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Preface

This volume collects the papers accepted for presentation at the 13th IMA Con-
ference on the Mathematics of Surfaces, held at the University of York, UK
September 7–9, 2009. Contributors to this volume include authors from many
countries in America, Asia, and Europe. The papers presented here reflect the
applicability of mathematics of surfaces to engineering and computer science,
especially in domains such as computer-aided design, computer vision, and com-
puter graphics.

The papers in the present volume include seven invited papers, as well as a
larger number of submitted papers. They cover a range of ideas from underly-
ing theory of surfaces to practical tools, and industrial applications of surfaces.
Surface types considered encompass polygon meshes as well as parametric and
implicit surfaces. Topics providing a theoretical basis include subdivision schemes
and their continuity, polar patchworks, compressive algorithms for PDEs, sur-
face invariant functions, swept volume parameterization, Willmore flow, compu-
tational conformal geometry, heat kernel embeddings, and self-organizing maps
on manifolds. Toward the practical and applied end of the scale, papers cover
such issues as mesh and manifold construction, editing, flattening, morphing
and interrogation, dissection of planar shapes, symmetry processing, morphable
models, computation of isophotes, point membership classification and vertex
blends.

We would like to thank all those who attended the conference and helped to
make it a success, especially the keynote speaker, the renowned Field’s Medallist
Shing-Tung Yau from Harvard University, as well as the other invited speakers
whose contributions were a highlight of the meeting.

Following this preface is a list of distinguished researchers who formed the
International Programme Committee, and who freely gave their time in helping
to assess papers for these proceedings. Many of the papers have been improved
as a result of their comments. Our thanks go to the International Programme
Committee, and to other people upon whom they called to help with refereeing.

We are also grateful to Amy Marsh at the Institute of Mathematics and its
Applications for her hard work in organizing many aspects of the conference,
and to Anna Kramer and Springer for their help in publishing this volume.

June 2009 Edwin Hancock
Ralph Martin

Malcolm Sabin
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Computing Isophotes on Free-Form Surfaces

Based on Support Function Approximation

M. Aigner1, L. Gonzalez-Vega2, B. Jüttler1, and M.L. Sampoli3

1 Johannes Kepler University, Linz, Austria
2 University of Cantabria, Santander, Spain

3 University of Siena, Italy

Abstract. The support function of a free-form-surface is closely related
to the implicit equation of the dual surface, and the process of comput-
ing both the dual surface and the support function can be seen as dual
implicitization. The support function can be used to parameterize a sur-
face by its inverse Gauss map. This map makes it relatively simple to
study isophotes (which are simply images of spherical circles) and off-
set surfaces (which are obtained by adding the offsetting distance to the
support function).

We present several classes of surfaces which admit a particularly sim-
ple computation of the dual surfaces and of the support function. These
include quadratic polynomial surfaces, ruled surfaces with direction vec-
tors of low degree and polynomial translational surfaces of bidegree (3,2).

In addition, we use a quasi-interpolation scheme for bivariate quadratic
splines over criss-cross triangulations in order to formulate a method for
approximating the support function. The inverse Gauss maps of the bi-
variate quadratic spline surfaces are computed and used for approximate
isophote computation. The approximation order of the isophote approxi-
mation is shown to be 2.

1 Introduction

This paper is devoted to the use of support functions and dual implicitization
in order to deal with the problem of computing isophotes of free form surfaces.
Like reflection lines and highlight lines, isophotes are very useful tools for shape
interrogation, see [11,12]. They are defined as lines of equal light intensity and
they are used to detect and visualize small surface irregularities and discontinu-
ities that can not be seen by other means such as, for example, a shaded surface
image.

The first use of isophotes in this context is due to [22]. Isophotes appear also
in other contexts such as Image Processing for the so called image interpolation
(e.g. [18,28]), Computer Vision for object detection (e.g., [17]) or in the study of
feature sensitive mathematical morphology of surfaces where an isophotic metric
has been introduced [25].

Dual implicitization (or support function computation) provides an alterna-
tive way to represent curves and surfaces that allows, in many cases, to analyze

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Aigner et al.

and to manipulate the considered curves and surfaces [9,26]. In this paper we
show several concrete cases (quadratic polynomial surfaces, ruled surfaces with
polynomial direction vectors of low degree, polynomial translational surfaces of
low degree or some special cubics) where the dual implicit equation is very easy
to compute explicitly in terms of rational functions and square roots. Using dual
implicitization and the inverse Gauss map, it is then simple to characterize the
isophotes for these cases.

In order to compute the isophotes on free form surfaces in the general case we
propose to compute a support function approximation through the computation
of a piecewise quadratic approximation for the considered free form surface.
This support function then defines the inverse Gauss maps which are used to
determine the isophotes for the considered free form surface.

The remainder of this paper is organized as follows. After recalling the no-
tions of dual surfaces and support functions of free-form surfaces, the second
section discusses the support functions of several particular classes of surfaces:
quadratic polynomial surfaces, rational ruled surfaces with direction vectors of
low degree, polynomial translational surfaces of low degree, and special cubic
polynomial surfaces. Section 3 uses the support function to analyze offset sur-
faces, isophotes and contour generators. Based on a simple representation for
the inverse Gauss map, it presents results on exact rational paramaterizations
of offsets and on parametric represetations of isophotes, in both cases for special
classes of surfaces. Section 4 discusses the case of general free-form surfaces. We
propose to approximate the support function via quasi-interpolation by piece-
wise quadratic surfaces and use the result for approximate isophote computation.
Finally we analyze the convergence of the method.

2 Dual Implicitization

We recall the notions of the dual surface and the support function of a rational
surface. In the second part we discuss several classes of surfaces whose support
function can be expressed by using solely square roots and rational functions.

2.1 Dual Surface and Support Functions

We consider a non-developable polynomial or rational surface p : Ω → R
3

with domain Ω ⊆ R
2. Its partial derivative vectors with respect to the surface

parameters u, v will be denoted with pu and pv, respectively.
Consider the three equations

h− p(u, v)�n = 0, (1)
pu(u, v)�n = 0, (2)
pv(u, v)�n = 0. (3)

If these equations are satisfied by non-trivial values of h and n, then the plane
with normal n and distance h/||n|| to the origin is the tangent plane of the
surface at its point p(u, v).
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This system is homogeneous with respect to h and n. Eliminating u and v
from (1)–(3) leads to a single equation of the form

F (n, h) =
d∑

i=0

hifm−i(n) = 0 (4)

for certain values of the total degree m and the degree d with respect to h.
This equation is homogeneous of degree m with respect to h and n, since the
original equations (1)–(3) were homogeneous. Consequently, the functions fm−i

are homogeneous polynomials of degree m− i in n.
Eq. (4) is the dual implicit equation of the surface p, as it is satisfied by

the coefficients of the tangent planes of the surface. We refer to the process of
computing this equation as dual implicitization.

In order to visualize it, one may consider the surface

F ((x, y, z)�, 1) = 0 (5)

which is obtained by substituting h = 1 and n = (x, y, z)�. This is the dual
surface (see [13]), which is generated by applying the polarity with respect to
the unit sphere to the tangent planes of p.

Hoschek [13] uses the polarity with respect to the imaginary unit sphere. We
shall use the standard unit sphere instead, see e.g. [10]. In this case, a point q
is mapped to the plane q · x = 1 and vice versa, and the center of the sphere is
mapped to the plane at infinity.

We are particularly interested in surfaces where it is possible to solve the two
equations (2)–(3) for u, v by using rational operations and square roots. After
substituting the result into (1), the variable h can be expressed by a function

h = H(n) (6)

of n. The function H may possess different branches, if square roots are involved.
For a given normal n, the different roots of F (n, h) = 0 are the different possible
values of H .

The function H is a 1-homogeneous function, i.e.

H(λn) = λH(n), (7)

since the elimination procedure preserves the homogeneity of the original system.
The equation

H(n) = 1 (8)

is another implicit representation of the dual surface (5).
The restriction of H to the unit sphere is the support function of the surface.

This function is always odd,

H(−n) = −H(n), (9)

since H is homogeneous. The value(s) of H(n) is (are) the support distance(s)
of the tangent plane(s) with unit normal n (cf. see [9,10,26]).

We describe several classes of surfaces leading to certain special values of the
degrees d and m which admit closed form solutions of (4) with respect to h.
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2.2 Quadratic Polynomial Surfaces

We recall results from [10, Example 2] on the support function of non-developable
quadratic polynomial surfaces (triangular Bézier surfaces of degree two); see
also [16]. These surfaces possess an affine classification, which is described in
[4,21]. We are mainly interested in non-developable surfaces. Developable quad-
ratic polynomial surfaces are planes, parabolic cylinders or quadratic cones.

If the components of p are quadratic polynomials in u and v, then—in the
generic case—the dual implicit equation has the form (4) with d = 1 and m = 3.
Consequently, the support function H is an odd rational function

H = −f3(n)/f2(n) (10)

which is the quotient of two homogeneous polynomials f3 and f2 of degree 3 and
degree 2, respectively. The dual surface is a cubic monoid surface (see [15]) with
a threefold point at the origin.

2.3 Ruled Surfaces with Polynomial Direction Vectors of Low
Degree

Next we consider ruled surfaces,

p(u, v) = q(u) + vw(u) (11)

where the directrix q(u) is a rational curve and the direction vector of the gen-
erators are described by a polynomial function

w(u) =
k∑

i=0

ui wi (12)

with certain real coefficient vectors wi ∈ R
3. The two equations (2), (3) take the

form
[q′(u) + vw′(u)]�n = 0 and w(u)�n = 0. (13)

We analyze the cases k = 1 and k = 2.

– k = 1: The two equations (13) are linear with respect to v and u, respectively,
and the second equation does not involve v. One may easily express both u
and v by rational functions of n.

The dual implicit equation takes the form (4) with d = 1. The support
function of the surface is an odd rational function.

– k = 2: The first equation is linear in v and it can be used to express it as a
rational function of n and u. The second equation is a quadratic equation
for u, which can be solved by using one square root. Note that its argument
is a homogeneous quadratic form of n.

The dual implicit equation takes the form (4) with d = 2. The support
function of the surface can be expressed as

H(n) = R(n,±
√

n�Dn) (14)

where R is a homogeneous rational function and D is a symmetric 3 × 3
matrix.
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Consequently, rational ruled surfaces with linear and quadratic direction vectors
are special instances of the surfaces studied in [10] and [1], respectively.

2.4 Polynomial Translational Surfaces of Low Degree

A translational surface is generated by translating a moving curve along a fixed
curve. The general parametric representation of a rational translational surface is

p(u, v) = q(u) + r(v) (15)

where q and r are rational curves. The last two equations (2) and (3) take the
form

q′(u)�n = 0 and r′(v)�n = 0. (16)

We analyze the special case where both q and r are polynomial curves of low
degree (at most cubic). We assume that q is a cubic curve and study the cases
of quadratic and cubic curves r separately.

– r is quadratic: The first equation in (16) is quadratic with respect to u and
the coefficients are linear in the coordinates of n. The second equation (16)
is even just linear in v, hence u and v can immediately be computed from n
using rational functions and one square root.
The dual implicit equation takes the form (4) with d = 2 and m = 6. The
support function of the surface can be expressed as

H(n) = R(n,±
√

n�Dn) (17)

where R is a homogeneous rational function with a numerator of degree 4 and
a denominator of degree 3, and D is a symmetric 3×3 matrix. Consequently,
polynomial translational surfaces of degree (3,2) are special instances of the
surfaces studied in [1].

– r is cubic: Both equations in (16) are now quadratic. The parameters u and
v can immediately be computed from n using rational functions and two
square roots.
The dual implicit equation takes the form (4) with d = 4 and m = 12. The
support function of the surface can be expressed as

H(n) = R(n,±
√

n�D1n,±
√

n�D2n). (18)

It is a homogeneous rational function with a numerator of degree 5 and a
denominator of degree 4, and D1 and D2 are two symmetric 3× 3 matrices.

Example 1. The computation of the support function of the translational surface

p(u, v) = (u, v, u2 + v3)� (19)

which is generated by translating the cubic parabola along the quadratic para-
bola gives

H(n) =
1
36
−9 x2 ± 8

√
3
√−zy y

z
(20)

where n = (x, y, z)�.
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2.5 Special Cubic Polynomial Surfaces

Finally we mention two special classes of cubic surfaces whose support function
can be computed explicitly simply by using square roots. A general polynomial
cubic surface has a parametric representation of the form

p(u, v) =
3∑

i=0

3−i∑

j=0

ai,ju
ivj (21)

with real coefficients ai,j ∈ R
3. If the coefficients satisfy either

a2,1 = a2,0 = a1,1 = a0,2 = a0,1 = 0 (22)

or
a2,1 = a1,2 = a0,3 = 0, (23)

then the two equations (2), (3) can be used to express u and v as functions of n
using rational functions and square roots. Consequently, the support functions
of these surfaces involve only rational expressions and square roots, but the
arguments of the roots are now polynomials with a higher degree than two.

3 Offsets, Isophotes and Contour Generators

We discuss the inverse Gauss map of surfaces with odd support functions and
address the existence and computation of rational PN (Pythagorean normal)
parameterizations. Finally we analyze the parameterization of isophotes with
the help of the inverse Gauss map.

3.1 The Inverse Gauss Map

Any 1-homogeneous function H satisfies

∇H(λn) = ∇H(n), (24)

i.e., the gradient field is constant along the lines through the origin. Indeed,
applying the gradient operator to (7) gives (24), where both sides of the equation
are multiplied by λ.

For any point n, the scaled point n0 = n/H(n) lies on the dual surface, since
it satisfies

H(n0) = H

(
n

H(n)

)
=

1
H(n)

H(n) = 1, (25)

see (8). Moreover the normal vector of the dual surface at n0 is (∇H)(n), due
to (24). The equation of the tangent plane of the dual surface at n0 is

(∇H)(n) · x = 1 (26)
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since

(∇H)(n) · n
H(n)

=
1

H(n)
d
dt
H((1 + t)n)

∣∣∣∣
t=0

=
1

H(n)
d
dt

(1 + t)
∣∣∣∣
t=0

H(n) = 1.

Now we apply the polarity with respect to the unit sphere to the tangent plane
(26). This leads to the corresponding point ∇H(n) of the original surface, such
that the vector n is a normal vector of the surface. Consequently, the mapping

Γ : S
2 → R

3 : n→ (∇H)(n) (27)

is the inverse Gauss map of the surface with the 1-homogeneous support func-
tion H , see [9,10].

Example 2. The inverse Gauss maps of the translational surface from Example
1 are

Γ (n) =

(
− x

2z
,−

√
3y

±3
√−zy ,

±9
√−zyx2 + 4

√
3zy2

±36z2
√−zy

)�
, (28)

where n = (x, y, z). This expression is constant along the lines through the
origin, hence it can also be evaluated at non-normalized normal vectors.

3.2 PN Parameterizations and Offset Surfaces

Consider a rational parameterization ν : Ω → S
2 of the sphere with parameters

(u, v) ⊂ Ω ⊆ R
2, cf. [5]. The parameterization of the surface

q = Γ ◦ ν (29)

which is obtained by composing ν with the inverse Gauss map, is a PN (Pytha-
gorean Normal vector) parameterization of the given surface, see [23]. It has an
associated polynomial field of (non-normalized) normal vectors, such that their
length is equal to the square of another polynomial, hence the components of
the polynomial normals satisfy a Pythagorean condition.

A general construction and a design methodology for rational PN parameteri-
zations have been described in [23], based on the dual representation and control
structure of rational surfaces. These surfaces have also been studied in the frame
of Laguerre geometry [20]. As an advantage of rational PN surfaces, the offset
surfaces are again rational. They can be obtained either by adding the offsetting
distance to the support function or by adding constant multiples of the rational
unit normals to the PN parameterization.

Clearly, surfaces with rational support functions have rational PN parameter-
izations, since their inverse Gauss maps Γ are again rational. This is true both
for odd rational support functions, where Γ takes the form (27), and for gen-
eral rational support functions, see [10]. As observed in Section 2.2, this case in-
cludes quadratic polynomial surfaces and rational ruled surfaces with polynomial
direction vectors.
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In addition, surfaces with support functions of the form (14) or (17), where R
is a rational function and the matrixD has rank 3, can be equipped with rational
PN parameterizations. This is proved by describing an algorithm for generating
the parameterization in [1], where support functions of this type have been de-
rived by studying quadric surfaces. It is shown that the parameterization of these
surfaces is closely related to the analysis of the intersection of two quadrics in
four-dimensional space, which forms a del Pezzo surface.

Based on the results in Section 2 we note the following fact.

Proposition 1. Non-developable ruled surfaces with polynomial direction vec-
tors of degree less than three and non-developable polynomial translational ten-
sor-product surfaces of degree (3, 2) possess rational PN parameterizations.

Proof. The PN parameterizations can be constructed as follows. First we com-
pute the support function, which gives functions of the form (14). Second we
apply the parameterization technique in [1]. This technique is not limited to
regular matrices D. It is possible to use it for surfaces with singular quadratic
forms, too. (See also the example below.) �

PN parameterizations of rational ruled surfaces were also discussed in [24,19].
The first paper [24] observes that these parameterizations always exist. It also
presents an algorithm for parameterization for the case of direction vectors of low
degree (less than 3). The second paper [19] shows how to find parameterizations
over the field of complex numbers which are, however, not directly useful for
geometric computing.

PN parameterizations of translational surfaces have not been discussed
previously.

Example 3. In order to find a PN parameterization of the translational surface
from Example 1 with the inverse Gauss maps (28), we consider the two quadrics

x2 + y2 + z2 = 1 and yz = w2 (30)

in four-dimensional (x, y, z, w)-space. We generate a rational parameterization
(x(u, v), . . . , w(u, v)) of their intersection 2-surface. Then we may substitute it
into (28) and replace the square roots by |w(u, v)|.

The substitution x = Z, y = 1
2

√
2(X−Y ), z = 1

2

√
2(X+Y ),w = W transforms

the two quadrics (30) into

X2 + Y 2 + Z2 = 1 and X2 − Y 2 = W 2. (31)

We apply a central projection with center (1, 0, 0, 1) into the hyperplane X = 0
and obtain the cubic surface

W Z2 −W +W Y 2 + Y 2 +W 2 = 0. (32)

It contains the line W = Y = 0 which passes through two singular points (at
Z = ±1) of the surface. One may now parameterize this cubic surface using the
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family of conics which are obtained as intersections with planes through the line.
After a short computation one arrives at

x = (−2 + 2 u2v2 − 2 uv2 − 2 u)/N,
y = 1

2

√
2(2 + uv2 + u)u(v + 1)2/N,

z = 1
2

√
2(2 + uv2 + u)u(v − 1)2/N,

N = u2v4 + 4 u2v2 + u2 + 2 uv2 + 2 u+ 2

which defines a rational parameterization of the sphere of degree (3, 4).

3.3 Isophotes

Recall that an isophote (a line of constant brightness) on a C1 smooth surface
is the set of all points where

∠(pu × pv,d) = ∠(n,d) = φ0 (33)

where d is the direction of the incoming light and φ0 is the (constant) angle
between the surface normal and the light direction, see [14]. For given values of
d and φ0, the unit normals along the isophotes form a circle on the unit sphere.

In particular, if φ0 = π, then the isophote is the contour generator of the sur-
face with respect to the parallel projection with direction r. The corresponding
normals form the great circle on the sphere which lies in the plane with normal d
through the origin. The contour generator contains the shadow boundary with
respect to illumination with direction d.

Since circles possess a rational parameterizations, one obtains that isophotes
on surfaces with rational support functions are rational curves. This is equiva-
lent to [23, Theorem 3.3], which analyzes isophotes on surfaces possessing PN
parameterizations whose unit normals define birational parameterizations of the
sphere. This class of surfaces is identical to the set of surfaces with rational
support functions.

In particular we analyze the case of quadratic polynomial surfaces, which have
rational support functions of degree (3/2). The inverse Gauss map is a rational
function of degree (4/4). We obtain the following result.

Proposition 2. The isophotes (resp. contour generators) on non-developable
quadratic polynomial surfaces are rational curves of degree 8 (resp. 4), which
correspond to rational curves of degree 4 (resp. 2) in the parameter domain of
the surface.

Proof. The isophotes are obtained by applying the inverse Gauss map to spher-
ical circles, which possess rational quadratic parameterizations. The contour
generators are found by applying the inverse Gauss map to lines, since these
project into great circles on the sphere (by a central projection with respect to
the origin) and the inverse Gauss map gives the same point for all points along
a line through the origin.
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Fig. 1. Isophotes on a translational surface for different light directions d

The second part of this observation is proved by solving the linear system

pu(u, v)�n(t) = 0, pu(u, v)�n(t) = 0 (34)

for the surface parameters (u, v), where n(t) is a quadratic rational parameter-
ization of the spherical circle defined by (33), or a line in the plane which is
perpendicular to d. �

In the case of developable quadratic polynomial surfaces (34), which are either
planes, quadratic cylinders or quadratic half-cones, the two linear equations in
(34) do not possess solutions for all n. If solutions exist, then they are non-unique,
and they form lines in the parameter domain. It turns out that the isophotes are
either straight lines (for planes and cylinders) or half-lines (for half-cones).

Isophotes on surfaces with more general support functions can be parame-
terized by composing the parameterization of a spherical circle with the inverse
Gauss map. If the support functions involves only rational operations and square
roots, then one obtains square-root parameterizations of the isophotes.

Example 4. The isophotes on the translational surface from Example 1 have
square-root parameterizations. Fig. 1 shows the isophotes for three different light
directions.

3.4 Other Applications of the Dual Surface

We conclude this section by briefly mentioning two additional applications of
support functions and dual surfaces of free-form surfaces.

First, one may use them to compute the contours with respect to central
projection. The tangent planes of the cone which is formed by the projection lines
touching the surface correspond to a curve on the dual surface, which is simply
the intersection with a plane. The intersection of this cone with the image plane
gives the contour of the surface with respect to the central projection. In certain
cases it is possible to find simple parameterizations of the planar intersections of
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the dual surfaces. E.g., in the case of quadratic polynomial surface, one obtains
planar cubics on the dual surface which admit square-root parameterizations.

Second, it is an interesting idea to exploit duality for convex hull computation
of free-form surfaces. This is described in more detail in [7].

4 Support Function Approximation

We propose a new method for computing isophotes on general free-form surfaces.
The method consists of three steps. First, a piecewise quadratic approximation of
the surface is generated. Second, this approximation is used to define a piecewise
defined approximation of the inverse Gauss map of the surface. Finally, the Gauss
map is applied to spherical circles.

4.1 Piecewise Quadratic Approximation

We consider a given surface p : Ω → R
3 with domain Ω = [0, 1]2, which is

assumed to be C3 smooth, i.e., p ∈ C3(Ω,R3). Several techniques for generating
a C1 smooth piecewise approximation p∗ exist.

For instance, one may use any triangulation of the domain and then use
Powell-Sabin elements with respect to this triangulation, see [14]. The Powell-
Sabin spline is uniquely determined by given first order Hermite data at the
vertices of the original triangulation (which can be sampled from the given
function), and it is C1 smooth. However, Powell-Sabin elements tend to cre-
ate relatively long and thin triangles, and therefore the visual quality of the
approximation is often not satisfying.

Instead we use a piecewise quadratic function with respect to a criss-cross
partition of the domain. First, the domain Ω is split into n2 boxes with ver-
tices ( i

n ,
j
n )i,j=0,...,n. Second, each box is split into four triangles by adding the

diagonals of the box. The space of piecewise quadratic functions, which are C1

smooth, will be denoted with Sn. It is spanned by translates of the Zwart-Powell
element, which is a special box spline, see [3].

Recently, a quasi-interpolation operator Q for this space has been presented
in [8]. For a given value of n, the operator Q maps any function f ∈ C3(Ω,R)
into a piecewise quadratic approximation Qf ∈ Sn. When applied to the three
components of the surface p, one obtains a piecewise quadratic approximation
p∗ = Qp ∈ S3

n. The computation of Qp requires solely the evaluations of p at
certain points.

As shown in [8], this operator preserves quadratic functions and produces ap-
proximations Qf which possess the optimal approximation order 3 with respect
to the maximum norm in C(Ω,R). In addition, all first and second derivatives
are approximated with order 2 and 1.

More precisely, the maximum difference between p and p∗ and between its
various first and second derivatives, can be bounded by ĈkΔ

k, where k = 3, 2, 1,
respectively. The constants Ĉk depend on p and Δ = 1

n is the size of the boxes.
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4.2 Approximate Dual Implicitization

Once a piecewise quadratic approximation p∗ has been found, we use it to define
an approximate inverse Gauss map.

1. First we split p∗ into its polynomial segments. Each segment is represented
as a quadratic triangular Bézier patch.

2. If one of these patches contains parabolic points, but is not entirely devel-
opable, then the corresponding points in the triangular domain form one or
more (at most three) straight lines. These lines will be called the parabolic
lines, see [2].
In this case we split the domain triangle along the parabolic lines and tri-
angulate the resulting subdomains. After this step, all patches either do not
contain any parabolic points in the interior of their domains, or they are
developable surfaces. Let

{p∗
i , i = 1, . . . , N} (35)

be the set of patches so obtained.
3. We compute the Gauss images Gi ⊂ S

2 of all patches p∗
i .

– For non-developable patches we obtain curved spherical triangles, which
are bounded by spherical conics, i.e., by intersections of quadratic cones
(with their apices at the origin) with the unit sphere.

– If one of the patch boundaries is a parabolic line, then the Gauss im-
age degenerates into a curved spherical biangle. Indeed, the normals of
quadratic patches along their (at most 3) parabolic lines are constant. If
p is regular, then also p∗ is regular, provided that Δ is sufficiently small.
Consequently, at most one of the three patch boundaries is a parabolic
line for each non-developable patch, since parabolic lines on quadratic
patches intersect in singular points.

– The Gauss images of developable patches are arcs of spherical conics.
The collection of all Gauss images Gi covers a certain subset of the unit
sphere. Each point may be covered several times. Each of the Gauss image
Gi can be represented by the equations of (at most) three cones and by an
auxiliary plane,

Gi = {n ∈ S
2 : n�A(1)

i n ≥ 0 ∧ n�A(2)
i n ≥ 0 ∧ n�A(3)

i n ≥ 0 ∧ n�wi ≥ 0},

where the symmetric matrices A(j)
i represent the cones and the vector wi is

the normal vector of the auxiliary plane.
4. Finally we compute the inverse Gauss maps.

– For non-developable surface patches p∗
i we compute the rational support

function Hi, see Section 2.2, and the inverse Gauss map Γi = ∇Hi,
see Eq. (27). Hi and Γi are rational functions of degree 3/2 and 4/4,
respectively.

– The Gauss map Γi of a developable surface patch p∗
i assigns to each

normal in Gi a line segment on the surface patch.
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The union of the support functions defines a multi-valued mapping

H∗ :
N⋃

i=1

Gi → R : n �→
⋃

n∈Gi

{Hi(n)} (36)

which approximates the support function of the original surface p. The surface
defined by H∗(n) = 1, where we extended the domain of each support function
segment to the cone RGi, can be seen as an approximate dual implicitization of the
original surface, cf. (8). (See [6] for information on approximate implicitization.)

The union of the Gauss maps defines a multi-valued mapping

Γ ∗ :
N⋃

i=1

Gi → R
3 : n �→

⋃

n∈Gi

{Γi(n)} (37)

which approximates the inverse Gauss map of the original surface p.

4.3 Isophote Approximation

We compute the isophotes on the approximating surface p∗ for a given light
direction d and different angles φ0. This is done by applying the mapping Γ ∗

to the points of the corresponding circles n�d = cosφ0 on the unit sphere.
The circles are represented as rational quadratic curves and the intersections
with the boundaries of the domains Gi are found by numerically solving quartic
equations.

Several examples are shown in Figures 2–4. It can be seen that the quality
of the isophotes improves if a larger number of quadratic patches (and hence a
smaller box size Δ) is used.

We consider an arbitrary but fixed value of φ0 ∈ [0, π]. The isophotes can be
described with the help of the brightness functions

β(u, v) = d�N(u, v) and β∗(u, v) = d�N∗(u, v) (38)

of p and p∗, where N = (pu ×pv)/||pu × pv|| is the field of unit normals of the
given surface p and N∗, which is similarly defined, is the field of unit normals
of the approximating surface p∗. The level sets

L = β−1(cosφ0) and L∗ = (β∗)−1(cosφ0) (39)

in the parameter domain define the isophotes

p(L) and p∗(L∗), (40)

on the exact and on the approximating surface, respectively.
For any two closed sets A,B ⊆ R

k, let

HD(A,B) = max
x∈A

min
y∈B
||x− y|| (41)

be their one-sided Hausdorff distance. We will use it to analyze the convergence
of the isophotes.
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Fig. 2. The circles on the unit sphere are mapped into the isophotes of a quadratic
approximation of a torus surface

Fig. 3. Isophotes on a vase-shaped surface, which is approximated by 32 (left) and 100
(right) quadratic patches

Theorem 1. Consider a C3 smooth surface patch p whose domain Ω = [0, 1]2

contains neither parameter values of parabolic points of the surface nor points
where the surface normal is parallel to the light direction d. We approximate the
surface using the quasi-interpolant described in Section 4.1 and use the result
to compute the isophote for a given value of cosφ0. There exists a constant C,
which depends on the given surface p, on the light direction d and the angle φ,
such that

max{HD(p(L),p∗(L∗ ∪ ∂Ω)), HD(p∗(L∗),p(L ∪ ∂Ω))} ≤ CΔ2 (42)

where Δ is the box size used for the quasi-interpolants.

Proof. The brightness functions β and β∗ are C2 smooth and merely continuous,
respectively. However, β∗ is piecewise differentiable (within each triangle of the
criss-cross triangulation). Since the first derivatives of p∗ have uniform quadratic
convergence, we may conclude that there exists a constant C1 such that

∀(u, v) ∈ Ω : |(β − β∗)(u, v)| < C1Δ
2. (43)
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Fig. 4. The contour generator of a vase approximated by 100 quadratic patches and
its image under the parallel projection. The contour generator is projected into the
contour of the surface.

Since parabolic points and points with normal d were excluded from Ω, the
length of the gradient∇β (with respect to the surface parameters u, v) is strictly
positive, i.e., there exists a constant C2 such that

∀(u, v) ∈ Ω : ||(∇β)(u, v)|| > C2. (44)

As the first and second derivatives of the quadratic approximation converge to
the derivatives of p, we obtain that

∀(u, v) ∈ Ω0 : ||(∇β∗)(u, v)|| > C2

2
(45)

for sufficiently small values of Δ, where Ω0 is the domain which is obtained by
excluding the lines of the criss-cross triangulation.

In order to prove (42) for the first of the two one-sided Hausdorff distances,
we consider an arbitrary point (u0, v0) in the parameter domain which belongs
to the level set L. The value of the brightness function β∗ at this point satisfies

cosφ0 − C1Δ
2 ≤ β∗(u0, v0) ≤ cosφ0 + C1Δ

2. (46)

Starting at this point, we create a curve c(s) by integrating the normalized
gradient field ∇β∗/||∇β∗||. This curve is then given by an arc length param-
eterization, since it is the integral curve of a field of unit vectors. While it is
not C1 smooth (as the gradient ∇β∗ is not C1), it is C1 except for its intersec-
tions with the lines of the criss-cross triangulation. The restriction (β∗ ◦ c)(s)
of the brightness function β∗ to this curve defines a continuous and monotonic
function of the arc length parameter. Its derivative with respect to s—which is
defined everywhere except for the intersections with the lines in the criss-cross
triangulation—satisfies

(β∗ ◦ c)′(s) =
(∇β∗)(c(s))
||(∇β∗)(c(s))|| · (∇β

∗)(c(s)) = (∇β∗)(c(s)) >
C2

2
. (47)
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If β∗(u0, v0) < cosφ0, then we travel along the curve c(s) into the direction of
the gradient, which increases the value of β∗, until we hit either the level set L∗

or the domain boundary ∂Ω. However, since the derivative satisfies (47) and the
deviation of β∗(u0, v0) from cosφ0 is not larger than C1Δ2, the travel distance
is bounded by

C1Δ
2 2
C2
. (48)

Otherwise, if β∗(u0, v0) > cosφ0, then we travel along the curve c(s) into the
direction of the negative gradient and use a similar argument to bound the travel
distance.

Summing, we find a point (u, v) ∈ L∗ ∪ ∂B such that

||(u, v)− (u0, v0)|| ≤ C1Δ
2 2
C2
. (49)

Now we apply the mappings p and p∗ and use the triangle inequality,

||p∗(u, v)−p(u0, v0)|| ≤ ||p∗(u, v)−p(u, v)||+ ||p(u, v)−p∗(u0, v0)||.
The first term on the right hand side is bounded by C3Δ

3, due to the third
order of approximation. The second term is bounded by 2C4(C1/C2)Δ2, where
C4 is a global bound on the norm of the Jacobian of p. This proves the result for
the first Hausdorff distance in (42). The second Hausdorff distance can be dealt
with similarly, but this time using the smooth integral curves of the vector field
∇β/||∇β||. �

5 Conclusion

We discussed the support functions of several special classes of free-form surfaces.
Based on observations concerning quadratic polynomial surfaces, which possess
rational support functions of degree 3/2, and on a quasi-interpolation scheme for
bivariate quadratic splines, we formulated an algorithm for approximate isophote
computation and analyzed its convergence.

Instead of quadratic polynomial surfaces, one might use other classes of ap-
proximating surfaces which still admit closed-form representations of the inverse
Gauss maps (e.g., using square roots). This could give approximation schemes
for isophotes with an even higher rate of convergence, which may be a possible
topic of further research.

Another possible application for our results is mesh contour smoothing: see [27].
This motivates the further investigation of surfaces with simple contours, such as
quadratic polynomial surfaces.
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Abstract. Isogeometric Analysis uses NURBS representations of the
domain for performing numerical simulations. The first part of this paper
presents a variational framework for generating NURBS parameteriza-
tions of swept volumes. The class of these volumes covers a number of
interesting free-form shapes, such as blades of turbines and propellers,
ship hulls or wings of airplanes. The second part of the paper reports
the results of isogeometric analysis which were obtained with the help of
the generated NURBS volume parameterizations. In particular we dis-
cuss the influence of the chosen parameterization and the incorporation
of boundary conditions.

Keywords: NURBS volume parameterization, Isogeometric Analysis,
swept volume.

1 Introduction

The concept of isogeometric analysis, which was introduced by Hughes et al. [1],
provides an opportunity for bridging the gap between Computer Aided Design
(CAD) and numerical simulation based on the finite element method (FEM). Its
potential has been demonstrated in a substantial number of publications, which
also discuss related issues such as efficient techniques for numerical integration
and the incorporation of boundary conditions [2,3,4,5,6,7,8,9,10,11,12].

The European project EXCITING [13] aims at applying Isogeometric Anal-
ysis to free-form objects arising in real-world applications, in particular in the
transportation industry. In this paper we report on our first experiences with
this approach. In particular we will focus on the following problem: Given a
three-dimensional free-form object, find a parameterization by (one or several)
NURBS volumes.

NURBS volumes have been discussed in the classical literature in Computer
Aided Geometric design, see [14] and the references cited therein. The existing
literature on volume parameterizations by NURBS concentrates mostly on ap-
plications to object modeling via free-form deformations. In this context, the
given object (often represented as a triangular mesh) is embedded into a sim-
ple NURBS volume, which represents (e.g.) the bounding box of the object. By
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modifying the control points and weights of the NURBS volume one can then
edit the shape of the embedded object. This or similar editing capabilities are
available in many modeling systems.

In order to obtain NURBS volume parameterizations which are suitable for
isogeometric analysis, we have to solve a different problem. The boundary sur-
faces of the object are given as (trimmed or untrimmed) NURBS surfaces. A
volume parameterization which respects the given boundary surfaces has to be
generated. While it is a very challenging open problem to solve this task for gen-
eral CAD objects, it is possible to obtain reasonable results for special classes
of free-form objects. Nevertheless, these classes already cover a number of inter-
esting applications.

The first part of the paper presents a method for generating NURBS param-
eterizations of swept volumes, which are obtained by sweeping a closed curve
through space. These volumes are also known as generalized cylinders, and there
exists an extensive literature discussing them, e.g. [15,16,17]. The second part
reports results of isogeometric analysis which we obtained with the help of the
generated NURBS volume parameterizations.

2 Swept Volume Parameterization

We will describe a variational framework for generating the control points of a
NURBS volume from given boundary conditions and one or more guiding curves.

2.1 NURBS Representation of Swept Volumes

A non-uniform rational B-spline volume (NURBS volume) is defined by the
parametric representation

F(r, s, t) =
∑

i∈I

∑

j∈J

∑

k∈K
Rijk(r, s, t)wijkdijk, (r, s, t) ∈ [0, 1]3, (1)

where the domain is the unit cube in R
3. More generally, the domain can be

chosen as any axis-aligned box in R
3, but for the purposes of the present paper

it suffices to consider the unit cube.
The blending functions

Rijk(r, s, t) =
Ni,R(r)Nj,S(s)Nk,T (t)∑

i′∈I

∑

j′∈J

∑

k′∈K
wi′j′k′Ni′,R(r)Nj′,S(s)Nk′,T (t)

are called the rational spline basis functions associated with the weights wijk .
The functions Ni,R(r), Nj,S(s) and Nk,T (t) are B-splines of certain degrees with
respect to three given knot vectors R, S and T with degree–fold boundary knots
0 and 1. The index sets I,J ,K ⊂ Z of the control points are determined by the
knot sequences and degrees of the B-splines.

The vector–valued coefficients dijk ∈ R
3 are called de Boor points or control

points. The three-dimensional grid determined by them is called the de Boor net
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(a) (b) (c)

Fig. 1. Parameterization of three simple swept volumes. The cylinders (a) and (b) are
based on different representations of the circular patch.

or control net. In order to simplify the notation, we denote the vector of control
points by

d = (dijk)i∈I,j∈J ,k∈K. (2)

In addition, each control point has an associated scalar value wijk, which is called
its weight. In the remainder of this paper we will assume that these weights are
given; they are not subject to the optimization process described below. More
precisely, we assume that they are determined by the given planar shape which
is moved through space.

See [14,18] for more information on rational spline techniques.
The parameterization of a general three-dimensional volume by a collection

of tensor-product spline volumes (“patches”) is a non-trivial problem, and one
cannot expect to find a general method that can deal successfully with all cases.
In this paper we concentrate on the special class of swept volumes.

These volumes are obtained by moving a two-dimensional shape through
space, where the geometry of the moving shape may be subject to an evolution
during the sweep. The motion of the shape is guided by one or more guiding
curves. This class of volumes includes a large number of objects with significant
industrial applications, ranging from simple shapes (cylinders, spherical shells)
to more complicated ones (turbine blades, aircraft wings, ship hulls). Three ex-
amples of simple shapes are presented in Fig. 1.

In the following we assume that t, which will be called the sweep parameter,
is associated with the motion of the two-dimensional shape. The remaining two
parameters r and s parameterize the two-dimensional shape as a surface patch.
More precisely, the surface

F(r, s, t′), (r, s) ∈ [0, 1]2, (3)

which is obtained by considering a constant value of t′ ∈ [0, 1], will be called
(one instance of) the moving surface. On the other hand, the curve

F(r′, s′, t), t ∈ [0, 1], (4)
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(a) (b)

Fig. 2. Parameterization of the two-dimensional shape as a tensor-product patch with
three singular vertices (a). Two guiding curves (blue), intermediate moving surfaces
and a segment of the final parameterization (b).

which is obtained by considering constant values of (r′, s′) ∈ [0, 1]2, will be
considered as the trajectory of a point.

The variational framework will be illustrated by an example of a blade-like
NURBS volume, see Fig. 2. The underlying parameterization of the planar shape
as a tensor-product patch with three singular vertices is shown in Fig. 2a.

2.2 Boundary Conditions

Due to the multiplicity of the boundary knots, the two boundary nets

(di j minK)i∈I,j∈J and (di j maxK)i∈I,j∈J (5)

of the grid of control points determine the two boundary surfaces

F(r, s, 0) and F(r, s, 1), (r, s) ∈ [0, 1]2, (6)

of the NURBS volume. Consequently, if these two boundary surfaces are specified
by the user, then the corresponding subset of the set of control points d can be
eliminated from the set of unknowns; it is already determined by the boundary
conditions.

In addition, the next two nets

(di j(minK+1))i∈I,j∈J and (di j(maxK−1))i∈I,j∈J (7)

of control points determine the derivatives with respect to the sweep parameter t
along the two boundary faces. Sometimes it is necessary to specify the direction
of these derivatives, e.g., for composing two B-spline volumes with C1 continuity.
If a vector specifying the direction of these derivatives at t = 0 is given, then
the second family of control points dij(minK+1) is obtained by moving a copy of
the boundary control points dij minK along this vector. A similar construction
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can be applied at the other boundary, where t = 1. The distance between the
first and second family of control points can either be prescribed or can also be
subject to the optimization procedure described below.

2.3 Guiding Curves and Reference Shape

Guiding curves. In addition to the boundary conditions, we assume that n
guiding curves

c� : [0, 1]→ R
3, t �→ c�(t), � = 1, . . . , n, (8)

are given, which are to specify the motion of the moving two-dimensional shape
through space. The motion will be governed by the guiding curves and by several
shape constraints.

The moving surfaces F(r, s, t′), which are obtained for constant values t′ ∈
[0, 1] and (r, s) ∈ [0, 1]2 are to follow the motion of the points c�(t′) of the
guiding curves. For each guiding curve c�, we choose parameter values (r̃�, s̃�) of
an associated point in the two-dimensional shape. In order to define the NURBS
volume, we minimize the distance

fA(d) =
n∑

�=1

∫ 1

0

||F(r̃�, s̃�, t)− c�(t)||2dt. (9)

between the guiding curves and the associated points. The right-hand side in (9)
will be called the approximation term of the objective function.

Reference shape. In principle one can use any point (r̃�, s̃�) in the parameter
domain as parameters of the associated points. However, it is more appropriate to
select certain special points, e.g. the center of gravity or points on the boundary
of the moving surface.

More precisely, we consider a planar reference shape

R : [0, 1]2 → R
2 (10)

of the moving surface, see Fig. 3. The reference shape is a parameterization of
the plane which represents the expected average shape of the moving surface.
The given guiding curves c� are now associated with certain points R(r̃�, s̃�) of
the reference position. These points will be called the anchors of the guiding
curves.

For instance, in the case of the blade-like NURBS volume (Fig. 2), we use
two guiding curves and associate them with the two extremal points of the two-
dimensional reference shape.

Influence functions. For each guiding curve c� we define an influence function

α� : [0, 1]2 → [0, 1] (11)
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R(r̃1, s̃1) R(r̃2, s̃2) = R(r̂2, ŝ2)
R(r̂3, ŝ3)

R(r̂1, ŝ1)

Fig. 3. Reference shape for two guiding curves. The points R(r̃i, s̃i) serve as anchors
of the guiding curves. The points R(r̂i, ŝi) will be used later to define the first shape
term.

such that the weight α�(r, s) controls the influence of the �th guiding curve to
the trajectory F(r, s, t), t ∈ [0, 1] and

n∑

�=1

α�(r, s) ≡ 1. (12)

More precisely, the point F(r, s, t) is associated with the weighted average

ĉ(r, s, t) =
n∑

�=1

α�(r, s) c�(t) (13)

of guiding curves. The choice of the influence functions depends on the number
n of guiding curves, as follows.

– If n = 1, the cross section sweeps along a single guiding curve c1(t), hence
we choose α1(r, s) ≡ 1.

– If n = 2, then the weights α1(r, s) and α2(r, s) are computed by orthogo-
nal projection of R(r, s) onto the line segment connecting the points with
parameters (r̃1, s̃1) and (r̃2, s̃2), see Fig. 3. The ratio of the projected point
with respect to the line segment determines the values of α1(r, s), α2(r, s).
The points

ĉ(r, s, t) = α1(r, s)c1(t) + α2(r, s)c2(t) (14)

form the ruled surface which is spanned by the two curves c1(t) and c2(t),
see Fig. 2(b).

– If n = 3, then the weights α�(r, s) are chosen as the barycentric coordinates
of the point R(r, s) with respect to the triangle formed by the points with
parameters (r̃�, s̃�), � = 1, 2, 3.

