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Preface

Enabling insight into large and complex datasets is a prevalent theme in
current visualization research for which different approaches are pursued.
Topology-based methods are built on the idea of abstracting characteristic
structures such as the topological skeleton from the data and to construct
the visualization accordingly. Even though the roots of related research date
back to the late 1980’s and thereafter, there are currently new demands for
and renewed interest in topology-based visualization solutions. Practitioners
see the potential for highly efficient and meaningful visualization techniques
which communicate a lot more (information, sematics) than just data.

To enable additional stimulation to the again sprouting field of research on
topology-based methods in visualization, we initiated an international work-
shop of about forty researchers from about a dozen European and American
places in the beautiful castle of Budmerice in Slovakia. Our intention was
to bring together active researchers in a focused two-day event (TopoInVis,
Sept. 29th & 30th, 2005) to jointly assess the state of the art, to identify trends
and joint interests, to discuss and exchange new thoughts on not yet resolved
challenges, and to raise new questions and stimulate future research. In a
diversified program of 14 presentations, 4 panel discussions, and social activ-
ities, we tied in the great tradition of Dagstuhl seminars with an atmosphere
of informal discussions, open exchange, and personal interaction.

A number of interesting research questions have been addressed through-
out the workshop, including intense discussions about topology-based app-
roaches to time-dependent data, an assessment of similarities of as well as
differences between topology-based and feature-based approaches, the rela-
tion between data topology and semantics in the data, and the question of
applicability and fields of potential application (also in contrast to considera-
tions with respect to theory-centric questions).

Organization of this Book

In this book, we present 13 peer-reviewed papers as written results from
the workshop. We start with a state-of-the-art report by Laramee et al.,
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followed by a paper about topology-guided visualization of flow simulation
data (Peikert & Sadlo). The following papers are about utilizing the scale-
space for tracking critical points (Klein & Ertl) and about feature flow fields
in an out-of-core setting (Weinkauf et al.). Next, a paper about streamline
predicates (Salzbrunn & Scheuermann) is included, right before a comparison
of topology-based and feature-based approaches (Hauser et al.), and a paper
about superposition effects in topology-based approaches (Ebling et al.).
Theisel et al. reflect on the general applicability of topology-based methods.
An investigation of swirl and tumble motion in CFD data is described by
Garth et al. whereas the application case of advanced design engineering is
presented by Trenker. With the paper about a topology-based approach to
scalar fields (Bremer & Pascucci) the focus of the book is widened, then incl-
uding a paper about the role of topology in focus+context visualization (Viola
& Gröller) and a paper on reconstruction based on topological changes (Tóth
et al.). We think that this book is an interesting snapshot of selected hot
topics in topology-based methods in visualization.
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for lots of help with the organization in Bratislava and Budmerice, and the
staff of Budmerice castle for being really great hosts.

Last but not least, we wish to thank the sponsors of this workshop,
including the four organizing institutions as well as the German Research
Foundation (DFG), the European Association for Computer Graphics
(Eurographics) and the Austrian Computer Society (OCG).

Satisfied by many valuable impressions from TopoInVis 2005 we are looking
forward to TopoInVis 2007 to be held in Grimma near Leipzip in spring time.

Wien, Kaiserslautern and Bielefeld, Helwig Hauser
February 2007 Hans Hagen

Holger Theisel

Group Photo



Contents

Topology-Based Flow Visualization, The State of the Art

Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, Frits H. Post . . . . . . . 1

Topology-guided Visualization of Constrained Vector Fields

Ronald Peikert, Filip Sadlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Scale-Space Tracking of Critical Points in 3D Vector Fields

Thomas Klein, Thomas Ertl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Feature Flow Fields in Out-of-Core Settings

51

Streamline Predicates as Flow Topology Generalization

Tobias Salzbrunn, Gerik Scheuermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Topology-based versus Feature-based Flow Analysis –

Challenges and an Application

Helwig Hauser, Robert S. Laramee, Helmut Doleisch . . . . . . . . . . . . . . . . . . 79

Topology Based Flow Analysis and Superposition Effects

Julia Ebling, Alexander Wiebel, Christoph Garth, Gerik Scheuermann . . 91

On the Applicability of Topological Methods for Complex

Flow Data

Extraction and Visualization of Swirl and Tumble Motion

from Engine Simulation Data

Christoph Garth, Robert S. Laramee, Xavier Tricoche, Jürgen
Schneider, Hans Hagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Simulation Methods for Advanced Design Engineering

Markus Trenker, Wolfgang Payer, Matthias Haigis . . . . . . . . . . . . . . . . . . . 137

105Holger Theisel, Tino Weinkauf, Hans-Christian Hege, Hans-Peter Seidel . .

. .Tino Weinkauf, Holger Theisel, Hans-Christian Hege, Hans-Peter Seidel



X Contents

A Practical Approach to Two-Dimensional Scalar Topology

Peer-Timo Bremer, Valerio Pascucci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

On the Role of Topology in Focus+Context Visualization
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Topology-Based Flow Visualization,

The State of the Art

Robert S. Laramee1, Helwig Hauser2, Lingxiao Zhao3, and Frits H. Post4

1 Department of Computer Science, Swansea University, UK
r.s.laramee@swansea.ac.uk

2 VRVis Research Center, Vienna, Austria
Hauser@VRVis.at

3 Data Visualization Group, Delft University of Technology
{F.H.Post,zlx}@ewi.tudelft.nl

Summary. Flow visualization research has made rapid advances in recent years,
especially in the area of topology-based flow visualization. The ever increasing size
of scientific data sets favors algorithms that are capable of extracting important
subsets of the data, leaving the scientist with a more manageable representation
that may be visualized interactively. Extracting the topology of a flow achieves the
goal of obtaining a compact representation of a vector or tensor field while simul-
taneously retaining its most important features. We present the state of the art in
topology-based flow visualization techniques. We outline numerous topology-based
algorithms categorized according to the type and dimensionality of data on which
they operate and according to the goal-oriented nature of each method. Topology
tracking algorithms are also discussed. The result serves as a useful introduction
and overview to research literature concerned with the study of topology-based flow
visualization.

1 Introduction

Research in topology-based flow visualization is making rapid advances.
Helman and Hesselink introduced the visualization community to the notion
of flow topology in 1989 [21, 23]. Classical flow oriented topology research is
based on the detection and classification of critical points in the vector field,
as shown in Figure 2. What makes topology-based methods attractive is their
ability to represent very large data sets in a concise and compact manner.
Unlike other flow visualization approaches (Figure 1), critical points of a data
set are extracted and the relationships between those points are depicted acc-
ordingly. We refer the reader to Abraham and Shaw for an introduction to
topological analysis [1].

Topology-based research in flow visualization has come a long way since
1989 –the progress of which we will describe in Section 2. Yet, despite the many
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Fig. 1. Visualization of flow around a critical point using texture advection and dye
injection [35]. In contrast to these methods, topology-based methods extract and
visualize critical points directly (colorplate on p. 200).

Repelling Focus

I1, I2 <> 0

Attracting Focus

I1, I2 <> 0
R1, R2 < 0R1, R2 > 0

Saddle Point
R1 * R2 < 0
I1, I2 = 0

Replling Node
R1, R2 > 0
I1, I2 = 0

Attracting Node
R1, R2 < 0
I1, I2 = 0

Fig. 2. Vector field topology: critical points are usually classified by the eigenval-
ues of the Jacobian [21]. R represents the real components and I the imaginary
components of the Jacobian.

advances, there are still many unanswered questions in the field of topology-
based research. There are still topic areas completely untouched by researchers
at the time of this writing, e.g., vector and tensor field topology simplification
in three-dimensions, for both steady and time-dependent (or unsteady) data.

Here, we summarize the progress that has been made up to this point in
the field. We introduce a novel classification of topology-based methods in
flow visualization based on topology extraction and simplification of vector
and tensor fields (Section 2). The classification points out clearly those areas
rich in previous work and some areas which still remained unaddressed by the
visualization community.
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2 Topology-Based Methods in Flow Visualization,

The State of the Art

In this section, we review the current state of the art in topology-based meth-
ods in flow visualization. We start off with a description of our classification
before describing the algorithms themselves. Our overview relates different
research results with one another and highlights relative advantages and dis-
advantages of each approach.

2.1 Classification

Topology Extraction Topology Simplification

Scalar Static Dynamic Static Dynamic
Data 2D [19] 2D [5] [6]

2.5D [44] [26] [45] [7] 2.5D [13] [16] [61]
3D [40] [62] 3D [17]

Vector Steady Unsteady Steady Unsteady
Field 2D [55] [56] [87] [73] [21] [53] [80] [89] 2D [8] [10] [9] [38]
Data [83] [68] [71] [72] [77] [82] [76]

[64] [67] [66]
2.5D [22] [30] [32] [75] 2.5D

[84]
3D [37]v [27]v [59]v [29]v [2]v [3]v [49]v [4]v 3D [85]

[31]v [51]v [18]v [46]v
[28]v [41]v [58]v [54]v
[23] [39] [88] [43] [15]
[42] [70] [41] [14]
[74] [60] [86] [33]

Tensor Steady Unsteady Steady Unsteady
Field 2D [91] [11] [79] 2D [78] [82] [81]
Data 2.5D 2.5D

3D [24] [90] [92] [93] 3D
[25]

Table 1. An overview and classification of topology-based methods in visualization.
Research is divided up into topology extraction and topology simplification litera-
ture. Methodology is further classified according to scalar vs. vector vs. tensor field
data analysis. Finally, a sub-classification is made based on data dimensionality,
both spatial and temporal. References are listed in chronological order within each
spatio-temporal dimensionality. In Section 2. we focus on the research with bold
emphasis–topological analysis of vector field data. References subscripted with a v

denote research related to vortex core extraction.

Table 1 illustrates our classification of topology-based methods in visual-
ization. At the broadest level of classification, we have divided up the literature
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into work that focuses on either extraction of topological features, i.e., topolog-
ical analysis or simplification of a given topology. Conceptually, simplification
can be thought of as an extension of extraction. We separate the literature
focused on simplification because much of it is dedicated to simplification of
an a priori topology, especially in the area of flow visualization–the focus of
this overview. We have further divided up the literature into vector and tensor
field analysis. Each sub-classification is then further classified based on the
spatial and temporal dimensionality of the vector or tensor field data to which
the respective algorithm is applied. The topology research on scalar data is
divided into static and dynamic cases rather than steady and unsteady in order
to be more general. Dynamic analysis of scalar data sets can also include a
transformation from one static surface to another surface [7]. Within a single
spatio-temporal dimension, references are listed in chronological order. Our
overview focuses on those categories with bold emphasis, namely, topological
analysis and extraction of vector field data. The focus on vector field analysis
was chosen in order to limit the scope of the review. The topics of scalar and
tensor field topology can be covered in future state of the art reviews. Note
that within the category of 3D, vector field extraction, literature which
focuses on vortex core extraction is denoted with subscript (v). We now des-
cribe the literature in increasing order of dimensionality, grouped together by
topic. Another overview is given by Scheuermann and Tricoche [57].

Although the topology of scalar fields serves as a third category of research,
our review of the literature does not focus on the topological analysis of scalar
fields [19, 26, 62] which includes the extraction of features such as ridge and
valley lines and extremal features. Our survey of scalar topology analysis is
also not exhaustive, but supplies the reader references for further reading.
Here we briefly mention some research in the field. Monga et al. [44] com-
pute ridge lines on isointensity surfaces in 3D volume data and use them for
data registration and automatic atlas generation. Interrante et al. [26] use
ridge and valley lines in order to perceptually, enhance the visualization of
multiple, transparent surfaces in 3D. Szymczak and Vanderlyde describe an
algorithm that extracts topologically simple isosurfaces [61]. Morse theory has
been applied to extract the topology of arbitrary surfaces by Ni et al. [45].

2.2 Topology Extraction of Vector Field Data

2D, Steady

Extraction of Higher-Order Critical Points: Most critical point detec-
tion algorithms are based on piecewise linear or bilinear approximation. These
methods do not properly represent local topology if nonlinear behavior is
present. Scheuermann et al. [55, 56] choose a polynomial approximation in
areas with nonlinear behavior and apply a suitable visualization–streamlines
seeded at the critical points with additional annotations.
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Extraction of Closed Streamlines: Wischgoll and Scheuermann [87]
present an algorithm for detecting closed streamlines in planar flows. Closed
streamlines are of interest because they may indicate regions of recirculating
flow. It is based on monitoring streamlines as they enter, exit, and re-enter
cells of the vector field domain. We urge the reader to use caution when
interpreting the visualization results. This is because an spatial dimension
inherent to the applied domain has been left out of the analysis.

The first approach to detecting closed streamlines in planar flow was based
on monitoring polygon-based entrance and exit events of a streamline dur-
ing integration [87], This approach is extended to time-dependent flows by
Wischgoll et al. [89]. At each time step, closed streamlines are extracted. Af-
terwards, a time-dependent correspondence between individual streamlines is
computed. Theisel et al. [73] present an alternative approach to computing
closed streamlines. A 2D vector field is transformed into a 3D vector field.
This can be done by representing time as a third spatial dimension. Then
streamsurfaces are seeded in the 3D domain. Finally, closed streamlines are
detected by intersecting streamsurfaces. The difference to previous work is
that this approach avoids mesh-based dependency, e.g., examining and test-
ing individual mesh polygons.

Vector Field Design: Theisel presents a novel method that allows the
user to design higher order vector fields of arbitrary topology [64]. The tech-
nique is based on control polygons that let the user specify the characteristics
of critical points. This enables a mechanism by which to test topology ext-
raction algorithms. The result can also be used for compression purposes. We
note that this research does not fit cleanly into our classification partially
because it spans more than one area.

2D, Unsteady

Detection and Classification of Critical Points: Helman and Hesselink
introduced the visualization community to flow topology [21]. Their analysis
included the detection, classification, and visualization of critical points in
planar flows (Figure 3). They applied their algorithms to both steady-state
and unsteady flow. They represent time as a third spatial dimension for the
case of time-dependent, planar flow.

Vortex Detection Based on Streamline Geometry: Sadarjoen and
Post [53] present two methods for detecting vortex structures in 2D vector
fields. They are both based on an analysis of streamline geometry. The first
method uses local cumulations of curvature that may indicate a group of
vortices in very close proximity to one another. The second method looks at
the curvature of a single streamline and computes a winding angle–a metric of
geometric curvature. One advantage of this technique is that it detects weak
vortices because it does not depend on velocity magnitude at a single point. A
disadvantage, however, is the large number of streamlines that must be seeded
and computed in order to maintain complete coverage of the flow.
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Fig. 3. Here, the topology of a hurricane is visualized and depicted with the SimVis
system [12] (colorplate on p. 200).

Detection of Topological Transitions: A novel topology-based method
for the visualization of time-dependent 2D flows is given by Tricoche et al. [80].
Extending the work of Helman and Hesselink [21, 23], they identify and vis-
ualize topological transitions–the qualitative change of topology structure
from one stable state to another over time. Three types of transitions are
investigated: (1) a Hopf-like transition–a transition of a singular point from
an attracting focus (i.e. sink) to a repelling focus (i.e. a source), (2) a fold-like
transition–the pairwise annihilation or creation of a saddle and a source or
sink, (3) a basin transition–the case when two saddle points start independent
of one another, join briefly, and again separate. Again we caution the reader
when interpreting these results. A spatial dimension inherent to the original
domain has been omitted from the analysis.

Critical Point Tracking: Theisel and Seidel introduce an alternative
critical point tracking method for 2D, unsteady flow based on streamlines [68].
The temporal dimension of the planar flow is represented as a third spatial
dimension and streamlines are traced along critical points as they evolve.
This space-time representation is called a feature flow field. In addition to
visualizing the path of critical points over time, events such as fold bifurcations
are visualized.
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Streamline and Pathline Oriented Topology: Topological methods
often segment vector fields using curves based on streamlines, e.g., separatrices
or streamsurfaces such as separating streamsurfaces. In addition to streamline
oriented topology, Theisel et al. [71, 72] also consider pathline oriented topol-
ogy. In the study of streamline oriented topology, they propose new approaches
to detect bifurcations like saddle connections and cyclic fold bifurcations. Sad-
dle connections are bifurcations that appear when two separatrices originating
from saddle points coincide. A cyclic fold bifurcation is the case of when two
closed streamlines collapse and disappear. The also propose a novel approach
to detect and track closed streamlines in 2D, time-dependent vector fields.
In the study of pathline oriented topology, they segment the vector field into
regions where pathlines show attracting, repelling, or saddle-like behavior.

Vector Field Comparison: Although it does not fit cleanly into our clas-
sification, we briefly mention a closely related topic–vector field comparison.
Theisel et al. [65] introduce a topology-based metric by which vector fields
can be compared or related to one another. Preliminary approaches based on
comparison metrics (i.e., distance measures) were based on local deviations
of direction and magnitude of flow vectors [20, 63]. These previous distance
functions yield a fast comparison of vector fields, but do not take into account
any structural information. Levin et al. [36] introduce the first topology-based
approach to vector field metrics with the Earth Mover’s Distance (EMD [52]),
a technique from image retrieval. The limitations of this algorithm are that:
(1) it’s critical point coupling strategy does not consider the location of criti-
cal points in the vector fields and (2) all critical points are compared to one
another which can lead to a worst case complexity of o(n!) where n is the
number of critical points. To overcome these critical point coupling limita-
tions, Theisel et al. [65] introduce a comparison metric that uses feature flow
fields [68].

2.5D, Steady

Separation and Attachment Lines: Separation and attachment lines
correspond to loci where flow leaves or converges at a surface. Prior to
Kenwright [30], the only algorithm that could automatically detect separa-
tion and attachment lines was presented by Helman and Hesselink [22]. Previ-
ous approaches were generally based on observations. Helman and Hesselink’s
technique is based on vector field topology. Their algorithm detects closed sep-
aration lines, that is, lines that begin at a saddle or node and end at another
saddle or node. Kenwright’s algorithm also detects open separation, i.e., lines
that do not always start or end at critical points in the vector field. This
algorithm is based on phase plane analysis.

Kenwright et al. [32] expand the work of Kenwright [30] by introducing
another algorithm, the parallel vector algorithm, for detecting open separa-
tion and attachment lines. The parallel vectors algorithm is based on the
observation that one of the eigenvector directions was always parallel to the
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local streamlines in regions where streamlines asymptotically converged. The
advantage of this approach is that it provides a local test that may be per-
formed at any point in the vector field. Kenwright et al. show that the parallel
vectors algorithm is slightly superior to their previous algorithm (called the
phase plane algorithm), however, it is more difficult to implement. The phase
plane algorithm uses self-contained analysis within each triangle, making it
well suited for unstructured meshes. The parallel vector algorithm requires
calculation of vector gradients on irregular triangulations. But for curvilinear
meshes, the parallel vector algorithm is best because vector gradients can be
calculated using central differences. The parallel vector algorithm also resolves
the line discontinuity problem associated with the phase plane algorithm.

Tricoche et al. [75] propose a method for the detection of separation of
attachment lines in 2D flows defined over arbitrary surfaces in 3D. They build
primarily on the work of Kenwright and Haimes [30, 32] by improving perfor-
mance. They do so by using both local flow properties and global structural
information such that feature searching and extraction is fast and accurate.

Boundary Switch Connectors: Weinkauf et al. [84] extend the work
of Theisel et al. [70] with the introduction of boundary switch connectors,
a topological element that complements saddle connectors. Theisel et al. [70]
considered separation surfaces emanating from saddle points only. Weinkauf et
al. [84] extend this work to include separating surfaces starting from bound-
ary switch curves. The intersection of separating surfaces emanating from
boundary switch curves results in boundary switch connectors.

3D, Steady

Vortex Core Line Extraction: Sujudi and Haimes [59] present a line-based
vortex core extraction algorithm that locates points that satisfy the following
two criteria: (1) the velocity gradient tensor contains complex eigenvalues
and (2) the velocity in the plane perpendicular to the real eigenvector is zero.
The individual points are then connected to form the vortex core line. The
disadvantage here is that it is not always possible to form a continuous line.
This problem is addressed by Haimes and Kenwright [18] who present adapt
the algorithm to be face-based rather than cell-based.

Vortices can cause many undesirable effects for aircraft, such as reduced
lift and noise. They can lead to structural fatigue and even premature airframe
failure in severe cases. Kenwright and Haimes [29, 31] applied the eigenvector
method of Sujudi and Haimes to flow analysis around an aircraft.

Roth and Peikert build on the work of Sujudi and Haimes [59] by intro-
ducing a higher-order method for vortex core line extraction. While the eigen-
vector method of Sujudi and Haimes [59] is correct for linear vector fields, it
fails to detect curved vortex core lines, especially in the case of turbomachin-
ery data sets. Roth and Peikert demonstrated this limitation previously [50].
Their method overcomes the previous limitations stemming from the use of a
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linear vector field for vortex core line extraction by introducing higher-order
derivatives that can be used to detect bent vortex cores.

This vortex core line extraction algorithm is later formulated at a higher
level of abstraction, namely as a parallel vectors operator by Peikert and
Roth [46]. The basic idea behind the parallel vectors approach is to derive
two vector fields from a given 3D vector field such that vortex core lines are
locations where the two derived vector fields are parallel.

Some vortex core extraction methods, like that from Jeong and
Hussain [27], can be described as Galilean invariant, i.e., they are invariant
when a constant vector field is added. This is because their computation uses
only derivatives of the vector field. Many vortex core line extraction algorithms
are Galilean variant because they depend on a certain reference [2, 3, 46, 59].
Sahner et al. [54] present an approach to extracting vortex core lines that is
Galilean invariant, i.e., the result does not depend on the frame of reference.
The extracted features remain unchanged when adding a constant vector field.
They do so by considering ridge or valley lines of Galilean invariant vortex
region quantities.

Vortex Core Region Extraction: A general problem with vortex core
line extraction algorithms is their computational complexity and that they
may generate more than one vortex core line within a vortex core region.
Mahrous et al. [41] present a vortex core region detection based on Sperner’s
lemma–adapting a notion from combinatorial topology. The approach ana-
lyzes the behavior of a vector field based on the vectors found at the bound-
aries of each grid cell. Velocity vectors exhibit characteristic patterns in the
neighborhood of a vortex. The algorithm searchers for these patterns.

In our overview, we focus on vortex core line extraction rather than vortex
core region extraction. Thus the method of Jeong and Hussain, known as the
λ2 method [27] is not described in detail here (Stegmaier and Ertl present
a GPU-based implementation of the λ2 method [58]). Similarly, we do not
focus on vortex core extraction based on isosurface extraction in a scalar
field [37]. A more general overview of vortex analysis from a feature-based
flow visualization point of view is given by Post et al. [47].

Separating Surfaces: Helman and Hesselink build on their previous
work [21] and extract surface topology and separating surfaces of flow in
3D [23]. A surface topology skeleton is extracted and visualized by projecting
the 3D vector field in the neighborhood of the surface onto the plane tan-
gent to the body and applying a 2D detection algorithm. They also compute
streamsurfaces which separate 3D vector fields into disparate regions of flow.
Included is a description of how these streamsurfaces are tessellated in an effi-
cient manner. They also uses icons such as arrows and disks to display critical
points in 3D.

Mahrous et al. [41, 42] present an algorithm for efficient computation of
separatrices in 3D vector fields. They present methods that accelerate the ext-
raction of separatrices. Enhancements are made to reduce the number of sam-
ple streamlines and their length. Streamlines are seeded in a more meaningful
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Fig. 4. Visualization of flow past a circular cylinder using critical points and saddle
connectors [70] (colorplate on p. 201). Image courtesy of H. Theisel et al.

and a efficient matter rather than using a brute-force approach of seeding
streamlines at all cell locations. Texture advection is applied to stream sur-
faces by Laramee et al [34].

Dynamical Systems: Löffelmann and Gröller [39] visualize the topol-
ogy of dynamical systems. Dynamical systems provide a mathematical model
comprised of a set of state variables whose goal is to characterize real world
phenomena, e.g., a stock market, a chemical reaction, or a food chain. Their
visualization couples characteristic streamlines emanating from fixed points
in the domain with a thread of streamlets. The characteristic streamlines play
the role of seed points for a thread of streamlets. The large number of stream-
lets provide more information about the behavior of the dynamical system
in the neighborhood its characteristic trajectories. Thus a trade-off between
domain coverage and perceptibility is realized in 3D.

Detection of Closed Streamlines: Wischgoll and Scheuermann [88]
extend their previous work [87] of detecting closed streamlines to 3D vector
fields. The algorithm is based on preventing infinite cycling during streamline
integration. Saddle Connectors: Theisel et al. [70] introduce a new topolog-
ical element of vector fields called a saddle connector. A saddle connector is a
streamline that joins two saddle points in a vector field (Figure 4). A saddle
connector is found essentially by computing the intersection of the separation
surfaces of two saddle points. These topological structures achieve a visu-
ally sparser, more compact topological representation of the vector field, thus
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Fig. 5. The visualization of a vortex breakdown bubble. Flow topology is depicted
with stagnation points in red, singularity paths in yellow and streamlines in blue [74]
(colorplate on p. 201). Image courtesy of X. Tricoche et al.

avoiding the visual complexity associated with showing too many separating
streamsurfaces.

Hybrid Visualization and Vortex Breakdown: Tricoche et al. [74]
use a combination of 3D volume rendering of a vector field’s scalar fields with
vector field topology projected onto a moving cutting plane. The goal is to
gain insight into the behavior of vortex breakdowns with this novel hybrid
visualization (Figure 5).

Critical Point Modeling and Classification: Weinkauf et al. [85]
extend the work of Theisel [64] for designing vector fields. In particular they:
(1) model 3D vector fields of arbitrary topology. Previously, only first order
points and the index of higher order critical points were considered [43], (2)
introduce a complete classification of 3D critical points and (3) adapt the
notion of saddle connectors in order to model the intersection curves of sep-
aration surfaces. Thus, the problem of modeling a vector field is reduced to
the problem of modeling the topological skeleton using control polygons.

Weinkauf et al. [86] extend the work of Tricoche et al. [77] to 3D. They
introduce an extraction and classification scheme for higher order critical
points in 3D. The approach is based on enclosing a critical point, or a cluster
of critical points by a bounding surface. The properties of the vector field at
the boundary surface are then examined in detail, i.e., subsets of the surface
are divided up into inflow, outflow, hyperbolic, and elliptic regions of flow. The
classification of critical points in 3D is then determined by the corresponding
regions on the bounding surface. The simplified structure of the flow within
the bounded regions is then visualized with an appropriate icon(s).

Applications of Topology-Based Flow Visualization: Sun et al. [60]
apply a topological analysis to visualize the power flow through a C-shaped
nano-aperture. Such an aperture may be very effective at power transmission
with applications including data storage, particle manipulation, and nano-
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scale photonic devices. Their topological analysis of this data set results in a
heightened understanding of the critical factors affecting power transmission of
these apertures including: polarization effects, efficiency, the size of interaction
regions, resonant transmissions, and more.

Laramee et al. [33] apply topology-based flow visualization methods in
order to gain insight into the behavior of flow through a cooling jacket. This
application is discussed in more detail in a following chapter. Other applica-
tions of topology-based flow visualization are discussed by Garth et al. [15]
and Tricoche et al. [74].

3D, Unsteady

Vortex Core Line Extraction and Tracking: Banks and Singer [2, 3] dev-
eloped an algorithm for vortex tube reconstruction based on the assumption
that a vortex core is a vorticity line–a streamline in the vorticity field. and
pressure is a minimum in the core. The algorithm consists of four basic steps:
(1) compute the vorticity along a vortex core line (seeded based on threshold
vorticity magnitude and pressure), (2) predict the next point along the core
line by stepping in the vorticity vector’s direction, (3) compute the vorticity at
the new predicted point, and (4) update (or correct) the point to the location
of minimum pressure in the plane perpendicular to the core.

Reinders et al. [49] present an application which detects and tracks vortex
tubes in flow past a tapered cylinder. First, they apply the winding-angle
method [53] is used to detect the vortices on a number of horizontal slices.
Second, the 3D vortex tubes are constructed from the 2D vortices by applying
a spatial feature tracking procedure based on attributes of the vortices [48].
The same feature tracking algorithm is then applied in the temporal domain
for vortex core tracking.

Theisel et al. [69] describe a novel method to extract parallel vectors [46]
based on the use of feature flow fields [68]. They derive appropriate vector
fields such that vortex core lines appear as streamlines (in the feature flow
fields). Thus, the extraction of vortex core lines is reduced to a well-known
streamline integration computation. They also introduce a novel classification
of transitions (or events) associated with time-dependent vortex core lines as
well as the methodology used in tracking core lines. The classification includes:
(1) saddle transitions, (2) closed collapse transitions, (3) and inflow and out-
flow boundary transitions.

Singularity Tracking and Vortex Breakdown: Garth et al. [15]
present a method to efficiently track singularities in 3D, unsteady flow. The
method also applies to data defined on unstructured grids. Conceptually, it is
an extension of the work of Tricoche et al. [83]. The concept of a singularity
index is discussed and extended from the well known 2D case to the more com-
plex 3D domain. The results are particularly insightful for the study of vortex
breakdown. Occurrences are vortex breakdown (or bursting) are correlated
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with local extrema in physical quantities and visualized with corresponding
views from information visualization.

2.3 Discussion and Future Prospects

Table 1 clearly illustrates those areas with a heavy concentration of topology-
based research, e.g., 3D steady-state, and those areas with little to no work. In
fact, Table 1 highlights areas that remain untouched up to this point in time,
e.g., topology simplification in 3D tensor fields. Other areas still requiring
research work include:

• Interactive techniques to support topology extraction and tracking: At
present, topology-based techniques are, in general, still slower relative to
traditional flow visualization techniques such as particle tracing or texture-
advection methods.

• Extraction and analysis of new types of topological structures: Surely,
not all important topological structures have been clearly identified and
studied.

• Integration of topology-based methods with other flow visualization tech-
niques such as texture advection: A topological skeleton by itself, some-
times leaves out other important properties of the flow such as downward
and upstream direction.

• The practical application of topological methods outside the visualization
community: Still, much work remains to be done in the application of
topology-based flow visualization to data sets from industry or some app-
lication domain area in order to demonstrate their utility in a convincing
manner.

• More theoretical development to support cognition of results: Topological
analysis still leaves open questions with respect to interpretation of the
results. For example, how do we interpret pathline-oriented topology?
More theory may be needed to aid such cognition.

Thus, the field of topology-based methods in visualization is still rich in
unsolved problems.

However, there may be reasons why so much of the spatio-temporal domain
in our classification remains virtually unexplored in the research literature.
Reasons may include high levels of complexity and applicability to real-world
problem domains. We discuss possible reasons for this in a later chapter.

Acknowledgments

The authors thank all those who have contributed to this research includ-
ing AVL (www.avl.com), the Austrian research program Kplus (www.kplus.at).
Some CFD simulation data is courtesy of AVL.



14 Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, and Frits H. Post

References

1. R. H. Abraham and C. D. Shaw. Dynamics - the Geometry of Behavior.
Addison-Wesley, 1992.

2. D. C. Banks and B. A. Singer. Vortex Tubes in Turbulent Flows: Identification,
Representation, Reconstruction. In Proceedings IEEE Visualization ’94, pages
132–139, October 1994.

3. D. C. Banks and B. A. Singer. A Predictor-Corrector Technique for Visualizing
Unsteady Flow. IEEE Transactions on Visualization and Computer Graphics,
1(2):151–163, June 1995.

4. D. Bauer and R. Peikert. Vortex Tracking in Scale-Space. In Proceedings of the
Symposium on Data Visualisation 2002, pages 233–240. Eurographics Associa-
tion, 2002.

5. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A Multi-resolution
Data Structure for Two-Dimensional Morse-Smale Functions. In Proceedings
IEEE Visualization 2003, pages 139–146, October 2003.

6. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. Topological
Hierarchy for Functions on Triangulated Surfaces. IEEE Transactions on Visu-
alization and Computer Graphics, 10(4):385–396, July/Aug 2004.

7. C. Carner, M. Jin, X. Gu, and H. Qiu. Topology-driven Surface Mappings
with Robust Feature Alignment. In Proceedings IEEE Visualization 2005, pages
543–550, October 2005.

8. W. de Leeuw and R. van Liere. Visualization of Global Flow Structures Using
Multiple Levels of Topology. In Data Visualization ’99 (VisSym ’99), pages
45–52. May 1999.

9. W. de Leeuw and R. van Liere. Multi-level Topology for Flow Visualization.
Computers and Graphics, 24(3):325–331, June 2000.

10. W. C. de Leeuw and R. van Liere. Collapsing Flow Topology Using Area Met-
rics. In Proceedings IEEE Visualization ’99, pages 349–354, 1999.

11. T. Delmarcelle and L. Hesselink. The Topology of Symmetric, Second-Order
Tensor Fields. In Proceedings IEEE Visualization ’94, 1994.

12. H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser. Interactive Fea-
ture Specification for Simulation Data on Time-Varying Grids. In Conference
on Simulation and Visualization 2005 (SimVis 2005), pages 291–304, 2005.

13. J. El-Sana and A. Varshney. Controlled Simplification of Genus for Polygonal
Models. In Proceedings IEEE Visualization ’97, pages 403–412, October 1997.

14. C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann. Sur-
face Techniques for Vortex Visualization. In Data Visualization, Proceedings
of the 6th Joint IEEE TCVG–EUROGRAPHICS Symposium on Visualization
(VisSym 2004), pages 155–164, May 2004.

15. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of Vector Field Singu-
larities in Unstructured 3D Time-Dependent Datasets. In Proceedings IEEE
Visualization 2004, pages 329–335, 2004.

16. I. Guskov and Z. Wood. Topological Noise Removal. In Proceedings, Graphics
Interface 2001, pages 19–26, 2001.

17. A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.
Topology-based Simplification for Feature Extraction from 3D Scalar Fields.
In Proceedings IEEE Visualization 2005, pages 535–542, 2005.



Topology-Based Flow Visualization, The State of the Art 15

18. R. Haimes and D. Kenwright. On the Velocity Gradient Tensor and Fluid
Feature Extraction. Technical Report AIAA Paper 99–3288, American Institute
of Aeronautics and Astronautics, 1999.

19. R. M. Haralick. Ridges and valleys on digital images. Computer Vision, Graph-
ics, and Image Processing, 22(1):28–38, April 1983.

20. B. Heckel, G. H. Weber, B. Hamann, and K. I. Joy. Construction of vector field
hierarchies. In Proceedings IEEE Visualization ’99, pages 19–26, 1999.

21. J. L. Helman and L. Hesselink. Representation and Display of Vector Field
Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27–36, August 1989.

22. J. L. Helman and L. Hesselink. Surface Representations of Two- and Three-
Dimensional Fluid Flow Topology. In Proceedings IEEE Visualization ’90, pages
6–13, 1990.

23. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid
Flows. IEEE Computer Graphics and Applications, 11(3):36–46, May 1991.

24. L. Hesselink, Y. Levy, and Y. Lavin. The Topology of Symmetric, Second-Order
3D Tensor Fields. IEEE Transactions on Visualization and Computer Graphics,
3(1):1–11, March 1997.

25. M. Hlawitschka and G. Scheuermann. HOT Lines: Tracking Lines in Higher
Order Tensor Fields. In Proceedings IEEE Visualization 2005, pages 27–34,
2005.

26. V. Interrante, H. Fuchs, and S. Pizer. Enhancing Transparent Skin Surfaces
with Ridge and Valley Lines. In Proceedings IEEE Visualization ’95, pages
52–59, 1995.

27. J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid
Mechanics, 285:69–94, 1995.

28. M. Jiang, R. Machiraju, and D. Thompson. A Novel Approach to Vertex Core
Region Detection. In Proceedings of the Symposium on Data Visualisation 2002
(VisSym ’02), pages 217–225. Eurographics Association, 2002.

29. D. Kenwright and R. Haimes. Vortex Identification–Applications in Aerody-
namics. In Proceedings IEEE Visualization ’97, pages 413–416, November 1997.

30. D. N. Kenwright. Automatic Detection of Open and Closed Separation and
Attachment Lines. In Proceedings IEEE Visualization ’98, pages 151–158, 1998.

31. D. N. Kenwright and R. Haimes. Automatic Vortex Core Detection. IEEE
Computer Graphics and Applications, 18(4):70–74, July/August 1998.

32. D. N. Kenwright, C. Henze, and C. Levit. Features Extraction of Separation and
Attachment Lines. IEEE Transactions on Visualization and Computer Graph-
ics, 5(2):135–144, 1999.

33. R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen.
Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket. In Proceed-
ings IEEE Visualization 2005, pages 623–630, 2005.

34. R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture-Advection on
Stream Surfaces: A Novel Hybrid Visualization Applied to CFD Results. In
Data Visualization, The Joint Eurographics-IEEE VGTC Symposium on Visu-
alization (EuroVis 2006), pages 155–162,368. Eurographics Association, 2006.

35. R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating Swirl and
Tumble Flow with a Comparison of Visualization Techniques. In Proceedings
IEEE Visualization 2004, pages 51–58, 2004.

36. Y. Lavin, R. Kumar Batra, and L. Hesselink. Feature comparisons of vector
fields using earth mover’s distance. In Proceedings IEEE Visualization ’98,
pages 103–110, 1998.



16 Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, and Frits H. Post

37. Y. Levy, D. Degani, and A. Seginer. Graphical Visualization of Vortical Flows
by Means of Helicity. AIAA Journal, 28:1347–1352, 1990.

38. S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology Preserving Com-
pression of 2D Vector Fields. In Proceedings IEEE Visualization 2000, pages
343–350, 2000.
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Summary. In this study we explore ways of using precomputed vector field topol-
ogy as a guide for interactive feature-based visualization of flow simulation data.
Beyond streamline seeding based on critical points, we focus mainly on computing
special stream surfaces related to critical points and periodic orbits. We address
the special case of divergence-free vector fields which is often met in practical CFD
data, and we extend the topological analysis to no-slip boundaries by treating 3D
velocity and 2D wall shear stress in a unified way. Finally we apply the proposed
techniques to flow simulation data and demonstrate their usefulness for the purpose
of studying recirculation and separation phenomena.

1 Introduction

Vector field topology as a means to visualize the structure of fluid flow has
been introduced by Helman and Hesselink [6]. A first generation of topology-
based visualization methods locates, classifies, and displays critical points of
the given vector field as point icons. Sophisticated icons can convey various
information on the local topology and geometry of the flow [3]. Beyond crit-
ical points, periodic orbits can be located [19] and classified based on their
Poincaré maps. Another use of Poincaré maps is to include them into 3D vis-
ualizations for a better understanding of the flow near the periodic orbit [8].
Finally, the topological skeleton of the vector field is obtained by computing
all critical points and periodic orbits together with their stable and unstable
manifolds, i.e. the union of streamlines converging in positive or negative time
to the critical point or periodic orbit.

The striking property of these direct topological methods is that they are
fully automatic and free of tuning parameters. A practical limitation is how-
ever that for many kinds of vector field data the topology is far too rich to be
displayed in full detail. This led to concepts such as topological simplification
[9, 16]. The stable or unstable 2D manifold of a 3D saddle point is a par-
ticularly interesting feature as it indicates a local flow separation. However,
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displaying a larger number of such stream surfaces leads to occlusion prob-
lems. Again, simplification is needed, and a possible solution is to only display
their intersection curves, known as saddle connectors [17] or as heteroclinic
and homoclinic orbits.

