

Geometry and Computing

Series Editors

Herbert Edelsbrunner
Leif Kobbelt
Konrad Polthier

Editorial Advisory Board

Jean-Daniel Boissonnat
Gunnar Carlsson
Bernard Chazelle
Xiao-Shan Gao
Craig Gotsman
Leo Guibas
Myung-Soo Kim
Takao Nishizeki
Helmut Pottmann
Roberto Scopigno
Hans-Peter Seidel
Steve Smale
Peter Schröder
Dietrich Stoyan

For further volumes:
http://www.springer.com/series/7580

Dietmar Hildenbrand

Foundations of Geometric
Algebra Computing

123

Dr. Dietmar Hildenbrand
University of Technology Darmstadt
Darmstadt
Germany

ISSN 1866-6795 ISSN 1866-6809 (electronic)
ISBN 978-3-642-31793-4 ISBN 978-3-642-31794-1 (eBook)
DOI 10.1007/978-3-642-31794-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012953093

ACM Computing Classification (1998): B.8.2, C.1.4, D.1.3, G.1.2, G.4, I.3.5, F.2.2

Mathematics Subject Classification (2000): 65Dxx, 68U05

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To 150 years of Hermann G. Grassmann’s
Ausdehnungslehre of 1862

Foreword

If I have seen further it is by standing on the shoulders of giants.
– I. Newton, 15 Feb 1676.

Newton’s well-known quote to Hooke finds no better illustration than in the
development of what we call Geometric Algebra. The primary set of shoulders
in the Geometric Algebra epic belong to Hermann Günther Grassmann, who
epitomized the mathematical mind, at least in process, if not in expositional style.
He systematically created algebras for geometric concepts by listing essential
elements and operations and then reducing them to minimal axiomatic schemes.
In his book Die Lineale Ausdehnungslehre he laid the foundation for scores of
mathematical systems bearing names like projective and exterior geometry and
Quaternion, Clifford, Gibbs, Cartan, and Boolean algebra. Unfortunately, his book
was densely written with many religious allusions and it shifted without warning
between projective and Euclidean spaces.

One of the fundamental ideas of Grassmann was that of different grade (intrinsic
dimensions) elements; thus, in addition to scalar and vector elements, with which
we are well familiarized today, he would have included bi-vectors, tri-vectors etc.,
not as combinations of vectors like the cross-product, but as axiomatic elements.
His book introduced two fundamental operations between elements, the inner and
outer products. One was simply a grade lowering and the other a grade elevating
operation between elements. Between vectors, these operations became the familiar
dot product (or projection) and the wedge product (or plane through the vectors).
The import of these ideas becomes apparent when one considers what else can
one say about the relation of two vectors? The grade lowering and grade elevating
operators underpin any comprehensive vector algebra.

It was William Kingdon Clifford, who then recognized the sublime value of
joining these two operations, inner and outer, into one product via a new algebraic
“addition” of the two products. The geometric product of Clifford was cast as the
fundamental operation with inner and outer products defined in terms of it. Its
subtlety lies in the fact that it is not a binary operation as we are used to thinking of

vii

viii Foreword

additions; it does not replace two elements with a third “sum” of the same type of
element. Instead, it is a prepositional operation that only makes sense in the overall
algebraic structure. It is rather like adding real and imaginary parts in complex
analysis.

The subsequent evolution of “Clifford” Algebra became a candidate for the
mathematical model of nineteenth-century physics, along with the quaternions
of Hamilton. The winner of this intellectual contest, however, was eventually
another Grassmannian derivative, the vector algebra proposed by Josiah Gibbs, a
thermodynamicist. Gibbs’ focus was three dimensions, appropriate to his area of
research. As such he considered scalars and vectors to be sufficient; the bi-vector
could be represented by the cross product, another vector. Hence there was no need
for bi-vectors, and certainly not tri-vectors, nor anything higher. Two elements, the
scalar and the vector, seem to satisfy Occam’s razor. This may well be true, but only
for three dimensions. As physics evolved in higher dimensions, the inadequacies of
the cross product have become apparent. Pauli and Dirac invented their own versions
of spinors, for example, a concept which has since been shown to be fundamental
in any comprehensive formulation of an axiomatic physics system.

Our current state of babel has different mathematical systems, which require
sophisticated methods of translation between them. They are often so common
to us now that we do not see the clumsiness of, say, rewriting complex analysis
in terms of 2D vectors, or 3D vectors in terms of quaternions to rotate and
rewriting back. Similar situations exist between exterior algebra, Pauli and linear
algebras, and the list goes on. A single, comprehensive algebra is both pedagogically
and operationally “a consummation devoutly to be wish’d”. That is the goal of
Geometric Algebra.

In the last 50 years, Clifford Algebra found a strong proponent in physicist
David Hestenes, who used it as the basis to describe electron theory and celestial
mechanics among other very successful applications. His version of the Geometric
Algebra was developed with a strong emphasis on the geometrically intuitive aspects
of the algebra.

While Geometric Algebra is generally acknowledged to be a compelling and
comprehensive system of mathematics (and it is beginning to find traction in many
application areas) one major obstacle exists to its broader adoption, which is the
very practical one. How do I compute with it? Without a Maple- or Mathematica-
like facility, its usability is vastly limited in today’s modern research or engineering
environment. The way forward is obvious and a number of researchers have ad-
dressed this problem with computer algebraic systems based on Geometric Algebra.
Two of the most current and popular are CLUCalc and Gaalop, as described in this
book.

Experience with these methods and the innate characteristics of Geometric
Algebra now point to the next logical step in the evolution. It is the need to use
modern parallel architecture to accelerate Geometric Algebra. We can not only
increase the range of realizable applications through speed and efficiency, but it
provides unique and valuable insights into the algebra itself. This is the natural

Foreword ix

evolution and critical path to bringing this richer, more comprehensive system of
mathematics, this Geometric Algebra, to the collective scientific consciousness.

This book by Hildenbrand is, in my opinion, the next, necessary and joyful twist
in this elegant evolutionary thread stretching back to Grassmann and beyond. He
gives a highly readable account of the development of Geometric Algebra. He is
able to cook the subject matter like a good meal, and then, pulling all the pieces
together, feeds us a very compelling solution for the next steps in creating the most
advanced environment for learning, applying and enjoying the beauty of Geometric
Algebra.

Bon appetit

Thuwal, Kingdom of Saudi Arabia Prof. Alyn Rockwood

May 2012

Preface

Hermann G. Grassmann’s Ausdehnungslehre of 1862 laid the foundations for
Geometric Algebra as a mathematical language combining geometry and algebra.
A hundred and fifty years later, this book is intended to lay the foundations for the
widespread use of this mathematical system on various computing platforms.

Seventeen years after Grassmann’s first more philosophically written Aus-
dehnungslehre of 1844, he admitted in the preface of his mathematical version of
1862, “I remain completely confident that the labor I have expended on the science
presented here and which has demanded a significant part of my life, as well as the
most strenuous application of my powers, will not be lost. It is true that I am aware
that the form which I have given the science is imperfect and must be imperfect.
But I know and feel obliged to state (though I run the risk of seeming arrogant)
that even if this work should again remain unused for another seventeen years or
even longer, without entering into the actual development of science, still that time
will come when it will be brought forth from the dust of oblivion and when ideas
now dormant will bring forth fruit.” And he went on to say, “there will come a time
when these ideas, perhaps in a new form, will arise anew and will enter into a living
communication with contemporary developments.”

The form that we give to Geometric Algebra in this book has the power to
lead easily from the geometric intuition of solving an engineering application to
its efficient implementation on current and future computing platforms. We show
how easy it is to develop new algorithms in areas such as computer graphics,
robotics, computer animation, and computer simulation. Owing to its geometric
intuitiveness, compactness, and simplicity, algorithms based on Geometric Algebra
can lead to enhanced quality, a reduction in development time and solutions that are
more easily understandable and maintainable. Often, a clear structure and greater
elegance result in lower runtime performance. However, based on our computing
technology, Geometric Algebra implementations can even be faster and more robust
than conventional ones.

xi

xii Preface

I really do hope that this book can support the widespread use of Geometric
Algebra Computing technology in many engineering fields.

Darmstadt, Germany Dr. Dietmar Hildenbrand
May 2012

Acknowledgments

First of all, I would like to express my thanks to Professor Marc Alexa, who put me
in touch with Geometric Algebra in 2002 and, as my advisor, gave me the chance
to study for a Ph.D. dealing with the application of Geometric Algebra to computer
graphics and robotics. Thanks to Marc, one focus of my dissertation was on the
runtime performance of Geometric Algebra algorithms.

I am grateful to Professor Eduardo Bayro-Corrochano for good cooperation in
past years, especially concerning the application of Geometric Algebra to robotics.
Thanks to Eduardo, I got to know the Cliffordlib Maple library, created by Rafal
Ablamowicz and Bertfried Fauser, which we could use advantageously for our first
runtime optimization study.

Thanks to Dr. habil. Christian Perwass, I was able to use a very powerful and
productive tool for the interactive and visual development and testing of Geometric
Algebra algorithms; Christian’s tool CLUCalc has accompanied my research into
Geometric Algebra from its early beginnings to today. I am very grateful for his
good cooperation over the last 10 years.

I would like to thank Professor Andreas Koch and his group for their very good
cooperation on compiler technology. Thanks to funding from the DFG (Deutsche
Forschungsgemeinschaft), we were able to cooperate on a common research project
dealing with a Geometric Algebra compiler for FPGAs.

The molecular dynamics simulation described in this book was a joint work with
the high-performance computing center at the University of Stuttgart with special
thanks to Florian Seybold.

Many thanks to Professor Vaclav Skala for his GraVisMa initiative.
I would like to thank Professor Kanta Tachibana and Professor Yukio Kaneda

for the chance to present my early Geometric Algebra Computing results in some
tutorials at the Frontiers of Computational Science Center of Excellence in Nagoya,
Japan, as well as for the honor of becoming a member of the advisory committee of
this center.

Thanks are due for the enthusiastic work of my former students Holger
Griesheimer, Stefan Rockensuess, Jun Zhao, Thomas Kalbe, Haidan Zhang, Yusheng
Wang, Sebastian Hartte, Carsten Cibura, Elmar Brendel, Florian Woersdoerfer,

xiii

xiv Acknowledgments

Christian Schwinn, Meike Becker, Roman Getto, Crispin Deul, Michael Burger, and
Andreas Goerlitz. Thanks to Marco Hutter for proofreading parts of the manuscript.
Special thanks to Joe Pitt for the first version of our Gaalop compiler, and to
Patrick Charrier and Christian Steinmetz for the current version of Gaalop and the
precompilers for C++ and OpenCL, as well as for proofreading of the manuscript.

Thanks to Professor David Hestenes, Professor Hongbo Li, Professor Alyn
Rockwood, Prof. Eckhard Hitzer, Professor Rafal Ablamowicz, Professor Gerik
Scheuermann, Professor Wolfgang Strasser, Dr. Joan Lasenby, Dr. Leo Dorst, Dr.
Daniel Fontijne, Dr. Julio Zamora, Dr. Martin Horn, Professor Paul Drechsel, and
Professor Hans-Joachim Petsche for a lot of very fruitful discussions. I would like
to thank Prof. Simos and the “European Society of Computational Methods in
Sciences and Engineering”. They awarded me in 2012 with the highest distinction
of “Honorary Fellowship” for my work in the field of Applied Mathematics.

I would like to thank Professor Zoubir for his support and I hope that our LOEWE
research priority program Cocoon will benefit a lot from this book.

Finally, I would like to thank my wife Carola for her interest shown in my work
and her support, understanding and patience during recent months.

Contents

1 Introduction . 1
1.1 The Benefits of Geometric Algebra . 2
1.2 The Benefits of Geometric Algebra Computing . 5
1.3 History of Geometric Algebra Computing .. 7
1.4 Overview.. 11
1.5 Outline . 12

1.5.1 Part I . 12
1.5.2 Part II . 13
1.5.3 Part III . 13

Part I Mathematical Foundations

2 Mathematical Introduction . 17
2.1 The Basic Algebraic Elements of Geometric Algebra.. 17
2.2 The Products of Geometric Algebra . 18

2.2.1 The Outer Product . 18
2.2.2 The Inner Product. 20
2.2.3 The Geometric Product . 20

2.3 Euclidean Geometric Algebra . 23
2.4 Projective Geometric Algebra . 25

3 Conformal Geometric Algebra . 27
3.1 The Basic Geometric Entities . 28

3.1.1 Points . 29
3.1.2 Spheres . 30
3.1.3 Planes . 30
3.1.4 Circles . 30
3.1.5 Lines. 31
3.1.6 Point Pairs. 31

3.2 IPNS and OPNS . 31
3.3 The Center of a Sphere, Circle, or Point Pair . 32

xv

xvi Contents

3.4 Distances and Angles . 33
3.4.1 Distances . 34
3.4.2 Angles . 38

3.5 Transformations . 39
3.5.1 Rotation . 39
3.5.2 Translation . 40

3.6 Rigid-Body Motion . 42
3.7 The Horizon Example .. 42

4 Maple and the Identification of Quaternions and Other Algebras 45
4.1 Using Maple for Symbolic Geometric Algebra Computing.. 45
4.2 Complex Numbers . 47
4.3 Quaternions .. 48

4.3.1 The Imaginary Units. 50
4.3.2 Pure Quaternions and Their Geometric Product 51
4.3.3 Rotations Based on Unit Quaternions . 52

4.4 Plücker Coordinates . 53
4.5 Dual Numbers . 55
4.6 Dual Quaternions .. 56

5 Fitting of Planes or Spheres to Sets of Points . 61
5.1 The Role of Infinity . 61

5.1.1 Sphere of Infinite Radius . 62
5.1.2 Point at Infinity . 62
5.1.3 Plane at Infinite Distance from the Origin 63
5.1.4 Planes as a Limit of a Sphere . 64

5.2 Distance Measure . 65
5.3 Least-Squares Approach . 65
5.4 Example.. 67

Part II Interactive and Visual Geometric Algebra Computing

6 A Tutorial on Geometric Algebra Using CLUCalc . 71
6.1 Blades and Vectors . 73
6.2 The Products of Geometric Algebra . 74

6.2.1 The Outer Product and Parallelness . 74
6.2.2 The Inner Product and Perpendicularity 77
6.2.3 The Geometric Product and Invertibility 78

6.3 Geometric Operations . 81
6.3.1 Projection and Rejection . 82
6.3.2 Reflection . 83
6.3.3 Rotation in 2D . 84
6.3.4 Rotation in 3D . 86

6.4 Conformal Geometric Algebra . 86
6.4.1 Vectors in CGA . 87
6.4.2 Bivectors in CGA . 89

Contents xvii

6.4.3 Dual Vectors in CGA . 91
6.4.4 Is a Point Inside or Outside the Circumcircle

of a Triangle? . 92
6.4.5 Intersections.. 93
6.4.6 Reflection . 96
6.4.7 Projection . 97

6.5 CLUCalc Implementation of the Horizon Example 98
6.6 CLUCalc Implementation of Motions. 99

7 Inverse Kinematics of a Simple Robot . 101
7.1 Computation of P0 . 102
7.2 Computation of P2 . 103
7.3 Computation of P1 . 104
7.4 Computation of the Joint Angles . 105

8 Robot Grasping an Object . 107
8.1 The Geometric Algebra Algorithm . 107

8.1.1 Computation of the Bounding Volume of the Object 107
8.1.2 Computation of the Grasping Circle Zt 108
8.1.3 Gripper Circle. 109
8.1.4 Estimation of Translation and Rotation.. 110

8.2 The Algorithm Using CLUCalc . 111
8.3 Geometric Algebra Versus Conventional Mathematics. 115

8.3.1 The Base Circle and Its Center . 115
8.3.2 The Transformation of the Gripper . 116

Part III Runtime Performance of Geometric Algebra
Computing

9 Efficient Computer Animation Application in CGA 121
9.1 Optimizations Based on Quaternions.. 121

9.1.1 Direct Computation of Quaternions . 122
9.1.2 Efficient Computation of Quaternions .. 123

9.2 The Inverse Kinematics Algorithm .. 123
9.2.1 Computation of the Swivel Plane . 124
9.2.2 The Elbow Point Pe . 125
9.2.3 Calculation of the Elbow Quaternion Qe 126
9.2.4 Rotation to the Elbow Position. 127
9.2.5 Rotation to the Wrist Location . 128

9.3 Approaches to Runtime Optimization .. 129
9.3.1 Optimization with Gaigen 2 . 129
9.3.2 Optimization with Maple . 134

9.4 Results . 138

xviii Contents

10 Using Gaalop for High-Performance Geometric
Algebra Computing . 141
10.1 The Horizon Example with Gaalop . 141
10.2 The Geometric Algebra Computing Approach . 142
10.3 Table-Based Compilation Approach . 145

10.3.1 Multiplication Tables . 146
10.3.2 Table-Based Multiplication Algorithm . 148
10.3.3 Example . 148
10.3.4 Cascading Multiplications . 151
10.3.5 Linear Operation Tables . 153
10.3.6 Multiplication Tables with a Non-Euclidean Metric 153
10.3.7 Additional Symbolic Optimizations Using

Maxima . 154

11 Collision Detection Using the Gaalop Precompiler . 155
11.1 Basic Concept of Gaalop GPC. 155
11.2 The Horizon Example Revisited in Gaalop GPC for C++ 156
11.3 Collision Detection . 158

12 The Gaalop Precompiler for GPUs . 161
12.1 Strided Arrays . 161
12.2 The Horizon Example on a GPU . 162

12.2.1 OpenCL Implementation .. 162
12.2.2 CUDA Implementation .. 163

12.3 List of Multivector Functions . 164

13 Molecular Dynamics Using Gaalop GPC for OpenCL 165
13.1 Molecular Dynamics in a Nutshell . 165
13.2 Software Architecture . 167
13.3 Initialization . 168
13.4 Velocity Verlet Integration Step 1 . 170
13.5 Accumulation of Forces Per Atom . 171
13.6 Velocity Verlet Integration Step 2 . 176

14 Geometric Algebra Computers . 179
14.1 FPGA Implementation of Geometric Algebra

Algorithms . 179
14.2 Adaptation of Geometric Algebra to Current Computer

Architectures . 181
14.3 Geometric Algebra Parallelism Programs (GAPP) 182

14.3.1 Example .. 184
14.3.2 Parallelization Concepts Supported by GAPP 187

14.4 Geometric Algebra Computers Based on Gaalop.. 188

References . 189

Index . 195

List of Figures

Fig. 1.1 Two trends that are combined in Geometric Algebra
Computing technology: increasingly parallel
computing platforms and algebras with more and more
geometric meaning .. 2

Fig. 1.2 The blades of CGA. Spheres and planes, for instance,
are vectors. Lines and circles can be represented
as bivectors. Other mathematical systems such as
complex numbers and quaternions can be identified
based on their imaginary units i; j; k. This is why
transformations such as rotations can also be handled
in the algebra . 3

Fig. 1.3 Spheres and circles are basic entities of Geometric
Algebra. Operations such as the intersection of two
spheres are easily expressed . 4

Fig. 1.4 Spheres and lines are basic entities of Geometric
Algebra that one can compute with. Operations such
as the intersection of these objects are easily expressed
with the help of their outer product. In a ray-tracing
application, for instance, the result of the intersection
of a ray and a (bounding) sphere is another geometric
entity: the point pair consisting of the two points where
the line intersects the sphere. The sign of the square of
the point pair indicates easily whether there is a real
intersection or not . 5

Fig. 1.5 Hermann Grassmann .. 7
Fig. 1.6 History of Geometric Algebra and Geometric Calculus [49] 8

Fig. 3.1 Why 5D Conformal Geometric Algebra for 3D world problems? . 28
Fig. 3.2 The inner product of a point and a sphere describes the

square of the distance between the point and sphere
according to (3.46) . 37

xix

xx List of Figures

Fig. 3.3 Translation of a sphere from the origin to the point Pt 41
Fig. 3.4 Horizon of an observer on a beach . 43
Fig. 3.5 Calculation of the intersection circle (horizon) .. 44

Fig. 4.1 The blades of CGA and the geometric meaning of
some of them . 46

Fig. 4.2 Complex numbers in CGA. The imaginary unit can
be identified in CGA as one of the 2-blades e1 ^ e2,
e1 ^ e3, and e2 ^ e3, each with a different geometric meaning 47

Fig. 4.3 Definition of quaternions in Maple . 49
Fig. 4.4 Quaternions in CGA . 49
Fig. 4.5 Computation of the representation of a line in Maple 50
Fig. 4.6 The product of pure quaternions in Maple . 51
Fig. 4.7 Plücker coordinates in CGA . 53
Fig. 4.8 Computations of Plücker coordinates in Maple. 54
Fig. 4.9 The six Plücker coordinates of the line through a and

b consist of the coordinates of the direction vector u
and the moment vector m . 55

Fig. 4.10 Dual numbers in CGA . 56
Fig. 4.11 Dual quaternions are represented in CGA based on

eight blades: the scalar, six 2-blades and one 4-blade 57
Fig. 4.12 Dual-quaternion computations in Maple . 58
Fig. 4.13 Dual quaternion computations in Maple . 58

Fig. 5.1 The point at infinity . 63
Fig. 5.2 A sphere with a center s (in the direction opposite to a

normal vector n) that goes to infinity (while the radius
of the sphere changes accordingly), results finally in a
plane with a normal vector n and a distance d from the origin 64

Fig. 5.3 The inner product P � S of a point and a sphere on the
one hand already describes the square of a distance,
but on the other hand has to be squared again in the
least-squares method, since the inner product can be
positive or negative depending on whether (a) the point
p lies outside the sphere or (b) the point p lies inside the sphere . . 67

Fig. 5.4 The constraint sT s D 1 leads implicitly to a scaling
of the distance measure such that it gets smaller with
increasing radius; if the radius increases from the one
in (a) via the radius in (b) and further to an infinite
radius, the distance measure gets zero for a plane
considered as a sphere of infinite radius . 67

Fig. 5.5 Fitting a sphere to a set of five points . 68
Fig. 5.6 Fitting a plane to a set of five points. 68

List of Figures xxi

Fig. 6.1 Interactive and visual development of algorithms using
CLUCalc. In the editor window, the intersection of two
spheres is defined, which is immediately visualized in
the visualization window . 72

Fig. 6.2 BasisElementsE3.clu .. 73
Fig. 6.3 bivectorE3.clu . 75
Fig. 6.4 trivectorE3.clu .. 76
Fig. 6.5 innerProductE3.clu .. 77
Fig. 6.6 DualE3.clu .. 81
Fig. 6.7 ProjectE3.clu . 82
Fig. 6.8 ReflectE3.clu . 83
Fig. 6.9 Rotor2d.clu . 84
Fig. 6.10 Rotate EXP E3.clu . 85
Fig. 6.11 Rotor3d.clu . 86
Fig. 6.12 OneSphereN3.clu . 88
Fig. 6.13 PlaneN3.clu .. 89
Fig. 6.14 CircleN3.clu . 90
Fig. 6.15 LineN3.clu .. 91
Fig. 6.16 DualSphereN3.clu .. 92
Fig. 6.17 PointInsideCircleN3.clu . 93
Fig. 6.18 intersectSphereSphereN3.clu . 94
Fig. 6.19 intersectSphereLineN3.clu .. 94
Fig. 6.20 intersectPlaneLineN3.clu . 95
Fig. 6.21 ReflectN3.clu . 96
Fig. 6.22 ProjectN3.clu .. 97
Fig. 6.23 Visualization of the horizon example . 98
Fig. 6.24 Visualization of a CLUScript describing motion 99

Fig. 7.1 Kinematic chain of the example robot . 102
Fig. 7.2 Target point and gripper plane . 102
Fig. 7.3 Computation of P0 . 103
Fig. 7.4 Computation of P2 . 103
Fig. 7.5 Computation of P1 . 104
Fig. 7.6 Visualization of step 4 . 105

Fig. 8.1 The robot Geometer grasping an object . 108
Fig. 8.2 Assigning points for the bounding cylinder of the

object to be grasped . 108
Fig. 8.3 Grasping circle Zt . 109
Fig. 8.4 Gripper . 109
Fig. 8.5 Gripper circle Zh, grasping circle Zt and their axes Lh

and Lt . 110
Fig. 8.6 Moving the gripper circle Zh towards the grasping

circle Zt . 111
Fig. 8.7 CLUCalc code of the grasping algorithm .. 112
Fig. 8.8 Input parameters of the CLUCalc algorithm .. 112

xxii List of Figures

Fig. 8.9 Construction and visualization of the base circle zb 112
Fig. 8.10 Base points . 112
Fig. 8.11 Base circle . 113
Fig. 8.12 Translation vector . 113
Fig. 8.13 Target circle . 113
Fig. 8.14 Gripper circle . 114
Fig. 8.15 Final position . 115

Fig. 9.1 Rotation based on the midline between two points
through the origin . 122

Fig. 9.2 Swivel plane . 124
Fig. 9.3 Computation of the elbow point . 125
Fig. 9.4 Using the elbow quaternion .. 126
Fig. 9.5 Rotation to the elbow position . 127
Fig. 9.6 Rotation to the wrist location . 128
Fig. 9.7 Computation of the elbow point . 131

Fig. 10.1 The CLUCalc input code of the horizon example as
requested by Gaalop . 142

Fig. 10.2 Two alternative calculations of the horizon application
according to Sect. 3.7, with the same optimized result 144

Fig. 10.3 The Geometric Algebra Computing architecture.
Algorithms are compiled to an intermediate
representation for compilation to different computing platforms.. 145

Fig. 11.1 Gaalop GPC for C++. 156
Fig. 11.2 Visualization of the horizon example . 157
Fig. 11.3 Point–triangle intersection in CLUCalc. This picture

shows the triangle, the plane it is embedded in, and its
three boundary planes . 159

Fig. 12.1 Gaalop GPC for OpenCL . 162

Fig. 13.1 Screenshot of a molecular dynamics simulation using CGA 166
Fig. 13.2 The forces between all of the atoms in the molecules

result in movement of the molecules . 166
Fig. 13.3 The Lennard-Jones potential describes the dependence

of the energy between two atoms and the distance
between them (Image source: www.wikipedia.org) 166

Fig. 13.4 Code architecture of the molecular dynamics application 167

Fig. 14.1 Generation of optimized FPGA implementations from
Geometric Algebra algorithms . 180

Fig. 14.2 Pipeline schedule for the coefficient pex of a
multivector. All of the computations specified by
(14.1) for all of the pipeline stages can be done in parallel 180

List of Figures xxiii

Fig. 14.3 Parallel dot product of two n-dimensional vectors
Vector0 and Vector1 (n parallel products followed by
log(n) parallel addition steps) . 182

Fig. 14.4 Selected blades of a multivector are stored in a
five-dimensional vector in the form E0,�E2, E3, E5,
and �E4 . 184

Fig. 14.5 Geometric Algebra computers based on Gaalop are
able to use GAPP as instruction set for Geometric
Algebra computations .. 188

List of Tables

Table 1.1 Multiplication table of 2D Geometric Algebra. This
algebra consists of basic algebraic objects of grade
(dimension) 0, the scalar, of grade 1, the two basis
vectors e1 and e2 and of grade 2, the bivector e1 ^ e2,
which can be identified with the imaginary number i

squaring to �1 . 2
Table 1.2 List of the basic geometric primitives provided by 5D

Conformal Geometric Algebra. The bold characters
represent 3D entities (x is a 3D point, n is a 3D
normal vector, and x2 is a scalar product of the 3D
vector x). The two additional basis vectors e0 and
e1 represent the origin and infinity. Based on the
outer product, circles and lines can be described
as intersections of two spheres and of two planes,
respectively. The parameter r represents the radius of
the sphere, and the parameter d the distance from the
origin to the plane . 4

Table 2.1 List of the 8 blades of 3D Euclidean Geometric Algebra 18
Table 2.2 Notations for the geometric algebra products . 19
Table 2.3 Properties of the outer product ^ . 19
Table 2.4 The 8 blades of 3D Euclidean Geometric Algebra.. 23
Table 2.5 The 16 blades of 4D projective Geometric Algebra 25

Table 3.1 The 32 blades of the 5D Conformal Geometric
Algebra (CGA) . 28

Table 3.2 The two representations (IPNS and OPNS) of
conformal geometric entities. The IPNS and OPNS
representations are dual to each other, which is
indicated by the asterisk symbol . 29

Table 3.3 Geometric meaning of conformal vectors . 33

xxv

xxvi List of Tables

Table 3.4 Geometric meaning of the inner product of two
conformal vectors U and V . 34

Table 4.1 Notation for Geometric Algebra operations in Maple 46

Table 6.1 List of the eight blades of 3D Euclidean Geometric Algebra 74
Table 6.2 Properties of the outer product . 75
Table 6.3 Meanings of the coefficients of the two additional

coordinates in CGA . 87

Table 9.1 Input/output parameters of the inverse kinematics
algorithm . 124

Table 9.2 Input/output parameters of the inverse kinematics
algorithm using Gaigen 2 . 130

Table 9.3 Computation of the shoulder quaternion . 133
Table 9.4 Input/output parameters of the inverse kinematics

algorithm using Maple . 134

Table 10.1 The 32 blades of 5D CGA that compose a
multivector. The entry in the first column is the index
of the corresponding blade. The negated entries are
needed for the selectors of the Geometric Algebra
Parallelism Programs (GAPP) described in Chap. 14. 143

Table 10.2 Multiplication table for the geometric product of
2D Geometric Algebra. This algebra consists of the
following basic algebraic objects: an object of grade
(dimension) 0, the scalar; objects of grade 1, the two
basis vectors e1 and e2; and an object of grade 2, the
bivector e1 ^ e2 . 146

Table 10.3 Multiplication table of 2D Geometric Algebra in
terms of its basis blades E1; E2; E3 and E4 . 146

Table 10.4 Multiplication table describing the geometric
product of two multivectors a D P

ai Ei and
b D P

biEi for 3D Euclidean Geometric Algebra.
Each coefficient ck of the product c D ab can
be computed by summing the products ˙ai � bj

based on the table entries for Ek ; for instance,
c0 D a0 � b0 C a1 � b1 C a2 � b2 C a3 � b3 � a4 �
b4 � a5 � b5 � a6 � b6 � a7 � b7 for the table entries
for E0. In other words, a particular blade Ek of the
result multivector c is computed by summing the
products ˙ai � bj of the table entries marked by Ek .
See Sect. 10.3.2 for details of the algorithmic steps
for computation with multiplication tables . 149

List of Tables xxvii

Table 10.5 Multiplication table describing the geometric
product of two vectors a D a1e1 C a2e2 C a3e3 and
b D b1e1 C b2e2 C b3e3 for 3D Euclidean Geometric
Algebra. Note that all rows and columns for basis
blades not needed for the vectors are set to zero 150

Table 10.6 Multiplication table describing the outer product
of two general multivectors a D P

ai Ei and
b D P

biEi for 3D Euclidean Geometric Algebra 151
Table 10.7 Part of the multiplication table in Table 10.6

describing the outer product of two specific
multivectors a D P3

iD1 ai Ei and d D P6
iD0 diEi

for 3D Euclidean Geometric Algebra . 151
Table 10.8 A subset of the 5D geometric-product multiplication

table of Geometric Algebra. This lists only 5 out
of the 32 possible blades for each multivector. The
expression E denotes the outer product E D e1 ^ e0 153

Table 12.1 Gaalop GPC functions for constructing and accessing
multivectors .. 164

Table 14.1 The main commands of the Geometric Algebra
Parallelism Programs (GAPP) language; a more
detailed list can be found in [105] . 183

Chapter 2
Mathematical Introduction

Part I of this book provides a theoretical introduction to Geometric Algebra. We
focus on 5D Conformal Geometric Algebra because of its intuitive handling of
geometric entities, geometric operations, transformations, and motions. We show
how a lot of other mathematical systems can be identified within this algebra, and
present the fitting of points with the help of spheres and/or planes as an important
application.

If you are more interested in a quick interactive, visual overview of Geometric
Algebra, you are recommended to start with Part II of this book, especially the
tutorial in Chap. 6, and come back to this part whenever you are interested in seeing
more details.

This chapter presents mainly the mathematical basics of Geometric Algebra
needed in this book. Whenever readers might be interested in a more mathematical
and axiomatic approach to Geometric Algebra, we refer to the corresponding
sections of [81]. After a short description of the basic algebraic elements and main
products of Geometric Algebra we take a look at two specific algebras. With this
chapter, we lay the foundations for CGA as described in Chap. 3.

2.1 The Basic Algebraic Elements of Geometric Algebra

While the basis vectors e1; e2; : : : ; en are the basic algebraic elements of an n-
dimensional vector algebra, they are only one part of the algebraic elements of
an n-dimensional Geometric Algebra. Blades are the basic algebraic elements of
Geometric Algebra. An n-dimensional Geometric Algebra consists of blades with
grades 0, 1, 2, . . . , n, where a scalar is a 0-blade (a blade of grade 0) and the 1-
blades are the basis vectors e1; e2; : : : ; en. The 2-blades ei ^ ej are blades spanned
by two 1-blades, and so on. There exists only one element of the maximum grade
n, I D e1 ^ e2 : : : ^ en. It is therefore also called the pseudoscalar. A linear

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 2,
© Springer-Verlag Berlin Heidelberg 2013

17

18 2 Mathematical Introduction

Table 2.1 List of the
8 blades of 3D Euclidean
Geometric Algebra

Blade Grade

1 0
e1 1
e2 1
e3 1
e1 ^ e2 2
e1 ^ e3 2
e2 ^ e3 2
e1 ^ e2 ^ e3 3

combination of k-blades is called a k-vector (or a vector, bivector, trivector. . . .).
The sum e2 ^ e3 C e1 ^ e2, for instance, is a bivector.

A linear combination of blades with different grades is called a multivector.
Multivectors are the general elements of a Geometric Algebra.

There are 2n blades in an n-dimensional Geometric Algebra. Table 2.1, for
instance, shows the 8 D 23 blades of 3D Euclidean Geometric Algebra consisting
of the scalar, three (basis) vectors, three bivectors, and the pseudoscalar. Additional
examples are the 16 blades of 4D Projective Geometric Algebra (Table 2.5) and the
32 blades of the 5D Conformal Geometric Algebra (CGA) (Table 3.1).

2.2 The Products of Geometric Algebra

The main product of Geometric Algebra is called the geometric product; many
other products can be derived from it.

The three most often used products of Geometric Algebra are the outer, the
inner and the geometric product. The notations of these products are listed in
Table 2.2. We will use the outer product mainly for the construction and intersection
of geometric objects, while the inner product will be used for the computation of
angles and distances. The geometric product will be used mainly for the description
of transformations.

2.2.1 The Outer Product

Geometric Algebra provides an outer product ^ with the properties listed in
Table 2.3.

Property 1 applies only to vectors; the others are generally valid (and so they are
also valid for multivectors).

The outer product of two parallel vectors is 0:

u ^ u D �.u ^ u/ D 0: (2.1)

2.2 The Products of Geometric Algebra 19

Table 2.2 Notations for the
geometric algebra products

Notation Meaning

AB Geometric product of A and B

A ^ B Outer product of A and B

A � B Inner product of A and B

Table 2.3 Properties of the
outer product ^ Property Meaning

Anticommutativity u ^ v D �.v ^ u/

Distributivity u ^ .v C w/ D u ^ v C u ^ w
Associativity u ^ .v ^ w/ D .u ^ v/ ^ w

This is the reason why the outer product can be used as a measure of parallelness.
See Chap. 3 of [81] for further details of the products of Geometric Algebra.

In the following, we use two examples from the tutorial in Chap. 6 in order to
show how to compute with the outer product.

Computation example 1. We compute the outer product of two vectors according
to the tutorial example in Sect. 6.2.1:

c D .e1 C e2/ ^ .e1 � e2/

can be transformed based on distributivity to

c D .e1 ^ e1/ � .e1 ^ e2/ C .e2 ^ e1/ � .e2 ^ e2/I

since u ^ u D 0,
c D �.e1 ^ e2/ C .e2 ^ e1/;

and because of anticommutativity,

c D �.e1 ^ e2/ � .e1 ^ e2/

or
c D �2.e1 ^ e2/:

In Sect. 6.2.1, we shall see that the geometric meaning of the resulting bivector is a
plane element spanned by the two vectors.

Computation example 2. We compute the outer product of three vectors accord-
ing to the tutorial example in Sect. 6.2.1:

d D a ^ b ^ c D .e1 C e2/ ^ .e1 � e2/ ^ e3:

Because of distributivity,

20 2 Mathematical Introduction

d D . .e1 ^ e1
„ ƒ‚ …

0

/ � .e1 ^ e2/ C .e2 ^ e1/ � .e2 ^ e2
„ ƒ‚ …

0

/ / ^ e3

D .�.e1 ^ e2/ C .e2 ^ e1// ^ e3I

because of anticommutativity,

d D .�.e1 ^ e2/ � .e1 ^ e2// ^ e3

D .�2.e1 ^ e2// ^ e3

D �2.e1 ^ e2 ^ e3/

D �2I:

In Sect. 6.2.1, we shall see that the geometric meaning of the resulting bivector
is a volume element spanned by the three vectors a; b; c, which is equal to �2

multiplied by the 3-blade e1 ^ e2 ^ e3 spanned by the three basis vectors e1; e2; e3,
which is equal to the pseudoscalar I .

2.2.2 The Inner Product

For 3D Euclidean space, the inner product of two vectors is the same as the well-
known Euclidean scalar product of two vectors. For perpendicular vectors, the inner
product is 0; for instance, e1 � e2 D 0. In Geometric Algebra, however, the inner
product is not only defined for vectors. The inner product is grade-decreasing; for
example, the result of the inner product of elements with grade 2 and 1 is an element
of grade 2�1 D 1. See Sect. 3.2.7 of [81] for a mathematical treatment of the general
inner product.

The inner product of Geometric Algebra contains metric information. Through-
out this book, we use Conformal Geometric Algebra (see Chap. 3) and its inner
product for the computation of angles and distances. The geometric meaning is
treated in Sects. 3.4.1 (inner product and distances) and 3.4.2 (inner product and
angles).

