrounds and will enhance and extend

the environment to better support their re-

search work in visualization and the work of

end users.

. The application developers prefer to work

with reusable components to quickly build

turnkey applications and deliver solutions

specific to an application domain.

The architecture that resulted proved very suc-

cessful as other similar environments (Iris Ex-

plorer, IBM Data Explorer, Khoros, VTK)

followed this track in the 1990s. The AVS prod-

uct line saw several versions of the tool that

were eventually refined and improved in a fully

object-oriented modular environment intro-

duced in 1994 called ‘‘AVS/Express.’’ This

chapter will thus concentrate on this latest in-

stance of the software product.

In the rest of the chapter, we begin by

reviewing the design goals of AVS/Express,

based on some of the limitations of AVS. We

continue with a quick user tour to help illustrate

AVS/Express’ user interface environment and

user-level functionalities. A detailed description

of the most fundamental architecture aspects

of AVS/Express, focusing on four areas (the

object model, the execution model, the unified

data model, and the rendering subsystem

structure) follows. An example of a custom

module is presented before the concluding para-

graph.

33.2 Design Principles for AVS and AVS/
Express

To address the requirements presented in the

introduction, AVS introduced two paradigms

essential to the creation of an open and modular

environment. AVS reuses the concept of build-

ing blocks connected into a directed acyclic

graph found in early animation and rendering

systems. The power of this data flow–oriented

architecture is further strengthened by the add-

ition of a visual programming interface that

provides a one-to-one correspondence to the

modules present in the visual workspace.

Because a crucial step in the visualization

process is the extraction of data representations

from raw data, intermediate data structures are

necessary to hold the various filtered data prior

to their conversion to geometric primitives.

AVS introduced a data model—the Field data

type—that would favor the interconnectivity of

the modules and allow them to exchange typed

data between each other.

At the time of the introduction of AVS, com-

pliance with the standards was sought, and AVS

supported Unix and VMS with PHIGS, GL,

and Dore as rendering libraries.

Fig. 33.1 shows the Visual Editor area of the

current version of AVS (AVS v5.6). The user

creates the visualizations with a drag-and-drop

interface, using modules from different libraries

sorted out by application fields. In the working

area, the modules can be connected together

in a network-like topology, visually linking

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 656

Figure 33.1 TheAVSnetwork editor. (See also color insert.)

656 Visualization Software and Frameworks

modules via their input and output ports. The

user is assisted during the network construction

phase with color-coded ports that simplify the

matching of typed inputs with typed outputs.

Each AVS module is a separate executable

that runs in its own process. Its execution auto-

matically starts as soon as all the required input

data are present at its input ports. This style

of program interface focuses on an interactive

creation, connection, and deletion of modules,

prototyping visualization scenarios in real time.

The program structure is less important, as the

user thinks in terms of flow and transformation

of his data.

33.2.1 Lessons Learned from the Original
AVS

The original AVS architecture had some draw-

backs, addressed later by AVS/Express, as we

will see in the remainder of the chapter. A pure

data-flow architecture is inefficient from a

memory usage point of view because each

module makes a copy of the data. Further, the

totally distributed nature of the running pro-

cesses allowed simple and transparent connec-

tions to modules running on remote machines,

but it proved very resource-consuming during

sessions at a single desktop. The original Field

data type was also not extensible. To support

unstructured data grids, many modules had

been duplicated. AVS’s user interface was per-

haps the strongest limitation. It was based on a

set of proprietary widgets that do not resemble

the accepted style for Unix applications’ user

interfaces. Finally, it was recognized that AVS

was difficult to use as a framework for the cre-

ation of turnkey applications.

33.2.2 AVS/Express Design Goals

An enhanced data-flow architecture was central

to the new architecture. The visual program-

ming paradigm was a generally accepted con-

cept, but the pure data-flow model underlying

it had to be improved. To move beyond the

creation of simple networks connecting no

more than a few dozen modules, it was neces-

sary to give the user an interpreted language

interface (ASCII-based contents) and to place

all objects in a hierarchy accessible visually or

from the command language’s interactive

prompt.

It was also thought that the object-oriented

nature of the system could bemade directly avail-

able so that the user could use the software prod-

uct as a true prototyping environment. The

compile/link process necessary to create derived

data representations and module implementa-

tions should be augmented to offer a consistent

object-oriented view of the system, both during

normal use and during new visualization proto-

typing activities.

In the modular approach to AVS, the module

represented the atomic object of the lowest level.

To favor a better extensibility of the application

and to better use the system resources, a visual-

ization developer needed access to data objects

of widely different granularity, from the full 3D

grid data level down to the basic numerical

primitives (float, integer, etc.). A lot more flexi-

bility and expressiveness would result from

opening the object model.

Finally, a unifying data model that sup-

ported structured and unstructured data was ne-

cessary to make the system more intuitive. Data

filtering and mapping operations would be sim-

pler to use, and the user would leverage on his or

her experience building visualization networks

with different data characteristics.

33.3 AVS/Express Quick User
Overview

When AVS/Express starts, it displays two

windows: the Network Editor, which is the

working area where the user creates visualiza-

tion networks (Fig. 33.2, right), and the Data

Viewer, which contains the rendering area, the

module user interface, and the interface to the

rendering subsystem (Fig. 33.2, left).

The Network Editor contains a list of librar-

ies that group together modules with similar

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 657

AVS and AVS/Express 657

functionality. A visualization application is

called a network. Creation of a network consists

of dragging modules from the module libraries

to the Network Editor and then connecting

them. Any module(s) can then be opened, ex-

posing its (their) complete sub-object hierarchy

for fine-grain editing tasks. Alternatively,

objects can be grouped together into macros,

reducing their visual footprint and hiding imple-

mentation details. The network editor supports

strong-typed checking and will only allow con-

nections between ports of compatible data

types.

The Data Viewer window is composed of the

viewer itself, the user interface area (in which

the module control panels automatically appear

when modules are instanced), and the various

parameter editors that give access to the

rendering subsystem. A toolbar allows quick

access to the most common viewer functional-

ities (control over the mouse behavior for 2D

and 3D viewing transformations, control over

the light sources and the camera parameters,

etc.).

33.3.1 Available Modules

AVS/Express offers an exhaustive list of

modules. The modules are accessed trough the

library section of the AVS/Express user inter-

face. They can be divided into the following

categories:

. Visualization-related modules. This category

is further subdivided into Data Input/Output

(I/O), Filters (which modify only their input

data, not their geometry), Mappers (which

create new data and geometry), and Field

Mappers (which create gridded data from

raw data arrays). Another grouping can

be made between general 3D visualization

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 658

Toolkit
Libraries

Access to
Parameters

Module GUI

Data Viewer

Viewer

Application Network

Module Internal Structure

Work Space
(Network Editor)

Figure 33.2 The AVS/Express visual editor. (See also color insert.)

658 Visualization Software and Frameworks

techniques, imaging, and 2D charting.

Modules generally come in two forms: one

ready for immediate use with a user interface

panel and ready-made connection ports, and

a streamlined version providing only the raw

computational method. This second set of

modules is generally integrated into custom

applications and gives the user a chance to

provide a special user-interface panel.

. Modules for the creation of a user interface.

These implement the classic interface widgets

(buttons, sliders, frames, etc.) that support

standard GUI styles. These modules allow

the construction of a GUI in exactly the

same way as a network of visualization

modules. A GUI is immediately active as

widgets are added to it. The AVS/Express

environment offers a completely uniform

prototyping and execution interface to all

its components, shielding the user from plat-

form differences.

. Modules for user interaction support. These

include data value probes, interactive geom-

etry editors, camera path editors, and so on.

. Modules for application development. This

category includes modules for subprocess

execution, application termination, and dy-

namic module loading.

Most standard visualization techniques are also

provided as example applications. They are

prebuilt networks to help the user familiarize

himself or herself with the features of AVS/Ex-

press, and they can act as starting points for

custom applications.

Modules are grouped into libraries or ‘‘kits’’

to simplify their retrieval. The kits list—like

almost everything inside AVS/Express—can be

modified to include custom-built libraries.

Custom libraries are available from numerous

sources. The largest of them is hosted at the

International AVS Center (IAC), based in Man-

chester, UK (http://www.iavsc.org). It offers a

complete repository of public-domain AVS/Ex-

press modules that complements the existing

application libraries very well.

33.3.2 Module Examples

To illustrate the kind of visualization techniques

available inside AVS/Express, we present two

modules, one distributed with AVS/Express

and the other one available through the IAC

repository.

The first module is the illuminated streamlines

module (Fig. 33.3a). The visualization of illu-

minated lines uses a dynamic texture map on

3D polylines to represent field streamlines to

visualize continuous fluid dynamics fields. The

method combines streamlines and particle ani-

mation into one hybrid technique, and it employs

texture display on lines to represent full 3D

lighting, motion, and 3D flow structure in one

view. The technique exploits texture graphics

systems in common use for games and achieves

high graphics efficiency during animation [2,3].

The second module implements the Lagran-

gian-Eulerian Advection visualization tech-

nique (Fig. 33.3b). This is a recent technique to

visualize dense representations of time-depend-

ent vector fields. The algorithm produces ani-

mations with high spatio–temporal correlation

at interactive rates. With this technique, every

still frame depicts the instantaneous structure of

the flow, whereas an animated sequence of

frames reveals the motion that a dense collec-

tion of particles would take when released into

the flow [4,5].

33.4 AVS/Express Architecture

The AVS/Express architecture can be intro-

duced from two complementary points of view:

that of the static structure and that of the dy-

namic behavior.

From a static view, AVS/Express is composed

of objects. All objects live in a full hierarchical

structure. There is no distinction between object

types and object instances. Objects can be de-

rived (sub-classed) from other objects or built

by composition of other objects. The construct

that fills the gap with the dynamic model is

the reference. The AVS reference goes beyond

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 659

AVS and AVS/Express 659

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 660

Figure 33.3 (a) Illuminated streamlines model. (b) Visualization of time-dependent wind fields with the IAC LEA module.

(See also color insert.)

660 Visualization Software and Frameworks

the standard Cþþ definition of a reference in

that it also specifies the interaction between

objects.

Dynamically, the AVS/Express architecture

is a modified data-flow. In traditional data-flow

architectures, the modules start execution when

all the needed inputs are available, and they ex-

change data via copy operations through their

connected ports. No global memory is used.

AVS/Express modifies this architecture in two

ways: it generalizes the set of events that makes

a module execute, and it centrally manages the

system memory, thus allowing the modules to

exchange references to their data.

At the core of AVS/Express lies the Object

Manager, which implements and controls this

architecture. Everything is built on top of it,

from the Field data type to the Rendering sub-

system. The Object Manager exposes three

interfaces: a drag-and-drop interface with visual

programming via the Network Editor, a pro-

grammatic interface in AVS/Express ‘‘V’’ lan-

guage, and an API that can be called from C,

Cþþ, and Fortran code.

33.4.1 The Object Architecture

The AVS/Express Object Manager is a pro-

gramming environment that combines the

strengths of object-oriented development meth-

odology with the advantages of ‘‘visual pro-

gramming’’ environments. It augments existing

design and development methodologies by pro-

viding users with a high-level interface to glue

together application objects developed with

traditional object-oriented frameworks or struc-

tured programming techniques.

33.4.1.1 Base Types

The lowest-level unit of configurability in the

system is a ‘‘base type.’’ These ‘‘base types’’

implement the basic behaviors of program

objects: storing and providing access to data

values, storing and providing access to sub-

objects, sub-classing operations, instantiating

and destroying objects, and propagating events

through the system. Examples of base types

include the ‘‘int,’’ which stores an integer value,

and the ‘‘group,’’ which maintains a list of sub

objects.

Base types are defined in an object-oriented

way. All base types implement a common set of

methods (some of these methods may return an

error for specific base types). This common set

of methods allows uniform access to the objects.

For example, the Network Editor can add a new

sub-object to an object without knowing which

type of object it is dealing with.

An object stores a list of sub-objects. Sub-

objects typically define an object hierarchy that

can be traversed in the Network Editor or in the

V language interface.

Many base types do not impose any specific

behavior on the sub-objects, but other base

types may treat the sub-objects as a list of attri-

butes of the base type. This mechanism allows

the user to treat everything as an object. For

example, a ‘‘function’’ object can use its list of

sub-objects as the list of parameters of the func-

tion itself.

33.4.1.2 Sub-Classing

The ‘‘sub-classing’’ and ‘‘instantiating’’ opera-

tions are both implemented using the copy

method of an object. The copy method has the

option of making a clean distinct copy, or it can

make a derived copy, where the new object refers

to the super-class to store information about its

type. Thus, the implementer of the base type

determines how the class hierarchy is maintained

for objects of that particular type.

33.4.1.3 References and Notifications

Objects can have references to other objects.

Normally, the reference is used to store the value

of the object as an indirect pointer to another

object. For example, an ‘‘int’’ object can store a

reference to another object that will store its own

value. In the V language example below, the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 661

AVS and AVS/Express 661

operator¼> implements the reference. The value

of beta is stored in alpha.

int alpha;

int beta ¼> alpha;

The operator ¼> has a second responsibility:

allowing notifications of events. Any object can

request a notification when a particular event

occurs on an object in the system. Examples of

events include ‘‘value changed’’, ‘‘object instanti-

ated’’, and ‘‘connection made/broken’’.

Base types can propagate these ‘‘notification

requests’’ through the references they manage.

They might implement the ‘‘add notification

request’’ method by performing this same

method on the object they reference. Typically,

however, they will only do this for ‘‘value

changed’’ events.

Any request to be notified when the object

beta is changed will be propagated so that the

requestor is notified when the alpha value is

changed as well. Thus, the ¼> operator imple-

ments more than a one-time assignment of

value. It manages a relationship of equality,

which the Object Manager will guarantee at all

times.

33.4.1.4 Object Manager Interfaces

The user may interact with the Object Manager

via three complementary interfaces:

. The Network Editor: This is the visual pro-

gramming interface. It allows class deriv-

ations, instantiations of objects, definitions

of references (connections) and object

editing.

. The V language: This is an interpreted de-

clarative language. The experienced devel-

oper will often use it for faster prototype

editing.

. The OM API: This is the lowest-level

interface available for the C, Cþþ, and For-

tran codes.

All three interfaces allow the same access to the

objects (Fig. 33.4). The developer will choose

the prototyping interface that matches his

or her degree of expertise in Object Manager

Development.

33.4.1.5 Differences from Cþþ
A comparison between the class interface and

usage in Cþþ versus those in the AVS/Express

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 662

Figure 33.4 The Object Manager, a centralized control with three user interfaces.

662 Visualization Software and Frameworks

Object Manager helps highlight their differ-

ences (Table 33.1).

The important difference is in the definition

of the class (module) behavior. A module de-

fines which events should trigger a method exe-

cution. There is no direct call of a method from

a ‘‘main’’ program.

In Cþþ, the ‘‘pixel’’ object created below

must call its public method explicitly.

class screen_coords {

public:

int u, v;

map_coord (float x, float y);

};

class Point {float x, y;} ;

Point wp;

screen_coords pixel;

pixel.map_coord(wp.x, wp.y);

In AVS/Express, the module screen_-

coords specifies that the method will auto-

matically execute whenever a ‘‘notify’’ event is

received by either argument, x or y. The live

object called ‘‘pixel’’ specifies connections (or

references) to other sub-objects. (The notifica-

tion mechanism will be explained further in a

following paragraph). These sub-objects will be

the source of the event notifications.

module screen_coords {

int u, v;

float x, y;

method map_coord (x þ notify,

y þ notify);

};

world_position wp;

screen_coords pixel {

x ¼> wp.x;

y ¼> wp.y;

};

The AVS/Express developer can prototype a

class derivation using the V language interpreter

or the visual interface. In the Network Editor,

the ¼> operator is applied when making a con-

nection between any two objects.

33.4.1.6 Application Development
Support

Customizations and additions to the base AVS/

Express environment are saved in a project

directory. A project can add to or supersede

anything provided in the main distribution, and

it can have descendents providing support for

multideveloper projects.

At the code level, AVS/Express supports the

application development with two specific tools:

the ‘‘add module’’ wizard and the run-time gen-

eration support.

The wizard creates a code skeleton and all the

support files needed to specify the integration of

a user-defined module.

The run-time generation packages an applica-

tion so that it can run on a machine without

AVS/Express installed. The run-time also omits

from the application all the code, libraries, and

support files not needed by the application itself

to achieve better performances.

33.4.2 The Execution Model

As stated earlier, no explicit procedural program-

ming is available for or needed by the Object

Manager. Control flow constructs like for,

while, or if are embedded in the architecture

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 663

Table 33.1 Different elements in Cþþ and AVS/Express

Cþþ AVS/Express Object

Manager

class module

member variable sub object

method method

public member variable parameter

behavior defined by usage behavior explicitly

defined

constructor/destructor module on_instance/

on_deinstance methods

AVS and AVS/Express 663

using the same structure of standard processing

modules without resorting to special language

constructs. Two examples follow.

33.4.2.1 Control Flow Examples

Suppose the user wants to display a sequence of

isosurfaces varying the threshold level from 0 to

255 with a step of 20. A loop module

repeatedly executes, outputting a numerical

value connected to the input threshold of the

isosurface module. The Object Manager

propagates the event ‘‘value changed’’ to the

isosurface module, which will recompute a new

isosurface. The renderer then reacts to the

‘‘value changed’’ event on its renderable object

input and will refresh the display (Fig. 33.5).

In the second example, an if control structure

can be emulated with the V language switch ()

built-in function. Switch(index, arg1,

arg2,...) returns one of its arguments,

depending on the value of its index. If index is

1, it returns arg1; if index is 2, it returns arg2,

and so on. The color of a GUI button can be

changed based on the sign of an input value:

Uibutton bicolor_button {

color {

backgroundColor¼> switch((value>
0) þ 1, ‘‘red’’, ‘‘green’’);

};

};

33.4.2.2 Event Scheduling

Every method definition declares the events it is

interested in. The most important events are

‘‘module instantiation’’, ‘‘module de-instantia-

tion’’, and ‘‘parameters value changes’’.

One advantage of using event scheduling for a

particular method is that the object itself

handles the expression of interest for a particu-

lar event. Thus, no outside user must explicitly

manage the execution of code for that particu-

lar object; the event dispatcher handles the

scheduling.

For example, the implementation of a user-

interface widget typically handles the resize

operation automatically. It registers an event

handler to be called when its parent widget is

resized. In response to this event, the callback

function will appropriately resize the widget.

The programmers using the widget in an appli-

cation need not be aware of what is happening

within the implementation of the widget. With-

out this event handler, the programmer would

have to trap the conditions under which the

widget needed to be resized, and it could handle

this resize operation by explicitly calling a

widget’s method.

When modules are connected together, the

Object Manager creates a dependency graph

based on the modules’ data access declarations.

When an event occurs, e.g., a value changes

in the user interface, the Object Manager will

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 664

Figure 33.5 Animation of a parameter with the Loop module.

664 Visualization Software and Frameworks

traverse this graph and check the sequence

number maintained for every object. As a result,

decisions will be made about which methods to

fire and in what order.

A pair of push/pop context calls brackets this

sequence of events. Those routines mark some-

thing similar to a transaction in a database

system. This ensures that the objects are valid

before event queuing, collapses a set of events

directed to the same object, and ensures that no

infinite loop occurs (e.g., if a method modifies

the input that triggered the method execution).

This explicit execution model, with its central

Object Manager, naturally integrates external

events (e.g., sockets, X event loops) in the

same execution model. The application devel-

oper can thus integrate an AVS/Express appli-

cation inside another application or integrate

other applications as part of an AVS/Express

system.

33.4.2.3 The Process Model

AVS/Express maintains a collection of coop-

erating processes. A process can be running on

any machine in a networked environment. Each

process maintains a set of objects that includes

any data and methods that make up the

implementation of the object. Objects are

allocated in a single namespace that spans all

the processes in the system. A single master

process distributes unique ‘‘process IDs’’ that

are stored as part of the object to ensure its

uniqueness in the system.

Given a particular object, the Object Man-

ager can quickly obtain its process ID to ensure

transparent interprocess communications. The

connection is created dynamically the first time

a process attempts to access information about

a remote object. The system typically performs

a procedure call on a particular object without

needing to know whether the object is in the

same process or in a different process. This

multiprocess environment allows the user to

separate a module in a different process (for

example, to facilitate its debugging). At a later

time, the module can integrate the major pro-

cess pool. Interprocess migration remains trans-

parent, and performance will be better.

The most important benefit of this structure is

that distributed execution can be easily imple-

mented. The user defines a process and declares

it as running on a particular machine. Then the

user creates a module and assigns it to this

process. When he or she instantiates this par-

ticular module and connects it into the applica-

tion network, the system takes care of the

distributed communication and remote process

management. The resulting application network

offers complete transparency for the modules’

instantiation and execution.

33.5 The Field Data Type

The Field data schema encapsulates the data

structures most commonly used in visualization

applications. It covers a wide range of data,

including images, volumes, finite difference

and finite element solutions, and geometry. Its

unifying property simplifies the integration be-

tween modules by making them operate on a

single data type.

Field

Mesh

Grid Cells

Data

Node_Data Cell_Data

The Field data schema is defined using the V

language and is interpreted by the Object Man-

ager at run time. It is hierarchical, and the top-

most object is referred to as the Field. Fields

consist of a Mesh element and a Data element.

A Mesh is a geometric description of the data

domain that includes Grid and Cells. A Grid

defines the spatial location of the nodes. Cells

are used to specify node connectivity and the

type of interpolation between nodes. Cells can

have various properties, such as shape, order,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 665

AVS and AVS/Express 665

etc. In the Field data schema, cells that have the

same properties are combined into Cell Sets.

Data represents scalar or vector values defined

at specific domain locations, such as nodes and/

or cells. On 64-bit platforms, Fields can handle

arrays of up to 2� 109 elements.

The Field Access Library provides an API

between the Field data schema and other com-

ponents, such as the visualization modules and

the Graphics Display Kit. It consists of an ex-

tensive set of functions that allow access to

different subelements of Fields.

33.5.1 Mesh

The most general Mesh represents an unstruc-

tured domain; it can be viewed as a collection of

cells or elementary volumes of different shapes

covering the domain. Each cell is defined by a

collection of bounding nodes that form a con-

nectivity list. Node locations in space are de-

fined by a coordinate array. The general Grid

template groups those coordinates together with

information about the number of nodes, dimen-

sionality of the coordinate array, coordinate

information, and spatial extents of a domain.

Cell information is stored in the structure called

Cells.

In the general case, aMesh can have more than

one cell type. For example, in structural analysis,

the same Field can contain both 3D cells (such as

hexahedrons) and 2D cells (such as triangles and

quadrilaterals). The notion of Cell_Set effi-

ciently represents different types of cells in a

single Field. Cells in one Cell_Set have the

same shape, order, topology, number of nodes,

properties, and other attributes.

The followingCell_Set types are supported:

. Zero-dimensional: Point

. 1D: Line, Line2 (second-order cell), Polyline

. 2D: Triangle, Triangle2 (second-order cell),

Quad, Quad2 (second-order cell), Polytri

. 3D: Tetrahedral, Tetrahedral2 (second-order

cell),Hexahedral,Hexahedral2 (second-order

cell), Prism, Prism2 (second-order cell), Pyra-

mid, Pyramid2 (second-order cell).

33.5.2 Structured Mesh Sub-Classes

Cell connectivity and node coordinates are ex-

plicitly defined in the general Mesh template.

A specialized derived type of Mesh is a struc-

tured mesh (Mesh_Struct) that implies a cer-

tain cell connectivity rule and does not store any

explicit connectivity information. This type of

mesh is often used in computational fluid dy-

namics (CFD) analysis, where the domain is

defined on a curvilinear grid (a topologically

regular grid deformed in space).

In object-oriented terminology, Mesh_

Struct is a sub-class of Mesh that has add-

itional information about mesh topology. The

data access methods defined in the parent class

Mesh are available for Mesh_Struct without

the need for overloading.

The class for a structured grid is derived from

the general Grid class. The node connectivity

array for the Cell_Struct is defined impli-

citly by using the V language function get_

connect_struct(). An explicit evaluation

would only take place when an application

treated the Mesh_Struct object as a more

general Mesh.

Sub-classes of the structured mesh are uni-

form meshes (Mesh_Unif) and rectilinear

meshes (Mesh_Rect). They further specialize

the definitions of node locations and do not

store explicit node coordinates. A uniform

mesh stores only two corner points representing

grid extents in physical space. A rectilinear mesh

stores coordinates for the boundary nodes for

each dimensionality. Coordinate values in both

cases are evaluated implicitly by the V language

functions get_coords_unif() and get_

coords_rect(). As for the connectivity

array, these functions calculate coordinate

arrays only in the case of a mesh being treated

as a Mesh_Struct or of one of its parent

classes.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 666

666 Visualization Software and Frameworks

The following class definitions complete the

Field data schema for the following structured

meshes:

. Cylindrical Uniform Mesh (2D and 3D)

. Cylindrical Rectilinear Mesh (2D and 3D)

. Spherical Uniform Mesh (3D)

. Spherical Rectilinear Mesh (3D)

33.5.3 Data

The Data class represents scalar or vector values

defined at specific domain locations, such as

nodes and/or cells. A Field can have different

kinds of data: Node_Data and/or Cell_Data,

each of them in turn may consist of multiple

components, such as pressure, temperature, vel-

ocity, etc.

Data values can be of type byte, char,

short, int, float, or double. Different com-

ponents can have different data types. The Data

class includes a notion of NULL data: a special

value can be set and treated as absence of data

at a particular node or cell.

Cell_Data is defined for each Cell_Set,

meaning that different cell sets may have differ-

ent data components.

33.5.4 Field Types and Visualization
Methods

This variety of Field types fits well in an object-

oriented design: methods can be associated

and stored together with an object’s template.

This solves the problem of how to design

data processing and visualization modules that

work efficiently with all the different Field

types.

Starting with the most general objects, such

as Mesh, there are methods that are used in

data processing and visualization modules (like

interpolate_cell and find_cell) and methods

associated with different cell types (like shape_

functions, shape_derivatives, etc.).

The Mesh sub-classes (Mesh_Struct,

Mesh_Unif, Mesh_Rect) overload the

methods defined for their parent classes. Their

methods are optimized for the particular sub-

type and take advantage of information specific

to the Mesh sub-class definitions.

33.5.5 Field Extensibility

The AVS/Express Field data structures allow

user extensions for defining new mesh or cell

types. By deriving new classes from the existing

Field structures, cell types specific to certain

application needs can be established. The Field

data schema is defined using the V language and

is interpreted by the Object Manager at run

time, allowing prototyping without a compile/

link. Thus, macros can be built using these def-

initions to map primitive coordinate, data, and

connectivity arrays into groups that represent

new cell types.

To allow display and processing of the new

cells, a tessellation function can be registered. It

applies a conversion algorithm that creates cell

connectivity lists for the standard cell types.

A Field extension recently introduced in AVS/

Express (v5.0) addresses the needs for a time-

dependent field data type. It extends the Field

structure to store data and/or coordinates at dif-

ferent time-steps. The whole hierarchy inherits

the extension; thus, support for uniform, rectilin-

ear, and structured meshes was easily derived.

The ‘‘Read Field’’ module was updated to read

this kind of Field, and some specific modules

were added (i.e., the interpolate_time_

step module allows generic substep interpol-

ation). No rendering functions were added; time-

dependent Fields are rendered one step at a time.

33.6 The Integrated Rendering
Subsystem

The integrated rendering subsystem, also called

the Data Display Kit, is the component of the

AVS/Express system that provides the entire

rendering and display functionality. Its struc-

ture is built in the Object Manager architecture

framework and uses the same execution model

as every other AVS/Express module. The choice

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 667

AVS and AVS/Express 667

of this structure makes the Data Display Kit

highly extensible along three major directions:

first, new data types may be added to the system

and directly rendered; second, new renderers

may be added; and third, the viewer’s user inter-

face may be replaced.

The most visible example of the extensibility

of the Data Display Kit is its support of mul-

tiple renderers. On any supported platform,

a software renderer is always provided. In

addition, one or more of the following renderers

are provided: OpenGL, XGL, PEXlib. In the

AVS/Express Multipipe Edition, the SGI Multi-

pipe Toolkit has been integrated as a new

immersive rendering system. It is integrated

transparently in the Data Display Kit and

AVS/Express architecture. A single-button

switch may transport the user from a desktop

viewer to an immersive view (e.g., Reality

Center, CAVE, etc.).

An example of another extension is the

module available in the IAC AVS/Express

public-domain repository that implements sup-

port for volume rendering for the VolumePro

graphics subsystems of MERL. Direct

rendering to OpenGL is used to take full advan-

tage of graphics board API.

33.6.1 Rendering Features

The Data Display Kit has the ability to render

not only 3D data but also 2D data, images, and

volumes into a single view. Some toolkits focus

on only one of these data types, or provide

support for more than one data type but at

less than optimal efficiency. The Data Display

Kit supports all of these data types in a highly

efficient manner.

The Data Display Kit renders data directly. It

makes it unnecessary to convert data into a

renderable form prior to passing it to the Dis-

play Kit. The toolkit will do this conversion on

the fly. This renderable representation can be

optionally cached for faster updates during

direct interaction with the object. This provides

the user with the typical tradeoff of memory

versus speed. In immediate-mode rendering,

the toolkit will convert data in real time. This

allows large datasets or time-dependent data

mappings to be rendered with minimal memory

overhead. Alternatively, a display list can cache

a renderable form of the data to accelerate inter-

active viewing of static objects.

Many of the typical attributes of a display list

system, like inheritance of attributes, etc., are

present in the toolkit.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 668

Objects

Editors (User Interface)

Base Types

View / State / Primitive Routines

X Window Win32 SW OpenGL MPK Other...

Window Systems

Rendering
Subsystem

System Level Graphics Libraries

Data Render / Pick Methods

Base Type Render / Pick Methods

Figure 33.6 The Data Display Kit.

668 Visualization Software and Frameworks

The Data Display Kit provides a number of

powerful techniques to allow a high level of

interaction in very complex scenes. These in-

clude alternate object rendering, accelerate

mode, and usage of 2D primitives in 3D.

33.6.2 Architecture

The first level up from the operating-system level

is the Data Display Kit rendering subsystem.

This level provides all of the window system–

dependent and graphics library–dependent rou-

tines that define a renderer in the toolkit. It also

provides the data-independent routines that con-

vert the raw data to geometric primitives. This

level is independent of any other component of

AVS/Express.

The second level above the operating-system

level contains the base types that make up the

Data Display Kit. These are objects like views,

cameras, properties, etc. This level is largely inde-

pendent of any other component of AVS/ Ex-

press, with only a minimal dependence on the

framework. This layer and the rendering subsys-

temlayer containallof the functions thatmakeup

the high-level language API of the toolkit.

33.6.3 Multipipe Edition

The most notable extension to the Rendering

Subsystem has been the integration of the SGI

Multipipe Utility to implement a full parallel

immersive rendering system within the AVS/Ex-

press Multipipe Edition [6].

The SGI Multipipe Toolkit (MPK) is designed

as a new problem-solving API [7]. Its goal is to

allow OpenGL applications to easily migrate

to multipipe computing and graphics envir-

onments. The MPK system supports full port-

ability, so the same application can run on a

single-display low-end desktop system, or on an

Onyx2 with multiple rendering engines. Unlike

Inventor or Performer, MPK does not impose a

scene-graph structure, so dynamic updating

of scene contents, a capability often found in

visualization applications, is handled in a more

efficient way. The MPK system provides a trans-

parent, callback-driven programming interface

and takes care of interprocess communication,

parallel execution, and display-configuration

issues.

33.7 Example of a New Module
Derivation

AVS/Express applications and usage examples

are covered in Chapter 35. We present here one

low-level example, a specification of a custom

GUI for an isosurface module.

This example demonstrates how an object can

be customized for a particular purpose. Here,

we modify the GUI of the isosurface module to

present the user with three different interface

options: a) a type-in widget to directly enter

the threshold desired; b) a type-in widget to

directly enter the percentage value between the

minimum and the maximum of the scalar field

selected (it ranges between 0 and 1); and c) a

slider widget to animate that same percentage

value (Fig. 33.7).

This object customization demonstrates

many of the features of the AVS/Express design

principles:

. The new object inherits its definition from a

master copy. The derivation relationship is

recorded, and the new object will inherit

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 669

Figure 33.7 A custom isosurface GUI with percentage

values.

AVS and AVS/Express 669

from its parent once more when the software

is upgraded.

. Customization is done by modifying in-

herited sub-objects and by adding new com-

ponents. References to sub-objects in the

object hierarchy are expressed with the

< �. prefix, which tells the interpreter to

search for the sub-objects one level higher

than (and outside of) the current object.

. The numerical value of the isosurface thresh-

old is specified via the V language ¼> oper-

ator. Its value field will always be up to date.

Special use of two other operators is done

here. The < � > and < þ > allow the speci-

fication of a numerical formula that lets the

user change any of the three widgets and

have the value of the other two widgets be

updated accordingly.

. Execution of the isosurface calculation is un-

touched; it remains under the responsibility of

theupdatemechanismof theObjectManager.

The corresponding V code (Fig. 33.8) declares

my_isosurface as a sub-class of the stand-

ard isosurface from the MODS toolkit. The V

code updates only the IsoUI component (its

user interface) and leaves the rest as is.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 670

MODS.isosurface my_isosurface {

IsoParam {

iso_level ¼>< �. IsoUI. UIfield.value;

} ;

IsoUI {

//add two float sub-objects

float ndmin ¼> in_fld.node_data[param.iso_component]. min;

float ndmax ¼> in_fld.node_data [param.iso_component] . max;

//add one typein widget whose value is in [0., 1.]

UIfield PC {

min ¼ 0.;

max ¼ 1.;

} ;

//modify the inherited sub-object UIiso_level

UIiso_level {

value ¼> PC.value;

title ¼ ‘‘percentage value’’;

min ¼ 0.;

max ¼ 1.;

} ;

//add a new typein whose value will verify at all times the

//relationship given

UIfield UIfield {

value ¼> ((<-. PC. value < � > (max - min)) < þ > min) ;

min ¼>< �. ndmin;

max ¼>< �. ndmax;

};

};

};

Figure 33.8 The V language to customize the isosurface module.

670 Visualization Software and Frameworks

Note that the design of this new object via the

object-oriented inheritance feature is done en-

tirely during an interactive session, without

the need for compilation and linking. Prototyp-

ing a system design is thus an extremely intuitive

process.

33.8 Conclusions

AVS and AVS/Express were the first visualiza-

tion environments to offer the visual program-

ming paradigm in a visualization toolkit

environment. AVS influenced many of the en-

vironments we see in use today. The framework

offers full configurability, with the visual inter-

face or with a fully interpretive language, and

addresses the needs of many visualization and

graphics tasks.

AVS/Express is a fully object-oriented envir-

onment where all objects are treated in a uni-

form fashion. From object instantiation to

object derivation and execution, there is only

one mode of development and usage. This ap-

plies to basic primitives, data and mesh object

representations, GUI components, rendering

components, and process and execution objects.

This pervasiveness of the object-oriented archi-

tecture is the greatest strength of AVS/Express.

Prototyping with it is very effective, thanks to

many features. No compile/link cycle is neces-

sary; all derived objects and modules are live in

the environment.

The AVS/Express object orientation offers

multiple levels of interaction to address the

needs of different classes of users and program-

mers. Thus, one may choose different degrees

of component integration levels and use or cus-

tomize the environment as necessary. A basic

user is able to reuse prebuilt visualization

networks adapted to his or her own data with-

out a single line of programming. A more thor-

ough user will begin by customizing her or

his environment via visual editions. Finally,

the advanced programmer is able to rapidly

prototype new components and deliver com-

plete applications for use in a wide range of

applications fields, from astrophysics to chemis-

try to computational fluid dynamics (CFD), and

many other application fields.

AVS/Express goes well beyond a visualization

toolkit which requires the additional knowledge

of a GUI-building language such as Tcl/Tk or

Java for advanced usage. It offers a fully func-

tional interface ready to load data and produce

renderings, but it can also be used via an API

for specialized uses.

AVS and AVS/Express are based on a proven

execution model: the data-flow paradigm. AVS/

Express enhances this model with references

and a transparent multiprocess execution

model for different degrees of ease of use and

efficiency. It is managed by a single event man-

ager and task scheduler that maintains explicit

control over all objects. Its default behavior is

event driven: the network is executed after any

single parameter change, but a demand-driven

mode of execution is also possible. However,

AVS/Express does not take full advantage of

its centralized control to schedule parallel

module execution. All modules, whether they

are on a local process or on a remote process,

are executed in a strictly synchronous manner.

However, with recent additions such as batch-

mode rendering (off-screen rendering),multipipe

rendering for immersive rendering, illuminated

lines, volume rendering, two-pass transparency,

and a CAVElib integration, AVS/Express is a

modern programming environment with an ad-

vanced usage and prototyping environment

based on object technology. Its customer base

includes thousands of users worldwide in aca-

demic and industrial positions.

References

1. C. Upson, T. Faulhaber, Jr., D. Kamins, D. H.
Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and
A. van Dam. The application visualization
system: a computational environment for scien-
tific visualization. IEEE Computer Graphics and
Applications, 9(4):30–42, 1989.

2. D. Stalling, M. Zöckler, and H. C. Hege. Fast
display of illuminated field lines. IEEE Transac-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 671

AVS and AVS/Express 671

tions on Visualization and Computer Graphics,
3(2), 1997.

3. I. Curington. Continuous field visualization with
multi-resolution textures. Proceedings of IEEE
International Conference on Information Visual-
ization, London, July 14–16, 1999.

4. B. Jobard, G. Erlebacher, and Y. Hussaini.
Lagrangian–Eulerian advection of noise and dye
textures for unsteady flow visualization. IEEE
Transactions on Visualization and Computer
Graphics, 8(3):211–222.

5. B. Jobard, G. Erlebacher, and Y. Hussaini.
Lagrangian–Eulerian advection for unsteady

flow visualization. Proceedings of IEEE Visual-
ization 2001, San Diego, CA, pages 53–60, 2001.

6. P. G. Lever, G. W. Leaver, I. Curington, J. S.
Perrin, A. Dodd, N. W. John, and W. T. Hewitt.
Design issues in the AVS/Express multi-pipe
edition. IEEE Computer Society Technical Com-
mittee on Computer Graphics, Salt Lake City,
2000.

7. P. Bouchaud. Writing multipipe applications
with the MPU SGI EMEA developer program
document, http://www-devprg.sgi.de/devtools/tools/
MPU/index.html see also the product description
on: http://www.sgi.com/software/multipipe/sdk/

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:22pm page 672

672 Visualization Software and Frameworks

34 Vis5D, Cave5D, and VisAD

BILL HIBBARD

University of Wisconsin

34.1 Introduction

The Space Science and Engineering Center

(SSEC) Visualization Project focuses on making

advanced visualization techniques useful to sci-

entists in their daily work. We accomplish

this goal by making three scientific visualization

systems (Vis5D, Cave5D, and VisAD) freely

available over the Internet, and by using these

systems as test beds for exploring and evaluat-

ing new techniques. It is important to distin-

guish between scientists who use advanced

visualization techniques in their daily work

and those who use them to create demos [11].

Use in ordinary work is the true measure of

utility—demos often focus only on techniques

that are merely new and dramatic but not

useful. The systems described here are all

freely available from the SSEC Visualization

Project at http://www.ssec.wisc.edu/�billh/

vis.html.

34.2 Vis5D

Vis5D grew out of work with the 4-D McIDAS

[2,3] system during the 1980s, experimenting

with animated 3D displays of various types of

environmental data. We wrote Vis5D [5] in 1988

in response to three realities:

1. Our experiments indicated that data from

simulation models are much easier to visu-

alize than observational data.

2. Scientists do not trust depth information

from binocular stereo. Instead, they need

depth information from interactive 3D ro-

tation.

3. The Stellar and Ardent commercial work-

stations that appeared in 1988 were the first

with sufficient graphics performance for

interactive rotation and real-time animation

of Gouraud-shaded 3D scenes.

The input data to Vis5D are time sequences

of regular 3D grids of values for multiple vari-

ables, for example, temperature, pressure, and

fluid motion vector components. Such data are

typically generated by atmosphere and ocean

simulation models, and also by models and in-

struments in a variety of other scientific discip-

lines. The system takes its name from the fact

that its input data can be stored in a 5D array,

with three spatial dimensions, one time dimen-

sion, and one dimension for enumerating mul-

tiple variables.

Vis5D depicts scalar variables via isosurfaces,

contour curves embedded on horizontal and

vertical planes, pseudo-colors on horizontal

and vertical planes, and volume rendering.

The volume rendering technique uses three se-

quences of transparent planes, one each with

planes perpendicular to the x, y, and z-axes.

As the user rotates the view, the system switches

to the sequence for the axis most closely aligned

with the view direction. This widely used tech-

nique was first developed for the 4D McIDAS

[4]. There is also an interactive point probe for

scalar values, as well as an interactive vertical

column probe used to generate traditional me-

teorological diagrams showing vertical thermo-

dynamic structure. Vis5D depicts wind vectors

via streamlines embedded on horizontal and

vertical planes, particle trajectories, and vectors

embedded on horizontal and vertical planes.

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 673

673

Fig. 34.1 shows some of these techniques com-

bined in a single view, including the following:

1. A yellow isosurface of water vapor.

2. A white volume rendering of cloud water

(i.e., transparent fog).

3. White contour curves of potential tempera-

ture embedded on a vertical plane.

4. A pseudo-color rendering of wind speed

embedded on another vertical plane.

5. Cyan wind parcel trajectories.

6. A topographical map pseudo-colored by al-

titude and with embedded map boundaries.

All Vis5D rendering techniques are interactive.

Users can interactively drag horizontal and ver-

tical planes with the mouse for any graphics

embedded in planes. Particle trajectory paths

are integrated forward and backward through

time-varying vector fields from points inter-

actively selected by user mouse clicks. Users

can interactively modify color tables for

pseudo-colored graphics, including tables of

transparency alpha values. Animation can be

started, single-stepped, and stopped, running

either forward or backward in time. The view

volume can be interactively rotated, panned,

and zoomed, and six clipping planes can be

interactively dragged through the scene. Users

also have interactive control over all sorts of

numerical parameters of rendering techniques,

including values for isosurfaces, spacing of con-

tour curves and streamlines, and length-scaling

of flow vectors and particle trajectories. Some

types of graphical depictions of one variable can

be pseudo-colored according to values of other

variables, including isosurfaces, wind trajector-

ies, and map topography.

A rectangular palette of buttons dominates

the Vis5D user interface, with a row for each

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 674

Figure 34.1 A Vis5D display combining terrain, isosurface, volume rendering, particle trajectories, pseudo-coloring, and

contour curves. (See also color insert.)

674 Visualization Software and Frameworks

scalar variable in the dataset and a column for

each of six basic scalar rendering techniques.

Clicking on a button adds the depiction of the

selected variable by the selected rendering tech-

nique to the 3D display. This may cause the

system to compute the geometries (i.e., vectors,

triangles, and texture maps) for the rendering, if

they are not already saved from a previous

button click. Except for the volume rendering

technique, which requires large amounts of

memory, geometries are computed and saved

for all time-steps in the dataset. This enables

fast animation. It also enables users to click

renderings of particular variables on and off

quickly in the 3D scene, which can be very

useful in cluttered scenes.

Memory management is a key problem for

Vis5D and other interactive visualization

systems. Interactive performance is best when

the grids for all variables and all time-steps can

be held in memory simultaneously, along with

the computed geometries for each rendering

technique. System responses are delayed when-

ever grids must be read from disk or geometries

must be recomputed. When Vis5D loads a data-

set, it computes the ratio of the dataset size to

the amount of available memory, and, based on

this ratio, chooses one of three memory man-

agement strategies:

1. If dataset size is significantly less than avail-

able memory, then the entire dataset is read

into memory. When a variable and a

rendering technique are selected, the geom-

etries for all time-steps are computed and

saved. If there is not enough memory to

save the geometries, then the geometries

for the least recently selected variable and

rendering technique combination are dis-

carded to make space for the new geom-

etries.

2. If dataset size is many times larger than

available memory, then grids are read

from disk only as needed for computing

geometries, and geometries are only com-

puted and saved for the currently displayed

time-step. This strategy of course makes

animation very slow, and it is appropriate

when Vis5D is running from a script and

computing an animation file (e.g., MPEG

or animated GIF) for later viewing.

3. For datasets falling between the limits in

cases 1 and 2, the system devotes part of

the available memory to a cache of grids

and devotes the rest of its memory to saving

geometries for all time-steps for selected

variables and rendering techniques. Grids

and geometries are discarded from their

caches on a least-recently-selected basis.

Vis5D uses a few other simple but important

strategies for optimizing memory and perform-

ance:

1. Grids are generally stored in a compressed

format of 1 byte per grid value, a format

that suffices for most types of data. Options

for 2 bytes and 4-byte floats are available

for datasets that need more precision.

2. Geometries are stored compressed as scaled

1- and 2-byte integers.

3. When the user selects a variable and a

rendering technique for display, geometries

are computed first for the currently dis-

played time-step and then possibly com-

puted for all other time-steps.

4. Vis5D maintains an internal work queue

whose entries have the form (variable,

rendering technique, time-step). On a sym-

metric (i.e., shared-memory) multiproces-

sor, Vis5D has one worker process per

processor in order to exploit parallel pro-

cessing. The worker processes remove

entries from the work queue and compute

appropriate rendering geometries from 3D

grids.

Effective visualization requires information

about the spatial and temporal locations of

data, as well as the names of variables, units

for numerical values, ways to indicate missing

values, and so on. These pieces of information

are called metadata. In 1988 there were no good

standard file formats with adequate metadata

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 675

Vis5D, Cave5D, and VisAD 675

for the 3D grids produced by weather and ocean

simulation models. So we defined an internal file

format for Vis5D that included the necessary

metadata and used Vis5D’s data-compression

technique. Modelers write programs for con-

verting their model output into this Vis5D in-

ternal format, and we supply C- and Fortran-

callable libraries to make it easy.

The utility of visualization systems can be

greatly enhanced by integration of data analysis

operations. Vis5D includes capabilities to import

data from various file formats into the Vis5D

internal format, to resample grids spatially and

temporally, to select a subset of variables from

a file, and to merge data from multiple files.

These capabilities are accessible within both a

Vis5D visualization session and smaller stand-

alone programs. Operations for listing and

editing the contents of grid files are also available

as small stand-alone programs. Users can also

develop algorithms for deriving new grids from

existing grids, either by simple formulas typed

directly into the Vis5D user interface, or, for

more complex operations, by writing Fortran

functions that are dynamically linked to Vis5D.

Although weather modelers can use the in-

creasing power of computers to increase the

spatial and temporal resolution of their simula-

tions, they have recently found more utility from

increased computing power by running a statis-

tical ensemble of simulations, each with slightly

perturbed initial conditions. These ensembles

give them a way to estimate the range of possible

future outcomes due to the instability of non-

linear dynamics. Thus, we added to Vis5D the

capability to read and display multiple sets.

These can be displayed side by side in a rectangu-

lar spreadsheet of 3D displays, as shown in Fig.

34.2, or overlaid in the same 3D display. In the

spreadsheet mode, the cells can be linked so that

they animate, rotate, pan, and zoom in unison.

Furthermore, selections of variables and

rendering techniques made in one cell are

mirrored in linked cells. While the capability to

link displays of multiple 5D datasets would have

justified changing the system’s name to Vis6D,

we stuck with the well known name Vis5D.

Vis5D also includes the rudimentary capabil-

ity to overlay displays of simulation data with

images from satellites and radars, as well as with

randomly located observations from balloons,

surface weather stations, etc. However, the visu-

alization problems of observational data are very

different from those of simulation data. Thus,

most of our efforts in that direction have gone

into the systematic approach in VisAD, de-

scribed later in this chapter, rather than into

retrofitting them in Vis5D.

Vis5D is an open-source system and has been

freely available since 1989. In fact, it was prob-

ably the first open-source visualization system.

From the start, users sent us modifications to fix

bugs or add features that they wanted. Further-

more, large institutions expressed an interest in

using Vis5D, but they wanted user interfaces

that fit better with the look and feel of their

own systems. In 1995, in order to make Vis5D

easier to modify, we split the system into two

parts separated by an application programming

interface (API): a user interface part that calls

the API functions, and a data-management and

display part that implements those functions.

This allows institutions to define custom user

interfaces that call the Vis5D API for data-man-

agement and display functions. The system also

includes links to an interpreter for the TCL

scripting language and defines TCL commands

for invoking the Vis5D API functions. This en-

ables users to write TCL scripts to run Vis5D

noninteractively. These scripts are often trig-

gered by the completion of model runs, and

they often generate images and animations

that are loaded onto ftp and web servers. Alter-

natively, Vis5D TCL scripts are sometimes

created and triggered from web forms, and in

this case, output images and animations are

returned to the web client. Vis5D also includes

a mode in which it listens to a specified pipe file

for the names of TCL script files, which it then

executes.

Vis5D’s API and TCL scripts provide a wide

variety of ways to invoke its data-management

and display functions from other systems. These

are being used by institutions such as NASA,

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 676

676 Visualization Software and Frameworks

the US EPA, the US Air Force, the US Navy,

the US National Weather Service, the European

Centre for Medium-Range Weather Forecasts,

China’s National Meteorological Center, and

many others.

In the last few years, Vis5D development has

ceased at the SSEC Visualization Project. How-

ever, it continues via the Vis5dþ project on Sour-

ceForge, the D3D project at the NOAA Forecast

Systems Laboratory, the Cave5D system at

Argonne National Laboratory, and many other

derived systems. In the next section we describe

Cave5D, an adaptation of Vis5D to immersive

virtual reality.

34.3 Cave5D

Given its interactive 3D displays and its direct-

manipulation user interface, Vis5D is a natural

for use in virtual reality. When Tom DeFanti and

his collaborators at the University of Illinois–

Chicago Electronic Visualization Lab developed

their CAVE virtual reality system [1], we created

Cave5D as a version of Vis5D for their CAVE.

While demonstrating Cave5D at the Siggraph 94

VROOM, we met Glen Wheless and Cathy Las-

cara from Old Dominion University. They and

we used Cave5D for demos at the Supercomput-

ing 95 I-WAY [9,13]. Fig. 34.3 depicts a Cave5D

display that combines ocean and atmosphere

datasets from our I-WAY demo. During our

demo, user wand clicks in the CAVE in San

Diego triggered requests to an SP-2 supercom-

puter at Argonne National Laboratory, which

sent new model data back to San Diego for

display in the CAVE (during the week of the

Supercomputing ’95 conference, bandwidth

into the San Diego Convention Center was

greater than bandwidth into Manhattan). After

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 677

Figure 34.2 A Vis5D spreadsheet of four members of an ensemble forecast from the European Centre for Medium-Range

Weather Forecasts. (See also color insert.)

Vis5D, Cave5D, and VisAD 677

Supercomputing ’95, we focused on VisAD,

and Old Dominion took over development of

Cave5D. I felt that immersive virtual reality

would remain primarily a demo tool rather than

a daily-use tool for many years and was happy to

pass Cave5D on to Old Dominion.

User interfaces are a great challenge for vir-

tual reality. Pop-up panels and large arrays of

buttons and sliders do not feel natural in virtual

reality. But Vis5D users need those large

numbers of widget choices, in addition to the

direct-manipulation choices (like scene rotation,

dragging planes, and trajectory launch) that do

feel natural in virtual reality. Thus, Cave5D has

a modest array of buttons, such as those seen in

Fig. 34.3, that hide many choices users would

like to make. The Old Dominion folks added a

script interpreter to Cave5D that enables users

to easily specify many of the Vis5D widget

choices from a start-up script. They also inte-

grated Cave5D with the Virtual Director system

created by Donna Cox and Bob Paterson in

order to support collaboration between multiple

CAVEs with Cave5D.

I should note that Sheri Mickelson and John

Taylor of Argonne National Laboratory have

taken over support of Cave5D from Old Do-

minion. Cave5D has undoubtedly become the

most widely used visualization software system

for immersive virtual reality.

34.4 VisAD

Observational data is much more challeng-

ing than simulation data to visualize and ana-

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 678

Figure 34.3 A planar simulation of a Cave5D virtual-reality display of coupled atmosphere and ocean simulations used for a

demo at the Supercomputing ’95 conference. (See also color insert.)

678 Visualization Software and Frameworks

lyze. To address this challenge, VisAD (the

name stands for Visualization for Algorithm

Development) is designed to deal with virtu-

ally any numerical or text data, to produce

virtually any type of data depiction, to inte-

grate interactive analyses with visualization,

and to work with arbitrarily distributed com-

puting resources [10]. It is written in pure

Java (except for its use of the HDF libraries,

which don’t support Java) because Java is

a language designed for a distributed environ-

ment. It is a component library that defines

five basic kinds of components (names of

Java classes, interfaces, and objects are in a

monotype font):

1. Data components: These may be simple

real numbers, text strings, vectors of real

numbers and other values, sets in real vector

spaces, functions from real vector spaces to

other data spaces, or complex combinations

of these. They are mostly immutable, in

order to ensure thread safeness. The excep-

tion is that range values of functions (e.g.,

changing pixel intensities in an image) can be

changed without necessitating a replacement

of the entire function.

2. Display components: These contain

visual depictions of one or more linked

Data components. These may be 2D or

3D, may be a window on the screen or in a

browser, or may be in an immersive virtual-

reality system. Display components

update data depictions in response to

changes in linked Data components.

3. Cell components: These execute user-de-

fined computations in response to changes

in linked Data components (the name

Cell is taken from spreadsheets).

4. DataReference components: These are

mutable components used to connect Dis-

play and Cell components to Data com-

ponents, which are often immutable. In

‘‘X ¼ 3’’, the number 3 is immutable and

plays the Data role, whereas X is mutable

(i.e., it can be changed to a value other than

3) and plays the DataReference role.

5. User-interface components: These are trad-

itional graphical user interface (GUI)

widgets typically linked to Data or Dis-

play components.

Display andCell components canbe linked to

DataReference (and hence to referenced

Data) components on remote machines via Java

Remote Method Invocation (RMI) distributed

object technology. This facilitates collaborative

visualization, in which a DataReference com-

ponent on one machine is linked to Display

components on the geographically distributed

machines of multiple users. RMI is also used to

enable applications to link groups of Display

components on differentmachines, so interactive

changes in any are reflected in all.

The core of VisAD’s design is its data model,

which is a mathematical description of the set of

valid Data components. The data model grew

out of our experience with a great variety of

scientific data, and also out of the Siggraph

1990 Workshop on Data Structure and Access

Software for Scientific Visualization, organized

by Lloyd Treinish [12]. Participants included

people who played leading roles in the develop-

ment of AVS, IBM Data Explorer, HDF,

netCDF, DOE CDM, and VisAD.

Data components contain numerical and text

values, as well as metadata. The primary type

of metadata is a data schema, in VisAD’s

MathType class, that defines names for primi-

tive numerical and text values occurring in data,

the way values are grouped into vectors, and

functional dependencies among values. For

example, a satellite image of Earth may be de-

scribed as a functional dependence ofradiance

on pixel line and element coordinates, via the

MathType (using the system’s string representa-

tions for MathTypes):

((line, element)! radiance)

This function is approximated by a finite sam-

pling at discrete pixels. The sampling metadata

of a function may be a regular or irregular set in a

real vector space (typical image sampling is an

integer lattice in the 2D space with coordinates

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 679

Vis5D, Cave5D, and VisAD 679

line and element). This function may also

include metadata that describes the Earth loca-

tions of pixels via an invertible coordinate trans-

form:

(line, element)$ (latitude,

longitude)

Any real values may include units. For

example, latitude and longitude values

may have units of degrees or radians. Function

range values such as radiance may include

metadata that indicates missing values

(caused by instrument or computational fail-

ures), or metadata that defines estimates of

errors.

A time sequence of images may have the

following MathType:

(time! ((line, element)! radiance))

This function will define some finite sampling of

time values, and it may define units for time

such as seconds since 1 January 1970.

A set of map boundaries may also be de-

scribed using the MathType:

set (latitude, longitude)

VisAD defines various classes for sets in real

vector spaces, for regular and irregular topolo-

gies, for different domain dimensions, and for

sets restricted to sub-manifolds with dimensions

smaller than their domains. For example, a set

of map boundaries lies in a 1D sub-manifold of

a 2D domain.

A more formal definition of the VisAD

data model is provided by the MathType gram-

mar below:

Any RealType may have associated Unit

and ErrorEstimate objects and may be

marked as missing. Any RealTupleType

may have an associated CoordinateSystem

object, defining an invertible transform to a

reference RealTupleType. Any RealTuple-

Type occurring in a FunctionType domain

may have an associated finite sampling defined

by a Set object. Unit conversions, coordinate

transforms, and resampling are done implicitly

as needed during computation and visualization

operations on Data components, and missing

data and error estimates are propagated in com-

putations. This data model has proven robust

for dealing with a wide variety of application

requirements.

VisAD defines an architecture for interfacing

its data model with various file formats and

data-server APIs. This architecture presents ap-

plications with a view of a file (logical file, in the

case of a server API) as a VisAD Data compon-

ent. The architecture has been implemented for

a number of commonly used scientific file for-

mats and server APIs, including netCDF, HDF,

FITS, BioRad, McIDAS, Vis5D, OpenDAP,

and others. In some cases, entire files are read

and used to create memory resident Data com-

ponents. However, the architecture also in-

cludes support for format interfaces that

transfer file data between disk and a memory

cache as needed. Data transfers to the cache are

implicit in application access to methods of the

created Data component, and hence are trans-

parent to applications.

The depictions of Data components linked to

a Display component are defined by a set of

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 680

MathType :¼ ScalarType j TupleType j SetType j FunctionType
ScalarType :¼ RealType j TextType
RealType :¼ name

TextType :¼ name

TupleType :¼ (MathType, MathType,..., MathType)

TupleType :¼ RealTupleType

RealTupleType :¼ (RealType, RealType,..., RealType)

SetType :¼ set (RealTupleType)

FunctionType :¼ (RealTupleType!MathType)

680 Visualization Software and Frameworks

ScalarMap objects linked to the Display.

These are mappings from RealTypes and

TextTypes to what are called DisplayReal-

Types. For example, the depiction of a time

sequence of images and a map boundary over-

lay in Fig. 34.4 is determined by the Scalar-

Maps.

time! Animation

latitude! YAxis

longitude! XAxis

radiance! RGB

Note the GUI widgets in Fig. 34.4 that allow the

user to control time animation and the RGB

color lookup table for radiance values. Each

ScalarMap object has an associated Control

object that provides a means to specify anima-

tion, color tables, contouring, flow rendering,

3 D to 2 D projection, and other parameters of

its associated DisplayRealType. These Con-

trol objects can be linked to GUI widgets, as

in Fig. 34.4, or can be manipulated by compu-

tations.

The system’s intrinsic DisplayRealTypes

include the following: XAxis, YAxis, ZAxis,

Latitude, Longitude, Radius, CylRa-

dius, CylAzimuth, CylZAxis, XAxisOff-

set, YAxisOffset, ZAxisOffset (offset

values are added to spatial coordinates), Red,

Green, Blue, RGB (pseudo-color), RGBA

(pseudo-color with transparency), Hue, Satur-

ation, Value, HSV (pseudo-color to hue, sat-

uration, and value), Cyan, Magenta, Yellow,

CMY (pseudo-color to cyan, magenta, and

yellow), Alpha, Flow1X, Flow1Y, Flow1Z,

Flow2X, Flow2Y, Flow2Z (note two sets of

flow coordinates), Flow1Elevation, Flo-

w1Azimuth, Flow1Radial, Flow2Eleva-

tion, Flow2Azimuth, Flow2Radial (note

also two sets of spherical flow coordinates),

Animation, SelectValue (values not equal

to a specified value are treated as missing in

the depiction), SelectRange (values not in a

specified range are treated as missing in the de-

piction), IsoContour, Text, Shape (values

are sampled and used as indices in an array of

icons), ShapeScale, LineWidth, Point-

Size, and LineStyle. System implementa-

tions for these DisplayRealTypes include

just about every visualization technique.

ScalarMaps for some DisplayRealType

(e.g., XAxis, RGB) allow applications to control

the linear mapping from primitive numerical

data values to DisplayRealType values

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 681

Figure 34.4 A VisAD display combining a GOES satellite image with map boundaries. (See also color insert.)

Vis5D, Cave5D, and VisAD 681

(e.g., a graphic coordinate in the case of XAxis,

and a lookup table index in the case of RGB). If

applications don’t specify this mapping, then a

system auto-scaling algorithm determines an

optimal default mapping to keep data depic-

tions visible (e.g., to ensure that longitude

and latitude values are mapped to XAxis

and YAxis values that are within the display

screen).

ConstantMaps, which bind constant values

to DisplayRealTypes, may be linked to

Display components in just the way that

ScalarMaps are. These allow applications to

override default values for DisplayReal-

Types, for example, to control locations and

colors of data depictions when they are not

determined by ScalarMaps of any Real-

Types or TextTypes occurring in the data.

The generation of data depictions is auto-

mated based on an analysis of MathTypes,

ScalarMaps, and other metadata. However,

the system provides a way for applications to

redefine that analysis and display-generation.

When a Data component is linked to a Dis-

play component, an object of a sub-class of

DataRenderer is used to analyze Math-

Types, ScalarMaps, and other metadata,

and then generate the depiction. There is a de-

fault sub-class for each supported graphics API

(e.g., Java3D, Java2D), and these defaults can

generate a visual depiction for just about any

Data object and set of ScalarMaps. But ap-

plications have the option of defining and using

nondefault subclasses of DataRenderer, and

they may also add new DisplayRealTypes

to describe parameters of those DataRen-

derer classes.

One important property of VisAD is that

some of its DataRenderer sub-classes not

only transform data into depictions but also

invert the transform to translate user gestures

on the depiction back into data changes. The

default DataRenderer sub-classes do not

translate user gestures into data changes, be-

cause in the general case of MathTypes and

ScalarMaps there is no reasonable way to

interpret user gestures as data changes. How-

ever, the VisAD system includes a number of

nondefault DataRenderer sub-classes that do

translate user gestures into data changes, and

applications are free to define more. These first

analyze a MathType and a set of ScalarMaps

to make sure they are consistent with an inter-

pretation of user gestures as data changes, and

then they implement that interpretation. For

example, a Data component with MathType

(latitude, longitude, altitude)

linked to a Display component with linked

ScalarMaps

latitude! YAxis

longitude! XAxis

altitude! ZAxis

will generate a data depiction as a simple point

in 3D display space and allow the user to

modify data values by dragging the point. An

analysis by an object of the DirectManipu-

lationRendererJ3D class verifies and imple-

ments this way of interpreting gestures.

Fig. 34.5 shows a display of a simple conical

terrain surface in a 3D box with two large

yellow points at opposite corners of the box.

The yellow points are depictions of two 3-vector

Data components linked to the Display com-

ponent via objects of class DirectManipula-

tionRendererJ3D, as described in the

previous paragraph. These 3-vectors are linked

to trigger the computation of a Cell compon-

ent that modifies the linear mappings associated

with the ScalarMaps to display spatial coord-

inates in order to keep the depictions of the two

3-vectors at the corners of the display box. This

little network of Data, Display, and Cell

components and DirectManipulationRen-

dererJ3D objects defines an embedded 3D

GUI component for rescaling 3D display space.

As another example, in spatial data analysis

applications it is often useful to apply analysis

operations to restricted spatial regions. These

regions may be defined in the data (e.g., within

a map boundary), or they may be defined by

users based on their judgement. For user defin-

ition, we need a GUI component that enables

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 682

682 Visualization Software and Frameworks

users to draw the outlines of regions as freehand

curves. In VisAD, the CurveManipulation-

RendererJ3D class serves this purpose. It

is a sub-class of DataRenderer that requires

a Data component with MathType of the

form

Set (x, y)

It also requires ScalarMaps of x and y to

spatial DisplayRealTypes. These may be

two of XAxis, YAxis, and ZAxis, or they

may be two coordinates in a non-Cartesian

spatial coordinate system. The Data compon-

ent will lie on a 1D manifold embedded in the

2D domain with coordinates x and y. User

mouse movements are interpreted as samples

along 1D curves in (x, y) space. According to

the ScalarMaps, the curve is embedded on a

2D manifold in 3D display space. Fig. 34.6 is a

snapshot of a curve being drawn on the 2D

manifold on the surface of a sphere. In this

case, the ScalarMaps are

x! Longitude

y! Latitude

Along with Radius, these DisplayReal-

Types define a 3D spherical display coordinate

system:

(Latitude, Longitude, Radius)

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 683

Figure 34.5 A simple demonstration using VisAD to build embedded 3D user interface components. Dragging the two large

yellow points causes the display to rescale to keep the yellow points at opposite box corners. (See also color insert.)

Vis5D, Cave5D, and VisAD 683

When a DataReference object is linked to a

Display component, a number of Constant-

Maps may be included that are applied only to

the depiction of the referenced Data compon-

ent. In the example in Fig. 34.6, a Constant-

Map to Radius is used to specify which sphere

defines the 2D manifold where curves are

drawn.

Applications can use CurveManipula-

tionRendererJ3D to draw on a nearly arbi-

trary 2D sub-manifold of 3D display space, by

defining three DisplayRealTypes for a new

coordinate system and defining a coordinate

transform between these and Cartesian display

coordinates (XAxis, YAxis, ZAxis). The 2D

sub-manifold is defined by a ConstantMap

that fixes the value of one of these DisplayR-

ealTypes, and by ScalarMaps of x and y to

the other two. This 3D GUI component can be

used for freehand drawing in a wide variety of

applications.

These examples illustrate the robust way

that networks of VisAD components can be

adapted to application requirements. Further-

more, many VisAD classes are designed to be

extended so that they can meet almost any visu-

alization requirements. These include the

following:

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 684

Figure 34.6 A more complex embedded user interface component built using VisAD. The user can draw freehand curves on the

sphere’s surface. (See also color insert.)

684 Visualization Software and Frameworks

1. The Set class can be extended to define

new sampling topologies of real vector

spaces and to define new interpolation algo-

rithms.

2. The CoordinateSystem class can be

extended to define new coordinate-trans-

formation algorithms.

3. New implementation classes for the Func-

tion interface (this is a sub-interface of

Data corresponding to the Function-

Type sub-class of MathType) can provide

nonsampled approximations of functional

dependencies, such as procedural defin-

itions or harmonic sequences. Note that

sampled approximations are classes that

implement the Field interface (a sub-inter-

face of Function).

4. New implementation classes for the Form

interface define interfaces of the VisAD

data model to new file formats and data-

server APIs.

5. New implementation classes for the Cell

component interface can be used to include

application-defined computations in a net-

work of VisAD components.

6. The DataRenderer class can be extended

to customize the way that visual depictions

are generated from Data components, in-

cluding the interpretation of user gestures

as data changes.

7. Various Display component classes can

be extended to include implementations

for new graphics APIs (the system includes

implementations for the Java3Dand Java2D

APIs), or to adapt existing graphic APIs to

new modes, such as immersive virtual real-

ity (this has been done for the ImmersaDesk

using the Java3D API).

In a recent development, a set of extensions of

classes for Data and Display components

have been defined to support visualization of

large datasets distributed across the processors

of a cluster. A large Data component is distrib-

uted by a partition of the samples of a Field

across cluster processors. The partitioned

Field does not have to be the top level of the

Data component; it may occur as part of a

containing Data organization. For example,

large 3D grids from a weather model may

be partitioned into sets of rectangles in latitude

and longitude, with these 3D grids occurring

as parts of larger time sequence Data compon-

ents. This example corresponds to the way

that weather models are usually partitioned

across clusters, so defining Data components

this way allows weather model output data to

be visualized in the place where it is computed.

A Data component on the user’s visualization

client connects via Java RMI to the Data com-

ponents on the cluster processors, which hold

the actual data values (which may be stored on

disk via the caching architecture of a file format

interface), and a DataRenderer object (its

actual class is, of course, a sub-class of DataR-

enderer) on the user’s visualization client con-

nects via Java RMI to a set of DataRenderer

objects on the cluster processors. Then, visual-

ization computations, such as isosurface gener-

ation, are initiated from the visualization client,

but the actual computations are distributed

across the processor nodes. In order to prevent

the generated geometries from swamping the

memory of the visualization client, the client

may request different rendering resolutions

from different cluster processors. This enables

users to visualize the overall dataset at low reso-

lution and also to zoom into the data on any

processor at full resolution. Because this cluster

implementation is just another set of VisAD

class extensions, it has the full generality of the

VisAD data model and of VisAD’s Scalar-

Maps for display definition. Furthermore, this

approach makes it trivial to overlay depictions

of large cluster data with depictions of data

from other sources, such as geographical refer-

ence maps.

The VisAD library includes an interface to the

Jython interpreter for Python, as well as Java

method implementations that make VisAD

data operations accessible via infix syntax from

Python expressions, and a variety of Python

functions that implement specialized graphics

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 685

Vis5D, Cave5D, and VisAD 685

(e.g., histograms, scatter plots, image animation,

etc.) via VisAD’s components. The goal of this

ongoing effort is to provide an easy way to use

VisAD from Python scripts so that scientists and

casual users do not have to learn Java.

The VisAD library is used by a number of

popular visualization applications. One, the

VisAD SpreadSheet, is distributed as part of the

system. It is a general-purpose application that

enables users to read files and perform simple

computation and visualization operations. It in-

cludes a user interface for creating ScalarMaps

and setting parameters in associated Controls

(this user interface is also accessible from

Python). The VisAD SpreadSheet is fully collab-

orative: users at different workstations can share

the same displays and user interfaces, so inter-

actions by one are shared by all.

VisAD supports more specialized applica-

tions for earth science, biology, astronomy,

and economics. The Unidata Program Center’s

Integrated Data Viewer (IDV) enables users

to fuse environmental data from different

servers and from different types of data sources

(satellites, simulation models, radars, in situ ob-

servations, etc.) in displays with common geo-

graphical and temporal frames of reference.

The IDV is being used for the National Science

Foundation (NSF)-supported Digital Library

for Earth Science Education (DLESE) as well

as for a prototype environmental modeling pro-

ject at the National Computational Science Alli-

ance (NCSA). The Australian Bureau of

Meterology is using VisAD as the basis for their

Tropical Cyclone and Automated Marine Fore-

cast systems and considering using it as the basis

for all of its visualization applications. Ugo Tad-

dei of the University of Jena is using VisAD to

develop a number of hydrology applications.

The National Center for Atmospheric Research

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 686

Figure 34.7 The VisBio system, using VisAD for volume rendering of a live C. elegans embryo stained with a fluorescent

membrane probe. Imaging done by Dr. William Mohler of the University of Connecticut Health Center. (See also color insert.)

686 Visualization Software and Frameworks

(NCAR) is using VisAD as the basis of its Visual

Meterology Tool (VMET). The University of

Wisconsin (UW) is developing a variety of appli-

cations for visualizing and analyzing data from

hyperspectral (typically generating several thou-

sand spectral bands) atmospheric observation

instruments.

VisBio is a biological application of VisAD

being developed by Curtis Rueden and Kevin

Eliceiri under the direction of John White

in his UW Laboratory for Optical and Com-

putational Instrumentation. Fig. 34.7 shows a

VisBio volume rendering of a live C. elegans

embryo stained with a fluorescent membrane

probe, and Fig. 34.8 shows 3D and 4D meas-

urements with VisBio quantitating movement

of mitochondria in different regions of a two-

photon dataset of a two-cell hamster embryo

labeled with a mitochondria-specific dye.

The NuView system uses VisAD to enable

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 687

Figure 34.8 The VisBio system using VisAD for 3D and 4D measurements quantitating movement of mitochondria in different

regions of a two-photon dataset of a two-cell hamster embryo labeled with a mitochondria-specific dye. Imaging done by

Dr. Jayne Squirrell of the University of Wisconsin at Madison. (See also color insert.)

Vis5D, Cave5D, and VisAD 687

astronomers to visualize events from the

AMANDA and IceCube neutrino detectors.

There is a close collaboration among all the

groups developing scientific applications of

VisAD.

Acknowledgments

Marie-Francoise Voidrot, Andre Battaiola, and

Dave Santek helped with the early development

of Vis5D. Brian Paul did most of the Vis5D

development starting in 1992, including devel-

opment of Cave5D. Brian developed Mesa on

his own while working in the SSEC Visualiza-

tion Project, as an improvement over an earlier

freeware implementation of OpenGL used by

Vis5D. Johan Kellum took over most of the

Vis5D development starting in 1997. Phil

McDonald contributed changes to Vis5D that

he made for the D3D system.

Charles Dyer supervised my University of

Wisconsin Computer Science Ph.D. about the

VisAD system [8]. Brian Paul helped with the

first implementation of VisAD, in C [6,7]. John

Anderson and Dave Fulker contributed major

ideas to the Java implementation of VisAD.

Curtis Rueden, Steve Emmerson, Tom Rink,

Dave Glowacki, Tom Whittaker, Don Murray,

James Kelly, Andrew Donaldson, Jeff McWhir-

ter, Peter Cao, Tommy Jasmin, Nick Rasmus-

sen, and Doug Lindholm helped write the Java

implementation of VisAD. Ugo Taddei created

the online VisAD tutorial.

References

1. C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality:

the design and implementation of the CAVE.
Proceedings of SIGGRAPH ’93, pages 135–142,
1993.

2. W. Hibbard. 4-D display of meteorological
data. Proceedings, 1986 Workshop on Interactive
3D Graphics. Chapel Hill, pages 23–36, 1986.

3. W. Hibbard and D. Santek. Visualizing large
data sets in the earth sciences. IEEE Computer
22(8):53–57, 1989.

4. W. Hibbard and D. Santek. Interactivity is the
key. Chapel Hill Workshop on Volume Visual-
ization, University of North Carolina, Chapel
Hill, pages 39–43, 1989.

5. W. Hibbard and D. Santek. The Vis5D system
for easy interactive visualization. Proc. Visual-
ization ’90, pages 28–35, 1990.

6. W. Hibbard, C. Dyer, and B. Paul. Display of
scientific data structures for algorithm visualiza-
tion. Proc. Visualization ’92, pages 139–146,
1992.

7. W. Hibbard, C. Dyer, and B. Paul. A lattice
model for data display. Proc. Visualization ’94,
pages 310–317, 1994.

8. W. Hibbard. Visualizing scientific computa-
tions: a system based on lattice-structured data
and display models. PhD Thesis. Univ. of Wisc.
Comp. Sci. Dept. Tech. Report #1226, 1995.

9. W. Hibbard, J. Anderson, I. Foster, B. Paul, R.
Jacob, C. Schafer, and M. Tyree. Exploring
coupled atmosphere-ocean models using
Vis5D. Int. J. of Supercomputer Applications,
10(2):211–222, 1996.

10. W. Hibbard. VisAD: connecting people to com-
putations and people to people. Computer
Graphics, 32(3):10–12, 1998.

11. W. Hibbard. Confessions of a visualization
skeptic. Computer Graphics 34(3):11–13, 2000.

12. L. A. Treinish. SIGGRAPH ’90 workshop
report: data structure and access software for
scientific visualization. Computer Graphics 25(2):
104–118, 1991.

13. G. H. Wheless, C. M. Lascara, A. Valle-Levin-
son, D. P. Brutzman, W. Sherman, W. L. Hib-
bard, and B. E. Paul. Virtual Chesapeake Bay:
interacting with a coupled physical/biological
model. IEEE Computer Graphics and Applica-
tions, 16(4):52–57, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 15.9.2004 8:51pm page 688

688 Visualization Software and Frameworks

35 Visualization with AVS

W. T. HEWITT, NIGEL W. JOHN, MATTHEW D. COOPER,

K. YIEN KWOK, GEORGE W. LEAVER, JOANNA M. LENG, PAUL G. LEVER,

MARY J. MCDERBY, JAMES S. PERRIN, MARK RIDING, I. ARI SADARJOEN,

TOBIAS M. SCHIEBECK, and COLIN C. VENTERS

Manchester Visualization Centre

35.1 Introduction

Manchester Visualization Center [1] (MVC) has

been using the AVS family of software (AVS5

and AVS/Express) in research and development

for more than a decade. This chapter aims to

demonstrate the range of scientific visualization

projects undertaken at MVC, from archaeo-

logical to flow-visualization to medical visual-

ization. One of the case studies is a complete

turnkey molecular visualization system.

It is also intended to demonstrate the flexibil-

ity of AVS products as a modular and extensible

visualization system. None of these applica-

tions would be possible without the large reposi-

tory of user-submitted modules available from

the International AVS Centre [2], a supported

open-source website.

35.2 Meterological Visualization:
Global and Regional Climate Modeling

This work is part of an ongoing project to visu-

alize numerous large-scale datasets for the Had-

ley Centre global climate group [3,4]. It is purely

a visualization, animation, and presentation

task to demonstrate the effects of global

warming and the results of their climate models

and simulations. The final animations were to

be shown at the Conference of the Parties to the

UN Framework Convention on Climate

Change (CoP) [5,6,7,8] and distributed to vari-

ous international news organizations.

35.2.1 Aims

MVC was approached to do this work based on

its significant use of the AVS/Express environ-

ment and experience with visualization tech-

niques. It was expected that MVC would be able

to employ the most appropriate and latest visual-

ization techniques to convey the message that

globalpollutionneeds tobe significantly reduced.

The Hadley Centre required animated visual-

izations of their global climate simulations that

would show dramatic and undeniable proof that

global warming and its consequences were accel-

erating beyond control. This was evident in the

data and the numerous 2D graphs and charts in

the Hadley Centre’s many publications, along-

side of which were detailed descriptions of the

processes and conclusions. Although useful,

such publications lack impact and are accessible

only to a small audience. To reach a wider audi-

ence and demonstrate the urgency of the situ-

ation, short and snappy animations that easily

and readily showed what was happening were

needed.

35.2.1.1 Background and Data

The data supplied was the result of both data

collection from meterological stations around

the world and subsequent simulations using the

Hadley Centre Climate Models [9] (HadCM2

and HadCM3). MVC was not involved with the

generation of the data. The data was delivered

in the form of ASCII-based files with format-

ting information.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 689

689

The Intergovernmental Panel on Climate

Change (IPCC) [10] has published projections

of future emissions in their Special Report on

Emissions Scenarios (SRES). The basis for these

scenarios is a number of ‘‘storylines’’ that de-

scribe the way in which the world will develop

over the coming century. Assumptions are made

about the future, including greater prosperity

and increased technology. The levels of green-

house gas emissions are generally lower than in

previous IPCC scenarios, especially towards the

end of the 21st century. The emissions of sul-

phur dioxide, which produce sulphate aerosols

that have a cooling effect on climate, are sub-

stantially lower.

The SRES scenarios are based on recent pro-

jections of global population and span a range

of potential economic futures. There are four

families of scenarios: A1FI, A2, B1, and B2.

Simplified, these represent a set of possible eco-

nomic, technological, population, and global-

ization growth and decline predictions for the

twenty-first century.

Between the present day and the end of the

twenty-first century, the Hadley Centre predicts

an average warming of over 48C for the A1FI

scenario, 3.58C for the A2 scenario, and 28C for

the B2 scenario. From additional calculations,

warming of just under 28C is predicted for the

B1 scenario. In some regions the warming

peaked at a rise of 128C.

35.2.2 Application Development

At first the modular system of AVS was used to

import and preprocess data for use within AVS/

Express.However, repeated readingof theASCII

files and regridding of the data proved to be com-

putationally expensive and resulted in slow turn-

around for development and production of the

visualization animations. This was especially

problematic for 3Doceanographicflowdatawith

nonaligned vector components that could not be

handled by the visualization modules within

AVS/Express.However,giventhemodularnature

ofAVS/Express, itwas easy to take the developed

code within the modules and create independent

filter programs for offline execution. The ASCII

fileswere processedoffline to generate binary files

that could be loaded quickly into AVS/Express,

where data was correctly regridded, scaled, and

generated. For example, to speed the production

ofanimations, the scalarmagnitudeof thevectors

was also generated offline.

Even though some of the processing pipeline

was removed from the AVS/Express network

application, there was still a significant work-

load remaining, which the modular system fa-

cilitated greatly. Filter and Mapper modules

were still required to generate visualizations,

control parameters, drive the animation loops,

and output the animation frames.

35.2.2.1 Visualization

Each year the Hadley Centre has focused on

specific themes, including the following:

. The global average temperature rise.

. Effects on sea-level rise due to gradual

warming of the deep ocean.

. Severity of El Niño and subsequent climate

changes.

. Breakdown of the Gulf Stream due to both

deep ocean warming and desalination from

the melting of the ice caps, and its effect on

the UK.

. Reduction in the size of the polar ice caps.

. Impact on regional climate, e.g., cyclones in

the Mozambique Channel and the Bay of

Bengal and subsequent flooding.

. Decimation of South American rainforests

and vegetation.

35.2.2.2 Output

In the early stages of the project, modules were

used to generate labels, titles, counters, logos,

and legends that were placed within the display

output. These were later replaced, for two

reasons:

1. Includingmultiple labels andcounterswithin

the display slowed the production rate.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 690

690 Visualization Software and Frameworks

2. As the quality of the output was increased,

the quality of the aliased text labels was

deemed too low for broadcast.

Additionally, we opted to generate visualization

frames at twice the resolution necessary, and

independently from the labels, etc. Labels and

titles were then produced using software such as

CorelDraw and Photoshop, and animated

counters were generated using small AVS/Ex-

press networks, again at twice the required reso-

lution. Further offline stages consisted of

compositing the raw visualization images with

the labels and titles. This process involved anti-

aliasing of the raw frames and compositing

using ImageMagick scripts. Finally, the raw

frames were loaded into Adobe Premiere and

assembled into both AVI (uncompressed broad-

cast quality) and MPEG-4 files. The AVI files

were transferred to near-broadcast-quality DV

tapes and also onto both Betacam-SP and VHS

for further distribution.

35.2.3 Results

Fig. 35.2.1 shows changes in global temperature

for four SRES emissions scenarios, known as

A1Fi, A2, B1, and B2. The A1Fi scenario in

Fig. 35.2.1a shows the simulation starting state

with recorded data. Figs. 35.2.1b, 35.2.1c, and

35.2.1d show the unmitigated emissions of pollu-

tants of A1Fi against the other scenarios,

the result of which can be seen clearly in the

year 2100, when some areas have risen by more

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 691

Figure 35.2.1 Comparison of SRES scenarios for global warming. Data courtesy of the Hadley Centre, UK Meteorological

Office. (See also color insert.)

Visualization with AVS 691

than 128C. The B1 scenario shows a lesser

effect, where emissions have been reduced signifi-

cantly.

The results for the scenarios show that sur-

face warming is expected over most of the

globe, with the largest increase at high northern

latitudes. The melting sea ice causes less

sunlight to be reflected and more to be absorbed

at the surface, leading to large warming of the

region. The patterns of temperature rise also

show a sharp contrast between land and sea,

where the land is warming approximately 80%

faster.

Fig. 35.2.2 shows a comparison of two

models, the Global Climate Model (GCM)

and the Regional Climate Model (RCM). The

GCM is of much smaller resolution than

the RCM. In this visualization of a cyclone in

the Mozambique Channel, it is clear that the

GCM does not effectively simulate the cyclone.

Fig. 35.2.2 shows the wind magnitude and dir-

ection for both models for a number of time-

steps.

The higher-resolution model (RCM) clearly

produces more effective results and will enable

the Met Office to conduct more precise predic-

tions in the future, when higher-resolution

simulations can be used for global rather than

regional climate prediction.

35.2.4 Conclusion

The animations produced have proven to be

effective tools by which the Hadley Centre can

dramatically demonstrate what the future may

hold should the governments of this world not

take heed of the warnings already evident. The

animations have been well received at confer-

ences and have led to the UK’s adopting the

proposal to reduce emissions levels to the lowest

recommended.

Acknowledgments

The Hadley Centre, the U.K. Meteorological

Office, Dr Geoff Jenkins, and Dr. Jason

Lowe.

35.3 Earth Science Visualization: What
Is Inside Stars and Planets

This section looks at the visualization of data

that lies in or on a sphere. People who study the

Earth, stars, or other planets use data gained

from the surface to try to understand the pro-

cesses that are occurring deep within. They can

do this by a few methods:

. Using optical equipment to record and ana-

lyze surface features.

. Using spectrometry to analyze the elements

contained in the body.

. Using seismic tomography/helioseismology,

which inverts wave functions that pass

through the body to gain internal images

(the process is similar to medical scanning).

This type of research, whether in the field of

earth science or in that of astrophysics, is

carried out by computational scientists. These

are scientists who model physical processes and

encapsulate the basic physics of the system in

a simplified mathematical model. The model is

turned into a computer program. Typically,

high-resolution models are computationally in-

tensive and need large, high-end machines to

run in a reasonable time scale.

Any computer model is a theoretical idealiza-

tion and thus needs to be validated. Proof is

made by comparison of real observational data

and simulation data.

35.3.1 Problem

Data from the earth sciences and astrophysics

has several common features:

. Observational data is sparse in places.

. Data lies in irregularly shaped cells.

. Data lies in a thick spherical shell that is

located close to the center of the sphere, for

example, the Earth’s mantle.

. The features are self obscuring.

. The strength of a value is proportional to the

radius.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 692

692 Visualization Software and Frameworks

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 693

Figure 35.2.2 A series of frames from an animation comparing the Global Climate Model (GCM) and the Regional Climate

Model (RCM) for simulation of a cyclone in the Mozambique Channel. Data courtesy of the Hadley Centre, UK Meterological

Office. (See also color insert.)

Visualization with AVS 693

. Points equally placed in latitude and longi-

tude converge as the radial coordinate de-

creases from the surface to the center.

Here we look at two case studies that use

visualization to validate and support computa-

tional models.

35.3.2 Seismic Tomography

Seismic tomography is the mathematical pro-

cess that converts information in shock waves

that pass through the Earth into a model of the

materials within. Shock waves tend to travel

through the Earth quickly where the internal

rock is relatively hot and slowly where the

rock is relatively cold. This gives information

about tectonic plate movement and subduction;

surface rock that is colder than its surroundings

is the result of a tectonic plate being pushed

down into relatively hot mantle below. Huw

Davies, an earth scientist at the University of

Cardiff, has proposed a model of mantle flow

[12,13]. Initially he was using 2D visual ana-

lyses, where each spherical shell of data was

projected into 2D and viewed as a series of

images. He wished, however, to view all the

data together as one 3D image (Fig. 35.3.1).

35.3.2.1 Implementation

The most important element of this work was

the data reader. The data had to be read into

AVS/Express in a way that allowed a number of

analysis tools to be developed. The data reader

was a C module that translated the data cells of

the model into AVS/Express cells, while the

analysis tools were developed as macros of

AVS/Express components with individual

GUIs. Example applications were produced

and added to the libraries.

35.3.2.2 The Data Structure

A C structure defined the extents of the data

cells in spherical coordinates. The data cells are

placed in rings (latitudinal bands). The volumes

of all cells are equal, so the number of cells in

each band increases from pole to equator. The

cells implicitly have a curved edge along each

nonradial perimeter.

Systems like AVS/Express use Cartesian co-

ordinates, not spherical coordinates, and all

cells have straight edges. Each shell projected

well into a 2D ‘‘image,’’ but in 3D the cells did

not tessellate. Gaps appeared between the lati-

tudinal bands. This was distracting to the eye

and caused holes to appear in underlying iso-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 694

Figure 35.3.1 3D images of seismic tomography data of the Earth’s mantle. (See also color insert.)

694 Visualization Software and Frameworks

surfaces. The data needed to be resampled, and

this process added a considerable number of

cells.

35.3.2.3 3D Display and Interaction

A thick spherical shell that lies close to the core

needs to be displayed differently from a thin

shell that is far from the core (such as atmo-

spheric data).

The bounds of the data show its limits, but a

3D shell has bounds very different from those of

a 3D rectangular block. The outer bound is a

sphere that surrounds the whole of the data,

while the inner bound, another sphere, sur-

rounds only the core. The data was organized

so that the inner and outer shells of data could

be separated from the main volume of data,

allowing an isosurface to be displayed within

the semitransparent outer shell and over the

opaque inner shell. This data organization also

allowed for the removal of internal data and

when displayed as a volume made applications

interactive on a Silicon Graphics 02.

Because of core heating, the data values

are levels of magnitude higher near the core

than at the crust. Features of interest are

data that vary from the average. The 2D shells

have an average different from that of the 3D

whole, so a new normalization function was

needed.

The topographic data of the Earth’s mantle is

strongly related to reference information, for

instance, volcanic ‘‘hot spots,’’ tectonic plate

boundaries, and coastlines. It is vital that this

data always be visible and unambiguously dis-

played. These features were displayed on either

the outermost or the innermost shell. It was

difficult to locate isosurfaces between these

shells in monographic projection, but in stereo-

graphic projection, location of features became

much easier.

35.3.2.4 Further Work

Simulation data needs to be of much higher

resolution if plumes are to be detected around the

core. Special techniques are needed to handle the

large data. A preprocessing feature-extraction

step could be used to help validate a model,

and displaying selections of cells could aid

debugging.

35.3.3 Solar Physics

The Sun has been studied throughout history.

Sunspots are visible from the Earth and indicate

the physical activity that occurs within the

Sun. For 150 years, sunspot observations have

been recorded by governmental observatories.

Before this time, observations were not con-

sistent, nor was a location recorded. Many

revealing plots have been made of this data [15].

Sunspot activity is cyclical, with one obvious

period of approximately 11 years. A cycle con-

sists of a wave of sunspot activity moving from

high latitudes to the equator. These cycles are

thought to be an artifact of internal gyroscopic

behavior. It is hypothesized that stochastic

noise interacts with the Sun’s large internal

magnetic fields to cause tubes of magnetic flux

to escape to the Sun’s surface and cause sun-

spots. To validate the gyroscopic model, new

visualization tools have been designed to do

the following [11]:

. Analyze sunspot observations.

. Analyze computational-model data and add

stochastic noise to produce hypothetical sun-

spots.

. Compare real data with theoretical model

data.

Each sunspot observation is a recorded event.

Separately, they are relatively unimportant, but

how the behavior of the sunspots changes over

the course of one cycle is quite important. This

change defines a cycle of activity. Historically,

the observations have been analyzed statistically

to show significant trends both within a cycle

and between cycles.

Scientists have defined several classes of sun-

spot useful for particular analyses:

. Single observations.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 695

Visualization with AVS 695

. One sunspot defined by a series of observa-

tions—has speed.

. Long lasting, high energy, multiple rotating

sunspots—has speed.

. Collapsed sequences (location averages or

newborns), where a series of observations is

reduced to one observation.

. Groups of sunspots occur when a large sun-

spot splits into several; they may have the

same location, but other parameters vary.

35.3.3.1 Implementation

Sunspot data is historically not stored in a date-

ordered list [15]. The data is usually reordered

and additional information (speed and a unique

identifier) added in a preprocessing step. To do

this, we defined an ideal observation as a Cþþ
class.

Using V, AVS/Express’s own internal lan-

guage, a number of objects were created to

handle sunspot data, for example, an ideal sun-

spot observation, an array of ideal observations,

and a cycle of observations. Internally, AVS/

Express generated Cþþ classes for each object

and facilitated direct manipulation by Cþþ
modules. Several analysis modules were written,

and these produced AVS/Express fields that are

rendered in the viewer.

35.3.3.2 A Virtual Sun

Recently, Tuominen et al. [11,14] have used

statistical analysis to show that data observed

at either limb of the Sun (more than 608 from
the viewer) is more likely than other data to
be inaccurate. If the size, shape, and location
of the spots are not accurately observed,
then the statistical analysis of the observations
could be biased. A virtual Sun with sunspots
(Fig. 35.3.2) was produced to help the research-
ers understand the effects of observational bias
or error.

35.3.3.3 Statistical Plots and Historic
Analysis

Observations are traditionally converted into

collapsed sequences and analyzed statistically to

show significant trends; the classic example of

this is the butterfly plot.

The butterfly plot is a scattergram of collapsed

sequences in a 2D plot of time against latitude

where cycles of activity look like the wings of a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 696

Source: Greenwich−Ledgers−−Greenwich−Ledgers
Cycle 17:9/1933−2/1944
 29095.00−3290.00
Time bin 0 of 1:9/1933−2/1944
 29095.00−32900.00
Type: Newborn
Parameter: Latitudinal speed

F
re

qu
en

cy

2 � 10

Latitudinal speed

0 200 400 600

0

100

200

300

11.76 12.59 13.42 14.25

0.00 1.85 3.71 5.56

Figure 35.3.2 The location bias for newborn sunspot observations. (See also color insert.)

696 Visualization Software and Frameworks

butterfly. 3D point plots of time against latitude

against longitude were produced (Fig. 35.3.3).

From the appropriate projection, these look

identical to butterfly plots; however, color and

glyphs are used to show other parameters, such

as speed. Butterfly plots lose information be-

cause points are superimposed, but binning in

location and time allows plots to be produced

that show location, time, and population size

more clearly.

35.3.3.4 Further Work

Adding computational steering will allow

quicker validation of a model and give scientists

a better understanding of their parameter space.

Soon the first full cycle of activity will have

been recorded by helioseismology. Visualization

of this dataset and comparison to historic data

would be valuable.

Acknowledgments

Huw Davies at the University of Cardiff, for his

permission to use his tomographic data; John

Brooke et al., for the data and collaborative help

in producing a solar physics visualization toolkit.

35.4 Flow Visualization: Extracting
and Visualizing Vortex Features

Vortices are important phenomena in computa-

tional fluid dynamics (CFD) and flow visualiza-

tion, both in science and engineering practice,

and from a theoretical as well as from a prac-

tical viewpoint.

The problem with vortices is that they are

easy to detect visually but difficult to extract

algorithmically. Traditional methods based on

physical quantities such as pressure, vorticity,

or derived quantities have the problem that

they are based on local physical properties de-

scribing an infinitesimal region, while vortices

often span larger regions. In addition, it is often

problematic to compare vortices in different

datasets, e.g., in subsequent time-steps of the

same simulation, because there is no explicit

description.

There are two solutions to these problems:

1. To use a geometric method to detect the

vortices, based on geometric properties of

streamlines.

2. To treat vortices as features.

A feature is any object, pattern, or structure in

data that is of interest and subject to investi-

gation [16]. The advantage of this approach is

that it enables quantification of (vortex) features

using numerical parameters. This opens up

many interesting possibilities, such as accurate

comparison between different datasets e.g.,

simulations of the same model but with differ-

ent boundary conditions, or different time-steps

of the same simulation (an implementation

known as time tracking) [18].

Here, an algorithm is presented for extracting

and visualizing vortex features in CFD datasets.

This algorithm was implemented in AVS5.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 697

Figure 35.3.3 Plots based on the traditional butterfly plot. The left-most image is a 3D plot that is viewed as a traditional

butterfly plot. (See also color insert.)

Visualization with AVS 697

35.4.1 Algorithm

The method used here for detecting vortices

is the so-called winding angle method [17]. This

method works by calculating streamlines and

selecting those that contain loops. These stream-

lines are then clustered in order to identify indi-

vidual vortex features. These can be quantified

by calculating numerical (statistical) attributes.

Finally, the vortex features are visualized using

icons. The complete process of extracting vortex

features thus consists of five steps: streamline

calculation, selection, clustering, quantification,

and visualization. Each step is described below

in more detail.