When considering the use of vector field topology for visualizing CFD data,
it has to be kept in mind that topological features are not the final result an
engineer or scientist wants to see. The topological analysis can, however, be
a valuable first step to be followed by other visualization techniques. One
possible strategy is to use topology for segmenting a vector field into regions
of similar flow. This is particularly successful in 2D, while in 3D the notion of
segmentation must be somehow relaxed to a more local property [10].

A second approach is to use topological features as guides for a different
type of visualization. For example, a region-of-interest can be defined or a set
of streamlines can be seeded [20] based on topological features. If an interac-
tive, explorative type of visualization is pursued, visual clutter can usually be
avoided, so that simplification is often not needed, even when stream surfaces
are used for the visualization.

In this work we focus mainly on 2D manifolds of 3D saddles and saddle
type periodic orbits. We believe that compared to arbitrarily chosen stream
surfaces, such 2D manifolds can be more expressive and in most cases also of
a simpler shape. In particular, recirculation zones and separation surfaces are
well suited for this type of visualization. The underlying idea of visualizing
topologically meaningful stream surfaces and their relationship to topological
features has previously been used by Garth et al. [4] in their visualization of
a vortex breakdown in the flow over a delta wing.

Computing stream surfaces in the vicinity or even converging to singu-
larities, requires robust algorithms. The classical stream surface algorithm is
that of Hultquist [7]. Here, the stream surface is generated by integrating
a sequence of discretized streamlines and triangulating between them where
appropriate. Triangle shape is optimized by choosing the shorter of the two
possible edges in the process of triangulating between two streamlines. Trian-
gle size is controlled by seeding new streamlines or stopping streamlines. This
basic algorithm can be implemented with a depth-first strategy. However, to
evaluate the criteria for adding or stopping a streamline, it is more convenient
to used a breadth-first strategy where a current “front” is used. Garth et al.
[4] added a refinement criterion based on the angle between adjacent segments
of the front. Theisel et al. [17] remarked that Hultquist’s algorithm fails if the
tangents of the front are almost in the direction of the vector field, a situa-
tion which can arise e.g. near critical points or periodic orbits. They use as
an initial front a line perpendicular to the vector field. This way, even tightly
spiralling streamlines can be handled. However, the choice of the line is critical
to avoid cracks or multiple coverings. Also, this approach produces spurious
internal boundaries which have to be postprocessed for a correct result.

Vector field topology requires differentiable 2D or 3D vector fields. Usually,
no further restriction is made for the vector fields. This is appropriate in the
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context of dynamical systems [2], which was the original application of vector
field topology. Vector fields arising in physics, however, are often known to be
divergence-free or irrotational or both. In Sec. 2 we will explore some of the
implications of zero divergence to vector field topology and its application to
the visualization of flow structures. In most CFD simulations, no-slip bound-
ary conditions are imposed on some of the boundaries. Extending vector field
topology to no-slip boundaries is the topic of Sec. 3. And finally, in Sec. 4 we
will discuss some applications.

2 Topology of divergence-free vector fields

The case of a divergence-free (sometimes called solenoidal) vector field is par-
ticularly important in fluid dynamics. Examples of divergence-free vector fields
are: velocity fields in hydrodynamics, vorticity fields, magnetic fields. Further
divergence-free fields may be obtained by multiplying a given vector field
(having neither sources nor sinks) with an appropriate scalar field. This is
based on the fact that multiplication with a nonvanishing scalar field does
not change the topology. As an example, the momentum field has the same
topology as the velocity field, because they are identical up to a nonvanishing
factor, the density. If the velocity field for instance is a steady solution of the
compressible continuity equation ∂ρ

∂t +∇· (ρu) = 0, then the momentum field
would be divergence-free.

The special case of divergence-free vector fields has an effect on the analysis
of critical points. Asimov [1] mentions that in 2D and 3D divergence-free
vector fields sources and sinks are not possible, but any types of saddles are.
And in the 2D case, there is a new structurally stable type of critical points,
namely the center. The center is said to have constrained structural stability.
The center has the property that in a neighborhood, all streamlines are closed.

A similar analysis as for critical points can be done for periodic orbits
(closed streamlines) in divergence-free 3D vector fields. Periodic orbits are
of interest as they can indicate recirculation zones. Many properties of the
periodic orbit can be studied in two dimensions by computing a Poincaré map.
This is done by selecting a surface patch S which is everywhere transversal
to the vector field. If sufficiently small, this so-called Poincaré section S is
intersected by the periodic orbit in a single point. For a sufficiently close
point x ∈ S, the Poincaré map P(x) is then defined as the first intersection
of the streamline seeded at x with S.

Periodic orbits are called hyperbolic if the eigenvalues of the linearization
P of P, the so-called Floquet multipliers, lie off the complex unit circle. Acc-
ording to Asimov [1], hyperbolic periodic orbits can be classified into sources,
sinks, saddles, twisted saddles, spiral sources and spiral sinks depending on
the Floquet multipliers.

The Poincaré map P has a fixed point where it is intersected by the peri-
odic orbit. For the eigenvalue analysis, P is now linearized in a neighborhood
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of a fixed point. This linearized map P takes an infinitesimal circle centered
at the fixed point to an ellipse with the same center. If the velocity field is
divergence-free and thus volume preserving, the fluxes through the circle and
the ellipse are equal. The flux is the integral of the normal velocity over the
circle or ellipse. The normal velocity can be linearized as well, and because
of symmetry, it can be replaced by its average. It follows that P must be
area conserving, i.e. has a determinant of one. The sign is positive because a
Poincaré map always conserves orientation.

2.1 Source and sink periodic orbits

It is now easy to see that periodic orbits of type source or sink are not possible
for a divergence-free vector field. In the case of a source (either node source or
spiral source), both eigenvalues lie outside of the complex unit circle. Hence,
the determinant of P has absolute value greater than one, meaning that the
area of an infinitesimal circle is not conserved under P. The same can be
concluded for sinks.

2.2 Saddle and twisted saddle periodic orbits

Periodic orbits of type saddle or twisted saddle are possible in divergence-free
vector fields. Such periodic orbits are particularly suitable for visualization
because they have a stable and an unstable manifold which are stream surfaces
converging to the periodic orbit in positive or negative time. The nice property
of these manifolds is that they “return to themselves” when following the
periodic orbit for a full turn. This means, if a streamline is seeded on the
intersection of the manifold with a Poincaré section and sufficiently close to
the periodic orbit, it will return to the same intersection curve. If the seed
curve is reduced to an infinitesimal line segment, its behavior is given by the
eigenvalues of P. If both eigenvalues are positive, the generated stream surface
band returns untwisted to the Poincaré section. It may have done an integer
number of full (360 degrees) so-called extrinsic twists. And it can shrink or
stretch, depending on the eigenvalue associated to the eigenvector aligned
with the seed line. If both eigenvalues are negative, the stream surface band
does an additional half twist. In our case of divergence-free vector fields the
product of the two eigenvalues equals one because of the above-mentioned
conservation of area. Because of their property to return to the seed curve,
(un-)stable manifolds are the ideal stream surfaces to depict the local behavior
of the field near the periodic orbit.

2.3 Center periodic orbits

If a periodic orbit in a divergence-free vector field has complex eigenvalues of P
its type can be neither spiral source nor spiral sink. It must be the in-between
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case with eigenvalues on the complex unit circle. This is not a hyperbolic case,
but has the constrained structural stability similar to that of center critical
points in 2D fields. By analogy, we call it a center periodic orbit.

The linearized Poincaré map P of such a periodic orbit has complex eigen-
values and a determinant of one. It can therefore be written as P = TRT−1

where R is a pure rotation. It follows that T applied to an infinitesimal circle
is an ellipse which is invariant under P. This means that a stream surface
seeded at this ellipse returns to the ellipse after following the periodic orbit
for a full turn. The same idea can be used for finding finite invariant tori.
The goal is here to find a closed seeding curve in the Poincaré section which
is invariant under P. As an initial guess a scaled version of the infinitesimal
ellipse can be used. If starting from this an invariant seeding curve can be
found, the problem is solved. However, we found that in practice this is a
numerically challenging problem.

3 Topology near no-slip boundaries

3.1 Velocity and wall shear stress

By definition, a critical point is an isolated singularity of the vector field. Vec-
tor topology does not treat extended singularities. However, these occur in
practical vector fields having solid boundaries with associated no slip bound-
ary conditions. The velocity field u(x) itself is zero on such a boundary, but
by using the unsigned distance to the boundary as a scalar field s(x), it can
be written as a product

u(x) = s(x)ũ(x), (1)

where the vector field ũ(x) can be assumed to exist also on the boundary and
to be nondegenerate there.

From the divergence-free criterion follows for points on the boundary:

0 = ∇ · (sũ) = (∇s) · ũ + s (∇ · ũ) = (∇s) · ũ (2)

which means that on the boundary the field ũ has no normal component. In
terms of vector field topology this means that no streamline of ũ ever passes
from the solid boundary to the interior or vice versa.

If Eq. 2 holds, then on the boundary, ũ is related to the wall shear stress
τw by τw = µũ where µ is the kinematic viscosity of the fluid. Because of this
proportionality ũ has the same topology as the 2D field of wall shear stresses.
At interior points, s is nonzero and therefore ũ has the same topology as u.
Hence, the field ũ nicely combines the wall shear field with the interior velocity
field. However, this relies on the divergence-free property of the vector field.
In the general case the field ũ has a normal component on the solid boundary.
It can not be used to produce the topology of both the velocity field and the
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wall shear field. Of course the two vector fields could be blended, but then
the topology of u may not be conserved.

Returning to the case of a divergence-free field, we saw that no streamline
of ũ passes from the interior to the boundary. But there may be convergence
towards critical points on the solid boundary, which are 3D saddle points
having two of its eigendirections along the boundary surface. Also, convergence
towards periodic orbits on the boundary is possible.

The advantage of using the field ũ is that it is no more necessary to extract
both 2D and 3D critical points (with possible consistency issues). Critical
points on the boundary are now regular 3D critical points. In the special case
of u being divergence-free, sources and sinks can be excluded due to structural
stability and the fact that ũ has the same topology as u. Consequently, such
critical points must be saddles or spiral saddles. Furthermore, by Eq. 2 their
two-dimensional stable or unstable manifolds lie completely on the bound-
ary. The eigenvalue belonging to the remaining eigenvector is real-valued. Its
sign determines whether the point is on a separation line (positive sign) or a
reattachment line (negative sign).

In discrete data, dividing by s has the drawback that due to interpolation
inside the cells the topology is changed. A better strategy is to use the original
field u for computing and analyzing the critical points in all cells which are
not adjacent to no-slip boundaries. Only for computing the topology in the
first layer of cells at the boundary, the modified field ũ is actually needed.
The following steps are performed for cells adjacent to no-slip boundaries:

1. On interior nodes: compute ũ by dividing u by the wall distance.
2. On boundary nodes: interpolate u on two points on the boundary normal,

compute ũ, and linearly extrapolate to the boundary node.
3. Find critical points on the cell faces on the no-slip boundary. Use a 2D

algorithm for finding the critical points, but classify them as 3D critical
points.

3.2 Critical points on no-slip boundaries

Critical points on no-slip boundaries are important features for the study of
flow separation. By applying the 3D classification, we will now concentrate on
saddles and spiral saddles and ignore sinks and sources. These are of minor
interest for the study of flow separation, and in divergence-free vector fields
they do not occur.

Attracting (i.e. 2:1) saddles and spiral saddles have their stable manifold
completely on the boundary. Any boundary curve of this manifold is a sep-
aration line. Similarly, repelling (1:2) saddles and spiral saddles have their
unstable manifold on the boundary, so any boundary curve of it is a reattach-
ment line. The case of spiralling separation (called tornado-type separation in
[11]) has not been discussed much in the visualization community.
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A pattern we encountered often consists of a pair of spiral saddles, one of
them in the interior and one on a solid boundary (see Fig. 1, points C1 and C2,
respectively). They are rotating in the same sense and mark a recirculation
area.

Fig. 1. Sketch of typical recirculation zone with two critical points of type spiral
saddle (C1, C2) and one periodic orbit (P1, P2) involved. 1D manifolds (red curves)
nearly meet. 2D manifolds (shown as blue curves) have a strong spiralling compo-
nent.

The 1D manifolds nearly meet, while the 2D manifold of C1 encloses the
recirculation zone. This stream surface is not closed, so recirculation is not
perfect. Within the recirculation zone there is a periodic orbit (P1 and P2).
Finally, the points A and B appearing as saddles in the planar section, seem
to indicate a separation line. However, these points are topologically nothing
special, they are just the points where the skin friction line is intersected
orthogonally by the planar section. This means that many nearby skin friction
lines can be regarded as separation lines.

Surana et al. in their exact theory of flow separation [11] suggest as a
criterion “strong hyperbolicity”, i.e. large absolute eigenvalues of the saddles
in the orthogonal section. An alternative and purely topological definition
would be to pick the boundary curve of the unstable manifold of C2 (which
lies entirely on the solid boundary). In general this is composed of separatrices
of nearby saddle points on the solid boundary.

4 Applications

4.1 Pelton turbine

A first application is a dataset resulting from a CFD simulation by VA Tech
Hydro for the study of a Pelton turbine with the primary goal to optimize the
stability of the water jets. The jets generated in the injectors (Fig. 2) must
have a temporally stable circular cross section in order to optimally hit the
runner buckets. Quality of the jets is mainly affected by vortices evolving in
the outer ring where the water is deflected into the injectors. In Fig. 3 taken
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near the first of six injectors, the red stream surface shows the separation
vortex arising because the flow does not follow the boundary. The yellow
stream surface shows a smaller scale tornado-type separation.

Fig. 2. Pelton turbine with five injec-
tors (colorplate on p. 202).

Fig. 3. Two vortices extending from
the ring distributor into the first (of six)
injectors (colorplate on p. 202).

Inspecting the nearby critical points reveals that there is a pair of spiral
saddles in this region, one of them is on the no-slip boundary (upper right in
Fig. 4). A quick exploration by integrating a streamline forward and backward
from seed points near the critical points gives an idea of the stable and unstable
manifolds of the two spiral saddles (Fig. 5).

Fig. 4. Extracted interior (blue) and
boundary (red) critical points. Periodic
orbit (magenta). (Colorplate on p. 202.)

Fig. 5. Streamlines seeded near the
boundary critical point (black) and the
interior critical point (white). (Color-
plate on p. 202.)
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Consistent with the situation sketched in Fig. 1, the stable manifold of the
interior critical point encloses the recirculation zone (Fig. 6). The recirculation
zone contains a single periodic orbit which is of twisted saddle type (Fig. 7). In
this case, the stable and unstable manifolds of the periodic orbit are classical
Möbius strips with a half twist and no further extrinsic twisting.

Fig. 6. Stable manifold of interior criti-
cal point (colorplate on p. 203).

Fig. 7. View from the wall with stable
and unstable manifolds of the periodic
orbit (red and blue stream surfaces).
(Colorplate on p. 203.)

Similar flow patterns as near the first injector also appear near the third
and fifth injector. In all cases, a periodic orbit of type twisted saddle can
be observed. However, in the case of the third injector, the eigenvalues are
relatively close to -1, which suggests that instead of the twisted saddle, the
center type (with a rotation angle close to 180 degrees) would be possible as
well for slightly different data.

4.2 Draft tube

As a second application, we examined the flow in the incompressible CFD
simulation of a Francis draft tube. The design of the draft tube is such that
in its lower part it is split into two channels. As observed in the simulation
data, the right channel exhibits significantly stronger vortices. For topologi-
cal interests we picked one of the strong vortices extending horizontally and
almost orthogonally to the primary flow direction. The transient simulation
of this vortex consists of 3 interesting and quite steady phases: First there
is a vortex breakdown bubble of the unstable 2D manifold of a spiral sad-
dle, enclosed in the stable 2D manifold of a spiral saddle. Then the bubble
collapses and the stable manifold develops into a vortex breakdown bubble.
Finally this bubble collapses too, leaving a common vortex. We have chosen a
time step of the first phase where the vortex breakdown bubble is quite steady
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and hence the examination of its instantaneous topology should reveal some
of its properties. Additionally, as reported by [12], vortex breakdown bubbles
are not necessarily the result of unsteady flow behavior.

Fig. 8. Tornado-type separation and vortex in the draft tube dataset. Stream surface
(transparent blue) starts at saddle and goes upstream enclosing a vortex breakdown
bubble (blue streamline) containing a periodic orbit (red). Critical points (red) and
vortex core lines (green). (Colorplate on p. 203.)

Fig. 8 gives a view from top on the flow going from left to right. It shows
(from bottom to top) a tornado-type separation with a critical point on the
(outer) wall, and a vortex core line that connects to that critical point and
extends across the channel into the part where the two channels merge. There
is a recirculation region identified as a vortex breakdown bubble with a critical
point at its bottom and a periodic orbit inside it. Another critical point resides
above the bubble where the detected core line is disrupted. The stable 2D
manifold of that saddle is visualized by an upstream surface that encloses the
vortex breakdown bubble and approaches the wall.

Unperturbed vortex breakdown bubbles (Fig. 9) are axisymmetric and
consist of nested invariant tori. In the real world [18, 14], they contain re-
gions of chaotic dynamics with possible islands of stability and KAM tori
(impermeable) or Cantori (permeable) separating the regions (Fig. 10). We
refer the reader to the paper of Sotiropoulos et al. [13] for details. In the
field of visualization, vortex breakdown bubbles have been studied recently
([15, 5, 4]).

In our case, a vortex breakdown bubble containing a periodic orbit has
been identified (Fig. 10). It seems that the stable 2D manifold of the upper
saddle (transparent stream surface in Fig. 8) marks the end of the recirculation
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Fig. 9. Sketch of ideal (unperturbed)
vortex breakdown bubble. Three criti-
cal points (C1, C2, C3) and one periodic
orbit (P1, P2).

Fig. 10. Sketch of real-world (per-
turbed) vortex breakdown bubble. No
intersection of the two 2D manifolds
due to nonzero divergence in this
region.

region since Spohn et al. [12] report that vortex breakdown bubbles exhibit
permanent inflow and outflow at the downstream tail. The fact that the two
manifolds do not intersect is due to the inaccuracy of the simulation leading
to nonzero divergence in this region.

Computing the vortex breakdown bubble as a stream surface seems impos-
sible with Hultquist-type algorithms due to the complex folding and also due
to the quasi-periodicity of the streamlines. Since a single streamline covers
the toroidal stream surface densely, it can be seeded near the critical point
and sampled on a voxel grid. The resulting field can then be visualized by an
isosurface. To reduce aliasing effects and enhance resolution, a voxel value is
not set in a binary manner when the streamline passes but computed based
on coverage. An initial sequence of integration steps was not sampled in order
to avoid an isolated spiral from the saddle point to the unstable manifold of
the bubble.

Fig. 11. Slice of the voxel field that
sampled a single streamline.

Fig. 12. Detail sampled at higher voxel
resolution.

Fig. 11 shows a slice of the resulting voxel field after tracing the particle
for 109 time steps. Its resolution is 750× 600× 600 and it spans the complete
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bubble. Fig. 12 shows a finer sampling of a subregion. This makes the massive
folding of the surface visible. Fig. 13 and 14 show an isosurface of the voxel
field with the complete bubble. The isolevel was chosen to be 5% instead
of 50% in order to avoid unmanageably many triangles in the fine folds. By
adding a Gaussian smoothing step, we were able to cut down the the triangle
count to about 20 million.

Fig. 13. Isosurface of the voxel-samp-
led single streamline on the surface of
the breakdown bubble.

Fig. 14. Same isosurface clipped for
view to the inside.

5 Conclusion

We gave examples of flow features in real CFD datasets which can be nicely
illustrated by 2D manifolds of 3D saddles. Our experience showed that stream
surface integration gets particularly challenging for these special cases of
stream surfaces. Very robust stream surface algorithms are required which
can cope with situations such as tightly winding spirals occurring in 2D man-
ifolds of spiral saddles or saddle type periodic orbits. This issue is worth being
addressed in further work, and as the ultimate goal in this line of research
we see a stream surface algorithm which is fully “topology aware”, i.e. which
behaves correctly when integration approaches any kind of topological feature.
The authors acknowledge VA Tech Hydro for the simulation data. This work
was funded by Swiss Commission for Technology and Innovation grant 7338.2
ESPP-ES.
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Summary. Scale-space techniques are very popular in image processing since they
allow for the integrated analysis of image structure. The multi-scale approach enables
one to distinguish between important features such as edges and small-scale features
such as numerical artifacts or noise. In general, the same properties hold for vector
fields such as flow data. Many flow features, e.g. vortices, can be observed on mul-
tiple scales of the data and also many features that can be detected are essentially
artifacts of the employed interpolation scheme or originate from noise in the data.
In this paper, we investigate an approach based on scale-space hierarchies of three-
dimensional vector fields. Our main interest concerns how vector field singularities
can be tracked over multiple spatial scales in order to assess the importance of a
critical point to the overall behavior of the underlying flow field.

1 Introduction

The extraction of topological features has become a valuable tool for the
analysis of vector field data that arise for example in computational or exp-
erimental fluid dynamics research. Vector field singularities in combination
with a set of feature lines or surfaces, such as separatrices, provide the means
of describing the qualitative behavior of a flow field in a strongly condensed
form via the so-called topological skeleton. This enables one to cope with the
ever growing dataset sizes in today’s CFD applications.

Since typical datasets originating from simulations or real world measure-
ments contain structures of different sizes or scales and different sets of fea-
tures can be observed on certain ranges of scale, the notion of scale is an
important concept in the analysis of the data. Therefore, an automatic or
semi-automatic analysis tool for flow topology has to accommodate the inher-
ent multi-scale nature of the underlying data.

Furthermore, many flow features, e.g. vortices, can be observed on multiple
scales or resolutions of the data while many features that can be only detected
at fine scales are essentially artifacts of the employed interpolation scheme or
originate from noise in the data. Thus, a scale-aware technique can help to
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identify the overall structure of a given flow field and allows to distinguish
the global structure from local effects, such as noise, and discretization or
interpolation artifacts.

As in general the scales of the features are a priori not known, it seems to
be reasonable to represent the data at multiple scales, successively eliminating
fine-scale flow field structures. Nevertheless, in certain situations the scientist
analyzing the data may be in possession of information that allows him to
limit the parameter space to certain resolutions.

The concept of scale-space provides a well established framework to cope
with these problems in a well defined way. Scale-space techniques have become
very popular in image processing since they allow for the integrated analysis
of the image structure. The multi-scale approach enables one to distinguish
between important features, such as edges, and small-scale features, such as
numerical artifacts or noise. By reason of this, scale-space techniques have
been successfully applied to the automatic analysis of images in computer
vision.

In this work we present our first attempt of a multi-scale topological analy-
sis of flow data. We investigate an approach based on Gaussian scale-space
hierarchies of three-dimensional vector fields. Our main interest concerns the
tracking of important topological features, i.e. critical points, over multiple
spatial scales in order to distinguish between local and global structures
and behavior of the underlying vector field and numerical or noise-induced
artifacts. This procedure is based on the assumption that fine scale structure
and noise will be gradually eliminated on coarser scales while the dominating
large scale flow structures will be persistent over multiple or all scales of the
dataset. Thus, the scale length of the path or the number of scales over that a
critical point can be tracked corresponds to the importance of this singularity
to the overall topology of the flow.

2 Related Work

There is a huge body of literature dealing with the extraction and visualization
of vector field topology. Since their first introduction to the context of visual-
ization of two-dimensional vector field data by Helman and Hesselink [7, 8],
topology-based methods have been established as one of the basic tools for flow
analysis, and were soon generalized to three-dimensional fields, as well [8, 5].

Since then, many improvements and extensions have been published. The
application of results from geometric calculus and Clifford algebra regarding
vector field indices made it possible to detect and visualize also higher-order
critical points and non-linear vector field topology. This has been investigated
in detail by Scheuermann et al. [18, 19, 20] for two-dimensional flows and by
Mann and Rockwood [15] for three-dimensional vector fields.

As visualizations of the topology of three-dimensional flow fields typically
involve a number of separating stream surfaces they suffer from occlusion
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problems and accordingly tend to get visually cluttered. To deal with that
problem, Theisel et al. introduced the concept of saddle connectors [22] and
boundary switch connectors [26] as a method for the simplified visualization of
the topological skeleton of complex three-dimensional vector fields. However,
the visual complexity, even of these simplified visualizations, depends heavily
on the number of critical points involved.

To deal with large numbers of critical points and the resulting complexity
of topological skeletons of vector fields the multi-scale nature of the data has
been addressed in different ways. The simplest approach is to use a low pass
filtering technique to suppress small-scale features and noise in the data and
to do the extraction of the critical points on the filtered data. However, this
approach cannot guarantee the invariance of the position and classification of
critical points in the dataset. Therefore, a number of topological simplifica-
tion methods have been proposed, e.g. the work by de Leeuw van Liere [2] or
Tricoche et al. [23]. In contrast to the approach we will describe in the follow-
ing, however, these methods often depend on the availability of the complete
topological skeleton, not merely the critical points.

On the other hand, scale-aware feature extraction techniques for scalar
valued data have a long tradition in image processing and computer vision.
It was in the context of pattern recognition when the concept of scale of fea-
tures and the scale-space paradigm emerged first [9]. Starting with the work
of Witkin [28] and Koenderink [10] the concept of Gaussian scale-space rep-
resentations has gained much attention in the image processing literature.
The analysis of the so-called deep structure of images by means of an inves-
tigation of a multi-scale image representation, has become a valuable tool for
feature detection and extraction in scalar images [14]. Of special interest in
our case is the work by Lindeberg [13] and by Florack and Kuijper [3, 12] on
the scale-space behavior of critical points in scalar fields, since the approach
we will describe in Sec. 5 is closely related to their work on critical curves,
i.e. the trajectories of singularities in the gradient field of a scale-space image.
Although, we will disregard their extensive work on bifurcations and degen-
erate singularities based on the framework of catastrophe theory [11].

The tracking of features in vector fields has also attracted the interest
of a number of researchers in flow visualization, especially in the case of the
analysis of time-dependent vector fields. A general overview of the state of the
art in feature extraction and tracking in flow fields can be found in Post et
al. [17]. Particularly concerned with the tracking of vector field singularities as
a topological feature in time-dependent two- and three-dimensional datasets
are the works by Tricoche et. al [24, 25], Theisel and Seidel [21], and Garth et
al. [4]. Feature tracking in scale-space representations of vector fields has been
investigated by Bauer and Peikert [1] for tracking the evolution of vortices in
scale or time.

For the approach discussed in this work the papers by Theisel and
Seidel [21] and Bauer and Peikert [1] are the two most relevant. In the first,
the concept of feature flow fields is introduced. A vector field derived from
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the original flow field such that the evolution of the considered features is
described by streamlines in this field. Thus, the feature tracking problem is
reduced to simple streamline integration. We will come back to this technique
in Sec. 5. In the second, vortex core lines based on the parallel vector operator
are investigated. The construction of a linear scale-space representation of a
flow field given on a three-dimensional unstructured grid is discussed and an
algorithm for the tracking of the vortex core lines in scale-space based on a
4D surface extraction technique is presented. To our knowledge, this is the
only work on scale-space feature tracking for flow visualization.

3 Scale-Space and Topology

3.1 Gaussian Scale-Space

As already mentioned, scale-space techniques have become very popular in
image processing since they allow for the integrated analysis of image structure
at all scales. Here we will briefly outline the basic idea in case of a three-
dimensional vector field.

In the following we will assume v : M → R
3 to be a vector field given

on a three-dimensional domain M ⊆ R
3. Introducing the scale parame-

ter τ > 0, the scale-space representation ν : M × R
+ → R

3 of v with
limτ→0 ν(x, τ) = v(x) defines an embedding of the original vector field in
a one-parameter family of derived vector fields, resulting in a hierarchy con-
sisting of subsequently simplified or smoothed versions of the original data.
Thus, τ defines the scale-axis of the four-dimensional scale-space.

One possibility, and in fact the most often used, to generate such a one
parameter family of vector field representations is the linear or Gaussian scale-
space. Here the smoothing of the data is accomplished by the convolution
ν(x, τ) = v(x) ∗ g(x, τ) of the original signal with Gaussian filter kernels

g(x, τ) =
1

(2πτ)3/2
e−

‖x‖2

2τ (1)

of increasing standard deviation σ =
√

τ . Which is equivalent to the solution
of the linear diffusion or heat equation

∂τν(x, τ) =
1

2
∆ν(x, τ) , (2)

with initial condition
ν(x, 0) = v(x) .

Where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 denotes the spatial Laplacian operator.
Hence, for a vector field given by data values on a discrete grid a

Gaussian scale-space representation can be computed in at least two ways, by
repeatedly filtering the data with sampled Gaussians of increasing variance
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and accordingly width or by solving the diffusion equation (2). Although, the
second involves the solution of a partial differential equation, for large τ this
methods becomes increasingly efficient compared to using sampled Gaussians.

For the computation of the scale-space representation of our vector fields
we have implemented both methods, the repeated convolution with separated
Gaussians of increasing variance and accordingly increasing support and the
iterative solution of the linear diffusion equation using a solver based on the
SOR method. In both cases we work on three-dimensional Cartesian grids
although the second approach could be very easily extended to unstructured
tetrahedral meshes.

3.2 Scale-Space Topology

The additional degree of freedom introduced by the scale parameter, in fact,
provides further topological features. There exist transitions between the
different scale levels that cause topological changes. Subtle changes of the
scale parameter can cause structural changes in the system’s topology. These
so-called bifurcations or catastrophes can occur in every dynamic system that
depends on a set of varying control parameters, such as scale in our case.
Thereby, the local topology changes from one stable state to another via a
transient unstable state.

These phenomena have been studied extensively in the theory of dynamic
systems and can be described in the framework of catastrophe theory that
deals with how critical points of a parameter dependent dynamic system will
evolve when the control parameters are continuously changed. We will not go
into detail here, but refer to the literature [6]. An extensive account of the
behavior of critical points of scalar fields, i.e. singularities of their gradient
fields, under Gaussian blurring, i.e. in linear scale-space, can be found, e.g.,
in the work by Florack and Kuijper [3, 12].

Many different types of possible bifurcations exist in a general dynamic
system [6], but in flow topology one is mostly concerned with three general
types of bifurcation events that can occur in the topology of parameter dep-
endent vector fields: annihilations and creations of pairs of critical points
and critical points changing their classification. The last, the so called Hopf
bifurcation, describes for example the transition from a sink to a source or
vice versa.

Unfortunately, the possibility of creation events in a linear scale-space rep-
resentation seems to be contradictory to the goal of topology simplification.
New (unstable) degenerate critical points can be created during the diffusion
process that subsequently will lead to the creation of a new pair of criti-
cal points. This is known as a static fold bifurcation. However, since we are
only interested in the behavior of the critical points that exist in the original
dataset, i.e. on the finest scale, we will in the following neglect this type of
bifurcation event.
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4 Detection of Vector Field Singularities

When talking about vector field singularities or critical points we will always
assume spatial isolated zeros of the vector field with non-singular Jacobian
matrix, i.e. first order critical points. This poses in general no problem, as
line or surface singularities always correspond to degenerated critical points,
i.e. points where the Jacobian of the field does not have full rank. Obviously,
this also excludes higher-order critical points that may be present in non-linear
vector fields [18].

The detection of vector field singularities is in general a numerical ill-posed
and challenging problem. Noise and numerical inaccuracies will lead to false
positives and actual singularities might be missed due to deficiencies of the
employed interpolation scheme. As for all topology-based methods finding a
complete seed set of critical points is a crucial part of the algorithm.

We have implemented and compared two approaches for the detection of
critical points on a regular three-dimensional grid, namely the linearization of
the vector field using a tetrahedral decomposition of the grid and a method
based on the computation of winding numbers using geometric calculus. Both
methods have certain strengths and weaknesses.

Decomposing the grid cells into tetrahedra corresponds to effectively lin-
earizing the vector field, thus higher-order critical points – points with index
not equal to 0 or ±1 – cannot be detected directly by this method. Such
points either are missed or show up as pairs of neighboring first-order crit-
ical points [18]. Although, for each grid cell multiple tetrahedra have to be
processed, the actual computation per tetrahedron boils down to solving a
linear equation system for the barycentric coordinates of the critical point’s
position inside the cell. Therefore, this method is still the simplest and fasted
way to compute vector field singularities as long as higher-order critical points
can be neglected.

Second, we investigated the method described by Mann and Rockwood [15]
that is based on computing the index of a critical point using winding num-
bers. At the moment this is regarded as the most general method, since it
is not restricted to detecting first order critical points but can theoretically
detect critical points of arbitrary index. Using results from geometric calculus
Mann and Rockwood determine the index of a critical point by computing
an integral over a closed surface. The result of this computation is always an
integer value, that is either zero if no critical point is enclosed by the surface
or equals the index of the critical point enclosed by the surface. Unfortunately,
there are also some problems with this approach. First of all, the value of the
integral in general may not reflect the actual situation. Since the indices of
multiple singularities enclosed by the surface add up in the result of the inte-
gration, an index of zero does not necessarily signify that no point is enclosed.
The same applies for values not equal to zero. The problem is how to choose
the appropriate spatial resolution for the enclosing manifold. At first sight
one cell or the surface defined by its six faces seems to be a good choice, since
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this defines the maximal resolution of our data. But, as can be easily seen, a
single cell is not sufficient to identify, for example, a dipole, at least if bilinear
interpolation is used for sampling the cell faces. Thus, expensive higher-order
interpolation schemes have to be used. But even when using tricubic interpo-
lation, we experienced singularities that are missed. Furthermore, in order to
achieve a reasonable accuracy for the integration, i.e. indices that are close to
integer values, the sampling grid on the cell faces has to be sufficiently fine,
which makes the computation even more expensive. Therefore, this method
is not feasible for real datasets.

5 Tracking of Critical Points in Scale Space

In this section we will be concerned with the development of an algorithm for
tracking non-degenerate singularities in scale-space. A straight forward solu-
tion would be to detect all critical points on all scales and then try to connect
them according to some simple correspondence criteria, such as spatial dis-
tance or classification. There are a number of problems with this approach.
In many situations such simple criteria are not sufficient to decide whether
a critical point detected on a coarser scale really corresponds to a spatially
close point on the next finer scale. Furthermore, tracking based on feature
correspondence depends somehow or other on the definition of certain thresh-
old values, e.g. for the maximum distance of two features considered to be
equal. Often it is not possible to specify such values for an unknown dataset
in advance. Thus, a fully automatic analysis of the data is not possible. In
the following we describe two approaches that do not require such thresholds.
The first is based on the concept of feature flow fields. The second exploits the
explicit knowledge of the scale-space trajectory of a critical point provided by
the implicit function theorem. Both approaches reduce the feature tracking
problem to a stream line integration problem in a derived vector field, as will
be described in the following.

5.1 Critical Point Tracking Based on Feature Flow Fields

As introduced by Theisel and Seidel [21], a so-called feature flow field of a time-
dependent three-dimensional vector field u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T

is a four-dimensional vector field f(x, t) = (f1(x, t), . . . , f4(x, t))T derived from
u(x, t) such that the time evolution of the considered features is described by
streamlines in f(x, t). In the case of a critical point c this means each point on
the streamline in f(x, t) starting from c is also a critical point, i.e. the value
of u(x, t) must not change when traversing the streamline. Assuming a first
order approximation of u(x, t) around c this implies that f(x, t) ⊥ ∇ui(x, t)
for i = 1, 2, 3. When we apply this to our scale-space representation ν(x, t)
by identifying time t with scale τ , the scale-space feature flow field F(x, τ) is
given by
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F(x, τ) =

⎛

⎜

⎜

⎝

−det(νy(x, τ),νz(x, τ),ντ (x, τ))
det(νz(x, τ),ντ (x, τ),νx(x, τ))

−det(ντ (x, τ),νx(x, τ),νy(x, τ))
det(νx(x, τ),νy(x, τ),νz(x, τ))

⎞

⎟

⎟

⎠

, (3)

where νx(x, τ)), νy(x, τ), and νz(x, τ)) are given by the columns of the spatial
Jacobian νx(x, τ) of the scale-space representation.

Thus, the feature tracking problem is reduced to a four-dimensional
streamline integration problem starting at an initial set of seed points given
by the critical points encountered on the finest scale.

5.2 Singularity Tracking Based on the Implicit Function Theorem

In this section, we will describe an alternative approach for critical point
tracking that has been used, for example, by Lindeberg [13] for analyzing
the behavior of local extrema in images under Gaussian blurring. Similar to
the feature flow field approach, the basic idea here is also that using explicit
knowledge about the actual trajectories of the critical points in scale-space
can significantly improve the tracking results.

As we will show in the following, the evolution of a non-degenerate critical
point in scale-space can be analyzed by means of the general implicit function
theorem. Computing the trajectory of a critical point in scale-space can be
regarded to be equivalent to finding the level set H : ν(x, τ) = 0. Then,
for a given scale-space critical point (x0, τ0) ∈ H with non-singular matrix
νx(x0, τ0), i.e. det(νx(x0, τ0)) �= 0, the implicit function theorem states the
following: In a local neighborhood of the critical point, ν(x, τ) = 0 can be
solved for x. In other words, there exists a function h(τ) with x0 = h(τ0) and
ν(h(τ), τ) = 0. Hence, the path of a critical point in the four-dimensional
scale-space is a one-dimensional manifold, i.e. a curve. Although, it is not
guaranteed that there exists an explicit representation of h, the tangent of
the curve in (x0, τ0) can be always computed as

h′(τ0) = −(νx(x0, τ0))
−1

ντ (x0, τ0) . (4)

Repeating this argument, the integration of the path of the singularity through
scale-space can then be accomplished by solving the following differential
equation

∂τh(τ) = −(νx(h(τ), τ))−1
ντ (h(τ), τ) , (5)

with initial condition h(τ0) = x0.

5.3 Basic Tracking Algorithm

Regardless of the decision whether to use the method based on the feature
flow field or the implicit function theorem in both cases a streamline has to be
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traced for all critical points detected in the original vector field. The methods
differ only in that in the first case a four-dimensional streamline integration
has to be performed whereas for the second method an integration in three
dimensions is sufficient.

The basic algorithm then is performed as follows. We start by extracting
all critical points on the finest scale level, i.e. the original dataset. Note that
this does not guarantee a complete seed set for the topology of the scale-space
representation of the data, but is sufficient to compute the scale-space evo-
lution of the critical points under consideration. However, finding all critical
points in a sampled vector field is a general problem in topological analysis.

Then for each critical point a streamline is traced based on the evaluation
of either equation (3) or (5). Note also that in contrast to the more general case
of streamline-based feature tracking in time-dependent flow fields investigated
by Theisel and Seidel [21], it is sufficient to do only a forward integration of
the streamline here.

In both cases scale-space derivatives have to be computed. This can be
either accomplished by precomputing the field ν for a fixed number of scales or
by concurrent filtering/diffusion and stream line integration. The first is easy
to implement but involves a high memory usage overhead for storing many
three-dimensional vector fields. Since streamline integration is only forward in
scale, only two scale levels are necessary when the computation of the scale-
space representation and the stream line integration is done concurrently.

Furthermore, because we are working in a linear scale-space we have
explicit knowledge about the derivative with respect to τ . Since ∂τν(x, τ) =
1
2∆ν(x, τ) the derivative with respect to scale can be derived from the sec-
ond derivatives of ν(x, τ) in space. Thus both ∂xν(x, τ) and ∂τν(x, τ) can
be computed by differentiation in the spatial dimension followed by a linear
interpolation between two consecutive scale levels.