– If n > 3, then one can use one of the various generalizations of barycentric
coordinates to closed planar polygons with more than three vertices, see
e.g. [19].
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(a) (b)

Fig. 4. Parameterization of a blade. In (a), the orthogonality is averaged between the
two guiding curves. As the guiding curves are not parallel, the moving surfaces are non-
planar. In (b) the cross sections are forced to be orthogonal to an averaged guiding
curve (α1 = α2 = 0.5), hence the planarity is better preserved.

2.4 Controlling the Shape

Orthogonality condition. In order to ensure a constant shape of the moving
surface, it should travel in the normal plane of the n guiding curves (c�)n

�=1. If
n = 1, then all points of the moving surface are expected to travel in the normal
plane of the single guiding curve. However, more than one guiding curve may be
given, and this condition is not well defined if n > 1 . We resolve this ambiguity
by using the weighted average of the guiding curves.

More precisely, the point F(r, s, t) is expected to travel in the normal plane
of the weighted average ĉ(r, s, t) of guiding curves, see Eq. (13). This is achieved
by using the orthogonality term

fO(d) =
∫ ∫ ∫

[0,1]3

(
(F(r, s, t)− ĉ(r, s, t)) · ∂tĉ(r, s, t)

||∂tĉ(r, s, t)||
)2

dr ds dt (15)

of the objective function, where ∂t indicates differentiation with respect to the
sweep parameter t. By minimizing this term, the point F(r, s, t) of the moving
surface is restricted to the normal plane of the weighted average (14) of guiding
curves.

Note that minimizing (15) produces a volume parameterization where the
moving surfaces are as orthogonal as possible to all guiding curves. As their
associated tangent directions do not coincide in general, the moving surfaces
are forced to deviate from planarity, see 4(a). However, if one wishes to achieve
planar cross sections, one may choose the coefficients α�(r, s) as constants. The
weighted average (13) then defines a single space curve. The moving surfaces
then remain approximately in the normal plane of this curve, see Fig. 4(b).
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Rotation minimization. The previous two conditions do not prevent the mov-
ing surfaces from rotating around the tangent vectors of the guiding curves. In
order to avoid this undesirable twist, we propose to use an additional term which
forces the rotation of the parameterization of the sweeping surface to be minimal.

If no rotation around the tangent is present, then the trajectory of a point
F(r, s, t) intersects all moving surfaces orthogonally. Consequently, the rotation
vanishes if

||∂tF(r, s, t)× ∂tĉ(r, s, t)
||∂tĉ(r, s, t)|| ||

2 = 0. (16)

In order to minimize the rotation along all guiding curves we integrate again
over the parameter domain and obtain the rotation minimizing term

fRM(d) =
∫ ∫ ∫

[0,1]3

||∂tF(r, s, t)× ∂tĉ(r, s, t)
||∂tĉ(r, s, t)|| ||

2dr ds dt. (17)

See [20] for more information on rotation-minimizing frames of space curves.

Shape control. The terms which we introduced so far try to keep the shape
of the moving surface constant during the motion along the guiding curves.
However, this is not always appropriate, e.g., if the distance between the guiding
curves changes during the motion. In this situation, it is desirable to have a tool
for controlling the change of the shape during the motion.

We present three methods that allow us to influence the shape (e.g. the ratio
of certain lengths) of the moving surface.

1. Ratio of width and height. Consider again the reference shape (see (10) and
Figure 3), where we choose three points R(r̂j , ŝj), j = 1, 2, 3, such that

(R(r̂2, ŝ2)−R(r̂1, ŝ1))×N = μ (R(r̂3, ŝ3)−R(r̂1, ŝ1)) , (18)

where N is the unit normal vector of the plane containing the reference
shape which points into the direction of the sweep and μ is a real number.
Consequently, the three points form a right triangle and the ratio of the
lengths of the two legs is equal to μ. We now use the corresponding points
of the moving surface in order to define the first shape term

f
(1)
S (d) =

∫ 1

0

‖(F(r̂2, ŝ2, t)− F(r̂1, ŝ1, t))× ∂tĉ(r̂1, ŝ1, t)
‖∂tĉ(r̂1, ŝ1, t)‖

−μ(F(r̂3, ŝ3, t)− F(r̂1, ŝ1, t))‖2dt.
(19)

The normal vector N has been replaced with the unit tangent vector of the
guiding curve ĉ(r̂1, ŝ1, t), which is associated with the apex of the right angle,
cf. (13).

2. The ratio of three collinear points can be controlled in a similar way. We
consider three collinear points R(r̂j , ŝj), j = 1, 2, 3 of the reference shape,
which satisfy

R(r̂3, ŝ3) = λR(r̂1, ŝ1) + (1− λ)R(r̂2, ŝ2). (20)
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c1(t)

c2(t)

F(r̂1, ŝ1, t)

F(r̂2, ŝ2, t)

q(t)

Fig. 5. Cross section moving along two guiding curves and associated ruled surface

These three points can be used to define the second shape term

f
(2)
S (d) =

∫ 1

0

‖λF(r̂1, ŝ1, t) + (1− λ)F(r̂2, ŝ2, t)− F(r̂3, ŝ3, t)‖2dt. (21)

3. Height control. If the number of guiding curves satisfies n ≥ 2, then the height
of the moving surface can be controlled directly. We consider two points
R(r̂1, ŝ1) and R(r̂2, ŝ2) of the reference shape such that the line segment
connecting them intersects the line connecting the two anchors R(r̃1, s̃1)
and R(r̃2, s̃2) orthogonally at a point

(1− β)R(r̃1, s̃1) + βR(r̃2.s̃2), (22)

Let N(t) be the unit normal vector of the ruled surface generated by the two
guiding curves c1 and c2 at the point

q(t) = (1− β)c1(t) + βc2(t), (23)

see Fig. 5, and let ν be the desired distance of the two points F(r̂1, ŝ1, t) and
F(r̂2, ŝ2, t). The distance can be controlled using the third shape term

f
(3)
S (d) =

∫ 1

0

((F(r̂1, ŝ1, t)− F(r̂2, ŝ2, t)) ·N(t)− ν)2dt. (24)

The length ν can be chosen as a constant, or it can be chosen according to
the distance between the two points which are associated with the guiding
curves,

ν(t) =
‖(R(r̂1, ŝ1)−R(r̂2, ŝ2)‖
‖(R(r̃1, s̃1)−R(r̃2, s̃2)‖‖(F(r̃1, s̃1, t)− F(r̃2, s̃2, t)‖ (25)

Similarly, in the case of only one guiding curve, one may use t-dependent
values of μ and λ, in order to change the ratio of the lengths during the
sweep.

Regularity. In order to obtain a regular B-spline volume, we introduce the
regularity term

fR(d) =
∑

i∈I

∑

j∈J

∑

{k,k+1}⊂K
‖dijk − dijk+1‖2. (26)
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Alternatively one may consider

f ′
R(d) =

∫ ∫ ∫

[0,1]3

‖∂tF(r, s, t)‖2dr ds dt. (27)

These two terms are related to the lengths of the trajectories, and their minimiza-
tion leads to shorter trajectories. This may help to avoid unwanted oscillations.

2.5 Variational Design

We define the objective function as a linear combination of the terms

f(d) = ωAfA(d) + ωOfO(d) + ωRMfRM (d) + ω
(i)
S f

(i)
S (d) + ωRfR(d) (28)

with non-negative weights ω∗. The index i specifies the number of the shape
term which is used, where the third term can be used only if n ≥ 2. The weights
can be used to control the influence of the individual terms.

In order to simplify the computation, we use numerical integration in order to
evaluate the integrals in the objective function and their derivatives with respect
to the control points. As a necessary condition for a minimum of (28), the first
derivatives of f with respect to all unknowns have to vanish. Since the objective
function is a quadratic function of the unknowns d, this yields a linear system
of equations for the components of the control points dijk. Consequently, the
solution

d∗ = argmin
d
f (29)

of the parameterization problem can be obtained in one step by solving a linear
system of equations for the vector of unknowns.

2.6 Examples

We conclude this section of the paper by presenting two examples.

Blade (continued). We continue the blade example and use it to demonstrate
the influence of the third shape term. Two parameterizations of a blade-shaped
volume are shown in Fig. 6. In this example, we specify only one boundary
face of the sweep volume as a boundary condition (the one in the back of the
image), and we use two guiding curves. In Fig. 6(a), the ratio of the height to
the width of the cross section is increased during the sweep. In Fig. 6(b), the
ratio is decreased to zero.

In the previous example, the distance between the two guiding curves was
roughly the same for all parameter values t. Now we consider another example,
where the distance decreases from 3 to 1.5, i.e. it shrinks by a factor of two.
Figure 7(a) shows the behaviour of the cross section without any scaling. For
the parameter value t = 1, the height is still 1, which corresponds to the original
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(a) (b)

Fig. 6. Controlling the shape of the moving surface during the sweep. The ratio of
height and width is doubled in (a) and decreased in (b).

(a) (b)

Fig. 7. In (a), the height of the moving surface has not been adapted to the distance
of the guiding curves, which causes some distortion. This distortion can be avoided by
using the third shape term, as shown in (b).

height. In contrast, in Fig. 7(b) the height decreases and the shape of the moving
surface is preserved better.

Table support structure. As another example, which is motivated by a figure
in [20], we consider the space curve c(t) = (r cos(t), r sin(t), cos(αt)), t ∈ [0, 2π]
which we use as the guiding curve for a swept volume. Figure 8 shows this curve.
The parameter α specifies the number of oscillations of the curve. In our case
we choose α = 4.

Starting from this curve we want to parameterize the volume that is covered
when moving a quadrilateral along the guiding curve c(t). The parameteriza-
tion F(r, s, t) of the volume shall fulfill the conditions described in the previous
section.

Note that the guiding curve c(t) possesses certain symmetries. Hence we pa-
rameterize only a segment of the volume between two extremal points and use
the symmetries to obtain the entire volume. In order to ensure that the volumes
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Fig. 8. Support structure of a table (right) and its guiding curve (left)

can be pieced together with C1 continuity, we prescribe boundary conditions as
explained in Section 2.2.

The moving surfaces are parameterized as bilinear patches, while the degree
in the sweep direction equals two. After piecing together the rotated segments
of the volume we obtain the support structure of the table which is shown in
Fig. 8.

3 Isogeometric Analysis for Swept Volumes

In this section, we outline the main features of Isogeometric Analysis, compare
it with the classical Finite Element Method (FEM), and then focus on three-
dimensional geometries generated by the swept volume technique.

3.1 Weak Form and Geometry Function

Both FEM and Isogeometric Analysis have the same theoretical foundation,
namely the weak form of a partial differential equation. For ease of presentation,
we consider Poisson’s equation

−Δu = f in Ω (30)

as an illustrative model problem. Here, Ω ⊂ R
3 is a Lipschitz domain with

boundary ∂Ω, f : Ω → R is a given source term, and the unknown function
u : Ω → R shall satisfy the Dirichlet boundary condition

u = u0 on ∂Ω. (31)

The discussion of Neumann boundary conditions is postponed to the end of this
section.

The weak form of the PDE (30) is obtained by multiplication with test func-
tions v and integration over Ω. More specifically, one defines the function space

V := {v ∈ H1(Ω), v = 0 on ∂Ω}, (32)
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which consists of all functions v ∈ L2(Ω) that possess weak and square-integrable
first derivatives and that vanish on the boundary. For functions u, v ∈ H1(Ω),
the bilinear form

a(u, v) :=
∫

Ω

∇u · ∇v dx (33)

is well-defined, and even more, it is symmetric and coercive. Setting

〈l, v〉 :=
∫

Ω

fv dx (34)

as linear form for the integration of the right hand side, the solution u ∈ H1(Ω)
is then characterized by the weak form

a(u, v) = 〈l, v〉 for all v ∈ V (35)

and the boundary condition u = u0 (in the sense of traces).
As a prelude to the idea of Isogeometric Analysis, suppose now that the phys-

ical domain Ω is parameterized by a global geometry function

F : Ω0 → Ω, F(ξ) = x =

⎛

⎝
x1

x2

x3

⎞

⎠ . (36)

Below we will apply NURBS and the swept volume technique to define F, but
for the moment the geometry function is simply an invertible C1-mapping from
the parameter domain Ω0 ⊂ R

3 to the physical domain. Integrals over Ω can be
transformed into integrals over Ω0 by means of the well-known integration rule

∫

Ω

w(x) dx =
∫

Ω0

w(F(ξ)) |det DF(ξ)| dξ (37)

with 3 × 3 Jacobian matrix DF(ξ) = (∂Fi/∂ξj)i,j=1,2,3. For the differentiation,
the chain rule applied to u(x) = u(F(ξ)) yields, using a row vector notation for
the gradient ∇u,

∇x u(x) = ∇ξ u(ξ) ·DF(ξ)−1. (38)

Summarizing, the integrals in the weak form (35) satisfy the transformation rules
∫

Ω

∇u · ∇v dx =
∫

Ω0

(∇uDF(ξ)−1) · (∇vDF(ξ)−1) |det DF(ξ)| dξ (39)

and ∫

Ω

fv dx =
∫

Ω0

(fv)(F(ξ)) |det DF(ξ)| dξ . (40)

Obviously, the geometry function, which is in general nonlinear, leads to more
complicated expressions in the integrals. We will come back to this point below.
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3.2 Galerkin Projection

The Galerkin projection replaces the infinite dimensional space V by a finite
dimensional subspace Vh ⊂ V , with the subscript h indicating the relation to a
spatial grid. Let φ1, . . . , φn be a basis of Vh, then the numerical approximation
uh is constructed as linear combination

uh = φ0 +
n∑

i=1

qiφi (41)

with unknown real coefficients qi and a given function φ0 that satisfies φ0 = u0

on the boundary ∂Ω. Below we will address the issue of boundary conditions in
more detail. For the moment, however, we simplify the discussion by assuming
u0 = 0 = φ0.

Upon inserting uh into the weak form (35) and testing with v = φi for i =
1, . . . , n, one obtains the linear system

Aq = b (42)

with n × n stiffness matrix A = (a(φi, φj))i,j=1,...,n and right hand side vector
b = (〈l, φi〉)i=1,...,n. Since the matrix A inherits the properties of the bilinear
form a, it is straightforward to show that A is symmetric positive definite, and
thus the numerical solution q or uh, respectively, is well-defined.

In the classical FEM, the subspace Vh consists of piecewise polynomials with
global C0-continuity. It is not appropriate to discuss the FEM in full detail here,
but in our context, three features are of particular importance: the concept of
nodal bases, local shape functions, and the isoparametric approach, cf. [21].

A finite element mesh in three dimensions consists of grid points or nodes zj

and tetrahedral or hexahedral elements Tk such that the physical domain Ω is
approximated by

Ωh =
⋃

k

Tk. (43)

A nodal basis (φ1, . . . , φn) is characterized by the favorable property φi(zj) = δij ,
which means that

uh(zj) =
n∑

i=1

qiφi(zj) = qj . (44)

In other words, the coefficient qj stands for the numerical solution in zj and thus
carries physical significance. This concept of a nodal basis can be generalized to
the partition of unity, which is the property

n∑

i=1

φi = 1. (45)

Shape functions are a very useful technique to unify the treatment of the poly-
nomials in each finite element Tk by the transformation to a reference element
T0. Let φj be a basis function with support S ⊃ Tk. Restricted to Tk, φj can
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be written as a polynomial pkj , and in case of a nodal basis this polynomial is
one at a specific node, say zj , and zero at all other nodes of Tk. Instead of using
pkj (x) for x ∈ Tk, the shape function

Nl(η) = pkj (x(η)) for η ∈ T0 (46)

allows the evaluation with respect to the reference element T0. As an example,
consider a tetrahedron

T0 =

{
η ∈ R

3 : 0 ≤ ηi ≤ 1, i = 1, 2, 3, and
3∑

i=1

ηi ≤ 1

}
(47)

and linear shape functions

N1(η) = η1, N2(η) = η2, N3(η) = η3, N4(η) = 1− η1 − η2 − η3. (48)

Correspondingly, the integrations for the assembly of the stiffness matrix and
the load vector are carried out by summation over all involved elements and a
transformation G : T0 → Tk from the reference element,

Aij = a(φi, φj) =
∑

k

∫

Tk

∇φi · ∇φj dx (49)

and
∫

Tk

∇φi · ∇φj dx =
∫

T0

(∇Nm DG(η)−1) · (∇Nl DG(η)−1) |det DG(η)| dη.
(50)

Though one observes some similarities with the transformation rule (39), it
should be stressed that there are two major differences: The integral (50) refers
to a single element with simple geometry, and the mapping G is either linear or,
in case of the isoparametric approach, polynomial. Due to the simple structure of
the shape functions and the polygonal shape of the elements, the integration of
(50) is straightforward and can be implemented in terms of standard quadrature
rules or sometimes even via closed form integration.

For the approximation of curved boundaries, the isoparametric approach ap-
plies the shape functions both for defining the basis functions and for describing
the physical domain. Thus, the mapping G : T0 → Tk from above is written as

x = G(η) =
L∑

l=1

Nl(η)zkl
, (51)

where zkl
stands for the nodes of the element Tk. In each element, one has

therefore the local representation

x =
L∑

l=1

Nl(η)zkl
, uh(x) =

L∑

l=1

Nl(η)qkl
=

L∑

l=1

Nl(G−1(x))qkl
. (52)
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In practice, isoparametric elements employ quadratic or at most cubic Lagrange-
type shape functions, and only edges or faces of elements along a curved bound-
ary are treated this way. In other words, interior element boundaries remain flat
faces. Contributions from isoparametric elements in the stiffness matrix are also
computed via (50).

While isoparametric finite elements approximate the boundary by a C0-
interpolant, isogeometric analysis exactly represents the boundary by using a
geometry description which is directly related to the CAD representation. The
basic idea is to formulate the Galerkin projection with respect to basis functions
defined on the parameter domain Ω0 and to use the geometry function F from
(36) as a global push-forward operator to map these functions to the physical
domain Ω. Let (ψ1, . . . , ψn) be a set of linear independent functions on Ω0. By
setting φi := ψi ◦ F−1, each function is pushed forward to the physical domain
Ω. In other words,

Vh = span {ψi ◦ F−1}i=1,...,n (53)

is the finite dimensional subspace for the projection.
Two features are particularly important for an isogeometric method:

(i) The geometry function F is typically inherited from the CAD description.
In this paper, we concentrate on a single patch parameterization in terms
of trivariate NURBS, but other options such as volume meshes generated
from trimmed surfaces or from T-Spline surfaces are currently under inves-
tigation [8].

(ii) The second ingredient is the choice of the functions ψ1, . . . , ψn for the Galer-
kin projection. Hughes et. al [1] select those NURBS that describe the ge-
ometry, and mesh refinement steps or degree elevation enlarge the subspace
while still preserving the original geometry. This is in analogy to the isopara-
metric approach, but on a global level. However, as long as the geometry
function is exact and used as in the transformation rule (39), other choices
for ψ1, . . . , ψn will also preserve the geometry. For instance, one could think
of B-Splines instead of NURBS and thus avoid the rational terms.

For swept volumes, the geometry function is of the form

F(ξ) = F(r, s, t) =
∑

i∈I

∑

j∈J

∑

k∈K
Rijk(r, s, t)dijk (54)

with trivariate NURBS Rijk defined on the patch Ω0 = [0, 1]3 and control points
dijk ∈ R

3. Like in [1], we use the same functions Rijk as basis functions and
thus have

Vh ⊂ span {Rijk ◦ F−1}i∈I,j∈J ,k∈K . (55)

Note that the boundary condition u = u0 has also to be taken into account, and
for this reason we write Vh as a subset of the span. Accordingly, the numerical
solution is given by
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uh(x) =
∑

i∈I

∑

j∈J

∑

k∈K
Rijk(F−1(x)) qijk (56)

where some of the coefficients qijk are determined from the boundary condition.
A comparison with isoparametric finite elements leads to the following obser-

vations:

(i) The knot vectors partition the patch into a computational mesh, and adopt-
ing the finite element terminology, we can call three-dimensional knot spans
also elements (in the parameter domain). However, the support of the basis
functions is in general larger than in the FEM case.

(ii) The NURBS do not form a nodal basis, and thus single coefficients qijk do
not represent approximations in specific grid points. On the other hand, the
partition of unity property (45) is satisfied.

(iii) Depending on the chosen degree and the knot multiplicity in the NURBS
data, global smoothness of class C1 or higher is easily achieved in Isogeo-
metric Analysis.

Note also that both the FEM and Isogeometric Analysis coincide for an impor-
tant special case. For degree p = 1 in all three coordinate directions, the geometry
function (54) generates a regular assembly of hexahedral finite elements, and the
corresponding Rijk reduce to trilinear basis functions in each element. Thus, the
wide-spread trilinear hexahedral finite element is part of Isogeometric Analysis.

While the idea of Isogeometric Analysis is impressive, its actual implementa-
tion requires additional effort in order to come up with powerful algorithms. For
this reason, we address some of the major issues in the following.

3.3 Boundary Conditions, Quadrature, Refinement

In standard FEM, the treatment of Dirichlet boundary conditions is greatly
simplified by the nodal basis property. Recall Poisson’s equation (30) and the
boundary condition u = u0 on ∂Ω. For inhomogeneous u0 �= 0, the numerical
solution is split into uh = φ0 +

∑n
i=1 qiφi, and the function φ0 has to be chosen

such that φ0 = u0 on ∂Ω. Now let zj for j = 1, . . . ,m denote all nodes on
the boundary and χj the corresponding basis function with χi(zj) = δij . By
construction,

φ0 :=
m∑

j=1

u0(zj)χj (57)

interpolates u0 in the nodes and is thus an appropriate choice for incorporating
the boundary condition.

Based on the interpolation (57), the next steps are straightforward. One in-
serts uh in the weak form and moves the term involving φ0 to the right hand
side. While the definition of the stiffness matrix in (42) remains the same as for
zero boundary conditions, the load vector is modified to

b = (〈l, φi〉 − a(φ0, φi))i=1,...,n. (58)
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This direct incorporation of boundary conditions is usually performed at the lin-
ear algebra level, i.e., the stiffness matrix is first generated including the nodes on
the boundary as additional degrees of freedom, and then the matrix is condensed
and the contributions from φ0 are moved to the right hand side.

Two alternatives are also common in FEM codes. In both cases, the basis for
generating the stiffness matrix includes the nodes on the boundary, i.e.,

Ṽh = span {φ1, . . . , φn, χ1, . . . , χm} (59)

is used in the Galerkin projection, which corresponds to

uh =
m∑

j=1

wjχj +
n∑

i=1

qiφi. (60)

The interpolation conditions wj = u0(zj) are then explicitly enforced. The first
alternative simply replaces the rows and columns that belong to the wj coef-
ficients by ones on the diagonal and zeros elsewhere. The corresponding right
hand side entries are set to u0(zj). This leads to an enlarged stiffness matrix of
dimension (n+m)× (n+m).

The second alternative is related to the concept of weak boundary conditions.
The equations wj = u0(zj) can be viewed as m linear constraints for the node
vector

q̃ := (q1, . . . , qn, w1, . . . , wm)�. (61)

In matrix-vector notation, this is equivalent to

Bq̃ = c (62)

with an m×(m+n) Boolean matrix B and a right hand side vector c determined
by cj := u0(zj), j = 1, . . . ,m. Overall, the constraint (62) combined with the
discretized weak form results in the linear system

(
Ã B�

B 0

)(
q̃
λ

)
=
(

b
c

)
, (63)

which has a saddle point structure. The additional unknowns λ ∈ R
m are discrete

Lagrange multipliers. Note that the (n + m) × (n + m) matrix Ã is generated
from the Galerkin projection with enlarged space Ṽh.

In total, this second alternative yields thus a system of n+2m linear equations,
which seems rather expensive. However, this approach is the most flexible one
since it can be extended to a weak formulation

∫

∂Ω

(u− u0)μds = 0 for all μ ∈Mh (64)

of the boundary conditions. Such a weak formulation is of great advantage in
case of coupling conditions for multi-physics and multi-domain problems, and
it is also closely related to domain-decomposition methods. Compare also [4]
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on the advantages of weak boundary conditions in fluid mechanics applications.
However, it should be stressed that the choice of the space Mh for the test
functions μ in (64) requires some care, cf. the inf-sup condition in mixed and
hybrid finite element methods.

If we consider the above techniques in combination with Isogeometric Analysis
and the swept volume meshes, it turns out that the lack of a nodal basis is a
drawback and renders the incorporation of boundary conditions more involved.
More specifically, zero Dirichlet boundary conditions are the easiest case and
simply require the determination of those basis functions Rijk that do not vanish
on the boundary. The corresponding solution coefficients qijk are then set to zero,
which can be accomplished by the first alternative above. Non-zero boundary
conditions u = u0, however, demand additional measures and will be subject of
future work. One option is to derive an analogue to interpolation (57) in terms
of the basis functions. Another one is to use quasi-interpolation operators that
project the boundary condition into the spline space. Alternatively, the weak
form (64) can be used to discretize the boundary in a more general way.

If we have to deal with mixed Dirichlet and Neumann boundary conditions,
i.e.,

u = u0 on ΓD,
∂u

∂n
= h on ΓN (65)

with outward normal vector n and ∂Ω = ΓD ∪ ΓN , the situation is basically
the same. One first determines the knot spans in the patch Ω0 that correspond
to ΓD and ΓN and then identifies the non-vanishing NURBS that are involved.
The Neumann boundary condition yields an additional surface integral in the
weak form (35), which can be subsumed under the linear form on the right hand
side via

〈l, v〉 :=
∫

Ω

fv dx +
∫

ΓN

hv ds. (66)

Accordingly, the load vector b is computed by projection of (66).
As discussed in the very beginning of this section, the evaluation of integrals

over Ω can be replaced by integrals over the parameter domain Ω0 via the
transformation rules (39) and (40). More specifically, consider the right hand
side vector b, whose entries consist of integrals

bl =
∫

Ω

fφl dx =
∫

Ω0

f(F(ξ))φl(F(ξ)) |det DF(ξ)| dξ . (67)

Now assume that the parameter domain is discretized into a mesh

Ω0 =
⋃

κ

Bκ (68)

with hexahedral elements Bκ that are defined by the knot spans in the three
coordinate directions. Then, as in the finite element approach (49), the integral
(67) is split into

bi =
∑

κ

∫

Bκ

f(F(ξ))ψl(ξ) |det DF(ξ)| dξ . (69)
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In the case of swept volumes, the basis functions ψ� are the tri-variate NURBS
Rijk, and numerical quadrature is employed to approximate the integrals, see
[11] for a discussion of specific quadrature rules. In this context, it is important
to take both the larger support of the basis functions and the increased smooth-
ness into account, which means that the Gaussian quadrature rules used in the
standard FEM are not optimal in Isogeometric Analysis. The same reasoning
applies to the computation of the stiffness matrix.

Finally, we shortly comment on the options for refining the grid in Isogeomet-
ric Analysis. The overall goal of refinement is to enlarge the finite dimensional
subspace Vh in a step-by-step procedure, which leads to a sequence

Vh = V1 ⊂ V2 ⊂ V3 ⊂ . . . , (70)

and in the limit Vi → V . The process of h-refinement consists of inserting ad-
ditional knots in the computational mesh. For swept volumes, this means that
in one or several of the coordinates r, s, t the corresponding knot vectors are
refined. This step changes the representation of the geometry function F but
leaves the geometry and the mapping between Ω0 and Ω invariant, which is a
very important property. Due to the tensor product structure, h-refinement has
always a global effect on the mesh. For recent work on T-Splines, which allow
local refinement, see [8].

As alternative to h-refinement, p-refinement increases the polynomial degree
in each element Bκ. More precisely, if the initial mesh and geometry description
is given in terms of piecewise linear functions, p = 1, then p-refinement increases
the local smoothness inside each element but leaves the global continuity un-
changed, which means that multiple knots are used in the refinement process.
When starting with piecewise linear functions the knots of a degree p NURBS
are repeated p−1 times, and there is basically not much difference to the classi-
cal p-FEM. The combination of both degree elevation and knot insertion (in this
order) with increased smoothness is called k-refinement. Due to the embedding
(70), the original continuity properties at the knots of the mesh belonging to
V1 have to be preserved also in k-refinement, but at the additional knots the
smoothness is Cp−1 for NURBS of degree p.

4 Simulation Examples

Instead of Poisson’s equation (30), we study in this section the deformation of
three dimensional solids under the assumption of linear elasticity. All geometries
are generated by the swept volume method and then used as input data for the
experimental isogeometric solver of Hughes at al. [1]. In the simulations, the
displacement field u(x) = (u1(x), u2(x), u3(x))� ∈ R

3 is the unknown quantity,
and it satisfies the equilibrium equations

div σ(u) = f (71)

with given volume load f . Hooke’s law
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σ(u) = λ(trace ε(u))I + 2με(u) (72)

defines the stress tensor σ in terms of the strain tensor

ε(u) =
1
2
(∇u +∇u�) (73)

and the Lamé constants λ and μ as material parameters. These parameters are
related to Young’s modulus E and Poisson ratio ν by

λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (74)

In the weak form (35), the bilinear form a is then replaced by

a(u,v) :=
∫

Ω

σ(u) : ε(u) dx (75)

with tensor product σ : ε = trace (σε).

4.1 Simulation of Swept Volumes

Cylinder. We start with the study of a cylinder with zero-Dirichlet boundary
condition at the base and a surface force in y-direction at the top, see Fig. 9.
We distinguish two different possibilities of parameterizing the cylinder shown
in Fig. 1. In Section 4.2 we will investigate the effects of the different parame-
terizations on the numerical simulation in more detail.

However, the plots of the simulation results for both parameterizations give
identical results, which are displayed in Fig. 10.

2

1

E = 7.5 · 107

ν = 0.25

u = 0

Fig. 9. Left: Cylinder geometry and boundary conditions. Right: COMSOL
discretization.
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Fig. 10. Displacement components of the solution in x- (left) and z-direction (right)
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Fig. 11. The table example: Components of the solution in z-direction

Table. Our next simulation example is the supporting structure of a table
already introduced in 2.6. Due to the rotational symmetry of the structure we
only need to simulate a quarter of it. At the faces on the symmetric planes
we apply symmetric boundary conditions, that means zero Dirichlet boundary
conditions for displacement orthogonal to the face and zero Neumann boundary
conditions for displacement parallel to the plane. The numerical result for the
displacement into z-direction can be seen in Fig. 11.

Blade. This example is based on a blade-shaped NURBS volume which has
been generated with the help of the techniques in Section 2. The blade is subject
to a volume load in the central segment and to zero displacement boundary
conditions on the right-hand side. The result of the numerical simulation is
visualized in Fig. 12.
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Fig. 12. The blade example: The figure shows the initial shape (wireframe) and the
deformed solid (colored), where the displacement has been magnified by a factor of
2.5 · 104. The coloring represents the components of the solution in z-direction.

4.2 Experimental Comparison with a Traditional Simulation Tools

We now compare our results with a numerical approximation obtained by a
conventional FEM package. We use COMSOL [22] in combination with linear
and quadratic isoparametric tetrahedral elements. A discretization of a cylinder
by tetrahedra is shown in Fig. 9. The original geometry is therefore approximated
by piecewise polynomials and also changes in every refinement step. For the
isogeometric simulation we use a triquadratic parameterization which we already
introduced in Section 4.1. This justifies the direct comparison with the quadratic
isoparametric approach.

In order to compare the different approximations obtained, we calculate the
energy norm

||uh||E =
√

q�Aq (76)

of the numerical approximation. The norm ||uh||E is plotted in Fig. 13. As can
be seen, by refining the grids all numerical solutions tend to the same maximum
value. This confirms the theoretical result that ||uh||E → ||u||E from below for
any convergent Galerkin projection method. The speed of this convergence may
serve as an indicator of the convergence behaviour of the method and can be
used to compare different methods.

Note that the discretizations using isoparametric quadratic elements behave
better than the one using only linear elements. The second cylinder parameteriza-
tion and its refinements in comparison show a similar behavior to the quadratic
isoparametric approach. Remarkably, the first cylinder parameterization uses
significantly fewer degrees of freedom than the other two.
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Fig. 14. Comparison between different refinement directions

In Fig. 14 we compare different refinement strategies applied to the two cylin-
der parameterizations. The rs-parameter directions are parallel to the xy-plane
and the t-direction is equal to the z-direction in space coordinates. As expected,
the refinement in t-direction strongly affects the energy norm due to the fact
that the displacement varies more strongly in this direction than in the other
directions.
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5 Conclusion

For using isogeometric analysis, the creation of trivariate volumetric NURBS rep-
resentations is a great challenge. The swept volume framework presented here
provides a means for generating, optimizing and refining such volume meshes.
Swept volumes lead to a single patch description of the geometry, which can be
used to set up and perform an isogeometric simulation. In view of the prelim-
inary numerical results discussed above, the selection of the parameterization
deserves specific attention. Since an adept choice of the parameterization leads
to significant savings in the number of degrees of freedom required to achieve a
certain precision of the numerical solution, there is a clear connection to the ap-
proximation properties of the NURBS basis functions in the Galerkin projection.
However, at the moment we have no measure to assess or predict the quality of
the parameterization in this respect. The numerical results also indicate that
isogeometric analysis is a competitive approach as compared to standard FEM
with isoparametric quadratic elements.
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Abstract. We derive a numerical method to confirm that a subdivision
scheme based on quadrilateral meshes is C1 at the extraordinary points.
We base our work on Theorem 5.25 in Peters and Reif’s book “Sub-
division Surfaces”, which expresses it as a condition on the derivatives
within the characteristic ring around the EV. This note identifies instead
a sufficient condition on the control points in the natural configuration
from which the conditions of Theorem 5.25 can be established.

1 Introduction

It is important, when deriving a subdivision scheme, to ensure that the scheme is
C1 everywhere. If the scheme is derived from a tensor product or box-spline the
level of continuity can be determined by reference to the underlying basis func-
tions. For other schemes algebraic methods can be applied to determine the level
of continuity in the regular regions [1]. The situation changes at extraordinary
points, where the analysis must be extended to a more general topology [2,3].

In this note we demonstrate a simple numerical check of C1 continuity which
was derived to test tensor product subdivision schemes of arbitrary degree as
described by Cashman et al. [4]. It can be used for any subdivision scheme with
a stationary subdivision matrix. The check is based on work by Peters and Reif
[3] and requires analysis of the characteristic ring which is determined in terms
of the support of a subdivision scheme. We first explain the context and then
show how C1 can be proved.

We do not claim priority for these results. However, they do not seem to be
in the literature except implicitly in papers by Zorin [5] and Umlauf [6,7], which
deal primarily with schemes whose regular regions are triangle grids. This note
will help others who have still to prove the same property of their own schemes.

2 Support

The support region is the region in the limit surface of a control point which
is modified when that control point moves. For a univariate B-spline of degree
d, the support width, w, equals (d + 1)/2 spans of the control polygon to each
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Fig. 1. A schematic figure for a grid around a vertex of arbitrary valency. Thick lines
indicate the width, w, of the support of the vertex. Thin lines are boundaries of patches
in the limit surface. The support of the vertex is shown schematically highlighted in grey.

side of the control point. For a regular bivariate quadrilateral scheme the support
region is the interior of a square of side 2w. For a vertex of valency n, the support
region is the interior of an n-gon of side 2w.

The support region of an extraordinary vertex (EV) is also the region for
which changes in the coefficients associated with it directly influence the shape
of the limit surface.

The area around an EV with valency n is discussed in terms of n sectors which
are indexed from 1 to n. Figure 1 shows one sector around a vertex, which we
assume to be extraordinary, together with partly drawn neighbouring sectors.
The support of the vertex is shown schematically highlighted in grey. The thick
lines indicate the extent of the support of the vertex. The thin lines can be viewed
as control polyhedron edges or as boundaries of patches in the limit surface. The
support of the EV falls short of the thick lines, because the corresponding limit
surface lines are not influenced by the EV position.

3 The Characteristic Ring

Just outside the support region of the EV the limit surface can be seen to consist
of pieces of polynomials of bi-degree d, because each piece sees only a regular
configuration of control points.

By eigenanalysis we can determine from the coefficients of the scheme a nat-
ural configuration [8] which is derived from the column eigenvectors of the two
subdominant eigenvalues.



Numerical Checking of C1 for Arbitrary Degree 47

Fig. 2. Normalised characteristic rings for valencies 3 to 7 (left to right) for schemes
of degrees 3, 5 and 7 (top to bottom). The first sector is shown using thick lines.

With each refinement of the natural configuration the support of the EV
reduces by a factor of 2, exposing a new ring of regular B-spline surface. These
spline rings are called characteristic rings [2], and each is a scaled copy of the
next one out. We can therefore define the limit surface shape around the EV as
being made up of rings of spline pieces.

A characteristic ring is referred to as normalised if it is centred on the origin
and oriented in such a way that the furthest corner in the first sector is at (1, 0)
of the global (x, y)-coordinate system, as shown in Figure 2 for different valencies
and different degree schemes. This ring is w bi-polynomial patches thick.

For schemes such as the original Catmull-Clark [9] where the influence of the
extraordinary vertex on its neighbours is not modified, the characteristic ring
can be thinner, and further in. However, because we regard bounded curvature as
essential [10], and this demands modification of the influence of the extraordinary
vertex on its new neighbours, we consider only schemes which have this larger
value.

The exact boundaries of the characteristic ring are shown more clearly in
Figure 3 for the first sector. As before, the thick lines indicate the support w
and the thin lines are boundaries of the polynomial pieces.

4 Checking C1 Continuity

For a scheme to be C1, the characteristic ring has to be regular and injective [3].
Peter and Reif’s Theorem 5.25 [3] states that, given a scheme that is symmet-

ric under both rotation and reflection, then these conditions for C1 are met if,



48 U.H. Augsdörfer et al.

0 1

w-1
w
w+1

2w

3w

u

v

Fig. 3. A schematic figure like Figure 1. The characteristic ring is highlighted in grey
for the first sector.

in the first sector of the normalised characteristic ring, the first derivative in the
u direction of the local coordinate system is directed within the first quadrant
of the global coordinate system.

It is therefore sufficient to prove that the first derivative in the u direction
everywhere in the shaded region in Figure 3 has positive x and y components.

Determining the derivative everywhere is an infinite calculation. We have to
relate the calculations to something finite. In principle this could be symbolic or
algebraic, but the practical approach which we take is to identify a numerical
procedure which can be applied to any subdivision scheme. Because each valency
has its own set of EV coefficients, this means that each valency is processed
separately.

To establish a numerical proof for C1, we use two facts:

1. The first derivative in u is itself the tensor product of B-splines of degree
d in v and d − 1 in u, with control points being the first differences in the
u-direction of the points of the natural configuration.

2. This B-spline satisfies the convex hull property and thus all points lie within
the convex hull of its control points.

The derivatives we need are therefore bounded by the convex hull of the first
differences of some region of the original polyhedron. If all first differences within
that region lie in the first quadrant, then so does their convex hull, and so do
the derivatives at all points of the first sector of the spline ring.
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Fig. 4. Schematic figures like Figure 1. Left: One bi-polynomial patch (dark grey), and
the set of control vertices which influence the first derivatives within it (light grey).
Right: The set of control points influencing the first derivatives in all patches of the
spline ring are coloured grey.

5 Region of Analysis

To establish the region of the natural configuration for which differences have to
be taken, we resort again to support region arguments.

The bi-polynomial patch, which is dark-shaded in Figure 4 on the left, is
influenced by the vertices of the 2w + 1 × 2w + 1 region, which is light-shaded.
Therefore, the derivative in this region is influenced by the first differences in
this part of the polyhedron.

If we draw similar diagrams for all of the polynomial patches in the first sector
of the spline ring, and take the union, we find that the first differences we have to
consider are those of the control points in, or on the edge of, the shaded regions
shown in Figure 4 on the right. That is, the characteristic ring extended by a
border of width w, but excluding the boundary of the extended region.

6 Sharper Bounds for the Region of Analysis

If the EV has high enough valency, analysing the above described region fails to
provide the required proof, even when the scheme is in fact C1. That is, it is a
sufficient condition but not a necessary condition.

An example of this problem is shown in Figure 5. On the left, the EV has
valency n = 5. The points shown as circles all lie within the region of analysis
for a bounded curvature variant of the Catmull-Clark subdivision scheme. Com-
putation shows that all differences of these points in the u direction of the local
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Fig. 5. Left: Part of the mesh around an EV of valency n = 5 for a bounded curvature
variant of the Catmull-Clark scheme (degree 3). The characteristic ring in the first
sector lies within the thick dark lines. Control points influencing the first derivatives in
this region and required for the analysis are shown as circles. Right: The mesh around
an EV of valency n = 8. The vertices for which differences are negative are encircled
in grey.

coordinate system are positive. However, for an EV of valency n = 8, shown on
the right, not all differences are positive. The first difference in the u-direction of
vertices encircled in grey has clearly a negative y component, despite the scheme
being C1.

This discrepancy is because within the region of analysis, described in
Section 5, lie pieces of mesh well beyond the first sector of the characteristic
ring, and the curvature of the grid is sufficient to push these first differences
outside the acceptable range.

This can be countered by using sharper bounds, which lie tighter around the
first sector of the characteristic ring.

In order to obtain a tighter bound for any subdivision scheme, the region of
analysis is subdivided. Because this involves only the regular regions it does not
require the implementation of non-regular stencils. However, the EV has had its
effect taken into account because we are looking at an eigenvector of the scheme
around the EV.

In Figure 6 the region of analysis is shown after one and two subdivision steps
(centre and right) next to the original region (left). Vertices which form part of
the region of analysis now lie tighter around the first sector, all differences are
positive and the scheme is thus proved to be C1.

For high valencies more than one step of subdivision may be necessary. Up to
valency 50 and up to a degree 19 bounded curvature tensor product subdivision
scheme a maximum of seven subdivision steps were required.
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Fig. 6. Left: Part of the mesh around an EV of valency n = 8 for a bounded curvature
variant of the Catmull-Clark scheme. Control points influencing the first derivatives in
the first sector and required for the analysis are shown as circles. Centre: After one step
of subdivision. Right: After two steps of subdivision, the newly introduced vertices lie
tighter around the first sector of the characteristic ring. All differences are now positive
and the scheme provably C1.

If the confirmation of C1 does not emerge from this procedure after ten subdi-
vision steps it is worth evaluating the derivative at a few places to see whether a
disproof by example can be found. The concave corner of the spline ring sector is
a good first choice. This would catch the misbehaviour so carefully constructed
in [3], Figure 6.9.

An alternative to this refinement would be to convert the bi-polynomial pieces
of the spline ring to Bézier form. This would give tight bounds without iteration,
but does not generalise easily beyond B-splines.

7 Simplification of the Test

Using subdivision means we can simplify the test further.
The refined natural configuration in the characteristic ring is a scaled down

version of the original natural configuration of the next ring out. Consider the
first bi-polynomial patches at the inner edge of the spline ring. The refined
polyhedron uses only the vertices of or inside the spline ring, and is given by
a convex combination. We can therefore be sure that if the characteristic ring
itself satisfies our test, the first two rings of control points outside it, which are
a scaled-up copy of the refined grid, will also satisfy it. This argument ripples
outward recursively until it covers the region we were originally scanning.

Therefore, we do not need to consider any control vertices outside the char-
acteristic ring, reducing the area which needs to be considered to that shaded
in Figure 7 on the left. An example of the region of analysis for degree 9 subdi-
vision scheme, with a support width w = 5, is shown in Figure 7 on the right.
The higher the degree of the subdivision scheme the more can be gained from
this simplification.
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Fig. 7. Left: The schematic figure, like Figure 1, shows the region of the natural con-
figuration for which first differences must be taken. Right: Circles are used to show
the region of analysis after one subdivision step for a subdivision scheme of degree 9,
which has a support width w = 5. The characteristic ring in the first sector lies within
the thick dark lines.

8 Other Schemes

These results have been determined for primal binary subdivision tensor product
B-splines of any degree. However, the only property of the B-splines that we have
used is that they satisfy the convex hull property. The results therefore apply
unchanged to all tensor product schemes where the univariate scheme is variation
diminishing. The property that the first derivative is derivable as a subdivision
scheme with differences as control points will be true for all schemes which have
a (1 + z)/2 factor in the u direction of the symbol (z-transform) of their mask.
Schemes which do not have this property are unlikely to be satisfactory in other
respects. Similarly, the condition of symmetry under rotation and reflection can
usually be taken for granted. Failure to meet this condition is directly evident
from the mask.