35.4.1.1 Streamline Calculation

First, streamlines are calculated with a density

high enough for all vortical regions to be

covered by the streamlines. Typically, stream-

lines are released from every grid-point, or

every other grid-point, and integrated long

enough that streamlines in vortical regions will

make at least one full loop. In the AVS5

streamlines module, this can be achieved by

setting the sample_mode parameter to
‘‘plane’’ and the N. Segment, length, and
step parameters to values that are appropriate
dependent upon the dataset. To optimize
accuracy, the advection_method parameter
is set to ‘‘Runge-Kutta’’.

35.4.1.2 Selection

The selection process chooses streamlines be-

longing to a vortex based on two criteria:

1. The winding angle of a streamline should be

kp, with k >¼ 1.

2. The distance between the starting and

ending points of the streamline should be

relatively small.

The winding angle is illustrated in Fig. 35.4.1.

Let Si be a 2D streamline consisting of points

Pi, j and line segments (Pi, j, Pi, jþ1), and let

ff (A,B,C) denote the angle between line seg-

ments AB and BC. Then, the winding angle

aw, i of streamline Si is defined as the cumulative

change of direction of the streamline segments:

aw, i ¼
Pn�1

j¼1 ff(Pi, j�1, Pi, j, Pi, jþ1). A positive

sign on an angle denotes a counterclockwise-

rotating curve, and a negative sign denotes a

clockwise-rotating curve. Hence aw, i ¼ �2p

for a fully closed curve; lower values might be

used to find winding streamlines that do not

make a full revolution.

Now the streamlines belonging to vortices

have been selected, but they are still unrelated.

This is solved in the clustering stage described in

Section 35.4.1.3.

35.4.1.3 Clustering

The purpose of clustering is to group together

those streamlines that belong to the same vortex.

As it is easier to cluster points rather than

streamlines, each streamline is mapped to a point

by determination of the geometric mean of all

points on the streamline. These center points are

then clustered as follows. The first cluster is

formed by the first point. For each subsequent

point, it is determined which previous cluster lies

closest. If the point is not within a predetermined

radius of all the existing clusters, a new cluster is

created. In this way, the selected streamlines are

combined into a distinct number of groups.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 698

p0

p1

p2

p4

p3

α3

α2

α1

αw = α1 + α2 + ...

Figure 35.4.1 Winding angle.

698 Visualization Software and Frameworks

Streamlines of the same group are considered to

be part of the same vortex.

35.4.1.4 Quantification

Once the streamlines have been clustered, the

vortices are quantified by a calculation of the

numerical attributes of the corresponding

streamline clusters. The shape of the vortices is

approximated by ellipses. An ellipse is fitted to a

set of points by calculation of statistical attri-

butes, such as mean, variance, and covariance of

the points [19]. In addition, we calculate specific

vortex attributes, such as rotation direction and

angular velocity. The number of points on a

streamline Si is denoted as jSij, and a cluster of

streamlines as Ck ¼ {Sk, 1, Sk, 2, . . . }, where Sk, 1

is streamline #1 in cluster k, the number of

streamlines in that cluster as jCkj, and all the

points on all the streamlines in that cluster as

C(Ck). The attributes in Table 35.4.1 can be

calculated for each vortex.

35.4.1.3 Visualization

Visualization of the vortices is achieved with

icons. Icons are abstract high-level objects for

visualization [19]. Here, we use ellipse icons, as

they reasonably approximate the shape of the

vortical regions. The numerical statistical attri-

butes are mapped to icon attributes. The first

three attributes are used to calculate the axis

lengths and directions of ellipses that approx-

imate the size and orientation of the vortices.

The rotation direction of a vortex is visualized

by color, e.g., blue for clockwise vortices and

red for counter-clockwise vortices.

35.4.2 Implementation

AVS5 was chosen to implement the algorithm

described in the previous section for the

following reasons:

. Many basic visualization tools are already

built in. There is no need to to reinvent the

wheel.

. High-quality rendering is built in, so there is

no need to develop rendering engines or 3D

viewers.

. If functionality is missing, it is easy to add

custom modules. In this way, users (re-

searchers, developers) can concentrate on

their new visualization algorithms.

. A rich suite of modules has already been

developed by thousands of users worldwide

[2].

For this project, built-in modules were used

for calculating streamlines, manipulating

scalar and vector fields, doing color mapping,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 699

Table 35.4.1 Vortex feature attributes

Streamline center:
SCi ¼ 1=jSij

PjSij

j¼1

Pi, j

Cluster center: CCk ¼ 1=jCk j
PjCk j

l¼1

SCk, l

Cluster covariance: Mk ¼ cov(C(Ck))

Ellipse axis lengths: lk ¼ eig(Mk)

Ellipse axis directions: dk ¼ eigvec(Mk)

Vortex rotation direction: Dk ¼ sign(aw,k)

Vortex angular velocity: vk ¼ 1=jCk jDt

PjCk j

l¼1

aw, 1

Visualization with AVS 699

and rendering geometry. Custom-developed

modules were used for creating and visualizing

icons.

35.4.3 Results

The dataset used is a simulation performed at

the Hadley Centre for Climate Research and

Prediction of the UK Meteorological Office.

One of the goals of the simulation was to predict

the effects of air pollutant emissions on global

warming and ocean currents. The simulation

model is defined on a curvilinear grid of 288 �
143 � 20 nodes spanning the globe with a reso-

lution of 1.25 degrees longitude and latitude.

From this grid, a part was selected covering the

North Atlantic Ocean. The simulation spans a

period from 1860 to 2099, with one time-step per

year, but only one time-step was used (1999). At

each node, the simulation calculated three vel-

ocity components plus the velocity magnitude

and temperature. Fig. 35.4.2 shows a color visu-

alization, where the geography is clearly illus-

trated by a topographic texture map.

The global flow patterns in the dataset are

visualized by white streamlines released with a

high density in a horizontal grid slice in the

middle of the grid (slice 10 out of 20). Ellipse

icons are used to visualize the vortex features. In

addition to the size and orientation of the vorti-

ces, the colors indicate their rotation direction:

red indicates counter-clockwise rotation, and

blue indicates clockwise rotation. It can be

seen that this method captures all vortices

consisting of rotational streamlines, even weak

ones.

In addition, numerical attributes were deter-

mined for the vortex features, as shown in Table

35.4.2. Notice the difference between the largest

and the smallest vortex (approximate factor 25)

and between the fastest and the slowest one

(approximate factor 15). There does not seem

to be any correlation between the size and the

rotation speed of the vortices.

35.4.4 Conclusion

A technique was described for the extraction

and visualization of vortex features. This tech-

nique allows us to not only find vortices more

accurately than traditional techniques do, but

also to explicitly describe them with numerical

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 700

Figure 35.4.2 Simulation of the Atlantic Ocean, with streamlines and vortex features visualized by ellipses. Red and blue

ellipses rotate in opposite directions. (See also color insert.)

700 Visualization Software and Frameworks

parameters. This has the advantage of better

comparison, better tracking of vortices in time,

etc. AVS5 has proven to be a powerful tool for

implementing these techniques.

Acknowledgments

U.K. Meteorological Office, Freek Reinders,

and Frits Post.

35.5 Visualizing Engineering Data:
Stresses and Deformations of Architectural
Structures

The visualization of stresses and deformations

of architectural structures under the load of

gravity is an important way of ensuring the

safety of constructions such as bridges or build-

ings. The statics of a building is a complex

balance between the safety of the people using

the construction and the costs of building it.

Visualizing engineering data in AVS/Express

is demonstrated by the example of a dataset of

unstructured cell data (UCD). The dataset rep-

resents half of the structure of a simple beam

suspension bridge and its displacements under

the load of gravity. The dataset was generated

by DANFE, a finite-element analysis package.

The other half of the bridge is a mirror image of

the dataset.

The UCD data file contains the structural

description of the bridge in 2336 nodes that

form 1404 hexahedral cells. These cells are

split into six separate cell sets with different

material types defining to which cell set each

belongs.

The data file also contains node data infor-

mation (3 values per node) describing the x, y,

and z components of the displacement of the

bridge under load due to gravity. The values of

the displacements are in the range from

1� 10�05 to 1� 10�09, while the coordinates

of the bridge elements themselves are in the

region of 1� 1000. Consequently, the displace-

ments are on the order of 100,000 times smaller

than the coordinates. The x-axis of the bridge

runs along the length of the bridge, the y-axis

lies parallel to the plane of the bridge surface,

and the z-axis lies parallel to the support towers.

35.5.1 Reading the Data

Using the ReadUCD module of AVS/Express,

the data can be read directly into an AVS/Ex-

press field. The field contains all the cell data

and node data that the file provides. The field is

arranged in the 6 cell sets, which can be shown

or hidden using the select_cells module. The

different cell sets represent different material

types for each part of the bridge structure. The

bridge can be separated into six different mater-

ial types describing the vertical towers, the

tower basements, the cable, the two types of

concrete, and the bedrock.

35.5.2 Glyphing

35.5.2.1 Converting the Data

To visualize the load of the gravity, the displace-

ment values shall be shown as arrow glyphs.

These arrows can be generated using the node

data values of the UCD data files. The displace-

mentdata is stored in independent arrays for each

vector component (i.e., X, Y, and Z). In order to

use the data as vector data instead of scalar data,

the three vector components have to be com-

bined. To interleave three independent node data

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 701

Table 35.4.2 Numerical attributes of the vortices found
in the Atlantic Ocean

Number of clusters 14

Number of clockwise vortices 12

Number of counterclockwise vortices 2

Min. radius [km] 37.13

Max.radius [km] 920.91

Min. v[s�1] 0.04

Max. v[s�1] 0.71

Visualization with AVS 701

arrays into a single vector is not a trivial task in

AVS/Express; it is done in three independent

steps. The AVS/Express modules used are men-

tioned in parentheses. The first step is to extract

the arrays from the AVS/Field and store them as

plain float arrays (extract_data_array). The

second step is to interleave the three arrays

in order to get a single array in the structure

x1y1z1x2y2z2 . . . xnynzn (interleave_3_arrays).

The final step is to generate the node data again

using the node vector module (node_vector). The

resulting node data can be combined with the

field to be used with other modules (combine_

mesh_data). The new field now contains vector

node data that can be used with the glyph module

to show arrow glyphs representing the displace-

ments of the bridge cells.

35.5.2.2 Filtering the Data

Using the AVS/Express glyph module, arrows

can be placed at each node of the cell sets. These

arrows show the direction and the magnitude of

the displacements in each point. One of the

problems with showing an arrow at each node is

that the number of arrows in the picture is

hiding the information the arrows are supposed

to show. A solution to reduce the number of

glyphs is to show only those glyphs on a

specified plane. This can be achieved using the

slice_ plane module. This module allows a plane

to be specified that cuts through the dataset.

Only data at points specified by this plane will

be used for the glyphing. The problem in this

approach is that there might be points of

interest that are not on the plane.

The International AVS Centre [2] (IAC) pro-

vides a module repository that extends the func-

tionality of AVS/Express. In this repository is a

DVdownsize_scat module that allows reduction

of the number of data points in a scattered field.

This module filters a given percentage of node_

data values. The remaining node data can be

shown as before. The advantage of this module

is that it reduces the number of glyphs in the

picture without any interpolation. The selection

of the data points to hide is not based on any

statistical method. The user specifies a reduction

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 702

Figure 35.5.1 Glyphing arrows added to represent the displacement magnitude and direction on the bridge structure.

702 Visualization Software and Frameworks

factor, which defines how many points are taken

out between two used points (i.e., if the down-

size factor is specified as 2, every other node

data value is omitted).

As we are only interested in the structures of

the bridge, the bedrock cell sets should be

hidden. The select_cells module allows individ-

ual cell sets to be hidden. One of the problems

with hiding the cell sets is that node data values

for hidden cell sets are still shown. The select_

cells module does not filter node data, which

causes a problem. Fortunately, there is an IAC

module that has been written to take over this

filtering task. The FilterNodeConnect module

filters the node data values that belong to cells

in unselected cell sets. Using this module, it is

possible to hide not just the structures of the

bridge but the glyphs connected to these struc-

tures as well.

Another helpful feature of AVS/Express is

that it allows the user to set the opacity of

solid objects. Therefore, glyphs inside the bridge

structure can be shown in relationship to the

object.

35.5.2.3 Showing the Displacements

The node data consists of displacement values

thatcanbeusedtorepresentavisibledeformation

of the bridge structure. In order to achieve thiswe

can make use of the coordinate_math module.

This module provides two input boxes that allow

user-defined mathematical formulae to combine

the coordinates of several input meshes.

In order to use the coordinate_math module,

the node data values have to be converted

into coordinates. The simplest way of achieving

this is to convert the interleaved arrays, which are

produced as described in Section 35.5.2.1 into a

point mesh. The point mesh does not need any

connectivity. This mesh, together with the bridge

mesh read by Read_UCD, is now provided to the

coordinate_math module, which calculates new

coordinates for the bridge.

The formulae for each of the coordinates

in the coordinate_math module are 1xþ 2x for

the X-coordinate. The formulae for the Y and Z

coordinates are similar.

The output from this network, with these

parameters is, unfortunately, not very informa-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 703

Figure 35.5.2 Deformation of the bridge structure to show displacements due to gravity.

Visualization with AVS 703

tive, since, as has been described earlier in this

section, the displacements are several orders of

magnitude smaller than the coordinates of the

structure and so the displacements must be

scaled in order to affect the structure coordin-

ates sufficiently for the observer to discern the

change. This can be done by simply altering the

formulae for the coordinate_math module to

1xþ 2x�1000000, etc.

Acknowledgments

UK AVS and UNIRAS User Group (uAUug)

and Priya Dey.

35.6 Medical Visualization:
Endovascular Surgical Planning Tool

Medical visualization is one of the most wide-

spread applications of scientific visualization.

It has provided the driving force behind many

developments in image processing and volume

rendering. MVC has been involved in a number

of projects to develop medical applications and

tools, with AVS/Express being employed on sev-

eral of these, both behind the scenes as a visual-

ization engine for web-based systems and in the

forefront to deliver applications to the clinical

user. Described here is the development of an

application that provides an endovascular surgi-

cal planning (ESP) tool for the coiling of cranial

aneurysms [21].

35.6.1 Problem

An aneurysm is a ballooning of an area of ar-

terial wall caused by the blood pressure exerted

on it. If it bursts, it will cause hemorrhaging,

and cranial aneurysms are often fatal. They can

vary in size from millimeters to a few centi-

meters. Traditionally aneurysms are dealt with

by major surgery to apply a clamp across the

neck. Currently there is a move towards minor

surgery, which involves threading a catheter

into the femal artery, in the leg, and all the

way up into the brain. Platinum coils are then

used to fill the aneurysm, causing clotting, ef-

fectively sealing the aneurysm, and preventing

further possibility of bleeding.

To choose the correct size and shape of coils

and to ascertain how best to position them, the

clinician must gain a clear understanding of the

anatomy of the aneurysm and how it relates

to the artery to which it is attached. The size

and orientation of the aneurysm neck are espe-

cially important. Our partners on this project at

Manchester Royal Infirmary used a C-arm

mounted x-ray machine to analyse the aneur-

ysm. A contrast agent is injected into the arter-

ial structure and a short x-ray movie is made

showing its flow through the artery and into the

aneurysm. These angiograms are 2D, and the

spatial relationships have to be inferred using

the clinician’s knowledge and experience. The

C-arm is also used during the procedure to

allow the clinician to see the positioning of the

coils.

Before the procedure, the best working views

of the aneurysm must be found. These can take

up to a dozen attempts to find, exposing the

patient and clinicians to additional x-ray doses

in the process.

35.6.2 Aim

In addition to the x-ray angiography, it was pos-

sible to take a magnetic resonance angiogram

(MRA), which provided a data volume showing

the intensity of blood flow. Though these were

used on occasion to aid the clinician, the level of

3D visualizationwas limited by the scanner hard-

ware and software to very small and slow max-

imum intensity projections (MIPs). The purpose

of the project was to exploit these datasets to

provide an easy-to-use rapid 3D visualization to

generate detailed imagery of the artery and an-

eurysm anatomy. Secondly, it should provide a

method to discern the best working views for use

during the coiling procedure.

35.6.3 Application Development

The initial plan was that AVS/Express would

only be used to create a prototype and that the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 704

704 Visualization Software and Frameworks

final application would be coded using a lower-

level package such as VTK. It was thought that

the AVS/Express high-level environment would

incur too much overhead for such a complex

application. The Object Manager has control

of module execution, which can make creating

nonlinear applications difficult, as things that

are trivial to achieve using a procedural pro-

gramming language can be tricky to reproduce

in a high-level environment. The time spent

avoiding these situations can outweigh the bene-

fits of the rapid feature and user interface devel-

opment.

The main problem was importing the MRA

data, which was in the form of a series of up to

100 DICOM [22] images, which, when correctly

stacked and orientated, would create the

volume dataset. A Read_DICOM project was

found at the IAC [2]; however, this actually read

the Papyrus format, a wrapper for a DICOM

series. This was heavily reworked to read plain

DICOM files, and a tool for scanning and

selecting DICOM series was built. The work

from this part of the project now forms the

basis of the current Read_DICOM project at

the IAC.

A prototype application was quickly put to-

gether to give the users a feel for what was

achievable and to give the developers an idea

of what the users wanted. This consisted of

three orthogonal slice views and a large 3D

main view. The functionality included data

input, multiple crop volumes that could be

created interactively, isosurfacing for each crop

volume, and image capture. The user interface

controls were kept compact by using pages for

each area of functionality.

Use was made of relative coordinates for

laying out the user interface, this being easy to

do in AVS/Express. There are two advantages

to such an approach: the application can be

resized for use at different screen resolutions

and window sizes, and if the user interface area

changes size and shape, then minimum effort is

required. User interface design is very important

when developing applications for end users, es-

pecially clinicians who do not have a lot of time

to spend trying to learn complex pieces of soft-

ware. Visualization terms need to be changed to

clinical or descriptive labels. One solution is the

use of icons, but they suffer from a lack of

immediacy, since careful design is required and

their overuse can look daunting. Familiar icons,

however, such as those for opening file

browsers, were used. To provide further help

AVS/Express is able to display a message when

the mouse pointer is over a widget.

It was decided to continue using AVS/Express,

as the prototype had shown that by removal of

extraneous functionality and by careful design,

speed and usability could be maintained.

In the data used, called Time of Flight (ToF),

the signal intensity is proportional to the blood

flow. This method produces noisy data, and

data processing had to be used to enhance the

visualization. A 3D median filter and a 3D tan-

gential smoothing method were developed in an

image-processing package called TINA [23] and

then integrated into AVS/Express. The tangen-

tial smoothing method calculates the data gra-

dient at each voxel and then performs a

Gaussian smoothing perpendicular to the gradi-

ent normal, thereby preserving surfaces.

Isosurfacing was enhanced by providing an

interactive histogram to aid selection of level

values. Even with preprocessing, isosurfaces

may still contain a large number of artifacts. In

order to deal with this, a segmentation tool was

added that identifies the topologically separate

pieces of the isosurface and ranks them by size.

Pieces can then be displayed by making a simple

selection from a list. Occluding objects, such as

other arteries, can be removed as well. Surfaces

can also be saved in simple ASCII format so that

they can be reloaded into the application for

comparison after the procedure.

The AVS/Express colormap editor required

enhancement, and the volume rendering inter-

face made no use of it, giving the impression

that the volume-renderer produced poor results.

By combining the two, proper transfer functions

could be defined for volume rendering to pro-

duce insightful images. The renderer also sup-

ports different techniques (composite, MIP) and

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 705

Visualization with AVS 705

utilizes hardware texture support. Work from

this project has been fed back into current ver-

sions of AVS/Express.

Volume rendering is the most appropriate

method for visualizing ToF because it doesn’t

contain any explicit structural information, only

the rate of blood flow. Judicious use of the

transfer function allows information about the

speed of blood in and around the aneurysm to

be visualized (Fig. 35.6.1). This is important

information in terms of placing coils so that

they are not dislodged.

The simulation of angiograms was imple-

mented using the volume renderer’s ray-casting

method with a simple step transfer function.

The user can control the position of the step.

This provided realistic angiograms with very

little effort (Fig. 35.6.2).

The working views were obtained by first

defining a center of rotation using three orthog-

onal planes. To coregister the patient with the

C-arm, an isosurface showing the face of the

patient is created and the intersection of the

planes and the face is then displayed. A report

(see below) can be given to the C-arm operator

for this purpose. To obtain the actual working

views, the user rotates the rendering of the ap-

propriate arterial tree until the desired view is

found. The rotation angles can then be read

from the screen and applied to the C-arm. The

screen turns red if there is a danger that the

viewpoint will cause the C-arm to hit the table

or the patient.

Exporting information from a medical appli-

cation is very important for dissemination and

reference materials. For this purpose, ESP can

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 706

Figure 35.6.1 Blood flow visualized with software volume rendering. (See also color insert.)

706 Visualization Software and Frameworks

produce AVIs through AVS/Express’ key-frame

animation macros. Images and VRML can also

be exported. At a user’s request, a simple

reporting tool was added that allows images

from the main view to be snapshot into a docu-

ment. These can be laid out with comments and

exported as postscript or HTML. Though Ex-

press is unsuitable for creating such a tool, it

made a useful addition and demonstrated the

flexibility of the package.

A clinician’s time can be fractured, and so the

ability to save the current state of the applica-

tion is very useful. This was achieved in the ESP

by creating a central parameters group, which

contained the parameters for various sections of

the application. A custom module was used to

write this group to file in Express’ V code and

could therefore be reloaded using standard

objects for running V scripts. Using these ses-

sion files, the majority of modifications to the

data can be restored.

35.6.4 Conclusion

The project was very successful and produced an

application that not only solved the specified task

of aneurysm surgical planning but provided a

useful medical visualization tool. The ESP appli-

cation has been used in other areas, such as plan-

ning for cochlear implants. The project has

pushed to the limits the size and complexity of a

single application under AVS/Express and has

exploited its strengths in rapid development and

wealth of existing functionality. Where AVS/Ex-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 707

Figure 35.6.2 Angiography simulation. (See also color insert.)

Visualization with AVS 707

press has proven weak, these problems have been

overcomeby theflexibilityof thepackage toallow

modification and extension of almost any part.

Acknowledgments

Prof. Alan Jackson, Dr. R. Laitt, and Anthony

Lacy. The project was funded by the Sir Jules

Thorn Charitable Trust.

35.7 Archaeological Visualization:
Uncovering the Past

This section looks at the visualization of mum-

mified humans. It is similar to medical visual-

ization and uses many of the same types of

techniques. However, there are a number of

elements that make this a distinct topic:

. Mummies are rare and are the focus of spe-

cialist scientific research.

. Mummified tissues are physiologically differ-

ent from live tissues.

. There may be physical or mechanical

damage that occurred before, after, or at

the time of death.

Research into mummies covers several discip-

lines: medicine (especially forensic medicine and

art in medicine), anthropology, and archae-

ology. While the techniques used in visualiza-

tion of mummies may be taken from the

medical visualization field, the information

obtained and the way it is used is very different.

35.7.1 The Problem

Due to the fact that mummies are rare, and be-

cause they are important for both current and

future research, any postmortem investigation

needs to be noninvasive. Dissection destroys

tissues. Not only does it cause mechanical

damage, but atmospheric water can damage the

dehydrated tissues.

Medical scanning modalities such as Nuclear

Magnetic Resonance (NMR) use the water con-

tent of tissues to produce images in which soft

tissues show up best. Mummified remains, how-

ever, have very little water content, and conse-

quently the success of this particular type of

scan is reduced. Computed Tomography (CT)

uses low-dose x-rays and is more suited to use

with mummies, but it images dense tissues such

as bone and teeth best.

The two case studies presented here show the

special techniques needed to visualize mummi-

fied remains.

35.7.2 Mummy 1766

Mummy 1766 is an adult female Egyptian

mummy from the first or second century AD.

She was intentionally mummified after death,

her body being enclosed in resin-coated ban-

dages that were decoratively painted. She has

an ornate gilded cover over the front of her

head, breast, and feet.

Currently Mummy 1766 is part of a collection

of mummies at the Manchester Museum, Uni-

versity of Manchester. Professor Rosalie David

from the Museum has pioneered noninvasive

testing of Egyptian mummies. Mummy 1766

has been key in this research for many years.

35.7.2.1 Implementation

The resultant work produced MPEG anima-

tions of Mummy 1766 for display as an exhibit

at the museum in 1997. Volume rendering was

used to reveal the mummy’s hidden features.

A preprocessing segmentation step was im-

plemented as a C program external to AVS/

Express. The processed data was then volume-

rendered, and transparency and rotation were

used to show the following:

. The shape and structure of the gilded mask.

. The shape and structure of the skull and

remaining facial soft tissues.

. The spatial relationship between the mask

and the head.

Animation key frames were selected for both

transparency and rotation through an AVS/Ex-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 708

708 Visualization Software and Frameworks

press GUI. MPEG animations were automatic-

ally generated.

35.7.2.2 Segmentation

During volume rendering, different objects and

materials are distinguished from one another by

the mapping of varying data intensity values to

particular colors and transparencies. This re-

lationship is normally referred to as a transfer

function.

Ordinarily in AVS/Express, transfer functions

are generated by the user and relate closely to

the data histogram, with each peak presumed to

be a separate material. A down side of this

approach is that materials similar in density

may have overlapping peaks, and so suitable

transfer functions can be hard to find.

The mummy dataset suffered from this draw-

back; soft tissue had an intensity similar to

that of the resin-coated bandages, and the inten-

sity of the gilded decorative cover was similar to

bone and teeth values.

An additional and more pressing problem

was the complete occlusion of the head by the

mask. Thus, in order to produce a meaningful

visualization of the mummy’s internal structure,

the data had to first be segmented; the mask at

least had to be distinguishable from the rest of

the data.

To address this, a cutting contour was defined

for each data slice in the axial plane, following

the inside of the mask cover and extending to

the edge of the dataset after the base of the mask

was reached. Each contour was automatically

generated by a custom C program, which

employed a region-growing method [24]. In

this way the dataset was split into two, with

the mummy and bandages being separate from

the mask.

A third dataset was created by recombination

of the two segmented datasets, but the head and

cartonnage data values were transposed, pro-

viding each data subset with its own distinct

range of intensity values. This allowed a

simple step function to be applied to the trans-

parency map, in turn removing the gilding, dec-

orations, mask, bandages, soft tissue, bone, and

teeth.

The three datasets were then rendered to pro-

duce images and animations using AVS/Ex-

press.

35.7.2.3 Surface Rendering vs.
Volume Rendering

The mummy’s body was tightly wrapped in 47

layers of resin-coated bandages. Without the use

of a view-dependent rendering, producing full-

resolution isosurfaces of every material and then

animating the transparency of each proved too

computationally expensive for the machines of

the time. Volume rendering, however, was a

much more manageable approach. Animating

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 709

Figure 35.7.1 Mummy 1766. (See also color insert.)

Visualization with AVS 709

the transparency of each material was important

because it showed their spatial relationships,

such as the location and orientation of the head

behind the mask (Fig. 35.7.1).

35.7.3 Worsley Man

Worsley Man [25] is a bog body (a Celtic sacri-

fice) that was discovered in marshes in Salford,

United Kingdom, in the 1950s. The aim of this

work was to create a new computer graphics

tool that would allow the rebuilding of a face

from skeletal remains. This work was the start

of a larger ongoing project.

In this section it is shown how the skull is

extracted as a surface model so that muscle

structure and facial features can be added

later. The main components of this work are

described below:

. Reading the data into AVS/Express. The

scan was in Explicit DICOM format and

therefore had to be converted to Implicit

DICOM.

. Segmentation and the removal of unwanted

features or noise. Due to dehydration, the

physiology of the body changed, and mater-

ials from the bog became attached. Such

extraneous data had to be segmented out

from the dataset.

. An exhibit mount passes through the center

of the skull; this, too, needed to be removed

from the visualization.

35.7.3.1 Data Reading

To read the CT data into AVS/Express, the

ReadDICOM module was used [2,22,27]. It

should be noted that the ReadDICOM module

can only read DICOM data in the Implicit

format, and not the Explicit. Efilm [26] was

used to convert the Explicit CT scan of Worlsey

man into Implicit format.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 710

Figure 35.7.2 Visualization of Worsley Man showing the noise in the data. (See also color insert.)

710 Visualization Software and Frameworks

35.7.3.2 Segmentation

Segmentation was used to remove the noise

around and inside of the skull (Fig. 35.7.2).

A three-step segmentation method was em-

ployed:

1. The crop module removed the ‘‘noise’’ sur-

rounding the skull (Fig. 35.7.3).

2. A region-growing module was used to seg-

ment the skull from the remaining data.

A seed point was selected from the data by

user selection. The region was then grown

by comparison of the data values of the seed

point, or the last point processed, to the

current check point.

3. The IsoObjsReduce module was used to

remove noise within the skull.

A low-resolution surface visualization of Wors-

ley Man was produced, as high detail was not

required for associated research. Several layers

of detail are added onto the skull to build up the

face of Worsley Man.

Acknowledgments

Prof. Rosalie David and Dr. Caroline Wilkin-

son.

35.8 Molecular Visualization:
Seeing 3D Chemical Structure

From the beginning of our understanding that

3D structure was important, scientists have ex-

plored a variety of approaches to rendering the

3D structure in 2D diagrams. They have manu-

factured physical models of molecular struc-

tures in the hope of understanding how the

structure affects both their nature and their

interaction with other molecules in their envir-

onment.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 711

Figure 35.7.3 Result of crop on Worsley Man. (See also color insert.)

Visualization with AVS 711

Computer-based 3D visualization has been in

routine use in computational chemistry and bio-

chemistry since the 1980s, when workstations

sufficiently powerful to render structures inter-

actively began to appear. The appearance of

affordable stereo vision systems provided an-

other important boost to such workstations,

and their cost, though still very high, was easily

justified by the benefits afforded. With modern,

high-performance personal computers, 3D hard-

ware graphics support has become the norm

and so 3D molecular visualization has become

an everyday tool for the computational chemist

or biochemist.

35.8.1 Aim

The aim of this development has been to at-

tempt to provide a widely usable and easily

extensible framework for the visualization

of molecular structures and properties. The

work builds on the large number of valuable,

powerful existing methods and techniques pro-

vided by an extensive visualization system such

as AVS/Express. This gives the computational

chemist tools that can be used for the visualiza-

tion of molecular structures and properties.

They can then be used to produce solutions

tailored for specific needs by incorporating

new methods of analysis, interaction, and, if

necessary, visualization, while relying heavily

upon core methods provided by the system

itself.

35.8.2 Application Development

This development has been undertaken over sev-

eral years and has been contributed to by a

number of people who have worked on specific

features. The initial work was carried out using

UNIX on Hewlett Packard and Silicon Graphics

workstations, but more recently development

work has been carried out primarily on PC-type

hardware using either the Linux or the Windows/

NT platform. Portability has been an important

issue throughout, and the system should be

usable across most platforms supported by

AVS/Express, with minimal code rewriting re-

quired.

AVS/Expresshasprovenaveryuseful develop-

ment environment for this problem for a number

of reasons, but three principal ones stand out.

First, the user interface canbe constructed,modi-

fied, and extended with great ease through a com-

prehensive widget set that can be readily

combined in a hierarchical development scheme.

Second, the internal data structure used by AVS/

Express, the ‘‘field,’’ can readily contain data in a

form that is both comprehensible to the chemist

and suitable for the AVS/Express environment

for rendering and visualization. Third, the pro-

vided visualization methods can easily be inte-

grated with the application-specific data to

generate a single integrated display including

structure and properties information.

35.8.2.1 Data Structures

The versatile internal data structure used by the

AVS/Express system, usually referred to as a

‘‘field,’’ can hold a wide variety of data types,

includingarbitrarilydimensioned tensordata ina

space also of arbitrary dimension. This encom-

passes the ability to store scalar data values at

points in a 3D space that is sufficient to hold the

positions of atoms and specify their type in a 3D

structure. More complex molecular components,

suchasprotein residues, canalsobe specified, and

orientation information can be held in a vector

form at each point, allowing protein macromo-

lecules to be built up from residue-based specifi-

cations.

The field also contains a facility to hold a

mesh describing the way in which the points

contained within the field define a multidimen-

sional geometry. This feature can be used to

specify how the atoms are interconnected, per-

mitting full specification of the 3D molecular

geometry. Thus, almost the most simple mol-

ecule viewer imaginable is that shown in Fig.

35.8.1, where, using a point mesh with atom

data (radii and colors) to produce the balls

and a line mesh with stick data (thicknesses

and colors) to produce the sticks, a basic 3D

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 712

712 Visualization Software and Frameworks

molecular viewer is constructed using only 10

modules in only a few minutes of implementa-

tion time.

The rendering of this ball-and-stick model in

AVS/Express is a straightforward process and is

carried out automatically by the Uviewer3D

when the correct additional entities are specified

in the balls and sticks fields. Other standard

entities can be set in the field and in the viewer

to control the surface subdivision factor and the

illumination and shading model of the surfaces

of the spheres and tubes. Thus, high-quality

renderings of large 3D structures can be trivially

produced using AVS/Express.

35.8.2.2 Data Readers

Obviously, while this remarkably simple appli-

cation is a fully functional molecule viewer, it

would be somewhat tedious for the user to have

to enter his or her geometry by hand into arrays

of points, atom data, and connectivity just to

produce basic 3D structure diagrams. As AVS/

Express allows the user to add new modules, a

set of reader functions has been added that

outputs data in a suitable form for inclusion in

this viewer. Supported formats include standard

Cartesian coordinates and z-matrices, as well as

those for some of the most common chemistry

software packages, such as Gaussian, CAD-

PAC, and GAMESS. The addition of a new

reader requires the developer to be able to

implement an algorithm to extract the 3D

structure as arrays of atomic coordinates,

connectivity, and atom and bond properties,

which are then connected to the correct points

in the viewer. When this reader is combined

with the simple application shown in Fig.

35.8.1, then the user has a full molecular viewer

for the new data format.

35.8.2.3 Properties Data

Additional methods that use standard visuali-

zation techniques, such as direct volume render-

ing, surface extraction, and ‘‘glyphing’’ of data

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 713

Figure 35.8.1 Almost the simplest AVS/Express molecule viewer imaginable.

Visualization with AVS 713

from a variety of sources, can be incorporated

in the structure viewer. Methods have been

implemented for the visualization of properties

data as produced by common computational

chemistry software such as Gaussian. These

methods allow the user to visualize molecular

orbitals, electrostatic potentials, and electron

density, overlaid on the 3D molecular structure,

using volume- and isosurface-rendering techni-

ques. In each case, little additional work was

required to combine suitable readers with the

standard visualization modules provided by

AVS/Express in order to create this molecular

viewing network.

35.8.2.4 Interactivity and User Interfacing

AVS/Express provides a comprehensive user

interface development kit with an extensive

widget set. This permits the user to develop a

flexible and changeable user interface with

relative ease. Sections of the interface can be

switched on and off through simple toggle

controls. This allows the development of modal

interfaces that maximize the available space for

the display and optimize the availability of

controls for the current task. The modular

nature of the user interface also permits the

developer and user to make changes to suit new

data types and new applications without

reimplementing the processing and rendering

controls.

Along with the obvious manipulations

(zooming, translating, and rotating the display),

AVS/Express provides facilities for the selection

of drawn objects in the scene, returning object

identifiers and position information. In this

way, modules have been developed that permit

the user to select particular atoms, bonds, and

regions of the structure, which can then be ma-

nipulated. Using this feature, macros have been

constructed for building and editing structures

and for the selection of regions of macromol-

ecules within which particular display features

can be applied. Thus, regions of interest, such as

active sites of macromolecules, can be displayed

in more detail, while the less interesting parts of

the structure can be deselected and either dis-

played at lower resolution or not rendered at all.

This allows the user to concentrate her or his

attention where it is most appropriate.

35.8.2.5 Development Approach

The hierarchical development approach in

AVS/Express helps in the development of

applications that are readily modifiable and

extensible. Interdependencies can be avoided,

and the module and macro set developed is left

open to the user and future developers, who

may combine them in new ways. The example

application, shown in Fig. 35.8.2, contains

approximately 100 separate modules in a

hierarchy of macros. The application includes

a substantial user interface (in the left-most

window) with controls for handling the loading,

building, editing, and display of structures and

properties with a wide range of visualization

approaches and fine control over the rendering

process.

35.8.3 Conclusion

We have produced a broad-based module set

with capabilities for visualization of molecular

structure and properties. This has created a

framework that can be easily extended by users

and developers to incorporate new methods and

approaches as they are developed. Existing ap-

plications developed using this module set pro-

vide capabilities not only for visualization but

also for interactive construction and editing of

large and complex molecules from single atoms,

residues, and libraries of structure fragments.

Today’s chemist is presented with a wide var-

iety of visualization software from numerous

suppliers, and, since the essential need has

been long identified, the competition has been

fierce and development extensive. That said,

new methods for data analysis are being de-

veloped daily within research groups, and there

is still a great scope within which the user can

develop new and interesting approaches to both

properties and structure visualization. These

goals could be assisted by the availability of a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 714

714 Visualization Software and Frameworks

standard, portable visualization environment

within which new methods and techniques can

be easily incorporated, and we hope to continue

to develop these ideas further in the future.

Acknowledgments

Dr. Christopher Parkinson, Prof. Ian Hillier,

and Dr. Neil Burton.

35.9 Visualization with AVS:
Conclusion

This chapter has presented examples from sev-

eral different scientific disciplines, all with dif-

ferent requirements. In all cases, the end users

have been provided with added understanding

of their data through the use of visualization

techniques. There is no doubt that the flexibility

of AVS/Express has contributed to this by pro-

viding many useful elements:

. The ability to develop upon existing modules

or use modules from the IAC repository [2].

. Rapid prototyping of applications.

. An extensible user interface that can be con-

structed and controlled by the application.

MVC [1] is also authoring new high-performance

features for the AVS software environment. The

Multipipe Edition (MPE) enables transparent

deployment of an AVS visualization network on

multiple projector-based virtual environments.

Both the SGI MultiPipe and CAVElib APIs are

supported. Decoupled head tracking and control

of peripheral devices are also provided. The

rendering decomposition used by MPE has pro-

duced a good performance increase. This is being

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 715

Figure 35.8.2 An example application constructed using standard and application-specific AVS/Express modules, with output

structure and properties in the lower-right window. (See also color insert.)

Visualization with AVS 715

further improved by the Parallel Support

Toolkit (PST), which provides a framework

for heterogeneous distributed computation

using a suite of parallelized performance-visual-

ization modules. The framework will integrate

the control of data decomposition, distribution,

large dataset handling and LoD, data

streaming, and asynchronous communication

for facilitating computational steering. Finally,

a version of AVS/Express that supports a haptic

joystick has been developed. Users can feel and

interact with their visualization, whether by

feeling the surface of a porous rock or the pull

of gravity around the Earth’s surface or by

some different method.

References

1. Manchester Visualization Centre. Manchester
Computing, The University of Manchester,
http://www.man.ac.uk/MVC

2. International AVS Centre, Manchester Visual-
ization Centre. http://www.iavsc.org

3. The Hadley Centre for Climate Prediction and
Research, U.K. Meteorological Office, http://
www.metoffice.com/research/hadleycentre/index.
html

4. Climate Research. http://www.metoffice.com/
corporate/scitech0102/9_climate_research/index.
html

5. United Nations Framework Convention on Cli-
mate Change. http://unfccc.int/index.html

6. Fifth Session of the UNFCCC Conference of
the Parties (CoP5). http://cop5.unfccc.int/

7. Sixth Session of the UNFCCC Conference of
the Parties (CoP6). http://cop6.unfccc.int/

8. Seventh Session of the UNFCCC Conference of
the Parties (CoP7). http://unfccc.int/cop7/

9. Climate Models. http://www.metoffice.com/
research/hadleycentre/models/modeltypes.html

10. Intergovernmental Panel on Climate Change
(IPCC). http://www.ipcc.ch/

11. J. Leng and J. M. Brooke. Visualization of
historic databases of sunspot observations
and solar dynamo simulation. UKHEC visual-
ization case study, 2001. http://www.ukhec.
ac.uk/ publications

12. J. Leng, J. Brooke, W. T. Hewitt, and
H. Davies. Visualization of seismic data in

geophysics and astrophysics. UKHEC visualiza-
tion case study, 2001. http://www.ukhec.ac.uk/
publications

13. J. Leng, J. Brooke, W. T. Hewitt, and H.
Davies. Visualization of seismic data in geo-
physics and astrophysics. Proceedings of SGI
Users Conference, Krakow, Poland.

14. P. Pulkkinen. Solar differential rotation and its
generators: computational and statistical stud-
ies. Ph.D. dissertation by Pentti Pulkinen, pub-
lished by the Finnish Meteorological Institute,
Helsinki, 1998.

15. E. Tufte. Envisioning Information, 2nd Ed.
Graphics Press, 2001.

16. K. F. J. Reinders. Feature-based visualization
of time-dependent data. Ph.D. Thesis, Delft
University of Technology, 2001.

17. I. A. Sadarjoen, F. H. Post, B. Ma, D. C. Banks,
and H. G. Pagendarm: Selective visualization of
vortices in hydrodynamic flows. IEEE Proc.
Visualization ’98, pages 419–423, 1998.

18. I. A. Sadarjoen and F. H. Post. Detection,
quantification, and tracking of vortices using
streamline geometry, Computers and Graphics
24:333–341, Elsevier Science, 2000.

19. T. van Walsum, F. H. Post, D. Silver and F. J.
Post. Feature extraction and iconic visualiza-
tion. IEEE TVCG 2(2):111–119, 1996.

20. Visualization cookbook using AVS/express,
http://www.iavsc.org/training/cookbooks/index.
html

21. J. Perrin, T. Lacey, A. Jackson, R. Laitt, and N.
W. John. A visualization system for the clinical
evaluation of cerebral aneurysms from MRA
data. EUROGRAPHICS 2001 Proceedings,
2001.

22. DICOM, medical data format, http://medical.
nema.org/

23. TINA, image analysis library, http://www.
tina-vision.net/

24. K. Moltenbrey. Unraveling the mysteries of
the mummy. Computer Graphics World, pages
51–53, 2002.

25. The Boothstown Website (Worsley Man), http://
freespace.virgin.net/tony.smith/malkins.htm

26. Efilm, http://www.efilm.com
27. Papyrus 3.6 toolkit, courtesy of Digital Imaging

Unit, University Hospital of Geneva.
28. C. I. Parkinson, M. D. Cooper, W. T. Hewitt,

and I. H. Hillier. MAVIS: An interactive visual-
ization tool for computational chemistry calcu-
lations in a distributed networked environment,
In Proceedings of the Pacific Symposium on Bio-
computing, 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 10:44pm page 716

716 Visualization Software and Frameworks

36 ParaView: An End-User Tool for
Large-Data Visualization

JAMES AHRENS

Los Alamos National Laboratory

BERK GEVECI and CHARLES LAW

Kitware, Inc.

36.1 Introduction

This chapter describes the design and features

of a visualization tool called ParaView (http://

www.paraview.org), a tool that allows scientists

to visualize and analyze extremely large datasets.

The tool provides a graphical user interface

(GUI) for the creation and dynamic execution of

visualization tasks. ParaView transparently sup-

ports the visualization and rendering of large

datasets by executing these programs in parallel

on sharedordistributedmemorymachines.Para-

View supports hardware-accelerated parallel

rendering and achieves interactive rendering per-

formance via level-of-detail (LOD) techniques.

The design balances and integrates a number

of diverse requirements, including the ability to

handle large data, ease of use, and extensibility

by developers. This chapter describes the re-

quirements that guided the design, identifies

the importance of those requirements to scien-

tific users, and discusses key design decisions

and tradeoffs.

Sensors and scientific simulations are gener-

ating unprecedented volumes of data, making

visualization by traditional solutions difficult

or even impossible. To address the simulation

scientists’ visualization needs, we spoke with

simulation scientists and gathered a set of

requirements. The high-level requirements that

guided the design of ParaView are (a) support

for an efficient workflow and (b) support for the

visualization and analysis of extremely large

datasets. The challenge was to create a design

and implementation that met both of these com-

plex requirements and balanced the conflicts

between them.

36.1.1 Workflow Requirements

Visualization is one task of the many that simu-

lation scientists encounter. Other simulation

tasks include theoretical work, programming,

problem setup, analysis, and data management.

Therefore, the first workflow requirement is tool

ease of use. That is, how long it takes to create

results and what visualization domain know-

ledge is required to run the tool will determine

whether and how often the tool is used. A coarse

approximation of the simulation scientists’ visu-

alization workflow includes two modes: an ex-

ploratory mode, in which an interactive GUI

based tool is used to explore a dataset, and a

batch mode, in which a scripting or program-

ming language is used to write and execute a

program that creates an animation. The second

workflow requirement is support for both

modes. This coarse approximation can be re-

fined further by identification of how data is

input (during the simulation run or after pro-

cessing of the simulation) and what type of

interface is used (GUI, scripting, VR) [1]. Add-

itional workflow requirements include tool

portability, accessibility, and extensibility. Port-

ability is required because of the diverse collec-

tion of resources available to scientists to run

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 717

717

their simulations and visualizations. Tool acces-

sibility is the ability to quickly gain access to, set

up, possibly modify, and run the tool. Open-

source projects are more accessible because the

package is typically available on the Internet,

and any necessary tool modifications can be

made quickly because the source is available.

We define extensibility as the ability to easily

add new functions and graphical interfaces to

the tool.

36.1.2 Large-Data Visualization
Requirements

The ability to handle large data is also a critical

requirement. We define large data as data that

exceeds the resource limits (i.e., the elements of

the storage hierarchy—memory, disk, tape) of

a single machine. The first aspect of the large-

data handing requirement is a functional one:

can the data be visualized at all? Techniques

such as data streaming (i.e., incrementally pro-

cessing the data) and parallelism can be used

to process large datasets. Workflow require-

ments, such as portability, mandate that the

tool execute on both shared and distributed-

memory parallel machines. The second aspect

of the large-data handling requirements is

performance: can the data be processed

quickly? Techniques such as multiresolution

representations and parallelism can be used to

improve both visualization and rendering per-

formance.

36.2 Related Work

There are a number of visualization packages

available for use by scientists. Each of these

packages meets a subset of the identified re-

quirements. In this section, we will discuss a

few of these packages, specifically AVS [2],

OpenDX [3], SCIRun [4], and Ensight [5], iden-

tifying their strengths and describing which re-

quirements they meet. ParaView was designed

to meet all of the identified workflow and large-

data visualization requirements.

36.2.1 Workflow Requirements

Ensight and ParaView use GUIs to execute visu-

alization tasks. AVS, OpenDX, and SCIRun use

data-flow program graph editors to compose

programs. Data-flow program graph editors

were thought to provide a good tradeoff between

the needs of visualization developers and those

of end users: for developers, they provide the

ability to create complex program graphs, and

for end users they provide a graphical interface

to create these graphs. In practice, learning

visual programming with data-flow graphs is

considered by many scientists a significant bar-

rier to creating visualization tasks, and thus they

consider GUI-based interfaces easier to use.

OpenDX, SCIRun, and ParaView are all open-

source packages, which makes them easily ac-

cessible and extensible. These packages offer

interactive and batch interaction modes.

SCIRun provides support for computational

steering—the ability to interact with and visual-

ize data from a running simulation. In contrast

to these other packages, ParaView uses a gen-

eral-purpose scripting language, Tcl, for batch

commands. The advantages of using a general

purpose scripting language include the availabil-

ity of general-purpose computing functionality,

robust documentation, and support for the

scripting language that is independent of the

visualization tool.

36.2.1 Large Data Visualization
Requirements

All of these packages are portable to most archi-

tectures when run on a single machine. Differ-

ences arise in their portability to parallel

architectures. AVS, OpenDX, and SCIRun all

support parallel execution on shared-memory

machines. They also all rely on a centralized

executive to allocate memory and execute pro-

grams. This reliance makes it difficult to port

these packages to distributed-memory machines.

Ensight uses a client/server architecture where

the client renders geometry and the server exe-

cutes visualization and analysis tasks. Ensight

currently provides shared-memory implementa-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 718

718 Visualization Software and Frameworks

tions of both the client and the server. Ensight

also has a distributed-memory implementation

of the server. ParaView is portable to both

shared and distributed-memory machines, and

it is the only listed package that can incremen-

tally process data.

The ability to process datasets that are larger

than the available computing resources is a key

consideration when one is processing extremely

large datasets, since resource availability

changes over time. (ParaView’s data-streaming

feature is available in batch mode).

36.3 Design

Para View is designed as a layered architecture.

The foundation is the visualization toolkit

(VTK) [6,7], which provides data representa-

tions, algorithms, and a mechanism to connect

these representations and algorithms together to

form a working program. The second layer is

the parallel extensions to the VTK. This layer

extended VTK to support streaming of all

data types and parallel execution on shared-

and distributed-memory machines. (These ex-

tensions are currently part of the toolkit, but

they were added after the original design of the

toolkit was complete.) The third layer is Para-

View itself. ParaView provides a GUI and

transparently supports the visualization and

rendering of large datasets via hardware accel-

eration, parallelism, and LOD techniques. Each

layer meets a subset of the requirements and

adds additional functionality to the layer

below it.

36.3.1 The Visualization Toolkit

The VTK is the foundation of the ParaView

architecture. VTK provides data representa-

tions for a variety of grid types, including struc-

tured (uniform and nonuniform rectilinear grids

as well as curvilinear grids), unstructured, pol-

ygonal, and image data. Examples of these grid

types are shown in Fig. 36.1. VTK provides

hundreds of visualization and rendering algo-

rithms that process these data types, including

isosurfacing, cutting/clipping, glyphing, and

streamlines. VTK also provides algorithms for

polygon rendering and volume rendering as

well as a keyboard and mouse-based interaction

model. Algorithms are organized into data-

flow program graphs, and a demand-driven

data-flow execution model is used to run these

programs. Core functionality in VTK is written

in Cþþ. To use the toolkit, VTK offers both

a Cþþ library interface and a set of scripting

interfaces, including Java, Python, and Tcl

interfaces. The library interface provides the

best performance. The scripting interfaces offer

the advantage of rapid prototyping of pro-

grams. Once a day and continuously (i.e., when-

ever a developer commits a change), tests are

run using an open-source testing framework

called Dart, which improves the toolkit’s reli-

ability. The toolkit provides the basis for Para-

View’s portability, accessibility, full range of

features, and support for interactive and

scripting usage modes. More details on VTK

can be found in Chapter 30.

36.3.2 Parallel and Distributed
Visualization Toolkit

Additional functionality was added to VTK to

support data streaming and parallel computa-

tion [8]. Both depend upon the ability to break a

dataset into smaller pieces. Data streaming in-

crementally processes these smaller pieces one at

a time. Thus, a user can process an extremely

large dataset with computing resources that

cannot store the entire dataset (either in

memory or on disk). Data streaming requires

that all VTK data types be separable into pieces

and that the toolkit algorithms correctly process

these pieces. To process pieces in a dataflow

pipeline, a mapping must be defined that speci-

fies for each algorithm what portion of the input

data is required to generate a portion of the

output data. With this information, algorithms

can generate only a portion of their output for a

given input. Each algorithm must ensure that

program results are invariant regardless of how

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 719

ParaView: An End-User Tool for Large-Data Visualization 719

the dataset is broken into pieces. These require-

ments are met when the user creates a partition-

ing of both structured and unstructured grid

types and provides ghost levels, which are

points/cells that are shared between processes

and are used by algorithms that require neigh-

borhood information. A piece of a structured

grid is defined by its extent, which describes a

contiguous range of elements in each dimension

(i.e., in three dimensions, a sub-block of a com-

plete block). VTK’s unstructured grid types use

an ‘‘element of a collection’’ scheme (i.e., piece

M of N). A procedure for converting between

grid types has also been defined, in which each

structured extent piece maps to one unstructured

piece. Additional policies take care of handling

boundary conditions and creating ghost levels

for all grid types. This data-streaming ability

supports data parallelism. Instead of processing

pieces one at a time, each processor processes a

different piece in parallel. Examples of dataset

partitioning and the creation of ghost levels are

shown in Fig. 36.2, which shows a CTH nonuni-

form rectilinear grid dataset that was processed

in eight pieces. The original dataset contained

cell-centered attributes. Volume fraction attri-

butes for both the projectile and the plate were

first interpolated to vertices before an isosurface

filter was used to extract the material surfaces.

Both the vertex interpolation and the normal

generation method require ghost cells to ensure

partition-invariant results.

Parallel communication and control classes

encapsulate details of process initialization and

communication libraries, such as a shared-

memory implementation or MPI. The streaming

and parallel computing features can be accessed

both through a Cþþ library interface and

through a set of scripting interfaces. These fea-

ture extensions provide the basis for ParaView’s

large data functionality and performance re-

quirements.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 720

Figure 36.1 The figure shows the different types of datasets that VTK and ParaView can handle. The upper-left dataset

is a uniform rectilinear volume of an iron potential function. The upper-right image shows an isosurface of a non-

uniform rectilinear structured grid. The lower-left image shows a curvilinear structured grid dataset of airflow around

a blunt fin. The lower-right image shows an unstructured grid dataset from a blow-molding simulation. (See also color

insert.)

720 Visualization Software and Frameworks

36.3.3 ParaView

ParaView provides a GUI for the interactive

exploration of large datasets. It builds this func-

tionality on parallel and distributed VTK. An

overview of the tool from a user perspective is

presented first, followed by a technical descrip-

tion of how the tool’s functionality is achieved.

36.3.3.1 Overview

A sample ParaView session is shown in Fig.

36.3. There are several regions in the user

interface, including the Menu Bar along the top

of the application, the Toolbar just below the

Menu Bar, the Left Panel on the left side, and

the Display Area on the right side. Each of

these areas is described in more detail below.

. Menu Bar: The top menu bar provides menu

buttons for loading and saving data, creating

sources and filters, viewing other windows,

displaying help, and other standard func-

tions.

. Toolbar: The toolbar contains buttons for

resetting the camera, switching between 2D

and 3D interaction modes, and changing the

center of rotation. In addition, the Toolbar

contains shortcut icons to instantiate some

commonly used filters.

. Left Panel: The top portion of this panel

contains the selection or navigation window.

The selection window provides a list of in-

stantiated sources and filters. The navigation

window provides a data-flow program graph

representation of the user’s task. The area

below the selection/navigation window is

where the properties of sources and filters

are set, and we refer to it as a property

sheet. Property sheets contain such module

settings as the current isosurface values com-

puted by the isosurface module.

. Display Area: The display area is where the

3D representation of the scene is rendered.

Mouse and keyboard interaction are pro-

vided in this area.

To add new filters, the user selects a source or

filter from the Source orFiltermenuon theMenu

Bar. Sources include various types of readers or

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 721

Figure 36.2 The image on the left was generated by a CTH dataset partitioned into eight pieces. Each piece was assigned a

different color. The image on the right shows only one partition with six extra ghost levels. The cells are colored by ghost level. In

practice, usually only one ghost level is necessary. (See also color insert.)

ParaView: An End-User Tool for Large-Data Visualization 721

computer-generated sources. A sample of the

possible filters includes the following:

. Contours and isosurfaces can be extracted

from all data types using scalars or vector

components. The results can be colored by

any other variable or processed further.

When possible, structured data contours/iso-

surfaces are extracted with fast and efficient

algorithms that make use of the structured

data layout.

. Vector fields can be inspected by applying

glyphs (currently arrows, cones, and spheres)

to the points in a dataset. The glyphs can be

scaled by scalar, vector component, or vector

magnitude and can be oriented using a

vector field.

. A subregion of a dataset can be extracted

by cutting or clipping with an arbitrary

plane, specifying a threshold criteria to

exclude cells, and/or specifying a volume

of interest (for structured data types

only).

. Streamlines can be generated using constant

step or adaptive integrators. (A parallel

implementation of streamlines is not cur-

rently available; this feature is under devel-

opment.) The results can be displayed

as points, lines, tubes, and ribbons, and

they can be processed by a multitude of

filters.

. The points in a dataset can be warped or

displaced with scalars or with vectors.

. With the array calculator, new variables can

be computed using existing point or cell field

arrays. Many scalar and vector operations

are supported.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 722

Figure 36.3 ParaView. (See also color insert.)

722 Visualization Software and Frameworks

. Data can be probed on a point or along a

line. The results are displayed either graphic-

ally or as text and can be exported for fur-

ther analysis.

ParaView provides many other data sources and

filters by default, including edge extraction, sur-

face extraction, reflection, decimation, extru-

sion, and smoothing. Any VTK source or filter

can be added to ParaView if the user provides a

simple XML description for its user interface

for its property sheet.

The Source and Filter menus are dynamic-

ally updated to contain a list of sources/filters

that can input the output of the currently

selected module. The selected module is either

the last module created or the one most recently

selected from the Selection/Navigation window.

Once a module is chosen, a new instantiation of

the module is created and connected to the

selected module, and the module’s property

sheet is displayed. In this manner, a data-flow

program graph is created. In order to manipu-

late or view the properties of a module, the

module is selected and its property sheet

shown, and the user can view or edit the listed

values.

36.3.3.2 Meeting the Workflow
Requirements

ParaView is simple because it minimizes the

knowledge of data-flow programming required

by users to use the tool. Specifically, a user can

specify simple tasks (e.g., creating a source and

applying simple filters) without needing to be

aware of data-flow programming. This is

because ParaView’s default behavior is to add

new modules to the last module created. When

the user wants to change this behavior, for

example, by applying another filter to the

source data, he or she can use the Selection

Window to reset the location where the new

module will be added. ParaView also simplifies

the choice of modules by listing only modules

that accept the correct data type for insertion.

For advanced users who wish to create complex

program graphs, the program graph is available

for manipulation in the Navigation window.

ParaView is designed so that visualized results

dominate the GUI real estate and the manip-

ulation of program graphs is relegated to a

much smaller area. This allows scientists to

focus on their visual analysis and not on visual

programming, which is typically of secondary

importance to them.

When modules are instantiated in ParaView,

they create visual output in the display area

that provides immediate visual feedback to

the user about the data and the effect of the

applied module. For example, as shown in

Fig. 36.3, when the user creates a 2D source,

in this case, a fractal source, ParaView auto-

matically creates a color mapping of the data.

This feature improves ease of use because it

provides default settings, freeing the user from

having to create them. This feature does have

a down side: it hampers the ability to stream

data, since every module instantiation would

cause ParaView to stream visual results. For

now, we have chosen to permit data streaming

only in batch mode. Solutions to this problem

include offering the option of turning on and off

interactive data streaming and offering the

option of turning on and off the immediate

feedback feature.

Users can change the parameters of some

modules directly by interacting with the 3D

view shown in the Display Area using 3D

manipulators. For example, the user can ma-

nipulate the seed line of a streamtrace filter by

clicking on a control point and dragging the line

to the new location. There are also 3D manipu-

lators for probing a dataset with a point or line

and cutting or clipping a dataset with a sphere

or plane. These 3D manipulators improve ease

of use by allowing users to quickly apply visual-

ization modules to datasets by using the mouse

to select location parameters, instead of setting

the parameters, numerically in the user inter-

face. When the manipulator is adjusted inter-

actively in the 3D view, the numerical values of

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 723

ParaView: An End-User Tool for Large-Data Visualization 723

the location parameters are updated in the user

interface and the user can then fine-tune these

values.

ParaView is portable to most architectures. To

achieve portability, only packages that work

across many platforms were used in developing

ParaView. For example, to achieve a portable

user interface, Tk was chosen. Tk is the GUI

companion to the Tcl scripting language. The

application framework at the core of ParaView

is a unique blend of Tcl/Tk and Cþþ. Tk is used

as the widget set, but Cþþ objects, which pro-

vide higher-level user interface components, are

created to encapsulate the widgets. Like VTK

objects, these Cþþ user interface objects are

automatically wrapped in Tcl.

ParaView’s user interface can be modified

and extended both statically, with XML con-

figuration files, and dynamically, at run time,

using the Tcl scripting interface. All ParaView

modules and their corresponding user inter-

faces are initialized by parsing XML-based

configuration files. These files contain the

input/output types of the modules, an icon

name to be displayed on the toolbar, a list of

widgets to be displayed on the module’s par-

ameter page, the corresponding module param-

eters, and, in the case of reader modules,

information about the file type. For example,

Fig. 36.4 presents the XML description listed

in the ParaView default configuration file and

corresponding user interface for isoline/isosur-

face modules.

<Module name¼‘‘Contour’’
class¼‘‘VTKPVContour’’
module_type¼‘‘Filter’’
root_name¼‘‘Contour’’
button_image¼‘‘PVContourButton’’
output¼‘‘VTKPolyData’’
input¼‘‘VTKDataSet’’>

<Filter class¼‘‘VTKPVContour
Filter’’/>

<InputMenu id¼‘‘im’’ label¼‘‘Input’’
trace_name¼‘‘Input’’
input_name¼‘‘PVInput’’
input_type¼‘‘VTKDataSet’’/ >

<ArrayMenu id¼‘‘am’’
input_name¼‘‘Input’’
attribute_type¼‘‘Scalars’’
label¼‘‘Scalars’’
input_menu¼‘‘im’’
number_of_components¼‘‘1’’/ >

<ScalarRangeLabel array_menu¼
‘‘am’’/>

<ContourEntry label¼‘‘Contour
Values’’ trace_name¼‘‘Contour
Values’’/ >

<LabeledToggle label¼‘‘Compute
Normals’’ variable¼
‘‘ComputeNormals’’/ >

<LabeledToggle label¼‘‘Compute
Gradients’’ variable¼
‘‘ComputeGradients’’/ >

<LabeledToggle label¼‘‘Compute
Scalars’’ variable¼
‘‘ComputeScalars’’/ >

</Module>

Since all ParaView widgets have correspond-

ing Tcl representations, the user can modify the

GUI at run time by loading scripts or typing

commands at a command console. This allows

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 724

Figure 36.4 XML description for the isoline/isosurface

module in ParaView and corresponding user interface gen-

erated by XML.

724 Visualization Software and Frameworks

the user to, for example, add new widgets,

create dialog windows, or load additional lib-

raries at run time. These features can be used to

customize which modules are loaded and how

they are presented to the user. A visualization

developer can edit the ParaView GUI configur-

ation file and write custom scripts to customize

ParaView for use by specific application users.

For example, for the climate modeling commu-

nity, a configuration file could be written to add

a suite of climate analysis modules and custom-

ize the existing modules, such as contouring, to

meet community conventions. ParaView meets

the accessibility requirement because it is avail-

able in open-source form.

Recall that a coarse approximation of the

simulation scientists’ workflow includes two

modes: an interactive mode, in which an inter-

active GUI-based tool is used to explore a

dataset, and a batch mode, in which a program

is executed to create an animation. ParaView

supports both of these modes. ParaView’s

interactive mode was detailed in the overview

section. Every interaction with the ParaView

GUI can be saved in a session file, since every

interaction has a corresponding Tcl command.

The session file can be reloaded to reproduce

the session. Furthermore, since the session

file is a Tcl script, it can be edited or modified

and then reloaded to obtain different results.

In addition to dataset exploration, the inter-

active mode is also used to create programs

to run in batch mode. ParaView also supports

the ability to save the current program graph as a

VTK script. A series of queries allows the user to

customize the script. A session script differs from

a VTK script in that a session script saves every

ParaView interaction (i.e., every interaction used

to create a program graph), and a VTK script

saves only a program graph.

36.3.4 Meeting the Large-Data
Visualization Requirements

ParaView supports large data visualization via

techniques that include parallel processing, level-

of-detail (LOD) rendering, and data streaming.

36.3.4.1 Parallelism and Data Streaming

ParaView supports parallelism, using either

shared-memory processes or distributed-mem-

ory processes via MPI. When ParaView is run in

parallel, data is automatically read, processed,

and, if necessary, rendered in a data-parallel

manner. ParaView’s parallel software architec-

ture includes three types of processes: a client

process that runs the GUI, and two types of

server processes: root and slave processes. The

client process communicates with the root server

process by broadcasting commands. The root

server process receives these commands and

rebroadcasts them to all slave servers. A com-

mand is a script; currently, a Tcl script is used. In

the future, the user may be able to select the

scripting language to use, for example, Python or

Java. All servers run an interpreter and use it to

execute received commands. This communica-

tion mechanism is used to create a copy of the

same program graph on each process. The

program graphs on the servers manipulate pieces

of the full dataset for data-parallel processing,

and the program graph on the client is used to

store program states, such as parameter settings

for modules. ParaView’s user interface elements

update the client’s program graph, and the

changes are sent as scripts to the root and slave

servers. For example, when a user creates a filter

module (such as an isosurface), a script is created

that instantiates, sets parameters, and appends

the isosurface module to a program graph. This

script is then communicated to and interpreted

by both the client and the server processes. All

processes use the same naming convention, and

thus one script works for all processes’ program

graphs. All program graphs are initialized with a

rendering module.

To implement parallel algorithms, communi-

cation between processes is handled internally

by the modules in the program graphs. For

example, all rendering modules communicate

to implement a parallel rendering algorithm.

Although the client can be considered a central-

ized executive, ParaView’s design supports inde-

pendent process decisions and actions as much

as possible. For example, the decision to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 725

ParaView: An End-User Tool for Large-Data Visualization 725

allocate memory occurs locally. Furthermore,

interprocess communication is limited to pro-

gram instantiation and execution commands

and parallel algorithms.

ParaView supports data streaming in batch

mode. When the user writes a batch script, an

option prompts the user to indicate whether he

or she would like to stream the data and what

memory limit he or she is bounded by.

Streaming and data parallelism are effective

techniques for processing large datasets, and

they effectively fulfill ParaView’s large-data

visualization requirement. We have used these

techniques to efficiently and effectively isosur-

face and color a collection of datasets that

ranged in size from tens of gigabytes to approxi-

mately a petabyte in size [8].

36.3.4.2 Level of Detail and Parallel
Rendering

ParaView’s rendering module supports both

LOD and parallel rendering techniques [9] to

facilitate the interactive rendering of very large

datasets. Interactive rendering of large datasets

is an extremely challenging problem, and there-

fore, we applied a number of techniques to

achieve good performance.

LOD techniques increase rendering perform-

ance at the expense of image quality. Two dif-

ferent LOD techniques are used in ParaView:

geometric LOD and rendered-image LOD.

The geometric LOD technique creates a model

with reduced geometric resolution. In general,

models with fewer geometric elements render

faster than those with more elements. When

the user is interacting with the model (i.e.,

rotating, translating, zooming), a reduced-reso-

lution model is used in order to render quickly.

When the interaction is complete, the full-reso-

lution model is rendered. Fig. 36.5 shows an

example of the full- and reduced-resolution

models. VTK’s quadric clustering algorithm is

used to simplify surfaces. This algorithm pre-

serves data attributes, so the LOD models have

the same visual appearance as the original data.

Timing results for the decimation algorithm are

given in Table 36.1. Decimation can introduce

significant visual artifacts into the rendered

image. However, we have concluded that

these artifacts are acceptable during interactive

rendering. Decimation can also work well with

the geometry redistribution technique discussed

later in this section. The smaller decimated

models can easily be collected and rendered

locally.

The rendered-image LOD technique involves

rendering to a small image and using pixel rep-

lication to magnify the image for final display. It

is essentially lossy compression of the image

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 726

Figure 36.5 The full-resolution surface (left) has 821,495 triangles and renders in intermediate mode in 0.93 seconds on a

GeForce2 GTS, and the decimated surface (right) has 35,400 triangles and renders in 0.04 seconds. (See also color insert.)

726 Visualization Software and Frameworks

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 727

that has no compression cost and minimal de-

compression cost. Although the resulting visual

artifacts are noticeable, they do not significantly

impair interaction with the dataset. This tech-

nique reduces rendering times through all the

steps listed below. Initial rendering times can be

faster because fill areas are smaller. The time to

read and composite image buffers is reduced as

well because it is directly proportional to the

area of the rendered image.

Using data parallelism in the renderer is also

critical for high performance. The renderer is

always in one of two states: an interactive state,

when the user is interacting with the GUI, and a

still state, when the user is not. The steps of the

rendering algorithm are described below. Note

that ParaView’s geometry and image data can be

either serial or parallel, and this may change

during execution. The algorithm below is ap-

plied to each geometric object to be rendered.

1. If (rendering state is interactive) then apply

geometric and image LOD algorithm:

a. The geometric LOD algorithm is ap-

plied when an estimate of the time to

render the object (based on the number

of points in the object) exceeds a user-

modifiable threshold. When the thresh-

old is exceeded, rendering occurs with a

reduced-resolution version of the

object. If a reduced-resolution version

does not exist, one is created.

b. The image LOD algorithm is applied

when the time to render the last frame

exceeds a user-modifiable threshold.

Using the previous time frame as an

estimate, a new image size is calculated

in order to reduce rendering time to

below the threshold.

2. If (geometry data is parallel) then apply par-

allel geometry load redistribution algorithm:

The result of the LOD algorithm is geometry

data. If there is parallel geometry data, it can

be redistributed from its current location on

the processes to a subset of the processes.

For example, if the geometry is small

enough (i.e., after it is reduced by Step 1a),

it can be more efficient to collect and render

the geometry on a single process. This

avoids the cost of parallel image composit-

ing (Step 4). In the future, this step will also

be used to balance geometric load across

processes for more efficient performance.

3. Rendering: The result of the redistribution

algorithm is geometry data. A rendering op-

eration then renders this geometry to create

an image and depth buffer result of the

image-size set in Step 1b. Rendering can be

serial or parallel, hardware- or software-

based, and occur either onscreen or off-

screen.

4. If (image data is parallel) then apply parallel

image compositing: If there is parallel im-

agery, then this image data is composited

together using the depth buffer to resolve

conflicts and to create a final image. Para-

View currently supports a binary tree com-

positing, with the option of using run-length

encoding to losslessly compress images for

speed [10]. With large window sizes and

many processes, this communication time

can be the major factor limiting rendering

performance. Compositing transmission

time grows linearly with render-window

area and scales logarithmically with the

number of processes. This is why both Step

1a and Step 1b offer methods (collecting

geometry to a single process or compositing

using smaller images) to either skip or speed

up this compositing step.

Notice that different paths through these steps

are possible. For example, a reduced LOD model

can be rendered locally when the renderer is in

Table 36.1 Time to decimate based on number of
processors

Number of Processors Time To Decimate

1 6.25 Seconds

2 3.515 Seconds

4 1.813 Seconds

ParaView: An End-User Tool for Large-Data Visualization 727

the interactive state, and the full-resolution ver-

sion of the same model can be rendered in paral-

lel when the renderer is in the still state. Having

the ability to render at different resolutions and

speeds allows the user to interactively focus on an

area of interest and then study the details of a

full-resolution image, and it also meets the large-

data rendering requirement.

36.4 Results

This section presents visualization results

generated by ParaView for several application

areas.

Fig. 36.6 shows isosurfaces of the Visible

Woman dataset. The 512� 512� 1734 dataset,

which is 900MB, is composed of seven sections.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 728

Figure 36.6 The Visible Woman dataset in ParaView. (See also color insert.)

728 Visualization Software and Frameworks

Each section is a uniform rectilinear grid gener-

ated by a CT scan. Two isosurfaces were ex-

tracted, one for bone and one for skin. The

skin isosurface was clipped in order to reveal

the bone isosurface. One block of the skin was

colored by process ID to show the data parti-

tioning. ParaView was run with four server pro-

cesses in this example. This example also

demonstrates ParaView’s ability to process mul-

tiblock datasets. Many structured datasets

divide the domain into blocks. Each block is

configured to get the best resolution sampling

for its domain. Since some datasets can have

hundreds of blocks, it is important to group

these blocks into a single entity that can be

filtered in one step. ParaView has group and

ungroup filters, which simplify processing of

multiblock datasets.

Fig. 36.7 shows streamlines generated by

ParaView using a dataset of air flow around a

delta wing. This example also shows the 3D line

widget used to seed the streamline algorithm.

The streamline filter propagates integration

across partition boundaries and can execute in

parallel. The delta wing and the contour surface

were obtained by extracting sub-grids from the

original curvilinear dataset. Since the actual

dataset contains only half the wing, due to sym-

metry, a reflection filter was applied to all sur-

faces. Both surfaces were colored by mapping

the stagnation energy through a default lookup

table.

Fig. 36.8 shows the results of a batch script

on the results from the Parallel Ocean Program

(POP). The 3600� 2400� 40 structured grid

models the Earth’s oceans at a resolution

of one-tenth of a degree. Isosurfaces and ex-

tracted geometry are also used to represent land

masses. A clip plane colored by temperature at a

depth of 1140 meters is also shown. It is worth

noting that climate-specific visualization tools

are unable to process datasets of this magnitude.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 729

Figure 36.7 The delta wing dataset in ParaView. (See also color insert.)

ParaView: An End-User Tool for Large-Data Visualization 729

36.5 Conclusions

This chapter has presented the design of Para-

View, an end-user tool for large-data visualiza-

tion. ParaView provides a GUI for visualizing

large datasets using techniques that include data

parallelism, LOD, and streaming to meet its

workflow and large-data visualization require-

ments. In the future, there are many directions

in which to extend ParaView, including the in-

corporation of data streaming into the user

interface and rendering support of extremely

large datasets for tiled display walls. ParaView

is an open-source tool, and members of the

visualization community are invited to add

new features.

Acknowledgments

This work was supported by grants from the US

Department of Energy ASCI VIEWS program.

We acknowledge the Advanced Computing

Laboratory of the Los Alamos National La-

boratory, where we performed portions of this

work on its computing resources.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 730

Figure 36.8 View of the Atlantic Ocean from a global one-tenth-of-a-degree simulation showing ocean temperature at a depth

of 1140 meters generated by a ParaView batch script. (See also color insert.)

730 Visualization Software and Frameworks

References

1. R. Knight, J. Ahrens, and P. McCormick. Im-
proving the scientific visualization process with
multiple usage modalities. LAUR-001619.

2. C. Upson, T. Faulhaber, Jr., D. Kamins, D. H.
Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and
A. van Dam. The application visualization
system: a computational environment for scien-
tific visualization. IEEE Computer Graphics and
Applications, 9(4):30–42, 1989.

3. G. Abrams and L. Trenish. An extended data-
flow architecture for data analysis and visualiza-
tion. Proc. IEEE Visualization 1995, pages
263–270, 1995.

4. S. G. Parker, D. M. Weinstein, and C. R. John-
son. The SCIRun computational steering soft-
ware system. Modern Software Tools in
Scientific Computing (E. Arge, A. M. Brauset,
and H. P. Langtangen, eds.), Birkhauser Boston,
Cambridge, Mass., 1997.

5. K. Misegades. EnSight’s parallel processing
changes the performance equation, http://
www.ceintl.com/products/papers.html

6. W. Schroeder, K. Martin, and W. Lorensen.
The design and implementation of an object-
oriented toolkit for 3D graphics and visualiza-
tion. Proc. IEEE Visualization 1996, pages 263–
270, 1996.

7. W. J. Schroeder, K. M. Martin, and W. E.
Lorensen. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Prentice Hall,
Upper Saddle River, NJ, 1996.

8. J. Ahrens, K. Brislawn, K. Martin, B. Geveci,
C. C. Law, and M. Papka. Large-scale data
visualization using parallel data streaming.
IEEE Computer Graphics and Applications,
21(4):34–41, 2001.

9. S. Molnar, M. Cox, D. Ellsworth, and H.
Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics and Appli-
cations, 4(4):23–31, 1994.

10. J. Ahrens and J. Painter. Efficient sort-last
rendering using compression-based image
compositing. Proc. of the Second Eurographics
Workshop on Parallel Graphics and Visualiza-
tion, pages 145–151, 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 731

ParaView: An End-User Tool for Large-Data Visualization 731

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:26pm page 732

This page intentionally left blank

37 The Insight Toolkit: An
Open-Source Initiative in Data
Segmentation and Registration

TERRY S. YOO

Office of High Performance Computing and Communications

The National Library of Medicine, National Institutes of Health

37.1 Introduction

Unlike the other visualization systems and

frameworks described in this text, the Insight

Toolkit (ITK) does not, by itself, perform visu-

alization. ITK is an open-source library of soft-

ware components for data segmentation and

registration, supported by federal funding

through the National Library of Medicine

(NLM) and National Institutes of Health

(NIH) and available in the public domain.

ITK is designed to complement visualization

and user interface systems to provide advanced

algorithms for filtering, segmentation, and

registration of volumetric data. Created origin-

ally to provide preprocessing and analysis tools

for medical data, ITK is being used for image

processing in a wide range of applications from

handwriting recognition to robotic computer

vision. This chapter begins with an overview

and introduction to ITK, its history, its design

principles, and the resulting architecture of the

collection image processing software compon-

ents. The chapter also provides sources for

obtaining additional information and locations

for downloading ITK source code.

37.2 Background

In August of 1991, the NLM began the acquisi-

tion of the Visible Human Project (VHP) Male

and Female datasets. The VHP male dataset

contains 1,871 digital axial anatomical images

(15 GB), and the VHP female dataset contains

5,189 digital images (39 GB) [1]. Researchers

have complained that they are drowning in

data, due in part to the sheer size of the image

information and the available anatomical detail.

Also, the imaging community continues to re-

quest data with finer resolution, a pressure that

will only compound the existing problems posed

by large data for analysis and visualization. The

NLM and its partner institutes and agencies

seek a broadly accepted, lasting response to

the issues raised by the segmentation and regis-

tration of large 3D medical data.

In 1999, the NLM Office of High Perform-

ance Computing and Communications, sup-

ported by an alliance of NIH Institutes and

Centers (ICs) and federal funding agencies,

awarded six contracts for the formation of a

software development consortium to create

and develop an application programmer inter-

face (API) and the first implementation of a

segmentation and registration toolkit, subse-

quently named the Insight Toolkit (ITK). The

final deliverable product of this group has been

a functional collection of software components,

compatible for direct insertion into the public

domain via Internet access through the NLM or

its licensed distributors. Ultimately, NLM

hopes that this public software toolkit will

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 733

733

serve as a foundation for future medical image

understanding research. The intent is to amplify

the investment being made through the Visible

Human Project, and future programs for med-

ical image analysis, by reducing the reinvention

of basic algorithms. We are also hoping to em-

power young researchers and small research

groups with the kernel of an image analysis

system in the public domain.

A complete discussion of the ITK approach

to segmentation and registration of medical

data is beyond the scope of this chapter. In-

stead, we will concentrate on covering the user

requirements and design principles that guided

the construction of ITK. An understanding of

this motivating perspective will help explain

why certain choices were made in the construc-

tion of these tools. Later, we will explain some

of the aggressive software engineering practices

that the Insight Software Consortium has em-

braced. The supporting software systems for

cross-platform builds, software wrapping for

multiple language bindings, and automated

build and regression testing will also be covered,

followed by a brief tour of ITK. The chapter

closes with a discussion of the integration of

visualization systems with ITK, where to find

additional information, and some observations

on the future of the ITK.

37.3 An ITK Example

A critical problem in medical imaging is actually

generating segmented data from which visual-

izations can be constructed. ITK targets the

preliminary stages of visualization, namely seg-

mentation (the partitioning of datasets into

coherent, cohesive objects or structures) and

data registration (the alignment or mapping

of multiple, related datasets to a common co-

ordinate frame or orientation). From its incep-

tion, ITK has been designed to address

problems of large, multidimensional data, and

it routinely considers data that is tens of giga-

bytes in size, sometimes three channel RGB 24-

bit elements, and of three and sometimes four

spatial and/or temporal dimensions. Finally,

while ITK does not itself generate visualiza-

tions, its components were designed to flexibly

interface with a variety of graphical user inter-

face (GUI) frameworks as well as visualization

systems.

The example below (courtesy of Ross Whi-

taker and Josh Cates, University of Utah) ap-

plies a watershed segmentation technique to the

VHP Female dataset. This 24-bit color dataset

often presents complex challenges in visualiza-

tion because of its density and size and the

multiple channels of the voxel elements. The

watershed technique creates a series of ‘‘catch-

ment basins,’’ representing local minima of

image features or metrics (an example is shown

in Fig. 37.1a). The resulting watersheds can be

hierarchically organized into succesively more

global minima, and the resulting graph (a sche-

matic of a simple graph is shown in Fig. 37.1b),

which links all of the individual watershed

regions, can be generated as a preprocessing

step. The graph hierarchy can later be used to

navigate the image, interactively exploring the

dataset through dynamic segmentation of the

volume by selectively building 3D watershed

regions from the 4D height field. ITK can thus

be linked to a GUI as well as to a visualization

back-end in order to create a functioning inter-

active segmentation and visualization system

for complex data (Fig. 37.2a).

Fig. 37.2b shows the results of the semiauto-

mated segmentation system. A user has defined

the rectus muscle (highlighted on the left in red),

the left eye (highlighted in pink), and the optic

nerve (highlighted in yellow). These tissue types

can be compared with the corresponding anat-

omy reflected on the right side of the subject,

revealing the difference in the highlighting color

and the relative fidelity of the segmentation. It

should also be noted that, after preprocessing to

find the primary watershed regions, navigating

the hierarchy to build up regions is a natural

and quick process with a GUI. The watersheds

and their related hierarchies extend in three di-

mensions, making this segmentation example a

native 3D application.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 734

734 Visualization Software and Frameworks

37.4 Background and History of the
Toolkit

The NLM, in partnership with the National

Institute for Dental and Craniofacial Research

(NIDCR), the National Eye Institute (NEI), the

National Science Foundation (NSF), the Na-

tional Institute for Neurological Disorders and

Stroke (NINDS), the National Institute of

Mental Health (NIMH), the National Institute

on Deafness and Other Communication Dis-

orders (NIDCD), the National Cancer Institute

(NCI), and the Department of Defense’s Tele-

medicine and Advanced Technology Research

Center (TATRC), has founded the Insight Soft-

ware Consortium to support the creation of a

public resource in high-dimension data-process-

ing tools. The initial emphasis of this effort was

to provide public software tools in 3D segmen-

tation and deformable and rigid registration,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 735

Boundary
Function

Threshold

HierarchyWatershed Regions

(a) (b)

Figure 37.1 Watershed segmentation. (a) A 1D height field (image) and its watersheds with the derived hierarchy. (b) A 2D

VHP data slice and a derived watershed segmentation. Example courtesy of Ross Whitaker and Josh Cates, University of Utah.

(See also color insert.)

Tk Graphical User Interface

Tcl Wrapper

ITK IP Pipeline VTK Vis. Pipeline

(a) (b)

Input
Data

Figure 37.2 An ITK watershed segmentation application with visualization provided by VTK and with the user interface

provided by Tcl/Tk. This example shows how ITK can be integrated with multiple packages in a single application. (a) Data-

flow and system architecture for the segmentation user application. (b) Anatomic structures (the rectus muscle, the optic nerve,

and the eye) highlighted with color overlays (shown in 2D but extending in the third dimension) and the resulting visualization.

Example courtesy of Ross Whitaker and Josh Cates, University of Utah. (See also color insert.)

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 735

capable of analyzing the head-and-neck anat-

omy of the VHP data. The eventual goal is for

the consortium to provide the cornerstone of a

self-sustaining software community in 3D, 4D,

and higher-dimensional data analysis. The con-

sortium is committed to open-source code and

public software, including open interfaces sup-

porting connections to a broad range of visual-

ization and GUI platforms.

The Insight Software Consortium, including

partners in academia and in industry, was

formed to carry this work forward. The original

developers include General Electric Global Re-

search, Kitware, Inc., Insightful, Inc., the Uni-

versity of North Carolina at Chapel Hill, the

University of Pennsylvania, Rutgers University,

the University of Tennessee, Harvard Brigham

and Women’s Hospital, the University of Pitts-

burgh, Columbia University, and the University

of Utah. Subsequently, an additional group of

developers has been funded by the NLM as part

of an expansion effort to grow the collection of

algorithms and applications platforms. The ex-

pansion of the group has added the Imperial

College of London, the Mayo Clinic, the Car-

negie Mellon Robotics Institute, the Scientific

Computing and Imaging (SCI) Institute of the

University of Utah, Cognitica Corp., the Uni-

versity of Iowa, and Georgetown University to

the list of supported developers.

The prime contractors and their subcontract-

ors comprise the software research consortium,

with the principal investigators of the prime

contractors serving as the governing board. To-

gether with the NLM Office of High Perform-

ance Computing and Communications as the

executive member, the Insight Software Consor-

tium is working to deliver a software toolkit to

improve and enable research in volume imaging

for all areas of health care.

The joint initiative is a continuing project

that is now beginning to generate results and

have an impact in the public and commercial

sectors. After a 3-year development period, in-

cluding a brief beta test of the toolkit, the devel-

opers’ consortium released the first public

version of the toolkit, ITK 1.0, in October 2002.

Subsequent releases have included at least

three major revisions that updated the code, im-

proved the toolkit organization, and added

new examples and algorithms. The users’ mail-

ing list includes hundreds of users located in

dozens of countries. ITK is beginning to appear

in commerical efforts from small startup organ-

izations to large corporations. The expansion

effort is beginning to integrate ITK into estab-

lished software systems, such as SCIRun from

the University of Utah and Analyze from the

Mayo Clinic. The effort is attracting new partici-

pants, and the number of active users is growing

rapidly.

37.5 Design Principles

Even before the first meeting of the software

developer consortium, the NLM declared that

its intention was to create a public resource, an

archive of working, operational algorithms that

would be maintainable and sustainable through

the coming years as new computing technolo-

gies emerged. We intentionally solicited 3D ex-

pertise to help develop multidimensional image-

processing capabilities. We also purposely did

not include visualization or user interface devel-

opment in the program. From its inception, this

project was intended as a companion and ad-

junct to visualization systems; it was never

intended to supplant or compete with them.

The purpose was to create open-source com-

ponents to aid research and provide a collection

point for the transfer of ideas and information.

As experience with ITK grows, we often re-

ceive questions from new developers and users

asking why ITK has been structured the way

that it is built. The data-flow architecture, gen-

eric programming practices, and object-oriented

class organization are derived from our design

principles and their subsequent software engin-

eering decisions. This section and the next

section explain the roots of the design of ITK,

providing background that may answer many

of the ‘‘why’’ questions about the design and

programming of ITK. New and prospective

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 736

736 Visualization Software and Frameworks

users may wish to skip to the sections describing

ITK and its contents and come back to these

sections just as reference.

37.5.1 Open-Source Community Software

The Insight developers take the strong position

that an essential vehicle for communicating

software ideas is open access to source code.

We recognize that many research communities

become invested in a software system or prod-

uct, often reducing the flexibility of software

and sometimes the mobility of their personnel.

Moreover, if new software is built on propri-

etary software foundations, the resulting new

ideas are often difficult to port to other environ-

ments. We have created a public toolkit to en-

courage portable software ideas; open source is

required to promote nonproprietary portable

implementations as a means of communicating

advanced ideas in medical image analysis.

37.5.2 A Working Archive

It has been said that computer scientists com-

municate the majority of their ideas in source

code. Indeed, computer languages are now

being accepted in some univerisities in lieu of

foreign language requirements. Open-source

software is considered an asset in computer sci-

ence research and education. One of the most

effective means of learning complex program-

ming techniques is to read the program itself.

Access to source code also encourages research-

ers to build upon the existing software base,

making incremental refinements to the existing

methods while reducing redundant work in

basic programming of established methods.

Thus, open-source software can assist small re-

search groups that lack the means to support a

large software infrastructure.

Finally, since much computer science research

is evaluated by comparison of the accuracy, pre-

cision, robustness, and efficiency of multiple pro-

grams, public software resources provide shared

implementations that can be used as bench-

marks; if that software is source-code accessible,

differences in programming techniques can be

normalized and more effective comparisons can

be made. By committing this project to a policy

of open-source software, the Insight Software

Consortium will provide all future software ac-

companied with the written source files as part of

the toolkit.

37.5.3 Multiple Platforms, Multiple
Language Bindings

The deliverables for this suite of contracts did not

include user interface development, nor did they

include visualization products. These program-

matic decisions were not undertaken lightly, and

they have their roots in the need for project focus

and funding realities. Fortunately, the absence of

user interface and visualization support re-

inforces a principle of versatility for the toolkit.

By not providing a focus for user interface devel-

opment, each team is encouraged to connect the

toolkit to its own research environment, provid-

ing a de facto testbed for theAPI. Systems such as

the Vesalius project viewers (Columbia),

3Dviewnix (University of Pennsylvania Radi-

ology), and the Visualization Toolkit (VTK)

(Kitware) have all already been promoted as

visualization environments. Recent additional

awards have been made to adapt ITK for the

Analyze and the SCIRun software environ-

ments. Beyond these individual connections to

the API, the consortium is actively pursuing the

wrapping of toolkit functions to enable library

calls in languages such as TCL, Perl, Python, and

Java, facilitating access to the new tools from a

variety of other systems.

NLM adheres to a policy of portable code.

Unix (Linux, Irix, and Solaris), Mac OSX, and

Windows-based environments are supported.

Nightly builds and testing ensure the compil-

ation and function of the same source code

across multiple operating systems and CPUs.

37.5.4 Supportable Code

The Project officers recognized early that other

similar programs have failed for lack of com-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 737

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 737

puter and user support. Although the toolkit

may eventually be sustained by an active user

community, NLM emphasized careful design of

a software suite that can be supported. We

accepted proposals that had strong components

in systems architecture and systems integration.

The technical evaluation team considered ex-

perience in supporting large collaborative soft-

ware development programs a strong asset.

Formal engineering practices, such as bug lists,

enforced accountability for bug fixes, regression

testing, etc., were adopted early in the frame-

work of this program.

User training, courseware, tutorials, text-

books, and continuing software maintenance

are being developed as part of the software

development initiative. A Software Guide is al-

ready available online, with a growing collec-

tion of examples available on many different

algorithms in source-code form. Continuing

maintenance and support await future funding,

pending the success of the initiative, but NLM

considers the support of the software a neces-

sary element in the long-term success of this

project.

37.5.5 Pipelining, Streaming, and Out-of-
Core Computation

As a group, the Insight developers agreed that

the trend in datasets is toward large data and

that this trend will often outstrip the capacity

of main memory to accomodate it. Moreover,

multiple processors in one frame are becoming

increasingly available in consumer-level com-

puting platforms. The result is a specification

for the Insight toolkit to capitalize on these

technological trends by requiring the design to

support pipelining, streaming, and out-of-core

computation. This requirement positions ITK

to take advantage of complex multiprocessing

hardware when available and to accomodate

datasets that will not fit in main memory. The

stated intention of the group is to make the code

that is necessary to support these features as

unobtrusive as possible for the casual ITK pro-

grammer.

37.5.6 3D

A pervasive and insidious exaggeration in visu-

alization and image analysis research is that

methods are easily generalized from two to

three dimensions. NLM is emphasizing the de-

velopment and distribution of 3D segmentation

and registration methods through this initiative.

We recognize that 2D and 21⁄2 D methods have

been developed and are available as products as

well as freeware. The growth of the size of med-

ical datasets is making these methods untenable.

When medical volume data is represented as a

stack of 1000 slices, visiting each slice or even

every tenth slice in a routine segmentation pass

is unrealistic. In addition, registration of mul-

tiple medical datasets is inherently a 3D prob-

lem. Any incorporation and distribution of 2D

methods in the segmentation and registration

toolkit will be incidental in pursuit of 3D (and

higher-dimensional) methods for image process-

ing.

37.6 Software Engineering Infrastructure

Many users of ITK often wonder why the soft-

ware is structured in its current form. The con-

sequences of our adoption of the founding

principles for the Insight Toolkit have led to a

fertile experiment in software engineering and

program architecture. All of our design deci-

sions have been based on the needs and require-

ments of the users and the developers as

assessed by our group in our early architectural

planning meetings. This section describes the

reasons behind our design choices, grounded in

the principles described above.

37.6.1 Toolkits as a Software Engineering
Philosophy

The promotion of this development effort as a

toolkit distinguishes it from most previous

sponsored programs: this project is not simply

a software repository or library, nor will it result

in a single programming environment or appli-

cation system. All programs included in this

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 738

738 Visualization Software and Frameworks

effort will have a common, unified architecture,

will adhere to particular coding standards and

conventions within the consortium, and will

comply with common style sheets that have

been approved by the consortium members. If

multiple software objects require similar func-

tions or capabilities, those common elements

will be built into base classes shared by the

entire toolkit. The resulting toolkit is modular,

linkable to other code, and easily incorporated

into other programming structures.

37.6.2 Data-Flow Architecture

The overall pipeline, data-flow architecture for

ITK is a direct consequence of our desire to

accomodate multiprocessor hardware and the

requirement to permit out-of-core streaming

implementations that can process very large

datasets. A conventional procedure-based ap-

proach in which whole datasets are loaded, pro-

cessed, and then written to output was not

feasible for this design. Moreover, pipelining

and streaming require a very different software

organization, one that is accomodated best by a

data-flow design. Thus, programming in ITK is

mostly the creation of pipelines of software

components; the ‘‘execute pipeline’’ call is

often the last command of the program.

Many other systems use a data-flow architec-

ture as a result of the same types of require-

ments or design motivations. AVS, VTK, IBM

Data Explorer, and others all use a data-flow

organization, some with easy-to-use graphical

languages that allow users to have a visual

representation of the software pipelines. The

original development did not originally have a

user interface component; however, the ITK

classes, objects, and methods were designed

with sufficient support to make graphical pro-

gramming languages possible.

37.6.3 Cþþ, Templates, and Generic
Programming

Requirements for the code to be both support-

able and compact created the need for the ITK

developers to adopt generic programming prac-

tices. Often times in image processing, algo-

rithms must be implemented multiple times to

accomodate the different atomic data types that

comprise the input image and volume datasets.

Thus, core code can bloat with examples of

addImageInt, addImageFloat, addImageDou-

ble, etc., not only creating a library or toolkit

that is uncomfortably large but also increasing

the maintenance burden whenever changes must

be made to an algorithm, or, worse, when

changes must be made to foundation classes

that will propagate throughout all of the differ-

ent instantiations and variations of an algo-

rithm. Algorithmic variation is natural and

necessary in this type of endeavor, but the mul-

tiple implementations based on the native

atomic data type are an artificial variation that

does not reflect fundamental differences in the

mathematics of the algorithm itself.

Moreover, multiple implementations of an

algorithm, method, or operator should not be

required toaccomodate imagesofvaryingdimen-

sions. For instance, a toolkit should not need an

‘‘addImage2D’’ method and an ‘‘addImage3D’’

method, as well as a separate ‘‘addImage4D’’

method, in order to cover the simple image-

processing task of adding two images, where

those images might be 2D, 3D, or 4D. However,

this idea of implementations being essentially di-

mensionless affects algorithm expression at the

flow-control level, disrupting the basic notion of

nested iterative loops (nested ‘‘for’’ loops).

ITK is built around the concepts of object

factories, generic iterators, and templated gen-

eric objects. These concepts allow the details of

flow control and atomic typing to be deferred to

compile time, where the actual code for execut-

ing the process or algorithm will be instantiated

and only those types and data structures needed

for a particular application will be invoked,

expressed, and compiled. Programming ITK is

not the subject of this chapter. Interested

readers should seek the ITK Software Guide

[2]. The essential notion that we hope to convey

here is that ITK is written using advanced fea-

tures of Cþþ, including a heavy dependence

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 739

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 739

on templates. In order to invoke a feature or

method, a programmer first declares the dimen-

sion and type of a generic object, such as a tem-

plate. Subsequently, the pipelines built using

those objects as input and output types, includ-

ing file readers, writers, and imaging filters, will

conform to the data being manipulated.