2.2.3 The Geometric Product

The geometric product is an amazingly powerful operation., which is used mainly
for the handling of transformations. The geometric product of vectors is a combina-
tion of the outer product and the inner product. The geometric product of u and v is
denoted by uv. For vectors u and v, the geometric product uv can be defined as

uv D u ^ v C u � v: (2.2)

2.2 The Products of Geometric Algebra 21

We derive the following for the inner and outer products:

u � v D 1

2
.uv C vu/; (2.3)

u ^ v D 1

2
.uv � vu/: (2.4)

but, as noted above, these formulas apply only for vectors, in this form.
See Sect. 3.1 of [81] for an axiomatic approach to the geometric product.

Computation examples. What is the square of a vector?

u2 D uu D u ^ u
„ƒ‚…

0

Cu � u D u � u

for example
e2

1 D e1 � e1 D 1:

The geometric product is defined for all kinds of multivectors. Let us calculate,
for example, the following geometric product of two bivectors according to
Sect. 6.2.3.2:

u2 D .e1 ^ e2/
2

Since e1e2 D e1 ^ e2 C e1 � e2
„ƒ‚…

0

D e1 ^ e2,

u2 D .e1 ^ e2/
2 D e1e2 e1e2

„ƒ‚…

�e2e1

D �e1 e2e2
„ƒ‚…

1

e1 D � e1e1
„ƒ‚…

1

D �1

Because of this property, u can be used such as the imaginary unit i of complex
numbers. In the case of u D e1 ^ e2 and v D .e1 C e2/ ^ e3,

uv D .e1 ^ e2/..e1 C e2/ ^ e3/;

uv D .e1e2/.e1 ^ e3 C e2 ^ e3/

D e1e2.e1e3 C e2e3/

D e1e2e1e3 C e1 e2e2
„ƒ‚…

1

e3I

since e1e2 D e1 ^ e2 D �e2 ^ e1 D �e2e1,

uv D �e2e1e1e3 C e1e3

D �e2e3 C e1e3

D �.e2 ^ e3/ C e1 ^ e3:

22 2 Mathematical Introduction

2.2.3.1 Invertibility

The inverse of a blade A is defined by

AA�1 D 1:

The inverse of a vector v, for instance, is

v�1 D v

v � v
:

Proof.

v
v

v � v
D v � v

v � v
D 1:

Example 2.1. The inverse of the vector v D 2e1 results in 0:5e1.

Example 2.2. The inverse of the (Euclidean) pseudoscalar 1=I is the negative of
the pseudoscalar (�I).

Proof.

II D .e1 ^ e2 ^ e3/.e1 ^ e2 ^ e3/ D .e1e2e3/.e1e2e3/

D e1e2
„ƒ‚…

�e2e1

e3e1e2e3 D �e2e1e3e1e2e3 D e2e3 e1e1
„ƒ‚…

1

e2e3

D e2e3e2e3 D �e3e2e2e3 D �e3e3 D �1

! II D �1

! II.I �1/ D �I �1

! I �1 D �I:

2.2.3.2 Duality

Since the geometric product is invertible, divisions by algebraic expressions are
possible. The dual of an algebraic expression is calculated by dividing it by the
pseudoscalar I . In the following, the dual of the plane A D e2 ^ .e1 C e3/ is
calculated. A superscript � means the dual operator.

2.3 Euclidean Geometric Algebra 23

.e2 ^ .e1 C e3//
� D .e2 ^ .e1 C e3//.e1e2e3/

�1

D .e2 ^ .e1 C e3//.�e1e2e3/ D �.e2.e1 C e3//e1e2e3

D �e2 e1e1
„ƒ‚…

1

e2e3 � e2e3
„ƒ‚…

�e3e2

e1e2e3 D �e2e2e3 C e3e2e1e2e3

D �e3 � e3e1e2e2e3 D �e3 � e3e1e3

D �e3 C e1e3e3 D �e3 C e1:

See [81] for mathematical details.

2.3 Euclidean Geometric Algebra

Euclidean Geometric Algebra includes the well-known vector algebra, and deals
with the three Euclidean basis vectors e1; e2; e3. Linear combinations of these basis
vectors can be interpreted as 3D vectors or 3D points (a list of all 8 blades of 3D
Euclidean Geometric Algebra can be found in Table 2.4). The scalar product is
identical to the inner product of two vectors. The cross product of two Euclidean
vectors u and v can also be written in Geometric Algebra form as

u � v D �.u ^ v/e123; (2.5)

where e123 D e1 ^e2 ^e3 is the Euclidean pseudoscalar (a blade of grade 3). In order
to prove this equation, we shall calculate first an expression for the outer product of
the vectors u and v:

Table 2.4 The 8 blades of 3D Euclidean Geometric Algebra

Grade Term Blades No.

0 Scalar 1 1
1 Vector e1; e2; e3 3
2 Bivector e1 ^ e2; e1 ^ e3; e2 ^ e3 3
3 Pseudoscalar e1 ^ e2 ^ e3 1

24 2 Mathematical Introduction

u ^ v D .u1e1 C u2e2 C u3e3/ ^ .v1e1 C v2e2 C v3e3/

D u1v1 .e1 ^ e1/
„ ƒ‚ …

0

Cu1v2.e1 ^ e2/ C u1v3.e1 ^ e3/

Cu2v1.e2 ^ e1/ C u2v2 .e2 ^ e2/
„ ƒ‚ …

0

Cu2v3.e2 ^ e3/

Cu3v1.e3 ^ e1/ C u3v2.e3 ^ e2/ C u3v3 .e3 ^ e3/
„ ƒ‚ …

0

D u1v2.e1 ^ e2/ C u1v3.e1 ^ e3/ C u2v1.e2 ^ e1/ C u2v3.e2 ^ e3/

Cu3v1.e3 ^ e1/ C u3v2.e3 ^ e2/:

Using the anticommutativity of the outer product,

u ^ v D u1v2.e1 ^ e2/ C u1v3.e1 ^ e3/ � u2v1.e1 ^ e2/ C u2v3.e2 ^ e3/

�u3v1.e1 ^ e3/ � u3v2.e2 ^ e3/;

which leads to the following equation for the outer product of the vectors u and v:

u^v D .u1v2�u2v1/.e1^e2/C.u1v3�u3v1/.e1^e3/C.u2v3�u3v2/.e2^e3/: (2.6)

Let us now compute the expression �.u ^ v/e123:

�.u ^ v/e123 D �..u1v2 � u2v1/e1e2C.u1v3 � u3v1/e1e3C.u2v3 � u3v2/e2e3/e123

D .u1v2 � u2v1/e2e1e1e2e3 C .u1v3 � u3v1/e3e1e1e2e3 C .u2v3 � u3v2/e3e2e1e2e3

D .u1v2 � u2v1/e2e2e3 C .u1v3 � u3v1/e3e2e3 � .u2v3 � u3v2/e3e1e2e2e3

D .u1v2 � u2v1/e3 � .u1v3 � u3v1/e2e3e3 � .u2v3 � u3v2/e3e1e3

D .u1v2 � u2v1/e3 � .u1v3 � u3v1/e2 C .u2v3 � u3v2/e3e3e1

u ^ v D .u1v2 � u2v1/e3 � .u1v3 � u3v1/e2 C .u2v3 � u3v2/e1

leading to the equation

� .u ^ v/e123 D .u2v3 � u3v2/e1 � .u1v3 � u3v1/e2 C .u1v2 � u2v1/e3; (2.7)

with the righthand side equal to the definition of the cross product

u � v D .u2v3 � u3v2/e1 � .u1v3 � u3v1/e2 C .u1v2 � u2v1/e3: (2.8)

2.4 Projective Geometric Algebra 25

2.4 Projective Geometric Algebra

Projective Geometric Algebra is a 4D Geometric Algebra; its 16 blades are listed in
Table 2.5.

An inhomogeneous point

x D x1e1 C x2e2 C x3e3 (2.9)

is transformed into a homogeneous point via

X D x C e0: (2.10)

The origin is mapped to e0 by this mapping. Vice versa, an arbitrary homogeneous
point

X D wx1e1 C wx2e2 C wx3e3 C we0; w ¤ 0 (2.11)

can first be scaled to the hyperplane

X 0 D x1e1 C x2e2 C x3e3 C e0 (2.12)

and then projected to the inhomogeneous point x D x1e1 C x2e2 C x3e3.
Further details can be found in Sect. 4.2 of [81].

Table 2.5 The 16 blades of 4D projective Geometric Algebra

Grade Term Blades No.

0 Scalar 1 1

1 Vector e1; e2; e3; e0 4

2 Bivector e1 ^ e2; e1 ^ e3; e1 ^ e0; 6
e2 ^ e3; e2 ^ e0; e3 ^ e0

3 Trivector e1 ^ e2 ^ e3; e1 ^ e2 ^ e0; 4
e1 ^ e3 ^ e0; e2 ^ e3 ^ e0

4 Pseudoscalar e1 ^ e2 ^ e3 ^ e0 1

Chapter 3
Conformal Geometric Algebra

In this book, we focus on 5D Conformal Geometric Algebra (CGA). The “confor-
mal” comes from the fact that it handles conformal transformations easily. These
transformations leave angles invariant.

You may ask why you should use a 5D Geometric Algebra if your problem is
from the 3D real world? One reason is that problems can often be formulated more
easily and intuitively in a higher number of dimensions (Fig. 3.1). One advantage
of CGA, for instance, is that points, spheres and planes are easily represented as
vectors (linear combination of blades of grade 1).

CGA uses the three Euclidean basis vectors e1; e2; e3 and two additional basis
vectors eC; e� with positive and negative signatures, respectively, which means that
they square to C1 as usual (eC) and to �1 (e�).

e2C D 1; e2� D �1; eC � e� D 0: (3.1)

Another basis e0; e1, with the geometric meaning

• e0 represents the 3D origin,
• e1 represents infinity,

can be defined with the relations

e0 D 1

2
.e� � eC/; e1 D e� C eC: (3.2)

These new basis vectors are null vectors:

e2
0 D e21 D 0: (3.3)

Taking their inner product results in

e1 � e0 D �1; (3.4)

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 3,
© Springer-Verlag Berlin Heidelberg 2013

27

28 3 Conformal Geometric Algebra

Fig. 3.1 Why 5D Conformal
Geometric Algebra for 3D
world problems?

Table 3.1 The 32 blades of the 5D Conformal Geometric Algebra (CGA)

Grade Term Blades No.

0 Scalar 1 1

1 Vector e1; e2; e3; e1; e0 5

2 Bivector e1 ^ e2; e1 ^ e3; e1 ^ e1; 10
e1 ^ e0; e2 ^ e3; e2 ^ e1;

e2 ^ e0; e3 ^ e1; e3 ^ e0;

e1 ^ e0

3 Trivector e1 ^ e2 ^ e3; e1 ^ e2 ^ e1; e1 ^ e2 ^ e0; 10
e1 ^ e3 ^ e1; e1 ^ e3 ^ e0; e1 ^ e1 ^ e0;

e2 ^ e3 ^ e1; e2 ^ e3 ^ e0; e2 ^ e1 ^ e0;

e3 ^ e1 ^ e0

4 Quadvector e1 ^ e2 ^ e3 ^ e1, 5
e1 ^ e2 ^ e3 ^ e0,
e1 ^ e2 ^ e1 ^ e0,
e1 ^ e3 ^ e1 ^ e0,
e2 ^ e3 ^ e1 ^ e0

5 Pseudoscalar e1 ^ e2 ^ e3 ^ e1 ^ e0 1

since

.e� C eC/ � 1

2
.e� � eC/ D 1

2
.e� � e�
„ ƒ‚ …

�1

� e� � eC
„ ƒ‚ …

0

C eC � e�
„ ƒ‚ …

0

� eC � eC
„ ƒ‚ …

1

/;

and their geometric product is

e1e0 D e1 ^ e0 C e1 � e0 D e1 ^ e0 � 1 (3.5)

or
e0e1 D e0 ^ e1 C e1 � e0 D �e1 ^ e0 � 1: (3.6)

The outer product e1 ^ e0 is often abbreviated as E .
A list of all 32 blades of 5D CGA can be found in Table 3.1.

3.1 The Basic Geometric Entities

CGA provides a great variety of basic geometric entities to compute with, namely
points, spheres, planes, circles, lines, and point pairs, as listed in Table 3.2. These
entities have two algebraic representations: the IPNS (inner product null space)

3.1 The Basic Geometric Entities 29

Table 3.2 The two representations (IPNS and OPNS) of conformal
geometric entities. The IPNS and OPNS representations are dual to
each other, which is indicated by the asterisk symbol

Entity IPNS representation OPNS representation

Point P D x C 1
2
x2e1 C e0

Sphere S D P � 1
2
r2e1 S� D P1 ^ P2 ^ P3 ^ P4

Plane � D n C de1 �� D P1 ^ P2 ^ P3 ^ e1

Circle Z D S1 ^ S2 Z� D P1 ^ P2 ^ P3

Line L D �1 ^ �2 L� D P1 ^ P2 ^ e1

Point pair Pp D S1 ^ S2 ^ S3 Pp� D P1 ^ P2

and the OPNS (outer product null space). These representations are duals of each
other (a superscript asterisk denotes the dualization operator). See Sect. 3.2 for more
details of the IPNS and OPNS.

In Table 3.2, x and n are in bold type to indicate that they represent 3D entities
obtained by linear combinations of the 3D basis vectors e1; e2, and e3:

x D x1e1 C x2e2 C x3e3: (3.7)

The fSig represent different spheres, and the f�i g represent different planes. In
the OPNS representation, the outer product “^” indicates the construction of a
geometric object with the help of points fPi g that lie on it. A sphere, for instance, is
defined by four points (P1 ^P2 ^P3 ^P4) on this sphere. In the IPNS representation,
the meaning of the outer product is an intersection of geometric entities. A circle,
for instance, is defined by the intersection of two spheres S1 ^ S2 (see Fig. 6.18). In
the following, we present the representations of all of the basic geometric entities.
For details, see [81], especially Sects. 4.3.4 and 4.3.5.

3.1.1 Points

In order to represent points in 5D conformal space, the original 3D point x is
projectively extended to a 5D vector by taking linear combinations of the 5D basis
vectors e1; e2, e3, e1, and e0 according to the equation

P D x C 1

2
x2e1 C e0; (3.8)

where x2 is the well-known scalar product

x2 D x2
1 C x2

2 C x2
3 : (3.9)

For example, for the 3D origin (0,0,0) we get

P.0; 0; 0/ D e0; (3.10)

30 3 Conformal Geometric Algebra

and for the 3D point (0,1,0),

Py D P.0; 1; 0/ D e2 C 1

2
e1 C e0: (3.11)

3.1.2 Spheres

A sphere can, on the one hand, be represented with the help of its center point P

and its radius r as

S D P � 1

2
r2e1 (3.12)

or, using (3.8), as

S D x C 1

2
.x2 � r2/e1 C e0: (3.13)

Note that the representation of a point is simply that of a sphere of radius zero. A
sphere can also, on the other hand, be represented with the help of four points that
lie on it:

S� D P1 ^ P2 ^ P3 ^ P4: (3.14)

3.1.3 Planes

A plane is defined by
� D n C de1; (3.15)

where n refers to the 3D normal vector of the plane � and d is the distance to the
origin. A plane can also be defined with the help of three points that lie on it and the
point at infinity:

�� D P1 ^ P2 ^ P3 ^ e1: (3.16)

Note that a plane is a sphere of infinite radius (details will be given in Sect. 5.1).

3.1.4 Circles

A circle is defined by the intersection of two spheres

Z D S1 ^ S2 (3.17)

or, with the help of three points that lie on it, by

Z� D P1 ^ P2 ^ P3: (3.18)

3.2 IPNS and OPNS 31

3.1.5 Lines

A line is defined by the intersection of two planes

L D �1 ^ �2 (3.19)

or, with the help of two points that lie on it and the point at infinity, by

L� D P1 ^ P2 ^ e1: (3.20)

For example, the y-axis Ly can be described by

L�
y D e0 ^ Py ^ e1; (3.21)

where e0 represents the origin (see (3.10)) and Py is the point described by (3.11).
Note that a line can be regarded as a circle of infinite radius.

3.1.6 Point Pairs

A point pair is defined by the intersection of three spheres

Pp D S1 ^ S2 ^ S3 (3.22)

or, directly with the help of the two points, by

Pp� D P1 ^ P2: (3.23)

We can use the following formula to extract the two points of a point pair Pp

[29, 38]:

P˙ D ˙p
Pp� � Pp� C Pp�

e1 � Pp� : (3.24)

3.2 IPNS and OPNS

The IPNS and OPNS describe the null spaces of algebraic expressions with respect
to the inner and outer products, respectively. The IPNS of e0, for instance, describes
all the points P satisfying the equation

e0 � P D 0; (3.25)

32 3 Conformal Geometric Algebra

which gives

e0 �
�

x C 1

2
x2e1 C e0

�

D 0: (3.26)

With the identity e0 � e1 D �1, this is equal to

� 1

2
x2 D 0 (3.27)

or
x2

1 C x2
2 C x2

3 D 0; (3.28)

describing exactly the point at the origin.
Let us look at what happens if we subtract some “amount of infinity”. What, for

instance, does e0 � 1
2
r2e1 mean?

We can compute the IPNS of the expression

�

e0 � 1

2
r2e1

�

� P D 0; (3.29)

which is equal to

� 1

2
x2 C 1

2
r2 D 0 (3.30)

or
x2

1 C x2
2 C x2

3 � r2 D 0; (3.31)

describing all points at the same distance r from the origin, namely a sphere at the
origin.

For more details, see Chap. 4 of [81] (especially Sect. 4.3.3).

3.3 The Center of a Sphere, Circle, or Point Pair

The center of a sphere can be computed as the following sandwich product:

P D Se1S: (3.32)

This can be proved based on the following steps:

P D
�

x C 1

2
.x2 � r2/e1 C e0

�

e1S; (3.33)

P D
��

x C 1

2
.x2 � r2/e1 C e0

�

e1
�

S; (3.34)

P D .x ^ e1 C e0 ^ e1 � 1/ S; (3.35)

3.4 Distances and Angles 33

P D .x ^ e1 C e0 ^ e1 � 1/

�

x C 1

2
.x2 � r2/e1 C e0

�

; (3.36)

P D .x ^ e1 C e0 ^ e1 � 1/ x (3.37)

C .x ^ e1 C e0 ^ e1 � 1/
1

2
.x2 � r2/e1

C .x ^ e1 C e0 ^ e1 � 1/ e0;

P D .x ^ e1 C e0 ^ e1 � 1/ x (3.38)

C .x ^ e1 C e0 ^ e1 � 1/ e0;

P D �x2e1 C x ^ e0 ^ e1 � x (3.39)

Cx ^ e1 ^ e0 � x � 2e0;

leading to the center point of the sphere

P D �2

�

x C 1

2
x2e1 C e0

�

(3.40)

with a homogeneous scaling factor of �2.
The sandwich product of (3.32) can also be used to obtain the centers of circles

and point pairs. Note, that circles and point pairs are specific lower-dimensional
spheres in CGA. The center of a circle, for instance, can be computed from

P D Ze1Z: (3.41)

This is used in the robot example of Chap. 8.

3.4 Distances and Angles

In CGA points, planes and spheres are represented as vectors.
Table 3.3 summarizes and details the results of Sect. 3.1. We will now investigate

the inner product of conformal vectors and its geometric meaning. Table 3.4
summarizes the geometric meaning of the inner product of two conformal vectors
U and V as outlined in Sect. 3.4.1 for distances and in Sect. 3.4.2 for angles.

Table 3.3 Geometric meaning of conformal vectors

Point P D x C 1
2
x2e1 C e0 D x1e1 C x2e2 C x3e3 C 1

2
.x2

1 C x2
2 C x2

3/e1 C e0

Sphere S D P � 1
2
r2e1 D s1e1 C s2e2 C s3e3 C 1

2
.s2

1 C s2
2 C s2

3 � r2/e1 C e0

Plane � D n C de1 D n1e1 C n2e2 C n3e3 C de1

34 3 Conformal Geometric Algebra

Table 3.4 Geometric meaning of the inner product of two conformal vectors U and V

U � V Plane Sphere Point

Plane Angle between planes Euclidean distance
from center

Euclidean distance

Sphere Euclidean distance
from center

Distance measure Distance measure

Point Euclidean distance Distance measure Euclidean distance

3.4.1 Distances

In CGA, points, planes, and spheres are represented as vectors. The inner product
of this kind of object is a scalar and can be used as a measure of distances. In the
following examples, we will see that the inner product P � S of two vectors P and
S can be used for tasks such as

• The Euclidean distance between two points;
• The distance between a point and a plane;
• The decision as to whether a point is inside or outside a sphere.

The inner product of a vector P and a vector S is defined by

P � S D .p C p4e1 C p5e0/ � .s C s4e1 C s5e0/

D p � s C s4 p � e1
„ƒ‚…

0

Cs5 p � e0
„ƒ‚…

0

Cp4 e1 � s
„ƒ‚…

0

Cp4s4 e21
„ƒ‚…

0

Cp4s5 e1 � e0
„ ƒ‚ …

�1

Cp5 e0 � s
„ƒ‚…

0

Cp5s4 e0 � e1
„ ƒ‚ …

�1

Cp5s5 e2
0

„ƒ‚…

0

:

This results in
P � S D p � s � p5s4 � p4s5 (3.42)

or
P � S D p1s1 C p2s2 C p3s3 � p5s4 � p4s5:

3.4.1.1 Distance Between Points

In the case of P and S being points we get

p4 D 1

2
p2; p5 D 1

s4 D 1

2
s2; s5 D 1

3.4 Distances and Angles 35

The inner product of these points is according to Eq. 3.42

P � S D p � s � 1

2
s2 � 1

2
p2

D p1s1 C p2s2 C p3s3 � 1

2
.s2

1 C s2
2 C s2

3/ � 1

2
.p2

1 C p2
2 C p2

3/

D �1

2
.s2

1 C s2
2 C s2

3 C p2
1 C p2

2 C p2
3 � 2p1s1 � 2p2s2 � 2p3s3/

D �1

2
..s1 � p1/

2 C .s2 � p2/
2 C .s3 � p3/

2/

D �1

2
.s � p/2

We recognize that the square of the Euclidean distance of the inhomogeneous points
corresponds to the inner product of the homogeneous points multiplied by �2.

.s � p/2 D �2.P � S/

3.4.1.2 Distance Between a Point and a Plane

For a vector P representing a point, we get

p4 D 1

2
p2; p5 D 1:

For a vector S representing a plane with normal vector n and distance d , we get

s D n; s4 D d; s5 D 0:

The inner product of point and plane is, according to (3.42),

P � S D p � n � d;

which represents the Euclidean distance between the point and the plane, with a sign
according to

• P � S > 0: p is in the direction of the normal n;
• P � S D 0: p is on the plane;
• P � S < 0: p is not in the direction of the normal n.

3.4.1.3 Distance Between a Plane and a Sphere

For a vector U representing a plane with normal vector n and distance d , we get

u D n; u4 D d; u5 D 0:

36 3 Conformal Geometric Algebra

For a vector V representing a sphere, we get

v4 D 1

2
.s2 � r2/; v5 D 1:

The inner product of the plane and the sphere is, according to (3.42),

U � V D � � S D n � s � d; (3.43)

which represents the Euclidean distance between the center point of the sphere and
the plane (see Sect. 3.4.1.2).

3.4.1.4 Distance Between Two Spheres

We will now compute the inner product of two spheres.
For two vectors S1 and S2 representing two spheres, we get

u4 D 1

2
.s1

2 � r2
1 /; u5 D 1;

and

v4 D 1

2
.s2

2 � r2
2 /; v5 D 1:

The inner product of the two spheres is, according to (3.42),

S1 � S2 D s1 � s2 � 1

2
.s2

2 � r2
2 / � 1

2
.s1

2 � r2
1 /

D s1 � s2 � 1

2
s2

2 C 1

2
r2

2 � 1

2
s1

2 C 1

2
r2

1

D 1

2
r2

1 C 1

2
r2

2 � 1

2
.s2

2 � 2s1 � s2 C s1
2/

D 1

2
.r2

1 C r2
2 / � 1

2
.s2 � s1/2:

We get
2.S1 � S2/ D r2

1 C r2
2 � .s2 � s1/2: (3.44)

This means that twice the inner product of two spheres is equal to the sum of the
squares of their radii minus the square of the Euclidean distance between the centers
of the spheres.

3.4 Distances and Angles 37

Fig. 3.2 The inner product of
a point and a sphere describes
the square of the distance
between the point and sphere
according to (3.46)

3.4.1.5 The Inner Product of a Point and a Sphere

We will now see that the inner product of a point and a sphere can be used to decide
whether a point is inside a sphere or not.

For a vector P representing a point, we get

p4 D 1

2
p2; p5 D 1:

For a vector S representing a sphere with radius r , we get

s4 D 1

2
.s2

1 C s2
2 C s2

3 � r2/; s5 D 1:

The inner product of the point and sphere is, according to 3.42,

P � S D p � s � 1

2
.s2 � r2/ � 1

2
p2

D p � s � 1

2
s2 C 1

2
r2 � 1

2
p2

D 1

2
r2 � 1

2
.s2 � 2p � s � p2/

D 1

2
r2 � 1

2
.s � p/2:

We get
2.P � S/ D r2 � .s � p/2 (3.45)

or
� 2.P � S/ D .s � p/2 � r2: (3.46)

Figure 3.2 illustrates this formula. The triangle shown is right-angled. According to
Pythagoras’ theorem,

p

2jP � S j is equal to the distance between p and the tangent
point to the sphere.

38 3 Conformal Geometric Algebra

3.4.1.6 Is a Point Inside or Outside a Sphere?

In terms of the Euclidean distance d , where

.d C r/2 D .s � p/2 D d 2 C 2dr C r2;

we get

2.P � S/ D r2 � .d 2 C 2dr C r2/;

2.P � S/ D �d 2 � 2dr;

or

P � S D D.d/ D �d

2
.d C 2r/:

With the help of some curve sketching, we can see that this is a parabola with

D.0/ D 0; D.�2r/ D 0;

and a maximum at

D.�r/ D 1

2
r2:

We can now see that

• If P � S > 0, p is inside the sphere;
• If P � S D 0, p is on the sphere;
• If P � S < 0, p is outside the sphere.

3.4.2 Angles

This section presents some relations between the inner products of geometric objects
and their angles.

Angles between two objects o1; o2 such as two lines or two planes can be
computed using the inner product of the normalized OPNS representation of the
objects:

cos.�/ D o�
1 � o�

2
ˇ

ˇo�
1

ˇ

ˇ

ˇ

ˇo�
2

ˇ

ˇ

(3.47)

or

� D †.o1; o2/ D arccos
o�

1 � o�
2

ˇ

ˇo�
1

ˇ

ˇ

ˇ

ˇo�
2

ˇ

ˇ

: (3.48)

See [63] for more details.
Let us derive, as one example, an expression for the angle between two planes

based on the observation expressed in (3.42). For a vector �1 representing a plane

3.5 Transformations 39

with normal vector n1 and distance d1, we get

u D n1; u4 D d1; u5 D 0:

For a vector �2 representing another plane, we get

v D n2; v4 D d2; v5 D 0:

The inner product of the two planes is

�1 � �2 D n1 � n2; (3.49)

representing the scalar product of the two normals of the planes. Based on this
observation, the angle � between the two planes can be computed as follows:

cos.�/ D �1 � �2: (3.50)

This corresponds to (3.48) taking into account the fact that the planes are normalized
and that the dualization operation switches between the two possible angles between
planes.

3.5 Transformations

Transformations can easily be described in CGA. All kinds of transformations of an
object o can be done with the help of the following geometric product:

otransformed D Vo QV ; (3.51)

where V is a versor and QV is its reverse. (In the reverse of a multivector the blades
are with reversed order of their outer product components, for instance the reverse
of 1 C e1 ^ e2 is equal to 1 C e2 ^ e1 or 1 � e1 ^ e2/.

We focus here on rotations and translations; see Sect. 6.4 of [7] for a treatment
of other conformal transformations such as reflections, dilations, and involutions.
Readers interested in the mathematical details of how transformations such as
rotations, and translations are represented by combinations of reflections are
referred to Sects. 1.5.4 and 4.3 of [81]. Section 3.3 of that book describes versors in
some detail.

3.5.1 Rotation

The operator
R D e�.

�
2 /L (3.52)

40 3 Conformal Geometric Algebra

describes a rotor. L is the rotation axis, represented by a normalized bivector, and
� is the rotation angle around this axis. R can also be written as

R D cos

�

�

2

�

� L sin

�

�

2

�

: (3.53)

The rotation of a geometric object o is performed with the help of the operation

orotated D Ro QR:

There are strong relations between rotations in CGA and quaternions and dual
quaternions. In Chap. 4 you will see that quaternions are in principle rotors with
a rotation axis through the origin, and dual quaternions turn out to be versors
describing rotations with an arbitrary rotation axis, not passing through the origin.

3.5.2 Translation

In CGA, a translation can be expressed in a multiplicative way with the help of a
translator T defined by

T D e� 1
2 te1 ; (3.54)

where t is a vector
t D t1e1 C t2e2 C t3e3:

Application of the Taylor series

T D e� 1
2 te1 D 1 C � 1

2
te1
1Š

C .� 1
2
te1/2

2Š
C .� 1

2
te1/3

3Š
C : : :

and the property .e1/2 D 0 results in the translator

T D 1 � 1

2
te1: (3.55)

Example. Versors do not only transform points but are also able to transform
complete geometric objects. Let us, for instance, translate the sphere

S D �e1 C e0 (3.56)

(see Fig. 3.3) in the x-direction by the translation vector

t D 4e1: (3.57)

Note that, according to (3.13), this is a sphere with its center at the origin and with
r2 D 2.

3.5 Transformations 41

Fig. 3.3 Translation of a
sphere from the origin to the
point Pt

The translator in this example has the form

T D 1 � 2e1e1; (3.58)

and its reverse is
QT D 1 C 2e1e1: (3.59)

The translated sphere can now be computed as the versor product

Stranslated D TS QT (3.60)

D .1 � 2e1e1/.�e1 C e0/.1 C 2e1e1/

D .1 � 2e1e1/.�e1 � 2 e1e1e1
„ ƒ‚ …

0

Ce0 C 2e0e1e1/

D .1 � 2e1e1/.�e1 C e0 � 2e1e0e1/

D �e1 C e0 � 2e1e0e1 C 2e1 e1e1
„ƒ‚…

0

�2e1e1e0 C 4e1e1e1e0e1

D �e1 C e0 � 2e1.e0e1 C e1e0
„ ƒ‚ …

�2

/ C 4e1e1e1e0e1

D 4e1 � e1 C e0 C 4 e1e1e1
„ ƒ‚ …

�e1

e0e1

D 4e1 � e1 C e0 � 4e1 e0e1
„ƒ‚…

�e1^e0�1

D 4e1 � e1 C e0 � 4 e1.�e1 ^ e0 � 1/
„ ƒ‚ …

�2e1

;

resulting in
Stranslated D 4e1 C 7e1 C e0: (3.61)

42 3 Conformal Geometric Algebra

According to (3.13), this is a sphere with the same radius r2 D 2, but with a
translated center point

Pt D t C 1

2
t2e1 C e0 D 4e1 C 8e1 C e0: (3.62)

3.6 Rigid-Body Motion

In CGA, a rigid-body motion, including both a rotation and a translation, is
described by a displacement versor D, sometimes also called a motor,

D D RT; (3.63)

where R is a rotor and T is a translator (see Sect. 3.5). A rigid-body motion of an
object o is described by

origid body motion D Do QD:

We see, that both rotation and translation can be expressed in one algebraic
expression. In CGA, this is also possible for rotational and translational kinematics
and dynamics.

If we consider a time-dependent displacement versor D.t/, its differentiation
leads to

PD D 1

2
VD: (3.64)

The velocity screw V has the form

V D e1v � e123!; (3.65)

where v is the linear velocity vector, e123 is the Euclidean pseudoscalar e1 ^ e2 ^ e3,
and ! is the angular (or rotational) velocity. Its differentiation leads to a combined
acceleration expression consisting of both a force and a torque. See [50] for details
of the treatment of kinematics and dynamics with CGA.

All of these equations are used in our molecular dynamics application in
Chap. 13.

3.7 The Horizon Example

This section presents an example that will be used throughout this book for the
explanation of various topics. Given a sphere S describing the Earth and a viewpoint
P of an observer on a beach (see Fig. 3.4), we wish to find an algebraic expression
for the horizon as seen by the observer, provided there is no occlusion of any sort
other than the Earth itself in the scene.

3.7 The Horizon Example 43

Fig. 3.4 Horizon of an observer on a beach

First of all, we compute the distance from the viewpoint to the horizon.
According to (3.46) and Fig. 3.2, the square of this distance d can easily be
computed based on the inner product of the Earth and the viewpoint:

d 2 D �2.S � P /: (3.66)

Given this squared distance, we may construct another sphere K around P with that
distance as its radius (r2 D d 2):

K D P � 1

2
d 2e1 (3.67)

or
K D P C .S � P /e1: (3.68)

The circle representing the horizon may then be calculated by calculating the
intersection (via the outer product) of the two spheres. Figure 3.5 illustrates the
calculation:

C D S ^ K (3.69)

or
C D S ^ .P C .S � P /e1/: (3.70)

This is a very compact description of the horizon circle C seen from the viewpoint
P on the Earth S . Note that we did not need any coordinates for its formulation.

Only if we have to make concrete computations do we have to use coordinates.
Let mx; my; mz be the 3D coordinates of the Earth’s center; then M has the
following representation in 5D conformal space:

M D mxe1 C mye2 C mze3 C 1

2
m2e1 C e0; (3.71)

44 3 Conformal Geometric Algebra

Fig. 3.5 Calculation of the
intersection circle (horizon)

where
m2 D m2

x C m2
y C m2

z : (3.72)

The viewpoint P of an observer with coordinates px; py; pz can be represented
accordingly as

P D pxe1 C pye2 C pze3 C 1

2
p2e1 C e0; (3.73)

where
p2 D p2

x C p2
y C p2

z ; (3.74)

and the sphere S describing the Earth, with center point M and radius r , can be
represented as

S D M � 1

2
r2e1: (3.75)

Assuming the center of the sphere to be at the origin of the coordinate system, S

can also be defined as

S D e0 � 1

2
r2e1: (3.76)

The horizon example will be used throughout this book in order to explain several
different topics. We use it especially to explain the software tools CLUCalc and
Gaalop in the following sections:

• Section 6.5: CLUCalc, a tool for the interactive and visual development of
Geometric Algebra algorithms

• Section 10.1: the Gaalop compiler for high-performance implementations;
• Section 11.2: Gaalop GPC for C++ programs;
• Section 12.2.1: Gaalop GPC for OpenCL programs;
• Section 12.2.2: Gaalop GPC for CUDA programs.

Chapter 4
Maple and the Identification of Quaternions
and Other Algebras

The goal of this chapter is to identify some mathematical systems in CGA and to
investigate what their geometric meaning is (Fig. 4.1).

Chapter 3 showed how geometric objects can be represented as algebraic
expressions.

Figure 1.2 indicates that spheres and planes can be represented as vectors, and
circles and lines as bivectors in CGA. We will see in this chapter, that, for instance,
quaternions can be identified based on their imaginary units i; j; k. This is the reason
why transformations such as rotations can be handled within the algebra, although
they are traditionally handled based on separate rotation matrices.

Besides quaternions, we will see the identification of other mathematical systems
in CGA such as complex numbers (see Fig. 4.2), Plücker coordinates (see Fig. 4.7)
and dual quaternions (see Fig. 4.11). Many of the calculations presented in this
chapter are supported by Maple.

4.1 Using Maple for Symbolic Geometric Algebra
Computing

In order to deal with symbolic Geometric Algebra computations based on Maple, we
use a library called Cliffordlib [3], developed by Rafal Ablamowicz and Bertfried
Fauser; see [4] for download and installation hints. The most important operations
of the Clifford package are presented in Table 4.1. We use the left contraction (LC)
operation (see [29]) for the inner product.

Besides these main operations, we also need some methods such as
scalarpart() and vectorpart() for extracting the scalar or the vector part
of a multivector.

In order to perform CGA computations, we have to load the Clifford package,
set the corresponding metric (positive signature for the basis vectors e1, . . . , e4 and
negative signature for e5), set aliases for basic blades (optional), and define e0 and
e1 as shown in the following Maple listing:

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 4,
© Springer-Verlag Berlin Heidelberg 2013

45

46 4 Maple and the Identification of Quaternions and Other Algebras

Fig. 4.1 The blades of CGA and the geometric meaning of some of them

Table 4.1 Notation for
Geometric Algebra
operations in Maple

Notation Meaning

a &c b Geometric product
a &w b Outer product
LC(a,b) Inner product

-(a) &c e12345 Dualization
reversion() Reversion

> with(Clifford);
> B:=linalg[diag](1, 1, 1, 1, -1);
> eval(makealiases(5, "ordered"));
> e0:=-0.5*e4+0.5*e5;
> einf:=e4+e5;

There is the possibility to write user-specific functions such as the following often-
needed functions for the computation of the conformal representation of a 3D point,

> conformal := proc(x)
> local conf;
> global einf, e0;
> conf := x + 1/2 * x &c x &c einf + e0;
> RETURN(conf);
> end:

and for the computation of the dual,

> dual := proc(x)
> local dual;
> global e12345;
> dual := - x &c e12345;
> RETURN(dual);
> end:

in accordance with Sect. 2.2.3.1.

4.2 Complex Numbers 47

In Chap. 9, you will see how advantageously Maple can be used for the
optimization of a computer animation application.

In the following sections, we will use Maple to investigate how different algebras
can be identified within CGA.