It was pointed out by Goldman and DeRose [11] that where the univariate
scheme is not variation diminishing it is instead possible to use the fact that
the limit of a convergent subdivision scheme lies within an enclosure which is
just that of the control polyhedron scaled up by some factor, namely the largest
value of the sum of the magnitudes of the basis functions. It is therefore possible
to take the bounds on the first differences in the same regions and scale these
up before checking whether those bounds always lie within the first quadrant of
the global coordinate system.

Where the scheme is not a tensor product, is dual rather than primal, is based
on triangles rather than quads, or is not binary, the arguments can be followed
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in exactly the same way, but new figures would need to be drawn to replace
those used here.

Where a scheme is not stationary, but has a stationary limit, the usual argu-
ments (and conditions) can determine whether the continuity is that of the limit
scheme [12].

9 Summary

The check that a subdivision scheme has a regular and injective characteristic
map is required in order to prove that the scheme is C1. Peters and Reif’s
Theorem 5.25 is a good basis for this test [3]. We have identified a standard
procedure for applying this theorem numerically to the natural configuration of
any bivariate binary scheme. The extension to ternary and higher n-ary schemes
is expected to be straightforward.

A Pseudo Code of Procedure

1. Determine the eigenvector of the dominant eigencomponent in the Fourier
block ±1. Check that it is the subdominant component.

2. Evaluate the natural configuration over a large enough region.
3. Refine the region of analysis until all the first differences lie in the first

quadrant of the global coordinate system or a predefined depth limit of, say,
ten subdivision steps is exceeded.

4. If first differences are positive, Theorem 5.25 can be invoked and the scheme
was proven to be C1.
Otherwise, no proof of C1 is available. Evaluate derivative at a few places
and disprove C1 by example.
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Bézier Surfaces

H.E. Bez

Department of Computer Science, Loughborough University, UK
h.e.bez@lboro.ac.uk

Abstract. Patterson’s work [1] on the invariants of the rational Bézier
paths may be extended to permit weight vectors of mixed-sign [2]. In this
more general situation, in addition to Patterson’s continuous invariants,
a discrete sign-pattern invariant is required to distinguish path geometry.
The author’s derivation of the invariants differs from that of Patterson’s
and extends naturally to the rational Bézier surfaces. In this paper it is
shown that 13 continuous invariant functions and a discrete, sign-pattern,
invariant exist for the bi-cubic surfaces. Explicit functional forms of the
invariant functions for the bi-cubics are obtained. The results are viewed
from the perspective of the Fundamental Theorem on invariants for Lie
groups.

1 Introduction and Scope

Patterson showed that if the weight vector ω = (ω0, . . . , ωn) of a degree n Bézier
rational path is transformed to ω∗ = (ω∗

0 , . . . , ω
∗
n), where ωi > 0 and ω∗

i > 0,
then, for any vertex set, the shape of the path is invariant if:

ςi(ω∗) = ςi(ω) for all 1 ≤ i ≤ n− 1

where ςi(ω) = ωi−1ωi+1

ω2
i

. The invariance of the n − 1 continuous function, ςi,
comprise invariant-geometry conditions for Bézier paths with positive weights.
The invariants also provide information about the underlying curve type and
enable standardised weight vectors to be determined [3].

In this paper the author’s generalisation of Patterson’s results, to the case
of weight-vectors of mixed-sign being permitted, are summarised. Following this
the invariant functions of the bi-cubic Bézier surfaces are derived - again allowing
mixed-sign weight vectors. Negative weights are allowed for a number of reasons
including:

– completeness and generality,
– the difficulty of avoiding negative weights when parametrising some surfaces,

e.g., Dupin cyclides, with a small number of low-degree patches.

It is shown that 13 independent, real-valued invariant functions, denoted �ij ,
and a sign-pattern invariant, denoted, sp, exist for these surfaces. The main result
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obtained states that if the weight vector ω of a bi-cubic surface, with arbitrary
vertices, is transformed to ω∗ then the shape of the patch is unchanged if and
only if:

�ij(ω∗) = �ij(ω), and sp(ω∗) = sp(ω).

Explicit forms for the � type invariants for the bi-cubics are derived and some
further applications are discussed.

2 Mathematical Preliminaries

2.1 Functional Independence

If fi : R
q → R, for 1 ≤ i ≤ k, then the functions f ≡ (f1, . . . , fk) are functionally

dependent if:
F ◦ f = 0

for some F : R
k → R not identically zero. The functions are independent if no

such F exists. Equivalently, for dependence, we have (dF ◦ f)df = 0 or, taking
the transpose, the linear system:

⎡

⎢⎢⎢⎣

∂1f1 ∂1f2 . . . ∂1fk

∂2f1 ∂2f2 . . . ∂2fk

...
...

...
...

∂qf1 ∂qf2 . . . ∂qfk

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

∂1F ◦ f
∂2F ◦ f

...
∂kF ◦ f

⎤

⎥⎥⎥⎦ = 0

where ∂i denotes partial derivative with respect to the ith variable. It follows
that if df is of maximal rank, then the only solution is F ≡ 0 and the functions
f1, . . . , fk are independent.

In this paper we say that the functions f1, . . . , fk are manifestly independent
if either:

1. each fi is a function of a variable that does not occur in the other functions,
or

2. all except one of f1, . . . , fk, is a function of a variable that does not occur in
the other functions, and the exceptional function does not depend on any of
the variables unique to the others.

For example, the pair fi : R
3 → R, for i = 1, 2, defined by:

f1(x, y, z) = x z, f2(x, y, z) = y z

is manifestly independent as, respectively, they have variables x and y that do not
occur in the other function. It follows that no, nontrivial, F with F (f1, f2) = 0
can exist. Further, the triple (f1, f2, f3), where f3(x, y, z) = z, is manifestly
independent – as f3 is not a function of either x or y it cannot be expressed as
a function of f1 and f2. In cases of manifest independence it is not necessary to
determine the rank of df .
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2.2 General Observations on Invariants

No unique set of invariants exists for a given problem, since further invariants
may always be determined as functions of a known set; i.e., if ι1, . . . , ιk are real-
valued invariants and h is a real-valued function of k variables then h(ι1, . . . , ιk)
is an invariant. The invariant problem is therefore one of determining a set
of functionally independent invariants that is complete – in the sense that all
invariants not in the set may be expressed as a function of those that are. The
cardinality of two complete independent sets is the same [6].

2.3 Sign-Pattern

Let A = {+,−} and A∗ be the set of all vectors of symbols from A. For α ∈ A∗

we define α′ to be the complement of α – i.e., the vector obtained by replacing
the +’s of α by −’s and the −’s by +’s. We say that two elements, α, β ∈ A∗ are
equivalent (written α ∼ β), or have the same sign-pattern, if α = β or α = β′.
For example (+,+,−,+,−) ∼ (−,−,+,−,+).

The sign-pattern of a vector X = (x1, . . . , xm) ∈ R
m, with xi �= 0, may

defined to be sp(X) = [(sign(x1), . . . , sign(xm))] ∈ A∗/ ∼.

2.4 Equivalent Curve and Surface Parametrisations

We denote by P , the set of, suitably defined, regular functions σ : I → R
2, where

I is an interval of R, that provide local parametrisations of curves embedded in
R

2. The general conditions under which such functions σ1 and σ2, on respectively
I1 and I2, parametrise the same region of a curve are as follows: there must exist
a sufficiently smooth invertible function φ : I1 → I2 such that σ1 = σ2 ◦ φ.

We denote by S, the set of, suitably defined, regular functions σ : I1 × I2 →
R

3, where I1 and I2 are intervals of R, that provide local parametrisations of sur-
faces embedded in R

3. The general conditions under which functions parametrise
the same surface are as follows: functions σ1, σ2 on, respectively, I1 × I2 and
I∗1 × I∗2 parametrise the same surface if there is a sufficiently smooth invertible
function ψ : I1 × I2 → I∗1 × I∗2 such that σ1 = σ2 ◦ ψ.

3 Generalised Invariance Results for Rational Bézier
Paths

3.1 Summary of the Generalised Invariant-Geometry Conditions

Full details and proofs of the results summarised in this section may be found
in [2]. If bi(t) = (n

i )ti(1 − t)n−i for 0 ≤ i ≤ n are the Bernstein polynomials of
degree n then the rational paths of degree n may be be written in this basis as:

η[v∗, ω](t) =
∑n

i=0 bi(t)v
∗
i∑n

i=0 bi(t)ωi

=
[1, t, . . . , tn]Bnv

∗

[1, t, . . . , tn]Bnω
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where

– ωi ∈ R, 0 ≤ i ≤ n are the ‘weights’ of the path and ω = (ω0, . . . , ωn)T

– v∗ = [v∗0 , . . . , v∗n]T , v∗i ∈ R
m, are the Bernstein vectors

– Bn is upper-triangular the change-of-basis matrix

Bn =

⎡

⎢⎢⎢⎢⎢⎣

1 , 0 , 0 , . . . , 0
−(n

1 ) , (n
1 )(n−1

0 ) , 0 , . . . , 0
(n
2 ) , (−1)(n

1 )(n−1
1 ) , (n

2 )(n−2
1 ) , . . . , 0

...
(−1)n , (−1)n−1(n

1 ) , (−1)n−2(n
2 ) , . . . , 1

⎤

⎥⎥⎥⎥⎥⎦

defined by
[b0(t), b1(t), . . . , bn(t)] = [1, t, . . . , tn]Bn.

The rational Bézier paths of degree n may be defined for the subset of the
degree n Bernstein paths for which all the weights ωi are non-zero. In this case
the vectors vi = v∗

i

ωi
are well-defined and the path may be written in the Bézier

form:

ηB [v, ω](t) =
[1, t, . . . , tn]BnΩnv

[1, t, . . . , tn]Bnω
for 0 ≤ t ≤ 1 (1)

where Ωn = diag(ω0, ω1, . . . , ωn) and v denotes [v0, . . . , vn]T .
Bézier paths have special properties in the case of all positive weights and

for this reason discussion is often restricted to this case [3]. In this paper the
only limitation on the weight values is that they are non-zero.

From section 2.4, it follows that weight vectors ω, ω∗ determine paths with the
same geometry on [0, 1] if and only if there exists a re-parametrisation function
φ such that

ηB[v, ω] = ηB[v, ω∗] ◦ φ for all v ∈ R
m. (2)

The general solution of (2) – comprising all φ functions and weight vector pairs ω
and ω∗ – determines the invariant-geometry conditions for Bézier paths. Relation
(2) may be written

[1, t, . . . , tn]BnΩn v

[1, t, . . . , tn]Bnω
=

[1, φ, . . . , φn]BnΩ
∗
n v

[1, φ, . . . , φn]Bnω∗

and, as this must hold for all v, it follows that it is valid to ‘cancel’ the column
of v’s to obtain the invariant-geometry functional equation:

[1, t, . . . , tn]BnΩn

[1, t, . . . , tn]Bnω
=

[1, φ, . . . , φn]BnΩ
∗
n

[1, φ, . . . , φn]Bnω∗ . (3)

Denoting the ratio ωi

ω∗
i

by ρi, it can be shown that the general solutions of (3)
that are continuous bijections of [0, 1] are given by:

φ(t) =
ρnt

ρn−1 + (ρn − ρn−1)t
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where ρn and ρn−1 are non-zero and have the same sign. The substitution of these
φ solutions transform (3) from a functional equation to the following (equivalent)
relationships between ω and ω∗.

ω∗ = c B−1
n Uφ

−1Bnω (4)

Ω∗
n = c B−1

n Uφ
−1BnΩn (5)

where c is an arbitrary (non-zero) multiplier,

Uφ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(n
0 )ρn

n−1 , 0 , 0 , . . . , , 0
(n
1 )ρn−1

n−1δn , ρn(n−1
0 )ρn−1

n−1 , 0 , . . . , , 0
(n
2 )ρn−2

n−1δ
2
n , ρn(n−1

1 )ρn−2
n−1δn , ρ2

n(n−2
0 )ρn−2

n−1 , . . . , , 0
... ,

... ,
... ,

...
(n
n−1)ρn−1δ

n−1
n , ρn(n−1

n−2)ρn−1δ
n−2
n , ρ2

n(n−2
n−3)ρn−1δ

n−3
n , . . . , , 0

δn
n , ρnδ

n−1
n , ρ2

nδ
n−2
n , . . . , , ρn

n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and δn = ρn − ρn−1.

Relation (4) is a necessary and sufficient condition for invariant geometry - as
is (5). Relation (4) is the generalization of a known transformation rule to the
case of weights of mixed-sign being allowed. Relation (5) leads directly to the
determination of the invariant functions.

Specifically, it may be shown that B−1
n Uφ

−1Bn is the diagonal matrix

B−1
n Uφ

−1Bn = diag(
1

ρn
n−1

,
1

ρn−1
n−1ρn

,
1

ρn−2
n−1ρ

2
n

, . . . ,
1

ρn−1ρ
n−1
n

,
1
ρn

n

);

it follows that:

1. relation (4) is equivalent to the following relationship between ω and ω∗:

ω∗ = ±eαdiag(1, eμ, . . . , e(n−1)μ, enμ) ω

where eα = |c|
ρn

n−1
and eμ = ρn−1

ρn
,

2. relation (5) is equivalent to the following constraints on ω and ω∗:

�i(ω∗) = �i(ω) for all 1 ≤ i ≤ n− 1, and sp(ω∗) = sp(ω),

where

�i(ω) =
ωi

ω0

(
ωn−1

ωn

)i

,

3. relation (5) is equivalent to the following constraints on ω and ω∗:

ςi(ω∗) = ςi(ω) for all 1 ≤ i ≤ n− 1, and sp(ω∗) = sp(ω),

where
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ςi(ω) =
ωi−1ωi+1

ω2
i

.

The ςi functions are Patterson’s continuous invariants.

In addition:

1. The functions �i for 1 ≤ i ≤ n − 1 determine a manifestly functionally
independent set.

2. The invariance of sp is not implied by the invariance of the �i functions (or
the ςi functions).

3. The ςi functions do not, except in the cases n = 2, 3, determine a manifestly
independent set. However a simple inductive proof of independence may be
constructed.

The following proposition summarises the generalised invariant-geometry condi-
tions for the rational Bézier paths.

Proposition 1. (i) If the weight vector ω of a rational Bézier path is trans-
formed to ω∗ then the shape of the path is unchanged if and only if:

�i(ω∗) = �i(ω) for all 1 ≤ i ≤ n− 1, and sp(ω∗) = sp(ω)

or, there exist α, μ ∈ R such that:

ω∗ = ±eαdiag(1, eμ, . . . , e(n−1)μ, enμ) ω. (6)

(ii) All complete, independent sets of invariants for the degree n rational Bézier
paths have n elements.

3.2 Generalised Weight-Normalisations for the Bézier Paths

The 2-parameter transformation group defined by (6), allows arbitrary rational
Bézier paths of degree n to be re-parametrised to rational forms having two
weights transformed to unit modulus. Contrary to the situation for bi-cubic
patches, the transformation group for paths allows any pair of weights to be
chosen for normalisation.

Example 1. Normalisation matrices for the cubic Bézier paths. Here, the pair
(ω0, ω1) is chosen for transformation to unit modulus in the weight vector ω =
(ω0, ω1, ω2, ω3). Normalisations of the form ±(1, 1, ω∗

2, ω
∗
3) and ±(1,−1, ω∗

2, ω
∗
3)

occur—according to the signs of ω0 and ω1.

(i) If ω0 and ω1 have the same sign then the conditions eαω0 = 1 and eαeμω1 = 1,
when ω0 > 0 and ω1 > 0, and eαω0 = −1 and eαeμω1 = −1, when ω0 < 0 and
ω1 < 0 give, from (6), the relation:

⎡

⎢⎢⎣

ω∗
0

ω∗
1

ω∗
2

ω∗
3

⎤

⎥⎥⎦ = ±diag
(

1
ω0
,

1
ω1
,
ω0

ω2
1

,
ω2

0

ω3
1

)
⎡

⎢⎢⎣

ω0

ω1

ω2

ω3

⎤

⎥⎥⎦ = ±

⎡

⎢⎢⎢⎣

1
1

ω0ω2
ω2

1
ω2

0ω3

ω3
1

⎤

⎥⎥⎥⎦ .
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(ii) If ω0 and ω1 are of opposite sign then, assuming ω1 < 0, (6) becomes:

⎡

⎢⎢⎣

ω∗
0

ω∗
1

ω∗
2

ω∗
3

⎤

⎥⎥⎦ = ±diag
(

1
ω0
,

1
|ω1| ,

ω0

ω2
1

,
ω2

0

|ω3
1 |
)
⎡

⎢⎢⎣

ω0

ω1

ω2

ω3

⎤

⎥⎥⎦ = ±

⎡

⎢⎢⎢⎣

1
−1

ω0ω2
ω2

1
ω2

0ω3

|ω3
1|

⎤

⎥⎥⎥⎦ .

A similar transformation may be determined for the case ω0 < 0.

It is easily verified that the conditions:

ςi(ω∗) = ςi(ω), for i = 1, 2, and sp(ω∗) = sp(ω)

hold in all cases.

4 An Invariant-Geometry Functional Equation for the
Bi-cubic Bézier Surfaces

If bi(t) = (3i )t
i(1 − t)3−i then the rational, degree (3, 3) Bernstein surfaces take

the form

σ[v, ω](t, s) =

∑3
i=0

∑3
j=0 bi(t)bj(s)v

∗
ij∑3

i

∑3
j bi(t)bj(s)ωij

.

on a set v∗ = {v∗ij : 0 ≤ i ≤ 3, 0 ≤ j ≤ 3} of 16 vectors and a vector ω =
(ω00, ω01, . . . , ω03; ω10, ω11, . . . , ω13; . . . ; ω30, . . . ω33) of 16 ‘weights’.

Rational Bézier surfaces of degree (3, 3) are defined for the subset of degree
(3, 3) Bernstein surfaces for which all the weights are non-zero. In this case the
vectors vij =

v∗
ij

ωij
are all well-defined and the surface may be written in the

Bézier form:

σB [v, ω](t, s) =

∑3
i=0

∑3
j=0 bi(t)bj(s)ωijvij

∑3
i=0

∑3
j=0 bi(t)bj(s)ωij

We have
σB : V ×O → S

where V is the set of all 4 × 4-tuples of vectors in R
3 and O is the set of all

4× 4-tuples of non-zero real numbers.
It follows from section 2.4 that weight vectors ω, ω∗ ∈ O determine sur-

faces with the same geometry, for all v ∈ V , if and only if there exists a re-
parametrisation function ψ such that

σB[v, ω] = σB [v, ω∗] ◦ ψ for all v ∈ V.

The general solution of this functional equation, comprising all ψ functions and
ω∗ vectors as functions of ω, determines the relationships between the weight
vectors ω and ω∗ for constant geometry on any vertex set v. The solutions of
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this functional equation for σB may be referred to as the vertex-independent
symmetries of σB - it is these symmetries that are investigated in this paper.

Note that re-parametrisation functions ψ may always be expressed in the
paired form

ψ(t, s) = (φ(t, s), μ(t, s)).

Following a little algebra the degree (3, 3) Bézier surface, σB[v, ω], may be re-
written in the monomial tensor product basis form as:

σB [v, ω](t, s) =
t⊗ s(B3 ⊗B3)Ω33 v

t⊗ s(B3 ⊗B3)ω
(7)

where:

– t ⊗ s = [1, t, t2, t3] ⊗ [1, s, s2, s3] is the tensor-product basis of the space of
polynomials of degree (3, 3) in 2-variables,

– B3 ⊗B3 is the 16× 16 lower-triangular, tensor-product matrix

B3 ⊗ B3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 −6 3 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 3 −3 1 0 0 0 0 0 0 0 0 0 0 0 0
−3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
9 −9 0 0 −9 9 0 0 0 0 0 0 0 0 0 0

−9 18 −9 0 9 −18 9 0 0 0 0 0 0 0 0 0
3 −9 9 −3 −3 9 −9 3 0 0 0 0 0 0 0 0
3 0 0 0 −6 0 0 0 3 0 0 0 0 0 0 0

−9 9 0 0 18 −18 0 0 −9 9 0 0 0 0 0 0
9 −18 9 0 −18 36 −18 0 9 −18 9 0 0 0 0 0

−3 9 −9 3 6 −18 18 −6 −3 9 −9 3 0 0 0 0
−1 0 0 0 3 0 0 0 −3 0 0 0 1 0 0 0
3 −3 0 0 −9 9 0 0 9 −9 0 0 −3 3 0 0

−3 6 −3 0 9 −18 9 0 −9 18 −9 0 3 −6 3 0
1 −3 3 −1 −3 9 −9 3 3 −9 9 −3 −1 3 −3 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

– Ω33 is the 16× 16 invertible diagonal matrix:

Ω33 = diag(ω00, ω01, . . . , ω03; ω10, ω11, . . . , ω13; . . . ; ω30, . . . ω33),

– v = (v00, . . . , v03; v10, . . . , v13; . . . , : v30, . . . , v33)T ,
– ω = (ω00, . . . , ω03;ω10, . . . , ω13; . . . , : ω30, . . . , ω33)T .

The monomial expression (equation (7)) for σB[v, ω] is the generalization of
the monomial representation of Bézier curves (equation (1)) and is essential
to the approach now taken to determine the invariant-geometry conditions for
the bi-cubic surfaces.

If ψ(t, s) = (φ(t, s), μ(t, s)) is a re-parametrisation function, then σB [v, ω]◦ψ
is given by

σB [v, ω](φ, μ) =
φ⊗ μ(B3 ⊗B3)Ω33 v

φ⊗ μ(B3 ⊗B3)ω

and the invariant-geometry functional equation for Bézier surfaces, of degree
(3, 3) in (t, s), may be written as:

φ⊗ μ(B3 ⊗B3)Ω∗
33 v

φ⊗ μ(B3 ⊗B3)ω∗ =
t⊗ s(B3 ⊗B3)Ω33 v

t⊗ s(B3 ⊗B3)ω
for all v ∈ V (8)
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where Ω∗
33 is the 16× 16 diagonal matrix defined by:

Ω∗
33 = diag(ω∗

00, ω
∗
01, . . . , ω

∗
03; ω

∗
10, ω

∗
11, . . . , ω

∗
13; . . . ;ω

∗
30, . . . , ω

∗
33)

and ω∗ are the 16× 1 column vector

ω∗ = (ω∗
00, ω

∗
01, . . . , ω

∗
03; ω

∗
10, ω

∗
11, . . . , ω

∗
13; . . . ;ω

∗
30, . . . , ω

∗
33)

T .

As (8) required to hold for all v, it follows that the functional equation for
invariant-geometry reduces to:

φ⊗ μ(B3 ⊗B3)Ω∗
33

φ⊗ μ(B3 ⊗B3)ω∗ =
t⊗ s(B3 ⊗B3)Ω33

t⊗ s(B3 ⊗B3)ω
. (9)

5 The Functional Solutions for the Bi-cubics

The ratios ωij

ω∗
ij

occur naturally in the solution of equation (9), and are denoted
henceforth by ρij .

All the ψ ≡ (φ, μ) solutions of equation (9) are required; while it is known
that pairs of Möbius functions (φ(t), μ(s)) = ( at

1+(a−1)t ,
bs

1+(b−1)s) are solutions,
the following Lemma establishes that there are no others.

Lemma 1. If ψ = (φ, μ) is invertible and satisfies equation (9), for the weight
vectors (ω, ω∗), then:

φ(t, s) =
a t

1 + (a− 1)t
and μ(t, s) =

b s

1 + (b − 1)s

where a = ρ3,3
ρ2,3

> 0 and b = ρ3,3
ρ3,2

> 0.

Proof. The 16th, the 15th and the 12th columns of the matrix B3 ⊗ B3 are,
respectively:

[{0}15, 1]T , [{0}14, 3,−3]T and [{0}11, 3, {0}3,−3]T

where {0}3 = 0, 0, 0 etc. The quantities t ⊗ s(B3 ⊗ B3)ω and φ ⊗ μ(B3 ⊗ B3)ω∗

are scalar; denoting them, respectively, by P and Q we obtain from equation (9):

P φ⊗ μ(B3 ⊗B3)Ω∗
33 = Q t⊗ s(B3 ⊗B3)Ω33. (10)

Comparing elements (1, 16), (1, 15) and (1, 12) on each side of the functional
equation array (10) we obtain:

– P φ3μ3ω∗
33 = Q t3s3ω33

– P [φ3μ2 − φ3μ3]ω∗
3,2 = Q [t3s2 − t3s3]ω3,2

– P [φ2μ3 − φ3μ3]ω∗
2,3 = Q [t2s3 − t3s3]ω2,3.
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The ratio of the first two of these relations gives:

μ(t, s) =
ρ3,3 s

ρ3,2 + (ρ3,3 − ρ3,2)s
,

similarly the first and third give

φ(t, s) =
ρ3,3 t

ρ2,3 + (ρ3,3 − ρ2,3)t

i.e., the solutions for μ and φ are both Möbius functions of a single variable - as
required. Further, we have

1. φ(0) = 0, φ(1) = 1, μ(0) = 0, μ(1) = 1

2. φ′(t) = ρ3,3ρ2,3
(ρ2,3+(ρ3,3−ρ2,3)t)2 and μ′(t) = ρ3,3ρ3,2

(ρ3,2+(ρ3,3−ρ3,2)s)2

and the invertibility of ψ is equivalent to φ′(t) �= 0 for all t ∈ [0, 1] and μ′(s) �= 0
for all s ∈ [0, 1]. It follows that:

– ρ3,3ρ2,3 > 0, equivalently ρ3,3 and ρ2,3 have the same sign

– ρ3,3ρ3,2 > 0, equivalently ρ3,3 and ρ3,2 have the same sign

i.e., ρ3,3, ρ2,3 and ρ3,2 all have the same sign. Equivalently a > 0 and b > 0 where
a and b are as defined in the hypothesis.

5.1 Reduced Invariant-Geometry Conditions for the Bi-cubics

Lemma 2. The invariant-geometry condition (9) for the degree (3, 3) Bézier
surfaces is equivalent to:

ω∗ = c (B−1
3 U−1

φ B3)⊗ (B−1
3 U−1

μ B3) ω (11)

or

Ω∗
33 = c (B−1

3 U−1
φ B3)⊗ (B−1

3 U−1
μ B3)Ω33 (12)

where c is an arbitrary non-zero multiplier, Uφ is the 4× 4 matrix:

Uφ =

⎡

⎢⎢⎣

ρ3
23 , 0 , 0 , 0

3ρ2
23(ρ33 − ρ23) , ρ33ρ

2
23 , 0 , 0

3ρ23(ρ33 − ρ23)2 , 2ρ33ρ23(ρ33 − ρ23) , ρ2
33ρ23 , 0

(ρ33 − ρ23)3 , ρ33(ρ33 − ρ23)2 , ρ2
33(ρ33 − ρ23) , ρ3

33

⎤

⎥⎥⎦

and

Uμ =

⎡

⎢⎢⎣

ρ3
32 , 0 , 0 , 0

3ρ2
32(ρ33 − ρ32) , ρ33ρ

2
32 , 0 , 0

3ρ32(ρ33 − ρ32)2 , 2ρ33ρ32(ρ33 − ρ32) , ρ2
33ρ32 , 0

(ρ33 − ρ32)3 , ρ33(ρ33 − ρ32)2 , ρ2
33(ρ33 − ρ32) , ρ3

33

⎤

⎥⎥⎦ .
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Proof. From Lemma 1 we may write φ = φN

φD
where φN = at and φD = 1 + (a−

1)t, similarly μ = μN

μD
with μN = bs and μD = 1 + (b − 1)s.

It follows that:

[1, φ, φ2, φ3] =
1
φ3

D

[φ3
D, φ

2
DφN , φDφ

2
N , φ

3
N ].

=
1
φ3

D

[(1 + (a− 1)t)3, (1 + (a− 1)t)2at, (1 + (a− 1)t)(at)2, (at)3]

=
1
φ3

D

[1, t, t2, t3]Uφ

and
[1, μ, μ2, μ3] =

1
φ3

D

[1, s, s2, s3]Uμ

where Uφ and Uμ take the form given in the statement of the Lemma. Hence

σB[v, ω∗](φ, μ) =
φ⊗ μ(B3 ⊗B3)Ω∗

33v

φ⊗ μ(B3 ⊗B3)ω∗

=
t⊗ s(Uφ ⊗ Uμ)(B3 ⊗B3)Ω∗

33v

t⊗ s(Uφ ⊗ Uμ)(B3 ⊗B3)ω∗

and the invariant-geometry condition (9) transforms to:

t⊗ s(Uφ ⊗ Uμ)(B3 ⊗B3)Ω∗
33

t⊗ s(Uφ ⊗ Uμ)(B3 ⊗B3)ω∗ =
t⊗ s(B3 ⊗B3)Ω33

t⊗ s(B3 ⊗B3)ω
.

As this should hold for all t, s, we have

(Uφ ⊗ Uμ)(B3 ⊗B3)Ω∗
33

(Uφ ⊗ Uμ)(B3 ⊗B3)ω∗ =
(B3 ⊗B3)Ω33

(B3 ⊗B3)ω
.

Hence c (B3 ⊗ B3) ω = (Uφ ⊗ Uμ)(B3 ⊗ B3) ω∗ and c (B3 ⊗ B3)Ω33 = (Uφ ⊗
Uμ)(B3 ⊗B3)Ω∗

33, where c is an arbitrary non-zero multiplier; equivalently

ω∗ = c (B−1
3 U−1

φ B3)⊗ (B−1
3 U−1

μ B3) ω

and

Ω∗
33 = c (B−1

3 U−1
φ B3)⊗ (B−1

3 U−1
μ B3)Ω33.

The equivalence of the two above relations follows from the diagonal nature of
the matrices B−1

3 U−1
φ B3 and B−1

3 U−1
μ B3. It is easy to show that

B−1
3 U−1

φ B3 = diag(1,
1
a
,

1
a2
,

1
a3

) and B−1
3 U−1

μ B3 = diag(1,
1
b
,

1
b2
,

1
b3

)

hence (B−1
3 U−1

φ B3)⊗(B−1
3 U−1

μ B3) is diagonal. As A is diagonal, for any column
x we have x∗ = Ax if and only if diag(x∗) = A diag(x); hence (11) if and only
if (12).
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5.2 Invariant-Geometry Transformations and the Invariant
Functions for the Bi-cubics

Lemma 3. The invariant-geometry condition (9) for the degree (3, 3) Bézier
surfaces is equivalent to:

ω∗ = ±eαdiag(1, eγ, . . . , e3γ ; eβ, eβ+γ , . . . , eβ+3γ ; . . . ; e3β , e3β+γ , . . . , e3β+3γ) ω

where α, β, γ ∈ R.

Proof. It follows from the proof of 2 that (B−1
3 U−1

φ B3) ⊗ (B−1
3 U−1

μ B3) is the
16× 16 diagonal matrix:

(B−1
3 U−1

φ B3) ⊗ (B−1
3 U−1

μ B3) = diag( 1,
1

b
,

1

b2
,

1

b3
;
1

a
,

1

ab
,

1

ab2
,

1

ab3
;

1

a2
,

1

a2b
,

1

a2b2
,

1

a2b3
;

1

a3
,

1

a3b
,

1

a3b2
,

1

a3b3
).

From Lemma 1 we have a > 0 and b > 0; hence all elements of the matrix
(B−1

3 U−1
φ B3)⊗ (B−1

3 U−1
μ B3) are positive and we may write, from equation (11):

ω∗ = ±eαdiag(1, eγ , . . . , e3γ ; eβ , eβ+γ, . . . , eβ+3γ ; . . . ; e3β, e3β+γ , . . . , e3β+3γ) ω

where α, being defined by eα = |c|, is arbitrary, eβ = 1
a and eγ = 1

b .

The transformations of Lemma 3 determine a 3-parameter subgroup of the gen-
eral linear group GL(16,R). They may be written as ω∗

ij = ±eα(eγ)i(eβ)j ωij

and amount to a generalization of the weight transformations implied by the
expression for re-parametrised Bézier surfaces (see [3] page 194), to the case of
mixed-sign weight vectors. The arbitrary multiplier ±eα corresponds to universal
scaling of the weights.

Denote the set of pairs (i, j) of natural numbers satisfying the relations:

i = 0 and 1 ≤ j ≤ 3; 1 ≤ i ≤ 2 and 0 ≤ j ≤ 3; i = 3 and 0 ≤ j ≤ 1

by I. The set I contains 13 pairs.

Lemma 4. The invariant-geometry condition (9) for the degree (3, 3) Bézier
surfaces is equivalent to the following conditions on ω and ω∗:

sp(ω∗) = sp(ω)

and
�ij(ω∗) = �ij(ω) for all (i, j) ∈ I

where the 13 functions, �ij, are defined by

�ij(ω) =
ωij

ω00

{[
ω2,3

ω33

]i [
ω3,2

ω33

]j
}
.
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Proof. We have Ω∗
33 = c (B−1

3 U−1
φ B3) ⊗ (B−1

3 U−1
μ B3)Ω33 where the diag-

onal matrix (B−1
3 U−1

φ B3) ⊗ (B−1
3 U−1

μ B3) has positive elements (see proof of
Lemma 3). Given that c can take either sign, it follows that the signs of all the
diagonal elements of Ω∗

33 are the same as the signs of those of Ω33 or are all of
opposite sign. Hence sp(ω∗) = sp(ω). Rearranging (12) we obtain

1
c
I16 = (B−1

3 U−1
φ B3)⊗ (B−1

3 U−1
μ B3) Ω33Ω

∗
33

−1

where I16 is the 16× 16 identity matrix. Substituting

Ω33Ω
∗
33

−1 = diag(ρ00, ρ01, . . . , ρ33)

and the explicit diagonal form for (B−1
3 U−1

φ B3)⊗ (B−1
3 U−1

μ B3) (see proof of
Lemma 3) gives

1
c
I16 = diag( 1,

1
b
,

1
b2
,

1
b3

;
1
a
,

1
ab
,

1
ab2

,
1
ab3

;

1
a2
,

1
a2b

,
1

a2b2
,

1
a2b3

;
1
a3
,

1
a3b

,
1

a3b2
,

1
a3b3

) diag(ρ00, ρ01, . . . , ρ33)

i.e.,
1
c I16 = diag( ρ00 ,

ρ01
b , ρ02

b2 , ρ03
b3 ; ρ10

a , ρ11
ab , ρ12

ab2 ,
ρ13
ab3 ;

ρ20
a2 , ρ21

a2b ,
ρ22
a2b2 ,

ρ23
a2b3 ; ρ30

a3 , ρ31
a3b ,

ρ32
a3b2 ,

ρ33
a3b3 ).

The above relationship implies immediately that all the elements of the diagonal
matrix on the right-hand-side are equal. We therefore have:

ρ0,0 =
ρ0,j

bj
for 1 ≤ j ≤ 3, ρ0,0 =

ρ1,j

abj
for 0 ≤ j ≤ 3

ρ0,0 =
ρ2,j

a2bj
for 0 ≤ j ≤ 3, ρ0,0 =

ρ3,j

a3bj
for 0 ≤ j ≤ 3.

There is some redundancy in these equations due to the relations:

ρ3,2

a3b2
=

ρ3,3

a3b3
=
ρ2,3

a2b3
.

It follows that the terms corresponding to j = 2 and j = 3 in the final set of
relations above can be omitted - as they are both identical to the 3rd term, ρ2,3

a2b3 ,
of the previous set. We therefore have:

ρ0,0 =
ρ0,j

bj
for 1 ≤ j ≤ 3, ρ0,0 =

ρ1,j

abj
for 0 ≤ j ≤ 3

ρ0,0 =
ρ2,j

a2bj
for 0 ≤ j ≤ 3, ρ0,0 =

ρ3,j

a3bj
for 0 ≤ j ≤ 1.

Given that a = ρ3,3
ρ2,3

and b = ρ3,3
ρ3,2

, it follows that:

ρ0,j

ρ0,0

[
ρ3,2

ρ3,3

]j

= 1 for 1 ≤ j ≤ 3,
ρ1,j

ρ0,0

(
ρ2,3

ρ3,3

) [
ρ3,2

ρ3,3

]j

= 1 for 0 ≤ j ≤ 3

ρ2,j

ρ0,0

(
ρ2,3

ρ3,3

)2 [ ρ3,2

ρ3,3

]j

= 1 for 0 ≤ j ≤ 3,
ρ3,j

ρ0,0

(
ρ2,3

ρ3,3

)3 [ ρ3,2

ρ3,3

]j

= 1 for 0 ≤ j ≤ 1
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and that the 13 functions defined by:

�0,j(ω) =
ω0,j
ω0,0

[
ω3,2
ω3,3

]j
for 1 ≤ j ≤ 3, �1,j(ω) =

ω1,j
ω0,0

(
ω2,3
ω3,3

) [
ω3,2
ω3,3

]j
for 0 ≤ j ≤ 3

�2,j(ω) =
ω2,j
ω0,0

(
ω2,3
ω3,3

)2 [ ω3,2
ω3,3

]j
for 0 ≤ j ≤ 3, �3,j(ω) =

ω3,j
ω0,0

(
ω2,3
ω3,3

)3 [ ω3,2
ω3,3

]j
for 0 ≤ j ≤ 1

are invariant. The invariants may be written as:

�ij(ω) =
ωij

ω00

{[
ω2,3

ω33

]i [
ω3,2

ω33

]j
}

for i = 0 and 1 ≤ j ≤ 3; 1 ≤ i ≤ 2 and 0 ≤ j ≤ 3; i = 3 and 0 ≤ j ≤ 1.

The first two Corollaries, below, are immediate from Lemmas 3 and 4 respectively
and provide tests for equivalence of shape parametrised on [0, 1]× [0, 1].

Corollary 1. Two degree (3, 3) Bézier functions with weight vectors ω and ω∗

and identical vertex sets v, parametrise the same region of a surface on the
domain [0, 1]× [0, 1], for all v ∈ V , if and only if:

sp(ω∗) = sp(ω) and �ij(ω∗) = �ij(ω) for all (i, j) ∈ I.
Corollary 2. Two degree (3, 3) Bézier functions with weight vectors ω and ω∗

and identical vertex sets v, parametrise the same region of a surface on the
domain [0, 1] × [0, 1], for all v ∈ V , if and only if there exist α, β, γ ∈ R such
that:

ω∗ = ±eαdiag( 1, eβ, e2β , e3β, eγ , eγ+β, eγ+2β, eγ+3β,

e2γ , e2γ+β, e2γ+2β, e2γ+3β, e3γ , e3γ+β, e3γ+2β, e3γ+3β) ω.

Corollary 3 is concerned with the minimum possible representation of the weights
of a bi-cubic.

Corollary 3. In general, no more than 3 weights of a bi-cubic may be scaled to
unit modulus without changing the shape of the surface.

6 Properties of the Invariant Functions for the Bi-cubics

From the functional forms of �ij , it can be seen that all except �23 is a function
of a variable, specifically ωi,j , that does not occur in the other functions. It
can also be seen that the invariant �23 is not a function of the variables that
occur uniquely in the other invariants. Hence the functions {�ij : (i, j) ∈ I} are
(manifestly) functionally independent.

The independence of the sign-pattern invariant sp from the type � functions
may be demonstrated as follows: let ω have components ωij and define ω∗ by

ω∗
ij = (−)i+jωij .

It is easy to check that �ij(ω∗) = �ij(ω) for (i, j) ∈ I but, clearly, sp(ω∗) �=
sp(ω). Hence the invariance of sp is not implied by the invariance of the �ij

functions. It follows that the sign-pattern sp is an essential, additional indepen-
dent invariant, for discriminating the geometric equivalence of Bézier surfaces.



The Invariant Functions of the Rational Bi-cubic Bézier Surfaces 69

Proposition 2. (i) The functions {�ij : (i, j) ∈ I}∪{sp} constitute a complete,
functionally independent set of invariants for the degree (3, 3) Bézier surfaces.
(ii) All complete, functionally independent sets of invariants for the degree (3, 3)
Bézier surfaces have 14 elements.

Proof. By Lemma 4 a complete set of invariants has no more than 14 elements, but
{�ij : (i, j) ∈ I} ∪ {sp} are independent – hence (i). Invariance of cardinality [6]
gives (ii).

7 Canonical-Form Invariants for the Bi-cubic Bézier
Surfaces

Complete, independent sets of invariants, that bear a close relationship to the
canonical form ωi−1ωi+1

ω2
i

, for Bézier curves, are shown to exist for the bi-cubic
Bézier surfaces. These invariants have a more immediate geometric interpretation
- but do not determine a manifestly independent set. In this section only surfaces
with strictly positive weights are considered – hence only the type � invariants
appear. Extension of the results to surfaces with weights of mixed-sign requires
only the inclusion of the sign-pattern invariant sp.

Proposition 3. The functions �c
1, . . . , �

c
13 defined by:

�c
1(ω) = ω00ω20

ω2
10

, �c
2(ω) = ω00ω22

ω2
11

, �c
3(ω) = ω02ω22

ω2
12

,

�c
4(ω) = ω00ω02

ω2
01

, �c
5(ω) = ω02ω20

ω2
11

, �c
6(ω) = ω20ω22

ω2
21

,

�c
7(ω) = ω10ω30

ω2
20

, �c
8(ω) = ω01ω03

ω2
02

, �c
9(ω) = ω11ω33

ω2
22

,

�c
10(ω) = ω30ω32

ω2
31

, �c
11(ω) = ω03ω23

ω2
13

, �c
12(ω) = ω31ω33

ω2
32

,

�c
13(ω) = ω13ω33

ω2
23

comprise a complete set of functionally independent invariants for the bi-cubic
Bézier surfaces with strictly positive weights.

Proof. The properties of invariance, independence and completeness need to
be established for the functions {�c

1, . . . , �
c
6}. (i) Invariance: for example, �c

4

transforms as:
eαω00 e

α+2μω02

e2αe2μω2
01

=
ω00ω02

ω2
01

= �c
4(ω).

Similarly the remaining � functions. (ii) Independence: it may be shown, using
a proprietary symbolic linear algebra package, that the 16 × 13 matrix d�c,
defined by:

d�c(ω) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�c
1

∂ω00

∂�c
2

∂ω00

∂�c
3

∂ω00

∂�c
4

∂ω00

∂�c
5

∂ω00

∂�c
6

∂ω00

∂�c
7

∂ω00

∂�c
8

∂ω00

∂�c
9

∂ω00

∂�c
10

∂ω00

∂�c
11

∂ω00

∂�c
12

∂ω00

∂�c
13

∂ω00

∂�c
1

∂ω01

∂�c
2

∂ω01

∂�c
3

∂ω01

∂�c
4

∂ω01

∂�c
5

∂ω01

∂�c
6

∂ω01

∂�c
7

∂ω01

∂�c
8

∂ω01

∂�c
9

∂ω01

∂�c
10

∂ω01

∂�c
11

∂ω01

∂�c
12

∂ω01

∂�c
13

∂ω01
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
∂�c

1
∂ω33

∂�c
2

∂ω33

∂�c
3

∂ω33

∂�c
4

∂ω33

∂�c
5

∂ω33

∂�c
6

∂ω33

∂�c
7

∂ω33

∂�c
8

∂ω33

∂�c
9

∂ω33

∂�c
10

∂ω33

∂�c
11

∂ω33

∂�c
12

∂ω33

∂�c
13

∂ω33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and having the explicit form d�c(ω) = [d�c(ω)L; d�c(ω)R] where

d�c(ω)L =

ω02
ω2
10

ω22
ω2
11

0
ω02
ω2
01

0 0

0 0 0 −2
ω00ω02

ω3
01

0 0

0 0
ω22
ω2
12

ω00
ω2
01

ω20
ω2
11

0

0 0 0 0 0 0
−2

ω00ω20
ω3
10

0 0 0 0 0

0 −2
ω00ω22

ω3
11

0 0 −2
ω02ω20

ω3
11

0

0 0 −2
ω02ω22

ω3
12

0 0 0

0 0 0 0 0 0
ω00
ω2
10

0 0 0
ω02
ω2
11

ω22
ω2
21

0 0 0 0 0 −2
ω20ω22

ω3
21

0 ω00
ω2
11

ω02
ω2
12

0 0 ω20
ω2
21

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

and

d�
c(ω)R =

0 0 0 0 0 0 0
0

ω03
ω2
02

0 0 0 0 0

0
−2ω01ω03

ω2
02

0 0 0 0 0

0 ω01
ω2
02

0 0 ω23
ω2
13

0 0

0
ω01
ω2
02

0 0
ω23
ω2
13

0 0

0 0
ω33
ω2
22

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0
−2ω03ω23

ω2
13

0
ω33
ω2
23−2ω10ω30

ω3
20

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
−2ω11ω33

ω3
22

0 0 0 0

0 0 0 0
ω03
ω2
13

0
−2ω13ω33

ω3
23ω01

ω2
20

0 0
ω32
ω2
31

0 0 0

0 0 0
−2ω30ω32

ω3
31

0
ω33
ω2
32

0

0 0 0
ω30
ω2
31

0
−2ω31ω33

ω3
32

0

0 0
ω11
ω2
22

0 0
ω31
ω2
32

ω13
ω2
23

is of maximal rank – i.e., 13. It follows that the functions �1, . . . , �13 are func-
tionally independent. Completeness follows from the invariance of cardinality
property.