The result is a programming process that does

require some acclimation; novice users will

often be surprised and have to study the con-

cepts before they can become comfortable with

the style and structure. However, the ultimate

result is that programmers and algorithm de-

signers can operate on images without the

burden of detail regarding the dimension or

elemental types involved, leading to compact,

readable, and supportable, yet versatile, high-

level source code.

37.6.4 CMake and Dart—Tools for
Building on Multiple Platforms

The need to run ITK on multiple platforms and

have the source code remain supportable and

maintainable creates particular challenges. Al-

though there is a large install base of worksta-

tions running Microsoft operating systems on

Intel-type CPUs, much of the image processing,

segmentation, and registration algorithm devel-

opment is still conducted on Unix-type systems.

It is necessary, then, to accomodate the range

of system types used by developers (Cygwin

or Visual Cþþ on Windows, GNU Cþþ on

Unix/Linux/Irix/Solaris/MacOSX, etc.) on a di-

verse spectrum of hardware that includes serial

and multiprocessing architectures.

ITK developers chose to create a single base

of source code that could be compiled for dif-

ferent system configurations. Older software de-

velopment projects have experienced significant

divergence in internal versions, as some features

are available on PC systems but not available

for Macintoshes, for example. ITK is con-

structed from a single software effort that is

continually checked so that it can be compiled

and run on the range of system types supported

by the project. At no point in the development

and extension of ITK do we intend to have core

features available only on some systems.

In order to support this mission, ITK has

crafted new software engineering superstructure

systems, including CMake and DART. CMake

is a system for configuring ITK (and other

toolkit software) for compilation under differ-

ent programming environments. DART is a

distributed build-and-test system capable of

continuously checking the source code for com-

pilation and run-time errors and reporting them

on a web-accessible dashboard that illuminates

bugs, design problems, and critical program-

ming faults as they happen. The driving con-

cepts behind these tools are not new; the tools

are new implementations inspired by similar

programs previously available. The refinements

of these ideas, however, have led them to be

reincorporated into older programming projects

including VTK, demonstrating that open-

source programming can leverage itself to bene-

fit more than just the narrow constituencies of

individual projects.

Both of these tools are essential to the oper-

ation of a distributed programming group and

the maintenance of common, multiplatform core

software. A complete discussion of these tools

cannot be presented here, and references for

finding more information are listed at the end

of this section. Please note that these tools have

been created as versatile components, capable of

integration in projects other than ITK. Arising

from a sponsored program in open-source soft-

ware, both CMake and DART are available in

the public domain in source-code form, inviting

adoption and refinement by a broad community

of programming professionals.

37.6.5 Multiple Language Bindings and
Cable

Although ITK is written in Cþþ, we recognize

that the use of the toolkit may be predominantly

handled in other programming environments.

Interpretive languages such as Tcl/Tk, Python,

Perl, and Java empower programmers with a

more flexible setting for faster prototyping

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 740

740 Visualization Software and Frameworks

of complex tools. Since the basic premise of

toolkits as software engineering tools is to

create software components that are easily

assembled into complex methods, supporting

multiple languages is an essential mission for

ITK.

Our heavy dependence on templates to create

a generic programming structure later raises

problems when we try to support toolkit calls

to other languages and other programming en-

vironments. The basic underlying problem in

linking programs across languages is to be able

to use a parsing of the high-level language to

provide sufficient information to be able to

invoke a subroutine call at the machine level

from a different language or programming

stratum (such as an interpreter). However, our

generic programs manipulate templates rather

than atomic or user-defined data types, and the

machine-level expression of these generic types

does not occur until compilation. It is therefore

difficult to observe the templated, generic code

alone to create toolkit, library, or system calls

for other languages.

The solution is Cable. Cable is an integrated

series of programs and modifications that

permits the wrapping of templated (and non-

templated) Cþþ code so that subroutines,

methods, and procedures can be called from

other languages in compiled and interpreted

systems. Cable begins with a complete template

instantiation process followed by a routine pars-

ing of the resulting Cþþ source code. This step

has been enabled by a permanent modification

to the GNU Cþþ compiler, an addition that

has been accepted and embraced by the Free

Software Foundation (the trustees for the

GNU project). The parsed language structure

is then written in an intermediate form as XML

files, describing the parameters, types, and

calling order of the subroutines to be wrapped.

Using the XML descriptions, code can be gen-

erated that wraps the ITK calls with stub pro-

grams in Tcl, Python, and soon Java and Perl,

as well as other languages, permitting access to

ITK algorithms from a rich cross-section of

programming and teaching settings.

Cable is described in depth in a technical

article [3], and it serves as an important addition

to the arsenal of tools for object-oriented pro-

gramming. Like CMake and DART, Cable is

open-source and is available in the public

domain in source-code form. It is offered with-

out restrictions to give programmers the cap-

ability to support multiple language bindings

for all Cþþ library software.

37.6.6 Implications of Good Software
Engineering Infrastructure

Along with the significant design and software

engineering approaches pioneered by the ITK

developers, we have adopted other program-

ming practices, such as the inclusion of in-line

documentation using Doxygen, a system for

generating manual pages and online informa-

tion directly from source files. These practices,

as well as the practical derivation of concepts

from user requirements to software design, have

led to a strong, cohesive software infrastructure.

Added to the array of developer support tools

such as CMake, DART, and Cable, the

resulting code is reasonably compact, is there-

fore more maintainable, and permits the nimble

response of our developers to meet challenges in

software integration and redesign.

37.7 The Elements of ITK

This section describes what classes and methods

are available in ITK. We describe the contents

of ITK briefly as primary classes, basic filters,

the segmentation infrastructure, and the regis-

tration framework. Within the ITK release (or

its associated supplements), users will find

examples, applications, and algorithm-valid-

ation studies complete with test data. This treat-

ment is necessarily neither exhaustive nor

particularly deep. The great joy about open-

source code, however, is that if you want a

truly deep presentation of the software, you’re

permitted to read the source directly.

One common failing of open-source initia-

tives is that documentation is often insufficient

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 741

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 741

to support a large body of application develop-

ers in creating derivative work. More complete

documentation is available in the ITK Software

Guide and online at http://www.itk.org.

37.7.1 Primary Classes

Basic data representation in ITK begins with

three primary classes upon which many ITK

methods are constructed. They are image, point-

set, and mesh. An additional primary class,

spatial objects, is emerging as an important ad-

junct to the existing classes for describing the

meta-information regarding classes, objects,

and types and their relations to one another.

The three primary classes are detailed below.

. Image: an image is a multidimensional array

type for holding pixel elements. Using gen-

eric programming principles, the image can

be instantiated to contain pixels of arbitrary

types. ITK supports scalar, vector, and RGB

pixel types, and the toolkit has provisions for

user-specified pixel types. In addition to ar-

bitrary dimensions and pixel types, the image

class also contains provisions for managing

pixel spacing, permitting images of noncubic

voxels to be easily stored and manipulated.

. Pointset: The pointset class is a basic class

intended to represent spatial locations. As

the name implies, a pointset is a collection of

points in N-dimensional space. As with the

image class, each pointset is defined and in-

stantiated from a templated class, and points

may be associated with values, also deter-

mined by instantiation with types. Pointsets

are the base class for the ITK mesh class.

. Mesh: A mesh is an ITK class intended to

represent shapes. Built on the pointset class,

a mesh also contains connectivity informa-

tion linking points, effectively converting

them into vertices of a mesh. Since this

class is derived from pointsets, it inherits

properties from that class; thus, vertices in

a mesh may have values attached to them.

The mesh and pointset classes can be declared

to be either static or dynamic. The former char-

acteristic is used when the number of points or

mesh vertices can be known in advance, yielding

a fixed-memory implementation. Dynamic

meshes or pointsets are used for modeling and

manipulations applications in which points can

be inserted and deleted and which thus require a

dynamic memory management method such as

a list structure.

37.7.2 Basic Filters

Although ITK was developed as a segmentation

and registration toolkit for medical images, no

method can exist without the capabilities of

basic filters for noise suppression, contrast en-

hancement, local derivative measurement, and

generation of multilocal features such as gradi-

ent magnitude. ITK contains an array of

‘‘basic’’ filters for the manipulation, extraction,

scaling, filtering, smoothing, noise removal, and

feature measurement of multidimensional data.

Almost all of these filters can be applied to

datasets of arbitrary dimension with a multitude

of pixel/voxel types (from byte scalars to multi-

channel RGB values).

ITKnamingconventionsattempt tocaptureall

of the information regarding a particular method

in its name. This makes for awkward initial im-

plementation sometimes, but it saves significant

time in finding and debugging toolkit elements.

Noviceusers appreciate thedescriptivefilenames,

despite the burden of significant typing.

ITK contains a powerful collection of filter-

based tools, from simple mean and median

filtering to complex distance-mapping tools,

grey-scale mathematical morphology operators,

and boundary-preserving noise-removing aniso-

tropic diffusion filters. To cover the spectrum of

available filters would be prohibitive here. Given

the descriptive nature of ITK labels, we will list

just a sample of the filters available as examples

in ITK, portraying a view of the breadth and

sophistication of available ITK algorithms:

. MeanImageFilter

. MedianImageFilter

. DiscreteGaussianImageFilter

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 742

742 Visualization Software and Frameworks

. SmoothingRecursiveGaussianImageFilter

. BilateralImageFilter

. BinaryMinMaxCurvatureFlowImageFilter

. BinaryThresholdImageFilter

. BinomialBlurImageFilter

. CurvatureFlowImageFilter

. DanielssonDistanceMapImageFilter

. GradientMagnitudeImageFilter

. MathematicalMorphologyBinaryFilters

. MathematicalMorphologyGrayscaleFilters

. MinMaxCurvatureFlowImageFilter

. ResampleImageFilter

. SigmoidImageFilter

. CurvatureAnisotropicDiffusionImageFilter

. GradientAnisotropicDiffusionImageFilter

. RGBCurvatureAnisotropicDiffusionImage-

Filter

. VectorGradientAnisotropicDiffusionImage-

Filter

All of these examples and more are illumin-

ated in the ITK Software Guide [2]. The

examples’ underlying filters and their source

code are freely available with the ITK toolkit.

37.7.3 Segmentation Infrastructure

Segmentation is the process of partitioning

images into coherent (often contiguous) regions

based on some property of similarity among the

individual pieces. In medical images or volumes,

these separations are often fuzzy and made

more complex by the multichannel, multimodal

properties of the data. Traditional approaches

to segmentation have followed structural pat-

tern-recognition techniques based on region

growing and edge assembly or have followed

statistical pattern-recognition techniques based

on Bayesian classifiers and parametric and non-

parametric partitioning of scatter plots and fea-

ture spaces. In recent years, the line between the

structural and statistical approaches has

become increasingly blurred as good ideas are

synthesized and hybridized from the mathemat-

ical and statistical foundations of both areas.

The result has been an explosion of segmen-

tation approaches that incorporate the concepts

of filtering and registration. An open-source

approach such as the one offered by ITK en-

courages this type of crossover between subdis-

ciplines, sharing the needed access to the basic

implementation of each algorithm for incorpor-

ation into a complex stream of ideas comprising

new techniques. ITK contains a sampling of

some of this myriad of different methods, and

it houses the components for assembling as-yet

undiscovered combinations of methods that

may solve new problems in image understand-

ing.

Some of the related methods found in ITK

include the following:

. Threshold methods

. Region growing

. Watershed methods

. Level-set segmentation

. Fuzzy connectedness and Voronoi hybrid

method

. Gibbs prior and deformable model hybrid

method

. Statistical pattern recognition

While it would be impossible to cover seg-

mentation here (such a topic requires far more

than one chapter), we can briefly present an

example that can illustrate the power of an inte-

grated toolkit. Since multiple methods are rep-

resented in ITK, they can be combined into

hybrid segmentation systems that amplify the

strengths of more than one approach while re-

ducing their weaknesses. Thus, statistical

methods can be combined with region-growing

ones, or in the case below, region-growing tech-

niques (such as Fuzzy Connectedness) with

boundary-based deformable models.

When combined, FuzzyConnectedness and

VoronoiDiagramClassification result in a seg-

mentation system that requires minimal manual

intialization. A FuzzyConnectedness filter can

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 743

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 743

generate a prior for a Voronoi partitioning clas-

sifier, which can later be refined with a deform-

able model to generate smooth 3D boundary

surfaces of segmented objects. Fig. 37.3 shows

a schematic of how multiple methods can be

serially combined into an integrated approach

for segmentation. Fig. 37.4 shows the input

MRI slice and an output binary mask that is

the result of the combined method. This method

can be extended to 3D, or the stacked 2D results

can be used with a deformable 3D model to

generate coherent 3D structures.

Other segmentation methods are available

in ITK. The opening example shows a 3D

watershed technique to segment RGB data.

The nearly plug-and-play framework of inter-

changable filtering and segmentation elements

increases the design space of segmentation

implementations almost combinatorially. A

more complete description of the segmenta-

tion methods, native implementations in

ITK, and software components for alternative

algorithms are all given in the ITK Software

Guide.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 744

FuzzyConnectedness Image Filter

Estimated Mean Estimated Variance

Input
itk::Image

Input
itk::Image

Other Parameters

Binary
itk::Image

Mean Tolerance

VoronoiSegmentation Image Filter

STD Tolerance

Figure 37.3 A pipeline showing the integration of FuzzyConnectedness with Voronoi Diagram Classification. This process can

be used as an input to a deformable model for additional processing and analysis. Figure courtesy of Celina Imielinska,

Columbia University; Jayaram Udupa, University of Pennsylvania; and Dimitris Metaxas, Rutgers University.

Figure 37.4 Segmentation results for the hybrid segmentation approach, showing the input image and the binary mask

resulting from the segmentation pipeline. Figure courtesy of Celina Imielinska, Columbia University; Jayaram Udupa, Univer-

sity of Pennsylvania; and Dimitris Metaxas, Rutgers University.

744 Visualization Software and Frameworks

37.7.4 Registration Framework

The approach to image registration in ITK is

shown in Fig. 37.5. This basic model can be

elaborated to create user-supervised interactive,

deformable registration tools or simplified to

describe automated affine registration. ITK

supports pointset-to-pointset registration ap-

proaches (e.g., iterative closest point), image-

to-image methods (e.g., maximum entropy or

mutual information methods), model-to-image

fitting, and hierarchical, multiresolution, and

deformable techniques. Some examples of rep-

resented algorithms include the following:

. Iterative closest point (ICP).

. Deformable registration.

. Mutual Information, an implementation of

the Viola–Wells algorithm.

. Demons Deformable Registration, an imple-

mentation of Thirion’s demons.

To cover all of the registration methods in

ITK would be impossible here. However, one

important example is the multimodality Viola–

Wells Mutual Information registration ap-

proach, which uses an image-to-image metric

for matching the moving image to the fixed

one. Fig. 37.6 shows two input images for the

mutual information algorithm, a T1-weighted

MRI and an offset Proton Density (PD)–

weighted MRI of the same patient. Although it

may seem specious to use two MRIs of the same

subject, a TI-weighted scan is taken using a

separate sequence from a PD-T2 MRI scan,

and significant patient motion can occur be-

tween the two sequences. The shift shown in

the example is more dramatic than is normally

seen in combined acquisitions.

Mutual Information is an iterative method

for incrementally modifying a transform to

match two images. In this example, taken from

the ITK software distribution, the method is

implemented with a gradient descent optimizer,

but it could use one of the many other solvers

available in the toolkit. After 200 iterations,

the process was stopped and the results were

analyzed. Fig. 37.7 shows the resulting match

between the moving PD-weighted image and

the T1-weighted fixed image. A checkerboard

representation is used to superimpose both

images, with the image in the middle showing

the initial mismatch and the image on the right

showing the final result. Notice that after align-

ment, outlines and structures continue smoothly

between the squares extracted from alternating

images.

The individual registration approaches are

supplemented by a broad cross-section of avail-

able metrics and a collection of interpolation

schemes, as well as an array of optimizers. As

with the hybrid segmentation approaches, the

design space of registration implementations is

enhanced by the interchangeable components

almost combinatorially. A more complete de-

scription of the registration framework, native

implementations in ITK, and software compon-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 745

Fixed Image

Moving Image

Metric

Interpolator

Optimizer

Transform
Pixels

Pixels

Pixels

Points

Fitness Value

Transform
Parameters

Figure 37.5 The basic components of the registration framework are two input images, a transform, a metric, an interpolator,

and an optimizer. Registration is usually an interative mechanism with incremental refinement using the metric to measure

improvement in the match between the two input images. Courtesy of Luis Ibáñez and Will Schroeder, Kitware, Inc.

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 745

ents for alternative algorithms are all given in

the ITK Software Guide.

37.8 More on ITK

ITK has been supported by funding from a

coalition of federal agencies and institutes at

the NIH, the NSF, and the Department of De-

fense. Continued support is planned in order to

foster growth and establish a secure user base

for ITK. Maintenance, documentation, and

courseware are all planned or are already under-

way as part of ITK development.

37.8.1 How to Use ITK

ITK is available via anonymous CVS download

or directly from the online website (http://

www.itk.org). CVS is the online source-code

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 746

Figure 37.6 T1 MRI (fixed image) and Proton Density MRI (moving image) provided as input to the Viola–Wells Mutual

Information registration method. Courtesy of Bill Lorensen and Jim Miller, GE Global Research.

Figure 37.7 Mapped moving image (left) and composition of fixed and moving images before (center) and after (right), using

the Viola–Wells Mutual Information registration method. Courtesy of Bill Lorensen and Jim Miller, GE Global Research.

746 Visualization Software and Frameworks

control system used by the consortium to

manage the contributions from multiple devel-

opers. If you wish to download the latest devel-

opmental versions of ITK, you will need to

acquire a CVS executable from a reputable lo-

cation. CVS is maintained by an open-source

organization that is not affiliated with the In-

sight software developers.

In addition to downloading ITK, a new

user will also need an executable version of

CMake to configure the ITK build. Executable

versions of CMake can be found through

the ‘‘related software’’ link from the ITK

home page. Alternately, CMake source files

can be downloaded and built directly from the

source for your target system. CMake should

then be used to build ITK for your local hard-

ware configuration.

To aid in this process, a ‘‘getting started’’

document is available online (see Section

37.8.2), as is the ITK Software Guide, which will

help walk you through all of the examples as well

as some basic orientation to the ITK internal

structure. Executable examples, including test

data, are all available as part of the ITK release.

Beyond the stand-alone process of read-

ing, filtering, and writing data files, ITK is

being integrated with a variety of user-interface

systems and visualization platforms to enhance

and empower users with a powerful collection

of new tools. Some of those systems and inter-

faces being supported include the following:

. SCIRun (Utah Scientific Computing and

Imaging Institute)

. Analyze (Mayo Clinic)

. VTK (Kitware)

. FLTK

. Tcl/Tk

The upcoming test for ITK will be to prove

that as an Application Programmers Interface

(API), it can not only support new application

environments for visualization but also can be

retrofitted and integrated into systems already

in use.

37.8.2 Information and Documentation

This text is only an overview of the ITK soft-

ware. It provides a brief description of the

motivations for the building of this API and

the design decisions that led to its particular

software architecture. Further information on

downloading, getting started with, and pro-

gramming ITK can be found online. Interested

users should check the following:

http://www.itk.org: a website has been estab-

lished where users may find software releases

of ITK, access to the testing dashboard show-

ing the error status of the latest software

build, and links to related software.

Users’ mailing list: Anyone can subscribe to the

itk-users mailing list. This is the primary

forum for asking questions about the toolkit,

seeking answers to installation and design

questions, and sharing ideas and information

about ITK. At the current time, there are

hundreds of users subscribed to the mailing

list in dozens of countries. Check the website

(see above) for subscription instructions.

ITK Software Guide: The ITK Software Guide is

one of the most important resources for ITK

users. It comprises more than 300 pages of

illustrated examples, programming tips, soft-

ware design notes, and parameter selection

advice, and is located online and available in

the public domain as an open-source product.

Users can find this and the other ‘‘Getting

Started’’ instructions at http://www.itk.org/

HTML/Documentation.htm

Many open-source programming efforts can

fail from lack of support and documentation.

Developers have been mistaken in the past

to believe that all users would be comfortable

directly reading source code as their primary

means of studying the algorithms, mathematics,

and science behind the software. In addition to

the web pages and the ITK Software Guide, the

ITK developers are preparing course material

for teaching image processing using ITK, as well

as a reference book describing the principles

and practice of segmentation and registration

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 747

The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration 747

methods embodied in ITK. We intend to con-

tinue to support this project through additional

documentation, courseware, tutorials, and soft-

ware maintenance, thus helping ensure its lon-

gevity and usefulness for the community it is

intended to serve.

37.9 Conclusion

The ITK is an experiment in building a segmen-

tation and registration API to support the pro-

cessing and, by default, the visualization of

complex high-dimensional data. As with other

forms of computing, the quality of the product

or output of the process depends quite strongly

on the quality of the input given. It follows that

the quality and precision of the processing that

feeds a visualization system have a profound

impact on the effectiveness and power of the

images, animations, and other products of that

system.

Beyond the creation of a working archive of

segmentation and registration tools, the Insight

Toolkit is intended to be a means of communi-

cating ideas among research professionals. It is

a functional example of an aggressive software

engineering approach in generic programming

among a distributed development group. ITK

has been constructed to integrate into a variety

of visualization systems, and so can be crafted

to support the field in many different ways.

Effective visualization depends on the ability

of the designer to abstract and elevate the

important information hidden in the data and

present it for maximum comprehension and

retention of the ideas so exposed. The Insight

software developers have crafted ITK to aid

in the process, providing precision software

components for a broad audience of researchers

to help partition, sculpt, mask, and illuminate

information buried within multidimensional

datasets. Renowed computer scientist Richard

Hamming has been quoted as saying, ‘‘The pur-

pose of computing is insight, not numbers.’’

This aphorism is aptly applied to the field of

visualization, and so we adopt it to our cause.

References

1. M. J. Ackerman. The Visible Human Project.
Proceedings of the IEEE 86(3):504–511, 1998.

2. L. Ibáñez and W. Schroeder (Eds.). The ITK
Software Guide. Clifton Park, NY, Kitware,
Inc., 2003.

3. B. King and W. Schroeder. Automated wrapping
of complex Cþþ code. C/Cþþ User’s Journal
21(1), 2003.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:27pm page 748

748 Visualization Software and Frameworks

38 amira: A Highly Interactive
System for Visual Data Analysis

DETLEV STALLING, MALTE WESTERHOFF, and HANS-CHRISTIAN HEGE

Zuse Institute Berlin

38.1 Introduction

What characteristics should a good visualiza-

tion system hold? What kinds of data should it

support? What capabilities should it provide?

Of course, the answers depend on the particular

task and application. For some users a visual-

ization system may be nothing more than a

simple image viewer or plotting program. For

others, it is integrated software dedicated to

their personal field of work, such as a computer

algebra program or a finite-element simulation

system. While in such integrated systems visual-

ization is usually just an add-on, there are also

many specialized systems whose primary focus

is upon visualization itself.

On the one hand, there are many self-

contained special-purpose programs written

for particular applications. Examples include

flow-visualization systems, finite-element post-

processors, and volume rendering software for

medical images. On the other hand, several gen-

eral-purpose visualization systems have been de-

veloped since scientific visualization became an

independent field of research in the late 1980s.

These systems are not targeted to a particular

application area; they provide many different

modules that can be combined in numerous

ways, often adhering to the data-flow principle

and providing means for ‘‘visual programming’’

[1,4,5,7,15,17,23].

In these ways, custom pipelines can be built

to solve specific visualization problems. Al-

though these visualization environments are

very flexible and powerful, they are usually

more difficult to use than special-purpose soft-

ware. In addition, a major drawback induced by

the data-flow principle or pipelining approach is

the lack of sophisticated user interaction. Any

operation that requires manual interaction, such

as segmenting a medical image into different

regions, editing a polygonal surface model or

molecular structure, or cropping and selecting

different parts of a complex finite-elementmodel,

is difficult to incorporate into a pipeline of

modules that is executed automatically. One

may argue that these interactive tasks are not

visualization problems per se. But it is a matter

of fact that such operations require visual sup-

port and are essential for solving problems in

many application areas.

In order to close the gap between the ease of

use, power, and interactivity of monolithic

special-purpose software and the flexibility and

extensibility of data-flow-oriented visualization

environments, the software system amira has

been designed. Initially developed by the scien-

tific visualization group at the Zuse Institute

Berlin (ZIB), today amira is available as a com-

mercial product together with several extensions

and add-ons [2]. One major focus of the soft-

ware is the visualization and analysis of volu-

metric data, which is common in medicine,

biology, and microscopy. With amira, volumes

can be displayed and segmented, 3D polygonal

models can be reconstructed, and these models

can be further processed and converted into

tetrahedral volume grids. Due to its flexible

design, amira can also perform many other

tasks, including finite-element postprocessing,

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 749

749

flow visualization, and visualization of mol-

ecules. In this chapter we discuss the fundamen-

tal concepts, techniques, and features of amira.

38.1.1 Design Goals

The development of amira was driven by the

following design goals:

. Ease of use. Simple visualization tasks such

as extracting an oblique slice from a 3D

image or computing an isosurface should

not require more than a few mouse clicks.

Untrained users should be able to get results

as quickly as possible.

. Flexibility. The system should be able to work

with a large number of different data types

and with multiple datasets at once. Complex

operations requiring a combination of mul-

tiple modules should be possible, too.

. Interactivity. Techniques or components re-

quiring heavy user interaction, both in 2D

and in 3D, should be easy to integrate.

Examples are image segmentation, surface

editing, and alignment operations.

. Extensibility. Users should be able to add

new features to the system, e.g., new input/

output (I/O) routines, new modules, or even

new data types or interactive editors.

Existing components should be customizable

to some extent.

. Scripting interface. The system should be pro-

grammable via a scripting language, enabling

batch processing, in order to simplify user-

specific routine tasks and presentations and

to facilitate customization of the software.

. Multiplatform support. Different hardware

platforms and operating systems should be

supported, in particular, Windows, Linux,

and other Unix variants. Also, 64-bit code

should be supported in order to process large

datasets efficiently.

. State-of-the-art algorithms. Modern visual-

ization techniques such as direct volume

rendering and texture-based flow visualiza-

tion should be implemented. All techniques

should be optimized for both performance

and image quality.

In the following section we first describe the

general concepts we have chosen to use in order

to meet these goals. Next, we will illustrate how

the system can be applied in different fields

of work. We do this by identifying common

tasks and showing which methods are provided

to solve these tasks. Finally, we discuss some

amira extensions, most prominently amiraVR,

an extension that allows the software to operate

on large tiled displays and within immersive vir-

tual-reality environments.

38.2 General Concepts

In Fig. 38.1, a snapshot of the amira user inter-

face is shown. When the software is started,

three windows are invoked: the main window,

containing the ‘‘object pool’’ and the control

area; a graphics window, where visualization

results will appear; and the console window,

where messages are printed and additional com-

mands can be typed in. Datasets can be easily

imported via the file browser or via drag-and-

drop. After a dataset has been imported, it is

represented as a small icon in the object pool.

The dataset can be visualized by an appropriate

display module chosen from a context-sensitive

pop-up menu over the data icon. This pop-up

menu lists only modules that can be connected

to the particular data object. The output of a

display module is immediately shown in the

graphics window. Thus, a dataset can often be

visualized with a single mouse click once it has

been imported. Also, different visualization

techniques can be combined with each other

without any limitations.

Having discussed the basic modes of oper-

ation, we now consider the concepts behind

amira in more detail.

38.2.1 Object Orientation

In amira, datasets and modules are considered

to be objects. These objects are represented visu-

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 750

750 Visualization Software and Frameworks

ally as icons in the object pool. Looking at the

object pool, one can easily observe which

objects exist and how they are related to each

other. If an object is selected with the mouse,

additional information and corresponding user-

interface elements are displayed in the work

area. These interface elements, known as

‘‘ports’’ in amira, allow users to interact with a

module. For example, the threshold of an iso-

surface module or the position of a slicing

module can be adjusted with corresponding

sliders. In addition, every object provides a

script interface. One can query an object for its

properties, or one can interact with an object by

calling it with certain commands.

A major advantage of the object concept is

that objects can be easily modified or edited by

other components. For this purpose powerful

editors are provided, allowing modification of

datasets in a highly interactive way. Examples

are the amira segmentation editor, the landmark

editor, and the surface editor. Objects can be

modified not only by editors but also by other

components, mainly compute modules. This is

not easily possible in a data-flow-oriented

system, because in such systems data is usually

not represented to users as an independent

object.

38.2.2 Inheritance and Interfaces

The object-oriented approach in amira also

makes use of class inheritance. For example,

all data objects are derived from a common

data class. This class provides methods to dupli-

cate and save the object or to associate arbitrary

parameters with it. A more specialized data

class represents spatial data objects, i.e., data

objects that are embedded in 3D space. This

class provides methods to query the bounding

box of the data object as well as to set or get an

optional affine transformation matrix. Another

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 751

Figure 38.1 The amira user interface consists of the main window with the object pool and the control area, a large 3D graphics

window, and a console window for messages and command input. The figure shows a medical image dataset from MR

angiography, visualized by a projection view module and a volume rendering module. (See also color insert.)

amira: A Highly Interactive System for Visual Data Analysis 751

base class represents fields, i.e., data objects that

can be evaluated at any point in a 3D domain.

This class provides methods by which to query

the component range of the field, or to evaluate

it at an arbitrary point in a transparent way, i.e.,

without needing to know how the field is actu-

ally represented. The field may be defined on a

regular grid, on an unstructured grid, or even

procedurally, by specifying an arithmetic ex-

pression. New fields defined in other ways may

also be easily added. All display modules de-

fined for the base class can be used automatic-

ally for these new fields. In amira the generic

evaluation methods of the field class are used

(for example) by data-probing modules, which

plot field values at a point or along a line; by

flow visualization modules, which need to com-

pute trajectories in a vector field; or by slicing

modules, which need to resample a field on a 2D

grid.

However, in some cases it is not possible to

derive data classes with common properties

from a common base class. For example, in

amira there are separate base classes for scalar

fields and for vector fields. At the same time,

scalar fields and vector fields defined on the

same type of grid, e.g., on a regular Cartesian

grid, have many things in common. For this

reason, amira provides a mechanism called

interfaces. These are classes that describe

common properties of objects that do not neces-

sarily have a common base class. For example,

both regular scalar fields and regular vector

fields provide a lattice interface. In this class,

the number of data values per node is a variable.

Thus, a module or export routine using the

lattice class interface can be automatically ap-

plied to both regular scalar fields and regular

vector fields, or to any other object that pro-

vides this interface.

38.2.3 User-Interface Issues and 3D
Interaction

A primary design goal of amira is ease of use. Of

course, this is a somewhat subjective and loosely

defined requirement. We try to accomplish this

goal using several different strategies. First,

context-sensitive pop-up menus are provided,

offering only those modules that actually can

be connected to a given data object. Next,

fewer but more powerful modules are preferred,

compared to a larger number of simpler entities.

For example, in order to display one slice of a

3D image in a data-flow-oriented visualization

system, users must often first extract a 2D sub-

image, then convert this into geometry data,

and finally display the geometry using a render

module. In amira all of this is done by a single

OrthoSlice module.

By default, visualization modules show their

results directly in the main graphics window. In

many cases one simply chooses a module from a

data object’s pop-up menu and immediately re-

ceives a visual result. Modules that may need

more time for preprocessing usually provide an

additional Dolt button, which must be pressed

in order to generate a result. In this way it is

possible, for example, to first adjust the thresh-

old of an isosurface module or to first select the

color map of a volume rendering module before

starting any computation. Optionally, Dolt but-

tons can be ‘‘snapped’’ to an ‘‘on’’ position,

thus facilitating automatic updates. Another

point improving the clarity of the user interface

is to reduce the number of open windows and

avoid overlapping windows so far as possible.

The controls of amira objects are shown in a

single scrolled list once an object has been

selected. Although multiple objects can be

selected at once, usually this is not the case.

Typically, the user interface is organized as a

list of so-called ports, where each port com-

prises a single line with a label, followed by

some buttons, text fields, or sliders. If required,

important ports can be ‘‘pinned,’’ which makes

them visible even if the corresponding object has

been deselected.

In addition to the standard controls, many

modules also provide a means for 3D inter-

action in the graphics window. For example, a

slice may be picked and translated in 3D. In

order to choose a different orientation, a track-

ball icon can be activated, which in turn can be

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 752

752 Visualization Software and Frameworks

picked and rotated. The positions of landmarks

andother points canbedefinedby simply clicking

on other objects. Similarly, information about

points or faces of a grid or surface, as well as

associated data values, can be obtained by

clicking on them. Parts of a 3D model or individ-

ual triangles canbe selectedusing a lasso tool, i.e.,

by drawing a contour in the graphics window.

38.2.4 Software Technology

Flexibility and extensibility of amira are ensured

by a specific modular software architecture in

which multiple related modules are organized

into different packages. Each package exists in

the form of a shared library (or DLL under

Windows) that is linked to the main program at

run time. For each package there is a resource file

specifying which data classes, modules, editors,

or I/O routines are defined in that package. This

way, only shared libraries providing code that is

actually being used need to be loaded. This keeps

the executable size small but still makes it pos-

sible to have an almost unlimited number of

different components in the system. In order to

extend the functionality of the system, develop-

ers can add custom packages or even replace

existing packages as needed.

amira is written in Cþþ, and it requires only

a few external standard libraries. For 3D

graphics support amira uses the TGS Open In-

ventor toolkit, which is a well established and

proven scene-graph layer [13]. Open Inventor

provides multiplatform support, multithreaded

rendering, and many advanced display nodes.

In addition, several Open Inventor custom

nodes have been added to amira for improved

performance and image quality. All of these

nodes have been directly implemented using

OpenGL. The graphical user interface (GUI)

of amira is built using Qt, which is a multiplat-

form widget library [16]. With Qt it is possible

to use the same code base for all supported

platforms. Currently supported platforms are

Windows, Linux, IRIX, HP-UX, and Solaris,

all with both 32-bit and 64-bit code. A Mac

OS X version is planned for the near future.

The ability to run in 64-bit mode is important

because it allows one to process very large data-

sets as they become more and more frequent in

many areas of science and engineering.

38.2.5 Scripts and Script Objects

The script interface of amira is based on the

scripting language Tcl, which is also an estab-

lished industry standard [14]. The standard set

of Tcl commands has been extended by many

amira-specific commands. In particular, the

name of each object in the amira object pool

can be used as a command name, allowing the

user to interact with that particular object. Fur-

thermore, the name of each port of a data object

or module can be used as an argument or sub-

command for that object. All ports provide Tcl

methods to set or get their respective values. For

example, to set the threshold of an isosurface

module in a script (i.e., the value of the port

representing the threshold), one would use the

command

Isosurface threshold setValue 100

Scripts allow one to simplify routine tasks or to

run complex presentations. When an amira net-

work is saved, a Tcl script is generated that,

when executed, restores the current state. Tcl

code can also be bound to certain function

keys or to entries in the context menu of a

data object. This menu lists all modules that

can be connected to an object. It is even possible

to modify the default settings of any amira
module using Tcl code. Finally, Tcl expressions

can be used to decide at run time whether a

particular module can be connected to some

data object or whether a particular export rou-

tine can be called for that object. In this way,

the default rules for matching object types and

interface names can be overwritten.

Besides standard scripts, amira also supports

script objects. Script objects are similar to ordin-

ary modules but are implemented completely in

Tcl. Usually they provide at least three Tcl pro-

cedures: a constructor, a compute routine, and a

destructor. The constructor is called when the

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 753

amira: A Highly Interactive System for Visual Data Analysis 753

object is initialized. Any number of standard

GUI components, i.e., ports, can be created

and initialized here. The compute routine is in-

voked whenever one of the ports is changed.

Finally, the destructor is called when the script

object is deleted. Script objects are well suited to

solve specific problems using high-level com-

mands. Often multiple standard modules are

combined in a script object in order to generate

a result.

38.2.6 Affine Transformations

In many applications, alignment or registration

of multiple datasets is important. Therefore,

visualization environments should allow the

user to easily transform individual datasets

spatially with respect to others. Such transform-

ations should be applicable to any spatial data

object, i.e., any data object embedded in 3D

space. For this reason, in amira an optional

transformation matrix can be set for all data

objects derived from the spatial data’s base

class. This transformation matrix is automatic-

ally applied to any display module visualizing

the data object.

The transformations can be defined inter-

actively using the ‘‘transformation editor.’’

This editor allows easy transformation in 3D

using so-called Open Inventor draggers, such

as a 3D tab box or a 3D virtual trackball. In

addition, absolute or relative translations, rota-

tions, and scaling operations can be applied

using text input. It is important to note that

the data themselves are not modified by such a

transformation. In order to actually apply the

transformation, a separate module is provided.

This module transforms the point coordinates

of a vertex-based data object (such as a surface

or a tetrahedral grid) and resets the transform-

ation matrix to the identity matrix. Voxel-based

data objects, such as 3D images, must be

resampled onto a new grid. This can be done

using several different interpolation filters,

either taking the original bounding box or

using an enlarged one that encloses the com-

plete transformed dataset.

38.2.7 Parameters

Another concept that amira users have found

very helpful across many different applications

is the ability to add arbitrary parameters to a

data object. Parameters are identified by a

unique name and are associated with some

value. The value may be a simple number or a

tuple of numbers, a string, some binary data, or

a subfolder containing an additional list of par-

ameters. In this way, a hierarchy of parameters

can be defined. Parameters are used to store

additional information for a dataset, which

may be contained in specific file formats. For

example, in the case of confocal images, the

wavelength of the emitted light and a descrip-

tion of the particular optics are often encoded.

For medical data, the patient name or a patient

ID is usually stored together with many add-

itional parameters. Some parameters are inter-

preted by certain amira modules. For example,

a parameter called DataWindow is used to indi-

cate the default greylevel window of an image

dataset. Similarly, a parameter called Colormap

specifies the name of the default colormap used

to visualize the dataset. This way it is easy to

associate additional information with existing

data types, which then may be interpreted by

custom modules. Parameters can be edited

interactively using the amira parameter editor.

In addition, they can also be set and evaluated

via the Tcl command interface.

38.3 Features and Applications

In this section we wish to illustrate how amira
can be applied in different areas of science and

engineering. Though the spectrum of applica-

tions is rather wide, there are often similar

tasks to be solved. Therefore, we will identify

common requirements and show how these are

addressed by amira.

38.3.1 Visualization of 3D Image Data

3D image data are important in medicine, biol-

ogy, and many other areas. Sources of 3D

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 754

754 Visualization Software and Frameworks

images include CT or MRI scanners, ultrasound

devices, 3D confocal microscopes, and even

conventional microscopes (which usually re-

quire the specimen to be physically cut into

sections). The main characteristic of a 3D

image is its regular structure, i.e., voxels ar-

ranged in a 3D array. Many modules in amira
require a 3D image to have uniform or stacked

coordinates, although rectilinear and curvilin-

ear coordinates can be represented as well. In

the case of uniform coordinates, all voxels have

the same size. In the case of stacked coordin-

ates, the distance between subsequent slices in

the z-direction may vary.

The most basic approach for investigating

3D images is to extract individual 2D slices.

In amira, two modules are provided for this,

OrthoSlice and ObliqueSlice (Fig. 38.2, left).

The first module extracts axis-aligned slices,

while the second displays arbitrarily oriented

slices. In the latter case, the data must be

resampled onto a 2D plane. This can be done

using different interpolation kernels. Another

useful module is ProjectionView, which com-

putes a maximum-intensity projection on the

xy-, xz-, and yz-plane. In order to grasp the

3D structure of an image dataset, isosur-

faces can be computed or direct volume

rendering can be applied. For the latter, two

different modules are provided. One utilizes

the standard texture capabilities of modern

graphics cards, while the other one makes use

of special-purpose hardware (VolumePro 1000

from TeraRecon, Inc.). In any case a suitable

colormap must be chosen to define how the

image data are mapped to color and opacity.

With the exception of isosurfaces, all methods

can be applied not only to grey-scale images but

also to RGBA color images and multichannel

images.

38.3.2 Image Segmentation

Image segmentation denotes the process of

identifying and separating different objects in

a 3D image. What constitutes an object de-

pends on the application. Image segmentation

is a prerequisite for geometry reconstruction

from image data and for more advanced an-

alysis of image data. Consequently, it is an

important feature in an image-oriented 3D

visualization system such as amira.

In amira, segmentation results are repre-

sented by labels. For each voxel, a label is stored

specifying to which object or material this

voxel belongs. In general, image segmentation

cannot be performed fully automatically, and

human intervention is necessary. For this

reason, amira provides a special-purpose com-

ponent, the segmentation editor (Fig. 38.2,

right). The editor offers a variety of different

tools for manual and semiautomatic segmenta-

tion, in both 2D and 3D. In the simplest case,

regions can be selected using a lasso, a brush, or

thresholding. More advanced tools such as 2D

or 3D region growing or a live-wire method are

also provided. In region growing, the user

selects a seed point and adjusts the lower and

upper bound of a greylevel interval. All con-

nected voxels within this interval are then

selected. In the live-wire tool, the user selects a

starting point on a boundary and then drags the

cursor roughly around the outline [3]. The min-

imum cost contour from the seed point to the

current cursor position is displayed in real time.

The cost is based on the image gradient and

Laplacian, such that computed paths cleanly

follow region boundaries.

Although segmentation is primarily per-

formed in 2D, a 3D view of the currently

selected regions is available at any time. For

this purpose a fast point-based rendering tech-

nique is applied. Noisy regions or regions that

have been falsely selected by a 3D threshold or

region-growing operation can be easily cleared

by marking them in the 3D view using the lasso

tool. Another approach to reducing the amount

of work needed for image segmentation is to

interpolate segmentation results between subse-

quent slices. Optionally, the interpolated results

can be automatically adapted to the image data

using a ‘‘snakes’’ technique [9]. Furthermore,

shape interpolation from a few segmented orth-

ogonal slices is provided by a 3D wrapping

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 755

amira: A Highly Interactive System for Visual Data Analysis 755

tool. The segmentation editor also provides a

number of different filters, e.g., denoising and

smoothing filters, and/or morphological filters

for erosion, dilation, opening, and closing oper-

ations. Various other experimental (research-

stage) amira modules exist, providing additional

image-segmentation methods, e.g., based on

statistical shape models [10].

38.3.3 Geometry Reconstruction

After a 3D image has been segmented, i.e., after

every voxel has been assigned to some material,

a polygonal surface model can be created.

Several algorithms have been described that

attempt to construct a surface model by con-

necting contours in neighboring slices in the

appropriate way. However, these algorithms

are not fail-safe, especially if multiple different

materials are involved. In this case, nonmani-

fold surfaces must be created, i.e., surfaces with

edges where more than two triangles join. In

amira a robust and fast surface reconstruction

algorithm is applied that triangulates all grid

cells individually, similar to the marching

cubes algorithm for computing isosurfaces [12].

This algorithm guarantees that the resulting

surfaces are free from cracks and holes, that

no triangles intersect each other, and that all

regions assigned to different materials are well

separated from each other. If additional weights

are defined (by prior calculations) for each

voxel, a smooth surface can be reconstructed.

The weights are computed by applying a Gauss

filter to the binary labels, so that a nonbinary

smooth result is obtained. A disadvantage of

this technique is that small details of the seg-

mented dataset may be lost. Therefore, a con-

strained smoothing method is also provided

that ensures that the final surface is still consist-

ent with the original labeling. A similar but

more computationally expensive method has

been described by Whitaker [25]. An example

of a smooth 3D model reconstructed by amira is

shown in Fig. 38.3 (left).

38.3.4 Surface Simplification and Editing

Surfaces reconstructed from a segmented 3D

image usually have a large number of triangles.

In fact, the polygon count of the triangular

surface is on the order of the voxel size. For

many purposes, the number of triangles needs

to be reduced, i.e., the surface needs to be sim-

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 756

Figure 38.2 (Left) Multipart 3D confocal image stack of a bee brain visualized by slices. The orientation of an oblique slice can be

easily adjusted with a trackball dragger. (Right) The amira segmentation editor. This component allows the user to identify and

separate different objects in a 3D image stack. Here different parts of the bee brain have been segmented. (See also color insert.)

756 Visualization Software and Frameworks

plified. In amira this can be done using an ad-

vanced simplification algorithm based on edge

contraction. The method tries to reduce the

error induced by the simplification process as

far as possible while simultaneously optimizing

triangle quality. In order to control the maximal

deviation, a quadric error metric is used (as

proposed by Garland and Heckbert [6]). In all

cases, intersecting triangles are strictly avoided.

The result of a simplified surface is shown in

Fig. 38.3 (right).

Simplification is not the only surface-editing

operation that can be performed in amira. For

other operations an interactive surface editor is

provided. Among other tasks, this editor allows

the user to iteratively smooth or refine the sur-

face (in whole or part); to cut parts out of a

surface and to copy them into other surfaces; or

to define boundary conditions on the surface.

The latter is important when performing numer-

ical simulations on the surface or on a tetrahe-

dral finite-element grid derived from it. The

surface editor also provides several tools for

modifying the surface at a fine-grained level. In

particular, individual edges can be flipped, sub-

divided, or contracted, and points can be

moved. Also, tests can be performed to check

whether the surface has intersections, holes, or

inconsistently oriented triangles. Finally, tri-

angles with a bad aspect ratio or with small

dihedral angles can be found.

All these operations allow the user to inter-

actively modify an arbitrary surface in such a

way that a good tetrahedral grid can be gener-

ated afterwards. Grid generation itself is imple-

mented as a separate module in amira using an

advancing front algorithm [8,11]. The grid qual-

ity can be improved by a subsequent smoothing

or relaxation step. An example of a tetrahedral

grid generated by amira is shown in Fig. 38.4

(left).

38.3.5 Alignment of Physical Cross-
Sections

With the previously described techniques, polyg-

onal surface models and tetrahedral volume

grids can be reconstructed from 3D image stacks

recorded by CT scanners, MR scanners, or con-

focal microscopes. Another common approach

in microscopy is to physically cut an object into

slices and to image each slice separately. In order

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 757

Figure 38.3 (Left) Reconstructed polygonal surface model of a bee brain; a volume rendering of the image data has been

superimposed, showing how well the model matches the image data. (Right) Reconstructed model of a human liver, displayed at

three different resolutions (1 cm maximum edge length, 0.5 cm maximum edge length, and surface at original resolution with

0.125 cm voxel size). (See also color insert.)

amira: A Highly Interactive System for Visual Data Analysis 757

to reconstruct geometries from such data, the

individual slices usually need to be aligned with

respect to each other. For this purpose another

tool is provided in amira, the slice aligner (Fig.

38.4, right). The slice aligner supports inter-

active, semiautomatic, and automatic alignment.

The tool displays two slices of a 3D image stack

at once. Different view modes can be selected

that help to visually distinguish the slices. For

example, one image can be displayed in green

and the other one in red, or the colors of one

image can be inverted. The image slice then can

be manually translated or rotated. Semiauto-

matic alignment via landmarks is possible, too.

Fully automatic prealignment can be achieved by

matching the centers of gravity as well as the

principal axes of the two images. Once this has

been done, a multilevel optimization algorithm

can be called that attempts to minimize the pixel-

wise difference of the two images.

38.3.6 Multiple Datasets and 3D
Registration

In biomedical applications, users often work

with multiple datasets. For example, one wants

to compare images of multiple individuals,

images of the same individual recorded at dif-

ferent times, or images of the same object taken

with different imaging modalities, such as CT

and MR. In all of these cases it is crucial that it

be possible to visualize multiple datasets simul-

taneously. This requirement is met by amira in a

natural way. In order to compare multiple data-

sets, one can use (for example) semitransparent

displays. amira supports high-quality transpar-

ency with depth sorting and opacity enhance-

ment at silhouettes. Other techniques include

colorwash displays, where images of multiple

datasets are superimposed on 2D slices, or com-

putation and visualization of difference images.

For surfaces it is also possible to compute the

distance between the vertices of one surface and

the nearest point on some other surface. The

result can be visualized using conventional

pseudo-coloring.

When multiple corresponding datasets are to

be used, the problem of registering or aligning

these datasets with each other becomes relevant.

Here, the two major techniques are rigid and

elastic registration. In the case of rigid trans-

formation, the dataset will be only translated,

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 758

Figure 38.4 (Left) Tetrahedral finite-element grid of a human body embedded in a device for hyperthermia treatment. Only

parts of the grid are shown, in order to reveal interior structures. (Right) The amira slice aligner, an interactive tool for aligning

2D physical cross-sections. (See also color insert.)

758 Visualization Software and Frameworks

rotated, and possibly scaled. Such transform-

ations can be easily encoded in an affine trans-

formation matrix, which is supported for all

amira data objects. Thus, a manual rigid regis-

tration can be performed using amira’s trans-

formation editor. Another possibility is to make

use of landmarks. Corresponding landmarks can

be defined in both datasets with amira’s land-

mark editor. Afterwards, a rigid transformation

can be computed that minimizes the squared

distance between each pair of landmarks.

Finally, a voxel-based automatic registration

can also be computed. This method attempts to

optimize a quality measure indicating the differ-

ence between both images. Several different

quality measures are implemented, including

the sum over squared pixel differences and a

mutual information measure [24]. The latter is

suitable for registration of multimodal images,

e.g., CT or MR, when there is no one-to-one

correspondence between the grey values in the

two images. Sometimes it is more appropriate to

align reconstructed surfaces than image data. In

amira this is supported by an iterative method

that automatically tries to find corresponding

vertices and then minimizes the squared distance

between these points.

In contrast to rigid registration, elastic regis-

tration is usuallymuchmore difficult to define. In

addition, it requires image data to be resampled

on a new axis-aligned grid. Currently, amira sup-

ports only an elastic registration method based

upon landmarks. This method computes aBook-

stein spline that exactly matches corresponding

landmarks and smoothly interpolates in be-

tween. This approach can be applied to both 3D

images and triangular surfaces. An automatic

voxel-based elastic registration method is cur-

rently under development.

38.3.7 General Data Processing and Data
Analysis

In addition to the specific tools we have de-

scribed, amira also provides other more general

utilities for data processing. Probably one of

the most important is a resampling module for

reducing or enlarging the resolution of a 3D

image or other dataset defined on a regular

grid. Some care must be taken when choosing a

filter kernel for resampling. In amira, several

different kernels are supported, ranging from

fast box and hat filters to a high-quality Lanzcos

filter (which approximates a sinc function, the

optimal filter from sampling theory), for finite

images. Other tools are provided for cropping a

dataset, for enlarging it by replicating boundary

slices, and for changing the primitive data type

of a dataset. For images, the most common

primitive data types are bytes and 16-bit shorts,

either signed or unsigned. Simulation data is

usually encoded using 32-bit floating-point

numbers. In addition, amira supports 32-bit

signed integers and 64-bit floating-point

numbers. While a scalar field has only one such

component, any number of other components is

also possible. For example, a vector field usually

has three components. In amira a module is

provided to extract one component from such a

field, and to combine multiple components from

different sources into a new field. Another valu-

able tool is the arithmetic module, used for com-

bining multiple datasets by evaluating a user-

defined arithmetic expression per voxel or per

data value. In this way it is possible to, for

example, subtract two datasets, compute the

average, scale the data values, or mask out cer-

tain regions using boolean operations.

Another class of utility modules is related to

statistical data analysis. This includes simple

probing modules, which evaluate a dataset at

some discrete points or plot it along a user-de-

fined line segment. Moreover, a histogram of the

data values can be computed, possibly restricted

to some region of interest. Other modules are

provided to compute statistical quantities such

as volume, mean grey value, standard deviation,

and so on for different regions encoded in a

segmented label field, and also to compute

volume-dose diagrams, or to count and statistic-

ally analyze the connected components in a

binary-labeled 3D image.

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 759

amira: A Highly Interactive System for Visual Data Analysis 759

38.3.8 Finite-Element Postprocessing

Most of the tools described in the previous

sections were related to the processing of 3D

image data, or, more generally, to data defined

on regular 3D grids. However, other data types

are also important, in particular, finite-element

data defined on unstructured grids. amira sup-

ports the generation of triangular surfaces and

tetrahedral volume grids suitable for numerical

simulations. Such simulations are typically per-

formed using some external code, but the results

can again be visualized in amira. This task is

known as finite-element postprocessing. Besides

tetrahedral grids, amira also supports hexahe-

dral grids. Most of the general-purpose visual-

ization techniques and analysis tools can also be

applied to data on unstructured grids—for

example, slice extraction, computation of iso-

lines or isosurfaces, direct volume rendering

(implemented via a cell-projection algorithm),

data probing, or computation of histograms.

In addition, scalar quantities can be visualized

using color coding of the grid itself. In the case

of mechanical simulations, deformations are

often computed. Such data can be visualized

with displacement vectors or by applying the

displacement vectors to the initial grid sequen-

tially such that an animation sequence is

obtained. All of these methods can also be ap-

plied to visualize results from numerical simula-

tions in biomedicine—e.g., simulations of

mechanical loads in bones or of heat transport

in tissue—or to visualize results from numerical

simulations in engineering and related discip-

lines.

38.3.9 Flow Visualization

Flow visualization has evolved into an inde-

pendent field of research in scientific visualiza-

tion. Since flow fields are often generated by

numerical computations, it can also be con-

sidered a special form of finite-element postpro-

cessing. Beyond engineering domains such as

computational fluid dynamics (CFD), where

(for example) virtual wind tunnel experiments

are performed, flow visualization techniques are

important also in biomedicine—e.g., for analyz-

ing a simulated flow in blood vessels or air flow

in a nasal pathway.

Flow-visualization techniques have been

reviewed in depth in other chapters of this book.

Therefore, here we list the different methods sup-

ported in amira without presenting algorithmic

details.

Likely the simplest method for visualizing a

vector field is to draw small arrows attached to

discrete points. Arrows can be drawn on a slice,

within the volume, or upon a surface in amira.

More highly resolved and comprehensible

visual representations can be obtained using

texture-based methods. amira supports fast

line integral convolution, both on slices and

on surfaces with arbitrary topology [2,20]

(Fig. 38.5, left). Probably the most popular ap-

proach to reveal the structure of a flow field in

3D is to draw streamlines. amira includes sup-

port for illuminated streamlines (Fig. 38.5,

right)—i.e., streamlines that are rendered as

line primitives with a lighting applied to them

[22]. This allows rapid rendering of many

streamlines while at the same time highlighting

the 3D structure of the field. Another method

based on streamline computation is the display

of streamribbons (Fig. 38.6 [left]). Like stream-

lines, streamribbons also show the swirl and

torsion of flow fields. A further extension sup-

ported by amira is the streamsurface (Fig. 38.6

[right]). A streamsurface is spanned by multiple

streamlines starting from some user-defined

seed shape or rake. Streamsurfaces are com-

monly started from a straight line or from a

line traced along the normal or binormal direc-

tion of the vector field. All of these stream visu-

alization techniques are highly interactive.

While seed-point distributions can be automat-

ically calculated, users can also select and inter-

actively manipulate seed points and structures,

thus supporting the investigation of the flow

field and highlighting of different features.

Each of these techniques again supports 3D

interaction, allowing the user to pick and move

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 760

760 Visualization Software and Frameworks

the seed volume or seed shape directly within

the 3D viewer.

38.4 amiraVR and Other Extensions

The modular structure of amira makes it

possible to extend the system in various

ways and to provide extensions that address

more specific application areas. Some major ex-

tensions are directly available as optional prod-

ucts. Among these, the most prominent is

amiraVR, which allows amira to operate on a

large tiled display or in a multiwall virtual en-

vironment.

38.4.1 amiraVR

High-resolution multiwall displays have re-

ceived considerable attention in scientific visu-

alization since the turn of the century. Two

major approaches have held special interest.

The first is flat multitile displays, often called

‘‘power walls.’’ Here, the goal is to create a very

high-resolution display, usually by combining

several projectors in one rear projection system.

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 761

Figure 38.5 (Left) Visualization of a turbine flow using the fast line integral convolution method in a user-selected plane.

(Right) Visualization of the 3D flow around an airfoil using the illuminated streamline technique. (See also color insert.)

Figure 38.6 Visualization of fluid flow within a bioreactor. (Left) Streamribbons starting in the interactively positioned seed

box. (Right) Streamsurface with the tangential flow depicted by line integral convolution (LIC). (See also color insert.)

amira: A Highly Interactive System for Visual Data Analysis 761

With such a display, fine details in high-reso-

lution datasets can be visualized and shown to a

small- or medium-sized group of observers. The

other approach is to construct an immersive

environment for virtual-reality applications.

Usually, such environments incorporate mul-

tiple screens in a nonplanar configuration. In

order to compute correct views, the actual pos-

ition of the observer needs to be tracked. Non-

tracked observers usually see somewhat

distorted images and artifacts at the boundaries

between neighboring screens.

For performance reasons, the images for the

different parts of a tiled display or for the dif-

ferent screens of a VR environment should be

rendered in parallel, if possible. The simplest

approach from a software perspective is to use

a multiprocessor shared-memory machine with

multiple graphics pipes. This architecture is im-

plemented by SGI Onyx systems and also by

other workstations from vendors such as Sun

or HP. To support such an architecture, it must

be possible to perform the actual rendering in

parallel using multiple threads. This is sup-

ported by amira. amira’s rendering process in-

volves the traversal of an Open Inventor scene

graph and the calling of render methods for

each node in this graph. Although early versions

of Open Inventor were not thread-safe origin-

ally, this is currently the case (since the v3.1

release by TGS).

The use of amiraVR requires specification of

the display configuration—i.e., the actual setup

of the display system and (optionally) the

tracking system. When the configuration file is

read, additional graphics windows are opened

on the graphics pipes as specified. In the case of

a tiled display, the modules can be controlled

via their usual interface with the 2D mouse. For

user interaction within an immersive environ-

ment, 3D versions of all the standard GUI elem-

ents of amira data objects and modules are

provided. In addition, a user-defined 3D menu

can be displayed. Interactive elements such as

slices or draggers, which can be picked in the

viewer window using the 2D mouse, also react

to events generated by a tracked 3D ‘‘mouse.’’

Thus, slices can be easily translated and rotated

in 3D, or seed volumes for flow visualization

can be easily adjusted. All objects that can

be picked with the 3D mouse, including

menus, provide some visual feedback. This is

important to make interaction in VR feasible.

With these mechanisms, data can be visualized

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 762

Figure 38.7 (Left) Coating on a car body investigated with amiraVR. For every module, a 3D version of its respective user

interface can be used. This allows full control of amira from within an immersive environment. (Right) Atoms in a crystal lattice

shown in a dome using amiraVR. The dome was illuminated by six laser projectors with partially overlapping images, with five

arranged in a circle and one at the top. Image courtesy of Carl Zeiss Jena. (See also color insert.)

762 Visualization Software and Frameworks

in a VR environemnt in a way similar to that

of the desktop GUI. All modules and net-

works can be loaded without modification.

This allows users (for instance) to prepare

visual demonstrations for large display systems

or VR environments on a PC or notebook

computer.

38.4.2 Developer Version

For a modern visualization system, it is crucial

that the user be able to add new functionality.

We have already stated that this is possible

within amira and simplified by amira’s modular

and object-oriented design. The amira developer

version provides all of the header files and docu-

mentation required to derive new modules from

existing classes. It also provides a unified make

system, which creates either makefiles or project

files for integrated development environments

such as Microsoft Visual Studio. New modules

based on Tcl code, script objects, do not require

the developer version and can be implemented

from within amira’s base version.

38.4.3 Molecular Visualization

For the application domains of chemistry, bio-

chemistry, and molecular biology, the amira
extension amiraMol has been developed. This

provides tools for the analysis of complex mol-

ecules, molecular trajectories, and molecular

conformations. The extension is useful for inor-

ganic and organic chemistry, but its emphasis is

on the analysis of biomolecules.

The central goal of molecular biology is to

elucidate the relationship between the sequence,

structure, properties, and function of biomole-

cules. Such knowledge allows one to understand

biological processes and pharmaceutical effects,

as well as to identify and optimize drug candi-

dates. Since bioactivity is guided by molecular

shape and molecular fields, amiraMol provides

special means for analyzing the dynamic shapes

of molecules as well as the corresponding mo-

lecular fields. Standard and novel representa-

tions are available for visualizing biomolecules.

Arbitrary grouping hierarchies on the mol-

ecule’s topology can be defined for coloring,

masking, and selection.

amiraMol supports common molecular file

formats, such as PDB, Tripos, Unichem, and

MDL. For trajectories from molecular dynam-

ics simulation, amira provides its own native

data format, but it also supports CHARMM’s

dcd format. Standard techniques for molecular

visualization available in amiraMol are wire

frame, ball-and-stick, van der Waals spheres,

and secondary structure representations (Fig.

38.8, top). Beyond these, a novel technique

called bond-angle representation has been

developed (Fig. 38.8, bottom) that displays a

triangle for every group of three atoms con-

nected by two bonds. This representation re-

quires only a few geometric primitives and

provides a comprehensible view of the 3D struc-

ture.

Several color schemes can be used to enhance

the molecular representations. They permit

the user to color the atoms according to a

number of attributes, such as atomic number,

charge, hydrophobicity, radius, or the atom’s

index.

To take into account structural information

beyond atoms and bonds, groups can be de-

fined. A group is a combination of atoms and

other groups that can (for example) represent a

residue, a secondary structure, or an a-chain.

The groups are organized into levels, such as

the level of residues or the level of chains. The

user can define arbitrary new groups and levels

by using expressions. Groups may contain not

only atoms but also groups of arbitrary and

possibly different levels. Atoms can be colored

according to their membership in a group of a

chosen level.

In order to support easy investigation of mo-

lecular structures, amiraMol offers a selection

browser. This displays all groups in a chosen

level of the hierarchy. Furthermore, additional

information, such as type and membership of

the groups, can be displayed. Groups can be

selected by being clicked on in the browser, by

use of expressions, or through interaction

within the viewer. Groups that were selected in

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 763

amira: A Highly Interactive System for Visual Data Analysis 763

the browser will also be highlighted in the

viewer, and vice versa. Apart from selecting,

the selection browser offers the possibility to

hide arbitrary parts in all of the above-men-

tioned representations, so that the user can con-

centrate on particular regions of interest.

Shape complementarity is an important

aspect in molecular interactions. Shape proper-

ties are relevant for manual docking of ligands

to proteins and for automated docking proced-

ures. The characterization of molecular shapes

is therefore very useful for molecular modeling.

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:44am page 764

Figure 38.8 (Top) Complex consisting of a mouse antibody and an antigen of Escherichia Coli. The secondary structure

representation is on the left side, and the pure backbone representation is in the middle. Van der Waals balls depict the antigen.

(Bottom) Bond angle representation of a complex of the factor for inversion simulation (FIS) protein and a DNA fragment

(colored according to atom types). (See also color insert.)

764 Visualization Software and Frameworks

In addition to the previous techniques, amira-
Mol offers algorithms for generating triangular

approximations of solvent-excluded and solv-

ent-accessible surfaces [18]. Additionally, van

der Waals surfaces and interfaces between arbi-

trary parts of a molecule or between different

molecules can be computed. All triangular sur-

faces can be color-coded by arbitrary scalar

fields.

Of course, these molecular representations

can be combined with all other visualization

techniques available in amira. For instance, the

electrostatic field can be depicted using vector-

field visualization techniques (Fig. 38.9, left) or

electron density isocontours can be computed.

However, molecules are not static; they are in

constant motion. Typically they fluctuate for

long periods around a certain ‘‘meta-stable’’

shape. Less frequently, they also undergo larger

shape changes. Taken together, individual mo-

lecular configurations with similar shapes are

called conformations. Conformation analysis

is used to determine the essential shapes of

molecules and the probabilities of transitions

between these shapes. amiraMol offers an exten-

sive set of tools for visual analysis of trajectories

from molecular dynamics simulations. This

allows users to determine representatives of

conformations and to depict conformations

[19]. In Fig. 38.9 (right), a representative molecu-

lar shape is displayed, together with the shape

density of the corresponding conformation.

38.5 Summary

We have presented the general design concepts

behind amira, a 3D visualization and geometry

reconstruction system. We have also given an

overview of the different techniques and algo-

rithms implemented in this system. It was

shown that the combination of different con-

cepts such as object orientation, a simple and

well-structured user interface, the integration

of highly interactive components such as the

segmentation editor, intuitive 3D interaction

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:45am page 765

Figure 38.9 (Left) Solvent accessible surface of the ribonuclease T1, pseudo-colored according to the molecule’s electrostatic

potential; illuminated streamlines depict the electrostatic field. (Right) Configuration density and superimposed bond angle

representation of Epigallocatechin-Gallat. (See also color insert.)

amira: A Highly Interactive System for Visual Data Analysis 765

techniques, a powerful scripting interface, and a

broad range of advanced and innovative algo-

rithms for visualization and data processing have

yielded a powerful software system that can be

usefully applied to many problems in medicine,

biology, and other scientific disciplines.

Acknowledgments

We would like to sincerely thank the many stu-

dents, researchers, and software developers who

contributed to the amira suite: Maro Bader,

Werner Benger, Timm Baumeister, Daniel

Baum, Philipp Beckmann, Robert Brandt, Mar-

tina Bröhan, Liviu Coconu, Frank Cordes, Olaf

Etzmuß, Andrei Hutanu, Ralf Kähler, Ralf

Kubis, Hans Lamecker, Thomas Lange, Alex-

ander Maye, André Merzky, Olaf Paetsch, Stef-

fen Prohaska, Hartmut Schirmacher, Johannes

Schmidt-Ehrenberg, Martin Seebaß, Georg

Skorobohatyj, Brygg Ullmer, Tino Weinkauf,

Natascha Westerhoff, Gregor Wrobel, and

Stefan Zachow. Special thanks go to Brygg

Ullmer for his editing suggestions, which im-

proved grammar, vocabulary, and style. We

also would like to express our gratitude to

Peter Deuflhard, who supported this project

over many years. Furthermore, we thank all

research collaboration partners and early

users who helped us with their requirements

to shape the system and make it practically

useful.

References

1. G. Abram and L. A. Treinish. An extended data-
flow architecture for data analysis and visualiza-
tion. In Visualization ’95 proceedings, pages 263–
270. IEEE Computer Society Press, 1995.

2. amira—Advanced 3d visualization and volume
modeling. Software and user’s guide available
from www.amiravis.com.

3. W. A. Barrett and E. N. Mortensen. Interactive
live-wire boundary extraction. Medical Image
Analysis, 1(4):331–341, 1997.

4. D. S. Dyer. A dataflow toolkit for visualization.
IEEE Computer Graphics & Applications,
10(4):60–69, 1990.

5. D. Foulser. Iris explorer: a framework for inves-
tigation. ACM Computer Graphics, 29(2):13–16,
1995.

6. M. Garland and P. S. Heckbert. Surface simpli-
fication using quadric error metrics. In SIG-
GRAPH 97 Conference Proceedings, pages
209–216. ACM SIGGRAPH, Addison Wesley,
1997.

7. C. Gunn, A. Ortmann, U. Pinkall, K. Polthier,
and U. Schwarz. An extended data-flow archi-
tecture for data analysis and visualization. In
Visualization and Mathematics, pages 249–265.
Springer Verlag, 1997.

8. H. Jin and R. I. Tanner. Generation of unstruc-
tured tetrahedral meshes by advancing front
technique. Int. J. Numer. Methods. Eng.,
36:217–246, 1993.

9. M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: Active Contour Models. Academic Pub-
lishers, 1987.

10. H. Lamecker, T. Lange, and M. Seebass. Seg-
mentation of the liver using a 3d statistical
shape model. ZIB preprint 2002, submitted.

11. R. Löhner and P. Parikh. Generation of 3D
unstructured grids by the advancing-front
method. Int. J. Numer. Methods. Fluids,
8:1135–1149, 1988.

12. W. Lorensen and H. Cline. Marching cubes: a
high resolution 3D surface construction algo-
rithm. Computer Graphics, 21(4):163–169, 1987.

13. Open Inventor from TGS, http://www.tgs.com.
14. J. K. Ousterhout. Tcl and the Tk Toolkit. Addi-

son-Wesley, 1994.
15. S. G. Parker, D. M. Weinstein, and C. R. John-

son. The SCIRun computational steering
software system. In E. Arge, A. M. Bruaset,
and H. P. Langtangen, Eds., Modern Software
Tools for Scientific Computing, pages 5–44.
Boston, Birkhauser (Springer-Verlag), 1997.

16. QT white paper, http://www.trolltech.com
17. J. Rasure and C. Williams. An integrated data

flow visual language and software development
environment. Journal of Visual Languages and
Computing, 2:217–246, 1991.

18. M. F. Sanner, A. J. Olson, and J.-C. Spehner.
Reduced surface: An efficient way to compute
molecular surfaces. Biopolymers, 38:305–320,
1995.

19. J. Schmidt-Ehrenberg, D. Baum, and H.-C.
Hege. Visualizing dynamic molecular conform-
ations. In R. J. Moorhead, M. Gross, and K. I.
Joy, Eds., Proceedings of IEEE Visualization
2002, pages 235–242, 2002.

20. D. Stalling. Fast texture-based algorithms for
vector field visualization. PhD thesis, Zuse In-
stitute Berlin (ZIB), 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:45am page 766

766 Visualization Software and Frameworks

21. D. Stalling and H.-C. Hege. Fast and resolution
independent line integral convolution. In Pro-
ceedings of SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, pages
249–256, 1995.

22. D. Stalling, M. Zöckler, and H.-C. Hege. Fast
display of illuminated field lines. IEEE Transac-
tions on Visualization and Computer Graphics,
3(2):118–128, 1997.

23. C. Upson, T. A. Faulhaber, Jr., D. Kamins, D.
Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,
and A. van Dam. The application visualization

system: a computational environment for scien-
tific visualization. IEEE Computer Graphics and
Applications, 9(4):30–42, 1989.

24. W. M. Wells, P. Viola, H. Atsumi, S. Nakajima,
and R. Kikinis. Multi-modal volume registra-
tion by maximisation of mutual information.
Medical Image Analysis, 1(1):35–51, 1996.

25. R. Whitaker. Reducing aliasing artifacts in iso-
surfaces of binary volumes. In IEEE Volume
Visualization and Graphics Symposium, pages
23–32, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:45am page 767

amira: A Highly Interactive System for Visual Data Analysis 767

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:45am page 768

This page intentionally left blank

PART X

Perceptual Issues in
Visualization

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:49am page 769

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 12:49am page 770

This page intentionally left blank

39 Extending Visualization to
Perceptualization: The Importance of
Perception in Effective Communication
of Information

DAVID S. EBERT

School of Electrical and Computer Engineering

Purdue University

39.1 Introduction

The essence of any human–computer interface is

to convey information. Visualization has been a

good information communication tool for more

than two decades. While many visualization

systems provide users with a better understand-

ingof their data, they are often difficult to use and

are not a reliable, accurate tool for conveying

information, which limits their acceptance and

use. As scientists, medical researchers, and infor-

mation analysts face drastic growth in the size of

their datasets, the efficient, accurate, and repro-

ducible communication of information becomes

essential. These problems become even worse

when the datasets under investigation are multi-

variate and/or vector datasets.

Therefore, we need a fundamental change

in the development of visualization techniques.

Traditional visualization must evolve into per-

ceptualization of information: conveying infor-

mation through multiple perceptual channels

and perceptually tuned rendering techniques.

The choice of visual rendering techniques should

be driven by characteristics of human percep-

tion, since perceptual channels are the communi-

cation medium. This chapter summarizes some

basics of human perception and show several

examples of how this perceptual basis can be

used to drive new perceptualization techniques.

Throughout history, humans have tried

to effectively convey important information

through the use of images, using techniques

such as illustrations, photographs, and detailed

technical drawings. These techniques harness

the enormous bandwidth and preattentive pro-

cessing of the human visual system. Many dis-

ciplines of study have evolved to further these

techniques, including photography, technical

and medical illustration, and now visualization.

While illustration and photography are both suc-

cessful at capturing and conveying information,

they utilize different techniques and characteris-

tics of the human visual system to convey infor-

mation. Photography concentrates on conveying

information with light and color variation, while

illustration additionally tries to effectively

convey information by omitting unimportant

details, enhancing the most significant compon-

ents of the image, simplifying complex features,

and exposing hidden features [28]. Scientific il-

lustrations have been used for centuries because

of their effective communicative ability [12].

The effectiveness of illustration techniques,

the amazing power of the human perceptual

system, and the enormous data deluge facing

information analysts, medical researchers, and

scientific researchers have motivated us to ex-

plore the possible extension of visualization

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 771

771

techniques to perceptualization. The goal of

perceptualization is to concisely convey infor-

mation to the user through the creation of ef-

fective perceptual human inputs (visual,

proprioceptive, and haptic).

39.2 Overview of Human Perception

Humans are aware of their environment through

the human perceptual system, which consists of

several perceptual channels/modalities: visual

perception, auditory perception, haptic and

tactile perception, olfactory and gustatory per-

ception (smell and taste), and kinesthesis

(perception of body movement/position). Pro-

prioception, the body’s innate sense of where

joints and body segments are in space, is one

form of kinesthesis that is sometimes used for

effective interaction and 3D space perception.

These perceptual channels take physical stim-

uli and generate information that is transmitted

to the brain. Some of the information is pro-

cessed at a very low level in parallel without

conscious thought, referred to as preattentive

processing. Other information requires atten-

tion, or conscious thought, to perceive the infor-

mation. In visualization, the visual perceptual

channel is the most widely used communication

channel, while the auditory and haptic channels

are being incorporated to convey additional

information or as redundant forms of commu-

nication to increase accuracy or speed of com-

munication. Understanding the way humans

perceive information is, therefore, vital to the

effective conveyance of information through

perceptualization. For a basic understanding

of the human visual system and human visual

perception, the texts by Glassner [9] and Ware

[27] are very good references.

39.2.1 Preattentive Visual Processing

Preattentive processing is essential in grouping

large sets of information, including visual stim-

uli. An understanding of which visual features

are preattentive can be used to more effectively

design visualization systems. According to

Treisman, preattentive processing is visual pro-

cessing that is apparently accomplished auto-

matically and simultaneously for the entire

visual field of view [26]. Many studies have in-

vestigated which visual stimuli are preattentive.

One common procedure is to measure the re-

sponse time to find a target in a set of ‘‘distrac-

ters.’’ If a stimulus is preattentive, the response

time should be independent of the number and

types of ‘‘distracters’’ presented with the stimu-

lus. Another method is to display a group of

elements, with one element different from the

rest in some way, for a short period of time

(commonly 250 milliseconds) and then deter-

mine whether the viewer was able to pick out

the unique element.

Cleveland [3] cites experimental evidence that

shows that the most accurate method to visually

decode a quantitative variable in 2D is to dis-

play position along a scale. This is followed in

decreasing order of accuracy by interval length,

slope angle, area, volume, and color. Bertin

offers a similar hierarchy in his treatise on the-

matic cartography [2]. More recent experiments

have shown that humans can preattentively

perceive 3D shape [18]. Ware [27] provides

the following classification of preattentively

processed features:

. Form
. line orientation, length, width, and

colinearity
. size
. curvature
. spatial grouping
. added marks
. numerosity (number of items)

. Color: hue and intensity

. Motion: flicker and direction of motion

. Spatial position:

. 2D position

. Stereoscopic depth

. convexity/concavity (shape from shading)

This information on preattentive processing

capabilities is very useful for visualizing

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 772

772 Perceptual Issues in Visualization

multifield datasets and glyph visualization.

However, only a small number of distinct values

can be perceived preattentively via each feature.

Also, it is not necessarily the case that perceiv-

ing seven different values among five preatten-

tive features means that you can preattentively

perceive over 16,000 distinct combinations. The

interference between features is not currently a

well understood area. For an example of using

preattentive features for multivariate visualiza-

tion, see Healey’s work [10,11].

39.3 Examples of Perceptualization
Research

A basic understanding of perception can be

used to develop systems that are perceptually

significant and more powerful than tradition-

al visualization approaches. Below are two

examples of perceptualization systems we have

developed.

39.3.1 Minimally Immersive
Perceptualization

We have developed techniques to effectively

convey information from large multidimen-

sional,multifield datasets. Our interactive visual-

ization system, the Stereoscopic Field Analyzer

(SFA), successfully harnesses human perception

to increase the quantity and clarity of the

information conveyed [7,8,24]. As described by

Ebert et al. [8], the system provides a minimally

immersive interactive visualization tool that in-

creases the understanding of both structured and

unstructured volumetric data while being afford-

able on desktop PCs. Our system takes advan-

tage of the priority structure of human visual

perception [2,3], stereopsis,motion, and proprio-

ception to create meaningful visualizations from

scientific and information analysis data. The

basic volume rendering mechanism is glyph-

based volume rendering, with projected volume

rendering, thin slab volume rendering, and con-

tour visualization available on an interactive

cutting plane [24]. SFA uses a glyph’s location

(3 attributes), 3D size (1–3 attributes), color (1

attribute), orientation (1 vector attribute), and

opacity (1 attribute) to encode up to nine data

variables per glyph. We have also developed new

techniques for automatic glyph shape generation

that allow perceptualization of data through

shape variation. Location, color, size, orienta-

tion, and opacity are more significant perceptual

cues than shape [3]; however, shape variation can

also be effectively used to convey related scalar

variables, especially in an interactive system.

Our use of glyphs is related to the idea of

marks as the most primitive component that

can encode useful information [2]. Senay and

Ignatius point out that shape, size, texture, orien-

tation, transparency, hue, saturation, brightness,

and transparency are retinal properties of marks

that can encode information [22,23]. Since size

and spatial location are more significant cues

than shape, the importance mapping of data

values should be done in a corresponding order.

In decreasing order of data importance, data

values are mapped to location, size, color,

opacity, and shape. In our experience, shape is

very useful for local area comparisons among

glyphs: seeing local patterns, rates of change,

outliers, and anomalies.

Glyph shape is a valuable visualization com-

ponent because of the human visual system’s

preattentive ability to discern shape. Shapes

can be distinguished at the preattentive

stage [18], using curvature information of the

silhouette contour and, for 3D objects, curva-

ture information from surface shading [14].

Unlike an arbitrary collection of icons, curva-

ture has a visual order since a surface of higher

curvature looks more jagged than a surface of

low curvature. Therefore, generating glyph

shapes by maintaining control of their curvature

will maintain a visual order. This allows us

to generate a range of glyphs that interpolate

between extremes of curvature, thereby

allowing the user to read scalar values from

the glyph’s shape. Preattentive shape recogni-

tion allows quick analysis of shapes and pro-

vides useful dimensions for comprehensible

visualization.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 773

Extending Visualization to Perceptualization 773

We have chosen to use a procedural approach

for the generation of glyph shape to meaning-

fully encode two data variables/fields. Our goal

for glyph shape design is to allow the automatic

mapping of data to shape in a comprehensible,

easily controllable manner. Superquadrics are a

natural choice to satisfy this goal. Superquad-

rics [1] are extensions of quadric surfaces where

the trigonometric terms are each raised to expo-

nents. Of the four types of superquadrics, we

have chosen superellipsoids due to their famil-

iarity. With superellipsoids, the exponents of the

geometric terms allow continuous control over

the shape characteristics (e.g., the ‘‘roundness’’

or ‘‘pointiness’’) of the shape in the two major

planes that intersect to form the shape, allowing

a very simple, intuitive, comprehensible, ab-

stract schema of shape specification. By using

superquadrics, we can provide the appropriate

visual shape cue, discerning data fields mapped

to glyph shape, while not distracting from the

cognition of global data patterns. We rely on

the ability of superquadrics to create graphically

distinct, yet related, shapes. The system allows

the mapping of one independent variable to

both glyph exponent or two related variables

to each glyph exponent to ensure the under-

standability of the shapes.

SFA uses a pair of 3D magnetic trackers and

stereo glasses to provide a minimally immersive

desktop visualization system, where the user sits

in front of a graphics console that has a screen,

keyboard, mouse, and two 3D sensors. Each 3D

sensor has buttons for more complete 3D inter-

action and interrogation of the data. The com-

bination of two-handed interaction and stereo

viewing allows us to harness the user’s proprio-

ceptive sense to convey information of data

spatialization.

We have successfully applied SFA for CFD

visualization, as well as information visualiza-

tion of document corpora and intrusion detec-

tion data. The power of shape visualization can

be seen in Fig. 39.1, which is a magnetohydro-

dynamics simulation of the solar wind in the

distant heliosphere. In this simulation, the data

is a 64� 64� 64 grid containing the vector vor-

ticity and velocity for the simulation. Opacity is

used to represent vorticity in the j direction, so

that the six vortex tubes (only four are visible)

represent zones in space where this vorticity is

somewhat larger than zero. Glyph shape is

based inversely on the velocity in the j direction.

Positive velocities are displayed as larger,

rounder to cuboid shapes, and negative veloci-

ties are displayed as spiky, star-like shapes. Zero

velocity is represented by the diamond shape.

The overall columnar pattern of the data is not

disturbed by the introduction of the shape map-

ping, but the velocity variation can still be seen

as we traverse the lengths of the tubes. In this

case, values close to zero in terms of j vorticity

(still fluid) have been masked out.

39.3.2 Volume Illustration: Creating
Effective Perceptualization by Incorporating
Illustration Techniques

As mentioned earlier, technical and medical il-

lustrators have developed techniques over the

past several centuries to very compactly and ef-

fectively convey the important information in an

illustration. Traditional visualization techniques

create complex images that may be difficult to

interpret and do not have the expressiveness of

illustrations. We are developing techniques to

capture the enhancement and expressive capabil-

ity of illustrations. Illustration techniques use

characteristics of visual perception, such as

edge detection, strokes, contrast sensitivity, clut-

ter reduction, and focus to more effectively

convey information.

We are extending nonphotorealistic rendering

(NPR) [21,28,29] to volume visualization and

creating images that are very effective for

training, education, and presentation of medical

and scientific data. We have introduced the

volume illustration approach, combining the fa-

miliarity of a physics-based illumination model

with the ability to enhance important features

using NPR rendering techniques. Since features

to be enhanced are defined on the basis of local

and global volume characteristics rather than

volume sample value, the application of volume

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 774

774 Perceptual Issues in Visualization

illustration techniques requires less manual

tuning than does the design of a good transfer

function. Volume illustration provides a flexible

unified framework for enhancing structural per-

ception of volume models through the amplifica-

tion of features and the addition of illumination

effects [6,19].

Several researchers have applied NPR tech-

niques to the display of 2D and surface data.

Laidlaw et al. used concepts from painting to

create visualizations of 2D data, using brush-

stroke-like elements to convey information [16]

and a painterly process to compose complex

visualizations [15]. Treavett et al. have de-

veloped techniques for pen-and-ink illustrations

of surfaces within volumes [25]. Interrante ap-

plied principles from technical illustration to

convey depth relationships with halos around

foreground features in flow data [13]. Saito con-

verted 3D scalar fields into a sampled point

representation and visualized selected points

with a simple primitive, creating an NPR look

[20]. However, with few exceptions, the use of

NPR techniques has been confined to surface

rendering.

Our earlier work proposing volume illustra-

tion [6] was the first system to apply NPR tech-

niques to volume rendering. More recently,

several researchers have developed additional

systems to advance volume illustration to inter-

active rendering [4,5].

There are several important questions that

should be answered by a volume illustration

system.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 775

Figure 39.1 Visualization of a magnetohydrodynamics simulation of the solar wind in the distant heliosphere showing both

velocity components and vorticity components of the vortex tubes. (See also color insert.)

Extending Visualization to Perceptualization 775

. What information should be displayed?

. What techniques should be used to display

the information?

. How should it be implemented in the

rendering process?

Advanced feature analysis and technical illus-

tration principles can be used to determine the

important information that should be displayed

by the system. We have developed the toolbox

of illustrative techniques described below to dis-

play and represent the information and have

taken several approaches to incorporating

these techniques into the rendering process.

39.3.2.1 Toolbox of Illustration Techniques

There are three categories of illustration techni-

ques thatwehaveexplored: featureenhancement,

depthandorientationenhancement,andregional

enhancement [19]. Our feature-enhancement

techniques include techniques to enhance volu-

metric boundaries, volumetric silhouette regions,

and volume sketching. Depth and orientation

enhancement includes distance color blending

(e.g., aerial perspective), oriented fading, feature

halo rendering, and tone shading. Regional

enhancement refers to the illustration technique

of selectively enhancing and showing details in

only certain regions of the image to quickly draw

the user’s focus. Details of the implementation of

these techniques can be found in Rheingans and

Ebert [19]. The results achievable by these

enhancements can be seen by comparison of the

abdominal CT renderings in Figs. 39.2a and

39.2b. Fig. 39.2a has no enhancement, whereas

Fig. 39.2b has boundary and silhouette enhance-

ment performed. Also, comparing the left kidney

to the right kidney in Fig. 39.3 shows the

effectiveness of regional enhancement.

39.3.2.2 Illustrative Rendering Approaches

Our volume illustration techniques are fully

incorporated into the volume rendering pro-

cess, utilizing viewing information, lighting

information, and additional volumetric proper-

ties to provide a powerful, easily extensible

framework for volumetric enhancement. By

incorporating the enhancement of the volume

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 776

Figure 39.2 Comparison of (a) realistic rendering of an abdominal CT dataset with (b) a volumetric illustration rendering using

silhouette and boundary enhancement. (See also color insert.)

776 Perceptual Issues in Visualization

sample’s color, illumination, and opacity into

the rendering system, we can implement a

wide range of enhancement techniques. The

properties that can be incorporated into

the volume illustration procedures include the

following:

. Volume sample location and value

. Local volumetric properties, such as gradient

and minimal change direction

. View direction

. Light information

The viewing and light information allow global

orientation information to be used in enhancing

local volumetric features. Combining this render-

ing information with user-selected parameters

provides a powerful framework for volumetric

enhancement and modification for illustrative

effects. It is important to remember that these

techniques are applied to continuous volume

properties and not to hard surfaces extracted

from volume data.

We have extended our original atmospheric

volume ray-casting illustration system to two

other rendering techniques. First, we have ap-

plied these illustration approaches to interactive

hardware texture-based volume rendering to

achieve illustration effects at interactive rates.

An example of these results can be seen in Fig.

39.4. Tone shading, silhouette enhancement,

boundary enhancement, and distance color

blending can easily be achieved at interactive

rates using advanced programmable graphics

hardware.

Second, we have applied these basic principles

to create interactive stipple rendering of

volumetric datasets for quick previewing and

exploration. Stipple drawing is a pen-and-ink

illustration technique where dots are deliber-

ately placed on a surface of contrasting color

to obtain subtle shifts in value. Traditional

stipple drawing is a time-consuming technique.

However, points have many attractive features

in computer-generated images. Points are the

minimum element of all objects and are

the simplest and quickest element to render.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 777

Figure 39.3 Rendering of segmented kidney CT dataset showing selective volumetric illustration enhancement applied only to

the right kidney to focus the viewer’s attention. (See also color insert.)

Figure 39.4 Interactive volume illustration rendering of a

head dataset with silhouette and boundary enhancement.

(See also color insert.)

Extending Visualization to Perceptualization 777

By mimicking traditional stipple drawing, we

can interactively visualize modestly sized simu-

lations. The use of volume illustration tech-

niques provides the stipple volume-renderer

with its interactivity and illustrative expressive-

ness. In this system, a Poisson disk approxima-

tion is initially used for placement of random

points within each voxel to simulate the trad-

itional stipple point placement. Volume illustra-

tion and feature enhancement techniques are

then applied to adjust the number of points

that are drawn per voxel. Finally, silhouette

curves are added to create more effective ren-

derings. A complete description of this system

can be found in the paper by Lu et al. [17]. Figs.

39.5 and 39.6 show the effective results achiev-

able by this system.

39.4 Conclusions

This chapter has provided an introduction to

the use of perception for visualization and the

need to create perceptually significant visualiza-

tions to attack the data deluge facing scientists,

doctors, and information analysts. An overview

of two perceptualization systems and the effect-

ive results achievable by these techniques was

presented.

Acknowledgments

Many individuals were involved in the

research described in this chapter. The SFA

system was developed in collaboration with

Cindy Starr, Chris Shaw, D. Aaron Roberts,

Amen Zwa, Jim Kukla, Ted Bedwell, Chris

Morris, and Joe Taylor. The volume illustra-

tion and stippling work has been performed

collaboratively with Chris Morris, Aidong Lu,

Chuck Hansen, Penny Rheingans, and Joe Tay-

lor. This work was supported in part by

grants from the NASA AIRSP program and

from NSF grants NSF ACI-0081581, ACI-

0121288, IIS-0098443, ACI-9978032, MRI-

9977218, and ACR-9978099.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 778

Figure 39.5 Head volume stipple rendering with silhouette,

boundary, and distance enhancement and silhouette curves.

Figure 39.6 Volume stipple rendering of a foot dataset

showing tone shading, distance color blending, silhouette

and boundary enhancement, and silhoutte lines. (See also

color insert).

778 Perceptual Issues in Visualization

References

1. A. Barr. Superquadrics and angle-preserving
transformations. IEEE Computer Graphics &
Applications, 1(1):11–23, 1981.

2. J. Bertin. Semiology of Graphics. The University
of Wisconsin Press, 1983.

3. W. S. Cleveland. The Elements of Graphing
Data. Wadsworth Advanced Books and Soft-
ware, Monterey, Ca., 1985.

4. B. Csébfalvi and M. Gröller. Interactive volume
rendering based on a ‘‘bubble model’’. In GI
2001. pages 209–216, 2001.

5. B. Csébfalvi, L. Mroz, H. Hauser, A. König,
and M. Gröller. Fast visualization of object
contours by non-photorealistic volume render-
ing. Computer Graphics Forum, 20(3):452–460,
2001.

6. D. S. Ebert and P. L. Rheingans. Volume illus-
tration: Non-photorealistic rendering of volume
models. IEEE Visualization 2000, 2000.

7. D. S. Ebert and C. D. Shaw. Minimally immer-
sive flow visualization. IEEE Transactions on
Visualization and Computer Graphics, 7(4):343–
350, 2001.

8. D. S. Ebert, C. D. Shaw, A. Zwa, and
E. L. Miller. Minimally-immersive inter-
active volumetric information visualization.
In Proceedings Information Visualization ’96,
1996.

9. A. Glassner. Principles of Digital Image Synthe-
sis. Morgan Kaufmann Publishers, 1995.

10. C. G. Healey and J. T. Enns. Building percep-
tual textures to visualize multidimensional data-
sets. In IEEE Visualization ’98, pages 111–118,
1998.

11. C. G. Healey and J. T. Enns. Large datasets at a
glance: Combining textures and colors in scien-
tific visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 5(2):145–167,
1999.

12. E. Hodges. The Guild Handbook of Scientific
Illustration. Guild of Natural Science Illustra-
tors, John Wiley and Sons, 1989.

13. V. Interrante and C. Grosch. Visualizing 3d
flow. IEEE Computer Graphics & Applications,
18(4):49–53, 1998.

14. V. Interrante, P. Rheingans, J. Ferwerda,
R. Gossweiler, and T. Filsinger. Principles of
visual perception and its applications in com-
puter graphics. In SIGGRAPH 97 Course Notes,
No. 33. ACM SIGGRAPH, 1997.

15. R. M. Kirby, H. Marmanis, and D. H. Laidlaw.
Visualizing multivalued data from 2d
incompressible flows using concepts from

painting. In IEEE Visualization ’99, pages
333–340, 1999.

16. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, R. E. Jacobs, and C. Readhead. Visual-
izing diffusion tensor images of the mouse
spinal cord. In IEEE Visualization ’98, pages
127–134, 1998.

17. A. Lu, C. Morris, D. S. Ebert, C. Hansen,
P. Rheingans, and M. Hartner. Illustrative
interactive stipple rendering. IEEE Transactions
on Visualization and Computer Graphics,
9(2):127–138, 2003.

18. A. J. Parker, C. Christou, B. G. Cumming, E. B.
Johnston, M. J. Hawken, and A. Zisserman.
The analysis of 3D shape: Psychophysical prin-
ciples and neural mechanisms. In Glyn W Hum-
phreys (Ed.), Understanding Vision, Chapter 8.
Blackwell, 1992.

19. P. L. Rheingans and D. S. Ebert. Volume illus-
tration: Non-photorealistic rendering of volume
models. IEEE Transactions on Visualization and
Computer Graphics, to appear.

20. T. Saito. Real-time previewing for volume
visualization. Proceedings of 1994 IEEE Sympo-
sium on Volume Visualization, pages 99–106,
1994.

21. M. P. Salisbury, S. E. Anderson, R. Barzel,
and D. H. Salesin. Interactive pen-and-ink illus-
tration. In Proceedings of SIGGRAPH 94,
Computer Graphics Proceedings, Annual Con-
ference Series, pages 101–108, 1994.

22. H. Senay and E. Ignatius. A knowledge-
based system for visualization design. IEEE
Computer Graphics and Applications,
14(6):36–47, 1994.

23. H. Senay and E. Ignatius. Rules and principles
of scientific data visualization. ACM SIG-
GRAPH HyperVis Project, www.siggraph.org/
education/materials/HyperVis/percept/visrules.
htm, 1996.

24. C. D. Shaw, J.A. Hall, D.S. Ebert, and A.
Roberts. Interactive lens visualization tech-
niques. IEEE Visualization ’99, pages 155–160,
1999.

25. S. Treavett, M. Chen, R. Satherley, and
M. Jones. Volumes of expression: Artistic
modelling and rendering of volume datasets. In
Computer Graphics International 2001, pages
99–106, 2001.

26. A. Treisman. Features and objects in visual pro-
cessing. Scientific American, 255(2):114–125,
1986.

27. C. Ware. Information Visualization: Perception
for Design. Morgan Kaufmann Publishers,
2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 779

Extending Visualization to Perceptualization 779

28. G. Winkenbach and D. Salesin. Computer-
generated pen-and-ink illustration. In Proceed-
ings of SIGGRAPH 1994, Computer Graphics
Proceedings, Annual Conference Series, pages
91–100, 1994.

29. G. Winkenbach and D. Salesin. Rendering
parametric surfaces in pen and ink. In Proceed-
ings of SIGGRAPH 1996, Computer Graphics
Proceedings, Annual Conference Series, pages
469–476, 1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:30pm page 780

780 Perceptual Issues in Visualization

40 Art and Science in Visualization

VICTORIA INTERRANTE

Department of Computer Science and Engineering

University of Minnesota

40.1 Introduction

Visualization research and development in-

volves the design, implementation, and evalu-

ation of techniques for creating images that

facilitate the understanding of a set of data.

The first step in this process, visualization

design, involves defining an appropriate repre-

sentational approach, determining the vision of

what one wants to achieve. Implementation in-

volves deriving the methods necessary to realize

the intended results—developing the algorithms

required to create the desired visual representa-

tion. Evaluation, or the objective assessment of

the impact of specific characteristics of the visu-

alization on application-relevant task perform-

ance, is useful not only to quantify the

usefulness of a particular technique but also,

more powerfully, to provide insight into the

means by which a technique achieves its success,

thus contributing to the foundation of know-

ledge upon which we can draw to create yet

more effective visualizations in the future. In

this chapter, I will discuss the art and science

of visualization design and evaluation, illus-

trated with case study examples from my re-

search. For each application, I will describe

how inspiration from art and insight from visual

perception can provide guidance for the devel-

opment of promising approaches to the targeted

visualization problems. As appropriate, I will

include relevant details of the algorithms de-

veloped to achieve the referenced implementa-

tions, and where studies have been done, I will

discuss their findings and the implications for

future directions of work.