4.2 Complex Numbers

Complex numbers are linear combinations of scalars and the imaginary unit i , which
squares to �1. This imaginary unit can be identified in CGA as one of the 2-blades
e1 ^ e2; e1 ^ e3, and e2 ^ e3, spanned by the three Euclidean basis vectors e1; e2; e3.
We select

i D e3 ^ e2 D �e2 ^ e3 (4.1)

in order to be in line with the imaginary units of the quaternions as described in
Sect. 4.3. We have

i 2 D .e3 ^ e2/
2 D e3e2 e3e2

„ƒ‚…

�e2e3

D �e3 e2e2
„ƒ‚…

1

e3 D � e3e3
„ƒ‚…

1

D �1 (4.2)

Of the 32 blades of CGA, only two blades are needed for complex numbers, namely
the scalar and one 2-blade, as indicated in Fig. 4.2. From a geometric point of view,
the imaginary unit i according to (4.1) represents a line along the x-axis: Planes
are represented according to Eq. (3.15) by their 3D normal vector and their distance

Fig. 4.2 Complex numbers in CGA. The imaginary unit can be identified in CGA as one of the
2-blades e1 ^ e2, e1 ^ e3, and e2 ^ e3, each with a different geometric meaning

48 4 Maple and the Identification of Quaternions and Other Algebras

to the origin. e3 represents a plane through the origin in the direction of the x-axis
and the y-axis. A line is represented as the intersection of two planes (see (3.19)).
Therefore i D e3 ^ e2 represents the intersection of the two planes represented by
its normal vectors e3 and e2. This results in a line along the x-axis.

Let us now investigate a rotation by an angle � around the line represented by
the imaginary unit i D e3 ^ e2. According to (3.52) this rotation can be described
by a rotor R, where

R D e� �
2 e3^e2 :

With the help of a Taylor series, we can write

R D 1C�e3 ^ e2
�
2

1Š
C .�e3 ^ e2

�
2 /2

2Š
C .�e3 ^ e2

�
2 /3

3Š
C .�e3 ^ e2

�
2 /4

4Š
C .�e3 ^ e2

�
2 /5

5Š
C: : :

or

R D 1� e3 ^ e2
�

2

1Š
C .e3 ^ e2

�

2
/2

2Š
� .e3 ^ e2

�

2
/3

3Š
C .e3 ^ e2

�

2
/4

4Š
� .e3 ^ e2

�

2
/5

5Š
C : : :

or, according to (4.2),

R D 1� .
�

2
/2

2Š
C .

�

2
/4

4Š
� .

�

2
/6

6Š
C : : : �e3 ^e2

�

2

1Š
Ce3 ^e2

.
�

2
/3

3Š
�e3 ^e2

.
�

2
/5

5Š
C : : : ;

and therefore

R D cos

�

�

2

�

� e3 ^ e2 sin

�

�

2

�

(4.3)

or

R D cos

�

��

2

�

C e3 ^ e2 sin

�

��

2

�

: (4.4)

This means that a complex number identified by the imaginary unit i D e3 ^ e2

represents a rotation around the x-axis. Identifying the imaginary unit with one of
the other bivectors, that square to �1 would mean a rotation around the y-axis or
the z-axis.

4.3 Quaternions

There is a lot of literature about quaternions represented in Euclidean Geometric
Algebra (e.g., [47, 65, 70, 76, 86]). In this section, we will see how they can
be embedded in CGA in a very intuitive way. The main observation is that an
arbitrary line through the origin represents the rotation axis for a quaternion if we
use the following definitions for the imaginary units (defined in Maple according
to Fig. 4.3):

4.3 Quaternions 49

Fig. 4.3 Definition of
quaternions in Maple

Fig. 4.4 Quaternions in CGA

i D e3 ^ e2; (4.5)

j D e1 ^ e3; (4.6)

k D e2 ^ e1: (4.7)

Figure 4.4 shows the four blades for quaternions, representing the scalar part and
the three imaginary parts.

Let v be an arbitrary normalized Euclidean 3D vector

v D v1e1 C v2e2 C v3e3: (4.8)

The conformal representation of the Euclidean point .v1; v2; v3/ is

P D v C 1

2
v2e1 C e0; (4.9)

According to Table 3.2, the line through the origin e0 and the point P is described
by their outer product with the point at infinity e1,

50 4 Maple and the Identification of Quaternions and Other Algebras

Fig. 4.5 Computation of the representation of a line in Maple

L� D e0 ^ P ^ e1: (4.10)

A dualization calculation leads to the standard representation of the line (see Fig. 4.5
for a screenshot of the Maple computations)

L D v1.e3 ^ e2/ C v2.e1 ^ e3/ C v3.e2 ^ e1/ (4.11)

or
L D v1i C v2j C v3k: (4.12)

We will see in the following sections that a rotation around this axis L by an angle
of � can be computed using the following quaternion:

Q D cos

�

�

2

�

C L sin

�

�

2

�

: (4.13)

4.3.1 The Imaginary Units

For the imaginary units defined in (4.5), (4.6), and (4.7), we can derive the following
properties:

i 2 D .e3 ^ e2/
2 D e3e2 e3e2

„ƒ‚…

�e2e3

D �e3 e2e2
„ƒ‚…

1

e3 D � e3e3
„ƒ‚…

1

D �1;

j 2 D .e1 ^ e3/
2 D e1e3 e1e3

„ƒ‚…

�e3e1

D �e1 e3e3
„ƒ‚…

1

e1 D � e1e1
„ƒ‚…

1

D �1;

k2 D .�e1 ^ e2/
2 D e1e2 e1e2

„ƒ‚…

�e2e1

D �e1 e2e2
„ƒ‚…

1

e1 D � e1e1
„ƒ‚…

1

D �1:

4.3 Quaternions 51

Fig. 4.6 The product of pure quaternions in Maple

For the multiplication of i and j , we get

ij D .e3 ^ e2/.e1 ^ e3/ D e3e2e1e3 D e2e3e3e1 D e2 ^ e1 D k:

Accordingly,
jk D i;

ki D j;

and
ijk D i i D �1:

We recognize that the three imaginary units i; j; k are represented as the three axes
in CGA. As with the imaginary unit of Sect. 4.2, i represents the x-axis and, in
addition, j and k represent the y-axis and z-axis, respectively.

4.3.2 Pure Quaternions and Their Geometric Product

A pure quaternion Q1 has no scalar part. Its CGA form is

Q1 D v11.e3 ^ e2/ C v12.e1 ^ e3/ C v13.e2 ^ e1/ (4.14)

or, using the definitions (4.5), (4.6), and (4.7),

Q1 D v11i C v12j C v13k; (4.15)

where .v11; v12; v13/ is a normalized 3D vector.
The geometric product of a pure quaternion Q1 and a pure quaternion Q2, where

Q2 D v21.e3 ^ e2/ C v22.e1 ^ e3/ C v23.e2 ^ e1/;

is, according to the Maple evaluation in Fig. 4.6,

Q1Q2 D �.v11v21 C v12v22 C v13v23/ (4.16)

52 4 Maple and the Identification of Quaternions and Other Algebras

C.v12v23 � v13v22/.e3 ^ e2/ C .v13v21 � v11v23/.e1 ^ e3/ C .v11v22 � v12v21/.e2 ^ e1/;

which is equivalent to the product of quaternions

Q1Q2 D �.v11v21 C v12v22 C v13v23/ C .v12v23 � v13v22/i C .v13v21 � v11v23/j

C.v11v22 � v12v21/k: (4.17)

Note that the square of a pure quaternion therefore is

Q2
1 D �.v11v11 C v12v12 C v13v13/ D �1: (4.18)

4.3.3 Rotations Based on Unit Quaternions

Rotations based on quaternions are restricted to rotations with a rotation axis passing
through the origin. They can be defined by

Q D e
�
2 L; (4.19)

where
L D v1i C v2j C v3k

represents a normalized line through the origin according to the Euclidean direction
vector of (4.8). This leads to the well-known definition of general quaternions

Q D cos

�

�

2

�

C L sin

�

�

2

�

: (4.20)

Note. With the help of the Taylor series and the property L2 D �1 (see (4.18)), we
have

Q D e
�
2 L

D 1 C L
�

2

1Š
C .L

�

2
/2

2Š
C .L

�

2
/3

3Š
C .L

�

2
/4

4Š
C .L

�

2
/5

5Š
C .L

�

2
/6

6Š
C : : :

D 1 � .
�

2
/2

2Š
C .

�

2
/4

4Š
� .

�

2
/6

6Š
C : : :

CL

�

2

1Š
� L

.
�

2
/3

3Š
C L

.
�

2
/5

5Š
C : : :

D cos.
�

2
/ C L sin.

�

2
/:

There is only a slight difference between the quaternion of (4.20) and the rotor of
Sect. 3.5. The sign difference indicates that the rotations are in different directions.

4.4 Plücker Coordinates 53

In CGA, we rotate an object o with the help of the operation

orotated D Qo QQ; (4.21)

where QQ is the reverse of Q,

QQ D cos

�

�

2

�

� L sin

�

�

2

�

; (4.22)

which is also referred to as the conjugate of a quaternion.
Note that for � D � , the quaternion

Q D v1i C v2j C v3k (4.23)

represents a line through the origin and the 3D point represented by the normalized
3D vector .v1; v2; v3/, and also a rotation by an angle � D � about this line. We will
use this property advantageously in the inverse kinematics algorithm described in
Chap. 9.

4.4 Plücker Coordinates

We will see in this section that Plücker coordinates can be identified in CGA based
on the six 2-blades indicated in Fig. 4.7. Since Plücker coordinates describe an
arbitrary line, we first of all compute the representation of a line. According to the

Fig. 4.7 Plücker coordinates in CGA

54 4 Maple and the Identification of Quaternions and Other Algebras

Fig. 4.8 Computations of Plücker coordinates in Maple

Maple program shown in Fig. 4.8, this results in

L D �.a3 � b3/e1 ^ e2 C .a2 � b2/e1 ^ e3 � .a1 � b1/e2 ^ e3 (4.24)

C.a2b3 � a3b2/e1 ^ e1 � .a1b3 � a3b1/e2 ^ e1 C .a1b2 � a2b1/e3 ^ e1:

Another form is

L D .a1 � b1/i C .a2 � b2/j C .a3 � b3/k (4.25)

C.a2b3 � a3b2/e1 ^ e1 � .a1b3 � a3b1/e2 ^ e1 C .a1b2 � a2b1/e3 ^ e1
or

L D .b � a/e123 C Œa � b� ^ e1; (4.26)

resulting in
L D ue123 C m ^ e1; (4.27)

where u D b � a is a Euclidean direction vector and m D a � b is a moment vector,
(Fig. 4.9). The corresponding six Plücker coordinates are

.u W m/ D .u1 W u2 W u3 W m1 W m2 W m3/: (4.28)

Note that, based on the above equations, the pair .u W m/ uniquely determines the
line L up to a common (non zero) factor which depends on the distance between a
and b. That is, the coordinates may be considered as homogeneous coordinates for
L, in the sense that all pairs .�u W �m/, for � ¤ 0, can be produced by points on L

and only L, and any such pair determines a unique line as long as u is not zero and
u � m D 0 (see [2]).

The cross product m D a � b can also be written as m D �.a ^ b/e123 according
to (2.5); ue123 is equal to u1e23 � u2e13 C u3e12, since

4.5 Dual Numbers 55

Fig. 4.9 The six Plücker
coordinates of the line
through a and b consist of the
coordinates of the direction
vector u and the moment
vector m

.u1e1 C u2e2 C u3e3/e1e2e3

D u1 e1e1
„ƒ‚…

1

e2e3 C u2 e2e1
„ƒ‚…

�e1e2

e2e3 C u3 e3e1
„ƒ‚…

�e1e3

e2e3
„ƒ‚…

�e3e2

D u1e2e3 � u2e1e2e2e3 C u3e1e3e3e2

D u1e2e3 � u2e1e3 C u3e1e2:

Example. For the two Euclidean points a D .1; 0; 1/ and b D .1; 0; 0/, we get

u D �e3

and
m D e2;

leading to the line

L D �e3e123 C e2 ^ e1 D �e12 C e2 ^ e1 (4.29)

with the six Plücker coordinates (0 : 0 : �1 : 0 : 1 : 0).

4.5 Dual Numbers

A dual number is a number x C �y, where x, y are scalars and � is a unit with the
property that �2 D 0. In CGA, there are many blades with this property of squaring
to zero, since e2

0 D e21 D 0. We use

� D e1 ^ e2 ^ e3 ^ e1; (4.30)

56 4 Maple and the Identification of Quaternions and Other Algebras

Fig. 4.10 Dual numbers in CGA

as used in [67], which has this property, to obtain dual numbers and also dual
quaternions (see Sect. 4.6). We can write a dual number in CGA as follows:

x C �y D x C e1 ^ e2 ^ e3 ^ e1y: (4.31)

Figure 4.10 shows the subset of the 32 blades of CGA needed for dual numbers,
namely the scalar and �.

4.6 Dual Quaternions

A dual quaternion is defined by

Q D Q1 C �Q2; (4.32)

with the quaternions

Qi D si C vi1i C vi2j C vi3k; (4.33)

and where � is a unit with the property that �2 D 0.
We will see in this section that dual quaternions – as often used in robotics –

can be identified in CGA based on the six 2-blades used for Plücker coordinates,
together with the scalar and one 4-blade (� D e1 ^ e2 ^ e3 ^ e1), as indicated in
Fig. 4.11. We will also see in the following that there is a geometrically intuitive

4.6 Dual Quaternions 57

Fig. 4.11 Dual quaternions are represented in CGA based on eight blades: the scalar, six 2-blades
and one 4-blade

relation between quaternions and a versor describing, for instance, a rotation around
an arbitrary rotation axis.

Quaternions can be written in CGA form as

Qi D si C vi1.e3 ^ e2/ C vi2.e1 ^ e3/ C vi3.e2 ^ e1/: (4.34)

Using (4.30), we can write a dual quaternion in CGA as follows:

Q D Q1 C �Q2 D Q1 C e1 ^ e2 ^ e3 ^ e1Q2: (4.35)

This can be written in the form of a linear combination of the above-mentioned eight
blades (Fig. 4.12),

Q D s1 � v11.e2 ^ e3/ C v12.e1 ^ e3/ � v13.e1 ^ e2/ (4.36)

Cs2.e1 ^ e2 ^ e3 ^ e1/ C v21.e1 ^ e1/ C v22.e2 ^ e1/ C v23.e3 ^ e1/:

We will see now that there is a geometric relation between dual quaternions
and a versor describing a rotation with an arbitrary rotation axis. This operation
is especially helpful for describing the movement of a robot at a revolute joint.

58 4 Maple and the Identification of Quaternions and Other Algebras

Fig. 4.12 Dual-quaternion computations in Maple

Fig. 4.13 Dual quaternion computations in Maple

An arbitrary rotation according to a quaternion Q1 can be described based on a
translation to the origin, a rotation Q1 about the origin, and a translation back, as
expressed in the versor product

TQ1
QT : (4.37)

This is equal to (Fig. 4.13)

V D s1 � v11.e2 ^ e3/ C v12.e1 ^ e3/ � v13.e1 ^ e2/ (4.38)

C.�t2v13 C t3v12/.e1 ^ e1/ C .t1v13 � t3v11/.e2 ^ e1/ C .t2v11 � t1v12/.e3 ^ e1/:

This means that there is a relation between versors and dual quaternions as follows:

s2 D 0; (4.39)

4.6 Dual Quaternions 59

v21 D �t2v13 C t3v12; (4.40)

v22 D t1v13 � t3v11; (4.41)

v23 D t2v11 � t1v12: (4.42)

In a nutshell, there is the following relation between dual quaternions and the
versor TQ1

QT :

TQ1
QT D Q1 C �Q2; (4.43)

together with the cross product

v2 D v1 � t:

Note that a normalization according to v2 is needed in order to handle quaternions
correctly.

Chapter 5
Fitting of Planes or Spheres to Sets of Points

One big advantage of CGA is its easy handling of objects such as spheres and planes.
Many problems in computer graphics are related to these kinds of objects.

In this chapter, a set of points pi 2 R3; i 2 f1; : : : ; ng, will be approximated
with the help of the best-fitting plane or sphere [95]. Planes and spheres in conformal
space are both vectors of the form

S D s1e1 C s2e2 C s3e3 C s4e1 C s5e0; (5.1)

and points are specific vectors of the form

Pi D pi C 1

2
p2

i e1 C e0: (5.2)

In order to solve the fitting problem, we do the following:

• Use the distance measure between a point and a sphere or plane with the help of
the inner product.

• Use a least-squares approach to minimize the squares of the distances between
the points and the sphere or plane.

• Solve the resulting eigenvalue problem.

The main benefit of this approach is that it fits either a plane or a sphere, depending
on which one fits better. Infinity plays a key role if we wish to obtain a deeper
understanding of the transition between these two geometric objects. The next
section investigates how infinity is represented in CGA and how a plane can be
created by increasing the radius of a sphere, infinitely.

5.1 The Role of Infinity

In Sect. 3.8, we saw that the conformal basis vector e0 represents the origin of
Euclidean space (see (3.10)). But, what about e1? We will see in this section that

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 5,
© Springer-Verlag Berlin Heidelberg 2013

61

62 5 Fitting of Planes or Spheres to Sets of Points

e1 can be interpreted either as a sphere of infinite radius or as a point or a plane
at infinity.

5.1.1 Sphere of Infinite Radius

Let us look first at a sphere with its center point at the origin. According to (3.12),
this “origin sphere” (P D e0) is represented as

S D �1

2
r2e1 C e0: (5.3)

Another homogeneous representation of this origin sphere is the product of the
above representation with the scalar � 2

r2 ,

S 0 D � 2

r2
S D e1 � 2

r2
e0: (5.4)

Based on this formula and the fact that S and S 0 represent the same sphere, we can
easily see that an origin sphere of infinite radius is represented by e1:

lim
r!1 S 0 D e1:

It can be shown that this is true not only for an origin sphere but also for a sphere
with an arbitrary center.

5.1.2 Point at Infinity

Let us now assume an arbitrary Euclidean point x (not equal to the origin)
represented by a conformal vector P , where

P D x C 1

2
x2e1 C e0;

with a Euclidean normal vector n in the direction of x (see Fig. 5.1),

x D tn; t > 0; n2 D 1:

Another homogeneous representation of this point is its product with the scalar 2
x2 ,

P 0 D 2

x2
.x C 1

2
x2e1 C e0/;

P 0 D 2

x2
x C e1 C 2

x2
e0:

5.1 The Role of Infinity 63

Fig. 5.1 The point at infinity

We use this form to compute the limit limt!1 P 0 for increasing x. Since x D tn,
we get

P 0 D 2

t2n2
tn C e1 C 2

t2n2
e0

and, since n2 D 1,
P 0 D 2

t
n C e1 C 2

t2
e0:

Based on this formula and the fact that P and P 0 represent the same Euclidean point,
we can easily see that the point at infinity for any direction vector n is represented
by e1:

lim
t!1 P 0 D e1:

5.1.3 Plane at Infinite Distance from the Origin

Let us consider a plane at an arbitrary distance d ¤ 0 from the origin. According
to (3.15), this plane is represented as

� D n C de1; (5.5)

with a 3D normal vector n. Another homogeneous representation of this plane is its
product with the scalar 1

d
,

� 0 D 1

d
n C e1: (5.6)

Based on this formula and the fact that � and � 0 represent the same plane, we can
easily see that a plane at an infinite distance from the origin is represented by e1:

lim
d!1 � 0 D e1:

64 5 Fitting of Planes or Spheres to Sets of Points

Fig. 5.2 A sphere with a
center s (in the direction
opposite to a normal vector n)
that goes to infinity (while the
radius of the sphere changes
accordingly), results finally in
a plane with a normal vector
n and a distance d from the
origin

5.1.4 Planes as a Limit of a Sphere

Spheres and planes, are both vectors in CGA. In this section, we will see how a
sphere

S D s C 1

2
.s2 � r2/e1 C e0; (5.7)

with a Euclidean center point s and radius r , degenerates to a plane as the result of
a limiting process.

According to the construction shown in Fig. 5.2, the minimum distance from the
origin to a sphere with its center in the direction opposite to a normal vector n is

d D r �
p

s2; (5.8)

and the radius is the sum of the length of the 3D vector s and d , i.e.,

r D
p

s2 C d; (5.9)

or
r2 D s2 C 2d

p
s2 C d 2: (5.10)

The sphere can be written as

S D s C 1

2
.s2 � s2 � 2d

p
s2 � d 2/e1 C e0 (5.11)

or, equivalently,

S D s C 1

2
.�2d

p
s2 � d 2/e1 C e0: (5.12)

Now we introduce S 0, a scaled version of the algebraic expression for the sphere
S representing geometrically the same sphere, as follows:

S 0 D � Sp
s2

D � sp
s2

C 1

2

�
2d C d 2

p
s2

�
e1 � e0p

s2
: (5.13)

5.3 Least-Squares Approach 65

Since the ratio of the 3D vector s to its length
p

s2 corresponds to the negative
normal vector n (see the construction in Fig. 5.2),

lim
s2!1

�
� Sp

s2

�
D n C lim

s2!1
1

2

�
.2d C d 2

p
s2

�
e1 � lim

s2!1
e0p
s2

: (5.14)

This is equivalent to

lim
s2!1

�
� Sp

s2

�
D n C de1; (5.15)

which is a representation of a plane with a normal vector n and a distance d from
the origin.

5.2 Distance Measure

From Sect. 3.4.1.5, we already know that a distance measure between a point Pi and
a sphere/plane S can be defined with the help of their inner product

Pi � S D
�

pi C 1

2
p2

i e1 C e0

�
� .s C s4e1 C s5e0/: (5.16)

According to (3.42), this results in

Pi � S D pi � s � s4 � 1

2
s5p2

i

or, equivalently,

Pi � S D
5X

j D1

wi;j sj ; (5.17)

where

wi;k D
8<
:

pi;k; k 2 f1; 2; 3g
�1; k D 4

� 1
2
p2

i ; k D 5:

5.3 Least-Squares Approach

In the least-squares approach, we consider the minimum of the sum of the squares
of the distances (expressed in terms of the inner product) between all of the points
considered and the plane/sphere,

66 5 Fitting of Planes or Spheres to Sets of Points

min
nX

iD1

.Pi � S/2: (5.18)

In order to obtain this minimum, it can be rewritten in bilinear form as

min.sT Bs/; (5.19)

where
sT D .s1; s2; s3; s4; s5/;

and the 5 � 5 matrix

B D

0
BBBBB@

b1;1 b1;2 b1;3 b1;4 b1;5

b2;1 b2;2 b2;3 b2;4 b2;5

b3;1 b3;2 b3;3 b3;4 b3;5

b4;1 b4;2 b4;3 b4;4 b4;5

b5;1 b5;2 b5;3 b5;4 b5;5

1
CCCCCA

has entries

bj;k D
nX

iD1

wi;j wi;k :

The matrix B is symmetric, since bj;k D bk;j . We consider only normalized results
such that sT s D 1. A conventional approach to such a constrained optimization
problem is to introduce

L D sT Bs � 0 D sT Bs � �.sT s � 1/;

sT s D 1;

BT D B:

The necessary conditions for a minimum are

0 D rL D 2 � .Bs � �s/ D 0

! Bs D �s:

The solution of the minimization problem is given by the eigenvector of B that
corresponds to the smallest eigenvalue.

Figures 5.3 and 5.4 illustrate two properties of the distance measure in this
approach, dealing with the double squaring of the distance and the limiting process
for the distance in the case of a plane considered as a sphere of infinite radius.

5.4 Example 67

Fig. 5.3 The inner product P � S of a point and a sphere on the one hand already describes the
square of a distance, but on the other hand has to be squared again in the least-squares method, since
the inner product can be positive or negative depending on whether (a) the point p lies outside the
sphere or (b) the point p lies inside the sphere

Fig. 5.4 The constraint sT s D 1 leads implicitly to a scaling of the distance measure such that it
gets smaller with increasing radius; if the radius increases from the one in (a) via the radius in (b)
and further to an infinite radius, the distance measure gets zero for a plane considered as a sphere
of infinite radius

5.4 Example

Three distinct (not collinear) points are needed to describe a plane, whereas four
distinct (and not coplanar) points exactly describe a sphere. In this example, we use
five points in order to demonstrate that our approach really is able to fit the best-
fitting object, whether it is a sphere or a plane. First, let us look at an example where
we have the following five points, four of them being coplanar:

Point x y z
p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 �1 0 1

A least-squares calculation results in

S D �0:301511e1 C 0:301511e2 � 0:301511e3

�0:603023e1 C 0:603023e0:

68 5 Fitting of Planes or Spheres to Sets of Points

Fig. 5.5 Fitting a sphere to a
set of five points

Fig. 5.6 Fitting a plane to a
set of five points

Another scaled representation describing the same object is

S D �1

2
e1 C 1

2
e2 � 1

2
e3 � e1 C e0:

This corresponds to a sphere with center s D .0:5; 0:5; �0:5/ and with the square of
its radius r2 D 2:75 (see Fig. 5.5).

Let us now change the fifth point in order that all of the points lie in one plane:

Point x y z
p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 �1 0 2

Now, the result is

S D 0:57735e1 C 0:57735e3 C 0:57735e1;

representing a plane according to Fig. 5.6.

Chapter 6
A Tutorial on Geometric Algebra
Using CLUCalc

Part II of this book is written in a tutorial-like style in order to encourage the reader
to gain his/her own experience in developing Geometric Algebra algorithms. The
relevant tool, CLUCalc, written by Christian Perwass, the tutorial examples, and
the robotics applications in this part can be downloaded free of charge. While the
focus of Part I was more on the mathematical foundations, the focus of Part II
is more on the interactive handling of Geometric Algebra. These two parts are
almost independent of each other. Readers are encouraged to start with whichever
introduction helps them best to understand the basics of Geometric Algebra.

We use the CLUCalc software package to compute interactively with Geometric
Algebra and to visualize the results of these computations. CLUCalc is freely avail-
able for download at [82] (please download version 4.3 in order to run the examples
in this book). With the help of CLUCalc, you will be able to edit and run scripts
called CLUScripts. The screenshot in Fig. 6.1 shows how the example in Sect. 1.1
of the intersection of two spheres can be calculated in an interactive, visual way.

CLUCalc provides the following three windows:

• An editor window;
• A visualization window;
• An output window.

With the help of the editor window, you can easily edit your formulas, and in the
visualization window you will be able to see the spheres and the circle as directly
visualized results.

There is an almost one-to-one correspondence between formulas and code. The
formulas

S1 D P1 � 1

2
r2

1 e1;

S2 D P2 � 1

2
r2

2 e1;

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 6,
© Springer-Verlag Berlin Heidelberg 2013

71

72 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.1 Interactive and visual development of algorithms using CLUCalc. In the editor window,
the intersection of two spheres is defined, which is immediately visualized in the visualization
window

and

z D S1 ^ S2

are coded in CLUCalc as follows:

s1 = p1 - 0.5*r1*r1*einf;
s2 = p2 - 0.5*r2*r2*einf;
z = s1ˆs2;

In this chapter, we present a tutorial-like introduction to Geometric Algebra.
It can be used by readers interested in a quick, interactive, and visual overview
of Geometric Algebra. In order to be usable without preconditions, this tutorial is
written more or less independently of Part I of the book.

The tutorial is based on some simple examples highlighting aspects of Geometric
Algebra. These examples are meant as starting points for your own experiments.
We hope that they will inspire you to make changes interactively and gain your own
experience with Geometric Algebra. Each of the figures in this tutorial is related to
one of these examples. They were all generated by CLUCalc scripts, indicated in
the caption of the figure. All of these short scripts can be easily typed in by yourself
or downloaded from

http://www.gaalop.de.

For specific details of CLUCalc, see [81] or the CLUCalc online help in [82].

6.1 Blades and Vectors 73

6.1 Blades and Vectors

The basis vectors e1; e2; : : : ; en are the basic algebraic elements of an n-dimensional
vector algebra. In Geometric Algebra, there are a variety of basic elements called
blades, including these basis vectors and all combinations of these basis vectors
with dimensions 0 to n (this dimension is usually called the grade of the blade).

The Geometric Algebra of Euclidean 3D space consists of blades of grade 0, 1,
2, and 3. A scalar is a 0-blade (a blade of grade 0). The 1-blades are the three basis
vectors e1; e2; e3. The 2-blades are plane elements spanned by two basis vectors.

The basis vectors (or 1-blades) and the 2-blade e1 ^ e2 are visualized in the
following CLUScript:

DefVarsE3(); // 3D Euclidean space

:Blue;
:a=e1;
:b=e2;
:c=e3;

:Red;
:PE = e1ˆe2;

Here, :DefVarsE3(); indicates calculations in 3D Euclidean space. :Blue; and
:Red; mean that the following objects will be drawn in the corresponding color.
The leading colon means that the object is not only computed but also visualized.

Figure 6.2 shows the visualization of this script. The basis vectors e1, e2, and e3

are drawn in blue and the 2-blade e1 ^ e2, considered as a plane element spanned
by the two basis vectors e1 and e2, is drawn in red. The additional annotations
were produced with specific LaTeX functions according to the CLUScript BasisE-
lementsE3.clu.

Note that for these functions to work, you need to have LaTeX and the software
packages dvips and Ghostscript installed. Under a Linux standard distribution, all

Fig. 6.2
BasisElementsE3.clu

74 6 A Tutorial on Geometric Algebra Using CLUCalc

Table 6.1 List of the eight
blades of 3D Euclidean
Geometric Algebra

Blade Grade Abbreviation

1 0 1
e1 1 e1
e2 1 e2
e3 1 e3
e1 ^ e2 2 e12
e1 ^ e3 2 e13
e2 ^ e3 2 e23
e1 ^ e2 ^ e3 3 I

this software should already be installed. Under Windows, you will need to install
MiKTeX, from www.miktex.org (or something comparable), and AFPL Ghostscript
v8.13 or later, from www.ghostscript.com. They both come with an installer for
Windows and are easy to install.

The Geometric Algebra of Euclidean 3D space also contains a 3-blade e1^e2^e3

spanned by all three basis vectors. A linear combination of k-blades is called a k-
vector (also called vectors, bivectors, trivectors, . . .). Table 6.1 lists the eight blades
of Geometric Algebra of the Euclidean 3D space, including the scalar, three vectors,
three bivectors, and one trivector.

6.2 The Products of Geometric Algebra

Geometric Algebra offers three main products:

• The outer product;
• The inner product;
• The geometric product.

6.2.1 The Outer Product and Parallelness

Geometric Algebra provides an outer product ^ with the properties listed in
Table 6.2.

The outer product is needed in order to generate high-dimensional blades and
vectors. Since the outer product of two parallel vectors is 0, it can be used as a
measure of parallelness. The outer product of two vectors is a bivector. It can
be visualized as a plane element spanned by these two vectors. The following
CLUScript, bivectorE3.clu (Fig. 6.3), computes and visualizes the bivector c based
on the two vectors a and b:

DefVarsE3();
:Blue;
:a = e1 + e2;

6.2 The Products of Geometric Algebra 75

Table 6.2 Properties of the
outer product

Property Meaning

1. Anticommutativity u ^ v D �.v ^ u/

2. Distributivity u ^ .v C w/ D u ^ v C u ^ w
3. Associativity u ^ .v ^ w/ D .u ^ v/ ^ w

Fig. 6.3 bivectorE3.clu

:b = e1 - e2;
:Red;
:c = a ˆ b;

The two vectors a D e1 C e2 and b D e1 � e2 are drawn in blue. The result c of
taking their outer product (c) is a bivector. It is visualized as a plane element in red.

A question mark in front of a variable indicates that its algebraic representation
should be shown in a separate window. So, for instance,

?c; // output in separate window

leads to the following result for the bivector c:

c = -2 e12

According to Table 6.1, this is the same as �2.e1 ^e2/. The following outer-product
computation,

?d = a ˆ a;

leads to

d = 0

indicating that the two vectors of the outer product are parallel.
In the following line (of the CLUScript bivectorE3.clu),

?reverse = ˜c;

the reverse of c is computed. This results in

reverse = 2 e12

since taking the reverse of a blade simply reverses the order of its basis vectors.

76 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.4 trivectorE3.clu

We can see that the resulting plane element is

• Twice the plane element spanned by the basis vectors e2 and e1, or
• Twice the plane element spanned by the basis vectors e1 and e2 with an inverted

orientation.

Note that Qc (the reverse of c) is equal to

Qc D 2.e1 ^ e2/:

A trivector is a volume element resulting from the outer product of three vectors.
The following CLUScript computes and draws a simple trivector in E3:

DefVarsE3();

:Blue;
:a = e1 + e2;
:b = e1 - e2;
:c = e3;

:Red;
:d = a ˆ b ˆ c;
?d;

The three vectors a; b; c are drawn in blue and their outer product d in red (Fig. 6.4).
If you are interested in the mathematical computation corresponding to this

example, see Sect. 2.2.1, which shows the following result:

d D a ^ b ^ c D .e1 C e2/ ^ .e1 � e2/ ^ e3

D �2.e1 ^ e2 ^ e3/ D �2I:

This means that the resulting geometric object a ^ b ^ c is equal to �2 multiplied
by the volume element spanned by the three basis vectors e1; e2; e3. This is often
denoted by I , called the pseudoscalar.

6.2 The Products of Geometric Algebra 77

Fig. 6.5 innerProductE3.clu

6.2.2 The Inner Product and Perpendicularity

Geometric Algebra offers an inner product, denoted by A � B (A.B in CLUScript).
For Euclidean spaces, the inner product of two vectors is the same as the well-known
Euclidean scalar product of two vectors.

The result of the following CLUScript,

DefVarsE3();
B = e1+e2;
?length = sqrt(B.B);

is

length = 1.41421,

the length of the vector e1 C e2.
As in vector algebra, the result of taking the inner product of two basis vectors,

DefVarsE3();
?InnerProduct = e1.e2;

is

InnerProduct = 0,

since the two vectors are perpendicular to each other.
In Geometric Algebra, the inner product is not only defined for vectors;

see Sect. 3.2.7 of [81] for a mathematical treatment. The following CLUScript,
innerProductE3.clu (Fig. 6.5), computes and draws the inner product of a vector
and a bivector:

78 6 A Tutorial on Geometric Algebra Using CLUCalc

DefVarsE3();

:Red;
:B = e1 ˆ e2;

:Green;
:x = e1+e3;

:Blue;
// xiB is a vector in the B-plane
// perpendicular to x
:xiB = x.B;

The result of taking the inner product of the vector x D e1 Ce3 and the bivector B is
a vector in the plane (represented by the bivector B) which is perpendicular to x.

Remark. the inner product is grade-decreasing; for example, in the example above,
the result of taking the inner product of an element of grade 2 and an element of
grade 1 is an element of grade 2 � 1 D 1.

6.2.3 The Geometric Product and Invertibility

The geometric product is a combination of the outer product and the inner product.
The geometric product of u and v is denoted by uv (u*v in CLUScript). As we will
see, it is an amazingly powerful operation.

6.2.3.1 The Geometric Product of Vectors

For vectors u and v, the geometric product uv is defined as

uv D u ^ v C u � v: (6.1)

We can derive the following for the inner and the outer product:

u � v D 1

2
.uv C vu/; (6.2)

u ^ v D 1

2
.uv � vu/: (6.3)

Example 1. What is the square of a vector? We have

a2 D aa D a ^ a C a � a D a � aI

for example,
e1e1 D e1 � e1 D 1:

6.2 The Products of Geometric Algebra 79

Example 2. What is .e1 C e2/.e1 C e2/?

DefVarsE3();
?(e1+e2)*(e1+e2);

results in

Constant = 2

This can be expressed mathematically as

.e1 C e2/.e1 C e2/ D .e1 C e2/ � .e1 C e2/

D e1 � e1 C e1 � e2 C e2 � e1 C e2 � e2

D e1 � e1 C e2 � e2 D 2:

Example 3. What is e1e2?

DefVarsE3();
?e1*e2;

results in

Constant = e12

This can be expressed mathematically as

e1e2 D e1 ^ e2 C e1 � e2 D e1 ^ e2:

Example 4. What is e1.e1 C e2/?

DefVarsE3();
?e1*(e1+e2);

results in

Constant = e12 +1

This can be expressed mathematically as

e1.e1 C e2/ D e1e1 C e1e2 D 1 C e1 ^ e2:

Note that the result of this calculation is a linear combination of different types
of blades (in this example, a scalar and a bivector). This kind of expression is called
a multivector.

6.2.3.2 Extension of the Geometric Product to General Multivectors

The geometric product is defined not only for vectors but also for all kinds of
multivectors. Let us calculate, for example, the geometric product of two bivectors:

80 6 A Tutorial on Geometric Algebra Using CLUCalc

DefVarsE3();
:Red;
:B = e1 ˆ e2;
?i_square = B*B;

The surprising result for the square product B2 of the bivector B D e1 ^ e2 is �1.
This is why this bivector can be used like the imaginary unit i of complex numbers.

The geometric product of the following two (unequal) bivectors

DefVarsE3();
?(e1ˆe2)*((e1+e2)ˆe3);

results in the bivector

Constant = - e23 - e31

See Sect. 2.2 for a proof of this example.

6.2.3.3 Invertibility

The inverse of a blade A is defined by

AA�1 D 1:

The inverse of a vector v is
v�1 D v

v � v
:

Proof.

v
v

v � v
D v � v

v � v
D 1:

Example 1. What is the inverse of the vector v D 2e1?

DefVarsE3();
:v=2*e1;
? 1/v;

results in the CLUCalc output 0.5e1.

Example 2. What is the inverse of the pseudoscalar?

DefVarsE3();
? 1/I;

results in the negative of the pseudoscalar (�I),

Constant = - I

See Sect. 2.2 for a proof of this example.

6.3 Geometric Operations 81

Fig. 6.6 DualE3.clu

6.2.3.4 Duality

Since the geometric product is invertible, divisions by geometric objects are
possible.

The dual of a geometric object is calculated by dividing it by the pseudoscalar I .
A superscript is used to denote the dual operator. In CLUScript, this is denoted by a
leading asterisk.

In the following CLUScript DualE3.clu (Fig. 6.6) the dual of the plane A is
calculated:

DefVarsE3();

:Blue;
:A= e2 ˆ (e1+e3);

:Green;
:b= A/I;
?b;

The resulting vector b,

b = e1 - e3

corresponds to the normal vector of the plane. See Sect. 2.2 for a proof of this
example.