The invariants�c
1, . . . , �

c
6 are associated with the lower left 9 vertices (see Figure

1), and correspond to an ‘embedded’ bi-quadratic subset. It can be shown that
these 6 functions determine an independent set of invariant functions for the
rational bi-quadratic Bézier surfaces [4].
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Fig. 1. Edges associated with the type �c invariants of the bi-cubic Bézier surfaces

8 A Lie Group Perspective

8.1 The Fundamental Theorem

The results obtained may be seen in the context of the Fundamental Theorem
on the invariants of Lie groups [6]. The theorem, in essence, states that:

‘If G is a Lie group acting on an k-dimensional manifold X with q-dimensional orbits,

then for each point x ∈ X there exist k − q functions ι1, . . . , ιk−q that are invariant

and functionally independent in some neighbourhood Nx of x. Any other invariant ι,

defined near x, may be uniquely expressed as ι = F (ι1, . . . , ιk−q) for some F .’

The invariants of the Fundamental Theorem are ‘local’; i.e., they distinguish the
orbits near x in the sense that two points x, x∗ ∈ Nx lie on the same orbit if and
only if all the fundamental invariants agree: i.e.,

ι1(x) = ι1(x∗), . . . , ιk−q(x) = ιk−q(x∗).

The theorem provides information on the cardinality of complete, independent
sets of invariants – but does not provide a means to determine their explicit
functional forms.
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8.2 Application to Bézier Paths and Bi-cubic Surfaces

(i) In the context of Bézier paths, the manifold is the disconnected (n + 1)-
dimensional weight-space:

On = {ω = (ω0, . . . , ωn) : ωi �= 0} ⊂ R
n+1

with 2n+1 connected components. The transformation group is the 2-dimensional
Lie group defined by the matrices ±eαdiag(1, eμ, . . . , e(n−1)μ, enμ). As the stabi-
lizer of the group action on On is trivial, it follows that the orbits have the same
dimension as the group – i.e., 2. The theorem states that in these circumstances
(n + 1) − 2 = (n − 1) ‘local’ invariants exist – these correspond to the type �
(or type ς) functions derived in this paper. The function sp is a global invariant
and, therefore, not addressed by the theorem; sp distinguishes orbits globally –
i.e., on the components of the disconnected manifold On, where the type ς (or
type �) are not discriminating.

(ii) For the bi-cubic surfaces the manifold is the disconnected 16 dimensional
weight-space:

O3,3 = {(ω00, . . . , ω33) : ωij �= 0} ⊂ R
16

with 216 components. The transformation group is the three-dimensional Lie
subgroup of GL(16,R) defined by the matrices:

±eαdiag(1, eγ, . . . , e3γ ; eβ, eβ+γ , . . . , eβ+3γ ; . . . ; e3β, e3β+γ , . . . , e3β+3γ).

The stabilizer is trivial and the orbits are therefore of dimension 3. The theorem
states that in these circumstances 16−3 ‘local’ invariants exist – these correspond
to the 13 type � functions derived for the bi-cubics. The invariant sp is global,
and distinguishes orbits on the components of O3,3.

9 Examples

The examples pertain to the 1
4 -cyclide defined by: (i) the geometric parame-

ters a = 6, b = 4
√

2,m = 3, and (ii) the angular limits θ0 = 0, θ1 = π and
φ0 = 0, φ1 = π. Figure 2 shows a rational bi-cubic parametrisation of this
patch induced by the author’s construction [5]. The weights, ωij , of the induced
parametrisation are:

ω00 = 4 , ω01 = 4
3 , ω02 = 8

3 , ω03 = 8
ω10 = 4

3 , ω11 = 4
3 , ω12 = 8

9 , ω13 = 8
3

ω20 = 8
3 , ω21 = 8

9 , ω22 = 4
9 , ω23 = 4

3
ω30 = 8 , ω31 = 8

3 , ω32 = 4
3 , ω33 = 4;

the co-ordinates of the vertices, vij , of the parametrisation are given in the
Appendix to the paper.
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Fig. 2. Induced bi-cubic 1
4

cyclide parametrisation with Bézier polygon

Example 2. If ω∗
i,j are defined by

ω∗
00 = 4 , ω∗

01 = 8
3 , ω

∗
02 = 32

3 , ω∗
03 = 64

ω∗
10 = 2

3 , ω
∗
11 = 4

3 , ω
∗
12 = 16

9 , ω∗
13 = 32

3
ω∗

20 = 2
3 , ω

∗
21 = 4

9 , ω
∗
22 = 4

9 , ω∗
23 = 8

3
ω∗

30 = 1 , ω∗
31 = 2

3 , ω
∗
32 = 2

3 , ω∗
33 = 4

then �i(ω) = �i(ω∗) for all 1 ≤ i ≤ 13. Hence, by Corollary 1, {(vij , ωij) : 0 ≤
i, j ≤ 3} and {(vij , ω

∗
ij) : 0 ≤ i, j ≤ 3} determine the same cyclide patch.

Example 3. The 16× 16 diagonal matrix below transforms the weights
ω00, ω03, ω30, of any bi-cubic surface, to unit modulus.

diag(
1

|ω00|
,

(
1

|ω00|
) 2

3
(

1

|ω03|
) 1

3
,

(
1

|ω00|
) 1

3
(

1

|ω03|
) 2

3
,

1

|ω03|
,

(
1

|ω00|
) 2

3
(

1

|ω30|
) 1

3
,

(
1

|ω00|
) 1

3
(

1

|ω30|
) 1

3
(

1

|ω03|
) 1

3
,

(
1

|ω30|
) 1

3
(

1

|ω03|
) 2

3
,

( |ω00|
|ω30|

) 1
3 1

|ω03|
,

(
1

|ω00|
) 1

3
(

1

|ω30|
) 2

3
,

(
1

|ω30|
) 2

3
(

1

|ω03|
) 1

3
, |ω00|

1
3

(
1

|ω30|
) 2

3
(

1

|ω03|
) 2

3
,

( |ω00|
|ω30|

) 2
3 1

|ω03|
,

1

|ω30|
,

1

|ω30|
( |ω00|

|ω03|
) 1

3
,

1

|ω30|
( |ω00|

|ω03|
) 2

3
,

( |ω00|
|ω30|

)
1

|ω03|
);

for the cyclide patch we obtain:

ω00 = 1 , ω01 = 1
6

3
√

4 , ω02 = 1
3

3
√

2 , ω03 = 1
ω10 = 1

6
3
√

4 , ω11 = 1
18

3
√

2 , ω12 = 1
9 , ω13 = 1

6
3
√

4
ω20 = 1

3
3
√

2 , ω21 = 1
9 , ω22 = 1

36
3
√

4 , ω23 = 1
12

3
√

2
ω30 = 1 , ω31 = 1

6
3
√

4 , ω32 = 1
12

3
√

2 , ω33 = 1
4 .
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10 Further Work

It is anticipated that the computational approach will generalize to to the deter-
mination of the invariant-geometry conditions of: (i) rectangular Bézier surfaces
of arbitrary degree (n,m), (ii) Bézier triangles of arbitrary degree and (iii) Bézier
volumes of arbitrary degree.
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Appendix

The vertices, vij = (xij , yij , zij), of the cyclide patch used in the applications
are:

x00 = 5, x01 = , x02 = 7, x03 = 7, x10 = 5, x11 = 5, x12 = 7, x13 = 7
x20 = −1, x21 = −1, x22 = −11, x23 = −11, x30 = −1, x31 = −1, x32 = −11, x33 = −11

y00 = 0, y01 = 0, y02 = 0, y03 = 0, y10 = 6
√

2, y11 = 6
√

2, y12 = 9
√

2, y13 = 9
√

2
y20 = 3

√
2, y21 = 3

√
2, y22 = 18

√
2, y23 = 18

√
2, y30 = 0, y31 = 0, y32 = 0, y33 = 0

z00 = 0, z01 = −2
√

2, z02 = −√
2, z03 = 0, z10 = 0, z11 = −2

√
2, z12 = −√

2, z13 = 0
z20 = 0, z21 = −5

√
2, z22 = −10

√
2, z23 = 0, z30 = 0, z31 = −5

√
2, z32 = −10

√
2, z33 = 0.
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Abstract. We analyze a well known type of puzzle in planar geometry:
given a planar shape, it is required to find a cut that divides the shape
into two identical parts (up to rotation and translation). Clearly not all
shapes can be so dissected and for some shapes that appear in puzzles
the cutting curve is quite surprising and difficult to find. In this paper
we first analyze the inverse problem of assembling planar shapes from
two identical parts having partially ‘matching’ boundaries and then use
the insights gained on this topic to derive an efficient algorithm to solve
the dissection puzzle in quite general situations.

1 Introduction

Consider the planar shape depicted in Figure 1a. The goal is to find a cutting
curve that divides this shape into two identical shapes. The solution is seen in
Figure 1b, and is not trivial to find. Several other examples of crazy-cut dissec-
tion puzzles are shown in Figure 2. The question we address in this paper is the
following: given a planar shape, determine whether a simple cutting curve exists
dissecting the shape into two identical parts and, if it exists, find the cutting
curve efficiently. To answer this question we shall first analyze the inverse prob-
lem of assembling a planar shape from two identical shapes that have partially
‘matching’ boundaries. This problem may be regarded as solving a simple jigsaw
puzzle of two pieces (with no drawings on them).

2 Solving Two Piece Jigsaw Puzzles

A simple planar shape (with no holes) may be represented by the closed planar
curve of its boundary. Suppose we have a Euclidean invariant description of
the closed boundary of the two (identical) shapes we must put together. The
description can be the curvature vs arclength ‘invariant signature’ description
k(s), where s ∈ [0, L] is the arclength along the boundary (L being the total
length of the planar boundary that will be assumed measurable, and s = 0
being an arbitrarily selected starting point on the boundary). If the boundary

� Corresponding author.

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 75–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a)

(b)

Fig. 1. (a) The shape and (b) the ‘crazy-cut’ into two identical parts (after Martin
Gardner)

is non-smooth we can defined k(s) as having δ- function components describing
sharp angles at breakpoint or we might assume that we have an equivalent
description of the boundary via k(s) between breakpoints along with the turn
angle information at each breakpoint. If we have to deal with polygonal planar
shapes, the ‘boundary signature’ may be a sequence of edge-length (li) and the
turn angles (ϕi) at each vertex of the polygon (see Figure 3). For shapes digitized
on Z

2 the natural boundary signature is the so-called crack-code of the boundary,
tracing the boundary of the shape built from adjacent square pixels of size (1×1)
having integer-coordinate vertices.

We may now ask what characterizes, in terms of the invariant signature func-
tion, for instance the Euclidian-invariant curvature k(s), matching portions of
boundaries of two given shapes SI and SII . If kI(s) and kII(s) describe the
boundaries of the two shapes in a clockwise traversal from arbitrary initial con-
ditions and the portion between sI

A and sI
B on the boundary of SI matches the

portion between sII
A to sII

B we shall have (see Figure 4) that:

kI(s) = −kII(Σ − s) s ∈ [sI
A, s

I
B].

since clearly along the common boundary portions of the shapes SI and SII we
have the same traversal rate (as arclength traversal implies unit speed clockwise



Crazy Cuts: Dissecting Planar Shapes into Two Identical Parts 77

(a) (b)

(c) (d)

Fig. 2. Some crazy-cut challenges

travel along the boundary!) but the velocity vector at each point turns in opposite
directions. Note that we also have

Σ − sI
A = sII

B

Σ − sI
B = sII

A

and therefore
Σ = sI

A + sII
B = sII

A + sI
B.

Indeed if we plot kI(s) as a periodic function of s with period equal to LI , the
length of the boundary of shape SI , and similarly kII(s) as a periodic function
of s with period LII , . . . the picture looks like that illustrated in Figure 5. We
see that for both SI and SII we can regard the signature function k(s) as being
composed of alternating parts PI and JI and PII and JII where JI and JII,
the matching portions, have same length LJ and are (up/down) and (left/right)
mirror reflections of each other. The joint object, after ‘docking’ the two jigsaw
puzzle pieces together will have a signature function that can be described by
PI followed by PII with a total length of LI + LII − 2LJ .
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(a)

(b)

Fig. 3. (a) Euclidean invariant boundary signatures for shape description (smooth
case). (b) Polygonal case.
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(a)

(b)

Fig. 4. (a) Smooth shape dockings (b) Polygonal shapes

3 Self Docking of Shapes

Up to this point the discussion was for two general shapes SI and SII . However
we are interested in matching identical shapes, i.e. SI ≡ SII ≡ S. In this case we
shall have to have for k(s), the invariant signature description of the boundary
of S, that

k(s) = −k(Σ − s) for s ∈ [0, Δ] (1)
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Fig. 5. The signatures of two shapes SI and SII showing the docking portions JI and
JII and the portions PI and PII that will make the boundary of the joint shape

(where we decided w.l.o.g. to start the arclength parametrization at sA = 0).
Here, however, something interesting can be observed: if the intervals [0, Δ] and
[Σ − Δ,Σ] are disjoint it means that there are two distinct portions on the
shape’s boundary that can be matched, but if the intervals overlap (i.e. Δ >
Σ
2 and consequently Σ −Δ < Σ

2 ) we necessarily get that k(s) = −k(Σ − s) for
all the interval [0, Σ]. Indeed for s = Σ

2 in (1) we’ll have that k(Σ
2 ) = −k(Σ

2 ) = 0,
and more importantly that k(s̃) = −k(Σ− s̃) for s̃ ∈ [Δ,Σ] too by realizing that
this is simply reading equation (1) with sides interchanged, i.e. redefining the
arclength s̃ via s̃ = Σ − s. (See Figure 6). Note that in the above discussion we
assume that the interval [0, Σ] is maximal, in the sense that k(0−ε) �= −k(Σ+ε).
The above considerations prove the following

Self Docking Dichotomy Lemma
A given planar shape either ‘docks’ to itself over totally disjoint matching
portions of its boundary or over the exact same portion of its boundary
and it cannot possibly have selfdockings that match over boundary por-
tions that are only partially disjoint (i.e. different boundary intervals that
have a common boundary portion).
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(a)

(b)

Fig. 6. Self docking dichotomy: (a) disjoint matching intervals (b) same boundary
portion matching

Also note that if the shape ‘docks’ to itself on the same portion of its boundary
we shall always have at the midpoint of the match ‘an inflexion’ point of zero
curvature.

The consequences of these observations are far-reaching indeed, with regard
to the boundary of the composite shape obtained after docking two identical
parts together. If the docking was over the same portion of the boundaries of
the component shapes the outer boundary will necessarily be the concatenation
of two identical boundary curves, (see Figure 7). In this case the cut curve is
completely ‘out of sight’, i.e hidden inside the composite shape and in fact any
symmetrical cut from M to M ′ (in Figure 7) will yield a possible solution.

So far we have seen that the case of self-docking along the same portion
of the boundary is the trivial case of cutting a shape that has two identical
curves joining together to form the composite boundary. The interesting case
occurs when the self docking is along disjoint portions of the boundary. This
case is illustrated in Figure 8. Let us call the matching portions J and J̄, and
we assume that J and J̄ are different segments of k(s), i.e. they correspond to
two intervals [sA, sB] and [s̄A, s̄B] that are of the same length but disjoint in
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Fig. 7. ‘Self-docking’ over the same boundary portion of the two identical shapes S
and S. The self docking boundary portion J is completely hidden inside the compos-
ite shape, whose boundary is of the form PsPs, where Ps is the free portion of the
boundary of S : PsJs .

s ∈ [0, L]. Without loss of generality let us take sA = 0. Then the boundary of
S will comprise the intervals

J[sA=0,sB ] P[sB s̄A] J[s̄A s̄B ] Q[s̄B ,L] in cyclic order.

Using this motivation we will have that the two identical shapes : S1 : JPJ̄Q and
S2 : JPJ̄Q when docked so as to have J matched to J̄ will result in a combined
shape with boundary described by the following syntax

(Scombined) : PJ̄QQJP ∼ J̄QQJPP ∼ QJPPJ̄Q

where P, Q, J, J̄ are the k(s) portions that describe the original (component
piece) S. Hence if a shape can be represented as the docking of two identical
jigsaw-puzzle pieces its boundary is either of the form:

(Scombined) : PP if S : JP ≡ J̄P (in this case J ≡ J̄)

or of the form:

(Scombined) : PJ̄QQJP if S : JPJ̄Q (in this case J �= J̄).

4 Finding Crazy Cuts

The structure of the invariant signature representing the combined shape yields
an efficient algorithm for finding the crazy cut of a planar shape if such a cut
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Fig. 8. ‘Self-docking’ over disjoint boundary portions of the two identical shapes SI ≡
SII ≡ S. The ‘self-docking’ portions J and J̄ are visible in the composite shape whose
boundary has the form PsJ̄sQsQsJsPs where the boundary of S is PsJ̄sQsJs.

exists, or for determining that such a cut is not possible. Indeed when we are
given a k(s) or any Euclidean invariant signature representation of the compos-
ite boundary we have to determine whether it has, from some starting point
the structure PP or the structure PJ̄QQJP. In fact, exhaustive search for a
given string of length L, which would test all starting points and all possible
internal distributions of lengths of P, J̄,Q,J would be feasible and quite effi-
cient if the signature was discrete. All starting point possibilities will involve
L runs of checking whereas l(P) and l(J) ≡ l(J̄) are two additional param-
eters that are needed to be set. (Recall that l(P) + l(J) + l(J̄) + l(Q) = L
hence these two parameters also determine l(Q)! ). Hence we can test a string
of length L for the structure PJ̄QQJP with an exhaustive search algorithm
of O(L4) complexity, and this without any sophisticated string manipulation
optimization.

Notice that the additional (fourth) O(L) complexity is due to the need to
verify the syntax for every choice. In the sequel we will argue that the latter can
be included in the O(L3) search leading to an overall complexity of O(L3).
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4.1 An Efficient Algorithm for Finding Crazy Cuts for Polygons

In this section we detail the crazy cut algorithm for a polygonal shape. A polyline
description may start by specifying the coordinates of the first vertex and the
direction of the first edge. If such initialization is omitted, we may, w.l.o.g. place
the vertex in the origin, and orient the first edge in the positive x̂ direction.
Following the initialization we traverse the boundary of the shape in a clockwise
manner, specifying L couples (li, ϕi) of edge lengths li and turn angles ϕi as see
for example in Figure 3b.

Notice that since we know that the polyline describes a closed shape the length
of the last edge and the turn angle of the two last segments are redundant. For
completeness one may assume they are given, and we may verify that the data
agrees with the closed curve assumption.

We start the algorithm with a choice of two vertices and the boundary polyline
segment connecting the first vertex to the second vertex in a clockwise manner.
There are O(L2) possible vertex choices.

For each choice of vertices we will check the possibility that the connecting
boundary segment contains the two segments PP in the boundary syntax se-
quence QJPPJ̄Q. To do that, we will cut the initial boundary segment into two
segments of equal length, and compare them. They are qualified to be together
the PP segment if both halves are similar segments. Traversed clockwise on
both halves edges should be of the same length, and with the same turn angles.
Additionally, the internal angles on both ends of the initial segment should sum
up to the internal angle corresponding the midpoint of the segment, since the
midpoint should be the location where the J segment of one half shape meets
the J̄ segment of the other half (see Figure 9a).

This is the time to review a couple of interesting special cases that may affect
this part of the algorithm.

1. The boundary segment PP may be trivially short, that is, it may well be a
single vertex. Indeed, a vertex of a shape may often be a pivot point around
which one copy of a shape turns, whereby one side of the vertex matches
the other side (see e.g. Figure 10). Therefore every vertex constitutes one
successful virtual selection of the two vertices above.

2. The midpoint of the segment does not have to occur at a vertex. It can well
be inside an edge of the full polyline which may be the adjoining point of
two vertices complementing each other to 1800, (see e.g. Figure 9b).

3. The end point of one of the segments can occur on an edge. It should be
noted that in this case the other end (corresponding to the other end of the
segment P) has to coincide with a vertex. Note also that in this case the
interface between the two copies of P occurs on a vertex whose internal
angle is the sum of the vertex angle and 1800, see Figure 11a . The next two
paragraphs will deal with this special case.

To cover the cases described in the last item, the first part of the algo-
rithm has to be repeated. This time again two vertices are selected, and the
segment between them is assumed to be the first copy of P. To check this,
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(a)

(b)

Fig. 9. PP segment candidates and angle conditions

Fig. 10. A pivot vertex constituting a trivial PP segment
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a second copy is allocated by allocating the length of the first segment on
its counterclockwise side (see Figure 11b). The algorithm described above is
repeated, with one change the counterclockwise end of the second copy has
an 1800 vertex (if the second copy ends in a vertex one can skip this part).
Naturally one has to repeat the algorithm above for every initial selection of
two vertices by allocating the length of the initial boundary segment on the
clockwise side of the first selection.

Having completed the first part of the algorithm where a boundary segment has
qualified to be the PP part of the required boundary syntax QJPPJ̄Q, we can
continue checking the rest of the syntax. Following the boundary on both ends
of the PP segment we start assembling the J and the J̄ segments. We match the
length of the first edge on both ends, and make sure the next turn angles are
negatives of each other. We continue until one of the conditions is broken. If the
angle condition was met and one of the edge segments is shorter, we stop the JJ̄
search in the vertex of the short edge, and the middle of the longer edge. If the

(a)

(b)

Fig. 11. The case where one end of P is inside an edge
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edge length condition has been met, but not the turn angle condition, we stop
at both vertices. Notice that this stage cannot fail (we start with a successful
vertex condition and may well stop on the first edge).

The boundary segments we managed to traverse are the candidates for the J
and J̄ segments. The remaining boundary segment should now correspond to the
QQ segment. The latter is verified by cutting it at the midpoint, and checking
exactly as we did the PP segment (including the internal angle condition, see
Figure 9).

It should be noted that a shape may well pass all the syntax conditions, but
not have a crazy cut. To verify the validity of the crazy cut one has to make
sure the boundary segment made of QJPJ̄ constitutes a valid closed shape. To
do that we have to concatenate all the boundary segments (including the turn
angles in the ends of the boundary segments) and test whether the the resulting
boundary is a simply closed contour.

To summarize the complexity of the algorithm: The first selection of points is
O(L2). For each selection the traversal of all the other conditions: Checking the
PP segment, the J and J̄ segments and the QQ segment amounts to an O(L)
processing time. Hence the total algorithm complexity is O(L3). A successful
completion of the syntax search is so rare (in our implementations we found only
one false alarm) that the additionalO(L logL) complexity of the final verification
does not increase the total complexity.

4.2 Algorithm for Crazy Cuts for Pixelized Shapes

Pixelized shapes are shapes made out of a collection of square pixels. Formally,
they are a special case of polylines discussed above. For simplicity we can op-
tionally modify their description such that each edge is exactly one unit length
long, and turn angles are either +900−900 or 00 the latter being the main differ-
ence from the standard polyline description. All above depicted syntax checking
algorithms remain essentially the same. Obviously, here edge length comparison
becomes trivially simple, and there are no edge length mismatch cases such as

(a) (b) (c)

Fig. 12. Some interesting pixelized crazy cuts
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in Figure 11. Additionally, if we require that both the full shape and each of
the cuts are pixelized, we inevitably miss some crazy cuts (where the cuts are
not pixelized). Figure 12 depicts some interesting pixelized crazy cuts that were
combined and then detected via our algorithms.

5 Concluding Remarks

We have seen that analysis of the self-docking problem for planar shapes readily
leads to a very nice characterization of shapes that can be split into two identi-
cal shapes and to efficient ways to solve crazy cut puzzles. We would have been
elated to be the first to provide a mathematical discussion on an algorithm for
crazy-cut problems, however a thorough search of the web revealed a paper of
Kimmo Eriksson dealing with ‘crazy-cut’ in 1996 [1]. His approach, subsequently
criticized and elaborated upon by G. Rote and his collaborators [2], [3], [4], re-
lies on checking whether two parallel tracings, one along the border of the shape
(master) and a corresponding curve (slave) that ‘follows the master’ tracing in
a Euclidean invariant way yield a solution to the problem, when initiated at two
arbitrarily selected border points. Although both Eriksson and Rote eventually
obtain efficient algorithms to solve crazy cut puzzles, their approach is consid-
erably complicated by the fact that the very simple syntax made obvious by
analyzing self-docking was lacking in their work. It is very nice however to real-
ize that both approaches eventually yield solutions to the geometric problem at
hand via string analysis, the string being an Euclidean-invariant-signature-based
description of the borders of the object. This way of encoding shape is very im-
portant and basic in the shape analysis field, where automatic curve matching
[5], computerized jigsaw puzzle solutions [6], shape docking [7], invariant shape
processing [8], and skew-symmetry detection issues [9] were dealt with via such
an approach.

Note that from the work on viewpoint-invariant planar shape analysis via vari-
ations of projective, affine and similarity invariant boundary signatures, see e.g.
[8,9], we see that invoking generalized invariant signatures we could readily solve
crazy cut puzzles even for shapes distorted by such viewing transformations.
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Abstract. We present a construction of a piecewise rational free-form
surface of arbitrary topological genus which may contain sharp features:
creases, corners or cusps. The surface is automatically generated from
a given closed triangular mesh. Some of the edges are tagged as sharp
ones, defining the features on the surface. The surface is Cs smooth, for
an arbitrary value of s, except for the sharp features defined by the user.
Our method is based on the manifold construction and follows the blend-
ing approach.

Keywords: Manifold surface, sharp features, smooth piecewise rational
free-form surface, arbitrary topological genus, geometric continuity.

1 Introduction

Several approaches for free-form surface modeling exist. The main approaches in-
clude geometrically continuous spline surfaces, subdivision surfaces and manifold-
based constructions.

The constructions of geometrically continuous spline surfaces generate col-
lections of piecewise polynomial or rational patches, which are joined together
with various degrees of smoothness, e.g., [13,14,15,17,18,20,21]. The available
techniques include the use of singular parameterizations and of multisided gen-
eralizations of Bézier surfaces.

Subdivision surfaces have been developed into a very valuable tool for free-
form surface modeling, see e.g. [19,22]. Their theory - in particular the shape
analysis around extraordinary vertices - has made substantial progress during
the last years. However, these surfaces do not possess closed-form parametric
representation in the vicinity of extraordinary points and it is difficult to achieve
higher orders of smoothness.

Another class of methods is based on the notion of a differentiable manifold
from differential geometry. This notion has been developed into a construction for
smooth surfaces of arbitrary topological genus which are covered by a collection
of local parameterizations. The first paper in this direction was authored by
Grimm and Hughes [6], and this interesting approach was developed further in a
number of publications [3,4,7,8,16,24]. In particular [7,8] present a construction
of an affine structure for manifold spline surfaces. This construction requires only

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 90–105, 2009.
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one chart for the evaluation at one point, but it has the disadvantage that in
general holes in the mesh are required to deal with models of arbitrary topology.

In some cases, the possibility to define and to describe sharp features on the
surface is required in order to obtain adequate results. Therefore, the problem of
modeling piecewise smooth free-form surfaces which possess a number of sharp
features is of some interest.

So far, most of the available techniques for solving this task are either based on
subdivision surfaces or they work directly with triangular meshes, see e.g. [5,12].
The two papers [2,11] describe methods to define the path of feature curves at
arbitrary locations on the surface. Various other approaches, mostly for surfaces
represented by triangular meshes, have been proposed [1,10,23].

In this paper we present a manifold-based free-form surface construction which
can generate sharp features. More precisely, given a closed triangular mesh of
arbitrary topological genus, we generate a free-form surface. Some of edges of
the mesh can be tagged as “sharp” edges, defining the feature curves on the free-
form surface. The surface can achieve any desired order of smoothness, except of
course along the feature curves, where it is just continuous. The construction is
based on an extension of our recent paper [4], where we constructed a manifold
surface by blending together circular charts.

The method presented in this paper preserves the manifold structure (i.e.
the parameterized atlas associated with the mesh) and the surface is evalu-
ated following the blending approach. The definition of sharp features in our
construction is possible because of the high flexibility which is available in the
definition of the transition functions, which are generated by the method of sub-
chart parameterization. This may be an advantage compared to other manifold
constructions which are based on more uniform transition functions.

The remainder of the this paper consists of four parts. Section 2 summarizes
the method described in [4], which is the starting point for the construction pre-
sented in this paper. Section 3 extends the previous results to manifold surfaces
with sharp features. The fourth section presents several examples. Finally we
conclude this paper.

2 A Construction of Rational Manifold Surfaces

In order to make this paper self-contained we recall a construction of a rational
spline manifold which was presented in [4]. This construction proceeds in three
steps. We (1) define charts and subcharts, (2) generate subchart parameteriza-
tions, transition functions and the domain, and (3) obtain the manifold surface
as a blending-based embedding of the domain.

2.1 Charts and Subcharts

We consider an oriented triangular mesh M in R
3 with mV vertices, where the

ith vertex possesses the valency v(i).
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Let [n(i, j)]v(i)−1
j=0 be the list of neighbours of the ith vertex in counterclockwise

order with respect to the orientation of M . The second argument of n will be
used modulo v(i), i.e., n(i, j) = n(i, j + k v(i)) for all k ∈ Z. Let

V = {i : i = 1, . . . ,mV }, (1)
E = {{i, n(i, r)} : i ∈ V, r = 1, . . . , v(i)}, and (2)
F = { {i, n(i, r), n(i, r + 1)} : i = 1, . . . ,mV , r = 1, . . . , v(i)}. (3)

be the sets of vertex, edge and face indices. Note that we use set-valued edge
and face indices, hence the order within these indices is not relevant.

For each vertex index i ∈ V , we define an associated chart Ci ⊂ R
2 × {i},

Ci = {(x, y, i) : x2 + y2 ≤ 1}, (4)

which is essentially a circular unit disk, centered at the origin. The third coor-
dinate i has been added in order to obtain mutually disjoint charts,

i �= j ⇒ Ci ∩Cj = ∅. (5)

The chart Ci is subdivided into edge and face subcharts and an innermost region,
as follows.

– For each edge {i, n(i, r)} of the mesh which starts or ends at the ith vertex,
the chart Ci possesses an edge subchart Ci

n(i,r).
– For each face {i, n(i, r), n(i, r+1)} which shares the ith vertex, the chart Ci

has a face subchart Ci
n(i,r),n(i,r+1), where r = 1, . . . , v(i).

– The remaining or innermost part of Ci is

Ĉi = Ci \ (
⋃

r=1,..,v(i)

Ci
n(i,r) ∪

⋃

r=1,..,v(i)

Ci
n(i,r), n(i,r+1)). (6)

The generic layout of charts and subcharts is shown in Figure 1, see also [4].
The subcharts are arranged in counterclockwise order along the boundaries of
the charts.

The face subcharts are triangular regions with two straight and one circular
boundary. They correspond to the overlap of the local parameterizations which
are defined by three charts.

The edge subcharts are quadrangular regions with one circular, two straight
and one free-form boundary (which is shared with the innermost part of the
chart). The overlapping region of the chart Ci with another chart Cn(i,r), where
(i, n(i, r)) is an edge of the mesh, is the union of two face subcharts and one
edge subchart,

Oi
n(i,r) = Ci

n(i,r−1),n(i,r) ∪ Ci
n(i,r) ∪Ci

n(i,r),n(i,r+1). (7)

It corresponds to the overlap of the local parameterizations which are defined by
two charts. This region has the shape of a biangle with two Cs smooth boundary
curves meeting in two vertices, where s is the order of smoothness of the manifold
surface.
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Ĉi

Fig. 1. Charts, subcharts and subchart parameterizations

2.2 Transition Functions and Domain

We define the transition functions with the help of subchart parameterizations,
whose domains are the unit square � or the standard triangle 
,

� = [0, 1]2 and 
 = {(u, v, w) : u ≥ 0, v ≥ 0, w ≥ 0, u+ v + w = 1}. (8)

More precisely, we define the following parameterizations.

– For each edge e = {i, j} ∈ E of the triangular mesh we define two edge
subchart parameterizations

φi
j : �→ Ci

j and φj
i : �→ Cj

i . (9)

– For each face f = {i, j, k} ∈ F of the triangular mesh, we define three face
subchart parameterizations,

φi
jk : 
→ Ci

jk, φj
ki : 
→ Cj

ki and φk
ij : 
→ Ck

ij . (10)

The order of the lower indices is not relevant, φi
jk = φi

kj .

These mappings are assumed to be Cs smooth, surjective, and orientation pre-
serving. Moreover, they are assumed to be compatible in the following sense:

– For each vertical edge of the unit square, there is exactly one of the two
edge subchart parameterizations (9) which maps it into the boundary of the
chart.
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– For each edge of the standard triangle, there is exactly one of the three face
subchart parameterizations (10) which maps it into the boundary of the
chart.

Now we define the transition function (or coordinate transformation) between
any pair of charts Ci and Cj with {i, j} ∈ E. Let {i, j, k}, {i, j, l} ∈ F such that

∃ r : k = n(i, r − 1), j = n(i, r), l = n(i, r + 1), (11)
∃ s : l = n(j, s− 1), i = n(j, s), k = n(j, s+ 1). (12)

The transition function Φij maps the overlapping region Oi
j ⊂ Ci into the over-

lapping region Oj
i ⊂ Cj ,

Φij : Oi
j → Oj

i : u �→

⎧
⎪⎨

⎪⎩

(φj
li ◦ (φi

lj)
−1)(u) if u ∈ Ci

lj

(φj
i ◦ (φi

j)
−1)(u) if u ∈ Ci

j

(φj
ik ◦ (φi

jk)−1)(u) if u ∈ Ci
jk

. (13)

These transition functions obey the cocyle condition,

(Φjk ◦ Φij)(u) = Φik(u) if u ∈ Ci
jk, (14)

since the overlapping region of three charts is parameterized with respect to
the common domain 
. However, the transition functions are not automatically
guaranteed to be Cs smooth, where s is the required degree of smoothness of
the surface. This is needed in order to obtain a manifold surface which possesses
this smoothness. The smoothness of the transition functions has to be ensured
by the construction of the subchart parameterizations.

For each chart Ci, associated with the vertex i, we choose the face subchart
parameterizations φi

jk as planar rational Bézier triangles of degree two. The
layout of these Bézier triangles along the boundary of the chart is automatically
determined by projecting the neighboring vertices into the tangent plane of the
vertex i.

The edge subchart parameterizations φi
j are then constructed as rational ten-

sor product patches of degree (4, 4s + 2). Using a construction which is based
on Möbius transformations and blending we are able to achieve Cs smoothness
of the transition functions.

See [4] for more details about the parameterization of face and edge subcharts.
The transition functions Φij define an equivalence relation on the union of the

charts
⋃

i∈V C
i. More precisely, two points u ∈ Ci and v ∈ Cj are considered as

equivalent (∼), if the transition function Φij maps u into v,

u ∼ v ⇐⇒ ∃{i, j} ∈ E : Φij(u) = v. (15)

The domain of the manifold surface with charts Ci and transition functions Φij

is then obtained by forming the equivalence classes of this relation,

Ω = (
⋃

i∈V

Ci)/ ∼ . (16)
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The elements of Ω are sets containing one, two or three points of different charts.
The face f = {i, j, k} ∈ F of the mesh M corresponds to a subset of Ω which

consists of sets with three elements,

Ωijk = {{φi
jk(t), φj

ik(t), φk
ij(t)} : t ∈ 
} ⊂ Ω. (17)

The edge e = {i, j} ∈ E of the mesh M corresponds to a subset of Ω which
consists of sets with two elements,

Ωij = {{φi
j(t), φ

j
i (t)} : t ∈ �} ⊂ Ω. (18)

Finally, the ith vertex of the mesh corresponds to a subset which consists of sets
with only one element,

Ωi = {{u} : u ∈ Ĉi} ⊂ Ω (19)

where Ĉi is the innermost part of the chart Ci.

2.3 Manifold Surface by Blending

The manifold spline surface is generated as an embedding of the domain. For
each chart Ci we define a geometry function gi and an influence function βi.

– The geometry function

gi : Ci → R
3 : (x, y, i) �→ gi(x, y) (20)

is a vector-valued bivariate quadratic polynomial, which is automatically
generated by approximating the neighbours of the ith vertex of the given
mesh.

– The influence function βi is a suitable power of the circle equation,

βi : Ci → R : (x, y, i) �→ (1− x2 − y2)s+1 (21)

where s is the desired order of smoothness of the surface. This defines a
bubble function whose first s derivatives vanish along the boundary of Ci.

Finally we define the embedding of the domain Ω by blending together the
contributions of all charts,

p : Ω → R
3 : u �→

∑

u∩Ci �=∅, i∈V

βi(u ∩ Ci)gi(u ∩ Ci)

∑

u∩Ci �=∅, i∈V

βi(u ∩ Ci)
(22)

Depending on the cardinality of u, the point p(u) is obtained by blending
together three, two or one geometry functions.
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For all u ∈ Ωijk , which correspond to the face {i, j, k} of the given mesh M ,
the set of corresponding points on the manifold surface can be parameterized as
a rational triangular patch with the domain
. For all u ∈ Ωij , which correspond
to the edge {i, j} of M , the set of corresponding points on the manifold surface
can be parameterized as a rational quadrangular patch with domain �. Finally,
the innermost parts of the charts can be covered by triangular or quadrangular
patches, which again correspond to rational patches on the manifold surface.
Consequently we obtain a Cs smooth manifold surface, which can be represented
as a collection of rational quadrangular and triangular surface patches.

Remark 1. Since the degree of the quadrangular and triangular surface patches
is relatively high, it is not recommended to represent them in closed form as
Bézier patches. Nevertheless, the surfaces are expressed in explicit form and it
is simple to use tools such as automatic differentiation.

3 Extension to Sharp Features

We extend the presented framework in order to model objects with sharp fea-
tures. Sharp features can be classified as darts, creases and corners (see [9,12]).
Smooth curves along which the surface presents tangent discontinuity are creases.
Corners are points where three or more creases meet; a dart is an interior point
of the surface where a crease starts or ends. We adapt our construction to all
three types.

3.1 Sharp Edges and k-Vertices

For any given mesh M , the construction presented in the previous section pro-
duces a Cs smooth surface (provided that no singularities occur) from a given
mesh. In certain situations, however, the given mesh is not suitable for a smooth
surface generation, and the method generates inadequate results. For instance,
this is the case if large dihedral angles between the faces of the triangles are
present.

We assume that some of the edges of the mesh are tagged as sharp edges. For
instance, one may simply choose all edges where the angle between the incident
faces exceeds a certain threshold.

Consider the ith vertex with valency v(i). Depending on the number k of
sharp edges which share this vertex, this vertex is classified as a k–vertex of the
mesh.

– k = 0: A 0–vertex corresponds to a smooth region on the surface.
– k = 1: A 1–vertex corresponds to a dart on the surface, i.e., to a point where

a crease starts or ends.
– k = 2: A 2–vertex corresponds to a segment of a crease on the surface
– k ≥ 3: Such a vertex corresponds to a corner of the surface.
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3.2 k–Charts and Their Subcharts

If the ith vertex is a k–vertex, then the chart associated with it will be called
a k–chart. We describe how to adapt the constructions of the subcharts and of
the subchart parameterizations for k �= 0. The case k = 0 is dealt with as in [4].

The construction of the k–charts and of its subcharts consists of three steps
(cf. Fig. 2).

– Step 1: Face subcharts and face subchart parameterizations. The face sub-
charts Ci

n(i,r),n(i,r+1) are constructed using the method described in [4]. We
choose the layout of the face subcharts based on the geometry of the mesh in
the vicinity of the ith vertex. More precisely, we consider the projection of its
neighborhood into the estimated tangent plane and use it to choose certain
geometric parameters controlling the layout of edge and face subcharts. The
face subcharts are then parameterized by quadratic rational Bézier triangles
with one circular and two straight line boundaries.

– Step 2: Central point ci and edge lines. We choose a central point ci ∈ Ci,
where the edge lines will meet. For each sharp edge {i, n(i, r)} emanating
from the ith vertex, we choose an edge line Ei

n(i,r) which connects ci with a

Ci
Cj

Ck

Cl

Ci
j,L

Ci
j,R C

j

i,L

C
j

i,R

Fig. 2. Definition of k-charts and subcharts for different values of k. The chart Ci

(center, left) is a 2-chart.
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point on the boundary ∂Ci of the chart, where this point is located between
the face subcharts Ci

n(i,r−1),n(i,r) and Ci
n(i,r),n(i,r+1).

In our implementation, the central point is simply the center of the circle,
and the edge lines are straight line segments. An exception is made for k = 2.
In that case, we get only two edge lines, which are supposed to meet smoothly
at the central point. In that case we choose both edge lines as a straight line
segment connecting two points on the boundary ∂Ci, and the central point
as its midpoint.

– Step 3: Edge semi-subcharts. For each sharp edge {i, n(i, r)}, the edge sub-
chart Ci

n(i,r) is subdivided into a left and a right semi–subchart Ci
n(i,r),L

and Ci
n(i,r),R with associated parameterizations. The left (resp. the right)

edge semi–subchart shares one boundary arc with Ci
n(i,r−1),n(i,r) (resp. with

Ci
n(i,r),n(i,r+1)) and one with the innermost part Ĉi. The remaining two

boundary arcs are segments of the edge line Ei
n(i,r) and of the chart bound-

ary ∂Ci. The boundary arcs of the two semi-subcharts cover approximately
one third of the edge line Ei

j .
The remaining edge subcharts (which correspond to non–sharp edges)

are generated as in the case k = 0, see [4].

The parameterization of the two semi-subcharts is described in the next section.

3.3 Parameterization of Semi-subcharts

The edge semi-subcharts are parameterized by mappings whose domain is the
unit square � = [0, 1]2. These two mappings will be called left and right edge
semi-subchart parameterization

φi
j,L : �→ Ci

j,L and φi
j,R : �→ Ci

j,R. (23)

The transition functions between two charts are defined as in the smooth case, see
(13). These transition functions need to be Cs smooth everywhere except along
the edge lines, where s is the desired smoothness of the manifold surface. This
is obtained by ensuring that the two edge semi-subcharts satisfy the following
conditions.

– They have a Cs smooth joint with the neighboring face subcharts which are
reparameterized as tensor-product patches.

– They have a C0 joint along the edge line Ei
j .

– Their outer boundary is contained in the boundary ∂Ci.

The construction of the edge semi-subchart parameterizations is obtained with
the help of Möbius transformations, similar to the case of edge subchart param-
eterizations (cf. [4]). We describe in more detail the construction of a right edge
semi–subchart, see also Fig. 3. The other case is dealt with analogously.

Let μ be a Möbius transformation that maps the unit circle into the real axis,
which is computed in the same way as in [4]; let ρ be the reparameterization
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Ci
ljφi

lj

ρ

ζi
lj

μ ◦ φi
lj

ηi
j

ρ

(a) (b)

p

μ ◦ φi
lj ηi

j

ξi
jR

φi
lj

ρ

μ−1 ◦ ξi
jR

(c) (d)

Fig. 3. Parameterization of a right edge semi-subchart. (a) The neighbouring face
subchart is represented as a degenerate quadrangular patch, (b) applying the Möbius
transformation, (c) construction of a tensor-product patch, (d) the inverse Möbius
transformation gives the desired parameterization.

ρ : �→
 : (r, s) �→ (r, (1 − r)s, (1 − r)(1 − s)) (24)

that represents a triangular patch as a degenerate tensor product patch, with
the edge r = 1 collapsing into a singular point.