40.1.1 Seeking Inspiration for Visualization
from Art and Design

Visualization design, from the creation of

specific effective visual representations for

particular sets of data to the conceptualization

of new, more effective paradigms for informa-

tion representation in general, is a process that

has the characteristics of both an art and a

science. General approaches to achieving visu-

alizations that ‘‘work’’ are not yet straight-

forward or well defined, yet there are objective

metrics that we can use to determine the success

of any particular visualization solution. In

this section I will discuss ways in which the

practices and products of artists and designers

can help provide inspiration and guidance to

our efforts to develop new, more effective

methods for communicating information

through images.

Design, as traditionally practiced, is a highly

integrative activity that involves distilling ideas

and concepts from a great variety of disparate

sources and assembling them into a concrete

form that fulfills a complex set of objectives. It

is an inherently creative process that defies ex-

plicit prediction or definition, yet whose results

are readily amenable to comprehensive evalu-

ation. Across disciplines, from graphic arts to

architecture, the art of design is primarily learnt

through practice, review, and the careful critical

study of work by others, and expertise is built

up from the lifelong experience of ‘‘training

one’s eyes.’’ Providing a good environment for

design is critical to enabling and facilitating the

process of design conceptualization. Creative

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 781

781

insights are difficult to come by in a vacuum—

designers typically surround themselves in their

work area with sketches, images, models, refer-

ences, and other materials that have the poten-

tial to both directly and indirectly provide

inspiration and guidance for the task at hand.

In addition, designers rely heavily on the ability

to quickly try out ideas, abstracting, sketching

out, and contemplating multiple approaches

before settling upon a particular design solu-

tion.

In visualization research, we can take a simi-

lar approach to the problem of design concep-

tualization—drawing inspiration from the work

of others and from the physical world around

us, and experimenting with new combinations

and variants of existing techniques for mapping

data to images. We can also benefit from estab-

lishing fertile design environments that provide

rich support for design conceptualization and

varied opportunities for rapid experimentation.

Finally, it can sometimes be useful to work with

traditional materials to create approximate

mockups of potential design approaches that

allow one to preview ideas to avoid investing

substantial effort in software development in

what ultimately prove to be unproductive

directions.

Turning now from the process of design to

the product, there is, in a wide variety of fields—

from art to journalism, from graphic design to

landscape architecture—a long history of re-

search in visual literacy and visual communica-

tion through drawings, paintings, photographs,

sculpture, and other traditional physical media

that we have the potential to be able to learn

from and use in developing new visualization

approaches and methods to meet the needs of

our own specific situations.

In computer graphics and visualization, as in

art, we have complete control not only over

what to show but also over how to show it.

Even when we are determined to aim for a

perfectly physically photorealistic representa-

tion of a specified model, as in photography,

we have control over multiple variables that

combine to define the ‘‘setting of the scene’’

that creates the most effective result. In many

cases this not only includes selecting the view-

point and defining the field of view, setting up

the lighting, and determining the composition

of the environment, but also extends to choos-

ing the material properties of the surfaces of the

objects that we wish to portray. For practical

reasons of computational efficiency or because

of the limitations of available rendering sy-

stems, we often choose to employ simplified

models of lighting and shading, which can also

be considered to be a design decision. In add-

ition, we may choose to use non–physically

based ‘‘artificial’’ or ‘‘artistic’’ enhancement to

emphasize particular features in our data, and

we may selectively edit the data to remove or

distort portions of the model to achieve specific

effects.

Through illustration we have the potential to

interpret physical reality, to distill the essential

components of a scene, accentuate the import-

ant information, minimize the secondary

details, and hierarchically guide the attentional

focus. In different media, different methods are

used to draw the eye to or away from specific

elements in an image, and in each medium,

different styles of representation can be used to

evoke different connotations.

When seeking to develop algorithms to gen-

erate simplified representations of data or

models, it is useful to consider where artists

tend to take liberties with reality. They have

similar motivations to avoid the tedium and

difficulty of accurately representing every detail

in a photorealistic manner, but at the same time

they need to represent enough detail, with

enough accuracy, to meet the expectations

of the viewer and communicate the subject ef-

fectively. Numerous texts on methods of illus-

tration present various artists’ insights on this

subject [e.g., 1,2,3,4]. Vision scientists have also

considered this question, from the point of

view of seeking to understand how the brain

processes various aspects of visual input, and

it is interesting to note the connection between

the findings in perception and common

practices in artistic representation. For example,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 782

782 Perceptual Issues in Visualization

people are found to be highly insensitive to the

colors of shadows [9], being willing to interpret

as shadows patches whose luminance and

general geometry are consistent with that

interpretation, regardless of hue, and to be

broadly tolerant of inconsistencies among

shadows cast from different objects in a scene

[5], despite the significant role that cast

shadows play in indicating objects’ positions in

space [6]. Although there is much about the

processes of vision and perception that remains

unknown, research in visual perception has the

potential to make explicit some of the intuition

that artists rely upon to create images that

‘‘work.’’

40.1.2 Drawing Insight for Visualization
Design from Research in Visual Perception

In addition to seeking inspiration from art for

the design of effective methods for conveying

information through images, it is possible to

use fundamental findings in human visual per-

ception to gain insight into the ‘‘science behind

the art’’ of creating successful visual representa-

tions. This can be useful because, although it is

often (but not always) possible from informal

inspection to determine how well a single, par-

ticular visualization meets the needs of a spe-

cific, individual application, or to comparatively

assess the relative merits of alternative visual-

ization solutions for a particular problem, it is

much less straightforward to achieve a compre-

hensive understanding of the reasons that one

particular visualization approach is more suc-

cessful than another, and even more difficult to

uncover the theoretical basis for why certain

classes of approaches are likely to yield better

results than others. From a fundamental under-

standing of the strengths and weaknesses, abil-

ities and limitations, and basic functional

mechanisms of the human visual system, we

have the potential to become better equipped

to more accurately predict which sorts of ap-

proaches are likely to work and which aren’t,

which can be of immense benefit in helping us

determine how to guide our research efforts in

the most promising directions and to avoid dead

ends.

Mining the vision research literature for in-

sights into a particular visualization problem

can be a daunting task. The field of visual per-

ception is broad and deep and has a very long

and rich history, with research from decades

past remaining highly relevant today. The appli-

cation domains targeted in visualization are typ-

ically far more complex than the carefully

controlled domains used in perception studies,

and extreme caution must be exercised in

hazarding to generalize or extrapolate from par-

ticular findings obtained under specific, re-

stricted conditions. Also, the goal in vision

research—to understand how the brain derives

understanding from visual input—is not quite

the same as the goal in visualization (to deter-

mine how best to portray a set of data so that

the information it contains can be accurately

and efficiently understood). Thus, it is seldom

possible to obtain comprehensive answers to

visualization questions from just a few key art-

icles in the vision/perception literature, but it is

more often necessary to distill insights and

understanding from multiple previous findings

and then supplement this knowledge through

additional studies.

Vision scientists and visualization researchers

have much to gain from successful collabor-

ation in areas of mutual interest. Through

joint research efforts, interdisciplinary teams

of computer scientists and psychologists have

already begun to find valuable answers to im-

portant questions in computer graphics and

visualization, such as determining the extent

to which accurately modeling various illumin-

ation and shading phenomena, such as cast

shadows and diffuse interreflections, can facili-

tate a viewer’s interpretation of spatial layout

[7,8].

In the remainder of this chapter, I will de-

scribe in more concrete detail the application

of inspiration from art and insights from visual

perception to visualization design and evalu-

ation in the context of selected case-study

examples from my research.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 783

Art and Science in Visualization 783

40.2 Case Study 1: Effectively Portraying
Dense Collections of Overlapping Lines

Numerous applications in fields such as aero-

space engineering involve the computation and

analysis of 3D vector fields. Developing tech-

niques to effectively visualize such data presents

some challenges. One promising approach has

been to provide insight into portions of the data

using bundles of streamlines. However, special

steps must be taken to maintain the legibility of

the display as the number of streamlines grows.

Stalling et al. [11] proposed a very nice tech-

nique, based on principles introduced by Banks

[12], for differentially shading 1D streamlines

along their length according to the local orienta-

tion of the line with respect to a specified light

source. Still, the problem of preventing the local

visual coalescing of similarly oriented adjacent

or proximate overlapping lines remained. At-

tempts to visually segregate the individual lines

by rendering them in a spectrum of different

colors rather than in the same shade of grey

meet with only partial success, because it is still

difficult to accurately and intuitively appreciate

the existence and the magnitude of the depth

separation between overlapping elements in the

projected view. The problem is that, in the ab-

sence of indications to the contrary, objects are

generally perceived to lie on the background

over which they are superimposed [10]. In some

situations, cast shadows can be used to help

disambiguate depth distance from height above

the ground plane [13], but this technique is most

effective when applied to simple configurations

in which individual objects can be readily associ-

ated with their shadows. A more robust solution

to the problem of effectively portraying clusters

of overlapping and intertwining lines (Fig. 40.1)

is inspired by examples from art and is explained

by research in visual perception.

For thousands of years, artists have used

small gaps adjacent to occluding edges as a

visual device to indicate the fact that one surface

should be understood to be passing behind an-

other. This convention can be observed in visual

representations dating as far back as the Paleo-

lithic paintings within the caves of Lascaux (Fig.

40.2).

Recent research in visual perception [14]

helps explain why the technique of introducing

gaps to indicate occlusion is so effective. In

ordinary binocular vision, when we view one

surface in front of another using both of our

eyes, we see different portions of the farther

surface occluded by the nearer surface in the

views from each eye (Fig. 40.3). Called ‘‘da

Vinci stereopsis,’’ in deference to the recogni-

tion of this phenomenon by Leonardo da Vinci,

as reported by Wheatstone [15], the perception

of these inter-ocularly unpaired regions, which he

likened to ‘‘shadows cast by lights centered at

each eye,’’ has been shown to be interpreted by

the visual system as being indicative of the pres-

ence of a disparity in depth between two sur-

faces.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 784

Figure 40.1 Two overlapping lines of roughly equivalent luminance but differing hue, shown in three subtly different

depictions. (See also color insert.)

784 Perceptual Issues in Visualization

The use of gaps to clarify depth ordering

in computer-generated line drawings dates back

to the earliest days of computer graphics—one

of the first ‘‘haloed’’ line-drawing algorithms

was presented by Appel et al. at SIGGRAPH

in 1979. In 1997, we [16] developed an algo-

rithm for using ‘‘visibility-impeding halos’’

to clarify the depiction of what were effectively

clusters of streamlines in volume-rendered

images of 3D line integral convolution textures

(Fig. 40.4). Our decision to take this ap-

proach, and the direction of the particular path

that we followed in developing it, were guided

both by the inspiration from examples in

art and by the insights from research in visual

perception.

Figure 40.2 Since prehistoric times, artists have used gaps to indicate the passing of one surface behind another, as shown in

this photograph taken in a Smithsonian museum exhibit reproducing the creation of the second ‘‘Chinese Horse’’ in the Painted

Gallery of the cave of Lascaux. Photograph by Tomás Filsinger. (See also color insert.)

Interocularly unpaired regions Interocularly unpaired regions

Figure 40.3 When one surface is viewed in front of another using both eyes, a different portion of the more distant surface is

occluded in the view from each eye. Psychologists have found evidence that the presence of these interocularly unpaired regions

evokes a perception of depth disparity by our visual system [14].

Art and Science in Visualization 785

Our implementation was based on a simple

modification to the basic LIC algorithm [17,18]

allowing the efficient computation of a matched

pair of streamline and surrounding halo tex-

tures. We automatically defined a subtle and

smoothly continuous 3D visibility-impeding

‘‘halo’’ region that fully enclosed each stream-

line in the original 3D texture by performing the

LIC simultaneously over two input textures

containing identically located spots of concen-

tric sizes. Because the streamline tracing only

had to be done once for the pair of volumes,

the overhead associated with the creation of

the halos was kept to a minimum. Halos were

implemented, during ray-casting volume

rendering, by decreasing the contribution to

the final image of any voxel encountered, after

a halo was previously entered and subsequently

exited, by an amount proportional to the largest

previously encountered halo opacity. (Because

each line was necessarily surrounded every-

where by its own halo, it was important to

allow the voxels lying between the entrance

and exit points of the first-encountered halo to

be rendered in the normal fashion.) It should be

noted that this particular implementation as-

sumes a black background, and will fail to indi-

cate the existence of depth discontinuities

between lines that pass closely enough that

their halos overlap in 3-space, even if the lines

themselves do not actually intersect.

40.3 Case Study 2: Using Feature Lines
to Emphasize the Essential 3D Structure of
a Form

The goal of an effective graphic representation

is to facilitate understanding. When creating

computer-generated visual representations of

models or surfaces, we desire to portray the

data in a way that allows its most important

features to be easily, accurately, and intuitively

understood. In applications where the informa-

tion that we need to effectively communicate is

the 3D shape of a rendered surface, there is

particular value in seeking both inspiration

from the practices of artists and insight from

research in visual perception.

40.3.1 Nonphotorealistic Rendering in
Scientific Visualization

A photographic depiction will capture the exact

appearance of an object as it is actually seen,

with subtle, complex details of coloration and

texture fully represented at the greatest possible

level of detail and accuracy. Despite the option

to use photography, however, a number of sci-

entific disciplines have historically retained

artists and illustrators to prepare hand-drawn

images of objects of study [20,23,24]. One of the

reasons for this is that in a drawing it is possible

to create an idealized representation of a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 786

Figure 40.4 A side-by-side comparison, with and without visibility-impeding halos, illustrating the effectiveness of this

technique for indicating the presence of depth discontinuities and facilitating appreciation of the extent of depth disparities

between overlapping lines in the 3D flow. Data courtesy of Dr. Chester Grosch.

786 Perceptual Issues in Visualization

subject, in which structural or conceptual infor-

mation is clarified in a way that may be difficult

or impossible to achieve in even the best photo-

graph. In some fields, such as cartography [22]

and archaeology [21,25], specific stylizations are

used to encode particular information about

important features of the subject within the

graphical representation.

When drawings are prepared for visualization

purposes, in many cases they are created using

photographs of the subject as reference.

Through comparing these drawings with the

photographs from which they were derived, we

have the ability to gain insight into the selective

process used by the artist to identify and em-

phasize the important features in the data while

minimizing the visual salience of extraneous

detail. We can also observe at what points and

in what respects the artist takes special care to

remain faithful to details in the original depic-

tion and where he chooses to exercise artistic

license. Through these observations, and by

consulting the relevant literature in the instruc-

tion of illustration techniques, we can derive

inspiration for the development of visualization

algorithms that aspire to achieve similar effects.

Searching for deeper insight into the process

of determining how to design effective pictorial

representations, it can be useful to carefully

consider all aspects of the questions of not

only how but also why and when a hand-drawn

interpretation of a subject is preferable to a

photograph. In some fields, such as zoology

[26], it is not uncommon to find a wide range

of representational modalities—from simple

outline drawings to detailed, shaded, colored

drawings to photographs—used at different

times, for different purposes. Apart from the

influence of various practical concerns, the def-

inition of an optimal representation will depend

on the particular purpose for which it is

intended to be used.

The critical issue, I believe, is that drawings

are intended to be idealizations of actual phys-

ical reality. Recognizing a subject from a draw-

ing can require some translation. The success of

the representation hinges on the extent to which

it captures precisely the necessary information

for successful comprehension, which depends

not only on the vision of the artist in defining

what that information is and on his skill in

portraying it faithfully, but also on the needs

and experience level of the observer. With

photographs, there is no interpretation re-

quired—every subtle detail of color and texture,

shading and shadow, is exactly represented

for some specific configuration of subject,

viewpoint, and lighting. Psychologists and

others have conducted numerous studies to

examine questions of whether, when, and

under what circumstances it might be possible

to increase perceptual efficiency by reducing

the visual complexity of a pictorial representa-

tion [27,28,29,30]. Results are mixed, with the

superiority of performance using drawings vs.

photographs depending both on the task and on

the quality and level of detail in the drawing.

However, a common theme in all cases is the

potential danger inherent in using highly simpli-

fied, schematic, or stylized representations,

which can, rather than facilitating perception,

instead increase cognitive load by imposing an

additional burden in interpretation. Studies

have found that face recognition from outline

drawings is exceptionally poor [31], but that

adding ‘‘mass,’’ even through simple bi-level

shading, improves recognition rates consider-

ably [32]. Face recognition rates from outline

drawings can also be improved by distorting

outline drawings in the style of a caricature [33].

Carefully constructed nonphotorealistic

representations have significant potential ad-

vantages for use in visualization. They allow us

the possibility to increase the dynamic range of

the attentional demands on the observer by

allowing greater differentiation in the salience

of the visual representation, and enable guiding

of the attentional focus of the observer through

highlighting critical features and deemphasizing

the visual prominence of secondary details.

However, the success of such efforts depends

critically on the ability to correctly define what

to emphasize and how to emphasize it, in order

to best support the task objectives.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 787

Art and Science in Visualization 787

Nonphotorealistic representations also have

the potential to facilitate visualization object-

ives by allowing greater differentiation in the

specificity of the visual representation. By intro-

ducing the possibility of ambiguity, through

representational methods that are optimized

for indication rather than specification, one has

the potential to portray things in a way that

facilitates flexible thinking. This is critical for

applications involving design development,

such as architecture, where there is a need for

visualization tools that facilitate the ability to

work with ideas at an early stage of conceptual

definition, when a precise physical instantiation

of the model has not yet been determined and

one needs to foster the envisioning of multiple

possibilities. Nonphotorealistic rendering also

allows the expression of multiple styles, poten-

tially establishing various ‘‘moods’’ that can

influence the subjective context within which

information is perceived and interpreted.

Finally, in some applications, ambiguity has

the potential to be successfully used as a visual

primitive to explicitly encode the level of accur-

acy or confidence in the data [35].

40.3.2 Critical Features of Surface Shape
That Can Be Captured by Lines

Gifted artists, such as Pablo Picasso, have dem-

onstrated the ability to capture the essence of a

form in just a few critical strokes [36]. In visual-

ization, if we would like to achieve a similar

effect, we need to determine an algorithm for

automatically defining the set of feature lines

that we wish to represent. Both inspiration

from art and insight from research in visual

perception can be useful in helping to guide

these efforts.

According to the Gestalt theory of visual per-

ception, the process of visual understanding

begins with the separation of figure from

ground. The lines that define this separation

are the silhouettes, and their use is ubiquitous

in artists’ line drawings. The silhouette can be

imagined as the boundary of the shadow that

would be cast by an object onto a planar back-

ground from a parallel light source oriented in

the direction of the line of sight, with the locus

of silhouette points indicating the outline of the

object. Closely related to the silhouettes is the

set of lines called contours [38]. These are

formed by the locus of points where the surface

normal is orthogonal to the line of sight, and

they typically correspond to boundaries across

which there is a C0 discontinuity in depth. On a

polygonally defined object, the contour curves

can be identified as the locus of all edges shared

by a front-facing polygon and a back-facing

polygon, plus all boundary edges. Complicating

efforts to create effective visualizations using

highlighted contour edges is the problem that

their definition is viewpoint-dependent. Under

conditions of stereo viewing, the set of surface

points belonging to the contour curve defined

by the view from the left eye will not, in general,

be the same as the set of surface points

belonging to the contour curve defined by the

view from the right eye. If models are rendered

in such a way as to imply a correspondence

between highlighted contour curves shown in

each view, the result will be to impede the stereo

matching process and interfere with the obser-

ver’s ability to accurately perceive the object’s

3D shape [39]. In single images, however, high-

lighting silhouette and contour edges can be an

effective way to emphasize the basic structure of

the form [40]. There is abundant evidence from

psychophysical research that our visual system

is adept at inferring information about the 3D

shape of an object from the dynamic deform-

ation of its silhouette as it rotates in depth [42]

and from the curvature characteristics of the

outline of its 2D projection in static flat images

[41].

Although silhouettes and contours are im-

portant shape descriptors, alone they are not

ordinarily sufficient to unambiguously describe

the essential shape of a 3D object. In addition

to using silhouette and contour curves, artists

often also include in their line drawings lines that

indicate other sorts of visual discontinuities.

These include discontinuities in shape, shading,

color, texture, and function. Recognizing this,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 788

788 Perceptual Issues in Visualization

methods have been developed for automatically

generating a line drawing style representation

from a 2D image based on local functions

of the pixel intensities [43]. Similarly, view-

dependent methods have been developed to

identify shape-emphasizing feature lines in pro-

jected 3D data based on the detection of C1 or

C2 discontinuities in depth distance (from

the viewpoint to the first encountered surface)

between neighboring image points [40].

In our research, we have sought to identify

supplementary characteristic lines that can be

used to highlight additional perceptually or in-

trinsically significant shape features of arbitrary

3D objects, independent of any particular view-

point. For several reasons, the most promising

candidates for this purpose are the valley and

sharp ridge lines on a smoothly curving object

and the sharp creases, either convex or concave,

on a polygonally defined surface. These lines

derive importance first of all because they give

rise to a variety of visual discontinuities. Prom-

inent shading discontinuities are likely to be

found at sharp creases on any object; on

smoothly curving forms, specular highlights

are relatively more likely to be found along or

near ridges, where the surface normals locally

span a relatively larger range of orientations,

and sharp valleys have a higher probability of

remaining in shadow. Miller [44] demonstrated

impressive results using ‘‘accessibility shading’’

to selectively darken narrow concave depres-

sions in polygonally defined models. Equally

important was their association with shading

discontinuities, crease lines, and valley lines in

particular, which derived perceptual significance

from their ability to specify the structural skel-

eton of a 3D form in an intuitively meaningful

way. Since 1954 [45], psychologists have found

evidence that the points of curvature extrema

play a privileged role in observers’ encodings of

the shape of an object’s contour. Recent re-

search in object perception and recognition has

suggested that people may mentally represent

objects as being composed of parts [46,47],

with the objects perceived as subdividing into

parts along their valley lines [48,49].

Drawing upon this inspiration from art and

insight from visual perception, we developed

two distinct algorithms for highlighting feature

lines on 3D surfaces for the purposes of facili-

tating appreciation of their 3D shapes. The first

is an algorithm for highlighting valley lines on

smoothly curving isointensity surfaces defined

in volumetric data [51] (Fig. 40.5). The basic

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 789

Figure 40.5 By selectively highlighting valley lines, we aim

to enhance the perception of important shape features on a

transparent surface in a visualization of 3D radiation therapy

treatment planning data. (Top) The skin rendered as a fully

opaque surface. (Middle) The skin rendered as a fully trans-

parent surface, in order to permit viewing of the internal

structures. (Bottom) The skin rendered as a transparent sur-

face with selected opaque points, located along the valley

lines. The bottom view is intended to facilitate perception/

recognition of the presence of sensitive soft tissue structures

that should be avoided by radiation beams in a good treat-

ment plan. Data courtesy of Dr. Julian Rosenman. Middle

and lower images � IEEE. (See also color insert.)

Art and Science in Visualization 789

algorithm works as follows. On a smoothly

curving surface, valley lines are mathematically

defined as the locus of points where the normal

curvature is locally minimum in the direction of

least negative curvature [38]. One can deter-

mine, for each point on a surface, whether it

should be considered to lie on a ridge or valley

line by computing the principal directions and

principal curvatures of the surface at that point

and then checking to see if the magnitude of the

strongest principal curvature assumes an ex-

treme value compared to the magnitudes of the

corresponding principal curvatures at the sur-

rounding points on the surface in the corres-

ponding principal direction. To compute the

principal directions and principal curvatures at

any point in a volumetric dataset, one can begin

by taking the greylevel gradient [50], in our case

computed using a Gaussian-weighted filter over

a 3� 3� 3 voxel neighborhood, to indicate the

surface normal direction,!e3. Choosing any two

arbitrary orthogonal directions !e1 and !e2 that

span the tangent plane defined by !e3 gives an

orthogonal frame at the point. It is then

straightforward to obtain a principal frame by

computing the Second Fundamental Form,

A ¼
~vv13

1 ~vv23
1

~vv13
2 ~vv23

2

" #
, where ~vvi3

j is determined by

the dot product of ei and the first derivative of

the gradient in the ej direction, and then diag-

onalizing it to obtain D ¼ k1 0

0 k2

� �
and

P ¼ n1u n2u

n1v n2v

� �
, where A ¼ PDP�1 and

jk1j > jk2j. The principal directions !e1 and !e2

are then given by n1u
!
e1 þ n1v

!
e2 and

n2u
!
e1 þ n2v

!
e2 respectively. In our implementa-

tion, we highlighted what we determined to be

perceptually significant valley lines by increas-

ing the opacities of candidate valley points by

an amount proportional to the magnitude of the

principal curvature at the point, if that curva-

ture exceeded a fixed minimum value.

Our second algorithm [52] was developed for

applications involving the visualization of sur-

face mesh data (Fig. 40.6). In this case the goal

was to determine which mesh edges were most

important to show in order to convey a full and

accurate impression of the 3D shape of the sur-

face in the absence of shading cues. In addition

to silhouette and contour edges, our algorithm

marked for display selected internal crease edges

where the angle between neighboring triangles

was locally relatively sharp, in comparison with

the angles subtended across other edges in the

immediate vicinity.

40.4 Case Study 3: Clarifying the 3D
Shapes, and Relative Positions in Depth, of
Arbitrary Smoothly Curving Surfaces via
Texture

The final case study I describe in this chapter

concerns the development of visualization tech-

niques intended to facilitate the accurate and

intuitive understanding of the 3D shapes and

relative positions in depth of arbitrary smoothly

curving, transparent surfaces that are not easily

characterized by a small number of feature lines.

Examples of such surfaces arise in many appli-

cations in visualization, from medical imaging

to molecular modeling to aerospace engineer-

ing, where scientists seek insight into their data

through the visualization of multiple level sur-

faces in one or more 3D scalar distributions. In

striving to accomplish this goal I again found

great value in drawing upon both inspiration

from the practices used by accomplished artists

and insight from fundamental research in visual

perception.

40.4.1 Cues to 3D Shape and Depth

As a first step in determining how to most effect-

ively convey the 3D shapes and depths of

smoothly curving transparent surfaces in com-

puter-generated images, it is useful to briefly

consider the questions of 1) how we ordinarily

infer shape and depth information from visual

input and 2) why the shapes and depths of trans-

parent surfaces can be difficult to adequately

perceive, even in everyday experience. Since a

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 790

790 Perceptual Issues in Visualization

full discussion of shape and depth perception is

beyond the scope of this chapter, I focus here on

the most important, relevant aspects of scene

construction that are typically under the control

of the visualization developer: viewpoint and

projection, lighting, and the definition of surface

material properties.

After occlusion, which unambiguously speci-

fies the depth-order relationships of overlapping

surfaces, linear perspective is one of the

strongest available pictorial cues to depth.

Under linear perspective, lines that are parallel

in 3D appear in a projected image to converge

towards one or more vanishing points as they

recede into the distance, and objects accordingly

appear smaller/increasingly skewed, with in-

creasing distance from the viewpoint/increasing

eccentricity from the center of projection [53]. In

an orthographic projection, or a perspective

projection subtending a very narrow field of

view, these convergence cues and size gradients

are forfeited. The selection of an appropriate

vantage point with respect to an object is also

a consideration of some importance. In choos-

ing preferred views for objects, observers appear

to use task-dependent strategies [55]. Nongene-

ric viewpoints, in which accidental alignments

or occlusions of particular object features for-

tuitously occur, have the greatest potential to be

misleading [54].

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 791

Figure 40.6 By highlighting feature lines on a surface mesh, we may enhance appreciation of the essential structure of the form,

a goal that assumes particular importance under conditions where the use of surface shading is problematic. Clockwise from top

left: the full original mesh; the silhouette and contour edges only; the silhouette and contour edges highlighted in a surface

rendering in which polygon color is defined purely as a function of the value of a scalar parameter that is being visualized over

the mesh; same as previous, except that the feature line set is augmented by crease edges determined by our algorithm to be

locally perceptually significant. Data courtesy of Dimitri Mavriplis. (See also color insert.)

Art and Science in Visualization 791

Lighting is a complex and important factor

that can influence the perception of a scene in

multifaceted ways, as is well understood in fields

related to the cinema and stage. For visualiza-

tion purposes, in addition to effects of shadows

on depth perception, which were mentioned

earlier, we need to consider how best to control

lighting parameters to facilitate an accurate per-

ception of shape from shading. It has long been

recognized that people are accustomed to things

being lit from ‘‘above’’ [56], and that among the

deleterious effects of directing light toward a

surface from below is an increased chance of

fostering depth reversal, where convexities are

perceived as concavities and vice versa [57].

Recent research suggests more specifically a

bias toward the assumption that lighting is

coming from the above-left, possibly attribut-

able to cerebral lateralization [58]. Somewhat

less dramatic but also significant are the shape-

enhancing effects of defining lighting to be at an

oblique angle, as opposed to head-on [59],

whereby shading gradients on surfaces receding

in depth are enhanced.

It perhaps is in the definition of surface ma-

terial properties that the greatest hitherto un-

tapped potential lies for facilitating shape and

depth perception in visualizations of surface

data. Before addressing this topic, however,

I would like to discuss the remaining issue of

why transparent surfaces are so difficult to ad-

equately perceive, which will help suggest how

material properties might be selected to best

advantage.

Plain transparent surfaces clearly provide im-

poverished cues to shape and depth. Shape-

from-shading information is available only

through the presence of specular highlights,

which, in binocular vision, are perceived not to

lie on the curved surface of an object but to float

behind the surface if the object is locally convex

and in front of the surface if it is locally concave

[60]. Cues to the presence of contours, where the

surface normal is orthogonal to the line of sight,

are provided by the distorting effects of refrac-

tion; however, this comes at a significant cost to

the clarity of visibility of the underlying mater-

ial. When artists portray transparent surfaces,

they similarly tend to rely heavily on the use of

specular highlights (Lucas Cranach) [61], specu-

lar reflection (Don Eddy) [63], and/or refractive

distortion (Janet Fish) [62].

While it would be misleading to downplay the

potential merits of employing a fully physically

correct model of transparency for visualization

applications—refraction provides a natural way

to emphasize silhouettes and contours, and

might also provide good cues as to the thickness

of a transparent layer—it is at the same time

clear that the visualization goal of enabling the

effective simultaneous understanding of mul-

tiple layers will not be met simply by achieving

photorealism in the surface rendering. Some-

thing must be done to supplement the shape

and depth cues available in the scene. The solu-

tion that we came up with in our research was to

‘‘stick something onto’’ the surface, in the form

of carefully designed, subtle, uniformly distrib-

uted texture markings, that can provide valu-

able cues to the surface shape, along with

explicit cues to the surface depth, in a way that

is not possible through reliance on specular

highlights.

Before moving on to the discussion of surface

textures, a final point in regard to the rendering

of transparent surfaces bears mentioning. There

are several alternative models for surface trans-

parency, corresponding to different types of

transparent material. The first model (Fig.

40.7a) corresponds to the case where you have

an opaque material, such as a gauze curtain,

that is very finely distributed, so that over a

finite area it is both partly present and partly

absent. This is the type of transparency

represented by the ‘‘additive model’’:

I ¼ If � af þ Ib � (1� af), where af is the (wave-

length-independent) opacity of the transparent

foreground material and If is its intensity, while

Ib is the intensity of the background material. If

a surface rendered using this model is folded

upon itself multiple times, the color in the over-

lap region will, in the limit, converge to the

color of the material; shadows cast by this ma-

terial will be black. A second model (Fig. 40.7b)

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 792

792 Perceptual Issues in Visualization

corresponds to the case where you have a semi-

transparent material that impedes the transmis-

sion of certain wavelengths of light. This type of

transparency can be approximated by a ‘‘multi-

plicative model’’: I ¼ af Ib, where af is the

(wavelength-dependent) transmissivity of the

foreground material. Multiple layers of this ma-

terial will, in the limit, converge to looking black;

shadows cast by this material will be colored.

Other approaches, incorporating both additive

and multiplicative combinations of foreground

and background material, are also possible.

40.4.2 Using Texture on Surfaces to Clarify
Shape

Having determined to attempt to clarify the 3D

shapes of external transparent surfaces through

the addition of sparsely distributed texture

markings, we now ask what sort of markings

we should add. If we could define the ideal

texture pattern to apply to an arbitrary

smoothly curving surface in order to enable its

3D shape to be most accurately and effectively

perceived, what would the characteristics of that

texture pattern be? To answer this question we

again turn for inspiration to the observation of

the practices of artists and illustrators, and for

insight to the results of research in psychology

on the perception of shape from texture.

In stipple drawings, artists carefully control

the density of pen markings in order to achieve

a desired distribution of tone. With line draw-

ings, in addition to achieving variations in tone,

there is the additional concern of carefully con-

trolling the directions of the lines in order to

emphasize the surface shape. Although there is

no precise or universally recognized convention

for defining the directions of pen strokes in line

drawings, artists and illustrators have fre-

quently noted the importance of using stroke

direction appropriately, and have variously

cited advantages for effectively conveying

shape, in using lines that ‘‘follow the contours

of the form’’ [64] or that run ‘‘at right angles to

the length of the form’’ [65].

The significance of texture’s effect on shape

(slant) perception was first emphasized in the

research literature and formally studied by

James Gibson [66]. Using two different wall-

paper patterns on large flat boards, viewed

through a circular aperture, he found that

slant perception was not only significantly

more accurate under either texture condition

than under the control condition of no texture,

but also that accuracy was greatest in the case of

the more ‘‘regular’’ texture pattern. In subse-

quent studies comparing the effects of different

aspects of ‘‘texture regularity,’’ researchers

found evidence that regularity in element size,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 793

Figure 40.7 Examples of two different models of transparency. (Left) Additive transparency, exhibited by materials such as

gauze that are intrinsically opaque but only intermittently present. (Right) Multiplicative or subtractive transparency, exhibited

by materials, such as colored glass, that selectively filter transmitted light. (See also color insert.)

Art and Science in Visualization 793

element shape, and element placement all had a

positive effect in improving slant perception ac-

curacy [67]. Ultimately, it was determined that

linear convergence cues (from perspective pro-

jection) play the dominant role in slant percep-

tion from texture [68,69]. Looking at the effects

of texture on shape perception in the case of

curved surfaces, Cutting and Millard [70]

found evidence primarily for the importance of

‘‘texture compression’’ cues, manifested as the

changes in the projected shapes of circular tex-

ture elements. In later studies, Cumming et al.

[71] found support for these findings. Evaluat-

ing the relative impacts of veridical size, density,

and compression gradients on curvature percep-

tion accuracy under stereo viewing conditions,

they found that perceived curvature was least

when element compression was held constant,

while the presence or absence of appropriate

gradients in element size and/or spacing had little

effect on curvature perception accuracy. These

results are important because they provide clear

evidence that the particular characteristics of a

surface texture pattern can significantly affect

shape perception, even in the presence of robust,

veridical cues to shape from stereo.

Still, it remains unclear what sort of texture

we should choose to apply to a surface in order

to facilitate perception of its shape. Stevens [72],

informally observing images from the Brodatz

[73] texture album pasted onto a cylindrical

form and viewed monocularly under conditions

that minimized shading cues, reported

obtaining a compelling impression of surface

curvature only in the cases of the wire mesh

and rattan textures, the most regular, synthetic

patterns. However, observing an extensive var-

iety of line-based texture patterns projected

onto a complicated, doubly curved surface, ob-

liquely oriented so as to exhibit contour occlu-

sions, Todd and Reichel [74] noted that a

qualitative perception of shape from texture

seems to be afforded under a wide range of

texturing conditions. Computer vision algo-

rithms for the estimation of surface orientation

from texture generally work from assumptions

of texture isotropy or texture homogeneity.

Rosenholtz and Malik [75] found evidence that

human observers use cues provided by devi-

ations from both isotropy and homogeneity in

making surface orientation judgments. Stone

[76] notes that particular problems are caused

for perception by textures that are not ‘‘homo-

tropic’’ (in which the dominant direction of the

texture anisotropy varies across the texture

pattern). Optical artists such as Brigit Riley

have exploited this assumption to create striking

illusions of relief from patterns of waving lines.

Mamassian and Landy [77] found that obser-

vers’ interpretations of surface shape from

simple line drawings are consistent with the

following biases under conditions of ambiguity:

to perceive convex, as opposed to concave, sur-

faces; to assume that the viewpoint is from

above; and to interpret lines as if they were

oriented in the principal directions on a surface.

Knill [78] suggests that texture patterns with

oriented components, which under the assump-

tion of texture pattern homogeneity are con-

strained to follow parallel geodesics on

developable surfaces, may provide more percep-

tually salient cues to surface shape than iso-

tropic patterns. Finally, Li and Zaidi [79,80]

have shown that observers can reliably discrim-

inate convex from concave regions in front-

facing views of a vertically oriented sinusoidally

corrugated surface only when a perspective pro-

jection is used and the texture pattern contains

patterns of oriented energy that follow the first

principal direction. However, in more recent

studies, considering a wider range of view-

points, they have found indications that the

texture conditions necessary to ensure the ver-

idical perception of convexity vs. concavity are

more complicated than previously believed [81].

Because of historical limitations in the cap-

abilities of classical texture-mapping software

and algorithms, with few exceptions nearly all

studies investigating the effect of surface texture

on shape perception that have been conducted

to date have been restricted either to the use of

developable surfaces—which can be rolled out

to lie flat on a plane—or to the use of procedur-

ally defined solid texture patterns, whose char-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 794

794 Perceptual Issues in Visualization

acteristics are in general independent of the

geometry of the surfaces to which they are ap-

plied. For several years we have believed that

important new insights into texture’s effect on

shape perception might be gained through stud-

ies conducted under less restrictive surface and

texture pattern conditions. In the final part of

this section I will describe the algorithms that

we derived for the controlled synthesis of arbi-

trary texture patterns over arbitrary surfaces

and the results of the studies we have recently

undertaken in pursuit of a deeper understanding

of how we might best create and apply custom

texture patterns to surfaces in scientific datasets

in order to most effectively facilitate accurate

perception of their 3D shapes.

In our first studies [82], involving indirect

judgments of shape and distance perception

under different texture conditions on layered

transparent surfaces extracted from radiation

therapy treatment planning datasets (Fig.

40.8), we created a variety of solid texture pat-

terns by scan-converting individual texture

elements (spheres, planes, or rectangular

prisms) into a 3D volume at points correspond-

ing to evenly distributed locations over a pre-

identified isosurface. We found clear evidence

that performance was better in the presence of

texture, but we did not find a significant main

effect of texture type. As expected, ‘‘sticking

something onto the surface’’ helped, but the

question of how best to define helpful texture

markings remained open. Unfortunately, none

of the textures we were able to achieve using this

discrete element approach yet resembled any-

thing one might find in an artist’s line drawing.

Shortly afterward, we developed an improved

method for synthesizing a more continuous sur-

face texture pattern that everywhere followed

the first principal direction over an arbitrary

doubly curved surface [83]. To achieve this tex-

ture pattern we began by scattering a number of

discrete high-intensity point elements evenly

throughout an otherwise empty 3D volume,

according to an approximate Poisson distribu-

tion. The location of each point element was

determined by dividing the volume into uni-

formly sized cells and randomly selecting a lo-

cation within each cell, under the restriction that

no location could be selected that was within a

predetermined distance from any previously

chosen point. In a separate process, we precom-

puted the vector field of the first principal direc-

tions of the iso-level surfaces defined at every

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 795

Figure 40.8 A variety of sparse textures applied to the same external transparent surface.

Art and Science in Visualization 795

point in the 3D volume dataset, using the prin-

cipal direction computation approach described

in Section 40.3.2 of this chapter. Finally, we

used 3D line integral convolution to ‘‘comb

out’’ the distributed point texture along the

lines of curvature defined by the principal direc-

tion vector field (Fig. 40.9), to obtain a single

solid texture that could be applied to any iso-

level surface in the volume data (Fig. 40.10). In

order to avoid artifacts in the pattern at the

points where the first and second principal dir-

ections switched places, we forced the filter

kernel length to reduce to zero in the vicinity

of these umbilic points.

Although these results were encouraging, im-

portant tasks remained. The first was to object-

ively evaluate the relative effectiveness of the

new LIC-based principal direction texturing ap-

proach, and in particular to rigorously examine

the impact of texture orientation on shape

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 796

Figure 40.9 (Left) A texture of evenly distributed points over three slices in a volume. (Right) The results after advecting the

texture according to the first principal direction vector field using 3D line integral convolution.

Figure 40.10 A 3D line integral convolution texture applied to a transparent iso-intensity surface in a 3D radiation-therapy

treatment planning dataset. Data courtesy of Dr. Julian Rosenman.

796 Perceptual Issues in Visualization

perception in the case of complicated doubly

curving surfaces. The second was to pursue de-

velopment of a flexible, robust principal direc-

tion texturing method that could be applied to

polygonal datasets (Fig. 40.11). The two princi-

pal challenges in that regard were to define a

method for obtaining accurate estimates of the

principal directions at the vertices of an arbi-

trary polygonal mesh and to determine how to

synthesize an arbitrary texture pattern over an

arbitrary doubly curved surface, in a way that

avoided both seams and stretching and such

that the dominant orientation in the texture

pattern everywhere locally followed the first

principal direction vector field.

While several methods have been previously

proposed for estimating principal directions and

principal curvatures at points on meshes [85,86],

we have found in practice that all exhibit unex-

plained large errors in some cases. Recently, we

set out to investigate the sources of these errors,

and in the process we developed a new method

for principal direction estimation that appears

to produce better results [87]. Unfortunately,

space does not permit a full description of that

approach here, but the essential insights are

these: 1) large errors can, and do, occur at

points that are far from being umbilic; 2) errors

are most problematic when the underlying mesh

parameterization is not regular; and 3) we can

use the vertex location and (approximate) sur-

face normal information available at the neigh-

boring points to a vertex to achieve a least

squares cubic surface fit to the mesh at that

point, which appears to offer better potential

for a more accurate fit than when the surface is

locally restricted to be quadratic. The open

questions that remain are how to robustly re-

solve problems that arise due to the first and

second principal directions switching places on

either side of critical points; how to gracefully

determine an appropriate texture or stroke dir-

ection across patches of umbilic points, where

the principal directions are undefined; and how

to balance the concern of emphasizing shape

with the concern of minimizing the salience of

extraneous detail. Not all surface perturbations

are worth drawing attention to, and, depending

on the application, it may be desirable to en-

force certain smoothness criteria before using a

computed principal direction vector field for

texture definition purposes.

In the first of our most recent experiments

[93] intended to gain insights into methods for

using texture effectively for shape representa-

tion, we investigated the effect of the presence

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 797

Figure 40.11 A line drawing of a brain dataset, generated by Steve Haker [84], in which tiny straight strokes are oriented in the

first principal direction at vertices in the surface mesh.

Art and Science in Visualization 797

and direction of luminance texture pattern an-

isotropy on the accuracy of observers’ judg-

ments of 3D surface shape. Specifically, we

sought to determine 1) whether shape percep-

tion is improved, over the default condition of

an isotropic pattern, when the texture pattern is

elongated in the first principal direction; and 2)

whether shape perception is hindered, over the

default condition of an isotropic pattern, when

the texture is elongated in a constant or varying

direction other than the first principal direction.

We had five participants, using a surface atti-

tude probe [88], make judgments about local

surface orientation at 49 evenly spaced points

on each of six different smoothly curving sur-

faces, under each of four different luminance

texture conditions. All of the texture patterns

for this study were created via 3D line integral

convolution, using either a random/isotropic

vector field (rdir), a first principal direction

vector field (pdir), a vector field following a

constant uniform direction (udir), or a vector

field following a sinusoidally varying path

(sdir). Sample stimuli are shown in Fig. 40.12.

The experiment was repeated under two differ-

ent viewing conditions, flat and stereo. Charts

summarizing the results are shown in Fig. 40.13.

In the flat viewing condition, we found that

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 798

Figure 40.12 Representative examples of the sample stimuli used in our first recent experiment investigating the effect of

texture orientation on the accuracy of observers’ surface shape judgments. From left to right: Isotropic (rdir), Uniform (udir),

Swirly (sdir), and Principal Direction (pdir).

25.06

32.08
33.12

26.77

0
pdir sdir udir ndir

4

10

15

20

25

30

35

0
pdir sdir udir ndir

4

10

15

20

25

30

35

18.8
20.47 20.31

17.63

Figure 40.13 Pooled results (mean angle error) for all subjects, all surfaces, by texture type. (Left) flat presentation; the

differences {pdir,rdir} < {sdir, udir} were significant at the 0.05 level. (Right) stereo presentation; only the differences {rdir <

sdir, udir} were significant at the 0.05 level. (See also color insert.)

798 Perceptual Issues in Visualization

performance was significantly better in the cases

of the pdir and rdir patterns than in the cases of

the sdir and udir patterns. Accuracy was signifi-

cantly improved in the stereo vs. the flat viewing

condition for all texture types. Performance

remained marginally better in the cases of the

isotropic and principal direction patterns than

under the other two texture conditions, but sig-

nificance was achieved only in the rdir case.

These results are consistent with the hypothesis

that texture pattern anisotropy can impede sur-

face shape perception when the elongated mark-

ings are oriented in a way that is different from

the principal direction, but they do not support

the hypothesis that principal direction textures

will facilitate shape perception to a greater

extent than will isotropic patterns.

In a follow-up study [94], we repeated the

experiment using displacement textures instead

of luminance textures, and we found the same

pattern of results. However, two important

questions were raised by this work. First, why

does shape perception seem to be most accurate

in the principal direction orientation condition,

when there is little ecological justification for a

texture pattern being oriented in the principal

directions across a doubly curved surface? Is it

because, from a generic viewpoint, the contours

traced by a principal direction texture have the

greatest potential to reveal the surface curvature

to a maximum extent, while the contour traced

out by the texture flow along any other direction

at that point and for the same view will be

intrinsically more flat, which may represent a

loss of shape information that is not recover-

able? Second, on arbitrary doubly curved sur-

faces, there are two orthogonal directions in

which the normal curvature generically assumes

a nonzero extremum. Although these directions

can be reliably classified into two types, the first

principal direction and the second principal dir-

ection, there is not a clear algorithm for deter-

mining which of these two directions a singly

oriented directional texture should follow at any

point in order to minimize artifacts due to the

apparent turning of the texture pattern in the

surface. Is it possible that the effectiveness of

the pdir texture used in this first experiment

was compromised by these ‘‘corner’’ artifacts,

and that we might be able to more effectively

facilitate shape perception using an orthogon-

ally bidirectional principal direction oriented

pattern—one that has 908 rotational sym-

metry?

In order to investigate these questions, we

needed to conduct further studies and to de-

velop a more general texture synthesis method

capable of achieving a wider variety of oriented

patterns over surfaces.

Inspired by Efros and Leung’s [90] algorithm

for synthesizing unlimited quantities of a tex-

ture pattern that is nearly perceptually identical

to a provided 2D sample, we developed a fast

and efficient method for synthesizing a fitted

texture pattern, without visible seams or pro-

jective distortion, over a polygonal model,

such that the texture pattern orientation is con-

strained to be aligned with a specified vector

field at a per-pixel level [91]. Our method

works by partitioning the surface into a set of

equally sized patches, then using a two-pass

variant of the original Efros and Leung method

to synthesize a texture for each patch, being

careful to maintain pattern continuity across

patch boundaries, and performing the texture

lookup, at each point, in an appropriately ro-

tated copy of the original texture sample, in

order to achieve the desired local pattern orien-

tation.

Using this system to render a new set of tex-

tured surface stimuli, we undertook a second

experiment [92] intended to evaluate the infor-

mation carrying capacities of two different base

texture patterns (one singly oriented and one

doubly oriented), under three different orienta-

tion conditions (pdir, udir, and sdir) and two

different viewing conditions (upright and back-

ward slanting). In a four-alternative forced

choice task, over the course of 672 trials, three

participants were asked to identify the quadrant

in which two simultaneously displayed B-spline

surfaces, illuminated from different random dir-

ections, appeared to differ in their shapes. We

found that participants were consistently able to

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 799

Art and Science in Visualization 799

more reliably perceive smaller shape differences

when the surfaces were textured with a pattern

whose orientation followed one of the principal

directions than when the surfaces were textured

either with a pattern that gradually swirled in

the surface or with a pattern that followed a

constant uniform direction in the tangent

plane. We did not find a significant effect of

texture type (performance was only marginally

better overall in the two-directional case) or of

surface orientation (performance was only

marginally better overall in the tilted vs. front-

facing case), nor evidence of an interaction

between texture type and surface orientation.

Sample stimuli and summary results are shown

in Figs. 40.14 and 40.15. These findings support

the hypothesis that anisotropic textures not

aligned with the first principal direction may

support shape perception more poorly, for a

generic view, than principal direction–oriented

anisotropic patterns, which can provide cues as

to the maximal amount of surface normal

curvature in a local region. However, this

study did not yield much insight into the poten-

tial effects on shape perception of principal-

direction texture type.

In our third recent experiment [89], we focused

on the question of whether some principal-direc-

tion texture patterns might be more effective for

conveying shape than others, and, if so, what the

particular characteristics of these principal dir-

ection patterns might be. Five participants each

adjusted surface attitude probes to provide sur-

face orientation estimates at two different loca-

tions over five different surfaces under each

of four different texture conditions. With

five repeated measures, we had a total of 200

trials per person. We compared performance

under the control condition of no texture

to performance under three different texture

type conditions: a high-contrast, one-directional

line pattern that everywhere followed the first

principal direction (1dir); a lower-contrast, one-

directional line integral convolution pattern that

similarly followed the first principal direction

(lic); and a medium-high-contrast, two-direc-

tional grid pattern that was everywhere in align-

ment with both principal directions (2dir). All

patterns had equivalent mean luminance.

Sample stimuli are shown in Fig. 40.16. We

used the statistical software package MacA-

nova, developed by Prof. Gary Oehlert from

the Department of Statistics at the University

of Minnesota, to perform a three-way (within

subjects) mixed analysis of variance (ANOVA)

to evaluate the statistical significance of the

results. We found significant main effects of

probe location (p¼0.0000264) and texture type

(p¼0.0002843), and a significant two-way inter-

action between texture type and probe location

(p<0.00000001). We did not find a significant

main effect of subject id (p ¼ 0.18) nor a signifi-

cant interaction between subject and texture

type (p ¼ 0.62). We used Tukey’s Honestly Sig-

nificant Difference (HSD) method to perform

post-hoc pairwise comparisons of the means

of the angle errors under the different texture

conditions. We found that the following differ-

ences were statistically significant at the

0.01 level: 2-dir < 1-dir, 2-dir < None, 1-dir <

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 800

Next Quit TOGGLE LINES NO QUADRANT HAS BEEN CHOSEN YET Next Quit TOGGLE LINES NO QUADRANT HAS BEEN CHOSEN YET Next Quit TOGGLE LINES NO QUADRANT HAS BEEN CHOSEN YET

Figure 40.14 Representative stimuli used in our second experiment to investigate the relative extents to which differently

oriented patterns have the potential to mask the perceptibility of subtle shape differences. The texture conditions are, from left to

right, principal direction, swirly direction, and uniform direction. (See also color insert.)

800 Perceptual Issues in Visualization

None, and LIC <None. The difference between

performance in the 2-dir and LIC conditions was

not statistically significant at the 0.01 level, nor

was the performance difference between the LIC

and the 1-dir conditions. Charts summarizing

these results are shown in Fig. 40.17.

Through all of the efforts summarized in this

section, we have realized that determining the

characteristics of a texture pattern that is best

able to facilitate surface shape perception is not

as straightforward an undertaking as it first

might seem. Conducting controlled experiments

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 801

0
10
20
30
40
50
60
70
80
90

100

Unit Level Difference
0 1 2 3 4 5 6 7 8

Uniform Direction Second Half

P
er

ce
nt

 C
or

re
ct

K
I
V

0
10
20
30
40
50
60
70
80
90

100

Unit Level Difference
0 1 2 3 4 5 6 7 8

Principal Direction Second Half
P

er
ce

nt
 C

or
re

ct

0
10
20
30
40
50
60
70
80
90

100

Unit Level Difference
0 1 2 3 4 5 6 7 8

Swirly Direction Second Half

P
er

ce
nt

 C
or

re
ct

K
I
V

K
I
V

Figure 40.15 Summary results of our second experiment. Accuracy increased with increasing magnitude of shape difference in

all cases, but it increased at a faster rate under the principal direction texture condition. Error bars represent 95% confidence

intervals. (See also color insert.)

Figure 40.16 A test surface from our third experiment, in the control condition of no texture (left), and (from left to right)

under the three studied principal direction texture conditions: 1dir, lic, and 2dir.

Art and Science in Visualization 801

is a delicate and time-consuming business, and

success is never guaranteed. However, through

our efforts, we have been able to answer many

important questions about the suitability of

principal-direction-oriented patterns for shape

representation, and the open questions that

remain provide a welcome challenge for future

work.

40.5 Conclusions

The process of creating an effective visual repre-

sentation of a set of data is both an art and a

science, requiring extensive efforts in visualiza-

tion design, implementation, and evaluation.

For visualization design, there are significant

potential benefits in seeking inspiration from

previous graphical work in art, illustration,

visual communication, and design, and in seek-

ing insights from research in vision and visual

perception. The process of implementation—

figuring out how to develop the algorithms ne-

cessary to translate our vision of the results we

want to achieve into a reality—(though dealt

with only lightly in this chapter) are of extreme

importance, and this has historically been where

the field of visualization has seen its greatest

successes. Evaluation, through informal obser-

vation or, more rigorously, through controlled

observer experiments, can be critical in clarify-

ing our understanding of the strengths and

weaknesses of alternative visualization ap-

proaches and for assessing the practical merits

of a particular visualization approach for a spe-

cific task. Most importantly, evaluation helps us

to better understand not only what works and

what doesn’t, and by how much, but also to

gain insight into why. Based on this insight,

we are better equipped to go back to the

design stage and work on developing yet more

effective approaches to meet our visualization

objectives.

References

1. A. Loomis. Creative Illustration. The Viking
Press, 1947.

2. E. W. Watson. The Art of Pencil Drawing. Wat-
son-Guptill Publications, 1968.

3. A. L. Guptill. Rendering in Pen and Ink. Watson-
Guptill Publications, 1976.

4. S. McCloud. Understanding Comics: The Invisible
Art. Harper Perennial, 1994.

5. Y. Ostrovsky, P. Cavanagh, and P. Sinha. Per-
ceiving illumination inconsistencies in scenes.
AI Memo #2001-029, MIT, November 2001.

6. D. Kersten, P. Mamassian, and D. C. Knill.
Moving cast shadows induce apparent motion
in depth. Perception, 26(2):171–192, 1997.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 802

18.093 19.085

22.036
24.268

0.000

5000

10 000

15 000

20 000

25 000

30 000
Overall Median Angle Error

2-dir t-dir noneLIC

Figure 40.17 The results of the third cumulative experiment. (See also color insert.)

802 Perceptual Issues in Visualization

7. H. Hu, A. A. Gooch, W. B. Thompson,
B. E. Smits, J. J. Rieser, and P. Shirley. Visual
cues for imminent object contact in realistic
virtual environments. Proceedings of IEEE
Visualization 2000, pages 179–185.

8. C. Madison, W. Thompson, D. Kersten,
P. Shirley, and B. Smits. Use of interreflection
and shadow for surface contact. Perception &
Psychophysics, 63(2):187–194, 2001.

9. P. Cavanagh and Y. G. Leclerc. Shape from
shadows. Journal of Experimental Psychology:
Human Perception and Performance, 15(1):3–27,
1989.

10. J. J. Gibson. The Perception of the Visual World.
Houghton-Mifflin, 1950.

11. D. Stalling, M. Zöckler, and H.-C. Hege. Fast
display of illuminated field lines. IEEE Transac-
tions on Visualization and Computer Graphics,
3(2):118–128, 1997.

12. D. C. Banks. Illumination in diverse codimen-
sions. Computer Graphics Proceedings, Annual
Conference Series, pages 327–334, 1994.

13. A. Yonas, L. T. Goldsmith, and J. L. Hall-
strom. Development of sensitivity to informa-
tion provided by cast shadows in pictures.
Perception, 7(3):333–341, 1978.

14. K. Nakayama and S. Shimojo. Da Vinci stere-
opsis: depth and subjective contours from
unpaired image points. Vision Research,
30(11):1811–1825, 1990.

15. C. Wheatstone. On some remarkable, and hith-
erto unobserved, phenomena of binocular
vision. Philosophical Transactions of the Royal
Society of London, 128:371–394, 1838.

16. V. Interrante and C. Grosch. Visualizing 3D
flow. IEEE Computer Graphics and Applications,
18(4):49–53, 1998.

17. B. Cabral and L. C. Leedom. Imaging vector
fields using line integral convolution. Computer
Graphics Proceedings, Annual Conference Series,
pages 263–270, 1993.

18. D. Stalling and H.-C. Hege. Fast and resolution
independent line integral convolution. Com-
puter Graphics Proceedings, Annual Conference
Series, pages 249–256, 1995.

19. A. Appel, F. J. Rohlf, and A. J. Stein. The
haloed line effect for hidden line elimination.
Proceedings of SIGGRAPH ’79, pages 151–157,
1979.

20. E. R. S. Hodges. The Guild Handbook of
Scientific Illustration. Van Nostrand Reinhold,
1989.

21. B. D. Dillon, Ed. The Student’s Guide to Arch-
aeological Illustrating. Institute of Archaeology,
University of California, Los Angeles, 1981.

22. E. Imhof. Cartographic Relief Presentation. De
Gruyter, 1982.

23. J. L. Ridgway. Scientific Illustration. Stanford
University Press, 1938.

24. W. E. Loechel. Medical Illustration: A Guide for
the Doctor-Author and Exhibitor. Charles C.
Thomas, 1964.

25. L. R. Addington. Lithic Illustration: Drawing
Flaked Stone Artifacts for Publication. The Uni-
versity of Chicago Press, 1986.

26. G. R. Allen and D. R. Robertson. Fishes of the
Tropical Eastern Pacific. University of Hawaii
Press, 1994.

27. T. A. Ryan and C. B. Schwartz. Speed of per-
ception as a function of mode of representation.
American Journal of Psychology, 69:60–69,
1956.

28. D. Fussel and A. Haaland. Communicating
with pictures in Nepal: results of practical
study used in visual education. Educational
Broadcasting International, 11(1):25–31, 1978.

29. K. Hirsh and D. A. McConathy. Picture prefer-
ences of thoracic surgeons. Journal of BioCom-
munications, pages 26–30, 1986.

30. I. Biederman and G. Ju. Surface versus edge-
based determinants of visual recognition. Cog-
nitive Psychology, 20(1):38–64, 1988.

31. G. Davies, H. Ellis, and J. Shepherd. Face recog-
nition accuracy as a function of mode of repre-
sentation. Journal of Applied Psychology,
63(2):180–187, 1978.

32. V. Bruce, E. Hanna, N. Dench, P. Healey, and
M. Burton. The importance of ‘mass’ in line
drawings of faces. Applied Cognitive Psych-
ology, 6(7):619–628, 1992.

33. G. Rhodes, S. Brennan, and S. Carey. Identifi-
cation and ratings of caricatures: implica-
tions for mental representations of faces.
Cognitive Psychology, 19(4):473–497, 1987.

34. L. Anderson, J. Esser, and V. Interrante. A
virtual environment for conceptual design in
architecture. Ninth Eurographics Workshop on
Virtual Environments/Seventh International
Workshop on Immersive Projection Technology,
May 2003.

35. V. Interrante. Harnessing rich natural textures
for multivariate visualization. IEEE Com-
puter Graphics and Applications, 20(6):6–11,
2000.

36. P. Picasso. Study of a Bull’s Head, 5 November
1952.

37. O. Monga and S. Benayoun. Using partial de-
rivatives of 3D images to extract typical surface
features. Computer Vision & Image Understand-
ing, 61(2):171–189, 1995.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 803

Art and Science in Visualization 803

38. J. J. Koenderink. Solid Shape. MIT Press,
1990.

39. V. Interrante. Illustrating Transparency: Com-
municating the 3D Shape of Layered Transparent
Surfaces via Texture. PhD Dissertation, UNC-
Chapel Hill, 1996.

40. T. Saito and T. Takahashi. Comprehensible
rendering of 3-D shapes. Computer Graphics,
24(4):197–206, 1990.

41. W. Richards, J. Koenderink, and D. Hoffman.
Inferring three-dimensional shapes from two-
dimensional silhouettes. Journal of the Optical
Society of America, A, Optics and Imaging Sci-
ence, 4:1168–1175, 1987.

42. H. Wallach and D. N. O’Connell. The kinetic
depth effect. Journal of Experimental Psych-
ology, 45(4):205–217, 1953.

43. D. E. Pearson and J. A. Robinson. Visual
communication at very low data rates. Proceed-
ings of the IEEE, 73(4):795–812, 1985.

44. G. Miller. Efficient algorithms for local and
global accessibility shading. Computer Graphics
Proceedings, Annual Conference Series, pages
319–326, 1994.

45. F. Attneave. Some informational aspects of
visual perception. Psychological Review, 61(3):
183–193, 1954.

46. I. Biederman. Human image understanding:
recent research and a theory. In Human and
Machine Vision, Azriel Rosenfeld, ed., Aca-
demic Press, pages 13–57, 1985.

47. J. M. H. Beusmans, D. D. Hoffman, and B. M.
Bennett. A description of solid shape and its
inference from occluding contours. Journal of
the Optical Society of America A, 4(7):1155–
1167, 1987.

48. D. D. Hoffman and W. A. Richards. Parts of
recognition. Cognition, 18(1-3):65–96, 1984.

49. M. L. Braunstein, D. D. Hoffman, and A. Said-
pour. Parts of visual objects: an experimental
test of the minima rule. Perception, 18(6):817–
826, 1989.

50. K. H. Höhne and R. Bernstein. Shading
3D-Images from CT using gray-level gradients.
IEEE Transactions on Medical Imaging, 5(1):45–
47 (with a correction in 5(3):165), 1986.

51. V. Interrante, H. Fuchs, and S. Pizer. Enhan-
cing transparent skin surfaces with ridge and
valley lines. Proceedings of IEEE Visualization
’95, pages 52–59, 1995.

52. K.-L. Ma and V. Interrante. Extracting feature
lines from 3D unstructured grids. Proceedings of
IEEE Visualization ’97, pages 285–292, 1997.

53. J. M. Kennedy and I. Juricevic. Foreshortening
gives way to forelengthening. Perception,
31(7):893–894, 2002.

54. W. T. Freeman. The generic viewpoint assump-
tion in a framework for visual perception.
Nature, 368(6471):542–545, 1994.

55. D. I. Perrett and M. H. Harries. Characteristic
views and the visual inspection of simple faceted
objects and smooth objects: ‘tetrahedra and po-
tatoes’. Perception, 17(6):703–720, 1988.

56. M. Luckiesh. Light and Shade and Their Appli-
cations. Van Nostrand, 1916.

57. V. S. Ramachandran. Perceiving shape from
shading. Scientific American, 259(2):76–83, 1988.

58. P. Mamassian and R. Goutcher. Prior know-
ledge on the illumination position. Cognition,
81(1):B1–B9, 2001.

59. A. Johnson and P. J. Passmore. Shape from
shading I: surface curvature and orientation.
Perception, 23(2):169–189, 1994.

60. A. Blake and H. Bülthoff. Shape from Specula-
rities: computation and psychophysics. Philo-
sophical Transactions of the Royal Society of
London, B, 331:237–252, 1991.

61. M. J. Friedländer and J. Rosenberg. The Paint-
ings of Lucas Cranach. Cornell University, 1978.

62. V. Katz. Janet Fish: Paintings. New York,
Harry N. Abrams, 2002.

63. D. Kuspit. Don Eddy: the art of paradox. Hud-
son Hills Press, 2002.

64. F. W. Zweifel. A Handbook of Biological Illus-
tration. University of Chicago Press, 1961.

65. E. J. Sullivan. Line: An Art Study. Chapman &
Hall, 1922.

66. J. J. Gibson. The perception of visual surfaces.
American Journal of Psychology, 63:367–384,
1950.

67. H. R. Flock and A. Moscatelli. Variables of
surface texture and accuracy of space percep-
tions. Perceptual and Motor Skills, 19:327–334,
1964.

68. F. Attneave and R. K. Olson. Inferences about
visual mechanisms from monocular depth
effects. Psychonomic Science, 4:133–134, 1966.

69. M. L. Braunstein and J. W. Payne. Perspective
and form ratio as determinants of relative slant
judgments. Journal of Experimental Psychology,
81(3):584–590, 1969.

70. J. E. Cutting and R. T. Millard. Three gradients
and the perception of flat and curved surfaces.
Journal of Experimental Psychology: General,
113(2):198–216, 1984.

71. B. G. Cumming, E. B. Johnston, and A. J.
Parker. Effects of different texture cues on
curved surfaces viewed stereoscopically. Vision
Research, 33(5/6):827–838, 1993.

72. K. A. Stevens. The information content of tex-
ture gradients. Biological Cybernetics, 42:95–
105, 1981.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 804

804 Perceptual Issues in Visualization

73. P. Brodatz. Textures: A Photographic Album for
Artists and Designers. Dover, 1966.

74. J. T. Todd and F. D. Reichel. Visual perception
of smoothly curved surfaces from double-
projected contour patterns. Journal of Experi-
mental Psychology: Human Perception and Per-
formance, 16(3):665–674, 1990.

75. R. Rosenholtz and J. Malik. Surface orientation
from texture: isotropy or homogeneity (or
both)? Vision Research, 37(16):2283–2293, 1997.

76. J. V. Stone. Shape from local and global analy-
sis of texture. Philosophical Transactions of the
Royal Society of London, B, 339:53–65, 1993.

77. P. Mamassian and M. S. Landy. Observer
biases in the 3D interpretation of line drawings.
Vision Research, 38(18):2817–2832, 1998.

78. D. C. Knill. Contour into texture: information
content of surface contours and texture flow.
Journal of the Optical Society of America, A,
18(1):12–35, 2001.

79. A. Li and Q. Zaidi. Perception of three-
dimensional shape from texture is based on
patterns of oriented energy. Vision Research,
40(2):217–242, 2000.

80. A. Li and Q. Zaidi. Information limitations in
perception of shape from texture. Vision Re-
search, 41(12):1519–1533, 2001.

81. A. Li and Q. Zaidi. Limitations on shape infor-
mation provided by texture cues. Vision Re-
search, 42(7):815–835, 2002.

82. V. Interrante, H. Fuchs, and S. Pizer. Conveying
the 3D shape of smoothly curving transparent
surfaces via texture. IEEE Transactions on
Visualization and Computer Graphics, 3(2):
98–117,1997.

83. V. Interrante. Illustrating surface shape in
volume data via principal direction-driven 3D
line integral convolution. Computer Graphics
Proceedings, Annual Conference Series, pages
109–116, 1997.

84. A. Girshick, V. Interrante, S. Haker, and T.
LeMoine. Line direction matters: an argument

for the use of principal directions in 3D line
drawings. First International Symposium on
Nonphotorealistic Animation and Rendering,
pages 43–52, 2000.

85. G. Taubin. Estimating the tensor of curvature
of a surface from a polyhedral approximation.
Proceedings of the 5th International Conference
on Computer Vision (ICCV ’95), pages 902–907,
1995.

86. M. Desbrun, M. Meyer, P. Schroder, and A. H.
Barr. Discrete differential geometry operators in
nD. Preprint, July 22, 2000.

87. J. Goldfeather and V. Interrante. A novel cubic-
order algorithm for approximating principal
direction vectors. ACM Transactions on
Graphics, 23(1):45–63, 2004.

88. Koenderink, Jan J., A. van Doorn, and A. M.
L. Kappers. Surface perception in pictures. Per-
ception, 52:487–496, 1992.

89. S. Kim, H. Hagh-Shenas, and V. Interrante.
Showing shape with texture: two directions
seem better than one. Human Vision and Elec-
tronic Imaging VIII, SPIE 5007, 2003.

90. A. A. Efros and T. K. Leung. Texture synthesis
by non-parametric sampling. Proceedings of the
International Conference on Computer Vision,
2:1033–1038, 1999.

91. G. Gorla, V. Interrante, and G. Sapiro. Texture
synthesis for 3D shape representation. IEEE
Transactions on Visualization and Computer
Graphics, to appear.

92. V. Interrante, S. Kim, and H. Hagh-Shenas.
Conveying 3D shape with texture: recent ad-
vances and experimental findings. Human Vision
and Electronic Imaging VII, SPIE 4662:197–206,
2002.

93. V. Interrante and S. Kim. Investigating the
effect of texture orientation on the perception
of 3D shape. SPIE Conference on Human Vision
and Electronic Imaging VI, SPIE 4299:330–339,
2001.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 805

Art and Science in Visualization 805

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:32pm page 806

This page intentionally left blank

41 Exploiting Human Visual
Perception in Visualization

ALAN CHALMERS and KIRSTEN CATER

University of Bristol

41.1 Introduction

Most visualizations serve some specific visual

task, for example, investigating the air flow

over a wing tip or looking at the perception of

medieval pottery under medieval lighting condi-

tions. In the majority of cases, objects or data

relevant to the task can be identified in ad-

vance—for example, the wing tip or the medi-

eval pottery. During the actual visualization,

the viewer’s visual system must focus its atten-

tion on these objects and data in order to com-

plete the task. The human visual system is good,

but it is not perfect. While focusing on these

objects, the viewer will simply fail to notice

other large parts of the scene. It is this feature

of human visual perception that can be ex-

ploited in visualizations to save significant com-

putational time by not computing to such a high

resolution those parts of the visualization that

the human viewer will fail to notice.

In this chapter we first discuss an application

in which the visualization task is to recreate

high-fidelity archaeological sites on a computer.

The visualization task is to recreate the sites not

as they are at present but the way they may have

been visually perceived at the time they were

created, including the lighting conditions of the

time. We then go on to discuss how, knowing

the nature of the visualization task being per-

formed by the user a priori, we can exploit visual

attention, and by selectively rendering the data,

reduce overall computation time substantially

without compromising the observer’s perceived

visual quality.

41.2 Visualizing the Past

Human visual perception can be exploited in

many applications, including the visualization

of archaeological sites. 3D computer recon-

struction provides us with a means of visualiz-

ing past environments, allowing us a glimpse of

the past that might otherwise be difficult to

appreciate. This is especially true for sites that

have been severely damaged or even destroyed

in the passage of time. Many of the visualiza-

tions generated for this purpose look realistic,

but if they are to provide any meaningful repre-

sentations of the past, then these visualizations

must be quantifiably real. That is, the archae-

ologist must be confident that what he or she

sees in the generated images is comparable to

what a human would have perceived in the real

scene in the past [5]. Failure to guarantee this

level of realism leads to the very real danger of

our visualizations in fact misrepresenting the

past.

The prehistoric site rock shelter site of Cap

Blanc, France, is a good example of how high-

quality visualization can provide meaningful in-

sights for archaeologists. Cap Blanc, overlook-

ing the Beaune Valley in the Dordogne,

contains perhaps the most dramatic and impres-

sive example of Upper Palaeolithic haut-relief

carving. A frieze of horses, bison, and deer,

some overlaid on other images, was carved

some 15,000 years ago into the limestone as

deeply as 45 cm, covering 13 m of the wall of

the shelter. Since its discovery in 1909 by Ray-

mond Peyrille, several descriptions, sketches,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 807

807

and surveys of the frieze have been published,

but they appear to be variable in their detail and

accuracy.

In 1999, a laser scan was taken of part of the

frieze at 20 mm precision [26], using an eye-safe

laser to ensure that there was no possibility of

damage to the site. Fig. 41.1 shows part of the

frieze from Cap Blanc. Some 55,000 points were

obtained and converted into a triangular mesh.

Using detailed photographs as textures (each

with a rock-art chart to enable color calibra-

tion) and appropriate lighting values, the

model was then rendered in Radiance. Fig.

41.2a shows the horse illuminated by a simu-

lated 55W incandescent bulb (as in a low-power

floodlight), which is how visitors view the actual

site today. In Fig. 41.2b, the horse is illuminated

by an animal-fat tallow candle as it may have

been viewed 15,000 years ago. The difference

between the two images is significant; the candle

illumination gives a warmer glow to the scene,

as well as increasing the shadows.

Visualization was used to investigate whether

the dynamic nature of flame, coupled with the

careful use of 3D structure, may have been used

by our prehistoric ancestors to create anima-

tions in the cave-art sites of France some

15,000 years ago. The visualization showed

that the shadows created by the moving flame

do indeed appear to give the horse motion. We

will never know for certain whether the artists

of the Upper Palaeolithic were in fact creating

animations 15,000 years ago, but the recon-

structions do show that the effect is certainly

possible. There is other intriguing evidence to

support this hypothesis. As can be seen in the

figures, the legs of the horse are not present in

any detail. This has long been believed to be due

to erosion, but this does not explain why the rest

of the horse is not equally eroded. The possibil-

ity exists that the legs were deliberately not

carved in any detail, thereby accentuating any

motion by creating some form of motion blur.

Furthermore, traces of red ochre have been

found on the carvings. It is interesting to specu-

late whether the application of red ochre at key

points on the horse’s anatomy may also have

been used to enhance any motion effects. High-

fidelity visualization provides us with an oppor-

tunity to explore such scenarios.

41.3 Visual Perception

A major challenge in visualization is to achieve

high-quality images at interactive rates. Even

with the ready availability of modern high-per-

formance graphics cards, the complexity of the

models being considered and the high-fidelity

requirements of the images mean that rendering

such images is still simply not possible in a

reasonable time frame, let alone real time. For

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 808

Figure 41.1 Part of the frieze from Cap Blanc. (See also color insert.)

808 Perceptual Issues in Visualization

example, each of the frames of the Cap Blanc

visualization took many minutes to render on a

high-performance PC. Visual perception ap-

proaches offer one possibility of maintaining

perceptual quality, but at reduced computa-

tional cost. This is achieved by taking into ac-

count that it is the human who will ultimately be

looking at the resultant images, and while the

human eye is good, it is not perfect. Exploiting

knowledge of the human visual system can save

significant rendering time by computing at a

substantially lower quality those parts of a

scene that the human will fail to notice. Re-

searchers into flight simulation have long stud-

ied what parts of a scene or image are most

likely to be noticed in an interactive setting.

Most of this research has attempted to exploit

gaps in low-level visual processing, similar to

JPEG and other image-compression schemes

[1]. In this section we consider both low-level

and high-level visual perception.

41.3.1 Visual Attention

Visual attention is the process by which we

humans select a portion of the available visual

information for localization, identification, and

understanding of objects in an environment. It

allows our visual system to process visual input

preferentially by shifting attention about an

image, giving more attention to salient locations

and less attention to unimportant regions.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 809

(a)

(b)

Figure 41.2 (a) The frieze lit by modern 55w lighting. (b) The frieze lit by an animal tallow candle as used 15,000 years ago. (See

also color insert.)

Exploiting Human Visual Perception in Visualization 809

There are two general processes, called bottom-

up and top-down, that determine where humans

locate their visual attention [11]. A bottom-up

visual process is purely stimulus driven, for

example, a candle burning in a dark room, a

red ball amongst a large number of blue balls,

or a person’s lips and eyes, the most mobile and

expressive elements of the face. Here, the visual

attention is captured automatically without vol-

itional control. There is, in addition, another

aspect to the human visual system: the top-

down process. Here the brain directs the eyes

to focus on one or more objects that are relevant

to the observer’s goal when studying the scene,

for example, looking for a street sign or search-

ing for a target in a computer game. Research

has shown that conspicuous objects in a scene

that would normally attract the viewer’s atten-

tion may be deliberately ignored if they are

irrelevant to the visual task at hand [2]. This is

referred to as inattentional blindness.

Faced with a complex scene, the human

visual system depends, at its primary level, on

the retina to cope with this wealth of informa-

tion [7]. The retina converts the information

about the scene from light waves into neural

signals that the brain can process. At the center

of the retina is the fovea, which consists exclu-

sively of densely packed color-sensitive cones.

The fovea provides the highest spatial and chro-

matic resolutions in the retina. However, the

visual angle covered by the fovea is only ap-

proximately 28, about the size of eight letters

on a typical page of text or the size of your

thumbnail held at arm’s length. If detailed in-

formation is needed from an area of the visual

environment, it can only be obtained by redir-

ecting the eye so that the relevant area falls

sequentially on the fovea.

Yarbus was one of the first to study how the

eye moves when looking at complex images [30].

He successfully demonstrated that humans do

not scan a scene in a raster-like fashion; rather,

the eyes jump to foveate a new point of interest

in the scene, called a saccade. What Yarbus also

noted was that these saccades were linked to the

task or question the viewer had been asked

about the scene. Yarbus illustrated this by

asking several observers to answer a number of

different questions concerning the depicted situ-

ation in Repin’s picture An Unexpected Visitor.

This resulted in substantially different saccade

patterns, each one being easily construable as a

sampling of those picture objects that were most

informative for the answering of the question,

as shown in Fig. 41.3.

What Yarbus, and subsequently many others,

showed was that while performing a task, once

an initial eye saccade has found the appropriate

object to locate it on the fovea, the eye subse-

quently performs a smooth pursuit movement to

keep the object in foveal vision [22]. This means

that the image of a successfully tracked object is

nearly stationary on the retina, while untracked

objects are experienced as smeared and unclear

because of their motion on the retina. To experi-

ence this, Palmer [22] suggests a simple example:

Place your finger on this page and move it fairly

quickly from one side of the page to another. As

soon as you track your moving finger, the letters

and words appear so blurred you are unable to

read them, but your finger is clear. Even when

you stop moving your finger, only the words

located within the visual angle of your fovea

become sharp and thus readable.

41.3.1.1 The Bottom-Up Process

Previous applications of visual perception to

visualization have concentrated on the bottom-

up visual processes. This work has included

using knowledge of the human visual system

to improve the quality of the displayed

image, for example [8,9,19,20,23,24], and redu-

cing the level of detail (LOD) in a scene without

affecting the viewer’s perception of the objects

within the scene [14,15,25]. In addition, Maciel

and Shirley proposed a visual navigation

system that uses texture-mapped primitives

to represent clusters of objects to maintain

high and approximately constant frame rates

[16].

Saliency models have been also been de-

veloped to simulate where people may focus

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 810

810 Perceptual Issues in Visualization

their attention in images. Visual psychological

researchers such as Yarbus [30], Itti and Koch

[10], and Yantis [29] showed that the visual

system is highly sensitive to features such as

edges, abrupt changes in color, and sudden

movements. This low-level human visual pro-

cessing has been exploited in computer graphics

by Yee [31] and Yee et al. [32] to accelerate

global illumination computation in prerendered

animations by using a model of visual attention

to locate regions of interest in a scene and to

modulate spatio–temporal sensitivity. They

created a spatio–temporal error tolerance map,

constructed from data based on velocity-de-

pendent contrast sensitivity, and a saliency

map for each frame in the animation. The sali-

ency map is obtained by combining the conspi-

cuity maps of intensity, color, orientation, and

motion. An Aleph map is then created by com-

bining the spatio–temporal error-tolerance map

with the saliency map. The resulting Aleph map

is then used as a guide to indicate where less

rendering effort should be spent in computing

the lighting solution, and thus significantly re-

duces the overall computational time to pro-

duce animations.

Knowledge of peripheral vision has also been

used to reduce overall computation time, by

allowing researchers to render those areas out-

side the observer’s fovea visual angle at a lower

resolution [27]. Watson et al. used such visual

fidelity for simplifying polygonal models [28].

McConkie and Loschky measured viewers’

image quality judgements and their eye move-

ment parameters and found that photographic

images filtered with a window radius of 4.18
produced results statistically indistinguishable

from those of a full high-resolution display

[12,13,18]. However, their research showed

that the image needs to be updated after an

eye saccade, within 5 milliseconds of a fixation,

otherwise the observer will detect the low reso-

lution. These high update rates were achievable

only through use of an extremely high-tem-

poral-resolution eye tracker and by prestoring

all possible multiresolutional images that were

to be used.

41.3.1.2 The Top-Down Process

As Yarbus showed, the choice of task is

important in helping us predict the eye-gaze

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 811

Figure 41.3 (a) Repin’s picture An Unexpected Visitor. (b) Effects of task on eye movements. Repin’s picture was examined by

subjects with different instructions: 1. Free viewing, 2. Judge their ages, 3. Guess what they had been doing before the

unexpected visitor’s arrival, 4. Remember the clothes worn by the people, 5. Remember the position of the people and objects

in the room, and 6. Estimate how long the unexpected visitor had been away from the family [30]. (See also color insert.)

Exploiting Human Visual Perception in Visualization 811

pattern of the viewer [30]. It is precisely this

knowledge of the expected eyegaze pattern that

allows us to reduce the rendered quality of

objects outside the area of interest without

affecting the viewer’s overall perception of the

quality of the rendering.

The significance of exploiting the top-down

visual process for visualization tasks was illus-

trated by Cater et al. [2]. They showed that con-

spicuous objects in a scene that would normally

attract the viewer’s attention are ignored if they

are irrelevant to the visualization task at hand.

The task considered was for each user to count

the numberof pencils that appeared in amugona

table in a room as they moved on a fixed path

through four such rooms; it is shown in Fig. 41.4.

In their experiments there were three render-

ings of the animations, the only difference being

the quality to which the animation was rendered,

low quality (LQ), high quality (HQ), or selective

quality (SQ). Each frame for the HQ animation

took, on average, six times longer to render than

the frames for the LQ animation. Fig. 41.5a

shows the HQ rendered scene, while Fig. 41.5b

shows the difference between the HQ and LQ

images. The SQ animation was created by using

the LQ frames with HQ rendering substituted in

the visual angle of the fovea (28) centered on the

pencils, shown by the green circle in Fig. 41.6.

The higher quality is blended to the lower qua-

lity at 4.18 visual angle (the red circle in Fig. 41.6)

[18].

In the experiment, a total of 160 subjects were

studied, and each subject saw two animations.

Fifty percent of the subjects were asked to count

the pencils in the mug, while the remaining 50%

were simply asked to watch the animations. On

completion of the experiment, participants were

asked to fill in a detailed questionnaire that

asked them to compare the two animations

they had just seen.

Their results showed that when observers

were simply watching the animation, they

could easily detect if there was a change in

rendering quality between the two animations.

This was also the case when the participants

were performing the counting pencils task but

were shown the HQ and the LQ animations. Of

interest is that when the participants were per-

forming the task and saw the SQ animation,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 812

Figure 41.4 The scene visualized with a closeup of the mug showing the pencils and paintbrushes. (See also color insert.)

812 Perceptual Issues in Visualization

they perceived no difference in quality from the

HQ animation, i.e., the observers thought that

they were seeing the same HQ animation twice.

This shows that when observers perform a task

within an animation, their visual attention be-

comes fixed exclusively on the area of the task at

hand, and they consistently fail to notice signifi-

cant differences in rendering quality.

Cater et al. have since gone on to show not

only that the task has to be a visual one [3] but

also that the same principle can be applied even if

the task is carried out all over the image and not

restricted to a single location, for example,

counting teapots located all around a scene.

They demonstrate that by using what they term

a task map, you can selectively render the scene,

rendering only the areas related to the task (in

their example, the small area located around

each teapot) to a higher quality. The rest of the

scene can then be rendered at a substantially

lower quality.

By placing the teapots all over the scene, we

forced the viewer to scan the whole image and

thus fixate on LQ as well as HQ areas (Fig. 41.7).

Cater et al. showed that, even though this is the

case, the observer visualizes only the quality of

the objects related to the task, and not the rest of

the scene. Thus, by selectively rendering anima-

tions according to the task, users can save signifi-

cant computational time without having a

significant effect on the viewer’s perception of

the scene.

41.4 Conclusions

For visualization applications in which the task

is known a priori, the computational savings

made by exploiting visual attention can be dra-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 813

Figure 41.5 (a) High-quality (HQ) image (Frame 26 in the animation). (b) Closeup of HQ and low-quality (LQ) rendered

chairs. (See also color insert.)

Figure 41.6 Visual angle covered by the fovea for mugs in

the first two rooms at 28 (green circles) and blending circle at

4.18 (red circles). (See also color insert.)

Exploiting Human Visual Perception in Visualization 813

matic. Lower-quality peripheral vision and

inattentional blindness are fundamental features

of the human visual system. We can use these to

our advantage to meet the demand for HQ

images of increasingly complex content in less

time.

High-level task maps and low-level saliency

maps do indeed tell us where an observer will

be looking in an image. This knowledge enables

us to selectively render those parts attenuated to

in high quality while the rest of the images can

be rendered in low quality. The time taken to

selectively render the image is significantly lower

than the time taken to render the whole image in

high quality. The key is that when the user is

performing a visualization task within the scene,

he or she will simply fail to notice this difference

in quality.

Visual perception can thus be exploited to

significantly lower overall rendering time while

maintaining the same perceptual quality of

the resultant images. Such perceptually HQ

images have the potential to provide powerful

real-time visualization tools to a wide range of

disciplines, including archaeology.

References

1. M. R. Bolin and G. W. Meyer. A Perceptually
based adaptive sampling algorithm. In Proceed-
ings of SIGGRAPH 1998, ACM, pages 299–309,
1998.

2. K. Cater, A. G. Chalmers, and P. Ledda. Select-
ive quality rendering by exploiting human inat-
tentional blindness: looking but not seeing. In
Proceedings of Symposium on Virtual Reality
Software and Technology 2002, ACM, pages
17–24, 2002.

3. K. Cater and A. G. Chalmers. Maintaining per-
ceived quality for interactive tasks. In IS&T/
SPIE Conference on Human Vision and Electronic
Imaging VIII, SPIE 5007, 2003.

4. A. Chalmers, C. Green, and M. Hall. Firelight:
Graphics and Archaeology. Electronic Theatre,
SIGGRAPH ’00, New Orleans, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 814

}

Figure 41.7 (a) A 2-second eye scan for an observer counting the teapots. The crosses are fixation points and the lines are the

saccades. (b) Perceptual difference between selective-quality (SQ) and high-quality (HQ) images using Myszkowski’s Visual

Difference Predictor [20]. The red denotes areas of high perceptual difference. The superimposed blue line is the eye-scan path

for another observer counting the teapots. (See also color insert.)

814 Perceptual Issues in Visualization

5. A. Chalmers and K. Devlin. Recreating the past
(SIGGRAPH 2002 Course #27), SIGGRAPH
2002, San Antonio, 2002.

6. S. Daly. Engineering observations from spatio-
velocity and spatiotemporal visual models. In
IS&T/SPIE Conference on Human Vision and
Electronic Imaging III, SPIE 3299, 152–166,
1998.

7. J. E. Dowling. The Retina: An Approachable
Part of the Brain. Cambridge, Belknap, 1987.

8. J. Ferwerda, S. N. Pattanaik, P. Shirley, and
D. P. Greenberg. A model of visual adaptation
for realistic image synthesis, In Proceedings
of SIGGRAPH 1996, ACM, pages 249–258,
1996.

9. D. P. Greenberg, K. E. Torrance, P. Shirley, J.
Arvo, J. Ferwerda, S. N. Pattanaik, E. Lafor-
tune, B. Walter, S-C. Foo, and B. Trumbore. A
framework for realistic image synthesis. In Pro-
ceedings of SIGGRAPH 1997 (Special Session).
ACM, pages 477–494, 1997.

10. L. Itti and C. Koch. A saliency-based search
mechanism for overt and covert shifts of visual
attention, In Vision Research, 40(10–12), 1489–
1506, 2000.

11. W. James. Principles of Psychology, New York:
Holt, 1890.

12. L. C. Loschky and G. W. Mcconkie. Gaze con-
tingent displays: maximizing display bandwidth
efficiency. ARL Federated Laboratory Ad-
vanced Displays and Interactive Displays Con-
sortium, Advanced Displays and Interactive
Displays Third Annual Symposium, pages 79–
83, 1999.

13. L. C. Loschky, G. W. McConkie, J. Yang, and
M. E. Miller. Perceptual effects of a gaze-
contingent multi-resolution display based on a
model of visual sensitivity. In the ARL Feder-
ated Laboratory 5th Annual Symposium—ADID
Consortium Proceedings, pages 53–58, 2001.

14. D. Luebke and B. Hallen. Perceptually driven
simplification for interactive rendering. In Pro-
ceedings of 12th Eurographics Workshop on
Rendering, pages 221–223, 2001.

15. D. Luebke, M. Reddy, B. Watson, J. Cohen,
and A. Varshney. Advanced issues in level of
detail (SIGGRAPH 2001 Course #41). SIG-
GRAPH 2001 Proceedings. Los Angeles, CA,
pages 12–17, 2001.

16. P. W. C. Maciel and P. Shirley. Visual naviga-
tion of large environments using textured clus-
ters. In Proceedings of Symposium on Interactive
3D Graphics, pages 95–102, 1995.

17. A. Mack and I. Rock. Inattentional Blindness.
Massachusetts Institute of Technology Press,
1998.

18. G. W. McConkie and L. C. Loschky. Human
performance with a gaze-linked multi-resolu-
tional display. ARL Federated Laboratory Ad-
vanced Displays and Interactive Displays
Consortium, First Annual Symposium, pages
25–34, 1997.

19. A. McNamara, A. G. Chalmers, T. Troscianko,
and I. Gilchrist. Comparing real and synthetic
scenes using human judgements of lightness. In
B. Peroche and H. Rushmeier (eds), 12th Euro-
graphics Workshop on Rendering, pages 207–
219, 2000.

20. K. Myszkowski, T. Tawara, H. Akamine,
and H.-P. Seidel. Perception-guided global illu-
mination solution for animation rendering.
In Proceedings of SIGGRAPH 2001, ACM,
pages 221–230, 2001.

21. J. K. O’Regan, H. Deubel, J. J. Clark, and R. A.
Rensink. Picture changes during blinks: looking
without seeing and seeing without looking.
Visual Cognition, 7(1):191–212, 2000.

22. S. E. Palmer. Vision Science—Photons to Phe-
nomenology. Massachusetts Institute of Tech-
nology Press, 1999.

23. S. N. Pattanaik, J. Ferwerda, M. D. Fairchild,
and D. P. Greenberg. A multiscale model of
adaptation and spatial vision for realistic
image display. In Proceedings of SIGGRAPH
1998, ACM, pages 287–298, 1998.

24. M. Ramasubramanian, S. N. Pattanaik, and D.
P. Greenberg. A perceptually based physical
error metric for realistic image synthesis, In
Proceedings of SIGGRAPH 1999, ACM Press /
ACM SIGGRAPH, New York. Computer
A. Rockwood, Ed., Graphics Proceedings,
Annual Conference Series, ACM, pages 73–82,
1999.

25. M. Reddy. Perceptually modulated level of
detail for virtual environments. Ph.D. Thesis
(CST-134-97), University of Edinburgh, 1997.

26. K. A. Robson Brown, A. G. Chalmers, T. Sai-
gol, C. Green, and F. D’Errico. An automated
laser scan survey of the upper palaeolithic rock
shelter of Cap Blanc. Journal of Archaeological
Science 28, pages 283–289, 2001.

27. B. Watson, A. Friedman, and A. McGaffey. An
evaluation of level of detail degradation in head-
mounted display peripheries. Presence, 6(6),
pages 630–637, 1997.

28. B. Watson, A. Friedman, and A. McGaffey.
Measuring and predicting visual fidelity, In
Proceedings of SIGGRAPH 2001, ACM, pages
213–220, 2001.

29. S. Yantis. Attentional capture in vision. In A.
Kramer, M. Coles, M. and G. Logan, (Eds.),
Converging Operations in the Study of Selective

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 815

Exploiting Human Visual Perception in Visualization 815

Visual Attention. American Psychological Asso-
ciation, pages 45–76, 1996.

30. A. L. Yarbus. Eye movements during percep-
tion of complex objects. In L. A. Riggs, Ed., Eye
Movements and Vision, Plenum Press, New
York, Chapter VII, pages 171–196, 1967.

31. H. Yee. Spatiotemporal sensitivity and visual
attention for efficient rendering of dynamic en-

vironments. MSc. Thesis, Program of Computer
Graphics, Cornell University.

32. H. Yee, S. Pattanaik, and D. P. Greenberg.
Spatiotemporal sensitivity and visual attention
for efficient rendering of dynamic Environ-
ments. In ACM Transactions on Computer
Graphics, 20(1):39–65, 2001.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:34pm page 816

816 Perceptual Issues in Visualization

PART XI

Selected Topics and
Applications

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:06am page 817

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:06am page 818

This page intentionally left blank

42 Scalable Network Visualization

STEPHEN G. EICK

SSS Research;

National Center for Data Mining

University of Illinois

42.1 Introduction

Many problems can be represented as networks

and analyzed using network visualization. Un-

fortunately, however, the sizes of datasets that

are easily collected overwhelm existing visual-

izations. The problem is that network visualiza-

tions become visually confusing and cluttered.

This chapter defines the concept of visual scal-

ability for networks, illustrates it with three

examples, and proposes techniques to increase

network visualization scalability.

Many analysis problems involve understand-

ing network data. Familiar examples include

monitoring electronic communications, tracking

money flows, understanding travel patterns, cor-

relating personal contacts, and analyzing pur-

chasing correlations. Network data can be

generated by a single process or by overlapping

processes. For networks that represent a social

organization, datasets may be associated with

interconnected individuals involving multiple

events linked in both time and space.

At its most basic level, a network consists of

nodes and links. The nodes and links can repre-

sent physical objects, such as people or machines,

or nonphysical objects, such as meetings, events,

or hypertext pages. Statistics (possibly time-

varying) and events at discrete points in time

may be tied to the nodes and links. These statis-

tics may be raw measurements, such as the loca-

tions of individuals, group membership, counts

of e-mail communications, computed aggre-

gates, or imputed attributes.

The analysis challenges are many and broad.

The obvious tasks include understanding over-

all structure, traffic flows, changes, important

nodes, and key links. More subtle tasks involve

isolating a small signal from a massive amount

of background activities. This task, frequently

called outlier detection, is extremely difficult.

For example, in a financial analysis involving

monetary flows, it may be well known from

aggregates that transactions within the flow cor-

respond to illegal activity. However, identifying

exactly which transactions are illegal may be

essentially impossible.

Our focus in this chapter is on the scalability of

network visualizations. As with many classes

of data, our ability to collect massive volumes of

network data overwhelms existing analysis tech-

niques. This is particularly true for real-world

data analysis problems, where the data is hetero-

geneous, noisy, incomplete, highly fragmented,

time-varying, and at multiple levels of abstrac-

tion.

The new ideas involve the concept of visual

scalability [8] and its application to networkdata.

Here, we introduce the problem of visual scal-

ability, illustrate it by analyzing the scalability

of three visualizations, and discuss techniques

to increase visual scalability.

42.2 Network Background

As is standard in the information visualization

community, we view a network as a graph in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 819

819

which nodes represent entities of interest and

edges represent a relationship. In the social net-

work literature [11,15], the nodes correspond to

individuals or actors and the edges correspond

to a type of relationship, e.g., common group

membership, telephone communications, or

common friends. A network may represent a

single type of relation among the nodes (simplex)

or more than one kind of relation (multiplex).