Last, the described streamline integration process has to be stopped as
soon as an annihilation event is reached, as will be discussed in the next
section.

5.4 Handling Bifurcations

Obviously, equations (3) and (5) are only valid as long as the Jacobian νx(x, τ)
is not singular. Therefore we have to monitor the Jacobian matrix during the
integration of the scale-space trace in order to capture the bifurcation events
and stop the integration of the trace, accordingly. Note that the Jacobian
νx(x, τ) is a smooth function of the scale parameter τ and, accordingly, its
determinant is also a smooth function of τ . Thus, a sign change of the Jacobian
determinant signifies a bifurcation. There are now two possibilities for the
kind of event that has occurred. The critical point is either passing through
the unstable state of a Hopf-type bifurcation or a fold bifurcation point has
been reached and the traced critical point is annihilated. In the second case,
the condition is sufficient to detect the event since in an annihilation event
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always two critical points with opposite sign of their Jacobian determinant
are involved. But although a wide range of possible Hopf-type bifurcations
can be also detected that way, some of them are hard to detect since the
Jacobian determinant does not change its sign but instead passes through
a second order zero of the characteristic polynomial. In this case it is very
unlikely, that the event would be even noticed. Nevertheless, this problem
could be solved by computing the eigenvalues of the Jacobian. However, this
poses a large computational overhead that is in fact completely unnecessary.
Since we are interested in classifying the critical points according to their
scale-space lifetime Hopf bifurcations can be safely neglected because only
the type of the critical point is changed not the fact of its existence. That
means, the problem is not whether a Hopf bifurcation has been missed, but
in the case a zero determinant is encountered if it is an annihilation event
or not. Therefore, if det(νx(x, τ)) is zero we have to check if it is a real zero
crossing by going one step further in the direction of the streamline before
terminating the streamline integration.

5.5 Predictor-Corrector Tracking

Unfortunately, both methods turned out to be numerically unreliable.
Although, they work well for simple generated test datasets both fail to cap-
ture the correct behavior for noisy real world datasets. Even when we use
a fourth order Runge-Kutta integration scheme with adaptive step size for
the computation of the streamlines, the computed traces did very soon devi-
ate from the actual path of the critical points in scale-space that have been
computed for comparison by repeated extraction of critical points on multiple
scale levels. The major problem seems to be the accuracy of computed deriv-
atives. They have to be numerically approximated from the sampled vector
field and, although we use a tricubic interpolation scheme, their accuracy, in
particular of the second derivatives, is not very high. Since using even higher
order interpolation would give rise to a disproportionately large computational
effort this is not an option. Therefore, we have combined the scale-space trac-
ing with a Newton-Raphson method in a predictor-corrector approach. In each
step of the streamline integration a prediction is computed by integrating in
the direction indicated by either the feature flow field F(x, τ) or the right
hand side of equation (5). Afterwards, this prediction is refined using a typ-
ically very small number of Newton-Raphson iterations. Now it turned out
that even a simple third order Runge-Kutta method is sufficient to compute
reliable scale-space traces.

6 Results

In this section we will present results of the above described scale-space track-
ing approach applied both to a generated test dataset as well as to a real flow
dataset.
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Our first dataset is an artificial test dataset. It was created by resampling
a random generated 103 vector field to a 503 grid using tricubic filtering. In
this dataset 16 first-order critical points (3 saddles, 3 focus saddles and 10
foci) have been detected. The original 16 critical points in combination with
streamlines seeded in their vicinity are shown in Fig. 1a. The same dataset
after adding some noise is shown in Fig. 1b. In this case, normal-distributed
noise was added to 20% of the vector components of the field, which leads to
a rather low signal-to-noise ratio of approximately 11dB for this dataset.

The number of critical points that can be detected now is 1307 and the
topology is much too complex to be of any practical use. Applying the pro-
posed scale-space tracking scheme, enables us to distinguish between critical
points that have been solely introduced due to noise and critical points that
represent the dominating flow behavior.

For this test, the points were traced using the scheme derived in Sec. 5.2
over the scales from τ = 0 to τ = 1.5. The computation took approximately
70 second on a machine equipped with an AMD Opteron 2.0GHz processor
and 8GB of main memory. 8.5 seconds were spent for computing the scale-
space representation and 61 second for the actual streamline integration. The
numbers for the feature flow field based method of Sec 5.1 are comparable and
identical results are produced for both methods. Figure 2a shows the result of
this computation. A gray ramp is applied to indicate the scale-space lifetime
of the critical points. Points shown in dark gray are very short lived while
light colored points could be traced over the whole scale interval. The actual
scale-space traces of the critical points are not shown in the images, since

(a) (b)

Fig. 1. A random generated test dataset. (a) Original data. (b) Data with noise
added (colorplate on p. 204).
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(a) (b)

Fig. 2. The same test dataset as shown in Fig. 1. (a) Scale-space lifetime of the
critical points in the interval τ = 0 . . . 1.5 computed by our algorithm. Bright color
indicates stable critical points, while dark colored points are very short-lived. (b)
Critical points filtered by their lifetime. Only points that persist at τmin = 1.0 are
shown (colorplate on p. 204).

they do not provide much of additional information. They may only serve to
identify pairs of critical points that participate in annihilation events.

Last, in Fig. 2b the result of filtering the points according to their scale-
space lifetime is shown. Only points that have a lifetime larger than τmin = 1.0
are shown. Note that the streamlines have been integrated starting from the
remaining points in the original noisy field not in a smoothed representation.
The same holds for the classification of the critical points. Of course, it is
not possible to recover the original topology of the noise-free dataset but the
overall behavior is much more apparent.

As a second example we present the application of the scale-space tracking
to a real CFD dataset – a simulation of the flow past a circular cylinder. There
are 141 critical points that can be detected in this dataset, which account
for the complex flow topology in the wake behind the cylinder. Figure 3a
shows the critical points detected in the flow field. Only the lower half of
the 1803 data set is shown in this image since there were no critical points
detected in the upper part of the dataset. For both images of Fig. 3 the
same color scheme as for those in Fig. 1 has been used. Computing the scale-
space lifetime of the critical points for this dataset took approximately 4:58
minutes using the same machine as for the first example. Since this dataset
is significantly larger than the artificial one used in the previous example
and also contains far less critical points, most of the time (4:34 minutes) was
spent for computing the scale-space flow field representation while for the
relatively small number of critical points the scale-space tracking could be
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(a) (b)

Fig. 3. The flow behind a spherical cylinder. (a) Critical points on the finest scale,
i.e. the original flow field. (b) Scale-space lifetime of the critical points in the interval
τ = 0 . . . 10 is computed by our algorithm. Critical points were filtered by their
lifetime (τmin = 6.3) and the remaining points have been used to seed stream lines
in their vicinity.

done in only 24 seconds. Seeding streamlines only around critical points that
can be tracked for τ ≥ 6.3 does significantly reduce the amount of streamlines
that are displayed and accordingly the problems with visual clutter, but yet
one can still clearly discern the overall behavior of the flow. Again, both
tracking approaches produce comparable results.

7 Conclusion and Future Work

In this paper we have presented a first approach on a tracking algorithm
for vector field singularities in scale-space that uses explicit knowledge of the
evolution of the field along the scale-axis. Our approach is based on streamline
integration in a derived vector field that allows us to track the evolution of
first-order critical points in linear scale-space. Both a feature flow field or
the gradient of the level-set implicitly defined by the scale-space curve of a
critical point have been used to define that field. Furthermore, we proposed a
predictor-corrector method to deal with numerical problems that arise when
computing vector field derivatives in a noisy dataset. Last, results have been
shown for both artificial test datasets and real CFD data.

Although, the use of the linear scale-space might not be the final answer
for building a scale representation of a flow field, we, nevertheless, think that
scale-space techniques are a promising way to deal with noisy and highly
complex flow datasets. However, a rigorous analysis of the behavior of critical
points of 3D vector fields under Gaussian blurring, similar to the work on
scalar fields by Kuijper [11], has still to be done.

In future work we want to extend our current implementation to use
unstructured grids and other multi-scale analysis schemes. Especially the
use of wavelet based smoothing seems to be a promising way to overcome
the inherent problem that the linear scale-space representation does not
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necessarily imply topology simplification. As other possible extensions, we like
to generalize the scale-space tracking algorithm also to unsteady flows, i.e. to
track the singularities not only over scale but simultaneously over time. This
involves the problem of how to compute and interpret the time-surfaces of crit-
ical curves in a five-dimensional space. However, this problem is quite similar
to the problem of tracking of other extended vector field features, for example
vortices. Another general issue in topological analysis based on critical points
is the conceptual problem of critical points to be not Galileian-invariant. That
means important features can be missed. Therefore we want to look into recent
approaches for the treatment of the Galileian-invariance problem [16, 27] in
order to guarantee a complete seed point set for the tracking.
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Summary. Feature Flow Fields (FFF) are an approach to tracking features in a
time-dependent vector field v. The main idea is to introduce an appropriate vector
field f in space-time, such that a feature tracking in v corresponds to a stream line
integration in f . The original approach of feature tracking using FFF requested that
the complete vector field v is kept in main memory. Especially for 3D vector fields
this may be a serious restriction, since the size of time-dependent vector fields can
exceed the main memory of even high-end workstations. We present a modification
of the FFF-based tracking approach which works in an out-of-core manner. For
an important subclass of all possible FFF-based tracking algorithms we ensure to
analyze the data in one sweep while holding only two consecutive time steps in main
memory at once. Similar to the original approach, the new modification guarantees
the complete feature skeleton to be found. We apply the approach to tracking of
critical points in 2D and 3D time-dependent vector fields.

1 Introduction

The resolution of numerical simulations as well as experimental measurements
like PIV have evolved significantly in the last years. The challenge of under-
standing the intricate flow structures within their massive result data sets has
made automatic feature extraction schemes popular. Feature-based analysis
can be seen as a kind of data reduction since it brings the raw data mass down
to a small number of graphical primitives that ought to give insight into the
flow structures. While the outcome of most feature extraction algorithms has
a rather small memory footprint, the input often exceeds the main memory
of high-end workstations. This is especially true for 3D time-dependent data.
Thus, feature extraction algorithms should be compatible to an out-of-core
data handling, i.e., treating only a small part of the input at once.

A number of algorithms already work in an out-of-core manner. Tricoche
et al. [16] and Garth et al. [3] show how to track critical points in piecewise
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linear vector fields by analyzing the data in one sweep and holding only two
time slices at once. Their approaches exploit the linearity of non-changing
piecewise linear grids and are probably the best way to go for this important
class of data.

Another way of tracking features which are defined by the parallel vector
operator [8] is introduced in [1]. This approach is based on a 4-dimensional
isosurface extraction – and therefore compatible to out-of-core data handling.

Theisel et al. [13] propose a general approach to feature tracking by cap-
turing the temporal evolution of a feature using a stream object4 integration
in a derived vector field – the feature flow field (FFF). This basic idea has
been applied not only to tracking critical points [13] and derived applications
like simplification [11] and comparison [12], but also to extracting Galilean
invariant vortex core lines [10] and tracking closed stream lines [14]. The FFF
approach is independent of an underlying grid, i.e., it is entirely based on
the description of the data as a continuous field. At first glance, this concept
seems to contradict the principle of out-of-core data handling: treating only a
small part of the data at once. In this paper we show that those two concepts
do not contradict. In fact, we show how all FFF-based tracking algorithms
can be formulated in an out-of-core manner. This will be used to re-formulate
the algorithm for tracking critical points from [13] to make it compatible to
out-of-core data handling. The resulting algorithm enables to analyze the data
in one sweep while holding only two time slices at once.

The rest of the paper is organized as follows: section 2 surveys the FFF app-
roach as described in [13] and the basics of out-of-core data handling. Section
3 describes the new out-of-core version of the FFF approach. Section 4 applies
this knowledge to FFF-based tracking of critical points, while conclusions are
drawn in section 5.

2 Background and Problem

In this section we briefly discuss the basics behind out-of-core data handling
and feature flow fields. While their main ideas are not antagonistic, a typical
algorithm based on FFF is incompatible with an out-of-core data handling.

2.1 Out-Of-Core Data Handling

Out-of-core refers to the data handling strategy of algorithms, which process
data too large to fit into main memory. Thus, only parts of the data can
be loaded at once and acted upon. Since loading the data from a mass stor-
age device is very time-consuming, the number of those operations should
be reduced to a minimum. This restriction must already be considered when
formulating the algorithm.

4 This refers to a stream line, stream surface, stream volume, etc. – depending on
the dimensionality of the feature.



Feature Flow Fields in Out-of-Core Settings 53

current
position

previously loaded

to be loaded

currently loaded

t

x
(a) Block-wise random access.

previously loaded

to be loaded

currently loaded

t

x
(b) Slice-wise sequential

access.

Fig. 1. Out-of-core data handling strategies.

There are different types of out-of-core data handling strategies. We just
want to mention two here:

• Block-wise random access: Data is loaded in blocks of same size. All
dimensions are treated equally. The loaded data block with the oldest
access time is subject to be substituted with the next block to be loaded.
An application for this access pattern is the integration of a path line,
which touches only parts of the domain. Figure 1(a) gives an illustration.

• Slice-wise sequential access: Data is loaded in slices, i.e., one dimension is
fixed for every slice. Slices will be loaded as a fixed sequence in ascending
or descending order. The procedure to load all slices from first to last is
called a sweep. A very common approach is the usage of time slices, since
a number of data sets are organized such that each time step is given as a
separate file. An application for this access pattern is the extraction of fold
bifurcations, where all parts of the domain need to be examined. Figure
1(b) gives an illustration.

Feature extraction algorithms usually do not have a-priori knowledge about
the location of the feature and therefore, they need to examine the whole
domain. A slice-wise sequential access strategy seems to be even more prefer-
able, if the data is already given in time slices. For the rest of this paper we
consider this data handling strategy only. Note, that by loading two consec-
utive time steps ti and ti+1 and applying a linear interpolation in between
them, we obtain the time-dependent field in that time interval.

2.2 Feature Flow Fields

The concept of feature flow fields was first introduced in [13]. It follows a
rather generic idea:

Consider an arbitrary point x known to be part of a feature in a (scalar,
vector, tensor) field v. A feature flow field f is a well-defined vector field at
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Fig. 2. Feature tracking using feature flow fields. Features at ti+1 can be observed
by intersecting these stream lines with the time plane t = ti+1.

x pointing into the direction where the feature continues. Thus, starting a
stream line integration of f at x yields a curve where all points on this curve
are part of the same feature as x.

FFF have been used for a number of applications, but mainly for tracking
features in time-dependent fields. Here, f describes the dynamic behavior of
the features of v: for a time-dependent field v with n spatial dimensions, f

is a vector field IRn+1 → IRn+1. The temporal evolution of the features of v

is described by the stream lines of f . In fact, tracking features over time is
now carried out by tracing stream lines. The location of a feature at a certain
time ti can be obtained by intersecting the stream lines with the time plane
ti. Figure 2(a) gives an illustration.

Depending on the dimensionality of the feature at a certain time ti, the
feature tracking corresponds to a stream line, stream surface or even higher-
dimensional stream object integration. The stream lines of f can also be used
to detect events of the features:

• A birth event occurs at a time tb, if the feature at this time is only des-
cribed by one point of a stream object of f , and all stream lines in the
neighborhood of this point are in the half-space t ≥ tb.

• A split occurs at a time ts, if one of the stream lines of f describing the
feature touches the plane t = ts “from above”.

• An exit event occurs if all stream lines of f describing the feature leave the
spatial domain.

The conditions for the reverse events (death, merge, entry) can be formulated
in a similar way. Figure 2(b) illustrates the different events.

Integrating the stream lines of f in forward direction does not necessarily
mean to move forward in time. In general, those directions are unrelated. The
direction in time may even change along the same stream line as it is shown in
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figure 2(b). This situation is always linked to either a birth and a split event,
or a merge and a death event.

Even though we treated the concept of FFF in a rather abstract way, we
can already formulate the basics of an algorithm to track all occurrences of a
certain feature in a time-dependent field:

Algorithm 1 General FFF-based tracking

1. Get seeding points/lines/structures such that the stream object integration of f
guarantees to cover all paths of all features of v.

2. From the seeding structures: apply a numerical stream object integration of f in
both forward and/or backward direction until it leaves the space-time domain.

3. If necessary: remove multiply integrated stream objects.

Algorithm 1 is more or less an abstract template for a specific FFF-based
tracking algorithm like e.g. tracking of critical points. However, it shows a
vital contradiction to out-of-core data handling: it gives no guarantee on how
the data is processed. We would end up loading different data slices more than
once, since both forward and backward integration of f are allowed, and as
already said, the direction in time may even change along the same stream
line.

3 Feature Flow Fields and Out-Of-Core Algorithms

In this section we want to modify algorithm 1 such that it becomes compat-
ible to out-of-core data handling. This will allow to formulate all FFF-based
algorithms in an out-of-core manner. Before we formulate the algorithm, we
collect some concepts and properties of the FFF integration on which the new
algorithm is based upon.

3.1 Direction of Integration Regarding Time

The FFF approach is based on a stream line integration of f . Given a starting
point x0 = (xs

0, t0), f can be integrated in forward or backward direction.
Assuming an Euler integration5, the forward integration goes to the next
point x1 = x0 + ε f(x0), while the backward integration gives the next point
x1 = x0−ε f(x0) for a certain small positive ε. In addition to this distinction of
the integration orientation, we can also distinguish a t-forward and t-backward
orientation. We call an integration t-forward if the next point x1 = (xs

1, t1) is
ahead in time, i.e., if t1 > t0. For t1 < t0, we have a t-backward integration.
This property can be decided locally for a point x0 by looking at the sign of
the t-component of f(x0), or if this component is zero, by looking at the sign
of the partial derivative ft(x0). Figure 3 illustrates some of these cases.

5 For the actual integration we used a fourth order Runge Kutta method, the Euler
integration is only for explaining the concepts.
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3.2 Classification of Seeding Structures

The FFF approach is also based on finding appropriate starting structures
for the integration. The definition of a complete set of seeding structures is
up to the specific FFF-based application. However, we can give the following
classification of those structures:

• t-forward structures: all integrations started here are t-forward only.
• t-backward structures: all integrations started here are t-backward only.
• intermediate structures: a t-forward and a t-backward integration will

be started here.

This classification is independent of a specific FFF-based application,
though it might be that in certain cases a class of structures is empty, e.g. there
are only t-forward and intermediate structures but no t-backward structures.

As already discussed in section 2.2, a t-forward integration may change
to a t-backward integration even along the same stream line. This situation
is always linked to either a birth or a death event, which perfectly fit into
the classification: a birth event is a t-forward point, and a death event a
t-backward point.

3.3 Out-Of-Core FFF-based Tracking Algorithm

The split of the integration into different directions regarding the time is the
conceptual key to an out-of-core version of algorithm 1:

Algorithm 2 Out-of-core FFF-based tracking

1. Load the data in a slice-wise sequential manner from tmin to tmax. For each
time interval between the time slices ti and ti+1:

a) Get seeding structures such that the stream object integration of f guarantees
to cover all paths of all features of v.

b) Classify the seeding structures into t-forward, t-backward and intermediate
structures.

c) Start a t-forward integration at all t-forward and intermediate structures.
Stop the integration, if
i. the spatial domain was left.
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ii. the temporal domain of the time interval was left, i.e., the integration
reached ti+1. Add the result of this integration to the list of t-forward
structures for the next time interval.

iii. a death event was reached. If this point will not be reached by any other
t-forward integration, add the result to the list of t-backward structures.

2. If the list of t-backward structures is non-empty: load the data in a slice-wise
sequential manner from tmax to tmin. For each time interval between the time
slices ti and ti−1 start a t-backward integration at all t-backward and interme-
diate structures similar as above.

3. Repeat the stream object integrations of steps 1 and 2 until the lists of seeding
structures are empty.

The basic idea of this algorithm template is to ensure that the direction
of loading the data coincides with the direction of integration, i.e., if we are
loading the data from tmin to tmax then we are integrating t-forward only,
and the other way around. This alone does not sound very effective, since the
data might been loaded more than once, possibly even an unknown number
of times.

This changes, if we take a closer look at the t-forward structures, i.e., all
points where only a t-forward integration is intended. At those points the
features appear for the first time. Examples are entry points, birth events or
all occurrences of the feature at tmin. If we can find all t-forward structures
while doing the first sweep through the data, then the whole feature skeleton
can be extracted with this one sweep. This is always fulfilled, if all types of
t-forward structures are locally defined, i.e., they can be extracted by a local
analysis. Under these prerequisites, we can reformulate algorithm 2 and obtain
the following algorithmic template:

Algorithm 3 One-sweep Out-of-core FFF-based tracking

1. For each time interval [ti, ti+1] from tmin to tmax:
a) Extract all t-forward seeding structures needed to cover all paths of all fea-

tures of v.
b) Apply a t-forward integration starting at those structures until

i. the spatial domain was left.
ii. the temporal domain of the time interval was left, i.e., the integration

reached ti+1. Add the result of this integration to the list of t-forward
structures for the next time interval.

iii. a death event was reached.

Algorithm 3 ensures that every path of a feature is integrated only once.
Thus, a removal of multiply integrated stream objects is not needed anymore.
In comparison to algorithms 1 and 2 it is perfectly fitted for large data sets:
it reads only parts of the data and each part only once.

4 Application to Tracking of Critical Points

Critical points, i.e. isolated points with a vanishing flow, are perhaps the
most important topological feature of vector fields. For static fields, their
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extraction and classification is well-understood both in the 2D [6] and the 3D
case [17]. Critical points also serve as the starting points of certain separatri-
ces, i.e. stream lines/surfaces which divide the field into areas of different flow
behavior. Topological methods have not only been developed for visualization
purposes [4, 5], but have also been applied to simplify [2, 15], smooth [18],
and compress [11, 7] vector fields. A thorough overview can be found in [9].

Considering a stream line oriented topology of time-dependent vector
fields, critical points smoothly change their location and orientation over time.
In addition, certain bifurcations of critical points may occur. To capture the
topological behavior of time-dependent vector fields, it is necessary to capture
the temporal behavior of the critical points.

Theisel et al. introduced in [13] a FFF-based approach to track critical
points, which matches algorithm 1. In order to track critical points in an
effective out-of-core manner using algorithm 3 we need to find the complete
set of t-forward points, i.e., all points in space-time where a critical point
appears for the first time. This will be done in section 4.2. But before that we
discuss the definition of the feature flow field f itself.

4.1 FFF for Tracking Critical Points

We first consider tracking critical points in a 2D time-dependent vector field,
which is given as

v(x, y, t) =

(

u(x, y, t)
v(x, y, t)

)

(1)

in the 3D space-time domain D = [xmin, xmax] × [ymin, ymax] × [tmin, tmax].
We can construct a 3D vector field f in D with the following properties: for
any two points x0 and x1 on a stream line of f , it holds v(x0) = v(x1). This
means that a stream line of f connects locations with the same values of v.
Figure 4 gives an illustration. In particular, if x0 is a critical point in v, then
the stream line of f describes the path of the critical point over time. To get
f , we search for the direction in space-time in which both components of v

locally remain constant. This is the direction perpendicular to the gradients
of the two components of v. We get

f(x, y, t) = grad(u) × grad(v) =

⎛

⎝

ux

uy

ut

⎞

⎠ ×

⎛

⎝

vx

vy

vt

⎞

⎠ =

⎛

⎝

det(vy,vt)
det(vt,vx)
det(vx,vy)

⎞

⎠ . (2)

The FFF approach for 3D vector fields is a straightforward extension of
the 2D case. Given the 3D time-dependent vector field

v(x, y, z, t) =

⎛

⎝

u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

⎞

⎠ (3)
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in the 4D space-time domain D = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]×
[tmin, tmax], the 4D FFF f is defined by the conditions

f ⊥ grad(u) = (ux, uy, uz, ut)
T , f ⊥ grad(v) , f ⊥ grad(w).

This gives a unique solution for f (except for scaling)6

f(x, y, z, t) =

⎛

⎜

⎜

⎝

+ det(vy,vz,vt)
−det(vz,vt,vx)
+ det(vt,vx,vy)
−det(vx,vy,vz)

⎞

⎟

⎟

⎠

. (4)

4.2 Complete Set of t-forward Points

Theisel and Weinkauf showed in [14] that two classes of seeding points guar-
antee that all paths of critical points are captured: the intersections of the
paths with the domain boundaries, and fold bifurcations. However, they did
not distinguish between t-forward and t-backward points. We are going to do
this here in order to find the complete set of t-forward points.

To find all intersections with the boundaries, we have to solve

v(x, y, tmin) = (0, 0)T and v(x, y, tmax) = (0, 0)T for the unknowns x, y,

v(x, ymin, t) = (0, 0)T and v(x, ymax, t) = (0, 0)T for the unknowns x, t,

v(xmin, y, t) = (0, 0)T and v(xmax, y, t) = (0, 0)T for the unknowns y, t.

Each of the 6 solutions turns out to be a simple extraction of critical points
of a 2D (steady) vector field. We can make the following distinction:

• Bottom intersection points are intersections with the plane t = tmin

• Top intersection points are intersections with the plane t = tmax

• Side intersection points are intersections with the plane x = xmin, x =
xmax, y = ymin, or y = ymax respectively.

Side intersection points can be further classified into entry and exit points. At
an entry point, a t-forward integration of f goes into D, while at an exit point

6 Note that the formulation of f(x, y, z, t) in [13] contains an error: the alternating
signs of the components are missing.
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Fig. 5. a) intersections of the paths of critical points
with the domain of D: bottom intersection (x1), exit
(x2) and entry (x3) side intersection, top intersection
(x2); b) example consisting of a bottom intersection
(x1), exit (x2) and entry (x3) side intersection, death
(x4) and birth (x5) fold bifurcation, top intersection
(x6): the paths of critical points consist of 4 segments
which are integrated t-forward from→to: x1 → x2,
x3 → x4, x5 → x4, x5 → x6.
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Fig. 6. Classifying fold bifurcations by the last component of Jf (x) · f(x): a) birth
event; b) death event.

a t-forward integration leaves D. Figure 5a illustrates the different kinds of
intersection points with the boundary of D. It is easy to see that only bottom
and entry side intersections are t-forward points.

To detect fold bifurcations inside D, we search for locations x with

[ v(x) = (0, 0)T , det(Jv(x)) = 0 ] (5)

where Jv is the Jabcobian matrix of v. (2) shows that the second condition of
(5) ensures that the last component of f vanishes, i.e., that f is parallel to the t-
axis. To solve (5), we use a numerical approach similar to extracting isolated
critical points in 3D vector fields. There are two kinds of fold bifurcations:
birth and death events. To distinguish them, we consider the last component
of Jf (x) · f(x) at the fold bifurcation. If this component is positive, we have
a birth bifurcation; if it is negative, a death bifurcation is present. Figure
6 illustrates this. It is easy to see that only birth bifurcations are t-forward
points.

For 3D time-dependent vector fields, the extraction of the seeding points
follows the same ideas. Boundary intersections are found as isolated critical
points of the 3D (steady) vector fields at the space-time domain boundary.
Again, only bottom and entry side intersections are of interest. Fold bifurca-
tions are the solutions of
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(a) At ti. (b) Entries. (c) Births.

(d) Integration. (e) At ti+1.

Fig. 7. Application of algorithm 3: critical points tracked in one sweep (colorplate
on p. 205).

[ v(x) = (0, 0, 0)T , det(Jv(x)) = 0 ] (6)

which corresponds to numerically finding isolated critical points in 4D vector
fields. The distinction between births and deaths follows the 2D case.

We have found all points in space-time where a critical point can appear for
the first time: bottom and entry side intersections as well as birth bifurcations.
They can all be extracted using a local analysis. All prerequisites for algorithm
3 are fulfilled. Thus, we are now able to track critical points in 2D and 3D
time-dependent vector fields in an effective out-of-core manner: in one sweep
and by loading only two slices at once. We applied this algorithm to a random
2D time-dependent data set. Random vector fields are useful tools for a proof-
of-concept of topological methods, since they contain a maximal amount of
topological information. Figure 7 shows the execution of algorithm 3 between
two consecutive time steps ti and ti+1.

Figure 8 shows the visualization of a vector field describing the flow over
a 2D cavity. This data set was kindly provided by Mo Samimy and Edgar
Caraballo (both Ohio State University) as well as Bernd R. Noack and Ivanka
Pelivan (both TU Berlin). 1000 time steps have been simulated using the com-
pressible Navier-Stokes equations; it exhibits a non-zero divergence inside the
cavity, while outside the cavity the flow tends to have a quasi-divergence-free
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(a) LIC planes: 10 sections. (b) Tracked critical points.

Fig. 8. Cavity data set consisting of 1000 time steps. Algorithm 3 has been applied
onto the 10 depicted sections consisting of 100 time steps each. (Colorplate on p. 205)

behavior. Instead of loading only two time steps at once, the data set has been
divided into 10 sections each consisting of 100 time steps (Figure 8(a)). Each
section fits easily into main memory and has been treated according to algo-
rithm 3. This approach reduced the overhead introduced by the out-of-core
handling. The computation time for this data set was 20 minutes. The topo-
logical structures visualized in Figure 8(b) elucidate the quasi-periodic nature
of the flow. The most dominating topological structures originate in or near
the boundaries of the cavity itself. The quasi-divergence-free behavior outside
the cavity is affirmed by the fact that a high number of Hopf bifurcations has
been found in this area.

5 Conclusions

In this paper we showed how all FFF-based tracking algorithms can be for-
mulated in an out-of-core manner. This has been used to re-formulate the
algorithm for tracking critical points from [13] to make it compatible to out-
of-core data handling. The resulting algorithm enables to analyze the data
in one sweep while holding only two time slices at once. For future work, we
intend to apply algorithm 3 to other types of features, especially to vortex
core lines.
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Summary. Streamline predicates are simply boolean functions on the set of all
streamlines in a flow field. A characteristic set of a streamline predicate is the set of
all streamlines fulfilling the predicate. If streamline predicates are defined based on
asymptotic behavior, the characteristic sets become α- or ω-basins. Using boolean
algebra on the streamline predicates, we obtain the usual flow topology. We show
that these considerations allow us to generalize flow topology to flow structure def-
initions. These flow structure definitions can be flexibly adapted to typical analysis
tasks arising in flow studies and taylored to the users’ needs

1 Introduction

Flow topology has been developed into a tool that gives information about
the course of streamlines in steady two and three-dimensional velocity vector
fields. Basically, it clusters streamlines with similar behavior. The clustering is
based on a precise definition, namely the basins of dynamical system theory.
Therefore, each cluster can be interpreted clearly by the user. This is one
of the advantages of topology compared to other clustering methods, like
typical statistical clustering [6], [16], anisotropic diffusion [13] or an algebraic
multigrid approach [5].

But it must be said that there are also limitations. One drawback is miss-
ing Galilean invariance. Topology changes between a fixed observer and an
observer moving with constant velocity (because the streamlines change their
course). We think that this problem can be solved in many cases by simply
taking the given observer of the data. This is useful in typical flows around a
single airplane, train, or other obstacle. It is also an obvious choice for flows
inside, e.g., a building, cabin or turbine. In more complex situations, we sug-
gest the use of the localized flow approach of Wiebel et al. [22] that allows
to remove any flows crossing the outer boundary and is Galilean invariant
without creating flow through solid boundaries like the popular method of
removing the average flow.
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Another, in our eyes more important, limitation of topology is that it may
miss relevant aspects of streamline behavior. The most important example
are vortices (areas of high vorticity) in three-dimensional flows. Quite often,
topology groups streamlines obviously entering the vortex and streamlines
not passing the vortex region into the same group because they belong to
the same basin in the sense of dynamical system theory. We give a realistic
example in the results section. Similar problems can arise with streamlines
crossing shocks or entering shear flow areas. Since engineers and scientists
often like to distinguish streamlines entering and not entering a vortex, we
suggest a solution in this paper that refines topology in these cases.

There is a further limitation of steady flow topology that can hinder
understanding: topology does not depend on absolute velocity. Topology con-
centrates on the set of points visited by a streamline but the visit time does
not play a role. But sometimes, engineers are interested only in fast dynamics
or the time a particle resides near a surface. We will show that these concepts
can be easily expressed by streamline predicates and could therefore be used
to enrich topology.

2 Related Work

Of course, this paper builds on quite a large number of publications in flow
topology, especially [7, 9, 14, 15, 23, 18, 10, 17, 21, 3]. Besides, we have been
also influenced by feature-based visualization [12], especially the early work of
van Walsum et al. [19], the work on vortex detection by Peikert et al. [11, 1]
and the feature definition language of Doleisch and Hauser [2]. In the previous
section, we have already mentioned relevant articles on cluster-based flow
visualization.

3 Streamline Predicates

We concentrate our consideration on steady three-dimensional flows. Of
course, the planar case is quite similar. Let D ⊂ R3 be the domain. A vector

field on D is a Lipschitz continuous map

v : D → R3,

x �→ v(x).

A streamline of v passing through the point a ∈ D is a continuous map

sa : Ja → D

where 0 ∈ Ja ⊂ R is an interval of maximal extend and sa fulfills the condi-
tions
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sa(0) = a,

ṡa(τ) = v(sa(τ)) ∀τ ∈ Ja.

Since we are interested in the set of streamlines, we identify two streamlines
sa ≃ sb if there is a τ0 ∈ R such that

sa(τ) = sb(τ + τ0)

and note that sa ≃ sb if there are τ ∈ Ja, τ ′ ∈ Jb with sa(τ) = sb(τ
′) due to

the existence and uniqueness theorem for streamlines. We define the set of all
streamlines as the set S of all equivalence classes.

Let sλ : Jλ → D be a representive of Sλ ∈ S. Every other representive
could then be written as s′λ : Jλ + τ0 → D, s′λ(τ + τ0) = sλ(τ). Since the
set of points sλ(Jλ) (the course of the streamline) is the same for equivalent
streamlines, we can define it as Sλ(Jλ) := sλ(Jλ). Then, we have a partition
of D =

⋃

Sλ∈S Sλ(Jλ), since the equivalence classes are mutually disjoint.

A streamline predicate is defined as a map

SP : S → { TRUE,FALSE },
S �→ SP (S).

i.e. a boolean map on the streamlines that does not depend on the absolute
time at only one position. It may nevertheless depend on relative time between
different positions along the streamline.

The characteristic set of a streamline predicate is defined as

CSP :=
⋃

Sλ∈S, SP (S)=TRUE

Sλ(Jλ) ⊂ D.

4 Flow Structure

Our goal in this paper is a definition of flow structure that meets the needs
of users in all cases and extends flow topology. A flow structure is considered
a partition of the flow into disjunct clusters. We suggest a partition based on
streamlines. This agrees with the approach taken by flow topology. Since we
want to have a general grouping mechanism, we start with a finite set G of
streamline predicates

G = { SPλ | λ ∈ Γ }
which is chosen such that their characteristic sets are disjoint, i.e.

CSPλ
∩ CSPµ

= ∅ ∀λ, µ ∈ Γ.
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As flow structure, we define the partition of

S =
⋃

CSPλ

where we assume that every streamline fulfills exactly one streamline predi-
cate. If G creates only a partial partition of S, we add the predicate

SP0 : S → { TRUE,FALSE },
S �→

∧

λ∈Γ

{ SPλ(S) = FALSE }.

In the next section we show that the usual flow topology is a special flow
structure.

5 Flow Topology as Flow Structure

Following Scheuermann et al. [15], we define topology using α- and ω-limit
sets. For a streamline s, we define its α-limit set A(s) as

A(s) := { p ∈ R3 | ∃(tn)∞n=0 ⊂ R, tn → −∞, lim
n→∞

s(tn) = p }

and its ω-limit set as

Ω(s) := { p ∈ R3 | ∃(tn)∞n=0 ⊂ R, tn → ∞, lim
n→∞

s(tn) = p }.

If a streamline enters or leaves the domain D at the boundary ∂D, we define
the boundary ∂D as α- resp. ω-limit set.

The union of all streamlines with α-limit set A is called the α-basin of

A

Bα(A) = { a ∈ D | A(sa) = A }.
Similarly, the union of all streamlines with ω-limit set Ω is called the ω-basin

of Ω
Bω(Ω) = { a ∈ D | Ω(sa) = Ω }.

If Ai, i ∈ I, and Ωj , j ∈ J, denote all α- and ω-limit sets in D and Zk(M)
denotes the connected components of M ⊂ D, the flow topology of v can
be described as the partition

D =
⋃

i,j,k

Zk(Bα(Ai) ∩ Bω(Ωj)).

In our framework, we use the following predicates

SPAi
: S → { TRUE,FALSE }, i ∈ I,

S �→ A(S) = Ai.
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SPΩj
: S → { TRUE,FALSE }, j ∈ J,

S �→ Ω(S) = Ωj

since α- and ω-basins are the same for equivalent streamlines. We get the
basins of the topology as characteristic sets, i.e.

CSPAi
= Bα(Ai) CSPΩi

= Bω(Ωi).

Therefore, we can use the set of predicates

GTOP = { SPAi
AND SPΩj

| i ∈ I, j ∈ J},

as definition of a flow structure that coincides with flow topology.

6 Refinement of Flow Topology

Looking at section 5, we can ask what is gained by using streamline predicates
and general flow structures compared to flow topology. The answer is a wide
flexibility because there is no reason to choose exactly the predicates used in
the previous section.

We want to show this flexibility using an important example in practice.
A user studies steady flow around an obstacle (car, airplane, train, sphere,
ellipsoid, house, ...) and is interested in vortices. For the flow topology, crit-
ical points, closed streamlines, and boundary switch points are determined.
As next step, separating surfaces and isolated streamlines starting at saddle
points are computed. Including an analysis of the boundary of the obstacle,
it is likely that even for vortices close to a typical model like Vatistas [20],
the vortex will show up only as a single streamline. Streamlines obviously
rotating around this line and streamlines not rotating around the line will be
in the same topological component. At this point, streamline predicates can
show their strength. In a first step, the user can apply any vortex detection
method, e.g. the λ2-method of Jeong and Hussein [8], and define the extend
of vortices. In a second step, he defines a streamline predicate for each vortex
that decides if the streamline crosses the vortex region. The third step creates
a flow structure using all and-combinations of the SPAi

and SPΩj
of predi-

cates from topology with the vortex predicates and their opposite predicates.
In this way, streamlines entering the vortex are distinguished from streamlines
missing it.

Of course, whenever the user defines interests in the behavior of stream-
lines with streamline predicates, a similar solution is possible. Therefore, flow
structure based on streamline predicates allows a refinement of flow topology
tailored to the users needs.
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7 Results

In the remainder of this paper we want to present three examples of stream-
line predicates addressing questions which could not be answered with flow
topology methods. The dataset we use corresponds to a single time step of an
unsteady simulation of the German train ICE. The train travels at a velocity
of about 250 km/h with a wind blowing from the side at an angle of 30 deg-
rees. The wind causes vortices to form on the lee side of the train, creating
a drop in pressure that has adverse effects on the trains track holding. For
our computations we choose a region of interest around the front wagon. To
represent the set of all streamlines S we choose a finite subset S̃. We use a
Cartesian grid in the area [−15000, 45000]× [−15000, 25000]× [350, 5500] with
200 units as spacing in all directions as starting positions for the streamlines
in S̃. This is a set of more than 1.56 million streamlines that fills the space
around the train in a dense manner.