6.3 Geometric Operations

Geometric operations can be expressed easily in Geometric Algebra.

82 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.7 ProjectE3.clu

6.3.1 Projection and Rejection

In the following example ProjectE3.clu (Fig. 6.7) we compute and draw the
projection and rejection of a vector v onto a plane B .

The projection is calculated with the help of

vpar D .v � B/=B;

and the rejection with the help of

vperp D .v ^ B/=B W
DefVarsE3();
:Red;
:B = e1ˆ(e1+e2);
v = 1.5*e1 + e2/3 +e3;

The plane B and the vector v are computed. The plane B is drawn in red.

Remark. The vector v is computed but not drawn, because of the missing colon.

In the following code

:Blue;
:vpar = (v.B)/B;
?vpar;

vpar is computed as vpar D .v � B/=B and drawn in blue. It is the part of v parallel
to B. In the following,

:Yellow;
:vperp= (v ˆ B)/B;
?vperp;

6.3 Geometric Operations 83

Fig. 6.8 ReflectE3.clu

vperp is computed as vperp D .v ^ B/=B and drawn in yellow. It is the part of v
perpendicular to B. In the following,

:Magenta;
:Sum = vpar + vperp;
?Sum;

the calculation of Sum (the sum of the two vectors vpar and vperp) results in the
original vector v.

6.3.2 Reflection

The reflection of a vector v from a plane M is defined by

vref l D M vM:

In the following example ReflectE3.clu (Fig. 6.8) we reflect a vector from a plane.

DefVarsE3();
:Blue;
:v=e1+2*e3;
:Green;
:M = e1 ˆ e2;

The vector v is drawn in blue and the plane M in green.

:Red;
:vrefl = M*v*M;
?vrefl;

With the help of the geometric product M vM , the reflected vector vref l is
calculated, drawn, and printed.

84 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.9 Rotor2d.clu

6.3.3 Rotation in 2D

In Geometric Algebra, the geometric product R WD ba of two normalized vectors
describes the rotation between these two vectors (by twice the angle between a and
b). In the following example Rotor2d.clu (Fig. 6.9) we rotate the vector a with the
help of

c D Ra QR:

R is called a rotor and QR is the reverse of R.

DefVarsE3();

:Blue;
:a = e1;

:Green;
:b = 1/sqrt(2)*(e1+e2);

The vector a is drawn in blue, and the vector b in green.

?R = b*a;

The rotation operator R is calculated as the product of the vector b and the vector a.

:Red;
:c = R*a*˜R;

The rotated vector c is calculated and drawn in red. We see that R rotates a by twice
the angle between a and b.

The rotation operator can also be calculated with the help of an exponential
function:

6.3 Geometric Operations 85

Fig. 6.10
Rotate EXP E3.clu

DefVarsE3();
:Green;
:i = e1 ˆ e2;

The plane i is drawn in green.

R=exp(-i * (Pi/4)/2);

The rotation operator is calculated with the help of i and the specific angle Pi/4
(�=4).

:Blue;
:a = e1;
:Red;
:b = R*a*˜R;

The operator R D e�i
�
2 , with i D e1 ^ e2, can be decomposed as follows

(Fig. 6.10). With the help of the Taylor series and the fact that i 2 D �1 (see
Sect. 6.2.2),

R D e�i
�
2

D 1 C �i
�

2

1Š
C .�i

�

2
/2

2Š
C .�i

�

2
/3

3Š

C .�i
�

2
/4

4Š
C .�i

�

2
/5

5Š
C .�i

�

2
/6

6Š
: : :

D 1 � .
�

2
/2

2Š
C .

�

2
/4

4Š
�

.�

2
/6

6Š
: : :

C � i

�

2

1Š
C �i

.
�

2
/3

3Š
� �i

.
�

2
/5

5Š
: : :

D cos.
�

2
/ � i sin.

�

2
/

86 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.11 Rotor3d.clu

6.3.4 Rotation in 3D

The operator R D e� �
2 p describes a rotor in 3D with p being a normalized plane.

The normal vector (or the dual) of this plane is used as the rotation axis.
In the following example Rotor3d.clu (Fig. 6.11) we rotate the vector a with the

help of Ra QR :

DefVarsE3();
:Blue;
:a=e1+e2;

:Green;
axis = -3*e1 + 6*e2 - 2*e3;

:axis =axis/sqrt(axis.axis);
:p=*axis;

angle = Pi/3;
?R=exp(-0.5*angle*p);
:Red;
:rot=R*a*˜R;

The vector a is drawn in blue. The rotated vector c is calculated and drawn in red.

6.4 Conformal Geometric Algebra

Up to now, we have dealt with the well-known Euclidean space. In this section, we
will extend our investigations to one specific non-Euclidean space, called conformal
space. Conformal Geometric Algebra (CGA) is a five-dimensional Geometric
Algebra (see Chap. 3 for details). In this algebra, points, spheres and planes are
easily represented as vectors (grade-1 blades).

6.4 Conformal Geometric Algebra 87

Table 6.3 Meanings of the coefficients of the
two additional coordinates in CGA

s5 D 0 s5 ¤ 0

s4 D 0 Origin plane Origin sphere/point
s4 ¤ 0 Plane Sphere/point

6.4.1 Vectors in CGA

A vector can be written as

S D s1e1 C s2e2 C s3e3 C s4e1 C s5e0; (6.4)

where the two additional basis vectors e1 and e0 have the following geometric
meanings:

• e0 represents the 3D origin;
• e1 represents infinity.

The point s D s1e1 C s2e2 C s3e3 denotes an inhomogeneous point in the
Euclidean space. (Note that points s in bold type in this book mean s 2 R3.)

The meanings of the coefficients of the two additional coordinates of CGA are
listed in Table 6.3.

6.4.1.1 Spheres

A sphere S with an inhomogeneous center point s and radius r is represented as

S D s C s4e1 C e0; (6.5)

where

s4 D 1

2
.s2

1 C s2
2 C s2

3 � r2/ D 1

2
.s2 � r2/:

The radius of the sphere is obtained from

r2 D s2 � 2s4 D s2
1 C s2

2 C s2
3 � 2s4:

In the example OneSphereN3.clu (Fig. 6.12),

DefVarsN3();
:IPNS;
:N3_SOLID;
:S = e2 +e3 - einf +e0;

88 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.12 OneSphereN3.clu

calculation of the radius of the sphere S D e2 C e3 � e1 C e0 results in

r2 D 1 C 1 � 2 � .�1/ D 4:

Here, :DefVarsN3(); indicates conformal-space calculations. :IPNS; means that we
describe the sphere with the help of the inner product null space (IPNS). The outer
product null space (OPNS) would be used if we wished to describe the sphere with
the help of its dual representation (quadvector instead of vector). See Sect. 3.2 for
more details about the IPNS and OPNS. :N3 SOLID; is needed in order to visualize
the sphere as a solid sphere instead of a wired one (N3 WIRED).

6.4.1.2 Points

Points are degenerate spheres with radius r D 0. An inhomogeneous point p is
represented as

X D p C 1

2
p2e1 C e0: (6.6)

6.4.1.3 Planes

Planes are degenerate spheres with infinite radius. They are represented as a vector
with s5 D 0,

P lane D n1e1 C n2e2 C n3e3 C de1; (6.7)

with a normal vector .n1; n2; n3/, such that

n2
1 C n2

2 C n2
3 D 1;

and where d is the distance of the plane from the origin.

6.4 Conformal Geometric Algebra 89

Fig. 6.13 PlaneN3.clu

In the following CLUScript PlaneN3 (Fig. 6.13).clu the plane e2 C e1 is drawn
in red. The point at infinity e1 is indicated by einf.

DefVarsN3();
:N3_IPNS;

:Red;
:a=VecN3(0,0,0);
:Plane=e2+einf;
:Green;
:b=VecN3(0,1,0);

The normal vector of the plane is .n1; n2; n3/ D .0; 1; 0/ and the distance is 1

(indicated by the red point a at the origin and the green point b). These points
in conformal space are generated by the function VecN3().

6.4.2 Bivectors in CGA

The representation of bivectors of CGA are circles and lines. Lines are circles with
infinite radius.

6.4.2.1 Circles

A circle can be defined by three points. Its algebraic description in CGA is the dual
of the outer product of these three points.

In the following CLUScript CircleN3.clu (Fig. 6.14) a circle is shown in green,
based on the red points a; b; c:

DefVarsN3();
:IPNS;

90 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.14 CircleN3.clu

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);
:c=VecN3(0.5,0.5,0.5);

:Green;
:Circle=*(aˆbˆc);

?Circle;

The resulting bivector is calculated, drawn, and printed.

6.4.2.2 Lines

A line, represented as a degenerate circle with infinite radius, can be defined by two
points and the point at infinity. Its algebraic description in CGA is the dual of the
outer product of these three points.

In the following CLUScript LineN3.clu (Fig. 6.15) a line is shown in green, based
on the red points a; b:

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:line=* (a ˆ b ˆ einf);

?line;

6.4 Conformal Geometric Algebra 91

Fig. 6.15 LineN3.clu

The point at infinity e1 is indicated by einf. The resulting bivector is calculated,
drawn, and printed.

6.4.3 Dual Vectors in CGA

In Sect. 6.4.2, we saw circles and lines represented as the duals of trivectors based on
the outer product of three points. In a similar way we are able to define spheres and
planes as the dual of the outer product of four points (in the IPNS representation)
or as the outer product of four points (in the OPNS representation). The dual of a
vector in CGA is a four-vector (or quadvector).

In the following CLUScript DualSphereN3.clu (Fig. 6.16) a sphere generated by
four points is visualized. Please notice that in this script, exceptionally, :OPNS is
used instead of :IPNS :

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);

:Blue;
:B=VecN3(1,-0.5,2);

:Green;
:C=VecN3(0,1.5,3);

:Black;
:D=VecN3(0,2,2);

92 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.16 DualSphereN3.clu

:Yellow;
:Sphere=AˆBˆCˆD;

?Sphere;

The sphere is generated by the outer product of the four points A; B; C; D. These
points are indicated by different colors. The resulting quadvector is shown in the
output window.

6.4.4 Is a Point Inside or Outside the Circumcircle
of a Triangle?

The reader is encouraged to verify that the following CLUScript PointInsideCir-
cleN3.clu (Fig. 6.17) is able to decide whether a point is inside or outside the
circumcircle of a triangle:

DefVarsN3();

:IPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);
:Blue;
:B=VecN3(1,-0.5,2);

:Green;
:C=VecN3(0,1.5,3);
:Black;
:X=VecN3(0,4,4);

6.4 Conformal Geometric Algebra 93

Fig. 6.17
PointInsideCircleN3.clu

:Magenta;
:Circle=*(AˆBˆC);
Plane=*(AˆBˆCˆeinf);

:Yellow;
:Sphere=Circle*Plane;
?Distance=Sphere.X;

6.4.5 Intersections

If we use the IPNS representation, we are able to use the outer product of various
objects such as spheres, lines, and planes to compute their intersections.

6.4.5.1 Intersection of Two Spheres

In the following CLUScript intersectSphereSphereN3.clu (Fig. 6.18) the intersec-
tion of two spheres is calculated:

DefVarsN3();

:IPNS;
:N3_SOLID;

:Red;
:s1=VecN3(0,-0.5,-0.5)-0.5*einf;
:s2=VecN3(0,0.5,0.5)-0.5*einf;
?C=s1ˆs2;

:Blue;
:C;

94 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.18
intersectSphereSphereN3.clu

Fig. 6.19
intersectSphereLineN3.clu

Two spheres, defined as vectors, are drawn in red. The intersection of these spheres
is calculated with the help of the outer product, and the resulting circle is drawn
in blue.

6.4.5.2 Intersection of a Line and a Sphere

In the following CLUScript intersectSphereLineN3.clu (Fig. 6.19) the intersection
of a sphere s and a line l is calculated:

DefVarsN3();

:IPNS;
:N3_SOLID;

6.4 Conformal Geometric Algebra 95

Fig. 6.20
intersectPlaneLineN3.clu

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=*(aˆbˆeinf);
?l;

:Yellow;
:s=VecN3(0,1,1)-0.1*einf;

:Magenta;
:r=sˆl;

The intersection of the line l (defined by the points a and b) and the sphere s is a
point pair. This geometric object is visualized in magenta. A point pair is a trivector
in CGA.

6.4.5.3 Intersection of a Line and a Plane

In the following CLUScript intersectPlaneLineN3.clu (Fig. 6.20) the intersection of
a plane p and a line l is calculated with the help of the outer product:

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=*(aˆbˆeinf);
?l;

96 6 A Tutorial on Geometric Algebra Using CLUCalc

Fig. 6.21 ReflectN3.clu

:c=VecN3(2,1,2);
:d=VecN3(1,-1,1);
:ev=VecN3(-1,-2,-1);

:Yellow;
:p=*(cˆdˆevˆeinf);

:Magenta;
:r=pˆl;
?r;

The plane p is defined with the help of the three points c; d; ev and the point
at infinity e1. The intersection point r with the line l (defined with the help of
a; b; e1) is visualized in magenta.

6.4.6 Reflection

In the following CLUScript ReflectN3.clu (Fig. 6.21) we visualize the reflection of
a line l in a plane p with the help of the operation plp:

DefVarsN3();
:IPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=*(aˆbˆeinf);
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e_=VecN3(-1.5,-2,-1);

6.4 Conformal Geometric Algebra 97

Fig. 6.22 ProjectN3.clu

:Yellow;
:p=*(cˆdˆe_ˆeinf);

:Magenta;
:r=p*l*p;
?r;

The result is one reflected line, drawn in magenta.

6.4.7 Projection

In the following CLUScript ProjectN3.clu (Fig. 6.22) we visualize the projection of
a line onto a plane with the help of the operation p�l

p :

DefVarsN3();
:IPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=*(aˆbˆeinf);
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e_=VecN3(-1.5,-2,-1);

:Yellow;
:p=*(cˆdˆe_ˆeinf);

98 6 A Tutorial on Geometric Algebra Using CLUCalc

:Magenta;
:r=(p.l)/p;
?r;

The result is the projected line, drawn in magenta.

6.5 CLUCalc Implementation of the Horizon Example

The following CLUScript visualizes the horizon example of Sect. 3.7. It computes
the horizon circle on the Earth S as seen from a viewpoint P :

:Black;
:P = VecN3(px,py,pz); // viewpoint
M = VecN3(mx,my,mz); // center point of earth
:Blue;
:S = M-0.5*r*r*einf; // sphere representing earth
:Color(0,1,0,0.2);
:K = P+(P.S)*einf; // sphere around P
:Red;
:C=SˆK; // intersection circle

The variables px, py, pz and mx, my, mz and the radius r are free variables that
have to be assigned before the script is run. The function VecN3 computes the
conformal points from the 3D points for the viewpoint and the center of the Earth.
The sphere K is computed according to (3.68) and the horizon circle is computed
as the intersection of S and K .

The leading colons cause the visualization of the geometric objects according
to the colors that have been defined (see Fig. 6.23). Note that the Color(R,G,B,A)
function defines the RGB (red, green, blue) values and one translucency color
component A, all ranging between 0 and 1.

Fig. 6.23 Visualization of
the horizon example

6.6 CLUCalc Implementation of Motions 99

6.6 CLUCalc Implementation of Motions

CLUScripts can also be animated. The following script describes motion according
to Sect. 3.5. In this example we rotate the blue sphere Earth around the yellow
sphere Sun located at the origin (see Fig. 6.24).

The script begins as follows:

_DoAnimate = 1;

This script is animated (see the online help of CLUCalc for details). The sphere
Earth is rotated continuously according to a continuously changing angle. This
angle is computed depending on the elapsed time:

DefVarsN3();
angle = ((Time * 45) % 360) * RadPerDeg;

:IPNS;
:N3_SOLID;
:Red;
:a = VecN3(0,-2,0);
:b=VecN3(0,2,0);

:Green;
axis = *(aˆbˆeinf);
:axis;
axis=axis/abs(axis);
?axis;

:a = VecN3(0,�2,0); assigns the five-dimensional representation of a three-dimen-
sional point to the variable a according to Table 3.2. With the help of axis = *(a ^
b ^ einf); a bivector representing a line axis is computed. According to Table 3.2
the dual representation of a line is the outer product of two points and e1, the point
at infinity. The resulting bivector, after dualization, is normalized with the help of
the abs function, and visualized and printed.

Fig. 6.24 Visualization of a
CLUScript describing motion

100 6 A Tutorial on Geometric Algebra Using CLUCalc

:Yellow;
:Sun = e0 -0.5*einf;

:Red;
:Earth =VecN3(2,0,0)-0.125*einf;

?R = exp(-angle/2*axis);

:Blue;
:R * Earth * ˜R;

Sun is centered at the origin e0, with radius r D 1 (see Table 3.2). It is drawn
as a yellow sphere. The red sphere is used as the basis sphere for the rotation of
Earth. It is located away from the origin and has half the radius of Sun. The blue
sphere representing the Earth is rotated with the help of the product R Earth QR (see
Sect. 3.5). The rotation operator depends on the fixed axis and the continuously
changing angle. See CLUCalc online help [82] for further details of CLUScript.

The inverse kinematics algorithm described in Chap. 7, and the grasping algo-
rithm in Chap. 8 were implemented using CLUCalc. The corresponding CLUScripts
can be downloaded from the home page

http://www.gaalop.de

These example scripts show how easy it is to develop algorithms based on CGA.

Chapter 7
Inverse Kinematics of a Simple Robot

This chapter presents the inverse kinematics application of a simple robot. All
the figures in this chapter are screenshots of a CLUCalc application that can be
downloaded from

http://www.gaalop.de.

We present the Geometric Algebra algorithm for this application step by step.
The geometrically intuitive operations of CGA make it easy to compute the joint
angles of this robot that have to be set in order for the robot to reach its new position.

Objects such as robots and virtual humans (see Chap. 9) can be modeled as a set
of rigid links connected together at various joints. These objects are described as
kinematic chains.

The robot shown in Fig. 7.1 consists of three links and one gripper:

• The three joint points are denoted by P0; P1, and P2;
• The three link distances are denoted by d1, d2, and d3;
• The distance from the last joint P2 to the “T” intersection of the gripper is denoted

by d4.

The robot has five degrees of freedom obtained by means of the following five joint
angles �1, . . . ,�5:

• �1, rotation of the robot (around Ly);
• �2; �3; �4, acting in the plane �1 (the blue plane in Figs. 7.3–7.6);
• �5, rotation of the gripper.

The plane �1 is defined by the origin e0, the point Py (see (3.11)) on the y-axis, and
the target point Pt (see Fig. 7.2).

According to (3.16) we get

��
1 D e0 ^ Py ^ Pt ^ e1: (7.1)

Our goal is to find the joint angles in terms of the target position Pt and the
orientation of the gripper plane �t (the red plane in Fig. 7.2). In CGA, this inverse

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 7,
© Springer-Verlag Berlin Heidelberg 2013

101

102 7 Inverse Kinematics of a Simple Robot

Fig. 7.1 Kinematic chain of
the example robot

Fig. 7.2 Target point and
gripper plane

kinematics problem can be solved in a geometrically very intuitive way owing to
the easy handling of intersections of spheres, circles, and planes, etc. Our approach
is based on the papers [13, 53].

For convenience, we define the gripper plane �t as being parallel to the ground
plane. Since a plane can be described using (3.15), we get

�t D e2 C Pt;y e1; (7.2)

where Pt;y is the y-coordinate of the target point Pt .
In the following steps, we first calculate the three locations P0; P1; P2. Based on

these points, we will be able to calculate the five joint angles �1, . . . ,�5.

7.1 Computation of P0

In the first step, the point P0 is calculated (Fig. 7.3). Its 3D representation is
.0; d1; 0/. Using (3.8), we get

P0 D d1e2 C 1

2
d 2

1 e1 C e0: (7.3)

The CLUCalc code of this step is as follows:

p0 = VecN3(0,d1,0);
PIt = e2 + pty*einf;
PI1_DUAL = e0 ˆ pt ˆ p0 ˆ einf;
PI1 = *PI1_DUAL;

7.2 Computation of P2 103

Fig. 7.3 Computation of P0

Fig. 7.4 Computation of P2

7.2 Computation of P2

In the second step, the point P2 is calculated (Fig. 7.4). This is the location of the
joint with the last link of the robot. This means that it has to lie on the sphere St

with center point Pt and with the length d4 of the displacement between Pt and P2

as the radius. Using (3.12), we get

St D Pt � 1

2
d 2

4 e1: (7.4)

Since the gripper also has to lie in the orientation plane �t , we have to intersect this
plane with St . The result is the circle Zt (see (3.17)),

Zt D St ^ �t : (7.5)

Remember that a plane is simply a sphere of infinite radius.
Since P2 also has to lie in the plane �1, the intersection of �1 with the circle Zt

results in a point pair (see (3.22))

Pp2 D Zt ^ �1: (7.6)

From the point of view of mechanics, only one of these two points is applicable,
which we choose as our point P2 (we use (3.24) to extract the two points of the
point pair).

104 7 Inverse Kinematics of a Simple Robot

The CLUCalc code of this step is as follows:

St = pt - 0.5*d4*d4*einf;
zt = StˆPIt;

Pp2= *(PI1 ˆ zt);
// choose one of the two points
p2 = DissectFirst(Pp2);

7.3 Computation of P1

In the third step, the point P1 is calculated (Fig. 7.5).
Computing this point is usually a difficult task, because it is the intersection of

two circles. However, using CGA we can determine it by intersecting the spheres
S1 and S2 with the plane �1:

S1 D P0 � 1

2
d 2

2 e1; (7.7)

S2 D P2 � 1

2
d 2

3 e1; (7.8)

and
Pp1 D S1 ^ S2 ^ �1: (7.9)

Again, we have to choose one point from the resulting point pair.
The CLUCalc code of this step is as follows:

s1 = p0 - 0.5*d2*d2*einf;
s2 = p2 - 0.5*d3*d3*einf;
Pp1 = s1ˆs2ˆPI1;
// choose one of the two points
p1 = DissectSecond(*Pp1);

Fig. 7.5 Computation of P1

7.4 Computation of the Joint Angles 105

7.4 Computation of the Joint Angles

First, all of the auxiliary planes and lines that are needed for the computation of the
angles of the joints are calculated. We need the following:

• The plane �2 (orange in Fig. 7.6) spanned by the x-axis and the y-axis. Since the
z-axis is perpendicular to this plane, we get

�2 D e3: (7.10)

• The (blue) line L1 through P0 and P1,

L�
1 D P0 ^ P1 ^ e1: (7.11)

• The (green) line L2 through P1 and P2,

L�
2 D P1 ^ P2 ^ e1: (7.12)

• The (magenta) line L3 through P2 and Pt ,

L�
3 D P2 ^ Pt ^ e1: (7.13)

The CLUCalc code of this step is as follows:

PI2_DUAL = e3 * I;
l1_dual = p0ˆp1ˆeinf;
l2_dual = p1ˆp2ˆeinf;
l3_dual = p2 ˆ pt ˆ einf;

Now, we are able to compute all the joint angles

�1 D †.�1; �2/; (7.14)

�2 D †.L1; Ly/; (7.15)

Fig. 7.6 Visualization of
step 4

106 7 Inverse Kinematics of a Simple Robot

�3 D †.L1; L2/; (7.16)

�4 D †.L2; L3/; (7.17)

using (3.48), where o1; o2 are either two lines or two planes. In our simplified
example,

�5 D 0 (7.18)

since the gripper should be parallel to the ground plane.
See [61] for an application to the inverse kinematics of a humanoid robot. For

more details concerning inverse kinematics algorithms based on CGA, see [7].

Chapter 8
Robot Grasping an Object

In this chapter, we present a Geometric Algebra algorithm for the grasping process
of the robot Geometer (Fig. 8.1) constructed at Cinvestav, Guadalajara [7, 62].
We present both the Geometric Algebra algorithm and the algorithm in standard
mathematics in order to highlight the difference in the symbolic descriptions. Most
of the figures are screenshots of a CLUCalc application that can be downloaded from

http://www.gaalop.de.

8.1 The Geometric Algebra Algorithm

The goal of our grasping algorithm is to move a gripper to an object, where the
gripper is modeled by a circle and the object is modeled by a cylinder. First
we compute the grasping circle Zt of the object, second, the gripper circle Zh

is estimated, and third, the translation and rotation required for the movement
are computed.

8.1.1 Computation of the Bounding Volume of the Object

First of all, we compute a cylinder that is the bounding volume of the object to
be grasped. We need four points identifying this object. In a real application, they
would be taken from a calibrated stereo pair of images of the object. In order to
assign these points, we compute the distance between each of the four points and
the plane spanned by the other three points. The point with the greatest distance da

is called the apex point xa (see the visualization in Fig. 8.2). The other three points
are called the base points xb1 ; xb2 ; xb3 .

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 8,
© Springer-Verlag Berlin Heidelberg 2013

107

108 8 Robot Grasping an Object

x1

x4

d4

z1

zb

x2

x3Jzb

Fig. 8.1 The robot Geometer grasping an object

Fig. 8.2 Assigning points for
the bounding cylinder of the
object to be grasped

8.1.2 Computation of the Grasping Circle Zt

To compute the grasping plane �t , we compute the base circle

Z�
b D xb1 ^ xb2 ^ xb3 ; (8.1)

based on the outer product of the three base points (see Table 3.2). We expect
to grasp the object near its center, and therefore we translate the circle Zb in the
direction of the 3D vector da

2
by the magnitude of that vector. Then, with the help of

the translator

T D 1 C 1

4
dae1; (8.2)

we compute the grasping circle Zt (see the visualization in Fig. 8.3),

Zt D T Zb
QT : (8.3)

8.1 The Geometric Algebra Algorithm 109

Fig. 8.3 Grasping circle Zt

Fig. 8.4 Gripper

8.1.3 Gripper Circle

While the gripper circle of our simulation is computed by default (see the visual-
ization in Fig. 8.5), the gripper circle of the real robot is estimated by tracking its
metallic screws. Figure 8.4 shows the position of the point Ph. We create a sphere
with center point Ph and radius r (equal to the width of the center of the aperture of
the gripper) according to Table 3.2

Sh D Ph � 1

2
r2e1: (8.4)

Now, by tracking two additional points a and b on the gripper, we create the
plane �h:

��
h D Ph ^ a ^ b ^ e1 (8.5)

(note that a plane is created here with the help of the outer product of three points
and the point at infinity).

110 8 Robot Grasping an Object

Fig. 8.5 Gripper circle Zh,
grasping circle Zt and their
axes Lh and Lt

Finally, we calculate the gripper circle as the intersection of the sphere and the
plane:

Zh D Sh ^ �h: (8.6)

8.1.4 Estimation of Translation and Rotation

Now, we compute the transformation needed to move the gripper circle to the
grasping circle. The translation axis can be computed easily from the centers of
the circles. The center point P of a circle Z can be computed easily with the help of
a sandwich product:

P D Ze1Z (8.7)

according to Sect. 3.3. The distance d between the circles can be computed with the
help of

l�
T D Ph ^ Pt ^ e1: (8.8)

It is given by d D jl�
T j. The rotation axis is computed using the axes of the circles

L�
h and L�

t (see the red lines in Fig. 8.5):

L�
h D Zh ^ e1; (8.9)

L�
t D Zt ^ e1: (8.10)

These axes Lh and Lt lead to the plane ��
th given by

��
th D L�

t ^ .L�
hE/; E D e0 ^ e1; (8.11)

and therefore the rotation axis is

L�
r D Ph ^ �th ^ e1: (8.12)

8.2 The Algorithm Using CLUCalc 111

Fig. 8.6 Moving the gripper circle Zh towards the grasping circle Zt

The angle � between the two circles can be computed based on the inner product of
the two lines L�

h and L�
t (see the visualization in Fig. 8.5):

cos.�/ D L�
t � L�

h

jL�
t jjL�

h j : (8.13)

Once we have estimated the rotation and translation axes (see Sect. 3.5),

R D e� 1
2 ��Lr ; (8.14)

T D 1 C 1

2
�dLt e1; (8.15)

we are able to move the gripper circle Zh step by step (z0
h) towards the grasping

circle Zt (see the visualization in Fig. 8.6):

z0
h D TRZh

eReT : (8.16)

For more details of algorithms for grasping, kinematics, and dynamics see [7].

8.2 The Algorithm Using CLUCalc

A very basic version of the CLUCalc algorithm is given in Fig. 8.7, with the input
parameters as described in Fig. 8.8. These parameters include the points xb1 , xb2 , xb3

and xa (see Fig. 8.10) and the center point of the gripper sphere .g1; g2; g3/ and its
radius g4.

As described in Sect. 8.1 we start with the construction of the base circle that
represents the bottom of the object. One way to compute a circle in Geometric
Algebra is to construct the outer product of three points that lie on that circle. So,
we can use three base points to construct the base circle according to (8.1).

112 8 Robot Grasping an Object

1 z_b_d = xb1 ˆ xb2 ˆ xb3;
2 ?z_b = *z_b_d;
3 ?Pi_b = *(z_b_d ˆ einf);
4 NVector = (Pi_b * einf).e0;
5 NLength = abs(NVector);
6 NVector = NVector/NLength;
7 Plane = Pi_b/NLength;
8 d_a=(xa.Plane)*NVector;
9 ?T = 1 + 0.25 * d_a * einf;

10 ?z_t = T * z_b * ˜T;
11 S_h = VecN3(g1,g2,g3)

- 0.5*(g4*g4)*einf;
12 Pi_h = -e2;
13 ?z_h = S_h ˆ Pi_h;
14 s_h = -0.5*S_h*einf*S_h;

15 S_t = *z_t / ((*z_t) ˆ einf);
16 s_t = -0.5*S_t*einf*S_t;
17 ?l_T = s_h ˆ s_t ˆ einf;
18 ?d = abs(l_T);
19 ?l_T = l_T / d;
20 l_h = z_h ˆ einf;
21 l_t = z_t ˆ einf;
22 ?Pi_th = l_t ˆ (l_h*(einfˆe0));
23 l_R_d = s_h ˆ (*Pi_th) ˆ einf;
24 ?l_R = *l_R_d / abs(l_R_d);
25 ?phi = acos((l_t.l_h)

/ (abs(l_t)*abs(l_h)));
26 ?R = cos(0.5*phi) - l_R*sin(0.5*phi);
27 ?T = 1 + 0.5*d*l_T*einf;
28 ?z_h_new = T*R*z_h*˜R*˜T;

Fig. 8.7 CLUCalc code of the grasping algorithm

g1 = -1.15;
g2 = 0;
g3 = 0;
g4 = 0.6;
:xb1 = VecN3(0.6, 0.2, 0.2);
:xb2 = VecN3(0.7, 0.2, 1.0);
:xb3 = VecN3(1.0, 0.15, 1.0);
:xa = VecN3(1.1, 1.9, 0.2);

Fig. 8.8 Input parameters of the CLUCalc algorithm

z_b_d = xb1 ˆ xb2 ˆ xb3;
:z_b = *z_b_d;

Fig. 8.9 Construction and visualization of the base circle zb

Fig. 8.10 Base points

Because we would like to visualize the circle and use the IPNS in our
CLUScripts by default, we have to dualize the circle z_b_d. Later on in the
algorithm, we have to use z_b_d for some computations, so we construct both
representations here.

8.2 The Algorithm Using CLUCalc 113

Fig. 8.11 Base circle

Fig. 8.12 Translation vector

Fig. 8.13 Target circle

Finally, we put a colon in front of the line and get the code listed in Fig. 8.9. This
leads to the situation shown in Fig. 8.11.

To construct the target circle z_t, we have to translate z_b along the vector
shown in Fig. 8.12. The necessary translator is computed in the lines 3–9 in Fig. 8.7.
Finally, the translation is done in line 10. Putting a colon in place of the question
mark leads to Fig. 8.13.

114 8 Robot Grasping an Object

Fig. 8.14 Gripper circle

Now that we know the final position of the gripper, we have to compute the
necessary translation and rotation. For this, we have to estimate the current position
of the gripper. This is done by extracting the center of the gripper from the stereo
image and approximating it by constructing the circumscribed sphere S_h. The
gripper sphere is then intersected with the plane Pi_h that the gripper lies in to
construct the gripper circle z_h. In the code used here, we assume the gripper
to be parallel to the floor. In a real application, the plane has to be constructed
using two additional points on the gripper. Now we have the situation depicted
in Fig. 8.14 and are ready to proceed to the computation of the final translation
and rotation.

To compute the final translation, we have to compute the translation axis l_T,
which passes through the center points of the gripper circle and the target circle. This
is done in lines 14–17, where first the center points s_h and s_t are computed and
then they are used to construct the axis. For us to be able to construct the wanted
translator, the axis has to be normalized, which is done in the following two lines.

The next thing that we have to compute is the rotation axis. This is a little
more complicated because the rotation axis is perpendicular to a plane that is itself
perpendicular to both the gripper circle and the target circle.

For this, we compute the two axes of the circles in lines 20 and 21 and construct a
plane from them in line 22. With this plane, we are able to compute the rotation axis
perpendicular to it through the center of the gripper circle, and normalize it. Finally,
we compute the rotation angle between the two axes of the circles and construct
the rotor.

Now all that is left to be done is the computation of the new position of the
gripper circle. This is done in line 28, where the translator and rotor are used to
move the gripper to its new position. This leads finally to Fig. 8.15. To animate
the script and show an actual movement of the gripper circle along a linear path,
one could use only fractions of d and phi in the construction of T and R,
respectively.

8.3 Geometric Algebra Versus Conventional Mathematics 115

Fig. 8.15 Final position

8.3 Geometric Algebra Versus Conventional Mathematics

In [112], a comparison was made between the performance of the grasping
algorithm of this chapter using on the one hand Geometric Algebra and on the other
hand standard vector algebra with matrix calculations. Using Gaalop (see Chap. 10),
both the CPU implementation and the CUDA implementation were faster than an
implementation based on conventional linear algebra.

The high potential of Geometric Algebra for very efficient implementations
in terms of runtime performance will be discussed in detail in Part III of this
book. Here, we will discuss mainly the differences between the two mathematical
descriptions.

8.3.1 The Base Circle and Its Center

Whereas in CGA the base circle can easily be computed based on three points of it
using

z�
b D xb1 ^ xb2 ^ xb3

and can therefore be described using only one algebraic expression, there is no
explicit description of a circle in vector algebra. And, whereas in CGA the center of
the circle can easily be computed using the sandwich product

zbe1zb;

in vector algebra the computation has to be performed in the following steps.
The circle zb is the circumscribed circle of the triangle �b which is formed by

the three base points. To compute its center, we have to construct two perpendicular
bisectors; the intersection of them is the center pb of zb . First we compute the center
points m12 and m13 of two sides of �b:

116 8 Robot Grasping an Object

l12 D xb2 � xb1; (8.17)

l13 D xb3 � xb1; (8.18)

m12 D 1

2
.xb1 C xb2/; (8.19)

m13 D 1

2
.xb1 C xb3/: (8.20)

Next we have to compute the direction vectors d12 and d13 that are needed to
construct the perpendicular bisectors. For this, we need the normal vector nb of
the plane formed by the base points:

nb D l12 � l13; (8.21)

d12 D l12 � nb; (8.22)

d13 D l13 � nb: (8.23)

From this, we are able to compute the perpendicular bisectors and their intersec-
tion pb:

pb12 D m12 C �12 � d12; �12 2 R; (8.24)

pb13 D m13 C �13 � d13; �13 2 R; (8.25)

pb D m12 C �12S � d12 D m13 C �13S � d13: (8.26)

With the help of (8.26), we can compute the parameters �12S , �13S , and finally pb.

Remark. Using vector algebra, we have to take care of three independent parts to
describe a circle, namely its center pb , its normal vector nb and its radius. Also, we
have to solve the equation system in the last line to get pb .

8.3.2 The Transformation of the Gripper

Whereas in Geometric Algebra transformations are described based on elements of
the algebra, namely versors such as

T D 1 C 1

2
d lT e1;

R D cos

�

1

2
�

�

� lR sin

�

1

2
�

�

;

in vector algebra matrices are needed to describe transformations.

8.3 Geometric Algebra Versus Conventional Mathematics 117

To perform the final rotation in vector algebra, we have to normalize the rotation
vector nth D .n1; n2; n3/, translate the rotation axes to the origin using RTorig,
compute the rotation R, and finally translate the axes back using RTback :

RTorig D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

�ph1 �ph2 �ph3 1

3

7

7

5

(8.27)

RTback D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

ph1 ph2 ph3 1

3

7

7

5

(8.28)

c D cos.�/; (8.29)

s D sin.�/; (8.30)

m D 1 � cos.�/; (8.31)

R D

2

6

6

4

n2
1m C c n1n2m C n3s n1n3m � n2s 0

n1n2m � n3s n2
2m C c n2n3m C n1s 0

n1n3m C n2s n2n3m � n1s n2
3m C c 0

0 0 0 1

3

7

7

5

(8.32)

In our grasping application, we have to transform circles. Whereas in Geometric
Algebra the transformation of complete circles is explicitly possible, in vector
algebra we are able only to transform points.

Chapter 9
Efficient Computer Animation Application
in CGA

For a long time, Geometric Algebra was known primarily as an elegant mathe-
matical language. It could indeed be used in order to develop new algorithms,
but to implement them efficiently, standard linear algebra was required. This was
due to the low runtime performance of naively implemented Geometric Algebra
algorithms. In 2006 [59], we presented for the first time an implementation of a
computer animation algorithm that was faster than the standard implementation.
This chapter presents this algorithm and some results of implementation based
on Gaigen 2 (see Sect. 9.3.1) and on our Maple-based optimization approach (see
Sect. 9.3.2). The remaining chapters of Part III present our Geometric Algebra
Computing technology for the easy integration of Geometric Algebra into standard
programming languages with the goal of achieving fast and robust implementations.