Each edge or relation may be directed (i.e., ori-

ginates with a source node and reaches a target

node), or it may be undirected (i.e., represents

co-occurrence, copresence, or a bonded tie be-

tween the pair of nodes). Each edge may have an

associated strength or weight that may be nom-

inal, binary, signed, ordinal, or valued (meas-

ured on an interval or ratio level).

The basic properties of a network can be

defined in terms of their relationship to graph

theory. These include the following:

1. Conductivity—whether there is a path be-

tween two nodes.

2. Path—a sequence of connections.

3. Size—the number of nodes in the network.

4. Density—the proportion of all links that

could logically be present.

5. Reachability—whether there is a path from

the source to the target node.

6. Distance—the number of connections

between two nodes along a path.

7. Geodesic distance—the distance of the

shortest path between two nodes.

8. Network diameter—the maximum geo-

desic distance between any pair of nodes

in a network.

9. Flow—the number of unique paths be-

tween two nodes.

10. Cohesion—a measure of the coupling be-

tween two nodes.

For any individual node, standard measures

include the following:

1. Node degree—the number of connections to

other nodes.

2. Closeness—whether the distance between

two nodes is low.

3. Betweenness—a measure of alternative

paths to other nodes.

4. Centrality—the measure of alternative

paths.

In the social network literature, these measures

are related to the distribution of power in a

network. Central nodes with many relations

are more powerful than nodes on the edge of

the network.

42.2.1 Substructure

Every network consists of subgroups that deter-

mine its macrostructure. At the most basic

level, a clique is a subset of a network in

which the nodes are more closely and intensely

tied to one another than they are to other

members of the network. For example, in

human networks, cliques form on the basis of

age, gender, race, ethnicity, and religion. The

smallest clique consists of two nodes and is

called a dyad.

For some analysis tasks, a clique, where every

node has a direct tie to every other, is too

strong. However, the clique idea can be general-

ized to a 2-clique, where the 2-clique includes

every member of the group at a distance two.

For example, this definition corresponds to

‘‘friends of friends’’ in the group. In general,

the following rules apply:

. N-cliques are substructures where all nodes

are at a distance n.

. N-clans are n-cliques where the total diam-

eter of the clique is constrained by a max-

imum.

. K-plexes are generalizations of n-cliques

where nodes are in the k-plex if they are in

the structure, if they have direct ties to n-k

members of the group.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 820

820 Selected Topics and Applications

. K-cores are maximal groups of nodes, all of

which are connected to some number (k)

of other members of a group. The difference

between n-cliques and n-clans is that cliques

are often stringier, whereas clans are tighter.

Components of a graph are structures that are

connected within themselves but disconnected

from the remainder of the network. A cutpoint

in a network is a node that, if removed, would

cause the network to divide into disconnected

components. Cutpoints are very useful for

bridging disconnected groups. Similarly, lambda

sets are links or bridges that, if removed, would

disconnect the network.

42.3 Visual Metaphors for Networks

Perhaps the most conventional way to visualize

a network is to use node and link diagrams (Fig.

42.1). Nodes encode the items, and links encode

the network edges. Visual characteristics (and

sometimes even nonvisual characteristics such

as sound, position, shape, color, size, texture,

transparency, drawing style, and thickness)

encode node and link atributes.

Although node and link displays are the most

common way to represent network data, there

are other possibilities. Bertin [2,3] suggests a

dynamic matrix (as shown in Fig. 42.2). The

idea in a matrix representation is that each

row and each column corresponds to a node,

and the glyph at the (i,j)th cell encodes to

the (directed) edge from node i to node j.

Visual characteristics of the glyph are tied to

attributes. If the glyphs are 3D, this visual

representation is called a CityScape [12]. Al-

though we will not address it in this manuscript,

the predominant visual problem with matrix

displays is occlusion. Taller bars towards the

front of the matrix obscure smaller bars towards

the rear.

42.3.1 Problems with Node and Link
Displays

There are three fundamental reasons why node

and link displays fail on larger networks:

. Display Clutter. Node and link diagrams

become cluttered and visually confusing as

the size of the network increases. The pre-

dominant reason for the perceptual clutter is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 821

Figure 42.1 Node and link network displays. (See also color insert.)

Scalable Network Visualization 821

all the line crossings, particularly crossings at

nonright angles.

. Node Positioning. The interpretation and

readability of the diagram are highly de-

pendent on the node positions. The same

network drawn with the nodes in different

positions may lead to a totally different in-

terpretation of the visualization.

. Perceptual Tension. Closely positioned nodes

are interpreted perceptually as being related,

but they are connected by a short line. Con-

versely, distant nodes are interpreted as per-

ceptually unrelated, but they are connected

by a long, visually dominant line. The most

effective network visualization tools exploit

the tradeoff between visual real estate of the

connecting line and human perceptual

grouping.

There are a variety of strategies for addressing

these three key issues, which are related to

graph drawing. Graph drawing, which focuses

on the visualization structure rather than the

node and edge attributes, involves positioning

the nodes on a 2D plane and drawing connec-

tions that satisfy one or more aesthetic con-

straints. The criteria typically include, for

example, minimizing the number of edge cross-

ings, maximizing the depiction of symmetry,

minimizing the number of edge bends, maximiz-

ing the edge orthogonality, and maximizing

the minimum angle between edges leaving a

node [14].

Within the graph-drawing community, there

has been an extensive multiyear research effort

to develop efficient techniques for drawing

graphs [4]. There is also an annual contest in

which software packages compete to produce

the best drawings. In the commercial sector,

there are several companies offering graph-draw-

ing packages, and there are also many research

efforts.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 822

Figure 42.2 Matrix display with the glyph at cell (i,j) encoding the link from i to j.

822 Selected Topics and Applications

42.4 Visual Scalability

Visual scalability [8], for our purposes, is the

capability of the visualization to effectively dis-

play large network datasets, in terms of either

the number of nodes, the number of edges, the

number of node or edge attributes, or other

similar elements. Mathematically,

visual scalability ¼
F (visual factors, network data)

(42:1)

The research goals are to understand F, to char-

acterize factors affecting F, and to create soft-

ware with a high F. A significant research

challenge is to invent measures of visual

scalability. For example, possible visual scal-

ability metrics for networks include the

following:

1. Number of distinct nodes visible.

2. Number of distinct links visible.

3. Number of ‘‘features’’ visible in the dis-

played graph (e.g., ‘‘star,’’ ‘‘spoke,’’ ‘‘hub,’’

or ‘‘chain’’)

4. Number of time periods displayed.

5. Number of connected components.

6. Number of comparisons made.

The ultimate measure, however, is the number

of insights gained from the visualization. Unfor-

tunately, this measure is exceedingly difficult to

quantify.

42.4.1 Factors Affecting Visual Scalability

There are seven factors that affect network visu-

alization scalability.

1. Human perception. The consumer of a net-

work visualization is a person. Thus, the

ultimate limiting factor is human percep-

tion. There is no value in producing visual-

izations with higher resolution than humans

can perceive.

2. Display resolution. Visualizations are

viewed on display devices. Thus, the reso-

lution of the output display, whether it is a

monitor, flat panel, or wall, can be meas-

ured by pixels, display size, and display fi-

delity. According to Wegman [16], about

6.5 million distinct pixels are visible on a

17-inch monitor at normal viewing dis-

tance.

Table 42.1 shows the standard pixel reso-

lutions for currently available display

devices. Resolution has been increasing

more slowly than processing power and

disk sizes. From the late 1990s to the early

2000s, typical workstation monitor reso-

lution increased by a factor of only four,

from 800 � 600 to 1600 � 1200. Over the

same period, CPU speeds and hard-disk

sizes have increased by two orders of mag-

nitude. In the mid-2000s, even the most

powerful monitor contains two orders of

magnitude fewer pixels than the human

eye’s resolution, suggesting that increased

visual scalability can be attained by im-

proved monitors. However, wall-sized dis-

plays, such as AT&T’s 4000 � 4000 pixel

display, are within one magnitude of the

limits of human perception [1,13].

3. Visual metaphor. As illustrated in Figs. 42.1

and 42.2, the choice of visual metaphor

has a dramatic influence on scalability.

Some metaphors are scalable and others

are not. A typical network visualization

might display a sparse network with

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 823

Table 42.1 Pixel resolutions of different devices.

Computer Typical

resolution

Pixels

displayed

Ultralight 640 � 480 307,200

Laptop 800 � 600 480,000

Portable PC 1024 � 768 786,432

Desktop PC 1280 � 1024 1,310,720

Graphics workstation 1600 � 1200 1,920,000

Wall display 4000 � 4000 16,000,000

Scalable Network Visualization 823

hundreds of nodes, with the best showing

perhaps 100,000 nodes. Visualizing dense

networks is extremely difficult.

4. Node positioning algorithm. Some node pos-

itioning algorithms lead to informative dis-

plays and others do not. There is no one

optimal best positioning function. The most

effective network visualization tools pro-

vide a suite of positioning algorithms that

highlight various aspects of network struc-

ture.

5. Interactivity. Perhaps the most powerful

technique to increase scalability uses inter-

activity. The key idea is dynamically updat-

ing the display to overcome the human

perceptual constraints associated with fixed

images. For users to perceive smooth con-

tinuous motion, the display updates must

occur within one-tenth of a second. Even

with fast graphics cards, achieving smooth

motion requires programming tricks such as

dropping out details while panning, drawing

the most important nodes on top, and choos-

ing graphical symbols that overplot grace-

fully.

6. Data structures and algorithms. Efficient

data structures and algorithms are needed

to achieve interactive display rates. This

involves accessing the data, indirect compu-

tations (e.g., aggregation), and also direct

computations. Precomputing a quad tree

for node positions, for example, makes it

possible to identify nodes at interactive

rates.

7. Computational infrastructure. The computa-

tional infrastructure includes the speed of

the CPU, the graphics card, the disk cap-

acity, and network access. Network visual-

ization issues for high-performance work-

stations are quite different from those in-

volved with thin web-based displays.

42.5 Examples

In this section, we analyze the scalability of

three network visualizations and suggest tech-

niques for improving scalability. Two of the

visualizations involve network traffic, and the

third focuses on network structure.

42.5.1 Time-Varying Network Data

This example, described by Becker et al. [5],

visualizes blocking statistics from a network of

110 switches collected every 5 minutes. The

visualization technique positions the switches

geographically on a map and draws color- and

thickness-coded lines between the switches, with

the color and thickness redundantly encoding

link attributes. The node glyphs may also

encode one or two attributes using circles and

rectangles.

Fig. 42.3 shows three frames from a SeeNet

animation. Although not shown in the figure,

SeeNet addresses the display clutter problem by

providing a set of interactive controls, e.g., line

shortening, thresholding, zooming, and pan-

ning.

Figure 42.3 Three frames from a SeeNet network visualization animation. (See also color insert.)

824 Selected Topics and Applications

42.5.1.1 Scalability Analysis

For each of the 150 time periods, there are

110 � 109 ¼ 11; 990 directed link measurements.

For each of the 30-odd attributes, there are

as many as 11; 990 � 150 ¼ 1; 785; 000 integer

counts (7.2 MB). Zero counts are excluded from

the display. The ‘‘bigness’’ in this example

involves many time periods, many links, and

many attributues, but few nodes. The software

animates to display multiple time periods.

42.5.2 Worldwide Internet Traffic

The second example, described by Cox et al. [6],

is also a visualization of time-varying network

traffic. In this case, the dataset consists of IP

traffic flows among 50 countries by 2-hour

period for a 7-day period.

Fig. 42.5 shows three frames from an anima-

tion. Each country is represented by a box-

shaped glyph that is both scaled and colored

to encode the total packet count for all links

emanating from the country. The glyphs are

positioned at the locations of the countries’ cap-

itals and extend perpendicular to the surface of

the globe. The color-coded arcs between the

countries show the intercountry traffic, with

the higher and redder arcs indicating the larger

traffic flows. The globe is illuminated by a light

that is positioned to indicate the angle of the sun

for the frame of the time series data that is

displayed.

Drawing a world map on the surface of the

sphere in Fig. 42.5 converts it into a globe,

thereby providing spatial context for the loca-

tion of each of the nodes. Our map contains

only the continental outlines, avoiding possibly

excessive detail that would obscure network in-

formation. The surface of the globe in Fig. 42.5

is an opaque blue and thus obscures those por-

tions of arcs and nodes that lie behind and

within the sphere. By interactively varying the

translucency of the surface, the user may con-

trol how much of the display is obscured.

The boxes on the surface of the globe in Fig.

42.5 encode the node statistic by scaling in the

radial direction. The visual effect is pleasing;

the boxes appear to be small towers standing

on the sphere, with the tower height and color

of the tower tied to the statistic. The largest

boxes correspond to the nodes that have the

largest statistics, thereby focusing attention on

the important nodes. Other glyphs and data

encodings are possible. We have experimented

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 825

Figure 42.4 (Left) One frame from an animation showing worldwide internet traffic over a 2-hour period. (Right) Thresholding

the link statistics with a slider (not shown) highlights the most important links and decreases display clutter. (See also color insert.)

Scalable Network Visualization 825

with cylinders and pyramids, negative scaling

(where the glyph descends toward the center

of the sphere), and encoding of two values

using the glyph height and position above or

below the surface. Our preliminary results

show that the latter technique of information

encoding can be readily understood by viewers.

The arcs are the analogs of the lines in the

traditional 2D node and link displays. They

touch the spherical surface at each end and

reach a maximal radial height in the center.

Tying the height of the arc to the link statistic

ensures that the most important arcs corres-

ponding to the largest values of the statistic

are always visible and are never obscured by

arcs corresponding to lesser values.

The first two examples use animation. How-

ever, we have found three problems with net-

work animations. First, network animations

work well for visualizing time-varying data

that evolves smoothly. Changes are jarring,

and our attention is automatically drawn to-

wards them. The reason for this is that motion

is a preattentive visual cue. Too many changes,

however, are confusing. Thus, for network ani-

mations to be perceptually effective, the soft-

ware needs to eliminate high-frequency spatial

clutter. Specifically, node positions must change

gradually, and the link shapes must evolve

smoothly.

Second, network animations involve inherent

limits with human spatial memory. Human

short-term visual memory is limited, and thus

we find it difficult to see changes between

frames. Visualization software can help over-

come this problem by showing changes directly

and thereby eliminating the need to remember

previous frames and perform mental compari-

sons.

Third, the human attention span is limited,

and it is easy for the user to become fatigued

and miss important features in the animation.

The visualization software needs an engaging

user interface to help users concentrate.

42.5.2.1 Scalability Analysis

This dataset consists of 50 � 49 � 84 ¼ 205,800

counts (800 KB). Although smaller than the

telephone network traffic, this dataset is still

sizeable, and the interesting aspect involves

visualizing a fully connected network where

every link is nonzero. The problem with fully

connected networks is that line crossings

usually make the visualization unusable. The

globe visual metaphor addresses this problem

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 826

Figure 42.5 (Left) Rectangular latitude–longitude paths. (Right) Making the globe translucent reveals obscured arcs. (See also

color insert.)

826 Selected Topics and Applications

by drawing the arcs in 3D so that they no longer

cross.

42.5.3 Visualizing Network Structure

This example shows a visualization of a network

dataset that illustrates network conductivity

(courtesy of Bill Cheswick at Bell Labs). The

raw data consist of IP numbers (nodes) and

pairs of connected IP numbers (edges). There

are attributes such as date, degree, network

class, etc., associated with the nodes and edges.

Fig. 42.6 shows a stargraph visualization

where the nodes are positioned using a node

and spring layout [9,10]. This layout positions

related nodes closely together. The interesting

aspect of this visualization is not the positioning

algorithms but the interactive techniques for

navigating through the network. The software

provides filters, smooth pan and zoom, node

details in linked windows, flexible ways to

rebind visual characteristics, and show nodes

at a graph distance of n from a designated node.

42.5.3.1 Scalability Analysis

The network visualized in Fig. 42.6 consists of

123,000 nodes and 86,000 edges. Altogether,

there are 209,000 distinct entities that are dis-

played simultaneously on the screen. To achieve

scalability, this visualization uses interactivity,

filtering, and node placement.

42.6 Discussion

Our engineering goal is to develop software

that usefully displays networks with thousands

to hundreds of thousands of nodes and links.

Beyond this limit, computational techniques

must be used to reduce network sizes. Our strat-

egy for increasing scalability is multifaceted.

Our approach is to create a suite of techniques

that involves both algorithms and visualiza-

tion that can be independently combined to

increase scalability. The techniques include the

following:

. Fast multipass adaptive algorithms for node

placements. For example, in previous work

we developed a node placement algorithm

consisting of four parts [10,17]. At startup,

basic graph data structures such as a min-

imal spanning are precomputed and the raw

processor speed of the graphics hardware

calculated. When network nodes are repos-

itioned, initially an O(n) algorithm does

rough positioning followed by an O(n log

n) algorithm, and finally an O(n2) for fine

positioning. The cutpoints between the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 827

Figure 42.6 Images from a StarGraph visualization showing network structure for an IP network. (See also color insert.)

Scalable Network Visualization 827

algorithms are determined using a heuristic

that depends on the computational speed of

the processor and graphics rendering rates.

The object is to ensure that the layout code

runs reasonably fast on any class of processor.

. Engineering the software to hit human re-

sponse rates. As we indicated above, it is

important that software be responsive to

human performance constraints.

. Using multiresolution visual metaphors that

overplot gracefully and can be made more

scalable by rendering progressively less detail

as the scale increases. A simple example of

this is to render the glyphs corresponding to

nodes as 3D spheres when zoomed in and 2D

circles or even tiny points when zoomed out.

. Labeling algorithms that use variable font

sizes and using positioning tricks to avoid

overplotting.

. Zooming and panning. Although well known,

our zoombars provide a zoom of approxi-

mately 1000:1 using double thumbs and a

two-step linear zoom [7] (Fig. 42.7).

. Fast algorithms for interactive operations. A

common interactive operation is to identify

and label entities pointed to by the mouse.

For example, using a standard data structure

like quadtrees for identification and line-

crossing algorithms for selections, it is pos-

sible to interactively manipulate networks

with 100,000 nodes on standard desktop ma-

chines.

Each individual technique contributes to scal-

ability. Taken together, the results can be

striking.

Acknowledgments

Although the focus of this chapter is on scalabil-

ity, the examples build on a sequence of research

projects that I have undertaken with a variety of

authors over the last decade. Contributers in-

clude Rick Becker and Alan Wilks (Section

42.5), Ken Cox and Taosong He (Section 42.5),

Graham Wills (Section 42.5), and Alan Karr

(Section 42.4).

References

1. J. Abello, E. Gansner, E. Koutsofios, and S.
North. Large-scale network visualization.
ACM Computer Graphics, 1999.

2. J. Bertin. Graphics and Graphic Information
Processing. Berlin, Walter de Gruyter & Co.,
1981.

3. J. Bertin. Semiology of Graphics. University
of Wisconsin Press, Ltd., London, England,
1983.

4. G. Di Battista, P. Eades, R. Tamassia, and I. G.
Tollis. Graph Drawing – Algorithms for the Visu-
alization of Graphs. Prentice Hall, 1999.

5. R. A. Becker, S. G. Eick, and A. R. Wilks.
Visualizing network data. IEEE Transactions
on Visualization and Graphics, 1(1):16–28, 1995.

6. K. C. Cox, S. G. Eick, and T. He. 3D geo-
graphic network displays. ACM Sigmod Record,
25(4):50–54, 1996.

7. S. G. Eick. Visual discovery and analysis. IEEE
Transactions on Computer Graphics and Visual-
ization, 6(1):44–59, 2000.

8. S. G. Eick and A. F. Karr. Visual scalability.
Journal of Computational Graphics and Statis-
tics, 11(1):22–43, 2002.

9. S. G. Eick and G. J. Wills. Navigating large
networks with hierarchies. In Visualization ’93
Conference Proceedings, pages 204–210, 1993.

10. S. G. Eick and G. J. Wills. High interaction
graphics. European Journal of Operational Re-
search, 81:445–459, 1995.

11. R. A. Hanneman. Introduction to social net-
work methods. http://faculty.ucr.edu/~hanneman.

12. W. C. Hill and J. D. Hollan. Deixis and the
future of visualization excellence. In IEEE Visu-
alization ’91 Conference Proceedings, pages 314–
320, 1991.

13. E. Koutsofios, D. A. Keim, and S. North. Visu-
alization of large-scale telecommunications

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 828

Figure 42.7 Zoombar that supports 1000:1 zooming using a two-step linear zoom.

828 Selected Topics and Applications

data. IEEE Computer Graphics and Applica-
tions, pages 33–35, 1999.

14. H. C. Purchase. Graph drawing aesthetics. Jour-
nal of Visual Languages and Computing,
13(5):501–516, 2002.

15. S. S. Wasserman and K. Faust. Social
Network Analysis. Cambridge University Press,
1994.

16. E. J. Wegman. Huge data sets and the frontiers
of computational feasibility. Journal of Compu-
tational and Graphical Statistics, 4(4):281–295,
1995.

17. G. J. Wills. Nicheworks—interactive visualiza-
tion of very large graphs. In Graph Drawing ’97
Conference Proceedings. New York, Springer–
Verlag, 1997.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 829

Scalable Network Visualization 829

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:35pm page 830

This page intentionally left blank

43 Visual Data-Mining Techniques

DANIEL A. KEIM and MIKE SIPS

University of Konstanz

MIHAEL ANKERST

The Boeing Company

43.1 Introduction

Never before in history has data been generated

at such high volumes as it is today. Exploring

and analyzing the vast volumes of data has

become increasingly difficult. Information visu-

alization and visual data mining can help to deal

with the flood of information. The advantage

of visual data exploration is that the user is

directly involved in the data-mining process.

There are a large number of information visual-

ization techniques that were developed in the

early 2000s to support the exploration of large

datasets. In this chapter, we provide an over-

view of information visualization and visual

data-mining techniques and illustrate them

using a few examples.

The progress made in hardware technology

allows today’s computer systems to store very

large amounts of data. Researchers from the

University of Berkeley estimate that every year

about 1 exabyte (1 million terabytes) of data is

generated, of which a large portion is available

in digital form. This means that in about 2007

more data will be generated than in all of

human history to date. The data is often auto-

matically recorded via sensors and monitoring

systems. Even simple transactions of everyday

life, such as paying by credit card or using the

telephone, are typically recorded by computers.

Usually many parameters are recorded,

resulting in data with high dimensionality. The

data is collected because people believe that it is

a potential source of valuable information, pro-

viding a competitive advantage (at some point).

Finding the valuable information hidden in the

data, however, is a difficult task. With today’s

data-management systems, it is possible to view

only small portions of the data. If the data is

presented textually, the amount of data that can

be displayed is in the range of some 100 data

items, but this is like a drop in the ocean when

you are dealing with datasets containing mil-

lions of data items. Having no possibility to

adequately explore the large amounts of data

that have been collected because of their poten-

tial usefulness, the data becomes useless and the

databases become data ‘‘dumps.’’ Information

visualization focuses on datasets lacking inher-

ent 2D or 3D semantics and therefore also

lacking a standard mapping of the abstract

data onto the physical screen space. There are

a number of well known techniques for visualiz-

ing such datasets, such as x-y plots, line plots,

and histograms. These techniques are useful

for data exploration but are limited to rela-

tively small and low-dimensional datasets. In

the early 2000s, a large number of novel infor-

mation visualization techniques were developed

that allowed visualizations of multidimensional

datasets without inherent 2D or 3D semantics.

Good overviews of the approaches can be found

in a number of books [8,28,38]. The techniques

can be classified based on three criteria [20]

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 831

831

An earlier version of this paper with focus on visualization techniques and their classification has been published in Visual Data

Analysis: An Introduction (D. Hand and M. Berthold, Eds.).

(Fig. 43.1): the data to be visualized, the visual-

ization technique, and the interaction technique

used.

The data type to be visualized [32] may be

1D data, such as temporal (time-series) data; 2D

data, such as geographical maps; multidimen-

sional data, such as relational tables text, hyper-

text news articles, and web documents; or

hierarchies and graphs, such as telephone calls

and web documents, algorithms, and software.

The visualization technique used may be clas-

sified as standard 2D/3D displays, such as bar

charts and x-y plots; geometrically transformed

displays, such as hyperbolic plane [36] (Fig.

43.2a) and parallel coordinates [18]; icon-based

displays, such as Chernoff faces [9] and stick

figures [23,24] (Fig. 43.2c); dense pixel displays,

such as the recursive pattern [4] (Fig. 43.2b)

and circle segments [5]; and stacked displays,

such as treemaps [19,31] (Fig. 43.2d) and dimen-

sional stacking [37]. The third dimension of the

classification is the interaction technique used.

Interaction techniques allow users to directly

navigate and modify the visualizations, as well

as select subsets of the data for further oper-

ations. Examples include dynamic projection,

interactive filtering, interactive zooming, inter-

active distortion, interactive linking, and brush-

ing. Note that the three dimensions of our

classification—data type to be visualized, visu-

alization technique, and interaction technique—

can be assumed to be orthogonal. Orthogonal-

ity means that any of the visualization tech-

niques may be used in conjunction with any of

the interaction techniques for any data type.

Note also that a specific system may be designed

to support different data types and that it may

use a combination of visualization and inter-

action techniques. More details can be found

in Keim and Ward [21].

43.2 Methodology of Visual Data Mining

First, the data analyst typically specifies some

parameters to restrict the search space; data

mining is then performed automatically by an

algorithm, and finally the patterns found by the

automatic data-mining algorithm are presented

to the data analyst on the screen. For data

mining to be effective, it is important to include

the human in the data exploration process and

combine the flexibility, creativity, and general

knowledge of the human with the enormous

storage capacity and the computational power

of today’s computers. Since there is a huge

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 832

D
at

a
to

 b
e

V
is

ua
liz

ed

Visualization Technique

Stacked Display

Dense Pixel Display

Iconic Display

Geometrically Transformed Display

Standard 2D/3D Display

1. 1D

2. 2D

3. Multidimensional

4. Text/Web

5. Hierarchies/Graphs

6. Algorithms/Software

Standard Projection Filtering Zoom Distortion Link&Brush
Interaction Technique

Figure 43.1 Classification of information visualization techniques.

832 Selected Topics and Applications

amount of patterns generated by an automatic

data-mining algorithm in textual form it is

almost impossible for the human to interprete

and evaluate the pattern in detail and extract

interesting knowledge and general characteris-

tics. Visual data mining aims at integrating the

human in the data-mining process as well as

applying human perceptual abilities to the an-

alysis of large datasets available in today’s com-

puter systems. Presenting data in an interactive,

graphical form often fosters new insights, en-

couraging the formation and validation of new

hypotheses to the end of better problem-solving

and gaining deeper domain knowledge.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 833

Figure 43.2 Some popular information visualization techniques. (a) Geometrically transformed displays: Interactive visualiza-

tion of high-dimensional data using the hyperbolic plane [36]. Genre separation in movie space (red ‘‘x’’ marks science fiction,

black ‘‘D’’ marks animation, and green ‘‘þ’’ movies belonging to both genres) (� ACM). (b) Dense pixel displays: Recursive

Pattern [4]—based on a generic back-and-forth recursive arrangement schema to represent each data value as a colored pixel and

each attribute in separate sub-windows (example visualization shows the stock prices for Dow Jones, Gold, IBM, and US Dollar

are depicted for almost 7 consecutive years, 7 vertical bars correspond to the 7 years (level (3)-patterns) and the subdivision of the

bars to the 12 month within each year (level (2)-patterns), the coloring maps high attribute values (stock prices) to light colors and

low attributes values (stock prices) to dark colors) (c) Iconic displays: Stick Figures [24,23]—visualization of multidimensional

data using properties of angle and/or length of the limbs (US Census Data Median Household Income and Age of Householder).

(d) Stacked displays: TreeMaps [9,31]—splitting the screen into rectangles in alternating horizontal and vertical directions in each

level (example visualization shows a hierarchical file system of a large hard disk). (See also color insert.)

Visual Data-Mining Techniques 833

Visual data exploration usually follows a

three-step process: overview first, zoom and

filter, and then details-on-demand (which has

been called the Information Seeking Mantra

[32]). First, the data analyst needs to get an

overview of the data. In the overview, the data

analyst identifies interesting patterns or groups

in the data and focuses on one or more of them.

For analyzing the patterns, the data analyst

needs to drill down and access details of the

data. Visualization technology may be used for

all three steps of the data exploration process.

Visualization techniques are useful for showing

an overview of the data, allowing the data ana-

lyst to identify interesting subsets. In this step, it

is important to keep the overview visualization

while focusing on the subset using another visu-

alization technique. An alternative is to distort

the overview visualization in order to focus on

the interesting subsets. This can be performed

by dedicating a larger percentage of the display

to the interesting subsets while decreasing screen

utilization for uninteresting data. To further

explore the interesting subsets, the data analyst

needs a drill-down capability in order to observe

the details about the data. Note that visualiza-

tion technology not only provides the base visu-

alization techniques for all three steps but also

bridges the gaps between the steps. Visual data

mining can be seen as a hypothesis-generation

process; the visualizations of the data allow the

data analyst to gain insight into the data and

come up with new hypotheses. The verification

of the hypotheses can also be done via data

visualization, but it may also be accomplished

by automatic techniques from statistics, pattern

recognition, or machine learning. As a result,

visual data mining usually allows faster data

exploration and often provides better results,

especially in cases in which automatic data-

mining algorithms fail. In addition, visual data

exploration techniques provide a much higher

degree of user satisfaction and confidence in the

findings of the exploration. This fact leads to a

high demand for visual exploration techniques

and makes them indispensable in conjunction

with automatic exploration techniques.

Visual data mining is based on an automatic

part, the data-mining algorithm, and an inter-

active part, the visualization technique. There

are three common approaches to integrate the

human in the data exploration process to realize

different kinds of approaches to visual data

mining (Fig. 43.3):

. Preceding Visualization (PV): Data is visual-

ized in some visual form before running a

data-mining algorithm. By interaction with

the raw data, the data analyst has full con-

trol over the analysis in the search space.

Interesting patterns are discovered by ex-

ploring the data.

. Subsequent Visualization (SV): An automatic

data-mining algorithm performs the data-

mining task by extracting patterns from a

given dataset. These patterns are visualized

to make them interpretable for the data ana-

lyst. Subsequent visualizations enable the

data analyst to specify feedbacks. Based on

the visualization, the data analyst may want

to return to the data-mining algorithm and

use different input parameters to obtain

better results.

. Tightly Integrated Visualization (TIV): An

automatic data-mining algorithm performs

an analysis of the data but does not produce

the final results. A visualization technique is

used to present the intermediate results of

the data exploration process. The combin-

ation of some automatic data-mining algo-

rithms and visualization techniques enables

specified user feedback for the next data-

mining run. Then, the data analyst identifies

the interesting patterns in the visualization of

the intermediate results based on his domain

knowledge. A motivation of this approach is

to achieve independence of the data-mining

algorithms from the application. A given

automatic data-mining algorithm can be

very useful in one domain but may have

drawbacks in some other domain. Since

there is no automatic data-mining algorithm

(with one parameter setting) suitable for

all application domains, tightly integrated

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 834

834 Selected Topics and Applications

visualization leads to a better understanding

of the data and the extracted patterns.

In addition to the direct involvement of the

human, the main advantages of visual data ex-

ploration over automatic data-mining tech-

niques are the following:

. Visual data exploration can easily deal with

highly nonhomogeneous and noisy data.

. Visual data exploration is intuitive and re-

quires no understanding of complex math-

ematical or statistical algorithms or

parameters.

. Visualization can provide a qualitative over-

view of the data, allowing data phenomena

to be isolated for further quantitative analy-

sis.

Visual data-mining techniques have proven

to be of high value in exploratory data analysis

and have a high potential for exploring large

databases. Visual data exploration is especially

useful when little is known about the data and

the exploration goals are vague. Since the data

analyst is directly involved in the exploration

process, shifting and adjusting the explor-

ation goals is automatically done if necessary.

In the next sections, we show that the integra-

tion of the human in the data-mining process

and applying human perceptual abilities to the

analysis of large datasets can help to provide

more effective results in important data-mining

application domains, such as in the mining for

association rules, clustering, classification, and

text retrieval.

43.3 Association Rules

The goal of association rule generation is to find

interesting patterns and trends in transaction

databases. Association rules are statistical rela-

tions between two or more items in the dataset.

In a supermarket basket application, associ-

ations express the relations between items that

are bought together. It is, for example, interest-

ing if we find out that in 70% of the cases when

people buy bread, they also buy milk. Associ-

ation rules tell us that the presence of some

items in a transaction imply the presence of

other items in the same transaction with a cer-

tain probability, called confidence. A second

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 835

Data

Visualization of
the Data

DM-Algorithm

Result

Knowledge

Data

DM-Algorithm

Result

Visualization of
the Data

Knowledge

Data

DM-Algorithm
Step 1

DM-Algorithm
Step n

Result

Knowledge

V
isualization +

 Interaction

Preceding
Visualization (PV)

Subsequent
Visualization (SV)

Tightly Integrated
Visualization (TIV)

Figure 43.3 Overview of different approaches of human involvement.

Visual Data-Mining Techniques 835

important parameter is the support of an asso-

ciation rule, which is defined as the percentage

of transactions in which the items co-occur.

Let I ¼ {i1, . . . in} be a set of items and let D

be a set of transactions, where each transaction

T is a set of items such that T � I . An associ-

ation rule is an implication of the form X) Y ,

where X 2 I , Y 2 I , and X , Y 6¼ ;. The confi-

dence c is defined as the percentage of transac-

tions that contain Y, given X. The support is the

percentage of transactions that contain both X

and Y. For given support and confidence levels,

there are efficient algorithms to determine all

association rules [1]. A problem, however, is

that the resulting set of association rules is usu-

ally very large, especially for low support and

confidence levels. Using higher support and

confidence levels may not be effective, since

useful rules may then be overlooked.

Visualization techniques have been used to

overcome this problem and to allow an inter-

active selection of good support and confidence

levels. Fig. 43.4 shows SGI MineSet’s Associ-

ation Rule Visualizer [17], which maps the left-

and right-hand sides of the rules to the x- and y-

axes of the plot and shows the confidence as the

height of the bars and the support as the height

of the discs. The color of the bars shows the

interestingness of the rule. Using the visualiza-

tion, the user is able to see groups of related

rules and the impact of different confidence and

support levels. The number of rules that can be

visualized, however, is limited, and the visual-

ization does not support combinations of items

on the left- or right-hand side of the association

rules. Fig. 43.5 shows two alternative visualiza-

tions called mosaic and double-decker plots

[15]. The basic idea is to partition a rectangle

on the y-axis according to one attribute and

make the regions proportional to the sum of

the corresponding data values. Compared to

bar charts, mosaic plots use the height of the

bars instead of the width to show the parameter

value. Then each resulting area is split in the

same way according to a second attribute. The

coloring reflects the percentage of data items

that fulfill a third attribute. The visualization

shows the support and confidence values of all

rules of the form X1X2) Y . Mosaic plots are

restricted to two attributes on the left side of the

association rule. Double-decker plots can be

used to show more than two attributes on the

left side. The idea is to show a hierarchy of

attributes on the bottom (Heineken, Coke,

chicken, in the example shown in Fig. 43.5)

corresponding to the left-hand side of the asso-

Figure 43.4. MineSet’s Association Rule Visualizer [17] maps the left- and right-hand sides of the rules to the x- and y-axes

of the plot and shows the confidence as the height of the bars and the support as the height of the discs; color of the bars shows

the interestingness of the rule (example visualization shows market basket data for customer buying patterns). � SGI. (See also

color insert.)

836 Selected Topics and Applications

ciation rules; the bars on the top correspond to

the number of items in the corresponding subset

of the database and therefore visualize the sup-

port of the rule. The colored areas in the bars

correspond to thepercentageofdata transactions

that contain an additional item (sardines, in Fig.

43.5) and therefore correspond to the support.

Other approaches to association rule visualiza-

tion include graphs with nodes corresponding to

items and arrows corresponding to implications

as used in DBMiner [16] and association matrix

visualizations to cluster-related rules [12].

43.4 Classification

Classification is the process of developing a

classification model based on a training dataset

with known class labels. To construct the clas-

sification model, the attributes of the training

dataset are analyzed and an accurate descrip-

tion or model of the classes based on the attri-

butes available in the dataset is developed. The

class descriptions are used then to classify data

for which the class labels are unknown. Classifi-

cation is sometimes also called supervised learn-

ing because the training set is used to teach the

system how to classify the data. There are many

algorithms for solving classification talks. The

most popular approaches are algorithms that

inductively construct decision trees. Examples

are ID3 [25], CART [7], ID5 [34,35], C4.5 [26],

SLIQ [22], and SPRINT [30]. In addition, there

are approaches that use neural networks, gen-

etic algorithms, or Bayesian networks to solve

the classification problem. Since most algo-

rithms work as black-box approaches it is

often difficult to understand and optimize the

decision model. Problems such as over-fitting or

tree pruning are difficult to tackle.

Visualization techniques can help to over-

come these problems. The decision tree visuali-

zer in SGI’s MineSet system [17] shows an

overview of the decision tree together with im-

portant parameters such as the attribute value

distributions. The system allows an interactive

selection of the attributes shown and helps the

user understand the decision tree. A more so-

phisticated approach that also helps in decision

tree construction is visual classification, as pro-

posed by Ankerst et al. [3]. The basic idea is to

show each attribute value by a colored pixel and

arrange them in bars. The pixels of each attri-

bute bar are sorted separately, and the attribute

with the purest value distribution is selected as

the split attribute of the decision tree. The pro-

cedure is repeated until all leaves correspond

to pure classes. An example of the decision

tree resulting from this process is shown in

Fig. 43.7. Compared to a standard visualization

of a decision tree, additional information is pro-

vided that is helpful for explaining and analyz-

ing the decision tree, namely the following:

. Size of the nodes (number of training records

corresponding to the node).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 837

x11

x12

x1
x2 x21 x22x23 x24

x12
P(x12 and x21)

P(x
12

 and x
21

 and
y2

)

100

50

0

Not Sardines

Sardines

Heineken
Coke
Chicken

Figure 43.5 Association rule visualization [15] partitions a rectangle on the y-axis according to one attribute and makes the

regions proportional to the sum of the corresponding data values. � ACM (a) Mosaic plot: 2D mosaic plot of attributes Ax1 and

Ax2; highlighting shows up in the mosaic plot as a third dimension (b) Double-decker plot: example visualization shows a

hierarchy of supermarket basket items: Heineken, Coke, chicken, and sardines.

Visual Data-Mining Techniques 837

. Quality of the split (purity of the resulting

partitions).

. Class distribution (frequency and location of

the training instances of all classes).

Some of this information might also be pro-

vided by annotating the standard visualization

of a decision tree (e.g., annotating the nodes

with the number of records or the gini-index),

but this approach clearly fails for more complex

information such as the class distribution. In

general, visualizations can help us to better

understand the classification models and to

easily interact with the classification algorithms

in order to optimize the model generation and

classification process.

43.5 Clustering

Clustering is the process of finding a partitioning

of the dataset into homogeneous subsets called

clusters. Unlike classification, clustering is un-

supervised learning. This means that the classes

are unknown and no training set with class

labels is available. A wide range of clustering

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 838

Figure 43.6 MineSet’s Decision Tree Visualizer [17] displays decision trees as 3D landscapes; each node contains bars whose

height, color, and disk correspond to important parameters. � SGI. (See also color insert.)

Inherited Split Point

Split Point

Root

Leaf

Figure 43.7 Visual Classification [3] shows attribute values by colored pixels arranged in bars (here we see a decision tree for

DNA segment data with 19 attributes). � ACM. (See also color insert.)

838 Selected Topics and Applications

algorithms have been proposed in the literature,

including density-based methods such as kernel

density estimation [29] and linkage-based

methods [6]. Most algorithms use assumptions

about the properties of the clusters that are either

used as defaults or have to be given as input

parameters. Depending on the parameter values,

the user gets differing clustering results. In 2D or

3D space, the impact of different algorithms and

parameter settings can easily be explored using

simple visualizations of the resulting clusters

(e.g., x-y plots), but in higher-dimensional space

the impact is much more difficult to understand.

Some higher-dimensional techniques try to de-

termine 2D or 3D projections of the data that

retain the properties of the high-dimensional

clusters as much as possible [39]. Fig. 43.8

shows a 3D projection of a dataset consisting of

five clusters.

While this approach works well with low- to

medium-dimensional datasets, it is difficult to

apply to large high-dimensional datasets, espe-

cially if the clusters are not clearly separated and

the dataset also contains noise (data that does

not belong to any cluster). In this case, more

sophisticated visualization techniques are

needed to guide the clustering process, select the

right clustering model, and adjust the parameter

values appropriately. An example of a system

that uses visualization techniques to help in

high-dimensional clustering is OPTICS [2]. The

idea of OPTICS (Ordering Points To Identify the

Clustering Structure) is to create a 1D ordering of

the database representing its density-based clus-

tering structure. Fig. 43.9 shows a 2D example

dataset together with its reachability distance

plot. Intuitively, points within a cluster are

close in the generated 1D ordering and their

reachability distance shown in Fig. 43.9 is simi-

lar. Jumping to another cluster results in higher

reachability distances. The idea works for data

of arbitrary dimension. The reachability plot

provides a visualization of the inherent cluster-

ing structure and is therefore valuable for

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 839

Figure 43.8 Visualization based on a projection into

3D space [39]: 3D cluster-guided projection, where the 3D

subspace is determined by centroids of 4 clusters 0, 1, 3, 5.

� ACM. (See also color insert.)

(a) (b)

Objects

R
ea

ch
ab

ili
ty

 v
al

ue
s

Figure 43.9 OPTICS Visual Clustering [2]. (a) Example dataset; (b) reachability plot. � ACM.

Visual Data-Mining Techniques 839

understanding the clustering and guiding the

clustering process.

Another interesting approach is the HD-Eye

system [14]. The HD-Eye system considers the

clustering problem a partitioning problem and

supports a tight integration of advanced cluster-

ing algorithms and state-of-the-art visualization

techniques, allowing the user to directly interact

in the crucial steps of the clustering process. The

crucial steps are the selection of dimensions to

be considered, the selection of the clustering

paradigm, and the partitioning of the dataset.

Novel visualization techniques are employed to

help the user identify the most interesting pro-

jections and subsets as well as the best separ-

ators for partitioning the data. Fig. 43.10 shows

an example screenshot of the HD-Eye system

with its basic visual components for cluster sep-

aration. The separator tree represents the clus-

tering model produced so far in the clustering

process. The abstract iconic displays (top-right

and bottom-middle in Fig. 43.10) visualize the

partitioning potential of a large number of

projections. The properties are based on histo-

gram information of the point density in the

projected space. The number of data points

belonging to the maximum corresponds to the

color of the icon. The color follows a given

color table ranging from dark colors for large

maxima to bright colors for small maxima. The

measure of how well a maximum is separated

from the others corresponds to the shape of the

icon, and the degree of separation varies from

sharp spikes for well separated maxima to blunt

spikes for badly separated maxima. The color-

and curve-based point density displays present

the density of the data and allow a better under-

standing of the data distribution, which is cru-

cial for an effective partitioning of the data. The

visualizations are used to decide which dimen-

sions are used for the partitioning. In addition,

the partitioning can be specified interactively

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 840

Figure 43.10 HD-Eye screenshot [14] showing different visualizations of projections and the separator tree. Clockwise from the

top: separator tree, iconic representation of 1D projections, 1D projection histogram, 1D color-based density plots, iconic

representation of multidimensional projections, and color-based 2D density plot (example visualization shows a large molecu-

lar-biology dataset). � IEEE. (See also color insert.)

840 Selected Topics and Applications

directly within the visualizations, allowing the

user to define nonlinear partitionings.

43.6 Text

With the growing importance of electronic

media for storing and exchanging text docu-

ments, there is also a growing interest in tools

that can help us find and sort information in-

cluded in the text documents. Text documents

are semistructured data, in that they are neither

completely unstructured nor completely struc-

tured. For example, a document may contain

some structured fields, such as title, authors,

publication date, length, and category, as well

as largely unstructured text components, such

as abstract and content. Text mining is a process

of finding patterns in text databases and may

be defined as the process of analyzing text to

extract information from it. Complete under-

standing of natural-language text is not imme-

diately attainable, and therefore text mining

focuses on extracting a small amount of infor-

mation with high reliability. The goals of the

text-mining process are automatic document

clusterization/categorization, assignment of

keywords to text documents, topic identification

and tracking in ordered (time) sequences of text

documents, searching documents based on the

content categories and not only keywords, gen-

eration and analysis of user profiles based on

the usage of text databases, and other related

problems. A wide range of automatic text-

mining algorithms have been proposed in the

literature over the last few decades [10,11].

An interesting visual data-mining approach is

ThemeRiver [13]. ThemeRiver visualizes the-

matic variations over time within a large collec-

tion of documents. The thematic changes are

shown in the context of a timeline and corres-

ponding external events. The timeline within

the document collection, selected thematic con-

tent, and thematic strength are directly indi-

cated by the directed flow, composition, and

changing width of the visualized river. The

directed flow from left to right is interpreted as

movement through time. At any point in time,

the vertical distance, or width, of the river indi-

cates the collective strength of the selected

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 841

Figure 43.11 ThemeRiver [13]: visualization of thematic changes in documents (example visualization shows Castro data from

November 1959 through June 1961). � IEEE. (See also color insert.)

Visual Data-Mining Techniques 841

themes. Colored ‘‘currents’’ flowing within the

river represent individual themes. Vertical width

of the river segments indicates decreasing or

increasing strength of the themes.

Another interesting approach is the shape-

based Visual Interface for Text Retrieval [27].

This exploration system uses procedurally gen-

erated shapes coupled with an underlying text-

retrieval engine. Traditional text-based queries

and summarization are enhanced with a visual

interface based on 3D shapes (glyphs). The

interface allows visualization of multidimen-

sional relationships among documents and per-

ception of more information than with

conventional text-based interfaces.

43.7 Conclusion

The exploration of large datasets is an important

but difficult problem. Information visualization

techniques can be useful in solving this problem.

Visual data exploration has a high potential, and

many applications such as fraud detection and

data mining can use information visualization

technology for improved data analysis.

Avenues for future work include the tight

integration of visualization techniques with trad-

itional techniques from such disciplines as stat-

istics, machine learning, operations research,

and simulation. Integration of visualization

techniques and these more established methods

would combine fast automatic data-mining algo-

rithms with the intuitive power of the human

mind, improving the quality and speed of the

data-mining process. Visual data-mining tech-

niques also need to be tightly integrated with

the systems used to manage the vast amounts of

relational and semistructured information, in-

cluding database management and data ware-

house systems. The ultimate goal is to bring the

power of visualization technology to every desk-

top to allow a better, faster, and more intuitive

exploration of very large data resources. This will

not only be valuable in an economic sense but

will also stimulate and delight the user.

References

1. D. Agarwal, H. Mannila, R. Srikant, H. Toivo-
nen, and A. Verkamo. Fast discovery of associ-
ation rules. Advances in Knowledge Discovery and
Data Mining, pages 307–328, 1996.

2. M. Ankerst, M. Breunig, H. Kriegel, and J.
Sander. OPTICS: Ordering points to identify
the clustering structure. Proc. ACM SIGMOD
’99, Int. Conf on Management of Data, pages
49–60, 1999.

3. M. Ankerst, M. Ester, and H. Kriegel. Towards
an effective cooperation of the computer and the
user for classification. SIGKDD Int. Conf. On
Knowledge Discovery & Data Mining (KDD
2000), pages 179–188, 2000.

4. M. Ankerst, D. A. Keim, and H.-P. Kriegel.
Recursive pattern: A technique for visualizing
very large amounts of data. In Proc. Visualization
’95, pages 279–286, 1995.

5. M. Ankerst, D. A. Keim, and H.-P. Kriegel.
Circle segments: A technique for visually explor-
ing large multidimensional data sets. In Visualiza-
tion ’96, Hot Topic Session, San Francisco, CA,
1996.

6. H. H. Bock. Automatic Classification. Vanden-
hoeck and Ruprecht, Göttingen, 1974.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 842

Figure 43.12 Shape-based Visual Interface for Text Re-

trieval [27]: shape-based visualization of query results

for the key words lion, sheep, mouse, and wolf. � ACM.

(See also color insert.)

842 Selected Topics and Applications

7. L. Breiman, J. Friedman, R. Olshen, and C.
Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

8. S. Card, J. Mackinlay, and B. Shneiderman.
Readings in Information Visualization. Morgan
Kaufmann, 1999.

9. H. Chernoff. The use of faces to represent
points in k-dimensional space graphically. Jour-
nal Amer. Statistical Association, 68:361–368,
1973.

10. J. Han and M. Kamber. Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers,
2001.

11. D. J. Hand, H. Mannila, and P. Smyth. Prin-
ciples of Data Mining. MIT Press, 2001.

12. M. Hao, M. Hsu, U. Dayal, S. F. Wei, T.
Sprenger, and T. Holenstein. Market basket an-
alysis visualization on a spherical surface. Visual
Data Exploration and Analysis Conference,
2001.

13. S. Havre, B. Hetzler, L. Nowell, and P.
Whitney. Themeriver: visualizing thematic
changes in large document collections. Transac-
tions on Visualization and Computer Graphics,
2001.

14. A. Hinneburg, D. Keim, and M. Wawryniuk.
HD-Eye: visual mining of high-dimensional
data. IEEE Computer Graphics and Applica-
tions, 19(5), 1999.

15. H. Hofmann, A. Siebes, and A. Wilhelm. Visu-
alizing association rules with interactive mosaic
plots. SIGKDD Int. Conf. On Knowledge Dis-
covery & Data Mining (KDD 2000), Boston,
MA, 2000.

16. D. T. Inc. Dbminer, http://www.dbminer.com,
2001.

17. S. G. Inc. Mineset, http://www.sgi.com/software/
mineset, 2001.

18. A. Inselberg and B. Dimsdale. Parallel coordin-
ates: A tool for visualizing multi-dimensional
geometry. In Proc. Visualization 90, San Fran-
cisco, CA, pages 361–370, 1990.

19. B. Johnson and B. Shneiderman. Treemaps: A
space-filling approach to the visualization of
hierarchical information. In Proc. Visualization
’91 Conf, pages 284–291, 1991.

20. D. Keim. Visual exploration of large databases.
Communications of the ACM, 44(8):38–44, 2001.

21. D. Keim and M. Ward. Visual data mining
techniques. In Intelligent Data Analysis: An
Introduction (D. Hand and M. Berthold, Eds.).
Berlin, Springer Verlag, 2002.

22. M. Mehta, R. Agrawal, and J. Rissanen. SLIQ:
A fast scalable classifier for data mining. Conf.
on Extending Database Technology (EDBT),
Avignon, France, 1996.

23. R. M. Pickett. Visual Analyses of Texture in the
Detection and Recognition of Objects. Academic
Press, New York, 1970.

24. R. M. Pickett and G. G. Grinstein. Icono-
graphic displays for visualizing multidimen-
sional data. In Proc. IEEE Conf. on Systems,
Man and Cybernetics, pages 514–519, 1988.

25. J. R. Quinlan. Induction of decision trees. Ma-
chine Learning, pages 81–106, 1986.

26. J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, Los Altos, CA,
1993.

27. R. M. Rohrer, J. L. Sibert, and D. S. Ebert. A
shape-based visual interface for text retrieval.
IEEE Computer Graphics and Applications,
19(5):40–47, 1999.

28. H. Schumann and W. Müller. Visualisierung:
Grundlagen und Allgemeine Methoden. Berlin,
Springer, 2000.

29. D. W. Scott. Multivariate Density Estimation.
Wiley and Sons, 1992.

30. J. Shafer, R. Agrawal, and M. Mehta. SPRINT:
A scalable parallel classifier for data mining.
Conf. on Very Large Databases, 1996.

31. B. Shneiderman. Tree visualization with tree-
maps: A 2D space-filling approach. ACM
Transactions on Graphics, 11(1):92–99, 1992.

32. B. Shneiderman. The eye have it: A task by data
type taxonomy for information visualizations.
In Visual Languages, 1996.

33. B. Spence. Information Visualization. Pearson
Education Higher Education publishers, UK,
2000.

34. P. E. Utgoff. Incremental induction of decision
trees. Machine Learning, 4:161–186, 1989.

35. P. E. Utgoff, N. C. Berkman, and J. A. Clouse.
Decision tree induction based on efficient
tree restructuring. Machine Learning, 29:5–44,
1997.

36. J. Walter and H. Ritter. On interactive visual-
ization of high-dimensional data using the
hyperbolic plane. In Proc. ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pages 123–131, 2002.

37. M. O. Ward. Xmdvtool: Integrating multiple
methods for visualizing multivariate data. In
Proc. Visualization 94, Washington, DC, pages
326–336, 1994.

38. C. Ware. Information Visualization: Perception
for Design. Morgan Kaufmann, 2000.

39. L. Yan. Interactive exploration of very large
relational data sets through 3d dynamic projec-
tions. SIGKDD Int. Conf. On Knowledge Dis-
covery & Data Mining (KDD 2000), Boston,
MA, 2000.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 843

Visual Data-Mining Techniques 843

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:37pm page 844

This page intentionally left blank

44 Visualization in Weather and
Climate Research

DON MIDDLETON and TIM SCHEITLIN

National Center for Atmospheric Research

BOB WILHELMSON

National Center for Supercomputing Applications

University of Illinois

44.1 A Brief History

Early in the 20th century, Lewis Fry Richardson,

a British mathematician, formulated numerical

approximations for the general circulation of the

atmosphere and in 1922 published Weather Pre-

diction by Numerical Process. At a time long

before the advent of computers, he tried to

imagine how it might be possible to solve those

complex equations in order to make a weather

prediction. He imagined a stadium filled with

people, each equippedwith a slide rule and tasked

with calculating a small part of an overwhelm-

ingly large problem. With a human conductor

guiding the process, somehow such a symphony

of parallel calculation might be able to produce

solutions to the problem. Dr. Richardson was

truly a visionary because, of course, that’s essen-

tially how we simulate weather and climate

today: on parallel computers, and building on

his formative work.

In the mid-1950s the availability of digital

computers offered enhanced opportunities for

effectively solving Richardson’s equations, and

pioneering work began in developing the first

global general circulation models (GCMs) for

the atmosphere. At about the same time, and

into the early 1960s, a series of the world’s first

meterological satellites—the TIROS (Television

Infrared Observation Satellite) series—was

launched and scientists were afforded an en-

tirely new view of our planet and its weather

patterns. As research progressed in the area of

simulation and observation, analysis and visu-

alization capabilities became increasingly im-

portant and the development of early

visualization software began. One of the prime

examples of this was NCAR Graphics, a suite of

FORTRAN libraries that started out as a basic

1D/2D package for plotting graphs and con-

tours of global and regional scientific data.

In the mid-1960s, Warren Washington and

Akira Kasahara of the National Center for At-

mospheric Research (NCAR) began developing

a numerical GCM of the atmosphere, still build-

ing largely upon Dr. Richardson’s early work.

Thenumberswere starting to pour out, and inter-

est in developing better insight into the results

grew as well. These pioneers set out on an aggres-

sive effort to visualize their simulation results

and, in an incredibly laborious process, used

their early visualization tools to produce remark-

ably sophisticated 3D visualizations (projections

of the globe) of their data. Using early digital film

recorders, they recorded 3D animations of simu-

lated time-evolving weather using some clever

techniques, such as defocusing the camera on an

image of precipitable water so that the end result

would resemble clouds. The image shown in Fig.

44.1 is a single frame from one of these early

movies that has recently been restored from arch-

ives. The first paper on this was published in 1967

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 845

845

in The Monthly Weather Review, entitled

‘‘NCAR Global General Circulation Model of

the Atmosphere.’’ In 1975, Richard Anthes de-

veloped one of the first multilayer numerical

hurricane models. In contrast to the early climate

modelers, he created an animation by producing

a large sequence of printouts, each page repre-

senting a single time-step from his model. By

hand, he registered each printout on a table and

photographed it, ultimately producing a 16 mm

film animation of his simulation.

In 1987, visualization was identified in a sem-

inal NSF-sponsored report [17] as a critical cap-

ability for dealing with ‘‘fire hoses of data,’’ and

this triggered new work on visualization at uni-

versities and the then-new National Science

Foundation (NSF) supercomputing centers.

One of the best-known efforts was undertaken

by the National Center for Supercomputing

Applications (NCSA) in the area of weather,

where researchers developed a beautiful visual-

ization of a long-lasting supercell thunderstorm,

the type of storm that produces the largest torna-

does. One frame of this movie is shown in Fig.

44.2. Various rendering techniques were used to

illustrate the water and ice structure of a storm,

how air moves and rotates in and around the

storm, andhowdifferent physical processes influ-

ence storm rotation near the ground. Techniques

used included weightless tracer particles repre-

sented by balls and ribbons, color-filled slice

planes, and solid and transparent isosurfaces.

The animation was a large team effort, as

reported by Wilhelmson et al. [34]. Storyboards

and mock-ups were created and a variety of visu-

alization techniques explored. Over the

11-month period leading to the release of the

storm video, four scientific animators, using

Wavefront software, worked on the project for

approximately 1 person-year along with script-

writers, artistic consultants, and postproduction

personnel. It won a number of awards, appeared

in and on the cover of many science and visual-

ization articles and books, and was considered

for the National Academy’s Short Film—Ani-

mation Category Award. It remains a classic of

scientific visualization, appearing on the cover

and in the discussion of Tufte’s 1997 book on

Visual Explanations [31].

Development of the interactive atmospheric

science visualization package known as Vis5D

[32] began in 1988, and it remains today an

important tool for visualizing weather and

climate data on the scientific desktop. A number

of other more general-purpose interactive visu-

alization tools appeared on the scene through-

out the 1990s (AVS, IBM DX, Iris Explorer,

IDL), and their widespread use was propelled

by the availability of powerful graphics work-

stations and ultimately a new generation of

visualization-capable PCs. Now, in 2004, the

atmospheric science community uses a broad

array of old and new visualization tools.

Through continued development, NCAR

graphics, Vis5D, and IDL have stood the test

of time and are widely used in the earth science

community. New software developments are

being directed at utilizing new hardware cap-

abilities, such as large display walls, and at cre-

ating collaborative visualization environments.

This chapter provides a high-level overview of

visualization in the areas of weather and climate

research. The approach is to provide a general

sense of the nature of the research problems, the

models (this term is used interchangeably with

‘‘simulations’’) used to conduct numerical ex-

periments, commonly used visualization tools

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 846

Figure 44.1 Early GCM. (See also color insert.)

846 Selected Topics and Applications

and techniques, and the underlying data that

must be processed, analyzed, visualized, com-

pared, and ultimately understood. When appro-

priate, some of the real-world challenges and

problems that one must surmount while trying

to visualize complex geoscientific data in real

scientific applications are noted. A number of

examples are presented—miniature case stud-

ies—that highlight some specific research

thrusts, the visualization approaches taken, and

what these efforts represent in terms of future

requirements and needs. The examples are

intended to be illustrative of current practice as

well as challenges in weather and climate visual-

ization. Those shown here represent undertak-

ings by close-knit teams of visualization

specialists and domain researchers. The chapter

will be closed by projecting a few years into the

future and speculating about future visualization

needs and possible avenues for future visualiza-

tion research and software development.

44.2 Weather and Climate Research

Understanding and prediction of the weather

plays an important role in our day-to-day lives.

The weather forecasts that we read in the news-

paper or access on the web are the results of years

of research and the regular execution of forecast

simulations running on supercomputers. Cli-

mate change research is central to understanding

the natural variability of our planet’s rhythms

and the potential impact that society at large

may be having on our climate system, such as

global warming. Put another way, weather is the

dynamic, time-evolving behavior of the atmos-

phere, while climate is the average behavior of

the weather or, more precisely, a statistical de-

scription of it. Colloquially, climate is what, on

average, you expect and weather is what you

actually get. A weather model will produce

detailed characteristics of temperature, precipi-

tation, humidity, and so forth for a week or two

Figure 44.2 A transparent isosurface is combined with components of other earlier animation segments and includes moving

balls representing air motion, a colored horizontal slice through the storm showing the region of precipitation, and a twisting

ribbon rising up through the storm. The animators referred to this as the party scene. The rate of twist of the ribbon is related to

the magnitude of the streamwise vorticity present in air rising through the storm. Such vorticity is analogous to the rate of

rotation of a spiraling football as it moves from the quarterback to the receiver. To fully understand the behavior illustrated, it is

important to look at the animation. For example, the colored balls released at regular intervals in a horizontal plane are colored

blue when they are sinking and orange when they are rising. In the early portion of the animation, the alternating regions of blue

and orange move away from the storm, revealing the presence of wave motion. The various visualization idioms used here are

still used today. (See also color insert.)

Visualization in Weather and Climate Research 847

over a spatial domain that ranges from quite

small (e.g., a county) to global. A climate model

produces similar data on the global and multiple-

year scale, but the results are generally processed

so that they are expressed in terms of monthly,

seasonal, annual, or even decadal averages along

with extremes and temporal variability (i.e., a

long-term, statistical description).

A variety of weather and climate models are

used throughout the world. For example, in the

study of weather, this includes the University of

Oklahoma’s Advanced Regional Prediction

System (ARPS) model [37]. Other community

models include the Mesoscale Model, Version 5

(MMS5) [19], a long-term joint effort of Penn

State University and NCAR; and the Weather

Research and Forecasting (WRF) model [36], a

new parallel and scalable model under develop-

ment by NCAR, government agencies, and the

university community. These ‘‘community

models’’ are developed as community efforts

and are freely available for use and modification

by the weather research community. ARPS,

MM5, and WRF run on most Unix systems and

have successfully been deployed on fairly large

parallel computational platforms. The datasets

that result from even a single simulation can be

quite large, and visualization of them presents

new challenges, as discussed at the end of the

chapter.

Models for climate research are quite com-

plex since they are composed of a broad range

of complex interacting physical, chemical, dyna-

mical, and biological processes that span very

small to very large temporal and spatial

domains. Furthermore, climate research spans

observation and simulation of the atmosphere,

weather, climate, oceans, cryosphere, chemical

processes, ecosystems, space weather, and solar

processes. Building a global climate model is a

huge undertaking in terms of both science and

software engineering. As a result, there are only

a handful of large-scale comprehensive models

worldwide. One example is the Community Cli-

mate System Model (CCSM), which is a

multiagency effort in the US. Like its cousins

developed at other centers, the CCSM is a fully

coupled model, meaning that it includes several

interacting components (Fig. 44.3).

Models such as this are used to conduct

numerical experiments for past, present-day,

and future climate. Together with observational

data, the volume of data from multiple simula-

tions and multiple models is very large and

requires careful analysis and visualization to gain

insight into factors that influence our climate.

44.3 Data and Grids

Weather and climate research involves the an-

alysis and visualization of a staggering amount

and variety of data, including observational

(e.g., satellite, radar, airplane, etc.), simulation,

and hybrid forms. While the visualization of

observational data is an interesting and import-

ant topic, much of the advanced and most chal-

lenging visualization work underway is focused

on the 3D simulations that are used to conduct

numerical experiments and predictions. Thus,

the focus herein will primarily be upon the visu-

alization of model data.

Discussing visualization is, to a great degree, a

story about correctly processing and visually rep-

resenting some fairly complex data, and

the discussion that follows is aimed at provid-

ing some information that should be useful to

anyone working in this area. In general, weather

and climate models produce georeferenced, 3D,

time-evolving data of substantial volume in vari-

ous formats. Dealing correctly with commonly

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 848

Figure 44.3 Components of the Community Climate

System Model (CCSM).

848 Selected Topics and Applications

used computational grid topologies, different

data formats or interfaces, and map projections

is often an early stumbling block for the tool or

algorithm developer/user.

In terms of data formats and interfaces, there

has been steady progress towards the adoption

of the network Common Data Form (netCDF)

[22] standard. NetCDF defines a general model

for scientific data and provides a standard inter-

face (API) for access along with an underlying

format that is system-independent and network

transparent. Even though netCDF itself pro-

vides a certain level of standarization for data

access, it is still possible to store the data in an

almost infinite number of different ways. In

order to construct visualization and analysis

capabilities that enable the user to easily ingest

and explore the resulting data, it is necessary

that standards be adopted for the metadata

such that variable names, units, and coordinate

systems may be expressed using an agreed-upon

vocabulary. Large communities have come

together and developed conventions, which do

precisely this. Building on a couple of earlier

efforts, the netCDF Climate and Forecast

Metadata Convention [23] has recently

emerged. The ‘‘CF Convention,’’ as it is com-

monly known, is already in use by some efforts

(discussed later) and appears to be poised for

some level of international acceptance.

Another primary source of data that is of

interest to the climate community is satellite

observation data, and the Hierarchical Data

Format (HDF4) has been used in this area for

several years. During this decade, NASA’s

Earth Observing System (EOS) program and

others like it will launch quite a number of

new satellite platforms, and it appears likely

that data production will be in the newer

HDF5 [12] format. HDF5 is a significant ad-

vance over HDF4 and offers provisions for

more elaborate data models along with features

that provide the potential for much greater per-

formance and volume-handling capacity. As

such, it is also drawing interest from the model-

ing community, which is very demanding rela-

tive to HDF5’s capabilities. It is also expected

that in the near future HDF5 capabilities will be

integrated with netCDF. A third important data

category is that of ‘‘reanalysis,’’ which is essen-

tially a hybrid class of climate data: observa-

tional data is fed into a special model that

reconstructs a historical record. The World

Meteorological Organization (WMO) has

developed a standard for gridded data called

GRIB (Gridded Binary), and it is used exten-

sively worldwide for reanalysis and weather-

data distribution. GRIB data tends to be some-

what less portable and self-describing than

netCDF.

The data that is produced by the MM5 model

has its own unique format and a suite of pro-

cessing capabilities that accompany the model.

MM5 produces time-evolving data and, like

most weather models, does not operate on a

strictly Cartesian grid. The horizontal dimen-

sion is typically referenced to one of several

map projections, while the vertical dimension

uses a ‘‘sigma’’ coordinate system in which pres-

sure levels ‘‘follow’’ the terrain. The WRF

model produces very similar data to MM5, but

it uses the netCDF interface for data output,

and exploratory work is underway to utilize

HDF5. WRF also uses a terrain-following

coordinate system, but instead of pressure, it

currently offers a choice of vertical levels refer-

enced to either mass or height, with mass being

the preferred formulation. Weather models typ-

ically provide ‘‘nested grid’’ capability, where a

given simulation will be run across multiple

progressively finer grids, with the finest grid

covering a region of particular interest (e.g., a

hurricane). At present, none of the weather

models described above adhere to the CF con-

ventions.

As discussed earlier, climate models consist of

a number of different, interacting components.

The CCSM model has adopted the netCDF

interface for data generation and has also

recently begun using the CF convention. Many

of the current formulations for the atmospheric

component of climate models use the spectral

method [33], and this is true for CCSM as well.

The spatial resolution of these models is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 849

Visualization in Weather and Climate Research 849

expressed as a series truncation number. For

example, the CCSM has been run in production

mode for several years at ‘‘T42’’ resolution for

the atmosphere, where ‘‘T42’’ specifies a reso-

lution in the spectral domain that translates to

a 128 � 64 Gaussian grid over the globe

(examples of exploratory experiments at higher

resolutions are presented later). The other

model components have their own unique grids,

and these can sometimes be challenging to deal

with. For example, the current CCSM ocean

model uses a curvilinear grid that has one or

two poles displaced onto land, an approach that

provides computational advantages. The sea ice

model also uses a curvilinear grid.

In general, one of the challenging aspects of

visualizing weather and climate data is certainly

all of the different grid topologies that one must

deal with. Data may be resampled onto Carte-

sian grids, but this can introduce undesirable

errors and artifacts. Developing visualization

and analysis tools that deal correctly with

these data and grid issues will be a growing

challenge, as climate and weather researchers

adopt new grid topologies for computational

and scientific reasons. In the near future, geo-

desic grids, new formulations of pole-displaced

grids, and various terrain-following coordinate

systems can be expected. Looking further out,

generalized multiscale and adaptive-grid

models will further challenge the visualization

community.

44.4 Visualization and Analysis Tools

While visualization practitioners can and do

produce elegant 3D renderings of climate simu-

lation and observed data, in practice both

weather and climate researchers generally

employ highly quantitative analysis, and most

use 1D and 2D visual representations. The

tools of the trade in this realm feature data

ingest, data processing, analysis functions, and

a variety of traditional visualization capabil-

ities. Virtually all of the work requires geore-

ferenced display and flexibility in portraying

various map projections. In terms of visualiza-

tion techniques, they are the traditional line

graphs, contour diagrams, streamlines, velocity

vectors, maps, and so forth. In fact, there are

suites of tools that are commonly used by both

climate and weather researchers for regular

work.

For example, in the weather community, an

application known as RIP (Read/Interpolate/

Plot—see MM5 reference) will ingest MM5

data and produce a variety of 2D visualizations

that are commonly used by weather researchers.

RIP can also process, regrid, and format MM5

data so that it can be ingested by the popular

Vis5D application, and this capability is fre-

quently used by practicing researchers who

want to gain deeper insight into the 3D struc-

ture and time-evolving characteristics of their

simulation results.

The climate research community generally

uses one or more of a collection of visualization

and analysis tools that have emerged over the

last decade or so. All of these provide a fourth-

generation scripting language interface with

some amount of interactive display and control

capabilities. Ferret [9], developed by NOAA’s

Pacific Marine Environmental Laboratories

(PMEL), is used for climate research in general

and is particularly popular with the oceano-

graphic community. IDL, a commercial product

by Research Systems, Inc., is another widely

used package with an extensive array of process-

ing and statistical functions and a suite of 3D

rendering capability as well. The Grid Analysis

and Display System (GrADS) [11] was deve-

loped at the Center for Ocean, Land, Atmos-

phere Studies (COLA) and has a long-time

following in the climate community. The Na-

tional Center for Atmospheric Research in

Boulder, CO has developed NCAR Command

Language (NCL) [20], which serves as the

primary analysis and visualization package

for the NCAR CCSM. The Program for Cli-

mate Model Diagnosis and Intercomparison

(PCMDI) at Lawrence Livermore National La-

boratories distributes the Climate Data Analy-

sis Tools (CDAT) package [2]. CDAT is based

850 Selected Topics and Applications

on the Python language and provides an inter-

active interface for certain functions.

There is an enormous amount of overlap in

the functionality of all of these tools, and each

one has its strengths and its followings. In gen-

eral, they all deal with essentially the same types

of scientific data, offer the same sorts of visual-

ization techniques, and have an emphasis on

maps and georeferenced data. The actual lan-

guages vary from application to application

and are generally custom and unique, with the

exception of CDAT with its Python binding (a

Python binding for NCL functionality is under-

way as well). None of them offer very good

capabilities for 3D rendering, but they are

often used in a complementary manner with

other community and commercial tools to

create the more advanced visualizations. It is

not uncommon to find a researcher who uses

several of these, because no single application

delivers all of the required capabilities.

These tools have relevance for the visualiza-

tion specialist, whether they are developing

2D, 3D, or even virtual-reality environments

for the exploration of climate data. Specifically,

a substantial amount of data processing and

analysis is required in advance of such efforts,

and the tools enumerated above can be effect-

ively used to ingest various types of data,

subset them, and process and output them

into forms that can then be used for other

pursuits while maintaining data integrity and

correctness.

Visualization specialists use a wide variety of

3D capabilities to visualize weather and climate

research data, and many of them are mentioned

in the examples that follow. The Visualization

Tookit (VTK) has also been used to good effect

for one-off applications but has not yet been

used to construct generalized applications for

this domain. In terms of practicing scientists, it

is somewhat rare to find climate researchers

using 3D visualization much at all, but it is

fairly common in the area of weather research.

This is due mostly to simple differences between

the two areas of research: climate is focused

more on long-term trends on a global scale,

whereas weather research deals with dynamic

phenomena on much smaller scales. For 3D

visualization, Vis5D is probably the most popu-

lar application and has arguably done more to

promote the use of advanced scientific visualiza-

tion than any other single application. NCAR

has enhanced the Vis5D tool so that it is capable

of dealing with fairly large datasets and may be

used in stereo or 3D display environments.

There is also a variation called CAVE5D, which

was developed for use in the immersive CAVE

environment. A newcomer to the visualization

arena is the VisAD framework [13], which is dis-

cussed in Chapter 34. VisAD is a very interest-

ing approach for a number of reasons but

especially for its elegant data model, which

shows potential for addressing many of the

problems associated with the visualization of

multiple disparate data types (data fusion).

There is also a new VisAD-based application

under development called the Integrated Data

Viewer (IDV) [15], which, like Vis5D, is targeted

at meteorological applications. VisAD and IDV

are developed in Java, and their suitability for

some of the larger problems described here

hinges on how well Java can perform for large

data and computational applications.

44.5 Visualization Case Studies in
Weather and Climate Research

Most of us are very familiar with visualization as

it is most commonly used in weather. We see

examples of this on the evening news, in the

newspaper, and on the web. 2D forecast maps

and real-time observation of satellite and radar

data are the primary visual representations in

present-day weather forecasting, along with a

long tradition of using glyphs, including those

on weather reports used to indicate observed

sky, precipitation, and temperature forecasts. It

is also common to create contour-filled images

that show temperature or pressure or some other

field such as radar reflectivity. These 2D images

often have country or state maps, rivers, or roads

that act as references. Television forecasters

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 851

Visualization in Weather and Climate Research 851

typically use very readable images with a small

amount of information while researchers are typ-

ically interested in a higher density of informa-

tion and often use multiple techniques for

different variables in a single image (e.g., tem-

perature contours and shaded pressure distribu-

tion). Thus, in this section, the focus will be

mostly on model visualization approaches that

are used extensively in the research (as opposed

to the forecasting) community.

A recent example of 2D visual comparison

between model and observed behavior is

shown in Fig. 44.4. A series of tornadic storms

moved through the Fort Worth, TX metro area

on March 29, 2000. The top row in the figure

shows an hourly sequence of reflectivity images

from the Fort Worth WSR-88D (NEXRAD)

radar. Shown in the lower three panels is the

equivalent radar reflectivity from a 3-kilometer

grid forecast made using the University of Okla-

homa Advanced Regional Prediction System

(ARPS), initialized at 2300 UTC with Fort

Worth NEXRAD radar and other data. The

degree of agreement between observations and

forecast, even out to 4 hours, is remarkably

good. However, without radar data assimilation

in the model’s initial conditions, the tornadic

storms to the north of Fort Worth are com-

pletely absent (not shown)—thus highlighting

the value of radar data in storm-scale numerical

weather prediction.

44.5.1 Visualizing Severe Weather:
Storms and Hurricanes

Advancing predictive capabilities for severe

weather such as strong storm systems, hurri-

canes, typhoons, and cyclones is a major focus

of the weather research community. 3D visual-

ization is widely used by researchers to under-

stand the resulting data, the size and complexity

of which typically provide fertile ground for

visualization work.

A good example of an MM5-based research

effort is a recent study of Hurricane Opal [30].

At landfall near Pensacola Beach, FL on Octo-

ber 4, 1995, Opal was a Category 3 storm with

115 mph sustained winds and gusts over land as

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 852

Figure 44.4 The top row is the reflectivity from the Fort Worth Doppler radar, and the bottom row is from a numerical

prediction model. The times at the top of the figure are local Fort Worth time, and the times in the forecast are the length of time

from the start of the simulation. Fort Worth is located at the star (original figure in color).

852 Selected Topics and Applications

high as 144 mph. Along with waves reaching 18

feet above sea level on the Gulf Coast, Opal

caused $2 billion worth of damage, nine fatal-

ities, and up to 10 inches of rain over parts of

Florida, Alabama, and Georgia. Further, 22

tornadoes were attributed to the hurricane.

Multiday numerical simulations were conducted

with MM5 using two-way nesting with grid

resolutions of 90, 30, 10, 3.3, and 1.1 km. The

inner grid was 460 � 460 � 35 grid-points and

over 100 GB of data were produced during the

90 hr time period from when the hurricane

formed over the Gulf of Mexico and subse-

quently made landfall. The aim of the study

was to investigate the behavior of resolved

severe convection within a hurricane simulation.

The resulting simulation of Hurricane Opal

[29] reached Category 5 (slightly more intense

than the observed Opal, which only reached

strong Category 4 intensity). Atmospheric

conditions in the model were discovered

that would support mini-supercells that could

produce tornadoes, although the resolution was

not sufficient to capture the tornadoes them-

selves.

Fig. 44.5 shows a volume-rendered visualiza-

tion of one of the Opal simulations as it ap-

proached land using Pixar’s Renderman [28].

Rainbands are evident to the east and southeast

of the hurricane center. All five nested grids

were incorporated in the visualization using

the finest grid resolution available at any loca-

tion (typically, researchers only visualize one

grid at a time). Using all five grids helped the

researchers at the location to uncover a problem

that occurred at the boundaries between differ-

ent grids, which was subsequently corrected.

This problem was particularly evident when

performing the volume integration from above

the hurricane, and its discovery illustrates the

value of creating visualizations across all grids

used in adaptive or nested grid simulations, as

well as the general importance of visualization

as a model-debugging capability.

Another freely available volume visualization

tool, Hierarchical Volume Renderer (HVR)

[14], was used to reveal fine-scale banding fea-

tures within the simulated hurricane core region

(not shown) as also observed. HVR, which

was recently developed in the Laboratory for

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 853

Figure 44.5 A volume visualization of a Hurricane Opal simulation was created using Renderman by NCSA’s David Bock with

land terrain generated by NCSA’s Rob Stein. The volume rendered view is based on the model water vapor field. (See also color

insert.)

Visualization in Weather and Climate Research 853

Computational Science and Engineering at the

University of Minnesota, was intended for cre-

ating animations from very large datasets.

The numerical model study of Hurricane

Diana [6,7], which had landfall off the coast of

North Carolina in 1984, recently pushed both

computational and visualization capabilities by

utilizing a data grid four times larger than that

used in Hurricane Opal. Using a massively par-

allel IBM supercomputer, researchers ran an

MM5 simulation of Diana for a period of two

simulated days on 1060 � 1060 grid points at

1.2 km horizontal resolution with 37 levels in

the vertical. The model used 552 processors for

2 days and produced 100 GB of output data.

A top-down view of the simulated cloud water

is shown in Fig. 44.6.

Diana is an interesting case study from sev-

eral standpoints. For one, it constituted the

highest resolution over the largest spatial

domain that any MM5 researcher has tried to

date. Postcomputational analysis and visualiza-

tion of such a large model can be a very

demanding process. In the example here, a

Compaq 4100 cluster (8 nodes) was employed

for MM5 preprocessing, two 8-processor SGI

Origin 2000 systems were used for data post-

processing, and an 8-processor SGI Onyx

system was used for 3D visualization. When

the model runs, it saves data at periodic inter-

vals, which in this case ended up being hourly.

For the first time in this particular area of

weather modeling, each snapshot of the model’s

state surpassed the 2GB level (32-bit addressing

limit), and this outstripped the capabilities of a

suite of software that had been used for a

decade or more, including the venerable Vis5D

application. Even after applications were

adapted, the model output was generally manu-

ally subsetted so that analysis and visualization

tools could perform at reasonably interactive

rates.

The model produced a wealth of detail and, in

retrospect, researchers would have liked to save

output every 5 minutes in order to be able to

study the detailed time evolution of the hurri-

cane’s eye formation. This would have resulted

in 1–2 terabytes of data for the single simula-

tion. One of the researchers involved with

this study ventured that the overall analysis

process was so difficult that rapid progress

towards running weather models at this reso-

lution could be hindered unless there are major

advances in the visualization and analysis tools

that the scientists have access to. This highlights

the fact that scientific progress is not just about

3D visualization, but about overall workflow:

data ingest, processing, regridding, analysis, 2D

visualization, and, ultimately, 3D exploration

and analysis. Tools of practice would benefit

greatly from multiresolution techniques and

parallel-rendering approaches that operate on

the native model grid topologies, and effectively

dealing with multiterabyte datasets will almost

certainly require remote visualization capabil-

ities.

44.5.2 Using Visualization to
Intercompare Model and Observed Data:
Typhoon Herb

As shown earlier in this section, one way to

qualitatively judge the accuracy of a computer

simulation is to visually compare data generated

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 854

Figure 44.6 Grey-scale rendering of Diana simulation

showing convective clouds from above the hurricane and

to the east of the North Carolina coast. The eye is detectible

near the middle of the image.

854 Selected Topics and Applications

by a computer model with data collected by

satellite, ground observation systems, or radar.

In this example, observed typhoon data

recorded at a WSR-88D radar installation in

Northern Taiwan is compared with data gener-

ated by a computer model using 3D visualiza-

tion techniques. A side-by-side comparison

helped demonstrate how closely computer

models are able to track storm systems and

how well they can match the circulation and

precipitation characteristics of severe weather

events.

On July 31, 1996, Typhoon Herb roared

across Northern Taiwan. High winds, floods,

and landslides resulted in the loss of many

lives and extensive damage to property, includ-

ing heavy damage to a WSR-88D radar facility

located 30 km east-northeast of Taipei. The fa-

cility, operated by Taiwan’s Central Weather

Bureau, collected reflectivity and velocity data

as the typhoon approached, but it was forced to

shut down as the eye of the storm drew closer

and the threat of water damage to the radar

electronics increased. High winds eventually

ripped the fiberglass panels from the radar

instrumentation, but not before several hours

of data were collected from the approaching

storm.

Researchers later used MM5 to simulate this

storm system and to compare the observed

and model data. One frame of a side-by-side

stereo 3D visualization is shown in Fig. 44.7. In

this example, observed typhoon data recorded at

a WSR-88D radar installation in Northern

Taiwan are compared with data generated by a

computer model. A combination of tools was

used in the visualization process, including

Vis5D, various data resampling packages, and

AliasjWavefront’s Maya application for anima-

tion control and final rendering.

There were several challenges in producing the

comparison due to differences in spatial reso-

lution, differences in data quality, and differ-

ences in variable sets. For example, the

observed data had a much higher resolution

(1.5 km) than the model data (6.6 km). Several

iterations of a low-pass filter were applied along

each coordinate axis of the observed data to

Figure 44.7 Isosurface visualization of Typhoon Herb and radar return signal, with simulated data on the left and observed

data on the right. The vertical axis is the height of the domain, and the domain is roughly over Taiwan. (See also color insert.)

Visualization in Weather and Climate Research 855

smooth it and eliminate noise and artifacts. Also,

as a result of how the radar beams project out in a

conical pattern, the observed data contained

areas of missing data, especially in the upper

levels of the domain and directly above the

radar site. The missing data resulted in a visible

hole above the WSR-88D radar location and an

absence of structure in the upper domain. Com-

puter models, on the other hand, produce no

missing data, and therefore there were no holes

or gaps in the structure of the visualization pro-

duced from the MM5 data. Finally, there

was also visual disparity because each dataset

was composed of different variables. The visual-

ization of the observed data depicted radar

reflectivity as measured by Doppler radar, but

the visualization of the model data depicted

the snow, graupel (sleet), and rainwater as pro-

duced by MM5. Despite this, the results were

qualitatively similar, but there were noticeable

differences in the shape of the isosurface con-

tours.

Even though the differences in spatial reso-

lution, data quality, and variable sets resulted in

significant disparity between the visualizations,

when the datasets were animated in time and

compared side by side, striking similarities were

revealed. The circulation and the storm tracks

were almost identical, and the microphysics and

precipitation patterns compared very well. Both

the observed data and the model data produced

an elliptical-shaped eye at the typhoon’s center,

and the rotation rates matched very closely.

Also, in both cases, the visualizations revealed

strong upslope conditions on the west side of

the island, a condition that produced heavy

rainfall, mudslides, and flooding.

This comparison of observed and model data

reveals some of the practical challenges that

must be addressed when comparing datasets

from different sources. It also shows that even

when two datasets differ in many respects,

useful comparisons can still be made by

employing 3D visualization and animation tech-

niques to compare structure and motion

characteristics.

44.5.3 Tornado Revealed

Advances in computational capability have

enabled researchers not only to simulate severe

storms with increased accuracy but also to begin

simulating smaller scale features associated with

these storms, such as tornadoes. The most dam-

aging tornados are produced by supercell

storms, and it has been the goal of some model-

ers to simulate the process of tornadogenesis

within these storms. In order to do this most

accurately, the models need to be run with grid

spacings on 10–20 m, rather than the 1000 m

used in the simulation of Hurricane Opal (Fig.

44.9). Such simulations have not yet been

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 856

Figure 44.8 A second isosurface visualization of Typhoon Herb and radar return signal, with simulated data on the left and

observed data on the right.

856 Selected Topics and Applications

carried out. However, resolutions of 50–200 m

have been achieved through nesting or horizon-

tal grid stretching. One such storm simulation

was carried out using the COMMAS nested grid

nonhydrostatic numerical model by Wicker and

Wilhelmson [35]. Horizontal resolution in the

finest grid encompassing the tornado was

200 m, while the coarsest resolution was

1800 m. An initial storm evolved into a super-

cell, and shortly thereafter several tornadic

events occurred. A special animation was

created for use in OMNIMAX theaters for the

film Stormchasers [24] that focused on the most

spectacular of the simulated tornados, which

lasted approximately 10 minutes, had ground

relative wind speeds of more than 60 m/s

(134 mph) near the ground, and had a 40 milli-

bar pressure drop.

Isosurfaces of the growing thunderstorm

reveal common shapes associated with supercell

storms (dome, vault, and anvil). The viewer sees

the early development of the precipitation

region of the storm (the region typically seen

by radar, which is somewhat different than

that seen by an observer watching a real storm

develop) from above the ground and to the east

of the storm. An abstract prairie landscape with

a blue horizon is used to anchor the audience

with familiar real-world cues. The main source

of lighting came from the west in a tone

evocative of afternoon sunlight. This environ-

ment was designed to create the time and place

in which a tornado can occur.

As the storm develops, the viewer begins

to descend and move around the southern part

of the storm in order to gain a different perspec-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 857

Figure 44.9 Visualization of a developing tornado revealed through the use of thousands of circulating particles. (See also color

insert.)

Visualization in Weather and Climate Research 857

tive and prepare to move closer to the tornado as

it develops. The tornado is revealed through the

use of thousands of particles after the lower part

of the precipitation isosurface is removed (see

Fig. 44.9). This is necessary in order to ‘‘see’’

the tornado, which is embedded in the precipita-

tion region but near its edge. Other images from

the complete animation can be found on the

NCSA web site [21].

The images in the animation were computed

from the approximately 40 GB of simulation

data saved from the numerical simulation. The

storm isosurfaces were rendered using the

Wavefront Technology’s Advanced Visualizer.

There are actually two isosurfaces used in every

image; they define surfaces very close to one

another. This was done to soften the surface

and to give a perception of depth. The particle

representation and shading techniques were de-

veloped especially for this project at NCSA.

The final frames were composed of up to four

separate images: the prairie landscape, the

shadow, the cloud, and the particles. Each

image was produced at a resolution of 2048 �
1536 pixels.

A weightless particle moving with the flow

field was represented as a view-aligned, texture-

mapped polygon. The polygon started at the

location of the particle for a given time

and then stretched back for some specified dur-

ation to previous locations of the particle. The

shading of a particle was based on a simple re-

flection/transmission model for a sphere. Each

particle was shadowed by all the other particles

between it and the light source. The goal of the

shading technique was to make the volume of the

tornado more prevalent than the individual par-

ticles.

44.5.4 Tornadic Storm Fest

Forecasting of tornadoes through direct numer-

ical simulation is unlikely in the next decade

because the models will not run faster than the

actual weather when the billion or more grid-

points needed are employed. However, through

the use of dynamically adjustable nested grids,

mesoscale models like the ones discussed earlier

will, in the future, run at 1–3 km horizontal

resolution in predictive mode. In preparation

for this, high-resolution research simulations

are being conducted to study how well models

can predict storm behavior. One example

was presented in Fig. 44.4. Fig. 44.10 shows

another example from a simulation carried out

to study the development of storms on April 19,

1996 that produced 36 tornadoes in Illinois. The

storm cells formed over eastern Missouri and

moved into Illinois with some becoming super-

cells. The frame is from an animation done with

IRIS Explorer, and it shows a series of storms

revealed through the use of isosurfaces enclos-

ing regions of precipitation, some of them

supercells. At the surface, regions of high hu-

midity are represented by green and those of

low humidity by blue. Contours are also used

to represent surface moisture in more detail.

This image again illustrates the need to compos-

ite various visualization techniques to get a

better integrated, quantitative understanding

of storm development.

44.5.5 Seeing the Unseen: Visualizing
Clear Air Turbulence

Most of us have read about clear air turbulence

(CAT) or heard about it on the news: an aircraft

is traveling along when suddenly it encounters a

violent disturbance in the atmospheric flow.

Results range from frightened passengers all

the way to severely damaged airframes and

sometimes crashes and loss of life. Better under-

standing of turbulence (in all of its many forms,

not just atmospheric) is an enormous scientific

challenge and an extremely lucrative area for

advanced visualization because of the need to

qualitatively study extremely complex flow

behavior and structure. In the case of CAT, we

have strong and obvious motivations for under-

standing the behavior of turbulence: the hope

of being able to detect it better and ultimately

predict and avoid it. The example shown in Fig.

44.11 depicts a simulation of a CAT scenario

associated with a 1992 incident where a DC-8

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 858

858 Selected Topics and Applications

cargo plane encountered severe clear air turbu-

lence and lost an engine and about 6 meters of

wing (the crew managed to land the plane

safely). Scientists at NCAR and NOAA worked

together to develop a better understanding of

the event, beginning with an initial analysis of

Doppler radar data that revealed horizontally

aligned vortex tubes (HVTs), which are some-

what like tornadoes parallel to the ground. In

order to try to understand the potential origins

of turbulence, the Clark-Hall model was config-

ured with a five-level nested grid where the larg-

est domain roughly covered the United States

and the finest domain covered a 24 km square

region over Boulder, Colorado.

The Clark-Hall model uses a ‘‘zeta’’ coordin-

ate system, where the vertical dimension is spe-

cified as a percentage of distance from the

surface of terrain to the top of the domain in

meters. Model data for the innermost domain

(wind, temperature, vorticity, etc.) were

resampled onto a Cartesian grid with an irregu-

lar vertical interval for use with Vis5D. Land-

sat-7 Thematic Mapper imagery was

georeferenced to the model domain and tex-

ture-mapped onto the model’s own terrain

field. Vis5D was used to explore and study the

data (with researchers, flight safety experts, and

pilots) to identify good depictions of the inter-

esting phenomena and to produce geometric

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 859

Figure 44.10 Model results from the simulation of the April 19, 1996 tornado outbreak in Illinois. (See also color insert.)

Visualization in Weather and Climate Research 859

scene descriptions that were ultimately rendered

in parallel using ray-tracing techniques on a

128-processor SGI system.

There are several observations to make

about this case study. The model results were

interactively explored and animated for viewing

with stereo/3D glasses. While this is almost

always fun and interesting, in this case it

proved to be invaluable for studying some of

the complex structures that appeared in the

data. There were some relationships that were

extremely difficult to discern without them.

The incorporation of remotely sensed data

(i.e., the Landsat information) was awkward

and accomplished manually, which points

to the need for integrating Geographic Infor-

mation System (GIS) capabilities and data

interfaces into visualization tools. Interestingly,

the researchers found that volume visualization

for this study was not as interesting as

more traditional isosurface approaches; they

wanted to be able to communicate precisely

what a given visual representation meant, and

isosurfaces provided a more quantitative means

of accomplishing this. Like many of the case

studies presented earlier, tools need to deal

with the model data in its native coordinate

system, and the sheer volume of the data under-

scores earlier comments about the need for mul-

tiresolution techniques and better rendering

capabilities.

The turbulent processes that arose in this

simulation were very complex, and the model

results showed that the observed CAT derives

from interactions between wavelike jet-stream

disturbances and mountain-forced internal

gravity waves. The work ultimately resulted in

several publications [4,5] on a new form of tur-

bulence, and the lead researcher indicated

that insight into the complex problem would

not have been possible without advanced visu-

alization.

44.5.6 Visualizing Specialized Mesoscale
Models: Wildfires

Wildfires are unpredictable, dangerous events

that often lead to extensive property damage,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 860

Figure 44.11 Simulation of clear air turbulence with jet stream in blue, enstrophy in red, and fast moving air parcels in yellow.

The visualization was created using a combination of IDL, Vis5D, and the Persistence of Vision (POV) raytracer run on a 128-

processor SGI Origin system. (See also color insert.)

860 Selected Topics and Applications

severe ecosystem destruction, and loss of life.

A number of research efforts are currently

underway to improve the scientific understand-

ing of wildfires, and these efforts typically com-

bine observational programs (monitoring how

real fires behave) and modeling efforts. In the

example presented here, a specialized version [3]

of the Clark–Hall model, mentioned earlier, was

used to simulate wildfires by coupling a nested

mesoscale simulation with a small inner domain

where combustion occurs. The ‘‘combustion

domain’’ included fuels, terrain, burnt areas,

wind, smoke, and turbulent features along

with a grid resolution of 60 m. Fig. 44.12

shows a grey-scale rendition of a volume and

flow visualization developed as part of a study

on how forest fires propagate by dispersing

burning ‘‘brands.’’ Fig. 44.13 shows another

view that includes combustible ground cover,

the enstrophy (a measure of rotation), and a

volume rendering of temperature. This study

used a combination of IDL, Vis5D, and ray-

tracing software.

Most of the challenges discussed earlier rela-

tive to weather models hold here as well. This

particular effort did not present a particularly

large volume of data, but future research goals

aim to refine the grid resolution down into the

1–10 m range, which will boost the data volumes

substantially. This is also another domain where

GIS data (e.g., ground cover, terrain) will need

to be visualized along with model data. Visual-

izing fires is an area that could benefit from

improved rendering capabilities for phenomena

such as smoke and mixed volumetric, geometric,

and flow visualization. Lastly, this is an example

where visualization serves well to broaden

public awareness of research: an image from

this study was published in Wired magazine

[18].

44.5.7 Weather Visualization for the
General Public

Different approaches for visualization are rele-

vant for different audiences: what a scientist

needs in order to understand a phenomenon is

often very different from what the general

public, or a student, needs to understand a phe-

nomenon. Weather is, of course, something that

just about everyone is interested in, and one can

observe progress even in the visualizations pro-

vided on the evening news. Fig. 44.14 shows a

particularly nice example of this. The visualiza-

tion approach was developed as part of a joint

project between the German weather service

(DWD) and a private company (ASK Innova-

tive Visuals) with a target audience of television

viewers. DWD runs a weather forecast model

and supplies the data to ASK, which produces a

time-evolving animation of the forecast. The

idea here is to make it very realistic and under-

standable by the average viewer. Fig. 44.14 is a

grey-scale rendition, so it’s a little difficult to

make everything out, but the scene includes

European topography, satellite imagery, cities

(shown as icons), rain, snow, and even snow

accumulation on the ground. While this is

shown on television to a general audience, it

begins to hint at the possibility of constructing

virtual environments where this level of realism

is brought to bear in the rendering of clouds,

precipitation, snow, ground cover, and man-

made features.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 861

Figure 44.12 Volume visualization of a forest fire and

‘‘burning brand’’ lofting (particles). Image courtesy NCAR.

(See also color insert.)