The first predicate is exemplary for streamline predicates using time in-
formation of steady vector fields (i.e. absolute velocity). We are interested in
parts of the flow which have a direct influence on the surface (and immediate
neighborhood) of the train. Especially particles residing a “long” time near
the surface are of interest. Of course one could use a fixed minimum resi-
dence time given by some physical considerations for a given application area.
However we take another approach and calculate the residence time for a rep-
resentative set of streamlines to get an idea of a meaningful value. From the
resulting distribution we take the value of the 99-% quantile as minimum res-
idence time tmin. For the required minimum distance calculation we compute
a distance field on the positions of the dataset grid thus reducing minimum
distance calculations to a simple interpolation in the distance field at a ques-
tioned position. Fig. 1 shows the isosurface of the distance field for an isovalue
of 20 [cm] (which we use as maximal neighborhood distance for our computa-
tions). We define the following general streamline predicate (instantiated with
the previous values):

A − S̃ stays a minimum time tmin in the neighborhood of an object

The resulting flow structure GSurface = { A, Ā } is of course very simple, but
will get more complex if more than one object is taken into account. Fig. 1
shows the boundary of the resulting characteristic set A. There is one part of
the flow hitting the train on the luv side and flowing around the train and a
second part hitting the head of the train and being pushed towards the trains
surface (lee side).

In the second example we want to study the deviation of the flow from
the principal input flow direction thus getting the most turbulent parts of the
flow. To compute the deviation we integrate the difference between the tangent
vector direction and the main inflow direction along the streamlines. Again we
sample a representative set of streamlines, compute the deviation and take the
99-% quantile as minimum deviation dmin. We define the streamline predicate:
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D − Deviation ofS̃ from principal direction is greater than dmin

Fig. 2 shows the boundary of the resulting characterist set D. One can see
the flow that deviates very strong from the principal inflow direction.

In the third example we examine the interplay between vortices in the flow
and the flow regions outside the vortex regions. Applicability of topological
methods is limited concerning this important application domain due to the
lack of singularities of the velocity field. We examine if a streamline enters
a certain vortex region in order to test if a streamline is influenced by a
vortex. Of course more precise and sophisticated methods are possible, but
we decide to hold computational effort down. To compute the vortex regions
we use the λ2-criteria of Jeong and Hussain [8]. The λ2-criteria does not
clearly separate vortex regions of different vortices, especially if they are close
together. To address this issue we compute as additional information about
the vortices the vortex core lines with the gravity-line-method explained in
[4]. The resulting vortex core lines are depicted in Fig. 3. Based upon the
vortex core lines we use a flood-fill algorithm to label each cell according to
which vortex region (if any) it belongs to. We start with the cells that inherit
a segment of a vortex core line computed in the previous step. Each cell is
examined for its λ2-value. To get a cell based λ2-value we assign to every cell
the mean of the λ2-values of its vertices. If the cell has a negative λ2-value
it gets the label of the respective vortex core. The labeled cells are put into
a priority queue with the most negative λ2-value on top. After the initial
feeding of the priority queue the neighboring cells of the top element of the
queue are examined for their λ2-values. If a neighboring cell with negative λ2-
value exists it gets the label of the top element. The top element is removed
afterwards and the labeled neighboring cells are inserted according to their
λ2-values. This strategy insures that regions with strong vortices grow faster.
The flood-fill algorithm is finished if the queue is empty. We now have vortex
cores with corresponding regions as a set of cells with the appropriate label.
The vortex regions of the train-dataset are depicted in Fig. 3. To compute
the following streamline predicates one has to check if a streamline enters the
cells of a vortex core.

We evaluate the three streamline predicates

R − S̃ enters the red vortex region

G − S̃ enters the green vortex region

B − S̃ enters the blue vortex region

For the flow structure, we need a set of streamline predicates with disjunct
characteristic sets filling up D. Unfortunately, the lack of singularities prohib-
ited to compute the SPAi

and SPΩj
predicates from topology. Additionally

attempts to start from the surface topology were not successful. We did not
examine boundary switch connectors as proposed in [21], but we assume that
they will not separate the vortices in a way one would expect it according to
the λ2-criteria. Therefore, we choose the set



72 Tobias Salzbrunn and Gerik Scheuermann

GV ortex = { R̄ ∧ Ḡ ∧ B̄, R̄ ∧ Ḡ ∧ B, R̄ ∧ G ∧ B̄,

R̄ ∧ G ∧ B, R ∧ Ḡ ∧ B̄, R ∧ Ḡ ∧ B,

R ∧ G ∧ B̄, R ∧ G ∧ B },

In this way, we separate streamlines by the vortex regions they enter. R̄ ∧
G ∧B, for example describes the streamlines entering the green and the blue
vortex region, but not entering the red vortex region. Fig. 4 and 5 show the
boundaries of all characteristic sets of GV ortex (except R̄ ∧ Ḡ ∧ B̄).

8 Conclusion

We introduced streamline predicates as a new tool to study flow datasets. We
showed that a flow structure based upon appropriate streamline predicates
comprises and refines flow topology. Applied to one realistic CFD-dataset,
streamline predicates proofed able to answer questions where conventional
topological methods could not be applied. Computing the streamlines and
the characteristic sets requires high computational effort for brute force
implementations. Further research should deal with increasing the efficiency
of the computations.
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Summary. This paper is the result of research and contemplation on the actual
usefulness of topology-based methods in real-world applications. We recapitulate
commonly used arguments in favor of topology-based approaches first to realign our
expectations with respect to the utilization of topology extraction in the context of
concrete applications. To illustrate some of our considerations, we take a closer look
at one specific example, i.e., the visual analysis of flow through a cooling jacket and
we report our respective experiences. After discussing the topology-based analy-
sis of the cooling jacket case, we contrast topology-based flow visualization with
an alternative approach, i.e., the interactive feature extraction for feature-based
visualization. Without generalizing just from the one concrete example scenario, we
still are able to conclude with some broader experiences which we have made in the
past and which seem to align well with the opinion of others in our field.

1 Introduction

Due to the rapidly increasing use of computational flow simulation and due
to the concurrently increasing size and complexity of flow simulation results,
there is a great demand for tools which help with the visual exploration, analy-
sis, and presentation of flow simulation results. A vast number of technological
approaches have been proposed during the last decades [9, 10, 12, 13].

Approaches range from the direct visualization of flow data, e.g., through
the use of color coding or hedgehog plots, through geometric and texture-
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based approaches, to the large class of solutions which utilize a significant
amount of computational analysis before the actual visual representation.

In this last class of flow visualization techniques, topology-based app-
roaches are very popular. Before visualization, the topological skeleton of the
flow is extracted. Critical points are identified and classified as well as critical
structures of higher order (e.g., cycles, invariant tori, etc.). Their critical struc-
tures are related to each other, separatrices are computed. The extraction of
the topological skeleton of flow data can be interpreted as the segmentation of
the flow into regions of coherent long-term behavior – all points within a flow
region which is bounded by critical structures and the associated separatrices
share a common long-term behavior (at least qualitatively).

Once the topological skeleton of a flow is extracted, it can be used for
visualization. In many cases [10], “only” the topological skeleton is visualized
(instead of the original data). This results in a number of advantages which
motivate the use of topology-based visualization techniques:

1. The extraction of a topological skeleton equals flow abstraction. Instead
of the original data, information about the flow data is visualized. Accord-
ingly, such a topology-based flow visualization provides information,
• which is not explicitly contained in the original data, but abstracted

from it, i.e., it is something additional to the original data,
• which is very informative in case the long-term evolution of the flow

under investigation is of significant interest, and
• which is extremely condensed as compared to the original data (a few

geometric structures convey a lot about the entire flow).
As a result, deeper insight is possible through the use of topology-based
flow visualization.

2. Due to the condensation as a result from the abstraction process technical
advantages are yielded. Rendering a concise topological skeleton instead
of millions of simulation cells allows for interactive and real-time render-
ing. It also reduces memory requirements significantly, i.e., the resource
requirements for visualization (not necessarily for the extraction process)
are drastically reduced, usually by several orders of magnitude.

These advantages motivate the use of topology-based methods for flow analysis
in practical applications. If insights are possible which otherwise are impossi-
ble or especially hard to derive, qualitative benefits may result in a practical
application. If interactive visualization becomes possible, even on customer
computers, quantitative benefits are possible.

However, we still cannot report a wide-spread establishment of topology-
based methods in real-world applications. This could be due to the fact that
still methods are considered to be relatively young (many from the last decade
only). However, other reasons for the fact that topology-based methods have
not (yet) conquered the offices of practitioners are possible, too. In the fol-
lowing, we aim at a better understanding of this situation by considering a
concrete example and by recapitulating additional experiences.
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(a) (b)

Fig. 1. (a) Cutting plane topology, revealing flow structures perpendicular to the
dominant longitudinal flow – within the cut planes, streamlines are depicted in blue,
longitudinal vortex cores (connected critical points) are shown in red. (b) Vortex
core line extraction using the method from Sujudi and Haimes [16] (colorplate on
p. 208).

2 Analyzing a Cooling Jacket, a sample from industry

To investigate the interesting question of why topology-based approaches are
no yet wide-spread, we first consider a concrete example from our cooperation
with AVL List GmbH in Graz, Austria, i.e., the flow through a cooling jacket
as employed for the cooling of car engines [8].

Figure 1(a) shows a visualization which is based on the extraction of topo-
logical features on cutting planes through the 3D cooling jacket flow [17]. Con-
nected critical points (in red) indicate vortical flow structures and additional
streamlines in the cutting planes (depicted in blue) add in more information
about the local flow structures3. The cutting planes are placed equidistantly
along one direction chosen by the user. With some a priori knowledge, this
approach indeed can provide useful insights into flow structures.

The application to the cooling jacket is straightforward in our case, since
interesting flow structures are expected to be orthogonal to the longitudinal
constituent. Positioning the cutting planes across the jacket, accordingly,
reveals a number of interesting features, most notably several vortices in the
head. They show up as sources and sinks on the cutting planes. The vortex
cores are indicated by the connection of the critical points across the planes.
This type of visualization (many line-type features in 3D) does not always
yield good spatial perceptibility. The use of tube-like primitives (as one stan-
dard solution to this problem) is prohibitive in our case due to the large

3 For original, high resolution images, please visit
http://www.VRVis.at/scivis/laramee/topology/
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Fig. 2. The major components of the flow through the cooling jacket include a lon-
gitudinal component and a transversal component in the upward-and-over direction
(from inlet to outlet).

number of lines both from a rendering performance point of view and because
of visual clutter. We have therefore employed a simple scheme to illuminate the
lines based on tangents, similar to the illuminated streamlines technique [15].
Nevertheless, this visualization still suffers from a lot of visual clutter and
increased structural complexity so that gaining new and deep insight into the
shown flow remains a challenge, even for experienced practitioners.

When comparing this topology-based visualization with a feature-based
visualization, e.g., the vortex core line extraction according to Sujudi and
Haimes [16] (see Fig. 1(b)), we can see that the feature-based approach gen-
erates less clutter (in this particular example), but still suffers from similar
perceptual problems. However, we also know from other applications, that
topology-based methods, when applied to real-world CFD simulation data,
often generate a lot of geometrical structure which seems to be more difficult
to control then results from feature-based approaches.

One way to address this complexity issue is to apply a topological simplifi-
cation algorithm after the extraction stage. This reduces the number of critical
points. Simplification algorithms of this kind often are fairly complicated to
implement. Additionally, the advantage of reducing the geometric complexity
of the visualization result comes at the price of an increased interpretation
load on the user side – often it is not truly intuitive to understand what the
simplification algorithm did (what structures have been removed and why).

3 An Engineer’s Point of View

The above mentioned challenges (complexity of implementation, challenging
interpretation) motivate an alternative approach to flow analysis, i.e., a more
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semantics-based, interactive, feature-extraction approach, guided by the engi-
neer. It’s been our experience that engineers analyzing CFD simulation data
do not necessarily think in terms of critical points within the flow or in terms
of a topological skeleton, but rather in terms of an ideal or optimal pattern
of flow they are trying to achieve.

As an example, Fig. 2(b) attempts to depict the ideal pattern of flow
through the cooling jacket geometry. A diagram similar to this one was shown
to us by a mechanical engineer when we were learning what flow the CFD
engineers were trying to create. There are two major components to the flow:
longitudinal and transversal. Longitudinal flow is oriented lengthwise along
the cooling jacket geometry whereas transversal flow is oriented in the upward-
and-over direction. Essentially, the ideal pattern of flow is the most efficient
path from inlet to outlet. By following the ideal path, the cooling jacket is
most effective in its job of transferring heat away from the engine block. Some
questions that the engineers designing the cooling jacket are interested in
answering are:

1. Are there any areas where the flow is moving in the wrong direction?
2. Where, in the cooling jacket, are the areas of stagnant flow?

The function of a cooling jacket is to transfer heat away from the engine as
efficiently as possible. Engineers are interested in learning where and how the
flow deviates from the ideal. Deviance from the ideal leads to less effective
heat transfer.

4 Interactive, Feature-based Flow Visualization

We have applied both an automatic topology extraction algorithm as well as
an interactive, feature-based approach in order to investigate and analyze the
behavior of the flow through a cooling jacket. The interactive, feature-based
flow analysis system we have used is called SimVis [2, 5, 6]. SimVis establishes
an interactive visual analysis loop with the following essential properties:

• The user visualizes the multi-variate attribute space of a CFD dataset
in such a way that it can be intuitively explored and accessed directly
by brushing (brushing means that interesting flow features are directly
marked up in the views).

• A sophisticated interaction framework is provided that allows the user to
identify interesting flow features intuitively and easily, even if the features
can only be characterized in a complex specification with multiple flow
attributes [3]. This includes an iterative refinement process. Specifications
can be rapidly prototyped with immediate feedback.

• Linking attribute visualization to spatio-temporal visualization yields
feature-based focus+context visualization of the CFD dataset in an int-
uitive manner.
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(a)

(b)

Fig. 3. (a) The visualization of all regions of forward-longitudinal flow; color-
mapping reflects velocity magnitude. (b) The result of selecting all regions of
reverse-longitudinal flow, the inverse of the left selection (colorplate on p. 208).

(a)

(b)

Fig. 4. (a) The visualization of all regions of forward-transversal flow; color-
mapping indicates velocity magnitude. (b) The result of selecting all regions of
reverse-transversal flow, again the inverse of the left selection (colorplate on p. 208).

• A feature specification system is provided that (in contrast to most other
related approaches) reflects the often quite smooth distribution of flow
attributes across the domain, a property resulting from most CFD flow
simulations. This is achieved via degree of interest functionality instead of
using sharp selections [4].

SimVis uses multiple linked views, utilizing visualization techniques of differ-
ent kind (scatterplots, histograms, 3D visualization, etc.). Generally, the user
specifies which subsets of the flow to focus on, e.g., by brushing in a scatter-
plot. The marked data subsets are then rendered as the visually emphasized
focus in a focus+context visualization style. In the following, we describe the
use of SimVis in order to answer the questions outlined above by the engineer.
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Fig. 5. The result of selecting all regions of reverse-longitudinal flow and regions of
reverse-transversal flow (colorplate on p. 209).

Extracting Forward and Reverse-Longitudinal Flow

Figure 3(a) depicts the result of selecting all positive x-velocity values via
smooth brushing. The positive x-axis is aligned with the longitudinal flow
direction. Thus all regions containing a positive x-velocity are flowing, at least
partially, forward with the goal of traversing the shortest path from inlet to
outlet. Figure 3(b) shows the result of selecting all negative x-velocity values.
The right image is more interesting to the engineer. It shows precisely those
regions in the geometry where the flow is moving in the opposite direction from
that which is desired. Here, the forward-longitudinal flow fills 76.2% of the
volume (±1%) whereas reverse-longitudinal flow occupies 18.4% (±1%). This
is not a bad forward-to-reverse flow ratio, but still significantly different from
the ideal. It is interesting, for example, to see a region of reverse-longitudinal
flow immediately near the inlet, representing a major recirculation zone.

Extracting Forward and Reverse-Transversal Flow

Figure 4 visualizes both forward and reverse regions of transversal flow. Ess-
entially, engineers are mostly interested in seeing where in the geometry the
ideal pattern of flow is not being realized, e.g., in the right image. Figure 4(b)

reveals many regions of flow that are traveling downward, or rather against
the ideal current of flow. In fact, the amount of forward-transversal flow is only
54.6% (±1%) while the amount of reverse-transversal flow is 37.7% (±1%).
The amount of reverse-transversal flow is considerably higher than what we
expected. A major region of reverse-transversal flow, for example, can be
seen in the second cylinder block (from the left). We see regions of reverse-
transversal flow again at the inlet.



86 Helwig Hauser, Robert S. Laramee, and Helmut Doleisch

Fig. 6. A feature-based, focus+context visualization showing regions of near-
stagnant flow, specified interactively (colorplate on p. 209).

We can further refine the region of interest by including only velocity values
with negative x- and negative z-components. Figure 5 depicts the regions
where flow moves backward and down instead of the shortest path – up and
forward from inlet to outlet. From this result, we can deduce that flow through
the cylinder head is a complex patchwork of flow, especially along the center
of the head.

Extracting Regions of Stagnant Flow

Figure 6 illustrates regions with a velocity value, |v|, of less than 0.1 m/s. We
know that regions of stagnant flow, like those in Fig. 6, are less effective in
transporting heat away from the engine. The color-coding in Fig. 6 indicates
temperature. The optimal fluid temperature, 363◦K, is mapped to green and
higher temperatures are mapped to red. This visualization result indicates
that there are very few, small regions where low velocity and high temperature
coincide – an advantageous design characteristic for an engine part designed to
transport heat away. Figure 7 further refines the feature specification by also
restricting the focus to high temperature values. The new feature is defined
as:

(|v| < 0.1m/s) ∩ (364◦K < t)

The result in Fig. 7 is a less cluttered image, showing undesirable regions,
where slow flow and hot flow are apparent. These regions are less effective in
transporting heat away. Fortunately, these regions seem to be rather small,
thus, from a heat-transfer point of view, the simulation results point toward a
good design. Areas of very high velocity, leading to cavitation, can be identified
in a similar way.
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Fig. 7. Areas of temperature t > 364 ◦K and velocity |v| < 0.1 m/s are
interactively-specified by the user and rendered in focus (colorplate on p. 209).

Considering the above described analysis, we state, that obviously also
other options for the investigation of the properties of this particular appli-
cation scenario exist. Alternatively, an engineer also could pick a simulated
measure of heat-flux and analyze the data with respect to this data attribute.
The Nusselt number [19] or the heat transfer coefficient [1] could be used if
available from the simulation.

5 Semantics-based Segmentation of Flow

What we have done in Sect. 4 is essentially a segmentation of the flow based on
semantics. Such semantics-based segmentation is standard practice in many
other fields, e.g., in medical visualization. A notion of objects or regions (or
the like) is generated on top of the raw data which is more meaningful to
application experts.

In the above discussed example, the flow domain has been segmented acc-
ording to different components of the flow direction. In this particular context,
each of the Cartesian velocity direction has a specific meaning. The seman-
tics are based on the questions posed by the engineer in Sect. 3. One spe-
ciality here, however, as compared to other standard domain segmentation
approaches, is that smooth region boundaries are considered (smooth brush-
ing [4]). Another speciality here is that we have employed multi-variate seg-
mentation in our analysis, i.e., selections with respect to multiple attributes.

When we compare this approach with the classical topology-based app-
roaches, we claim that interpretation of the results is easier and clearer to the
user (at least in many cases). Improved comprehension of the visualization
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seems to result from (a) a step-by-step extraction process with steps easy to
understand and (b) an approach which per se associates well with the way
the users think about their data (in terms of the attributes rather than in
complex terms of flow topology).

6 Topology-based Flow Visualization in Industry

Unlike direct flow visualization such as color-coding of velocities, or geometric
techniques like the use of streamlines or isosurfaces, topology-based flow vi-
sualization methods not really have made their way into common commercial
flow visualization software. Why not? In a manner inspired by Globus and
Raible [7], we try to list some possible answers to this question. We note that
a similar theme is addressed by Van Wijk [18] about the value of scientific
visualization in a broader sense.

1. The advantage of extracting meaningful, high-level abstractions from flow
data (such as topological features) at the same time seems to be a disad-
vantage, also: Higher levels of abstraction are more difficult to understand
and can cause problems with their interpretation. More cognitive work is
required at the user side.

2. Topology-based methods usually are not easy to implement. The extrac-
tion of topological features can be challenging in unstructured grids, in
higher dimensions, from noisy datasets, and also with respect to robust
numerics. From a computational point of view, for example, it is very
challenging to properly compute the separatrix structure of a 3D vec-
tor field [11]. When Galilean-invariant solutions are required [14], many
existing techniques fail. Also, the dependence of extraction results on the
turbulence models employed in the simulation makes interpretation diffi-
cult in some cases.

3. Development and use of topology-based methods are costly, including:
• An initial development cost, including one or more engineers, possibly

also the acquisition of new hardware.
• An initial cost per user – topology-based analysis techniques usually

are not intuitive to use; also, in a highly specialized environment, tools
sometimes lack optimal GUIs and their usage requires special training.

• Costs per session/use, including the time it takes the user to generate
a visualization from a given algorithm or method each time of use.

• The cost of cognition, i.e., the time the user needs to understand and
explore the visualization result to gain insight into the underlying data.

Taking into account that many application questions also are solvable with
more simple approaches, costs also might be responsible, why topology-
based methods are not so often used in practive.

4. This tightly relates to the question whether a topology-based solution is
a “must have” or a “nice to have” – it is much harder for the latter to
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establish itself on the market; in this case the cost-question (see above)
plays a much more important role than in the “must have” case.

5. As already mentioned, it is often also possible to solve the same prob-
lem with other, more simple methods. Given a suitable seeding strategy,
streamlines may be used to visualize critical points in a planar domain,
for example. An explicit extraction computation is not always required.

6. Lack of communication between communities also might be responsible.
These days, there is quite a gap between the visualization research com-
munity and prospective users (they usually do not visit the visualization
conferences, for example). In fact, other communities such as the engineer-
ing analysis community are not even aware that a visualization community
exists. Closely related is the lack of inter-community knowledge transfer
and a lack of educational literature.

7. Lack of customer demands: Software development in industry usually is
driven by customer demands, i.e., customers who demand new features of
the software.

Surely, some of these problems can be solved. The last problem on the list,
for example, might be addressed when more motivation for inter-disciplinary
communication is generated. The problem of difficult implementation may be
solved with more time invested in research and development. Often algorithms,
which present an easier and more elegant solution to a problem that originally
required a very complex solution, are published at later points in time in a
larger community. Clearly, visualization solutions with less complexity are
needed as well as more communication between fields of expertise.

The above list summarizes some of the challenges that topological methods
must face before being incorporated on a more wide-spread basis. Does this
mean we should stop topology-based visualization research? No. The original
motivations for this line of work are more prevalent than ever. Data sets
grow at faster rates than hardware and this trend promises to continue. Data,
especially CFD simulation data, is becoming ever more complex. The demand
for tools that can help the user sift through this complexity will only increase.
The research field of topological analysis is still relatively young, thus much
work remains to be done.
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Summary. Using topology for feature analysis in flow fields faces several problems.
First of all, not all features can be detected using topology based methods. Second,
while in flow feature analysis the user is interested in a quantification of feature
parameters like position, size, shape, radial velocity and other parameters of feature
models, many of these parameters can not be determined using topology based
methods alone. Additionally, in some applications it is advantageous to regard the
vector field as a superposition of several, possibly simple, features. As topology based
methods are quite sensitive to superposition effects, their precision and usability is
limited in these cases. In this paper, topology based analysis and visualization of flow
fields is estimated and compared to other feature based approaches demonstrating
these problems.

1 Introduction

Visualization and analysis of vector fields from flow simulations and measure-
ments is an important step in engineering processes, e.g. during the design
phase of airplanes, cars, trains, and combustion chambers. According to Dr.
Shneiderman’s Visual Information Seeking Mantra [13] visualization of data
consists of three steps: “Overview first, zoom and filter, then details-on-
demand”. However, due to the extreme size and complexity of today’s data
sets it may not be possible to provide an overview of the data. Interactive
zooming and filtering also quickly reaches its limits. Thus the pipeline has to
be extended by an automatic analysis step to reduce size and/or complexity of
the data before trying to visualize it. This results in Keim’s Visual Analytics
Mantra “Analyse first, show the important, zoom, filter and analyse further,
details on demand” that he proposed at the Workshop on Visual Analytics
2005 in Darmstadt.

Up to now topology has mainly been used to give an overview of a flow
as it segments a data set into regions of same flow behavior. In this paper,
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Fig. 1. Linearity of features - the superposition principle: The flow on the right is
the direct sum of the two different flows on the left.

advantages as well as deficits of topological methods concerning the analysis
step mentioned in the previous paragraph are discussed. Therefore, topology
is compared to feature based methods. We do not only treat topology as
a description of the flow, but also analyze topology within the context of
typical feature models like the Vatistas vortex [17]. Concerning this model
the ability of topology based methods to determine parameters of feature
models is analyzed (Section 3).

For signal processing, linear, shift invariant signals play an important role
as most signals can be described, or at least approximated, by them. Other
signals can be approximated quite well, too. The linearity property is also
known as the superposition principle, stating that a combination of signals
is equal to the same combination applied to all parts of these signals. This
means that a complex signal can be understood as a linear combination of
several simpler signals (Figure 1). Keeping this signal processing perspective
in mind, we can treat vector fields as superpositions too and thus can describe
phenomena like vortices hidden in a strong homogeneous flow. As topology
is based on critical points, that is points where the velocity in the field is
zero, it is quite sensitive to changes of the mean flow of a data set. Adding
or subtracting, i.e. superposing, different constant flows to a flow, thus will
change its topology. One way to avoid these changes is to analyze the localized
or region-specific flow [18] which is independent of constant and homogenous
flows passing through the considered region. Superposition effects, however,
can also appear independent of such flow components, e.g. when two vortices
overlap. In Section 4 we discuss superposition phenomena and their influence
on topology based methods and compare the superposition view to the usual
perception of vector fields describing the actual flow.

2 Feature Definitions

Features are often defined as “phenomena, structures or objects in a data set,
that are of interest for a certain research or engineering problem” [9]. It is not
possible to give a list of all features of interest for flow fields in general as these
differ from application to application and small changes of one feature can lead
to a variety of new features. Nevertheless, most features can be categorized
into a few groups like vortices and other swirling flows, shock waves, shear flow
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and boundary layers, reversed flow, saddle points, separation and attachment
lines or surfaces, areas with convergent or divergent behavior, and regions
with homogeneous or constant flow. The remainder of this section gives a
short overview of feature definitions we will use in the following discussion.

2.1 Vector Field Topology

In a vector field, as already mentioned, positions where the magnitude of the
vectors is zero are called critical points. Critical points can be classified by the
eigenvalues and eigenvectors of the velocity gradient tensor at their position.
In linear 2D vector fields, they are classified as sinks, sources, saddles and
center points. Sinks and sources can be of the types focus, spiral, node or
improper node. Critical points are connected by streamlines called separatrices
which divide the vector field into regions of same flow behavior. The topology
graph of a vector field consists of all critical points, separatrices and closed
streamlines of the vector field.

2.2 Correlation Methods

Vortices, shear flow, sources, sinks, saddles, separation and attachment lines,
and homogeneous flow can all be coded into vector valued masks (for examples
see Figure 2). Using these masks for (rotation invariant) pattern matching
based on correlation allows to detect similar areas in a vector field [2, 5]. A
disadvantage of this approach is the computational time for irregular grids. For
regular grids, acceleration via fast Fourier transform can be used [3]. The main
advantage of this approach is the robustness to noise due to the averaging in
the correlation. This is of great importance for measured data. Furthermore,
as smoothing can be described by a convolution with a scalar valued mask,
it is commutative with the pattern matching. When the average of a mask
is zero, the matching results are independent of any mean flow of the vector
field. As the masks are linear, shift invariant filters they are suitable for the
analysis of superposition phenomena. Feature definitions using vorticity can
be integrated into this approach as derivation and derived quantities can be
computed via convolution with a mask [2, 3].

2.3 Threshold Based Feature Definitions

Thresholds for high vorticity (curl of velocity, ∇×v), high helicity (projection
of vorticity onto velocity, (∇× v) · v) and low modified pressure (negative λ2,
see [6]) are often used to determine position, size and shape of vortices. In
addition to these, there is a variety of vortex core detection algorithms of
all kinds. An overview can be found in [9, 11]. Vorticity and λ2 are Galilean
invariant, that is, they are independent of the frame of reference and thus
independent of any mean flow. Computing vorticity is also commutative with
smoothing, that is, computing vorticity from smoothed data yields the same
results as computing it first and performing smoothing afterwards.
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Fig. 2. Left: Rotation, convergence, saddle and shear, each visualized using hedge-
hogs and LIC. Right: The Vatistas vortex model. A pure, circular rotation is as-
sumed. A cut through this rotation results in the described velocity profile (coloplate
on p. 210).

3 Quantification of Feature Parameters

For detailed flow visualization, a preceding analysis of the flow and its features
is often necessary. In this section, the advantages and limits of topological
methods for an analysis of features are discussed and compared to those of
other feature based approaches. All properties are demonstrated using the
Vatistas vortex [17] (Figure 2), a popular vortex model in fluid dynamics, as
an example.

3.1 Feature Models - an Example

The definition of a Vatistas vortex [17] is based on a pure, circular rotation
with the magnitude of the vectors given by

v(r) = 21/Nr2
c

vcr

(r2N
c + r2N )1/N

,

where rc is the vortex core radius, r the distance to the vortex core, vc the
velocity at the vortex core radius, and N a parameter describing the transi-
tion from the linear velocity profile within the vortex core to the exponential
drop-off of the velocity magnitudes outside. For N = 1, the Vatistas model
equals the Scully vortex model [12] and for N = ∞, the Rankine model [10]
is obtained. Important parameters which engineers want to determine in this
model are vortex core center or vortex position, vortex core radius, the cir-
cumferential velocity at the vortex core radius, the circumferential velocity
distribution, overall vorticity within the vortex core and, in 3D, the maximal
axial velocity and the axial velocity distribution [1, 16].
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For the Vatistas vortex, the vectors describing the flow are more important
than the actual streamlines. The velocity of the flow is not only indispens-
able for the engineers whereas it is neglected in topological methods, but the
projection of the vectors describing the actual flow onto the vectors describ-
ing the Vatistas vortex can be more important than the flow itself. Due to
this projection, the topology of this vortex can differ greatly according to the
remaining part of the flow (Section 4).

The Vatistas vortex is an abstraction of vortices. Though tunable by
some parameters like vortex core radius and velocity distribution, this model
assumes a perfectly circular vortex and thus only approximates real flow (Fig-
ure 2). The vortex is assumed to spread out infinitely, though the influence of
the vortex will converge to zero with increasing distance to the center. This
means that the region of significant influence will be larger than the actual
vortex core and spread out over regions separated by topology. This demon-
strates that the way of thinking of engineers simulating and analyzing flow is
often not topology based, which may lead to problems applying topology to
answer their questions concerning the flow.

3.2 Topology and Velocity

In this subsection, the relation of the velocity magnitude of the flow to
the resulting topological information is analyzed. For this, we compare two
streamlines in two fields with different velocity magnitudes but the same
velocity directions. Let D ⊂ R

d be an open domain and v : D → R
d a

vector field satisfying the Lipschitz condition. Let Z := { z ∈ D | v(z) = 0 }
be the set of critical points and Dε := { x ∈ D | ∀z ∈ Z : |x − z| > ε } the
domain without the critical points and their ε-neighborhood. In the following,
we compare the two vector fields

v̄ : Dε → R
d, x �→ v(x)

ṽ : Dε → R
d, x �→ v(x)

|v(x)| .

For a ∈ Dε and Ī = (0, tmax) let c̄a : Ī → Dε be the well-defined streamline
of v̄ through a with maximal length, that is

c̄a(0) = a

∂c̄a

∂t
(t) = v̄(c̄a(t)) = v(c̄a(t)).

Define the following mapping for reparametrization:

l : Ī → l(Ī), l(t) =

∫ t

0

|v̄(c̄a(τ))| dτ.

This function is strictly monotonic and therefore invertible. We define
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Ĩ = (l(0), l(tmax)) = l(Ī)

c̃a : Ĩ → Dε, s �→ c̄a(l−1(s))

Then c̃a, a reparametrization of c̄a, is the well-defined streamline of ṽ through
starting point a:

c̃a(0) = c̃a(l(0)) = c̄a(0) = a

∂c̃a

∂s
(s) =

∂c̄a

∂s
(l−1(s))

= v̄(c̄a(l−1(s)))
1

∂l(t)
∂t

= v̄(c̄a(l−1(s)))
1

|v̄(c̄a(l−1(s)))|

= v̄(c̃a(s))
1

|v̄(c̃a(s))|
= ṽ(c̃a(s)).

This means that the streamlines of v̄ are the same as the streamlines of ṽ.
Thus, the velocity magnitude of the whole field can be artificially set to one
and, in contrast to vorticity and other quantities, streamlines and flow topol-
ogy will stay the same. This reveals that flow topology is independent of the
velocity magnitudes of a vector field and thus shows that topology is ill suited
to describe or analyze features whose models strongly depend on the velocity
magnitude of the flow.

3.3 Determining Parameters

The center of a pure Vatistas vortex is a critical point in 2D, and thus the
position of the vortex can be easily determined using vector field topology.
In contrast to other feature definitions based on vorticity or pattern match-
ing, the center position is automatically determined with subpixel accuracy.
This is a distinct advantage of topology as subpixel accuracy is often hard to
obtain [4]. However, topology is sensitive to noise, therefore subpixel results
are meaningless for noisy data such as those obtained by measurements where
the only solution is smoothing the data.

The determination of the size of a vortex – or its vortex core region –
is much more challenging. For a pure 2D Vatistas Model, no size can be
determined using topological methods. There are closed orbits at all distances
to the center and so separatrices in this case. When two vortices interact,
often a saddle point confines the regions of the two vortices. The separatrices
as defined by the saddle point seem to enclose the vortex regions. However,
in the case of a spiraling separatrix, no size can be determined numerically.

Comparing these quantities with the Vatistas parameters again reveals the
two different approaches taken by topology and feature based descriptions.
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Topology segments the vector field into regions of same flow behavior, that is
every particle within the vortex region as defined by topological methods will
pass into the critical point or has emerged there. The vortex core radius as
defined by the Vatistas vortex can be either larger or smaller than that region,
as the topology depends entirely on the streamlines while for the Vatistas
vortex, only the projection of the vectors onto a perfect rotation is evaluated
(Figure 2). This aspect is detailed further in Section 4.

From this discussion it can be seen quite clearly that topology and feature
models from engineering take quite different perspectives on the definition of
interesting features. The first globally describes regions of same flow behavior
in relation to inflow and outflow regions while the other is more interested
in local properties like velocity and vorticity, which can not be determined
using topology based methods at all (Section 3.2). However, it is application
dependent which of these two perspectives is more appropriate or beneficial.

4 Superposition Effects

In this section, we will discuss the two different perceptions of vector fields
mentioned in the previous section: the usual point of view based on streamline
behavior and the perception of complex vector fields as a superposition, or
linear combination, of several, possibly simpler vector fields (see Figure 1). We
will call the first interpretation interaction view and the latter superposition
view. Furthermore, the resulting effects for analysis and visualization using
topology or other feature based methods are shown.

The difference between the two views becomes clear by looking at the
occurrence of two or more features in close vicinity. The superposition view
emphasizes the original features and their parameters. The interaction, on the
other hand, describes how these features influence each other, by overlapping,
friction and other phenomena, resulting in the actually observed flow. Up to
now, nearly always only the interaction view has been studied and visualized.
But the user is not only interested in the actual flow, but in explanations and,
possibly simplified, models of the underlying phenomena.

In 2001 an international cooperative research program called HART II was
conducted to investigate the physics of blade pressure, noise radiation, and
vibrations caused by the wake of helicopter rotors [1, 4, 16]. Three-component
Particle Image Velocimetry (3-C PIV) was part of the measurements. In the
resulting vector fields superposition phenomena are ubiquitous (Figure 3) due
to the overall velocity of the flow in the wind tunnel. Furthermore, each cross-
ing of a blade creates, among other things, a new vortex which is added to
the flow created by previous blade crossings, the movement and the shape of
the helicopter. To understand the wake of the rotor blades, and to be able to
create a model of it, all vortices and other features have to be detected and
their parameters have to be determined. For accurate determination of the
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Fig. 3. One vector field of the HART II test measurements. Top left: LIC and
vorticity of the original data set, dark blue: high negative vorticity, red: high positive
vorticity. Top right: Vorticity and LIC of the data set after removing the average.
Bottom left: LIC and topology after removing the average. Bottom right: LIC and
topology of the region-specific flow of the dataset (colorplate on p. 210).

parameters, the superposition effects and their consequences for the accuracy
of the analysis methods have to be studied.

4.1 Localized Flow Analysis

Superposition is an effect most common in wind tunnel measurements. Domi-
nant passing flow induced by the blower often hides vortices and other features
so a direct visualization may not reveal all features or even none at all [4, 15].
Regarding vortex detection this is most often dealt with by using vorticity or
λ2 as these quantities are Galilean invariant and thus do not vary with added
or subtracted constant flow. Another method is to compute the average and
remove it from the vector field. But the vortices, though having zero average,
can add to the average of the whole field as they are assumed to be spread
out infinitely and only a part of the vortex, not having zero average, might
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be within the data set. Thus, removing the average will change the results of
a latter analysis of the data. Furthermore, different vortices may appear or
disappear when subtracting or adding different constant flows (see [15] and
Figure 3).

One approach to solve this problem is to divide the flow field into three
fields containing the divergence, rotation and harmonic parts using the Hodge
decomposition theorem [7, 8, 14]. Features are then detected as extremal
points of the divergence and rotational field. However, it is not quite clear
how analysis and visualization methods are effected by this decomposition.

A better solution is to remove the boundary induced flow to get a region-
specific or localized flow as discussed in [18]. The flow through the boundary
of the region-specific field is zero. Vorticity and divergence, and thus the local
features of the original flow, are preserved in the region-specific flow and can
be visualized using topology (Figures 3 and 4). The region-specific flow thus is
independent of superposed constant and homogenous flows and represents a
basis with non-changing topology for fields with different superposed constant
or homogenous flows.

Fig. 4. Comparison of different fields obtained from a cylinder data set with a
Kármán vortex street. Top left: Streamlines in the original flow. Only sinuous struc-
tures of the lines give hints on the vortices. Top right: Potential flow induced by the
boundary. Bottom left: Three vortices revealed by removing the average flow. Bot-
tom right: Subtracting the potential flow reveals all five vortices by use of topology
(coloplate on p. 211).
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4.2 Superposition of Nearby Features

Superposition and interaction can also take place without added constant flow,
two vortices for example can influence each other strong enough to result in
warped visualizations or hiding of one of the vortices. In Figure 3, the effects
of removing the average or computing the localized flow are shown for one
data set of the HART II test. Neither of the two techniques results in a vector
field where more than the most dominant vortex is found using topological
methods. However, computing the vorticity, matching with a vortex mask, or
evaluating the Vatistas vortex model directly reveals the multiple vortices the
engineers examine in this data [1, 16]. Therefore, local superposition effects
caused the hiding of these vortices.

The authors generated some test data sets using different Vatistas vor-
tices [17] to qualify and quantify the effects caused by superposition. The first
two data sets consist of a weak vortex with radius r=2 and radial velocity
vr = 1 and a stronger vortex with r=5 and vr = 3, both with N=1. In the first
data set (Figur 5, top left), both vortices have same rotation direction, and
in the second data set (Figure 5, bottom left), the rotation direction differs.
In both images, stramline based approaches like topology detect one vortex
only. Template matching with a 3x3 rotation mask detects both vortices.