1. The face subchart parameterization φi
lj is a quadratic Bézier triangle. By

composing it with ρ we obtain a degenerate tensor-product patch of degree
(1, 2) (see [4]). Finally it is composed with μ and this gives the rational
tensor-product patch

ζi
lj = μ ◦ φi

lj ◦ ρ (25)

of degree (2, 4) which parameterizes the image μ(Ci
lj). We consider a linear

parameterization of the segment of the edge line Ei
j , where the two semi-

subcharts are to be joined. By composing this parameterization with μ we
obtain the curve ηi

j .
2. We create a tensor-product patch ξi

jR which possesses a Cs smooth joint
with ζi

lj and C0 joint with ηi
j . This patch can be chosen as a rational tensor–

product patch of degree (2, s+ 1).
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3. We apply the inverse Möbius transformation in order to get the desired edge
semi-subchart parameterization

φi
j,R = μ−1 ◦ ξi

j,R. (26)

This gives a rational tensor product patch of degree (4, 2s+ 2).

3.4 Feature Lines and Geometry Functions

Finally we have to generate geometry functions which take the edge lines into
account. Let the chart Ci be a k-chart with k edge lines Ei

j . If k = 0, then the
geometry function is computed as in the smooth case. Otherwise we assume that
– for each edge line – a feature curve f i

j : Ei
j → R

3 is given. All feature curves
share the common point f i

j(c
i). Moreover, if k = 2, then the two feature curves

have a Cs smooth joint.
The feature curves can either be specified by the user, or they can be auto-

matically generated by approximating the sharp edges of the mesh by smooth
curves.

The geometry function gi : Ci → R
3 of the k-chart is now chosen as a con-

tinuous piecewise polynomial function with k pieces which respects the feature
curves, i.e.,

gi
∣∣
Ei

j

= f i
j (27)

holds for all sharp edges {i, j}. It is Cs smooth, except for the edge lines.
For example, each geometry function gi can be defined as a piecewise function

consisting of k Bézier triangles, corresponding to the k feature lines f i
j . These

Bézier triangles are defined such that the control points along the boundaries,

f i
1

f i
2

f i
3

f i
4

f i
j (c

i)

pi
1,4

Fig. 4. Example of geometry function in the planar case as a piecewise function con-
sisting of Bézier triangles. Since the angle between f i

1 and f i
4 is greater than π, the

phantom edge pi
1,4 is introduced, defining two Bézier triangles joined with Cd continuity.
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k = 0 k = 2 k = 0 k = 4
valency 6 valency 4

Fig. 5. Geometry functions for different valencies and for different values of k. The
different colors visualize the different subcharts.

i.e. the feature lines, coincide. In case the angle between two feature lines f i
j

and f i
k exceeds π, one can introduce a phantom edge pi

jk between these feature
lines and define the piece of gi between f i

j and f i
k as two Bézier triangles joined

with a certain Cd continuity along pi
jk. Figure 4 shows an example of a piecewise

defined geometry function in the planar case.
In our implementation, if k ≥ 3, then the feature curves are segments and the

geometry are piecewise linear. If k = 2, then we choose cubic feature curves and
piecewise cubic geometry functions. In all other cases we choose the geometry
functions as in [4].

Figure 5 shows the geometry functions for k–charts with different valencies.

4 Examples

We present three examples for surfaces which have been generated via the pro-
posed method. All surfaces can be represented as a collection of rational surface
patches which form C2 smooth manifold surfaces, except for the sharp features.
The construction was implemented in Maple, and the surfaces were visualized
using PovRay, where each quadrangular resp. triangular surface patch was ren-
dered using 50 resp. 25 triangles.

Example 1 (see Fig. 6). The triangular mesh consists of 8 vertices and 12 faces.
We defined two loops of edge curves which meet in the top vertex. Consequently,
the mesh defines six 2-charts, one 4–chart and one 0–chart (the bottom one). The
figure shows the results of the construction with and without sharp features. In
addition, we also show the result which is obtained by defining a 1–chart, which
leads to a dart feature on the surface.

Example 2 (see Fig. 7). This surface has been generated from a star–shaped
polyhedron, consisting of 18 vertices and 32 faces. We create a crease feature by
defining a closed curve of four sharp edges, which leads to four 2–charts and 14
0–charts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Example 1: Manifold surface generated from a mesh with 8 vertices and two
loops of sharp edges. The mesh (a), feature curves (b), geometry functions (c), a smooth
model obtained with smooth geometry functions (d), the model with sharp edges (e,f),
and details of the features (g,h) are shown. The last plot (i) shows the effect of a 1-chart
which generates a dart feature on the surface. The different colors in (d,e,g,h) visualize
the contributions of the different subcharts.
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(a) (b)

(c) (d)

Fig. 7. Example 2: A manifold spline surface (b) obtained from a star–shaped polyhe-
dron (a) and a surface which was obtained defining a loop of sharp edges (c,d)

(a) (b) (c)

Fig. 8. Example 3: A smooth manifold surface (b) obtained from a mesh of a hollow
cube (a) and a surface with sharp features along the outer edges and around one of
the circles (c)
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Example 3 (see Fig. 8). The final example has been obtained from a mesh
describing a hollow cube with 112 vertices and 240 faces. The sharp features
correspond to the edges of the cube, which define 12 creases and 8 corners, and
to the circles in the faces. Here we modified only one of these circles.

5 Conclusions

We presented a new construction of piecewise rational free-form surfaces with the
possibility of defining sharp features on it, based on the manifold construction
already presented in [4]. Starting from a triangular mesh, where some edges are
tagged as sharp edges, the algorithm generates automatically a surface, which
can achieve any order of smoothness, except for the sharp features.

The definition of sharp features on the surface does not modify the manifold
representation and the transition functions between overlapping charts, which
keep the Cs smoothness everywhere except along the feature lines. The sur-
face can be represented as a collection of quadrangular and triangular rational
patches.

Future research is required concerning the optimal choice of the geometry
functions, in order to obtain a better visual fairness of the manifold surfaces.
Also, the analysis of manifold constructions which generate spline surfaces of
lower degree is of potential interest.

Acknowledgment. This research has been supported by the Austrian Science
Fund (FWF) in the FSP framework S092 ‘Industrial geometry’, subproject 2.
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11. Khodakovsky, A., Schröder, P.: Fine level feature editing for subdivision surfaces.
In: Proc. Shape Modelling Appl., pp. 203–211. ACM, New York (1999)

12. Ling, R., Wang, W., Yan, D.: Fitting sharp features with Loop subdivision surfaces.
Comput. Graph. Forum 27(5), 1383–1391 (2008)

13. Loop, C., DeRose, T.D.: A multisided generalization of Bézier surfaces. ACM
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Deriving Box-Spline Subdivision Schemes
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Abstract. We describe and demonstrate an arrow notation for deriv-
ing box-spline subdivision schemes. We compare it with the z-transform,
matrix, and mask convolution methods of deriving the same. We show
how the arrow method provides a useful graphical alternative to the
three numerical methods. We demonstrate the properties that can be
derived easily using the arrow method: mask, stencils, continuity in reg-
ular regions, safe extrusion directions. We derive all of the symmetric
quadrilateral binary box-spline subdivision schemes with up to eight ar-
rows and all of the symmetric triangular binary box-spline subdivision
schemes with up to six arrows. We explain how the arrow notation can
be extended to handle ternary schemes. We introduce two new binary
dual quadrilateral box-spline schemes and one new

√
2 box-spline scheme.

With appropriate extensions to handle extraordinary cases, these could
each form the basis for a new subdivision scheme.

1 Introduction

For several years, the Cambridge subdivision research team have used an ar-
row notation that allows easy derivation of the mask (Section 3.1), stencils
(Section 3.2), continuity (Section 3.3), and safe extrusion directions (Section 3.4)
of all box-spline subdivision schemes. It also permits enumeration of all possible
box-spline schemes, which has allowed us to generate three new schemes which,
to the best of our knowledge, have not yet been investigated.

The arrow notation is equivalent to other mechanisms for specifying box-spline
schemes but has the advantage that it is a graphical, rather than numerical,
notation, allowing easy visualisation of what is going on.

The notation has arrows of appropriate lengths pointing in the principal di-
rections of the scheme. For binary schemes, in z-transform space [1], each arrow
corresponds to a factor of (1 + z)/2 in the appropriate direction; for an n-ary
scheme, to a factor of (1− zn)/(n(1− z)).

We explain the arrow notation and the properties that can be derived from it
for univariate (Sect. 2) and bivariate (Sect. 3) binary subdivision schemes. We
use the simplest four-direction scheme (Sect. 3.6) as an example to demonstrate
the four ways of deriving a scheme’s mask: arrows, z-transform, matrix, and
mask convolution. We enumerate all possible binary quadrilateral schemes with
up to eight arrows (Sect. 3). We then consider the extension of the method

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 106–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to longer arrows representing factors of 1 + z2 (Sect. 4), to triangular meshes
(Sect. 5), and to ternary schemes (Sect. 6). We conclude with suggestions for
further work (Sec. 7).

2 Univariate Binary Schemes

In one-dimension we would represent the cubic box spline as four arrows:

→→→→

which corresponds to 2((1 + z)/2)4. This leads to the Laurent polynomial (1 +
4z + 6z2 + 4z3 + z4)/8 which is itself the z-transform of the subdivision mask
[1, 4, 6, 4, 1]/8 which has the two stencils [1, 6, 1]/8 and [4, 4]/8. For the purposes
of this paper, we ignore the constant factor (in this case, one eighth) when it
gets in the way of clear exposition, as it is trivial to derive from the fact that
each stencil must sum to one.

Graphically, the arrow notation allows us to derive the mask directly by find-
ing a number of distinct combinations (N.B., not permutations) of arrows which
get us from the origin to each possible point on the number line. Label each
arrow individually:

a→ b→ c→ d→
There is one way to get to the origin (use no arrows), four to get to the first
position (use any one of the arrows: {a, b, c, d}), six to get to the second position:
{ab, ac, ad, bc, bd, cd}, four to the third: {abc, abd, acd, bcd}, and one to the fourth:
{abcd}. This is simple combinatorics and it parallels exactly the derivation of the
co-efficients on the polynomial product in the z-transform. The true usefulness
of the graphical notation does not become apparent until we consider bivariate
schemes.

Continuity can also be determined from the graphical notation. Again, this
is only truly useful when we consider bivariate schemes. Each arrow represents
an integration step. Each integration represents an increase in continuity by
one. You may prefer to think of this as each arrow representing a multiplication

Arrows z-transform Mask Continuity

→→ 2
(

(1+z)
2

)2
1
2
[1, 2, 1] C0

→→→ 2
(

(1+z)
2

)3
1
4
[1, 3, 3, 1] C1

→→→→ 2
(

(1+z)
2

)4
1
8
[1, 4, 6, 4, 1] C2

→→→→→ 2
(

(1+z)
2

)5
1
16

[1, 5, 10, 10, 5, 1] C3

Fig. 1. The linear, quadratic, cubic and quartic binary univariate box-spline subdivi-
sion schemes. It is straightforward to extend this to higher powers of (1 + z)/2.
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by a factor of (1 + z)/2, or a single smoothing step [2] in a refine-and-smooth
formulation. In terms of the limit basis functions of the scheme, if there are no
arrows, then we have an impulse function. One arrow integrates this to a step
function, which is a function containing a discontinuity. A second arrow will
integrate this to produce a C0 function. From here, each extra arrow adds one
to the continuity. Thus, in the univariate case, continuity is two fewer than the
number of arrows.

Figure 1 lists the first four univariate box-spline subdivision schemes.

3 Bivariate Binary Quadrilateral Schemes

The tensor product schemes are straightforward to calculate and to represent
in arrow notation (Fig. 2). While it is possible to have a different number of
arrows in the two primary principal directions, it is generally desirable to have
the same number in each, because to do otherwise leads to an asymmetry in the
subdivision scheme, which would effectively prevent the generalisation of the box
spline into a subdivision scheme with extraordinary vertices.

3.1 Deriving the Mask

The mask of a subdivision scheme shows the contribution of a single original
vertex to each new, subdivided vertex. To find the mask of a scheme, we need
to find all ways to get from the origin to each point in the grid. For the tensor
product schemes, this is simply the tensor product of the univariate case, as the
two principal directions are orthogonal.

Arrows z-transform Mask Continuity

↑
↑→→

4
(

1+z1
2

)2 ( 1+z2
2

)2 1
4

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ C0

↑
↑
↑→→→

4
(

1+z1
2

)3 ( 1+z2
2

)3 1
16

⎡

⎢⎢⎣

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

⎤

⎥⎥⎦ C1

↑
↑
↑
↑→→→→

4
(

1+z1
2

)4 ( 1+z2
2

)4 1
16

⎡

⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤

⎥⎥⎥⎥⎦
C2

Fig. 2. The linear, quadratic and cubic tensor product bivariate box-spline subdivision
schemes
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The process is straightforward. Given the set of arrows for the scheme, find
where each possible combination of arrows takes us, and then count how many
combinations end up in each particular location. Take the cubic tensor product
bivariate box-spline scheme. If we label each arrow individually, then the process
is easy to follow:

h ↑
g ↑
f ↑
e ↑ a→ b→ c→ d→

There is one way to get from the origin to itself: use no arrows. There are 4 ways
to get to the next position across: {a, b, c, d}. There are 16 ways to get to the
position above that: {ae, af, ag, ah, be, bf, bg, bh, ce, cf, cg, ch, de, df, dg, dh}, and
so on.

For schemes with non-orthogonal arrows, the situation is rather more inter-
esting, and the arrows prove more useful. A detailed non-orthogonal example is
given in Sect. 3.6 and Fig. 4.

3.2 Deriving Stencils

The stencils of a subdivision scheme show how to make a new, subdivided vertex
from the surrounding original vertices. There are several stencils for any given
scheme, each corresponding to a particular type of new vertex.

From the mask, it is straightforward to derive the stencils. For any binary
bivariate scheme, there are four stencils, each derived as every second value on
every second row. This is illustrated in Fig. 3. For a ternary scheme there would
be nine stencils, each derived as every third value on every third row. Other
arities have similar rules. Strictly, the mask should be mirror-imaged about its
centre before extracting the stencils, but all masks in this paper are mirror-
symmetric so this is not necessary.

3.3 Continuity

Calculating the continuity needs some explanation. We need to know what con-
tinuity to expect across any edge in the final mesh. Arrows which point along
an edge cannot contribute to continuity across the edge. Therefore, to calculate
continuity, find the direction with the maximum number of arrows. Discard those
arrows and count the number of remaining arrows. Continuity is two fewer than
this number, for the reasons given in Sect. 2. All of the tensor product schemes
have the same continuity as their univariate counterparts. Note that we must
consider the edges with minimum continuity and so we cannot claim any higher
continuity for the scheme as a whole even if there are other directions where
fewer arrows would be discarded.

If we extend to trivariate subdivision, for example for Finite Element Meshing,
then a similar argument holds. The continuity across boundaries can be deter-
mined by selecting the plane that contains the maximum number of arrows,
discarding these arrows, counting the remaining arrows, and subtracting two.
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⎡

⎢⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4

6 24 36 24 6
4 16 24 16 4

1 4 6 4 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4

6 24 36 24 6
4 16 24 16 4

1 4 6 4 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4
6 24 36 24 6

4 16 24 16 4
1 4 6 4 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4
6 24 36 24 6

4 16 24 16 4
1 4 6 4 1

⎤

⎥⎥⎥⎥⎦

Fig. 3. Deriving the four stencils from the cubic box-spline mask. Top left: vertex, top
right: horizontal edge, bottom left: vertical edge, bottom right: face centre. Each should
be divided by a factor of 64.

↖
↑
↗

↖
↑
↗→

↖
↑

↖
↑→↗

↑→↖
↗

↑
↗→

↖ ↑→↖ ↑→↗ ↗→

· →

=

1 1

1 2 2 1

1 2 2 1

1 1

Fig. 4. Using the graphical arrow notation to derive the mask. At left we see all possible
paths from the origin to each of the twelve reachable points. At right is a count of the
number of paths, which is the mask of the scheme.

3.4 Safe Extrusion Directions

Lateral artifacts occur in the limiting surface if the original data is extruded in a
direction for which the z-transform of the mask does not have a (1+z) factor [3].
The arrow notation quickly allows one to see which are the safe directions: they
are the ones in which there is an arrow. For the tensor product schemes, there
are only two safe directions. Schemes with diagonal terms (Sect. 3.5) have four
safe directions. Triangular schemes (Sect. 5) have three or six safe directions.
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3.5 Diagonal Terms

In addition to horizontal and vertical arrows, quadrilateral schemes can have
arrows on the 45◦ diagonals. These correspond to (1 + z1z2) and (1 + z2/z1).
We consider the horizontal and vertical arrows to be the primary principal direc-
tions, with the 45◦ arrows being the secondary principal directions. It is generally
desirable to have the same number in each of the two primary principal direc-
tions, as in the tensor product schemes, because to do otherwise leads to an
asymmetry in the subdivision scheme. Similarly, it is desirable to have the same
number of arrows in each of the two secondary principal directions. However,
it is not necessary to have the same number of arrows in the primary and sec-
ondary directions. For example, the tensor product schemes have no arrows in
the secondary principal directions.

3.6 Four-Arrow, Four-Direction Scheme

The simplest box-spline subdivision scheme that uses diagonal terms is:

↑→↖↗

To find the mask of this scheme, we need to find all ways to get from the origin
to each point in the grid (Fig. 4). Alternatively, we can get the same answer from
the z-transform by expanding (1 + z1)(1 + z2)(1 + z1z2)(1 + z2/z1):

z0
1z3

2 + z1
1z

3
2 +

z−1
1 z2

2 + 2z0
1z

2
2 + 2z1

1z
2
2 + z2

1z
2
2 +

z−1
1 z1

2 + 2z0
1z

1
2 + 2z1

1z
1
2 + z2

1z
1
2 +

z0
1z0

2 + z1
1z

0
2

Arranging the terms horizontally by increasing exponent on z1 and vertically by
increasing exponent on z2 produces an array where the coefficients on the terms
are the coefficients of the mask.

A third alternative is to use mask convolution. The four simple masks, each of
which represents a (1+z) term or an arrow in a principal direction, are convolved
to produce the final mask.

[
1
1

]
∗ [1 1

] ∗
[

0 1
1 0

]
∗
[
1 0
0 1

]
=

⎡

⎢⎢⎣

0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

⎤

⎥⎥⎦

The final alternative is to use Peters and Shuie’s matrix of directions [4]:

Asimplest =

⎡

⎢⎢⎣

1 0
0 1
1 1
−1 1

⎤

⎥⎥⎦ .
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⎡

⎢⎢⎣

0 1 1 0
1 2 2 1

1 2 2 1
0 1 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 1 1 0
1 2 2 1

1 2 2 1
0 1 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 1 1 0

1 2 2 1
1 2 2 1

0 1 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 1 1 0

1 2 2 1
1 2 2 1

0 1 1 0

⎤

⎥⎥⎦

Fig. 5. The four stencils derived from the mask. All four are rotational variants of one
another.

Each direction corresponds to one of the arrows in the arrow notation, to one of
the terms in the Laurent polynomial (z-transform), and to one of the masks in
the mask convolution method.

The four stencils of the scheme can be derived by taking every second row
from every second column, in the four possible ways this can be done (Fig. 5).

One of the interesting things about this scheme is that it can be factorised
into a

√
2 scheme. One step of that scheme being ↖↗ combined with the ro-

tation of 45◦, the next step being ↑→ with a further rotation of 45◦, which
realigns the subdivided mesh’s primary directions with the original mesh’s pri-
mary directions. This is the “simplest” subdivision scheme described by Peters
and Reif [5].

The mask of↖↗ is

⎡

⎣
1

1 1
1

⎤

⎦ . The two stencils are
[
1 1
]

for horizontal edges

and
[
1
1

]
for vertical edges. The mask of ↑→ is

[
1 1
1 1

]
. This is exactly the other

simple mask rotated by 45◦ and contracted by a factor of
√

2. Convolving the
two produces the mask of the binary scheme:

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ ∗
[

1 1
1 1

]
=

⎡

⎢⎢⎣

0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

⎤

⎥⎥⎦ .

To derive the continuity of the scheme, consider the direction with the great-
est number of arrows. There is one arrow in each of the principal directions,
whichever you choose. This leaves three arrows and the continuity is two fewer
than that. Therefore the simplest scheme has C1-continuity in regular regions.
It has four safe extrusion directions: the four principal directions.

In general, a binary box-spline scheme can be factored into a
√

2 scheme if
the arrows can be split into two sets, one of which maps onto the other by a
rotation of 45◦ and a dilation of

√
2.

3.7 Eight-Arrow, Four-Direction Scheme

In a similar way, we can evaluate the scheme with two arrows in each of the four
principal directions. This is equivalent to two steps of the 4–8 scheme described
by Velho [6].
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↖
↖→→

↖2
↑2 →

2

↖2
↗2

↑
↑

1 8 4 1
mask entry (0, 2) is 1 + 8 + 4 + 1 = 14

↖
↖
↗2 →→

↖2
↑
↑→→

↖2
↑2
↗2 →2

↖2
↗

↗

↑
↑
↗2

2 2 16 2 2
mask entry (1, 3) is 2 + 2 + 16 + 2 + 2 = 24

Fig. 6. Two examples of determining the mask entries using the arrow notation, for
the eight-arrow, four-direction scheme. Arrows carry an annotation “2” when there are
two possible arrows available. The number of possible combinations is shown under
each diagram.

↑
↑
→→↖

↖
↗
↗

This scheme has continuity C4. This is determined by finding the direction with
the greatest number of arrows (any one of the four principal directions), counting
the number of arrows not in this direction (six) and subtracting two.

The entries in the mask can be determined in any of the ways described above.
As an example, consider using the arrows to determine the entries. Figure 6 shows
the derivation of two of the entries in the mask by this method. Clearly the more
arrows there are, the more complex this procedure becomes and the less useful
as a mechanism for deriving the mask entries.

Like the four-arrow, four-direction scheme, this binary scheme is factorisable
into a

√
2 scheme:

↖
↖

↗
↗ ∗ ↑

↑
→→

= ↑
↑
→→↖

↖
↗
↗

The two
√

2 masks can be convolved to produce the mask of the binary scheme:

⎡

⎢⎢⎢⎢⎣

0 0 1 0 0
0 2 0 2 0
1 0 4 0 1
0 2 0 2 0
0 0 1 0 0

⎤

⎥⎥⎥⎥⎦
∗
⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 2 1 0 0
0 2 6 8 6 2 0
1 6 14 18 14 6 1
2 8 18 24 18 8 2
1 6 14 18 14 6 1
0 2 6 8 6 2 0
0 0 1 2 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡

⎢⎢⎢⎢⎣

1

2 2
1 4 1

2 2
1

⎤

⎥⎥⎥⎥⎦
→
[

2 2
2 2

]

⎡

⎢⎢⎢⎢⎢⎣

1
2 2

1 4 1
2 2

1

⎤

⎥⎥⎥⎥⎥⎦
→
⎡

⎣
1

1 4 1
1

⎤

⎦

Fig. 7. The stencils of Velho’s 4–8 scheme [6] derived from its mask. There is one
stencil for introducing new vertices at face centres (left) and one stencil for moving old
vertices (right). Note that values in the mask and stencils must be divided by eight to
ensure that the values in each stencil sum to one.

You can easily extract Velho’s 4–8 stencils from the
√

2 mask (Fig. 7). However,
you need to note that there are only two stencils in a

√
2 scheme, compared

with four in a binary scheme. Clearly, you could extract four stencils from the
binary mask, and thus directly create a binary scheme. This would, however,
produce stencils which are large. Large stencils make it more difficult to create
mechanisms for the efficient handling of extraordinary vertices, edges and creases
in the mesh.

3.8 Six-Arrow Schemes

There are two schemes which each have six arrows with at least one in each of
the four principal directions, and which each produce smaller stencils than the
binary version of Velho’s 4–8 scheme.

The first of the two six-arrow schemes is the quadrilateral part of Peters and
Shiue’s 4–3 scheme [4]. In arrow notation it is:

↑
↑
→→↖↗

From this we can see that the scheme is C2 in regular regions. It has the mask:

⎡

⎢⎢⎢⎢⎣

1 2 1
1 4 6 4 1
2 6 8 6 2
1 4 6 4 1

1 2 1

⎤

⎥⎥⎥⎥⎦

and the four stencils:

⎡

⎣
2

2 8 2
2

⎤

⎦

⎡

⎣
1 1
6 6
1 1

⎤

⎦
[
1 6 1
1 6 1

] [
4 4
4 4

]
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As illustrated in Sect. 3.6, the arrow notation is a straightforward graphical
representation of the matrix of directions as used by Peters and Shuie [4]:

A� =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0

0 1
0 −1
1 1
−1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

This corresponds to the arrow notation:

↑
↓→←
↖↗

A shift of origin makes no difference to the resulting mask, so this is equi-
valent to:

↑
↑
→→↖↗

We prefer the latter version, where all of the arrows which lie on the same line
point in the same direction, as we believe that this makes the notation clearer.

The other six-arrow box-spline is:

↑→↖
↖

↗
↗

which is clearly also C2 in regular regions. This has the mask:
⎡

⎢⎢⎢⎢⎢⎢⎣

1 1
2 3 3 2

1 3 6 6 3 1
1 3 6 6 3 1

2 3 3 2
1 1

⎤

⎥⎥⎥⎥⎥⎥⎦

and its four stencils are all rotational variants of:
⎡

⎣
1

1 6 3
3 2

⎤

⎦

This is a dual binary quadrilateral subdivision scheme, making it most closely
related to the quadratic tensor product box spline (C1, Doo-Sabin [7,8]) and
the quartic tensor product box spline (C3) [9,10]. This second six-arrow box
spline has never been extended to handle extraordinary cases, edges, or creases.
We expect that this could be done reasonably easily, given the simplicity of the
stencil.
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Note that neither of the six-arrow schemes can be factorised into a
√

2 scheme,
because neither meets the criteria described at the end of Sect. 3.6.

3.9 More Arrows — Larger Stencils

It is clearly possible to add more arrows. For example, adding two more arrows
to either Peters and Shiue’s 4–3 scheme or the Doo-Sabin scheme produces an
eight-arrow box spline:

↑
↑
↑

→→→↖↗

This is C3. Its mask is: ⎡

⎢⎢⎢⎢⎢⎢⎣

1 3 3 1
1 6 13 13 6 1
3 13 24 24 13 3
3 13 24 24 13 3
1 6 13 13 6 1

1 3 3 1

⎤

⎥⎥⎥⎥⎥⎥⎦

and its four stencils are all rotational variants of:
⎡

⎣
3 1

3 24 13
1 13 6

⎤

⎦

This is yet another dual binary quadrilateral subdivision scheme. This eight-
arrow box spline has never been extended to handle extraordinary cases, edges,
or creases.

The final binary quadrilateral scheme with eight arrows is:

↑→↖
↖

↖

↗
↗
↗

This is C3 and has a large mask:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3 4 4 3

3 6 12 12 6 3
1 4 12 18 18 12 4 1
1 4 12 18 18 12 4 1

3 6 12 12 6 3
3 4 4 3

1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and a large stencil: ⎡

⎢⎢⎣

1
6 12 3

1 12 18 4
3 4

⎤

⎥⎥⎦
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⎡

⎣ 128 64
64

⎤

⎦

⎡

⎣ 144 48
48 16

⎤

⎦

⎡

⎣
16

16 96 48
48 32

⎤

⎦

⎡

⎣
12 4

12 96 52
4 52 24

⎤

⎦

⎡

⎣
1 10 5
10 100 50
5 50 25

⎤

⎦

Fig. 8. The stencils of the five dual quadrilateral binary box-spline schemes with masks
of up to 3 × 3. All stencils have the common denominator of 256 to allow easy com-
parison. From left to right: simplest (C0) [5], Doo-Sabin (C1) [7,8], six-arrow (C2),
eight-arrow (C3), quartic tensor product (ten-arrow, C3) [9,10].

This is another binary dual scheme. In this case, the stencil is so large as to
make it difficult to generalise to extraordinary cases.

Consider all of the dual schemes with stencils up to size 3 × 3. We know,
simply by enumerating all possible combinations of arrows, that there are only
five of them (ignoring the trivial case which has just two arrows and which does
not produce a limit surface). If we use a common weighting factor of 1/256, then
the stencils are as shown in Fig. 8. The largest is the biquartic box-spline, for
which extraordinary cases were considered by Qu [9], Zorin and Schröder [10].
It is not clear what, if any, advantage would be gained from the three larger
stencils, compared with the two smaller ones. It would be interesting to have all
five implemented, and compared against one another, and for mechanisms to be
developed to handle extraordinary cases, edges and creases for the six-arrow and
eight-arrow schemes.

4 Longer Arrows

It is possible to create schemes with squared or higher terms of z in their z-
transform. In the arrow notation these are represented by longer arrows. For
example (1 + z2) is represented by an arrow of twice the length of that repre-
senting (1 + z).

The most interesting place where such a binary scheme arises is when we
consider a

√
2 scheme with the arrow symbol:

↑→↖↗

This is the same symbol as for the binary simplest scheme (Sect. 3.6). However,
it can also be implemented as a

√
2 scheme in its own right. This is done by

deriving two, rather than four, stencils from the mask (Fig. 4). The stencils are
read off from the mask at 45◦. Rotating them by 45◦, the two stencils are:

[
1 2 1
1 2 1

] ⎡

⎣
1 1
2 2
1 1

⎤

⎦

for new vertices at the nominal centres of the vertical and horizontal edges
respectively. This is straightforward to implement and it should be relatively
straightforward to generalise to the extraordinary cases, edges and creases.
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Taking the convolution of two
√

2 steps, where the second step is rotated by
45◦ and dilated by

√
2, gives a binary scheme with arrow symbol:

↑
→↖↗ ∗ ↑→↖↗ =

↑

↑

→ →↖
↖

↗
↗

and with z-transform (1+z1)(1+z2
1)(1+z2)(1+z2

2)(1+z1z2)2(1+z2/z1)2. Note
the positions of the exponents both inside and outside the parentheses.

The mask of this binary scheme is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
2 3 5 5 3 2

1 3 8 10 10 8 3 1
1 5 10 14 14 10 5 1
1 5 10 14 14 10 5 1
1 3 8 10 10 8 3 1

2 3 5 5 3 2
1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note the four entries of “1” along each of the horizontal and vertical edges.
This is the most obvious indication that those double length arrows are doing
something different to that observed when only single length arrows are used.

The stencils of the binary scheme are the four rotations of:

⎡

⎢⎢⎣

3 5 2
1 10 14 5
1 8 10 3

1 1

⎤

⎥⎥⎦

This is a big stencil and, thus, one would not expect to implement it as a binary
scheme nor try to extend the binary scheme to extraordinary cases. Instead, as
with 4–8, any such extension would be implemented for the

√
2 scheme.

While this scheme is certainly valid there is an interesting question, when
determining the continuity, as to how those double length arrows contribute
towards continuity. If they contribute as for single length arrows, then the scheme
is C4 in regular regions. If not, it is almost certainly at least C2. Analysis of
these double length arrows is best done in the univariate case in a similar way
to that done by Dyn [11] and Hassan [12]. Regardless of whether it is C4 or
C2 in regular regions, the scheme would benefit from further investigation and
extension to extraordinary cases.

We note, in passing, that it would also be possible to have “knight’s move”
arrows. It is unclear what the implications of these would be. Would they
provide extra safe extrusion directions? Would they contribute towards higher
continuity?
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5 Triangular Schemes

Triangular schemes have six principal directions, three primary and three sec-
ondary, but are otherwise handled in much the same way as for quadrilaterals.
Two of the primary directions are (1 + z1) and (1 + z2). It is a matter of con-
vention whether the third primary direction should be treated as (1 + z1z2) or
(1 + z2/z1), depending on whether you prefer the positive z1 and z2 axes to be
separated by 60◦ or 120◦. Note that (1 + z2/z1) can be shifted to (z1 + z2) if
you prefer only non-negative powers of z. The shift has no effect on the resulting
mask.

The simplest box-spline triangular scheme, linear interpolation, is C0, has the

arrow symbol and the mask:

1 1
1 2 1

1 1

The next simplest, Loop subdivision [13], is C2 in regular regions, has the arrow

symbol and the mask:

1 2 1
2 6 6 2

1 6 10 6 1
2 6 6 2

1 2 1

We can introduce secondary principal directions with the six-arrow symbol

. This has the binary mask:

1 1
1 2 2 2 1

1 2 4 4 2 1
2 4 4 4 2

1 2 4 4 2 1
1 2 2 2 1

1 1

with four stencils, one for the vertex and three rotational variants for the three
edges:

2 2
2 4 2
2 2

1 2 1
4 4

1 2 1

However, a binary scheme cannot be factorised into two
√

2 steps, because
there is no way to construct a triangular

√
2 subdivision scheme [14,15]. Indeed,
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the longer arrows are
√

3 the length of the shorter arrows, rather than
√

2. To
get a factorisable version, you must construct a ternary scheme, which can be
factorised into the convolution of two

√
3 steps.

6 Ternary and Higher Arities

The arrow notation extends to box-spline schemes of higher arities. For example,
the ternary arrow→, which looks identical to the binary arrow, corresponds to
(1+ z + z2)/3. This means that there are three possible ways in which the arrow
can be used: no translation, a translation of one unit, and a translation of two
units. Compare this with the binary arrow, which corresponds to (1+z)/2, where
we can interpret it as either translation of one unit or no translation, which is
equivalent to either using the arrow or not using it. So long as we remember
that the geometric interpretation of the ternary arrow is somewhat different, we
can proceed as for the binary case. In general, the n-ary arrow corresponds to
(1− zn)/(n(1− z)) which is (1 + z + · · ·+ zn−1)/n.

6.1 Ternary Univariate Schemes

As for the binary univariate schemes, we can list the possible ternary univariate
box-spline schemes (Fig. 9). Remember that each of these schemes has three
stencils, obtained by taking every third element from the mask. For example,
the cubic ternary scheme has the three stencils 1

27 [1, 16, 10], 1
27 [4, 19, 4], and

1
27 [10, 16, 1].

Arrows z-transform Mask Continuity

→→ 3
(

(1+z+z2)
3

)2
1
3
[1, 2, 3, 2, 1] C0

→→→ 3
(

(1+z+z2)
3

)3
1
9
[1, 3, 6, 7, 6, 3, 1] C1

→→→→ 3
(

(1+z+z2)
3

)4
1
27

[1, 4, 10, 16, 19, 16, 10, 4, 1] C2

Fig. 9. The linear, quadratic, and cubic ternary univariate box-spline subdivision
schemes

6.2 Ternary Bivariate Schemes

All of the derivations which work for the binary schemes also work for the ternary
schemes. For example, we can easily derive the ternary mask for the arrow symbol

. This produces the ternary version of Loop subdivision [16] which has
the mask:
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1 2 3 2 1
2 6 10 10 6 2

3 10 20 24 20 10 3
2 10 24 36 36 24 10 2

1 6 20 36 45 36 20 6 1
2 10 24 36 36 24 10 2

3 10 20 24 20 10 3
2 6 10 10 6 2

1 2 3 2 1
Selecting every third entry on every third line generates the stencils shown below,
along with the five rotations of the second stencil and the one rotation of the
third stencil:

6 6
6 45 6
6 6

2 10
1 36 20

2 10

3 24 3
24 24

3

These stencils are for new vertices at the vertex, a third of the way along an
edge, and face centre respectively.

We can also generate the ternary version of the six-arrow, six-direction box

spline, with arrow symbol . This has the mask:

1 1 1
1 2 3 3 2 1

1 2 4 6 7 6 4 2 1
1 3 6 9 11 11 9 6 3 1

1 3 7 11 15 16 15 11 7 3 1
2 6 11 16 19 19 16 11 6 2

1 4 9 15 19 21 19 15 9 4 1
2 6 11 16 19 19 16 11 6 2

1 3 7 11 15 16 15 11 7 3 1
1 3 6 9 11 11 9 6 3 1

1 2 4 6 7 6 4 2 1
1 2 3 3 2 1

1 1 1

This can be factorised into two
√

3 steps, which are much simpler to evaluate.

1
1 1

1 2 1
2 2

1 3 1
2 2

1 2 1
1 1

1

∗

1 1 1
1 2 2 1

1 2 3 2 1
1 2 2 1
1 1 1
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The stencils which can be derived from these
√

3 masks are:

1 1
1 3 1

1 1

1 2 1
2 2
1

for new vertices at the vertex and face centre respectively. Note that this is not
the Kobbelt

√
3 scheme [17] and that the Kobbelt scheme is not a box-spline

scheme.

7 Summary

The four different methods of deriving subdivision masks all have their benefits.
The arrow notation is useful in that it is a graphical, rather than strictly math-
ematical, representation and in that it allows us to read off the continuity of the
box-spline scheme directly. It also allows us to enumerate all possible schemes
easily by forming all possible combinations of arrows. This paper has shown
all possible symmetric binary quadrilateral schemes which have up to eight ar-
rows, and all possible symmetric binary triangular schemes which have up to six
arrows.

There are interesting small projects that could be tackled, arising from this
work, each involving investigating the generalisation of a box-spline scheme or
schemes to the extraordinary cases, edges and creases. They are:

1. an investigation of the family of dual quadrilateral binary box-spline schemes
illustrated in Fig. 8;

2. an investigation of the
√

2 scheme described in Sect. 4, including considera-
tion of the effect of arrows which are longer than the shortest primary and
secondary arrows; and

3. an investigation of the
√

3 scheme described at the end of Sect. 6.
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Abstract. In this paper, we investigate the heat kernel embedding as a
route to computing geometric characterisations of graphs. The reason for
turning to the heat kernel is that it encapsulates information concerning
the distribution of path lengths and hence node affinities on the graph.
The heat kernel of the graph is found by exponentiating the Laplacian
eigensystem over time. The matrix of embedding co-ordinates for the
nodes of the graph is obtained by performing a Young-Householder de-
composition on the heat kernel. Once the embedding of its nodes is to
hand we proceed to characterise a graph in a geometric manner. To ob-
tain this characterisation, we focus on the edges of the graph under the
embedding. Here we use the difference between geodesic and Euclidean
distances between nodes to associate a sectional curvature with edges.
Once the section curvatures are to hand then the Gauss-Bonnet theo-
rem allows us to compute Gaussian curvatures at nodes on the graph.
We explore how the attributes furnished by this analysis can be used to
match and cluster graphs.

Keywords: Graph spectra, kernel methods, graph embedding, differen-
tial geometry, graph clustering.

1 Introduction

Graphs are used pervasively in computer science as representations of data with
a network or relational structure. However, the analysis of data in this form
has proved an elusive problem. The reason for this is that most of the available
pattern analysis tools are couched in terms of vectorial rather than graph rep-
resentations. One way to circumvent this problem is to is to embed the nodes of
a graph in a vector space and to study the properties of the point distribution
that results from the embedding. This is a problem that arises in a number of
areas including manifold learning theory and graph-drawing. In the mathemat-
ics literature, there is a considerable body of work aimed at understanding how
graphs can be embedded on manifolds [14]. In the pattern analysis community,
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there has recently been renewed interest in the use of embedding methods moti-
vated by graph theory. One of the best known of these is ISOMAP [23]. Here a
neighborhood ball is used to convert data-points into a graph, and Dijkstra’s al-
gorithm is used to compute the shortest(geodesic) distances between nodes. By
applying multidimensional scaling (MDS) to the matrix of geodesic distances
the manifold is reconstructed. The resulting algorithm has been demonstrated
to locate well-formed manifolds for a number of complex data-sets. Related algo-
rithms include locally linear embedding which is a variant of PCA that restricts
the complexity of the input data using a nearest neighbor graph [17], and the
Laplacian eigenmap that constructs an adjacency weight matrix for the data-
points and projects the data onto the principal eigenvectors of the associated
Laplacian matrix (the degree matrix minus the weight matrix) [3]. Collectively,
these methods are sometimes referred to as manifold learning theory.

The spectrum of the Laplacian matrix has been widely studied in spectral
graph theory [4] and has proved to be a versatile mathematical tool that can be
put to many practical uses including routing [1], indexing [19], clustering [18]
and graph-matching [24,15].

One of the most important properties of the Laplacian spectrum is its close
relationship with the heat equation. The heat equation can be used to specify
the flow of information with time across a network or a manifold [26]. According
to the heat-equation the time derivative of the kernel is determined by the graph
Laplacian. The solution to the heat equation is obtained by exponentiating the
Laplacian eigensystem over time. Because the heat kernel encapsulates the way
in which information flows through the edges of the graph over time, it is closely
related to the path length distribution on the graph. Recently, Lebanon and
Lafferty [12] have shown how the heat kernel to construct statistical manifolds
that can be used for inference and learning tasks. Moreover, in related work
we have explored how a number of different invariants that can be computed
from the heat kernel can be used for graph clustering [25]. Colin de Verdiere has
shown how to compute geodesic invariants from the Laplacian spectrum [6].

In fact, a graph can be viewed as residing on a manifold whose pattern of
geodesic distances is characterised by the heat kernel. Differential invariants can
be computed from the heat kernel, and these in turn are related to the Laplacian
eigensystem. This field of study is sometimes referred to as spectral geometry
[8,26]. One of the most interesting recent developments in this area has been to
establish a link between graph-spectra and the geometry of the underlying man-
ifold [9,28,2,20]. Here considerable insight can be achieved through the analysis
of the heat kernel of the graph [9,2]. There are a number of different invariants
that can be computed from the heat-kernel. Asymptotically for small time, the
trace of the heat kernel [4] (or the sum of the Laplacian eigenvalues exponen-
tiated with time) can be expanded as a rational polynomial in time, and the
co-efficiants of the leading terms in the series are directly related to the geom-
etry of the manifold. For instance, the leading co-efficient is the volume of the
manifold, the second co-efficient is related to the Euler characteristic, and the
third co-efficient to the Ricci curvature.
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The aim in this paper is to investigate whether the heat kernel can be used to
provide a geometric characterisation of graphs that can be used for the purposes
of graph-clustering. This is of course a problem that can be addressed directly
by using the spectral geometry of the combinatorial Laplacian. However, there
are two major obstacles. First, the results delivered by spectral geometry are
interesting, they apply under the assumption that the graph Laplacian converges
to the corresponding continuous Laplace operator provided that the graph is
sufficiently large. Second, the calculations involved are intricate and the resulting
expressions are not very elegant. Hence, we adopt a more pragmatic approach
in this paper where we aim to characterise the geometry of point distribution
based on embeddings derived from the heat-kernel.

The method involves performing a Young-Householder decomposition of the
heat-kernel to recover the matrix of embedding co-ordinates. In other words,
we perform kernel principal components analysis on the heat kernel to map
nodes of the graph to points in the vector space. We provide an analysis which
shows how the eigenvalues and eigenvectors of the covariance matrix for the
point distribution resulting from the kernel mapping are related to those of the
Laplacian.

With the embeddings to hand, we develop a graph characterisation based on
differential geometry. To do this we compute the sectional curvatures associated
with the edges of the graph, making use of the fact that the sectional curvature
is determined by the difference between the geodesic and Euclidean distances.
We take this analysis one step further, and use the Gauss-Bonnet theorem to
compute the Gaussian curvatures associated with triangular faces of the graph.
We characterise graphs using sets of curvatures, defined either on the edges or the
faces. We explore whether these characterisations can be used for the purposes of
graph matching and graph clustering. To this end, we compute the similarities
of the sets using robust variants of the Hausdorff distance. This allows us to
compute the similarity of different graphs without knowing the correspondences
between edges or faces.

The outline of this paper is as follows. In Section 2 we provide some back-
ground on the heat-kernel and its relationship with the Laplacian spectrum.
Section 3 describes how the Young-Householder factorisation of the heat kernel
leads to a co-ordinate embedding of the nodes of a graph. Section 4 shows how
the Euclidean and geodesic distances between nodes under the embedding can
be used to estimate sectional curvatures for the edges and Gaussian curvatures
for the triangular faces, using two different embeddings. In Section 5 we exper-
iment with the method on the houses database. Finally, Section 7 offers some
conclusions and directions for future research.