Here, we present the efficient implementation of the inverse kinematics of a
human-arm-like model. In the animation of humanoid models, inverse kinematics
solutions are important as a basic building block for path planning. The standard
model for arms (and also legs) is a kinematic chain with seven degrees of freedom
(DOF), with three DOF (�1; �2; �3) at the shoulder, one DOF at the elbow (�4), and
three DOF at the wrist (�5; �6; �7). A standard tool for solving the inverse problem
of mapping from a given end effector state to the configuration space f�ig was
given by Tolani, Goswami, and Badler [109]. Our analytic solution to the inverse
problem in CGA is an improvement of that in [56], and its derivation is considerably
simpler than that in affine or projective geometry. Perhaps more importantly for the
prospective user, our approach also turns out to be faster when implemented using
Gaigen 2 or optimized based on our Maple-based approach.

9.1 Optimizations Based on Quaternions

Normally, the goal of an inverse kinematics algorithm is the computation of the joint
angles (see Chap. 7). But in the application described here, the goal is to compute

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 9,
© Springer-Verlag Berlin Heidelberg 2013

121

122 9 Efficient Computer Animation Application in CGA

Fig. 9.1 Rotation based on
the midline between two
points through the origin

quaternions in order to perform SLERP operations related to the motion of the arm
(see [111] for details of this motion interpolation procedure).

In Chap. 4, we found that quaternions can be handled directly in a CGA
algorithm. For this reason, we improved our algorithm in order to compute the
needed quaternions, directly and efficiently.

9.1.1 Direct Computation of Quaternions

For efficiency reasons, our inverse kinematics approach uses quaternions directly
in the algorithm. In this way, we avoid the effort of translating between different
mathematical systems such as transformation matrices and quaternions. In this
section, we directly compute a quaternion that rotates an object from one point P1 to
another point P2 as shown in Fig. 9.1. The two points are at the same distance from
the origin and the rotation is about the blue midline Lm between the two points
and passing through the origin. First, we calculate Lm. In CGA, a midplane of two
points is described by their difference (see page 155 of [81]),

�m D P1 � P2: (9.1)

We calculate the midline with the help of the intersection of this plane and the plane
through the origin and the points P1 and P2,

��
e D e0 ^ P1 ^ P2 ^ e1; (9.2)

and get
Lm D �e ^ �m: (9.3)

Second, in order to rotate from P1 to P2, we have to rotate around the midline with
radius � . This results in a quaternion identical to the normalized line (see Sect. 4.3.3)

Q D Lm

jLmj : (9.4)

9.2 The Inverse Kinematics Algorithm 123

9.1.2 Efficient Computation of Quaternions

For efficiency reasons, we use an approach to calculating quaternions that does not
use trigonometric functions. According to (4.13), a quaternion describing a rotation
can be computed with the help of half of an angle and a normalized rotation axis.
For example, if L D i D e3 ^ e2, the resulting quaternion

Q D cos.
�

2
/ C i sin.

�

2
/

D cos.
�

2
/ C .e3 ^ e2/ sin.

�

2
/

represents a rotation around the x-axis. The angle between two lines or two planes
is defined according to Sect. 3.4.2 as follows:

cos.�/ D o�
1 � o�

2ˇ
ˇo�

1

ˇ
ˇ
ˇ
ˇo�

2

ˇ
ˇ
: (9.5)

We already know the cosine of the angle. For this reason, we are able to compute the
quaternion in a more direct way using the following two properties of trigonometric
functions:

cos.
�

2
/ D ˙

r

1 C cos.�/

2
(9.6)

and

sin.
�

2
/ D ˙

r

1 � cos.�/

2
: (9.7)

This leads to the formulas

cos.
�

2
/ D ˙

v
u
u
t1 C o�

1 �o�

2jo�

1 jjo�

2 j
2

(9.8)

and

sin.
�

2
/ D ˙

v
u
u
t1 � o�

1 �o�

2jo�

1 jjo�

2 j
2

: (9.9)

The signs of these formulas depend on the application.

9.2 The Inverse Kinematics Algorithm

Here, we describe the inverse kinematics of the human-arm-like model step by step.
Our goal is for the wrist to reach the chosen point Pw. An arbitrary orientation of the

124 9 Efficient Computer Animation Application in CGA

Table 9.1 Input/output
parameters of the inverse
kinematics algorithm

Parameter Meaning

Pw Target point of wrist
� Swivel angle
d1; d2 Lengths of the forearm and upper arm

Qs Shoulder quaternion
Qe Elbow quaternion

Fig. 9.2 Swivel plane

gripper is not investigated in this book. The length of the arm and the swivel angle
are additional input parameters to the algorithm. The results of the algorithm are
the quaternions for the shoulder and the elbow. A summary of the input and output
parameters of the algorithm is given in Table 9.1.

9.2.1 Computation of the Swivel Plane

In accordance with [109], we use the swivel angle � as one free degree of
redundancy. The swivel plane is a plane rotated by � around the line Lsw through
the shoulder (at the origin) and the target point Pw of the wrist (see Fig. 9.2):

Lsw D .e0 ^ Pw ^ e1/�: (9.10)

Note that the OPNS representation of a line is defined with the help of two points
and the point at infinity. The quaternion Qswivel is defined according to (4.13):

Qswivel D cos.
�

2
/ C Lsw

jLswj sin.
�

2
/: (9.11)

Initially, the swivel plane is defined with the help of the origin, the point Pw, the
point Pz (x D e3), given by

Pz D e3 C 1

2
e1 C e0; (9.12)

9.2 The Inverse Kinematics Algorithm 125

Fig. 9.3 Computation of the
elbow point

and the point at infinity (see Table 3.2):

�swivel D .e0 ^ Pz ^ Pw ^ e1/�: (9.13)

Its final rotated location is

�swivel D Qswivel �swivel
QQswivel : (9.14)

For details of computing rotations in CGA, see Sect. 3.5.

9.2.2 The Elbow Point Pe

With the help of the two spheres

S1 D Pw � 1

2
d 2

2 e1;

S2 D e0 � 1

2
d 2

1 e1;

(9.15)

with center points Pw and e0 and radii d2 and d1 we are able to compute the circle
determining all possible locations of the elbow as the intersection of these spheres
(see Table 3.2).

Ze D S1 ^ S2: (9.16)

The intersection with the swivel plane delivers the point pair

Pp D Ze ^ �swivel ; (9.17)

and we decide on one of the two possible elbow points and call it Pe . See 3.24 for
extracting the points of a point pair. Figure 9.3 shows the elbow point Pe as the
intersection of the swivel plane with the two spheres centered at the shoulder and at
the target point Pw.

126 9 Efficient Computer Animation Application in CGA

Fig. 9.4 Using the elbow
quaternion

9.2.3 Calculation of the Elbow Quaternion Qe

The elbow angle �4 is computed with the help of the line Lse through the shoulder
and the elbow,

Lse D .e0 ^ Pe ^ e1/�; (9.18)

and the line Lew through the shoulder and the wrist,

Lew D .Pe ^ Pw ^ e1/�: (9.19)

Based on these two lines, we are able to compute the angle between them (using the
notation ci D cos.�i /), from

c4 D cos.�4/ D L�
se � L�

ew

jL�
sej

ˇ
ˇL�

ew

ˇ
ˇ
; (9.20)

according to (9.5).
Now we are able to compute the quaternion Qe according to (4.13):

Qe D cos.�4=2/ C sin.�4=2/i: (9.21)

This represents a rotation around the local x-axis by an angle �4. The optimized
version of this quaternion is

Qe D
r

1 C c4

2
�

r

1 � c4

2
i; (9.22)

according to (9.8) and (9.9). This quaternion rotates the upper arm by an angle
corresponding to the angle between the two yellow lines in Fig. 9.4.

9.2 The Inverse Kinematics Algorithm 127

Fig. 9.5 Rotation to the
elbow position

9.2.4 Rotation to the Elbow Position

First we calculate the midline Lm through the origin at the same distance from the
points Pe and Pze (see Sect. 9.1.1), where

Pze D d1e3 C 1

2
d 2

1 e1 C e0: (9.23)

We will need the line Lm in the next step in order to rotate around this line. To
compute Lm, we use the midplane (given by the difference between the two points
Pe and Pze)

�m D Pze � Pe (9.24)

and the plane through the origin and the points Pe and Pze

��
e D e0 ^ Pze ^ Pe ^ e1; (9.25)

and intersect them:
Lm D �e ^ �m: (9.26)

In order to rotate the elbow towards our already computed point Pe we have to
rotate around the midline determined in the previous step by an angle � . This results
in a quaternion identical to the normalized midline (see Sect. 9.1.1),

Q12 D Lm

jLmj : (9.27)

Figure 9.5 shows this rotation from the z-axis Lz to the elbow point with the help of
the yellow midline.

128 9 Efficient Computer Animation Application in CGA

Fig. 9.6 Rotation to the wrist
location

9.2.5 Rotation to the Wrist Location

The angle �3 (and the resulting quaternion Q3) is computed with the help of the
y–z plane rotated by the quaternion Q12, and the swivel plane. The y–z plane (with
normal vector e1 and zero distance from the origin) is computed using

�yz D e1: (9.28)

The rotated plane �yz2 is obtained from

�yz2 D Q12 �yz QQ12: (9.29)

Based on these two planes, we are able to compute the angle between them, from

c3 D cos.�3/ D ��
yz2 � ��

swivel
ˇ
ˇ
ˇ��

yz2

ˇ
ˇ
ˇ

ˇ
ˇ��

swivel

ˇ
ˇ

(9.30)

according to (9.5), and we get the quaternion

Q3 D cos.�3=2/ C sin.�3=2/k: (9.31)

This represents a rotation around the local z-axis by an angle �3. The optimized
version of this quaternion is

Q3 D ˙
r

1 C c3

2
C

r

1 � c3

2
k; (9.32)

according to (9.8) and (9.9). The sign of this quaternion depends on which side of
the plane �yz2 the point Pw lies on. This can be computed easily with the help of the
inner product

�yz2 � Pw:

This quaternion rotates the arm to the wrist location as shown in Fig. 9.6.

9.3 Approaches to Runtime Optimization 129

The resulting quaternion for the shoulder rotation can now be computed as the
product of Q12 and Q3,

Qs D Q12Q3: (9.33)

Taking this together with the elbow quaternion Qe, we have all the information
needed for an interpolation based on SLERP in order to reach the target.

9.3 Approaches to Runtime Optimization

We developed and simulated our algorithm visually, based on CLUCalc, as also
used in our tutorial in Chap. 6. Then we had to implement it on the target platform,
a virtual reality system written in C++. Originally, the inverse kinematics was
implemented using IKAN [109], a widely used C++ library.

When we first implemented our algorithm with Gaigen, the runtime benchmarks
were worse than for the IKAN implementation. But, when we used our optimization
techniques, our approaches clearly outperformed the IKAN implementation. In this
section, we present two different optimization approaches, one is based on Maple,
and the other on the code generator Gaigen 2.

9.3.1 Optimization with Gaigen 2

With the help of the Gaigen 2 toolkit from the University of Amsterdam [29, 35]
we were able to implement algorithms and integrate them into our target platform.
Gaigen 2 is a C++ code generator for geometric algebras; see [36] for information
and to download the package.

If runtime efficiency is a major issue, one can use some additional techniques
from the Gaigen 2 toolkit to optimize the resulting C++ code. The philosophy
behind Gaigen 2 is based on two ideas: generative programming and specializing
to the structure of Geometric Algebra. Gaigen 2 takes a succinct specification
of a geometric algebra and transforms it into an implementation. The resulting
implementation is very similar to what someone would program by hand and can be
linked directly to an application.

In many types of programs, not every variable needs a linear combination of
all of the 32 blades of CGA (see Table 3.1); instead, it has a fixed “specialized”
multivector type. The inverse kinematics algorithms of this chapter, for instance, use
variables with multivector types such as line and sphere. If the Geometric Algebra
implementation can work directly with these leaner specialized multivector types,
performance will be greatly increased. As an implementation of this insight, Gaigen
2 allows the user to define specialized types along with the algebra specification, and
generates classes for each of them. These specialized multivector classes require
much less storage than the generic multivector but, as a result, they are of course

130 9 Efficient Computer Animation Application in CGA

Table 9.2 Input/output parameters of the inverse kinematics
algorithm using Gaigen 2

Parameter Gaigen Meaning

Pw pw Target point of wrist
� Sangle Swivel angle
d1; d2 d1, d2 Lengths of the forearm and upper arm

Qs q s Shoulder quaternion
Qe q e Elbow quaternion

unable to store an arbitrary multivector type. For example, a line variable cannot be
stored in a sphere variable.

The big advantage of solutions developed with Gaigen 2 or with Gaalop GPC
(see Chap. 11) is that one can think in terms of geometry, and program directly in
geometric elements.

The following detailed description of the inverse kinematics algorithm is offered
as an explicit example of how one can think in terms of geometry, and program
directly in geometric elements. We present the Gaigen 2 code for the above inverse
kinematics algorithm. The goal of our inverse kinematics algorithm is to compute
the output parameters Qs and Qe based on the input parameters (see Table 9.2).

9.3.1.1 Computation of the Elbow Point Pe

The Gaigen 2 implementation of (9.15)–(9.17) is as follows:

Sphere s1 = _Sphere(pw - 0.5f*d2*d2*einf); // einf means e1
originSphere s2 = _originSphere(e0 - 0.5f*d1*d1*einf);

Circle Z_e = _Circle(s1ˆs2);

With the help of the two spheres s1 and s2 with center points Pw (the target point
of the wrist) and e0 (the shoulder located at the origin) and radii d2 and d1, we are
able to compute the circle determining all possible locations of the elbow as the
intersection of these spheres.

We use the following specializations for the geometric objects that we need.
Both the target point Pw and the sphere S1 are assigned to a multivector type called
Sphere (remember that a point in CGA is simply a sphere of zero radius). The type
Sphere is defined as follows:

specialization: blade Sphere(e0=1, e1, e2, e3, einf);

The type Sphere means a linear combination of basis blades where the coeffi-
cient of e0 is 1. For the second sphere S2, with its center at the origin e0, we use the
type originSphere:

specialization: blade originSphere(e0, einf);

9.3 Approaches to Runtime Optimization 131

Fig. 9.7 Computation of the
elbow point

since e0-0.5f* d1* d1*einf needs only the blades e0 and einf. The result of the
intersection of the spheres Ze D S1 ^ S2 is of type Circle, defined as follows:

specialization: blade Circle(e0ˆe1, e0ˆe2, e0ˆe3, e1ˆeinf,
e2ˆeinf, e3ˆeinf, e0ˆeinf);

The computation is illustrated in Fig. 9.7.

9.3.1.2 Computation of the Swivel Plane

The corresponding Gaigen 2 implementation for the computation of the swivel plane
is as follows:

originLine l_sw = _originLine(dual(e0ˆpwˆeinf));

originPlane SwivelPlane = _originPlane(dual(pzˆpwˆe0ˆeinf));

Note that pz is defined as a constant equal to e3.

quaternion SwivelRot = _quaternion(cos(SAngle/2)

+sin(SAngle/2) * (l_sw*(1.0f/_float(GAnorm(l_sw)))));

SwivelPlane = _originPlane(SwivelRot*SwivelPlane*reverse

(SwivelRot));

pointPair pp2 = _pointPair(dual(Z_eˆSwivelPlane));

Sphere p_e = _Sphere(

-(-sqrt(_float(GAnorm(lcont(pp2,pp2))))+pp2)*
(inverse(lcont(einf,pp2))));

132 9 Efficient Computer Animation Application in CGA

The line Lsw passes through the origin; its algebraic representation is a Euclidean
bivector. We define originLine as follows:

specialization: blade originLine(e1ˆe2, e2ˆe3, e3ˆe1);

The plane �swivel is a linear combination of the blades defined by the type
originPlane:

specialization: blade originPlane(e1, e2, e3);

We do not define it as the type Plane, because the distance between �swivel and
origin is 0, which means that the e1 part can be omitted. We can contrast this with
the definition of an arbitrary Plane:

specialization: blade Plane(e1, e2, e3, einf);

The quaternion Qswivel matches the definition of quaternion:

specialization: versor quaternion(1.0, e1ˆe2, e2ˆe3, e3ˆe1);

The point pair pp2 matches the definition of pointPair, and the point Pe is
assigned naturally to Sphere.

9.3.1.3 Computation of the Elbow Quaternion Qe

This step is based on Sect. 9.2.3. The Gaigen 2 implementation is as follows:

originLine l_se = _originLine(dual(e0ˆpeˆeinf));

Line l_ew = _Line(dual((p_eˆpwˆeinf)));

The line Lse passes through the origin, so it is of type originLine:

specialization: blade originLine(e1ˆe2, e2ˆe3, e3ˆe1);

The line Lew does not go through the origin. We define the type Line as follows:

specialization: blade Line(e1ˆe2, e1ˆe3, e2ˆe3,
e1ˆeinf,e2ˆeinf,e3ˆeinf);

mv::Float cosi = (-_Float(scp(l_se,l_ew)))/(d1* d2);

mv::Float cos_2 = sqrt((1+cosi)/2.0);

mv::Float sin_2 = sqrt((1-cosi)/2.0);

quaternion_i q_e = _quaternion_i(cos_2+sin_2*quati);

Note the difference between Lse and Lew. quati is defined as a constant for the
quaternion i . The quaternion Qe describes a rotation around the x-axis only using
e3 ^ e2 as a blade. This matches the definition of quaternion_i:

specialization: versor quaternion_i(1.0, e3ˆe2);

9.3 Approaches to Runtime Optimization 133

Table 9.3 Computation of
the shoulder quaternion

�yz2 D Q12 � e1 � QQ12

c3 D �yz2��swivel

j�yz2jj�swivelj

sign D �yz2 � Pw

Q3 D
q

1Cc3

2
C

q
1�c3

2
k

Qs D Q12 � Q3

9.3.1.4 Rotation to the Elbow Position

The Gaigen 2 implementation of the computation of Q12 is as follows:

Sphere p_ze = _Sphere(d1*e3);

originPlane pi_m = _originPlane(p_ze-p_e);

originPlane pi_e = _originPlane(dual(p_zeˆp_eˆe0ˆeinf));

originLine l_m = _originLine(pi_eˆpi_m);

pureQuaternion q_12 =_pureQuaternion

(l_m*(1.0f/_float(GAnorm(l_m))));

The point Pze is assigned to the type Sphere. The planes �m and �e are not
assigned to the type Plane, because they pass through the origin (the coefficient
of e1 is 0). This matches the definition of the multivector type originPlane.
The intersection line Lm passes through the origin, so it is assigned to the type
originLine. The quaternion Q12 has no scalar part, so it is assigned to the type
pureQuaternion:

specialization: blade pureQuaternion (e3ˆe2, e1ˆe3, e2ˆe1);

9.3.1.5 Rotation to the Wrist Location

The Gaigen 2 implementation is as follows, in accordance with Table 9.3 (in the first
formula, we use e1 directly instead of �yz):

originPlane plane_yz2 = _originPlane(q_12*e1*reverse(q_12));

cosi=computeCos(plane_yz2,SwivelPlane);

mv:: Float sign= _float(scp(plane_yz2,pw));

sign = sign/abs(sign);

cos_2 = sqrt((1+cosi)/2.0)*sign;

sin_2 = sqrt((1-cosi)/2.0);

quaternion_k q_3 = _quaternion_k(cos_2+sin_2*quatk);

q_s = q_12 * q_3;

The plane �yz2 is not assigned to the type Plane, because it has distance of 0
from the origin. So, the coefficient of e1 is 0. This matches the definition of the

134 9 Efficient Computer Animation Application in CGA

Table 9.4 Input/output parameters of the inverse kinematics algorithm using
Maple

Parameter Maple Meaning

Pw pw(pwx, pwy, pwz) Target point of wrist
� sangle Swivel angle
d1; d2 d1, d2 Lengths of the forearm and upper arm

Qs qs Shoulder quaternion
Qe qe Elbow quaternion

multivector type originPlane. The quaternion Q3 describes a rotation around the
z-axis, so it is assigned to the type quaternion_k:

specialization: versor quaternion_k(1.0, e2ˆe1);

The quaternion Qs is assigned to the quaternion type.
The above-mentioned versor multiplication that rotates the plane �yz with the

help of a quaternion Q12 can be optimized as follows. The C++ code for this
equation reads

Plane plane_yz2 = applyVersor(q_12, e1);

where q 12 is a quaternion and e1 is a constant. The final result is output as the
following optimized C++ function:

inline Plane applyVersor(
const quaternion& V, const __e1_ct__& X)

{
return Plane(
V.c[0]*V.c[0] - V.c[1]*V.c[1] +
V.c[2]*V.c[2] - V.c[3]*V.c[3] ,
-2*V.c[0]*V.c[1] + 2*V.c[2]*V.c[3],
2*V.c[2]*V.c[1] + 2*V.c[0]*V.c[3]);

}

9.3.2 Optimization with Maple

We used Maple in order to obtain the most elementary relationship between the
input and output parameters of our inverse kinematics algorithm (see Table 9.4).
The specific technique is described in Sect. 4.1.

9.3.2.1 Inverse Kinematics Algorithm in Maple

The goal of our inverse kinematics algorithm is to compute the output parameters
Qs and Qe based on the input parameters (see Table 9.4). In this section, we present
the Maple code of the inverse kinematics algorithm:

9.3 Approaches to Runtime Optimization 135

• Computation of the elbow point Pe:

> pw:=pwx*e1+pwy*e2+pwz*e3+0.5*
(pwxˆ2+pwyˆ2+pwzˆ2)*einf+e0;

> S1:=pw-0.5*d2*d2*einf;
> S2:=e0-0.5*d1*d1*einf;
> Z_e:=S1 &w S2;
> // now compute the swivel plane ...
> l_sw:=-(e0 &w pw &w einf)&c e12345; // dualization operation
> pi_swivel:=-(pz &w pw &w e0 &w einf)

&c e12345;
> norm_l_sw:=sqrt(l_sw &c reversion(l_sw));
> q_swivel:=cos(sangle/2)+sin(sangle/2)

*(l_sw / norm_l_sw);
> pi_swivel:=q_swivel &c pi_swivel

&c reversion(q_swivel);
> PP:=-(Z_e &w pi_swivel) &c e12345;
> PP:=vectorpart(PP,2);
> einf_PP:=LC(einf,PP);
> norm_einf_PP:=einf_PP &c

reversion(einf_PP);
> inv_einf_PP:=einf_PP/norm_einf_PP;
> p_e:=-(-sqrt(scalarpart(LC(PP,PP)))

+PP) &c inv_einf_PP;
> p_e:=vectorpart(p_e,1);

• Computation of the quaternion Qe for the elbow joint:

> l_se:=-(e0 &w p_e &w einf)&c e12345;
> l_ew:=-(p_e &w pw &w einf)&c e12345;
> c4:=-LC(l_se,l_ew)/(d1*d2)/Id;
> qe:=sqrt((1+c4)/2)+sqrt((1-c4)/2)*(-qi);

• Rotation to the elbow position:

> p_ze:=d1*e3+0.5*d1ˆ2*einf+e0;
> pi_m:= p_ze-p_e;
> pi_e:=-(p_ze &w p_e &w e0 &w einf)&c e12345;
> l_m:=pi_e &w pi_m;
> q12:=l_m/(sqrt(l_m &c reversion(l_m)));

• Rotation to the wrist location. We compute the quaternion Qs for the shoulder
joint. This will let the robot wrist reach the given target Pw:

> pi_yz2:=q_12 &c e1 &c reversion(q_12);
> _sign:=scalarpart(LC(pw,pi_yz2));
> _sign:=_sign/abs(_sign);
> norm_pi_swivel:=sqrt(pi_swivel &c

reversion(pi_swivel));
> c3:=scalarpart(-LC(pi_yz2,pi_swivel))

/(norm_pi_swivel);
> q3:=sqrt((1+c3)/2)+sqrt((1-c3)/2)

*_sign*qk;
> qs:=q12 &c q3;

The quaternions Qs and Qe are the required results of our algorithm.

136 9 Efficient Computer Animation Application in CGA

9.3.2.2 Optimized Inverse Kinematics Algorithm

With the help of Maple our Geometric Algebra formulas could be simplified and
combined into very efficient expressions because of the symbolic-computation
features of Maple. For instance, we obtained the following result for the first few
lines of the algorithm in Sect. 9.3.2.1:

Z_e = 0.5*(1-d1ˆ2)*(pwx*e15+pwy*e25+pwz*e35)-
0.5*(1+d1ˆ2)*(pwx*e14+pwy*e24+pwz*e34)+
0.5*e45*(pwxˆ2+pwyˆ2+pwzˆ2+d1ˆ2-d2ˆ2)

which uses only some simple multiplications and additions. We then obtain

jLswj D
q

pw
2
x C pw

2
y C pw

2
z : (9.34)

The coefficients of the swivel plane are

�swivel x D .2 cos �

2
sin �

2
pwzpwx � pwy jLswj C 2pwy jLswj cos �

2

2
/

jLswj (9.35)

�swivel y D .2 cos �

2
sin �

2
pwzpwy C pwx jLswj � 2pwx jLswj cos �

2

2
/

jLswj (9.36)

�swivel z D�2 sin �

2
cos �

2
.pw

2
x C pw

2
y/

jLswj (9.37)

The coefficients of the point pair PP are

PPi D 1

2
�swivel x.pw

2
x C pw

2
z C pw

2
y C d 2

1 � d 2
2 /; (9.38)

PPj D 1

2
�swivel y.pw

2
x C pw

2
z C pw

2
y C d 2

1 � d 2
2 /; (9.39)

PPk D 1

2
�swivel z.pw

2
x C pw

2
z C pw

2
y C d 2

1 � d 2
2 /; (9.40)

PP14 D 1

2
.1 � d 2

1 /.pwy�swivel z � pwz�swivel y/; (9.41)

PP15 D 1

2
.1 C d 2

1 /.pwz�swivel y � pwy�swivel z/; (9.42)

PP24 D 1

2
.1 � d 2

1 /.pwz�swivel x � pwx�swivel z/; (9.43)

PP25 D 1

2
.1 C d 2

1 /.pwx�swivel z � pwz�swivel x/; (9.44)

9.3 Approaches to Runtime Optimization 137

PP34 D 1

2
.d 2

1 � 1/.pwy�swivel x � pwx�swivel y/; (9.45)

PP35 D 1

2
.1 C d 2

1 /.pwy�swivel x � pwx�swivel y/: (9.46)

The elbow point Pe is extracted from the point pair PP as follows:

einf PP D.PP35 � PP34/2 C .PP14 � PP15/2 C .PP25 � PP24/2 (9.47)

tmp1 D � PP 2
i � PP 2

j � PP 2
k � PP 2

14 C PP 2
15 � PP 2

24

C PP 2
25 � PP 2

34 C PP 2
35 (9.48)

tmpsqrt Dp
tmp1 (9.49)

pex D.PPj .PP34 � PP35/ C PPk.PP25 � PP24/

C tmpsqrt .PP15 � PP14//=einf PP (9.50)

pey D.PPi .PP35 � PP34/ C PPk.PP14 � PP15/

C tmpsqrt .PP25 � PP24//=einf PP (9.51)

pez D.PPj .PP15 � PP14/ C PPi .PP24 � PP25/

C tmpsqrt .PP35 � PP34//=einf PP (9.52)

The quaternion Qe for the rotation at the elbow joint is given by

Qe D
s

1 C pe
2
x�pe xpwxCpe

2
y�pe ypwy�pe zpwzCpe

2
z

d1d2

2
C (9.53)

s

1 � pe
2
x�pexpwxCpe

2
y�pey pwy�pe zpwzCpe

2
z

d1d2

2
e23 (9.54)

The result for the quaternion Q12 is

tmp2 Dd 4
1 pe

2
y � 2d 3

1 pe
2
ypez C d 2

1 pe
2
ype

2
z C

d 4
1 pe

2
x � 2d 3

1 pe
2
xpez C d 2

1 pe
2
xpe

2
z C

d 2
1 pe

4
x C 2d 2

1 pe
2
xpe

2
y C d 2

1 pe
4
y (9.55)

jLmj Dp
tmp2 (9.56)

q12i Dd1pex.d1 � pez/

jLmj (9.57)

138 9 Efficient Computer Animation Application in CGA

q12j Dd1pey.d1 � pez/

jLmj (9.58)

q12k Dd1.pe
2
x C pe

2
y/

jLmj (9.59)

The last rotation at the shoulder joint is given by c3:

c3 D.�swivel x.q12
2
k C q12

2
j � q12

2
i /� (9.60)

2q12i .q12j �swivel y C q12k�swivel z//= (9.61)
q

�swivel
2
x C �swivel

2
y C �swivel

2
z (9.62)

sign Dpwx.q12
2
i � q12

2
k � q12

2
j /C (9.63)

2q12i .q12kpwz C q12j pwy/ (9.64)

sign D sign

jsignj (9.65)

q3scalar D
r

1 C c3

2
(9.66)

q3k D
r

1 � c3

2
sign (9.67)

The final result for Qs is

Qs D � q12k � q3k � .q12i � q3scalar C q12j � q3k/e23

� .q12i � q3k � q12j � q3scalar /e13 � .q12k � q3scalar /e12 (9.68)

We can code these results of the Maple optimization process into C/C++ easily.
For better computation efficiency, some frequently used given variables could be
defined as constant and some repeatedly computed expressions could be assigned to
auxiliary variables.

9.4 Results

First we developed and simulated our algorithm at a high level based on CLUCalc.
Then we implemented it on the target platform Avalon, a virtual reality system writ-
ten in C++ using Visual Studio.NET 2003. The inverse kinematics was implemented
first using IKAN [109] in the conventional way.

9.4 Results 139

Our Maple-based approach clearly outperformed the IKAN implementation. The
Gaigen 2 approach also outperformed IKAN in a similar way. In a nutshell, the
CGA-based algorithm was 43 % faster than IKAN, and 240 % faster when the
conversion from matrices to quaternions was taken into account.

See Sect. 14.1 for a description of a hardware implementation of our algorithm
leading to an additional speedup by a factor of about 100.

Chapter 10
Using Gaalop for High-Performance Geometric
Algebra Computing

The Maple-based approach of Chap. 9 was the basis for the development of our
Gaalop (Geometric algebra algorithms optimizer) compiler, using the CLUCalc
language of Part II as the input language (see [61]). In this chapter, we introduce
Gaalop based on the horizon example and present our new compilation approaches
to going from Geometric Algebra algorithms to optimized code. Gaalop is our main
tool for the efficient implementation of Geometric Algebra algorithms; most of
Part III is dedicated to it. Gaalop is also the base for the integration of Geometric
Algebra algorithms into programming languages, as introduced in Chap. 11. You
are able to download Gaalop from www.gaalop.de.

10.1 The Horizon Example with Gaalop

P = VecN3 (px , py , pz) ; / / v i ew p o i n t
M = e0 ; / / c e n t e r p o i n t o f e a r t h s e t t o o r i g i n
S = M�0.5� r� r� e i n f ; / / sphere r e p r e s e n t i n g e a r t h
K = P+(P . S)� e i n f ; / / sphere around P
?C=S ˆK; / / i n t e r s e c t i o n c i r c l e
Listing 10.1 Gaalop input for the horizon example

The CLUCalc code for the computation of the horizon example of Sect. 3.7 is shown
in Listing 10.1. This computes the horizon circle C seen from the viewpoint P

on the Earth S . The variables px, py, pz and the radius r are free variables. This
script can be used as an input to Gaalop. The free variables are handled in Gaalop
as symbolic variables. Figure 10.1 shows a screenshot of the Gaalop input for the
horizon example. First of all, we can see that the CLUCalc code in Listing 10.1
is exactly what Gaalop expects as input. A question mark at the beginning of a
line indicates a multivector variable that has to be explicitly computed by Gaalop.
This means that Gaalop is able to optimize not only single statements, but a

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 10,
© Springer-Verlag Berlin Heidelberg 2013

141

142 10 Using Gaalop for High-Performance Geometric Algebra Computing

Fig. 10.1 The CLUCalc input code of the horizon example as requested by Gaalop

number of Geometric Algebra statements written in CLUScript. In Listing 10.1,
the expressions for P; M; S; and K are used only by Gaalop, in order to compute
an optimized result for the horizon circle C (see the question mark in the last line
of the listing).

Gaalop writes the content of this multivector in C syntax in an output file. More
exactly, it computes the coefficients of the multivector and assigns them to an array
representing this multivector. Listing 10.2 shows the result for the optimized circle
C as an array with entries 8, 9, 11, 12, 13, 14, and 15 (all the other entries are zero)
according to Table 10.1.

C[8] = 0 . 5 f � px � r � r ; / / e1 ˆ e i n f
C[9] = � px ; / / e1 ˆ e0
C[1 1] = 0 . 5 f � py � r � r ; / / e2 ˆ e i n f
C[1 2] = � py ; / / e2 ˆ e0
C[1 3] = 0 . 5 f � pz � r � r ; / / e3 ˆ e i n f
C[1 4] = � pz ; / / e3 ˆ e0
C[1 5] = � r � r ; / / e i n f ˆ e0
Listing 10.2 Gaalop output for the horizon example

Figure 10.2 shows two alternative ways to perform the calculation of the horizon,
namely two alternative calculations of the sphere K . Although one might think
that one or other of the two alternatives would result in better optimized code, the
interesting thing is that the two calculations lead to exactly the same result. This
shows that what Gaalop is doing is optimal in some sense.

10.2 The Geometric Algebra Computing Approach

How can we combine the properties of Geometric Algebra (see Sect. 1.1) with high-
performance implementations? Multivectors of n-dimensional Geometric Algebra
are 2n-dimensional. At first glance, this would seem to be computationally very

10.2 The Geometric Algebra Computing Approach 143

Table 10.1 The 32 blades of
5D CGA that compose a
multivector. The entry in the
first column is the index of
the corresponding blade. The
negated entries are needed for
the selectors of the Geometric
Algebra Parallelism Programs
(GAPP) described in Chap. 14

Index Negative index Blade Grade

0 �0 1 0

1 �1 e1 1
2 �2 e2 1
3 �3 e3 1
4 �4 e1 1
5 �5 e0 1

6 �6 e1 ^ e2 2
7 �7 e1 ^ e3 2
8 �8 e1 ^ e1 2
9 �9 e1 ^ e0 2
10 �10 e2 ^ e3 2
11 �11 e2 ^ e1 2
12 �12 e2 ^ e0 2
13 �13 e3 ^ e1 2
14 �14 e3 ^ e0 2
15 �15 e1 ^ e0 2

16 �16 e1 ^ e2 ^ e3 3
17 �17 e1 ^ e2 ^ e1 3
18 �18 e1 ^ e2 ^ e0 3
19 �19 e1 ^ e3 ^ e1 3
20 �20 e1 ^ e3 ^ e0 3
21 �21 e1 ^ e1 ^ e0 3
22 �22 e2 ^ e3 ^ e1 3
23 �23 e2 ^ e3 ^ e0 3
24 �24 e2 ^ e1 ^ e0 3
25 �25 e3 ^ e1 ^ e0 3

26 �26 e1 ^ e2 ^ e3 ^ e1 4
27 �27 e1 ^ e2 ^ e3 ^ e0 4
28 �28 e1 ^ e2 ^ e1 ^ e0 4
29 �29 e1 ^ e3 ^ e1 ^ e0 4
30 �30 e2 ^ e3 ^ e1 ^ e0 4

31 �31 e1 ^ e2 ^ e3 ^ e1 ^ e0 5

expensive. For example, in CGA their size is limited to 32 blades (see Table 10.1).
The multivector storage for CGA therefore has to save a maximum of 32 blade
coefficients. A naive approach might therefore be to simply save the maximum
number of coefficients in an array. The problem with this approach is that the
number of blades grows exponentially with the dimensionality. The 9D algebra
of Julio Zamora [115], for example, has 512 blades and 512 blade coefficients,
which are too many to save efficiently. Since we want to support even higher
numbers of dimensions, this is not an option. Fortunately, the simple observation
that the majority of the blade coefficients of a multivector are equal to zero helps
us to overcome this problem. The obvious solution is to save only nonzero blade
coefficients.

144 10 Using Gaalop for High-Performance Geometric Algebra Computing

Fig. 10.2 Two alternative calculations of the horizon application according to Sect. 3.7, with the
same optimized result

In a nutshell, there is a lot of potential for optimization and parallelization of the
handling of multivectors:

• The possibility of precomputing Geometric Algebra expressions:

– Determination of which of the coefficients are needed for the resulting
multivector;

– Symbolic simplification of the computations of the nonzero coefficients;

• The possibility of parallelization of the remaining coefficient computations:

– All coefficients of one multivector can be computed in parallel;
– Each coefficient computation can benefit from instruction-level parallelism

(see Chap. 14).

Our Geometric Algebra Computing approach uses two specific layers:

• A Geometric Algebra compilation layer;
• A platform layer.

In the compilation layer, Geometric Algebra operations on multivectors such as
calculating the geometric product, outer product, inner product, dual, and reverse
are handled. This is compiled in a second step to the platform layer. In this layer,
only basic arithmetic operations on multivectors with a high potential for efficient
computation on sequential and parallel platforms are available.

Our Geometric Algebra architecture is presented in Fig. 10.3. Algorithms (de-
scribed by the Geometric Algebra programming language CLUCalc [82]) are
compiled to an intermediate representation using either a Maple-based or a table-
based approach (see Sect. 10.3). Based on this representation, implementations

10.3 Table-Based Compilation Approach 145

Fig. 10.3 The Geometric Algebra Computing architecture. Algorithms are compiled to an
intermediate representation for compilation to different computing platforms

for different sequential and parallel platforms can be derived. Some examples of
Geometric Algebra Computing platforms are presented in this book:

• Based on C++, in Chap. 11;
• Based on OpenCL/CUDA, in Chap. 13;
• Based on an FPGA platform, in Chap. 14.

In order to achieve highly efficient implementations, Geometric Algebra algo-
rithms have first to be optimized. We use two different compilation approaches,
a table-based approach, described in Sect. 10.3, and a Maple-based approach. The
Maple-based compilation needs the commercial Maple package and is restricted
to Geometric Algebras with dimension less than or equal to nine. The Maple-
based compilation uses the powerful symbolic-computation feature of Maple (see
Sect. 4.1). Since all of the results of Geometric Algebra operations on multivectors
are again multivectors, we symbolically compute and simplify the resulting multi-
vectors in order to determine which of the coefficients are actually needed and what
is the simplest expression for each coefficient (in the Maple sense).