Visualization in Weather and Climate Research 861

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 862

Figure 44.13 Visualization of turbulence and heat fields evolving in a fire model. Image courtesy NCAR. (See also color insert.)

Figure 44.14 Visualization of a weather forecast for the general public, showing snow, rain (streaks), and snow accumulation

on the ground (light shaded areas). Image courtesy of DWD, German weather center, ASK, Inc.

862 Selected Topics and Applications

44.5.8 An Experimental High-Resolution
Global Atmospheric Simulation

Scientifically and societally, there is great inter-

est in regional climate trends, and therefore,

high-resolution model experiments are needed.

In the US, production models are beginning to

use T85 resolution (� 140 kilometers horizon-

tally), and recently US and Japanese researchers

conducted experiments at T170 resolution

(� 70 km horizontally on a 512 � 256 Gaussian

grid) using the CCM-3 (Community Climate

Model Version 3) model [16], and 2D and 3D

visualizations were subsequently produced. The

experiment not only had a high spatial reso-

lution but also was sampled hourly rather than

on a monthly or seasonal average basis, which is

more typical of climate work. A climate model

simulates weather, which is averaged in order to

evaluate the simulated climate. A 2D visualiza-

tion approach was developed to reveal the

weather patterns that the climate model inte-

grates over the course of time. The image in

Fig. 44.15 is a snapshot from a one-year-long

animation sequence of data from the CCM3

model, sampled hourly. The main goal in pro-

ducing this sequence was to develop a realistic-

looking visualization of Earth with water vapor

rendered to look like clouds (clouds are not

water vapor). The rendering was created en-

tirely in the data-processing and imaging

space, but the technique was essentially the

same as using volume rendering with a parallel

projection and no lighting model. Interesting

variations on this would include employing

fractal models driven by underlying cloud data

and more advanced rendering techniques for the

clouds themselves.

The visualization was created using a suite

of custom-developed data ingest and field-to-

image conversion tools. Paralleling some of

the challenges associated with developing effect-

ive volume visualizations, very careful tuning of

the color and transparency transfer functions

was required to highlight specific features of the

model results. In the images shown here and in

the color plates, detail in the tropics was empha-

sized. Other renditions were created to reveal

detail and structure in the higher latitudes.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 863

Figure 44.15 Visualization of water vapor from an experimental version of the Community Climate System Model (CCM3) at

T170 resolution. Water vapor is rendered in white. Image courtesy NCAR. (See also color insert.)

Visualization in Weather and Climate Research 863

44.5.9 A Glimpse into the Future of
Climate Modeling

Some of the world’s fastest computers are used

to simulate weather and climate. Perhaps the

premiere example of this is Japan’s Earth Simu-

lator Center, where a dedicated facility has been

constructed and equipped with an enormous

NEC supercomputer. It is currently being used

to explore the frontiers of simulating various

components of the Earth System, such as

weather, climate, chemistry, and even earth-

quakes. Fig. 44.16 depicts a global climate

model run at T1279 resolution [25]. The detail

produced is stunning, and at roughly 10 km

resolution, it is comparable to the resolution at

which some weather models are being run

today.

44.5.10 Towards Global Earth System
Modeling

Relentless growth in computational power offers

many opportunities for improving Earth System

models, their predictive capability, and the over-

all understanding of our planet. As described

above, increasing the spatial resolution of the

model components is one important direction,

especially with regard to the atmosphere and

oceans. The ability to conduct ‘‘ensemble runs,’’

where a small number of closely related experi-

ments are conducted with minor changes, is an-

other. Continued improvements in the

formulation of all the various underlying pro-

cesses are also important. As we look towards

the future, however, perhaps the most exciting

advances will be in the movement towards much

more comprehensive models, where the spatial

domain ultimately goes from the surface of the

Earth through the stratosphere and beyond, and

many more processes are coupled into the simu-

lation framework. This is a movement into the

realm of Earth System modeling, where the

model-component diagram in Fig. 44.3 expands

to include biogeochemical processes, the carbon

cycle, atmospheric chemistry, and the inter-

actions among these various processes and life

on Earth. Ultimately these Earth System models

will incorporate terrestrial and oceanic bio-

logical components such as forests and coral

populations. Fig. 44.17 shows a frame from an

animated visualization of a simulated hypothet-

ical coral reef and its growth and evolution since

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 864

90N

60N

30N

Eq

30S

60S

90S
0 60E 120E 180 120T 60T 0

30
20
10
5
3
1
0.8
0.6
0.4
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0.01
0

AFES T1279L96
Precipitation (mm/hour) 03 SEP/17 00Z

Figure 44.16 Precipitation from a T1279 global atmospheric model. Image courtesy of the Japanese Earth Simulator Center.

864 Selected Topics and Applications

the last ice age. The visualization was created

using custom data-processing tools and the

POV ray-tracer. Someday such a biological com-

ponent could be included as part of an overall

Earth System model, where the biological system

would respond and interact with simulated

changes in the ocean temperatures, salinity, and

chemistry.

By the end of the decade we can expect to see

the atmospheric part of global Earth System

models running at resolutions that will rival

those of our mesoscale (weather) models of

today. While the study of climate will continue

to focus, by definition, on the statistical behav-

ior of the climate system, the complex interplay

among the various components (atmosphere,

oceans, biological, etc.—many of these simu-

lated at very high resolution) will provide

many opportunities and challenges for new

visualization work. Examples include the

interactions between the oceans and atmos-

pheric convection, the evolution of turbulence

in oceans, the appearance and behavior of cloud

systems, and the interplay of chemical and bio-

logical processes.

44.6 Visualization Challenges and
Futures

Our ability to generate data through simulation

and observation is growing very rapidly and, in

many respects, this growth is outpacing our

ability to explore, analyze, and ultimately

understand the data. There are, of course, a lot

of positive developments. Inexpensive PCs with

very powerful graphics and large storage arrays

make it possible to engage in advanced visual-

ization on the scientific desktop. There are en-

couraging shifts towards standardized data

formats and conventions, a trend that makes it

possible to develop analysis and visualization

tools that can operate on native data in a useful

way. Fast wide-area networking provides dra-

matic improvements in accessing remote data.

There is also a lot of exciting work underway in

new display environments, collaborative cap-

abilities, and web-based portals for data analy-

sis and visualization. Unfortunately, most

researchers who used advanced visualization to

understand their data still use Vis5D, IDL, and

a collection of other applications that are, in

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 865

Figure 44.17 A snapshot of coral reef growth since the last glacial maximum. The height of the columns represents growth, and

shading (coloring) indicates specific coral varieties. Image courtesy NCAR.

Visualization in Weather and Climate Research 865

general, not nearly up to dealing with the

volume and complexity of the simulation results

commonly encountered today. In the remaining

paragraphs, some of the future needs and inter-

esting new developments are briefly covered.

44.6.1 Emerging Visualization Displays
and Environments

As datasets become larger and more complex,

new display technologies and visualization

environments become increasingly interesting.

Rapid progress in the development of new and

less expensive display technologies opens up a

number of interesting possibilities for enhanced

display of scientific data. Itwasmentioned earlier

that scientists in both weather and climate often

run ensembles, or collections of related models.

This turns out to be an area where researchers are

faced with a formidable volume of data, and they

may want to rapidly sift through it in order to

prioritize particular instances for deeper quanti-

tative study. Over the last several years, there has

been a lot of activity aimed at developing display

systems that offer much greater display real

estate than the traditional monitor that most

people have on their desk.

Tiled display walls provide a large-format en-

vironment for presenting high-resolution visual-

izations by coupling together the output from a

collection of projectors. The NCSA has used its

walls for viewing and studying very large images,

such as those from GOES or MISR satellite in-

struments. Currently this includes 1 km visible

GOES images at approximately 14,000 �
12,000 pixels per image and single pass, 250 m

MISR images at approximately 80,000 � 9,000

pixels. The wall is located in a room where these

images can be viewed in a classroom setting or by

a small- to moderate-sized group studying them.

Viewers can zoom and pan through the image

much as they do with imaging software with

single computer screen display.

Alternatively, the wall can be used to display a

set of images or animations such as those from

multiple simulations within an ensemble model-

ing study or of different fields from one simula-

tion. Lock-step animation and rotation of these

images with standard video display controls,

along with collocation capabilities across all

images, enhances viewing and understanding.

For example, the results from simulations

carried out using the WRF are displayed in

44.18. In this figure, 20 of the 40 tiles available

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 866

Figure 44.18 Tiled wall display of ensemble WRF model simulation. Image courtesy NCSA. (See also color insert.)

866 Selected Topics and Applications

were used to display several fields from a small

set of simulations in both 2D and 3D. The dis-

play software allows the individual windows to

be sized and moved around the wall as shown. In

this way, the researcher can order the images

based on visual inspection. This type of display

is important for MEAD, an NCSA Alliance

Expedition that is focused on developing and

adapting cyberinfrastructure for retrospective

study of a variety of weather events including

hurricanes, severe storms, and mesoscale ocean

phenomena. The goal of MEAD is to integrate

model computation (WRF atmospheric and

ocean models), grid workflow management,

data management, model coupling, data analy-

sis/mining, and visualization so that the user can

launch and study tens to hundreds of simulations

distributed across the Grid and TeraGrid.

Virtual environments and interactive stereo

have been fairly common in research environ-

ments for quite some time now, but they have

not found significant penetration into academic

science departments because of cost and com-

plexity. The GeoWall Consortium [10] is

changing this by developing a specification for

an inexpensive but powerful stereo/3D visual-

ization environment that can be easily and

affordably deployed. There are now several

dozen GeoWalls in various departments around

the world, with active development underway to

create imaging and visualization applications

that work within. This nice development is

made possible by advances in commodity dis-

play technology, inexpensive Linux-based PCs,

and graphics cards that are very fast and offer

an OpenGL interface such that existing applica-

tions may easily be ported into the environment.

The stereo/3D version of Vis5D is being used as

one of the primary data visualization tools for

the GeoWall. Fig. 44.19 shows a GeoWall in use

in a geology classroom.

NOAA’s Forecast Systems Lab has recently

developed their Science on a Sphere (SoS)

environment, which uses commodity projectors

to display a ‘‘tiled’’ image on a large, plastic

sphere. This has been a very popular develop-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 867

Figure 44.19 GeoWall in a geology labroom. Image courtesy Paul Morin, University of Minnesota. (See also color insert.)

Visualization in Weather and Climate Research 867

ment and has been demonstrated at recent con-

ferences and increasingly to schools and educa-

tional groups, as shown in Fig. 44.20. Just about

any data that can be projected onto a map can

be shown to good effect on the SOS. The SOS

has been instrumented as a 3D display as well,

using passively polarized projection.

44.6.2 Environments for Collaborative
Knowledge Development

Visualization is one important piece in a large

scientific workflow that encompasses theory,

observation, simulation, an enormous amount

of data processing, analysis (both visual and

statistical, qualitative and quantitative), and,

increasingly, collaboration with other scientists.

The Access Grid (AG) [1] is an important new

development in collaboration technology and is

fundamentally changing how scientific research

and many other endeavors are conducted. In its

early incarnations, the AG provided an environ-

ment where people could see and talk to each

other and share PowerPoint presentations.

There is a desire and an opportunity to develop

a much richer environment that encompasses

visualization and analysis applications so that

understanding data can be accomplished in a

collaborative mode. Early work to incorporate

interactive 3D visualization into the AG has

already begun [26] and is a focal point of new

efforts in the realm of electronically mediated

collaborative environments.

Scientific portals that combine visualization

and collaboration are becoming increasingly

interesting. Fig. 44.21 shows the AG collabora-

tive environment hosting people along with a

collaboration portal (CHEF, from the Univer-

sity of Michigan), which in turn hosts a web-

based portal for scientific data. In this case, the

portal is providing shared data access and visu-

alization of vegetation and ecosystem data.

Weaving useful analysis and visualization cap-

abilities into collaborative frameworks appears

to be an attractive opportunity. In many cases,

broad multidisciplinary teams will be needed to

make progress on big problems, like global cli-

mate change, and full-featured collaborative

environments can facilitate scientific progress

here.

44.6.3 Visualization Frameworks and
Applications

Terascale computing—and eventually petascale

computing—will offer myriad opportunities for

new scientific discovery in weather and climate.

Researchers need visualization tools that can

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 868

Figure 44.20 A classroom visualizing weather data on NOAA’s Science on a Sphere (SoS) display. Image courtesy NOAA.

(See also color insert.)

868 Selected Topics and Applications

keep pace with advances in computational cap-

abilities and models, but there is a growing con-

sensus that they are falling behind. At present,

there is an array of community and commercial

software applications, each of which provides

some subset of processing capabilities with vary-

ing levels of 2D and/or 3D visualization. There is

marginal interoperability, little utilization of

parallel computing capabilities, and an overall

brittle handling of different data formats and

models. Much of the available software is near

the end of life relative to the terascale problems

that are emerging in present-day research activ-

ities. Without substantial advances in our visual-

ization tools,many Earth System researcherswill

encounter barriers to understanding their data.

In some areas this is already occurring, and as

more and more scientists make the transition

to large-scale parallel models, the problem will

escalate.

As powerful as new desktop systems are and

will be, the flood of data that is a growing reality

across the Earth System sciences will still dwarf

them. The personal computing systems of

researchers will need to be coupled in a distrib-

uted, collaborative mode to large-scale, parallel

systems that effectively support the analysis of

extremely large datasets. The research commu-

nity needs applications that enable large-scale

data processing and at the same time couple

quantitative analysis with exploratory visualiza-

tion. These next-generation tools will need to

employ much more ingenious approaches,

including more sophisticated data models, mul-

tiresolution techniques, level-of-detail (LOD)

views, hierarchical data representation, parallel

processing and rendering algorithms, region-

of-interest rendering, and effective distributed

operation. Visualization software developers

need a robust framework upon which to build

viable applications and to integrate the most

promising results of the computational science

research advances. The underlying data frame-

work not only needs to be very high perform-

ance, it needs to be exceptionally versatile with

regard to geoscientific data.

In climate and weather research, one promis-

ing trend is a growing emphasis upon the sus-

tainability of developing the large and

incredibly complex models that the community

uses. As a result, there is enhanced attention

focused on the software engineering of these

systems. In 2001, the European Union started

the PRISM project—the Program for Inte-

grated Earth System Modeling [27]. At about

the same time in the US, NASA funded a new

project called the Earth System Modeling

Framework (ESMF) [8]. PRISM currently

appears to be primarily focused on climate

research, while ESMF aims to address core

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 869

Figure 44.21 The AccessGrid, hosting the CHEF portal, hosting the NOAA Live Access Server (LAS), hosting data and

visualization for the Vegetation and Ecosystem Mapping Project (VEMAP). (See also color insert.)

Visualization in Weather and Climate Research 869

software infrastructure for global coupled

climate models as well as weather models.

Similar thrusts are required for the analysis

and visualization area, and there are some

obvious advantages in developing direct

linkage between visualization applications/

frameworks and the model frameworks them-

selves.

44.7 Summary

The weather and climate research community

has been a major driver of the development of

advanced visualization capabilities for several

decades now. There are many exciting new devel-

opments in visualization technology and

methods that have the potential to play a signifi-

cant role in advancing scientific progress and

discovery in an age of terascale (and petascale)

computing during the next decade. However,

new frameworks and applications are needed

that can cope with the sheer volume and growing

complexity of the data and provide well inte-

grated quantitative and qualitative capabilities.

Domain researchers and computer scientists

have a fine opportunity to work together to real-

ize this.

References

1. AccessGrid, http://wwwfp.mcs.anl.gov/fl/access-
grid/

2. CDAT, http://esg.llnl.gov/cdat/
3. T. L. Clark, M. A. Jenkins, J. Coen, and

D. Packham. A coupled atmospheric-fire
model: convective Froude number and dynamic
fingering. Intl. Journal of Wildland Fire
6:177–190, 1996.

4. T. L. Clark, W. D. Hall, R. M. Kerr, and D. E.
Middleton. Observations and simulations of
clear air turbulence: case study of coherent
structures during the December 9, 1992 front
range windstorm. J. Atmospheric Science, 1999.

5. T. L. Clark, W. D. Hall, R. M. Kerr, D. E.
Middleton, L. Radke, F. M. Ralph, and P. J.
Newman. On the origins of aircraft-damaging
clear-air turbulence during the 9 December 1992
Colorado downslope windstorm: numerical

simulations and comparisons with observations.
J. Atmospheric Science 57:1105-1131, 2000.

6. C. A. Davis and L. F. Bosart. Numerical simu-
lations of the genesis of hurricane Diana (1984).
Part I: Control Simulation. Monthly Weather
Review 129(8):1859–1881, 2001.

7. C. A. Davis and L. F. Bosart. Numerical simu-
lations of the genesis of hurricane Diana (1984).
Part II: Sensitivity of Track and Intensity
Prediction. Monthly Weather Review
130(5):1100–1124, 2002.

8. Earth System Modeling Framework, http://
www.esmf.ucar.edu

9. FERRET, http://ferret.pmel.noaa.gov/Ferret/
10. GeoWall, http://www.geowall.org
11. GrADS, http://grads.iges.org/grads/
12. HDF5, http://hdf.ncsa.uiuc.edu/ HDF5/
13. W. Hibbard, C. Rueden, S. Emmerson, T. Rink,

D. Glowacki, D. Murrat, T. Whittaker,
D. Fulker, and J. Anderson. Java distributed
objects for numerical visualization in VisAD.
Communications of the ACM 45(4):160-170,
2001.

14. Hierarchical Volume Renderer, http://
www.lcse.umn.edu/hvr/hvr.html.

15. IDV, http://my.unidata.ucar.edu/content/soft-
ware/metapps/index.html

16. T. J. Kiehl, J. J. Hack, G. B. Bonan, B. A.
Boville, D. L. Williamson, and P. J. Rasch.
The national center for atmospheric research
community climate model: CCM3. J. Climate
11:1131–1149, 1998.

17. B. H. McCormick, T. A. DeFanti, and M. D.
Brown. Visualization in scientific computing.
Computer Graphics 21(6), 1987.

18. D. Middleton, T. L. Clark, and J. Coen. Forest
fire on a small hill. Wired, June 2000.

19. MM5, http://www.mmm.ucar.edu/mm5/mm5-
home.html

20. NCL, http://ngwww.ucar.edu/ncl/index.html
21. NCSA Stormchasers Imagery, http://

redrock.ncsa.uiuc.edu/AOS/imax.html
22. netCDF, http://www.unidata.ucar.edu/pack-

ages/netcdf/
23. netCDF Climate and Forecast Metadata Con-

vention, http://www.cgd.ucar.edu/cms/eaton/cf-
metadata/index.html

24. NOVA/WGBH. Stormchasers. M.F. Films,
1995.

25. W. Ohfuchi, S. Shingu, H. Fuchigami, and
M. Yamada. Dependence of the parallel per-
formance of the atmospheric general circulation
model for the earth simulator on problem size.
NEC Research and Development: Special Issue
on High Performance Computing, 44(1):99–103,
2003.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 870

870 Selected Topics and Applications

26. R. Olson and M. E. Papka. Remote visualiza-
tion with Vic/Vtk. Visualization 2000 Hot
Topics. Salt Lake City, Utah, 2000.

27. Program for Integrated Earth System Modeling
(PRISM), http://prism.enes.org/main.html

28. Renderman, https://renderman.pixar.com
29. G. Romine. A high resolution numerical simu-

lation of the landfall of Hurricane Opal. Un-
published paper, Department of Atmospheric
Sciences, University of Illinois at Urbana-
Champaign, 1995.

30. Simulation of Hurricane Opal, http://pampa.
ncsa.uiuc.edu/~romine/opal.html

31. E. R. Tufte. Visual Explanations: Images and
Quantities, Evidence and Narrative. Cheshire,
CT, Graphics Press, 1997.

32. VIS5D, http://www.ssec.wisc.edu/_billh/
vis5d.html

33. W. M. Washington and C. L. Parkinson. An
Introduction to Three-Dimensional Climate

Modeling. Mill Valley, CA, University Science
Books, 1986.

34. R. B. Wilhelmson, B. Jewett, C. Shaw,
L. Wicker, M. Arrott, M. Bajuk, C. Bushell,
J. Thingvold, and J. Yost. A study of the evolu-
tion of a numerically modeled severe storm.
International Journal of Supercomputer Applica-
tions 4(2):20-36, 1990.

35. L. J. Wicker and R. B. Wilhelmson. Simulation
and analysis of tornado development and decay
within a three-dimensional supercell thunder-
storm. Journal of Atmospheric Science 52:2675-
2703.

36. WRF, http://wrf-model.org
37. M. Xue, D.-H. Wang, J.-D. Gao, K. Brewster,

and K. K. Droegemeier. The advanced regional
prediction system (ARPS): storm-scale numer-
ical weather prediction and data assimilation.
Meteorological and Atmospheric Physics
82:139-170, 2003.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 871

Visualization in Weather and Climate Research 871

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:43pm page 872

This page intentionally left blank

45 Painting and Visualization

ROBERT M. KIRBY

Scientific Computing and Imaging Institute

University of Utah

DANIEL F. KEEFE and DAVID H. LAIDLAW

Department of Computer Science

Brown University

45.1 Introduction

Art, in particular painting, has had clear

impacts on the style, techniques, and processes

of scientific visualization. Artists strive to create

visual forms and ideas that are evocative and

convey meaning or tell a story. Over time,

painters and other artists have developed so-

phisticated techniques, as well as a finely tuned

aesthetic sense, to help accomplish their goals.

As visualization researchers, we can learn from

this body of work to improve our own visual

representations. We can study artistic examples

to learn what art works and what does not, we

can study the visual design process to learn how

to design better visualization artifacts, and we

can study the pedagogy for training new design-

ers and artists so we can better train visualiza-

tion experts and better evaluate visualizations.

The synergy between art and scientific visualiza-

tion, whether manifested in collaborative teams,

new painting-inspired visualization techniques,

or new visualization methodologies, holds great

potential for the advancement of scientific visu-

alization and discovery.

Scientific visualization applications can be

loosely divided into two categories: expository

and exploratory. In this chapter, we will focus

on exploratory applications. Exploratory appli-

cations typically represent complicated scientific

data as fully as possible so that a scientific user

can interactively explore it. Per the scientific

method, a scientist gathers data to test a hypoth-

esis, but the binary answer to that test is usually

just a beginning (Fig. 45.1). From the data come

ideas for the next hypothesis, insights about the

scientific area of study, and predictive models

upon which further scientific advances can be

made. Exploration of increasingly complicated

and interrelateddatabecomeameans to that end.

One of the most complicated types of data that

scientists wish to explore and understand comes

in the form of multivalued, multidimensional

fields. There are a number of visualization appli-

cation areas that work with this type of data,

including fluid dynamics and medicine. These

data are difficult to understand because so many

variables, or values, are of interest to the scien-

tists. The challenge comes in understanding the

correlations and dependencies between all of the

values. For example, 2D fluid-flow simulations

produce a 2D vector field that is sometimes time-

varying. From this field, additional scalar,

vector, and tensor fields are often derived, each

relating to the others and providing a different

view of the whole. Displaying such multivalued

data all together is difficult, even in 2D. It re-

quires showing six to 10 different values within

a single image. For 3D fluid flow, the data exist

within a volume. Representing a 3D vector field

alone is a challenge; representing such a vector

field together with derived scalar, vector, and

tensor fields is an extremely difficult problem in

visual representation.

We will begin with a narrative of some of our

work in the area of representing multivalued

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 873

873

data, illustrating more specifically some of the

ways in which art can be brought to bear on

scientific visualization. We will then give a

broader survey of scientific visualization work

that has been influenced by art, followed by a

discussion of some of the open issues in this

area, which will tie back to studying art, design,

and art education.

45.2 Mimicking Artists: Strokes, Design,
Critiques, and Sketching

Perhaps the most compelling reasons for visual-

ization researchers to look toward oil painting,

and to art in general, are the visual richness and

visual effectiveness of the art that we see in our

everyday lives. Paintings and reproductions are

accessible in museums, in posters, in calendars,

and on the web because there is a demand for

them—they are broadly appealing and often

convey a meaning or narrative to which we

can relate.

Besides their obvious visual appeal, we can

learn from art, artists, and art teachers what is

visually compelling, what works for specific

visual goals, how to tell if something is working,

the process of visual design, and the process of

learning visual design. Over the last several years

we have been exploring each of these areas, and

we will try to illustrate some of what we have

learned with examples from those efforts.

45.2.1 Strokes

Some of our earliest attempts to borrow ideas

from the art world began with trips to museums

to view paintings and loosely emulate the tech-

niques that we saw there. We were expertly

accompanied by artist davidkremers, who

guided us through the collections, showing us

what he felt would be most relevant to our

scientific visualization process. We absorbed

ideas, transformed them to our digital medium,

and generated a series of visual representations

of multivalued data.

This stage was motivated by Meier’s work to

create painterly animations [25]. Her haystack

image (Fig. 45.2) illustrates how brushstrokes

can be layered to build up a compelling visual

image. This same layering process is common in

oil painting, although deconstructing it is more

difficult.

In our early examples we used software that

created data-driven visualization by layering

‘‘strokes’’ onto a 2D ‘‘canvas.’’ Many visual

characteristics of the strokes were set directly

from the data, with the mapping under the con-

trol of the user. The images are data driven but

are not guided by a particular scientific prob-

lem; they are based on experimentation with a

new medium. Some of our experiments involved

varying stroke shape, texture, color, and size;

changing relationships among layers; and modi-

fying the placement of strokes. Fig. 45.3 shows

some examples.

In one example of a technique we worked to

mimic, a painter uses a lightly loaded brush to

paint over a dry, but previously painted, region.

The texture of the underlying dry paint catches

wet paint off the brush, leaving small textured

bits of paint. Our version, shown in Fig. 45.4,

used small strokes in a layer atop much larger

ones, placed in only a small portion of the

image, and in a contrasting color.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 874

Measure

Insight
Prediction

Hypothesize

Visualize
 Validate
 Evaluate
 Explore

Figure 45.1 Exploratory scientific visualization is a specific

instance of the scientific method. It begins with a hypothesis

about some physical phenomenon. It continues with the

collection of data that is expected to validate the model.

Visualization of the data then helps in the validation of the

hypothesis and in generating new hypotheses and insights,

often iteratively.

874 Selected Topics and Applications

From this work we sensed potential. Some of

the images created are visually compelling, and

the sources of inspiration seem only touched

upon. We were also excited by the potential to

incorporate time into visualization design. By

mapping some parts of data to quickly seen

visual cues and others to visual cues that are

seen less quickly, the order in which data is

seen in a visualization may be controlled.

This early work also reminded us that there

was no evidence that these images would have

scientific value. While they were data driven in

the sense that data values controlled many of

the visual attributes in the images, they were not

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 875

Figure 45.2 Meier layered strokes to build up computer paintings, much as painters layer their strokes to build up an oil

painting. The stroke layers are shown here as they accrete. Here, the layers are organized around form and lighting, but other

organizing principles can work in other contexts. (See also color insert.)

Painting and Visualization 875

targeted at solving a specific scientific problem.

Indeed, measuring the effectiveness of visualiza-

tion methods is a controversial and difficult

problem.

It was also pointed out to us that design

decisions sometimes have unintended conse-

quences. For example, some of the painterly

experiments had a sense of depth from regions

that were lighter or darker. Qualities like this

can be difficult for an untrained eye to notice

but can dramatically affect our perception of a

scene or data.

45.2.2 Designing Scientific Visualizations

As a follow-up to our early experimentation, we

created a set of visualizations addressing three

scientific applications using multivalued 2D im-

aging data: sections of 3D tensor-valued MR

images [19], 2D fluid flow (and derived quan-

tities) [16], and six-valued multiecho MR images

[22]. We will discuss in this section the painting-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 876

Figure 45.3 Several early ‘‘painterly’’ visualizations. We experimented with varying the visual representation of underlying

data by changing stroke shapes, texture, color, size, and placement. The top and bottom image in each pair use the same

underlying data. (See also color insert.)

Figure 45.4 Scumbling, or lightly painting over an already-

painted region, is an example of a painting technique we

mimicked. We used small strokes to emulate the small bits of

paint left behind. (See also color insert.)

876 Selected Topics and Applications

related motivation behind the 2D flow applica-

tion and also try to provide some insight into

the issues with which we grappled.

In [16] we examined the scientific problem of

understanding fluid flowing past a cylinder. The

primary focus of the study was to visualize mul-

tivalued data. Within the study of fluid mechan-

ics, many mathematical constructs are used to

enhance our understanding of physical phenom-

ena. Visualization techniques are often used as

tools for developing physical intuition of these

quantities. One important question, however, is:

what do we visualize? To maximize their poten-

tial to cross-correlate information, scientists

usually want to maximize the amount of com-

prehensible data presented in one visualization.

For example, scientists often choose to examine

derived quantities, such as vorticity, along with

standard quantities, such as velocity and pres-

sure, in an effort to fully understand the under-

lying process of fluid flow.

We illustrate the complexity of this issue by

displaying velocity and vorticity simultaneously

(Fig. 45.5). Vorticity is a classic example of a

mathematical construct that provides informa-

tion not immediately apparent in the velocity

field. When examining only the velocity field, it

is difficult to see that there is a rotational com-

ponent of the flow in the far wake region of the

cylinder (to the right). But when vorticity is

combined with the velocity field, the underlying

dynamics of vortex generation and advection

are more apparent.

Although vorticity cannot be measured dir-

ectly, its relevance to fluid flow was recognized

as early as 1858 with Helmholtz’s pioneering

work. Vorticity as a physical concept is not

intuitive to all, yet visualizations of experiments

demonstrate its usefulness and hence account

for its popularity. Vorticity is derived from vel-

ocity (and vice versa, under certain constraints)

[27]. A function and its derivative are similarly

related. Hence, vorticity does not provide any

new information that is not already available

from the velocity field, but it does emphasize

the rotational component of the flow. The latter

is clearly demonstrated in Fig. 45.5, where the

rotational component is not apparent when one

merely views the velocity.

Other derived quantities, such as the rate of

strain tensor, the turbulent charge, and the tur-

bulent current, can be of value in the same way

as vorticity. Since examination of the rate of

strain tensor, the turbulent charge, and the tur-

bulent current within the fluids community is

relatively new, few people have ever seen visual-

izations of these quantities in well known fluid

mechanics problems. Simultaneous display of

the velocity and the quantities derived from it

is done both to allow the fluids researcher to

examine these new quantities against the canvas

of previously examined and understood quan-

tities and also to allow the fluids researcher to

accelerate her or his understanding of these new

quantities by visually correlating them with well

known fluid phenomena.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 877

Figure 45.5 Typical visualization methods for 2D flow past a cylinder at Reynolds number 100. On the left, we show only the

velocity field. On the right, we simultaneously show velocity and vorticity. Vorticity represents the rotational component of the

flow. Clockwise vorticity is blue; counterclockwise is yellow. (See also color insert.)

Painting and Visualization 877

In our painting-inspired visualizations of fluid

flow, we sought representations inspired by the

brushstrokesartists apply in layers tocreateanoil

painting. We copied the idea of using a primed

canvas or underpainting that shows through the

layersof strokes.Rulesborrowed fromart guided

our choice of colors, texture, visual elements,

composition, and focus to represent data com-

ponents. These ideas are discussed in more

depth by Laidlaw et al. [18,19].

In one of our visual designs, shown in Fig. 45.6

(left), we wanted the viewer to read first velocity

from the visualization, and then vorticity and its

relationship to velocity. Because of the complex-

ity of the second-order rate of strain tensor, we

want it to be read last.We describe the layers here

from the bottom up, beginning with a primed

canvas, adding an underpainting, representing

the tensor values transparently over that, and

finishing with a very dark, high-contrast repre-

sentation of the velocity vectors.

. Primer: The bottom layer of the visualization

is light gray, selected because it would show

through the transparent layers to be placed

on top.

. Underpainting: The next layer encodes the

scalar vorticity value in semitransparent

color. Since the vorticity is an important

part of fluid behavior, we emphasized it by

mapping it onto three visual cues: color, el-

lipse opacity, and ellipse texture contrast (see

the next category). Clockwise vorticity is

blue, and counterclockwise vorticity is yel-

low. The layer is almost transparent where

the vorticity is zero, but it reaches 75%

opacity for the largest magnitudes, empha-

sizing regions where the vorticity is nonzero.

. Ellipse layer: This layer shows the rate of

strain tensor and also gives additional em-

phasis to the vorticity. The logarithms of the

rates of strain in each direction scale the radii

of a circular brush shape to match the shape

that a small circular region would have after

being deformed. The principal deformation

direction is mapped to the direction of the

stroke to orient the ellipse. The strokes are

placed to cover the image densely, but with

minimal overlap. The color and transpar-

ency of the ellipses are taken from the under-

painting, so they blend well and are visible

primarily where the vorticity magnitude is

large. Finally, a texture whose contrast is

weighted by the vorticity magnitude gives

the ellipses a visual impression of spinning

where the vorticity is larger.

. Arrow layer: The arrow layer represents the

velocity field measurements: the arrows

point in the direction of the velocity, and

the brush area is proportional to the speed.

We chose a dark blue that contrasts with the

Figure 45.6 (Left) Visualization of 2D flow. Velocity, vorticity, and rate of strain (including divergence and shear) are all

encoded in image layers. (Right) Additional values for turbulent charge and turbulent current for Reynolds number 100 flow are

added to the visualization. A total of nine values are simultaneously displayed. (See also color insert.)

878 Selected Topics and Applications

light underpainting and ellipses so that the

velocities would be read first. The arrows are

spaced so that strokes overlap end-to-end

but are well separated side-to-side. This

draws the eye along the flow.

. Mask layer: The final layer is a white mask

covering the image where the cylinder was

located.

In a second visual design, shown in Fig. 45.6

(right), we added two additional derived flow

quantities: turbulent current, a vector, and tur-

bulent charge, a scalar. The layers from the first

design were changed to make the ellipses and

arrows less contrasting and an additional layer

added atop them.

. Turbulent sources layer: In this layer we

encode both the turbulent charge and the tur-

bulent current. The current is encoded in the

size and orientation of the vector value just as

the velocity in the arrow layer. The charge is

mapped to the color of the strokes. Green

strokes represent negative charge and red

strokes represent positive. The magnitude of

the charge is mapped to opacity. Where the

charge is large, we get dark, opaque, high-

contrast strokes that stronglyassert their pres-

ence. Where the charge is small, the strokes

disappear and do not clutter the image. For

these quantities that tend to lie near surfaces,

this representation makes very efficient use of

visual bandwidth. The strokes in this layer are

much smaller than the strokes in the arrow

layer. This allows for finer detail to be repre-

sented for the turbulent sources,which tend to

be more localized. It also helps the turbulent

sources layer to be more easily distinguished

from the arrows layer than in the previous

visualization, where the stroke sizes were

closer and, therefore, harder to disambiguate

visually.

The use of these painting and design concepts

helped us create a visual representation for the

data that encoded all of the data for a more

holistic understanding. The images in this 2D

flow example, and in the other application areas

described elsewhere, simultaneously display six

to nine data values while qualitatively represent-

ing the underlying phenomena, emphasizing

different data values to different degrees, and

displaying different portions of the data from

different viewing distances. These qualities lead

a viewer through the temporal cognitive process

of understanding interrelationships in the data,

much as a painting can lead a viewer through

the visual narrative designed by the painter.

We were left with several observations and

questions from this work. First, the images

became more iconic than our early experiments

as they were targeted at specific scientific applica-

tions. They have a less painterly look, as a result.

Also, once again, the question arises, how

can we evaluate visualizations? User studies

are a stock visualization answer, but we also

wondered if we could borrow from art and art

education in evaluating visualizations.

45.2.3 Art Education

Perhaps the most important educational tool to

the art instructor is the critique, or crit for short.

Art critiques can take many different forms, but

in a typical classroom (a group-critique setting)

they often involve displaying the work of all the

students and then moving from piece to piece

discussing and dissecting the visual decisions

and techniques employed. The instructor run-

ning the critique usually has very specific goals

in mind for the process and leads the discussion

and criticism in a direction that culminates in

the transmission of some design concept or

theory to the students.

Critiques are a checkpoint along a path to cre-

ating visually refined imagery. They are almost

always a part of a larger, iterative process. The

lessons learned in a critique should carry on to

future work, either in the form of a refinement of

an initial design based on feedback, or as a lesson

applied to a completely new design in the future.

A critique that does not lead to new thought or

work by the student is a failure.

Our initial experience applying the concept

of critiques to visualization problems is

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 879

Painting and Visualization 879

encouraging. The critique framework, especially

when expert artistic illustrators, designers, and

instructors are involved, may offer an excellent

alternative or complimentary approach to the

traditional user studies used to evaluate visual-

izations.

Some of our experience with this framework

came in the form of a class we taught in con-

junction with Fritz Drury, head of the Illustra-

tion department at the Rhode Island School of

Design (RISD). The class was composed half of

RISD students and half of Brown University

students. Our focus for a semester was to learn

how to visually represent time-varying 3D fluid-

flow data generated computationally. We

started our exploration of visual representation

with 2D fluid-flow problems and eventually

created visualizations of 3D flow that run in a

CAVE virtual reality display. Throughout the

process, students worked on weekly design as-

signments, and each week these were expertly

critiqued to teach the class how to create suc-

cessful designs from both visual and scientific

standpoints. The importance of enabling a sci-

entist to perform a specific task, such as locating

areas of high vorticity within a flow, was a new

constraint for RISD design students. The depth

of understanding reached by the class on the

effects of color, texture, form, and iconic repre-

sentation upon human perception, particularly

in virtual reality, was new territory for all the

students.

Some results from a 2D flow visualization

design assignment are shown in Fig. 45.7. Input

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 880

Figure 45.7 Students in a joint computer science/art scientific visualization class generated creative multivalued 2D flow

visualizations. (See also color insert.)

880 Selected Topics and Applications

from the critique of these works helped shape the

students’ future assignments as well as the final

class projects in virtual reality. Based on feed-

back in weekly critiques, most designs in the class

were eventually refined to the point that they

were perceptually sound, were useful for scien-

tific inquiry, and maintained a pleasing aesthetic.

One conclusion from this class experience is

that, particularly in complicated, multivariate

visualization problems, the design process is

extremely important. When approaching these

difficult visualization problems, it is rare for an

initial visualization design to be visually coherent

enough for scientists to use successfully. Iterating

upon a visualization design takes time. Critiques

can certainly help in this process.

Quickly sketchingoutdesign ideas and refining

them again and again, each time evaluating them

from the standpoint of the target audience’s sci-

entific goals, is one of the best ways to refine a

design. For 2D visualization problems, this is

often easily accomplishedwith traditional artistic

tools. In fact, Fig. 45.8 shows some of the designs

that attendees of the SIGGRAPH 2001 course

entitled ‘‘Non-PhotorealisticRendering in Scien-

tific Visualization’’ [10] were able to create in an

afternoon. These were quick sketches made with

paint, markers, etc. They represent experimenta-

tion and thinking outside the box. This type of

effort is needed for complex visualization prob-

lems, the type to which art-based visualization

methods are perhaps most suited. When we

move to 3D visualization problems, quick

sketches and visualization prototypes become

much more difficult to make and critique.

45.2.4 Sketching and Prototyping for
Virtual Reality

Currently, it can take a long time to advance

from an initial art-based visualization idea

sketched out on a piece of paper to a useful

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 881

Figure 45.8 Examples of 2D flow visualizations developed by students in a SIGGRAPH 2001 course. (See also color insert.)

Painting and Visualization 881

visualization. One of the most time-consuming

parts of this process is refining and iterating on

the design; iteration is an essential part of the

design process.

For some media, it is important to do much

of the refinement step within the final medium

itself. For 2D visualizations, this is less of a

concern because traditional 2D media can do a

fairly complete job of mimicking what can be

seen on a computer screen. Thus, visualization

designers can sketch out ideas, critique them,

and revise them, all without the time-consuming

step of implementing the design on the com-

puter. However, for virtual reality (VR) and

other 3D computer mediums, it is difficult to

mock up and accurately critique a visualization

without actually going through the trouble

of programming it and experiencing it. Proto-

typing designs with traditional 2D and 3D art-

istic media is still beneficial for VR-based

visualizations, but the insight that can be gained

from critiquing these prototypes is limited

because so many of our physical and perceptual

cues change when we enter a virtual environ-

ment. Dimension, scale, colors, composition,

interaction, and sense of presence all change as

we move from a 2D representation of the idea to

a complete virtual world.

Recently, we have started to take a new ap-

proach to prototyping and design in 3D that

mimics a traditional 2D artistic process. The

cornerstone of this approach is the CAVE-

based VR system, CavePainting [15]. Cave-

Painting uses a prop and gesture-based interface

derived from a traditional oil-painting process

to allow an artist to paint 3D forms directly in

VR using a six degree-of-freedom tracker.

While the interaction is based on painting tech-

niques with which the artist is already familiar,

the resulting ‘‘paintings’’ are a form of zero-

gravity sculpture that bears little resemblance

to a flat oil painting. Nevertheless, the quick,

loose, stroke-based style of CavePainting makes

it an excellent candidate for testing the feasibil-

ity of extending painting inspired visualization

techniques to 3D problems and prototyping 3D

visualization designs.

Through use of this tool, designers have been

able to refine 3D visualization techniques quickly

from within VR. The immediate advantage of

this approach is that designers can visually cri-

tique a Cave-based visualization during the early

stages of design. At this point in the process, even

dramatic changes to the approach are easy to

make. In our experience, design changes are

often discussed and sketched out in 3D during a

critique. Our vision for this approach to visual-

ization design is that the ability to more quickly

produce and iterate on designs within VR will

decrease the time that it takes us to converge on

scientifically useful visualizations.

This vision has played out in some of our

initial work with the visualization class de-

scribed above. As we continue to develop this

prototyping tool and achieve a tighter coupling

with scientific needs, we anticipate that proto-

typing designs in VR will allow us to spend

much more time iteratively designing for VR

visualizations and less time implementing com-

plex visualization approaches that eventually

prove to be less perceptually sound and scientif-

ically useful than originally planned.

We further explore some of the issues raised

in this section after providing historical perspec-

tive in the next section.

45.3 Historical Perspective: The
Connections Between Art and Science

We now present a historical perspective on the

connections between art and science, with par-

ticular emphasis on the efforts that have been

made over the last 10 years to unite scientific

visualization with other visual science discip-

lines. This section is by no means comprehen-

sive; our goal is to provide a broad overview of

the current stream of momentum from which

painterly methods have derived over the past 20

years or so.

We partition this section into two subsec-

tions, a conceptual history and then practical

connections between art and science. The

former traces the steady infusion of artistic

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 882

882 Selected Topics and Applications

ideas and concepts into the scientific visualiza-

tion community, whereas the latter presents cur-

rent applications, both explicit and tacit, of

painterly concepts in the development of visual-

ization methodologies.

45.3.1 History of Art-Related Scientific
Visualization

For at least the last six centuries, artists have

striven to develop methods for distilling com-

plex scene information into oil-painting repre-

sentations. Some of this work was even directed

at scientific topics, including astronomy and

fluid flow. Within the last 20 years, there has

been a renewed recognition that concepts from

art and visual disciplines are not orthogonal to

the goals of scientific visualization. Victoria

Interrante succinctly presents the similarities

and differences between visualization and art

[10]. She states, ‘‘Visualization can be viewed

as the art of creating a pictorial representation

that eloquently conveys the layered complexity

of the information in a complicated dataset.’’ In

the same article, however, she also emphasizes

how visualization and art are different:

‘‘Visualization differs from art in that its ultim-

ate goal is not to please the eye or to stir the

senses but, far more mundanely, to communi-

cate information—to portray a set of data in a

pictorial form that facilitates its understanding.

As such, the ultimate success of a visualization

can be objectively measured in terms of the

extent to which it proves useful in practice.

But to take the narrow view that aesthetics

don’t matter is to overlook the complexity of

visual understanding.’’

Early pioneers in this field, such as Donna

Cox, who holds positions in both the School

of Art and Design and the National Center for

Supercomputing Applications at the University

of Illinois, Urbana-Champaign, understood the

potential of bringing scientists and visual design

artists together. In 1987 Cox developed the con-

cept of ‘‘Renaissance Teams,’’ a team of domain

experts and visualization experts whose goal

was to determine visual representations that

both appropriately and instructively presented

domain specific scientific data.

In her 1995 essay ‘‘Art, Science’’ Vibeke Sor-

ensen, professor and founding chair of the Div-

ision of Animation andDigital Arts in the School

of Cinema–Television at the University of

Southern California, alludes to the necessity of

such ‘‘Renaissance Teams’’ to effectively counter

the divisional chasm between artistic and scien-

tific disciplines that has been caused by special-

ization. She argues that in the mind of most

scholars, the ideal of the artist–scientist as an

integrated, educated individual culminated in

Leonardo da Vinci, who represents the union of

artist and scientist. Although considered by some

to be the epitome of the artist–scientist combin-

ation, the da Vinci ideal was soon lost to special-

ization. As our quest for knowledge produced a

plethora of different subfields of science, the

communication between different disciplines dis-

integrated, and in particular the ties between art

and science were severed in the name of scientific

objectiveness. Sorensen, however, asserts in her

published articles on art and science her strong

conviction that artists have an important role to

play in the further development of science and

technology. In particular, the means of restoring

the ideal artist–scientist is through interdisciplin-

ary research collaborations in which there is a

synergy of many different disciplines, scientific

and artistic.

There have been several attempts to foster this

cultural crossover through panels and work-

shops. For instance, in 1998, David Laidlaw or-

ganized a panel at IEEE Visualization 1998

entitled ‘‘Art and Visualization: Oil and

Water?’’ [23] whose purpose was to explore

such questions as ‘‘How can artistic experience

benefit visualization?’’ and ‘‘What artistic discip-

lines have the most to offer?’’ J. Edward Swan

organized a panel at IEEE Visualization 1999

entitled ‘‘Visualization Needs More Visual

Design!’’ [30], the purpose of which was to

argue two main points: that utilizing visual

design may be difficult but is important for visu-

alization, and that, in general, the scientific com-

munity needs to work harder to tap into the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 883

Painting and Visualization 883

centuries’ worth of design knowledge that exists

in fields such as art, music, theater, cartography,

and architecture. In 2001, Theresa-Marie Rhyne

organized a panel at IEEE Visualization 2001

entitled ‘‘Realism, Expressionism, and Abstrac-

tion: Applying Art Techniques to Visualization’’

[26], which explored the artistic transition be-

tween realism, expressionism, and abstraction

and attempted to examine if such a progression

also exists within the field of scientific visualiza-

tion. One conclusion of that panel, articulated by

Chris Healey, is that ‘‘the appropriate use of

perceptual cues can significantly enhance a

viewer’s ability to explore, analyze, validate and

discover.’’ In that same year, two SIGGRAPH

2001 courses were dedicated to artistic topics.

Sara Diamond organized a class entitled ‘‘Visu-

alization, Semantics, and Aesthetics’’ and Chris

Healey organized a class entitled ‘‘Nonphotor-

ealistic Rendering in Scientific Visualization,’’

both of which further explored the connection

between scientific visualization and artistic sci-

ences. At a different forum, Felice Frankel, a

research scientist in the School of Science at the

Massachusetts Institute of Technology (MIT),

organized what has been referred to as a ground-

breaking conference at MIT entitled ‘‘Image

and Meaning: Envisioning and Communicating

Science andTechnology,’’whichwas an initiative

to promote new collaborations among scien-

tists, image experts, and science writers. Her

new book captures some of the excitement of

the conferences [7]. The following year, at SIG-

GRAPH 2002,Kwan-LiuMaorganized a course

entitled ‘‘Recent Advances in Non-Photorealis-

tic Rendering for Art and Visualization’’ whose

expressed purpose was to give a concise intro-

duction to nonphotorealistic rendering in the

context of generation of artistic imagery and per-

ceptually effective scientific visualization. Along

the same lines, Non-Photorealistic Animation

and Rendering (NPAR) in 2002 had a section

specifically devoted to painterly rendering.

Though the section was not limited to scientific

visualization, its focus was on the exploration of

interjecting painterly ideas into the visualization

process.

Interest in collaboration between the arts and

science has not remained confined to confer-

ences and workshops; it has also spilled over

into the archival publication realm. Laidlaw

published [18] an article entitled ‘‘Loose, Artis-

tic ‘Textures’ for Visualization’’ in which he

encouraged the scientific community to search

beyond what perceptual psychologists under-

stand about visual perception into the funda-

mental lessons that can be learned from art

and art history. Herman and Duke, in their

article entitled ‘‘Minimal Graphics’’ [5], ex-

plored what can be learned from artistic trad-

itions with respect to representing only salient

features in a visualization. Taylor, in his article

entitled ‘‘Visualizing Multiple Scalar Fields on

the Same Surface’’ [31], reviewed and aug-

mented with his own work ideas for visualizing

multivalued data fields built upon artistic ideas.

This small sampling is meant not to be all-

inclusive, but rather to show that mainstream

publishing venues are also seeing the wave of

the collaborative mixing of art and science.

In summary, over the past 20 years there have

been many efforts to, as Sorensen describes,

resurrect the artist–scientist combination found

in da Vinci. In our modern times, the process of

scientific investigation often requires extensive

specialization into the nuances of one particular

field of discovery, making a da Vinci-like com-

bination of the artist–scientist in a single per-

sonage an extremely difficult, yet worthwhile,

goal [36]. In today’s world, the synergistic inter-

dependence of ‘‘Renaissance Teams,’’ in which

experts from many different disciplines combine

their efforts, offers the most likely means for

achieving a productive fusion of art and science.

Slowly but surely this message is being dissemin-

ated through conference panels, workshops,

and publications.

45.3.2 Practical Connections Between Art
and Science

We now present three areas in which, whether

explicitly or tacitly, ideas from painting have

been applied to scientific visualization. We

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 884

884 Selected Topics and Applications

categorize these areas as multivalued data visu-

alization, flow visualization, and computer

graphics painting. Again, our purpose is not

necessarily to provide a comprehensive listing

of all scientific visualization efforts that could

be classified as exhibiting painterly themes, but

rather to illustrate the point that scientific visu-

alization as a discipline has been attempting to

answer some of the same questions as other

visual art disciplines, namely, how to effectively

present information in a form that is compre-

hensive, yet uncluttered.

45.3.2.1 Multivalued Data Visualization

Hesselink et al. [11] give an overview of research

issues in visualization of vector and tensor

fields. While they describe several methods that

apply to specific problems, primarily for vector

fields, the underlying data are still difficult to

comprehend; this is particularly true for tensor

fields. ‘‘Feature-based’’ methods, i.e., those that

visually represent only important data values,

are promising.

Statistical methods such as principal compon-

ent analysis (PCA) [14] and eigenimage filtering

[37] can be used to reduce the number of rele-

vant values in multivalued data; this is often a

worthwhile tradeoff. In reducing the dimension-

ality, these methods inevitably lose information

from the data. The approach taken in the fluid-

flow example presented earlier complements

these data-reduction methods by increasing the

number of data values that can be visually rep-

resented.

Different visual attributes of icons can be

used to represent each value of a multivalued

dataset. Haber and McNable [8] mapped tem-

perature, pressure, and velocity of injected plas-

tic to geometric prisms that sparsely cover the

volume of a mold. Similarly, Chernoff [3]

mapped data values to icons of faces; features

like the curve of the mouth or size of the eyes

encoded different values. In both cases, the

icons capture many values simultaneously but

can obscure the continuous nature of fields. A

more continuous representation using small line

segment-based icons shows multiple values

more continuously [6].

Layering has been used in scientific visualiza-

tion to show multiple items; Interrante et al.

show [12,13] surfaces with transparent stroked

textures without completely obscuring what is

behind them. The layering we presented earlier

in the fluid-flow example is more in the spirit

of oil painting, where layers are used more

broadly, often as an organizing principle.

45.3.2.2 Flow Visualization

A number of flow-visualization methods display

multivalueddata. The examples byMaxet al. [24]

and Crawfis et al. [4] combine surface geometries

representing cloudinesswith volume rendering of

arrows representing wind velocity. In some cases,

renderings are also placed on top of an image

of the ground.Unlikeour 2Dexamples, however,

thephenomenaare3Dandthe layeringrepresents

this third spatial dimension. Similarly, van Wijk

[34] uses surface particles, or small facets, to

visualize 3D flow: the particles are spatially

isolated and are again rendered as 3D objects.

A ‘‘probe’’ or parameterized icon can display

detailed information for one location within a

3D flow [35]; it faithfully captures velocity and

its derivatives at that location, but it does not

display them globally.

Spot noise [33] and line integral convolution [2]

methods generate texture with structure derived

from 2D flow data; the textures show the velocity

data but do not directly represent any additional

information, e.g., divergence or shear. Van Wijk

[33]mentions that spot noise canbedescribedas a

weighted superposition of many ‘‘brushstrokes,’’

but he does not explore the concept. The method

presented in the previous fluid-flow example

takes the placement of the strokes to a more

carefully structured level. Of course, placement

canbeoptimized in amore sophisticatedmanner,

as demonstrated by Turk and Banks [32].

45.3.2.3 Computer Graphics Painting

Haeberli [9] was the first to experiment with

painterly effects in computer graphics. Meier

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 885

Painting and Visualization 885

[25] extended the approach for animation and

further refined the use of layers and brushstrokes

characteristic for creating effective imagery.

Both of these efforts were aimed toward creating

art, however, and not toward scientific visualiza-

tion. Along similar lines, other researchers

[28,38,39] used software to create pen-and-ink

illustrations for artistic purposes. The pen-and-

ink approach has successfully been applied to

2D tensor visualization [29]. In Laidlaw et al.

[20], painterly concepts were presented for

visualizing diffusion tensor images of the mouse

spinal cord.

45.4 Open Issues

The previous sections suggest some open issues,

which we will discuss in more detail here.

45.4.1 Evaluation

One of the most difficult aspects of developing

new visualization methods is evaluating their

success, and this is certainly true for methods

that are motivated by painting and art. For

many exploratory applications, the best meas-

ure of success is the acceleration of scientific

discovery and insight in other disciplines, but

that is virtually impossible to measure quantita-

tively, even with a crystal ball. Scientific ad-

vances are dependent on many factors, and

visualization tools are only one. Even a signifi-

cant increase could be lost in the variance

caused by the others.

We must revert to less direct measures. These

may be judgments about an algorithm’s ele-

gance, simplicity, or speed. They may be about

the accuracy or speed of a group of users in

performing specific, well defined tasks. Or they

may be about a visualization’s aesthetics, ability

to display certain features in data, or appeal to

domain scientists.

The first type of algorithmic measure is well

understood in computer science. We know ele-

gance and simplicity when we see it, and we can

easily measure speed and talk about how it

scales with problem size. While these are im-

portant, their connection to how well a tool

will advance scientific discovery is tenuous, at

best. There has been many an algorithm that

has scaled nicely with problem size and yet pro-

vided no new insight into the scientific problem

that was being visualized.

The second type of measure, which is results

from performance-based user studies, is appeal-

ing because such results are both quantitative

and objective [17]. For example, for six methods

of visualizing 2D fluid-flow data, we measured

user accuracy and performance in locating crit-

ical points in 2D flow, identifying their types,

and visually creating integral lines [21]. With the

results, we compared the six methods and drew

some conclusions about which features of each

may have accounted for good performance on

these specific tasks. On the other hand, a leap of

faith is required to generalize these results more

broadly to other visualization methods, particu-

larly exploratory ones, or even to other tasks.

Finding features faster and more accurately

could speed the advance of science, but we

cannot know for certain. One clear contribution

of these kinds of measures is the very explicit set

of visualization goals that must be defined in

order to perform tests.

The third type of measure is more subjective.

Here we might ask domain scientists whether

they like a method, or appeal to reviewers to

judge whether a certain feature is adequately

represented visually and whether that is import-

ant. This tends to be faster to evaluate than more

formal performance-based user studies and

can often evaluate larger conceptual advances,

but at the cost of some quantization and object-

ivity, and often with implicit assumptions. For

example, domain scientists may understandably

be biased against unfamiliar methods, even if the

unfamiliar methods will be more effective after a

learning period. This kind of measure may come

the closest to addressing our original question

about advancing science.

Each type of measure has its place. What

relates the second and third types is the choices

that must be made about the important visual-

ization goals to target and the specific popula-

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 886

886 Selected Topics and Applications

tion to evaluate them. With explicit design

goals, the third type of measure may be particu-

larly valuable. In fact, this kind of evaluation is

very similar to art critiques and has the poten-

tial to advance our field more quickly. They can

provide measures of new methodology. They

can help educate both visualization researchers

and designers. They can also help clarify visual-

ization goals. They should be used more

broadly and incorporated into what we teach

our visualization students.

45.4.2 Visualization Goals

An essential step in critiquing or evaluating

visualization methods is defining explicit visual-

ization goals. Too often visual appeal, or even

glitz, is confused with effectiveness. Only expli-

cit goals can be effectively evaluated.

Defining visualization goals is an iterative

process and should be driven by the underlying

scientific applications [1]. As our understanding

of a scientific problem moves forward, so will

our design goals for visualization methods to

address that problem. Our understanding of

visualization will also help us to bring effective

methods from one scientific domain to bear on

others.

It is important to understand that different

scientific questions will imply different visual-

ization goals, sometimes contradictory goals.

No one visualization method is right. Some

people claim that more is better. This is likely

to be true for some kinds of exploration, but for

expository visualizations, ‘‘less is more’’ is more

likely true.

45.4.3 Design, Engineering, and Science
Collaborations

Designers, engineers, and scientists are brought

together because their skills and their disciplines

can benefit from collaborations. For scientists,

the benefit of collaboration is the potential for

increased scientific understanding that can

result from clearer, more perceptually sound

visualizations. Artists hold one key to making

these visualizations a reality. For artists, the

win in scientific visualization collaboration

comes in many forms. First, working with sci-

entific visualization opens the door to working

with a variety of new media. Virtual reality,

volume rendering, and other advanced com-

puter graphics techniques are just beginning to

migrate out of the graphics research commu-

nity. Through visualization research, artists

have the opportunity to be at the forefront of

learning, working with, and even influencing

recently created computer media. As illustra-

tors, artists are also drawn to visualization

problems because of the complexity of the situ-

ations that they represent. These types of prob-

lems are exciting because they push theories

of visual representation to their limits. In add-

ition to these factors, art educational institu-

tions are beginning to become interested in

scientific visualization collaborations because

of the potential job opportunities that may be

available for their students in the future. As the

embrace of artistic insight continues to grow

within scientific fields, we will develop a need

for a new generation of artists that are adept at

understanding and interacting with scientists

and that specialize in illustrating the new scien-

tific phenomenon that our technology helps us

to explore.

While there is often some overlap in critical

knowledge and techniques within design, art,

engineering, and science, the terminology,

goals, and methods of each are often as different

as they are advanced. In scientific visualization,

collaborative efforts require insight, communi-

cation, and education from all those involved.

45.4.3.1 Designer Education

The first area for designers to master when

applying their skills to visualization problems is

the new media that they may be using. Computer

graphics in some form is now common at most

design schools. In our experience, most potential

design or illustration collaborators are familiar

with programs such as Adobe Photoshop and

occasionally a 3D modeling package. However,

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 887

Painting and Visualization 887

many of the visualization approaches in which

designers can be most helpful to scientists today

utilize more recent computer graphics techni-

ques, such as volume rendering or virtual reality

environments. Many basic design principles

transcend the differences between various media,

but clearly some time is needed for designers to

experiment and eventually become proficient

within a new medium.

Prototyping systems, such as the CavePaint-

ing-based virtual reality system described in

Section 45.2.4, offer a transitional tool for de-

signers. Designers are given an intuitive interface

for creating VR worlds that can be targeted to-

wards an artistic purpose or a scientific design.

This allows for experimentation and gives de-

signers a chance to learn the properties and limi-

tations of a medium that they might not have

without becoming proficient graphics program-

mers. There is much room for experimentation

here in creating tools for quickly iterating on

complicated interactive 3D visualizations.

In addition to learning how to use new media,

designers must also learn the language and goals

of their collaborators’ disciplines. Understand-

ing the scientific goals behind a visualization is

the most important element for designers to

grasp. It is nearly impossible to create a good

visualization when you do not know what you

are trying to show. This does not mean that the

designer needs to be an expert in the scientific

field. This is an unrealistic goal, but designers

must be prepared to work with scientists to

understand their goals and needs. This can be a

difficult process, as the languages of the two

disciplines are often quite different. For example,

to a scientist looking at a point in a visualization,

‘‘value’’ means 10 m/s, a measurement of an

experimental quantity. To an artist, ‘‘value’’

means the lightness or darkness of the region.

Even simple conversations can become exercises

in creating a common language of communica-

tion.

Cross-discipline initiatives, such as the Brown

University and RISD cross-registered course,

‘‘Interdisciplinary Scientific Visualization,’’ and

RISD’s newly created program in digital media,

will help to tighten the threads connecting the art

world and the visualization community. These

ventures, and similar ones at other institutions,

will help to develop a language for collaboration

and teach scientists, engineers, programmers,

and artists to understand each others’ goals and

work together, as in Donna Cox’s renaissance

teams, to realize their designs.

45.4.3.2 Engineering and Scientific
Education

As for designers, it is important for scientists,

engineers, and programmers to not only master

the new media that computers provide but also

understand the scientific goals behind the visua-

lization. The mastery of computer media should

cover potential uses of current hardware and

software solutions. It is also important for the

computer experts in a collaboration to provide

tools toothercollaborators that theycanuse.This

may be as simple as providing digital or physical

printouts of imagery. It may be as complex as a

virtual realityprototypingsystem. It is imperative

that engineers and programmers find the means

for including scientists anddesigners in thedesign

loop. Technological barriers often make this

difficult. However, any visualization collabora-

tion will be enhanced by quickly establishing a

means for overcoming the obstacles to commu-

nicationanddesign inputpresentedbydifferences

in computing facilities and experience.

Finally, it is critically important for scientists

to appreciate design and the aesthetic sense that

designers have developed through their training

and experience. This leads to a recognition of

the potential that design has for furthering sci-

entific discovery, a necessary ingredient for a

successful collaboration. Often, this appreci-

ation is best accomplished through experience

in artistic projects and classes.

45.4.3.3 Education and the Renaissance
Person

Most of the scientific visualization approaches

we have discussed up to this point involve

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 888

888 Selected Topics and Applications

significant interdisciplinary collaboration by

multiple people. It is interesting to note that

what this approach strives to create through

collaboration is the equivalent of a Leonardo da

Vinci: a scientist and artist acting as one. Artistic

insight feeds into and illustrates scientific dis-

covery, while scientific discovery pushes the

limits of artistic representation and understand-

ing. In a sense, there is a continuum between

science and art, and each individual spans some

portion of that continuum. The more that one

learns about the other’s field, the more of the

continuum one covers. As scientists learn more

about design and art through collaborations,

classes, and experience, they break down the

barriers between the two disciplines, develop a

new visual language and understanding, and

make it easier for the collaborative processes to

succeed. The same is true for artists and

designers. As they come to understand science

and its goals, they become, more and more,

renaissance people, spanning the entire conti-

nuum. Perhaps only a very few will reach da

Vinci status, but the future collaborations

of all who strive to understand their collabora-

tors’ fields will be enhanced by their increased

knowledge.

As interdisciplinary initiatives continue to

grow in universities and research settings world-

wide, we are beginning to see a change in the way

science and art are taught. There is a tighter bond

between the two and a greater appreciation for

how the two disciplines can work together to help

achieve the goals of each. By structuring our

teaching to embrace this principle, we have the

ability to foster a new generation of renaissance

people and skilled collaborators.

45.5 Summary

In this chapter we have narrated some of our

own experiments with merging concepts from

art and design into the scientific visualization

process, particularly for exploratory applica-

tions that work with multivalued data. We

have also surveyed related work to give some

context for others aiming to continue explor-

ations into the synergy between these two dis-

ciplines. It is clear to us that there remains much

visualization knowledge to mine from the world

of painting, art, and design. Some of this know-

ledge is about visual representations, but there

are design and pedagogical components as

well that will play a role in educating visualiza-

tion researchers and in evaluating visualization

methods. Collaboration in the form of renais-

sance teams and the development of renaissance

scholars will advance our field, and tools that

amplify the output of designers by better lever-

aging their design capabilities without taxing

their stamina and patience will be critical to

this advancement.

Acknowledgments

We would like to acknowledge Prof. George Em

Karniadakis and the CRUNCH group for sup-

port with fluid computations. All fluid compu-

tations were performed using the spectral/hp

element code Nektar.

This work was supported by NSF (CCR-

96-19649, CCR-9996209, CCR-0086065) and

NSF (ASC-89-20219) as part of the NSF STC

for Computer Graphics and Scientific Visualiza-

tion; and the Human Brain Project with contri-

butions from the National Institute on Drug

Abuse, the National Institute of Mental Health,

and the National Institute on Biomedical Im-

aging and Bioengineering.

References

1. F. P. Brooks, Jr. The computer scientist as a
toolsmith II. Communications of the ACM, 39(3):
61–68, 1996.

2. B. Cabral and L. C. Leedom. Imaging vector
fields using line integral convolution. Computer
Graphics (SIGGRAPH ’93 Proceedings), 27:263–
272, 1993.

3. H. Chernoff. The use of faces to represent points
in k-dimensional space graphically. Journal of the
American Statistical Association, 68(342):361–
368, 1973.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 889

Painting and Visualization 889

4. R. Crawfis, N. Max, and B. Becker. Vector field
visualization. IEEE Computer Graphics and Ap-
plications, 14(5):50–56, 1994.

5. D. Duke and I. Herman. Minimal graphics.
Computer Graphics and Applications, 21(6),
2001.

6. R. F. Erbacher, G. Grinstein, J. P. Lee, H.
Levkowitz, L. Masterman, R. Pickett, and S.
Smith. Exploratory visualization research at
the University of Massachusetts at Lowell.
Computers and Graphics, 19(1):131–139, 1995.

7. F. Frankel. Envisioning Science: The Design and
Craft of the Science Image. MIT Press, 2002.

8. R. B. Haber and D. A. McNabb. Visualization
idioms: A conceptual model for scientific visual-
ization systems. Visualization in scientific com-
puting, pages 74–93, 1990.

9. P. E. Haeberli. Paint by numbers: Abstract
image representations. Computer Graphics
(SIGGRAPH ’90 Proceedings), 24:207–214,
1990.

10. C. G. Healey, V. Interrante, davidkremers,
D. H. Laidlaw, and P. Rheingans. Nonphotor-
ealistic rendering in scientific visualization.
Course Notes of SIGGRAPH 2001, Course 32,
2001.

11. L. Hesselink, F. H. Post, and J. J. van Wijk.
Research issues in vector and tensor field visual-
ization. IEEE Computer Graphics and Applica-
tions, 14(2):76–79, 1994.

12. V. Interrante, H. Fuchs, and S. M. Pizer.
Conveying the 3D shape of smoothly curving
transparent surfaces via texture. IEEE Transac-
tions on Visualization and Computer Graphics,
ISSN. 3(2):1077–2626, 1997.

13. V. L. Interrante. Illustrating surface shape in
volume data via principal direction-driven 3D
line integral convolution. SIGGRAPH 97 Con-
ference Proceedings, pages 109–116, 1997.

14. K. Jain. Fundamentals of Digital Image Process-
ing. Prentice Hall, 1989.

15. D. Keefe, D. Acevedo, T. Moscovich, D. H.
Laidlaw, and J. LaViola. Cavepainting: A fully
immersive 3D artistic medium and interactive
experience. Proceedings of ACM Symposium on
Interactive 3D Graphics 2001, pages 85–93,
2001.

16. M. Kirby, H. Marmanis, and D. H. Laidlaw.
Visualizing multivalued data from 2D incom-
pressible flows using concepts from painting.
Proceedings of IEEE Visualization 1999, pages
333–340, 1999.

17. R. Kosara, C. G. Healey, V. Interrante, D. H.
Laidlaw, and C. Ware. Thoughts on user stud-
ies: Why, how, and when. Computer Graphics
and Applications, 2003.

18. D. H. Laidlaw. Loose, artistic ‘‘textures’’ for
visualization. IEEE Computer Graphics and Ap-
plications, 21(2):6–9, 2001.

19. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, C. Readhead, and R. E. Jacobs. Visual-
izing diffusion tensor images of the mouse
spinal cord. Proceedings of IEEE Visualization
1998, pages 127–134, 1998.

20. D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, C. Readhead, and R. E. Jacobs. Visual-
izing diffusion tensor images of the mouse
spinal cord. Proceedings of Visualization ’98.
IEEE Computer Society Press, 1998.

21. D. H. Laidlaw, M. Kirby, J. S. Davidson, T.
Miller, M. DaSilva, W. H. Warren, and M.
Tarr. Quantitative comparative evaluation of
2D vector field visualization methods. Proceed-
ings of IEEE Visualization 2001, pages 143–150,
2001.

22. D. H. Laidlaw, D. Kremers, E. T. Ahrens, and
M. J. Avalos. Visually representing multi-
valued scientific data using concepts from oil
painting. SIGGRAPH ’98 Visual Proceedings,
page 249, 1998.

23. D. H. Laidlaw, D. Kremers, F. Frankel, V.
Interrante, and T. F. Banchoff. Art and visual-
ization: Oil and water? In Visualization ’98 Pro-
ceedings, pages 507–509, 1998.

24. N. Max, R. Crawfis, and D. Williams. Visual-
ization for climate modeling. IEEE Computer
Graphics and Applications, 13(4):34–40, 1993.

25. B. J. Meier. Painterly rendering for animation.
SIGGRAPH 96 Conference Proceedings, pages
477–484, 1996.

26. T.-M. Rhyne, D. H. Laidlaw, C. G. Healey, V.
Interrante, and D. Duke. Realism, expression-
ism, and abstraction: Applying art techniques to
visualization. Visualization ’01 Proceedings,
pages 523–526, 2001.

27. P. Saffman. Vortex Dynamics. Cambridge Uni-
versity Press, Cambridge, UK, 1992.

28. M. P. Salisbury, S. E. Anderson, R. Barzel, and
D. H. Salesin. Interactive pen-and-ink illustra-
tion. Proceedings of SIGGRAPH ’94, pages
101–108, 1994.

29. M. P. Salisbury, M. T. Wong, J. F. Hughes,
and D. H. Salesin. Orientable textures for
image-based pen-and-ink illustration. SIG-
GRAPH 97 Conference Proceedings, pages
401–406, 1997.

30. J. E. Swan, V. Interrante, D. H. Laidlaw, T.-M.
Rhyne, and T. Munzner. Visualization needs
more visual design! Sensory design issues as
a driving problem for visualization research.
Visualization ’99 Proceedings, pages 485–490,
1999.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 890

890 Selected Topics and Applications

31. R. M. Taylor II. Visualizing multiple scalar
fields on the same surface. IEEE Computer
Graphics and Applications, 22(2):6–10, 2002.

32. G. Turk and D. Banks. Image-guided stream-
line placement. SIGGRAPH 96 Conference Pro-
ceedings, pages 453–460, 1996.

33. J. J. van Wijk. Spot noise-texture synthesis
for data visualization. Computer Graphics
(SIGGRAPH ’91 Proceedings), 25:309–318,
1991.

34. J. J. van Wijk. Flow visualization with surface
particles. IEEE Computer Graphics and Applica-
tions, 13(4):18–24, 1993.

35. J. J. van Wijk, A. S. Hin, W. C. de Deeuw, and
F. H. Post. Three ways to show 3d fluid flow.

IEEE Computer Graphics and Applications,
14(5):33–39, 1994.

36. K. Walker. Virtual da Vinci. Shift Magazine,
10(2), 2002.

37. J. P. Windham, M. A. Abd-Allah, D. A. Reim-
ann, J. W. Froelich, and A. M. Haggar. Eigen-
image filtering in MR imaging. Journal of
Computer Assisted Tomography, 12(1):1–9, 1988.

38. G. Winkenbach and D. H. Salesin. Computer-
generated pen-and-ink illustration. Proceedings
of SIGGRAPH ’94, pages 91–100, 1994.

39. G. Winkenbach and D. H. Salesin. Rendering
parametric surfaces in pen and ink. SIGGRAPH
96 Conference Proceedings, pages 469–476,
1996.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 891

Painting and Visualization 891

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:44pm page 892

This page intentionally left blank

46 Visualization and Natural
Control Systems for Microscopy

RUSSELL M. TAYLOR II, DAVID BORLAND, FREDERICK P. BROOKS, JR., MIKE FALVO,

KEVIN JEFFAY, GAIL JONES, DAVID MARSHBURN, STERGIOS J. PAPADAKIS,

LU-CHANG QIN, ADAM SEEGER, F. DONELSON SMITH,

DIANNE SONNENWALD, RICHARD SUPERFINE, SEAN WASHBURN,

CHRIS WEIGLE, MARY WHITTON, and LEANDRA VICCI

University of North Carolina at Chapel Hill

MARTIN GUTHOLD

Wake Forest University

TOM HUDSON

University of North Carolina at Wilmington

PHILLIP WILLIAMS

NASA Langley Research Center

WARREN ROBINETT

http://www.warrenrobinett.com

46.1 Introduction

The world now stands at the threshold of the

age of nanotechnology, which biologists have

been exploring for years. Imagination has

already leapt ahead to the day when it will be

possible to touch proteins within living cells, to

tug on DNA as it is transcribed, and to manipu-

late molecules one atom at a time. To reach

these goals, scientists need instruments and

interfaces that extend their eyes and hands into

this new nanoscale world. This chapter is about

the construction of such interfaces.

For 10 years, the growing Nanoscale Science

Research Group (NSRG) at the University

of North Carolina at Chapel Hill has been build-

ing visualization systems that intuitively map the

additional sensing made available by various

microscopes into the human senses and intui-

tively control systems that project human

actions directly into this world. The NSRG is

composed of teams of computer scientists,

physicists, materials scientists, information sci-

entists, and educators. Three systems have been

developed to the point where they have been

used in physical science experiments:

. The nanoManipulator (nM) provides an inter-

active 3D graphics and force-feedback

(haptic) interface to atomic force microscopes

(AFMs) to enable scientists to naturally con-

trol experiments as if they could directly see,

touch, and manipulate nanometer-scale

objects on surfaces.Begun in 1991, this system

has been used to perform a wide variety of

experiments on viruses [12], carbon nano-

tubes [11,14,15,45,46], fibrin (the fiber that

forms blood clots) [28], and DNA [25].

. The Nanometer Imaging and Manipulation

System (NIMS) augments the nM with a

scanning electron microscope (SEM), using

projective texture mapping and manual align-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 893

893

ment of SEM and AFM datasets to enable

viewingduringdirectmanipulationofsamples

inside the SEM. The goal is to use visualiza-

tion hardware and software to combine the

two microscopes into one virtual microscope

that includes the capabilities of each and miti-

gates their limitations. Begun in 1998, this sys-

tem has been used to perform experiments on

carbon nanotubes and their use in actuating

devices (from MEMS to NEMS) [67,68,69].

. The 3-Dimensional Force Microscope

(3DFM) provides an interactive 3D graphics

and haptic interface to a custom 3D optically

tracked, magnetically driven force micro-

scope that can track and control submicron

beads on and near living cells. A recently

completed prototype of this system is being

used to study viscosity and force in lung cell

cultures to investigate the causes and mech-

anisms of cystic fibrosis.

The NSRG has also begun to design and de-

velop interfaces for a new microscopy system:

. The Keck Atomic Imaging and Manipulation

System (AIMS) will add atomic-scale ma-

nipulation capabilities to a transmission elec-

tron microscope (TEM) that is capable of

near-atomic-resolution imaging of carbon

nanotubes and other small structures. This

system will be used to study the details of

atomic lattice deformations for nanotube

structures under stress.

This chapter presents these microscope systems,

along with brief descriptions of the science ex-

periments driving the development of each

system. Beginning with a discussion of the phil-

osophy that has driven the NSRG and the

methods used, it describes the lessons learned

during system development, including both

useful directions and blind alleys. It also de-

scribes techniques to enable telemicroscopy in

the context of remote experiments and outreach.

46.1.1 NSRG Philosophy and Methods

The NSRG aims to provide tools that are, like a

lens, transparent and easy to use, yet as power-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 894

(a)

(b)

(c)

Figure 46.1 (a) UNC nanoManipulator being used to ma-

nipulate carbon nanotubes. (b) UNC NIMS overlays SEM

image on AFM surface display. (c) UNC’s 3D Force Micro-

scope views and manipulates biological samples. (See also

color insert.)

894 Selected Topics and Applications

ful and versatile as contemporary computing

technology can make them—tools that enable

direct viewing of, and interaction with, real and

simulated molecules, viruses, and cells. Virtual

filters enable the transformation and overlay of

multiple datasets in order to map them from the

raw instrument data formats onto more natural

and useful views. Haptic (force-feedback) dis-

play coupled to the microscope’s probe enables

real-time exploration of the properties of real

objects, touching and moving them to feel how

they respond. The goal is to enable the scientist

to pay great attention to the experiment and

little attention to the tools, rapidly and easily

chasing down ‘‘what if ’’ scenarios as they pre-

sent themselves.

Fred Brooks put forward the two major phil-

osophies that have guided this research [7,8].

The first is the ‘‘driving problem’’ method of

doing computer science research. This posits

that excellent computer science research arises

from tackling a real-world problem and

addressing it on its own terms, as a total system

problem, and aiming to satisfy not just com-

puter scientists but professional practitioners

in the problem domain. This requires developers

to face all aspects of a problem, not merely the

tractable or publishable aspects.

The second major research philosophy is that

human–machine systems can address more dif-

ficult problems than can machines alone, an

idea that can be cast as the saying, ‘‘Intelligence

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 895

Real
Structure,

Macromolecule
or Cell

Model
Macromolecule

SEM

AFM

3DFM

Simulator

Sensors and
Actuators

Visualize
Transform
Combine

Natural Control
and Manipulation

System
Under Study

Merged
idea of system

under study

Figure 46.2 Pictorial representation of the NSRG’s goal of providing tools that are versatile, powerful, and transparent to use;

this will enable the scientist to concentrate on the experiment rather than the tools.

Visualization and Natural Control Systems for Microscopy 895

Amplification is better than Artificial Intelli-

gence.’’ This posits that at any given level of

technological advancement a person plus a ma-

chine can beat a machine-only system. This sug-

gests building human–computer shared-work

systems, where the human provides creativity,

pattern matching, and decision making in the

presence of incomplete information and the

computer provides precise recollection from

large databases and performs the tedious trans-

formations from instrumentation space to the

3D world.

46.2 nanoManipulator

How do you examine an unfamiliar object? You

look at it. When possible, you pick it up, hold it

at arm’s length, and turn it around. You may

squeeze or prod it to determine its stiffness; a

fingernail feels for grooves or surface texture. If

the object is on a surface, you may use a finger-

tip or pen to roll it around.

The nanoManipulator System (nM) provides

a scientist with the ability to perform these

actions on objects as small as single molecules

while at the same time quantitatively measuring

both the surface shape and forces applied. The

nM uses the ultra-sharp tip of an atomic-force

microscope (AFM) as a tool both to scan and to

modify samples. It uses advanced computer

graphics to display the scanned surface to the

user. A force-feedback device (like a robot arm,

but used to present forces to the user) enables the

user to feel and modify the surface

[10,17,26,57,58]. It is basically a teleoperation

system that operates at a scale difference of

about 100,000 to 1.

The diagram in Fig. 46.4 shows the basic

operation of the AFM, which uses a fine tip at

the end of a cantilever to scan and push objects

on a surface. The cantilever bends when it

comes into contact with the surface or objects

on it, causing deflection of a laser beam that

bounces off the cantilever. The deflection is

detected by a four-quadrant photodiode,

which is able to measure both the normal and

the lateral force applied by the tip to the surface.

The cantilever is very sensitive: sub-nanoNew-

ton forces can be measured. For imaging, the tip

is scanned across the surface in a raster pattern.

Feedback moves the sample up and down to

maintain a constant (very small) applied force.

The resulting trajectory yields the topography

of the surface. The user can also direct the tip

with the robot arm, feeling around on the sur-

face. To modify the surface, the force applied by

the tip is increased. The user’s hand motions are

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 896

Graphics
Engine and

Host Processor

Intel-based
AFM

Controller

Atomic-Force Microscope

Intel-based
PHANToM
Controller

Force Feedback

UNC NanoManipulator

Visual Feedback

TopoMetrix
Explorer

© 1997 UNC-CH
Todd Gaul, Photographer

Figure 46.3 nanoManipulator system diagram. Separate threads control data acquisition, visual rendering, and force display.

(See also color insert.)

896 Selected Topics and Applications

scaled down by a factor of up to a million,

enabling sub-nanometer control over the pos-

ition of the AFM tip.

46.2.1 Driving Problems

46.2.1.1 Virus Particles

One of the earliest biological applications was

the study of tobacco-mosaic virus (TMV). The

nM was used to probe the mechanical proper-

ties of the virus. Fig. 46.5a shows an AFM

image of a TMV that has been dragged across a

graphite substrate with the AFM tip. The

resulting bent shape is the balance between the

bending rigidity of the virus and the friction

between the TMV and the substrate. In the

image, brightness corresponds to surface height.

The darker gray line drawn along the central

axis of the TMV was found by the medial-axis

location software developed by the UNC

MIDAG group [18].

Fig. 46.5b shows where the mechanical equa-

tions for beam bending for a beam under uni-

formly distributed force are fit to the shape

of the TMV found with the medial-axis soft-

ware. This fit yields the ratio of the distribu-

ted frictional force to the bending rigidity of

the TMV.

Another series of investigations has explored

the physical properties and surface interactions

of adenovirus. Adenovirus is an icosahedral

virus that is being used by the UNC Gene Ther-

apy Center as a vector for gene therapy. The

elastic properties of the virus in air and in liquid

were studied by placing the AFM probe on top

of an individual virus using haptic feedback.

A semiautomatic position vs. force measurement

tool was then used to map the response of the

virus to increasing force [43]. The nM is also

being used to push adenovirus across different

surfaces to investigate the adhesion between the

virus and each surface and to determine whether

the viruses slide or roll. Fig. 46.6 shows two

adenovirus particles, one of which has been

dimpled at the top using the nM.

46.2.1.2 Carbon Nanotubes

Carbon nanotubes are of interest both because of

their mechanical properties (they are the stron-

gest known material) and because of their

electrical properties (they are insulating or

conducting depending on the details of their

construction). They are also interesting because

they are atomically precise constructions with

atomic spacing exactlymatching that of graphite.

ThenMsystemhas beenused to probe all of these

characteristics. It was used to probe the bending

and buckling behavior of the tubes by manip-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 897

Figure 46.4 An atomic-force microscope (AFM) detects

forces by observing deflections in a laser that bounces off

of a flexible cantilever.

(a)

(b)

Figure 46.5 The center of a bent tobacco-mosaic virus is

(a) estimated and (b) used to derive a one-parameter fit.

Visualization and Natural Control Systems for Microscopy 897

ulating them by hand on various surfaces [11,13].

It revealed that the atoms in the tube lock in like

gear teeth at the appropriate orientation on

graphite, causing them to roll or slide depending

on orientation [9,15,16]. Adding electrical mea-

surements to the manipulation ability revealed

that the electrical resistance through the tubes to

a graphite surface is an order of magnitude

smaller when they are in alignment than when

they are not [46]. The effects of strain on

conductance were also explored [45]. Each of

these experiments required carefully controlled

manipulation of tubes. Fig. 46.7 shows a config-

uration where one tube was pushed end-on to

slide over another pair of tubes; the AFM probe

was then carefully inserted by feel between the

first two tubes to peel them apart—leaving the

third tube suspended between them.

46.2.1.3 Blood Clotting Disorders

Blood clots are composed of blood cells trapped

in a matrix of fibrin fibers. While the fibrin from

normal, ‘‘wild type’’ clots prevents excess bleed-

ing, mutant versions found in clotting disorders

form clots either too easily (leading to stroke) or

too poorly (causing excess bleeding). Although

the bulk properties of the clots found in these

disorders have been measured and the specific

gene defects for many of these variants are

known, the mechanisms by which the defects

cause large-scale change to the properties are not.

The strength, thickness, and stickiness of fibrin

variants are being studied to help bridge this

knowledge gap. Wild-type and mutant fibers are

formed and deposited on a surface. Their height

is measured using an AFM, which is then

employed to cut the fibers. During cutting,

measured force profiles reveal the strength of

adhesion between the fiber and surface, the

springiness of the fibers, and their rupture

strength. Imaging after manipulation reveals

whether the fibers undergo elastic or plastic

deformation. Fig. 46.8 shows a fibrin fiber after

being cut with an AFM (which tore out the

portion seen on the right side of the image) [28].

46.2.2 System Description

Achieving a working system meant overcoming

the following computer-science challenges:

. Real-time rendering of a large and dynamic-

ally updated surface model.

. Integration of haptics, teleoperation, and a

virtual-reality system.

. Real-time, low-latency, distributed heteroge-

neous computing.

. Network-aware real-time AFM control.

Figure 46.6 Two icosahedral adenovirus capsids. The

nanoManipulator was used to press a dimple into the one

on the right. (See also color insert.)
Figure 46.7 The nanoManipulator was used to push a

carbon nanotube on top of two others; haptic feedback

enabled the scientist to peel apart the lower tubes. (See

also color insert.)

898 Selected Topics and Applications

The dynamic, large-model rendering challenge

was initially tackled using the world’s fastest

graphics computer (Pixel-Planes 5, developed

at UNC under DARPA funding) [19]. This ma-

chine was fast enough to render the number of

triangles needed for the scanned surfaces, but its

graphics pipeline was unable to handle the

required dynamic update of the surface as the

microscope scanned. This was addressed by

reprogramming Pixel-Planes’ parallel array of

geometry processors and developing a more

efficient protocol for sending updates from the

host processor to the graphics subsystem [58].

The rendering challenge has been solved over

time by advances in rendering technology, to the

point where the nM now runs effectively on a

laptop with an Nvidia GeForce2Go graphics

processor.

The haptics subsystem was initially imple-

mented using the Argonne III Remote Mani-

pulator (ARM) developed for use by Ming Ouh-

Young in an earlier UNC project—his Docker

program, which simulated the docking of drugs

withinprotein receptor sites [6].ThisusedArmlib,

a UNC-developed network-aware ARM server.

When the higher-performance Phantom haptic

display fromSensAbleDevices becameavailable,

the nM was ported to it. Because there was no

haptic-control software library available for the

device, the Armlib software was modified to also

control the Phantom [42]. The nM currently runs

on top of the manufacturer-supplied GHOST

software toolkit, using the UNC-developed

public-domain Virtual Reality Peripheral Net-

work (VRPN) library as the network layer that

enables remote graphics machines to control the

device [60,61]. The physical separation of micro-

scope andhaptic display pushed thedevelopment

of novel intermediate representations to enable

both the microscope feedback and haptic display

feedback to proceed at their required rates of

100kHz and 1kHz while updates between them

occurred over the network at only 30 Hz. The

resulting techniques were published by Mark et

al. [42].

The real-time, low-latency, distributed hetero-

geneous computing challenges were first ad-

dressed by adopting the techniques that had

been developed to enable the Docker program

to do its parallel computation on a MasPar

computing array connected to a Vax, its haptic

display on a Sparcstation connected to the

Argonne ARM, and its graphics display on

an SGI or Evans & Sutherland display console.

This required careful control over network link

settings (using TCP_NODELAY for one-way

streams and limiting the attempted packet trans-

mission rate to that sustainable by the network);

common numerical encodings (using the htonl()

functions for integer conversion, andhand-tuned

binary conversions between IEEE and Vax

floating point because binary-to-ASCII routines

were too slow in this extreme-low-latency envir-

onment); careful management of relative loop

rates, buffering, and pipelining to enable data

to be ready when needed without introducing

unacceptable delays; and the development of

robust, operating system–independent remote

process creation/destruction to enable rapid

startup and to avoid leaving behind cycle-burn-

ing processes that occupied resources when

the system was shut down. These techniques

have been formalized and documented over

time, and they make up the core of the public-

domain VRPN library and are described by

Taylor et al. [61].

The network-aware real-time AFM control

system was developed in three steps.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 899

Figure 46.8 Here, the nanoManipulator system is being

used to measure the rupture strength of a fibrin fiber. (See

also color insert.)

Visualization and Natural Control Systems for Microscopy 899

. The first implementation controlled a user-

built scanning tunneling microscope (STM)

sent from Stan William’s group at UCLA; it

ran on Microsoft’s DOS operating system

and coordinated network activity using

Sun’s PC-NFS network stack, a finite-state

machine to implement the control interface,

digital-to-analog control using Data Trans-

lation boards, and external Hewlett-Packard

pulse generators for tip voltage bias and

modification by voltage pulses. A nonlinear

analog feedback control system for the STM

was designed and built to improve the instru-

ment’s performance [57,58].

. The second implementation was for a Digital

Instruments (DI) brandAtomic Force Micro-

scope. DI kept its interfaces proprietary, re-

quiring extreme measures to achieve external

program control over the instrument. This

made it necessary to use a second, auxiliary

control computer that drove the DI’s signals

by replacing analog multiplexer chips on the

control system board and effecting changes in

the digital control by transmitting characters

through a serial port to the keyboard buffer

on the main control computer.

. The third implementation was done in soft-

ware on top of the TopoMetrix (since then,

the company has merged into ThermoMicro-

scopes and now Veeco) control software

under Microsoft Windows. TopoMetrix pro-

vided the source code to their control system

as part of an equipment donation to the

project. The current version uses a custom

VRPN object type [56] as the network trans-

port layer.

46.2.3 Lessons Learned

Several system features have proven very useful

by enabling new types of experiments or reveal-

ing previously unseen phenomena. These fea-

tures are listed in detail by Taylor et al. [59],

along with the particular insights revealed by

each. A summary of the highlights for each

area follows:

. Graphics. Augmenting the standard real-

time 2D view with user-controlled, real-

time, publication-quality 3D views enables

the scientist to gain insight during experi-

mentation that otherwise would be missed.

Subtleties of shape and interactions between

3D objects become clearer when viewed in

their natural 3D context and from changing

viewpoints (‘‘The map is not the terrain.’’)

. Haptics. Touch enables the scientist to find

the correct location to measure or start an

experiment, even in the presence of drift and

positioner nonlinearities. During manipula-

tion, the probe is busy, so no new scanned

images can be produced: the user works

blind. However, forces are continually meas-

ured. When these forces are displayed, this

feedback during manipulation enables under-

standing and control of the path of delicate

modification (‘‘pushing bags of Jell-O across

a table in the dark with a screwdriver without

breaking them’’). Slow, deliberate feeling can

find the location of objects that scanning

would knock aside.

. Virtual tips. Switching between an oscillating

mode for imaging and contact mode for

modification enables imaging of fragile spe-

cimens, which are then modified with known

force. A sewing-machine mode enables finer

lines to be formed in thin films without tear-

ing. A virtual whiskbroom enables extended

structures (such as TMV) to be moved as

units.

. Replay. Storing the entire experiment and

enabling replay lets the scientist see things

missed the first time around, as well as enab-

ling the application of new analysis tech-

niques to old experiments. (Replay can be

thought of as a ‘‘flight data recorder.’’)

Data is exported in a variety of formats to

existing image-analysis tools (Kaleidagraph,

SPIP, ThermoMicroscopes) and standard

file formats (TIFF, PPM, ASCII).

The lessons learned, in full detail, are as

follows:

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 900

900 Selected Topics and Applications

Design in machine independence and replay.

Because the microscope control computer and

the graphics computer for the nM system were

of different architectures and communicated

across a network, the system had to be designed

to use a machine-independent wire protocol to

communicate between them. This has borne

much fruit: it simplified both the storage and

replay of experiments and the porting of parts

of the system to different architectures with time,

and it enabled remote access. One specific design

decision that enables replay is to make the appli-

cation rely only on responses from the micro-

scope to determine the system state (whether it

is in modify mode or touch mode, the actual size

of a region that is selected, etc.). This also made

the system robust to instrument limitations: if

asked to do something beyond its capabilities, a

particular microscope would either not respond

or reply with a clipped version of the request.

This required a few specialized state-indicating

messages to be added to the network interface:

‘‘Tell me I think I’m in modify mode now,’’ and

‘‘Tell me I think I’m in touch mode now.’’ These

messages preserve the user’s intent, which cannot

be inferred from other nM system parameters.

Design for more than one instrument. When

scientists perform an experiment, it is often the

case that they use more than one instrument.

For some nanotube experiments, a computer-

controlled voltage source and current monitor

were used to explore changes in conductance

while the AFM was used to apply strain to the

tubes. The control and measurement for all in-

struments needed to be time-aligned within the

tolerances of the experiment design and ideally

be controlled from within a single framework.

This is true both during the experiment and

during replay. This becomes even clearer in

some of the later systems that explicitly combine

two or more instruments.

Give them the data. Whenever scientists think

that they have obtained a new insight into a

problem, they seek to verify the insight by com-

paring its predictions with the data at hand.

This requires access to the data from the experi-

ments, not just derived visualizations of the

data. It is tempting to design a new user inter-

face for display and analysis of raw data values,

a process that may take weeks or months.

Often, the data in a very raw ASCII format

that can be imported into spreadsheets or

other analysis tools is really what is needed.

Providing the data in this format makes it avail-

able to the scientist sooner and involves spend-

ing less time designing tools that mimic those

that already exist.

There was no one ‘‘best’’ immersive interface

for this system. Different people preferred dif-

ferent interfaces. Washburn preferred wearing

a head-mounted display (HMD) when doing

experiments because of its stereo display and

the ease of navigating using motions of head

and hand. Falvo preferred operating using a

non-head-tracked stereo projection display be-

cause of its higher resolution compared to the

HMD. Stan Williams preferred to direct by

watching a non-stereo-projected display while

Taylor was driving the experiment from inside

the HMD interface. One trend has emerged as

experiment lengths stretched to hours: for this

application, scientists found the additional

headwear and eyestrain required for stereo

head-tracking not to be worth the benefit of

using the technologies available.

Exact calibration may not be worth the effort.

The goal of constructing the nanoWorkbench

system displayed in the nM system diagram was

to align the graphics and haptics display within

1mm (1 display pixel) of the virtual model to

enable direct and precise interaction with the

model. After years spent chasing this goal, the

scientists asked that the force display be offset

from the visual display by several centimeters so

that the end-effector would not visually obscure

the point of contact. A task-level analysis should

have been done before pursuing the technology-

driven goal of exact alignment. Alignment was

both more difficult and less useful than expected.

46.2.4 nM Summary

The nM system has been in continuous use

exploring and modifying surfaces since 1993

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 901

Visualization and Natural Control Systems for Microscopy 901

and biological samples since 1995. It is the

longest-running of the systems described here,

and it is in the most advanced state of develop-

ment. The nM system currently has 101 hier-

archically grouped functions, each asked for by

a user to address a particular challenge in an

experiment. It has been ported from its initial

configuration using a custom-built haptic dis-

play device, a custom-built SPM controller,

and a custom-built graphics supercomputer to

a configuration running entirely on commer-

cially available equipment (PC-based graphics,

the Phantom haptic display, and TopoMetrix-

derived AFMs). It was developed into the com-

mercial NanoManipulator DP-100 by Aron

Helser at 3rdTech and has been sold to NASA

and a number of university departments [30].