The accuracy of current feature definitions for the determination of the
parameters of the underlying features was studied as well (Figure 5, right).
Here, data sets consiting of two vortices with r=5, rc = 1, and N=1, were
generated. Template matching with a 3x3 rotational mask detects the true
vortex centers (Figure 5, top right). Setting all velocity magnitudes in the field
to one, and matching afterwards, yields results more similar to the topological
features (Figure 5, bottom right).

Topological and local streamline based features are good at detecting and
describing features of the resulting flow, but not for features hidden or moved
by superposition. The resulting errors in the analysis of the feature parameters
are high in the case of superposition, even resulting in not detecting a vor-
tex at all. Vorticity and template matching clearly depict the vortices in the
resulting scalar fields, but even these results can be influenced by superposi-
tion. Assimilation effects, like two vortices with same parameters but different
rotation direction which cancel each other out completely, effect the results of
feature detection using any feature definition. Comparing the definitions for
their robustness to these annihilation effects, template matching using vector
valued masks gives the best results as it is tuned to the projection of the
features to the abstract model as described in Section 3.1.

These effects should be considered when using topology or other meth-
ods for the visualization for vector fields. Again, though the superposition
perception of vector fields can be appropriate for some applications, for others
the actual streamlines are of higher importance. There, streamline based
approaches for visualizing the flow, like topological methods, are better at



Topology Based Flow Analysis and Superposition Effects 101

Fig. 5. Superposition and interaction of two Vatistas vortices [17]. All images: The
original vortex centers are displayed as black dots. Grid (green), hedgehogs (black
arrows), color coding of similarity to a 3x3 rotational mask from high negative values
(blue) to high positive values (red). Left: The stronger vortex hides the weaker vortex
in streamline based visualizations. Topology only detects one center each (green
dot), therefore some streamlines are added. Top right: Template matching detects
the true vortex centers. Bottom right: Setting all velocity magnitudes in the field to
one, and matching afterwards, yields results more similar to the topological features
(coloplate on p. 211).

describing the flow than velocity and direction based feature models like the
Vatistas vortex.

5 Conclusion

In this paper, the authors have investigated the borders of hitherto existing
topological methods on flow fields. Some of the aspects discussed here may
explain why topology is not used more often by engineers. Engineers often
think in terms of velocity, vorticity, and resulting feature models like the
Vatistas vortex which are more tuned to a superposition perspective of the
flow field. Parameters of the feature models thus can often not be determined
or visualized using topological methods. Methods based on other feature def-
initions like pattern matching approaches have to be used then.

Nevertheless, topology is a useful tool for a first overview of and a detailed
look at a data set when streamlines or the actual flow is to be studied. Fur-
thermore, when analyzing or visualizing a data set, usually more than one
method is used.
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Summary. In this paper we study the applicability of topological methods for cre-
ating expressive, feature revealing visualizations of 3D vector fields. 3D vector fields
can become very complex by having a high number of critical points and separa-
trices. Moreover, they may have a very sparse topology due to a small number of
critical points or their total absence. We show that classical topological methods
based on the extraction of separation surfaces are poorly suited for creating expres-
sive visualizations of topologically complex fields. We show this fact by pointing out
that the number of sectors of different flow behavior grows quadratically with the
number of critical points – contrary to 2D vector fields. Although this limits the
applicability of topological methods to a certain degree, we demonstrate the exten-
sibility of this limit by using further simplifying methods like saddle connectors. For
3D vector fields with a very sparse topology, topological visualizations may fail to
reveal the features inherent to the field. We show how to overcome this problem for
a certain class of flow fields by removing the ambient part of the flow.

1 Introduction

Topological methods are standard tools to visualizing 2D vector fields. They
gained a rather high popularity because they offer to express even a complex
flow behavior by only a limited number of graphical primitives. The main
idea behind them is to segment the vector field into areas of different flow
behavior. To do so, so-called separatrices, mainly starting from critical points,
are extracted and visualized.

Topological methods for 2D vector fields have been introduced to the visu-
alization community in [11]. Later they were extended to higher order critical
points [23], boundary switch points [6], and closed separatrices [34]. In addi-
tion, topological methods have been applied to simplify [6, 7, 28, 29], smooth
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[33], compress [17, 25, 16] and construct [24, 32] vector fields as well as to
compute distance functions of them [15, 2, 26].

For 3D vector fields, there is a remarkable gap between the need for sim-
plified visual representations of vector fields, the knowledge of topological
concepts, and their application as a visual analysis tool. The need for sim-
plified visual representations of 3D vector fields is even higher than for 2D
vector fields, since 3D vector fields tend to have a significantly higher amount
of information to be visualized. Also, topological concepts for 3D vector fields
are well-understood. Nevertheless, there are only a few applications of topo-
logical methods for 3D vector fields. Similar to 2D vector fields, [12] proposed
methods for detecting and classifying first order critical points by an eigen-
value/eigenvector analysis of the Jacobian matrix. A system for visualizing
the topological skeleton of 3D vector fields has been presented in [9]. Topolog-
ical skeletons of particular analytic 3D vector fields are extracted in [18, 10].
Mahrous et. al [20, 19] obtain a topological segmentation of a vector field
by densely sampling stream lines over the field and clustering areas where
a similar inflow/outflow behavior of the stream lines is observed. [27] and
[31] extract and visualize the intersection curves of the separation surfaces to
obtain less cluttered and more expressive visualizations.

Like every visualization technique, topological methods do not give expres-
sive visualizations for all kinds of 3D vector data. In fact, topological methods
are limited to rather moderate topological complexity which becomes man-
ifest in the number of present topological features: if only very few features
are present (or no features at all), topological methods fail. On the other
hand, if there are too many topological features, topological methods fail as
well because they produce cluttered visualizations which are hard (or even
impossible) to interpret.

It is the purpose of this paper to study where the limits for applying topo-
logical methods are, and to present solutions to extend these limits in both
directions. For the upper limit (i.e. the fact that topological methods fail if
the data is too complex), a number of technical and perceptional reasons are
known. Here we show that there is an additional theoretical reason which
strongly limits 3D topology to rather simple data sets. This reason lies in
the fast growing number of sectors of different flow behavior. We show that –
contrary to 2D vector fields – the number of sectors of different flow behavior
grows in the worst case quadratically with the number of present topological
features (i.e. critical points). As a consequence of this, classical topological
methods (focusing on extracting critical points and separation surfaces) are
not relevant for topologically complex vector fields. Nevertheless, we show that
for simplifying methods like saddle connectors [27], the upper limit is above
the currently considered topological complexity. In fact, we apply topologi-
cal methods to topologically far more complex vector fields than previously
considered in the visualization community.

For the lower limit of topological methods (i.e. the fact that topological
methods fail for a very poor topology), a simple and well-known solution to



On the Applicability of Topological Methods for Complex Flow Data 107

move the topological complexity up to a range where expressive visualizations
are possible is to remove the ambient part of the flow. We show that this
approach can reveal important structures of certain types of flow.

The rest of the paper is organized as follows: section 2 recollects topo-
logical concepts for 3D vector fields and their visualization. Section 3 studies
the upper limit of topological methods by counting the number of sectors of
different flow behavior. Section 4 demonstrates at an example how topologi-
cal methods can be applied to topologically more complex data sets. Section
5 presents and discusses a solution for dealing with data sets of a very low
topological complexity. Section 6 draws conclusions.

2 3D Vector Field Topology and its Visualization

Topological structures of 3D vector fields are well-understood in the visual-
ization community for many years [12, 1, 3, 21]. In this section, we collect
the most important concepts and properties, and we review approaches to
visualizing them.

2.1 Critical Points

Consider a 3D vector field

v(x, y, z) =

⎛

⎝

u(x, y, z)
v(x, y, z)
w(x, y, z)

⎞

⎠ . (1)

A first order critical point x0 (i.e., v(x0) = 0) can be classified by an
eigenvalue/eigenvector analysis of the Jacobian matrix Jv(x) = ∇v(x), iff
det(Jv(x0)) �= 0. Let λ1, λ2, λ3 be the eigenvalues of Jv(x0) ordered accord-
ing to their real parts, i.e. Re(λ1) ≤ Re(λ2) ≤ Re(λ3). Furthermore, let
e1, e2, e3 be the corresponding eigenvectors. The sign of the real part of an
eigenvalue λi denotes – together with the corresponding eigenvector ei – the
flow direction: Positive values represent an outflow and negative values an
inflow behavior. This leads to the following classification of first order critical
points:

Sources: 0 <Re(λ1)≤Re(λ2)≤Re(λ3)

Repelling saddles: Re(λ1)< 0 <Re(λ2)≤Re(λ3)

Attracting saddles: Re(λ1)≤Re(λ2)< 0 <Re(λ3)

Sinks: Re(λ1)≤Re(λ2)≤Re(λ3)< 0

Thus, sources and sinks consist of a complete outflow/inflow, while saddles
have a mixture of both. A repelling saddle has one direction of inflow behavior
(called inflow direction) and a plane in which a 2D outflow behavior occurs
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(called outflow plane). Similar to this, an attracting saddle consists of an
outflow direction and an inflow plane.

Each of the 4 classes above can be further divided into two stable subclasses
by deciding whether or not imaginary parts in two of the eigenvalues are
present (λ1, λ2, λ3 are not ordered):

Foci: Im(λ1) = 0 and Im(λ2) = −Im(λ3) �= 0

Nodes: Im(λ1) = Im(λ2) = Im(λ3) = 0

An iconic representation is an appropriate visualization for critical points,
since vector fields usually contain a finite number of them. Several icons have
been proposed in the literature, see [12, 9, 18, 10, 27]. Here we follow the
approach of [31] and color the icons depending on the flow behavior: Attracting
parts (inflow) are colored blue, while repelling parts (outflow) are colored red.
Higher order critical points are not considered in this paper.

2.2 Separatrices

Separatrices are stream lines or stream surfaces which separate regions of
different flow behavior. Different kinds of separatrices are possible: They can
emanate from critical points or boundary switch curves, or they are closed
separatrices without a specific emanating structure. However, in this paper
we consider separatrices starting from critical points only.

Due to the homogeneous flow behavior around sources and sinks (either
a complete outflow or inflow), they do not contribute to separatrices. Each
saddle point creates two separatrices: Considering a repelling saddle xR, it
creates one separation curve (which is a stream line starting in xR in the
inflow direction by backward integration) and a separation surface (which is a
stream surface starting in the outflow plane by forward integration). A similar
statement holds for attracting saddles. Since for the segmentation of a vector
field into sectors of different flow behavior only the separation surfaces (and
not the separation lines) contribute, we only consider separation surfaces in
the following.

Contrary to the 2D case, separatrices of 3D vector fields can intersect in a
number of stream lines called saddle connectors [27]. Saddle connectors start
in the repelling plane of a repelling saddle and end in the attracting plane of an
attracting saddle. [31] extends the concept of saddle connectors to boundary
switch connectors which are the intersections of separatrices emanating from
boundary switch curves.

3 Counting the Number of Sectors

We start with an analysis of existing 3D topological visualization approaches
and consider the topological complexity of the treated data sets. Table 1
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gives a collection of these techniques, including the topological complexity of
the treated examples. We express this complexity by counting the number of
critical points, boundary switch curves and separatrices which are present in
the application. Table 1 does not intend to give an evaluation of the consid-
ered techniques because they focus on different data sets or incorporate other
visualization techniques as well. However, table 1 reveals that most of the
applications deal only with vector fields of a very low topological complexity.
Only the recent papers [27] and [31] consider fairly complex data sets but
conclude that classical topological methods are not appropriate there.

reference #cp #scp #bsc #sbsc

[12] ≈20 ≈5 0 0

[9] ≈2 0 0 0

[18] 3 2 0 0

[20] 0 0 ≈10 ≈10

[19] 1 1 ≈10 ≈10

[27] 184 121 0 0

[31] 184 121 13 22

[this paper] 452 452 0 0

Table 1. 3D topological visualiza-
tion approaches and their number
of treated topological features; #cp:
number of critical points; #scp: num-
ber of separatrices starting from
critical points; #bsc: number of
boundary switch curves; #sbsc: num-
ber of separatrices starting from
boundary switch curves.

We search for reasons why up to now topological methods have been app-
lied only to rather simple data sets. Two classes of reasons are already known
[27]:

1. Technical reason: 3D topological methods involve the integration of stream
surfaces which is computationally more involved, less stable, and less
accurate than the integration of stream lines in 2D.

2. Perceptional reason: The sectors of different flow behavior may have a
complicated shape and hide each other, making a visual analysis of them
a cumbersome task. Figure 6 shows an example of a vector field consisting
of 4 saddles which create 6 sectors of different flow behavior. Even for this
rather low number of sectors we observe the hiding effect making it hard
to distinguish the different sectors.

In recent years the first problem became more and more unimportant
due to the dramatic increase of computing capacities and a number of new
algorithmic solutions ([13], [8], [22], [30]). One solution for the second problem
is the saddle connector approach [27] [31].

Now we show that there is a third reason that topological methods are
limited to low-complexity vector fields. We show that – simply spoken – the
number of sectors of different flow behavior grows fast when the topological
complexity of the vector field increases. As a measure of topological complex-
ity, we take the number of present saddle points. Since most considered data
sets have a global index around zero, the number of saddles is approximately
half the number of critical points. Then we get a
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3. Theoretical reason: The number of sectors of different flow behavior grows
in the worst case quadratically with the number of saddle points in a 3D
vector field.

We show that this reason is a serious limitation of applying topological meth-
ods to 3D vector fields. To prove this reason, we present formulas to compute
the number of sectors of different flow behavior. To see the differences, we do
so both for 2D and 3D vector fields.

3.1 Sector counting for 2D vector fields

2D vector fields generally consist of sources, sinks and saddles where a saddle
creates 4 separation curves [11]. We get

Property 1. Given a 2D vector field vnS
consisting of nS saddle points, the

number sec(vnS
) of sectors of different flow behavior fulfills

sec(vnS
) ≤ 3ns + 1 (2)

where the equality in (2) can be reached.

Property 1 essentially says that the number of sectors grows linearly with
the number of saddle points. To show it, we start with a vector field consisting
of only one saddle, as shown in figure 1(a). This saddle divides the domain
into four sectors. Now we insert a new saddle as shown in figure 1(b). Since
the different sectors are separated by stream lines which must not intersect
each other, a new saddle replaces one of the old sectors by 4 new sectors, thus
increasing the total number of sectors by 3. This gives

sec(vnS+1) ≤ sec(vnS
) + 3, (3)

which is an inequality since separatrices may end in the same source/sink
which reduces the number of sectors. Figure 1(c) illustrates this. (3) and
sec(v0) = 1 gives (2). To complete the proof, we only have to show that the
equality in (2) can be reached. To do so, we construct a vector field vnS

with
sec(vnS

) = 3ns + 1. Figure 2 illustrates the construction of such a simple
vector field.

Property 1 gives a reason why 2D topological methods are rather popular
even for fairly complex vector fields: the number of sectors to be distinguished
grows only slowly (in fact linearly) with the increasing of the topological
complexity (i.e. the number of saddle points). As we will show now, this does
not hold for 3D vector fields.

3.2 Sector counting for 3D vector fields

For 3D vector fields, the number of sectors of different flow behavior depends
in the worst case quadratically on the number of saddle points. We formulate
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(a) (b) (c)

Fig. 1. (a) a single saddle point segments the domain into 4 sectors; (b) an addi-
tionally included saddle increases the total number of sectors by 3; (c) if separatrices
end in the same source/sink, two sectors are merged.

Fig. 2. Vector field vnS
with sec(vnS

) = 3 ns + 1

Property 2. Given a 3D vector field vnR, nA
consisting of nR repelling saddles

and nA attracting saddles, for the number sec(vnR, nA
) of sectors of different

flow behavior the inequality holds

sec(vnR, nA
) ≤ (nR + 1)(nA + 1) (4)

where the equality in (4) can be reached.

To show property 2, we start with a simple vector field v1,0 consisting only
of one repelling saddle xR, as shown in figure 3(a). The separation surface
created by xR divides v1,0 into two sectors. If we insert a new saddle, this can
be either an attracting saddle yA or a repelling saddle yR as well. In the last
case, the separation surfaces of xR and yR create three sectors of different flow
behavior since they must not intersect. In case of a newly inserted attracting
saddle yA, two cases are possible:

• The separation surface of yA does not intersect the separation surface of
xR. In this case, one of the old sectors is divided into two new sectors,
and the total number of sectors is increased by 1. Figure 3(b) gives an
illustration.

• The separation surface of yA intersects the separation surface of xR. In
this case, each of the two old sectors is divided into two new sectors. Thus,
the total number of sectors is increased by 2. Figure 3(c) illustrates this.

As we can see from the simple example above, the total number of sectors
does not only depend on the number of saddles but also on the number of
saddle connectors.

For now we assume that every repelling saddle has a connector to every
attracting saddle. Given a vector field vnR, nA

, we consider the insertion of
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(a) Simple vector field
with one xR: two
sectors are present.

(b) Inserting yA without
connector gives 3
sectors.

(c) Inserting yA with
connector gives 4 sectors.

Fig. 3. Correlation between number of sectors, saddles and connectors.

a new attracting saddle xA. Assuming that xA has a connector to all nR

repelling saddles of vnR, nA
, xA divides nR +1 of the old sectors into two new

sectors each. We get

sec(vnR, nA+1) ≤ sec(vnR, nA
) + nR + 1 (5)

and in a similar way

sec(vnR+1, nA
) ≤ sec(vnR, nA

) + nA + 1. (6)

(5), (6) and sec(v0,0) = 1 give (4).
To complete the proof of property 2, we construct an example vector field

vnR, nA+1 with sec(vnR, nA
) = (nR + 1)(nA + 1). To do so, we use the topo-

logical vector field construction approach described in [32]. We place the nR

repelling saddles to the locations (1, nA

2 ,−d), (2, nA

2 ,−d), ..., (nR, nA

2 ,−d) in
such a way that the inflow plane of each saddle is parallel to the y − z plane
of the underlying Euclidian coordinate system. Furthermore, we place nR + 1
sources at the locations (0.5, nA

2 ,−d), (1.5, nA

2 ,−d), ..., (nR + 0.5, nA

2 ,−d).
To place the nA attracting saddles, we choose the locations (nR

2 , 1, d),
(nR

2 , 2, d), ..., (nR

2 , nA, d). In addition we place nA + 1 sinks at the locations
(nR

2 , 0.5, d), (nR

2 , 1.5, d), ..., (nR

2 , nA +0.5, d). The positive number d describes
the distance of the two rows of saddles. Figure 4a illustrates the location of
the critical points for the example v4,4.

In the next step we have to construct a system of connectors such that each
repelling saddle is connected to each attracting saddle. This is a set of nR ·nA

curves which must not intersect each other (except in the saddles themselves).
Given the arrangement of critical points described above, this can easily be
done as illustrated in figure 4(a) for v4,4. The complete constructed vector field
ensures that for any source xSo and for any sink xSi there are stream lines
starting in xSo and ending in xSi. Figure 4(b) shows the complete topological
skeleton of v4,4. Figure 4(c) shows an example of the constructed vector field
v20,20 consisting of 441 sectors of different flow behavior.
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(a) v4,4: critical points
and 16 saddle
connectors.

(b) v4,4: separation
surfaces.

(c) v20,20: critical points and 400
saddle connectors.

Fig. 4. Constructed vector fields v4,4 and v20,20.

Property 2 can be concretized by incorporating not only the number of
critical points but also the number of connectors:

Property 3. Given a 3D vector field vnR, nA, nCo
consisting of nR repelling

saddles, nA attracting saddles and nCo saddle connectors, for the number
sec(vnR, nA, nCo

) of sectors of different flow behavior the inequality holds

sec(vnR, nA, nCo
) ≤ nR + nA + nCo + 1. (7)

To show property 3, we assume a vector field vnR, nA, nCo
in which we insert a

new attracting saddle xA . Further we assume that xA creates m new saddle
connectors, i.e. xA is connected with m repelling saddles of vnR, nA, nCo

. In
this case, m+1 sectors of the old vector field are divided into two new sectors
each. We obtain

sec(vnR, nA+1, nCo+m) ≤ sec(vnR, nA, nCo
) + m + 1 (8)

and in a similar way

sec(vnR+1, nA, nCo+m) ≤ sec(vnR, nA, nCo
) + m + 1. (9)

This and sec(v0,0,0) = 1 gives (7).

Remarks:

1. The conditions in properties 2 and 3 are formulated as inequality because
- similar to the 2D case - separatrices might end in the same critical points
which leads to a reduction of the total number of sectors.

2. Properties 2 and 3 did not consider separatrices emanating from bound-
ary switch curves. However, their quantitative behavior is similar to the
separatrices from saddle connectors: the number of sectors grows in the
worst case quadratically to the number of boundary switch curves.

3. Property 3 shows that in the best case the number of sectors grows linearly
with the number of saddles. This happens if no saddle connectors exist at
all. However, the example of the data sets in section 4 show that a higher
number of saddle connectors usually exists.
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4. Properties 2 and 3 considered at most one connector between a repelling
saddle xR and an attracting saddle xA. If multiple connectors are present,
a sector (describing the flow from one particular source to one particular
sink) may consist of different unconnected parts.

5. The sector counting presented here is a worst case estimation. Although
an average case estimation would be useful, we are not aware of any
approaches for this.

3.3 Interpretation of sector counting

From the sector counting approach in section 3 we draw the conclusion that
classical 3D topological methods are limited to topologically rather simple
vector fields. If the topological complexity (i.e. the number of saddles) grows,
the number of sectors of different flow behavior very soon exceeds the limit
of what can be distinguished in visualization. The only solution for this is to
apply simplifying topological methods. The topological skeleton may be sim-
plified by removing unimportant critical points or collapse clusters of critical
points to a higher order one. While these methods are well-established for 2D
vector fields ([6] [29]), we are not aware of any 3D extensions. The simplify-
ing method we consider here are saddle connectors which we apply to more
complex data sets in the next section.

4 Topologically Rich Vector Fields

From examples in [27] and [31] and from section 3 it is known that topological
methods are hardly applicable for topologically complex vector fields. How-
ever, in this section we investigate topological methods for a 3D vector field of
such a high topological complexity as it has – to the best of our knowledge –
not been treated in the literature yet.

Figure 5 shows the transitional flow around a backward-facing step. The
flow field is obtained from a numerical simulation of Kaltenbach and Janke
at a Reynolds number of ReH=3000 based on oncoming velocity and on step
height. The corresponding boundary conditions are described in [14]. The data
set contains 452 critical points which are visualized in figure 5(a). Since the
vector field is divergence-free, all of them are saddles.

A complete extraction and visualization of the separation surfaces was
possible only at a very coarse resolution (figure 5(b)) since for higher resolu-
tions the number of produced triangles very soon exceeded the limits of our
available hardware. But even if we were able to process the complete skeleton
at a high resolution, already figure 5(a) shows that an expressive topological
visualization can not be achieved due to the sheer number of surfaces. Nev-
ertheless, we were able to extract the intersection curves of these surfaces,
namely the saddle connectors. As known from [27], this algorithm exhibits far
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less memory consumption for both extraction and display than the treatment
of separation surfaces themselves.

Figure 5(d) shows the visualization of the 1023 extracted saddle connec-
tors. As we can see there, certain flow structures become visible: there are 3
rather independent clusters of turbulent flow behavior. However, it also shows
that the segmentation property gets lost for vector fields of this complexity:
no regions of different flow behavior can be distinguished any more from such
a large number of saddle connectors. In fact, for complex data sets the app-
roach of saddle connectors shifts from a topological segmentation techniques
to a stream line selection technique.

Even if the complexity is too rich for a direct topological visualization,
topological information can be used to parameterize other visualization tech-
niques. We demonstrate this in figure 5(e). Here, we made use of the extracted
critical points and seeded stream lines close to them. This gives a far more
expressive visualization than figure 5(c), where stream lines have been seeded
homogeneously over the whole domain. Both figures show the same number
of stream lines.

Figure 5(e) illuminates the coherent structures of this type of flow: The
flow separates at the corner of the step. The resulting shear layer rolls up in
two Kelvin-Helmholtz vortices. In the downstream direction, the streamlines
form bundles due to secondary streamwise vorticity. The fluid experiences a
small backward flow in the upstream region below the shear layer.

5 Topologically Sparse Vector Fields

While dealing with a variety of data sets, we encountered vector fields where
topological methods totally fail due to the absence of critical points and
boundary switch curves. While it might not be possible to overcome this
problem for all kinds of data, there is a solution for an important class of flow
fields that exhibit a constant ambient flow part: all convections, i.e. coher-
ent structures, move with nearly the same velocity and direction inside the
flow. Their corresponding topological structures cannot be extracted since
the ambient flow part cancels out the critical points. This clearly shows the
Galilean-variance of topological examinations. By subtracting the ambient
flow part, i.e. choosing a certain frame of reference, the coherent structures
become visible using topological methods. To ensure meaningful results, this
manipulation must be motivated by the physical interpretation of the data.

Consider the mixing layer visualized in figure 7(a), where the flow moves
downstream in both layers and the magnitude of the upper layer is three times
larger than in the lower layer. The data set has been computed with a pseudo-
spectral direct numerical simulation employing the computational domain and
boundary conditions of Comte, Silvestrini & Bégou [4]. The Reynolds number
is 100 based on the initial shear-layer thickness and convection velocity.
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No critical points are present in this original frame of reference. In figure
7(b) we have chosen to subtract the constant vector field (1, 0, 0)T . This yields
the frame of reference where the flow in both layers has the same magnitude,
but a different direction. The physical interpretation behind this manipulation
is that we move as a observer with the same velocity and direction as the
convections. The topology of this frame clearly shows formations of focus
saddles indicating Kelvin-Helmholtz vortices, which alternate with formations
of node saddles.

This example shows that topological methods yield expressive visualiza-
tions even for initially topologically sparse vector fields if a frame of reference
can be chosen with regards to physical interpretation. Nevertheless, Galilean-
invariant methods, like e.g. visualization of vortex regions, overcome the prob-
lem of finding the “right” frame of reference.

6 Conclusions

In this paper we made the following contributions:

• We have shown that – contrary to the 2D case – for 3D vector fields
the number of sectors of different flow behavior grows in the worst case
quadratically to the number of saddle points.

• We applied topological methods to more complex 3D vector fields than
previously done in the literature.

• We have discussed that for some flow data of poor topological complexity,
a removal of the ambient flow makes topological methods applicable.

We conclude that classical topological methods for 3D vector fields including
critical points and separation surfaces are only of rather low relevance for
most practical data sets. In fact, without simplifying methods like critical
point clustering, critical point removing or saddle connectors, 3D topological
methods won’t get such a popularity as for 2D vector fields.

For saddle connectors we have shown that they are applicable to rather
complex data, but from a certain complexity on the segmentation property
gets lost, and saddle connectors are mainly perceived as stream lines.

For the future we expect an ongoing research on topology simplifying tech-
niques because they seem the only promising way to make topological methods
applicable to very complex 3D data sets.
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(a) All 452 critical points (all of them
are saddles) are located in a rather
small area of the whole domain.

(b) 218 attracting and 234 repelling
separations surfaces at a coarse
resolution.

(c) 500 stream lines seeded
homogeneous in the whole domain.

(d) 1023 saddle connectors have been
extracted.

(e) 500 stream lines seeded near critical points.

Fig. 5. Flow around a backward-facing step (colorplate on p. 212).

Fig. 6. Simple topological skeleton
consisting of 4 saddles; the 6 result-
ing sectors of different flow behavior
can hardly be distinguished (color-
plate on p. 212).
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(a) Original frame of reference. No critical points are present.

(b) Frame of reference chosen such that both layers have the same magnitude.
348 saddle points have been detected.

Fig. 7. Mixing layer (colorplate on p. 213).
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surfaces of the
saddles.

(d) Saddle
connector.

Fig. 8. Critical points and definition of saddle connectors (colorplate on p. 213).
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Summary. An optimal combustion process within an engine block is central to
the performance of many motorized vehicles. Associated with this process are two
important patterns of flow: swirl and tumble motion, which optimize the mixing
of fluid within each of an engine’s cylinders. The simulation data associated with
in-cylinder tumble motion within a gas engine, given on an unstructured, time-
varying and adaptive resolution CFD grid, demands robust visualization methods
that apply to unsteady flow. Good visualizations are necessary to analyze the simula-
tion data of these in-cylinder flows. We present a range of methods including integral,
feature-based, and image-based schemes with the goal of extracting and visualizing
these two important patterns of motion. We place a strong emphasis on automatic
and semi-automatic methods, including topological analysis, that require little or no
user input. We make effective use of animation to visualize the time-dependent simu-
lation data. We also describe the challenges and implementation measures necessary
in order to apply the presented methods to time-varying, volumetric grids.

1 Introduction

Among the many design goals of combustion engines, the mixing process
of fuel and oxygen occupies an important place. If a good mixture can be
achieved, the resulting combustion is both clean and efficient, with all the fuel
burned and minimal exhaust remaining. In turn, the mixing process strongly
depends on the inflow of the fuel and air components into the combustion
chamber or cylinder. If the inlet flow generates sufficient kinetic energy dur-
ing this valve cycle, the resulting turbulence distributes fuel and air optimally
in the combustion chamber. For common types of engines, near-optimal flow
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patterns are actually known and include, among others, so-called swirl and
tumble motions. With the general progress of state-of-the-art CFD simula-
tions, the discipline of engine design is made accessible to both numerical
simulation and visualization of the resulting datasets, allowing for rapid test-
ing of engine designs.

Laramee et al. [9] took preliminary steps towards the visualization and
analysis of in-cylinder flow. Using a combination of texture-based and geo-
metric techniques, they were able to indirectly visualize the key swirl and
tumble patterns in two engine simulation datasets. The approaches they used
were essentially manual and they did not consider time-dependent flow. It is
the aim of this paper to expand on this previous study by applying additional
feature-centric visualizations. Here, we

• focus on topological methods and volumetric approaches, namely cutting-
plane and boundary topology and direct volume rendering,

• examine hybrid visualizations that combine different techniques,
• emphasize schemes that can extract swirl and tumble characteristics semi-

automatically, and
• handle full time-dependent flow on a time-dependent geometry.

With application by engineers in mind, we present a survey of methods
that are useful in this context and demonstrate how they can be effectively
applied in engine simulation analysis.

Of particular interest are the time-varying nature of the simulation and
the interconnection between visualization methods that treat data of different
dimensionality (typically boundary vs. volume data). We study to what extent
an analysis of the boundary flow permits reliable insight into the volume of the
combustion chamber on the presented examples. As an example, we examine
the effect that vortices have on the topological structure on the boundary.

We describe the techniques employed and present a critical discussion of
the resulting visualizations from an application standpoint. Although the app-
lication domain covered in this work is specific, the conclusions reached can
be leveraged in many areas of engineering.

The paper is structured as follows. In Section 2, we describe the appli-
cation that we based our analysis on, namely two important patterns of
in-cylinder flow. Section 3 is concerned with the criteria for our choice of
methods. We briefly describe the methods and how they contribute to a satis-
factory extraction and visualization of swirl and tumble motions. Some of the
technical aspects involved in time-varying unstructured grids are detailed as
well. Hybrid combinations of methods are examined in Section 5, before we
conclude on the presented work in Section 6.

Remark: In our study of the application, we have found that the possibility
of interactive and animated viewing of visualization results greatly enhances
the comprehension of occurring structures. The reader is therefore referred to
the accompanying video [2] in which we demonstrate this.
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2 Engine Simulation Data

From a simplified point-of-view, there are two types of ideal flow patterns in an
engine cylinder: swirl motion and tumble motion. Both are rotational motions,
however, the axis of rotation is different in each case. Depending on the type
of engine, one of these patterns is considered optimal because it maximizes
mixing of injected fuel and air, resulting in homogeneous combustion.

In this paper, we treat two datasets showing each of these two types of
flow patterns (henceforth termed “swirl motion” and “tumble motion”). The
basic geometries of the datasets and the respective desired motion patterns
are shown in Figure 1. Although they were generated in the same problem
context, the simulation datasets differ in a number of ways.

Swirl Motion in a Diesel Engine

This simulation is the result of a the simulation of steady charge flow in a
diesel engine, based on a stationary geometry, resulting in a simple and stable
flow. The main axis of motion is aligned with the cylinder axis and is constant
in time. The spatial resolution of the single timestep is high with a total of
776,000 unstructured cells on an adaptive resolution grid.

Tumble Motion in a Gas Engine

This dataset results from an unsteady simulation of the charge phase of a
gas engine (crank angles 380 to 540). As the piston moves down, the cylinder
volume increases by an order of magnitude and the fuel-air mixture entering
the cylinder is drawn into a gradually developing tumble pattern. The overall
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Fig. 1. (Left) Stable, circulating flow pattern in a diesel engine designated as swirl
motion, with the cylinder axis as the axis of rotation. The flow enters tangentially
through the intake ports. (Right) Transient tumble motion in a gas engine. The axis
of motion moves as the cylinder expands and stays halfway between the top cylinder
wall and the piston head at the bottom (not shown).
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motion is highly transient and unstable. Both spatial and temporal resolution
are relatively low, with the data given on 32 timesteps and the grid consisting
of roughly 61,000 unstructured elements at the maximum crank angle. It is
interesting to note that the actual mesh topology remains constant throughout
all timesteps. This is accomplished by the use of virtual zero-volume cells at
the piston head that expand as the piston moves down; only the mesh vertices
are changing in time.

Both simulations were computed at the Department of Advanced Simula-
tion Technologies (AST) at AVL (www.avl.com) for the design and analysis
of specific flow in-cylinder types. The commercially available AVL Fire solver
was used for the solution of the compressible Navier-Stokes equation with
a Finite Volume Method. In addition to the flow vector field, the datasets
encompass a number of additional attributes such as temperature and pres-
sure. In this work, we focus on the analysis of the swirl and tumble aspects of
the flow vector field. Although the highest priority is given to the visualization
of the patterns themselves (or their absence), causes for their absence are also
sought.

3 Choice of Methods

Here, we describe the criteria for our selection of visualization methods.

Visualization Goals

The main interest in the visualization of the in-cylinder flow is the extraction
and visual analysis of the swirl and tumble motion patterns. Therefore, the
flow vector field and its derived quantities are of primary interest.

For the use in design analysis, the constructed visualizations need to be
objective and reproducible, meaning that the quality of the visualization result
must not depend on vital parameters to be supplied by the user. This results
in comparable visualizations for different simulation results of the same pro-
totype or possibly even among different design prototypes. Therefore, in the
selection of methods, we have put an emphasis on automatic schemes that
require little or no user input.

Data Dimensionality

The simulation results are given in the form of attributes defined in the interior
of the respective cylinder geometries. As is quite common in CFD simulations,
the flow is required to vanish on the domain boundary (no-slip condition) in
order to correctly model fluid-boundary friction. Nevertheless, values on the
boundary of the domain are easily inferred by e.g. extrapolation of volume
values next to the boundary. It is also notable that in classical engineering
analysis, visualization is widely performed on two-dimensional slices.
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Overall, the level of information that can be provided by a visualization
technique increases with the dimension of the data it treats. At the same
time, the visualization result need not necessarily improve due to perceptual
issues such as cluttering. Finally, there is usually a price to pay in algorithmic
complexity and computational cost as one progresses to higher dimensions.
Therefore, for the case of our examples, we examine in some detail how the
analysis of boundary and slice data allows to draw reliable conclusions on
the pattern of the volume flow. We achieve this by a pairing of methods that
combine boundary and volume techniques.

4 Extraction and Visualization of Swirl and Tumble

Motion

In this section we present the methods along with corresponding visualization
results and discuss their relevance with respect to the realization of the visu-
alization goals. Due to limitation of available space for images, many of the
figures used for illustration of individual methods actually show a combination
of different visualization approaches. We discuss the benefits of such combi-
nations in detail in Section 5. Moreover, the companion video [2] provides
additional images and animations.

4.1 Global Flow Behavior using Integration-based Methods

Integration-based methods are well suited to the analysis of time-dependent
flows. Their common application to stationary flows is only a special case. We
study the applicability of this class of methods on two examples.

Particles and Pathlets

Despite their simplistic nature, particle visualization can provide valuable
insight into the overall structure of a flow dataset (cf. e.g. [1, 11]). This is
especially true for time-dependent data. While the basic principle is similar
to that of streamlines or pathlines, an animation of moving massless particles
manages to convey the dynamic nature of the flow much better than sta-
tic imagery alone. In the general case, integral methods suffer from seeding
issues, although strategies have been proposed to circumvent this (e.g. [18]).
However, none of these approaches is concerned with time-varying data. For-
tunately, engine geometries offer the inlet pipe as a natural choice of a seeding
region. Integration of pathlines in time-dependent 3D flows is straightforward
through the application of standard numerical integration algorithms that
only require the integrand at a sparse set of points. While interpolation in
time-varying grids is usually problematic, we were able to exploit the topo-
logically invariant structure of the grid to simplify point location.
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Figure 2 depicts a frame from an animation of massless particles moving
with the flow during the early stage of the valve cycle, seeded at positions in
the intake pipe. The particles are of uniform size and color-coded according
to flow velocity magnitude. The image allows an easy identification of zones
where the velocity is lower than average, hinting at a non-optimal inflow
pattern at the side of the valve. Our general experience with this technique is
that in spite of being visually imprecise, it greatly furthers the comprehension
of the dynamic of the time-dependent flow by providing good overview.

Stream surfaces

Stream surfaces as an extension of streamlines are of great value in some
applications because they manage to convey a spatially coherent picture of
flow structures (cf. [3, 5, 13]). We found them to be of limited use in our case,
for two reasons. First, both swirl and tumble are large-scale motions that are
locally overlaid by other small-scale flow patterns and the resulting stream
surfaces are complicated to interpret since the small details are emphasized
by the surface nature of this primitive. Secondly, it is unclear how they can be
applied satisfactorily in a time-dependent context. Although visualizations of
some value can be generated, determination of good starting curves is strongly
dependent on the dataset geometry. Hence, we do not consider stream surfaces
an objective technique by the criterion stated above.

4.2 Topology-Based Visualization of Flow Structures

Topological methods provide efficient means for the visualization of essen-
tial structures in steady flows. As opposed to the integral methods described
previously, they offer a fully automatic way to gain insight from vector data
sets. The topological technique is typically applied in the visualization of pla-
nar flows [12] for which it yields synthetic graph representations. It consists
of critical points (vector field zeros) and connecting separatrices. The three-
dimensional case, however, remains challenging. Besides occlusion problems

Fig. 2. A frame from a time-varying
tumble motion visualization using a
combination of particles and vortex
cores lines. Particle velocity magnitude
is color-coded. Lines are color coded by
the path type (saddles – red, sources –
green, sinks – blue). Over time, some of
the particles are captured in the vicin-
ity of vortex cores resulting in lost en-
ergy (lower velocity) for the creation
of the tumble pattern (colorplate on p.
214).
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Fig. 3. Visualization of swirl motion using boundary topology. Critical points are
colored by type (cf. Fig. 2), and separatrix color varies with separation/attachment
behavior from dark blue (weak) to cyan (strong). Separatrices indicate the separation
between neighboring vortices on the boundary. (Left) Combination with volume
rendering with a transfer function of λ2 only. On the bottom left of the cylinder, the
recirculation zone causes a non-ideal off-center rotation, as visualized by topology.
(Right) In combination with LIC (colorplate on p. 214).

that must be addressed specifically [15], prominent features of interest like
vortices cannot generally be identified as elements of 3D local topology.