2 Heat Kernels on Graphs

In this section, we give a brief introduction on the graph heat kernel. To com-
mence, suppose that the graph under study is denoted by G = (V,E) where V
is the set of nodes and E ⊆ V × V is the set of edges. Since we wish to adopt
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a graph spectral approach we introduce the adjacency matrix A for the graph
where the elements are

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise (1)

We also construct the diagonal degree matrix D, whose elements are given by
the degree of the nodes, i.e. D(u, u) = deg(u) =

∑
v∈V A(u, v). From the degree

matrix and the adjacency matrix we construct the Laplacian matrix L = D−A,
i.e. the degree matrix minus the adjacency matrix,

L(u, v) =

⎧
⎨

⎩

deg(v) if u = v
−1 if u and v are adjacent
0 otherwise

(2)

The normalized Laplacian L̂ = D− 1
2LD− 1

2 has elements

L̂(u, v) =

⎧
⎪⎨

⎪⎩

1 if u = v and dv �= 0
− 1√

deg(u)deg(v)
if u and v are adjacent

0 otherwise
(3)

The spectral decomposition of the normalized Laplacian matrix is L̂ = ΦΛΦT ,
where Λ = diag(λ1, λ2, ..., λ|V |)(λ1 < λ2 < ... < λ|V |)is the diagonal matrix
with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix
with the ordered eigenvectors as columns. Since L̂ is symmetric and positive
semi-definite, the eigenvalues of the normalized Laplacian are all non-negative.
The multiplicity of the zero eigenvalue is the number of isolated cliques in the
graph. For a connected graph, the multiplicity of the zero eigenvalue is one. The
eigenvector associated with the smallest non-zero eigenvector is referred to as
the Fiedler-vector [4].

2.1 Heat Equation

We are interested in the heat equation associated with the Laplacian, and this
is given by.

∂ht

∂t
= −L̂ht (4)

where ht is the heat kernel and t is time. The heat kernel is the fundamental
solution of the heat equation. It can be viewed as describing the flow of infor-
mation across the edges of the graph with time. The rate of flow is determined
by the Laplacian of the graph. The solution to the heat equation is

ht = e−tL̂ (5)

From [4] we can proceed to compute the heat kernel on a graph by exponen-
tiating the Laplacian eigenspectrum, i.e.

ht = Φ exp[−Λt]ΦT =
|V |∑

i=1

exp[−λit]φiφ
T
i (6)
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The heat kernel is a |V | × |V | matrix. For the nodes u and v of the graph G the
heat kernel element is

ht(u, v) =
|V |∑

i=1

exp[−λit]φi(u)φi(v) (7)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � I − exp[−λ2t]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and

φ2 is the associated eigenvector, i.e. the Fiedler vector. Hence, the large time
behavior is governed by the global structure of the graph.

2.2 Geodesic Distance from the Heat Kernel

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. To show this, consider the matrix P = I − L̂, where
I is the identity matrix. The heat kernel can be rewritten as ht = e−t(I−P ). We
can perform the MacLaurin expansion on the heat kernel to re-express it as a
polynomial in t. The result of this expansion is

ht = e−t(I + tP +
(tP )2

2!
+

(tP )3

3!
+ ...) = e−t

∞∑

k=0

P k t
k

k!
(8)

For a connected graph, the matrix P has elements

P (u, v) =

⎧
⎪⎨

⎪⎩

0 if u = v
1√

deg(u)deg(v)
if u �= v and (u, v) ∈ E

0 otherwise
(9)

As a result, we have that

P k(u, v) =
∑

Sk

k∏

i=1

1√
deg(ui)deg(ui+1)

(10)

where the walk Sk is a sequence of vertices u0, ..., uk of length k such that
(ui, ui+1) ∈ E. Hence, P k(u, v) is the sum of weights of all walks of length k
joining nodes u and v. In terms of this quantity, the elements of the heat kernel
are given by

ht(u, v) = exp[−t]
|V |2∑

k=0

P k(u, v)
tk

k!
(11)

We can find a spectral expression for the matrix P k using the eigendecom-
position of the normalized Laplacian. Writing P k = (I − L̂)k it follows that
P k = Φ(I − Λ)kΦT . The element associated with the nodes u and v is

P k(u, v) =
|V |∑

i=1

(1− λi)kφi(u)φi(v) (12)
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The geodesic distance between nodes, i.e. the length of the walk on the graph
with the smallest number of connecting edges, can be found by searching for the
smallest value of k for which P k(u, v) is non zero, i.e. dG(u, v) = floorkPk(u, v).

3 Heat Kernel Embedding

In this section we first show how the heat kernel can be used to embed the nodes
of a graph in a vector space using the Young-Householder decomposition. Second,
we provide an analysis revealing the relationship between the eigenvalues and
eigenvectors of the heat-kernel and those of the covariance matrix for the point
distribution resulting from the embedding.

3.1 Co-ordinate Embedding

We use the heat kernel to map the nodes of the graph into a vector space.
Let Y = (y1|...|yu|...|Y|V |) be the |V | × |V | matrix with the vectors of co-
ordinates as columns. The vector of co-ordinates yu for the node index u is
hence the uth column of Y . The co-ordinate matrix is found by performing
the Young-Householder decomposition ht = Y TY on the heat-kernel. Since
ht = Φ exp[−Λt]ΦT , Y = exp[− 1

2Λt]Φ
T . Hence, the co-ordinate vector for the

node indexed u is

yu = (exp[−1
2
λ1t]φ1(u), exp[−1

2
λ2t]φ2(u), ..., exp[−1

2
λ|V |t]φ|V |(|V |))T (13)

The kernel mapping M : V → R|V |, embeds each node on the graph in a
vector space R|V |. The heat kernel ht = Y TY can also be viewed as a Gram
matrix, i.e. its elements are scalar products of the embedding co-ordinates. Con-
sequently, the kernel mapping of the nodes of the graph is an isometry. The
squared Euclidean distance between nodes u and v is given by

dE(u, v)2 = (yu − yv)T (yu − yv) =
|V |∑

i=1

exp[−λit]
{
φi(u)− φi(v)

}2

(14)

Figure 1 shows the steps to embed the graph into a manifold.

3.2 Point Distribution Statistics

One very simple way to characterize the embedded point-set is to study the
properties of the covariance matrix of the point-set generated by the embed-
ding methods. To construct the covariance matrix, we commence by computing
the mean coordinate vector. The mean co-ordinate vector for the heat kernel
embedding is

ŷ =
1
|V |Y e =

1
|V | exp[−1

2
Λt]ΦT e (15)
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Fig. 1. Illustration of the geometric embedding of the graph into a manifold

where e = (1, 1, ..., 1)T is the all ones vector of length |V |. The matrix of centred
co-ordinates is found by subtracting the mean position vector from each of the
co-ordinate vectors and is given by

YC = Y − 1
|V |Y ee

T = exp[−1
2
Λt]ΦT (I − 1

|V |ee
T ) = exp[−1

2
Λt]ΦTMT (16)

where MT = (I − 1
|V |ee

T ). The covariance matrix for the embedded point-
positions is

SY = YCY
T
C = exp[−1

2
Λt]ΦTMTMΦ exp[−1

2
Λt] (17)

Hence, we can write

SY =
1
|V |C

TC

where C = MΦ exp[− 1
2Λt]. To compute the eigenvectors of SY we first construct

the matrix,
CCT = MΦ exp[−Λt]ΦTMT = MhtM

T

i.e. CCT has eigenvalue matrix Λh = exp[−Λt] and un-normalised eigenvector
matrix U = MΦ. As a result the matrix CTC has normalised eigenvector matrix
Û = CTUΛ

− 1
2

h and eigenvalue matrix Λh.
To see this note that

(CTUΛ
− 1

2
h )Λh(CTUΛ

− 1
2

h )T = CTUUTC = CTC (18)
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Hence CTC has eigenvector matrix Λh = exp[−Λt] and normalised eigenvector
matrix

Û = (MΦ exp[−1
2
Λt])TMΦ(exp[−Λt])− 1

2 = exp[−1
2
Λt]ΦTMTMΦ exp[

1
2
Λt]

(19)
Finally, it is interesting to note that the projection of the centred co-ordinates

onto the eigenvectors of the covariance matrix SY is

YP = ÛTYC = exp[−1
2
Λt]ΦTMT = YC

4 Geometric Characterisation

In this section we develop our differential characterisation of graphs. We com-
mence by showing how the geodesic and Euclidean distances estimated from
the spectrum of the Laplacian and the heat kernel embedding can be used to
associate a sectional curvature with the edges of a graph. Next, we turn our
attention to geodesic triangles formed by the embedding of first order cycles,
i.e. triangles, of the graph. From the turning angles of the geodesic triangles, we
estimate Gaussian curvature.

4.1 Sectional Curvature

In this section we show how the Euclidean distance and geodesic distances com-
puted for embedding can be used to compute the sectional curvature associated
with edges of the graph. The sectional curvature is determined by the degree to
which the geodesic bends away from the Euclidean chord. Hence for a torsionless
geodesic on the manifold, the sectional curvature can be estimated easily if the
Euclidean and geodesic distances are known. Suppose that the geodesic can be
locally approximated by a circle. Let the geodesic distance between the pair of
points u and v be dG(u, v) and the corresponding Euclidean distance be dE(u, v).
Further let the radius of curvature of the approximating circle be rs(u, v) and
suppose that the tangent vector to the manifold undergoes a change in direction
of 2θu,v as we move along a connecting circle between the two points. We show
an illustration of the above in Figure 2.

In terms of the angle θu,v, the geodesic distance, i.e. the distance traversed
along the circular arc, is dG(u, v) = 2rs(u, v)θu,v, and as a result we find that
θu,v = dG(u, v)/2rs(u, v). The Euclidean distance, on the other hand, is given
by dE(u, v) = 2rs(u, v) sin θu,v, and can be approximated using the MacLaurin
series

dE(u, v) = 2rs(u, v){θu,v − 1
6
θ3u,v + ...} (20)

Substituting for θu,v obtained from the geodesic distance, we have

dE(u, v) = dG(u, v)− dG(u, v)3

24r2s(u, v)
(21)
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Fig. 2. Illustration of relationship between the geodesic distance, Euclidean distances
and the sectional curvature

Solving the above equation for the radius of curvature, the sectional curvature
of the geodesic connecting the nodes u and v is approximately

ks(u, v) =
1

rs(u, v)
=

2
√

6(dG(u, v)− dE(u, v))
1
2

dG(u, v)
3
2

(22)

4.2 The Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem links the topology and geometry of a surface in an
elegant and compact manner. Spivak [21] and Stillwell [22] give accounts of the
early history of its development and application.

For a smooth compact oriented Riemannian 2-manifold M , let �g be a trian-
gle on M whose sides are geodesics, i.e. paths of shortest length on the manifold.
Further, let α1, α2 and α3 denote the interior angles of the triangle. According to
Gauss’s theorem, if the Gaussian curvature K (i.e. the product of the maximum
and minimum curvatures at a point on the manifold) is integrated over �g, then

∫

�g

KdM =
3∑

i=1

αi − π (23)

where dM is the Riemannian volume element.

4.3 Gaussian Curvature

To estimate the Gaussian curvature from the above, we must determine the
interior angles αi of the geodesic triangle. To this end we assume that T is a
triangulation of a smooth manifold M , �g be a geodesic triangle on M with
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angles {αi}3i=1 and geodesic edge lengths {dgi}3i=1. Further suppose that �e be
the corresponding Euclidean triangle with edge lengths {dei}3i=1 and interior
angles {ϕi}3i=1. We assume that the geodesic index i is a great arc on a sphere
with radius ri, i = 1, 2, 3. By averaging over the constituent geodesic edges,
we treat the geodesic triangles as residing on a hyper−sphere with radius r =
1
3

∑3
i=1 ri.

To commence, we compute the area of the geodesic triangle. Here we’ll make
use of the geometry of the sphere, the area of the spherical triangle is given by

Ag = (
3∑

i=1

αi − π)r2 (24)

From (24) we can see that

3∑

i=1

αi − π =
Ag

r2
(25)

Now, considering a small area element on the sphere given in spherical co-
ordinates by dA = R2 sin θdθdϕ, the integration of dA bounded by θ gives us
another formula for computing the area of the geodesic triangle

A =
1
2r
d2

e (26)

where d2
e is computed from the embedding using (14).

From (23), (25) and (26), we get the following formula for the Gaussian cur-
vature residing over the geodesic triangle:

∫

�g

KdM =
1

2r3
d2

e (27)

5 Graph Similarity

We represent the graphs using sets of curvatures defined either over the edges
(i.e. sectional curvatures) or triangular faces (i.e. Gaussian curvatures) of the
graphs under consideration. The sets of curvatures are unordered, i.e. we do
not know the correspondences between edges or faces in different graphs, We
hence require a set-based similarity measure to compare graphs in the absence
of correspondences. One route is provided by the Hausdorff distance. However,
this is known to be sensitive to noise, so we explore median and probabilistic
variants of the Hausdorff distance.

5.1 Hausdorff Distance

The Hausdorff distance provides a means of computing the distance between
sets of unordered observations when the correspondences between the individual
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items are unknown. In its most general setting, the Hausdorff distance is defined
between compact sets in a metric space. Given two such sets, we consider, for
each point in one set, the closest point in the second set. Hausdorff distance
is the maximum over all these values. More formally, the classical Hausdorff
distance(HD)[11] between two finite point sets A and B is given by H(A,B) =
max(h(A,B), h(B,A)) where the directed Hausdorff distance from A to B is
defined to be

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (28)

and ‖.‖ is some underlying norm on the points of A and B (e.g., the L2 or
Euclidean norm). Dubuisson and Jain [7] proposed a robust modified Hausdorff
distance (MHD) based on the average distance value instead of the maximum
value, in this sense they defined the directed distance of the MHD as

h(A,B) =
1
NA

∑

a∈A

min
b∈B
‖a− b‖ (29)

Using these ingredients we can describe how Hausdorff distances can be extended
to graph-based representations. To commence let us consider two graphs G1 =
(V1, E1, k1) and G2 = (V2, E2, k2), where V1,V2 are the sets of nodes, E1,E2 the
sets of edges and k1,k2 the matrices whose elements are the curvature defined
in the previous section. We can now write the distances between two graphs as
follows:

1) The classical Hausdorff distance (HD) is

hHD(G1, G2) = max
i∈V1

max
j∈V1

min
I∈V2

min
J∈V2

‖k2(I, J)− k1(i, j)‖ (30)

2) The modified Hausdorff distance (MHD) is

hMHD(G1, G2) =
1
|V1|

∑

i∈V1

(
1
|V1|

∑

i∈V1

min
I∈V2

min
J∈V2

‖k2(I, J)− k1(i, j)‖) (31)

5.2 A Probabilistic Similarity Measure (PSM)

One of the well documented problems with both the Hausdorff and modified
Hausdorff distances, is lack of robustness. In order to overcome this problem,
Huet and Hancock [10] have recently developed a probabilistic variant of the
Hausdorff distance. This measures the similarity of the sets of attributes rather
than using defined set based distance measures. For the graphs G1 and G2,
the set of all nodes connected to the node I ∈ G2 by an edge is defined as
C2

I = {J |(I, J) ∈ E2}, and the corresponding set of nodes connected to the node
i ∈ G1 by an edge is C1

i = {j|(i, j) ∈ E2}. For the match of the graph G2 onto
G1 Huet and Hancock’s similarity measure is

S(G1, G2) =
1

|V2| × |V1|
∑

i∈V1

max
I∈V2

∑

j∈C1
i

max
J∈C2

I

P ((i, j)→ (I, J)|k2
(I,J), k

1
(i,j)) (32)
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In this formula the a posteriori probability P ((i, j) → (I, J)|k2
(I,J), k

1
(i,j)) rep-

resents the value for the match of the G2 edge (I, J) onto the G1 edge (i, j)
provided by the corresponding pair of attribute structures k2

(I,J) and k1
(i,j).

The similarity measure commences by finding the maximum probability over
the nodes in C2

I then averaging the edge-compatibilities over the nodes in C1
i .

Similarly, we consider the maximum probability over the nodes in the graph G2

followed by averaging over the nodes inG1. It is worth mentioning that unlike the
Hausdorff distance, this similarity measure does not satisfy the distance axioms.
Moreover, while the Hausdorff distance is saliency-based (i.e. it measures the
maximum distance between two sets of observations) our measure here returns
the maximum similarity. back to the formula where we still need to compute
the probability P ((i, j)→ (I, J)|k2

I,J , k
1
i,j) For that purpose we will use a robust

weighting function

P ((i, j)→ (I, J)|k2
(I,J), k

1
(i,j)) =

Γσ(‖k2
(I,J), k

1
(i,j)‖)∑

(I,J)∈E2
Γσ(‖k2

(I,J), k
1
(i,j)‖)

) (33)

where Γσ(.) is a distance weighting function. There are several alternative ro-
bust weighting functions. Here we work with a Gaussian of the form Γσ(ρ) =
exp(− ρ2

2σ2 ).

5.3 Multidimensional Scaling

With the graph distances in hand, we require a means of visualizing the dis-
tribution of graphs. We choose to use the classical Multidimensional Scaling
(MDS) method [5] to embed the data specified in the matrix in Euclidean space.
Let H be the distance matrix with row r and column c entry Hrc. The first
step of MDS is to calculate a matrix T whose element with row r and column
c is given by Trc = − 1

2 [H2
rc − Ĥ2

r. − Ĥ2
.c + Ĥ2

..] where Ĥr. = 1
N

∑N
c=1Hrc is

the average value over the rth row in the distance matrix, H.c is the similarly
defined average value over the cth column and Ĥ.. = 1

N2

∑N
r=1

∑N
c=1Hrc is

the average value over all rows and columns of the distance matrix. Then, we
subject the matrix T to an eigenvector analysis to obtain a matrix of embed-
ding coordinates X . If the rank of T is k; k ≤ N , then we will have knon-zero
eigenvalues. We arrange these k non-zero eigenvalues in descending order, i.e.,
l1 ≥ l2 ≥ ... ≥ lk ≥ 0. The corresponding ordered eigenvectors are denoted by ui

where li is the ith eigenvalue. The embedding coordinate system for the graphs
is X = [

√
l1u1,

√
l2u2, ...,

√
lkuk] for the graph indexed i, the embedded vector

of the coordinates is xi = (Xi,1, Xi,2, ..., Xi,k)T .

6 Experiments

In this section we experiment with the curvature-based attributes extracted using
the heat-kernel embedding, and explore whether they can be used for the pur-
poses of graph-clustering. In our experiments the graphs extracted from images
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of toy houses in the standard CMU, MOVI and chalet house image sequences
[16]. These data sets contain different views of model houses from equally spaced
viewing directions. From the house images, corner features are extracted, and De-
launay graphs representing the arrangement of feature points are constructed.
Our data consists of ten graphs for each of the three houses. Each node in a
Delaunay graph belongs to a first order cycle, and as a result the graph is a tri-
angulation. To commence, we obtain the embedding for each of the thirty graphs
following the steps outlined in Section 3.1. We compute the Euclidean distances
between the nodes in each graph based on the heat kernel embedding obtained
with the values of t = 10.0, 1.0, 0.1 and 0.01. We work with two representations
of the graphs. The first is the sectional curvature associated with the edges, out-
lined in Section 4.1. The second is the Gaussian curvature on the triangles of the
Delaunay triangulations extracted from the graphs, as outlined in Section 4.3.
We use both the sectional and gaussian curvature as features for the purposes
of gauging the similarity of graphs using both the modified Hausdorff distance
and the probabilistic similarity measure. We subject the distance matrices to
the Multidimensional Scaling (MDS) procedure to embed the graphs into a low
dimensional space. Figures 3, 4, 5, 6 show the results obtained, where the
subfigures are ordered from left to right and from top to bottom, using the heat
kernel embedding with the values t = 10.0, 1.0, 0.1 and 0.01.
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Fig. 6. MDS embedding obtained using the probabilistic similarity measure for the
houses data set represented by the Gaussian curvature associated with the geodesic
triangles

Table 1. A rand index vs. t

t=10 t=1.0 t=0.1 t=0.01

MHD Sectional curvature 0.1333 0.2333 0.1333 0.0333

MHD Gaussian curvature 0.1667 0.0333 0.1333 0.4000

PSM Sectional curvature 0.0000 0.0333 0.2667 0.3667

PSM Gaussian curvature 0.3000 0.3000 0.3000 0.3000

To investigate the data in more detail Table 1 shows the rand index for the
data as a function of t. This index is computed as follows: a) We commence by
computing the mean for each cluster, b) We then compute the distance from
each point to each mean. c) If the distance from the correct mean is smaller
than those to remaining means, then the classification is correct, if not then
classification is incorrect. d) The rand index is R= (  incorrect ) / (  incorrect
+  correct ).

A comparison shows that the curvature attributes associated with the edges
give slightly better clusters than those obtained using the attributes derived
from the triangles.
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−3

−2

−1

0

1

2

3

50 100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450
The first House Graph no.6  using heat kernel t=0.1
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Fig. 7. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 1st house
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Fig. 8. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 2nd house

Finally, we investigate how the Gaussian curvatures of the geodesic triangles
are distributed over the Delaunay graph. Figures 7, 8 and 9 show distribution
for sample embeddings computed from the heat kernel at t = 0.1.

From the sequence it is clear that the Gaussian curvature distribution over
the different views of each house is stable, moreover it moves smoothly from
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Fig. 9. The distribution of the Gaussian curvatures of the geodesic triangles for the
ten graphs of the 3rd house

positive (elliptical) to negative (hyperbolic) regions. This suggests that the ar-
rangement of triangles and their Gaussian curvatures could be used as the basis
of a matching algorithm.

7 Conclusion

In this paper we have explored how to use the heat kernel to characterise graphs
in a geometric manner. We commence by performing a Young-Householder de-
composition on the heat kernel to recover the matrix of embedding co-ordinates.
Once embedded we explore a number of alternative ways of characterising the
graphs in a geometric manner. These include the sectional curvatures of edges
estimated from the geodesic and Euclidean distances between nodes, and the
Gaussian curvature of first order cycles. The conclusions of our experimental
study is that both characterisations are effective as a means of characterising
graphs for the purposes of clustering.

Our future plans revolve around developing ways of controlling noise in the
representation. Here we aim to exploit graph-spectral regularisation [27] and
curvature-based diffusion methods. We also aim to explore whether the pattern
of sectional and Gaussian curvatures can be used to construct pattern spaces for
graphs.

There are clearly a number of ways in which the work reported in this paper
can be extended. First, it would be interesting to explore the use of the sectional
curvature as a means of directly embedding the nodes of the graphs on a mani-
fold. One of the possibilities that exists here is the variant of MDS reported by



Geometric Characterizations of Heat Kernel Embeddings 141

Lindman and Caelli [13]. A second line of investigation would be the Euclidean
distances or sectional curvature associated with the edges as attributes for the
purposes of matching. Finally, it would be interesting to investigate if the dis-
tances and curvatures could be used to aid the process of visualising or drawing
graphs.

References

1. Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and
the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)

2. Barlow, M.T.: Diffusions on fractals. Lecture Notes Math., vol. 1690, pp. 1–121.
Springer, Heidelberg (1998)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in Neural Information Processing Systems, vol. 14
(2002)

4. Chung, F.R.K.: Spectral graph theory. CBMS 92 (1997)
5. Cox, T., Cox, M.: Multidimensional Scaling. Chapman-Hall, Boca Raton (1994)
6. de Verdi‘ere, Y.C.: Spectres de graphes. Societe Mathematique De France (1998)
7. Dubuisson, M., Jain, A.: A modified Hausdorff distance for object matching, pp.

566–568 (1994)
8. Gilkey, P.B.: Invariance theory, heat equation, and the index theorem. Mathematics

Lecture Series (1984)
9. Grigor’yan, A.: Heat kernels on manifolds, graphs and fractals. European Congress

of Mathematics I, 393–406 (2001)
10. Heut, B., Hancock, E.R.: Relational object recognition from large structural li-

braries. Pattern Recognition 32, 1895–1915 (2002)
11. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the

Hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)
12. Lebanon, G., Lafferty, J.D.: Hyperplane margin classifiers on the multinomial man-

ifold. In: ICML (2004)
13. Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. Journal of Math-

ematical Psychology 17, 89–109 (1978)
14. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its

algorithmic applications. Combinatorica 15, 215–245 (1995)
15. Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and

singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23(10),
1120–1136 (2001)

16. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recogintion 36, 2213–2230 (2003)

17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. Science 290 (5500), 2323–2326 (2000)

18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22, 888–
905 (2000)

19. Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: Indexing using a
spectral encoding of topological structure. In: CVPR, pp. 2491–2497 (1999)

20. Smola, E.J., Kondor, R.: Kernels and regularization on graphs (2004)
21. Spivak, M.: A Comprehensive Introduction to Differential Geometry, 2nd edn.,

vol. 1-5. Publish or Parish, Houston (1979)
22. Stillwell, J.: Mathematics and its History. Springer, New York (1974)



142 H. El-Ghawalby and E.R. Hancock

23. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319 (2000)

24. Umeyama, S.: An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Trans. Patt. Anal. Mach. Intell. 10, 695–703 (1988)

25. Xiao, B., Hancock, E.R.: Trace formula analysis of graphs. In: Yeung, D.-Y., Kwok,
J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS,
vol. 4109, pp. 306–313. Springer, Heidelberg (2006)

26. Yau, S.T., Schoen, R.M.: Differential Geometry. Science Publication Co. (1988) (in
Chinese)

27. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data.
In: ICML Workshop on Statistical Relational Learning and Its Connections to
Other Fields, pp. 132–137 (2004)

28. Zhu, X., Kandola, J.S., Ghahramani, Z., Lafferty, J.D.: Nonparametric transforms
of graph kernels for semi-supervised learning. In: NIPS (2004)



Compressive Algorithms—Adaptive Solutions of

PDEs and Variational Problems

M. Fornasier

Johann Radon Institute for Computational and Applied Mathematics,
Austria

massimo.fornasier@oeaw.ac.at

Abstract. This paper is concerned with an overview of the main con-
cepts and a few significant applications of a class of adaptive iterative
algorithms which allow for dimensionality reductions when used to solve
large scale problems. We call this class of numerical methods Compres-
sive Algorithms. The introduction of this paper presents an historical
excursus on the developments of the main ideas behind compressive al-
gorithms and stresses the common features of diverse applications. The
first part of the paper is addressed to the optimal performances of such
algorithms when compared with known benchmarks in the numerical
solution of elliptic partial differential equations. In the second part we
address the solution of inverse problems both with sparsity and com-
pressibility constraints. We stress how compressive algorithms can stem
from variational principles. We illustrate the main results and applica-
tions by a few significant numerical examples. We conclude by pointing
out future developments.

1 Introduction

Compressive Algorithms are a novel approach to efficient adaptive computing
and take advantage of the property of solutions of certain PDE’s and variational
problems to be characterized by few degrees of freedom, which are recovered by
adaptive nonlinear iterations. The approach to efficient computing via compres-
sive algorithms responds to the need of addressing very large scale problems
by means of a dimensionality reduction which requires the solution of a combi-
natorial optimization. Compressive algorithms can perform optimal complexity
solutions since they tend to use the minimal number of degrees of freedom,
and are simple to implement. They are already successfully applied in several
problems. Their numerical analysis is still very challenging.

Roughly speaking, compressive algorithms are generically formulated as
thresholded gradient iterations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(n+1) = Hγn

(
u(n) + L∗

n(f − Lnu
(n))
)

︸ ︷︷ ︸
gradient step

, n ∈ IN

Ln ≈ L, for n→∞
(γn)n is a sequence of shape parameters ,

(1)
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to solve exactly, for well-posed problems, or approximatively, for regularized
ill-posed problems, the equation

Lu = f.

Here L and Ln are suitable linear operators acting on the underlying solution
space (usually a suitable Hilbert space). They depend on the particular problem
at hand. f is the datum of the problem. In several instances Ln is a suitable
approximation to a preconditioned version of L. The nonlinear function Hγ

acts as a thresholding operator, i.e., penalizes small/promotes relevant features
of the solution. It depends on the problem, and on the “shape parameter” γ,
which controls the thresholding type and level. Let us stress from now that the
“relevant features” might not be merely, e.g., large wavelet coefficients (see, e.g.
[16]), but they can be expressed in terms of more sophisticated representations
of the solution. For example, we will consider solutions of degenerate PDE’s
with discontinuities along curves, and these will be the interesting features to be
recovered during the solution process.

The main task in compressive algorithms is to predetermine or to adapt the
shape parameters (γn)n and the approximations Ln in order to realize the best
trade-off between rate of convergence to the solution and complexity.

Compressive algorithms have a long history of important successes. Their first
formulations, starting with the concept of thresholding, can be traced back to the
mid-nineties with the pioneering work of Chambolle, DeVore, Lee, and Lucier
[16], Donoho and Johnstone [53,54], Rudin, Osher, and Fatemi [85]. Indeed, on
the one side, the design of bases (e.g., curvelets, local Fourier bases, wavelets) for
sparse representations of digital signals has led to extremely efficient compression
methods, such as JPEG 2000 [78]. Applications in signal de-noising appear in
[48,49]. On the other side, degenerate elliptic PDE’s for anisotropic diffusion, as
appearing in total variation minimization, were also successfully applied for noise
removal in digital images, since they essentially perform a suitable thresholding
of derivatives and promote few edges. Degenerate PDE’s have revolutionized
image processing with an enormous impact and consequences [3].

In the late-nineties, the attention moved from the compressibility of signals
to the compressibility of functions that are only implicitly given as solutions of
equations. A new generation of compressive algorithms was proposed by Cohen,
Dahmen and DeVore in a sequence of fundamental papers [22,23,24] for the com-
putation of compressed solutions of elliptic differential and integral equations,
exploiting adaptive and greedy strategies. One of the innovations of their work
is the a priori analysis of the optimality of such an adaptive scheme. Since solu-
tions can be compressed, hence only few relevant degrees of freedom are sufficient
to well-approximate it, one would like to have algorithms that approximate the
solution performing a number of algebraic operations which are asymptotically
proportional to the number of degrees of freedom of the best approximation.
In other words, the complexity of the algorithm is O(N), where N is the mini-
mal number of degrees of freedom for approximating the solution up to a given
accuracy.
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Although they were mostly interested in approximations of solutions by means
of multiscale bases (e.g., wavelets), their work has recently influenced signifi-
cantly also the approach to the analysis of adaptive finite element methods and
the understanding of their optimal performances [5,90,91]. The latter optimality
was previously evaluated only by a posteriori numerical tests [79, pag. 634].

The use of the compressibility in more general variational problems for sig-
nal recovery and solution of nonlinear equations is the most recent step of this
concept’s long career of “simplifying and understanding complexity”, with an
enormous potential in applications [24,25,44,50,77,87,88]. In particular, the ob-
servation that it is possible to reconstruct compressible signals from vastly in-
complete information just seeking for the total variation or �1-minimal solutions
[9,10,11,51] has led to a new line of research called sparse recovery or compressed
sensing, with very fruitful mathematical and applied results. Again compressive
algorithms play a fundamental role in this context [41,45,15,17,96,97].

This historical excursus motivates our understanding that these instances of
compressing algorithms appearing in different contexts indeed belong to the same
family of numerical methods with very similar underlying concepts and technical
approaches.

We present a non-exhaustive overview of these methods and significant ex-
amples of relevant applications. We particularly stress the variational nature of
these algorithms, which often can be derived as related to nonlinear subgradient
iterations in a nonsmooth minimization process. Often such compressive algo-
rithms stem also from multiple-minimization strategies: the initial variational
problem is solved by the alternating minimization of an augmented functional
with multiple variables. Sometimes this strategy is employed to perform the
original minimization in an easier way by introducing useful auxiliary variables,
whereas at other times we want to realize clever subspace corrections in order
to accelerate the convergence and to reduce the dimensionality of the problem.

We would like to illustrate two kinds of results, without stressing too much
the rigor of the presentation. We will include exhaustive references for the reader
in search of further details. Not all the references are recalled in the text. We
would like instead to convey the main principles, also by illustrating them with
numerical examples.

Optimality. The first kind of result is addressed in Section 2 to the optimal
performances of compressive algorithms. In particular, we consider the difficult
task of realizing optimal approximations to solutions of elliptic operator equa-
tions discretized by redundant decompositions (e.g., wavelet frames).

Variational formulation of compressing algorithms. The second kind of
result is addressed in Section 3 to the formulation of new compressive algo-
rithms for the solution of variational problems involving sparsity constraints, in
particular when the dimension of the problem becomes exaggeratedly large.

In order to support the understanding of the impact for applications, we
provide a collection of a few numerical examples for the adaptive solution of
PDE’s and for image processing.
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2 Optimal Adaptive Frame Solvers for Operator
Equations

2.1 The State of the Art

As already mentioned in the short introductory overview, compressive algorithms
were proposed in order to compute with optimal complexity approximations to
solutions of well-posed elliptic operator equations. They are generally realized
by iterative adaptive gradient steps, where the matrix-vector multiplications are
performed taking advantage of the compressibility of the stiffness matrices L
resulting by discretizations via suitable multiscale bases (e.g., wavelets), followed
by thresholding operations, called coarsening in this context,

u(n+1) = Hγn

(
u(n) + β(n)(f − Lnu

(n))
)
, β(n) > 0, n ∈ N. (2)

The role of the latter operations is to enforce the elimination of negligible
quantities and to select the most relevant coordinates, eventually ensuring the
right balance between number of degrees of freedom/complexity and rate of
convergence. The coarsening corresponds to a hard-thresholding Hγn with thresh-
old γn → 0 for n → ∞, see Figure 1 for an illustrative explanation of soft-
and hard-thresholding. This means that progressively more and more details of
the solution are retained. In practice, the thresholding determines a procedure
COARSE[v, ε] = Hγε(v), such that

‖COARSE[v, ε]− v‖ ≤ ε, ε > 0

for ε > 0, and COARSE[v, ε] has asymptotically minimal support for ε → 0.
The compressed matrix-vector multiplications Lnu

(n) are also realized with the
help of a suitable adaptive procedure APPLY[v, ε], which determines from a
finitely supported v, an asymptotically minimal support vector (for ε → 0) zε

such that
‖Lv − zε‖ ≤ ε, ε > 0.

Fig. 1. We depict soft- and hard-thresholding curves, with solid and dashed lines re-
spectively. Small absolute values are mapped to zero, while values exceeding in modulus
the threshold γ are slightly diminished and just kept respectively.
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In order to promote the minimal complexity in computing the coarsening, also
the datum f is compressed by means of a suitable procedure RHS[f, ε] which
returns an asymptotically minimal support vector (for ε→ 0) such that

‖RHS[f, ε]− f‖ ≤ ε, ε > 0.

The optimal complexity of such procedures is discussed, e.g., in [22,89,92],
and they allow for an implementable version of (2):

SOLVE[η, ε]→ u:
% Input should satisfy η > 0 large enough.
% Define the parameters αopt := 2

‖L‖+‖L†‖−1 and ρ := κ(L)−1
κ(L)+1 .

% Let θ and K be constants with 2ρK < θ < 1/2.

u := 0;
while η > ε do

for j := 1 to K do

u := u+ αopt

(
RHS[f, ρjη

2αK ]−APPLY[u, ρjη
2αK ]

)
;

endfor
η := 2ρKη/θ;
u := COARSE[u, (1− θ)η];

enddo

One can also modify this algorithm with a variable descend parameter αη

(instead of the prescribed αopt), according to, e.g., a classical steepest-descent
(SD) criterion, see [34] for more details. The optimality benchmark of SOLVE
was mostly limited to best approximations with respect to wavelet bases. Un-
fortunately, the efficient applicability of these methods is spoiled by the cru-
cial problem of constructing well-conditioned boundary adapted bases especially
on domains with complicated geometry or manifolds [36,37,38]. The wavelet
bases constructed so far exhibit relatively high condition numbers or limited
smoothness. The patching used to construct global smooth wavelets by domain
decomposition techniques appears complicated and, in most cases, makes the
conditioning worse. The global smoothness of the basis, when implementing
adaptive schemes in [22,23], is a necessary condition for getting compressibil-
ity (i.e., finitely banded approximations) of (infinite) discretization matrices L,
especially for high order operators. This bottleneck has led to generalizations
of the wavelet approach. These generalizations are based on frames, i.e., sta-
ble, redundant, non-orthogonal expansions [20,34,40,59,89], which are simpler
to construct, hence potentially more attractive to practitioners.

2.2 The Frame Discretization

Frame construction is usually implemented by Overlapping Domain Decomposi-
tions (ODD) so no patching at the interfaces is needed to obtain global smooth-
ness. Moreover, the use of frames, due to their intrinsic redundancy, tends to
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improve the conditioning (meant as the ratio between the largest and the small-
est nonzero eigenvalue) of the corresponding discretization matrices and do not
spoil their compressibility. Let us recall shortly the general setting.

Let Ω be a Lipschitz domain in R
n, possibly with re-entrant corners. H is a

Hilbert space of smooth functions with the following embeddings H ⊂ L2(Ω) ⊂
H ′. It is also useful to introduce shortly the notations for sequence spaces. For a
countable index set Λ, 0 < p <∞, we define the spaces �p(Λ) = {c = (cλ)λ∈Λ :∑

λ∈Λ |cλ|p < ∞} endowed with the natural (quasi-)norm, and for p = ∞ we
invoke the usual modification. The operator L : H → H ′ is, e.g., linear, and
elliptic. The Laplace operator acting on H = H1

0 (Ω) is an appropriate example:

−	u = f in Ω, (3)
u = 0 on ∂Ω.

The task to perform is to solve adaptively Lu = f , for f ∈ H ′, when
u has limited Sobolev smoothness, whereas high Besov regularity [27,31]. In
particular, the assumption is that the solution u
 has compressible expansions
u
 =

∑
λ u



λψλ (i.e., with a small number of relatively large coefficients uλ in

absolute value) with respect to a frame Ψ = {ψλ} (e.g., wavelets, shearlets)
[20,34,40,59,89] constructed, e.g., on overlapping domain decompositions. In par-
ticular we choose a frame Ψ = {ψλ}λ∈Λ for H , i.e., ‖f‖H′ � ‖〈f, Ψ〉‖�2(Λ), and
F ∗ : �2(Λ) → H : c �→ cTΨ :=

∑
λ∈Λ cλψλ, F̃ : H → �2(Λ) : u �→ 〈u, Ψ̃〉 are

bounded operators, Ψ̃ is a dual frame. With the frame we discretize the problem
as follows:

Lu
 = f ⇒ Lu
 = f,

{
L := 〈LΨ, Ψ〉,
f := 〈f, Ψ〉.

For simplicity and with the hope not to create confusion in this informal dis-
cussion, we used here u
 and f both to indicate the function and the frame
coefficients. The brackets 〈·, ·〉 denote the duality between H ′ and H .

The construction of the frame by means of an overlapping domain decompo-
sition can be schematically described as follows:

For H = Ht
0(Ω), we fix a smooth

reference Riesz basis Ψ� ⊂ Ht
0(�),

� := (0, 1)n, typically a wavelet
basis with complementary Dirichlet
boundary conditions. Given a suit-
able overlapping decomposition Ω =∑K

i=1Ωi, and κi : � → Ωi, Cm-
diffeomorphisms, m ≥ t, an appro-
priate lifting yields aggregated frames
given by Ψ =

⋃K
i=1 Ψi, see also

[34,62,89].
(0, 1)2

Ψ
�

κ2

κ1
Ψ

(1)

Ψ
(2)

Ω2

Ω1
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Certainly, an overlapping domain decomposition generates regions of the do-
main where the side effect of the redundancy is that solutions are no longer
uniquely representable by the global frame system. At first sight, it may seem
that redundancy contradicts the minimality requirement on the amount of in-
formation being used to approximate the solution. Often accurate simulations
already require processing a huge amount of data. How can one attempt such
computations if the degrees of freedom are also made redundant? A figurative an-
swer to this question is the so-called “dictionary example”: The larger and richer
is my dictionary the shorter are the phrases I compose. The use of the proper
terminology avoids long circumlocutions for describing an object. Of course, the
key point is the capability of choosing the right terminology. Back to mathe-
matical terms, the combination of adaptivity (i.e., the capability of choosing
the right terminology) and redundancy (i.e., the richness or non-uniqueness of
representations) can give rise to compressed and accurate approximations.

2.3 Optimality of Adaptive Frame Approximations

Our main contribution in this setting was directed to the difficult estimate of
the trade-off between compressibility and adaptivity effort. While for bases the
best N−term approximation is the optimal benchmark, for frames this concept
is not well-defined, due to the non-uniqueness of the expansion. Nevertheless, for
frames constructed as a union of bases of the same nature (e.g., wavelet bases),
as we do by using overlapping domain decompositions, we have to expect that
the performances cannot be much better than using a unique global basis. Hence,
in these cases, again the best N−term approximation with respect to a certain
specific representation of the solution constructed via suitable partitions of unity
does represent a good benchmark. The core of our work in this direction consisted
in the proof of the optimality of compressive algorithms based on wavelet frame
discretizations, despite the redundancy [33,32,34,89].

2.4 Numerical Experiments

In order to illustrate the mentioned theoretical results, we would like to present
a few concrete numerical examples. For the discretization we use aggregated
wavelet frames on suitable overlapping domain decompositions, as the union
of local wavelet bases lifted to the subdomains. As such local bases we use
piecewise linear and piecewise quadratic wavelets with complementary bound-
ary conditions from [36], with order of polynomial exactness d = 2 and with
d̃ = 2 vanishing moments. In particular, we impose here homogenous boundary
conditions on the primal wavelets and free boundary conditions on the duals.
We test the algorithms on both 1D and 2D Poisson problems.

2.5 Poisson Equation on the Interval

We consider the variational formulation of the following problem of second order
on the interval Ω = (0, 1), i.e., n = 1, with homogenous boundary conditions

−u′′ = f on Ω, u(0) = u(1) = 0. (4)
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Fig. 2. Exact solution (solid line) for the one–dimensional example being the sum of
the dashed and dash–dotted functions

The right-hand side f is given as the functional defined by f(v) := 4v(1
2 ) +∫ 1

0
g(x)v(x)dx, where

g(x) = −9π2 sin(3πx) − 4.

The solution is consequently given by

u(x) = − sin(3πx) +
{

2x2 , x ∈ [0, 1
2 )

2(1− x)2, x ∈ [12 , 1] ,

see Figure 2. As an overlapping domain decomposition we choose Ω = Ω1 ∪Ω2,
where Ω1 = (0, 0.7) and Ω2 = (0.3, 1). Associated to this decomposition we
construct our aggregated wavelet frames just as the union of the local bases. It
is shown in [33,32,89] that such a system is a (Gelfand) frame for Ht

0(Ω) and
that it can provide a suitable characterization of Besov spaces in terms of wavelet
coefficients.

On the one hand, the solution u is contained in Hs+1
0 (Ω) only for s < 1

2 . This
means that linear Galerkin methods can only converge with limited order. On the
other hand, it can be shown that u ∈ Bs

τ (Lτ (Ω)) for any s > 0, 1/τ = s − 1/2
[27,31], so that the wavelet frame coefficients uλ associated with u define a
sequence in �wτ for any s < d−t

n (see [47,89]). This ensures that the choice of
wavelets with suitable order d can allow for any order of convergence in adaptive
schemes like that presented in this paper, in the sense that the error is O(N−s)
where N is the number of unknowns. Due to our choice of piecewise linear
wavelets with order d = 2, the optimal rate of convergence is expected to be
s = d−t

n = 1. We show that the numerical experiments confirm this expected
rate.

We tested the adaptive wavelet algorithm SOLVE with adaptive choice of the
parameter αη according to the steepest descent (SD) rule, and with parameter
αopt ≈ 0.52, θ = 2/7, K = 83, and with initial η = 64.8861. The numerical
results in Figure 3 illustrate the optimal computational complexity of the two
implementations. In particular, we show that SOLVE with steepest-descent
parameter rule outperforms a suboptimal choice of the damping parameter
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Fig. 3. Left: Convergence history of SOLVE with respect to CPU time. Tests for
SOLVE with different damping parameters are shown. Right: Convergence history
with respect to the support size of the iterands.

Ω1 = (0, 0.7) and Ω2 = (0.3, 1)

Fig. 4. Distribution of active wavelet frame elements in Ω1 and Ω2

(α∗ = 0.2 ≤ αopt ≈ 0.52 in this specific test). In practice, the wrong guess of
the damping parameter can even spoil convergence and/or optimality. Finally,
Figure 4 illustrates the distribution of the active wavelet frame elements used by
the steepest descent scheme, each of them corresponding to a colored rectangle.
The two overlapping subintervals are shown separately. For both patches one
observes that the adaptive scheme detects the singularity of the solution. The
chosen frame elements arrange in a tree–like structure with large coefficients
around the singularity, while on the smooth parts the coefficients are uniformly
distributed, and along a fixed level they are of similar size here.