The nM brings advanced visualization, analy-

sis, and modification tools to bear as experi-

ments are happening, providing immediate

feedback that can be used to select the most

promising step forward at each stage of an

experiment. It forms the base software for expan-

sion into the NIMS. It also forms the base

for the telemicroscopy efforts. Despite the

system’s long tenure, new capabilities are con-

tinually being added to support new experimen-

tal needs.

46.3 NIMS: nM þ SEM

Although the nM enables both precise manipu-

lation and imaging, they are separate functions.

Because there is only one probe in the AFM, at

one time it can be used for either imaging or

manipulation. The scientist can feel the force on

the probe at the point of contact but cannot

watch the probe and sample deformation during

manipulation. The end configuration of objects

on the surface is imaged after manipulations by

a subsequent raster scan of the sample. The

Nanoscale Imaging and Manipulation System

(NIMS) incorporates the AFM into a Hitachi

S4700 scanning electron microscope (SEM), a

1.5 nm resolution instrument that enables elec-

tron microscope imaging during AFM manipu-

lation. This effectively ‘‘turns the lights on’’

for the user while he or she is manipulating

samples.

Fig. 46.9 shows the overview of AFM

and SEM scans of the same area, a carbon

nanotube that was draped between two raised

electrodes and then broken. The simplest

combination of the two datasets is shown

here: the datasets were aligned by hand and

the SEM was laid over the underlying AFM

topography using projective texture mapping.

The user can adjust the relative mixture of the

two datasets.

46.3.1 Driving Problems

Thermally Actuated Mobile Structures (TAMS):

Bimetallic multiarmed structures with smallest

dimensions under a micron are being formed

with the intention of driving their motion

using differential heating. An eight-legged ver-

sion in Fig. 46.10 is one of the prototype

designs. The inset shows the AFM probe in the

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 902

SEM AFM

a

b

d e f

c

Microscape Composite

Figure 46.9 The NIMS system combines the display of

SEM and AFM data from the same specimen. (See also

color insert.)

902 Selected Topics and Applications

NIMS pressing on one from above to measure

its stiffness and see its response.

Carbon Nanotubes (CNT): Building on the

fabrication and analysis described in the nM

section, NSRG scientists are designing and

characterizing nanoscale mechanisms such as

the torsion oscillator seen in Fig 46.10. The

structure is composed of two metallic paddles

fabricated on a suspended CNT between two

metallic leads [69].

Problems: How to measure shape deform-

ation from one or more SEM views; how to

determine Z position of AFM tip within the

SEM projection view to enable rapid and safe

manipulation.

46.3.2 System Description

New interaction modes were added to those of

the stand-alone nM to support experiments on

fragile structures. One enabled control of the

AFM probe in three dimensions, rather than

keeping it always touching the surface. Another

provided the ability to drop down onto the

surface from above and measure the position

offset of an object as the force was uniformly

increased and then decreased.

A method of calibration between SEM and

AFM images has been developed that enables

the system to show the AFM probe in its proper

3D location compared to the AFM scan. The

method uses manually selected corresponding

points in the AFM and SEM images to solve

for the transformation between the images. This

has been extended to include calibration between

the AFM probe position, the SEM image, and a

geometric model of the surface being studied to

enable manipulation experiments on fragile

samples without requiring a complete AFM

scan of the sample.

Projective texture mapping is used to display

the AFM scan, SEM image, surface model, and

AFM probe positions within the same image to

provide an optimal understanding of the

sample, to enable planning of intricate manipu-

lations and electron beam lithography.

46.3.3 Results

Figs. 46.11 and 46.12 show two steps in an

experiment that shows the NIMS being used as

a combined tool, employing the capabilities of

the SEM and the AFM together. The top image

shows a carbon nanotube draped over a gap

between the tip of an AFM probe (upper right

corner) and one-half of a MEMS test structure.

Direct 3D control of the AFM probe is being

used to touch one end of the tube to the surface

at the correct location. Once there, the AFM

probe is locked into place and the electron beam

is switched from scanning mode to focusing

its energy at the point of contact between the

tube and the surface. This causes carbon atoms

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 903

(a)

(b)

10.0um

Figure 46.10 (a) Bimetallic ‘‘spider’’ structure that can be

thermally actuated (the inset shows an AFM probe measur-

ing the stiffness). (b) Torsion oscillator composed of two

paddles suspended on a carbon nanotube.

Visualization and Natural Control Systems for Microscopy 903

in the ‘‘vacuum’’ to accrete, effectively welding

one end of the tube down.

Fig. 46.12 shows the case after each end of the

tube has been ‘‘welded’’ down on opposite sides

of the test structure. The SEM beam has

returned to scanning, and the AFM is being

used to test the tube’s strength (the tip is blurred

because it is in motion). In the final portion of

the experiment (not shown here), the AFM

probe was used to move one arm of the test

structure. This caused flexion of the tube and

then broke the connection between the tube and

one end of the structure—the weld failed before

the tube ruptured.

46.3.4 Lessons Learned

Look to add-ons when the manufacturer doesn’t

supply a programmable interface. The software

interface provided by a standard SEM add-

on controller from EDAX was used to provide

scanning and directed-beam modification con-

trol within the SEM. This enabled the NIMS

system to control beam parameters and scan-

ning, without which the combined instrument

would have been impossible to build. The

EDAX control is performed through attach-

ments that have become standard in the SEM

industry. It exports a library of functions

intended for scripting that was used in the

NIMS system to integrate the SEM with the

rest of the system.

Advancing science and computer science.

Sometimes, the most acceleration of an experi-

ment comes from applying pedestrian computer

science to the most time-consuming part of an

experiment. Spending time developing tools of

this type helps cement the usefulness of the

computer science and can make colleagues

willing to spend time in system development. It

can also result in science publications coau-

thored by computer science students.

46.4 3DFM

The AFM has two major drawbacks for bio-

logical imaging. First, the measuring probe is

attached to a cantilever for position control and

force sensing. It cannot probe beneath objects,

only the tops of surface-bound objects. Second,

it cannot go inside living cells because the canti-

lever would have to penetrate the cell mem-

brane.

Freeing the tip of the probe from the canti-

lever alleviates both of these problems. This

requires new methods for tracking the tip and

for applying forces to it. This has been done

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 904

Figure 46.11 A carbon nanotube suspended from the AFM

tip onto a test structure before being welded in place using

the SEM’s electron beam.

Figure 46.12 A carbon nanotube welded to both sides of

the test structure being probed using the AFM.

904 Selected Topics and Applications

using an optical beam in a laser tweezers config-

uration [21], where a focused laser beam is used

both to apply forces and to track the particle

position. Whereas this technique has made pos-

sible experiments in single molecule dynamics

[55], the optical beam can generate only rela-

tively small forces, normally up to several tens

of picoNewtons [44]. This is insufficient to

break covalent bonds, or to measure the full

mechanical properties of biological fibers such

as microtubules. Also, the method of applying

the force is nonspecific, causing the beam to

accumulate extraneous material.

The NSRG physical science team has invented

a 3D free-particle force microscope (3DFM) that

uses magnetic beads to apply forces using tech-

niques similar to those used by Bausch et al. [4,5].

The particle is tracked using optical light scatter-

ing, as in laser, tweezers [2,22,23]. Fig. 46.13

shows the components of the integrated system,

including a 3-axis translation stage that is used to

move the sample so that the bead remains

centered in the laser beam.

46.4.1 Driving Problem

Cystic Fibrosis: The UNC Cystic Fibrosis (CF)

Center is investigating the mechanisms by which

CF affects its victims. As seen in Fig. 46.14,

scientists there hope to place sub-micron fluor-

escent beads in the viscous mucus layer to study

its viscosity and motion, attached to the cilia

that beat to move the mucus, and attached to

cell surfaces. The beads will be viewed using

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 905

3-axis
translation
stage
[Tx, Ty, Tz]T

quadrant
photodiode
[LT-B, TL-R, Tsum]T

4 magnetic
pole pieces
[P1, P2, P3, P4]T

LASER

dichroic
mirror

Figure 46.13 A 3DFM system diagram. The position of a bead is measured using laser scatter onto a quadrant photodiode.

Forces are applied using magnetic pole pieces. The bead is kept centered in the laser using a 3-axis translation state.

Cell Cell

Mucus

Figure 46.14 Viscosity and force measurements of interest

to cystic fibrosis researchers are indicated by the three beads.

Visualization and Natural Control Systems for Microscopy 905

either 2D widefield optical or 3D confocal mi-

croscopy. Tracking bead diffusion in the mucus

enables calculation of viscosity of different fluid

layers. Applying forces to the beads on the cilia

will help determine system reactions to force

and stall force of cilia. Applying forces to cell

surfaces will enable determination of mechan-

ical deformations and system responses.

Problems: How to control the positions and

forces to enable application of forces using the

beads and measuring the system response to

those forces; how to display volumetric viscosity

information, lines and volumes of bead travel,

and surfaces of cells without confusing the user.

46.4.2 System Description

The tracking and position-control portions of

the system are not described here because they

function essentially as black boxes from the visu-

alization and user-interface points of view. The

magnet control system, on the other hand, has

a feature that is exposed to the user interface

designer. Because the four magnetic poles in

the system (Fig. 46.15) can only generate forces

towards each pole, forces in arbitrary directions

must be broken down into time-sequential tugs

towards each of the poles. This design enables

the poles to be very close to the sample (thus

applying more force), but it requires that the

system map the force commands from the user

to sequences of forces to be applied by the

magnets.

A prototype user interface for the 3DFM built

using the visualization toolkit (VTK) [65] and

Java Swing is shown in Fig. 46.16. It includes

a 2D section for control over visualization and

microscope parameters, as well as connections to

the bead tracker, video stream, magnet controls,

and haptic device.

The 3D section (shown here in a monoscopic

view but also displayable in stereo) displays the

current location of a tracked bead as a wire-

frame sphere. This sphere is centered in the

live video display (the gray plane with the dark

spot surrounding the sphere in the image). This

plane of video moves with the bead through the

volume. The sphere leaves a yellow line as a

trail, showing where the bead has moved during

an experiment. A transparent shell can also be

drawn around the volume that has been ‘‘carved

out’’ by the bead as it has moved along the

trace; it shows the boundary of the explored

region. To the right are three histograms of the

bead’s motion in X, Y, and Z.

46.4.3 Results

The 3DFM has been used to estimate the vis-

cosity of corn-syrup test samples by tracking the

Brownian motion of included beads, and to

apply force to estimate the viscosity by observ-

ing bead velocity. It has also been used to track

the motion of a bead attached to a group of cilia

on a lung cell culture and to apply forces to the

cilia through the bead.

46.4.4 Lessons Learned

Displaying intent while recording details. An

attempt to provide the most faithful force repre-

sentation to the users by driving the force

display with the same alternating force sequence

used to drive the magnet cores resulted in force

display that was uninformative and difficult to

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 906

Figure 46.15 Photograph of four magnetic poles in a

3DFM surrounding a specimen mounted between two

cover slips. (See also color insert.)

906 Selected Topics and Applications

control. Displaying the average force to the user

was more satisfactory; the actual sequence of

forces is recorded to the experiment log so that

analysis can be done using the detailed force

information.

Build in annotation support. The experiment-

data logging system for the 3DFM is being aug-

mented with a mechanism to enable scientists to

record text comments that are time-aligned with

the experiment data. These comments can be

added either during the experiment or during

replay of a previous experiment. This is being

added by request of the scientists, so that they

can record significant events as well as interesting

locations in the experiment.

46.5 AIMS: TEM þ MEMS

The NIMS provides a resolution of about 2 nm,

which is too coarse to resolve the individual

layers in a carbon nanotube or the fine details

of other molecular systems. The Atomic Imaging

and Manipulation System (AIMS) will address

this limitation by combining a 200kV field emis-

sion transmission electron microscope (TEM)

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 907

Figure 46.16 3DFM user interface prototype. The current position of the bead is indicated by the green wire-frame sphere. Its

trajectory is shown by the yellow trace. The brownish translucent surface shows the volume carved out during travel. The grey-

scale plane shows live video from an optical microscope centered on the bead. (See also color insert.)

Visualization and Natural Control Systems for Microscopy 907

with MEMS-based manipulation and electrical

measurement. The TEM provides better than

0.2 nm resolution for imaging the atomic side-

walls of carbon structures and the atomic pos-

itions within nanoparticles. AIMS is being

developed as a unified scientific exploration

system that will be capable of simultaneous

manipulation, measurement, and atomic-scale

imaging.

46.5.1 Driving Problems

There are two broad classes of experiments driv-

ing AIMS development: mechanical contact and

electrical transport in nanoscale junctions.

Nanoscale Mechanical Contact: NSRG

researchers seek to explore the configuration of

the atoms in the contact region between carbon

nanotubes. This study will include the distortion

of atomic arrangements and the rebonding of

atoms across the interface, energy loss, and elec-

tron transport. It is predicted that distortion of

the contacting surfaces (Fig. 46.17) occurs

because of the strong attractive forces that bind

materials together, but no one has imaged these

interfaces in contact for moving nanoscale

devices. It has been predicted that the local dis-

tortion can dramatically change the properties of

the interface, increasing energy loss during

motion and enhancing electron transport.

While a TEM by itself can image contact

regions, manipulation capabilities are essential

for creating particular arrangements of interest

(tee junctions, sliding rails, etc.), and for creating

motion. AIMS will be used to explore atomic-

scale distortion during motion, interfacial wear

at the atomic scale during the sliding of lattices,

and theatomicoriginsof frictionandenergyflow.

Nanoscale Electrical Junctions: The AIMS

will also be used to move nanomaterials into

atomic contact. Experiments target both nano-

tube–nanotube junctions and nanotube–nano-

particle junctions (Fig. 46.18). For the former,

new carbon structures with positive and negative

curvature have been proposed to form integrated

tee junctions. In this case, the nanotubes are not

simply lying on top of one another, they are

intimately connected like the tee junction of

a water pipe. Fig. 46.18 is an SEM image of

a crossed-nanotube device created in the

NSRG laboratory (the nanotubes, about 2 nm

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 908

Rajeev Dassani

Figure 46.17 Artistic conception of constrained electron

flows between carbon nanotube and surface. Charge is

injected from the AFM probe above the nanotube. (See

also color insert.)

Figure 46.18 Crossed-nanotube junction, with each tube

connected to electrical leads for measurement.

908 Selected Topics and Applications

in diameter, are the very thin crossing

connections).

Problems: How to provide an atomic-scale

view of these devices and enable creation of

the proposed integrated tee junctions; how

to move nanotubes into atomic contact and

then induce rebonding of the carbon lattices

through heating or electron bombardment;

how to provide in situ electronic characteriza-

tion to monitor the atomic bonding.

46.5.2 System Planning

The AIMS project presents difficult challenges

in the integration of atomic-scale motion con-

trol, force sensing, and in situ electrical charac-

terization within the extremely tight confines of

the sample stage of a TEM. This integration

within the tight confines of the TEM sample

volume will initially be implemented using

microelectromechanical systems (MEMS).

MEMS technology applies processing tech-

niques common to silicon electronic device fab-

rication to create actuating and sensing systems

integrated onto silicon chips.

The user interface paradigms employed to

build the NIMS system will be reused in the

AIMS system. Although there are no AFM

scans in AIMS, the models and projective tex-

ture alignment techniques will be similar. The

first step has been preparing prototype applica-

tions using different visualization display librar-

ies to select the most effective existing toolkit

for this application.

46.5.3 Lessons Learned

Include software interface criteria in the instru-

ment purchase decision. During the TEM selec-

tion process, availability of real-time digital

access to the control and imaging systems of the

TEM was a requirement. This disqualified one

manufacturer whose image quality was slightly

better than that of the system thatwas purchased.

Talk with others who have interfaced to each

instrument. Talking with experts in other groups

who have attempted to digitally control a par-

ticular instrument can reveal pitfalls and suggest

required system components: sending a student

to Mark Ellisman’s NCRR helped determine

which camera to use.

46.6 TeleMicroscopy

Remote use of AFM, SEM, and TEM systems

to view samples is becoming widespread: the

nM software has been used by the IN-VSEE

group at Arizona State as a base to provide

remote web-based access to AFMs [3,53].

Mark Ellisman’s NIH Resource at UCSD rou-

tinely uses a TEM from Japan remotely [29,47].

TheMAGIC group at CSU Hayward has remote

access tools for SEM, SPM, and confocal micro-

scopes [49]. Oak Ridge National Laboratory has

a web-based interface to its electron microscopes

and is developing remote manipulation tech-

niques [20]. The Bugscope project at the Beck-

man Institute has a complete educational system

built around remote access to an SEM [48].

CERN is developing an OpenLab for Nanotech-

nology that will interface with live instruments on

the Grid [24]. There are other groups as well. The

manufacturer JEOL has even provided a web-

based interface to its SEM systems [70].

46.6.1 Low-Latency Remote Microscope
Control

Remote control of microscope viewing param-

eters and viewing of the resulting images requires

high-bandwidth connections to support inter-

active use. Manipulation experiments impose

the additional challenge of providing remote

haptic interaction for touching andmanipulating

the sample.

Effective deployment of such networked

virtual-environment systems requires paying

special attention to network latency, jitter, and

loss [32,36]. Graphical and VE applications

have particularly stringent latency requirements

because their interfaces are interactive: users

directly manipulate parameters controlling the

images they see, using continuous input devices

such as mice. The usability of interactive inter-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 909

Visualization and Natural Control Systems for Microscopy 909

faces degrades significantly when visual feed-

back is not essentially immediate [33].

Providing stable and accurate force-feedback

control during remote experiments is even more

challenging and falls into the domain of remote

teleoperation. When force feedback is being

used simultaneously, or user input is driving a

control loop, response time becomes even more

critical: 50 ms of latency in flight simulators

reduces performance, and just a little more

causes system instability [66].

The nM system operates over a network by

default, so it might seem that operating it over

wide-area networks would be straightforward.

Indeed, there have been several instances of

successful operation over distance: Internet2

network engineers provided a dedicated, low-

latency link from an AFM at UNC to a

graphics and haptics user interface located in

Washington D.C. for the 1999 Internet2 confer-

ence [35]. A similar Internet2/T1 connection

from Ohio was used during the BioMEMS and

Biomedical Nanotechnology World 2000 con-

ference [31]. (There is a video showing this in

operation [27].) For Orange County High

School, McDougle Middle School, and Stan-

back Middle School (all near UNC), the

round-trip network latency is acceptable to

enable remote experiments.

There have also been unsuccessful attempts:

An Internet2-based link to Microsoft Research

in Washington was created in 2001, over which

the latency was too high to provide reliable

manipulation in the absence of application adap-

tations. Internet-based connections through a

network reflector at Louisiana State University

had unacceptably high loss.

Hudson has developed network-level and ap-

plication-specific adaptations to minimize, hide,

or enable the user to deal with higher latency

and jitter [33,34,36]. Networking adaptations

within the transport protocol are used to reduce

jitter and latency, and application-level adapta-

tions deal with the latency and jitter that

remain. Providing the appropriate intermediate

representation [1] was critical to achieving

stable and responsive haptic display in this vir-

tual-environment application, especially when

operating over a wide-area network [33,42].

46.6.2 Remote Microscope-Based
Distributed Collaboration

A collaboratory was defined by Bill Wulf in 1989

as ‘‘a center without walls, in which researchers

can perform their research without regard to

physical location—interacting with colleagues,

accessing instrumentation, sharing data and

computational resources, and accessing informa-

tion in digital libraries.’’ As a step towards this

goal, a collaborative version of the nM system

has been developed with which two users who are

remote from each other and the AFM can share

microscope control and visualization [50,51]. As

seen in Fig. 46.19, each user has his or her own

nM display and control interface (which can be

either shared or private) as well as a second com-

puter to support shared work. This shared-work

computer runs Microsoft Netmeeting to provide

video conferencing between the two ends and

enables sharing of word processor and analysis

packages. Two video cameras (only one or the

other sending data at any time) are located at

each end, one stationary and providing a head

and shoulders view of the user for conversations,

and one on a gooseneck that can be positioned as

desired to share views of hand drawings and

other things in the room. Hands-free telephones

were used for audio.

The collaboratory system allows scientists to

dynamically switch between working together in

shared mode and working independently in pri-

vate mode (Fig. 46.20). In shared mode, remote

(i.e., non-collocated) collaborators view and

analyze the same (scientific) data. Mutual aware-

ness is supported via multiple pointers, each

showing the focus of attention and interaction

state for one collaborator. Optimistic concur-

rency techniques are used in shared mode [52],

eliminating explicit floor control and enabling

collaborators to perform visualization oper-

ations synchronously. Because of the risk of

damage to an AFM, control of the microscope

tip is explicitly passed between collaborators.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 910

910 Selected Topics and Applications

In private mode, each collaborator can inde-

pendently analyze the same or different data

from stored experiments generated previously

or from a live microscope. When switching

back to private from shared mode, collaborators

return to the exact data and setting they were

using.

A report on a repeated-measures, controlled

experiment evaluating the collaborative nano-

Manipulator was done by Sonnenwald et al.

[52]. Twenty pairs of upper-level undergraduate

science majors participated in two lab sessions,

one session face-to-face using the standard nano-

Manipulator and the other session using the

Collaborative nanoManipulator. As expected,

participants reported disadvantages to collabor-

ating remotely. When working remotely, inter-

action was less personal, individuals received

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 911

Writing/
drawing
tablet

Audio
(phone)

3D visualization
of data from AFM

Haptic feedback
device

Atomic
force

microscope
(AFM)

Shared applications
and data analysis

tools
Cameras

Figure 46.19 The distributed collaborative nanoManipulator (nM) system provides each collaborator with a custom nM linked

to their peers’ system plus standard televideo and application-sharing tools.

Figure 46.20 Both local actions and collaborator actions are indicated to each user of the distributed collaborative nanoMa-

nipulator. Private state can be copied to and from shared state to facilitate easy transitions between individual and shared work.

Visualization and Natural Control Systems for Microscopy 911

fewer cues from their partners, and some tasks,

such as sharing math formulas, were more diffi-

cult. However, participants also reported that

some of these disadvantages are not significant

in scientific work contexts, and that coping strat-

egies, or work-arounds, can reduce the impact of

other disadvantages.

Participants reported that remote collabor-

ation also provided several advantages com-

pared with face-to-face collaboration, including

the ability to more easily explore the system and

their ideas independently, and increased prod-

uctivity with the ability to work simultaneously

on the data visualization. While the statistical

analysis of graded lab reports produced a null

result, i.e., the scores in the collaborative condi-

tion were not significantly lower than those in

the face-to-face condition, considering both the

quantitative and qualitative data, the NSRG

collaboration team concludes that there is posi-

tive promise for effective remote scientific collab-

oration.

The study participants were asked what

they liked and didn’t like about the system in

post-experiment interviews. Many participants

reported that they liked the ability to simultan-

eously adjust visualization-model parameters

when in shared mode and found that using the

explicit floor control in shared applications run-

ning in NetMeeting hindered their work.

46.6.3 Remote Microscopy for K–12
Science Classes: Visualization for Education

For 6 years, a team of educators, physicists,

material scientists, and computer scientists

has taken ‘‘reverse field trips’’ to local middle

and high school classes to enable students

to participate in multidisciplinary science

(Fig. 46.21). Students were able to control the

microscope and experiment with viruses using

the nM interface over the Internet to control

an AFM at UNC. Studies were done on

the educational impacts of designed learning

experiences on students’ knowledge of viruses,

nanoscale science, scale, and the nature of sci-

ence [37].

This remote microscopy enabled students to

experience the interdisciplinary nature of cut-

ting-edge science firsthand [38–41,54,64]. Stu-

dent response to the visits was overwhelmingly

positive. Formal questionnaires showed strong

positive shifts in attitudes towards science and

the process of science, particularly for girls [39].

Students’ written evaluations of the project were

also very compelling:

‘‘In the course of a week, I have learned so

much. Coming into this experiment we knew

so little about viruses, and now we can describe

their size, some of their characteristics, and

how viruses infect you and make you sick.

The visiting scientists have inspired me and so

many others to join a field in science. They

have lit a flame that cannot be put out.’’

(Female high-school student, 1999)

Data showed that students were highly motiv-

ated and interested in learning about nanoscience

and that they learned more about viruses, scale,

science processes, and scientists [38,39].

These reverse field trips continue to press the

limits of the available network. Although the

schools each have fractional T1 lines to points

of presence very near UNC’s, providing respon-

sive control required that Internet use in other

classrooms be curtailed during the remote micro-

scope operation. Firewalls and network address

translation prevent the use of UDP, thus impos-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 912

Figure 46.21 The distributed nanoManipulator system has

been taken to local high school and middle school science

classes to let students directly view and manipulate viruses

and nanotubes.

912 Selected Topics and Applications

ing TCP congestion control on all streams to and

from the AFM. As the field trips continue to

schools with networks that are further (in terms

of packet hops) from UNC, or with more loss,

new techniques will be needed to maintain re-

sponsive control.

46.6.4 Lessons Learned

Network latency is the critical parameter for

remote haptics. Providing haptic feedback re-

quires different networking characteristics than

remote control of viewing parameters. Whereas

high bandwidth is required to send microscope

images and video across the network, latency

and jitter are the critical parameters for remote

haptic display.

Shared and private spaces. Shared and private

spaces are important to enable each scientist to

explore visualizations and hypotheses independ-

ently.

Design primarily for collaborative science

rather than social interaction. For this system,

designing to support collaborative science en-

abled remote use that was as effective and as

satisfying as sharing a single local system. Some

preferred the remote system. Another local re-

searcher (David Stotts) has also found that

sometimes people prefer working remotely for

pair programming because it reduces the amount

of time spent socializing during the work.

Optimistic concurrency control was needed to

make collaboration work with acceptable la-

tency in this application. Compared to Net-

meeting, which was operating over the same

network using explicit token passing, the la-

tency was much lower.

Asynchronous remote procedure calls (RPC),

where the calling process does not wait for the

return before continuing to process other

events, enabled the decoupling of system re-

sponsiveness from network latency; the user

interface continues with the latest available

data, and callbacks are used to update the dis-

play as requested data arrives.

Providing the appropriate intermediate repre-

sentation [1] is critical to achieving stable and

responsive haptic display in this virtual-environ-

ment application, especially when operating

over a wide-area network [33,42].

Use telephone for remote audio. Compared to

the audio included in remote conferencing

systems, telephone audio had lower latency

and better quality and was easier to use.

46.7 Conclusions

Several lessons learned during the development

of these microscope sessions are listed here.

These are more general lessons not specific to

one system.

Begin software development at least as soon as

hardware development. It was possible to obtain

the software interface before the TEM was de-

livered. This has enabled software development

to commence before system integration. The

development of the other microscope systems

showed us repeatedly that software develop-

ment should be begun as early as possible.

Some manufacturers provide simulators for

their instruments; these can be very useful for

debugging.

Partner with experts in required technologies.

The MEMS designs for the AIMS system

were advanced through collaboration with

Mike Sinclair at Microsoft Research, who

has done dozens of preliminary designs.

Design and manufacturing are also proceeding

with the help of Shuo-Hung Chang’s nanotech-

nology center at the National Taiwan Univer-

sity.

Stefan Seelecke’s group at North Carolina

State University is working with the NSRG on

the development of shape-memory alloy actu-

ators and advanced control systems for mag-

netic and piezo-ceramic actuators for several of

the microscopes described here. These systems

serve as driving problems for Seelecke’s own

research.

Jean-Marc Brequet and his students within the

nanorobotics group at the EPFL in Lausanne,

Switzerland have completed two design iter-

ations on compact piezoceramic-based 2-axis

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 913

Visualization and Natural Control Systems for Microscopy 913

translators for use in the 3DFM system. The

second design is also being incorporated into

the NIMS system to enable larger range on the

AFM.

Partnering with outside experts in required

technology can enable a group to concentrate

on its strengths and leave other research parts of

the system to others.

Build on existing visualization toolkits.

Whereas the nM interface was based on custom

rendering and interaction codes [10,17,57,59],

the 3DFM prototype is based on the Visual-

ization Toolkit [62,63,65]. This has enabled

rapid implementation and testing of different

visualization techniques during interface devel-

opment. There have been cases during develop-

ment where a bug deep inside the various

toolkits caused several weeks of searching.

These weeks-long chases also happened during

the development of the nM system, but when

they were fixed in the 3DFM the rest of the

toolkits were still available for application de-

velopment.

Effective before cost-effective. The NSRG

attempts to use the best available computer

technology to develop effective systems for

use by the physical science team, which then

become cost-effective and can be deployed on

widely available hardware as technology

marches on.

Acknowledgments

Warren Robinett and R. Stanley Williams had

the initial idea to hook up a scanning tunneling

microscope to a virtual-reality interface; the

nanoManipulator was born, which led to all of

the work described here. The following individ-

uals participated in the development of one or

more of the above systems: Benito Valencia

Avila, Ron Bergquist, Gary Bishop, Alexandra

Bokinsky, David Borland, Brian Boyd, Don

Brenner, Fred Brooks, Stephen Brumback, Lisa

Cameron, Anthony Canning, Chun-Fa Chang,

Jun Chen, Zhi (James) Chen, Jason Clark, Mich-

elle Clark, Greg Clary, Nathan Conrad, Jeremy

Cribb, Lin Cui, Jeremy Cummings, Elan Das-

sani, Rajeev Dassani, C. William Davis, Kalpit

Desai, Chris Dwyer, Stephen Ehmann, Dorothy

Erie, Mike Falvo, Mark Finch, Jay Fisher,

Joseph Fletcher III, Mark Foskey, Darlene

Freedman, Charlampos (Haris) Fretzagias,

Yoni Fridman, Jacob Furst, Ashes Ganguly,

Jai Glasgow, David Glick, Brian Grant, Xiaohu

Guan, Martin Guthold, Adam Hall, Jonathan

Halper, Gregory Hamamgian, Jing Hao, David

Harrison, Bil Hays, Chris Healey, Aron Helser,

Amy Henderson, Youn-Joo Heo, Andrea

Hilchey, Mark Hollins, Phil Holman, Mave

Houston, Tom Hudson, David Jack, Kevin Jef-

fay, Ja-Yeon Jeong, Gail Jones, Jeff Juliano,

Kurtis Keller, Jake Kitchener, Sang-Uok Kum,

Eileen Kupstas-Soo, Tom Lassanske, Bin Li,

Alena Lieto, Ming Lin, Qiang Liu, Shawn Liu,

Noel Llopis-Artime, Tanner Lovelace, Claudia

Low, Kelly Maglaughlin, Jim Mahaney, Renee

Maheshwari, David Marshburn, Chuck Mason,

Garrett Matthews, Roberto Melo, Jameson

Miller, Paul Morris, Atsuko Negishi, Shoji

Okimoto, Timothy O’Brien, Shayne O’Neill,

Lu-Chang Qin, Sherry Palmer, Stergios Papa-

dakis, Ramkumar Parameswaran, Kimberly

Passarella-Jones, Aarish Patel, Scott Paulson,

Steve Pizer, Daniel Plaisted, Leila Plummer,

Latita Pratt, Sharif Razzaque, Daniel Rohrer,

Kent Rosenkoetter, Stefan Sain, Adam Seeger,

Stefan Seelecke, Tatsuhura Segi, Woojin Seok,

Deborah Sill, Kwan Skinner, Don Smith, Neal

Snider, Eric Snyder, Diane Sonnenwald,

Michael Stadermann, Anthony Steed, Josh

Steele, Onejae Sul, Rich Superfine, Russ Taylor,

Pichet Thiansathaporn, John Thomas, Kelly

van Busum, Gokul Varadhan, Leandra Vicci,

Frederic Voegele, Hong Wang, Sean Washburn,

Chris Weigle, Mary Whitton, Ben Wilde, Phillip

Williams, Bill Wright, Dongxiang Wu, Joe

Yandle, and Christine Yao.

Due to the number of years and people in-

cluded in this list and the frailty of human

memory, it is almost certain that someone im-

portant to the development of at least one of the

projects was not included. The authors apolo-

gize for any such oversight.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 914

914 Selected Topics and Applications

Section 46.2

Current Project Personnel: Computer Science

Toolbuilders: Russ Taylor, Mary Whitton,

Leandra Vicci, Steve Pizer, Paul Morris, David

Marshburn, Aron Helser, Tom Hudson, Yona-

tan Fridman, Jameson Miller. Physical Scientist

Collaborators: Richard Superfine, Sean Wash-

burn, Mike Falvo, Stergios Papadakis, Garrett

Matthews, Michael Stadermann, Adam Hall,

Rohit Prakash, Dorothy Erie. Information Sci-

ence Collaborators: Diane Sonnenwald, Kelly

Maglaughlin. Education Collaborators: Gail

Jones, Dennis Kubasko, Michele Kloda, Tom

Trettor, Atsuko Negishi.

Project Funding and Support: NIH NCRR

program, grant number 5-P41-RR02170, has

supported the development and application to

biology throughout. NSF’s HPCC program sup-

ported advanced visualization, scalability, and

network access through grant number ASC-

9527192. NSF’s ARI program, grant number

DMR-9512431, supported installation of the

first nanoManipulator in the scientists’ labora-

tory. Initial support for bringing the system from

UCLA to UNC was provided by NSF’s SGER

program, grant number IIS-9202424.

Section 46.3

Current Project Personnel: Computer Science

Toolbuilders: Russ Taylor, Leandra Vicci, Steve

Pizer, Paul Morris, David Marshburn, Adam

Seeger, David Borland, Yonatan Fridman.

Physical Science Collaborators: Richard Super-

fine, Sean Washburn, Mike Falvo, Stefan See-

lecke, Stergios Papadakis, Michael Stadermann,

Onejae Sul, Hakan Deniz, Adam Hall, Aarish

Patel, Rohit Prakash.

Project Funding and Support: ARO funded

the equipment purchased for this system

through two successive DURIP awards in 1998

and 1999. The research and tool development

for use in carbon nanotubes has been supported

by ONR through the MURI program.

Section 46.4

Current Project Personnel: Computer Science

Toolbuilders: Russ Taylor, Mary Whitton,

Leandra Vicci, Gary Bishop, Greg Welch, Pra-

sun Dewan, Paul Morris, David Marshburn,

Kurtis Keller, Chris Weigle, Haris Fretzagias,

Jonathan Robbins, Tatsuhiro Segi, Ben Wilde,

Rajeev Dassani. Physical Science Toolbuilders:

Richard Superfine, Tim O’Brien, Stefan See-

lecke (NCSU), Kalpit Desai, Jay Fisher, Jeremy

Cribb, Debbie Sill. Physical Science Collabor-

ators: Garrett Matthews, C. William Davis,

Lisa Cameron.

Project Funding and Support: NIH NCRR

program, grant number 5-P41-RR02170 has

supported the development throughout. NIH

NIBIB has provided 5 years of support for de-

velopment of a beyond-prototype system

including a confocal microscope. The Cystic

Fibrosis Center at UNC has provided support

for equipment and personnel.

Section 46.5

Current Project Personnel: Computer Science

Toolbuilders: Russ Taylor, Leandra Vicci, Steve

Pizer, Paul Morris, Kurtis Keller, David Bor-

land, Yonatan Fridman. Physical Science Tool-

builders and Collaborators: Richard Superfine,

Sean Washburn, Mike Falvo, Lu-Chang Qin,

Stefan Seelecke (NCSU), Stergios Papadakis.

Project Funding and Support: The W. M. Keck

foundation provided the TEM. UNC Chapel

Hill has provided engineering and graduate-stu-

dent support.

Section 46.6

Current Project Personnel: Computer Science

Toolbuilders: Mary Whitton, David Marshburn,

Tom Hudson, Jameson Miller, Kent Rosenkoet-

ter. Information Science Toolbuilders: Diane

Sonnenwald, Kelly Maglaughlin. Physical Sci-

ence Collaborators: Martin Guthold (Wake

Forrest), Roger Cubicciotti (NanoMedica). Edu-

cation Toolbuilders and Collaborators: Gail

Jones, Dennis Kubasko, Michele Kloda, Tom

Trettor, Atsuko Negishi.

Project Funding and Support: A supplement to

the NIH NCRR program, grant number 5-P41-

RR02170 has supported the development

throughout. NSF’s HPCC program supported

network access through grant number ASC-

9527192. NSF’s ROLE program EDU-0087389

has supported studying the educational impact

of bringing the system to K-12 schools. The

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 915

Visualization and Natural Control Systems for Microscopy 915

UNC Chapel Hill Chancellor’s Office provided

seed funding for the K–12 outreach.

References

1. Y. Adachi, T. Kumano, and K. Ogino. Inter-
mediate Representation for Stiff Virtual
Objects. In Proc. IEEE Virtual Reality Annual
International Symposium (VRAIS’95), pages
203–210, 1995.

2. M. W. Allersma, F. Gittes, M. J. deCastro, R. J.
Stewart, and C. F. Schmidt. 2D particle
tracking of NCD motility by back focal plane
interferometry. Biophys. J. 74, pages 1074–1085,
1998.

3. N. K. B. Anshuman Razdan, B. L. Ashish
Amresh, B. L. Ramakrishna, Ed Ong, and
Junyi Sun. Remote control and visualization of
scanning probe microscopes via the web. Web-
net Journal, pages 20–26, 2001.

4. A. Bausch, F. Ziemann, A. A. Boulbitch,
K. Jacobson, and E. Sackmann. Local measure-
ments of viscoelastic parameters of adherent cell
surfaces by magnetic bead microrheometry.
Biohpys. J., 75, pages 2038–2049, 1998.

5. A. R. Bausch, W. Möller, and E. Sackmann.
Measurement of local viscosity and forces in
living cells by magnetic tweezers. Biophys. J.,
76, pages 573–579, 1999.

6. F. P. Brooks, Jr., M. Ouh-Young, J. J. Batter,
and P. J. Kilpatrick. Project GROPE—haptic
displays for scientific visualization. In Computer
Graphics: Proceedings of SIGGRAPH ’90, pages
177–185, 1990.

7. F. P. Brooks, Jr. The computer ‘scientist’ as
toolsmith: studies in interactive computer
graphics. Proc. International Federation of Infor-
mation Processing Congress ’77, pages 625–634,
1977.

8. F. P. Brooks, Jr. The computer scientist as tool-
smith II. SIGGRAPH ’94: Computer Graphics,
pages 281–287, 1996.

9. M. R. Falvo. Nanometer scale tribology of
carbon nanotubes. Centennial Meeting of the
American Physical Society, Atlanta, GA, 1999.

10. M. R. Falvo, M. Finch, V. Chi, S. Washburn,
R. M. Taylor II, F. P. Brooks, Jr., and R. Super-
fine. The nanoManipulator: a teleoperator for
manipulating materials at the nanometer scale.
Proceedings of the 5th International Symposium
on the Science and Engineering of Atomically En-
gineered Materials, pages 579–586, 1996.

11. M. R. Falvo, G. J. Clary, R. M. I. Taylor,
V. Chi, F. P. Brooks, Jr., S. Washburn, and

R. Superfine. Bending and buckling of carbon
nanotubes under large strain. Nature
389(9):582–584, 1997.

12. M. R. Falvo, S. Washburn, R. Superfine,
M. Finch, F. P. Brooks, Jr., V. Chi, and R.
M. I. Taylor. Manipulation of individual vir-
uses: friction and mechanical properties. Bio-
phys. J. 72:1396–1403, 1997.

13. M. R. Falvo, G. Clary, A. Helser, S. Paulson,
R. M. Taylor II, V. Chi, F. P. Brooks, Jr.,
S. Washburn, and R. Superfine. Nanomanipu-
lation experiments exploring frictional and
mechanical properties of carbon nanotubes. Mi-
croscopy and Microanalysis 4:504–512, 1999.

14. M. R. Falvo, R. M. Taylor, A. Helser, V. Chi, F.
P. Brooks, Jr., S. Washburn, and R. Superfine.
Nanometre-scale rolling and sliding of carbon
nanotubes. Nature 397(6716):236–239, 1999.

15. M. R. Falvo, J. Steele, R. M. Taylor II, and R.
Superfine. Gearlike rolling motion mediated by
commensurate contact: carbon nanotubes on
HOPG. Phys. Rev. B 62:10665–10667, 2000.

16. M. R. Falvo, J. Steele, R. M. Taylor II, and R.
Superfine. Evidence of commensurate contact
and rolling motion: AFM manipulation studies
of carbon nanotubes on HOPG. Tribology
Letters 9:73–76, 2000.

17. M. Finch, V. Chi, R. M. Taylor II, M. Falvo,
S. Washburn, and R. Superfine. Surface modifi-
cation tools in a virtual environment interface
to a scanning probe microscope. Computer
Graphics: Proceedings of the ACM Symposium
on Interactive 3D Graphics, pages 13–18,
1995.

18. D. S. Fritsch, D. Eberly, S. M. Pizer, and M. J.
McAuliffe. Stimulated cores and their applica-
tions in medical imaging. Information Process-
ing in Medical Imaging, pages 365–368, 1995.

19. H. Fuchs, J. Poulton, J. Eyles, T. Greer, J.
Goldfeather, D. Ellsworth, S. Molnar, G.
Turk, B. Tebbs, and L. Israel. Pixel-planes 5: a
heterogeneous multiprocessor graphics system
using processor-enhanced memories. SIG-
GRAPH ’89. ACM SIGGRAPH, 1989.

20. A. Geist. Remote control of scientific instru-
ments: electron microscope project, http://
wikihip.cern.ch/twiki/bin/view/Openlab/

21. L. P. Ghislain and W. W. Webb. Scanning force
microscope based on an optical trap. Opt. Lett.
18:1678–1680, 1993.

22. F. Gittes and C. F. Schmidt. Thermal noise
limitations on micromechanical experiments.
Eur. Biophys. J. 27:75–81, 1998.

23. F. Gittes and C. F. Schmidt. Interference model
for back focal plane displacement detection in
optical tweezers. Optics Lett., 1998.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 916

916 Selected Topics and Applications

24. F. Grey. OpenLab for Nanotechnology, http://
wikihip.cern.ch/twiki/bin/view/Openlab/Open-
Lab

25. M. Guthold, M. Falvo, W. G. Matthews, S.
Paulson, A. Negishi, S. Washburn, R. Super-
fine, F. P. Brooks, Jr., and R. M. Taylor. Inves-
tigation and modification of molecular
structures with the nanomanipulator. Journal
of Molecular Graphics and Modeling 17(3):187–
197, 1999.

26. M. Guthold, M. R. Falvo, W. G. Matthews,
S. Paulson, S. Washburn, D. Erie, R. Superfine,
F. P. Brooks, Jr., and R. M. Taylor. Controlled
manipulation of molecular samples with the
nanoManipulator. IEEE/ASME Transactions
on Mechatronics, 5(2):189–198, 2000.

27. M. Guthold and A. Helser. Remote AFM ma-
nipulation of fibrin fibers over internet2, http://
www.cs.unc.edu/Research/nano/document
archive/demonstrations/2000_Guthold_Bio-
MEMS_movie.mov.

28. M. Guthold, J. Mullin, S. Lord, D. Erie, R.
Superfine, and R. Taylor. Controlled manipula-
tion of individual fibrin molecules. Biophys. J.
78:A53, 2000.

29. M. Hadida, Y. Kadobayashi, S. Lamont, H. W.
Braun,B.Fink,T.Hutton,A.Kamrath,H.Mori,
M. H. Ellisman. Advanced networking for tele-
microscopy.Proceedings of the 10thAnnual Inter-
netSocietyConference(INET2000).Yokohama,
Japan, 2000.

30. A. Helser. NanoManipulator, http://www.nano-
manipulator.com/NanoManipulator.htm.

31. A. Helser and M. Guthold. Remote AFM
manipulation of fibrin fibers over internet2. Bio-
MEMs & Biomedical Nanotechnology WORLD
2000. Columbus, OH, 2000.

32. T. Hudson, D. Sonnenwald, K. Maglaughlin,
M. Whitton, and R. Bergquist. Enabling distrib-
uted collaborative science: the collaborative
nanoManipulator. In Video Proceedings of
ACM Conference on Computer Supported Col-
laborative Work 2000, 2000.

33. T. Hudson, A. Helser, D. H. Sonnenwald, and
M. C. Whitton. Managing collaboration in the
distributed nanoManipulator. IEEE Virtual
Reality 2003. Los Angeles, CA, 2003.

34. T. C. Hudson, M. C. Weigle, K. Jeffay, and
R. M. Taylor II. Experiments in best-effort
multimedia networking for a distributed virtual
environment. Proceedings of Multimedia Com-
puting and Networking, pages 88–98, 2001.

35. K. Jeffay and R. Taylor. Network support for
distributed virtual environments: the telenano-
Manipulator. Internet2 Conference. Washing-
ton, DC, 1999.

36. K. Jeffay, T. Hudson, and M. Parris. Beyond
audio and video: multimedia networking sup-
port for distributed, immersive virtual environ-
ment. 27th EUROMICRO Conference, pages
300–307, 2001.

37. G. Jones. Nanoscale science education, http://
www.cs.unc.edu/Research/nano/ed/

38. G. M. Jones, R. Superfine, and R. M. Taylor II.
Virtual viruses. Science Teacher 66(7):48–50,
1999.

39. M. Jones, T. Andre, R. Superfine, R. Taylor.
Learning at the nanoscale: the impact of
students’ use of remote microscopy on
concepts of viruses, scale, and microscopy.
Journal of Research in Science Teaching 40(3),
2003.

40. M. Jones, A. Bokinsky, T. Andre, D. Kubasko,
A. Negishi, R. Taylor, R. Superfine. NanoMa-
nipulator applications in education: the impact
of haptic experiences on students’ attitudes and
concepts. IEEE Computer Science Haptics 2002
Symposium, pages 295–298, 2002.

41. M. Jones, A. Bokinsky, T. Tretter, A. Negishi,
D. Kubasko, R. Superfine, R. Taylor. Atomic
force microscopy with touch: educational appli-
cations, Science, Technology and Education of
Microscopy, A. Mendez-Vilas, Editor. Madrid,
Formatex, 2002.

42. W. Mark, S. Randolph, M. Finch, J. V. Verth,
and R. M. Taylor II. Adding force feedback to
graphics systems: issues and solutions. Com-
puter Graphics: Proceedings of SIGGRAPH
’96, pages 447–452, 1996.

43. W. G. Matthews, A. Negishi, A. Seeger, R.
Taylor, D. M. McCarty, R. J. Samulski, and
R. Superfine. Elasticity and binding of adeno-
virus in air and in liquid. Biophys. J., page A27,
1999.

44. A. Mehta, J. T. Finer, and J. A. Spudich.
Reflections of a lucid dreamer: optical trap
design considerations. Methods in Cell Biology,
pages 47–69, 1998.

45. S. Paulson, M. R. Falvo, N. Snider, A. Helser,
T. Hudson, A. Seeger, R. M. Taylor, R. Super-
fine, and S. Washburn. In situ resistance mea-
surements of strained carbon nanotubes.
Applied Physics Letters, 75(19):2936–2938,
1999.

46. S. Paulson, A. Helser, M. B. Nardelli, R. M.
Taylor. II, M. Falvo, R. Superfine, and S.
Washburn. Tunable resistance of a carbon
nanotube–graphite interface. Science 290:1742–
1744, 2000.

47. S. Peltier, M. Hadida, D. Levy, J. Crum, M.
Wong, S. Lamont, M. H. Ellisman. Web-based
telemicroscopy with the JEM-4000EX. Jeol-

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 917

Visualization and Natural Control Systems for Microscopy 917

News, Special Edition for Microscopy and
Microanalysis, 2000.

48. C. S. Potter, B. Carragher, M. Ceperley,
C. Conway, B. Grosser, J. Hanlon, C. Hoyer,
N. Kisseberth, S. Robinson, J. Sapp, P. Soskin,
D. Stone, U. Thakkar, D. Weber. Bugscope: A
sustainable web-based telemicroscopy project
for K-12 classrooms. Proceedings of Microscopy
and Microanalysis 99:514–515, 1999.

49. N. Smith. Microscope and graphic imaging
center: remote control of instrumentation,
http://www.csuhayward.edu/SCI/sem/remote.
html.

50. D. H. Sonnenwald, E. Kupstas Soo, and R.
Superfine. A multi-dimensional evaluation of
the nanomanipulator, a scientific collaboration
system. ACM SIGGROUP Bulletin 20(2):46–50,
1999.

51. D. H. Sonnenwald, R. E. Bergquist, K. L.
Maglaughlin, E. Kupstas-Soo, and M. C. Whit-
ton. Designing to support collaborative scientific
research across distances: the nanomanipulator
environment. In Collaborative Virtual Environ-
ments, E. Churchill, D. Snowdon, and A.
Munro (Eds.). London, Springer Verlag, 2001.

52. D. H. Sonnenwald, M. Whitton, and K.
Maglaughlin. Evaluating a scientific collabora-
tory: results of a controlled experiment. ACM
Transactions on Computer Human Interaction,
2003.

53. J. Sun and A. Razdan. Remote control and
visualization of scanning probe microscope via
web. IEEE Second Workshop on Multimedia
Tools and Applications, pages 209–214, 1999.

54. R. Superfine, M. G. Jones, and R. Taylor.
Touching viruses in a networked microscopy
outreach project. In K-12 Outreach from Univer-
sity Science Departments. Raleigh, NC, North
Carolina State University, pages 151–153, 2000.

55. K. Svoboda and S. M. Block. Biological appli-
cations of optical forces. Annu. Rev. Biophys.
Biomol. Struct. 23:247–295, 1994.

56. Taylor. VRPN: A device-independent, network-
transparent VR peripheral system. Virtual En-
vironment Research Talk Series, 2001.

57. R. M. Taylor II, W. Robinett, V. L. Chi,
F. P. Brooks, Jr., W. V. Wright, R. S. Williams,
and E. J. Snyder. The nanoManipulator: A vir-
tual-reality interface for a scanning tunneling
microscope. SIGGRAPH 93, pages 127–134,
1993.

58. R. M. Taylor II. The nanoManipulator: a vir-
tual-reality interface to a scanning tunneling
microscope. Computer Science, page 139, 1994.

59. R. M. Taylor II, J. Chen, S. Okimoto, N. Llo-
pis-Artime, V. L. Chi, F. P. Brooks, Jr.,
M. Falvo, S. Paulson, P. Thiansathaporn, D.
Glick, S. Washburn, and R. Superfine. Pearls
found on the way to the ideal interface for
scanned-probe microscopes. Proceedings of
IEEE Visualization ’97, pages 467–470, 1997.

60. R. M. Taylor II. Network access to a
PHANToM through VRPN. PHANToM
User’s Group Workshop, page 4. Dedham, MA,
1998.

61. R. M. Taylor II, T. C. Hudson, A. Seeger,
H. Weber, J. Juliano, and A. T. Helser.
VRPN: A device-independent, network-trans-
parent VR peripheral system. ACM Symposium
on Virtual Reality Software & Technology 2001.
Banff Centre, Canada, 2001.

62. R. M. Taylor II. A 3D force microscope: ma-
nipulation/measurement in cellular systems.
CISMM External Advisory Board Meeting
Chapel Hill, NC, 2002.

63. R. M. Taylor. Nanoscale computer science. NC,
CSIT Visualization Lecture Series. Tallahassee,
FL, 2002.

64. T. Tretter and M. G. Jones. Different worlds:
The importance of size. Science Teacher, in press.

65. VTK home page, www.vtk.org.
66. C. D. Wickens and P. Baker. Cognitive issues in

virtual reality. In Virtual Environments and
Advanced Interface Design, W. Barfield and
I. Furness (Eds.). Oxford University Press:
New York, 1995.

67. P. A. Williams, S. J. Papadakis, M. R. Falvo, A.
M. Patel, M. Sinclair, A. Seeger, A. Helser, R.
M. Taylor II, S. Washburn, and R. Superfine.
Controlled placement of an individual carbon
nanotube onto a microelectromechanical struc-
ture. Applied Physics Letters 80(14):2574–2576,
2002.

68. P. A. Williams, S. J. Papadakis, N. E. Snider, H.
Deniz, M. R. Falvo, S. Washburn, R. Superfine,
and R. M. Taylor II. Progress on field emission
studies of individual, cantilevered multi-walled
carbon nanotubes. American Physical Society
March Meeting 2002. Indianapolis, in 2002.

69. P. A. Williams, S. J. Papadakis, A. M. Patel, M.
R. Falvo, S. Washburn, and R. Superfine. Tor-
sional response and stiffening of individ-
ual multiwalled carbon nanotubes. Physical
Review Letters, 89(25):25502-1–25502-4, 2002.

70. A. Yamada. The remote control scanning
microscope with web operation interface (Web
SEM) http://www.jeoleuro.com/news/jeolnews/
NEWSHOME/News%20home/25/.

Johnson/Hansen: The Visualization Handbook Final Proof 5.10.2004 2:25am page 918

918 Selected Topics and Applications

47 Visualization for Computational
Accelerator Physics

KWAN-LIU MA, GREG SCHUSSMAN, and BRETT WILSON

University of California at Davis

47.1 Introduction

High-energy physics is about the study of the

smallest elementary particles, the building

blocks of the universe. New discoveries in

high-energy physics often lead to fundamental

advances in other disciplines such as astronomy,

biology, environmental science, materials sci-

ence, and medicine. Particle accelerators are

used in the laboratory by high-energy physicists

to study the properties of these particles, how

they are created, and how they interact under

controlled conditions. Further study of funda-

mental particle properties requires the design

and construction of new accelerators to provide

higher-energy particle collisions. The design,

construction, and operation of particle acceler-

ators are very expensive and involve large-scale

effort by teams of scientists and engineers from

various disciplines.

Computer simulations are used in the design of

next-generation particle accelerators for model-

ing—for example, for the acceleration and

steering of particle beams. To meet design re-

quirements and to reduce cost and technological

risk in the later stages of accelerator design, con-

struction, and operations, very high-resolution

modeling is essential. The scale and complexity

of these computer simulations requires the use of

powerful high-performance computing plat-

forms using software and algorithms targeted

to parallel and distributed environments, as

well as advanced data analysis and visualization

tools that make it possible to understand the

resulting terabytes of simulation data.

In this chapter, we illustrate the visualization

challenges introduced by the most advanced

particle accelerator simulations and describe

visualization solutions derived to address these

challenges. Two primary visualization problems

are considered: first, the problem of visualizing

very dense point data (i.e., particles), and

second, visualizing very dense line data (e.g.,

electric and magnetic field lines). While these

two problems are specific to accelerator physics

data, the techniques we describe here are also

suited to any other applications concerned with

the visualization of particle and field line data.

47.2 Visualizing Beam Dynamics
Simulations

A powerful accelerator directs beams of par-

ticles to create a large number of head-on colli-

sions to produce new particles. The first type of

particle accelerator simulations that we consider

models a large number of charged particles as

they move through the accelerator and respond

to various forces [7]. The resulting datasets con-

sist of hundreds of millions to billions of par-

ticles for each time-step, making it impossible to

render in real time or even to fit into the

memory of most PCs. One approach is to con-

vert the particles to volumetric data represent-

ing point density and use texture-mapping

hardware to render to the screen [5]. However,

the size of volumes that can be efficiently visu-

alized in this manner is limited by the amount of

available texture memory, as well as the fill rate

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 919

919

of the available hardware. In addition, high-

resolution representations present challenges

with regard to the available network bandwidth,

disk space, and time required to process the

data. Even though this approach does give

good interactivity and compact data size,

many fine details can be lost, especially in the

very low-density zone in which scientists are

most interested. A more effective approach is

based on a hybrid data storage and rendering

method [3], which allows scientists to visualize

and explore the data at interactive rates while

maintaining much of the important detail of the

original data.

47.2.1 A Hybrid Visualization Technique

The hybrid technique leverages the speed of

texture-based hardware volume rendering to

represent large features and the flexibility of

point-based rendering to represent fine details.

The foundation of the hybrid method is the

use of low-resolution volume rendering in the

areas of low interest/detail, and the use of point-

based methods to enhance or replace areas of

high interest/detail. Thus, storage, transfer, and

rendering resources are put to more efficient use

than with volumetric or particle rendering

alone.

The interactivity offered by the hybrid

method makes choosing viewing parameters

and transfer functions for subsequent higher-

quality rendering an easy job, and the storage

savings mean that the data can be more effi-

ciently transferred from the computer that gen-

erated it to a remote computer on a scientist’s

desk thousands of miles away.

This approach has been tested on data

obtained from several large-scale beam dynam-

ics simulations. Each particle in these simula-

tions consists of spatial coordinates (x, y, z) and

momenta (px, py, pz) in double-precision. The

space of coordinates and momenta is called

phase space. Plots of higher-dimensional projec-

tions of phase space data offer the possibility of

providing improved insight into complex beam

dynamics phenomena.

The primary simulation, consisting of 100

million particles, requires 5GB of storage per

time-step. An additional dataset, the initial

time-step of a billion-point simulation, requires

48 GB of storage. These sizes make data imprac-

tical to move and impossible for most com-

puters to handle.

Fig. 47.1 shows a comparison of a standard

volumetric rendering to a mixed (point and volu-

metric) rendering of the same object. The mixed

rendering is able to more clearly resolve the hori-

zontal stratifications in the right arm, and it also

reveals thin horizontal stratifications in the left

arm not visible in the volume rendering from this

angle. Note that the bands near the edges are part

of the data, not rendering artifacts.

Images for four different distributions, in-

cluding (x, y, z), (x, px, y), (x, px, z), and (px,

py, pz), of the data at time-step 180 are dis-

played in Fig. 47.2. The simulation corresponds

to an intense beam propagating in a magnetic

quadrupole channel. The beam propagates in

the z-direction, with focusing provided in the

transverse (x and y) directions.

47.2.1.1 Point Selection Criteria

In order to construct a hybrid representation,

we must decide how to classify points (i.e.,

particles) as being rendered directly or simu-

lated via volume rendering. For this dataset, the

most detailed and important area to visualize is

the very low-density beam halo [6]. This area

poses additional problems for volumetric re-

presentation because it is thousands of times

less dense than the beam core, meaning there

will be difficulty computing the precise density

for a given region and assigning that density

one of a limited number of palette values.

Therefore, we choose points in areas of low

density to render directly, and the remaining

areas of high density are rendered using fast

low-resolution volume rendering. This allows

the fine detail of the beam halo to be accurately

represented at the full data resolution while

maintaining interactivity by reducing the amount

of data transferred and rendered.

920 Selected Topics and Applications

47.2.1.2 Preprocessing

The hybrid representation of the data is

computed on the same parallel supercomputer

at NERSC/LBL that generated the original

simulation: an IBM SP RS/6000 with 2,944

processors. Preprocessing consists of two steps:

partitioning and extraction. Partitioning is a

one-time process that adds structure to the

originally unstructured particle data. Extraction

is a fast process that quickly extracts a hybrid

representation with given parameters from the

partitioned data.

The partitioning program organizes the un-

structured point data into an octree. It is pro-

vided a time-step number, a plot type (since

there are six parameters per point, various

3D plots can be generated), and a maximal

subdivision level. It then reads in all the points

and inserts them into an octree. The levels of

subdivision of the octree are limited by the max-

imal subdivision level, which prevents the octree

from becoming impractically large. This octree is

written out to disk in two parts: one part con-

tains all the particles of the simulation, and the

other contains the octree nodes themselves. In

the particle files, particles in the same octree

node are grouped together, and the groups are

sorted in order of increasing density. Each node

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 921

Figure 47.1 Comparison of (left) a volume rendering and (right) a mixed volume/point rendering of the phase plot (x, Px, y) of

frame 170. The volume rendering has a resolution of 2563. The mixed rendering, with a volumetric resolution of 643 and 2 million

points, provides more detail than the volume rendering while displaying at a much higher frame rate. (See also color insert.)

Figure 47.2 Selected distributions for time-step 180. From left to right: (x, y, z), (x, Px, y), (x, Px, z), and (Px, Py, Pz). (See also

color insert.)

Visualization for Computational Accelerator Physics 921

in the octree then contains an offset into the

particle file and the the number of particles in

its group.

The partitioning program takes about 7 min-

utes per time-step for the 100-million-particle

simulation. Since it is primarily input/output

(I/O)-bound, processing time-scales linearly as

the number of points increases. If the amount of

data exceeds the amount of memory available

on one node of the supercomputer, it can also

be run on multiple nodes; in this case, the

volume is divided up between nodes and par-

ticles are assigned to the corresponding nodes

once they are read from disk. Since the parti-

tioned representation contains all the data pre-

sent in the original representation, it is possible

(although it has not yet been implemented) to

discard the original data and convert between

different plot type partitionings.

The extraction program converts the parti-

tioned data into the hybrid representation. It is

given a partitioned frame and a threshold dens-

ity. Particles in octree nodes below the threshold

density are stored in the hybrid representation.

All other points (those in the higher-density

regions) are discarded (Fig. 47.3). To accom-

plish this, the extraction program reads in the

octree and determines which nodes should con-

tain stored points. Since the particle file is sorted

in order of increasing density, all particles re-

quired for any hybrid representation are in a

contiguous block at the beginning of the file.

This portion of the particle data is just copied

to the output; no computation is necessary for

the particles, and discarded particles are never

read from disk.

The threshold density parameter provided to

the extraction program allows the user to bal-

ance file size and visual accuracy for a given

application. A high threshold value will yield

large file sizes, but larger areas of the rendering

can be drawn using the more accurate point-

rendering method. A low threshold value will

yield smaller file sizes appropriate for viewing

multiple frames simultaneously or quickly

transferring over a network at the expense of

having a thinner halo region representable by

points. Because the extraction process is fast,

different hybrid representations can be created

and discarded as needed.

47.2.1.3 Viewing

A separate view program with an interactive

transfer function editor is used on a desktop PC

to visualize the partitioned data generated by

the parallel computer. The volume transfer

function (Fig. 47.3b) maps point density to

color and opacity for the volume-rendered

portion of the image. Typically, a step function

is used to map low-density regions to 0 (fully

transparent) and higher-density regions to some

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 922

Volume Transfer Function

Point Transfer Function

(a) (b)

Figure 47.3 A hybrid data representation. (a) An image is created by classifying each octree node as belonging to a volume-

rendered region or a point-rendered region, depending upon the transfer function for each region (the regions can overlap, as in

this example). The combination of the two regions defines the output image. (b) The relationship between the two transfer

functions. The two transfer functions can be edited together or separately.

922 Selected Topics and Applications

low constant so that one can see inside the

volume. The program also allows a ramp to

transition between the high and low values, so

the artificial boundary of the volume-rendered

region is less visible.

The point transfer function (Fig. 47.3b) maps

density to number of points rendered for the

point-rendered portion of the image. Below a

certain threshold density, the data is rendered as

points; above that threshold, no points are

drawn. Intermediate values are mapped to the

fraction of points drawn. When the transfer

function’s value is at 0.75 for some density, for

example, it means that three out of every four

points are drawn for areas of that density. This

allows the user to see fewer points if too many

points are obscuring important features, or to

make rendering faster. It also allows a smooth

transition between point-rendered portions of

the image and non-point-rendered portions.

Fig. 47.4 displays parts of a hybrid rendering.

By nature, the two transfer functions are in-

verses of each other. Changing one results in

an equal and opposite change in the other. This

way, the user can change the boundary between

the volume- and point-rendered regions of

the image (up until the boundary specified

during preprocessing, beyond which no points

are available).

47.2.1.4 Results

The hybrid beam-rendering method is effective

for a variety of simulation configurations and

visualization requirements. The user can tailor

the hybrid output to range from large, very

accurate representations to small, less accurate

representations (which still preserve as much

interesting data as possible).

The hybrid method can produce very compact

representations, allowing multiple time-steps to

fit into memory. Reasonably high-quality pic-

tures can be made with hybrid data smaller than

100MB, so a high-end PC is capable of holding

around 10 time-steps in memory at once. The

previewing program allows the user to step

through frames using the keyboard. If a frame is

already in memory, it can be displayed instantan-

eously; the volume texture and display lists are

already loaded into video memory, or they can be

quickly swapped in by the display driver. If

a frame is not in memory, it is loaded from

disk, a process that takes around 10 seconds for

a 100MB time-step. This allows very efficient

exploration of the beam’s evolution over time; if

the step size is small enough, individual particles

can be seen moving between frames.

Fig. 47.5 displays selected frames from a simu-

lation over 350 time-steps for the (x, y, z) distri-

bution of the data. All frames use the same view

looking down z, the beam’s axis. The quadrupole

magnets are alternately focusing and defocusing

in the x and y directions, resulting in the fourfold

symmetry seen in the figure. At this resolution,

each time-step is about 500MB, allowing only

two to fit into memory at once. However, hybrid

frames are often smaller; these use a conservative

point density threshold.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 923

Figure 47.4 Portions of a hybrid rendering on a sphere-like

(x, y, z) distribution showing (top) the volume-rendered

portion, (middle) the combined hybrid rendering, and

(bottom) the point-rendered portion alone. The front half

of the sphere has been clipped; the points obscured by the

volume rendering are on the far side. The points shown

here are completely opaque so that they are more visible.

(See also color insert.)

Visualization for Computational Accelerator Physics 923

Sometimes scientists intentionally misalign

the particle beam to study how to correct

beam alignment and size. Fig. 47.6 displays

selected frames from an animation of a mis-

aligned beam that could not achieve a proper

focus.

In addition to scaling in the time dimension,

the hybrid algorithm also scales well in terms of

simulation sizes. Because the output data size

does not necessarily depend on the input data

size, large simulations approaching 1 billion

particles can be reduced to the same size of

hybrid representation as the smaller simula-

tions. The large simulation’s point-based halo

region will be thinner than the smaller simula-

tion, but that has little effect on the quality of

the resulting image: regardless of the simulation

size, points at the high-density halo cutoff

region are typically so dense that they visually

merge into a volume anyway.

One important effect that occurs in larger

simulations is that the octree must be subdiv-

ided more finely where there is a high gradient.

This occurs both in very large simulations and

in smaller simulations with very focused beams.

If a higher level of subdivision is not used, the

outline of the lowest-level octree nodes will be

visible at the boundary of the halo region. For

low gradients, a shallower depth of octree sub-

division can be used without introducing signifi-

cant artifacts, saving valuable space.

For visualizing the particle beam data,

volume rendering lacks the spatial resolution

and the dynamic range to resolve regions with

very low density, areas that may be of signifi-

cant interest to researchers. Point-based

rendering alone lacks the interactive speed and

the ability to run on a desktop workstation that

the hybrid approach provides. Furthermore,

point-based rendering for low-density areas

provides more room for feature enhancements.

Because points are drawn dynamically, they

could be drawn (in terms of color or opacity)

based on some dynamically calculated property

that the scientist is interested in, such as tem-

perature or emittance. Volume-based rendering,

because it is limited to precalculated data,

cannot allow dynamic changes like these.

47.2.2 Summary

Large-scale beam dynamics simulations are

used to understand the physics of intense

beams, including the important phenomena of

Figure 47.5 Selected time-steps from a simulation over 350 time-steps for the x-y-z distribution of the data. (Top) frames 1, 50,

100, 150. (Bottom) frames 200, 250, 300, 350. (See also color insert.)

924 Selected Topics and Applications

halo formation. The simulation codes currently

run on parallel computers operated at NERSC

at the Lawrence Berkeley National Laboratory.

Simulations have been performed with up to

500 million particles [6,7], which is approach-

ing the number that is required for the next-

generation accelerator designs. The large dy-

namic range of beam density involved (roughly

six orders of magnitude) represents a challenge

to scientific visualization and has led to the

development of a new hybrid visualization algo-

rithm. This new algorithm enables the core and

the low-density halo to be visualized simultan-

eously with an efficiency that allows interactive

data analysis.

Many visualization challenges still remain in

the field of particle accelerator simulation. We

need the capability to track down the origin of

halo particles, which could be done by tagging

particles and representing their trajectories as

streamlines in animations. For the simulation

of gas jets used in advanced accelerator applica-

tions, visualization is needed to view the geom-

etry of the gas nozzle and to understand how the

shape of the nozzle affects the gas flow. Finally,

in the design of laser- or plasma-based acceler-

ators, visualization techniques are needed to

study and optimize the structure of the fields

used to accelerate the particles.

47.3 Visualizing Electromagnetic Field
Data

The other type of simulation we consider is the

time-domain evolution of electromagnetic fields

in 3D accelerator structures, and the influence of

these fields on particle behavior. For the Next

Linear Collider (NLC), the design parameters

are strongly affected by the need to suppress

wake fields, in order to reduce or eliminate de-

structive particle effects such as dark current

capture and breakdown. In order to produce

accurate and meaningful simulation results, in

terms of both prediction and verification, it is

necessary to model accelerator cavities to high

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 925

Figure 47.6 Selected frames from the visualization of a misoriented particle beam using the hybrid rendering technique.

(See also color insert.)

Visualization for Computational Accelerator Physics 925

accuracy. One representative simulation is based

on a parallel time-domain electromagnetic field

solver running on unstructured hexahedral

meshes. This code models the reflection and

transmission properties of open structures in an

accelerator design [11]. Fig. 47.7 shows a cutaway

view of a 30-cell particle accelerator structure. To

achieve the needed accuracy, the simulations

must not proceed faster than electromagnetic in-

formation can physically flow through mesh

elements. In order to satisfy this Courant Condi-

tion on that mesh, a very small time-step is re-

quired; simulating 100 nanoseconds in the real

world requiresmillionsof time-steps.Theparallel

simulation code is scalable in terms of both the

the number of mesh elements and the number of

particles. Fig. 47.8 shows the domain decompos-

ition of the structure for a parallel simulation.

Each run of the simulation, for example, on a

32-node PC cluster can produce terabytes of

data. The fields produced by this code can be

used with another parallel code to simulate par-

ticle tracking, which can also produce very large

particle path data.

A scalable solution is required for visualizing

such large and complex electromagnetic fields

and particle paths. The main challenge is con-

cerned with interactively displaying a dense col-

lection of intertwined lines in a way that shows

clear spatial relationships between them, with

unambiguous global or local detail. In this

case, a compact representation for the field

lines, combined with hardware-assisted percep-

tually effective rendering techniques, results in

the interactivity that is key to insightful visual-

ization.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 926

Figure 47.7 Cutaway surface visualization of a 30-cell structure.

926 Selected Topics and Applications

47.3.1 A Compact Representation for
Field Lines

The problem of drawing lines to show the

structure of vector fields has been studied exten-

sively. Work has also been done to use alter-

native representation of lines like tubes and

ribbons to improve perception of their structures

or additional physical properties of the data. We

have developed a flexible and scalable represen-

tation that we call self-orienting surfaces (SOS)

for illustrating field lines [8]. This representation

uses hardware texturing to efficiently display

field properties using ribbons that appear essen-

tially identical to tubes.

Each self-orienting surface is a triangle strip

(or quad strip) that is constructed from a se-

quence of points along a curve, an associated

sequence of tangent vectors, and a viewing pos-

ition. Fig. 47.9 shows the process of generating

such triangle strips. The triangle strip always

orients toward the observer, which makes

aligning a texture to the strip easy. For example,

Figure 47.8 Visualization of the domain decomposition for a parallel simulation.

(a) (b) (c) (d)

Figure 47.9 A sequence of points (a) is converted to a triangle strip by the addition of positive and negative sideways offset

vectors (b) to produce new points (c), which become vertices for a triangle strip (d).

Visualization for Computational Accelerator Physics 927

the tube-like appearance is made possible by use

of hardware-accelerated bump mapping. Com-

pared to polygonal tubes, self-orienting triangle

strips are much more compact, resulting in sig-

nificant savings in storage and rendering. These

savings are summarized in Table 47.1. Timing

was performed on a 1.4 GHz Pentium 4 PC

running RedHat Linux 7.3 and using OpenGL

on an nVidia GeForce 3 Ti500.

Self-orienting surfaces provide very conveni-

ent geometry for texturing. Because the strips

orient themselves in a view-dependent way,

the texture coordinates for moving across the

strip become view-independent. Difficulties that

can occur with polygonal tubes are avoided (e.g.,

orientation of textured glyphs, or pinched

sections of the tube due to axial twisting.) Figs.

47.10a, 47.10b, and 47.10c show conventional

line drawing, illuminated field lines, and stream-

tubes, respectively, for illustrating both the

electric field and the magnetic field inside a

3-cell linear accelerator structure. As shown in

Fig. 47.10d, the self-orienting surfaces rendered

with hardware bump-mapping provide a nearly

identical visual effect while using only a very

small number of triangles, about five to six

times fewer than a typical streamtube representa-

tion would require.

47.3.2 Seeding Strategy and Incremental
Visualization

A key task in field line visualization is the selec-

tion of seed points for streamline integration.

Much work has been done [2,4,10] for providing

aesthetically pleasing streamlines through care-

ful selection of seed points. The emphasis is

generally on producing a visually uniform dens-

ity of streamlines in the final image. Our ap-

proach is to select seeds so that the local

density anywhere in the final distribution of

field lines is approximately proportional to the

local magnitude of the underlying field. When

this approach is applied to electromagnetic

fields, the resulting image is intuitive for physi-

cists, because the densities of electric and mag-

netic flux lines are proportional to the

corresponding field strength.

The implementation of our seeding strategy

consists of computing a desired average number

of field lines to pass through each element of the

mesh. This is the average field intensity at the

element’s vertices multiplied by the volume of

the element. These numbers are then scaled so

that the sum over all elements is equal to the total

maximum number of field lines to preintegrate.

The algorithm consists of selecting the element

that most needs an additional field line, picking a

random seed point within that element, and in-

tegrating the field line from there. During inte-

gration, as each new element is visited, that

element’s desired number of field lines is decre-

mented by one. This selection and integration

process repeats until the total desired number

of field lines for the entire mesh has been

obtained. By keeping track of how many field

lines already pass through the elements, dispro-

portionately high densities of field lines are

Table 47.1 Timing results are given for different line representations: polygonal tube in immediate mode or in a display list,

and hardware bump-mapped SOS. Hardware bump-mapped SOS runs an average of 1.4 times faster than polygonal tubes in a

display list, and an average of 24.4 times faster than polygonal tubes computed on the fly. All times are in seconds obtained on a

1.4GHz Pentium 4 PC with an nVidia GeForce 3 Ti500.

150 lines 800 lines 10k lines

Polygonal tube (immediate mode) 0.445 3.001 32.8

Polygonal tube (display list) 0.027 0.173 1.82

Hardware SOS 0.019 0.124 1.28

928 Selected Topics and Applications

avoided. By always choosing the element that

most needs an additional field line, the images

that result from rendering the first n field lines

are always nearly correct in showing field line

density proportional to the magnitude of the

underlying field.

This incremental approach addresses the chal-

lenge in presenting extremely dense collections

of field lines. Although transparency effects

also help address the challenge, they are only

useful up to moderate field line density. At ex-

treme densities, transparency effects result in

images qualitatively similar to those produced by

direct volume rendering. Simple direct volume

rendering suffers from ambiguity resulting from

several factors. The perspective depth cues and

lighting cues are absent, and different combin-

ations of thickness, opacity, and coloration

assigned to the data can composite to produce

the same color and intensity in a final image.

Furthermore, for large datasets, limited preci-

sion of the alpha channel can permit significant

accumulation of quantization error when many

lines of near-minimal transparency are compos-

ited. An interactive animation of our incremental

approach avoids these ambiguities. By sweeping

from a minimum to a maximum number of field

lines, one gets a compelling sense of the structure

and magnitude of the fields being built up. It is

clear where the strong regions are, because sparse

lines appear first, and these lines have good per-

spective and lighting depth cues. As more field

lines are added, the strong regions become more

dense and the weaker regions start to fill in. One

meaningful order is to first load the lines corres-

ponding to the highest-magnitude field regions.

From there, progressively weaker field lines are

loaded in. In each image, the density of field lines

is approximately proportional to the magnitude

of the underlying field. In this way, each image

attempts to be the most accurate representation

of field magnitude possible, given the number of

field lines used. The set of field lines in each image

in the sequence is a superset of those field lines in

the preceding image.

47.3.3 Perceptually Effective
Visualization

In order to better understand a large number of

intertwined field lines, we cannot neglect percep-

tual issues. Proper use of illumination, haloing,

transparency, and other visual cues can help

clarify spatial relationships and reveal hidden

information. In this section, we describe how

to incorporate perceptually effective enhance-

ment methods into the self-orienting surface

representation to increase the information level

and clarity of the picture.

47.3.3.1 Illumination

While the illuminated field lines technique [9] can

help determine the shading of a field line, this

technique is less effective for enabling accurate

interpretation of the spatial relationships be-

tween similarly oriented adjacent or overlapping

lines, as pointed out by Interrante andGrosch [1].

In particular, thin lines could look artificial

because the texture does not vary sideways across

the width of the lines. Our illuminated triangle

strips offer not only improved visual clarity,

comparable to the volume LIC approach [1], but

also the critical interactivity needed for efficient

data exploration. Fig. 47.10e demonstrates the

effect of enhanced lighting. The enhanced light-

ing is hardware accelerated and carries no

significant performance penalty over a single

light source.

47.3.3.2 Haloing

Adding halos can clarify the spatial relation-

ships between overlapping lines. Our self-

orienting surfaces representation is superior

to the illuminated field lines with halos. The

illuminated-lines images do not provide a

perspective depth cue, whereas the self-orient-

ing surfaces do. At medium depth, a cross-

section of the haloed lines appears as one or two

black pixels on either side of a few illuminated

pixels. There is an abrupt transition from the

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 929

Visualization for Computational Accelerator Physics 929

black region to the illuminated region. This can

be thought of as an approximation for Phong

illumination of a tube with a headlight. The

diffuse and specular components remain at the

middle of the cross section because that is where

the surface normal vector is most closely

parallel to the viewing and light vectors.

Assuming a small or nonexistent ambient

contribution, the cross-section edges are dark

because the surface normal is orthogonal to the

viewing and lighting vectors. Our self-orienting

surfaces use texture to effectively capture the

same surface normal vectors that a polygonal

tube would have, so for self-orienting surfaces

the lighting appears exact.

At first glance, comparison of the two tech-

niques at medium depth shows little difference.

However, at near depth, self-orienting surfaces

look better. The perspective widening of the self-

orienting surfaces provides a significant depth

cue. If the widths of the haloed lines are scaled

up to match, the sharp transition from black halo

to illuminated region becomes very apparent.

What was a reasonable approximation at several

pixels wide becomes noticeably incorrect when

scaled up. In contrast, self-orienting surfaces

show even more clearly the Phong illumination

model at work, providing a smooth and very

convincing cross-section.

47.3.3.3 Transparency

For very dense line data, as displayed in Fig.

47.10f, it can be difficult to unambiguously

perceive the details in a region in the interior

of the 3D field. When sufficiently dense,

surrounding lines can occlude the interior struc-

tures. One approach is to ‘‘cut away’’ the data

that is not in the region of interest. While

effective, as shown in Fig. 47.10g, in other cases

this could take away the global context for the

current region of interest. The other approach

is to leave the region of interest opaque while

using transparency to deemphasize the remain-

ing data. As a result, as shown in Fig. 47.10h,

the interior structures can remain clear, and the

global context is not lost. Transparency in

complex scenes requires back-to-front compo-

siting for a correct image. Depth sorting is

not practical for very large data. Our approach

can be coupled with the order-independent

transparency technique supported by graphics

hardware but would require disabling bump

mapping and finer tessellation of self-orienting

surfaces.

47.3.4 Results

Fig. 47.11 shows images of four selected time-

steps from the simulation of the three-cell struc-

ture. The ability to animate field lines in the

temporal domain is particularly valuable. For

example, from these four images, scientists can

examine and verify the propagation of the radio

frequency (RF) waves. Storing the precomputed

field lines rather than the raw data can signifi-

cantly cut down the data storage and transfer

requirements, making interactive interrogation

of the time-varying electromagnetic field-lines

data possible. The typical savings is about a

factor of 25, which would allow many time-

steps of electromagnetic field lines to reside in

memory for interactive viewing.

Note that simulation of a 12-cell acceler-

ator structure reaches steady state at about 40

nanoseconds, which corresponds to 326,700

time-steps. Since it would take about 80 MB

of storage space to save one time-step of the

electric and magnetic fields together, over 26

terabytes of storage space would be needed

for the overall dataset. Storing the preinte-

grated field lines instead and using the seeding

strategy described make it possible for us to

visualize the data. For a large dataset, it is

desirable to parallelize the field line calculations

on a PC cluster to speed up this preprocessing

task.

The sequence of images in Fig. 47.12 shows

incremental loading of field lines with line trans-

parency and color assigned according to the

field strength. The key is that the scientist is

allowed to interactively change these visualiza-

tion and viewing parameters and then see the

resulting visualization immediately.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 930

930 Selected Topics and Applications

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 931

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 47.10 Visualization of an electromagnetic field corresponding to a section of an accelerator structure. (a) Conventional

line drawing; (b) illuminated streamline technique; (c) conventional streamtube technique; (d) self-orienting surface technique;

(e) with enhanced lighting; (f) dense lines; (g) cutting away; (h) use of transparency. (See also color insert.)

Visualization for Computational Accelerator Physics 931

Fig. 47.13 shows a cutaway view of the inside

of a three-cell particle accelerator structure to

display the result of particle tracking. Power, in

the form of RF waves, propagates in from the

vertical input ports on the left, through the main

structure, and then out through the vertical

output ports on the right. Particles to be accel-

erated would enter from the left and exit to the

right. The surface is pseudo-colored according

to the rainbow, where blue represents lowest

magnitude and red represents highest magni-

tude. The structure’s surface in the top half of

the image indicates the maximum magnetic field

strength at any time during steady-state oper-

ation. Similarly, the bottom half shows the max-

imum electric field. The red paths show particle

trajectories for a 50MeV field gradient, and the

green paths show the trajectories for a 100MeV

field gradient.

Under the influence of strong electric fields,

undesirable electrons can be pulled free from

the metal walls of the accelerator structure in a

process called field emission. These electrons are

not in the right place at the right time to be

accelerated down to the end of the accelerator.

However, they are still influenced by the fields

within the accelerator structure. They can reach

relativistic speeds, and they tend to hit the walls

of the accelerator structure. This, in turn, can

release more undesirable particles in a process

called secondary emission. These particles can

hit the surface again, releasing even more par-

ticles in a chain reaction. The field-emission and

secondary-emission particles under the influence

of the electromagnetic fields within the acceler-

ator result in a phenomenon called dark current

capture. If enough of these particles hit the same

region on the inner surface of the accelerator

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 932

Figure 47.11 Selected time-steps that show RF waves propagating in through the input ports (left) and out through the output

ports (right). (See also color insert.)

Figure 47.12 From left to right, incremental loading and rendering of electric field lines. (Top) with the line opacity

proportional to local field strength. (Bottom) with enhancement using both color and transparency. (See also color insert.)

932 Selected Topics and Applications

structure, they can cause physical damage. In

even greater numbers, these particles can pro-

duce a catastrophic event called breakdown.

The simulation that produced the data for

this image released particles from a specific

point on the surface repeatedly at even intervals.

By symmetry, the red and green path starting

points are the same. This image shows that the

strength of the field gradient affects the number

of particles that move from one accelerator

structure into the next. It also shows that these

particles, depending on when they are released,

can move forward or backward along the length

of the accelerator structure. Notice that the

tube-like appearance effectively serves the pur-

pose of haloing, clarifying depth relationships

between the different paths, even when they are

of the same color. The paths also remain dis-

tinct from the pseudo-colored background, even

when the colors are similar.

Finally, Fig. 47.14 shows frames from an ani-

mation sequence, another capability made pos-

sible by efficient memory and graphics hardware

utilization. Primary particles are released at

evenly spaced time intervals. Under the influence

of the time-varying electromagnetic fields, these

particles follow the red paths. When a primary

particle hits the wall of the accelerator structure,

additional secondary particles can be released.

The secondary particles are also influenced by

the electromagnetic fields, and they follow the

green paths. Not only does the rendering tech-

nique permit smooth animation, the view can be

interactively changed while the animation takes

place.

47.3.5 Summary

Interactive visualization is vital for understand-

ing complex phenomena that involve particle

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 933

Figure 47.13 Particle tracking visualization. (See also color insert.)

Visualization for Computational Accelerator Physics 933

dynamics in complicated 3D geometries and the

intricate interactions between particles and

the structure surface. The latter process includes

both field-emitted and secondary particles, and

it produces plasma and x-rays. To capture all

these effects in a full-scale simulation on an

actual structure under realistic operating condi-

tions presents a monumental challenge in data

management, storage, manipulation (I/O), and,

most importantly, visualization. The end-to-end

modeling will produce terabytes of unstruc-

tured, time-varying data consisting of multiple

field and particle species that have to be visual-

ized individually and simultaneously on both

local and global scales. The development of

effective visualization tools to meet this chal-

lenge is of the highest priority because they are

crucial to the discovery and understanding of

the physics involved.

Compact graphics representations like the

self-orienting surfaces can effectively cut down

both storage and computational requirements

without degrading image quality to enable

interactive field-line and particle path visualiza-

tion on a commodity PC. Further savings and

interactivity can be obtained by using a wider

version of the self-orienting surfaces to give

the impression of the field density while

rendering only a small number of self-orienting

surfaces, with line density textured according

to local field strength. The reduction in the

number of lines that must be traced and

plotted can help maintain a desirable level of

interactivity.

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 934

Figure 47.14 Primary particles released at evenly spaced time intervals follow the paths shown in red. When these particles hit

the walls of the accelerator structure, they can liberate secondary particles, which follow the paths shown in green. (See also

color insert.)

934 Selected Topics and Applications

However, for extremely dense line data, the

SOS-projected line thickness can become less

than about 3 pixels, which would be too wide to

produce meaningful images because a mass of

lines close to the observer can completely occlude

any lines behind her or him. If an overview of an

extremely large and dense dataset is desired (as is

the case for dark current particle paths), the oc-

clusion that helped for the relatively sparse

(though still dense) datasets becomes a hin-

drance. What we need is a technique that allows

us to scale down the widths of lines by many

orders of magnitude, thereby further reducing

mutual occlusion of lines within the dataset.

A viable approach is to sample extremely dense

line data into a fixed-size and -resolution aniso-

tropic voxel representation that enables visual-

ization of very dense regions of extremely thin

lines that would otherwise be individually dis-

carded by other techniques due to quantization

error in graphics hardware [12]. Such a voxel

representation allows arbitrarily large line

datasets to be compressed enough to provide

meaningful global overview of the simulation

data on a single PC. SOS is then more appropri-

ate for a close-up view of the data, while a direct

rendering of the voxel representation gives an

overview.

Acknowledgments

The authors are grateful for the funding support

provided by the National Science Foundation

and the Department of Energy, and the comput-

ing resources provided by the National Energy

Research Scientific Computing Center at the

Lawrence Berkeley National Laboratory. The

authors would especially like to thank Pat

McCormick at the Los Alamos National La-

boratory, the DOE SciDAC particle accelerator

project team, and the Visualization Group at the

Lawrence Berkeley National Laboratory for the

valuable discussions and assistance they have

provided to us.

References

1. V. Interrante and C. Grosch. Strategies for
effectively visualizing 3D flow with volume
LIC. In Proceedings of Visualization ’97, pages
421–424, 1997.

2. B. Jobard and W. Lefer. Creating evenly-spaced
streamlines of arbitrary density. In W. Lefer
and M. Grave (Eds.), Visualization in Scientific
Computing ’97. New York, Springer Verlag,
pages 43–56, 1997.

3. K.-L. Ma, G. Schussman, B. Wilson, K. Kwok,
J. Qiang, and R. Ryne. Advanced visualization
technology for terascale particle accelerator
simulations. Proceedings of Supercomputing
2002 Conference, 2002.

4. X. Mao, Y. Hatanaka, H. H., and A. Imamiya.
Image-guided streamline placement on curvilin-
ear grid surfaces. Proceedings of Visualization
’98 Conference, pages 135–142, 1998.

5. P. McCormick, J. Qiang, and R. Ryne. Visual-
izing high-resolution accelerator physics. IEEE
Computer Graphics and Applications 19(5):
11–13, 1999.

6. J. Qiang and R. Ryne. Beam halo studies using
a 3D particle-core model. Physical Review
Special Topics—Accelerators and Beams,
3(064201), 2000.

7. J. Qiang, R. Ryne, S. Habib, and V. Decyk. An
object-oriented parallel particle-in-cell code for
beam dynamics simulation in linear acceler-
ators. Journal of Computational Physics
163(434), 2000.

8. G. Schussman and K.-L. Ma. Scalable self-
orienting surfaces: A compact, texture-
enhanced representation for interactive visual-
ization of 3d vector fields. In Pacific Graphics
2002, pages 356–363, 2002.

9. D. Stalling, M. Zockler, and H.-C. Hege. Fast
display of illuminated field lines. IEEE Transac-
tions on Visualization and Computer Graphics
3(2):118–128, 1997.

10. G. Turk and D. Banks. Image-guided stream-
line placement. Computer Graphics 30:453–460,
1996.

11. M. Wolf, A. Guetz, and C.-K. Ng. Modeling
large accelerator structures with the parallel
field solver tau3p, submitted to ACES (Applied
Computational Electromagnetic Society) Con-
ference, http://scidac.nersc.gov/accelerator/pdf/
wolf_aces.pdf

12. G. Schussman and K.-L. Ma. Anisotropic
volume rendering for extremely dense, thin
lines data. In Proceedings of the IEEE Visualiza-
tion 2004 Conference (in press).