The table-based compilation approach does not need a commercial product such
as Maple and is, in principle, open for arbitrary Geometric Algebras.

Gaalop can be downloaded from [58] free of charge.

10.3 Table-Based Compilation Approach

The table-based compilation approach of Gaalop, as introduced in [54], uses
precomputed multiplication tables (see Sect. 10.3.1) in order to transform Geometric
Algebra algorithms into a representation that does not contain any Geometric
Algebra. In a second optimization step (see Sect. 10.3.7), Gaalop is able to perform

146 10 Using Gaalop for High-Performance Geometric Algebra Computing

Table 10.2 Multiplication table for the geometric
product of 2D Geometric Algebra. This algebra con-
sists of the following basic algebraic objects: an object
of grade (dimension) 0, the scalar; objects of grade 1,
the two basis vectors e1 and e2; and an object of grade
2, the bivector e1 ^ e2

1 e1 e2 e1 ^ e2

1 1 e1 e2 e1 ^ e2

e1 e1 1 e1 ^ e2 e2

e2 e2 �e1 ^ e2 1 �e1

e1 ^ e2 e1 ^ e2 �e2 e1 �1

Table 10.3 Multiplication
table of 2D Geometric
Algebra in terms of its basis
blades E1; E2; E3 and E4

b b0 b1 b2 b3

E0 E1 E2 E3

a 1 e1 e2 e1 ^ e2

a0 E0 1 E0 E1 E2 E3

a1 E1 e1 E1 E0 E3 E2

a2 E2 e2 E2 �E3 E0 �E1

a3 E3 e1 ^ e2 E3 �E2 E1 �E0

further optimizations based on the symbolic-computation tool Maxima [77]. The
benefits of this approach are:

• Computations with arbitrary algebras are possible;
• No commercial tool is needed (as in the Maple-based approach), since Maxima

is free of charge;
• No external tool is needed, since the optimization of Maxima is optional.

10.3.1 Multiplication Tables

The multiplication tables needed for the table-based compilation approach are
discussed in detail in this section.

In order to compute Geometric Algebra algorithms, the rules for the computation
of the products of multivectors have to be known. These products can be summa-
rized (and precomputed) in multiplication tables that describe the products of the
various blades of the algebra. Table 10.2, for instance, presents the multiplication
table for the geometric product of 2D Geometric Algebra. This algebra consists of
the following basic algebraic objects: an object of grade (dimension) 0, the scalar;
objects of grade 1, the two basis vectors e1 and e2; and an object of grade 2, the
bivector e1 ^ e2. We can recognize that the product of two blades is again a blade,
sometimes with a negative sign. This is visualized in Table 10.3, which shows the
product of two blades Ei and Ej in terms of another blade Ek with positive or
negative sign.

10.3 Table-Based Compilation Approach 147

The geometric product, the outer product, and the inner product are linear
products. They are distributive over addition (see [29] or Chap. 3 of [81] for details).

Let us now compute the geometric product

x D ab D
 X

i

ai Ei

!0@X
j

bj Ej

1
A (10.1)

of two arbitrary multivectors a D P
i

ai Ei and b D P
j

bj Ej .

This can be written as

x D
X

i

X
j

ai bj .Ei Ej / (10.2)

or as a linear combination of blades Ei;j

x D
X

i

X
j

ai bj .mi;j Ei;j /; (10.3)

where mi;j is 0, 1 or �1, or as

x D
X

i

X
j

ci;j Ei;j ; (10.4)

with coefficients ci;j D mi;j ai bj . This can be rearranged to

x D
X

k

ckEk; (10.5)

with
ck D

X
i;j WEi;j DEk

mi;j ai bj : (10.6)

For details of the steps of the computation of products with multiplication tables,
see Sect. 10.3.2.

This is described in Table 10.3 for 2D Euclidean Geometric Algebra . Each entry
mi;j Ei;j describes the geometric product of two basis blades Ei and Ej , expressed
in terms of the basis blades Ek with positive or negative sign. Each coefficient ck of
the product x D ab can be computed by summing the products ˙ai � bj based on
the table entries for Ek, for instance, c0 D a0 � b0 C a1 � b1 C a2 � b2 � a3 � b3 for
the table entries for E0.

Some examples of multiplication tables for 3D Euclidean Geometric Algebra can
be found in the Tables 10.4–10.6. Table 10.4, for instance, describes the geometric
products of the 8 D 23 blades. Based on this information, the geometric product

148 10 Using Gaalop for High-Performance Geometric Algebra Computing

of two multivectors, each defined as a linear combination of all of the blades v D
7P

iD0

vi Ei , can easily be derived, as described in the caption of Table 10.4.

The same procedure can be used for other products. Table 10.6, for instance,
describes the outer product of 3D Euclidean Geometric Algebra. Note that many of
the entries are zero, corresponding to the outer product of two identical basis vectors
ei ^ ei D 0.

10.3.2 Table-Based Multiplication Algorithm

To clarify the concept, we provide below some simple algorithmic steps in pseu-
docode for the computation of the product of two general multivectors a D P

i

ai Ei

and b D P
j

bj Ej :

Set all blades of result multivector c to zero;

for each blade coeff ai of multivector a
for each blade coeff bj of multivector b

Look up target blade Ei;j and
sign mi;j from multiplication table;
(i is the row index and

j is the column index.)

Add simple arithmetic product ai � bj

with sign mi;j to target blade Ei;j

of result multivector c:
cŒEi;j � D cŒEi;j � C mi;j � .ai � bj /;

end;
end;

10.3.3 Example

As an example, we will compute the expression

f D a ^ .a C ab/; (10.7)

which contains two 3D vectors a and b. This can be expressed in terms of a
CLUCalc script as follows:

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
f=aˆ(a+a*b);

10.3 Table-Based Compilation Approach 149

Table 10.4 Multiplication table describing the geometric product of two
multivectors a D P

ai Ei and b D P
bi Ei for 3D Euclidean Geometric

Algebra. Each coefficient ck of the product c D ab can be computed by
summing the products ˙ai � bj based on the table entries for Ek ; for
instance, c0 D a0 � b0 C a1 � b1 C a2 � b2 C a3 � b3 � a4 � b4 � a5 � b5 �
a6 � b6 � a7 � b7 for the table entries for E0. In other words, a particular
blade Ek of the result multivector c is computed by summing the products
˙ai � bj of the table entries marked by Ek . See Sect. 10.3.2 for details of
the algorithmic steps for computation with multiplication tables

b E0 E1 E2 E3 E4 E5 E6 E7

a 1 e1 e2 e3 e12 e13 e23 e123

E0 1 E0 E1 E2 E3 E4 E5 E6 E7

E1 e1 E1 E0 E4 E5 E2 E3 E7 E6

E2 e2 E2 �E4 E0 E6 �E1 �E7 E3 �E5

E3 e3 E3 �E5 �E6 E0 E7 �E1 �E2 E4

E4 e12 E4 �E2 E1 E7 �E0 �E6 E5 �E3

E5 e13 E5 �E3 �E7 E1 E6 �E0 �E4 E2

E6 e23 E6 E7 �E3 E2 �E5 E4 �E0 �E1

E7 e123 E7 E6 �E5 E4 �E3 E2 �E1 �E0

First, the compiler has to transform complex expressions to expressions that can
easily be handled by multiplication tables. A corresponding CLUCalc script with
only simple expressions could look as follows:

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
c=a*b;
d=a+c;
f=aˆd;

Let us now compile this script step by step.
The first two lines are used for the definition of the two multivectors a D a1E1 C

a2E2 C a3E3 and b D b1E1 C b2E2 C b3E3 (a1; a2; a3; b1; b2, and b3 are regular
scalar variables). For both of these lines, only the entries 1, 2, and 3 are needed, since
these entries correspond to the three basis vectors e1; e2; e3. Table 10.5 shows the
corresponding multiplication table for this product. This is derived from Table 10.4
with empty rows and columns for the multivector entries not needed for a and b.
The resulting multivector c needs only the coefficients for the blades E0; E4; E5; E6

(see Table 10.5). Each coefficient cŒk� can be computed by summing the products
˙ai bj based on the table entries for Ek , for instance c0 D a1b1 C a2b2 C a3b3.

The corresponding C++ code is as follows:

c[0]=a[1]*b[1]+a[2]*b[2]+a[3]*b[3];
c[4]=a[1]*b[2]-a[2]*b[1];
c[5]=a[1]*b[3]-a[3]*b[1];
c[6]=a[2]*b[3]-a[3]*b[2];

150 10 Using Gaalop for High-Performance Geometric Algebra Computing

Table 10.5 Multiplication table describing the geometric product of two
vectors a D a1e1 C a2e2 C a3e3 and b D b1e1 C b2e2 C b3e3 for 3D
Euclidean Geometric Algebra. Note that all rows and columns for basis
blades not needed for the vectors are set to zero

b b1 b2 b3

E0 E1 E2 E3 E4 E5 E6 E7

a 1 e1 e2 e3 e12 e13 e23 e123

E0 1 0 0 0 0 0 0 0 0
a1 E1 e1 0 E0 E4 E5 0 0 0 0
a2 E2 e2 0 �E4 E0 E6 0 0 0 0
a3 E3 e3 0 �E5 �E6 E0 0 0 0 0

E4 e12 0 0 0 0 0 0 0 0
E5 e13 0 0 0 0 0 0 0 0
E6 e23 0 0 0 0 0 0 0 0
E7 e123 0 0 0 0 0 0 0 0

In the fourth line of the CLUCalc script, the two multivectors a and c are added,
resulting in the multivector d :

d[0]=c[0];
d[1]=a[1];
d[2]=a[2];
d[3]=a[3];
d[4]=c[4];
d[5]=c[5];
d[6]=c[6];

This sets the coefficients of the blades [0, 4, 5, 6] of the multivector c as coefficients
of the blades [0, 4, 5, 6] of the multivector d . The coefficients [1, 2, 3] of a are set
as coefficients [1, 2, 3] of d .

The evaluation of the outer product a ^ d of a with this multivector d leads to

f[1]=a[1]*d[0];
f[2]=a[2]*d[0];
f[3]=a[3]*d[0];
f[4]=a[1]*d[2]-a[2]*d[1];
f[5]=a[1]*d[3]-a[3]*d[1];
f[6]=a[2]*d[3]-a[3]*d[2];
f[7]=a[1]*d[6]-a[2]*d[5]+a[3]*d[4];

The multiplication table in Table 10.6 can be used for this computation. Associating
the rows with the multivector a and the columns with d , we can set rows 0, 4, 5,
6, and 7 and column 7 to 0. We recognize that the remaining entries are for the
coefficients 1, 2, 3, 4, 5, 6, and 7, for instance E1 in the second row, and the first
column is associated with the product a1 � dŒ0�. For clarity, the needed table entries
are shown in Table 10.7.

10.3 Table-Based Compilation Approach 151

Table 10.6 Multiplication table describing the outer product of two
general multivectors a D P

ai Ei and b D P
bi Ei for 3D Euclidean

Geometric Algebra

b E0 E1 E2 E3 E4 E5 E6 E7

a 1 e1 e2 e3 e12 e13 e23 e123

E0 1 E0 E1 E2 E3 E4 E5 E6 E7

E1 e1 E1 0 E4 E5 0 0 E7 0

E2 e2 E2 �E4 0 E6 0 �E7 0 0

E3 e3 E3 �E5 �E6 0 E7 0 0 0

E4 e12 E4 0 0 E7 0 0 0 0

E5 e13 E5 0 �E7 0 0 0 0 0

E6 e23 E6 E7 0 0 0 0 0 0

E7 e123 E7 0 0 0 0 0 0 0

Table 10.7 Part of the multiplication table in Table 10.6
describing the outer product of two specific multivectors
a D P3

iD1 ai Ei and d D P6
iD0 di Ei for 3D Euclidean

Geometric Algebra

d E0 E1 E2 E3 E4 E5 E6

a 1 e1 e2 e3 e12 e13 e23

E1 e1 E1 0 E4 E5 0 0 E7

E2 e2 E2 �E4 0 E6 0 �E7 0

E3 e3 E3 �E5 �E6 0 E7 0 0

10.3.4 Cascading Multiplications

The evaluation of
b D e2 ^ e3 ^ e1 D e2 ^ .e3 ^ e1/; (10.8)

for instance, can be done by using Table 10.6 twice. Calculating e3 ^ e1 results in
�E5, and

b D e2 ^ .�E5/ (10.9)

results in
b D �.�E7/ D E7 D e123: (10.10)

In general, products with n multivector operands lead to computations of sums
of products with n factors.

According to Sect. 10.3.1, each coefficient of the result of a multiplication can be
computed as a sum of products

xp D
X

i;j WEi;j DEp

.mi;j ai /bj ; (10.11)

152 10 Using Gaalop for High-Performance Geometric Algebra Computing

with two factors mi;j ai and bj . For instance, the geometric product

y D abc D
 X

i

ai Ei

!0@X
j

bj Ej

1
A X

k

ckEk

!
(10.12)

of three arbitrary multivectors a D P
i

ai Ei , b D P
j

bj Ej and
P
k

ckEk can be

written as

y D abc D
 X

p

xpEp

! X
k

ckEk

!
(10.13)

or
y D

X
p

X
k

xpck.EpEk/; (10.14)

or as a linear combination of blades Ep;k ,

y D
X

p

X
k

xpck.mp;kEp;k/; (10.15)

where mp;k is 0, 1 or �1, or as

y D
X

p

X
k

yp;kEp;k ; (10.16)

with coefficients yp;k D mp;kxpck . This can be rearranged to

y D
X

q

yqEq; (10.17)

where
yq D

X
p;kWEp;kDEq

mp;kxpck; (10.18)

yq D
X

p;kWEp;kDEq

mp;k

0
@ X

i;j WEi;j DEp

mi;j ai bj

1
A ck; (10.19)

or
yq D

X
p;kWEp;kDEq

X
i;j WEi;j DEp

mp;kmi;j ai bj ck; (10.20)

which is equal to a sum of products with three factors ai bj ck with signs defined by
mp;kmi;j .

10.3 Table-Based Compilation Approach 153

Table 10.8 A subset of the 5D geometric-product multiplication table of
Geometric Algebra. This lists only 5 out of the 32 possible blades for each
multivector. The expression E denotes the outer product E D e1 ^ e0

e1 e2 e3 e1 e0

e1 1 e12 �e31 e1 ^ e1 e1 ^ e0

e2 �e12 1 e23 e2 ^ e1 e2 ^ e0

e3 e31 �e23 1 e3 ^ e1 e3 ^ e0

e1 �e1 ^ e1 �e2 ^ e1 �e3 ^ e1 0 �1 C E

e0 �e1 ^ e0 �e2 ^ e0 �e3 ^ e0 �1 � E 0

10.3.5 Linear Operation Tables

Some operations, such as taking the reverse, are linear operations, meaning that
they are distributive over addition (see [29] for details). For instance, the reverse of
a multivector a,

Qa D
C

 X
i

ai Ei

!
; (10.21)

is equal to
Qa D

X
i

ai
QEi : (10.22)

Every coefficient ai is assigned to its corresponding blade Ei . The reverse operation
assigns ai to its mutually exclusive reverse blade QEi .

10.3.6 Multiplication Tables with a Non-Euclidean Metric

Geometric Algebra Computing with non-Euclidean metrics can be a little more
complicated than with standard Euclidean metrics. In particular, this leads to more
complex multiplication tables for CGA, where sums of blades are valid entries.
The geometric product of e1 and e0, for instance, can be written as the following
difference of the two blades e1 ^ e0 and 1, as in Table 10.8.

e1e0 D e1 ^ e0 � 1 D E � 1: (10.23)

In terms of the corresponding multiplication table entry Ei;j , this means that the
product ai � bj has to be considered not only for one blade but also for two blades.

154 10 Using Gaalop for High-Performance Geometric Algebra Computing

10.3.7 Additional Symbolic Optimizations Using Maxima

The table-based approach on its own already produces quality code. Nevertheless,
there is still some potential for additional optimizations, such as

• Support for multiplications with more than two operands (if this is not done by
cascading multiplications as described in Sect. 10.3.4);

• Merging of several algorithmic steps into one optimized step;
• Symbolically finding additional zero entries in multivectors.

In order to use this potential for optimization, CLUScripts have to be extended
by question marks “?” at the beginning of statements, in order to indicate which
multivectors have to be computed explicitly. All other multivectors can be treated as
intermediate results to improve the runtime performance (see the example below).

The result for the example considered in Sect. 10.3.3 can be improved further.
In the following CLUScript, for instance, the same multivectors as before have to
be computed, except for the multivector d , which can be treated as an intermediate
result:

?a=a[1]*e1+a[2]*e2+a[3]*e3;
?b=b[1]*e1+b[2]*e2+b[3]*e3;
?c=a*b;
d=a+c;
?f=aˆd;

Inserting the (intermediate) result for d (see Sect. 10.3.3) into f leads to the
following (not yet optimized) result for f :

f[1]=a[1]*c[0];
f[2]=a[2]*c[0];
f[3]=a[3]*c[0];
f[4]=a[1]*a[2]-a[2]*a[1];
f[5]=a[1]*a[3]-a[3]*a[1];
f[6]=a[2]*a[3]-a[3]*a[2];
f[7]=a[1]*c[6]-a[2]*c[5]+a[3]*c[4];

This can be optimized further by the symbolic-computing engine, since the multi-
vector entries 4, 5, and 6 lead to zero entries. For instance, aŒ1� � aŒ2� is equal to
aŒ2�� aŒ1�. Their difference is therefore zero, being the right-hand side of f Œ4�. The
same rule applies to the right-hand sides of f Œ5� and f Œ6�:

f[1]=a[1]*c[0];
f[2]=a[2]*c[0];
f[3]=a[3]*c[0];
f[7]=a[1]*c[6]-a[2]*c[5]+a[3]*c[4];

The computation of the multivector entries f[4], f[5], and f[6] and of the entire
multivector d is now no longer needed.

Chapter 11
Collision Detection Using the Gaalop
Precompiler

In order to simplify the use of the Geometric Algebra Computing technology, we
have developed Gaalop GPC [20], a precompiler, which integrates Gaalop into
standard programming languages such as C++, OpenCL, and CUDA. Figure 11.1
outlines the concept for the C++ programming language. With Gaalop GPC, we are
able to enhance ordinary C++ code with Geometric Algebra code and automatically
generate optimized C++ code.

This chapter provides information on the basic concept of Gaalop GPC and de-
scribes its application to the horizon example and a collision detection application.

11.1 Basic Concept of Gaalop GPC

A precompiler is an elegant way of extending the features of a programming
language. For Geometric Algebra Computing, it is of high interest to use both
the power of high-performance languages such as C++/OpenCL/CUDA and the
elegance of expression of a domain-specific language such as CLUCalc. We
have therefore embedded CLUCalc code into C++/OpenCL and CUDA code, and
compile it by utilizing the precompiler concept and the fast optimizations and code
generation features of Gaalop.

Gaalop GPC enhances standard programs with:

• Embedding of Geometric Algebra code using multivectors;
• Functionality to interact with multivectors.

It transforms them to optimized standard programs without any explicit Geometric
Algebra functionality.

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 11,
© Springer-Verlag Berlin Heidelberg 2013

155

156 11 Collision Detection Using the Gaalop Precompiler

Fig. 11.1 Gaalop GPC for
C++

The embedding of Geometric Algebra code is done based on pragmas with the
following structure:

#pragma gpc begin
...
Import of multivectors (if needed)
...
#pragma clucalc begin

...
Geometric Algebra code based on CLUCalc
...

#pragma clucalc end
...
Export of multivectors (if needed)
...

#pragma gpc end

The embedding of Geometric Algebra code in standard programs needs func-
tionality to interact with multivectors. Several multivector functions are defined in
Table 12.1. The purpose of these functions is to provide transformations between
multivectors and C++/OpenCL/CUDA language concepts. In particular, we use
the function mv get bladecoeff () for access to multivectors. This is responsible for
extracting the coefficient of a blade from a multivector.

11.2 The Horizon Example Revisited in Gaalop GPC for C++

The horizon example described in Sect. 3.7 is implemented in C++ using Gaalop
GPC as follows. Listing 11.1 computes and visualizes the observer point, the spheres
S and K , and the horizon circle (Fig. 11.2). The multivectors for the variables
P; S; K; C are computed explicitly (see the colons in the listing), while the radius r

is only used implicitly as a constant.

11.2 The Horizon Example Revisited in Gaalop GPC for C++ 157

Fig. 11.2 Visualization of
the horizon example

void h o r i z o n () f
pragma c l u c a l c beg i n

: Black ;
: P = VecN3 (1 , 1 , 0) ;

r = 1 ;
: Blue ;
: S = e0 �0.5� r� r� e i n f ;
: Color (0 , 1 , 0 , 0 . 2) ;
:K = P+(P . S)� e i n f ;
: Red ;
:C = S ˆK;

pragma c l u c a l c end
g
Listing 11.1 Code for horizon example in Gaalop GPC for C++ with visualization

The above example does not have any interaction with the surrounding C++
program. In contrast, the following example (Listing 11.2) is intended to illustrate
the multivector access functionality. Note that “gp.h” has to be included in order to
be able to use the Geometric Algebra functionality. Here, we are interested not only
in the horizon circle but also in its center homogeneousCenter and the corresponding
Euclidean 3D point EuclideanCenter.

i n c l u d e <i o s t r e a m >

i n c l u d e <gp . h>

i n t main () f
pragma gpc beg i n

pragma c l u c a l c beg i n
P = VecN3 (1 , 1 , 0) ;
r = 1 ;
S = e0 �0.5� r� r� e i n f ;
C = S ˆ (P+(P . S)� e i n f) ;
? homogeneousCenter = C� e i n f �C ;

158 11 Collision Detection Using the Gaalop Precompiler

? s c a l e = �homogeneousCenter . e i n f ;
? E u c l i d e a n C e n t e r = homogeneousCenter / s c a l e ;

pragma c l u c a l c end
s t d : : c o u t << m v g e t b l a d e c o e f f (E u c l i d e a n C e n t e r , e1)

<< ” , ” << m v g e t b l a d e c o e f f (E u c l i d e a n C e n t e r , e2)
<< ” , ” << m v g e t b l a d e c o e f f (E u c l i d e a n C e n t e r , e3) ;

pragma gpc end
return 0 ;

g
Listing 11.2 Code for the example horizon.cpg in Gaalop GPC

We use the values for the point P , the radius r , the sphere S , and the horizon
circle C as intermediate results only. Since they are computed only implicitly,
this leads to a higher runtime performance. We explicitly compute the center of
the horizon circle based on the multivector variable homogeneousCenter (see
Sect. 3.3), compute its scale factor scale and the Euclidean coordinates of the center
EuclideanCenter , and print the values of the center out based on the multivector
access function mv get bladecoeff () (see Table 12.1).

11.3 Collision Detection

Collision detection is needed, for instance, in computational simulation of cloth. A
piece of cloth in computer graphics might be constructed from a large number of
triangles, making a connection between many points in three-dimensional space.
All of these triangles may collide with other triangles on the same piece of cloth,
which is called self-collision, with other pieces of cloth, or even with rigid bodies.
Theoretically, to check for collisions between the triangles, we must assume that
they are all potential colliders, and we must therefore check for collisions between
every triangle and every other triangle and with every other object. Without any
further information, this test would not be computationally manageable for larger
scenes. The common methods used to solve this problem are primarily hierarchical
methods to break down the number of tests. Such a method might, for example, be
to use a hierarchy of spheres (see, for instance, the bounding-sphere algorithm using
CGA in Chap. 22 of [7]) that can be traversed by the following rules:

1. Perform a sphere–sphere test, starting with the root level.
2. If we have no collision, then stop the test. If we do have a collision, then

recursively traverse the underlying spheres (broad-phase testing).
3. If we hit the leaves of the hierarchy, perform tests on the underlying geometry,

namely the triangles. Those tests come down to two individual cases (narrow-
phase testing):

– A point-versus-triangle test,
– An edge-versus-edge test.

As an example, we present the point–triangle test in the following. The triangle
has a thickness h and is a prism, mathematically. Figure 11.3 illustrates the triangle,

11.3 Collision Detection 159

Fig. 11.3 Point–triangle intersection in CLUCalc. This picture shows the triangle, the plane it is
embedded in, and its three boundary planes

together with the planes of the boundary faces of the triangular prism. These bound-
ary planes include one edge of the triangle and are perpendicular to the base plane
of the triangle. For convenience, we shall still call the triangular prism a “triangle”.

Listing 11.3 is based on Gaalop GPC for C++ and performs a test for a collision
between a triangle t and a point p

bool p o i n t T r i a n g l e T e s t (c ons t f l o a t t1x , c on s t f l o a t t1y ,
c on s t f l o a t t1z , c ons t f l o a t t2x , c on s t f l o a t t2y , c ons t f l o a t t2z ,
c on s t f l o a t t3x , c ons t f l o a t t3y , c on s t f l o a t t3z , c ons t f l o a t px ,
c on s t f l o a t py , c ons t f l o a t pz , c ons t f l o a t h) f

pragma gpc be g in
pragma c l u c a l c be g in

T r i a n g l e P o i n t 1 = VecN3 (t1x , t1y , t 1 z) ;
T r i a n g l e P o i n t 2 = VecN3 (t2x , t2y , t 2 z) ;
T r i a n g l e P o i n t 3 = VecN3 (t3x , t3y , t 3 z) ;
T e s t P o i n t = VecN3 (px , py , pz) ;

/ / c o n s t r u c t base p lane
p l a n e =�(T r i a n g l e P o i n t 1 ˆ T r i a n g l e P o i n t 2 ˆ T r i a n g l e P o i n t 3 ˆ e i n f) ;
/ / compute s i g n e d d i s t a n c e o f T e s t P o i n t t o base p lane
? d = p l a n e . T e s t P o i n t ;
/ / e x t r a c t t r i a n g l e normal
? nor ma l = p l a n e � (p l a n e . e0) ˆ e i n f ;

/ / c o n s t r u c t boundary p l a n e s
s i d e 1 = �(T r i a n g l e P o i n t 1 ˆ T r i a n g l e P o i n t 2 ˆ nor ma l ˆ e i n f) ;
s i d e 2 = �(T r i a n g l e P o i n t 2 ˆ T r i a n g l e P o i n t 3 ˆ nor ma l ˆ e i n f) ;
s i d e 3 = �(T r i a n g l e P o i n t 3 ˆ T r i a n g l e P o i n t 1 ˆ nor ma l ˆ e i n f) ;

160 11 Collision Detection Using the Gaalop Precompiler

/ / compute d i s t a n c e s
? d1 = s i d e 1 . T e s t P o i n t ;
? d2 = s i d e 2 . T e s t P o i n t ;
? d3 = s i d e 3 . T e s t P o i n t ;

pragma c l u c a l c end
c ons t f l o a t d SCALAR = m v g e t b l a d e c o e f f (d , 1) ;
c ons t f l o a t d1 SCALAR = m v g e t b l a d e c o e f f (d1 , 1) ;
c ons t f l o a t d2 SCALAR = m v g e t b l a d e c o e f f (d2 , 1) ;
c ons t f l o a t d3 SCALAR = m v g e t b l a d e c o e f f (d3 , 1) ;

pragma gpc end

i f (d SCALAR � d SCALAR > h � h)
r e t u r n f a l s e ;

i f (d1 SCALAR <= 0 . 0 f && d2 SCALAR <= 0 . 0 f
&& d3 SCALAR <= 0 . 0 f j j d1 SCALAR >= 0 . 0 f
&& d2 SCALAR >= 0 . 0 f && d3 SCALAR >= 0 . 0 f)

r e t u r n t r u e ;
r e t u r n f a l s e ;

g
Listing 11.3 A collision detection test written with Gaalop GPC for C++, checking for the
collision of a “triangle” t of thickness h with a point p

The code executes the following steps.

1. Define the three “triangle points” (the vertices of the triangle) and the test point
based on the corresponding C++ variables (t1x, t1y, . . .).

2. Construct the base plane based on the triangle points (see Sect. 3.1.3).
3. Compute the signed distance d between the base plane and the test point based

on the inner product (see Sect. 3.4.1).
4. Compute the normal vector to the plane.
5. Using this normal vector and the triangle points, compute the boundary planes,

for example, the planes that are perpendicular to the base plane and pass through
every combination of the three points.

6. Compute the signed distances d1, d2, and d3 between the test point and the three
boundary planes and assign them to C++ variables.

7. The condition for a collision is satisfied if d 2 is less than or equal to the square
of the thickness h of the triangle, and all signed distances d1, d2, and d3 have the
same sign.

Note that algorithms similar to this one occur in the field of ray tracers. A recent
work based on CGA is [18]; it shows very promising results.

Chapter 12
The Gaalop Precompiler for GPUs

Thanks to powerful GPGPU techniques (see for instance [45]), one can expect
impressive results using the powerful language of Geometric Algebra. In this
chapter, we present the basics of Gaalop GPC for GPUs, a precompiler for parallel
programming of heterogeneous systems using OpenCL and CUDA. While CUDA is
vendor-specific, OpenCL is an open industry standard, maintained by the Khronos
Group [68].

The purpose of Gaalop GPC for OpenCL is to enhance ordinary OpenCL code
with Geometric Algebra code and generate OpenCL code, optimized by Gaalop, as
outlined in Fig. 12.1. Gaalop GPC may be adapted to new developments in High
Performance Computing on GPUs like OpenACC or OpenHMPP as those increase
in popularity.

GPUs are able to execute thousands of so-called kernels in parallel. These kernels
execute the same code with different data. The kernels are managed by one host.
Currently, the most efficient way to provide communication between the host and
the kernels is to use strided arrays, as introduced in the next section.

12.1 Strided Arrays

In the following examples, it is very important to understand the concept of a strided
array. We will therefore briefly explain it.

Nonstrided arrays are simply a concatenation of instances in memory. For
example, having a structure

s t r u c t Vec f
f l o a t x ;
f l o a t y ;
f l o a t z ;

g ;

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 12,
© Springer-Verlag Berlin Heidelberg 2013

161

162 12 The Gaalop Precompiler for GPUs

Fig. 12.1 Gaalop GPC for
OpenCL

and creating an array containing N instances of this structure will yield the
following image in memory:

x0 y0 z0 x1 y1 z1 x2 y2 z2 . . . xN �1 yN �1 zN �1

Strided arrays are simply a concatenation of individual structure elements in
memory, thereby breaking with the traditional memory layout: As can be seen, we

x0 x1 x2 . . . xN �1 y0 y1 y2 . . . yN �1 z0 z1 z2 . . . zN �1

now put into the array all x-elements of all structures, followed by all y-elements
of all structures, followed by all z-elements. This may seem unusual at first, but
yields coalesced memory access when the GPU threads read their data into the
register space. Coalesced reads are by far the fastest reads possible from GPU global
memory. Similar advantages arise from coalesced writes, which also occur in the
following examples.

12.2 The Horizon Example on a GPU

We now describe how the horizon example, as presented in Sect. 3.7, is implemented
in Gaalop GPC for OpenCL and CUDA.

12.2.1 OpenCL Implementation

The main difference from the implementation in Sect. 11.2 is that the horizon
calculation is done in a kernel and not in a main program.

The CLUCalc code of the horizon example may be embedded into an OpenCL
kernel, resulting in the code in Listing 12.1.

12.2 The Horizon Example on a GPU 163

k e r n e l void h o r i z o n K e r n e l (g l o b a l
f l o a t � c i r c l e C e n t e r s , g l o b a l cons t f l o a t � p o i n t s ,
cons t unsigned i n t num po i n t s)
f

cons t i n t i d = g e t g l o b a l i d (0) ;
pragma gpc beg i n

P = VecN3 (p o i n t s [i d] ,
p o i n t s [i d + num po i n t s] ,
p o i n t s [i d +2� num po i n t s]) ;

pragma c l u c a l c beg i n
r = 1 ;
S = e0 �0.5� r� r� e i n f ;
C = S ˆ (P+(P . S)� e i n f) ;

? homogeneousCenter = C� e i n f �C ;
? s c a l e = �homogeneousCenter . e i n f ;
? E u c l i d e a n C e n t e r = homogeneousCenter / s c a l e ;

pragma c l u c a l c end
c i r c l e C e n t e r s = m v t o s t r i d e d a r r a y (E u c l i d e a n C e n t e r ,

id , num point s , e1 , e2 , e3) ;
pragma gpc end

g
Listing 12.1 Horizon example in OpenCL

First, each kernel has to request its identifier id, which is used to obtain its
Euclidean observer point P from the strided array points. The actual computation is
equivalent to the sequential example in Sect. 11.2. Finally, the e1; e2; e3-components
of the multivector EuclideanCenter are written to the strided array circleCenters (see
Table 12.1 for the functions for constructing and accessing multivectors).

12.2.2 CUDA Implementation

The CLUCalc code for the horizon example may be embedded into a CUDA kernel,
resulting in the code in Listing 12.2.

k e r n e l void h o r i z o n K e r n e l (g l o b a l f l o a t � c i r c l e C e n t e r s ,
g l o b a l cons t f l o a t � p o i n t s)

f
cons t i n t i d = g e t g l o b a l i d (0) ;

pragma gpc beg i n
P = VecN3 (p o i n t s [i d] ,

p o i n t s [i d + num po i n t s] ,
p o i n t s [i d +2� num po i n t s]) ;

pragma c l u c a l c beg i n
r = 1 ;
S = e0 �0.5� r� r� e i n f ;
C = S ˆ (P+(P . S)� e i n f) ;

164 12 The Gaalop Precompiler for GPUs

? homogeneousCenter = C� e i n f �C ;
? s c a l e = �homogeneousCenter . e i n f ;
? E u c l i d e a n C e n t e r = homogeneousCenter / s c a l e ;

pragma c l u c a l c end
c i r c l e C e n t e r s = m v t o s t r i d e d a r r a y (E u c l i d e a n C e n t e r ,

id , num point s , e1 , e2 , e3) ;
pragma gpc end

g
Listing 12.2 Horizon example in CUDA

12.3 List of Multivector Functions

Several multivector functions are defined in Table 12.1. The purpose of these
functions is the transformation between multivectors and C++/OpenCL/CUDA
language concepts such as float variables, arrays, and vectors. For example,
mv get bladecoeff () is responsible for extracting a blade coefficient from a multivec-
tor, whereas mv from array() constructs a multivector from a C-like array.

Table 12.1 Gaalop GPC functions for constructing and accessing multivectors

coeff = mv getbladecoeff(mv,blade); Get the coefficient of blade
blade of multivector mv

array = mv to array(mv, blades ,...); Write the blades blades ,...
of multivector mv to
array array. Example
array = mv to array
(mv,e1,e2,e3,e0, einf);

array = mv to stridedarray(mv,index,stride ,blades ,...); Write the blades blades ,...
of multivector mv
to array array with
stride stride . Example
array = mv to array
(mv,nummvs,
e1,e2,e3,e0, einf);

vector = mv to vector(mv, blades ,...); Write the multivector mv to
vector vector

mv = mv from vector(vector,blades ,..); Construct multivector mv
from vector vector

mv = mv from array(array,blades,..); Construct multivector mv
from array array

mv = mv from stridedarray(array,index,stride,blades ,...); Construct multivector mv
from array array with stride
stride

mv draw(mv,color); Visualizes the geometric ob-
ject represented by the mul-
tivector mv. The optional
color parameter describes
the R, G, B, A values of the
color of the object

Chapter 13
Molecular Dynamics Using Gaalop GPC
for OpenCL

A molecular dynamics simulation of the kind described here [101] models the
point-pair interactions of a system of molecules, each molecule consisting of
several atoms, and numerically solves Newton’s and Euler’s equations of motion for
each molecule. This can be expressed in the mathematical language of Conformal
Geometric Algebra . This chapter presents a molecular dynamics simulation based
on Gaalop GPC for OpenCL (Fig. 13.1).

The nice result is that the Gaalop GPC implementation is faster than the conven-
tional implementation, which is not self-evident for CGA-based implementations
of such complexity. Further tests have shown that Gaalop GPC also yields a higher
numerical stability in terms of energy conservation. This might be due to the fact
that the advanced symbolic simplification performed by Gaalop GPC minimizes
the number of operations, which otherwise would have been potential sources for
numerical errors.

13.1 Molecular Dynamics in a Nutshell

In the following, we describe very briefly how molecular dynamics is modeled in
our simulation (see Fig. 13.2):

• A molecule is a compound object consisting of several atoms, which are assumed
to be static inside the molecule.

• Every atom sends out attraction or repulsion forces to every other atom.
• These forces then result in movement of the molecules according to Newton’s

and Euler’s laws. This is simulated for thousands of molecules in parallel.

A potential function describes the dependance of the energy between two atoms and
the distance between them. A popular approximation to the potential between real
physical atoms is the Lennard-Jones potential (Fig. 13.3), which we make strong use
of in this application.

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 13,
© Springer-Verlag Berlin Heidelberg 2013

165

166 13 Molecular Dynamics Using Gaalop GPC for OpenCL

Fig. 13.1 Screenshot of a
molecular dynamics
simulation using CGA

Fig. 13.2 The forces
between all of the atoms in
the molecules result in
movement of the molecules

Fig. 13.3 The Lennard-Jones
potential describes the
dependence of the energy
between two atoms and the
distance between them
(Image source: www.
wikipedia.org)

The usual method here is to derive the forces on each atom from the potentials.
Mathematically, and in the context of molecular dynamics, the force pointing in
the direction of the lowest local energy is defined as the negative gradient �r˚.d/,
where d D pj i is the distance between the two atom positions and ˚ is the Lennard-
Jones potential function

13.2 Software Architecture 167

Fig. 13.4 Code architecture of the molecular dynamics application

˚.r/ D 4�

���

r

�12 �
��

r

�6
�

; (13.1)

where � is a scale factor and � is the distance at which the repulsive part outweighs
the attractive part of the potential.