In this paper, we address these deficiencies by combining a topological
analysis of the boundary flow with a hybrid approach that leverages 2D topol-
ogy to explore the 3D structure of a vector field [16].

Boundary Topology

To our knowledge, a general algorithm for vector field topology on 2D
unstructured grids embedded in three-space has not yet been described in
the visualization literature (although algorithms exist for parameterized grids,
e.g. [4]). Thus, we propose the following approach. In each triangle, we use
the well-defined local tangent plane to perform a cell-wise search for critical
points and determine their type. The construction of separatrices from saddle
points is performed using a streamline integration approach based on geodes-
ics as introduced by Polthier and Schmies [10]. A specific characteristic of
triangulated surfaces for topological analysis is the existence of what we term
singular edges 5. Since the tangent plane is discontinuous across surface edges,
the flow on both sides can be contradictory. Singular edges are typically found
along the sharp contours of the geometry where they must be integrated in the
topological analysis to account for the possibly contradictory flow behavior
between neighboring cells.

For viscous flows, the information conveyed by the boundary topology can
be enhanced naturally by showing the strength of flow separation and attach-
ment along separatrices. Flow separation occurs when the flow surrounding
an embedded body interrupts its tangential motion along the object’s bound-
ary and abruptly moves away from it. The opposite phenomenon is called

5 Integral curves cannot continue over these edges since the interpolants on both
sides of the edge are incompatible.
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Fig. 4. Left: Cutting-plane topology applied to the diesel engine. Plane separatrices
are colored gray. Despite the visual inexactness, swirl structures emerge clearly.
Critical points paths are colored according to nature. It appears the overall swirl
motion is fueled by several parallel vortices at the top of the cylinder. The main
swirl motion core is disrupted near the middle. Right: Visualization of the rotational
directions in the vortex system at the top of the diesel engine cylinder. The transfer
function is identical to that of Fig. 6. The counter-rotating vortices appear in blue
and in red depending on rotation direction. On the boundary, the topological analysis
extracts and visualizes separation lines between individual vortices (color coding as
in Figs. 2 and 3). (Colorplate on p. 214.)

flow attachment. As pointed out by Kenwright [7], separatrices of the bound-
ary vector field constitute so called closed separation or attachment lines. To
quantify flow separation and attachment along a separatrix, we compute the
divergent (resp. convergent) behavior of neighboring streamlines by evaluat-
ing the local divergence of the vector field [17]. This is illustrated in Fig. 3
(left) by the color coding of the intensity of flow separation and attachment
along separatrices.

Direct visualization of the boundary topology produces images such as
Figure 3 (swirl dataset) and can also be applied in a time-dependent context.
The combination of linear interpolation in time and in space often produces
artifacts (such as artificial pairs of critical points that appear and quickly
vanish quickly). Nevertheless, animations that show the temporal evolution
of these instantaneous graphs provide valuable means to track the dynamics
of important flow patterns (cf. Fig. 7). In our experience, boundary topology
is most effective if used in conjunction with methods that visualize additional
properties of the flow, both in the volume and on the boundary. Such com-
binations permit to determine the mutual influence between boundary and
volume. We will discuss these issues when we examine further combinations
of methods presented in Section 5.

Cutting-Plane Topology

It was shown previously [16] that a moving cutting plane that traverse the
dataset and on which the vector field is resampled and projected at regular in-
tervals can be a powerful tool in the analysis of 3D datasets. The projection of
the vector field on the plane effectively manages to discard structures orthogo-
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Fig. 5. Two frames from an animation of the tumble motion simulation. Cutting
plane topology is applied to visualize flow field structures in the plane orthogonal to
the tumble axis. Color of separatrices varies from blue to red on successive cutting
planes. Tumble-like flow structures emerge clearly from the otherwise incoherent
lines. The paths of critical points over the cutting plane continuum are displayed
in green. In the last frame (right), the diagonal main tumble axis can be observed
together with a large recirculation zone (closed path on the left). (Colorplate on
p. 215.)

nal to the plane, but preserves plane-parallel flow patterns. If assumptions on
the orientation of features are given, this property can be exploited. Cutting-
planes are hence well suited for the qualitative analysis of swirl or tumble
motion, since its axis of rotation is known. Furthermore, the (discretized)
continuum of cutting-planes allows for the application of critical-point track-
ing over the plane parameter range. In the case of vortical motion that is
intersected orthogonal to the rotational center, a reproduction of the vortex
core as the path of a critical point over the parameter range should, in theory,
work well. In practice, it is hard to intersect (not known a-priori) structures
exactly. This results in approximations of the vortex cores. Still, a qualitative
analysis is viable.

In Figure 4, the results of this approach applied to the swirl motion dataset
are displayed. As the cutting planes are applied orthogonal to the cylinder axis,
coherent swirl-type structures emerge at the top of the cylinder. Rotation cores
orthogonal to the planes are visualized by critical point paths over the plane
continuum. Interestingly, the main swirl core is supposed to extend through
the whole cylinder, but is actually interrupted near the middle.

Figure 5 shows frames from an animation of the tumble dataset. The mov-
ing cutting planes have been applied orthogonal to the tumble axis and are
color coded by their distance to the back wall of the combustion chamber for
increased visual clarity. Although the visualization is not exact, the prevalent
tumble structure is captured well in spite of its overall weakness and instabil-
ity. Again, the center of the respective motions is given by the critical points
paths. The tumble motion is found to consist of several smaller vortices, of
which some have a diagonal orientation that looks like a simultaneous combi-
nation of swirl and tumble. In the full animation (cf. [2]), the interaction of
the different smaller tumble patterns can be observed as they split and merge.
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Using only the critical point paths for visualization, it is possible to observe
the main tumble vortex, as shown in Figure 2. It does not completely match
the desired axis and is highly off-center on the curved wall of the combustion
chamber. Here too, the diagonal nature of the main rotation is confirmed.

Volume Visualization

Among the many region-based vortex definitions, the λ2-criterion [6] has a
well established tradition in engineering use. The criterion is given as a scalar
quantity derived from the flow field Jacobian matrix and related to a mini-
mum in pressure in the Navier-Stokes equation. According to its definition, a
vortex is present at a point if λ2 < 0. Traditionally, isosurfaces are used to
visualize vortices. However, this approach does not fare well in complicated
datasets with many vortices. The resulting isosurfaces do not separate indi-
vidual vortices and are prone to visual complexity. This is only avoided by
a careful manual selection of the isovalue. In addition, the strength of the
rotation (as given by the modulus of λ2) is not visualized. Interactive volume
rendering has also been applied in this context [14, 16] and is able to overcome
most of the difficulties related to isosurfaces. As described in [16], we have not
attempted to apply volume rendering directly to the unstructured grid but
have employed a resampling scheme that results in a rectilinear grid covering
the region of interest (in our cases, the cylinder). This grid is then used in
a direct volume rendering approach. Although artifacts are incurred in naive
sampling, post-sampling scale-space filtering is very effective in removing these
artifacts.

Using this approach, Figure 3 (left) illustrates the vortices in the context
of the swirl motion using a simple one-dimensional transfer function that
indicates vortex strength by color. As already visible in the results of the
Sujudi-Haimes method, the actual swirl motion consists of several independent
vortices, most prominently a strong vortex that spans almost the entire length
of the cylinder. It is clearly off-center. It is apparent that the fuel-air mixture
entering the cylinder is drawn into a strong rotational motion. Whether this is
good for the overall mixing process or an obstacle that results in a pressure loss
with negative consequences remains unclear. Technically, we have limited the
transfer function range to λ2-values between −106 and −102 to filter vortical
motions at the small scales.

Recently, the use of multi-dimensional transfer functions [8] in flow vis-
ualization was investigated [16]. We make use of this technique to visualize
the rotational orientation of individual vortices, allowing more insight into the
mutual interaction in the observed vortex systems. Adding normalized helicity
as a second variable, we manage to both strengthen the vortex region criterion
as well determine the orientation of the rotational motion. Normalized helicity
is given as the angle between the velocity vector and the vorticity vector and
has a range of [−1, 1], with positive values in the case of counter-clockwise
rotation in flow direction and near-zero values indicating very weak vortical
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behavior. The obtained visualization (cf. Fig 4) indicates several mutually
counter-rotating vortices in close proximity near the intake ports. This is
highly undesired, since part of the energy contained in the inflow is used up
by this vortex system.

The use of multidimensional transfer functions (used commonly in medical
image generation) can require some degree of interactivity in the determina-
tion of the transfer functions in order to specify variable ranges manually for
most satisfactory results. We wish to emphasize that in our case, transfer
functions based on physical criteria (such as λ2 < 0) are automatic in the
sense the interesting value ranges are dictated by the laws of fluid dynamics.
Using simple linear interpolation in time, an animation (cf. [2]) can depict the
temporal evolution of vortices associated with swirl and tumble motion (see
Fig. 6).

5 Hybrid approaches

While performing experiments with the different approaches detailed above,
it became apparent that a combination of visualizations can provide an even
more thorough understanding of the simulation results. In this section, we des-
cribe examples of particularly effective combinations and how they contribute
to the swirl and tumble analysis.

Fig. 6. Unsteady visualization of vortices from in-cylinder tumble motion in a gas
engine and its relationship to the boundary. During the valve cycle (top left to bot-
tom right), the piston head that shapes the bottom of the geometry moves down (not
shown). The volume rendering shows vortices using a two-dimensional transfer func-
tion of λ2 and normalized helicity (legend). The main tumble vortex is extracted and
visible as off-center and with an undesired diagonal orientation. The flow structure
on the boundary is visualized using boundary topology, with critical points colored
according to their nature (cf. Fig. 2). A direct correspondence between the volume
and boundary visualizations can be observed. In the third image, the intersection of
the main vortex with the boundary results in critical points on the front and back
walls.
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Fig. 7. Two frames from a time-varying visualization of tumble motion using a
combination of cutting-plane topology (green lines) and boundary topology (blue
lines). Where the critical point paths computed over the cutting-plane parameter
range intersect the boundary, singularities appear there, too. This is a prime example
of a hybrid approach being used to investigate the relationship between boundary
and volume methods (colorplate on p. 215).

5.1 Boundary and cutting plane topology

In fluid flows, complex flow structures such as vortices are often caused by the
interaction of the flow with boundaries. Depending on this interaction, differ-
ent patterns appear on a boundary that in turn allow one to infer properties
of the volume flow. However, in complicated geometries such as in-cylinder
flow, this approach alone introduces visualization complexity due to the high
number of vortices involved and generally complex flow structure.

The combination of boundary topology and cutting plane topology is an
effective approach. Figure 7 illustrates this in time-slices from an animation.
For the tumble flow, this type of visualization provides valuable insight into
the development of the diagonal tumble motion. In the early stages of the
valve cycle (left two images), the flow pattern is very incoherent and unstable.
Roughly at the middle of the cycle (second image from the right), a swirl
pattern occurs in the front half of the cylinder, mainly constituted by two
large vortices. In the very last timesteps, the rotational axis tilts towards the
desired tumble axis, but fails to reach it completely. Here, a large recirculation
zone can be observed that may hinder the development of the tumble motion.

5.2 Sparse and dense methods

On the boundary, the topological graph as a visually sparse method is effec-
tively combined with dense methods, such as texture-based methods or volume
visualization. While texture-based methods are built on the capability of the
human visual system to identify patterns in the flow, the topological graph
serves as a terse structural picture that relies on cognitive interpolation on
behalf of the viewer. It is therefore a very natural combination. Figure 3 (swirl,
right image) provides an example, showing a very strong vortex near the inlet
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that is drawing away energy from the creation of the ideal swirl pattern. We
refer the reader to previous work [9] for other applications of texture-based
techniques in this problem context that we believe will benefit strongly from
a pairing with a feature-based visualization.

A similar conclusion is reached by combining boundary topology and the
volume visualization of vortices. Again looking for the swirl pattern, the
imperfection of the actual flow motion is visible in Figure 3 (left). While
the volume rendering shows the correctly oriented but off-center main vor-
tex, the topology graph on the lower cylinder boundary complements this
visualization by showing corner regions of the flow that are not taking part
in the swirl pattern. As expected, the topological graph also serves to show
separation and attachment boundaries that delimit the regions of influence of
the different vortices. As confirmed by the rotational direction analysis (cf.
Fig. 4), these vortices are rotating in different directions, which is considered
destructive flow behavior.

There are of course other possible combinations: for example, the Sujudi-
Haimes vortex core line visualization can play a similar role as cutting-plane
topology. In our experiments we found however that it often detects only the
strong vortices at the intake portions of both datasets. Combining particles
and vortex core lines offers insights into how exactly the vortices are created
and where kinetic energy is lost in small scale structures (cf. Fig. 2).

6 Conclusion and Future Work

By using a number of visualization techniques that we selected as automatic
and objective, we were able to extract and create visualizations of the swirl and
tumble datasets that allow an in-depth visual analysis of the actually occurring
patterns. The visualizations are comparable between similar datasets and can
thus be employed in design prototype analysis. By using hybrid combina-
tions of different techniques, we were able to determine the extent to which
the desired pattern is established and also detect influences that hinder its
formation. In summary:

• The swirl motion in the diesel engine is visible in the form a promi-
nent main vortex spanning the entire cylinder (Figure 3, left). It is non-
optimally off-center. A recirculation zone is present in the lower corner of
the cylinder. This may be the cause for the eccentricity of the swirl motion.
A vortex system at the intake valve (Figures 3 and 4) prohibits the full
conversion of energy contained in the incoming flow into the swirl motion.

• The observed tumble motion in the gas engine differs from an optimal
pattern in several aspects:
– it is unstable and sporadic over time
– rather weak and off-center (Figs. 6 and 7) and
– resembles a hybrid of both swirl and tumble patterns (Figures 2 and 7).
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Here too, a prominent recirculation zone induces the swirl component into
the flow. Again, the flow distribution at the intake valve is not optimal.

The unstructured, adaptive and time-varying nature of the tumble datasets
poses a technical difficulty that we were able to circumnavigate through the
choice of schemes and appropriate extensions where needed. The resulting
visualizations are of high quality and provide valuable insight into the appli-
cation.

There are many possible avenues that future work might take. High up on
the priority list are improvements in the field of topological visualization. Full
three-dimensional topology has not been completely realized, and while deliv-
ering viable visualization results, replacements such as cutting-plane topology
are not completely satisfactory. The inclusion of features such as vortex cores
into the topological skeleton is desirable, but may not be possible. Further-
more, the interplay between the topologies of the boundary and volume flows
need to be investigated on a more systematic basis. In general, it seems desir-
able to examine the hybridization of different visualization approaches in the
same context.

Future work could also feature improvements to many of the schemes pre-
sented here to allow for the treatments of larger datasets, such as entire engine
blocks. It remains to be seen in how far this is feasible from a technical point
of view.
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Summary. Since the time numerical simulation tools have been introduced in
design engineering the requirements on their capabilities have increased steadily.
Computer resources and people’s expectations on the simulation itself have reached
a high level over the years. More powerful computers are used to process meshes
with several million cells. 3-d time accurate calculations with moving or deform-
ing meshes are manageable as well as large eddy and direct numerical simulations.
Advanced visualization techniques are used to extract more information leading to
a deeper understanding of complex flow phenomena. Using examples of ongoing and
recently finished projects the use of flow simulation methods and visualization tools
will be presented. The use of commercial tools for cfd and post processing and their
adaptation for simulation of human comfort as well as for particle transport simula-
tions will be presented and potentials for topology based visualization methods will
be pointed out.

1 Introduction

The development of visualization tools and the progress in numerical sim-
ulation methods is in close connection with the available computer power.
Todays methods include 3-dimensional, time accurate simulations on meshes
with several million cells. The massive amount of data does not only demand
for highly optimized visualization tools in terms of storage management but
also enables the user to get a deeper insight into local flow phenomena using
advanced visualization methods like topology based analysis. In the following
two examples will be presented which have great potential for a topology based
visualization approach. The first one is concerned with passenger’s thermal
comfort in enclosed regions such as a cabin of an aircraft or a train’s com-
partment. Disregarded for many years the topic of passengers thermal comfort
draws much attention lately. Health aspects are in close connection to thermal
comfort analysis and have to be considered as well in the design process of
modern mass transportation vehicles. The second example addresses particle
transport and accretion. Focussing on snow particles the application presented
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is concerned with snow accretion on the undercarriage of an urban train. Ac-
cumulation of snow on essential devices such as air inlets and outlets of the
engine cooling system which are mounted underfloor can lead to overheating
and malfunction and finally to serious damage. This simulation method is
also applicable to snow accretion on aircrafts and road vehicles and in civil
engineering to simulate snow accumulation on buildings, bridges, avalanche
protection devices and freeways. The flow simulations as well as the post
processing are performed using commercial tools. Although these tools are
state of the art their capabilities for topological flow analysis are very limited.

2 Thermal comfort of passengers

The human response to the thermal environment is depending on the six ma-
jor factors air temperature and velocity, mean radiant temperature, relative
humidity, physical activity and clothing thermal resistance, [5]. Comfort is
by definition a subjective sensation. However, the use of standardized scales
for ratings of thermal sensations for large groups of individuals has enabled
researchers to define the essential components of the thermal environment
and their interaction in determining the average response of the population.
In practice the indoor climate is far from being uniform. Cold drafts from win-
dows, supply of air from different ventilation systems etc. contribute to the
creation of various comfort asymmetries. For engineering purposes the term
“comfort” has to be converted and expressed in measurable, physical quan-
tities, [13]. Commonly used parameters for evaluating passenger comfort are
the predicted mean vote PMV , the predicted percentage dissatisfied PPD,
the equivalence temperature teq and the mean age of air MAA.

Predicted mean vote PMV and the predicted percentage

dissatisfied PPD

In order to get quantitative results for the definition of comfort Fanger used
the predicted mean vote model. Using this method a steady state thermal
comfort index is derived from the human heat balance calculations and climate
chamber studies, (1). It relates the PMV of a group of people exposed to
a certain environment to the calculated result of the human heat balance
equation and is given by
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PMV =
(

0.303e−0.036(M−W ) + 0.028
) (

(M − W ) − 3.05 × 10−3×
[5733 − 6.99 (M − W ) − pa] − 0.42[(M − W ) − 58.15] − 1.7 × 10−5M×

(5867 − pa) − 0.0014M (34 − ta) − 3.96 × 10−8fcl[(tcl + 273)
4 −

−
(

tr + 273
)4

] − fclhc (tcl − ta)
)

where (1)

tcl = 35.7 − 0.028 (M − W ) − Icl

[

3.96 × 10−8fcl

(

(tcl + 273)
4

−
(

tr + 273
)4

)

+ fclhc (tcl − ta)
]

with M the metabolic rate in W/m2 and W the external work in W/m2,
ta the ambient air temperature and tr the mean radiant temperature of the
environment in ◦C and pa the water vapor pressure in Pa, [4]. fcl stands for
the clothing area factor, which is 1 for unclothed situations and Icl is the
clothing insulation in clo. The surface temperature tcl of the clothing in ◦C
has to be calculated iteratively. The PMV thermal sensation scale is used by
probands to rate their feeling of comfort on a scale from -3, which corresponds
to “too cold” to +3, which stands for “too hot”, see fig. 4. The PPD is directly
related to the PMV [4] by

PPD = 100 − 95e−n

where (2)

n = 0.03353PMV 4 + 0.2179PMV 2.

While PPD provides information as to whether the environment is likely to
be acceptable, PMV gives information whether it is too hot or too cold when
the number dissatisfied is too large, [12].

Equivalence temperature teq

teq is defined as the temperature of an imaginary enclosure with the mean
radiant temperature equal to air temperature and still air in which a person
has the same heat exchange by convection and radiation as in the actual
conditions, [13]. In cfd-calculations teq can be derived in various ways. Many
empirically derived models are available in the literature, [2]. We are using a
formulation suggested by Madsen et al. [9]

teq = 0.5
(

ta + tr
)

for u ≤ 0.1m/s

teq = 0.55ta + 0.45tr +
0.24 − 0.75

√
u

1 + Icl
(36.5 − ta) for u > 0.1m/s (3)
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with a human energy metabolism of about 70 W/m2 and u the local velocity in
m/s. Figure 3 shows the equivalence temperature for the thermal mannequin
as depicted in fig. 6. The mannequin is seated in a train compartment with air
inlets on the bottom in front of the mannequin and at the window. The inlet
velocity is 2 m/s at the static temperature of 291K. The radiation caused by
the sun is 436 W/m2.

Mean age of air MAA

The age of air is a useful parameter to evaluate artificial ventilation effective-
ness. The age of air in a point is the time taken by air flowing out of the inlets
to reach that point, [11], [10]. It is by definition zero at the inlets. For the
scalar φ the transport equation (4) has to be solved in i dimensions

∂ρφ

∂t
+

∂

∂xi

(

ρuiφ − Γ
∂φ

∂xi

)

= Sφ for i = 1 . . . 3 (4)

with ρ the density, t the time, xi the cartesian coordinates and ui the velocities
in i directions. Γ and Sφ are the diffusion coefficient and the source term and
φ the age of air.

2.1 Thermal comfort in modern train compartment

The train under investigation is a modern two floor rapid transit train, [7].
Simulation is performed for the complete internal air flow, which mainly con-
sists of two parts as depicted in fig. 1. The ventilation system transports air
from the air conditioning system to the inlet vents of the compartment.

Fig. 1. The cfd-model of the compartment and the ventilation system

In order to keep the total mesh size low a hybrid mesh approach is used.
Hexahedral cells are used wherever possible, fig 2. The mesh size is about
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15 millon cells. More detailed information about the flow simulation can be
found in [7].

Fig. 2. The surface meshes inside the train’s upper floor and on the floor and
window inlets of the ventilation system

Figure 3 shows the equivalence temperature for the thermal mannequin in fig.
6 with local Icl values set for a normally dressed man. teq is calculated for each
segment, such as head, chest, arms etc.. Shaded regions mark comfort regions
assessed from ratings of a group of people exposed to a certain environment,
[13]. Having all teq values inside any of the “but comfortable” zones will not
result in a general acceptance for the whole body. For a general acceptance a
weighted whole body teq value has to be calculated and all local values have
to be close to that value in any but the “too cold” or “too hot” regions. The
comfort regions in fig. 3 are calculated for the summer months. As can be seen
in fig. 3 the upper body segments are in the “hot but comfortable” region with
a higher teq on the mannequins left side due to the radiation from the sun.

Fig. 3. teq with limitations for summer months of the thermal mannequin in fig. 6
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Fig. 4. PMV and PPD values for a section of the train, [7] (colorplate on p. 216).

Fig. 5. MAA in [s] in the train, [7] (colorplate on p. 216).

Figure 4 shows the PMV in a section of the train. Since the sun is shining
from the left side in the compartment high PMV values are found close to
the windows on this side. Cold air is transported by the inlets into the com-
partment. Here the temperature is locally too cold which results in low PMV
values. It is well known that different people will have a different perception of
the climate produced and that any given climate is unlikely to be considered
satisfactory by all. Therefore satisfying 80% of occupants is good, so that a
PPD of less than 20% is good, [12]. For enclosed areas with occupants MAA
is used as an indicator for local air quality. More detailed information on air
quality can be assessed by calculating the species transport of air. However
for large applications such as the complete internal flow of a compartment
MAA gives sufficient information on air quality. As in this example it can be
observed in fig. 5 that the oldest air is caught on the stairways and in the exit
regions.

Topological flow analysis

The picture on the right in Figure 6 shows a topological flow analysis of the
upper part of the body. Using commercial postprocessing tools [6] a LIC (Line
Integral Convolution) algorithm is used to visualize wall stream lines. The
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Fig. 6. The thermal mannequin in the compartment. Left: Visualization of stream-
lines, coloured with their residence time in [s]. Surface static temperature from 291K
to 310K. Right: Texture based visualization of wall stream lines coloured with the
local teq in ◦C (colorplate on p. 216).

colours correspond to the local teq. Critical points are found where the vector
field magnitude vanishes. Following the classification of critical points found in
[8] two attracting foci (red stars) and two saddle points (blue dots) are found
on the front side of the upper body. Its interesting to note that the positions
of critical points correspond to the location of regions with high values of teq.
The visualization of wall stream lines gives detailed information on how the
local teq is transported on the body surface. Together with the visualization
of streamlines in the compartment and the static surface temperature of the
dummy this information is extremely useful for optimizing thermal passenger
comfort. Due to the high complexity of the geometry of the compartment
and complex variables to be displayed a context based feature visualization
as presented in [19] would be very useful. Areas of interest with detailed
information on comfort related parameters are selectable where as the rest
is displayed in a coarse manner. Cross cutting topology as presented in [18]
is another promising method for analyzing flow topology. It allows to apply
existing algorithms for topology tracking of two-dimensional vector fields to
the visualization of three-dimensional flow structures. In this manner 2-d cut
planes are defined in the continuous three-dimensional physical space of the
original data. Detection of critical points and separatrices are carried out in
these 2-d cut planes and can be analyzed with respect to comfort relevant
parameters.

3 Particle transportation and accretion

Snow accretion plays an important role for the operation of vehicles in coun-
tries with frequent snowfall. In the case of a train running on snow covered
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tracks, snow is being dispersed from the ground and accumulates on parts
of the undercarriage. This can result in blockage of air inlets and outlets of
the engine cooling system and various other essential devices, finally leading
to vehicle failure. In one of the first publication about saltation Bagnold [1]
identified three distinct transport modes for the transport of particles by an
air stream: surface creep, saltation and suspension. For the accretion of snow
on train undercarriage suspension is supposed to be the main reason.
To quantify the saltating mass flux depending on the local friction velocity a
number of mostly empirical models can be found in the literature. White [20]
who initially investigated soil transport by winds on Mars, found a correlation,
borne out of microphysical saltation models as well as wind tunnel studies.
The model also holds for conditions on earth and is given in (c.g.s.) units by

F =
csρu⋆

3

g

(

1 − u⋆tf

u⋆

)(

1 +
u⋆tf

2

u⋆
2

)

(5)

with F the mass flux per unit width, u⋆ =
√

τw/ρ the friction velocity, ρ the
density of the fluid, τw the wall shear stress and cs = 2.61. The fluid threshold
friction velocity u⋆tf has to be exceeded for suspension to occur.
Sorensen [15] modified Bagnold’s formulation in [1] and derived the equation,

F = 0.0014ρu⋆ (u⋆ − u⋆c) (u⋆ + 7.6u⋆c + 205) (6)

for the mass flux in (c.g.s) units, which is an approximately cubic function of
u⋆. The critical friction velocity is set to u⋆tf in the following. Although these
models were developed for sand, they are in good agreement with experiments
also for snow particles and are therefore widely used in the literature, e.g.
[14, 3]. Figure 7 shows the mass flux per unit width versus the friction velocity
for the two models under consideration.

Fig. 7. The particle mass flux plotted versus the friction velocity
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For quantifying snow saltation several differences in grain characteristics com-
pared to sand particles are obvious. Newly fallen snow has a dendritic (greek.
dendron tree) shape rather than a spherical shape which will influence the
aerodynamic behaviour during suspension and saltation. Due to their distinct
shape, snow particles will as well differ in their structure-elastic behaviour
compared to sand particles. This is important for finding correct values for
the threshold velocities. Snow particles being transported by an airstream will
also change in shape due to collisions with neighbour particles and in that way
alter the overall snow properties, [3]. The simplicity of the aforementioned
models together with their use for a wide range of engineering applications
concerning particle saltation found in the literature confirms the use of these
models to simulate snow accretion. Due to the lack of any experimental data
the model introduced by Sorensen is used. This model gives higher mass fluxes
compared to the model by White and is therefore the conservative choice for
the calculation of accretion on critical surfaces.

3.1 Snow accretion on a train undercarriage

The train under investigation has a total length of 54 meters. Its cad-model,
already simplified for cfd, is depicted in fig. 8. In the simulation, the tracks
and the ground are moving with the inlet velocity of 22.2 m/s, the wheels and
axels of the train are kept non-rotating, because it has only marginal effects for
the given problem. The flow field is simulated by solving the steady Reynolds

Fig. 8. The cfd-model of the train with a detailed view of the surface mesh

averaged Navier-Stokes equations employing the standard k-ω SST turbulence
model with standard wall functions, [6]. In addition to solving the transport
equations for the continuous phase, a discrete second phase is introduced
in a Lagrangian frame of reference, following the Euler-Lagrange approach.
This second phase consists of spherical particles dispersed in the continuous
phase. Trajectories of these discrete phase entities are computed. A funda-
mental assumption made in this model is that the dispersed second phase
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occupies a low volume fraction, even though high mass loading is acceptable.
It is assumed, that the snow concentration in the air is small enough to have
no significant influence on the solution of the flow field. The particle trajec-
tories are computed individually after the fluid phase calculation has reached
the convergence criterion. The particle mass flux is calculated using (6) with
u⋆tf = 0.21 m/s, according to [14]. More detailed information about the flow
simulation can be found in [17]. As particles are being transported by the
flow, they are either trapped or reflected on walls. The trapping of particles
depends on the local fluid threshold friction velocity. It is assumed that parti-
cles hitting the surface with a local friction velocity smaller than u⋆tf = 0.21
m/s will be trapped. For particles being reflected on a wall the momentum
of the particle after the impact is altered to ensure that reflected particles
travel alongside the wall instead of an elastic impact. For an average snow
particle the diameter was set to 0.48 mm according to [14]. The density of
snow particle is set to 366 kg/m3.
Figure 9 shows the accretion of snow on parts of the undercarriage. These
parts of surfaces which are exposed to the main flow show higher accretion
values than surfaces hidden or protected by others. Almost no accretion is
found on the outlet, since the averaged velocity of 4.85 m/s prevents particles
from being adhered. The compressor inlet is shown in fig. 10. This inlet is
located on the upper side of the compressor box and is assumable well hidden
from the main flow. This inlet shows higher accretion rates compared to the
air inlet in fig. 9, which is much more exposed to the main flow. The rather
narrow gap between the compressor inlet and the underfloor of the train leads
to local pressures below the ambient pressure, which is the main reason for
particles being sucked into the compressor inlet. Figure 10 reveals that the
location of the compressor’s mounting strut above the inlet has great influence
on the local flow field and is partly responsible for these high accretion rates.
The particles tracks are post-processed in reverse. This ensures that the paths
of all particles which will finally stick on the compressor inlet are tracked from
their beginning.
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Fig. 9. Snow accretion in kg/m2s on wall boundaries (colorplate on p. 217).

Fig. 10. Snow accretion in kg/m2s on the compressor inlet and particle tracks
coloured with the local particle velocity in m/s collected by the compressor (color-
plate on p. 217).

Topological flow analysis

For studying particle accretion on a surface the flow around a simple box is
investigated in free stream conditions similar to the train’s flow conditions as
depicted in fig.11. Particles are injected at the far field inlet and are trans-
ported by the free stream. Calculations were performed for different angles of
attack of the box’s top side. The box itself is closed for all angles of attack of
the top side. Pictures p1 and p2 show wall stream lines using a LIC algorithm
coloured with the local wall shear stress. Increasing the angle of attack moves
the saddle point (blue dot) upstream and in that way shortens the recircula-
tion area. Picture p3 shows the accretion rate on that surface. Since particles
stick to the surface only in areas where u⋆ and therefore τw is smaller than
their threshold values the accretion rate is high close to the separatrice (or-
ange line) connecting the 2 foci (red stars) and the saddle point. In [16] an
approach was made to study flow topology based stream lines and path lines.
This approach is of particular interest since snow particles can approximately
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Fig. 11. Visualization of wall stream lines and accretion rate together with critical
points for different angles of attack of the top surface of the box (colorplate on
p. 217).

be seen as massless particles. Under this assumption snow particles are being
transported in the flow along path lines. This proposed method can therefore
be used to analyze local attractors on surfaces exposed to particle flow which
enforce particles to accrete.

4 Conclusions

The two examples presented show the complex demands on todays numer-
ical simulation methods. Changing requirements from the industry as well
as a deeper understanding of flow phenomenons lead to new approaches for
visualization. The work presented in this contribution shows the importance
of topology based analysis but also the limited capabilities of post processing
tools available today. As for the passengers thermal comfort human physiology
has to be included into traditional flow simulation. The interaction between
human physiology and the surrounding local climate is still not well under-
stood. Using topology based approaches the analysis of critical points and
separatrices on thermal mannequins would give new insights in passengers
thermal comfort. In unsteady flows structural changes of the flow field, i.e.
bifurcations in the vicinity of the mannequin might be used to analyze the
threshold between human comfort and discomfort. For combined simulations
of continuous and discrete phases finding and categorize critical points on walls
is crucial for analyzing particle accretion. To understand those flows improved
methods for visualizing must be available making detailed flow information
transparent to the engineer. A cooperation of all the disciplines involved is
necessary for a efficient development of improved tools for flow simulations
and visualization.
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19. Viola, I., Gröller, E.: Focus+Context Visualization of Features and Topological
Structures, presented at the TopoInVis, Budmerice, September 2005

20. White, B.R.: Soil Transport by winds on Mars. J. Geophys. Res., 84, 4643–4651
(1979)





A Practical Approach to Two-Dimensional

Scalar Topology

Peer-Timo Bremer and Valerio Pascucci

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
{pascucci1,ptbremer}@llnl.gov

Summary. Computing and analyzing the topology of scalar fields has proven to be
a powerful tool in a wide variety of applications. In recent years the field has evolved
from computing contour trees of two-dimensional functions to Reeb graphs of general
two-manifolds, analyzing the topology of time-dependent volumes, and finally to
creating Morse-Smale complexes of two and three dimensional functions. However,
apart from theoretical advances practical applications depend on the development of
robust and easy to implement algorithms. The progression from initial to practical
algorithms is evident, for example, in the contour tree computation where the latest
algorithms consist of no more than a couple of dozens lines of pseudo-code. In this
paper we describe a similarly simple approach to compute progressive Morse-Smale
complexes of functions over two-manifolds. We discuss compact and transparent
data-structures used to compute and store Morse-Smale complexes and demonstrate
how they can be used to implement interactive topology based simplification. In
particular, we show how special cases arising, for example, from manifolds with
boundaries or highly quantized functions are handled effectively. Overall the new
algorithm is easier to implement and more efficient both run-time and storage wise
than previous approaches by avoiding to refine a given triangulation.

1 Introduction

Scalar field topology has proven to be a powerful tool in a wide variety of app-
lications. In scientific visualization it has been used, for example, for speeding
up the extraction of iso-surfaces [25], simplifying them [4], and also for general
data analysis [3, 11]. However, topology is also useful as a shape descriptor [22,
14], can help in remeshing surfaces [24, 7], and widely used concepts like
watershed and flood-fill algorithms [12] are also topological in nature.

The most complete description of the topology of a scalar field is its Morse-
Smale complex which segments the field based on its gradient. While the
usefulness of the Morse-Smale complex has been widely acknowledged it has
rarely been applied in practice. The problem is that intuitive straightfor-
ward computations of the Morse-Smale complex which have been described
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initially [23, 2] do not work in general. Only recently, generically correct algo-
rithms to compute two- and three-dimensional Morse-Smale complexes have
been discovered [9, 8]. However, these algorithms are notoriously difficult to
implement which again limits their use in practice. Only the third genera-
tion of algorithms [3, 11] approach usability by combining correctness with a
reasonable implementation.

In this paper we discuss a further improvement on the algorithms for com-
puting the Morse-Smale complex of two-dimensional functions. In particular,
we want to encourage the use of topology in practice. Therefore, the paper
focuses not on any particular scientific result using Morse-Smale complexes
but rather on providing a simple but complete description of the data struc-
tures and algorithms necessary to apply the theory of Morse-Smale complexes
in general.

1.1 Related Work

Under various names the Morse-Smale complex has been used in a number
of different contexts. Initially, they were used to describe the topology of
terrains [5, 17] or other functions that could be connected to geography [26].
Naturally, the early research was limited to theoretical definitions rather than
computer based algorithms. This line of research also includes the definitions
of early multi-resolution structures [20, 21] as well as an in-depth discussion
about potential degeneracies arising from non-smooth functions [19].

The first straight forward implementations are described by Takahashi
et al. [23] and Bajaj and Schikore [1]. However, neither paper discusses any
of the degeneracies (e.g. areas of zero gradient, merging integral lines) which
arise when applying smooth theory to piece-wise linear functions. Therefore,
these algorithms are likely to run into difficulties on any scalar field with
non-trivial topology. The algorithms discussed in this paper are most closely
related to the ones by Edelsbrunner et al. [9] and Bremer et al. [3]. Edelsbrun-
ner et al. describe extensively how to handle merging and splitting steepest
paths. However, their algorithm is quite involved and its implementation error
prone. Bremer et al. simplify the implementation significantly by showing that
only certain steepest lines must be kept separate and suggest to refine the
mesh in order to avoid the complicated data structures of Edelsbrunner et
al. Unfortunately, this approach, by definition, requires a dynamic mesh data
structure able to refine the mesh at run-time. This is a distinct disadvantage
when dealing with large data sets since it prevents the use of highly compact
but rigid mesh encodings. Here we use a further extension of the algorithm
in [3]. In Sect. 3 we show that not only can certain steepest lines be merged
but those that must be kept separated can only create a very limited number
of local configurations. We show how to encode these configurations efficiently
and thus mostly avoid refining the mesh. Furthermore, Sect. 4 describes how
a Morse-Smale complex with boundary is simplified and how to locally deter-
mine all possible simplifications.
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The remainder of the paper is organized as follows: Section 2 introduces
all necessary concepts of Morse theory and provides a collection of terms
used throughout the paper. Section 3 discusses how to compute a Morse-
Smale complex of functions on triangulated two-manifolds. Finally, Sect. 4
deals with simplifying a Morse-Smale complex with boundary and discusses
a simple data structure to store a complex progressively.

2 Theory

In this section we introduce the necessary concepts from smooth and piece-
wise linear Morse theory. We refer to [18] and [16] for further background.

2.1 Morse-Smale Complexes

Throughout this paper, M denotes a compact 2-manifold without boundary
and f : M → R denotes a real-valued smooth function on M. Assuming a
local coordinate system (x, y) at a point a ∈ M, the point is called critical if
its gradient ▽f(a) = (∂f/∂x, ∂f/∂y) vanishes and called regular otherwise.
Examples of critical points are maxima (f decreases in all directions), minima
(f increases in all directions), and saddles (f switches between decreasing and
increasing more than twice around the point).

Using the local coordinates at a, we compute the Hessian of f denoted
by H(a), which is the matrix of second order partial derivatives. A critical
point is non-degenerate if the Hessian is non-singular, which is a property
that is independent of the local coordinate system. According to the Morse
Lemma, it is possible to construct a local coordinate system such that f has
the form f(x, y) = f(a) ± x2 ± y2 in a neighborhood of a non-degenerate
critical point a. The number of minus signs is the index of a and distinguishes
the different types of critical points: minima have index 0, saddles have index
1, and maxima have index 2. The function f is a Morse function when all its
critical points are non-degenerate and have pairwise different function values.