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 935

Visualization for Computational Accelerator Physics 935

Johnson/Hansen: The Visualization Handbook Final Proof 1.10.2004 8:50pm page 936

This page intentionally left blank

Index

Absorption models

of preintegrated volume rendering, 224–225

of volume rendering, 191

Accelerated Strategic Computing Initiative. See ASCI

Acceleration. See also Computational accelerator physics

isosurface extraction, 35–37, 39–40

optimal isosurface extraction for, 69–71, 81–82

preintegrated volume rendering, 227–228

volume rendering, 144–149, 241–243

AccessGrid (AG), 850–851, 868, 870–871

Additive Increase Multiplicative Decrease. See AIMD

Adenovirus research, 897

Advanced graphics port. See AGP

AFMs. See Atomic force microscopes

AG. See AccessGrid

AGP (advanced graphics port), 488, 489, 502–506

AIMD (Additive Increase Multiplicative Decrease), 582–584

AIMS (Atomic Imaging and Manipulation System)

function of, 876, 889–890, 893–894, 907–909, 913–914

nanoscale junctions research using, 890–891, 908–909

TEMS probing and, 907–908

Aleph maps, 810–811

Algorithms, 3–5. See also specific types of algorithms

Aliasing, transfer function, 137 f. See also Antialiasing

Ambiguity, 793–802

Amira

alignment using, cross-section

classes, 783

data processing and analysis using, 850–851

design goals of, 656

developer version of, 763

development of, 771

extensions, 773–774

finite-element post-processing by, 760

flow visualization using, 761–763, 761 f

geometry reconstruction in, 765

GUI, 761–763

interaction, 763–765

microscopy visualising using

molecular visualization using, 763–765

multiple datasets of, 759

object orientation, 750–751

parameters, 754

platform support, 734

programming, 736

registration using, 758–759

scripts, 753–754

segmentation, 755–756, 756 f

simplification using, 756–757

software technology of, 753

3D image visualization using, 754–755, 756 f

user interface of, 753, 762 f, 765

AmiraVR, 761–763, 762 f

Aneurysms, 716

Animation, time, 16–19, 17 f

Anisotropy

definition of, 336

scalar metric calculations of, 329

Annihilation, pairwise, 346, 347 f, 350 f

Antialiasing

binary volumes, 114–117

splatting and, 140, 140 f

volumetric function interpolation, 130–133, 130 f

API (Application Programming Interface)

ITK, 748

Vis5D, 673–677

Application Visualization System. See AVS

Archaeological visualization

AVS/Express for, 712–716

exploitation of, 791–792

Mummy 1766, 694 f, 708–710, 709 f

perception of, 841–842

problems with, 703

virtual reality based, 483

Worsley Man, 710–711, 710 f, 711 f

Architectural structures

AVS/Express visualization of, 715–716

virtual reality visualization of, 479

Architecture, system

of AIMS, 894

of AVS, 655, 656

of AVS/Express, 656–671

of direct manipulation in virtual reality, 416–421

of DPSS, 572 f

of ITK, 734

for large-scale data visualization, 457

of NIMS, 893

of nM, 896–897

of ParaView, 719

of SCIRun, 616–617, 621 f, 627 f

of 3DFM, 904, 905 f, 906 f

of VisAD, 678–688

of Visapult, 569–571, 570 f, 571 f

for volume rendering on parallel, 157–158, 514–522

of VTK, 595–596

ARM (Argone III Remote Manipulator), 889

Arrows, stream. See also Glyphs

function of, 283–284

painting layer of, 332–333

Art. See also Illustration; Painting

of design, 781–783

education, 879–881

importance of, 880

inspiration from, 788–790

mimicking, 874–882

perception of reality v., 793–802

prehistoric, 807–808

science and, 870–871, 894–896

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 937

937

Art. See also Illustration; Painting (Continued)

visualization v., 865

workshops, 883–884

ASCI (Accelerated Strategic Computing Initiative)

C-SAFE program of, 609 f, 624–626, 627 f

desktop delivery and, 491, 500, 506, 509

large-scale data visualization and, 533, 538–539, 538t, 547–550

partners, 563 f

VIEWS program of, 563–566

Association rules

function of, 835–837

visualization of, 848, 847 f, 853 f

Astrophysics. See Earth science visualization

Asymptotic decider, 9, 128

Atmospheric data. See also Weather visualization

collaborative simulation of, 651 f

hierarchy, 446 f, 472, 460 f

high-resolution global, 847 f, 863, 863 f, 864 f

history of, 883–884

time-steps, 417–419

Atomic force microscopes (AFMs)

drawbacks of, 904–905

nanoManipulator probing using, 875, 878–880, 882, 896, 910–912,

914

NIMS probing using, 913–914

remote microscopy collaboration with, 912

Atomic Imaging and Manipulation System. See AIMS

Attenuation

hardware-accelerated volume rendering and, 241

preintegrated volume rendering and, 226–227

Attribute transformations, 3–4

AVS (Application Visualization System)

architecture, 668, 669

author template instructions for,

CFD used by, 701

design principles of, 638–639, 656–657

flow visualization using, 697–701

goals, 657

history of,

MVC use of, 671, 674, 689, 692

ParaView and, 730

toolbars,

users, 661–663

Visual Editor, 638, 638 f, 656, 658 f

vortex extraction and visualization using, 682–686, 697–701

weather visualization using, 684–685, 685 f, 469–471

AVS/Express

application building in, 639

archaeological visualization of, 708–711

architecture, 659–665

Cþþ v., 644–645, 645t

control flow of, 663–664, 664 f

Data Display Kit of, 667–669

design goals of, 657

development of, 679

earth science visualization using, 692–697

engineering visualization using, 701–704

event scheduling in, 664–665

execution model of, 663–665

extensions, 667, 685

field data type in, 665–667

glyphs, 701–704, 702 f

GUI, custom, 651 f, 669–671, 669 f

interfaces, 676

LEA module in, 659, 660 f

mesh, 666–667

modules, 667

molecular visualization using, 711–715

multipipe edition of, 669

object manager, 661–663, 662 f

OpenGL and, 668

process model of, 665

rendering, integrated, 671

solar physics visualization using, 695–696

surgical planning using, 704–708

user overview of, 639–640, 657–658

Visual Editor, 656–657, 658 f

weather visualization using, 677 f

Back-to-front process

of compositing, 134–136, 246–247

of rendering, 176–177, 213–214

Backward-mapping algorithms

for hardware-accelerated volume rendering, 241

for volume rendering, 126 f, 133–134, 134 f

Band-limited behavior, 238

Bandwidth. See also Visapult

capability, 494

challenges, 573–582

consuming, 571–573

Battlespace visualization, 482

Bayesian networks, 837

BCC. See Body-centered cartesian

Beam dynamics simulation

challenges of, 898–900

hybrid technique of, 903 f, 923–924, 925 f

interactivity of, 929

misoriented, 925 f

particle conversion for, 930–933

point selection criteria for, 920

preprocessing for, 903–904, 921–922

results of, 905–906, 930–933

viewing, 904–905, 930–933

Bertha flat-panel display, 550, 566

Bifurcation

of parameter dependent topology, 349–350

of parameter dependent vector fields, 335–336, 336 f, 345–346, 346 f

Binary volumes

antialiasing, 114–117

constrained surface nets of, 115

grey-scale embedding of, 111, 111 f, 117 f, 117

narrow-band scheme for, 114–117, 107 f

Biomechanical modeling, 628–630, 647–650

BioPSE (Bioelectric Problem Solving Environment), 603–604, 605 f,

621–622, 621 f, 622 f

Black cell processing, 79

Blobby models, 98

Blood clotting disorders, 898

Body-centered cartesian (BCC) grids, 147

BONO (Branch-on-Need Octree), 45, 62

temporal, 62

Boolean operations

modeling algorithms using, 23, 27

triangle mesh corner table using, 373

938 Index

Bounding box, projected

estimation of, 53–54, 53 f

height of, 52–53, 52 f

Brains. See also DT-MRI

shape metrics of, 331 f

structure of, tensors and, 347, 348

visual system of, 810

Branch-on-Need Octree. See BONO

Brownian motion, 327–328, 906

Brushstrokes, 874–876, 875 f

Butterfly plots, 696–697, 696 f

Butterfly wavelets, 374

BZIP compression, 515, 516, 528 f

Cþþ
AVS/Express with, 662–663, 662 f

ITK with, 739–740, 741

ParaView with, 723

VTK with

Caching, geospatial data, 455–457

Cactus program, 561–562, 564–566, 569 f, 576–577, 579–581, 585 f

CAD (Computer-Aided Design)

model simplification using, 396

variational surface modeling in, 382

Camera space, pipeline for, 230, 230 f

Carbon nanotubes (CNT)

AIMS research of junctions of, 897–898, 898 f

nanoManipulator research of, 910–912, 912 f

NIMS research of, 914

Cartesian grids

for accelerated volume rendering, 144–145, 145 f, 147 f

for climate visualization, 847

CAT. See Clear air turbulence

CAVE (Cave Automatic Virtual Environment), 481–482, 485–486,

485 f

Cave5D

history of, 677–678

simulation, 678 f

weather visualization using, 861

CavePainting, 882, 884

CC. See Cubic cartesian

CCA. See Common Component Architecture

CCM3. See Community Climate Model, Version 3

CCSM. See Community Climate System Model

CDAT (Climate Data Analysis Tools), 850–851

Center for Simulation of Accidental Fires and Explosions. See

C-SAFE

Central differencing

equation, 132–133

gradient, 246

Central Processing Units. See CPUs

Cerebrospinal fluid (CSF), 322, 323

CF convention. See Climate and Forecast Metadata Convention

CFD. See Computational Fluid Dynamics

Chemical structures, 3D, 715–716

Chess-board approach, 72 f, 74 f, 80, 80 f

Christoffel symbols, 387

Chromium software, 565

Clark-Hall model

for turbulence, 858–860, 860 f

for wildfires, 861, 861 f

Clear air turbulence (CAT) visualization, 858–860, 860 f

Clers strings

decompression of, 364–368

triangle types and, 376, 376 f

Climate and Forecast Metadata Convention, 849

Climate Data Analysis Tools. See CDAT

Climate visualization

AccessGrid for, 868–869, 869 f

analysis of, 850–851

data sources for, 848–850

displays, 877–878, 878 f

global atmospheric simulation for, 863, 863 f, 864 f

global warming and grids, 848–850

history of, 845–847, 846 f, 847 f

importance of, 841

models for, 860

oceanography and, 475

tools for, 850–851

VTK for, 851

weather v., 847–848

Clipping

diplopia and, 467

hardware-accelerated

ParaView filter for, 722

preintegrated technique for,

widgets, 209

Cliques, network, 820–821

Clustering

flow visualization using vector, 701

high-dimensional data, 838–840, 840 f, 839 f

simplification, 409

visual data mining using,

CMake, 740, 747

CNT. See Carbon nanotubes

Coherence

global, exploiting, 73–75, 74 f, 75 f

local, 70

Collaborative visualization

AccessGrid for, 868–869, 869 f

by direct manipulation in virtual reality

IRIS Explorer for, 653–654, 666

remote microscope-based, 910–912, 911 f

by SCIRun, 631–632

by simulation, 649–650

Color mapping, 5–7, 5 f, 6 f

eigenvector, 316

HSV, 149, 149 f

for integrals, 211–212

ParaView, 721

perception affected by, 33

for volume rendering, 138

Color-picker widgets, 201

Command/Observer Design, 610–612

Commodity-based scalable visualization, 557–561

Common Component Architecture (CCA), 562–563, 562 f

Community Climate Model, Version 3 (CCM3), 863, 863 f, 864 f

Community Climate System Model (CCSM), 848, 848 f, 849–850

Compositing

back-to-front, 136, 236–237

large-scale data, 566–567

ParaView, 728

ray casting, 238–239

shading, 255

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 939

Index 939

Compositing (Continued)

splatting, 250–253

time reduction for, 558

transparent volumes, 237–238

volume rendering, 248

VolumePro, 247–248

Compression

connectivity, 362–373

cut-border machine, 370–371

Edgebreaker, 362–370

geometry, 361–362

for interactive hardware-accelerated rendering, 514

for large-scale data visualization, 551

methods, 515

for parallel rendering, 524

residue

topological surgery, 370, 372 f

Computational accelerator physics

beam dynamics simulation for, 919–925

electromagnetic field simulation for, 925–935

haloing for effective visualization of, 929–930

illumination for effective visualization of, 929

incremental visualization of, 928–929

interactive visualization of, 933–935

need for,

results of, 923–924

RF waves in, 930, 932

seeding strategy for, 930–933

SOS visualization of, 927–928, 928 t, 935

transparency for effective visualization of, 930, 932 f

Computational Fluid Dynamics (CFD). See also Time-varying data

AVS for,

haptic constraints in, 436

IRIS Explorer for, 646–647, 647 f

large-scale, 646–647, 647 f

perceptualization of, 774, 775 f

SFA application of, 774, 775 f

solid modeling in, 391–392

topological flow visualization in, 341–352

Virtual Wind Tunnel and, 415, 415 f

Computer Tomography. See CT

Computer-Aided Design. See CAD

Computers. See also Desktop delivery of large datasets

components of, 494, 495

data parallelism requirements of, 541, 543

data recording by

display technology for, 487

future of, 507–509

hybrid large-scale data rendering requirements of,

networks for, 501–502

selecting, 505–506

streaming data requirements of, 534–535

task parallelism requirements of, 544

Connectivity mesh compression, 359–373

Content-based space leaping, 237

Continuous hierarchy, 398

Contouring

ambiguity, 9

broken,

complimentary, 9–10, 12 f

creating, 4, 802

cutting data for, 29–31, 31 f, 30 f

examples, 13 f

joined, 11 f

new techniques for, 33

ParaView filter for, 722

recursive meshing and, 64

volume rendering and, 149 f, 152

Control flow, of AVS/Express, 645–646, 664

Convolution. See Line integral convolution

Coordinate transformations, 16–19

Cosmology. See Earth science visualization

CPUs (Central Processing Units)

large-scale hybrid rendering and,

performance of, 478–480, 486, 506–507, 513

CRC. See Cyclic Redundancy Check

Critical-point graphs

constructing, 87–88, 93–94

index of, 334, 334 f, 344, 344 f

planar, 362–370

steady vector field, 354–355

3D, 335, 359

Critiquing visualizations, 861–863, 887

C-SAFE (Center for Simulation of Accidental Fires and

Explosions), 609 f, 624, 627 f

CSF. See Cerebrospinal fluid

CT (Computer Tomography)

for Amira dataset registration, 758–759

for hardware-accelerated ray casting, 240, 240 f

for large-scale data ray tracing, 610–612, 610 f, 611 f, 628 f, 629 f,

628–630

for multidimensional transfer functions, 191–192, 193 f, 194 f,

196 f, 207 f

for mummy scanning, 708

for ParaView datasets, 721–725, 720 f

Cube map dependent texture reads, 201

Cuberilles,

Cubes. See also Marching cubes

dividing, 129

grey-scale volumes of, 116, 117 f

maps, 242

Cubic cartesian (CC) grids, 147, 147 f

Culling

DT-MRI, 327

IRIS Explorer, 651 f

Curvature lines

geometric construction of, 387

nets of, 389, 390–391

surface shape using, 779

Curve interrogation, 385–386

Cut-border machine compression, 370–373

Cutpoints, network, 821

Cutting algorithms, 29–31, 30 f

Cyclic Redundancy Check (CRC), 577, 583

Cystic fibrosis research, 905–906

Dart program, 741

Dash tubes, 266

Data and Visualization Corridors (DVC), 551

Data mining. See Visual data mining, 544

Data parallelism, 546, 544 f, 543 f

hybrid, 544–546

of ParaView, 730

of Visapult, 570 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 940

940 Index

Data streaming

execution time for, 539 f

hybrid, 528–530, 544–546

ITK, 748

for large-scale data visualization, 606–610

memory usage for, 537 f

ParaView, 726–728

VTK, 588–589, 590 f, 606–607, 735 f

Datasets, large. See Desktop delivery of large datasets; Large-scale

data visualization

daVinci stereopsis, 784

DCT. See Discrete cosine transform

DDA. See Digital Differential Analyzer (DDA)

Decimation operations

for adaptive hierarchies, 399 f, 400–401

for modeling, 33–34

for ParaView, 712 f, 730, 730 f

Decision tree visualizer, 837–838

Decomposition

geometric space, 39

image space, 40–41

particle accelerator domain, 926

tetrahedral, 160 f

value space, 40

Decompression

clers string, 373–376

Deering hardware, 371

Spirale Revers, 367, 368 f

Wrap&Zip, 362–370

Deformation. See also Level-sets

architectural, 704–708

isosurface, 97, 99–100

Degenerate points

pairwise annihilation of, 349, 350 f

of tensor field topology, 339 f, 346–350, 354 f

Delaunay triangulation, 384

Delta encoding, continuous hierarchy for, 398

Dependent texture reads, 202

cube map, 203

Depth perception, 768–770, 790–793

Design

Amira goals for, 750

art of, 783

AVS principles of, 638 f, 656–657, 656 f

Command/Observer, 604–605

glyph, 332

Hamiltonian principle of, 384

ITK principles o,

LUT, 3–5, 189–190

nanoManipulator, 914–916

painting education for, 887–888

ParaView, 729, 730

particle accelerator, 932

scientific visualization painting, 858–861, 859 f, 860 f, 876–879,

880 f, 876 f

supercomputer, 501

time-critical, 138, 146, 413–416, 429–430

variational modeling, 381

vehicle, 481

widget, 421

Desktop delivery of large datasets

ASCI use of, 487, 489, 491, 494, 505–507

computer components for, 478–479, 494–495

distance communication and, 497–500

enterprise considerations for, 506

future of, 507–509

HDTV and, 507

human factors affecting, 496

machine selection for, 505–506

market forces affecting, 481, 497

networks, 479–480, 507–509

problems with, 477–478, 509

production system, 484–485, 500–501

servers, 502–505

weather visualization and, 861–862

DI (Digital Instruments), 900

Diana, Hurricane, 854, 854 f

Diffusion Tensor Magnetic Resonance Imaging. See DT-MRI

Diffusion tensors

classification of,

eigenvalues of, 315–316

ellipsoids as, 332–333

haptic constraints on, 436–441, 437 f

oriented reconstruction using, 313–315

scientific basis of, 327–329

shape metrics of, 331

Diffusion-weighted image (DWI), 328

Digital Differential Analyzer (DDA), 136, 144

Digital Instruments. See DI

Diplopia, 467

Direct manipulation in virtual reality

advantages of, 426–427

collision detection in, 420–421

data-analysis pipeline for, 400, 400 f, 411–412, 414, 425–426

distribution strategies for, 425–426

human factors requirements for, 417–419

indirect v., 429

input devices for, 417–419

probing operations for, 436

remote collaboration strategies for, 426–427

scientific visualization, 427–428

system architecture of, 424–425

time flow of, 421

time-critical techniques of, 427–430

user commands in, 426–427

widgets, 182–183, 189, 189 f, 202, 207 f, 208, 402–403, 407,

422–424, 434

DirectX, 290

Discrete cosine transform (DCT), 516

Discrete hierarchies, 405

Disk drives, 497–500

Displacement plots

time animation and, 16

vector, 15–16, 16 f

Displays

AmiraVR, 748 f, 761–763, 762

climate visualization, 845–847, 848–849

flat-panel, 491–493, 507–509, 549–550, 563–566

GeoWall, 849, 850 f, 867, 867 f

head-mounted, 901

multimodal, 480–481, 487

network, 803–804, 804 f, 827–828, 827 f

‘‘power wall,’’ 761–763

technology,

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 941

Index 941

Displays (Continued)

VGIS interactive,

VisAD components of, 685

weather visualization, 848–849, 849 f, 861–862, 862 f

Distributed Parallel Storage System (DPSS), 555–557, 556 f,

571–573, 572 f

Dividing cubes algorithm, 129

DLIC. See Dynamic line integral convolution

Dolt buttons, 752

Doppler radar analysis, 460–462

computer model data v., 854–856

of turbulence, 865

Double-decker plots, 819 f, 835–837, 837 f

DPSS. See Distributed Parallel Storage System

Drawing. See Illustration

DT-MRI (Diffusion Tensor Magnetic Resonance Imaging)

brain structure distinguished by, 313

eigenvector color maps for, 320–322, 323 f, 346–350

function of, 327

glyph approach to, 337–338, 334 f, 336 f

haptic constraints on, 427–429, 436–441

modeling, 338

open issues of, 337–338

origin of, 327–329

results, 335–337

scalar metrics approach to, 329–331

seeding and culling schemes for, 337

tasks of, 327

tractography approach to, 325 f, 335 f, 335–335

validation of, 338–340

volume rendering, 325–327, 326 f, 327 f, 335–337, 336 f,

336 f

Dual-domain interaction

function of,

probing and, 190, 191 f, 198, 199 f

Dumping, data, 842

DVC. See Data and Visualization Corridors

DWI. See Diffusion-weighted image

Dye advection, 287

Dynamic line integral convolution (DLIC). See also Line integral

convolution

for flow textures, 287

for flow visualization, 283

Early ray termination

hardware-accelerated, 252

template-based method of, 144

volume rendering using, 136

Earth Observing System (EOS), 849

Earth science visualization

AVS/Express for, 692–697

modeling, 864–865

problems with, 692

of seismic tomography, 692–694, 693 f

virtual reality based, 483

Earth Simulation Center, 551, 871

Earth System Modeling Framework (ESMF), 871

Echo, spin, 328

Edgebreaker compression

clers decompression after, 367–371, 368 f, 370 f

comparisons to,

execution of, 365

pseudo-code for, 363, 363 f, 369

triangle types for, 363–364, 370 f

TST, 362–363

Edges

collapse of, 33, 33 f, 400

detection algorithms for, 192–194

tracking, 8–9

TST, 370

VST, 370–371

Editing, surface, 114

EEG (electroencephalography), 603, 621, 623 f

Efros algorithm, 805

Eigenvector algorithms

color maps using, 331–332

of diffusion tensors, 327–329

DT-MRI visualization using, 331–332

of tensor-field topology, 346

vortex detection using, 297–298

Electroencephalography. See EEG

Electromagnetic field visualization

approaches to, 925–927, 927 f, 931

field line representation for, 927–928, 927 f, 928 t

parallel rendering for, 925, 927 f

results of, 930–931

Ellipsoids

diffusion tensor, 332–333

painting layer, 878

tensor, 21–22, 23 f, 329 f

Elliptical Weighted Average (EWA), 140, 252, 252 f

Embedding, 97

dynamic level-sets using, 102

evolution terms for, 98 t, 104 t

grey-scale, 117, 117 f

Endovascular surgical planning (ESP)

application development for, 704–705

AVS/Express for, 704–707

heart-valve replacements by, 647–650, 648 f,

649 f

Engineering visualization

AVS/Express for, 701–703

painting education with, 888

virtual reality based, 483

EnSight Gold, 563–564

EOS. See Earth Observing System

Error metrics

for adaptive hierarchy simplification, 396

object space, 404 f

screen space, 404 f

VHW, 431

visual tolerance for, 811

ESMF. See Earth System Modeling Framework

ESP. See Endovascular surgical planning

Euclidean space, 262

Euler

integration, 17, 18 f

texture advection, 270

EWA. See Elliptical Weighted Average

Explicit congestion control protocol. See XCP

Exploration. See Scientific visualization; Visual data mining

Extinction coefficients, 211–212

Extrema graphs

boundary cell collection for, 90

construction of, 89

isosurface propagation using, 86–94

942 Index

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 943

Extrema skeletons

image-thinning method for generating, 91

isosurface propagation using, 89–93

numerical feature extraction using, 93–94

volume-thinning method for generating, 86 f, 88 f, 91–93, 92 f, 94 f

Eyegaze patterns, 795–796, 811–813

Face-centered cartesian (FCC) grids, 144–149, 147 f

Fakespace system, 432, 432 f

Feature lines, 773 f, 786–790, 791 f

Feedback. See Force-feedback devices

Fiber tracing. See also Particle tracing

tensor reconstruction using, 313, 314 f

VHW for, 431, 432 f

Fibre Channel, 496, 501

Fidelity, virtual reality, 486

Filters

AVS/Express, 714

hardware-accelerated volume rendering, 241–245

ITK, 747–748

ParaView, 726–728

for tensor reconstruction, 313, 314 f, 323 f

types of, 4–5

for volumetric function interpolation, 123 f, 130–133, 130 f

VTK, 610, 612

Finite-element post-processing, 760

Fires

SCIRun visualization of, 624–626, 627 f

weather visualization for, 842–843, 843 f, 844 f, 860–862, 861 f,

862 f

Floating point operations (FLOPs), 494

Flow textures

advection types for, 279–281

algorithm overview of, 295–296

challenges of creating, 281

DLIC for, 284–285, 288

hardware, 289–292

IBFV for, 275, 276 f, 280, 282–283, 290–291, 292, 288 f, 284 f

inflow boundaries of, 288–289

LEA for, 276 f, 280, 283–284, 288, 288 f, 291–292

particle features and distribution for, 281–282

particle implementation for, 285–289

post-processing, 292

spatial correlation of, 283–285, 287–289

temporal correlation of, 279, 286–287, 288

to time surface advection, 280 f

trajectory of, 281, 281 f

Flow visualization. See also Vortices

Amira for, 746–747, 747 f, 756–757, 756 f

AVS for, 682–686, 710–711

classification of, 263

closed orbits for, 354

critique, 882–886

degenerate points of, 352

feature-based, 271–273

high-resolution, 279–293

image-based, 270, 283–285

LIC techniques for, 271 f, 268–271

mathematical description for, 271–273

nonlinear topology for, 352, 352 f

oil recovery research using, 644–646

painting techniques for, 867, 879–881, 876 f, 875 f

particle tracing techniques for, 265–268

point-based direct, 263–265

seed-sets for,

shock waves for, 271–273

simulation-based solid modeling and, 379–380, 391–392

splatting for, 271

spot noise technique for, 282

streamlines and, 19–20, 19 f, 20 f

tensor field topology for, 346–350

time-dependent, 272

topological methods for, 271, 341–355

vector field topology for, 268, 342–346, 349

volume and,

warping and, 13, 14 f, 15, 16 f

weather application of,

Fluid dynamics. See Computational Fluid Dynamics

Fold bifurcation, 346

Footprints. See Splatting

Force microscope, 898–900, 896 f, 897 f, 902 f, 905

Force-feedback devices, 420, 909–910. See also Haptic rendering

Fortran, 638

Forward-mapping algorithms

for hardware-accelerated volume rendering, 232–233

octrees for, 146

for volume rendering, 143–144

4D, isosurface extraction in, 64–67

Framebuffer, isosurface extraction, 50–51

Fuzzy Connectedness, 743–744, 744 f

Gaming systems, 565

Gaps shadowing technique, 784–786, 785 f

Gaussian algorithm

for feature lines, 790

global, 863

for isosurface deformation, 100

for volumetric function interpolation, 130

GCMs. See Global circulation models

GDL. See Geometry Data Limit

Gene therapy research, 897

Genesis program, 617, 618 f

Genome visualization, 482–483

Geodesics

algorithm of, 401–402

on discrete surfaces, 388–389

geometric construction of, 387

mathematical definition of, 386–387

nets, 377 f, 390–391, 391 f

variational modeling using, 386–390

Geographic Information Systems. See VGIS

Geometry

Amira reconstruction of, 756, 757 f

differential, fundamentals from, 390–391

drawbacks to using, 129–130

flow visualization of, 107–111

geodesic, 387

LODs using, 712, 713

modeling, 22–23

simple, 22–23

space leaping based on, 249

supporting, 23

task parallelism using, 540

transformations, 3

triangle mesh compression using, 373–376

volume rendering via, 120–121, 121 f, 134–138, 134 f

Index 943

Geometry (Continued)

vortex detection verification using, 307–308, 307 f

widget, 421

Geometry Data Limit (GDL), 499

Geometry, isosurface. See Level-sets

Geospatial data

caching, 455–457

growth of, 450

hierarchy, 453–455, 455 f

interactive visualization of, 449–450

organization of, global, 452–457

paging, 455–457

GeoWall, 867, 867 f

Gestalt theory of visual perception, 788

GGTC. See Global Grid Testbed Collaboration

GIS (Geographic Information Systems). See VGIS

Global circulation models (GCMs), 845–846, 846 f

Global Grid Testbed Collaboration (GGTC), 579–582

Global space, navigation in, 464–466, 464 f

Global warming, 689–692, 691 f, 693 f, 700

Globus middleware, 651

Glyphs

AVS/Express module for, 701–703, 702 f, 703 f

designing, 337

direct flow visualization using, 265, 265 f

DT-MRI visualization using, 332–333, 332 f, 333 f, 334 f, 336 f, 337

hedgehogs as oriented, 13–15, 14 f

icon classification of, 29

modeling algorithms using, 28–29, 29 f

ParaView filter for, 722

perceptualization, 773–774

superquadric, 332, 332 f

tensor, 22, 331–332, 332 f, 333 f

vortex visualization using, 699

GPU (Graphical Processing Unit), 289–290

Grab points, 421–422

Gradient estimation

filters for, 232–233

ray casting, 220

splatting, 250–251

texture slicing, 241–243, 246

VolumePro, 246, 247

GrADS (Grid Analysis Display System), 850

Graphical Processing Unit. See GPU

Graphical user interface. See GUI

Graphics

cards, 505, 511, 557–558

drivers, 565

libraries, 633, 655, 694, 696

Linux, 565

painting, computer, 884–885

time-critical, 428

update rate, 418–419

volume, 127

VTK, 596, 597, 596 f

Grey-scale volumes, of cubes, 117, 117 f, 118 f

GRIB (Gridded Binary) data, 849

Grid Analysis Display System. See GrADS

Grids

cartesian, 147–148, 147 f, 148 f, 849

climate visualization, 847–848

curvilinear, 127

hurricane, 852–853, 853 f

IRIS Explorer transport to, 651–652, 651 f

irregular, volume rendering of, 158–160, 159 f, 160 f

rectilinear, 128

for sparse-field schemes, 109 f, 110 f

structured, isosurface extraction from, 77–80

tornado, 856–857

unstructured, isosurface extraction from, 75–76

visualization based on, 588

weather visualization, 847–848

GUI (graphical user interface)

Amira, 753

AVS, 667

AVS/Express, 669–671, 669 f, 670 f

indirect manipulation, 416

IRIS Explorer, 636

ParaView, 717, 721, 723, 725

VisAD, 682–684, 683 f, 684 f

VTK and, 594, 604–605, 610

widgets, 421

Hadley Centre, 689–693, 700

Halos

beam dynamics, 920

particle accelerator visualization, 932–933

visibility-impeding, 785–786, 786 f

Hamiltonian principle, of variational design, 384

Haptic rendering. See also Visual Haptic Workbench

constrained

motion rules for, 439–440

nanoManipulator, 896–897

for scientific visualization, 435–436

transfer functions, 439–440

Hardware

Deering decompression for, 371

dependent texture reads for, 202

flow textures

IBFV, 290–291

LEA, 291–292

multidimensional transfer functions, 191

preintegrated volume rendering, 222

render to texture, 205

shading, 201

shadows, 203–205, 204 f

transfer function classification, 199–200

virtual reality, 479

volume rendering, 127, 155–157, 191

Hardware-accelerated volume rendering

classification, 234

clipping using, 238

coordinate systems of, 229–230

data traversal for, 233

early ray termination using, 237

gradient estimation for, 233–234

image-order techniques for, 232

integrals for, 231–232

interactive, 514–523

interpolation of, 233

object-order techniques for, 232–233

polygon mixing for, 238–239

preintegrated, 238

ray casting for, 239–241, 239 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 944

944 Index

RGB values for, 234

shading using, 235–236, 235 f

shear-warp algorithm for, 245–250, 246 f

space leaping using, 237–238

splatting using, 250–253, 251 f

texture slicing for, 241–245

time-varying data of, 514–523

transfer functions for, 234–235

transformations for, 230–231, 230 f

Hash tables, 86, 86 f

HD Eye System, 840–841, 840 f

HDF. See Hierarchical Data Format

HDTV (high-definition television), 507

Head-mounted displays (HMDs), 901

Heart-valve replacements, 647–650

Hedgehog technique, 13–15, 14 f

Helicity algorithm, 297

Herb, Typhoon, 854–856, 855 f, 856 f

Hessian algorithm, 192

Hierarchical Data Format (HDF), 849

Hierarchical Level of Detail. See HLOD

Hierarchical Volume Renderer (HVR), 853–854, 853 f

Hierarchies

adaptive, 400–401

atmospheric data, 460, 460 f

building, 399–400

continuous, 398

discrete, 397

geospatial data, 452–453

global, 453–455, 453 f, 455 f

hybrid, 402–403

regular, 401–402

rendering efficiency of, 406

scene management of, 405–406

scenes and, 399

types of, 396–399, 397 f

view-dependent, 398–399, 398 f

High Performance Network Bandwidth Challenge, 573–582. See also

Visapult

High-definition television. See HDTV

High-dimensional data

clustering, 838–841, 839 f, 840 f

interactive visualization of, 833, 833 f

triangulation tables for, 65–66

volume rendering, 160

HIPIP (high-potential iron-sulfur protein), shadowing using,

Histograms

HD Eye system’s use of, 840

volume rendering, 150–151, 150 f, 151 f, 192–194, 193 f

HLOD (Hierarchical Level of Detail)

attributes, 399, 399 f

selection, 405

HMDs. See Head-mounted displays

Hopf bifurcation, 346, 346 f

HSV (Hue, Saturation, Value) color, 149

Hue, Saturation, Value. See HSV

Human factors

desktop delivery affected by, 496

direct manipulation affected by, 417–419

microscopy visualization affected by

visual data mining affected by, 832–834

Humans. See Brains; Mummy Visualization; Perceptualization

Hurricane visualization, 845–846, 852–854, 853 f, 854 f

HVR. See Hierarchical Volume Renderer

Hydrocarbon exploration, virtual reality visualization of, 485–486

Hyper Reeb graphs, 152

IASB. See Image-aligned sheet-based splatting

IBFV. See Image-based flow visualization

IBR. See Image-based rendering

ICE-T, 565

Icons. See Glyphs

ICP. See Iterative closest point

IDV. See Integrated Data Viewer

IEEE Visualization, 655, 884

IL. See Image Vision Library

Illumination

NPVR techniques of,

particle accelerator visualization using, 929

Phong, 930

streamline, 659, 660 f

viewing ray

visual attention and, 811

Illustration

ambiguity in

environmental control through,

feature line,

importance of,

mesh,

perceptualization using, 773–778

photography v.,

rendering approaches, 776–778, 776 f

sketching for virtual reality as,

techniques, 760, 776

Image registration

Amira, 740, 754, 758–759

elastic, 759

ITK, 745–746, 745 f, 746 f

Image Vision Library (IL), 642–644

Image-aligned sheet-based (IASB) splatting

shadow algorithms using,

Image-based flow visualization (IBFV)

equations, 283

function of,

hardware, 290

for textures,

Image-based model simplification, 403

Image-based rendering (IBR)

Visapult for, 569–570

volume rendering assisted by, 148–149, 149 f

Image-order techniques

for hardware-accelerated volume rendering, 229

for volume rendering, 134–138, 134 f

Image-thinning method, for extrema skeleton generation, 91

ImmersaDesk, 479–480

Immersion. See also Visual Haptic Workbench

defined

interaction techniques for, 433–434, 434 f

perception, minimal, 773–774

software framework for, 434

Implicit functions

data selection for, 25–26, 26 f

defined, 24

mathematical descriptions for

Index 945

Implicit functions (Continued)

modeling objects using, 24–25, 25 f

volumes for, 97–99, 98 f

Incremental textured depth mesh. See ITDM

Incremental visualization

of computational accelerator physics, 928–929

preintegrated, 233

InfiniteReality2 (IR2), 544–546

Information visualization

approaches to, 835–837, 835 f

classification of techniques for, 832 f, 831–832

decision trees and, 837–838

examples of,

need for, 860

Insight Toolkit. See ITK

Inspiration, from art, 781–783

Integrals, volume rendering

evaluation of, 211–212

hardware-accelerated, 229

numerical integration of, 205 f, 207 f, 212–214

phase portrait of, 341

pre- and post-classification of, 234

shading using, 240

viewing ray intensity for, 231–232

Integrated Data Viewer (IDV), 686

Integration. See also Preintegrated volume rendering

of flow texture particles, 289

tensor algorithms for,

vector algorithms for, 13, 14 f

Interaction

Amira, 749–770

dual-domain, 198, 199 f, 200

immersive visualization, 433–434

molecular visualization, 711–712

multidimensional transfer functions and, 189–210, 193 f, 194 f

probing and dual-domain, 198, 199, 208

responsiveness, 419

scalable network visualization and, 819–829

time flow and, 422–424

VGIS, 462–464

Interactive visualization

beam dynamics simulations using, 919–920

computational accelerator physics and, 919, 919–936

geospatial, 462–464

hardware-accelerated rendering, 514–515

high-dimensional data for, 832, 833 f

image quality in, 808

ray tracing and, 627–628

simplification of, 393–394

terrain, 394

Vis5D, 673–677

Internet Protocol. See IP

Interoperable visualization, 561–563

Interpolation

nearest neighbor, 233

ray casting, hardware-accelerated, 239

second-order, 131

segmentation, 745

splatting, 250–251

tensor, 316

texture slicing, hardware-accelerated, 241, 250

tri-linear, 241

VolumePro, 248

volumetric function, 130–133, 130 f

zero-order, 130

Interval trees

chess-board approach and, 80

coherence exploitation by, 73, 74 f

for NOISE, 42

for optimal isosurface extraction, 69–73

in span space, 72 f

structure of, 73

IP (Internet Protocol) networks

traffic of, 807 f, 808 f, 825, 825 f, 826 f

transmission types of

IR2. See InfiniteReality2

IRIS Explorer

application building using, 639–640, 640 f, 643, 643 f

application distribution in, 652

CFD using, 638

collaborative visualization using, 630, 640–641

data types of, 635

development of,

grid-based, 650–651, 651 f

GUI tools of, 636

medical visualization using

module building using, 639

module grouping in, 639–640, 640 f

NAG libraries for, 644

oil recovery research using, 644–646, 645 f

Open Inventor in, 641–642

overview of, 636

software underlying, 641

steering, 650–651, 651 f

web visualization using, 642, 643 f

Isosurface extraction. See also Level-sets; NOISE

acceleration methods of, 39

chess-board approach to, 80

examples of, 7

4D, 64

geometric search for, 41

holes and, 9–10, 12 f

interval search for, 42

optimal, 69–82

ParaView filter for, 708

span space for, 41–42

from structured grids, 77–80

temporal hierarchical index tree for, 58, 59 f

time-dependent, 57–67

from unstructured grids, 75–77

view-dependent, 48–54

Isosurface propagation

accelerated, 86–87, 87 f

algorithms, 84, 85 f

extrema graphs for, 87–90

extrema skeletons for, 90–93

polygon-vertex identification for, 85–86, 86 f

pseudo-code for, 88 f

Isosurface rendering

LUTs for, 222–223, 223 f, 224 f

multiple, 224, 225 f

preintegrated volume rendering and,

shaded, 223–224, 225 f

of typhoons, 854–856, 855 f

946 Index

Isosurfaces

deformable, 97–99

editing, 114

implicit models for volumes of, 97–99, 98 f

morphing, 111–112, 112 f, 113 f

preintegrated, 222–224

processing, 120

reconstruction of, 117–120

salinity, 541, 544 f

second-order structure of, 99–100

surface normals of, 99

task parallelism production of, 540 f

vertices, 69

volume rendering using,

Isotropy

definition of,

texture, perception of,

ITDM (incremental textured depth mesh),

404 f

Iterative closest point (ICP), 745

ITK (Insight Toolkit)

accessibility to,

API, 737

architecture, 738, 739

Cþþ and, 739–740, 741

Cable for, 740–741

classes, 742

CMake and, 740, 747

code, supportable, 737–738, 740

data streaming

design principles of, 736–738

development of

filters, 742–743

goals of

language, 737, 740–741

mesh, 742

NLM and, 733

open-source, 736

partners of, 735–736

pipeline, 734, 735

platforms, 737, 740

programming, 739–740

references, 748

registration framework of, 745–746, 745 f,

746 f

segmentation, 734, 735 f, 738, 743–744, 744 f

templates, 739–740

3D support in, 738

XML configurations in, 741

Jaggies, 114, 117

Java, 685

JPEG-2000, 525–527, 528 f

Kd-trees, 42, 44 f

construction of, 43–44

pointerless, 45–46, 45 f

query for, 44–45

span space search using, 43–44, 43 f

volume rendering by, 129, 129 f

Kernels. See Splatting

Knapsack Problem, 405

Lagrangian-Eulerian Advection. See LEA

Lambda2 algorithm, 288 f, 298–299

LAN (local area network)

desktop delivery system using, 500–501, 500 f

nodes, 503, 503 f, 504, 504 f

Laplacian algorithm, 192, 755

Large-scale data visualization. See also ParaView

architecture for, 556–557, 556 f, 558 f

ASCI and

commodity-based scalable, 557–561

component-based solutions to, 561–563, 562 f

compositing, 558–561

compression-decompression for, 539

computer requirements for, 535–536

CT, 628–629, 629 f

data exploration for, 552–554

data parallelism for, 541, 543, 543 f, 544 f

defined, 534

hybrid systems of, 544–546

interoperable solutions to, 561–563, 561 f

migration of, 555t

module network for, 535, 535 f

multiresolution data for, 553

oceanography and,

optimization of,

ParaView requirements for,

pipeline parallelism for, 540–541, 542 f

problems with,

process, 552 f

rendering, 547–549

scalable solutions for, 554, 557–561

simulation runs for, 554–555, 554 f

software, 563–566

sorting algorithms for, 547–548, 559 f

statistics, 554–555, 554t

streaming for, 535–537, 537 f

task parallelism for, 537–541, 540 f, 539 f

techniques of, 533–534, 544 f

VIEWS program for, 563–566

Latency, 418–419

Lattice index (LI), 330

Lattices

cartesian, 146–147, 147 f, 148 f

diffusion tensors averaged by, 331

elements of, 59, 59 f, 60 f

as IRIS data

LEA (Lagrangian-Eulerian Advection), 270

AVS/Express’ use of, 659, 660 f

equations, 289

flow textures using, 283, 284, 284 f, 289

hardware

Learning

supervised, 837

unsupervised, 838

Leung algorithm, 799

Level of detail. See LOD

Level-sets

advantages of, 102–103

antialiasing binary volumes using, 114–117

deformation modes of, 103

dynamic, 102–103

editing surfaces using, 114–115

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 947

Index 947

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 948

Level-sets (Continued)

morphing using, 111–112, 112 f, 113 f

narrow band schemes for, 106–107, 107 f

numerical methods for, 103–104

PDE of

reconstruction and processing using, 117–120

sparse-field schemes for, 107–111

static, 101

terms for, 104–106, 104t

upwind schemes for, 104–106, 105 f, 107 f

LI. See Lattice index

Libraries, graphics, 633, 637, 655

LIC. See Line integral convolution

LIDAR, 450–452, 459, 473–474

Light

illumination equation for, 135, 152–154

perceptualization of, 773

projective textured, 230–231, 230 f

shadow hardware and, 152–154, 203–205,

206 f

sources of, 203

Line bundles, 268–271

Line integral convolution (LIC)

flow textures, 279

flow visualization, 265 f, 268–271, 885

painting, 885

shape clarification using, 788, 789 f

visibility-impeding halos using, 784–786

visual experiments with, 801, 801 f, 797

Linear interpolation. See Zero-order interpolation

Lines

curvature, 390–391

feature, 786–790, 791 f

overlapping, 784–786, 784 f, 786 f

reflection, 385–386, 385 f

tensor, 347

time, 265

Linux graphics, 565

Lloyd-Max Quantization, 518

Local area network. See LAN

LOD (level of detail)

examples of, 396 f

geometric, 726–728

ParaView, 726–728

performance management, 405

scene management of, 405

selection, 404–405

in simplification hierarchies, 396–397, 397 f

terrain, 457–458

triangle mesh, 373

VTK, 597

Login nodes, 503, 503 f

Lookup tables (LUTs)

accelerated preintegration by, 219

designing, 5–7, 5 f, 6 f

isosurface rendering, 222–225, 223 f, 224 f

kernel footprint, 138–141

for multidimensional transfer functions, 189

Lorenz equations, 26, 27 f

Los Angeles Project, Virtual, 450, 451 f, 451 f

Low-albedo optical model, 134–138

LUTs. See Lookup tables

LZO compression, 526, 527

Magnetic beads, 904–907

Magnetic fusion, 623–624, 625 f, 626 f

Magnetic Resonance Angiogram. See MRA

Magnetic Resonance Imaging. See MRI

Manchester Visualization Center (MVC), 689

Manipulation. See Direct manipulation

Manuscript development, 674

Maps. See also Color mapping

Aleph, 811

backward image-order, 134–138, 232

cube, 203

forward object-order, 138–141, 146, 232–233

projective, 222–223, 223 f, 230–231, 231 f, 876, 893

reflectance, 240

saliency, 810–811, 814

SOS bump, 927, 928t

task, 813, 814

Visapult ‘‘weather,’’ 578–582, 582 f

Marching cubes

arbitrary cases of, 10 f

CFD, 636–638

complementary cases of, 7–11, 8 f, 12 f

contouring examples using, 13 f

data streaming using, 535

function of, 6 f, 16–19

isosurface extraction acceleration by, 39

time-critical computation of, 429–430

volume rendering using, 120–121, 127

Marr-Hildreth edge-detecting algorithm, 192

Marschner-Lobb volumetric test function, 130–133, 132 f

Masking

painting layer, 879

unsharp, 120 f

Maximum intensity projections (MIPs)

preintegrated volume rendering using, 220

surgical planning using, 608, 626, 689, 704

volume rendering using, 134, 134 f

Maximum vorticity algorithm, 301–302, 302 f

MDP. See Metacomputing Directory Service

Medical visualization. See also specific types of medical visualization

systems

Amira for, 756–757

illustration for, 774–778

IRIS Explorer for, 642, 646–647, 645 f, 647 f

model simplification of, 394

SCIRun for, 621, 621 f, 625 f, 624–626

Memory

beam dynamics simulations use of, 906 f, 920, 924 f

geospatial hierarchy, caching and paging, 455–457

haptic rendering and, 435–436

streaming data use of, 537 f

terrain management of, 406

video, 406, 515

Vis5D management of, 675

VTK management of, 604–605

MEMS (MicroElectroMechanical Systems), 909

Mesh. See also Compression; Triangle mesh

AVS/Express, 665

feature lines for, 790, 791 f

illustrating, 786 f

ITK, 742

principal directions of, 797, 797 f

textured depth, 403, 404 f

948 Index

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 949

Mesoscale Model Version 5. See MM5

Metacomputing Directory Service (MDP),

587

Meteorology. See Weather visualization

MicroElectroMechanical Systems. See MEMS

Microscopy

AIMS, 889–891, 894, 907–909

Amira visualization of, 744 f, 756–757, 758 f

HMDs for, 901

human importance to, 896

interfaces for, new, 893–894

nanoManipulator, 893, 894, 894 f

NIMS, 884–886, 894, 902–904, 896–900

real-time rendering of, 898–899

remote, 909–913

3DFM, 894, 904–907

visualization systems of, 893–894

MineSet

association rule visualizer of, 836, 836 f

decision tree visualizer of, 838 f

Mining techniques. See Visual data mining

MIPs. See Maximum intensity projections

MLS (Moving Least Squares), 316–319, 316 f, 318 f,

321 f

MM5 (Mesoscale Model Version 5)

development of, 846

fire visualization using, 860–861, 861 f, 862 f

hurricane visualization using, 852–856, 853 f, 854 f

typhoon visualization using, 854–856, 855 f, 856 f

Model simplification

application of, 393–394

CAD, 396

hierarchy building for, 399–403

hierarchy management for, 403–406

hierarchy types for, 396–399

LOD selection for, 404–405

medical visualization for, 394–396

rendering efficiency after, 406

scanned visualization for, 394

scientific visualization for, 394–396

synthetic visualization for, 396

terrain visualization for, 394

Modeling, 2, 20

biomechanical, 647–650, 648 f, 649 f

boolean operations for, 27, 28 f

cutting technique using, 29–31

distance functions for, 27–28, 28 f

DT-MRI, 338

earth system, 864–865

glyphs for, 28–29, 29 f

implicit, 23 f, 24–27, 26 f, 27–28, 31, 33

physically based, 384

pipeline, 382

probing data for, 31–32, 31 f, 32 f

reducing data of, 30 f, 31 f, 32–33, 32 f, 33 f

Schreiber, 383

simulation-based solid, 391–392

source objects for, 22–24

variational, 381–392

VGIS, 450–452

for volumes, 97–99

Modular Visualization Environments. See MVEs

Molecular visualization

Amira for, 749–751, 763–765

AVS/Express for, 711–715

hierarchical approach to, 714

interaction, 712

properties of, 713

readers for, 698 f, 713

structure of, 712

Monte Carlo simulations, 152–154

Moore’s Law, 507, 557, 567, 583

Morphing, level-sets for, 111–112, 113 f

Mosaic plots, 836, 837 f

Motion

flow momentum, 15, 16 f

streamlines for, 19–20, 19 f, 20 f

time animation and, 15 f, 16–19, 17 f

vibration analysis of, 15–16, 16 f

’’Mountain’’ function, 320

Moving Least Squares. See MLS

MPK. See Multipipe Toolkit

MRA (Magnetic Resonance Angiogram), 708

MRI (Magnetic Resonance Imaging). See also DT-MRI

for Amira dataset registration, 758–759

ITK use of, 745, 746 f

multivariate data and, 194

Multidimensional transfer functions

classification of, 202–203

CT datasets for, 192–194, 193 f, 194 f, 206 f,

207 f

edge-detecting algorithms and, 192–194

hardware volume rendering for, 191, 201–205

interaction techniques for, 196–201

lookup tables for, 189

multivariate data using, 194–196

role of, 191–192

scalar data for, 192–194

tools for, 196–201

use of, 189–190, 191–192

widgets using, 189–190, 190–193, 197 f, 196–201

Multipipe Toolkit (MPK), 669

Multiresolution data

large-scale data visualization using, 553

SCIRun, 623–624

VGIS, 457–458

‘‘Mummy 1766,’’ 708–710, 709 f

Mummy visualization

case studies of, 708, 709 f, 710 f, 711 f

importance of, 708–709

scanning problems for, 708

Mutual Information transformation, 745, 746 f

MVC. See Manchester Visualization Center

MVEs (Modular Visualization Environments). See also IRIS

Explorer

development of, 634

pipeline, 634, 635 f

NAG, 633, 644. See also IRIS Explorer

nanoManipulator (nM)

AFM probing, 894, 896–897, 899

architecture of, 883–884

augmentation of, 894

blood clotting research using, 898, 899 f

calibration of, 900–901

carbon nanotube research using, 902

Index 949

nanoManipulator (nM) (Continued)

design of, 900–901

development of, 894

features of, 900–901

function of,

haptics of, 899, 898–900, 900

remote collaboration with, 910–912

virus particle research using, 897, 897 f

Nanometer Imaging and Manipulation System. See NIMS

Nanoscale junctions, 890 f, 908–909, 908 f

Nanoscale Science Research Group (NSRG)

methods, 904–905

nanoscale junctions work of, 908

philosophy, 894–896

visualization systems, 876 f, 893–894

Nanotechnology. See Microscopy

Nanotubes, carbon

AIMS research of junctions of, 907–909, 908 f

nanoManipulator research of, 896–897, 896 f

NIMS research of, 903

Narrow-band schemes, 101 f, 106–107, 107 f

for binary volume antialiasing, 111 f, 112 f, 114–117, 117 f, 118 f

National Center for Atmospheric Research. See NCAR

National Center for Supercomputing Applications. See NCSA

National Library of Medicine (NLM), 722, 733, 736

Navigation

ParaView, 723–725

VGIS, 462–464

NCAR (National Center for Atmospheric Research), 845, 846, 850

NCSA (National Center for Supercomputing Applications)

MEAD of, 866–868

weather visualization by, 846, 848, 866

Near Optimal Isosurface Extraction. See NOISE

netCDF (Network Common Data Form), 849

Netlogger, 572

Nets

constrained surface, 115

curvature line, 379 f, 386–387

geodesic, 377 f, 389–390, 388 f

Network Common Data Form. See netCDF

Network interface cards. See NICs

Networks. See also Scalable network visualization; Visapult

bandwidth challenge over, 573–582

Bayesian, 837

cliques in, 820–821

computer, 495–496

cutpoints of, 821

desktop delivery, 495–496, 501–502

display problems of, 821–822

future of, 586–588

interconnected, 496

IP, 495–496

large-dataset module, 523 f, 534, 534 f

node measures in, 820

parallel, 502

properties of, 820

remote microscopy latency of, 909–910

structure visualization for, 809 f, 827, 827 f

substructure of, 820–821

visual metaphors for, 821–822

visual scalability of, 823–824

Newton-Raphson iteration, 438

Next Linear Collider (NLC), 925

NICs (network interface cards), 496, 501

NIMROD package

for C-SAFE, 624–626

for magnetic fusion study, 623–624, 625 f, 626 f

NIMS (Nanometer Imaging and Manipulation System)

architecture of, 885

carbon nanotube research using, 903

development of, 894, 894 f

SEM probing, 894, 902–904

TAMS and, 902–903, 903 f

NLC. See Next Linear Collider

NLM. See National Library of Medicine

nM. See nanoManipulator

NMR (Nuclear Magnetic Resonance)

discovery of, 328

mummy scanning, 708

Nodes

display problems with, 821–822

fetching, 61–62, 62 f

measures of, 820

positioning algorithms for, 824, 827–828

NOISE (Near Optimal Isosurface Extraction)

count mode and, 46

Kd-trees for, 42–45

optimization of, 43 f, 45–46, 47 f

triangulation for, 44 f, 46–48, 48 f

Noise advection

hardware, 289–290

texture for, 286–287

Nonphotorealistic volume rendering (NPVR), 163–164

advantages of, 771–772

critiquing, 863 f, 882

illumination by, 775–778

scientific visualization using, 786–788, 834

volume illustration and, 774–776

NPVR. See Nonphotorealistic volume rendering

NSRG. See Nanoscale Science Research Group

Nuclear Magnetic Resonance. See NMR

Nyquist frequencies, 132, 214

Object orientation

Amira, 750–751

AVS/Express, 644 f, 661–663, 658 f

IRIS Explorer, 641–642

VTK, 603–604

Object-order techniques

for hardware-accelerated volume rendering, 221–222

octrees for, 146

for volume rendering, 138–141

Oceanography

climate visualization for, 850

large-scale data visualization of, 527 f, 528 f, 538–540, 541, 543

virtual reality visualization of, 483

Octrees

beam dynamics simulations using, 904 f, 920

branch-on-need, 45, 49, 62–64

geometric space decomposition by, 39–41

object-order techniques using, 148

T-BON, 62–64

view-dependent isosurface extraction by, 48

volume rendering acceleration by, 144–149

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 950

950 Index

Oil, recovery research on, 627 f, 644–646

OLEDs (organic light-emitting diode displays), 508

OLIC. See Oriented line integral convolution

Opal, Hurricane, 834 f, 835 f, 852–854, 853 f, 854 f

Open Inventor

Amira and, 753

AmiraVR and, 761

IRIS Explorer and, 641–642

OpenDX, 718

OpenGL

AVS/Express and, 669

IRIS Explorer and, 641

VTK v., 596–597

Open-source software

ITK as, 737

ParaView as, 711

Vis5D as, 676

Optical models

for preintegrated volume rendering, 220–221

for volume rendering, 134–136, 134 f

OPTICS (Ordering Points to Identify the Clustering Structure), 839,

839 f

Optimal isosurface extraction

assessment of, 80–81

criteria for, 70–71

interval trees for, 71–75

problems with, 69–70

range-based techniques for, 70–71

from structured grids, 77–80

surface-based techniques for, 71

from unstructured grids, 75–76

Optimization, NOISE, 45–46, 47 f

Orbits

flow visualization, 351

VGIS navigation, 462–464, 463 f

Ordering Points to Identify the Clustering Structure. See OPTICS

Organic light-emitting diode displays. See OLEDs

Oriented glyphs, 13–15, 14 f

Oriented line integral convolution (OLIC)

for flow visualization, 269

FROLIC and, 269

Orthogonality, 832

Pacific Marine Environmental Laboratories (PMEL), 850

Paging, geospatial data, 455–457

Painterly visualizations, 874, 876 f

Painter’s algorithm

Painting

arrow layer of, 878–879

Cave, 880

computer graphics, 885–886

designer education and, 887–888

education in, 879–881, 887–889

ellipse layer of, 878

engineering education and, 888

evaluation measures for, 886–887

flow visualization using

importance of, 855

mutivalued data, 885

scientific education and, 888

scientific visualization design by, 876–879, 877 f, 880 f

strokes, 874–876, 875 f, 876 f

tensor fields, 885

turbulent sources layer of, 879

under-, 878

vector fields, 885

virtual reality prototyping by, 888–889

visualization goals of, 887

workshops, 883–884

Pairwise annihilation

Palette-based decoding, interactive hardware-accelerated rendering

for, 515–516

Parallel networks, 502

Parallel Ocean Program (POP)

data parallelism used by, 541, 543, 543 f, 544 f

task parallelism used by, 538–540

Parallel rendering

compression for, 523–525

electromagnetic field simulation, 926, 927 f

image transport for, 523–525

ParaView, 726–728

performance, 526–529

process, 523–524, 524 f, 525 f

time-varying data, 523–530

Parallel vectors algorithm

Parallelism

data, 541–543, 543 f, 544 f, 571 f

ParaView, 719–720, 720 f, 725–726

pipeline, 540, 542 f

task, 536–540, 539 f, 540 f

VTK, 609–610, 719–720, 720 f

Parameter dependence

topology, 349–350

vector field, 345–346

ParaView

architecture of, 719

AVS and, 718

Cþþ and, 724

color mapping, 723

compositing, 727

CT scans in, 729, 729 f

data streaming in, 725–726

decimation algorithm in, 726, 726 f

design of, 717, 719–728

filter module in, 725–726

GUI, 717, 721, 723–725

large-data visualization requirements for, 718–719,

725–728

LODs in, 726–728

navigation, 723

OpenDX and, 718

open-source, 711

parallelism

POP application of, 729, 730 f

rendering using, 726–728

sample session of, 722 f

scientific visualization using, 717

SCIRun and, 718

streamlines created in, 722, 722, 722 f

3D manipulators in, 723–724

visualization results, 728–729, 728 f, 729 f

VTK and, 612, 612 f, 719–720, 720 f, 721 f

workflow requirements of, 717–718, 723–725

XML configurations in, 724, 724 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 951

Index 951

PARC (Polygon Assisted Ray Casting), 145 f, 145

Partial differential equation (PDE)

discretization of, 103–104, 104 t

level-sets using, 101–103

of upwind schemes, 104

Particle accelerators

beam dynamics visualization of, 919–925

domain decomposition of, 926, 927 f

haloing for visualization of, 929–930

illumination for visualization of, 929

incremental visualization of, 928–929

simulation for design of, 919

transmission properties of, 908 f, 926

transparency for visualization of, 929, 930 f

Particle tracing

dense representations for, 268–271

distribution of, 282

flow texture algorithms of, 281–282, 286–287

numerical techniques for, 268

seed-sets, 265–268

for simulation-based solid modeling, 391–392

sparse representations for, 265–268

in time-dependent flow fields, 262

weather visualization using, 846

weightless, 846

PCs (personal computers)

future of, 507

pixel resolution of, 823t

rendering performance of, 518

selecting, 505

PDE. See Partial differential equation

Peixoto’s theorem, 345–346

Pen-and-ink, 776–778, 886

Perceptualization

artistic representation v., 781–783

CFD, 774

experiments, 793–802

exploitation of,

of feature lines, 786–790, 773 f, 791 f

Gestalt theory of, 788

glyphs, 773–774

goal of, 771–772

of halos, 770 f, 784–786, 786 f

human system of, 772–773

illustration for effective, 774–776

image quality and, 810–811, 812 f

immersive, minimally, 773–774

lighting affecting, 789

need for, 771

of overlapping lines, 784–786, 784 f, 786 f

preattentively processed features for, 772–773

saliency maps for, 810–811, 814

shadow, 787, 788–790

of slants,

task maps for, 813, 814

of texture, 788–790, 790–802

visual attention and, 809–810

Peripheral vision, 811, 813

Personal computers. See PCs

PHANToM system, 418 f, 431–432, 432 f

Phong illumination, 930

Photography, illustration v., 781–783

Physics. See Computational accelerator physics; Solar physics

visualization

Piecewise regular mesh (PRM), 373–376, 375 f

Pipelines

direct manipulation data-analysis, 400 f, 413, 414 f, 424–425

hybrid, 544–546

ITK, 724, 725, 738, 739

large-scale data visualization, 540–541, 542 f

modeling, 382

MVE, 634

nonpipeline performance v., 542 f

parallel rendering, 506–514, 522–523

processing time for, 542 f

ray casting, 229, 231 f

SCIRun, 616–617

segmentation, 744, 744 f

space types of, 230, 230 f

Visapult, 569–571, 570 f

volume rendering, 231

VTK visualization, 584 f, 598–602, 600

Pixar, 853

PLIC. See Pseudo line integral convolution

PMEL. See Pacific Marine Environmental Laboratories

Poincaré-Bendixon theorem, 351

Poisson distribution, 795

Pollen diffusion, 327–329

Polygon Assisted Ray Casting. See PARC

Polygons

hardware-accelerated volume rendering with, 236–237

identification of, 85–86, 80 f, 86 f

reduction of, 32, 33–34

shading, 215–216

stream, 266

POP. See Parallel Ocean Program

Popping artifacts, 245

Pore-scale simulations, 644, 645 f

Post-processing, finite-element, 760

‘‘Power wall’’ displays, 761–763

Preattentive visual processing, 772–773

Preceding Visualization (PV), 834, 835 f

Predictor-corrector algorithm, 299 f, 299

Prehistoric art

overlapping lines of, 784, 784 f

perception of, 807

Preintegrated volume rendering

absorption models for, 220

accelerated, 219–220, 238

adaptive, 240

cell projection algorithms of, 215–218

classification, 214–215, 216 f

clipping using, 225

color plates of,

hardware, 221

incremental, 222

integrals of, 211–212

isosurface rendering for, 222–226

MIP for, 220

numerical integration of, 212–214, 216 f

open problems with, 226–227

optical models for, 220–221

pre- and post-classification of, 212

PT algorithms of, 216, 217 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 952

952 Index

ray casting algorithm for, 211–212

sampling distances and, 220

scalar fields sampled by, 214–215

self-attenuation and, 221

shading polyhedra and, 215–216

shear-warp algorithm for, 219

texture-based, 218

volume shading for, 224–225

Presence, virtual reality and, 480

Primer, 878

PRISM (Program for Integrated Earth System Modeling), 869

Private Virtual Circuits (PVCs)

PRM. See Piecewise regular mesh

Probing, 31–32, 31 f, 32 f

AFM, 893, 896–898, 901

direct manipulation operations for, 413

dual-domain interaction and, 198, 199 f, 200

ParaView filter for, 723

SEM, 894, 902–904

TEMS, 894, 907–909

widgets, 198–199, 199 f

Program for Integrated Earth System Modeling. See PRISM

Programming

Amira, 753

AVS/Express, 662–663, 663t

ITK, 739–740

ParaView, 724

VTK, 602–603

Projected Tetrahedra (PT)

irregular grids, 158–160, 159 f

preintegrated volume rendering using, 216, 216 f, 217 f

Projective mapping

accelerated volume rendering using

NIMS, 894, 903

preintegrated volume rendering using, 215–219

view-independent, 218

Projective textured lights

Proprioception, 772

Protein structure visualization, 483

Pseudo line integral convolution (PLIC), 269

Pseudo-code

for Edgebreaker compression, 363, 363 f

for isosurface propagation, 88 f

for sheet-buffered splatting,

for volume-thinning method, 94 f

for Wrap&Zip decompression, 369

PT. See Projected Tetrahedra

PV. See Preceding Visualization

PVCs. See Private Virtual Circuits

Python system

CDAT with, 850–851

VisAD with, 685–686

QG. See Quasi-geostrophic

QSplat, 141, 458

Quadcodes, 453

Quadtrees

global hierarchy, 453–455, 455 f, 454 f

weather, 460–462

Quantization

of geometry compression, 361–362

Lloyd-Max, 518

of temporal encoding, 516–517

Quasi-geostrophic (QG) data, 518–521

Queries

kd-tree, 44–45

visibility, top-down, 50

Radio frequency (RF) waves, 930, 932

Raw Data Limit (RDL), 499

Ray casting. See also Early ray termination; Viewing rays

hardware-accelerated volume rendering using, 239–241, 240 f

illustration rendering using, 777, 777 f

pipeline, 230 f

Ray tracing

interactive, 627–628

techniques for,

Rayleigh-Taylor instability, 646, 647 f

RDL. See Raw Data Limit

Read/Interpolate/Plot. See RIP

Reality. See also Virtual reality

controlling

exploiting, 807–814

Real-time

Doppler radar, 460–462, 470–471

microscopy rendering

time-critical design v., 427

Rectilinear grids, 128

Recursion

contour meshing, 64

hardware-accelerated, 234–235

information visualization using, 833 f

Red, Green, Blue. See RGB

Reduction, data

by decimation, 32–33, 33 f

by subsampling, 32, 32 f

for variational surface modeling, 382–383

Reflectance maps,

Reflection lines, 385–386, 385 f

Registration

Amira, 754, 758–759

elastic, 759

ITK, 745–746, 745 f, 746 f

Reliable independent packet protocol. See RIPP

Remote microscopy

developments in, 913

distributed collaboration of, 910–912, 911 f

network latency control for, 909–910

nM, 910–911

for science classes, 912

Remote visualization

by direct manipulation in virtual reality,

by SCIRun, 620

‘‘Renaissance Teams,’’ 883–884

Rendering. See Volume rendering

Renderman, 853

Resampling, 225. See also Probing

Residue, geometry compression, 362

Resolution. See also LOD

of global atmospheric simulation, 863, 863 f, 864 f, 865 f

of large-scale data,

SCIRun, 624–625

VGIS, 457–462

visual scalability and, 823

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 953

Index 953

Responsiveness

interaction and data-display, 418, 419

time-critical direct manipulation, 427–430

Retiling, triangle mesh, 373–376

RF. See Radio frequency

RGB (Red, Green, Blue) values

for DT-MRI eigenvectors, 331–333

for hardware-accelerated volume rendering,

Riemann sum, 136, 212

RIP (Read/Interpolate/Plot), 850

RIPP (reliable independent packet protocol), 586

Run Length Encoding (RLE)

connectivity compression using, 371

volume rendering using, 141, 142

Runge-Katta computation, 17–18, 18 f, 388, 390, 438

Sabella rendering model,

SABUL, 586

Saliency maps, 810–811, 814

Salinity isosurfaces, 541, 543, 544 f

Sampling

re-, 233

sphere, 17 f

sub-, 42, 44 f, 553

Satellite visualization, 855, 869

SC00 Bandwidth Challenge, 571–572, 575 f

SC01 Bandwidth Challenge, 576–578, 577 f

SC02 Bandwidth Challenge, 578–582, 580 f, 581 f

Scalable network visualization

commodity-based, 557–561

factors affecting, 823–824

interactivity of, 810, 824, 827

of IP traffic, 825–826, 826 f

of structure, 827, 827 f

of time-varying data, 824–825, 824 f

visual metaphors for, 828

Scalar fields

color mapping, 5–7, 6 f, 5 f

contouring using, 7–11

DT-MRI visualization using, 327

function of,

generating, 11–12

multidimensional transfer function using, 196–200

multivariate, 194–196

painting, 885

preintegrated classification for, 214–215

SCIRun visualization tools for, 620

Scan

conversion algorithms, 52

model simplification by, 394

Scanning electron microscopes (SEMs), 894, 902

Scenes

hierarchy simplification of, 399, 399 f

management of, 405–406

replication of, 428

Schreiber modeling, 383

Scientific Computing and Imaging. See SCIRun

Scientific visualization. See also specific scientific visualization

systems and disciplines

Amira for, 763–765, 764 f, 765 f

art-related, history of, 883–886

direct manipulation, 414

education in, 887

exploratory, 873, 874 f

human factors issues for, 417–419

model simplification of, 394–396, 395 f

NIMROD package of SCIRun for, 623–626, 625 f, 626 f

NPVR for,

painting design for, 876–881

ParaView for, 717

process of, 497, 498 f

VHW for,

virtual reality, 415–416

workshops, 883–884

x-rays for, 134, 134 f,

SCIRun (Scientific Computing and Imaging)

architecture,

BioPSE package for, 621–622, 621 f, 622 f, 623 f

collaborative visualization using, 619–620

future work on, 620

Genesis and, 617, 618 f

guides, 630–631

history of, 615–616

for magnetic fusion study, 623–624, 625 f, 626 f

NIMROD package for, 623–624, 625 f, 626 f

ParaView and, 718

pipeline, 617–618

radiological use of, 626–630

ray tracing in, interactive, 627–628

remote visualization using, 619–620

SolveMatrix module of, 617, 617 f, 618 f

surgical planning by, 626–630

tools, 618–619

volume bricking in, 627

volume rendering, 624–626

Screen space

error projection to, 404 f

pipeline for, 230, 230 f

Scumbling, 876 f

Search procedures. See also Span space

geometric, 42

interval, 42

Kd-tree, 43–44, 43 f

modality of, 70

NOISE,

time-varying data, 57–64

vector algorithm, 13

Second-order

interpolation, 131

structure equations, 100, 104 t

Seed-sets

computational accelerator physics using, 928–929

critical-point graph as, 94 f

direct manipulation widgets and, 419

DT-MRI visualization, 338

extrema skeleton generation using, 91–92

flow visualization using, 267–268

generating, 84

SeeNet, 824–825, 824 f

Segmentation

Amira, 755–756, 756 f

for hardware-accelerated volume rendering,

interpolation, 755

ITK, 734, 735 f, 738, 742–743, 743 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 954

954 Index

pipeline, 744, 744 f

for variational surface modeling, 382–385

watershed, 735, 735 f

Seismic tomography, 694–695, 694 f

Self-orienting surfaces (SOS), 927–928, 927 f, 928 t, 935

SEMs. See Scanning electron microscopes

Separatrices, 353–354

Server-of-Servers parallelization, 564, 564 f

Servers

data, 502–505

for desktop delivery, 501–502, 503 f

DPSS, 571–573, 572 f

visualization, 502–505, 503 f

SFA system

CFD and, 774

development of, 778

minimally immersive perceptualization using, 773–774

SGI Origin platform, 529 f, 545, 545 f

Shading

accessibility, 789

discontinuities, 789

hardware, 203

hardware-accelerated, 234, 235 f, 239

integrals for, 211

isosurface rendering with, 223–224, 223 f

overlapping lines for, 784

polyhedra, 215–218

preintegrated, 224–226

surface-based, 205

texture slicing and, 239, 243

VolumePro, 241, 246, 247

widgets, 201

Shadows

hardware, 196 f, 203–205, 206 f

HIPIP,

light sources for, 203

perceptualization of, 778

prehistoric art and, 807–808

projective textured light models for, 178–179, 178 f, 179 f

splatting with, 172–179

Shape

clarification of, 788–790

text mining using, 841, 842 f

texture for, 786–788, 790–802

Shared-memory multiprocessor. See SMP

Shear-warp algorithm, 142–143, 142 f

factorization of, 246

hardware-accelerated, 241–245, 252

preintegrated, 219

Sheet-buffered splatting, 139, 140 f

hardware-accelerated, 242

image-aligned, 170–172, 171 f

pseudo-code for, 174 f

with shadows, 174–178, 174 f

Shell-rendering, 141

Shock waves, 271–272

Silhouettes, 788

Simplification. See also Model simplification

adaptive, 400–401

Amira, 756, 756 f

cell clustering, 402, 402 f

hierarchies, 396–399, 397 f

hybrid, 402–403, 403 f

image-based, 403

of interactive visualization, 393–394

surface, 756, 757 f

triangle mesh, 373–376

Simulation. See also Virtual reality

angiogram, 712–714, 700 f, 707 f

beam dynamics, 919–924

Cave5D, 678 f

collaborative, 650–652, 651 f

electromagnetic field, 925–935

global atmospheric, 863, 863 f, 864 f

large-scale data visualization runs of, 554

Monte Carlo, 152–154

particle accelerator design, 919

pore-scale, 627 f, 644, 645 f

Rayleigh-Taylor instability, 628 f, 646, 647 f

seismic tomography, 694–696, 694 f

solid modeling by, 391–392

sunspot, 681 f, 695–697, 696 f

Skeletons. See Extrema skeletons

Sketching. See Illustration

Slant perception, 793–795

Slicing. See Texture slicing

SMP (shared-memory multiprocessor), 502

Software

Amira, 753

IRIS Explorer underlying, 641–644

large-scale data visualization, 563–566

open-source, 676, 719, 737

virtual reality based, 483

weather visualization, 845–847, 870

Solar physics visualization, 695–697

Sorting algorithms, 543 f, 547–549, 557–561, 559 f

SOS. See Self-orienting surfaces

Source objects

data attribute creation using, 23

modeling simple geometry using, 22

supporting geometry using, 23

Source space pipeline, 222, 223 f

Space. See specific types of space

Space leaping

content-based, 237

geometry-based, 238

hardware-accelerated, 253

volume rendering using, 144–147

Space Science and Engineering Center (SSEC), 673

Span space, 41–42

interval trees in, 66 f

Kd-trees for searching, 42–43, 43 f

temporal variation analyzed by, 58–62, 60 f

Sparse-field schemes, 107–116

advantages of, 107

grid-point values of, 109 f, 110 f

Spatial correlation

of direct manipulation widgets, 434

flow textures using, 279–287

preattentive processing of, 771

Special Report on Emissions Scenarios (SRES), 676 f, 677 f, 690–691,

691 f

Speedup techniques. See Acceleration

Sperner’s Lemma, 303

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 955

Index 955

Sphere sampling, 25 f

Spin echo, 328

Spirale Revers decompression, 367, 368 f

Splatting

antialiased, 132, 133 f

compositing, 250–251

data traversal in, 248–250

defined, 199

EWA, 140, 252, 252 f

flow visualization using, 263

gradient estimation of, 246–248

hardware-accelerated, 241–253, 252 f

image-aligned sheet-based, 241–251

integration by, 211–216

interpolation of, 250

object-order volume rendering with, 139, 139 f

projective textured light models for, 186–187, 186 f

reconstruction by, 334, 334 f

sabella model using, 178

shadow algorithms using, 189–190

sheet-buffered, 139–140, 139 f, 140 f

weather visualization using, 469–473

x-rays for, 161

Spot noise

function of, 279

painting flow visualization using, 873

Squares, marching, See also Marching cubes 9–13, 13 f

SRES. See Special Report on Emissions Scenarios

SSEC. See Space Science and Engineering Center

StarGraph visualization, 827, 827 f

Stereopsis, daVinci, 773

Stippling, 778, 778 f

Stokes flow, 645

Storm visualization

of hurricanes, 852, 867, 852 f

of tornados, 856, 857, 856 f, 857 f

of typhoons, 852, 852 f

Strain, fluid flow, 877, 878 f

Streaklines, 19

Stream arrows

function of, 283

painting layer of, 878–879

Stream surfaces

function of, 283

visualization of, 774, 775 f

Streamballs

function of, 283

simulation-based solid modeling using, 391, 391 f

Streaming. See Data streaming

Streamlets, 284

Streamlines

illuminated, 659, 660 f

line widget emitting, 422 f

ParaView filter for, 719, 723, 724 f

sparse representation of, 265

tensor integration of, 319–320

in time-dependent flow fields, 262

tractography results from, 334, 334 f

vector algorithms of, 13, 11 f

Vis5D, 673

vortex detection algorithm using, 296–297, 307, 307 f

Stroke mimicking, 874–879, 875 f

Subsampling, 32, 32 f

Subsequent Visualization (SV), 834, 835 f

Sunspot observations, 696, 696 f

Supercomputers. See also Desktop delivery of large datasets

capacity of, 551

design of, 494

rendering on, 520–521

Supernovae, core-collapse, 535

Superquadrics, 774

Surfaces. See also Isosurfaces

geodesics on discrete, 388–389

interrogation of, 385–386

variational modeling of, 382–385

Surgical planning

AVS/Express for, 704–708

IRIS Explorer for, 647–650, 647 f

MIPs for, 626, 712

SCIRun for, 626–630

volume rendering for, 704–707, 706 f

SV. See Subsequent Visualization

Swing Wrapper, 375–376, 376 f

Swirl

flow verification, 304–306

parameter algorithm, 297–298, 298 f

T221 flat-panel display, 507, 566

TAMS (Thermally Acuated Mobile Structures), 902–903

Task maps, 813–814

Task parallelism

execution time for, 539 f

for large-scale data visualization, 536–540, 539 f, 540 f

module networks for, 534 f

Taylor’s series expansion, 177

T-BON (Temporal Branch-on-Need Tree), 62–64

Tcl code, 753–754

TCP (transmission control protocol)

congestion, 574–576

disadvantages of, 582–584

reading data using, 571–573

UDP v., 495–496, 576

TDM (textured depth mesh)

image-based simplification using, 403

ITDMs v., 404 f

TeleMicroscopy. See Remote microscopy

Television Infrared Observation Satellite. See TIROS

TEM. See Transmission electron microscopy

Temporal Branch-on-Need Tree. See T-BON

Temporal encoding

flow textures using, 282–283, 287

interactive hardware-accelerated rendering, 514–515

Temporal hierarchical index tree, 58, 59 f

isosurface extraction by, 60–61, 60 f, 61 f

node fetching and replacement by, 61–62, 61 f

span space of, 58–60, 55 f, 59 f

Tensor fields. See also Diffusion tensors; DT-MRI

algorithms of, 2, 20–21

brain structure and, 321–322, 323 f, 324 f, 325 f

classification of, 315

ellipsoids representing, 21–22, 23 f, 24 f, 329 f

fiber tracing algorithms using, 320–321, 320 f

filters for, 316–319, 318 f

glyphs of, 22, 332–333, 333 f, 334 f, 336 f

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 956

956 Index

interpolation of, 315–316

lines of, 347

MLS regularization of, 316–320, 316 f, 318 f, 321 f

‘‘mountain’’ function for, 320

reconstruction of, oriented, 313–325

SCIRun visualization tools for, 618

strain, 877, 878 f

streamline integration of, 319–320

stress and strain, 20–21, 21 f

topology of, 346–350

validation of,

TeraScale Supernova Initiative (TSI), 535–536, 537 f

Terrain visualization, 394

memory management of, 406

VGIS, 457–458

Tessellation, 667

Tetrahedras

classification of, 159–160, 160 f, 217 f

cross-sections of, 757–758, 758 f

decomposition of, 217 f

marching, 9, 8 f, 9 f

projected, 159–160, 160 f, 216, 217 f, 219 f

view-independent cell projection of, 219

Text documents

AVS author template for, 689–692

visual data mining for, 841–842, 842 f

Texture. See also Flow textures

dependent reads of, 202

displacement, 787

for dye advection, 287

hardware, 205, 289–290

interactive hardware-accelerated rendering of, 518–519

isotropy, 794

luminance, 781–783, 782 f, 797–798, 798 f

for noise advection, 286–287

patterns, 793–795

perceptualization of, 783–784

principal directions of, 793–794, 797 f, 800 f

projective lights and,

shape clarified by, 786–788

SOS for, 928

visual experiments with, 788–790

Texture slicing

advection, 270, 280 f

image-aligned, 241 f

object-aligned, 244 f

popping artifacts and, 245, 238 f, 245 f

preintegrated volume rendering by, 219

spot noise for, 269

3D hardware-accelerated, 241–243

2D hardware-accelerated, 243–244

Textured depth mesh. See TDM

ThemeRiver visualization, 841–842, 841 f

Thermally Acuated Mobile Structures. See TAMS

3D

Amira visualization in, 754–755, 742 f, 756 f

chemical structure, 711–715

critical points, 344–345

degenerate points, 349

depth of, 792–796

feature lines for emphasizing, 792–796

ITK segmentation in, 738

mesh compression, 359–367

morphing, 111–112

ParaView manipulators of, 721–722

texture slicing, 241–243

vector field topology, 344–345

VGIS structures, 457–460, 459 f

weather, 460–462

3DFM (3-dimensional Force Microscope)

architecture of, 906, 906 f, 907 f

cystic fibrosis research using, 905–906

development of, 894

function of, 904–905, 905 f

VTK prototype of, 906, 907 f

Through-holes, 91

Tightly Integrated Visualization (TIV), 834–835, 835 f

Time

animation, 16–19, 17 f

flow visualization dependent on, 262

lines, 265

real, 427, 460–462, 470–471, 898–899

Time of Flight (ToF), 705

Time-critical design

computation, 429–430

for direct manipulation, 427–430

graphics, 428

real-time v., 427

for volume rendering, 146

Time-Space Partitioning, 513, 522

Time-to-composite (TTC), 556

Time-varying data

atmospheric, 518–520

characteristics of, 511–513

encoding, 513–514, 516–517

four dimensional extraction of, 64–66

interaction and, 422–424

interactive hardware-accelerated rendering of, 229, 514–518

parallel pipelined rendering of, 522–526

scalable network visualization using, 824

scientific importance of, 511

search structure for, 57–62

T-BON for, 62–63

temporal hierarchical index tree for, 58–62

volume rendering, 160–162

TINs (triangulated irregular networks), 457

TIROS (Television Infrared Observation Satellite), 845

TIV. See Tightly Integrated Visualization

Tobacco mosaic virus (TMV), 897

ToF. See Time of Flight

Toolkits. See specific types of toolkits

Topology

flow visualization using, 264, 341–355

future of, 354–355

local, 351

nonlinear, 351–352, 352 f

origins of visualization using, 350–351

parameter dependent, 349

simplification, 352–353, 353 f

studying, 341–342

surgery compression, 371, 372 f

tensor field, 346–350

tracking, 353–354

transformations, 3

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 957

Index 957

Topology (Continued)

turbulent, 353, 353 f

vector field, 342–345, 350

vortex detection using, 304–305

VTK mixed, 607–609

Tornado visualization, 856–858, 839 f, 841 f, 857 f, 859 f

Tractography, 333–335, 335 f, 325 f

Training sets, visual data mining, 837–838

Transfer functions. See also Multidimensional transfer functions

aliasing, 137, 137 f

for beam dynamics viewing, 919–920, 905 f, 922 f

for color mapping, 5, 6 f

haptic, 439–441

hardware-accelerated volume rendering, 233–234

role of, 191

for volume rendering, 137, 149–152, 181–200, 189–190,

137 f

widgets for, 199–200

Transmission control protocol. See TCP

Transmission electron microscopy (TEM)

AIMS utilization of, 894, 907–908

surface reconstruction, 119–120

Transparency

compositing, 236–237

depth of, 793

equation for, 136, 213

particle accelerator visualization using, 932, 934 f

preintegrated isosurfaces with, 224

rendering, 792–793

volume rendering, 134, 134 f

Trees

decision, 837–838

global hierarchy, 441 f, 453–455, 453 f, 455 f

interval, 42, 71–75, 72 f, 74 f, 80–81

kd, 40 f, 41 f, 42–46, 44 f, 45 f, 121, 121 f, 129, 129 f

triangle spanning, 360, 362, 371

vertex-spanning, 359–360, 362, 371

weather, 446–448

TRex system, 544–546, 546 f, 547 f

Triangle mesh

composition of, 359–360

connectivity compression of, 362–370

corner table representation of, 349 f, 360–361, 361 f

Edgebreaker compression of, 362–370

geometry compression of, 361–362

LODs of, 373

MAPS simplification of, 374

PRM simplification of, 363 f, 373–374, 375 f

retiling, 373–376

SwingWrapper simplification of, 375, 376 f

terminology for, 359–360

topological surgery compression of, 371, 372 f

types of, 363, 364 f

Triangle strips, 371, 909 f, 927–928, 927 f

Triangle-Spanning Trees (TSTs)

Edgebreaker compression using, 362–363

edges of, 360

spiraling, 371

Triangulated irregular networks. See TINs

Triangulation, 46–48, 48 f

classification widget, 196–198

Delaunay, 384

tables, high-dimensional, 65–66

volume rendering using, 129–130

Tri-linear interpolation, 233

Trimmed voxel lists, 129

TSI. See TeraScale Supernova Initiative

TSP. See Time-Space Partitioning

TSTs. See Triangle-Spanning Trees

TTC. See Time-to-composite

Turbulence visualization

clear air, 858–860, 860 f

painting layers of, 876, 877, 876 f

Tutte’s lower bound, 373

2D

scientific painting design, 876–879, 877 f, 878 f

texture slicing, 242–243, 241 f

Typhoon visualization, 854–856, 855 f, 856 f

UCD. See Unstructured cell data

UDP (user datagram protocol)

lossy transport of, 584–585

TCP v., 495–496, 576

Visapult’s use of, 576–578, 578 f

UFLIC. See Unsteady flow line integral convolution

Ultra Vis system, 147–148

Umbilical points, 390–391, 391 f

Underpainting, 878

Unreachable cells test, 79–80

Unsteady flow line integral convolution (UFLIC), for flow

visualization, 269–270

Unstructured cell data (UCD), 704–705

Upwind schemes, 104–106, 105 f

Urban planning, VGIS, 451–452, 452 f, 471–473

User datagram protocol. See UDP

Utah Electrode, 629 f

Value space decomposition, 40

Variational modeling

curvature lines of, 390–391

design for, 384

differential geometry for, 381–382

geodesics for, 386–390

interrogation for, curve and surface, 385–386

simulation-based, 391–392

of surfaces, 384–385

Vector fields

clustering, flow visualization using, 272, 698

coordinate transformations and, 18–19

displacement plots using, 15–16, 16 f

electromagnetic field visualization using, 925–926

flux, 314

function of, 3

hedgehog technique for, 13–15

integration formulas for, 17–18, 18 f

painting, 885

parameter dependent, 345–346

SCIRun visualization tools for, 618

search procedures for, 18

steady, 342–346

streamlines for, 17 f, 18 f, 19–20, 19 f, 20 f

3D critical points of, 344–345, 346 f

time animation using, 16–19, 17 f

topology of, 342–346, 350–351

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 958

958 Index

virtual reality visualization of, 483

warping using, 15, 16 f

Vehicle design, 483

Vertex-Spanning Trees (VSTs)

edges of, 369–370

geometry compression using, 361

spiraling, 371

Vertices

identification, 85–86, 86 f

predictors, 362

Vesalius, 737

VGIS (Virtual Geographic Information Systems)

applications, 450

databases, 449

development of, 450–452

display, 466–469

future of, 473–474

geospatial organization for, 452–457

interaction, 462–464, 466–469

multiresolution models, 457–462

navigation, 462–463, 463 f

terrain models of, 457–458

3D structures of, 458–460, 459 f

traditional v., 449–450

urban models using, 451 f, 452, 453, 452 f

uses, 450

weather visualization using, 460–462, 469–471

VHP. See Visible Human Project

VHW. See Visual Haptic Workbench

Vibration analysis, 15–16

Video memory, 406, 515

View-dependent hierarchy, 398–399, 398 f

View-dependent isosurface extraction

bounding box estimates for, 52–53, 52 f

data flow of, 50 f

framebuffer for, hierarchical, 50–51

octrees for, 49

rendering points, 51 f, 52–53, 52 f

scan conversion algorithm for, 52

three-step algorithm for, 49, 49 f

two-dimensional scenario of, 48, 48 f

visibility mask for, 50

View-independent cell projection, 218

Viewing rays

clipping, preintegrated, 225

illumination equation for, 145, 152–154

intensity of, integrals for, 211–212

piecewise approximations of, 213 f

preintegrated casting of, 218–219

Viewport (VP) transformation, 229

VIEWS (Visual Interactive Environment for Weapons Simulation),

563–566

Viola-Wells algorithm, 745, 746 f

VIRIM, 155–157

Virtual Geographic Information Systems. See VGIS

Virtual Los Angeles Project, 451, 451 f, 472

Virtual reality

defining, 479

devices, 479–480

direct manipulation in, 413–430

environment characteristics, 480–481

extraction,

hardware, 480

human factors requirements in, 417–419

presence and, 408

projects, 482–486

prototyping for, 881–882

research challenges, 486–487

scientific visualization in, 415–416, 418

sketching for, 881–882

solid modeling using, 390–391

VHW and, 431–447

visualization of, 471–489

voice commands,

workshops, 481–482

Virtual Reality Modeling Language (VRML), 641–642,

643 f

Virtual Reality Peripheral Network (VRPN), 898, 899

Virtual Wind Tunnel, 415, 415 f, 483–484, 484 f

Virus research, 897, 897 f

Vis5D

applications of, 676

CAT using, 859–860, 860 f

development of, 846

interactive visualization, 673–677

memory management in, 674

open-source, 676

rendering techniques in, 674–675

streamlines, 674, 674 f

weather visualization, 676, 677 f, 846, 850

VisAD (Visualization for Algorithm Development)

applications, 686–688, 686 f, 687 f

architecture of, 680

components of, 671

extensions, 685

GUI, 682–684, 683 f, 684 f

Java and, 679, 685

Python and, 685–686

rendering, 681–685

weather visualization using

widgets, 681, 681 f

Visapult

architecture, 569–571, 570 f, 571 f

Cactus framework with, 577–578, 580–583, 585 f

components of, 570, 570 f

creation of

DPSS use by, 571–573, 572 f

lossy transport demonstrated by, 584–585

performance, 569, 573, 573 f

pipelines, 570

SC00 Bandwidth Challenge for, 574–576, 575 f

SC01 Bandwidth Challenge for, 576–578, 577 f

SC02 Bandwidth Challenge for, 578–582, 580 f, 581 f

TCP observations by, 574–576, 582–584

UDP use by, 576–578, 577 f

‘‘weather map’’ of, 579–580, 581 f

VisBio, 687, 687 f

Visibility

impeding halos, 785–786, 786 f

of isosurface meta-cells, 49, 50

Visible Human Project (VHP)

datasets, 733

watershed segmentation of, 734, 735 f

Vision science. See Perceptualization

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 959

Index 959

Visual attention

bottom-up process of, 810–811

human system of, 809–810

top-down process of, 811–813

Visual data mining

approaches to, 835–836, 835 f

association rules of, 836–837, 836 f, 837 f

classification models for, 837–838

clustering for, 838–841, 839 f, 840 f

decision trees for, 837–838

exploration v., 836

future of, 842

human factors in, 832–835, 835 f

need for

process of, 834

text documents, 841–842, 841 f, 842 f

training sets for, 837–838

visualization of, 832, 832 f, 833 f

Visual Haptic Workbench (VHW)

advantages of, 427

calibration, 433

constraints for, 436–441

diffusion tensors using, 441–443, 443 f

fiber tracing using, 441, 442 f

future of, 443–444

interaction techniques for, 433–434, 434 f

registration errors, 433

scientific visualization using, 435–436

software framework of, 434

systems, 432, 432 f

visualization methods for, 434–435

Visual Interactive Environment for Weapons Simulation. See

VIEWS

Visual processing, preattentive, 772–773. See also Perceptualization

Visual scalability, 823–824. See also Scalable network visualization

Visualization. See also specific types of visualization

algorithms, 2

art inspiration for,

art v., 883

change needed in,

evaluation of,

exploitation using, 807–816

long-haul distributed, 564, 564 f

modeling, 22–34

perception of, 783

preceding, 834, 835 f

program characteristics, 749

scalar, 5–12

subsequent, 834, 835 f

tensor, 20–22

tightly integrated, 834–835, 835 f

transformations, 1–2

vector, 13–20

widgets, 416–417, 421

Visualization for Algorithm Development. See VisAD

Visualization Toolkit. See VTK

VIZARD II, 155–156

VOGUE, 155

Voice commands,

Voids, 91

Volume. See also Level-sets; Time-varying data

binary, 114–117, 118 f, 119 f

flow, 267

modeling surfaces with, 97–99

partial, 233

thinning, 91–93, 92 f, 94 f

transforming, 223 f, 231 f

Volume rendering. See also Haptic rendering

absorption models of, 177–178

acceleration techniques

back-to-front, 184–186, 186 f

classification for, 149–152, 150 f

color mapping

contour graph for, 152, 153 f

domain, 143–144

DT-MRI visualization,

geometric primitives for, 128–129, 129 f

hardware, 128, 155–158, 191, 229–258

high-dimensional data for, 160–162

histograms, 150–151, 150 f, 151 f

IBR-assisted, 148–149, 149 f

illumination equation for, 135, 150–154

illustrative approach to, 776–778, 777 f

image-order techniques for, 134–138, 134 f

integrals, 211–215

interpolation process for, 130–133, 130 f

irregular grids, 158–160, 159 f, 160 f

Kd-trees for, 129, 129 f

large-scale data,

Marschner-Lobb test for, 132, 132 f

multichannel and multimodal, 162–163, 162 f, 163 f, 164 f

nonphotorealistic, 163–164

object-order techniques for, 138–141

on parallel architectures, 154–155, 506–514

pipelining, 233

post-classification model of, 137–138, 138 f

pre-classification model of, 137, 137 f, 138 f

preintegrated, 211–228

RLE lists for, 141, 142

sabella model of, 178

SCIRun, 624–627

shear-warp algorithm for, 142–143, 142 f

sorting algorithms for, 547–549, 559–560, 559 f

splatting for, 139–140, 139 f, 141 f, 175–188

time-critical, 146

time-varying data for, 160–162

transfer functions, 137, 137 f, 149–152

transparent surfaces, 795, 795 f

Ultra Vis system for, 147

view-dependent isosurface extraction, 51 f, 52–53, 52 f

Vis5D, 673–688

volumetric data for, 127–128

VTK, 596 f, 597–598

x-rays for, 134, 134 f, 179–180

VolumePro, 156–157, 158, 190

‘‘500,’’ 246–247, 247 f

‘‘1000,’’ 247–249, 248 f

VolView, 612–613, 613 f

Voronoi Diagram Classification, 743–744, 744 f

Vortices

AVS/Express extraction of

definition of, 295

detection, 295–308

feature attributes of, 699 t

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 960

960 Index

function of,

numerical attributes of, 700–701, 701 t

taxonomy of, 296–297

verification of, 304–306, 307 f

visualization of, 306–307, 308 f, 699

Vorticity, 877, 877 f, 878 f

Voxel lists, trimmed, 129

VP. See Viewport

VRML. See Virtual Reality Modeling Language

VRPN. See Virtual Reality Peripheral Network

VSTs. See Vertex-Spanning Trees

VTK (Visualization Toolkit)

architecture, 395–396

attribute data supported by, 601 f

Cþþ use of, 602–603

callbacks, 604–605

cell types supported by, 600 f, 601 f

classes and subclasses, 596 f, 599

climate visualization using, 851

code, 594

data representation in, 604

data streaming, 606–607, 608 f, 719–720

datasets, 599 f

function of, 593

goals, 593–594

graphics, 596–597

GUI and, 594, 604–605, 610

history of, 593

memory management, 605–606

object factories in, 603–604

parallel processing, distributed, 609–610, 719–720, 720 f

ParaView and, 721, 722 f, 719–720, 720 f, 722 f

3DFM prototype using, 904, 905 f

topologies, mixed, 607–609

VIEWS use of, 563–566

visualization pipeline, 598–602, 602 f

volume rendering, 597–598

VolView and, 612–613, 613 f

weather visualization using, 852

widgets, 610–612, 611 f

wrapping, 605

WAN (wide area network)

bandwidth challenge using, 578–582

congestion on, 582–584

desktop delivery system using, 500–501, 500 f

Warping, 14 f, 15, 16 f

morphing by, 111

shear-warp algorithm and, 142–143, 142 f

Watershed segmentation, 734, 735 f

Wavelets

butterfly, 374

theory, 144

time-varying data encoding using, 513–514

Weather Research and Forecasting (WRF), 848, 849, 866–868, 866 f

Weather visualization

AccessGrid for, 868, 869 f

analysis of, 850–851

AVS for, 684–685, 685 f

AVS/Express for, 689–691

of CAT, 858–860

Cave5D for, 851

climate v., 847–848

data sources for, 848–849

desktop delivery of, 868–869

displays, 866–868, 866 f

of fires, 860–861, 861 f

flow visualization for, 697–698

grids, 849–850

history of, 845–847

of hurricanes, 845–846, 852–854, 853 f, 854 f

HVR for, 853–854

importance of, 865

models for, 848

NCAR graphics for, 845, 846

NCSA project on, 846, 865

particle tracing for, 846

for public, 861, 862 f

software development for, 846–847, 870

tools, 850–851

of tornados, 856–858, 857 f

of typhoons, 852–853, 855 f, 856 f

VGIS for, 457–459, 464

virtual reality based, 483

Vis5D for, 676, 677 f, 846, 850, 851

VisAD for, 686–687, 851

vortex extraction for, 699–700, 700 f

VTK for, 851

Web visualization, 642–643

Wedge bifurcation, 349–350

White cells, 79

Wide area network. See WAN

Widgets

box, 611 f

classification, 200–201

clipping plane, 199

color-picker, 201

data probe, 198–199

design of, 421

direct manipulation, 190–191, 197, 197 f, 416–417, 421

geometric representation of, 421

line, 421, 423 f, 611

plane, 421, 424 f, 611 f

point, 421, 611 f

shading, 201

sphere, 611 f

transfer-function, 199–200

types of, 421, 423 f, 424 f

VisAD, 681, 681 f

visualization, 416–417, 421

VTK, 610–612, 611 f

WIMP (Windows, Icons, Menus, Pointers), 433

Wind Tunnel, Virtual, 415, 415 f, 483–484, 484 f, 470 f

Winding angle detection, 302–303, 303 f, 304 f, 698–699, 698 f

Windows, Icons, Menus, Pointers. See WIMP

World Meteorological Organization (WMO), 848

World space, pipeline for, 230, 230 f

Worsley Man, 710–711, 710 f, 711 f

Wrapping

Edgebreaker, 367–370

Swing Wrapper for, 375–376, 376 f

VTK, 605

Wrap&Zip for, 367–370

WRF. See Weather Research and Forecasting

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 961

Index 961

XCP (explicit congestion control protocol),

586

XML configurations

in ITK, 741

in ParaView, 724, 724 f

X-rays, 134, 134 f, 177–178

Zero-order interpolation, 130–133

Zipping, 370, 525, 526

Zooming

for network visualization, 828, 828 f

on VGIS display, 468–469

ZSweep algorithm, 160

Johnson/Hansen: The Visualization Handbook Final Proof 9.9.2004 1:45am page 962

962 Index

	Contents
	Contributors
	Preface
	Acknowledgments
	Part I: Introduction
	1 Overview of Visualization

	Part II: Scalar Field Visualization: Isosurfaces
	2 Accelerated Isosurface Extraction Approaches
	3 Time-Dependent Isosurface Extraction
	4 Optimal Isosurface Extraction
	5 Isosurface Extraction Using Extrema Graphs
	6 Isosurfaces and Level-Sets

	Part III: Scalar Field Visualization: Volume Rendering
	7 Overview of Volume Rendering
	8 Volume Rendering Using Splatting
	9 Multidimensional Transfer Functions for Volume Rendering
	10 Pre-Integrated Volume Rendering
	11 Hardware-Accelerated Volume Rendering

	Part IV: Vector Field Visualization
	12 Overview of Flow Visualization
	13 Flow Textures: High-Resolution Flow Visualization
	14 Detection and Visualization of Vortices

	Part V: Tensor Field Visualization
	15 Oriented Tensor Reconstruction
	16 Diffusion Tensor MRI Visualization
	17 Topological Methods for Flow Visualization

	Part VI: Geometric Modeling for Visualization
	18 3D Mesh Compression
	19 Variational Modeling Methods for Visualization
	20 Model Simplification

	Part VII: Virtual Environments for Visualization
	21 Direct Manipulation in Virtual Reality
	22 The Visual Haptic Workbench
	23 Virtual Geographic Information Systems
	24 Visualization Using Virtual Reality

	Part VIII: Large-Scale Data Visualization
	25 Desktop Delivery: Access to Large Datasets
	26 Techniques for Visualizing Time-Varying Volume Data
	27 Large-Scale Data Visualization and Rendering: A Problem-Driven Approach
	28 Issues and Architectures in Large-Scale Data Visualization
	29 Consuming Network Bandwidth with Visapult

	Part IX: Visualization Software and Frameworks
	30 The Visualization Toolkit
	31 Visualization in the SCIRun Problem-Solving Environment
	32 NAG’s IRIS Explorer
	33 AVS and AVS/Express
	34 Vis5D, Cave5D, and VisAD
	35 Visualization with AVS
	36 ParaView: An End-User Tool for Large-Data Visualization
	37 The Insight Toolkit: An Open-Source Initiative in Data Segmentation and Registration
	38 amira: A Highly Interactive System for Visual Data Analysis

	Part X: Perceptual Issues in Visualization
	39 Extending Visualization to Perceptualization: The Importance of Perception in Effective Communication of Information
	40 Art and Science in Visualization
	41 Exploiting Human Visual Perception in Visualization

	Part XI: Selected Topics and Applications
	42 Scalable Network Visualization
	43 Visual Data-Mining Techniques
	44 Visualization in Weather and Climate Research
	45 Painting and Visualization
	46 Visualization and Natural Control Systems for Microscopy
	47 Visualization for Computational Accelerator Physics

	Index