2.6 Poisson Equation on the L-Shaped Domain

We consider the model problem of the variational formulation of Poisson’s equa-
tion in two spatial dimensions:

−Δu = f in Ω, u|∂Ω = 0. (5)

The problem will be chosen in such a way that the application of adaptive al-
gorithms pays off most, as is the case for domains with reentrant corners. Here,
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Fig. 5. Exact solution (left) and right–hand side for the two–dimensional Poisson equa-
tion in an L–shaped domain

the reentrant corners themselves lead to singular parts in the solutions, forcing
them to have a limited Sobolev regularity, even for smooth right–hand sides f .
We use

S(r, θ) := ζ(r)r2/3 sin
(

2
3
θ

)
,

as the exact solution, which is shown together with the corresponding right–hand
side in Figure 5. It is well-known that S ∈ Hs(Ω) for s < 5/3 only, but it is
contained in every Besov space Bs

τ (Lτ (Ω)), where s > 0, 1/τ = (s− 1)/2 + 1/2
(see [27]).

As has been previously noted, the convergence rate of a uniform refinement
strategy is determined by the Sobolev regularity of the solution, while in the
context of adaptive schemes it depends on the Besov regularity (cf. [28]). In par-
ticular, considering piecewise quadratic approximation, the best possible conver-
gence rate in theH1(Ω)-norm for uniform refinement strategies isO(N−( 5

3−1)/2),
with N being the number of unknowns, whereas our adaptive frame scheme gives
the optimal rate O(N−1).

For our numerical experiments, we use an aggregated wavelet frame. With
Ω1 = (−1, 0)× (−1, 1), Ω2 = (−1, 1)× (−1, 0), and � = (0, 1)2, let κi be affine
bijections between � and Ωi (i = 1, 2). For Ψ� being a piecewise quadratic
wavelet basis for H1

0 (�), where d = 3 and d̃ = 5, we set Ψ = ∪2
i=1κi(Ψ�).

In Figure 6 we show some of the approximations and the corresponding point-
wise differences to the exact solution produced by our steepest descent scheme
using piecewise quadratic frame elements. The numerical results in Figure 7 il-
lustrate the optimal convergence of the scheme with different descent parameter
rules. Figure 8 shows similar results by using improved bases [32] with d = d̃ = 3.

2.7 Towards Domain Decomposition Methods

Figure 4 is very useful in order to highlight a fundamental behavior of SOLVE.
In the overlapping region nearly the same wavelet coefficients related to both
patches are simultaneously activated. This means that these algorithms are
unable to eliminate the frame redundancy and to approximate the sparsest
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Fig. 6. Approximations and corresponding pointwise errors produced by the adaptive
steepest descent algorithm, using piecewise quadratic frame elements. Upper part: Ap-
proximations with 167, 898, and 2351 frame elements. Lower part: Approximations
with 2934, 3532, and 4648 frame elements.

representation of the solution. This problem can be solved by realizing a coars-
ening that does not just threshold coefficients but really promotes very sparse
representations. However, such a procedure needs to implement a basis pur-
suit strategy which can be computationally expensive (see the next section). A
more promising direction is an adaptive implementation of a Schwarz alternating
method, as proposed, e.g., in [83,84],
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Fig. 7. Convergence histories of SOLVE and CDD2SOLVE with respect to CPU
time using piecewise quadratic frame elements (d = 3, d̃ = 5)
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Fig. 8. Convergence histories of the adaptive steepest descent method with respect to
the support size of the iterates (left column) or CPU time (right column) for d = d̃ = 3.
The algorithm has been tested with aggregated frames based on interval bases from [3]
(solid line) and [36] (dashed line).

Algorithm 1. Multiplicative Schwarz iteration

for k = 1, . . . ,
uk−1

0 = uk−1

for i = 1, . . . , n
uk−1

i = uk−1
i−1 +QT

i L̃
−1
i Qi(f − Luk−1

i−1 )
endfor
uk = uk−1

n

endfor

Algorithm 2. Additive Schwarz iteration

for k = 1, . . . ,
uk = uk−1 + α

∑n
i=1Q

T
i L̃

−1
i Qi(f − Luk−1)

endfor
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where 0 < α ≤ 1 is a suitable damping parameter and Qi are suitable projections
onto coordinate subspaces and L̃−1

i is an approximation of a local inverse of the
operator L.

A recent exploration of this idea [93] confirms that an adaptive domain decom-
position strategy successfully promotes sparser solutions, hence it is computa-
tionally far more advantageous, and it is also proven to be optimal. In particular,
the wavelet coefficients activated in one patch contribute to the datum of the
problem to be solved on the other patch, and are not going to re-activated again
there. Presently, this is the best approach to adaptive numerical solution of el-
liptic PDEs by means of wavelet discretizations.

3 Sparse Recovery and Variational Problems

3.1 �1−Minimization and Iterative Soft-Thresholding Algorithms

The minimization of the functional

J (u) := ‖Lu− f‖2�2(Λ) + 2γ‖u‖�1(Λ), γ > 0 (6)

proved to be an extremely efficient alternative to the well-known Tikhonov reg-
ularization [60], whenever

Lu = f,

is an ill-posed problem on �2(Λ) and the solution u is expected to be a vec-
tor with a moderate number of nonzero entries. Indeed, the imposition of the
�1−constraint does promote a sparse solution. The restriction to problems on
�2(Λ) is just formal, this can always be achieved by discretization via a suitable
frame for the underlying Hilbert space, as already shown in the previous section.
The use of the �1−norm as a sparsity-promoting functional can be found first in
reflection seismology and in deconvolution of seismic traces [21,86,95]. In the last
decade more understanding of the deep motivations why �1−minimization tends
to promote sparse recovery was developed. Rigorous results began to appear in
the late-1980’s, with Donoho and Stark [56] and Donoho and Logan [55]. Ap-
plications of �1−minimization in statistical estimation began in the mid-1990’s
with the introduction of LASSO, which stands for Least Absolute Shrinkage
and Selection Operator, cf. [96] for details1. In signal processing, Basis Pursuit
[19] was proposed in compression applications for extracting the sparsest signal
representation from highly overcomplete frames. From these early steps the ap-
plications and understanding of compressive �1−minimization have continued to
increase dramatically. It is now hard to trace all the relevant results and appli-
cations [8,12,9,51,52], and it is beyond the scope of this short summary2. In fact,
�1-minimization has been so surprisingly effective in several applications, that
1 http://www-stat.stanford.edu/∼tibs/lasso.html
2 The reader can also find a sufficiently comprehensive collection of the ongoing recent

developments at the web-site http://www.compressedsensing.com/
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Candès, Wakin, and Boyd call it the “modern least squares” in [13]. We thus
clearly need efficient algorithms for the minimization of J .

An iterative thresholding algorithm, realized by Richardson-Landweber steps
followed by a soft-thresholding Hγ (Figure 1), was proposed for this task
[26,41,45,87,96],

u(n+1) = Hγ

(
u(n) + L∗(f − Lu(n))

)
, n ∈ N, (7)

with a fixed threshold parameter γ > 0.
Unfortunately, despite its simplicity which makes it very attractive to users,

this algorithm does not perform very well, as it has been recently verified system-
atically, e.g., in [76] where a comparison with several other alternative methods
[4,43,61,75] is carefully provided. However, since the mentioned methods are for-
mulated as a sequential algorithm, none of them is able to address in real-time,
or at least in an acceptable computational time, extremely large problems, such
as 4D imaging (spatial plus temporal dimensions) from functional magnetic-
resonance in nuclear medical imaging, astronomical imaging or global terrestrial
seismic tomography. For this reason, and parallel to the development of very
successful approaches for well-posed problems [93], a “domain decomposition”
algorithm was proposed in [63] together with its parallelization, and generaliza-
tions to general subspace corrections appear in [68].

We briefly illustrate below the general setting of the results in [43,63,68].

3.2 Accelerated Projected Gradient Methods

A concrete recipe to identify adaptively good shape parameters γ = (γn)n in
iterative thresholding algorithms is by construction of a suitable convex set K
and a projection map PK such that PK(u) = Hγ(u) for an adaptive γ := γ(K,u).
In the case of the specific functional (6) the set K is an �1-ball, while Hγn is
the soft-thresholding operator. This leads to the following accelerated projected
gradient/steepest descent iteration, that turns out to be in several situations [76]
much faster than (7):

{
u(n+1) = PK(u(n) + L∗

n(f − Lnu
(n))),

Ln → L,
(8)

Note that, by definition of PK , this iteration corresponds to a compressive algo-
rithm where Hγn is adapted at each iteration.

Theorem 1. The sequence
(
u(n)

)
n∈N

as defined in (8), where the operator ap-
proximation L∗

nLn is possibly chosen according to a suitable steepest-descent
criterion, converges in norm to a minimizer of D(u) = ‖Lu− f‖2�2(Λ) on K.

For the theoretical analysis and a discussions on the performance of this algo-
rithm we refer the reader to [43]. Let us just include an example inspired by a
real-life application in geoscience [77], in particular an application in seismic to-
mography based on earthquake data. The solution space consists of the wavelet
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Fig. 9. The different convergence rates of the thresholded Landweber algorithm (solid
line), the projected Landweber algorithm (dashed line), where no adaptive descent pa-
rameters are used, and the projected steepest descent algorithm (dotted line), for the
third example. The projected steepest descent algorithm converges about four times
faster than the thresholded Landweber iteration. The projected Landweber iteration
does better at first (not visible in this plot), but loses with respect to iterative thresh-
olding afterwards. The horizontal axis has time (in hours), the vertical axis displays
the relative error.

coefficients of a 2D seismic velocity perturbation. There are 8192 degrees of free-
dom. In this particular case the number of data is 1848. Hence the matrix L has
1848 rows and 8192 columns. We apply the different methods to the same noisy
data that are used in [77] and measure the time to convergence up to a speci-
fied relative error (see Figure 9). This example illustrates the slow convergence
of the thresholded Landweber algorithm (7), and the improvements made by a
projected steepest descent iteration (8).

3.3 Domain Decomposition Methods

A different strategy in order to deal with very large problems is based on suitable
domain decomposition methods, as analyzed in [63]. By splitting disjointly the
index set Λ = Λ1 ∪ Λ2, alternating (sequential and parallel) algorithms can be
formulated:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u
(n+1,�+1)
Λ1

= Hγ(u(n+1,�)
Λ1

+ L∗
n,Λ1

((f − Ln,Λ2u
(n,M)
Λ2

)− Ln,Λ1u
(n+1,�)
Λ1

)),
� = 0, . . . , L− 1,
u

(n+1,m+1)
Λ2

= Hγ(u(n+1,m)
Λ2

+ L∗
n,Λ2

((f − Ln,Λ1u
(n+1,L)
Λ1

)− Ln,Λ2u
(n+1,m)
Λ2

)),
m = 0, . . . ,M − 1.
u(n+1) = u

(n+1,L)
Λ1

+ u
(n+1,M)
Λ2

.
(9)

Here we denoted by uΛi any vector supported on Λi, and by Ln,Λi the submatrix
of Ln where only the columns corresponding to entries in Λi are considered. The
latter algorithm is derived as an instance of the following alternating minimiza-
tion: Pick an initial u(0,L)

Λ1
+ u

(0,M)
Λ2

:= u(0) ∈ �2(Λ), for example u(0) = 0, and
iterate
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⎧
⎪⎨

⎪⎩

u
(n+1,L)
Λ1

≈ arg minsupp(v1)⊂Λ1 J (v1 + u
(n,M)
Λ2

)
u

(n+1,M)
Λ2

≈ arg minsupp(v2)⊂Λ2 J (u(n+1,L)
Λ1

+ v2)
u(n+1) := u

(n+1,L)
Λ1

+ u
(n+1,M)
Λ2

.

Theorem 2. The algorithm in (9) produces a sequence (u(n))n∈N in �2(Λ) whose
strong accumulation points are minimizers of the functional J . In particular, the
set of strong accumulation points is non-empty.

3.4 Subspace Correction Methods

Actually, the functional (6) is the prototype model of more general problems,
that we shall now describe. Let H be a real separable Hilbert space. We are
interested in the numerical minimization in H of the general form of functionals

J (u) := ‖Lu− f‖2H + 2γψ(u), (10)

where L ∈ L(H) is a bounded linear operator, f ∈ H is a datum, and γ > 0 is a
fixed constant. The function ψ : H → R+ ∪ {+∞} is a semi-norm for a suitable
subspace Hψ of H. An example of this setting is certainly (6). In particular, we
investigate splittings into arbitrary orthogonal subspaces H = V1⊕V2 for which
we may have

ψ(πV1(u) + πV2(v)) �= ψ(πV1(u)) + ψ(πV2 (v)), u, v ∈ H,

where πVi is the orthogonal projection onto Vi.
With this splitting we can address the minimization of J by suitable instances

of the following alternating algorithm: Pick an initial V1 ⊕ V2 � u(0)
1 + u

(0)
2 :=

u(0) ∈ HΨ , for example u(0) = 0, and iterate
⎧
⎪⎨

⎪⎩

u
(n+1)
1 ≈ arg minv1∈V1 J (v1 + u

(n)
2 )

u
(n+1)
2 ≈ arg minv2∈V2 J (u(n+1)

1 + v2)
u(n+1) := u

(n+1)
1 + u

(n+1)
2 .

This algorithm is implemented by solving the subspace minimizations via an
oblique thresholding iteration, which is defined by means of Lagrange multipliers.
The attribute “oblique” emphasizes the presence of a fixed additional subspace
that contributes to the computation of the thresholded solution.

In [68] we provide a detailed analysis of the convergence properties of this
sequential algorithm and of its modification for parallel computation. Extensions
to nonorthogonal decompositions H = V1 + V2 are reported in [64]3.

We want to mention here a special application of the results above towards
domain decomposition methods for total variation minimization and the solu-
tion of its associated degenerate elliptic PDE’s. As we have already shown in the
3 Matlab software and the numerical experiments are provided at http://homepage.

univie.ac.at/carola.schoenlieb/webpage_vdode/tv_dode_numerics.htm

http://homepage.univie.ac.at/carola.schoenlieb/webpage_vdode/tv_dode_numerics.htm
http://homepage.univie.ac.at/carola.schoenlieb/webpage_vdode/tv_dode_numerics.htm
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previous section dedicated to the adaptive solution of well-posed elliptic prob-
lems, domain decomposition methods were introduced as techniques for solving
partial differential equations based on a decomposition of the spatial domain of
the problem into several subdomains. The initial equation restricted to the sub-
domains defines a sequence of new local problems. The main goal is to solve the
initial equation via the solution of the local problems. This procedure induces a
dimension reduction which is the major reason for the success of such a method.
Indeed, one of the principal motivations is the formulation of solvers which can
be easily parallelized.

We can apply the theory and the algorithms described above to adapt do-
main decompositions to the minimization of functionals with total variation
constraints. In this case the interesting solutions are usually discontinuous, e.g.,
along curves in 2D. These discontinuities may cross the interfaces of the domain
decomposition patches. Hence, the crucial difficulty is the correct treatment of in-
terfaces, with the preservation of crossing discontinuities and the correct match-
ing where the solution is continuous instead. We consider the minimization of
the functional J in the following different setting: Let Ω ⊂ R

n, for n = 1, 2,
be a bounded open set with Lipschitz boundary. We are interested in the case
when H = L2(Ω), Hψ = BV (Ω) and ψ(u) = |Du|(Ω), the variation of u. Then
a nonoverlapping domain decomposition Ω = Ω1 ∪ Ω2 induces the space split-
ting into Vi := {u ∈ L2(Ω) : supp(u) ⊂ Ωi}, i = 1, 2. For overlapping domain
decomposition methods in this setting, we refer the reader to [64]. Hence, by
means of the proposed alternating algorithm, we can address the minimization
of the functional

J (u) := ‖Tu− g‖2L2(Ω) + 2α|Du|(Ω).

It is important to mention that several numerical strategies to perform efficiently
total variation minimization have been proposed in the literature. We list a few
of the relevant ones, ordered by their chronological appearance:

(i) the approach of Chambolle and Lions [17] by re-weighted least squares,
see also [42] for generalizations and refinements in the context of compressed
sensing;

(ii) variational approximation via local quadratic functionals as in the work
of Vese et al. [97,3];

(iii) iterative thresholding algorithms based on projections onto convex sets
as in the work of Chambolle [15] as well as in the work of Combettes-Wajs [26]
and Daubechies et al. [45];

(iv) iterative minimization of the Bregman distance as in the work of
Osher et al. [82];

(v) the approach proposed by Nesterov [81] and its modifications by
Weiss et al. [98].

These approaches differ significantly, and it seems that the ones collected in
the groups iv) and v) do show presently the best performances in practice. How-
ever, being formulated as sequential algorithms, none of the mentioned methods
is able to address in real-time, or at least in an acceptable computational time,
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Fig. 10. An example of the solution of total variation inpainting (a nonlinear inter-
polation of an image with a missing part to be recovered) by means of the domain
decomposition method [68]. The problem is split into 5 subdomains and it is correctly
solved, providing a global minimization.

extremely large problems, and domain decomposition strategies are fundamental
in such cases.

3.5 Joint Sparsity and Iterative Firm-Thresholding Algorithms

Actually, total variation and �1−constraints are of course not the only ways
of promoting sparse solutions. In [66,67] we investigated more general forms
of functionals that not only generate different types of compressive algorithms,
but also deal with vector-valued solutions with components coupled by identical
sparsity patterns.

Joint sparsity naturally occurs, for instance, in color images, where, e.g., the
three color channels RGB can usually be well approximated by a jointly sparse
wavelet or curvelet expansion since edges appear at the same locations through-
out all channels. However, the range of applicability of this approach is not
limited to color image restoration. Multimodal brain imaging, distributed net-
works and compressed sensing, and several other problems with coupled vector
valued solutions are fields where one can expect fruitful applications. In this
more general context we are given a Hilbert space H, and we assume that L is
a linear operator mapping �2(Λ)M into H where M ∈ N indicates the number of
vector components of the solution. We consider the functional

J(u, v) = J
(q)
θ,ρ,ω(u, v) := (11)

‖Lu− f‖2H +
∑

λ∈Λ

vλ‖uλ‖q +
∑

λ∈Λ

ωλ‖uλ‖22 +
∑

λ∈Λ

θλ(ρλ − vλ)2,

where ‖·‖q denotes the usual �q-norm on R
M , q ∈ [1,∞] and θ = (θλ), ω = (ωλ),

ρ = (ρλ) are suitable sequences of positive parameters. The variable u is assumed
to be in �2(Λ)M and vλ ≥ 0 for all λ ∈ Λ. Observe, that uλ is a vector in R

M .
We are interested in the joint minimizer (u∗, v∗) of this functional, u∗ is then

considered the optimal solution. The variable v is an auxiliary variable that plays
the role of an indicator of the sparsity pattern. As argued in [66] J promotes joint
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sparsity, i.e., u∗ = (u∗(�))M
�=1 can be expected to be jointly sparse, supp(u∗(�)) ⊂

Λ0, for all � = 1, . . . ,M , and for a fixed Λ0 ⊂ Λ, #Λ0 <∞.
In [66] we proposed an iterative algorithm for computing the minimizer of

J(u, v). It consists of alternating a minimization with respect to u and v. More
formally, for some initial choice v(0), for example v(0) = (ρλ)λ∈Λ, we define

u(n) := argminu∈�2(Λ)M J(u, v(n−1)),
v(n) := argminv≥0 J(u(n), v).

(12)

Once again we see that an alternating minimization on several auxiliary variables
plays a useful role in order to generate compressive algorithms. The minimizer
v(n) of J(u(n), v), for a fixed u(n), can be computed explicitly by the formula

v
(n)
λ =

{
ρλ − 1

2θλ
‖u(n)

λ ‖q, ‖u(n)
λ ‖q < 2θλρλ,

0, otherwise ,
λ ∈ Λ. (13)

The minimization of J(u, v(n−1)) with respect to u and fixed v(n−1) can be done
by a thresholded Landweber iteration similar to the one analyzed in [41]. We
showed in [66] that, for suitable choices of the parameters θ, ρ, ω, the algorithm
(12) converges to the minimizer of the functional J and we show its linear con-
vergence rate.

The functional J = J
(q)
θ,ρ,ω depends on several parameters. In the effort of

clarifying their role in shaping the optimal solution u∗ we discovered an intriguing
relationship between our new functional (11) and hard-thresholding, and more
generally to the so-called firm-thresholding. We proved that different choices of
the parameters θ = (θλ), ω = (ωλ) and ρ = (ρλ) do generate an entire family of
thresholding algorithms, which perform the corresponding minimization by the
iteration

u(n) = H
(q)
θ,ρ,ω(u(n−1) + L∗(f − Lu(n−1))), n ∈ N. (14)

Actually, for the simplest case M = 1, i.e., in the scalar situation, the triple
γ = (θ, ρ, ω) very clearly defines a “shape parameter” since the form of the

Fig. 11. For M = 1 and ω = 0, the thresholding function H
(q)
θ,ρ,ω acts componentwise

applying the firm-thresholding curve here depicted
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Fig. 12. We illustrate a recolorization (three iterates of the joint-sparsity promoting
algorithm (14)) of an image from a few color fragments and gray level information of
the missing parts [65]

corresponding thresholding function Hγ := H
(q)
θ,ρ,ω (called firm-thresholding)

changes accordingly, see Figure 11. In [67] we provided the proof of convergence
of the latter algorithm to the minimizer u∗. Note that in this case, the auxiliary
variable v does not play an explicit role anymore, although its presence implic-
itly contributes to the specific shape of the firm-thresholding function. By em-
ploying techniques of Γ -convergence and variational limits [39], we proved that
the dependence of minimizers on the shape parameters θ = (θλ), ω = (ωλ) is
continuous.

3.6 Compressive Algorithms Meet Free-Discontinuity Problems

As there exists a natural correspondence between total variation and �1−min-
imizations, there is also a corresponding compressibility in terms of derivatives
to the one promoted by firm-thresholding algorithms. As we discovered recently,
functionals of the type (11) are discrete approximations of functionals modelling
free-discontinuity problems. The terminology “free-discontinuity problems” was
introduced by De Giorgi in the late-1980’s to indicate a class of variational
problems that consist of the minimization of a functional, involving both volume
and surface energies, depending on a closed set K, and a function u usually
smooth outside of K: typically

– K is not fixed a priori and it is an unknown of the problem;
– K is not a boundary in general, but a free-surface inside the domain of the

problem.

For a broad overview on free-discontinuity problems and their analysis, we
refer to [2]. One of the best known examples of free-discontinuity problems is
the one modelled by the Mumford-Shah functional [80] defined by

J(u,K) :=
∫

Ω\K

[|∇u|2 + α(u− g)2] dx+ βHn−1(K ∩Ω).
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The set Ω is a bounded open subset of R
n, α, β > 0 are fixed parameters and

g ∈ L∞(Ω). Here Hn denotes the n-dimensional Hausdorff measure. In this
model, we seek for a function u ∈W 1,2(Ω \K) that approximates the datum g,
the function u is smooth out of the discontinuity set K. In visual analysis g is
a given noisy image that we want to approximate by u which is instead smooth
except for a rectifiable set K, the set K is also used in order to segment the
image into connected components.

In fact, the Mumford-Shah functional is the continuous version of a previous
discrete formulation of the image segmentation problem proposed by Geman and
Geman in [70]; see also the work of Blake and Zisserman in [6]. Let us recall this
discrete approach. For simplicity let n = 2 (as for image processing problems),
Ω = [0, 1]2, and let ui,j = u(hi, hj), (i, j) ∈ Z

2 be a discrete function defined
on Ωh := Ω ∩ hZ

2, for h > 0. Define Wh(t) = min{t2, β/h} to be the truncated
quadratic potential, and

J√
β/h

(u) := h2
∑

(hi,hj)∈Ωh

Wh

(
ui+1,j − ui,j

h

)

+ h2
∑

(hi,hj)∈Ωh

Wh

(
ui,j+1 − ui,j

h

)

+ αh2
∑

(hi,hj)∈Ωh

(ui,j − gi,j)2.

Chambolle et al. [7,18,14] gave formal clarification as to how the discrete func-
tional J√

β/h
approximates the continuous functional J . It has been pointed

out in [69] that, by discretization of the Mumford-Shah functional by means of
suitable finite elements, and then by expressing the problem in terms of sole
discrete derivatives, one can re-formulate the problem into a finite dimensional
nonconvex and constrained optimization of the general type:

{
Minimize J p

γ (u) =
[‖Lu− f‖2

�M
2

+
∑N

i=1 min {|ui|p, γp} ]

subject to Qu = 0.
(15)

where Q is a suitable linear constraint, γ > 0, and 1 ≤ p ≤ 2. In [69] we
remarkably proved that these nonconvex functionals have always minimizers in-
dependently of the particular choice of L. Note that this result is not obvious
since the functional is not convex, and for arbitrary choices of noninjective op-
erators L, the problem does not seem a priori to be coercive. We also pointed
out that the computation of these minimizers is an NP-hard problem [1].

Associated with the unconstrained minimization of J p
r we designed an itera-

tive thresholding algorithm

u(n+1) = H(p,γ)(u(n) + L∗(f − Lu(n))), (16)

where H(p,r) is again a thresholding function which acts component-wise as de-
picted in Figure 13 for p ∈ {1, 3/2, 2}. This algorithm converges to fixed points
ū of the iteration (16).
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(a) (b) (c)

Fig. 13. The component-wise discontinuous thresholding functions H(1,1), H(3/2,1), and
H(2,1), with parameters p ∈ {1, 3/2, 2}, respectively, and γ = 1

Theorem 3. A fixed point ū of the iteration (16) is a local minimizer of the
functional J p

γ defined in (15).

More surprising is that global minimizers of J p
γ are also fixed points, as shown

in the following theorem.

Theorem 4. Any global minimizer u∗ of J p
γ is a fixed point of the iteration (13).

We reiterate that the computation of global minimizers is an NP-hard problem,
and therefore the algorithm (16) is of particular importance because it furnishes
a method to approximate local minimizer, but also it has the chance of finding
a global one. We note that on a ball B(ū, ε(γ)) around an equilibrium point ū of
radius ε(γ) > 0 sufficiently small, the functional J p

γ is convex; it is possible to
show that J p

γ is in fact strictly convex whenever ū = u∗ is a global minimizer.
Hence a global minimizer is necessarily an isolated minimizer, whereas we cannot
ensure the same property for local minimizers if L has a nontrivial null-space; in
this case, local minimizers may form continuous sets. We conclude the following
remark.

Corollary 1. Minimizers of J p
γ are isolated.

4 Conclusion and Future Perspectives

We gave an overview of a few significant instances of iterative compressive al-
gorithms which show their versatility in several and diverse applications. We
ranged through optimal adaptive solution of PDEs, inverse problems with spar-
sity constraints, and free-discontinuity problems. We wanted to emphasize the
capability of suitable implementations of compressive algorithms, e.g., via do-
main decomposition and subspace correction methods, of performing effective
dimensionality reductions, also in problems of very large dimension. We stressed
the variational nature of such algorithms that usually dispose of an associated
energy functional which is minimized during the iterations, and provides addi-
tional robustness to the iterative process.
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We expect that future developments of numerical methods, for instance, for
nonlinear PDEs [94], will continue to be influenced by such approaches: new
tools to cope with the “curse of dimensionality”, further systematic develop-
ments of adaptivity in the presence of different scales, probabilistic algorithms,
an increasing role for combinatorial aspects of the underlying algorithms, are
few examples expected from future developments.
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Abstract. Perfect, partial, and approximate symmetries are pervasive
in 3D surface meshes of real-world objects. However, current digital
geometry processing algorithms generally ignore them, instead focus-
ing on local shape features and differential surface properties. This pa-
per investigates how detection of large-scale symmetries can be used to
guide processing of 3D meshes. It investigates a framework for mesh
processing that includes steps for symmetrization (applying a warp to
make a surface more symmetric) and symmetric remeshing (approxi-
mating a surface with a mesh having symmetric topology). These steps
can be used to enhance the symmetries of a mesh, to decompose a
mesh into its symmetric parts and asymmetric residuals, and to estab-
lish correspondences between symmetric mesh features. Applications are
demonstrated for modeling, beautification, and simplification of nearly
symmetric surfaces.

Keywords: symmetry analysis, mesh processing.

1 Introduction

Symmetry is ubiquitous in our world. Almost all man-made objects are com-
posed exclusively of symmetric parts, and many organic structures are nearly
symmetric (e.g., bodies of animals, leaves of trees, etc.). It is almost impossi-
ble to find a real-world object that does not have at least one nearly perfect
symmetry and/or is not composed of symmetric parts. Moreover, symmetry is
an important cue for shape recognition [1], as humans readily notice departures
from perfect symmetry.

For decades, however, mesh reconstruction and processing algorithms in com-
puter graphics have largely ignored symmetries. Most algorithms operate as
sequences of mesh processing operations based on local shape features and/or
differential surface properties. As a result, they have difficulty reproducing and
preserving global shape properties, such as symmetry.

Consider simplification, for example – when presented with an input mesh
for a nearly symmetric object (e.g., a face), a simplification algorithm should
produce a nearly symmetric mesh. However, to our knowledge, there is no current
algorithm that satisfies this basic requirement. Certainly, if the input is perfectly
symmetric, then the problem is trivial – simply process half of the mesh and then
copy the result. However, if the underlying surface is symmetric but the mesh

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 170–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Symmetry-Aware Mesh Processing 171

topology is not, or if the underlying surface is only approximately symmetric,
then standard simplification algorithms fail to preserve symmetries present in
the underlying object (Figure 10c). The result is potential artifacts in physical
simulations, manufacturing processes, animations, and rendered images (e.g.,
asymmetric specular highlights).

Recently, researchers have introduced several methods for detecting and char-
acterizing the symmetries in 3D data. For example, Zabrodsky et al. [2] provided
a measure of approximate symmetry with respect to any transformation, and Mi-
tra et al. [3] and Podolak et al. [4] have described algorithms for extracting the
most significant approximate and partial symmetries of a 3D mesh. While sym-
metry analysis methods like these have been used to guide high-level geometric
processing operations, such as registration, matching, segmentation, reconstruc-
tion, reverse engineering, editing, and completion, they have only begun to be
incorporated into low-level mesh processing algorithms.

The main goal of this paper is to investigate ways in which symmetry
analysis can guide the representation and processing of 3D surface meshes. To
support this goal, we make the following contributions. First, we describe an
algorithm for geometric symmetrization – i.e., deforming a surface to respect a
given set of symmetries while retaining its shape as best as possible. Second, we
describe an algorithm for topological symmetrization – i.e., remeshing a surface
so that symmetric regions have consistent mesh topology. Third, we propose a
“symmetry-aware” mesh processing framework in which geometric and/or topo-
logical symmetrization algorithms provide high-level shape information
(symmetric correspondences and asymmetric residuals) that can guide mesh
processing applications to produce more symmetric results for approximately
symmetric inputs. Finally, we demonstrate applications of this framework for
surface beautification, symmetry enhancement, attribute transfer, and simplifi-
cation.

2 Background and Previous Work

Understanding the symmetries of shapes is a well studied problem with applica-
tions in many disciplines. Perfect symmetries are common in CAD models and
used to guide compression, editing, and instancing [5]. However, only considering
perfect symmetries is of limited use in geometric processing, in general. First, the
presence of noise, numerical round-off error, or small differences in tessellation
can cause models of objects that are in fact symmetric to lack perfect symme-
try. Second, many asymmetric objects are composed of connected parts with
different symmetries. Finally, most organic objects exhibit near, but imperfect,
symmetries (leaves of trees, human bodies, etc.), and understanding those types
of symmetry is important, too. Thus, it is useful to have methods to detect and
utilize partial and approximate symmetries.

Towards this end, Zabrodsky et al. [2] defined the symmetry distance of a
shape with respect to a transformation as the distance from the given shape to
the closest shape that is perfectly symmetric with respect to that transformation.
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They provide an algorithm to find the symmetry distance for a set of connected
points for any given reflective or rotational transformation. Mitra et al. [3] and
Podolak et al. [4] find a set of prominent symmetries by having points on a mesh
vote for symmetries in a process similar to a Hough transform.

Measures for partial and approximate symmetry of this type have been used
in a variety of computer vision applications. Perhaps the earliest example is
by [6], who used deformable models with symmetry-seeking forces to reconstruct
3D surfaces from 2D images. Zabrodsky et al. used a continuous measure of
symmetry for completing the outline of partially-occluded 2D contours [7], for
locating faces in an image, determining the orientation of a 3D shape [2], for
reconstructing 3D models from images, and for symmetrizing 3D surfaces [8].

More recently, symmetry analysis has received attention in computer graphics.
Kazhdan et al. [9] constructed a symmetry descriptor and used it for registration
and matching. Podolak et al. [4] used a symmetry transform for surface regis-
tration, shape matching, mesh segmentation, and viewpoint selection. Mitra et
al. [3] described a method to extract a discrete set of significant symmetries and
used them for segmentation and editing. Thrun et al. [10] used local symmetries
and used them for completion. Gal et al. [11] developed local shape descriptors to
look for approximate symmetries in 3D surfaces and used them for visualization
and matching. Mills et al. [12] utilized approximate symmetries to guide reverse
engineering of CAD structures from range scans. Simari et al. [13] decomposed
meshes into a hierarchical tree of symmetric parts to be used for compression
and segmentation. Finally, Martinet et al. [5] has detected perfect symmetries
in parts of scenes and used them to build instancing hierarchies.

Perhaps closest to our work is the work of Mitra et al. [14], where a method
of symmetrizing the geometry of meshes is presented. Their technique is similar
to the one we present in Section 4. However, we take the output of geometric
symmetrization and go further, providing algorithms for symmetric remeshing
and a framework for making mesh-processing algorithms symmetry-aware.

3 Overview

The goal of our work is to provide tools for symmetry-aware processing of 3D
surface meshes. We propose a multi-step processing framework, in which approx-
imate and partial symmetries are detected, preserved, exploited, and sometimes
even enhanced as meshes are processed. To support this framework, we provide
the following tools, which typically will be used in the sequence of steps shown
in Figure 1:

1. Symmetry analysis: The mesh is analyzed to detect perfect, approximate,
and partial symmetries. The output of this step is a set of transformations
(e.g., planes of reflection), each with a list of vertices indicating the subset of
the surface mapped approximately onto itself by the transformation. For this
step, which is not a focus of this paper, we use methods previously described
in [4] and [3].
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Fig. 1. Symmetry-aware mesh processing framework

2. Geometric symmetrization: The surface is warped to make it symmetric
with respect to a given set of transformations. The primary output of this
step is a “symmetrized” mesh having the same topology as the original,
but with geometry that is perfectly symmetric up to the resolution of its
tessellation. A secondary output is a set of asymmetric residuals storing the
vector difference between the original and symmetrized position of every
vertex, which can be used to compute an inverse to the symmetrizing warp.

3. Symmetric mapping: Correspondences are established between vertices
and their images across every symmetry transformation. The output of this
step is a dense set of point pairs, where one point is associated with a vertex
and the other is associated with a face and its barycentric coordinates. These
point pairs provide a mapping between symmetric surface patches.

4. Symmetric remeshing: The surface is remeshed so that every vertex, edge,
and face has a one-to-one correspondence with another across every symme-
try. The output of this step is a new mesh with perfectly symmetric topology,
along with a list of topological correspondences.

5. Restoring deformation: The inverse of the symmetrizing warp is applied
to the symmetrically remeshed surface to restore the original geometry. The
output of this step is a mesh that is topologically symmetric, but geometri-
cally approximates the input mesh.

The motivating idea behind this framework to provide tools that can help
mesh processing algorithms to preserve large-scale symmetries present in 3D
objects. Our general strategy is to factor a 3D surface into a symmetric mesh
and its asymmetric residual and then to perform analysis on the symmetric
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mesh to gain insight into its symmetric structure. We transfer knowledge about
symmetric structure back onto the original geometry so that it can be preserved
and exploited as the surface is processed.

In the following sections, we investigate algorithms to support this symmetry-
aware mesh processing framework, focusing on the most challenging steps:
geometric symmetrization (Section 4) and symmetric remeshing (Section 5).
Thereafter, in Section 6, we describe potential applications and present pro-
totype results. Finally, we conclude with a discussion of limitations and topics
for future work.

4 Geometric Symmetrization

Our first objective is to provide an algorithm that can take a given surface mesh
and output a new mesh with similar shape that is symmetric with respect to
a given set of transformations. More formally, given a mesh M and a set of
symmetry transformations, each having a possibly local region of support on the
mesh, our goal is to find the most shape-preserving warp W that produces a
new mesh M ′ with the same topology as M , but where every vertex of M ′ is
mapped onto corresponding points on the surface of M ′ by all of its symmetry
transformations.

This objective is similar to classical problems in non-rigid alignment for mor-
phing of 3D surfaces, medical imaging, surface reconstruction, and several other
fields. The challenge is finding both symmetric point correspondences and the
warp that aligns them simultaneously. Mitra et al. [14] solve this problem (while
also detecting symmetries) using Generalized Hough Transform and clustering
algorithms [14]. Since our problem is a bit simpler (symmetry transformations
have already been detected), we follow a more traditional iterative approach [15],
employing an algorithm that greedily minimizes alignment error while allowing
increasingly non-rigid deformation [16,17,18]. At each iteration, we first pro-
pose correspondences from every vertex in the mesh M to its closest compatible
point on the transformed surface for every symmetry. Then, given these cor-
respondences, we solve for new vertex positions that minimize a symmetrizing
error function (Figure 2). These two steps are iterated until the mesh is fully
symmetric (i.e., every vertex transformed by all its symmetries produces a point
directly on a face of the mesh).

Our symmetrizing error function balances the primary goal of making the
surface more symmetric with the secondary goals of retaining its original shape
and position with three error terms:

E(M) = αEsym(M) + (1 − α)(Eshape(M) + βEdisp(M))

The first two error terms are the important ones, as they balance the trade-
off between deviations from perfect symmetry and deformations of the surface.
The first term, Esym, measures the sum of squared distances between vertices
of the mesh and the closest points on the transformed surface. For the second
term, Eshape, we use the shape preservation function proposed by [18], which
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(a) (c)(b)

Fig. 2. Schematic of one iteration in our symmetrization process (in 2D). (a) Given
a curve (red) and a symmetry transformation (reflection across the dotted line), (b)
we find correspondences between vertices and the closest point on the reflected curve
(green), and (c) solve for new vertex positions that minimize an error function based
on those correspondences.

minimizes a measure of warp distortion. Any deformation error function would
work, but this choice has the advantage of being quadratic in vertex positions.
This deformation error is not rotationally invariant, but the symmetrizations
performed in our experiments do not have large rotational components. The last
term, Edisp, measures overall displacement using the sum of squared distances
between current and original vertex positions. It is required to penalize global
translations because Eshape is translationally invariant and because the surface
is being warped onto itself (in contrast to traditional alignment problems where
either the source or target is fixed in space). We set the weight of this error term
very low relative to the others (β = 1/100), and so it has very little influence
on the output surface’s shape. Since all three terms of the error function are
quadratic in the positions of the vertices, we can solve for the minimal error at
each iteration with a least-squares solution to a linear system.

Our implementation contains several simple features that help to provide sta-
bility and speed as the optimization proceeds. First, it uses multiresolution sur-
face approximations to accelerate convergence and avoid local minima. Prior to
the optimization, the input mesh is decimated with Qslim [19] to several nested
levels of detail. Then, coarser levels are fully symmetrized and used to seed the
initial vertex placements for finer levels (new vertices added at each finer level
are positioned relative to the current ones using thin-plate splines). Within each
level, further stability is gained by slowly shifting emphasis of the error function
from shape preservation (α = 0) to full symmetrization (α = 1). Finally, for
each vertex, we use a k-d tree to help find the closest point on the transformed
surface, and only retain correspondences to a closest point whose transformed
normal does not point in the opposite direction. Overall, compute times on a
3Ghz processor range from 4 seconds for the 1,166 vertex model of the dragon
in Figure 8 to 10 minutes for a 240,153 vertex face scan.

For instance, consider Figure 3, which shows the result of symmetrizing a bust
of Max Plank with respect to reflection across a single vertical left-right plane.
Note that the original input mesh (Figure 3a) is quite asymmetric, as seen by
the misalignment of the surface (red) and its reflection (green) in the bottom
images of Figure 3a – i.e., significant shape features (eyes and ears) do not map
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Fig. 3. Symmetrizing Max Planck. The model of a bust of Max Planck (a) asymmetric,
as can be seen by overlaying the mesh (red) with its reflection (green) in the bottom
images. Our method symmetrizes its geometry (b), while retaining and aligning sharp
features like eyes, mouth, and ears.

onto their symmetric counterparts when reflected across the plane. However,
we are able to find a non-rigid warp that aligns those features while producing
a symmetric mesh with a small amount of shape distortion. The symmetrized
mesh, shown Figure 3b, is perfectly symmetric up to the resolution of the mesh,
as indicated by the high-frequency interleaving of the original surface (red) with
its reflection (green) in the bottom images of Figure 3b.

A more complicated example demonstrates symmetrization across partial, ap-
proximate planes of symmetry in the Stanford Bunny (Figure 4). Using the
method of [4], the bunny was automatically segmented into two symmetric parts
(the head and the body), each supporting a plane of partial symmetry. Of course,
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Fig. 4. Symmetrizing the bunny. The top row shows the original bunny, while the bot-
tom row shows the symmetrized result. The bunny contains partial symmetries with
respect to planes through the body and through the head. Our method symmetrizes
both parts of the bunny while performing a shape-preserving blend in between, pre-
serving features such as the eyes and feet. The right pair of images show the asymmetry
of the original model and the accurate alignment of symmetric parts in our result.

both of these parts are highly asymmetric, as can be seen from top-right image
in Figure 4, where each part of the bunny (red) is shown along with its reflection
(green and blue) over its symmetry plane. Note how poorly the ears and feet
align with their reflections. However, our geometric symmetrization algorithm
is able to warp both parts into alignment with their reflections simultaneously
while retaining significant shape features (e.g., ears, feet) and blending symme-
tries across the intermediate region of the neck. Note that the crease between
the feet is preserved although the symmetry plane does not run through it on
the original model, as the surface was warped to align with the plane.

The output of the process is not only a symmetrized mesh, but also a sym-
metric map, a set of point correspondences where every vertex is associated
with a point on the surface across every symmetry transformation. We store the
corresponding points in barycentric coordinates with respect to triangles of the
mesh so that they deform with the surface (e.g., when we apply the inverse of
the symmetrizing deformation to restore the original geometry). This is a key
point, since it allows us to transfer the symmetric map learned from the perfectly
symmetric surface back to the asymmetric one.

5 Symmetric Remeshing

Our second objective is to develop an algorithm that can take a geometrically
symmetrized mesh with arbitrary topology and remesh it so that every vertex,
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edge, and face has a direct correspondence with another with respect to every
symmetry transformation. Our motivation is to provide a topology that not only
reflects the symmetric structures of the object, but also can provides efficiency in
representation and manipulation due to topological redundancies (e.g., compres-
sion), cues for preservation of symmetries during topological modifications (e.g.,
simplification), and symmetric sampling to avoid asymmetric artifacts in photo-
realistic renderings and physical simulations (e.g., boundary element methods).

This problem is a special case of compatible remeshing [20,21]. Given the
symmetric map from every vertex to a point on the surface for every symmetry
transformation provided by the geometric symmetrization algorithm, we aim to
find the mesh with perfectly symmetric topology that has the least geometric
error and/or fewest extra vertices.