13.2 Software Architecture

An initialization on the host (CPU) is needed prior to running the simulation itself
(see Sect. 13.3). This consists of loading a so-called MOLD file, which is basically
a snapshot of the real physical state of the molecules, including their definition.

The actual simulation is done by the OpenCL solver for the molecular dynamics
computations, initiated by some kernel calls. The OpenCL solver is separated into
the following three parts (see Fig. 13.4):

1. Molecule Verlet time integration step 1. The kernel described in Sect. 13.4
updates a molecule’s position and orientation; N computations are required for
N molecules.

2. Computation of potential forces. This updates each molecule’s force and
torque; n.n � 1/ computations are required for n atoms. The kernel described
in Sect. 13.5 is responsible for this step.

3. Molecule Verlet time integration step 2. The kernel described in Sect. 13.6 up-
dates the molecule’s linear and angular velocities. N computations are required
for N molecules.

The downloaded data can be used for the visualization of the motion of the
molecules.

168 13 Molecular Dynamics Using Gaalop GPC for OpenCL

The following listings show code extracted from the OpenCL versions of the
solver, implemented in Gaalop GPC for OpenCL.

13.3 Initialization

Listing 13.1 shows the host/CPU code for the initialization of the molecular
dynamics simulation.

void conve r t S t anda rdM ode l T oSo l ve rM ode l (cons t BaseModel& model) f
cons t M ol ecu l eV ec t o r& m ol ecu l e s = model . m o l ecu l e s ;
cons t AtomVector& atoms = model . atoms ;
cons t i n t numMolecules = m ol ecu l e s . s i z e () ;
cons t s i z e t numAtomPosi t ions = atoms . s i z e () ;
for (i n t i ndex = 0 ; i ndex < numMolecules ; ++ i ndex) f

/ / g e t m o l ecu l e
cons t Molecule& m ol ecu l e = m ol ecu l e s [i ndex] ;

pragma gpc beg i n
/ / map t o m u l t i v e c t o r s
l p = m v f rom ar ray (m o l ecu l e . l pos , e1 , e2 , e3) ;
r o t o r = m v f rom ar ray (m o l ecu l e . a r o t , 1 ,

e2 ˆ e3 , e3 ˆ e1 , e1 ˆ e2) ;
l v = m v f rom ar ray (m o l ecu l e . l v e l , e1 , e2 , e3) ;
av = m v f rom ar ray (m o l ecu l e . ave l , e1 , e2 , e3) ;

pragma c l u c a l c beg i n
/ / compute s t a r t v a l u e s
t r a n s l a t o r = 1 � 0 . 5 � l p ˆ e i n f ;
? D in = t r a n s l a t o r � r o t o r ;
? V in = e i n f � l v � e1 ˆ e2 ˆ e3�av ;

pragma c l u c a l c end

/ / map from m u l t i v e c t o r s
hos t mol D0 = m v t o s t r i d e d a r r a y (D in , index , numMolecules ,

1 , e1 ˆ e2 , e1 ˆ e3 ,
e1 ˆ e i n f , e2 ˆ e3 ,
e2 ˆ e i n f , e3 ˆ e i n f ,
e1 ˆ e2 ˆ e3 ˆ e i n f) ;

hos t mol V0 = m v t o s t r i d e d a r r a y (V in , index , numMolecules ,
e1 ˆ e2 , e1 ˆ e3 ,
e1 ˆ e i n f , e2 ˆ e3 ,
e2 ˆ e i n f , e3 ˆ e i n f) ;

pragma gpc end

g
/ / f i l l d e v i c e b u f f e r , copy h o s t b u f f e r t o d e v i c e b u f f e r s
commandQueue . e n q u e u e W r i t e B u f f e r (dev mol D0 . g e t B u f f e r () ,

CL TRUE , 0 ,

13.3 Initialization 169

hos t mol D0 . s i z e () � s i z e o f (f l o a t) , &host mol D0 . f r o n t ()) ;
commandQueue . e n q u e u e W r i t e B u f f e r (dev mol V0 . g e t B u f f e r () ,

CL TRUE , 0 ,
hos t mol V0 . s i z e () � s i z e o f (f l o a t) , &host mol V0 . f r o n t ()) ;

s t d : : f i l l (hos t mol V1 . beg i n () , hos t mol V1 . end () , 0 . 0 f) ;
commandQueue . e n q u e u e W r i t e B u f f e r (dev mol V1 . g e t B u f f e r () ,

CL TRUE , 0 ,
hos t mol V1 . s i z e () � s i z e o f (f l o a t) , &host mol V1 . f r o n t ()) ;

s t d : : f i l l (hos t mol lmom . beg i n () , hos t mol lmom . end () , 0 . 0 f) ;
commandQueue . e n q u e u e W r i t e B u f f e r (dev mol lmom . g e t B u f f e r () ,

CL TRUE , 0 ,
hos t mol lmom . s i z e () � s i z e o f (f l o a t) ,

&host mol lmom . f r o n t ()) ;
s t d : : f i l l (host mol amom . beg i n () , host mol amom . end () , 0 . 0 f) ;
commandQueue . e n q u e u e W r i t e B u f f e r (dev mol amom . g e t B u f f e r () ,

CL TRUE , 0 ,
host mol amom . s i z e () � s i z e o f (f l o a t) ,

&host mol amom . f r o n t ()) ;

g
Listing 13.1 Gaalop GPC code for the conversion of the properties (position, orientation, and
linear and angular velocity) of the molecules into the CGA representation as a versor Din and a
velocity screw Vin

The goal is to convert the data of all the molecules into the Geometric Algebra
repesentation and to prepare this data for the GPU. The location and orientation
of each molecule is transformed to a displacement versor Din (see Sect. 3.5). The
linear and angular velocity are defined through the molecule’s velocity screw Vin, an
expression for the combined linear and angular velocity (see Sect. 3.6 and [48,50]).

The sequence of steps is as follows:

1. Take the position lp from the molecule position array lpos and the orientation
rotor from the quaternion arot.

2. Take the linear velocity lv from the molecule velocity array lvel and the angular
velocity av from the molecule array avel.

3. Define a translator from the Euclidean translation vector lp.
4. The displacement versor Din is simply the geometric product of translator and

rotor.
5. The velocity screw Vin is defined according to (3.65), namely as the difference

between the geometric product of e1 with the Euclidean linear-velocity vector
lv, and the geometric product of e1 ^ e2 ^ e3 with the Euclidean angular-velocity
vector av.

6. Move the Din and Vin data for each molecule to the strided arrays host mol D0
and host mol V0. These are versor-type multivectors with entries as indicated in
Fig. 4.11, consisting of the scalar, six 2-blades, and one 4-blade. Note that versors
are even multivectors with blades of even grade.

7. Copy all the host buffers to the corresponding device buffers.

170 13 Molecular Dynamics Using Gaalop GPC for OpenCL

13.4 Velocity Verlet Integration Step 1

Wisely chosen OpenCL kernels, such as the one in Listing 13.2, are called one or
many times per frame. This kernel computes the first half of an implicit velocity
Verlet integration for a molecule. A velocity Verlet numerical integrator propagates
the position and velocity of a mass point for a given time step.

k e r n e l void v e r l e t S t e p 1 (g l o b a l f l o a t � array D0 ,
g l o b a l f l o a t � array V0 ,
g l o b a l cons t f l o a t � array V1 ,

cons t f l o a t dt ,
cons t unsigned i n t numMolecules) f

/ / compute i n d e x
cons t unsigned i n t i ndex = g e t g l o b a l i d (0) ;

/ / clamp
i f (i ndex >= numMolecules)

return ;
pragma gpc beg i n

/ / map t o m u l t i v e c t o r s
D0 t = m v f r o m s t r i d e d a r r a y (ar ray D0 , index , numMolecules ,

1 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f ,
e1 ˆ e2 ˆ e3 ˆ e i n f) ;

V0 t = m v f r o m s t r i d e d a r r a y (ar ray V0 , index , numMolecules ,
e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

V1 t = m v f r o m s t r i d e d a r r a y (ar ray V1 , index , numMolecules ,
e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

pragma c l u c a l c beg i n
? D1 t = 0 . 5 � D0 t � V0 t ;
? D2 t = 0 . 5 � D1 t � V0 t + 0 . 5 � D0 t � V1 t ;

? D 0 t d t = D0 t + D1 t � d t + 0 . 5 � D2 t � d t � d t ;
? V 0 t 0 5 d t = V0 t + 0 . 5 � V1 t � d t ;

pragma c l u c a l c end
/ / map from m u l t i v e c t o r s
a r r ay D 0 = m v t o s t r i d e d a r r a y (D 0 t d t , index , numMolecules ,

1 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f ,
e1 ˆ e2 ˆ e3 ˆ e i n f) ;

a r r ay V 0 = m v t o s t r i d e d a r r a y (V 0 t d t , index , numMolecules ,
e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

pragma gpc end
g
Listing 13.2 Compute-intensive Gaalop GPC for OpenCL code for the first step of the velocity
Verlet numerical integration of the displacement versor and velocity screw for a molecule

The code performs the displacement propagation and computes the midpoint
velocity, as described in the following equations:

13.5 Accumulation of Forces Per Atom 171

Displacement propagation: D.t C �t/ D D.t/ C PD.t/�t C 1
2

RD.t/.�t/2.
Midpoint velocity: Vb

�
t C �t

2

� D Vb.t/ C PVb.t/ �t
2

.
Acceleration: PVb.t C �t/ D e1 Pvb.t C �t/ � e123 P!b.t C �t/.
Velocity propagation: Vb.t C �t/ D Vb

�
t C �t

2

� C 1
2

PVb.t C �t/�t .

Here,

PD D 1

2
DVb

�
D 1

2
VbD D 1

2
DVbD�1D

	
;

RD D 1

2
PDVb C 1

2
D PVb D 1

4
DV 2

b C 1

2
D PVb;

and the Euclidean pseudoscalar is

e123 D e1 ^ e2 ^ e3:

The state of a molecule is described by D.t/, its displacement versor in the
inertial frame; Vb.t/, its velocity screw in the body frame (V D DVb. QD/ in
an inertial frame); Pvb.t/, its translational acceleration; and P!b.t/, its rotational
acceleration.

The convention for the variable names in the code is as follows: displacement
versors and velocity screws are indicated by the letters D and V, followed by
the number of differentiations (D1, for instance, means the first derivative of the
displacement versor).

A more detailed description of this approach can be found in [101].

13.5 Accumulation of Forces Per Atom

After execution of the first part of the velocity Verlet algorithm, it is now required
to update the forces and torques acting on all molecules.

The net force acting on a molecule, fm, is equal to the sum of the forces
P

i fi

acting on its atoms. The net torque ti acting upon a molecule is equal to the sum of
the cross products

P
i fi � ri D P

i �.fi ^ ri /e123 of the molecule’s atoms, where
ri is the position of atom i . In Sect. 2.3, we proved that the product �.u ^ v/e123 is
equal to the cross product u � v.

The kernel kernel void accumulateForcesPerAtom() computes fi and fi ^ ri on a
per-atom basis. The summation is then performed consecutively in
void computeMoleculeForceAndTorque(), as explained below.

k e r n e l void accum ul a t eForcesPe rA t om (
g l o b a l f l o a t � array mol lmom temp ,
g l o b a l f l o a t � array mol amom temp ,
g l o b a l cons t f l o a t � array mol D0 ,
g l o b a l cons t f l o a t � a r r a y a t o m p o s ,

172 13 Molecular Dynamics Using Gaalop GPC for OpenCL

g l o b a l cons t unsigned i n t � a r r a y a t o m p o s i n d ,
g l o b a l cons t unsigned i n t � a r r a y a t o m m o l i n d ,

cons t f l o a t e p s i l o n , cons t f l o a t sigma ,
cons t unsigned i n t numMolecules ,
cons t unsigned i n t numAtoms ,
cons t unsigned i n t numAtomPosi t ions) f

/ / compute i n d e x
cons t unsigned i n t a t om i ndex1 = g e t g l o b a l i d (0) ;

/ / clamp
i f (a t om i ndex1 >= numAtoms)

return ;

/ / g e t atom da t a
cons t unsigned i n t a t om m ol i nd1

= a r r a y a t o m m o l i n d [a t om i ndex1] ;

/�
� Precache a number o f BLOCK SIZE v e r s o r s i n t o f a s t l o c a l

memory .
� BLOCK SIZE i s a p r e p r o c e s s o r d e f i n i t i o n s u p p l i e d by t h e
� h o s t a t c o m p i l a t i o n t i m e .
� Le t e v e r y t h r e a d l oad from t h e s t r i d e d g l o b a l memory array
� i n t o non�s t r i d e d l o c a l memory array i n p a r a l l e l .
� /

l o c a l f l o a t � v e r s o r 1
= &a r r a y v e r s o r c a c h e b l o c k [8 � g e t l o c a l i d (0)] ;

l o c a l f l o a t a r r a y v e r s o r c a c h e b l o c k [8 � BLOCK SIZE] ;
f

unsigned i n t s h i f t e d I n d e x ;
v e r s o r 1 [0] = a r ray m ol D 0 [s h i f t e d I n d e x

= a t om m ol i nd1] ;
v e r s o r 1 [1] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [2] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [3] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [4] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [5] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [6] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
v e r s o r 1 [7] = a r ray m ol D 0 [s h i f t e d I n d e x

+= numMolecules] ;
g

l o c a l unsigned i n t a r r a y a t o m m o l i n d 2 b l o c k [BLOCK SIZE] ;
l o c a l f l o a t 4 a r r a y g p o s 2 b l o c k [BLOCK SIZE] ;

f l o a t 4 pos1 , gpos1 ;
f

cons t unsigned i n t a t o m p o s i n d 1

13.5 Accumulation of Forces Per Atom 173

= a r r a y a t o m p o s i n d [a t om i ndex1] ;
pos1 = (f l o a t 4) (a r r a y a t o m p o s [a t o m p o s i n d 1] ,

a r r a y a t o m p o s [numAtomPosi t ions
+ a t o m p o s i n d 1] ,
a r r a y a t o m p o s [(numAtomPosi t ions << 1)
+ a t o m p o s i n d 1] , 0 . 0 f) ;

/ / map t o m u l t i v e c t o r s
pragma gpc beg i n

p1 = VecN3 (pos1) ;
D1 = m v f rom ar ray (ve r so r1 ,

1 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f , e1 ˆ e2 ˆ e3 ˆ e i n f) ;

pragma c l u c a l c beg i n
/ / c a l c u l a t e
? gp1 = D1�p1 � (˜D1) ;

pragma c l u c a l c end
/ / map from m u l t i v e c t o r s
gpos1 = m v t o v e c t o r (gp1 , e1 , e2 , e3) ;

pragma gpc end
g
/ / accum ul a t e f o r c e s
f l o a t 4 a c c u m u l a t e d f o r c e s = (f l o a t 4) (0 . 0 f) ;
f

for (unsigned i n t a t o m i n d e x 2 b l o c k = 0 ;
a t o m i n d e x 2 b l o c k < numAtoms ;
a t o m i n d e x 2 b l o c k += BLOCK SIZE)

com pu t eL enna rdJonesForce (& a c c u m u l a t e d f o r c e s , gpos1 ,
ar ray mol D0 , a r r a y a t o m p o s ,
a r r a y a t o m m o l i n d , a r r a y a t o m p o s i n d ,
a r r a y a t o m m o l i n d 2 b l o c k , a r r a y g p o s 2 b l o c k ,
e p s i l o n , sigma ,
a tom mol ind1 , a t om i ndex2 b l ock ,
numMolecules , numAtoms , numAtomPosi t ions) ;

g
/ / t r a n s f o r m and save m o l ecu l e ’ s f o r c e and t o r q u e
computeMoleculeForceAndTorque (ar ray mol lmom temp ,

array mol amom temp ,
ve r so r1 , pos1 ,
a c c u m u l a t e d f o r c e s ,
a tom index1 , numAtoms) ;

g
The following two utility device functions,

• void computeLennardJonesForce()
• void computeMoleculeForceAndTorque()

are invoked by kernel void accumulateForcesPerAtom(). Their sole purpose is the
computation of the forces acting between two atoms in different molecules.

174 13 Molecular Dynamics Using Gaalop GPC for OpenCL

The catch here is that the atom positions are expressed in their molecule’s frame.
A transformation to inertial-frame coordinates is therefore required prior to comput-
ing the forces on them. The inertial-frame transformation Dj pj i

QDj with molecule
versor Dj and atom position pj i performs this job for atom 2, whereas the position
of atom 1 has already been pretransformed by kernel void accumulateForcesPerAtom()
prior to calling the device function void computeLennardJonesForce().

Once both atoms have been transformed, the computation of the Lennard-
Jones potential forces is performed easily by void computeLennardJonesForceSimple().
Mathematically, the force pointing in the direction of the lowest local energy is
defined as the negative gradient �r˚.d/, where d D pj i is the distance between
the two atom positions.

void com pu t eLenna rdJonesForce (
f l o a t 4 � a c c u m u l a t e d f o r c e s ,
cons t f l o a t 4 gpos1 ,

g l o b a l cons t f l o a t � array mol D0 ,
g l o b a l cons t f l o a t � a r r a y a t o m p o s ,
g l o b a l cons t unsigned i n t � a r r a y a t o m m o l i n d ,
g l o b a l cons t unsigned i n t � a r r a y a t o m p o s i n d ,
l o c a l unsigned i n t � a r r a y a t o m m o l i n d 2 b l o c k ,
l o c a l f l o a t 4 � a r r a y g p o s 2 b l o c k ,

cons t f l o a t e p s i l o n , cons t f l o a t sigma ,
cons t unsigned i n t a tom mol ind1 ,
cons t unsigned i n t a t om i ndex2 b l ock ,
cons t unsigned i n t numMolecules ,
cons t unsigned i n t numAtoms ,
cons t unsigned i n t numAtomPosi t ions) f

i f (a t o m i n d e x 2 b l o c k + g e t l o c a l i d (0) < numAtoms) f
cons t unsigned i n t a t om m ol i nd2

= a r r a y a t o m m o l i n d [a t o m i n d e x 2 b l o c k
+ g e t l o c a l i d (0)] ;

a r r a y a t o m m o l i n d 2 b l o c k [g e t l o c a l i d (0)]
= a t om m ol i nd2 ;

cons t unsigned i n t a t o m p o s i n d 2
= a r r a y a t o m p o s i n d [a t o m i n d e x 2 b l o c k
+ g e t l o c a l i d (0)] ;

pragma gpc beg i n
D2 = m v f rom ar ray (array mol D0 , 1 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,

e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f , e1 ˆ e2 ˆ e3 ˆ e i n f) ;
p2 = m v f r o m s t r i d e d a r r a y (a r r a y a t o m p o s ,

a t om pos i nd2 , numAtomPosi t ions , e1 , e2 , e3) ;
pragma c l u c a l c beg i n

/ / c a l c u l a t e
? gp2 = D2�p2 � (˜D2) ;

pragma c l u c a l c end
a r r a y g p o s 2 b l o c k [g e t l o c a l i d (0)]

= m v t o v e c t o r (gp2 , e1 , e2 , e3) ;
pragma gpc end

g

13.5 Accumulation of Forces Per Atom 175

/ / s ync f o r shared memory c o n s i s t e n c y
b a r r i e r (CLK LOCAL MEM FENCE) ;

/ / compute l e n n a r d j o n e s f o r c e u s i n g t r a n s f o r m e d p o s i t i o n s
for (unsigned i n t i n d e x b l o c k = 0 ;

i n d e x b l o c k < BLOCK SIZE ;
++ i n d e x b l o c k)
i f (a t o m i n d e x 2 b l o c k + i n d e x b l o c k < numAtoms

&& at om m ol i nd1
!= a r r a y a t o m m o l i n d 2 b l o c k [i n d e x b l o c k])

com pu t eL enna rdJonesForceS i m p l e (a c c u m u l a t e d f o r c e s ,
gpos1 , a r r a y g p o s 2 b l o c k [i n d e x b l o c k] , e p s i l o n , sigma) ;

g
void com pu t eLenna rdJonesForceS i m p l e (f l o a t 4 � a c c u m u l a t e d f o r c e s ,

cons t f l o a t 4 pos1 ,
cons t f l o a t 4 pos2 ,
cons t f l o a t e p s i l o n ,
cons t f l o a t sigma) f

/ / compute l e n n a r d j o n e s p o t e n t i a l f o r c e
cons t f l o a t 4 d i s t V e c = pos1 � pos2 ;
cons t f l o a t di s tPow2 = d i s t V e c . x � d i s t V e c . x

+ d i s t V e c . y � d i s t V e c . y
+ d i s t V e c . z � d i s t V e c . z ;

cons t f l o a t di s tPow6 = dis tPow2 � di s tPow2 � di s tPow2 ;
cons t f l o a t di s tPow8 = dis tPow6 � di s tPow2 ;
cons t f l o a t di s tPow14 = di s tPow8 � di s tPow6 ;
cons t f l o a t sigmaPow6 = sigma � sigma � sigma

� sigma � sigma � sigma ;
cons t f l o a t sigmaPow12 = sigmaPow6 � sigmaPow6 ;
cons t f l o a t f a c t o r = (2 4 . 0 f � e p s i l o n)

� (sigmaPow12 / di s tPow14
� sigmaPow6 / di s tPow8) ;

a c c u m u l a t e d f o r c e s [0] . x += d i s t V e c . x � f a c t o r ;
a c c u m u l a t e d f o r c e s [0] . y += d i s t V e c . y � f a c t o r ;
a c c u m u l a t e d f o r c e s [0] . z += d i s t V e c . z � f a c t o r ;

g
The code in Listing 13.3 is responsible for transforming a force into a molecule’s

local coordinate system, computing the torque by multiplying the transformed force
by the position it acts upon, and saving both of these quantities in memory. The
explicit steps are as follows:

1. Transform the force into the molecule body frame using the operation QDfD,
where f is the force and D is the molecule’s versor.

2. The torque is computed by taking a simple outer product ^ of the application
point of the force and the force itself. The operands and the result are expressed
in terms of the body frame.

176 13 Molecular Dynamics Using Gaalop GPC for OpenCL

void computeMoleculeForceAndTorque (g l o b a l f l o a t � atom lmom temp ,
g l o b a l f l o a t � atom amom temp ,
l o c a l cons t f l o a t � ve r so r1 ,

cons t f l o a t 4 l o c a l P o s ,
cons t f l o a t 4 g l o b a l F o r c e ,
cons t unsigned i n t a tom index ,
cons t unsigned i n t numAtoms)

f
pragma gpc beg i n
/ / map t o m u l t i v e c t o r s
m ol ecu l eV er s o r = m v f rom ar ray (ve r so r1 ,

1 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f , e1 ˆ e2 ˆ e3 ˆ e i n f) ;

pragma c l u c a l c beg i n
posLoca l = VecN3 (l o c a l P o s) ;
f o r c e G l o b a l = VecN3 (g l o b a l F o r c e) ;

/ / c a l c u l a t e
? l o c a l f o r c e = ˜ m ol ecu l eV er s o r

� f o r c e G l o b a l
� m ol ecu l eV er s o r ;

? l o c a l t o r q u e = posL oca l ˆ l o c a l f o r c e ;
pragma c l u c a l c end

/ / map from m u l t i v e c t o r s
atom lmom temp = m v t o s t r i d e d a r r a y (l o c a l f o r c e ,

a tom index , numAtoms , e1 , e2 , e3) ;
atom amom temp = m v t o s t r i d e d a r r a y (l o c a l t o r q u e ,

a tom index , numAtoms , e1 , e2 , e3) ;
pragma gpc end

g
Listing 13.3 Gaalop GPC for OpenCL code for the computation of force and torque

13.6 Velocity Verlet Integration Step 2

This kernel performs the second step of the velocity Verlet implicit integration.
Mathematically, it integrates acceleration and velocity propagation as defined
below:

Acceleration: PVb.t C �t/ D e1Pvb.t C �t/ � e123 P!b.t C �t/

Velocity propagation: Vb.t C �t/ D Vb

�
t C �t

2

� C 1
2

PVb.t C �t/�t

k e r n e l vo id v e r l e t S t e p 2 (g l o b a l f l o a t � ar r ay V0 ,
g l o b a l f l o a t � ar r ay V1 ,
g l o b a l f l o a t � array lmom ,
g l o b a l f l o a t � array amom ,
g l o b a l c o n s t f l o a t � a r r a y m a s s e s ,
g l o b a l c o n s t f l o a t � a r r a y i n e r t i a ,

13.6 Velocity Verlet Integration Step 2 177

c o n s t f l o a t dt ,
c o n s t unsigned i n t numMolecules) f

/ / compute i n d e x
c o n s t unsigned i n t i n d e x = g e t g l o b a l i d (0) ;

/ / clamp
i f (i n d e x >= numMolecules)

return ;

pragma gpc b e g i n
/ / map t o m u l t i v e c t o r s
lmom = m v f r o m s t r i d e d a r r a y (ar ray lmom , index ,

numMolecules , e1 , e2 , e3) ;
amom = m v f r o m s t r i d e d v e c (array amom , index ,

numMolecules , e1 , e2 , e3) ;
V0 = m v f r o m s t r i d e d a r r a y (a r r ay V0 , index , numMolecules ,

e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

c o n s t f l o a t mass = a r r a y m a s s e s [i n d e x] ;
c o n s t f l o a t I 1 = a r r a y i n e r t i a [s h i f t e d I n d e x

= i n d e x] ;
c o n s t f l o a t I 2 = a r r a y i n e r t i a [s h i f t e d I n d e x

+= numMolecules] ;
c o n s t f l o a t I 3 = a r r a y i n e r t i a [s h i f t e d I n d e x

+= numMolecules] ;
pragma c l u c a l c b e g i n

a v e l 1 t = V023 ;
a v e l 2 t = V013 ;
a v e l 3 t = V012 ;
v 1 t d t = lmom / mass ;

/ / t emporary v a l u e s
w 1 t d t 1 = (am23 � (I 3 � I 2) � a v e l 2 t � a v e l 3 t) / I 1 ;
w 1 t d t 2 = (am13 � (I 1 � I 3) � a v e l 3 t � a v e l 1 t) / I 2 ;
w 1 t d t 3 = (am12 � (I 2 � I 1) � a v e l 1 t � a v e l 2 t) / I 3 ;
w 1 t d t = e1 � w 1 t d t 1 + e2 � w 1 t d t 2 + e3 � w 1 t d t 3 ;

/ / c a l c u l a t e v e r l e t s t e p 2
? V 1 t d t = e i n f � v 1 t d t � e1 ˆ e2 ˆ e3 � w 1 t d t ;
? V 0 t d t = V 0 t 0 5 d t + 0 . 5 � V 1 t d t � d t ;

pragma c l u c a l c end
/ / map from m u l t i v e c t o r s
a r r a y V 0 = m v t o s t r i d e d a r r a y (V 0 t d t , index , numMolecules ,

e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

a r r a y V 1 = m v t o s t r i d e d a r r a y (V 1 t d t , index , numMolecules ,
e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e i n f ,
e2 ˆ e3 , e2 ˆ e i n f , e3 ˆ e i n f) ;

pragma gpc end
g

Chapter 14
Geometric Algebra Computers

How should a computer for Geometric Algebra be designed? This chapter investi-
gates different computing architectures with the goal of implementing Geometric
Algebra algorithms with as high a performance as possible.

There are already pure hardware solutions available (see Sect. 1.3). We have
realized a combined software and hardware solution based on Gaalop with recon-
figurable FPGAs (see Sect. 14.1). Another goal of Gaalop is to adapt Geometric Al-
gebra as much as possible to modern parallel computing platforms (see Sect. 14.2).
In the hardware industry, the need for suitable parallel computing architectures is
quite evident. After Geometric Algebra has been adapted to current architectures,
future architectures might even be influenced and driven by the Geometric Algebra
Computing technology. Therefore, we present an approach to a Geometric Algebra
machine instruction set in Sect. 14.3. This has already been used as an internal
representation in Gaalop, but will be used in future Geometric Algebra computers
as instruction set (see Sect. 14.4).

14.1 FPGA Implementation of Geometric Algebra
Algorithms

Here, we describe our approach to automatically generating FPGA implementations
of Geometric Algebra algorithms based on Gaalop. This is joint work with
the Embedded Applications Group of Professor Andreas Koch, financed by the
Deutsche Forschungsgemeinschaft (DFG). Details can be found in the paper [66].

There are general FPGA (field programmable gate arrays) implementations for
geometric products available, as indicated in Sect. 1.3. Because of the complexity
of Geometric Algebra computations, however, they have some restrictions, for
instance concerning the dimension of the algebra. Our approach using Gaalop (see
Chap. 10) differs from these general solutions, as we compile Geometric Algebra
algorithms first into simplified algorithms that can be handled more easily by

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1 14,
© Springer-Verlag Berlin Heidelberg 2013

179

180 14 Geometric Algebra Computers

Fig. 14.1 Generation of
optimized FPGA
implementations from
Geometric Algebra
algorithms

Fig. 14.2 Pipeline schedule for the coefficient pex of a multivector. All of the computations
specified by (14.1) for all of the pipeline stages can be done in parallel

FPGAs; see Fig. 14.1 for our compilation process. These FPGA implementations
are always application-specific. As one proof of concept of our approach, we
implemented the inverse kinematics algorithm of Chap. 9. First, we used our Maple-
based compilation approach, and the software implementation of the optimized
algorithm became three times faster than the conventional solution [59].

The FPGA implementation of the optimized algorithm used the Verilog pro-
gramming language. See Fig. 14.2 for the data flow and the pipeline schedule of
the computation of the following part of the algorithm (one coefficient of one
multivector according to Sect. 9.3.2.2):

pex D .PPj .PP34 � PP35/ C PPk.PP25 � PP24/ (14.1)

Ctmpsqrt .PP15 � PP14//=einf PP:

The main advantage of this kind of implementation on reconfigurable hardware is
that we are able to realize parallelism in two dimensions as follows:

14.2 Adaptation of Geometric Algebra to Current Computer Architectures 181

• Computation of all coefficients of one or more multivectors in parallel;
• Use of the pipeline structure (computations are possible in all pipeline stages at

the same time).

As a result, the implementation became about 300 times faster [60] (three times
faster by software optimization and 100 times by additional hardware optimization).

14.2 Adaptation of Geometric Algebra to Current Computer
Architectures

One goal of Geometric Algebra Computing is to combine the two recent trends
illustrated in Fig. 1.1 in order to adapt Geometric Algebra algorithms as much as
possible to current computer architectures [55]:

• The development of mathematics from the exterior algebra of Hermann Grass-
mann via Clifford algebra to the Geometric Algebra of David Hestenes and, espe-
cially, the 5D conformal model, and further development to higher-dimensional
algebras, leading to an increasing number of engineering applications. Examples
are the 6/8D Geometric Algebra of Christian Perwass, the 8D Geometric Algebra
of Selig and Bayro-Corrochano [99] and the 9D Geometric Algebra of Julio
Zamora [115]. Algebras for conics were presented in [81]. Selig and Bayro-
Corrochano [99] showed how velocities, momenta, and inertia can be represented
by elements of an 8D Geometric Algebra. Zamora [115] showed how quadrics
can be represented in a 9D Geometric Algebra.

• During the past few decades, especially from 1986 to 2002, processor perfor-
mance doubled every 18 months, based on higher clock frequencies. Owing
to physical limitations, the primary method of gaining processor performance
now is through parallelism, and we can recognize a shift to parallel systems;
most likely, these systems will dominate in the future. Thanks to multicore
architectures and powerful GPGPUs (see for instance [45]), especially based
on the new OpenCL technology, one can expect impressive results using the
powerful language of Geometric Algebra.

Most multivector calculations derived from the table-based compilation ap-
proach presented in Sect. 10.3 break down to scalar multiplications of equal-sized
n-dimensional vectors. The instruction sets of modern microcomputers contain
operations that are performed on vectors in parallel. A vector in this context is
simply a concatenation of scalar values. Multiplying two vectors means multiplying
all elements of vector a by the corresponding elements of vector b in parallel.
Streaming SIMD (single instruction multiple data) extensions (SSEs) are an addition
to the standard x86-platform instruction set. They provide a variety of instructions
for computing the elements of vectors of four floating-point values concurrently
and also provide special cache instructions to optimize the runtime performance.
We can utilize SSE instructions to evaluate the dot product in a parallel way (see

182 14 Geometric Algebra Computers

Fig. 14.3 Parallel dot prod-
uct of two n-dimensional vec-
tors Vector0 and Vector1 (n
parallel products followed by
log(n) parallel addition steps)

Fig. 14.3). The above statements are true in particular for modern GPUs. OpenCL
provides vector operations that can be performed in parallel. The best performance
of OpenCL kernels is obtained if they can execute the same instruction stream
without too much branching. They benefit from the presence of fewer conditional
statements in Geometric Algebra algorithms owing to its higher generality.

Finding such fine-grained parallelism is usually a hard task, and is a very
common problem in compiler construction. Most interestingly, Geometric Algebra
and the table-based approach intrinsically expose instruction-level parallelism. The
Gaalop precompiler adapts Geometric Algebra as much as possible to modern
parallel computing platforms (see Chap. 12).

14.3 Geometric Algebra Parallelism Programs (GAPP)

The scalar multiplication (or dot product) mentioned above, which is a recurring
pattern in Geometric Algebra Computing, intrinsically contains a high level of
parallelism. This motivates the abstract language defined in this section [57].

One goal of this new instruction set is to make it possible to develop future
computing architectures in such a way that they are suited as much as possible to
Geometric Algebra. The GAPP language is defined in Table 14.1. In the following
sections, we will use code examples based on this language to explain its basics.

The dot product in our abstract GAPP language is defined by the dotVectors
command. The language is designed to perform as many operations in parallel as
possible. The dot product of two vectors is decomposed into one step consisting of
parallel multiplications of each of their components and log2.n/ parallel addition
steps, where n is the dimensionality of the vectors; see the example in Fig. 14.3.

14.3 Geometric Algebra Parallelism Programs (GAPP) 183

Table 14.1 The main commands of the Geometric Algebra Parallelism Programs (GAPP)
language; a more detailed list can be found in [105]

Command: assignInputsVector
Syntax: assignInputsVector inputsVector = [var1 ,var2,. . . ,varn];
Description: Assigns scalar inputs variables var1, var2, . . . , varn to the vector of the inputs.
Arguments: vari : the i-th scalar input variable.
Example: assignInputsVector inputsVector = [x1,x2,x3,y1,y2,y3];

Command: resetMv
Syntax: resetMv multivector;
Description: Creates a multivector and initializes it with zeros.
Arguments: multivector: the name of the multivector which should be created.
Example: resetMv v1;

Command: setMv
Syntax: setMv dest[seldest1 ,seldest2 ,. . . ,seldestn] = src[selsrc1 ,selsrc2 ,. . . ,selsrcn];
Description: Copies certain blades from a source to a destination multivector.

The order of the selector lists is important.
Arguments: dest: the destination multivector.

seldesti : the i-th component of the destination multivector.
src: the source multivector/vector.
selsrci : the i-th component of the source multivector.

Example: setMv v1[1,2] = inputsVector[0,3];

Command: setVector
Syntax: setVector dest = farg1,arg2,. . . ,argng;
Description: Creates a vector from a list of arguments
Arguments: dest: the destination vector.

argi : the i-th argument to be assigned in the destination vector, which
can be a constant (e.g. 2:0) or an extract from a multivector/vector (e.g. mvŒ1; 2�).

Example: setVector ve0 = f0.5,v1[1,2],v3[1],v1[4,5]g;

Command: dotVectors
Syntax: dotVectors dest[sel] = hvector1,vector2,. . . ,vectorni;
Description: Calculates the dot product of the given vectors

and stores it in a component of a multivector.
Arguments: dest: the destination multivector.

sel: the component index of the destination multivector.
Example: dotVectors p1[4] = hve0,ve1,ve2i;

Command: assignMv
Syntax: assignMv dest[seldest1 ,seldest2 ,. . . ,seldestn] = [val1,val2,. . . ,valn];
Description: Assigns values to components of a multivector.
Arguments: dest: the destination multivector.

seldesti : The i-th component of the destination multivector.
vali : the i-th constant value.

Example: assignMv p1[5,6] = [1.0,3.0];

184 14 Geometric Algebra Computers

Fig. 14.4 Selected blades of
a multivector are stored in a
five-dimensional vector in
the form E0,�E2, E3, E5,
and �E4

A vector in this sense is simply a concatenation of selected blades, as in the
command setVector. It does not contain any information about the blades itself,
which distinguishes it from a multivector. All of this information is removed by
setVector. A vector is nothing more than the storage of signed real numbers, and is
a preparation of the data for the actual computation performed by dotVectors. For
example, if we select blades E0,�E2, E3, E5, and �E4, these blades are stored in
a five-dimensional vector in the same order, with the specified signs. Figure 14.4
visualizes this mapping of parts of multivectors to vector components.

Depending on the implementation, vectors may also be higher-dimensional, with
all remaining elements set to zero, because zero elements do not have any impact
on the result of calculating the dot product.

A blade selector consists of the index of a multivector entry and its sign. For
CGA, the multivector entry index is equal to one of the indices in Table 10.1. For
example, selecting the index 10 returns the coefficient of the blade e2 ^e3. Selecting
the index �10 returns the negated coefficient of the same blade.

14.3.1 Example

As an example of the application of GAPP, we will use the example presented in
Sect. 10.3.3 in the form

?a=a1*e1+a2*e2+a3*e3;
?b=b1*e1+b2*e2+b3*e3;
?c=a*b;
?d=a+c;
?f=aˆd;

Note that this example is based on 3D Euclidean Geometric Algebra, whereas we
have used mostly 5D CGA in this book.

Let us now compile this script step by step into a GAPP representation according
to Table 14.1. We will also show the corresponding representation in C++ code for
better understanding.