At any regular point, the gradient (vector) is non-zero, and when we follow
the gradient we trace out an integral line, which starts at a critical point
and ends at a critical point, while technically not containing either of them.
Since f is smooth, two integral lines are either disjoint or the same. The
descending manifold D(a) of a critical point a is the set of points that flow
toward a. More formally, it is the union of a and all integral lines that end at
a. The collection of descending manifolds is a complex in the sense that the
boundary of a cell is the union of lower-dimensional cells. For example, the
descending manifolds of maxima are open discs, whose boundary consists of
the descending manifolds of saddles (open intervals) which in turn are bounded
by (descending manifolds of) minima (points). Symmetrically, we define the
ascending manifold A(a) of a as the union of a and all integral lines that start
at a. If no integral line starts and ends at a saddle, see [9], we can overlay these
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two complexes and obtain the Morse-Smale complex (MS complex) of f . Its
nodes are the vertices of the two overlayed complexes, which are the minima,
maxima, and saddles of f . Its arcs are integral lines starting or ending at
saddles, and its regions are areas bounded by four arcs. An example is shown
in Fig. 8(a). The MS complex provides a complete topological segmentation of
M and thus is the fundamental theoretical structure many popular algorithms
like contour-tree extractions or watershed computations are build upon.

2.2 PL Morse Theory

Unfortunately, traditional Morse theory is very dependent on f being smooth;
a requirement rarely fulfilled in practice. Usually, one deals with piece-wise
linear (pl-) functions defined by function values at the vertices of a triangula-
tion T = (V,E, F ) and linearly interpolated on edges and faces of T . For the
moment, let us assume that no two neighboring vertices have equal function
value. To succinctly describe pl-extensions of Morse theory we first need some
handy definitions. Given a vertex v ∈ V the star St(v) is defined as the collec-
tion of simplices containing v: St(v) = {σ ∈ T |v ∈ σ}. The upper star St+(v)
consists of all simplices in the star whose vertices all have function values
higher than v: St+(v) = {σ ∈ T |u ∈ σ ⇒ f(u) > f(v)} and the lower star
St−(v) is defined symmetrically. The link Lk(v) is defined as the boundary of
the star Lk(v) = ∂St(v) and the lower link LL(v) as the subset with function
values below that of vertex v: LL(v) = {σ ∈ Lk(v)|u ∈ σ ⇒ f(u) < f(v)}.

v

minimum saddle maximumregular point

v vv v

three−fold saddle

Fig. 1. Classification of a vertex v based on its lower link drawn in bold solid black

Many of the key-concepts necessary to define the Morse-Smale complex
do not exist for pl-functions. Most notably, derivatives are not defined. In the
following we show how all necessary concepts can be adapted to pl-functions
leading to the definition of a (quasi) Morse-Smale complex [9]. First, we justify
the assumption that no two vertices of T have the same function value by
breaking ties using, for example, vertex indices. Now, the topology of the lower
link can be used to classify vertices, see Fig. 1. A vertex v is a maximum if
its lower link is the entire link and a minimum if its lower link is empty. In
all other cases the lower link consists of k ≥ 1 connected pieces. A vertex is
regular if k = 1 and a k-fold saddle otherwise. Essentially, v is classified using
an arbitrarily small neighborhood around v rather than derivative information
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at v. The next step is to ensure that there exist no multiple saddles (k > 1)
by splitting them into simple ones as described in Sect. 3.2. Finally, integral
lines are replaced by steepest lines. As the name suggests, steepest lines are
defined as greedily following a steepest ascending or descending line starting
at a given vertex. In general, steepest lines are not uniquely defined. However,
given any set of non-crossing steepest lines one can define ascending and
descending manifolds for pl-functions and their intersection returns a quasi MS
complex [9]. A quasi MS complex is guaranteed to have the same combinatorial
structure as a Morse-Smale complex but is not unique for a given pl-function.
Nevertheless, the differences between two equally valid quasi MS complexes
are usually minor and mostly due to inadequate sampling. In the following we
ignore these differences and simply refer to the MS complex.

3 Computation

This section contains an in-depth description of how to compute MS complexes
on triangulated two-manifolds with boundary. First, we introduce the data
structure and list all flags needed during the algorithm. Second, we discuss
the necessary algorithms in detail and provide corresponding pseudo-code to
allow easy reimplementation.

3.1 Setup

descending paths ascending paths

maximum

saddle
minimum

(a) (b)

Fig. 2. (a) The mesh is stored as a standard half-edge data structure. (b) If des-
cending paths are computed first an edge can be shared by at most three paths
resulting in an ascending-descending-ascending classification. Any additional path
merges with one of the existing ones

We store the triangulation in a typical half-edge data structure consisting of
vertices, (half-)edges, and faces, see Fig. 2(a). Each vertex stores a function
value and the function is continued to edges and faces by piece-wise linear
interpolation. To each element we add some flags necessary for the algorithm:

• vertex: each vertex stores a type and a classification
• half-edge: each half-edge stores a classification and direction.
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A vertex type can be either minimum, maximum, saddle, or regular. Vertices
and half-edges are classified as either free or part of an ascending and/or
descending path. The classifications of two neighboring half-edges provide a
directed classification of edges. Given a certain orientation an edge can be, for
example, part of an ascending path on its left but part of a descending paths
on its right. As will be discussed below we compute all descending paths
before computing ascending paths and paths in the same direction merge.
As a result the most complicated edge classification possible is ascending-
descending-ascending as shown in Fig. 2(b). This makes it possible to store
all possible edge-classifications using two bits in each half-edge. Another bit
is used to indicate the direction (upwards or downwards) of a half-edge. The
vertex type and classification also each take two bits. If necessary, the memory
foot-print can be optimized further by encoding the edge classification in three
bits per edge (not half-edge) leaving one bit for the direction. The resulting
two bits per half-edge can be stored in one byte per triangle.

3.2 Algorithm

The algorithm proceeds in four steps:

1. Preparing the mesh;
2. Computing descending paths;
3. Computing ascending paths;
4. Extracting connectivity information between Morse-Smale regions.

Mesh preparation. Section 2.2 discussed how areas of zero gradient are sim-
ulated as non-degenerate by breaking ties arbitrarily via the direction flags.
There exist other degeneracies that for various reasons we also resolve sym-
bolically before computing an MS complex. In particular, we split multiple
saddles into a collection of simple saddles and remove boundary saddles.

Figure 3(a) shows how a saddle s of arbitrary multiplicity can be recur-
sively split into a collection of simple saddles. While the multiplicity of s is
larger than two we compute a single component C of its lower link and create
a new vertex u with f(u) = f(s). We delete all edges incident to C from s
and connect them to u. Furthermore, we create three new edges connecting u
to s and to the two vertices a and b neighboring C in the link of s (creating
two new faces in the process). Finally, we mark the (directed) edge from u to
s as descending and the edges from u to a and b as ascending. As a result,
u is a simple saddle and the multiplicity of s has been reduced by one. In
practice, one often wants the new vertices created in the process of splitting
multiple saddles to have a reasonable embedding. One choice of embedding
for u that works well in practice is to pick u as the mid-point of one of the
edges between s and a vertex in C, as shown in Fig. 3(a).

Other than areas of zero gradient and multiple saddles, boundary saddles
are in principle not degenerate. Even smooth Morse functions on manifolds
with boundary can have saddles on the boundary. However, Morse theory in
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vertex below s
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u

undeterminedvertex above s

(a) (b)

Fig. 3. Preparing the mesh: Filled/empty circles indicate vertices above/below s
and for selected edges the arrow indicates ascending direction. (a) Splitting a mul-
tiple saddle by “removing” one component of its lower link. (b) Padding boundary
saddles: Restricted to the boundary the saddle can be an extremum (left) or a regu-
lar vertex (right). It is padded by two triangles moving it into the interior. The grey
color indicates that the choice of direction for u, s on the far right depends on the
actual function values

general does not apply to manifolds with boundary. Instead, one must look
to stratified Morse theory [10] for theoretically applicable results. A central
assumption in stratified Morse theory is that there exist no boundary sad-
dles. Apart from the theoretical justification for removing boundary saddles
we found that they significantly complicate the computation as well as sim-
plification of an MS complex.

We remove boundary saddles by padding them with two new triangles
effectively moving them to the interior of the mesh. Figure 3(b) illustrates this
process. Let s be the boundary saddle and a and b its neighboring vertices
along the boundary. We create a new vertex u and two new triangles (u, s, a)
and (u, b, s) and wlg. assume f(a) < f(s) and f(a) < f(b). We set f(u) = 0.5∗
(f(a) + f(b)). We mark the edges (a, u) and (u, b) upward and depending on
f(u) < f(s) or f(u) > f(s) we mark (s, u) downward or upward. As a result,
u is a regular boundary vertex and s has become an interior saddle which, if
necessary, can be split into simple saddles as described above. Splitting saddles
as well as moving boundary saddles is a local operation that is performed
during the initial read-in of the mesh and therefore does not require a dynamic
mesh structure.

Descending Path Computation. For the remainder of the paper we assume
that the mesh has been prepared according to the previous section and there
exist no multiple or boundary saddles. In the next step we compute all des-
cending paths. When computing integral lines in general there exist two
choices. One can restrict steepest lines to follow edges in the triangulation [9]
or trace steepest lines through triangles [3]. This paper focuses on the first
option as it requires more complicated algorithms and potentially creates a
number of challenging degenerate cases. Furthermore, tracing along existing
edges is faster and requires no additional mesh refinement. Nevertheless, we
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indicate how all algorithms can be adapted to tracing steepest lines through
triangles and what the advantages and disadvantages are in either case.

Paths are traced starting at saddles and ending at extrema. We store paths
by marking edges and vertices incident to them. As discussed above, edges
are marked in a directed way such that an ascending-descending classification
can be distinguished from a descending-ascending one. Initially, only critical
points are classified non-free: Maxima/minima are classified as part of an
ascending/descending path and saddles as both.

Descending paths are computed following three rules:

R1: Two paths of the same type can merge;
R2: Paths are not allowed to split;
R3: Paths that reach the boundary stay on the boundary;

R1 is a direct consequence of f being piece-wise linear. One can easily imag-
ine a valley floor consisting of only a single edge. All descending lines flowing
into such a valley must merge on this edge. R2 is fulfilled implicitly, since each
path is computed following the same (deterministic) algorithm. R3 potentially
forces a path from its “correct” location since boundary edges are not neces-
sarily the steepest edges. However, by enforcing rule R3 we effectively avoid

Let T = (V, E, F ) be a triangulation
ComputeAllDescendingPaths(Vertices V ,Edges E)
forall s ∈ V with MorseIndex(s) == 1 //for all saddles
forall C component of LL(s) //for each component of the lower link

//find the steepest edge
u = EndPointOfSteepestDescendingEdge(C, V, E);
ClassifyAsDescending(Edge(s, u),left&right);
if IsDescending(u) == false //if we have not hit an existing path

ClassifyAsDescending(u);
TraceSteepestDescendingLine(u); //continue tracing

endif

endfor

endfor

TraceSteepestDescendingLine(Vertex v)
if IsBoundaryVertex(v) == true //If v lies on the boundary

u = GetLowerIncidentBoundaryVertex(v); //stay on the boundary
else

u = EndPointOfSteepestDescendingEdge(LL(v), V, E);
endif

ClassifyAsDescending(Edge(s, u),left&right);
if IsDescending(u) == false //if we have not hit an existing path

ClassifyAsDescending(u);
TraceSteepestDescendingLine(u); //continue tracing

endif

Fig. 4. Pseudo-code to compute all descending paths in a triangulation
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detachment points [13] and simplify constructing the final MS complex signifi-
cantly. If necessary, one can check whether rule R3 has significantly altered the
final complex by re-computing an unconstrained steepest line and comparing
the end-points. In such a case the complex can be corrected accordingly [9].

Following these rules, computing descending paths is straightforward: In
each component of the lower link of all saddles we search for a steepest des-
cending edge and classify it descending on both sides. If its end-point a is not
yet classified descending we mark it as such and recursively look for a steepest
descending edge out of a. The detailed algorithm is shown in Fig. 4.

Note, that in the boundary case of TraceSteepestDescendingLine
there exists a unique lower boundary vertex neighboring v since otherwise
v would be a saddle. Furthermore, the test whether a vertex u is already
classified as descending combines three possible cases. We stop tracing a path
when we have reached: another path (when we merge), a minimum (when
we are done), or another saddle. In the last case the path merges with one
of the descending path starting at u. However, there exist two equally valid
choices. By convention, we assume that a descending path hitting another
saddle verges to the right relative to its downward direction. Figure 5(a) shows
a stable manifold whose boundary is computed by the algorithm described
above.

ascending pathsdescending paths

saddle
minimum

maximum

(a) (b)

Fig. 5. (a) Stable manifold as computed by ComputeAllDescendingPaths. The
arrows indicate the ascending direction and the bold line elements indicate how paths
hitting saddles are routed. (b) Unstable manifold as computed by ComputeAllAs-
cendingPaths

pp q

p
q

r

(a) (b) (c)

Fig. 6. Degeneracies encountered
when computing ascending paths.
The shaded disk slices indicate
possible choices for the steepest
edge.
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When one is interested in tracing paths through triangles the simplest
method is to change EndPointOfSteepestDescendingEdge. Rather than
only examining all existing edges one computes the true steepest path. If this
path runs through a triangle one splits the triangle to create a corresponding
edge and returns the newly created vertex. However, refining extremely large
meshes is often undesirable and in the case of out-of-core meshes can be
prohibitively expensive.

Ascending path computation. In principle, ascending paths are computed
symmetrically to the descending ones. The same three rules R1-R3 hold but
another one must be added:

R4: Two paths are not allowed to cross.

Whenever one looks to extend a steepest ascending path the choice of “steep-
est” edge must be modified to observe rule R4. This becomes relevant when
descending and ascending paths share a vertex. Figure 6 shows some exam-
ples in which special care must be taken to not violate R4. In Fig. 6(a) an
ascending path p has joined a descending path q from the left (relative to p’s
direction). Since p must not cross q only those ascending edges to the left of
q or part of q can be used to extend p. In particular, there can exist another
ascending path r joining q from the right as shown in Fig. 6(b). Even though
p and r share edges they are separated by q and cannot merge. If they would
be allowed to merge they could never split (rule R2) and therefore one of
them would cross q at some point. The same principles apply if an ascending
paths p hits a saddle s, see Fig. 6(c). There can exist only one ascending path
starting at s that p can join without crossing descending paths. Given these
conventions, the ascending paths can be computed as shown in Fig. 7.

There are two significant differences between computing the ascending
compared to the descending paths. First, an ascending path does not neces-
sarily stop once it hits another vertex classified as ascending or even a saddle.
Only reaching a maximum or sharing an edge already marked (on the correct
side) is a sufficient condition to stop tracing. Second, the search for steepest
edges is constrained by rule R4 and therefore only considers parts of the upper
star of a vertex, see Fig. 6. As before, the function SteepestAscendingEdge
can be adapted to compute the true steepest ascent by splitting triangles.
Furthermore, it can be modified to refine the mesh to keep ascending and des-
cending paths completely separate. The disadvantage is again the potential
cost of refining the mesh, the advantage is that extracting the connectivity
between MS regions, see below, becomes trivial.
Extracting connectivity. Once all paths are constructed one also knows all
arcs (endpoints and geometric embedding) of the MS complex. Then we iden-
tify the starting edge of each path with the corresponding arc. (These are the
edges used for the first step in ComputeAll(A-)DescendingPaths.) Triv-
ially, the order of arcs around saddles is given by the order of these edges. An
additional breadth-first traversal of only descending paths starting from the
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Let T = (V, E, F ) be a triangulation
ComputeAllAscendingPaths(Vertices V ,Edges E)
forall s ∈ V with MorseIndex(s) == 1 //for all saddles
forall C component of St+(s) //for each component of the upper star

e = SteepestAscendingEdge(C, V, E); //find the steepest edge
//now we make an arbitrary choice to start all
//ascending paths on the right side of an edge
ClassifyAsAscending(e,right);
if MorseIndex(v) �= 2 AND IsAscending(u,right) = false

TraceSteepestAscendingLine(e,right); //start tracing
endif

endfor

endfor

TraceSteepestAscendingLine(Edge e, Orientation side)
v = Endpoint(e);
if IsBoundaryVertex(v) = true //If v lies on the boundary

u = AscendingBoundaryEdge(v);
else if IsDescending(v) = true AND side = right

u = SteepestAscendingEdge(RightHalf(St+(v)),V, E);
else if IsDescending(v) = true AND side = left

u = SteepestAscendingEdge(LeftHalf(St+(v)),V, E);
else

u = SteepestAscendingEdge(St+(v), V, E);
endif

v = Endpoint(u);
if MorseIndex(v) �= 2 AND IsAscending(u,side) = false

ClassifyAsAscending(u,side);
if IsDescending(u,side)

TraceSteepestAscendingLine(u,side);
else if IsDescending(v) = true AND u ∈ LeftHalf(St−(v))

TraceSteepestAscendingLine(u,left);
else

TraceSteepestAscendingLine(u,right);
endif

endif

Fig. 7. Pseudo-code to compute all ascending paths in a triangulation

minima determines the order of arcs around minima. Note, that care must
be taken for descending paths flowing though saddles. Here, observing the
earlier convention that paths always turn right at saddles is crucial. Knowing
the order of arcs around minima and saddles is enough to deduce the order
of arcs around maxima which completes the connectivity information. If nec-
essary one can perform a flood-fill to determine which faces belong to which
Morse-Smale region. When ascending and descending paths are kept disjunct
the connectivity can also be computed using a simple flood-fill algorithm. In
this case each Morse-Smale region corresponds to a single cluster of faces which
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form a topological disc. The clusters must touch all four arcs of the region
and the connectivity is induced directly by the connectivity of the mesh.

4 Simplification

In most applications computing the topology of a data set is only the first
step. To use the topology for analysis one must often simplify it if only to
remove noise. This section describes how to store an MS complex as a pro-
gressive mesh [15]. A progressive mesh is a data structure that for a given
error threshold allows fast access to a simplified MS complex in which all
features below the error threshold have been removed.

The generic operation to simplify an MS complex is called a cancellation.
An example is shown in Fig. 8(a) and (b). The maximum-saddle pair u, v

wu wwv

maximumsaddleminimum

(a) (b) (c)

Fig. 8. Situation before (a) and after (b) canceling the critical point pair u, v. (c)
Implementing a cancellation by deactivating nodes and arcs

is removed by merging four regions into two and extending all arcs ending
at u. The reverse operation which introduces u, v and splits the regions is
called an anti-cancellation. To rank cancellations each one is assigned an error
indicating the importance of the corresponding node pair. Some examples are
the difference in function value between the critical points involved (also called
persistence), geometric distance, or absolute function value.

Valid cancellations. Not all connected critical point pairs can be can-
celed. For example, if a saddle is connected to the same extremum twice,
see Fig. 9(a), it cannot be canceled with this extremum. Such a cancellation
would require a change in genus of the underlying manifold which is usually
not desirable. For MS complexes without boundary such double-connected
saddles are the only configuration which cannot be canceled. For manifolds
with boundary, however, there exist additional rules. Figure 9(b) shows why
a boundary extremum can only be canceled if its “opposite” extremum across
the saddle also lies on the boundary. Canceling a boundary extremum to the
inside would create a boundary saddle which is disallowed. Let us assume
a saddle is connected to two boundary maxima and should be canceled with
either of them. The boundary minimum between the two maxima is implicitly
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Fig. 9. Invalid cancellations: (a) Canceling u, v would change the genus of the
underlying manifold. (b) Canceling u, v creates a boundary saddle at u. (c) Cancel-
ing u, v would remove all critical points between u − v − w and the boundary

removed as well since the restriction of f to the boundary is a one-dimensional
function of which minima and maxima can only be canceled in pairs. However,
if the minimum is connected to additional saddles, as shown in Fig. 9(c), these
structures must be removed as well since without the minimum they cannot
form part of a valid MS complex. To avoid such implicit multi-cancellations
we disallow the cancellation of boundary extrema unless they remove exactly
three critical points. This condition is equivalent to requiring the minimum
between the two maxima in our example to have valence one. Subsequently, we
call a cancellation valid if it does not violate one of the three rules described
above.
Construction. Given an error metric it is easy to progressively simplify an
MS complex. Each arc of the MS complex corresponds to a possible (but not
necessarily valid) cancellation. All valid cancellations are added into a priority
queue which returns the arc/cancellation with the smallest error. As long as
the queue is not empty we greedily cancel the critical point pair with smallest
error. Note, that performing one cancellation can invalidate other cancella-
tions. For example, a saddle can usually be canceled either with a minimum
or with a maximum and clearly either choice will invalidate the other. For
most metrics the error of a cancellation can be changed by neighboring can-
cellations as the connectivity of the complex changes. Typically, however, the
error is only increased by earlier cancellations and therefore it can be updated
in a lazy fashion. The complete simplification algorithm is shown in Fig. 10.

4.1 Progressive MS Complexes

The algorithm of Fig. 10 simplifies an MS complex until no valid cancellations
remain. By introducing a break-off point it can easily be adapted to simplify
a complex up to a certain error threshold. In practice, however, one usually
wants to interactively change this threshold and simplifying the complex in
a bottom-up fashion each time is slow and cumbersome. Instead, one wants
to maximally simplify the complex once and keep a record of all intermediate
configurations.

We store an MS complex as a graph consisting of nodes and arcs. Arcs are
assumed to be ordered around nodes and regions are not represented explicitly.
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Let MS = (N, A, R) be an MS complex
Let Q be a priority queue of arcs ordered by increasing error
Simplify(MS complex MS)
forall a ∈ A //for all arcs in the complex
if IsValidCancellation(a)

Push(Q, a, ComputeError(a));
endif

endfor

while IsEmpty(Q) == false

top = Pop(Q);
if IsValidCancellation(top) // if this cancellation is still valid

err = ComputeError(top);
if (err ≤ NextPriority(Q);

CancelCriticalPoints(a);
else

Push(Q, a, err);
endif

endif

endwhile

Fig. 10. Pseudo-code to maximally simplify an MS complex

Using this simple data structure we implement a cancellation as shown in
Fig. 8(c). Rather than deleting the two arcs and two critical points, we only
“deactivate” them. deactivating a node creates “super-arcs” by concatenating
the remaining active arcs and deactivated arcs are treated as being removed.
A progressive MS complex is stored by assigning each node and each arc an
error. Prior to simplification, the errors are initialized to a value larger than
the largest possible error. During a cancellation elements are deactivated by
setting their error to the error of the current cancellation. For any given error
threshold the corresponding simplified MS complex is given by the collection
of active nodes and super-arcs, where an element is considered active if its
error is larger than the current threshold.

To explicitly construct a simplified MS complex for a particular error bud-
get one performs restricted breadth-first traversals of the graph starting at
each active extremum. The restrictions are that only active arcs and deacti-
vated nodes can can be traversed. Each traversal covers a tree of active arcs
rooted at the starting extremum with either active saddles or deactivated
extrema as leaves. (Note, that an active saddle can be a leaf of two different
branches of this tree. However, in this case it makes sense to consider the
saddle as two nodes and maintain that the structure has no cycle.) Each path
from a leaf to the root represents a super-arc. The simplified MS complex
consists of all active nodes and those super-arcs that start at saddles, see
Fig. 11. In practice, the tree traversals are helpful in a variety of situations.
For example, a complex can be rendered very efficiently by associating each
arc with a line strip and creating appropriate display lists during the tree
traversals. Furthermore, when one considers a cancellation as the merging of
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Fig. 11. Accessing a simplified MS complex using tree traversals. (a) Original MS
complex with three cancellations indicated by the arrows. (b) The complex of (a)
after the cancellations. The tree traversed from the indicated root is shaded in grey.
(c) The final MS complex. Note, that the left most branch of the tree ended at an
extremum and has been removed

three critical points into one, the deactivated nodes in each tree represent all
critical points merged with the root. The main advantage of this data struc-
ture is that it is small and very easy to implement. The only disadvantage is
that creating a simplification takes time linear in the size of the full complex,
rather than linear in the size of the simplification. However, in all applications
we have encountered so far the MS complex is several orders of magnitude
smaller than the surfaces mesh. For example, the full resolution surfaces of
the Mixing Fluids data set (see Sect. 5) contain up to 22 million vertices yet
never more than about 20.000 maxima/bubbles. Therefore, the simplification
remains fully interactive for all models we have been able to process using this
approach.

(a) (b)

Fig. 12. Segmentation of parts of the Mixing Fluids data sets into bubbles. Maxima
are shown in red and each bubble is randomly assigned one of nine colors. (a) Initial
segmentation; (b) Segmentation at 0.2% persistence (relative to the maximal range
in function value). (Colorplate on p. 218.)
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(a) (b) (c)

Fig. 13. Segmentation of the atomic density function on a molecule. Minima are
shown in blue and ascending paths in gold. Segmentation into 198 (a); 100 (b); and
50 (c) protrusions (colorplate on p. 218).

5 Applications

The algorithms described above provide an efficient and stable method to
compute MS complexes of any function on a triangulated manifold. We have
found this a very versatile tool helpful in a variety of independent areas. Here,
we show three very different applications for which we currently use MS com-
plexes: The first is a physics simulation of the turbulent mixing between two
fluids. Figure 12 shows an iso-surface between two mixing fluids extracted from
one time-step of a simulation performed at the Lawrence Livermore National
Laboratory. The data has been generated by the Miranda code a higher order
hydrodynamics code for computing fluid instabilities and turbulent mixing [6].
In particular, scientists are interested in “bubbles” formed during the mixing
process and their automatic segmentation. Using the z-coordinate as Morse
function and the iso-surface (not the xy-plane) as domain bubbles can be
defined as the descending manifolds of maxima. Nevertheless, the initial seg-
mentation shown in Fig. 12(a) is not optimal as some bubbles have multiple
maxima and there exist many superfluous maxima caused by noise in the
data set. Using a uniform simplification of the MS complex one can remove
most of these artifacts and create a much cleaner segmentation, as shown in
Fig. 12(b).

The second application is molecular biology where one is interested in
segmenting a molecular surface into cavities and protrusions. We take a skin
surface of chain A from the protein complex Barnase/Barstar and compute
the atomic density function over this surface. The ascending manifolds of
minima of this function segment the surface into protrusions, see Fig. 13. As
with bubbles, simplifying the MS complex captures protrusions at coarser and
coarser level.

Finally, we use the MS complex to help remesh surfaces. As described
in [7], MS complexes of eigenfunctions of the Laplace matrix of a surface are
well suited to form an all quadrilateral basemesh, see Fig. 14.
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(a) (b)

Fig. 14. Creating a basemesh from Laplacian eigenfunctions. (a) Initial MS complex
of the 60th eigenfunction of the elephant showing typical noise due to discretization
and the iterative eigensolver. (b) The MS complex of (a) simplified to a persistence
of 0.5%. All noise has been removed and the MS complex now forms a high quality
all-quadrilateral basemesh (colorplate on p. 218).

6 Conclusions

We have shown a new algorithm to compute two-dimensional MS complexes
which allows a straightforward implementation of the original methods dis-
cussed in [9]. Except for few cases during an initial setup phase no refinement
of the mesh is necessary. Nevertheless, if desired the algorithm can be triv-
ially adapted to the one discussed in [3] which computes true lines of steepest
a-/descent. Additionally, we have provided a novel easy-to-implement data
structure for MS complexes which can also be used to encode the complex
progressively. Finally, we have introduced restricted tree traversals to allow
fast access to a simplified complex and related information as well as to pro-
vide efficient rendering of simplified complexes.
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Summary. In this paper three types of visualization scenarios are discussed, where
topology improves the readability of particular visualization results. The first type
combines topology information represented by simple graphical primitives with other
forms of visual representations. The second type uses the topology information to
define the relevance of objects within the data. The relevance is reflected in the
visualization by applying the cut-away concept. The third type of visualizations is
based on the change of topology of the underlying data to increase visibility of the
most interesting information. Every type handles topology in a different way. This
illustrates various roles of topology in scientific visualization.

1 Introduction

Three-dimensional visualization is becoming an essential tool for the analysis
of various scientific problems. A major problem are the very large data sizes
that are hard to handle. For example the rapid development of high-precision
medical imaging modalities causes the amount of data to steadily increase.
Due to the increasing power of modern CPUs, mathematical simulations of
scientific phenomena deliver huge amounts of result data. Processing and
visualization of time-varying data is becoming practicable in many applica-
tions. The added temporal dimension, furthermore increases the data sizes
considerably.

Large data sizes entail two fundamental problems: The first is data mani-
pulation with respect to data enhancement and processing in general. In
this paper we focus on the second problem, which is the appropriate visual
representation of the underlying data. The amount of relevant information is
often relatively small as compared to the overall amount of acquired data.
Therefore these small, interesting features have to be emphasized visually.

We generalize the term feature as a part of the data that is of special
interest to the user. To highlight the role of topology in visualization, we
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Fig. 1. Periodic Blue Sky Bifurcation: The topology can be clearly depicted by sim-
ple and sparse geometry. Critical lines occluded by separation surfaces are unveiled
by using importance-driven visualization, where importance is defined through topo-
logical characteristics. Additional emphasis is achieved by displacement in the spirit
of exploded views. The polygonal model is courtesy of Tino Weinkauf and Holger
Theisel (colorplate on p. 219).

concentrate in our examples on features that have some topological character-
istics. Examples are singularities in flow visualization, or cancer lung nodules
in medical visualization.

In many cases visualization of the features alone does not clearly illustrate
the inspected problem and thus does not satisfy the goal of an expressive vis-
ualization. The data surrounding the features includes more information and
some of this information is necessary to communicate the visualized problem.
Spatial position and vicinity to other structures can be very important for
example. A visualization technique that combines the most interesting data
(i.e., a feature) with surrounding information of smaller information value is
in general denoted as focus+context visualization [2].

Combining the most interesting features with the contextual information
has to be done carefully to avoid visual overload. In this paper we discuss
several visualization scenarios, where topology helps to effectively convey the
information in focus+context visualizations:

• Visualization of topology: An appropriate visual representation is
the key to an effective focus+context visualization. The general idea is
to provide visualizations as simple as possible to clearly describe the data.
Simple spheres, lines, arrows or other basic geometric elements are used
to describe abstract characteristics of the data such as topology. This
abstract visual representation is very sparse, but also very clear and easily
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understandable. In focus+context visualization such information is com-
bined with denser visual representations that describe the data in more
detail. An abstract visual representation depicting the topology is often
used in flow visualization or visualization of complex dynamical systems.
Specific examples will be discussed in more detail in Section 2.

• Topology-driven visualization: Features within the data can be char-
acterized by various properties, e.g., by their topological characteristics.
Such characteristics can be described by very simple geometry, which can
be used as an underlying structure that drives the visualization. This
structure is used for example in visualization to guarantee the visibility of
important features. Specific examples will be given in Section 3.

• Topology changes of the underlying data: The original arrangement
of structures in the data is often not optimal to achieve a particular goal
through visualization. It is sometimes easier to change the topology of the
data in order to clearly see particular features. Examples of changing the
topology (e.g., from cylindrical to planar) will be presented in Section 4.

A visualization example illustrating the role of topology in visualization is
shown in Figure 1. Here all three scenarios are combined together. The
Periodic Blue Sky Bifurcation [7] is represented sparsely by simple geomet-
ric elements. The goal is to visualize all topological structures, i.e., critical
points, critical lines, and separatrices. The visualization is enhanced by cut-
away views and a placement in spirit of exploded views to focus the attention
to critical lines and points. After incorporating cut-away views the visual pres-
ence of these small features is more balanced with visually more prominent
separatrices. Thus the overall visual information is increased.

In the next sections we will explain the relevance of topology in the visu-
alization for specific applications.

2 Visualization of Topology

The relevance of features in an image is given through their visual representa-
tions, which may vary from an abstract to a more direct visual representation.
A direct representation does not use any abstraction and is easy to interpret.
However for a large dataset or in higher dimensions it easily produces dense,
cluttered images that are visually overloaded. The other end of the spectrum
are highly abstract (derived) data representations. They typically produce
rather sparse images but can require quite some effort to understand. Show-
ing MRI data of the brain as greyscale images is a rather direct representation.
Showing the same data through diffusion tensor imaging is a more abstract
representation. Another example of a direct representation are satellite pho-
tographs. A map with city icons scaled by population including labels and
connected by transport infrastructure is an abstract representation. There
are many ways to design appropriate visual representations. We will focus
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(a) (b)

Fig. 2. Lorenz attractor: (a) direct representation through a streamline and (b)
descriptive visualization of the system with emphasis of critical points [4] (colorplate
on p. 219).

on those where the visualization of topology significantly increases the visual
information content.

The visual encoding of topology information may consist of just a few
points, lines, sometimes surfaces. In cases where a direct visual representation
would lead to visual clutter, the visualization of topology is a very effective
way to show the most important information of the data. There is no visual
overload and image space is saved to display further information. In the fol-
lowing we discuss two application domains where the visualization of topology
efficiently conveys the characteristics of the underlying data.

2.1 Visualization of Complex Dynamical Systems

Topological visual representations are well known from complex dynamical
systems. The direct representation of a complex dynamical system can lead
to a visual overload. Visualization of topology on the other hand allows to
focus the attention to the most relevant features. Here the visual emphasis of
the most relevant structures is analogous to the difference between an aerial
photograph and a geographic map.

In Figure 2 the Lorenz attractor is represented by (a) a simple streamline
and (b) topological information of the underlying dynamical system. The first
representation is depicting the overall shape of the system whereas the visual-
ization of topology emphasizes critical points of the system. This information
explains the behavior of the dynamical system more effectively. For example
the alternating dominance of two critical points is caused by the third critical
point. This information can by hardly extracted from the streamline plot only.
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2.2 Visualization of Flow

Flow visualization is another application domain where topological visual rep-
resentations are effectively used. In some cases features are not clearly defined,
i.e., there are no explicit boundaries between features. Interesting features
might be vortex cores, fixed points (such as nodes, saddles, vortices), separa-
trices etc. For a clear visualization of a particular phenomena, the topological
information of interesting features is crucial. Figure 3 shows an example of
a focus+context visualization of a three-dimensional flow. Here various levels
of abstraction in the visual representation are present. The topological infor-
mation is given by a cycle around the z-axis. The flow is directly represented
by spot noise [9] on the Poincaré cross section [4]. A streamsurface in orange
and a streamline in green provide further abstract context information. The
sparse topological information indicates the overall characteristics of the sys-
tem. The dense and direct depiction of the flow is limited to just a small
region of the data to avoid visual clutter. Further examples of topological
visual representations of flow can be found in related works [6, 8, 13, 14].

Fig. 3. Focus+context visualization of flow topology using Poincaré sections [4].

3 Topology-Driven Visualization

The previous section addressed visualizations where topological characteristics
increase the visual content despite the fact that this information is represented
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very sparsely. In this section we will focus on visualization techniques where
the topological information drives the visualization algorithm to emphasize
interesting objects.

The concept of topology-driven visualization is analogous to importance-
driven feature enhancement [12]. The traditional volume visualization pipeline
assigns to features optical properties like color and opacity. With importance-
driven feature enhancement another dimension is used which describes the
importance of interesting objects. In topology-driven visualization the impor-
tance is defined through topological characteristics that have the highest pri-
ority to be clearly visible. Prior to image synthesis, the visibility of interesting
objects is estimated. If less important objects are occluding objects that are
more interesting, the less important ones are rendered more sparsely, e.g.,
more transparently. If the same object does not cause any unwanted occlu-
sions in other regions of the image, it is rendered more densely, e.g., opaque, in
order to see its shape more clearly. This allows to see all interesting structures
irrespective if they would be occluded or not, and the less important parts are
still visible as much as possible. This concept has been inspired by expressive
illustration techniques known as cut-aways or ghosted views. We will show
their effective usage in the scope of medical and meteorological applications.

3.1 Visualization of Early-Stage Lung Cancer

The goal of visualization of early stage lung cancer is to improve the diagnosis
and to increase the probability of patient survival. The automatic diagnostic
process is divided into two parts. The first part is the detection stage where
the data is classified according to the probability of a tumor presence. The
second part is the visualization of these suspicious regions. The medical expert
is guided by the application to the regions where with high probability lung
nodules are present. Thus the time-consuming process of slice-by-slice inspec-
tion is replaced by an automatic process. The medical expert finally has to
validate which regions are considered as nodules and which regions are false
positives.

Nodules are small features in human lungs with a spherical shape. Healthy
lungs feature only tubular structures of two categories: airways and blood
vessels. Healthy lungs can be considered of genus zero. Each lung nodule
is seen as a topological hole in the healthy lungs. The presence of a nodule
changes the topology of the lungs and the number of nodules defines the genus.

The detection part is based on local shape properties of a sample position.
The detection algorithm is in spirit of the method proposed by Sato et al. [5].
Local shape properties are derived from the Hessian matrix which consists
of the second-order partial derivatives [3]. The eigenvalues of the Hessian
matrix are used to determine the probability of a spherical shape (nodule).
The nodule shape is identified due to its different shape characteristics as
compared to other tissues within the human lungs.
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The visualization part is based on importance-driven feature enhancement.
Here the feature is a part of the volume that has a high probability of being
a nodule, i.e., a topological hole in the healthy tissue. Volume regions that
occlude these suspicious areas are represented sparsely. Visualizations show
the spatial position of the most interesting regions irrespective from the view-
point settings. This increases the expressivity as compared to traditional
visualization methods (e.g., direct volume rendering or slicing). Result vis-
ualizations are shown in Figure 4.

Fig. 4. Topology-driven visualizations of suspicious regions (possibly early-stage
lung cancer nodules) within a thorax CT data. The suspicious regions are highlighted
in red enclosed by a green halo [11] (colorplate on p. 220).

3.2 Visualization of Time-Varying Meteorological Data

The second example where topology information controls the visualization
pipeline is meteorological visualization. It is illustrated by visualizing the
time-varying data of a hurricane (Isabel, 2003). The data consists of mul-
tiple variables including cloud density, precipitation, ice level, temperature,
pressure, and velocity vector for each time-step. In this case the interesting
feature is the vortex core, i.e., the eye of the hurricane which is a topological
structure. For the hurricane analysis it might be useful to have a clear view
on this feature and to select which variable to visualize. Therefore the cut-
away technique can be effectively applied in this case as well. The example
also shows multiple variables using topology-driven visualization. The focus
object is defined as the group of voxels inside a cylinder around the hurricane
eye. Inside the cylinder the total precipitation mixing ratio is visualized. Due
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to the cut-away view it is possible to have a clear view of this property
close to the eye of the hurricane. Outside the cylinder is the context area
where the total cloud moisture is visualized. In this time-dependent dataset
the important feature changes its position and shape over time. Importance-
driven visualization guarantees to emphasize the important feature irrespec-
tive of viewpoint and feature position and shape. A single time-step is shown
in Figure 5.

Fig. 5. Cut-away visualization of a multidimensional volumetric data of hurricane
Isabel (colorplate on p. 219).

4 Topology Changes of the Underlying Data

The third type of visualizations enhances the visibility of interesting objects by
(virtually) changing the topology of the underlying data. Examples include
exploded views, a concept known from illustrations and assembly manuals,
and other specific visualizations from computer-aided diagnosis.

4.1 Exploded Views

Exploded views modify the spatial arrangement of features to uncover the
most prominent ones and thus change the topology of the underlying data.
A multi-object visualization technique related to exploded views has been
presented by Grimm et al. [1]. They present a data structure denoted as
V-Objects for individual handling and manipulation of features within a vol-
umetric dataset. An example of a topological change is shown in Figure 6.
Here the context information is the skull which occludes the brain in focus.
The topology of the skull is changed through the exploded views concept to
unveil the focus.

4.2 Colon Unfolding

In this section we discuss virtual colon unfolding from medical visualization.
The goal is to clearly present all relevant information in a single image. The
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Fig. 6. Multi-volume visualization enabling exploded views through topology
change of the underlying data [1] (colorplate on p. 220).

approach performs unfolding of a cylindrical structure to a plane. This incurs
a topological change of the original tubular structure. The unfolding is app-
lied to computed tomography data of the colon. The traditional way of colon
inspection for polyps (early-stage colon cancer) is using a real-world endo-
scope. Such an inspection process is uncomfortable for the patient. Virtual
colonoscopy has been applied recently. The endoscope is replaced by a vir-
tual endoscope traversing the tomographic data instead of the patient’s body.
This technique is much more comfortable, but the diagnosis is still time-
consuming. Unfolding the tubular structure provides an instant overview of
the entire organ [10]. In this case the topological change is important for a
rapid diagnosis. An image of part of an unfolded colon with identified polyps
is shown in Figure 7.

5 Conclusions

In this paper we have discussed three scenarios where topology and visual-
ization play together: visualization of topology, topology-driven visualization,
and topology changes of the underlying data.

We have dealt with topology-based techniques for visualization and feature
definition. The sparse visual representation showing topological characteris-
tics is very useful for flow visualization and dynamical-systems visualization.
Topological analysis can be used to define the importance of interesting objects
and express their relevance in cut-away visualizations. Topological changes of



180 Ivan Viola and Eduard Gröller

Fig. 7. Virtual colon unfolding using a topology change in the visualization [10]
(colorplate on p. 220).

the data are often useful to increase the visibility of the most relevant objects.
Examples demonstrate the significance of topology information for a broad
spectrum of expressive focus+context visualizations.
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Summary. We introduce a new concept for a geometrically based feature preserv-
ing reconstruction technique of n-dimensional scattered data. Our goal is to generate
an n-dimensional triangulation, which preserves the high frequency regions via local
topology changes. It is the generalization of a 2D reconstruction approach based on
data-dependent triangulation and Lawson‘s optimization procedure. The definition
of the mathematic optimum of the reconstruction is given. We discuss an original
cost function and a generalization of known functions for the n-dimensional case.

1 Introduction

The continuous reconstruction from discretely sampled data is an important
part of data processing. Reconstruction is necessary to determine values at
arbitrary positions, not just where the data sample is available. Such discrete
data sets can be acquired by digital photography in 2D or computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) in 3D. Another way of data
acquisition is mathematical simulation of certain phenomena used, e.g., in
finite element methods.

In this work we introduce a reconstruction technique based on topological
changes of triangulations. The topology of the resulting mesh is driven by the
features represented in the data. Our optimization process turns an arbitrary
triangulation of discretely sampled data into a feature-preserving mesh.

The most common reconstruction technique for regularly placed data is
convolution based resampling using reconstruction filters. The drawback is
that the features having other directions than the directions of the applied
1D basis functions are not reconstructed very well. This results in blurry
artifacts at the border between different features. Geometrically based recon-
struction, denoted as data-dependent triangulation (DDT) was introduced by
Dyn et al. [6]. In Fig. 1 the output from convolution and triangulation based
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techniques is shown, at 1000% magnification. This kind of triangulation allows
the generation of inevitable long and tiny triangles to preserve high-frequency
features, and can be applied for any distribution of scattered data. The origi-
nal DDT is limited to two dimensions and its extension to higher dimensions
is not trivial. Its generalization into arbitrary dimension is the main scope of
our work. In volume graphics this method can be applied for reconstruction
using both regular and irregular grids. Therefore the target applications are
tasks, where the reconstruction of sharp features is crucial. In this work we
show the reconstruction results of this technique on regularly placed samples.

Fig. 1. Reconstruction result with bicubic filtering (left), data-dependent triangu-
lation (right) at 1000% magnification.

The contributions of this paper are the following:

• n-dimensional reconstruction using a data-dependent triangulation
approach

• a mathematical definition of the optimal reconstruction using tri-
angulations

• a new cost function and generalization of existing functions.

This paper is structured as follows. In Sect. 2 we briefly survey previous
work on DDT. Section 3 defines basic concepts of n-dimensional triangula-
tions and the problem of the extension to higher dimensions is highlighted.
In the same section the n-dimensional DDT is introduced. Section 4 presents
a feature-preserving triangulation-algorithm and estimates the usability of
the approach. In Sect. 5 we show a number of examples that demonstrate the
effectiveness of our concept. Finally, in Sect. 6 we draw conclusions from the
results and we outline future work possibilities.
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2 Related Work

A general notion for interpolating given scalar data over an n-dimensional
domain is called scattered data interpolation, and mathematically can be
expressed as:

F (xi,1, xi,2, . . . , xi,n) = zi , i = 1, . . . ,m ,

where V = {Vi = (xi,1, xi,2, . . . , xi,n) ∈ Rn} is a set of not all cohyperplanar,
distinct points in the domain space, and zi are the measured data values.
The goal of the reconstruction is to evaluate the function value F (x) for an
arbitrary point of the domain. In the rest of this section we give a short review
of the related research work done in this field.

Data-dependent triangulation (DDT) is a geometrically based reconstruc-
tion technique developed by Dyn et al. [6]. It is a special case of optimal
triangulations. A general survey on optimal triangulations was done by Bern
and Eppstein [2]. DDT fits the measured data values with a triangle mesh,
creating a piecewise linear interpolation. In contrary to other mesh generation
methods, it maps the alignment of edges to the underlying data and organizes
the simplicial structure into a feature-preserving mesh. The quality of the re-
sulting triangulation is defined through a special function called cost function
and the optimization process. Several algorithms have been developed and dif-
ferent optimization techniques have been applied to generate DDT in the 2D
case. A genetic optimization technique was introduced by Kolingerová [10].
The DDT technique combined with simulated annealing was first introduced
by Schumaker [18]. Typically, the above mentioned approaches assign the cost
function values to the edges in the triangulations. Brown [4] came up with cost
assigning to vertices. This idea is called vertex-based DDT, and it is a useful
improvement of the basic approach.

The application of the DDT to image reconstruction has been done by Yu
et al. [22]. Improving the image reconstruction quality has been the scope of
our previous work [21]. Kreylos et al. [11] used DDT for image compression
with a mesh decimation process, based on a simulated annealing optimization
technique. A real-time version, limited to regularly placed image data was
presented by Su and Willis [20]. The results from this simplified version are not
as convincing as from other triangulation-based techniques. Battiato et al. [1]
used the concept of a triangulation-based technique for creating vector format
images from raster data.

Feature-preserving triangulations for volume data sets with a mesh refine-
ment technique was studied by Marchesin et al. [14] and Roxborough and
Nielson [17]. Both methods are based on the longest edge split approach.
Other reconstruction techniques are numerical methods applicable for scat-
tered data reconstruction, like C1 methods in the 3D case by Nielson [16].
These techniques are not as good as a polygonal representation, which has
better visual structuring and easier handling when compared to an analytical
description.
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An initial approach to extend DDT to 3D has been proposed by Lee [13].
Lee used the simulated annealing technique to get an optimal data-dependent
mesh. This may result in artifacts, as we will show later in Sect. 5. In the
literature, there is no description of the n-dimensional case. In the following
section we introduce the general approach to n-dimensional triangulation.

3 N -dimensional Triangulation

A correct description of triangulation in arbitrary dimension requires to use
some definitions from simplex theory. We selected Edelsbrunner‘s and Shah‘s
terminology [7].

The convex hull (conv) of k+1 affinely independent points in Rn, marked
as set T , is a k-simplex, denoted by σT , where 0 ≤ k ≤ n. For subsets U ⊆ T ,
simplices σU are called faces of σT . A collection of simplices, K, is a simplicial
complex if:

(i) The faces of every simplex in K are also in K .
(ii) If σT , σT ′ ∈ K, then σT ∩ σT ′ = σT∩T ′ .

Let V be a finite point set in Rn. Usually a triangulation of V is defined
as a simplicial complex so that V is the set of 0-simplices (vertices) and the
underlying space of the complex is the convex hull of V. A simplicial complex
K is a triangulation of V if:

(i) Each vertex of K is a point in V .
(ii) The underlying space of K is conv(V ) .

The content of the n-simplex is its generalized volume (in 2D area, in 3D
volume, etc.).

From the definition of the triangulation above we can see that it is a C0

continuous reconstruction. The number of possible valid mesh configurations
is exponential in the number of elements in the discrete data set.

Traditional (not data-dependent) triangulations usually avoid the genera-
tion of long, bad shaped k-simplices (triangles), because these simplices are
not well suited for finite element methods used in simulations. However, such
simplices are very suitable for reconstruction of areas where a function has
high derivatives in one direction as compared to other directions. In images
(2D domain case) such areas correspond to edges, in volume data (3D domain
case) to surfaces of volumetric features. Our goal is to reconstruct feature
boundaries sharply and to correctly use a reconstruction grid which adapts to
the underlying data structures.

In Fig. 2 a part of an image with a boundary between two constant regions
is shown. The reconstruction process first converts the image into a height-
field representation based on the underlying sample (pixel) values. The height
represents the intensity value at a particular pixel position. The initial trian-
gulation is iteratively optimized in order to preserve the feature boundaries.
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The differences to the initial mesh appear only close to the feature boundary.
Figure 2 shows of the final height-field of the feature-preserving triangulation.

Fig. 2. Shape of the triangles at the border between different features.

In DDT applications cost functions are used to control the shape of the
resulting mesh. The task of the optimization process is to improve the mesh
via topological changes with regard to the cost function. Cost functions in
2D can be assigned to vertices (vertex based DDT), to edges, or to triangles.
Most of the existing functions are defined for edges. Generally, cost functions
assign a cost to every k-simplex in the triangulation, according to some local
(not strictly geometrically based) property, where k = 0, . . . , n and n is the
dimension of the domain space of the scattered data.

Different triangulations in 2D have the same number of edges. Thus,
a topological change can not alter the number of edges in 2D. The goal of
the reconstruction is to minimize the sum of the cost function weights of
particular simplices. We get a structurally identical problem to the minimum-
weight triangulation-problem [8], where the task is to find the triangulation
with the minimum cost:

cost(Koptimal) = minK∈Ω(
∑

e∈K(cost(e)))

Koptimal is the triangulation generating the minimum sum among all possible
configurations marked as Ω and e are simplices assigned with the cost function.
The NP-hardness of this problem was shown by Mulzer and Rote [15]. Only
its approximation can be computed in polynomial time. In previous work the
global optimum for DDT was not defined and various heuristics were used for
local improvements [11, 22].

A generalization to higher dimensions based on a constant number of sim-
plices (edges in the 2D case) is not straightforward. The number of simplicial
components of the n-dimensional triangulation in 3D and higher dimensions
depends on the specific triangulation. For example if in 3D we decide to assign
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costs to faces (2-simplex), the sum changes not only due to the optimization
steps but also depends on the number of faces in the triangulation (see Fig. 6).
It is necessary to find a solution independent of mesh-connectivity changes.
A vertex-based DDT satisfies this criterion, because the number of vertices
(0-simplices) remains unchanged. However, designing a cost function for the
vertex-based approach is not an intuitive task even in the 2D case. In higher
dimensions this becomes even more difficult.

Our solution is based on the observation that the convex hull of the scat-
tered points also remains unchanged. This means that the content is constant
irrespective of the triangulation, and the task of reconstruction can be for-
mulated as follows: the optimization process in the n-dimensional case should
assign low weights to n-simplices which are well aligned with the underlying
data. This means minimizing the weighted volumes of n-simplices summed
over the entire space of the convex hull. The exact mathematical description
is given as follows:

cost(Koptimal) = minK∈Ω(
∑

σn∈K(V (σn) · w(σn)))

σn is an n-simplex, V (σn) is its content, and the assigned weight function
is w(σn). Koptimal is the simplicial complex with minimal weighted volume
in the set of possible configurations denoted as Ω. This observation is useful
only if we can easily and intuitively find feature-preserving weight functions.
A simple approach can use the variance property for weight assignment. Such
an idea can be based on the preservation of low variance regions. Therefore
the generation of (n−1)-simplices (faces) with low variance is preferred. This
implies a weight function based on the variance of the function values in the
n-simplex

w(σn) = V ariance(zn1
, zn2

, . . . , znn+1
) ,

where w(σn) is the weight function for the σn n-simplex and zni
, i =

1, 2, . . . , n + 1 are the known function values in the simplex vertices. Fig-
ure 3 illustrates the example of a 3D domain case of a triangulation on a
given surface. If the second type of triangulation will be chosen (see Fig. 6
image on the top right), the weighted volume value will be higher.

Fig. 3. Example of correct tetrahedralization according to the face variance.
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Another useful property of triangulations in arbitrary dimensions is that
(n − 1)-simplices not lying at the boundary of the convex hull are exactly
shared with two n-simplices. In 2D triangulations each interior edge is shared
exactly by two triangles, in 3D each interior triangular face is shared exactly
by two tetrahedrons, etc. This allows us to generalize most of the known cost
functions from the 2D case for the (n − 1)-simplices. Each n-simplex con-
tains (n+1) of (n− 1)-simplices, for which the generalized feature-preserving
cost can be evaluated. Averaging of these values gives a feature-fitting weight
function for our technique. We illustrate this on a concrete cost function gen-
eralization to arbitrary dimensions. We have chosen a cost function from the
2D case with the most convincing result, i.e., Sederberg‘s cost function [22]. In
Fig. 4 the cost function dependency for DDT is shown over a planar domain.
T1 and T2 are triangles on the generated piecewise linear surface. They share
a common edge, denoted as e. Sederberg‘s cost function is based on the angle
α between the gradients of the planes containing triangles T1, T2, weighted by
the magnitude of the gradients:

cost(e) = ‖ ▽ P1‖ · ‖ ▽ P2‖ · (1 − cos(α)) = ‖ ▽ P1‖ · ‖ ▽ P2‖ −▽P1 · ▽P2

▽P1, ▽P2 are the gradients of the planes containing T1, T2, and ‖P1‖, ‖P2‖
are their magnitudes. Angle α is the angle between these gradients.

x

y

F( , )x y

e
T

1

T
2

V
1

V

V
3

V
4

( , )x y
1 1

( , )x y
2 2

( , )x y

( , )x y
4 4

2

3 3

Fig. 4. Illustration of geometric dependencies in 2D data dependent triangulation.

Its straightforward generalization to higher dimensions looks as follows:

cost(σn−1) = ‖ ▽ P1‖ · ‖ ▽ P2‖ −▽P1 · ▽P2 ,

where linear polynomials P1(x ) and P2(x ) represent the hyperplanes. These
hyperplanes are calculated from the n-dimensional domain and the function
values of the data function:

Pi(x ) = ai,1x1 + ai,2x2 + . . . + ai,nxn + ai,n+1 , i = {1, 2} .

▽Pi is the gradient of the hyperplane, and ‖ ▽ Pi‖ is the magnitude of the
gradient:

▽Pi = (ai,1, ai,2, . . . , ai,n) , i = {1, 2} ,

‖ ▽ Pi‖ =
√

a2
i,1 + a2

i,2 + . . . + a2
i,n , i = {1, 2} .
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With the help of these generalized cost functions we can describe a feature-
preserving mesh, as follows:

w(σn) =

∑

σn−1∈σn
cost(σn−1)

(n + 1)

σn is an n-simplex and w(σn) is its weight function. The generalized cost func-
tions of the (n − 1)-dimensional subsets (faces) of this simplex are averaged.
The (n − 1)-simplices are marked in the sum as σn−1.

Other geometrical properties can also be involved in the weight function
design. On the basis of the shape of (n − 1)-simplices we can consider their
weighted sum instead of the unweighted sum. Having feature-fitting weight
functions the task is to solve the construction of an optimized mesh. This
problem is treated in the next section.

4 Content-Based Data-Dependent Reconstruction

As we mentioned earlier, the feature-preserving property of the reconstruction
technique is achieved by specific quality-improving operations on the topology
of the triangulation. In 2D this kind of topology transformation is called edge
flip and it changes the topology as follows: In Fig. 4 the edge e can be replaced
with the edge V1 −V3 if the four vertices form a strictly convex quadrilateral.
Via flip improvements the cost of the triangulation is decreased iteratively,
and we are getting a feature-preserving mesh. The 2D triangulation algorithm
based on this idea is called Lawson‘s optimization process [12].

In higher dimensions the notion of an edge flip generalizes to bistellar flips.
Bistellar flips include removals from and insertions into triangulations. We are
interested only in such transformations where the number of vertices does not
change. This general topological operation is based on Radon‘s theorem from
convex geometry [7]. Each transformation can be interpreted as a projection
of a simplex into a lower dimension. The views of the simplex from antipodal
points of view in the direction of the projection introduces the two configu-
rations, before and after the flip, as is illustrated in Fig. 5. For example if we
project a tetrahedron into a plane we get an edge flip. Projections which cause
degeneracies in the projected complex can be interpreted as bistellar flips of
lower dimension in the simplex (of lower dimension) where the degeneracy
occurred.

Let us describe the set of bistellar flips in 3D:

• A face can be changed into an edge as is illustrated in Fig. 6 (top
part). This is called a 2–3 flip.

• An edge can be changed to a face as is illustrated in Fig. 6 (top
part). This is called a 3–2 flip.
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A

BnD ( -1)Dn( -1)Dn

Fig. 5. Illustration of the bistellar flip. A and B are the antipodal points of view
of the projection of an n-simplex (center) to a lower dimension (left, right).

• A degenerate case occurs when six vertices form four adjacent
tetrahedrons with one common edge as is illustrated in Fig. 6 (bot-
tom part). If four of these vertices are coplanar and the remaining
vertices are divided by this plane, there are two possible ways how
to tetrahedralize this structure. This operation is called 4–4 flip.

In higher dimensions the situation is the following:

• Let us consider an n-dimensional space, and a simplicial complex
M of n-simplices which share a common edge. If M has n + 2
vertices and forms a convex space then there exist exactly two
triangulations of M. One that includes the common edge and one
that instead includes a hyperface formed by the vertices not related
to the removed edge.

• All other possibilities are degeneracies and can be described as
bistellar flips in lower dimension.

Unlike in the 2D case it is not proven that with these bistellar flips one
can get from an arbitrary triangulation to any other possible configuration.
To our knowledge it is proven only in the 3D case when triangulating a convex
polytope [3].

Another possibility for mesh improving is to investigate more complex
topological transformations, like the edge-removal operation in the 3D case.
It is a transformation that removes a single edge from the mesh along with all
tetrahedra that contain it. This operation can be composed from a series of
bistellar flips, but in that way the optimalization can get stuck in local optima.
An effective implementation was discussed in the work of Shewchuk [19].

To make our concept more general we define the set TK of topological
transformations of triangulation K. The members of this set can be selected
arbitrarily. Reconstruction will be done considering the members of this set.
Good reconstruction results can be expected from a set of TK, that gener-
ates all possible topological transformations at the given dimension. We are
interested in those topological operations, which remove a specific k-simplex
k = 1, . . . , n−1 and change the topology of n-simplices containing the removed
k-simplex.
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Fig. 6. Illustration of the 2–3 flip and 3–2 flip topological transformations (top
image) and the 4–4 flip topological transformation (bottom image).

Let us have a triangulation K for the n-dimensional domain. The k-simplex
k = 1, . . . , (n − 1) is locally optimal with regard to TK and to a given cost
function if:

• the k-simplex cannot be removed from the triangulation by apply-
ing one of the topological transformations from TK

• there is a topological transformation in TK that removes the
k-simplex (let us denote this k-simplex as flippable), but the tri-
angulation cost does not decrease after the applied changes.

Triangulation K is locally optimal if topological transformations from TK can-
not improve its weighted content.

We introduce the generalization of Lawson‘s algorithm which creates
locally optimal DDT. The pseudocode of the algorithm is presented in Fig. 7.
At first an initial triangulation is generated, as it is written in line2. We
suggest for this purpose the Delaunay triangulation. The initial triangula-
tion should connect each vertex with its closest neighbors. Due to the dual-
ity with Voronoi diagrams, the Delaunay triangulation satisfies this criterion.
Creation of good initial triangulations speeds up the running time, as the algo-
rithm needs less iterations to converge to a locally optimal solution. For image
and volume data-reconstruction this means the following: The optimization
process will leave the initial triangulation unchanged in low frequency areas,
only in high frequency areas it will generate long feature-preserving simplices.

After creating the initial triangulation its weighted content is evaluated
in line3. The oldCost variable is used to store the triangulation cost of the
previous iteration step. Two lists are initialized in line5 and line6. Listactive
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contains all the simplices whose local optimality is tested in the given itera-
tion step. In the beginning this list contains all 1, . . . , n − 1 simplices of the
triangulation K. The second list Listcandidate is the container of simplices
whose local optimality could change due to the applied transformations from
TK. We denote these simplices with σk. At the beginning of the optimization
process Listcandidate is set to empty. In a given iteration local optimality of
the members of Listactive are tested. If there exists a cost-reducing topologi-
cal transformation from TK then it is applied. The tested simplex is removed
from Listactive. Into Listcandidate those simplices are added whose local opti-
mality could change. At the end of each iteration step Listactive is empty and
Listcandidate contains all the simplices that will be tested in the next iteration
step. The algorithm stops, if the triangulation cost did not improve in the last
iteration step. This procedure results in a locally optimal triangulation K with
regard to a set of topological transformations TK and a given cost function.

It is evident that the described algorithm stops after a final number of
iteration steps. In each step we decrease the overall cost of the triangulation
and the number of possible triangulations is finite. The described idea of
a weighted content-based DDT can be used with other optimization techniques
also. It is possible to construct a simulated annealing, look-ahead, or genetic
optimization approach based on this idea.

5 Experiments and Results

DDT triangulations can be computed by stochastic processes. Such a tech-
nique is the simulated annealing optimization approach. Its usage can improve
the approximation level of the algorithm to achieve results which are closer
to the global optimum than the described generalized Lawson’s optimiza-
tion process. However, according to our experience simulated annealing does
not create convincing results. The initial stages of simulated annealing apply
topological transformations on the mesh which increase the cost of the tri-
angulation. This results in long, bad shaped simplices in areas without high-
frequency features. Our goal was to create these bad shaped simplices only
at high frequency areas. In Fig. 8 a comparison between results from Law-
son’s optimization process and the simulated annealing technique is depicted,
both using Sederberg’s cost function. The reconstruction is displayed at 600%
magnification. The mesh of the resulting triangulation and the reconstructed
2.5D terrain are also shown. In low frequency areas (e.g., cheek area below
the eye) simulated annealing creates long and tiny triangles. Their gener-
ation is in this case undesired. From the mathematical point of view this
observation for image and volume data reconstruction can be formulated as
follows: A high-quality reconstruction should give a good approximation of
the minimum-weight triangulation, but should not change the topology in
low-frequency regions.
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Generalized Lawson’s optimization process

Input: scattered data
Output: locally optimal triangulation

1 begin
2 create the initial triangulation K;
3 Cost = cost(K);
4 oldCost = Cost + 1;
5 Listactive = {∀σk ∈ K, k = 1, . . . , n − 1};
6 Listcandidate = ∅;
7 while (Cost < oldCost)
8 {
9 for (Listactive members)
10 {
11 if (not locally optimal)
12 {
13 apply transformation from TK;
14 remove from Listactive;
15 for (σk whose local optimality could be changed)
16 {
17 if (σk is not member of Listactive and Listcandidate)
18 add σk to Listcandidate;
19 }
20 }
21 else
22 remove σk from Listactive;
23 }
24 oldCost = Cost;
25 Cost = cost(K);
26 Listactive = Listcandidate;
27 Listcandidate = ∅;
28 }
29 locally optimal K created;
30 end

Fig. 7. The pseudocode of the n-dimensional DDT algorithm.

In Fig. 9 a comparison between a convolution based approach – trilinear
interpolation, and DDT in 3D – using the generalized Lawson’s optimization
with bistellar flips and the variance-based weight function, is shown. The
artificial test data set was a sphere embedded into a cube at 32 × 32 × 32
resolution. One can see that the surface of the sphere is reconstructed better
by the DDT approach.

In Fig. 10, we have reconstructed the hydrogen dataset of resolution
32 × 32 × 32. In the left image trilinear reconstruction has been used which
resulted in clearly noticeable staircase artifacts. These artifacts are eliminated
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Fig. 8. Results from Lawson’s optimization process (upper row), and from sim-
ulated annealing (lower row) at 600% magnification. The last column shows the
triangulation of the height field.

Fig. 9. Results from trilinear interpolation (left), and from the generalized Lawson’s
optimization DDT approach with the variance-based weight function and bistellar
flips (right). (Colorplate on p. 221.)

in the right image, where the DDT-based reconstruction scheme has been ap-
plied. This observation indicates the superiority of feature-preserving DDT
reconstruction over traditional trilinear interpolation.

The implementation of the 3D DDT was done with the CGAL 3.1 lib-
rary [5]. For the rendering of the datasets the VTK 5.0 library [9] was used.
This software tool works with both structured (rectilinear) and unstructured
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Fig. 10. Hydrogen dataset: The left image shows the result from trilinear inter-
polation suffering from noticeable artifacts. The right one shows improved results
achieved by DDT-based reconstruction with the bistellar flips and the variance-based
weight function (colorplate on p. 222).

grids. The possible differences caused by the usage of different renderers are
minimized in this way.

In Sect. 3 two types of weight functions have been described: the variance-
based approach and an approach based on the generalization of existing cost
functions to higher dimensions. There is a significant difference between these
techniques. The variance-based weight function is clearly a C0 continuous
approach and depends only on the data values from the tested n-simplex
vertices. The weight function based on generalized cost functions has different
properties. It depends on the data values from the tested n-simplex vertices
and on the vertices of n-simplices which share with the tested one a common
(n−1)-simplex. For this reason these weight functions can be classified as near
C1 continuous weight functions. Because of this difference the running time
of the DDT with the variance-based cost function is lower than the running
time of the DDT with generalized cost functions. The reason is that the weight
function evaluation is computationally cheaper, and the number of simplices
whose local optimality could change is smaller.

6 Conclusions and Future Work

We have introduced a new method using topological changes for n-dimensional
data-dependent triangulation. This enables a better visualization of the local
topology of sharp features both for regular and sparse grids in arbitrary di-
mensions. The topology of the reconstruction grid is driven by the topology
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of the underlying data. The potential of this new reconstruction technique
results in many future work directions:

Our feature preserving triangulation can be used for data compression.
If we assign a cost to vertices we have information about how important the
vertices are. With mesh decimation techniques the non important vertices can
be removed.

A straightforward use of the described technique for the reconstruction of
time-varying volume data is possible. Here reconstruction errors from known
image processing methods are more disturbing than in a static reconstruction.

Optimal triangulations in 2D are relatively well explored. Higher dimen-
sional optimal triangulations represent a novel area for investigation. We hope
that our contribution improves the theory in this research area and its appli-
cation provides a new tool for practical scattered data reconstruction.
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8. A. Ferko, L. Niepel, and T. Plachetka. Criticism of hunting minimum weight
triangulation edges. In Proceedings of the 12th Spring Conference on Computer
Graphics, pages 259–264, 1996.

9. Kitware Inc., http://public.kitware.com/VTK/. Documentation, Visualization
ToolKit 5.0 edition, 2005.
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Fig. 1 (p. 2). Visualization of flow around a critical point using texture advection
and dye injection [35]. In contrast to these methods, topology-based methods extract
and visualize critical points directly.

Fig. 3 (p. 6). Here, the topology of a hurricane is visualized and depicted with the
SimVis system.
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Fig. 4 (p. 10). Visualization of flow past a circular cylinder using critical points
and saddle connectors. Image courtesy of H. Theisel et al.

Fig. 5 (p. 11). The visualization of a vortex breakdown bubble. Flow topology is
depicted with stagnation points in red, singularity paths in yellow and streamlines
in blue. Image courtesy of X. Tricoche et al.
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Fig. 2 (p. 28). Pelton turbine with five
injectors.

Fig. 3 (p. 28). Two vortices extending
from the ring distributor into the first (of
six) injectors.

Fig. 4 (p. 28). Extracted interior (blue)
and boundary (red) critical points. Peri-
odic orbit (magenta).

Fig. 5 (p. 28). Streamlines seeded near
the boundary critical point (black) and
the interior critical point (white).
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Fig. 6 (p. 29). Stable manifold of inte-
rior critical point.

Fig. 7 (p. 29). View from the wall with
stable and unstable manifolds of the peri-
odic orbit (red and blue stream surfaces).

Fig. 8 (p. 30). Tornado-type separation and vortex in the draft tube dataset.
Stream surface (transparent blue) starts at saddle and goes upstream enclosing a
vortex breakdown bubble (blue streamline) containing a periodic orbit (red). Critical
points (red) and vortex core lines (green).
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Fig. 1 (p. 45). A random generated test dataset. Critical points are color coded
according to their classification. Foci are shown in red and green hues, while saddles
are colored in blue tones. Streamlines are seeded in the vicinity of critical points.
Left: The 16 critical points of the original data set. Right: After adding noise 1307
simple critical points can be detected.

Fig. 2 (p. 46). The same test dataset as shown in Fig. 1. Left: Scale-space lifetime of
the critical points in the interval τ = 0 . . . 1.5 computed by the scale-space tracking
algorithm. Red color indicates stable critical points, while gray colored points are
very short-lived. Right: Critical points filtered by their lifetime. Only points that
persist at τmin = 1.0 are shown and used to seed streamlines in their vicinity.
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(a) At ti. (b) Entries. (c) Births.

(d) Integration. (e) At ti+1.

Fig. 7 (p. 61). Application of algorithm 3: critical points tracked in one sweep.

(a) LIC planes: 10 sections. (b) Tracked critical points.

Fig. 8 (p. 62). Cavity data set consisting of 1000 time steps. Algorithm 3 has been
applied onto the 10 depicted sections consisting of 100 time steps each.
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Fig. 3 (p. 74). The left picture shows the vortex core lines of the train-dataset. In
the right picture the corresponding vortex core regions are depicted. (Note that the
vortex core regions do not cover the vortex core lines completely. We assume that
the vortices level off at the end.)

Fig. 4 (p. 75). Boundaries of characteristic sets of GV ortex characterizing these
parts of the flow that stream only in one vortex region (top down): R ∧ Ḡ ∧ B̄,
R̄ ∧ G ∧ B̄, R̄ ∧ Ḡ ∧ B.
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Fig. 5 (p. 76). Boundaries of characteristic sets of GV ortex characterizing these
parts of the flow that stream in more than one vortex region (top down): R∧G∧B,
R∧ Ḡ∧B, R∧G∧ B̄, R̄∧G∧B (R̄∧ Ḡ∧ B̄ (i.e. flowing in no vortex region) is not
shown.) The second column shows the same characteristic sets from another view.
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(a) (b)

Fig. 1 (p. 81). Cutting plane topology, revealing flow structures perpendicular to
the dominant flow direction – streamlines are depicted in blue, longitudinal vortex
cores are shown in red. (b) Vortex core line extraction using the method from Sujudi
and Haimes.

(a)

(b)

Fig. 3 (p. 84). (a) The visualization of all regions of forward-longitudinal flow;
color-mapping reflects velocity magnitude. (b) The result of selecting all regions of
reverse-longitudinal flow, the inverse of the left selection.

(a)

(b)

Fig. 4 (p. 84). (a) The visualization of all regions of forward-transversal flow;
color-mapping indicates velocity magnitude. (b) The result of selecting all regions
of reverse-transversal flow, again the inverse of the left selection.



A Colorplates: Hauser et al. 209

Fig. 5 (p. 85). The result of selecting all regions of reverse-longitudinal flow and
regions of reverse-transversal flow.

Fig. 6 (p. 86). A feature-based, focus+context visualization showing regions of
near-stagnant flow, specified interactively.

Fig. 7 (p. 87). Areas of temperature t > 364 ◦K and velocity |v| < 0.1 m/s are
interactively-specified by the user and rendered in focus.
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Fig. 2 (p. 94). Left: Rotation, convergence, saddle and shear, each visualized using
hedgehogs and LIC. Right: The Vatistas vortex model. A pure, circular rotation is
assumed. A cut through this rotation results in the described velocity profile.

Fig. 3 (p. 98). One vector field of the HART II test measurements. Top left: LIC
and vorticity of the original data set, dark blue: high negative vorticity, red: high
positive vorticity. Top right: Vorticity and LIC of the data set after removing the
average. Bottom left: LIC and topology after removing the average. Bottom right:
LIC and topology of the region-specific flow of the dataset.
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Fig. 4 (p. 99). Comparison of different fields obtained from a cylinder data set
with a Kármán vortex street. Top left: Streamlines in the original flow. Only sinuous
structures of the lines give hints on the vortices. Top right: Potential flow induced
by the boundary. Bottom left: Three vortices revealed by removing the average
flow. Bottom right: Subtracting the potential flow reveals all five vortices by use of
topology.

Fig. 5 (p. 101). Superposition and interaction of two Vatistas vortices. All images:
The original vortex centers are displayed as black dots. Grid (green), hedgehogs
(black arrows), color coding of similarity to a 3x3 rotational mask from high negative
values (blue) to high positive values (red). Left: The stronger vortex hides the weaker
vortex in streamline based visualizations. Topology only detects one center each
(green dot), therefore some streamlines are added. Top right: Template matching
detects the true vortex centers. Bottom right: Setting all velocity magnitudes in the
field to one, and matching afterwards, yields results more similar to the topological
features.
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(a) All 452 critical points (all of them
are saddles) are located in a rather
small area of the whole domain.

(b) 218 attracting and 234 repelling
separations surfaces at a coarse
resolution.

(c) 500 stream lines seeded
homogeneous in the whole domain.

(d) 1023 saddle connectors have been
extracted.

(e) 500 stream lines seeded near critical points.

Fig. 5 (p. 117). Flow around a backward-facing step.

Fig. 6 (p. 117). Simple topological
skeleton consisting of 4 saddles; the 6
resulting sectors of different flow be-
havior can hardly be distinguished.
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(b) Saddles and their icons.

(c) Separation
surfaces of the
saddles.

(d) Saddle
connector.

Fig. 8 (p. 119). Critical points and definition of saddle connectors.

(a) Original frame of reference. No critical points are present.

(b) Frame of reference chosen such that both layers have the same magnitude. 348
saddle points have been detected.

Fig. 7 (p. 118). Mixing layer.



214 A Colorplates: Garth et al.

Fig. 2 (p. 126). A frame from a
time-varying tumble motion visualiza-
tion using a combination of particles
and vortex cores. (lines, extracted by
cutting-plane topology). Particle veloc-
ity magnitude is color-coded. Lines are
color coded by the path type (saddles -
red, sources - green, sinks - blue). Over
time, some of the particles are captured
in the vicinity of vortex cores resulting in
lost energy (lower velocity) for the cre-
ation of the tumble pattern.

Fig. 3 (p. 127). Visualization of swirl motion using boundary topology. Criti-
cal points are colored by type (cf. Fig. 2), and separatrix color varies with sepa-
ration/attachment behavior from dark blue (weak) to cyan (strong). Separatrices
indicate the separation between neighboring vortices on the boundary. (Left) Com-
bination with volume rendering with a transfer function of λ2 only. On the bottom
left of the cylinder, the recirculation zone causes a non-ideal off-center rotation, as
visualized by topology. (Right) In combination with LIC.

Fig. 4 (p. 128). Left: Cutting-plane topology applied to the diesel engine. Plane
separatrices are colored gray. Despite the visual inexactness, swirl structures emerge
clearly. Critical points paths are colored according to nature. It appears the overall
swirl motion is fueled by several parallel vortices at the top of the cylinder. The main
swirl motion core is disrupted near the middle. Right: Visualization of the rotational
directions in the vortex system at the top of the diesel engine cylinder. The transfer
function is identical to that of Fig. 6. The counter-rotating vortices appear in blue
and in red depending on rotation direction. On the boundary, the topological analysis
extracts and visualizes separation lines between individual vortices (color coding as
in Figs. 2 and 3).
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Fig. 7 (p. 132). Two frames from a time-varying visualization of tumble motion
using a combination of cutting-plane topology (green lines) and boundary topology
(blue lines). Where the critical point paths computed over the cutting-plane para-
meter range intersect the boundary, singularities appear there, too. This is a prime
example of a hybrid approach being used to investigate the relationship between
boundary and volume methods.

Fig. 5 (p. 129). Two frames from an animation of the tumble motion simula-
tion. Cutting plane topology is applied to visualize flow field structures in the plane
orthogonal to the tumble axis. Color of separatrices varies from blue to red on suc-
cessive cutting planes. Tumble-like flow structures emerge clearly from the otherwise
incoherent lines. The paths of critical points over the cutting plane continuum are
displayed in green. In the last frame (right), the diagonal main tumble axis can be
observed together with a large recirculation zone (closed path on the left).
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Fig. 4 (p. 142). PMV and PPD values for a section of the train.

Fig. 5 (p. 142). MAA in [s] in the train.

Fig. 6 (p. 143). The thermal mannequin in the compartment. Left: Visualization
of streamlines, coloured with their residence time in [s]. Surface static temperature
from 291K to 310K. Right: Texture based visualization of wall stream lines coloured
with the local teq in ◦C (colorplate on p. 216).
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Fig. 9 (p. 147). Snow accretion in kg/m2s on wall boundaries.

Fig. 10 (p. 147). Snow accretion in kg/m2s on the compressor inlet and particle
tracks coloured with the local particle velocity in m/s collected by the compressor.

Fig. 11 (p. 148). Visualization of wall stream lines and accretion rate together with
critical points for different angles of attack of the top surface of the box (colorplate
on p. 217).
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(a) (b)

Fig. 12 (p. 165). Segmentation of parts of the Mixing Fluids data sets into bubbles.
Maxima are shown in red and each bubble is randomly assigned one of nine colors. (a)
Initial segmentation; (b) Segmentation at 0.2% persistence (relative to the maximal
range in function value).

(a) (b) (c)

Fig. 13 (p. 166). Segmentation of the atomic density function on a molecule.
Minima are shown in blue and ascending paths in gold. Segmentation into 198 (a);
100 (b); and 50 (c) protrusions.

(a) (b)

Fig. 14 (p. 167). Creating a basemesh from Laplacian eigenfunctions. (a) Initial
MS complex of the 60th eigenfunction of the elephant showing typical noise due to
discretization and the iterative eigensolver. (b) The MS complex of (a) simplified to
a persistence of 0.5%. All noise has been removed and the MS complex now forms
a high quality all-quadrilateral basemesh.
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Fig. 1 (p. 172). Periodic Blue Sky Bifurcation. The polygonal model is courtesy
of Tino Weinkauf and Holger Theisel.

(a) (b)

Fig. 2 (p. 174). Lorenz attractor: (a) direct representation through a streamline
and (b) descriptive visualization of the system with emphasis of critical points [4].

Fig. 5 (p. 178). Cut-away visualization of a multidimensional data of hurricane
Isabel.
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Fig. 4 (p. 177). Topology-driven visualizations of suspicious regions (possibly
early-stage lung cancer nodules) within a thorax CT data. The suspicious regions
are highlighted in red enclosed by a green halo.

Fig. 6 (p. 179). Multi-volume visual-
ization enabling exploded views through
topology change of the underlying data [1].

Fig. 7 (p. 180). Virtual colon un-
folding using a topology change in
the visualization [10].
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Fig. 9 (p. 195). Results from trilinear interpolation (top), and from the generalized
Lawson’s optimization DDT approach with the variance-based weight function and
bistellar flips (bottom).
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Fig. 10 (p. 196). Hydrogen dataset: The top image shows the result from trilinear
interpolation suffering from noticeable artifacts. The bottom one shows improved
results achieved by DDT-based reconstruction with bistellar flips and the variance-
based weight function.