First, all of the input variables are stored in one specific vector:

assignInputsVector inputsVector = [a1,a2,a3,b1,b2,b3];

14.3 Geometric Algebra Parallelism Programs (GAPP) 185

The next two lines are used for the definition of the multivector a D a1E1 Ca2E2 C
a3E3 (a1; a2; a3 are regular scalar variables):

resetMv a;
setMv a[1,2,3] = inputsVector[0,1,2];
//a[1] = inputsVector[0]
//a[2] = inputsVector[1]
//a[3] = inputsVector[2]

The multivector b D b1E1 C b2E2 C b3E3 is defined by

resetMv b;
setMv b[1,2,3] = inputsVector[3,4,5];

As stated earlier in Sect. 10.3.3, the optimized computation for the variable c is

c[0]=a[1]*b[1]+a[2]*b[2]+a[3]*b[3];
c[4]=a[1]*b[2]-a[2]*b[1];
c[5]=a[1]*b[3]-a[3]*b[1];
c[6]=a[2]*b[3]-a[3]*b[2];

Expressed in the GAPP language according to Table 14.1, the code looks as follows:

//c[0] = ((a[3] * b[3]) + (a[2] * b[2])) + (a[1] * b[1])
resetMv c;
setVector ve0 = {a[3,2,1]};
setVector ve1 = {b[3,2,1]};
dotVectors c[0] = <ve0,ve1>;

//c[4] = (a[1] * b[2]) - (a[2] * b[1])
setVector ve2 = {a[1,-2]};
setVector ve3 = {b[2,1]};
dotVectors c[4] = <ve2,ve3>;

//c[5] = (a[1] * b[3]) - (a[3] * b[1])
setVector ve4 = {a[1,-3]};
setVector ve5 = {b[3,1]};
dotVectors c[5] = <ve4,ve5>;

//c[6] = (a[2] * b[3]) - (a[3] * b[2])
setVector ve6 = {a[2,-3]};
setVector ve7 = {b[3,2]};
dotVectors c[6] = <ve6,ve7>;

In the fourth line of the CLUCalc script, the two multivectors a and c are added,
resulting in the multivector d :

d[0]=c[0];
d[1]=a[1];
d[2]=a[2];
d[3]=a[3];
d[4]=c[4];
d[5]=c[5];
d[6]=c[6];

186 14 Geometric Algebra Computers

In the GAPP language,

resetMv d;
setMv d[0,4,5,6] = c[0,4,5,6];
setMv d[1,2,3] = a[1,2,3];

This sets the coefficients of blades [0,4,5,6] of the multivector c as the coefficients
of blades [0,4,5,6] of the multivector d . The coefficients [1,2,3] of a are set as the
coefficients [1,2,3] of d .

The evaluation of the outer product of a with this multivector d just computed
leads to the following C++ code:

f[1]=a[1]*d[0];
f[2]=a[2]*d[0];
f[3]=a[3]*d[0];
f[4]=a[1]*d[2]-a[2]*d[1];
f[5]=a[1]*d[3]-a[3]*d[1];
f[6]=a[2]*d[3]-a[3]*d[2];
f[7]=a[1]*d[6]-a[2]*d[5]+a[3]*d[4];

This corresponds to the following GAPP code:

resetMv f;
//f[1] = a[1] * d[0]
setVector ve8 = {a[1]};
setVector ve9 = {d[0]};
dotVectors f[1] = <ve8,ve9>;

//f[2] = a[2] * d[0]
setVector ve10 = {a[2]};
setVector ve11 = {d[0]};
dotVectors f[2] = <ve10,ve11>;

//f[3] = a[3] * d[0]
setVector ve12 = {a[3]};
setVector ve13 = {d[0]};
dotVectors f[3] = <ve12,ve13>;

//f[4] = (a[1] * d[2]) - (a[2] * d[1])
setVector ve14 = {a[1,-2]};
setVector ve15 = {d[2,1]};
dotVectors f[4] = <ve14,ve15>;

//f[5] = (a[1] * d[3]) - (a[3] * d[1])
setVector ve16 = {a[1,-3]};
setVector ve17 = {d[3,1]};
dotVectors f[5] = <ve16,ve17>;

//f[6] = (a[2] * d[3]) - (a[3] * d[2])
setVector ve18 = {a[2,-3]};
setVector ve19 = {d[3,2]};
dotVectors f[6] = <ve18,ve19>;

14.3 Geometric Algebra Parallelism Programs (GAPP) 187

//f[7] = ((a[1] * d[6]) - (a[2] * d[5])) + (a[3] * d[4])
setVector ve20 = {a[1,-2,3]};
setVector ve21 = {d[6,5,4]};
dotVectors f[7] = <ve20,ve21>;

The result of this example can be improved further according to Sect. 10.3.7. The
Geometric Algebra code without the explicit computation of the variable d ,

?a=a1*e1+a2*e2+a3*e3;
?b=b1*e1+b2*e2+b3*e3;
?c=a*b;
d=a+c;
?f=aˆd;

leads to the following optimized algorithm for the multivector f :

f[1]=a[1]*c[0];
f[2]=a[2]*c[0];
f[3]=a[3]*c[0];
f[7]=a[1]*c[6]-a[2]*c[5]+a[3]*c[4];

The corresponding simplified GAPP code looks as follows:

resetMv f;
//f[1] = a[1] * c[0]
setVector ve8 = {a[1]};
setVector ve9 = {c[0]};
dotVectors f[1] = <ve8,ve9>;

//f[2] = a[2] * c[0]
setVector ve10 = {a[2]};
setVector ve11 = {c[0]};
dotVectors f[2] = <ve10,ve11>;

//f[3] = a[3] * c[0]
setVector ve12 = {a[3]};
setVector ve13 = {c[0]};
dotVectors f[3] = <ve12,ve13>;

//f[7] = ((a[1] * c[6]) - (a[2] * c[5])) + (a[3] * c[4])
setVector ve14 = {a[1,-2,3]};
setVector ve15 = {c[6,5,4]};
dotVectors f[7] = <ve14,ve15>;

See [105] for details of the implementation of GAPP in Gaalop.

14.3.2 Parallelization Concepts Supported by GAPP

The dotVectors command is the central command of the GAPP language. It supports
SIMD operations as explained in Sect. 14.2. Additionally, since the computations of
the coeffcients of a multivector are independent of each other, they can be computed

188 14 Geometric Algebra Computers

Fig. 14.5 Geometric Algebra
computers based on Gaalop
are able to use GAPP as
instruction set for Geometric
Algebra computations

on different processor cores (see [54]). This has to be done only for the non zero
coeffcients.

14.4 Geometric Algebra Computers Based on Gaalop

GAPP has been already used in Gaalop as internal representation for C++ and
OpenCL programs. Figure 14.5 shows the process from CLUCalc as a domain
specific language (DSL) for Geometric Algebra to the corresponding backends for
C++ and OpenCL.

Our vision is that

• Computers in the future will use GAPP directly as instruction set for Geometric
Algebra computations;

• Geometric Algebra will become part of standard programming languages such
as OpenCL.

Please find always the most up-to-date information and software on http://www.
gaalop.de.

References

1. Geomerics ltd. home page available at http://www.geomerics.com.
2. Plücker coordinates. Available at http://en.wikipedia.org.
3. Rafal Ablamowicz. Clifford algebra computations with Maple. In W. E. Baylis, editor,

Clifford (Geometric) Algebras, pages 463–501. Birkhäuser, 1996.
4. Rafal Abłamowicz and Bertfried Fauser. Clifford/bigebra, a Maple package for Clifford

(co)algebra computations. Available at http://www.math.tntech.edu/rafal/, 2011.
5. Eduardo Bayro-Corrochano. Geometric neural computing. IEEE Transactions on Neural

Networks, 12(5):968–986, 2001.
6. Eduardo Bayro-Corrochano. Robot perception and action using conformal geometry. In

Eduardo Bayro-Corrochano, editor, Handbook of Geometric Computing: Applications in
Pattern Recognition, Computer Vision, Neurocomputing and Robotics, chapter 13, pages 405–
458. Springer, 2005.

7. Eduardo Bayro-Corrochano. Geometric Computing for Wavelet Transforms, Robot Vision,
Learning, Control and Action. Springer, 2010.

8. Eduardo Bayro-Corrochano and Vladimir Banarer. A geometric approach for the theory
and applications of 3D projective invariants. Journal of Mathematical Imaging and Vision,
16:131–154, 2001.

9. Eduardo Bayro-Corrochano, Kostas Daniilidis, and Gerald Sommer. Motor algebra for 3d
kinematics: The case of the hand–eye calibration. Journal of Mathematical Imaging and
Vision, 13:79–99, 2000.

10. Eduardo Bayro-Corrochano and Gerik Scheuermann, editors. Geometric Algebra Computing
in Engineering and Computer Science. Springer, 2010.

11. Eduardo Bayro-Corrochano and Garret Sobczyk, editors. Geometric Algebra with Applica-
tions in Science and Engineering. Birkhäuser, 2001.

12. Eduardo Bayro-Corrochano, Refugio Vallejo, and Nancy Arana-Daniel. Geometric prepro-
cessing, geometric feedforward neural networks and Clifford support vector machines for
visual learning. Neurocomputing, 67:54–105, 2005.

13. Eduardo Bayro-Corrochano and Julio Zamora-Esquivel. Inverse kinematics, fixation and
grasping using conformal geometric algebra. In IROS 2004, Sendai, Japan, 2004.

14. Eduardo Bayro-Corrochano and Julio Zamora-Esquivel. Kinematics and differential kinemat-
ics of binocular robot heads. In proceedings of ICRA conference, Orlando, USA, 2006.

15. John Browne. The Grassmann algebra book home page. Available at http://sites.google.com/
site/grassmannalgebra/, 2009.

16. Sven Buchholz, Eckhard M. S. Hitzer, and Kanta Tachibana. Optimal learning rates for
Clifford neurons. In International Conference on Artificial Neural Networks, volume 1, pages
864–873, Porto, Portugal, 2007. 9–13.

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1,
© Springer-Verlag Berlin Heidelberg 2013

189

190 References

17. Sven Buchholz, Eckhard M. S. Hitzer, and Kanta Tachibana. Coordinate independent update
formulas for versor Clifford neurons. In Proceeding Joint 4th International Conference on
Soft Computing and Intelligent Systems (SCIS) and 9th International Symposium on advanced
Intelligent Systems (ISIS 2008), Nagoya, Japan, 2008.

18. Michael Burger. Das effiziente Raytracen von Dreiecksnetzen auf Mehrkernprozessoren,
GPUs und FPGAs mittels geometrischer Algebra. Master’s thesis, TU Darmstadt, 2011.

19. Jonathan Cameron and Joan Lasenby. Oriented conformal geometric algebra. Proceedings of
ICCA7, 2005.

20. Patrick Charrier and Dietmar Hildenbrand. Geometric algebra enhanced precompiler for C++
and OpenCL. In AGACSE conference La Rochelle, 2012.

21. William Kingdon Clifford. Applications of Grassmann’s Extensive Algebra, volume 1 of
American Journal of Mathematics, pages 350–358. The Johns Hopkins University Press,
1878.

22. William Kingdon Clifford. On the classification of geometric algebras. In Robert Tucker,
editor, Mathematical Papers, pages 397–401. Macmillan, London, 1882.

23. Alfred Differ. Clados home page. Available at http://sourceforge.net/projects/clados/, 2002.
24. Chris Doran. Geometric Algebra and its Application to Mathematical Physics. PhD thesis,

Cambridge University, 1994.
25. Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge University

Press, 2003.
26. Leo Dorst. Honing geometric algebra for its use in the computer sciences. In Gerald Sommer,

editor, Geometric Computing with Clifford Algebra. Springer, 2001.
27. Leo Dorst, Chris Doran, and Joan Lasenby, editors. Applications of Geometric Algebra in

Computer Science and Engineering. Birkhäuser, 2002.
28. Leo Dorst and Daniel Fontijne. 3D euclidean geometry through conformal geometric algebra

(a GAViewer tutorial). available at http://www.science.uva.nl/ga, 2003.
29. Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science,

An Object-Oriented Approach to Geometry. Morgan Kaufmann, 2007.
30. Leo Dorst and Joan Lasenby, editors. Guide to Geometric Algebra in Practice. Springer,

2011.
31. Leo Dorst and Stephen Mann. Geometric algebra: A computational framework for geometri-

cal applications (part i: Algebra). Computer Graphics and Application, 22(3):24–31, 2002.
32. Julia Ebling. Clifford Fourier transform on vector fields. IEEE Transactions on Visualization

and Computer Graphics, 11(4):469–479, 2005.
33. Ahmad Hosney Awad Eid. Optimized Automatic Code Generation for Geometric Algebra

Based Algorithms with Ray Tracing Application. PhD thesis, Suez Canal University, Port
Said, 2010.

34. Patrick Fleckenstein. C++ template classes for geometric algebras. Available at http://www.
nklein.com/products/geoma.

35. Daniel Fontijne. Efficient Implementation of Geometric Algebra. PhD thesis, University of
Amsterdam, 2007.

36. Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen: A geometric algebra implementation
generator. Available at http://www.science.uva.nl/ga/gaigen, 2005.

37. Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen 2: A geometric algebra implementation
generator. Available at http://staff.science.uva.nl/�fontijne/gaigen2.html, 2007.

38. Daniel Fontijne and Leo Dorst. Performance and elegance of 5 models of geometry in a ray
tracing application. Software and other downloads available at http://www.science.uva.nl/ �

fontijne/ raytracer, 2002.
39. Daniel Fontijne and Leo Dorst. Modeling 3D euclidean geometry. IEEE Computer Graphics

and Applications, 23(2):68–78, 2003.
40. S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impastato, F. Sorbello, G. Vassallo,

and S. Vitabile. A sliced coprocessor for native Clifford algebra operations. In Euromico
Conference on Digital System Design, Architectures, Methods and Tools (DSD), 2007.

References 191

41. Antonio Gentile, Salvatore Segreto, Filippo Sorbello, Giorgio Vassallo, Salvatore Vitabile,
and Vincenzo Vullo. Cliffosor, an innovative FPGA-based architecture for geometric algebra.
In ERSA 2005, pages 211–217, 2005.

42. Hermann Grassmann. Die Ausdehnungslehre. Vollstaendig und in strenger Form begruendet.
Verlag von Th. Chr. Fr. Enslin, Berlin, 1862.

43. Hermann Grassmann. Ueber den Ort der Hamilton’schen Quaternionen in der Aus-
dehnungslehre. In Mathematische Annalen, 1877.

44. Klaus Gürlebeck and Wolfgang Sprössig. Quaternionic and Clifford Calculus for Physicists
and Engineers. Wiley, 1998.

45. Mark Harris. GPGPU home page. Available at http://www.gpgpu.org, 2011.
46. David Hestenes. Space-Time Algebra (Documents on Modern Physics). Gordon and Breach,

1966.
47. David Hestenes. New Foundations for Classical Mechanics. Springer, 1999.
48. David Hestenes. Old wine in new bottles: A new algebraic framework for computational

geometry. In Eduardo Bayro-Corrochano and Garret Sobczyk, editors, Geometric Algebra
with Applications in Science and Engineering. Birkhäuser, 2001.

49. David Hestenes. Grassmann’s legacy. In H-J. Petsche, A. Lewis, J. Liesen, and S. Russ,
editors, From Past to Future: Grassmann’s Work in Context. Birkhäuser, 2011.

50. David Hestenes. New tools for computational geometry and rejuvenation of screw theory. In
Eduardo Bayro-Corrochano and Gerik Scheuermann, editors, Geometric Algebra Computing
in Engineering and Computer Science, volume 1, pages 3–33. Springer, May 2010.

51. David Hestenes and Ernest D. Fasse. Homogeneous rigid body mechanics with elastic
coupling. In Leo Dorst, Chris Doran, and Joan Lasenby, editors, Applications of Geometric
Algebra in Computer Science and Engineering. Birkhäuser, 2002.

52. David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics. Springer, 1987.

53. Dietmar Hildenbrand. Geometric computing in computer graphics using conformal geometric
algebra. Computers & Graphics, 29(5):802–810, 2005.

54. Dietmar Hildenbrand. Geometric algebra computers. In Proceedings of the GraVisMa
workshop, Plzen, 2009.

55. Dietmar Hildenbrand. From Grassmann’s vision to geometric algebra computing. In H. J.
Petsche, A. Lewis, J. Liesen, and S. Russ, editors, From Past to Future: Grassmann’s Work
in Context. Birkhäuser, 2011.

56. Dietmar Hildenbrand, Eduardo Bayro-Corrochano, and Julio Zamora-Esquivel. Advanced
geometric approach for graphics and visual guided robot object manipulation. In Proceedings
of ICRA Conference, Barcelona, 2005.

57. Dietmar Hildenbrand, Patrick Charrier, Christian Steinmetz, and Andreas Koch. Specialized
machine instruction set for geometric algebra. In AGACSE conference La Rochelle, 2012.

58. Dietmar Hildenbrand, Patrick Charrier, Christian Steinmetz, and Joachim Pitt. Gaalop home
page. Available at http://www.gaalop.de, 2012.

59. Dietmar Hildenbrand, Daniel Fontijne, Yusheng Wang, Marc Alexa, and Leo Dorst. Com-
petitive runtime performance for inverse kinematics algorithms using conformal geometric
algebra. In Eurographics Conference Vienna, 2006.

60. Dietmar Hildenbrand, Holger Lange, Florian Stock, and Andreas Koch. Efficient inverse
kinematics algorithm based on conformal geometric algebra using reconfigurable hardware.
In GRAPP Conference Madeira, 2008.

61. Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch. Gaalop – high performance parallel
computing based on conformal geometric algebra. In Eduardo Bayro-Corrochano and Gerik
Scheuermann, editors, Geometric Algebra Computing in Engineering and Computer Science.
Springer, May 2010.

62. Dietmar Hildenbrand, Julio Zamora-Esquivel, and Eduardo Bayro-Corrochano. Inverse
kinematics computation in computer graphics and robotics using conformal geometric
algebra. In ICCA7, 7th International Conference on Clifford Algebras and Their Applications,
2005.

192 References

63. Eckhard Hitzer. Angles between subspaces. In proceedings of the GraVisMa workshop, Brno,
2010.

64. Eckhard Hitzer. New views of crystal symmetry guided by profound admiration of the
extraordinary works of Grassmann and Clifford. In H. J. Petsche, A. Lewis, J. Liesen, and
S. Russ, editors, From Past to Future: Grassmann’s Work in Context. Birkhäuser, 2011.

65. Martin Erik Horn. Quaternionen und geometrische Algebra. In Didaktik der Physik der DPG,
Beitraege zur Fruehjahrstagung Kassel 2006, 2006.

66. Jens Huthmann, Peter Mueller, Florian Stock, Dietmar Hildenbrand, and Andreas Koch.
Accelerating high-level engineering computations by automatic compilation of geometric
algebra to hardware accelerators. In proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation, 2010.

67. Thomas Kalbe. Beschreibung der Dynamik elastisch gekoppelter Koerper in konformaler
geometrischer Algebra. Master’s thesis, TU Darmstadt, 2006.

68. Khronos-Group. OpenCL home page. Available at http://www.khronos.org/opencl/, 2009.
69. Joan Lasenby, Eduardo Bayro-Corrochano, Anthony Lasenby, and Gerald Sommer. A new

methodology for computing invariants in computer vision. In Proceedings of ICPR 96, 1996.
70. Joan Lasenby, William J. Fitzgerald, Anthony Lasenby, and Chris Doran. New geometric

methods for computer vision: An application to structure and motion estimation. International
Journal of Computer Vision, 3(26):191–213, 1998.

71. Paul C. Leopardi. GluCat home page. Available at http://glucat.sourceforge.net/, 2001.
72. Hongbo Li. Invariant Algebras and Geometric Reasoning. World Scientific, 2008.
73. Hongbo Li, David Hestenes, and Alyn Rockwood. Generalized homogeneous coordinates for

computational geometry. In G. Sommer, editor, Geometric Computing with Clifford Algebra,
pages 27–59. Springer, 2001.

74. Pertti Lounesto. The CLICAL home page. Available at http://www.helsinki.fi/�lounesto/
CLICAL.htm, 1987. Last visited 15 Sep. 2003.

75. Stephen Mann and Leo Dorst. Geometric algebra: a computational framework for geometrical
applications (part ii: Applications). Computer Graphics and Application, 22(4):58–67, 2002.

76. Stephen Mann, Leo Dorst, and Tim Bouma. The making of GABLE, a geometric algebra
learning environment in Matlab. pages 491–511, 2001.

77. Maxima Development Team. Maxima, a computer algebra system. version 5.18.1. Available
at http://maxima.sourceforge.net/, 2009.

78. Biswajit Mishra and Peter R. Wilson. Color edge detection hardware based on geometric
algebra. In European Conference on Visual Media Production (CVMP), 2006.

79. Ambjorn Naeve and Alyn Rockwood. Course 53 geometric algebra. In SIGGRAPH
Conference, Los Angeles, 2001.

80. Christian Perwass. Applications of Geometric Algebra in Computer Vision. PhD thesis,
Cambridge University, 2000.

81. Christian Perwass. Geometric Algebra with Applications in Engineering. Springer, 2009.
82. Christian Perwass. The CLU home page. Available at http://www.clucalc.info,2010.
83. Christian Perwass and Wolfgang Förstner. Uncertain geometry with circles, spheres and

conics. In Reinhard Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric
Properties from Incomplete Data, volume 31 of Computational Imaging and Vision, pages
23–41. Springer, 2006.

84. Christian Perwass, Christian Gebken, and Gerald Sommer. Implementation of a Clifford
algebra co-processor design on a field programmable gate array. In Rafal Ablamowicz,
editor, Clifford Algebras: Application to Mathematics, Physics, and Engineering, Progress
in Mathematical Physics, pages 561–575. 6th International Conference on Clifford Algebras
and Applications, Cookeville, TN., Birkhäuser, 2003.

85. Christian Perwass, Christian Gebken, and Gerald Sommer. Geometry and kinematics with
uncertain data. In A. Leonardis, H. Bischof, and A. Pinz, editors, 9th European Conference
on Computer Vision, ECCV 2006, May 2006, Graz, Austria, number 3951 in LNCS, pages
225–237. Springer, Berlin Heidelberg, 2006.

References 193

86. Christian Perwass and Dietmar Hildenbrand. Aspects of geometric algebra in euclidean,
projective and conformal space. Technical report, University of Kiel, 2004.

87. Christian Perwass and Joan Lasenby. A Geometric Analysis of the Trifocal Tensor. In
G. Gimel’farb Klette, Reinhard and R. Kakarala, editors, Image and Vision Computing New
Zealand, IVCNZ’98, Proceedings, pages 157–162. The University of Auckland, 1998.

88. Christian Perwass and Joan Lasenby. A Unified Description of Multiple View Geometry. In
Gerald Sommer, editor, Geometric Computing with Clifford Algebra. Springer, 2001.

89. Christian Perwass and Gerald Sommer. The inversion camera model. In 28. Symposium für
Mustererkennung, DAGM 2006, Berlin, 12.-14.09.2006. Springer, Berlin, Heidelberg, 2006.

90. H-J. Petsche, A. Lewis, J. Liesen, and S. Russ, editors. From Past to Future: Grassmann’s
Work in Context. Birkhäuser, 2011.

91. Hans-Joachim Petsche. The Grassmann Bicentennial Conference home page. Available at
http://www.uni-potsdam.de/u/philosophie/grassmann/Papers.htm,2009.

92. Minh Tuan Pham, Kanta Tachibana, Eckhard M. S. Hitzer, Tomohiro Yoshikawa, and Takeshi
Furuhashi. Classification and clustering of spatial patterns with geometric algebra. In
AGACSE conference Leipzig, 2008.

93. Wieland Reich and Gerik Scheuermann. Analyzing Real Vector Fields with Clifford
Convolution and Clifford Fourier Transform, volume 1. Springer, 2010.

94. Leo Reyes-Lozano, Gerard Medioni, and Eduardo Bayro-Corrochano. Registration of 3D
points using geometric algebra and tensor voting. Journal of Computer Vision, 75(3):351–
369, 2007.

95. Alyn Rockwood and Dietmar Hildenbrand. Engineering graphics in geometric algebra. In
Eduardo Bayro-Corrochano and Gerik Scheuermann, editors, Geometric Algebra Computing
in Engineering and Computer Science. Springer, May 2010.

96. Bodo Rosenhahn. Pose Estimation Revisited. PhD thesis, Christian-Albrechts-Universität zu
Kiel, 2003.

97. Bodo Rosenhahn and Gerald Sommer. Pose estimation in conformal geometric algebra.
Journal of Mathematical Imaging and Vision, 22:27–70, 2005.

98. C.J. Scriba and P. Schreiber. 5000 Jahre Geometrie. Springer, 2009.
99. Jon Selig and Eduardo Bayro-Corrochano. Rigid body dynamics using Clifford algebra. In

Advances in Applied Clifford Algebras. Springer, 2008.
100. Florian Seybold. Gaalet – a C++ expression template library for implementing geometric

algebra, 2010.
101. Florian Seybold, Patrick Charrier, Dietmar Hildenbrand, M. Bernreuther, and D. Jenz. Run-

time performance of a molecular dynamics model using conformal geometric algebra. Slides
available at http://www.science.uva.nl/�leo/agacse2010/talks world/Seybold.pdf, 2010.

102. Gerald Sommer, editor. Geometric Computing with Clifford Algebra. Springer, 2001.
103. Gerald Sommer. Applications of geometric algebra in robot vision. In Hongbo Li,

Peter J. Olver, and Gerald Sommer, editors, Computer Algebra and Geometric Algebra with
Applications, volume 3519 of LNCS, pages 258–277. 6th International Workshop IWMM
2004, Shanghai, China and International Workshop GIAE 2004, Xian, China, Springer, Berlin
Heidelberg, 2005.

104. Gerald Sommer, Bodo Rosenhahn, and Christian Perwass. The twist representation of free-
form objects. In Reinhard Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric
Properties from Incomplete Data, volume 31 of Computational Imaging and Vision, pages
3–22. Springer, 2006.

105. Christian Steinmetz. Optimizing a geometric algebra compiler for parallel architectures using
a table-based approach. In Bachelor thesis TU Darmstadt, 2011.

106. E. Study, G. Scheffers, and F. Engel. Hermann Grassmann’s gesammelte mathematische und
physikalische Werke, Die Abhandlungen zur Geometrie und Analysis. Teubner, 1904.

107. Jaap Suter. Clifford. Formerly available at http://www.jaapsuter.com, 2003.
108. SymPy Development Team. Sympy: Python library for symbolic mathematics. Available at

http://www.sympy.org, 2010.

194 References

109. Deepak Tolani, Ambarish Goswami, and Norman I. Badler. Real-time inverse kinematics
techniques for anthropomorphic limbs. Graphical Models, 62(5):353–388, 2000.

110. Rich Wareham, Jonathan Cameron, and Joan Lasenby. Applications of conformal geometric
algebra in computer vision and graphics. Lecture Notes in Computer Science, 3519:329–349,
2005.

111. Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques. Addison-Wesley,
1992.

112. Florian Woersdoerfer, Florian Stock, Eduardo Bayro-Corrochano, and Dietmar Hildenbrand.
Optimization and performance of a robotics grasping algorithm described in geometric
algebra. In Iberoamerican Congress on Pattern Recognition 2009, Guadalajara, Mexico,
2009.

113. Marius Dorian Zaharia and Leo Dorst. Interface specification and implementation internals
of a program module for geometric algebra. Journal of Logic and Algebraic Programming,
2003.

114. Marius Dorian Zaharia and Leo Dorst. Modeling and visualization of 3D polygonal mesh
surfaces using geometric algebra. Computers & Graphics, 29(5):802–810, 2003.

115. Julio Zamora-Esquivel. G6,3 geometric algebra. In ICCA9, 7th International Conference on
Clifford Algebras and their Applications, 2011.

Index

A
AGACSE, 10
Angles, 38
Anticommutativity, 19, 75
Associativity, 19, 75

B
Bivector, 3, 74, 89
Blade, 3, 17, 28, 73, 143

C
C++, 155, 156
CGA, 1, 27
CLUCalc, 10, 13, 71, 101, 111
CLUScripts, 71
Collision detection, 155, 158
Complex numbers, 2, 21, 47
Conformal geometric algebra, 2, 8, 27, 86
Conformal transformations, 27
Conjugate, 53
Cross product, 23, 54, 59
CUDA, 155

D
Displacement versor, 42
Distances, 34
Distributivity, 19, 75
Domain specific language (DSL), 188
Dual, 22, 81

geometric meaning, 22, 81, 89–91
numbers, 55
quaternions, 56

E
E , 28, 153

eC, 27
e�, 27
e0, 3
e1, 3

Euclidean geometric algebra, 23

F
Field-programmable gate array (FPGA), 10
Fitting, 61

G
Gaalet, 11
Gaalop, 11, 130, 141
Gaalop GPC, 165
Gaalop precompiler, 155
Gaigen, 11, 129
GAPP, 182, 187
Geometric algebra computing, 1
Geometric algebra computing architecture, 145
Geometric product, 18, 20, 39, 78
GMac, 11
Grade, 3, 17, 20, 27, 73

of blade, 3, 73, 74, 86
Grade-decreasing, 20, 78
Graphics processing units (GPUs), 13, 161,

181
GraVisMa, 10

H
Horizon example, 42, 98, 141, 156

D. Hildenbrand, Foundations of Geometric Algebra Computing,
Geometry and Computing 8, DOI 10.1007/978-3-642-31794-1,
© Springer-Verlag Berlin Heidelberg 2013

195

196 Index

I
Inner product, 20, 34, 77
Inner product null space (IPNS), 28, 31, 112
International Conference on Clifford Algebras

(ICCA), 10
Intersection, 4, 93
Inverse, 22, 80
Inverse kinematics, 101, 121

K
Kernels, 161
K-vector, 3, 74

L
Lennard-Jones potential, 165, 174
Linear algebra, 115

M
Maple, 10, 45, 134
Maxima, 146, 154
Molecular dynamics, 165
Motor, 42
Multivector, 5, 18, 21, 45, 79, 129, 142, 164

O
OpenCL, 155, 161, 162, 167
Orientation, 76
Outer product, 4, 18, 74
Outer product null space (OPNS), 29, 31

P
Plücker coordinates, 2, 53
Point pair, 5, 31, 95
Projection, 82, 97
Projective geometric algebra, 25
Pseudoscalar, 17, 76, 80

Q
Quadvectors, 3
Quaternions, 2, 7, 48, 121–124, 126

R
Ray tracers, 160
Ray-tracing, 4, 9
Reflection, 83, 96

in Euclidean space, 83
Rejection, 82
Reverse, 39, 41, 53, 75, 153

of blade, 75
Rigid-body motion, 42
Rotation, 39, 84, 86
Rotor, 40, 48, 169

S
Sandwich product, 32, 33, 110, 115
Scalar product, 23
Single instruction multiple data (SIMD), 181,

187
SLERP, 122, 129

T
Transformations, 20, 39
Translation, 40
Translator, 40, 108, 169
Trivector, 3, 76

V
Vector algebra, 2, 115
Velocity screw, 42, 169
Velocity verlet, 170
Versor, 39, 134

	Cover
	Foundations of Geometric Algebra Computing
	Foreword
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Chapter 2 Mathematical Introduction
	2.1 The Basic Algebraic Elements of Geometric Algebra
	2.2 The Products of Geometric Algebra
	2.2.1 The Outer Product
	2.2.2 The Inner Product
	2.2.3 The Geometric Product
	2.2.3.1 Invertibility
	2.2.3.2 Duality

	2.3 Euclidean Geometric Algebra
	2.4 Projective Geometric Algebra

	Chapter 3 Conformal Geometric Algebra
	3.1 The Basic Geometric Entities
	3.1.1 Points
	3.1.2 Spheres
	3.1.3 Planes
	3.1.4 Circles
	3.1.5 Lines
	3.1.6 Point Pairs

	3.2 IPNS and OPNS
	3.3 The Center of a Sphere, Circle, or Point Pair
	3.4 Distances and Angles
	3.4.1 Distances
	3.4.1.1 Distance Between Points
	3.4.1.2 Distance Between a Point and a Plane
	3.4.1.3 Distance Between a Plane and a Sphere
	3.4.1.4 Distance Between Two Spheres
	3.4.1.5 The Inner Product of a Point and a Sphere
	3.4.1.6 Is a Point Inside or Outside a Sphere?

	3.4.2 Angles

	3.5 Transformations
	3.5.1 Rotation
	3.5.2 Translation

	3.6 Rigid-Body Motion
	3.7 The Horizon Example

	Chapter 4 Maple and the Identification of Quaternions and Other Algebras
	4.1 Using Maple for Symbolic Geometric Algebra Computing
	4.2 Complex Numbers
	4.3 Quaternions
	4.3.1 The Imaginary Units
	4.3.2 Pure Quaternions and Their Geometric Product
	4.3.3 Rotations Based on Unit Quaternions

	4.4 Plücker Coordinates
	4.5 Dual Numbers
	4.6 Dual Quaternions

	Chapter 5 Fitting of Planes or Spheres to Sets of Points
	5.1 The Role of Infinity
	5.1.1 Sphere of Infinite Radius
	5.1.2 Point at Infinity
	5.1.3 Plane at Infinite Distance from the Origin
	5.1.4 Planes as a Limit of a Sphere

	5.2 Distance Measure
	5.3 Least-Squares Approach
	5.4 Example

	Chapter 6 A Tutorial on Geometric Algebra Using CLUCalc
	6.1 Blades and Vectors
	6.2 The Products of Geometric Algebra
	6.2.1 The Outer Product and Parallelness
	6.2.2 The Inner Product and Perpendicularity
	6.2.3 The Geometric Product and Invertibility
	6.2.3.1 The Geometric Product of Vectors
	6.2.3.2 Extension of the Geometric Product to General Multivectors
	6.2.3.3 Invertibility
	6.2.3.4 Duality

	6.3 Geometric Operations
	6.3.1 Projection and Rejection
	6.3.2 Reflection
	6.3.3 Rotation in 2D
	6.3.4 Rotation in 3D

	6.4 Conformal Geometric Algebra
	6.4.1 Vectors in CGA
	6.4.1.1 Spheres
	6.4.1.2 Points
	6.4.1.3 Planes

	6.4.2 Bivectors in CGA
	6.4.2.1 Circles
	6.4.2.2 Lines

	6.4.3 Dual Vectors in CGA
	6.4.4 Is a Point Inside or Outside the Circumcircle of a Triangle?
	6.4.5 Intersections
	6.4.5.1 Intersection of Two Spheres
	6.4.5.2 Intersection of a Line and a Sphere
	6.4.5.3 Intersection of a Line and a Plane

	6.4.6 Reflection
	6.4.7 Projection

	6.5 CLUCalc Implementation of the Horizon Example
	6.6 CLUCalc Implementation of Motions

	Chapter 7 Inverse Kinematics of a Simple Robot
	7.1 Computation of P0
	7.2 Computation of P2
	7.3 Computation of P1
	7.4 Computation of the Joint Angles

	Chapter 8 Robot Grasping an Object
	8.1 The Geometric Algebra Algorithm
	8.1.1 Computation of the Bounding Volume of the Object
	8.1.2 Computation of the Grasping Circle Zt
	8.1.3 Gripper Circle
	8.1.4 Estimation of Translation and Rotation

	8.2 The Algorithm Using CLUCalc
	8.3 Geometric Algebra Versus Conventional Mathematics
	8.3.1 The Base Circle and Its Center
	8.3.2 The Transformation of the Gripper

	Chapter 9 Efficient Computer Animation Application in CGA
	9.1 Optimizations Based on Quaternions
	9.1.1 Direct Computation of Quaternions
	9.1.2 Efficient Computation of Quaternions

	9.2 The Inverse Kinematics Algorithm
	9.2.1 Computation of the Swivel Plane
	9.2.2 The Elbow Point Pe
	9.2.3 Calculation of the Elbow Quaternion Qe
	9.2.4 Rotation to the Elbow Position
	9.2.5 Rotation to the Wrist Location

	9.3 Approaches to Runtime Optimization
	9.3.1 Optimization with Gaigen 2
	9.3.1.1 Computation of the Elbow Point Pe
	9.3.1.2 Computation of the Swivel Plane
	9.3.1.3 Computation of the Elbow Quaternion Qe
	9.3.1.4 Rotation to the Elbow Position
	9.3.1.5 Rotation to the Wrist Location

	9.3.2 Optimization with Maple
	9.3.2.1 Inverse Kinematics Algorithm in Maple
	9.3.2.2 Optimized Inverse Kinematics Algorithm

	9.4 Results

	Chapter 10 Using Gaalop for High-Performance GeometricAlgebra Computing
	10.1 The Horizon Example with Gaalop
	10.2 The Geometric Algebra Computing Approach
	10.3 Table-Based Compilation Approach
	10.3.1 Multiplication Tables
	10.3.2 Table-Based Multiplication Algorithm
	10.3.3 Example
	10.3.4 Cascading Multiplications
	10.3.5 Linear Operation Tables
	10.3.6 Multiplication Tables with a Non-Euclidean Metric
	10.3.7 Additional Symbolic Optimizations Using Maxima

	Chapter 11 Collision Detection Using the Gaalop Precompiler
	11.1 Basic Concept of Gaalop GPC
	11.2 The Horizon Example Revisited in Gaalop GPC for C++
	11.3 Collision Detection

	Chapter 12 The Gaalop Precompiler for GPUs
	12.1 Strided Arrays
	12.2 The Horizon Example on a GPU
	12.2.1 OpenCL Implementation
	12.2.2 CUDA Implementation

	12.3 List of Multivector Functions

	Chapter 13 Molecular Dynamics Using Gaalop GPC for OpenCL
	13.1 Molecular Dynamics in a Nutshell
	13.2 Software Architecture
	13.3 Initialization
	13.4 Velocity Verlet Integration Step 1
	13.5 Accumulation of Forces Per Atom
	13.6 Velocity Verlet Integration Step 2

	Chapter 14 Geometric Algebra Computers
	14.1 FPGA Implementation of Geometric Algebra Algorithms
	14.2 Adaptation of Geometric Algebra to Current Computer Architectures
	14.3 Geometric Algebra Parallelism Programs (GAPP)
	14.3.1 Example
	14.3.2 Parallelization Concepts Supported by GAPP

	14.4 Geometric Algebra Computers Based on Gaalop

	References
	Index