A strawman approach that may be appropriate for highly symmetric and/or
oversampled meshes is to partition the mesh into “asymmetric units” and then
copy the topology from one instance of others in correspondence and then stitch
at the boundaries. For a single planar reflection, this would entail cutting the
mesh along the plane, throwing away the mesh connectivity on one side (Mt), and
then copying the connectivity over from the other side (Ms). While this simple
method would provide symmetric topology with the same number of vertices as
the original mesh, it would produce an asymmetry in the quality of the geometric
approximation (Ms would have the quality of the original surface, but Mt would
have blurring where edges oriented appropriately for the geometry of Ms are not
appropriate for Mt), and it would produce artifacts where the topology of Ms

provides a poor approximation for Mt.
There are many methods in the literature to overcome this problem, most of

which introduce a large number of extra vertices to capture the geometric varia-
tions of bothMs andMt. For example, one way is to create an overlay meta-mesh
that contains the original vertices of both Ms and Mt along with new vertices
at all edge-edge intersections [22,23]. Another way is to map Ms and Mt to a
common base domain (e.g., a sphere [22], or a simplified triangle mesh [23,24])
and then remesh with semi-regular connectivity until all geometric features are
resolved. Alternatively, it is possible to create a meta-mesh Mst by inserting
all the vertices of Ms into Mt, and vice-versa, and then iteratively swapping
edges until a compatible mesh topology is achieved [20]. These methods all pro-
duce compatible mesh topology and so could be used for symmetric remeshing.
However, the resulting mesh would usually be significantly over-sampled.

We provide a simple method to address the problem: compatibility-preserving
mesh decimation (or, in our case, symmetry-preserving mesh decimation). Our
general approach is to use any of the above methods to produce compatible
mesh topology with vertices from both Ms and Mt, and then to decimate the
resulting meta-mesh with a series of edge collapse operations that operate on
corresponding edges in lock-step. Specifically, we build clusters of edges whose
vertices are in symmetric correspondence and then follow the same basic ap-
proach as the original Qslim algorithm [19], however working on clusters rather
than individual edges. We load the clusters into a priority queue sorted by the
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(a) Symmetric geometry (c) After inserting vertices (d) Final symmetric mesh

(b) Point correspondences (d) After edge flips (e) Final symmetric mesh

Fig. 5. Symmetric remeshing. The input is shown in the left column (the symmetrized
bust of Max Planck, zoomed to the bridge of the nose); intermediate steps are shown
in the middle column, and the output is shown in the right column. The final mesh has
perfectly symmetric topology (as shown by colored face correspondences in (e)) and
still approximates the surface well with the original number of faces.

Quadric Error Measure (QEM) of the edge with highest error in each cluster,
and then we iteratively collapse all edges in the cluster with minimal error until
a desired number of triangles or a maximum error has been reached. Since all
edges in the same cluster are processed atomically, the method is guaranteed to
maintain topological symmetries as it decimates the mesh. Yet, it still provides
a good approximation of the original surface, as QEMs approximate deviation
from the original surface.

This method is similar in goal to the method of [21], which copies the mesh
topology of Ms onto Mt and then optimizes the positions and number of vertices
to match the geometry of both Ms and Mt with a combination of smoothing and
refinement operations. The difference is that we first produce an over-sampled
mesh with vertices from both Ms and Mt, and then “optimize” it to minimize
the QEM by decimation. Since our process is seeded directly with (a conserva-
tively large set of) compatible vertices and edges from both Ms and Mt, the
optimization starts from an initial configuration that encodes features from the
entire mesh. So, our challenge is mainly to decide which vertices and edges can be
removed, rather than discovering suitable places for new vertices from scratch.
As a result, it is easy to produce compatible mesh topologies for any number of
surface regions with any number of vertices.

We have experimented with this approach using an algorithm based on the Con-
nectivity Transformation technique of [20] to form an over-sampled mesh with
symmetric topology prior to decimation. Given a geometrically symmetrized mesh
and a set of vertex-point correspondences (Figure 5a-b), we first produce a meta-
mesh Mst with symmetric vertex correspondences by inserting all the vertices of
Ms intoMt, and vice-versa, splitting faces into three when an inserted vertex maps
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(a) Original (b) Symmetric (c) Copy topology
Mesh Remeshing from right to left

Fig. 6. A zoomed-in comparison the crease along left side of the nose on the surface
of the mask shown on the left. Note how our approach (b) does not produce blurring
when compared to the original (a), while the simple alternative (c) of copying topology
from one side to the other does.

to the interior of an existing face (Figure 5c). We then swap edges in order of an
error function that measures the differences in the QEM for edge midpoints be-
fore and after the swap, plus a quadratically growing penalty for swaps of an edge
multiple times, plus an infinite penalty for any swap that would generate a topo-
logical fin in the mesh or break a greater number of symmetric correspondences
than it creates. The process terminates when all edges are found to be in symmet-
ric correspondence, or when the minimal error of any cluster exceeds some preset
threshold. We have not implemented the edge-crossing constraint and termina-
tion criterion of [20], as it only guarantees convergence for meshes on a plane [25].
However, we find that our method finds symmetric correspondences for all but
few edges in practice (99.9% in all of our examples). For the remaining edges, we
simply copy those edges from one asymmetric unit to the other(s). The net result
is a mesh with fully symmetric topology containing approximately twice as many
vertices as the original (Figure 5d). We give that mesh as input to the symmetry-
preserving version of Qslim to produce the final result – a topologically symmetric
mesh with a user-specified number of faces or geometric error. Figure 5e-f shows
the result for decimation to the number of faces in the original mesh (98K). Com-
pute times for the entire symmetric remeshing process range between tens seconds
for the dragon and two hours for the armadillo on a 3GHz processor. Of course,
this process must be done only once per model.

It is difficult to make comparisons of our symmetric meshing method to oth-
ers, since our problem is somewhat different from previous ones. However, to
validate that our approach provides benefits over the simple strawman approach
described earlier in the section (copy the topology of the right side over to the
left), we provide a comparison of symmetrically remeshed surfaces of a mask
along the left crease of the nose (Figure 6). Note how our method (middle) pro-
duces a mesh that retains sharp features of the original (left), whereas the simpler
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approach (right) suffers from blurring due to poorly oriented edges. Besides these
differences in surface quality, our method has the additional advantage that it
works without modification for partial and multiple symmetries of any type of
transformation, and produces symmetric mesh topology at any user-selected face
count.

6 Applications

The main theme of this paper is that awareness of symmetries can and should be
incorporated into mesh processing algorithms. Since objects with perfect and/or
approximate symmetries are prevalent in our world, and since symmetries are
often critical to an object’s function and/or a human’s perception of it, we believe
that algorithms processing 3D models should understand their symmetries and
preserve them. In this section, we investigate how this can be done for several
classes of applications.

Roughly speaking, applications can be divided into classes according to what
type of mesh data they process, and almost equivalently, what type of symme-
try information they can exploit: (1) Some applications are concerned mainly
with creating new geometry (e.g., surface scanning, interactive modeling, etc.).
For this class, geometric symmetrization provides a useful tool for coercing the
geometry of approximate input (e.g., scanned points, sketched surfaces, etc.) to
become more, less, or perfectly symmetric to match the intended structure of the
object being modeled. (2) Other applications are concerned with manipulating
attributes associated with local regions of a surface (e.g., texture mapping, sig-
nal processing, etc.). For them, symmetric mapping provides a way to blend and
transfer attributes between symmetric regions. (3) Still other applications are
concerned with the manipulating the topology of a mesh (e.g., remeshing). For
those applications, symmetric remeshing provides an automatic way to coerce
the mesh topology to respect the symmetric structure of an object and provides
correspondence information that can be used to preserve topological symmetries
as the mesh is processed further. Finally, of course, there are applications that
can exploit all three types of symmetry information simultaneously (e.g., beau-
tification, compression, etc.). In the following subsections, we show at least one
example from each of these classes.

6.1 Beautification of Meshes for Symmetric Objects

There are many application domains in which scans are acquired for symmet-
ric real-world objects. For example, in rapid prototyping applications, physical
mockups are often constructed for a proposed design (e.g., with clay) and then
scanned for computer simulation and processing. Likewise, in reverse engineering,
objects are scanned when the original design is not available. However, rarely are
the scanned models perfectly symmetric, due in part to scanner bias and noise,
and due in part to processing tools that introduce asymmetries as a surface mesh
is reconstructed. Since so many scanned objects are in fact symmetric, it seems
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(a) Original mesh (b) Symmetrized mesh

Fig. 7. Symmetrizing a scanned screwdriver model. The input mesh is shown on the
left side, and the output mesh is on the right. Note that the output mesh is perfectly
symmetric, has less noise (e.g., on the tip and at the junction with the handle), and
retains sharp features (e.g., the ridge on the top of the handle).

useful to have a tool that takes a scanned mesh as input and produces the most
similar symmetric mesh as output.

As an example, consider the scanned screwdriver downloaded from the Cy-
berware repository of Desktop 3D Scanner Samples (left side of Figure 7). In
this case, the physical object has two parts (handle and tip), each of which is
approximately symmetric with respect to two plane reflections (top-middle of
Figure 7). Yet, the scanned mesh contains significant asymmetries with respect
to all of these planes (e.g., artifacts at the junction of the tip and the handle).

Motivated by the idea of “beautifying” this mesh, we extracted planes of
symmetry automatically with the Iterative Symmetric Points algorithm of [4],
augmented to ensure that pairs of planes for the same part were perpendicular,
and that all four planes aligned on a single axis (note that the planes for the
handle are rotated by 20 degrees with respect to those of the tip). Then, we ran
our geometric symmetrization algorithm on the entire mesh, with all four planes
of symmetry guiding the surface deformation.
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The result is shown in the images on the right side of Figure 7. Looking
closely at the image in the middle right, it can be verified that the surface is
symmetric up to the resolution of the mesh (note the high-frequency interleaved
pattern of yellow, red, green, and blue overlaid surfaces). It can also be seen that
significant shape features are retained during symmetrization (e.g., the ridge in
the top of the handle), while noise is reduced (e.g., the tip shown in close-
up on the bottom right). In general, shape features that align across multiple
symmetries are retained, while those that do not are diminished. Overall, the
mesh on the right of Figure 7 has the principal symmetries of the physical object
and lower levels of noise, and thus is probably preferable for most simulation and
visualization applications.

6.2 Symmetry Enhancement

In some applications, it may not be desirable to symmetrize a surface completely,
but rather to enhance or to diminish symmetries instead. As a concrete example,
imagine that a person has drawn the dragon shown in Figure 8a using a sketching
tool like Teddy [26], but wants to make it more symmetric (note that the wings
are quite misaligned with respect to the left-right symmetry plane). While this
type of operation is possible with a series of deformations and local surface edits,
it would be tedious with current modeling tools.

Instead, we propose an interactive tool that allows a user to control the degree
of symmetrization applied to a surface. We provide a slider that the user can
manipulate to make a surface more or less symmetric with respect to a selected
transformation while the model is updated with real-time visual feedback. As
an example, Figure 8b-c shows screenshots after the user has interactively sym-
metrized the dragon part-way (middle) and completely (right). In this simple
case, the symmetrizing deformation could be computed in real-time. For more
complex models, symmetry enhancement can be performed in real-time following

(a) Original (b) Symmetrized (c) Symmetrized
Part-way Completely

Fig. 8. Enhancing the symmetries of a sketched model under interactive control
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symmetrization as a pre-process (see the video for examples). We believe that
such a tool would be a useful addition to the suite of commands for interactive
surface design.

6.3 Attribute Transfer

There are many applications that require blending or transferring attributes
between semantically related surface regions – for example, texture transfer,
denoising, and morphing. The challenge is usually to establish correspondences
between semantically related parts. In the case of objects with approximate
symmetries, symmetric mapping provides a useful way to solve this problem.

For example, consider the Armadillo model. Although the surface is “seman-
tically symmetric” (e.g., the arm on the left has a functional correspondence
with the one on the right), the surface is not symmetric geometrically (e.g., the
arms are in significantly different poses). In cases like this, our symmetrization
framework provides a natural way to establish correspondences between approx-
imately symmetric parts via symmetric mapping.

This mapping can be used to transfer and blend surface attributes. For ex-
ample, Figure 9 shows a demonstration of transferring per-vertex colors between
symmetric regions of the Armadillo model. In the top row, the user has drawn
colors on the eyes and hands on one side of the surface with an interactive

(a) Input eye color (b) Input hand color

(c) Transferred eye color (d) Transferred hand color

Fig. 9. Transferring surface attributes between symmetric parts
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painting interface. The system then automatically transfers the colors to the
other side (bottom row) via an automatically generated symmetric map.

In this example, the main benefit is to save the user the effort of painting de-
tails twice. However, in other examples, perhaps it is important that the surface
attributes are applied to both sides in exactly the same way, or that surface de-
tails are blended very precisely, which would be difficult without guidance from
a symmetric map.

6.4 Simplification

Simplification algorithms take a mesh and produce an approximation with fewer
polygons, usually to increase rendering speed, decrease storage, and/or provide
a base domain for parameterization. Generally, however, they do not preserve
large-scale symmetries (or other global shape features), in favor of minimizing
local geometric errors.

(a) Symmetry-preserving QSlim
        (face correspondences)

(a) Symmetry-preserving QSlim
        (edges)

(a) Original QSlim
        (edges)

Fig. 10. Symmetry-preserving QSlim (a-b) produces a surface approximation compa-
rable to the original algorithm (c) of [19], but guaranteed to have symmetric topology,
even for an asymmetric surface (the first column (a) shows symmetric face correspon-
dences preserved during the decimation)
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In this section, we investigate whether the symmetry-preserving mesh deci-
mation algorithm described in Section 5 can be used effectively for extreme sim-
plification of approximately symmetric surfaces. Following the general approach
outlined in Section 3, we establish symmetric topology for an asymmetric surface
by first symmetrizing it, remeshing with symmetric topology, and then warping
the new topology and correspondences back to the original geometry. We then
perform symmetry-preserving mesh decimation on the symmetric topology over
the asymmetric mesh.

Figure 10 shows the results of this method (first two columns) in comparison
to the original version of Qslim (last column). Note that the topology of the
mesh output by our algorithm is perfectly symmetric, even though the geometry
of the surface is not. Note also that the geometric approximation achieved with
symmetry-aware simplification is similar to the original (according to Metro [27],
it has a Hausdorff distance approximately 6% larger). Since the symmetric mesh
better reflects the semantic structure of the surface, we believe it may be prefer-
able as a base domain for parameterization, animation, simulation, and other
applications.

7 Conclusion

In summary, this paper has investigated methods for and applications of sym-
metrizing 3D surface meshes. The main idea is that symmetry-aware algorithms
can be used to preserve, exploit, and enhance structural symmetries of a surface,
even if the underlying geometry is only approximately symmetric. This idea is
important because the vast majority of objects in the world have some sort of
structural symmetries, and current mesh processing algorithms generally do not
preserve them.

The main contribution of this paper is the symmetry-aware mesh processing
framework, which includes algorithms for geometric symmetrization and sym-
metric remeshing. We provide demonstration of the framework for mesh beauti-
fication, symmetry enhancement, attribute transfer, and simplification.

The initial results seem promising, but our implementation has limitations,
which suggest immediate topics for future work. We have demonstrated our
algorithms only for symmetries across planar reflections. Although our code can
handle symmetries for arbitrary affine transformations, we have not investigated
examples of this type in our study.

Considering steps forward, the most obvious next step is to investigate other
applications enabled by symmetry-aware processing. First candidates include
compression and denoising. In the former case, it is possible that factoring a
mesh into its symmetric part and its asymmetric residual could provide in-
creased compression ratios, since at least half of the symmetric part can be
discarded [13]. For denoising, the symmetric map could provide a way to blend
noise across symmetric surfaces, as in Smoothing by Example [28]. These are
just two examples – considering other applications that exploit symmetries will
be a fruitful topic for future work.
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The main long-term direction suggested by this work is that digital geometry
processing algorithms can and should consider large-scale structural features as
well as local surface properties when processing a mesh. So, future work should
consider better ways to detect and encode large-scale shape features (such as
symmetry) and to preserve and exploit them during surface processing.
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Abstract. Computational conformal geometry focuses on developing
the computational methodologies on discrete surfaces to discover con-
formal geometric invariants. In this work, we briefly summarize the re-
cent developments for methods and related applications in computational
conformal geometry. There are two major approaches, holomorphic dif-
ferentials and curvature flow. The holomorphic differential method is
a linear method, which is more efficient and robust to triangulations
with lower quality. The curvature flow method is nonlinear and requires
higher quality triangulations, but more flexible. The conformal geomet-
ric methods have been broadly applied in many engineering fields, such
as computer graphics, vision, geometric modeling and medical imaging.
The algorithms are robust for surfaces scanned from real life, general
for surfaces with different topologies. The efficiency and efficacy of the
algorithms are demonstrated by the experimental results.

Keywords: Computational Conformal Geometry, Holomorphic Differ-
entials, Curvature Flow.

1 Introduction

Computational conformal geometry focuses on developing the computational
methodologies on discrete surfaces to discover conformal geometric invariants.
Computational conformal geometry is an emerging field, which combines differ-
ential geometry, algebraic topology, complex analysis, Riemann surface theory,
algebraic geometry with computer science. It has broad applications in many
fields in both pure theoretic research, such as mathematics, theoretical physics,
and engineering applications, such as mechanics, computer graphics, computer
vision, geometric modeling, network and medical imaging.

Classical computational complex analysis focuses on the mappings among do-
mains on the complex plane C. Classical methods for constructing conformal
mappings include Schwarz-Christoffel maps, osculation method, polynomial ex-
pansion method, circle packing method and many other methods. For details,
we refer readers to [1, 2] for a more thorough discussion.

With the development of 3D data acquisition technologies, a huge amount
of surface and volumetric data has been accumulated. For example, the state
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Fig. 1. Geometric surfaces captured by 3D scanner based on phase shifting technology

Fig. 2. Surfaces are represented as triangular meshes on computers

of the art 3D scanner based on phase shifting technology can capture dynamic
surfaces with a quarter of million samples per frame, at the frame rate as high
as 180 per second. Figure 1 illustrates one example of the acquired human face
surface. These geometric surfaces are stored and represented in computers as
polyhedral surfaces, most commonly simplicial complexes with a piecewise linear
embedding in the Euclidean space, or triangular meshes in engineering field as
shown in Figure 2.

The demands for processing discrete surfaces accurately and efficiently are
pressing. Rigorous algorithms for surface matching, registration, classification
have fundamental importance in almost every engineering field. It also becomes
great challenges for mathematician to generalize the geometric theories from
smooth manifolds to discrete settings.

With the great efforts of both mathematicians and computer scientists, ma-
jor breakthroughs have been made in the last several years. Several theoretic
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frameworks have been systematically developed. The discrete counter parts of
many fundamental theorems in classical conformal geometry have been discov-
ered. Many computational algorithms have been invented and applied for engi-
neering and medicine fields. There are still many profound facts in conformal
geometry: the discretization method and the computational strategy are still
widely open. Furthermore, the urge of practical applications has advanced the
computational algorithms of this field, but the theoretic foundations need to be
rigorously laid down in near future.

Generally speaking, there are two major approaches for computing conformal
structures, one is along the harmonic analysis approach to construct various
holomorphic or meromorphic differentials on the surface, then build conformal
mappings and quasi-conformal mappings based on the differential forms; the
other is along the surface Ricci curvature flow approach to design conformal Rie-
mannian metrics which satisfy the prescribed curvatures. These two approaches
each have advantages and disadvantages, and they are closely related. This work
focuses on the recent developments of these approaches and their applications
in practice.

2 Previous Work

Conventional computational complex analysis methods focus on conformal map-
pings on planar domains. A thorough introduction to the conventional methods
can be found in the books [1] and [2].

Recently, with the development of digital scanning technology, computing
conformal mappings between surfaces becomes more and more important. In
computer graphics and discrete mathematics, much sound research has focused
on discrete conformal mappings.

2.1 Holomorphic Differentials

The computational method of current work is mainly based on harmonic maps
and holomorphic differential forms. Here, we briefly overview most related work,
and refer readers to [3] and [4] for thorough surveys.

Discrete harmonic maps were constructed in [5], where the cotan formula was
introduced. First order finite element approximations of the Cauchy-Riemann
equations were introduced by Levy et al. [6]. Discrete intrinsic parameterization
by minimizing Dirichlet energy was introduced by [7]. Mean value coordinates
were introduced in [8] to compute generalized harmonic maps; Discrete spherical
conformal mappings are used in [9] and [10].

Discrete holomorphic forms are introduced by Gu and Yau [11] to compute
global conformal surface parameterizations for high genus surfaces. Another ap-
proach of discrete holomorphy was introduced in [12] using discrete exterior
calculus [13]. The problem of computing optimal holomorphic 1-forms to reduce
area distortion was considered in [14]. Gortler et al. [15] generalized 1-forms to
the discrete case, using them to parameterize genus one meshes. Tong et al. [16]
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generalized the 1-form method to incorporate cone singularities. Discrete one-
forms have been applied for meshing point clouds in [17], surface tiling [18],
surface quadrangulation [19]. The holomorphic 1-form method has been applied
to virtual colonoscopy [20]. The colon surface is reconstructed from MRI images,
and conformally mapped to the planar rectangle. This improves the efficiency
and accuracy for detecting polyps. Conformal mapping is used for brain cortex
surface morphology study in [10]. By mapping brain surfaces to spheres, cortex
surface registration and comparison become straightforward. The holomorphic
1-form method has also been applied in computer vision [21, 22] for 3D shape
matching, recognition and stitching. In geometric modeling field, constructing
splines on general surfaces is one of the most fundamental problems. It is proven
in [23] that if the surface has an affine structure, then splines can be general-
ized to it directly. Holomorphic 1-forms can be applied for computing the affine
structures of general surfaces.

The Ricci flow on surfaces. The Ricci flow was introduced by R. Hamilton
in a seminal paper [24] for Riemannian manifolds of any dimension. The Ricci
flow has revolutionized the study of geometry of surfaces and 3-manifolds and
has inspired huge research activities in geometry. In particular, it leads to a
proof of the 3-dimensional Poincaré conjecture. In the paper [25], Hamilton used
the 2-dimensional Ricci flow to give a proof of the uniformization theorem for
surfaces of positive genus. This leads a way for potential applications to computer
graphics.

There are many ways to discretize smooth surfaces. The one which is par-
ticularly related to a discretization of conformality is the circle packing metric
introduced by Thurston [26]. The notion of circle packing has appeared in the
work of Koebe [27]. Thurston conjectured in [28] that for a discretization of
the Jordan domain in the plane, the sequence of circle packings converge to the
Riemann mapping. This was proved by Rodin and Sullivan [29].

Colin de Verdiere [30] established the first variational principle for circle pack-
ing and proved Thurston’s existence of circle packing metrics. This paved a way
for a fast algorithmic implementation of finding the circle packing metric, such
as the one by Collins and Stephenson [31]. In [32], Chow and Luo generalized
Colin de Verdiere’s work and introduced the discrete Ricci flow and discrete
Ricci energy on surfaces. They proved a general existence and convergence the-
orem for the discrete Ricci flow and proved that the Ricci energy is convex.
The algorithmic implementation of the discrete Ricci flow was carried out by
Jin et al. [33].

Another related discretization method is called circle patterns; it considers
both the combinatorics and the geometry of the original mesh, and can be
looked as a variant of circle packings. Circle pattern was proposed by Bow-
ers and Hurdal [34], and has been proven to be a minimizer of a convex energy
by Bobenko and Springborn [35]. An efficient circle pattern algorithm was de-
veloped by Kharevych et al. [36].

The Yamabe flow on surfaces. The Yamabe problem aims at finding a con-
formal metric with constant scalar curvature for compact Riemannian manifolds.
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The first proof (with flaws) was given by Yamabe [37], which was corrected and
extended to a complete proof by several researchers including Trudinger [38],
Aubin [39] and Schoen [40]. A comprehensive survey on this topic was given by
Lee and Parker in [41].

In [42] Luo studied the discrete Yamabe flow on surfaces. He introduced a
notion of discrete conformal change of polyhedral metric, which plays a key role
in developing the discrete Yamabe flow and the associated variational principle
in the field. Based on the discrete conformal class and geometric consideration,
Luo gave the discrete Yamabe energy as an integration of a differential 1-form
and proved that this energy is a locally convex function. He also deduced from
it that the curvature evolution of the Yamabe flow is a heat equation.

In a very nice recent work by Springborn et al. [43] they were able to identify
the Yamabe energy introduced by Luo with the Milnor-Lobachevsky function
and the heat equation for the curvature evolution with the cotangent Laplace
equation. They constructed an algorithm based on their explicit formula. An-
other recent work by Gu et al [44], which used the original discrete Yamabe en-
ergy from [42], has produced an equally efficient algorithm in finding the discrete
conformal metrics. In addition, discrete hyperbolic Yamabe Flow was presented
in [45] for computing hyperbolic structure and the canonical homotopy class
representative.

3 Theoretic Background

This section reviews the preliminary theoretic background for conformal
geometry.

3.1 Harmonic Maps

Suppose f : S → R is a function defined on a surface S: the harmonic energy of
f is defined as

E(f) =
∫

S

|∇f |2ds,
where ∇f is the gradient of f . A harmonic function is a critical point of the
harmonic energy. The harmonic function satisfies the following Laplace equation

Δf = 0,

where Δ is the Laplace-Beltrami operator. If S is a domain on the Euclidean
plane, then the Laplace-Beltrami operator has the form

Δ =
∂2

∂x2
+

∂2

∂y2
.

A harmonic map between two surfaces can be defined similarly, which is a critical
point of the harmonic energy. Suppose φ : S1 → S2 is a harmonic map, S2 is a
convex planar domain, and the restriction of φ on the boundaries φ∂S1 : ∂S1 →
∂S2 is a homeomorphism, then φ is a diffeomorphism in the interior. Figure 3
shows one such kind of map.
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Fig. 3. A harmonic map from a face surface to a planar convex domain

3.2 Conformal Mappings

Let S1 and S2 be two surfaces with Riemannian metrics g1 and g2 and let
φ : (S1,g1) → (S2,g2) be a homeomorphism between them. We say that φ is
conformal, if it preserves angles. In details, as shown in Figure 4, let γ1, γ2 :
[0, 1] → S1 be two arbitrary curves on S1, intersecting at the point p, and the
angle between the two tangent vectors dγ1

dt (p) and dγ2
dt (p) be equal to θ. Therefore

φ ◦ γ1(t) and φ ◦ γ2(t) are two curves on S2, intersecting at φ(p). Then their
intersection angle also equals θ.

Locally, conformal mapping is a scaling transformation; it preserves local
shapes. For example, it maps infinitesimal circles to infinitesimal circles. As
shown in Figure 5 frame (a), the bunny surface is mapped to the plane via a
conformal mapping. A circle packing is defined on the plane, and pulled back
onto the bunny surface, and all small circles are preserved. If we put a checker-
board on the plane, then on the bunny surface, all the right angles of the checkers
are well preserved, as illustrated in the same figure frame (a).

Mathematically, the pull back metric induced by φ differs from the original
metric by a scaling function, which is called the conformal factor and measures
the area distortion.

φ∗(g2) = e2ug1.

θ

θ

Fig. 4. Conformal mappings preserve angles
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(a) Circle Packing (b) Checker board

Fig. 5. Conformal texture mapping

Conformal mappings have deep relation with complex analysis. Conformal
mappings between two planar domains can be represented as holomorphic func-
tions. Let φ : C → C be a complex function, φ : z → w, where z = x + iy,
w = u+ iv, then φ is holomorphic, if it satisfies the following Riemann-Cauchy
equation

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If φ is invertible and the inverse is also holomorphic, then φ is bi-holomorphic.

3.3 Conformal Structure

Let S be a topological surface, Uα be an open set on S, φα : Uα → C be a
homeomorphism, then (Uα, φα) is a local chart of S. Suppose (Uβ , φβ) is another
local chart overlapping with (Uα, φα), the transition function φαβ : φα(Uα ∩
Uβ)→ φβ(Uα ∩ Uβ) is given by φβ ◦ φ−1

α . An atlas is a collection of local charts
{(Uα, φα)}, such that the union of the charts cover the surface, as shown in
Figure 6.

An atlas is a conformal atlas if all its transition functions are biholomorphic.
Two conformal atlases are equivalent if their union is still a conformal atlas.
Each equivalence class of conformal atlases is called a conformal structure of the
surface. A surface with a conformal structure is called a Riemann surface.

If a Riemann surface S has a Riemannian metric g, then we say its conformal
structure is compatible with the metric if local representation of the metric on
a chart (Uα, φα)

g = e2udzαdz̄α,

where zα is the local complex parameter. We also call such local complex param-
eters isothermal coordinates. The Laplace-Beltrami operator Δ on an isothermal
coordinates has a simple representation

Δ =
1

e2u(xα,yα)
(
∂2

∂x2
α

+
∂2

∂y2
α

).
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φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)

Fig. 6. Conformal structure

Fig. 7. Conformal structures (isothermal coordinates) for surfaces in real life

All oriented metric surfaces are Riemann surfaces and with isothermal coor-
dinates. Therefore conformal geometric concepts and methods are general to all
surfaces in real life. Figure 7 shows the isothermal coordinates on surfaces from
real life.

Suppose (S1,A1) and (S2,A2) are two Riemann surfaces, Ai’s are their con-
formal structures, (Uα, φα) is a local chart of A1 and (Vβ , ψβ) is a local chart of
A2, then φ : S1 → S2 is a conformal map if and only if

ψβ ◦ φ ◦ φ−1
α : φα(Uα)→ ψβ(Vβ)

is biholomorphic. A conformal map preserves angles.

3.4 Holomorphic Differentials

Differential forms play important role in conformal geometry. A function f : S →
R is called a 0-form. The exterior differential operator d is the generalization of
conventional grad, curl and divergence operators. The exterior differentiation
of a 0-form is its gradient. Let (Uα, φα) be a local chart with local parameters
(xα, yα), then

d0f =
∂f

∂xα
dxα +

∂f

∂yα
dyα.
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A differential 1-form has local representation

ω = fαdxα + gαdyα,

and also has local representation fβdxβ + gβdyβ , such that

(fα gα )

(
∂xα

∂xβ

∂xα

∂yβ
∂yα

∂xβ

∂yα

∂yβ

)
= (fβ gβ ).

The exterior differentiation of a 1-form is its circulation

d1ω = (
∂g

∂xα
− ∂f

∂yα
)dxα ∧ dyα.

A differential 2-form has local representation

Ω = fαdxα ∧ dyα.

On another chart (xβ , yβ) and its associated representation Ω = fβdxβ ∧ dyβ ,
the two fα and fβ satisfy

fα

∣∣∣∣∣

∂xα

∂xβ

∂xα

∂yβ
∂yα

∂xβ

∂yα

∂yβ

∣∣∣∣∣ = fβ .

The exterior differentiation of a 2-form is zero, d2Ω = 0.
Let ω be a k-form: if dkω = 0, ω is called a closed form. If there exists a (k−1)-

form τ , such that ω = dk−1τ , then ω is called an exact form. A fundamental fact
is that

dk ◦ dk−1 ≡ 0, k = 1, 2

therefore all exact forms are closed. The difference between exact forms and
closed forms conveys the topological information of the surface. The de Rham
cohomology group is defined as

Hk(S,R) =
Ker dk

Img dk−1
.

If two closed k-forms, ω1, ω2, are cohomologous, then they differ by an exact
form dτ = ω1 − ω2, for some (k − 1)-form τ .

Let Ω0 be the area element on S with local representation dxα ∧ dyα, ω be a
k-form. The Hodge star operator converts ω to a (n− k)-form, ∗ω, such that

ω ∧ ∗ω = Ω0.

We say ∗ω is conjugate to ω.
The co-differentiation operator δ is defined as

δ = ∗d ∗ .
A harmonic form ω satisfies the following condition

dω = 0, δω = 0.
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A holomorphic 1-form is a pair of harmonic 1-forms, the imaginary part is
conjugate to the real part:

τ = ω + i∗ω.

On the conformal atlas, τ has a local representation on (Uα, φα) with local
parameter zα,

τ = fα(zα)dzα,

where fα is a holomorphic function. On another chart (Uβ, φβ) with local pa-
rameter zβ , τ = fβdzβ , such that

fα
dzα

dzβ
= fβ .

The Hodge theorem claims that each cohomologous class has a unique har-
monic 1-form. Therefore the group of all harmonic 1-forms is isomorphic to the
first cohomology group H1(S,R). Also, the group of all holomorphic 1-forms is
isomorphic to H1(S,R).

3.5 Surface Ricci Flow

Let S be a topological surface. Consider all Riemannian metrics on S. Two
metrics g1,g2 are conformal equivalent, if there is a function u : S → R de-
fined on the surface, such that g2 = e2ug1. Each conformal equivalence class of
Riemannian metrics is a conformal structure of S.

The Gaussian curvatures determined by g1 and g2 are denoted as K1 and K2,
they are related by the following Yamabe equation

K2 =
1
e2u

(−Δu+K1),

where Δ is the Laplace-Beltrami operator determined by the metric g1.
Hamilton introduced the surface Ricci flow

dgij

dt
= −Kgij.

During the flow, if the total area is preserved, then the Gaussian curvature
will evolve according to a heat diffusion process. Hamilton and Chow together
proved that the surface Ricci flow converges to a special metric, whose Gaussian
curvature is constant everywhere. In fact, their proofs give another approach
for the Poincaré uniformization theorem, which states that for any metric sur-
face (S,g), there exists a metric conformal to the original metric, that induces
constant Gaussian curvature. As shown in Figure 8, all closed surfaces can be
conformally deformed to three canonical shapes, the unit sphere S

2, the plane
E

2 and the hyperbolic disk H
2.
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Spherical Euclidean Hyperbolic

Fig. 8. Surface uniformization theorem

3.6 Quasi-Conformal Maps

A generalization of the conformal map is called the quasi-conformal map which
is an orientation-preserving homeomorphism between Riemann surfaces with
bounded conformality distortion, in the sense that the first order approximation
of the quasi-conformal homeomorphism takes small circles to small ellipses of
bounded eccentricity. Thus, a conformal homeomorphism that maps a small
circle to a small circle can also be regarded as quasi-conformal.

Mathematically, φ is quasi-conformal provided that it satisfies Beltrami’s
equation 1 on a local chart for some complex valued Lebesgue measurable μ
satisfying |μ|∞ < 1,

∂φ

∂z̄
= μ(z)

∂φ

∂z
, (1)

μ is called the Beltrami coefficient, which is a measure of conformality. In partic-
ular, the map φ is conformal around a small neighborhood of p when μ(p) = 0.
In general, φ maps an infinitesimal circle to a infinitesimal ellipse. From μ(p), we
can determine the angles of the directions of maximal magnification as well as
the amount of maximal magnification and maximal shrinking. Specifically, the
angle of maximal magnification is argμ(p)/2 with magnifying factor 1 + |μ(p)|;
the angle of maximal shrinking is the orthogonal angle (argμ(p) − π)/2 with
shrinking factor 1− |μ(p)|. The distortion or dilation is given by:

K =
1 + |μ(p)|
1− |μ(p)| . (2)
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1 + |μ|

1− |μ|

K = 1+|μ|
1−|μ|

θ

θ = 1
2argμ

Fig. 9. Illustration of how Beltrami coefficient µ measures the distortion by a quasi-
conformal map that is an ellipse with dilation K

p q p q

(a) Original face (b) Conformal Mapping (c) Circle packing induced by (b)

(d) Checker-board texture (e) Quasi-conformal Mapping (f) Circle packing induced by (e)

Fig. 10. Conformal and quasi-conformal mappings for a topological disk

Thus, the Beltrami coefficient μ gives us all the information about the confor-
mality of the map (see Figure 9).

In terms of the metric tensor, considering the effect of the pullback of the
canonical Euclidean metric g0 under φ, the resulting metric is given by:

φ∗(g0) = |∂φ
∂z
|2|dz + μ(z)dz)|2. (3)
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Figure 10 shows the conformal and quasi-conformal mappings for a topological
disk, where the Beltrami coefficient is set to be μ = z. From the texture mappings
in frames (c) and (d), we can see that the conformality is kept well around nose
tip (circles to circles), while it is changed a lot along the boundary area (circles
to quasi-ellipses).

3.7 Teichmüller Space

Given a topological surface S with genus g > 1, all the conformal structures
on S form the Moduli space. In general, this space is complicated to compute.
Instead, we study its universal covering space Teichmüller space.

Let S be a Riemann surface of genus g > 1. We mark a set of fundamen-
tal group generators {a1, a2, · · · , ag, b1, b2, · · · , bg}, then S is a marked Riemann
surface. Two given marked Riemann surfaces are equivalent, if there is a confor-
mal (bi-holomorphic) map φ : S1 → S2, such that φ is isotopic to the identity
up to the marking. Each equivalence class is represented as one point in the
Teichmüller space Tg.

The dimension of Teichmüller space is 2 for genus one surfaces, and 6g − 6
if g > 1. Because each conformal structure has a unique hyperbolic metric,
it is enough to consider surfaces with hyperbolic metrics for computing the
Teichmüller space.

Assuming that S has a hyperbolic metric, its Fenchel-Nielsen coordinates in
Tg can be constructed as follows. Given a genus g surface, it can be decomposed
to 2g − 2 pairs of pants. Figure 11 illustrates one example. Assume all the
cutting loops are geodesics {γ1, γ2, · · · , γ3g−3}, then each pair of pants is a pair
of hyperbolic pants.

On each pair of hyperbolic pants P with three boundaries γi, γj , γk there are
three shortest paths connecting each pair of boundaries, e.g. τi connects γj , γk.
Then τi, τj , τk separate S into two congruent hyperbolic hexagons with right
corner angles.

γi

γj

γk

τj

τk τi
γ

P1

P2

p1

p2

(a) A pair of pants (b) Pants decomposition

Fig. 11. A surface of genus g with a hyperbolic metric is decomposed to 2g−2 pairs of
pants by cutting along closed geodesics. The twisting angle and length of each cutting
loop give the Fenchel-Nielsen coordinates in the shape space.
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Suppose two pairs of hyperbolic pants P1 and P2 are glued together along
γ. The shortest path τ1 on P1 intersects γ at p1, the shortest path τ2 on P2

intersects γ at p2, then the twisting angle on γ is given by

θ = 2π
d(p1, p2)
|γ|

where d(p1, p2) is the geodesic distance between p1 and p2, |γ| is the length of γ.
The Fenchel-Nielsen Coordinates are given by the lengths of γk and the twisting
angles on γk, k = 1, 2, · · · , 3g − 3.

4 Computational Methods

4.1 Harmonic Maps

Harmonic maps in R
3 can be computed using heat flow method. For example,

in case we want to compute a harmonic map from a genus zero closed surface to
the unit sphere φ : S → S

2. We can initialize the map by the canonical Gauss
map, then minimize the harmonic energy by the heat flow. First we compute the
Laplacian of the map Δφ : S → R

3. Then we compute the tangential component
of the Laplacian. Suppose p ∈ S, then φ(p) ∈ S

2.

Δ⊥φ(p) =< Δ⊥φ(p), φ(p) > φ(p).

The tangential component of the Laplacian is given by

Δ‖φ(p) = Δφ(p) −Δ⊥φ(p).

The heat flow is defined as

dφ(p, t)
dt

= −Δ‖φ(p).

Because the harmonic maps are not unique, they differ by a Möbius transfor-
mation on the sphere, special normalization condition needs to be added during
the flow. The following is a common condition,

∫

S

φ(p)ds = 0.

For genus zero closed surfaces, harmonic maps are conformal. Figure 12 shows
one example computed using this method.

For a genus zero surface with a single boundary, we can convert it to a symmet-
ric closed surface by double covering. Then by mapping the doubled surface to
the unit sphere, we can compute the conformal mapping of the original surface.
The mapping is not unique; figure 13 shows that two such conformal mappings
differ by a Möbius transformation.
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Fig. 12. Harmonic map from a genus zero closed surface to the unit sphere

Fig. 13. Conformal mappings from a topological disk to the unit disk differ by a Möbius
transformation

4.2 Holomorphic Differential Approach

Homology Basis. Given a surface S embedded in R
3, we first compute its fun-

damental group generators. We compute its CW-cell decomposition

S0 ⊂ S1 ⊂ S2 = S,

where Sk = Sk−1 ∪ D1
k ∪ D2

k · · · ∪ Dn
k , and Di

k are k-dimensional cells (disks),
such that the boundaries of these cells are on Sk−1,

∂Di
k ⊂ Sk−1.

Then the fundamental group of S1 has the same generators as the fundamental
group of S. Then we compute a spanning tree T of S0 in S1, the complement
of T in S1 are disconnected 1-cells, denoted as e1, e2, · · · ek, then the union of T
and ei has a unique loop γi. All such loops {γ1, γ2, · · · , γ2g} form a basis for the
fundamental group π1(S). These loops also form a basis of the first homology
basis H1(S,Z). Figure 14 shows the homology group generators of a genus two
surface.
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Fig. 14. Computing homology group basis

Fig. 15. Computing harmonic 1-form group basis

Cohomology Basis. Let γk be a base loop for H1(S,Z), then we slice S along γk

to get an open surface Sk, such that the boundary of Sk is given by

∂Sk = γ+
k − γ−k ,

γ+
k , γ

−1
k are the two boundary loops on Sk. Then we randomly construct a func-

tion hk : Sk → R, such that

hk(p) = 1, ∀p ∈ γ+
k ; hk(p) = 0, ∀p ∈ γ−k ;

and hk(p) is random for all interior points on Sk. Then dhk is an exact 1-form
on Sk. Because of the consistency along the boundaries, dhk is also a closed
1-form on S. We denote τk as dhk on S. Then {τ1, τ2, · · · , τ2g} form a basis for
H1(S,R).

Harmonic 1-form Basis. According to Hodge theory, for each closed 1-form τk,
there exists a 0-form gk : S → R, such that τk + dgk is a harmonic 1-form. The
0-form gk can be obtained by solving

d ∗ (τk + dgk) = 0.

We denote the harmonic 1-form as ωk = τk +dgk. Figure 15 shows the harmonic
group generators of a genus two surface.

Holomorphic 1-form Basis. Holomorphic 1-form can be constructed by harmonic
1-form and its conjugate ωk + i∗ωk. Then {ω1 + i∗ω1, ω2 + i∗ω2, · · · , ω2g + i∗ω2g}



Recent Advances in Computational Conformal Geometry 205

Fig. 16. Computing holomorphic 1-form group basis

form a basis for holomorphic 1-form group. Figure 16 shows the holomorphic
1-form group basis for the genus two surface.

For surfaces with boundaries, we can convert the surface to a symmetric closed
surface by the double covering technique.

4.3 Discrete Surface Ricci Flow

In the engineering field, smooth surfaces are often approximated by simplicial
complexes (triangle meshes). Major concepts, such as metric, curvature, and con-
formal deformation in the continuous setting can be generalized to the discrete
setting. We denote a triangle mesh as Σ, a vertex set as V , an edge set as E,
and a face set as F . eij represents the edge connecting vertices vi and vj , and
fijk denotes the face formed by vi, vj , and vk.

Background Geometry. In the engineering field, it is always assumed that a
mesh Σ is embedded in the three dimensional Euclidean space R

3, and therefore
each face is Euclidean. In this case, we say the mesh is with Euclidean back-
ground geometry. The angles and edge lengths of each face satisfy the Euclidean
cosine law.

Similarly, we can assume that when a mesh is embedded in the three di-
mensional sphere S

3 or hyperbolic space H
3, then each face is a spherical or a

hyperbolic triangle. We say the mesh is with spherical or hyperbolic background
geometry. The angles and the edge lengths of each face satisfy the spherical or
hyperbolic cosine law.

Discrete Riemannian Metric. A discrete Riemannian metric on a mesh Σ is a
piecewise constant metric with cone singularities. A metric on a mesh with Eu-
clidean metric is a discrete Euclidean metric with cone singularities. Each vertex
is a cone singularity. Similarly, a metric on a mesh with spherical background
geometry is a discrete spherical metric with cone singularities; a metric on a
mesh with hyperbolic background geometry is a discrete hyperbolic metric with
cone singularities.

The edge lengths of a mesh Σ are sufficient to define a discrete Riemannian
metric,

l : E → R
+, (4)
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as long as, for each face fijk, the edge lengths satisfy the triangle inequality:
lij + ljk > lki for all the three background geometries, and another inequality:
lij + ljk + lki < 2π for spherical geometry.

Discrete Gaussian Curvature. The discrete Gaussian curvature Ki at a vertex
vi ∈ Σ can be computed from the angle deficit,

Ki =

{
2π −∑fijk∈F θ

jk
i , vi ∈ ∂Σ

π −∑fijk∈F θ
jk
i , vi ∈ ∂Σ (5)

where θjk
i represents the corner angle attached to vertex vi in the face fijk, and

∂Σ represents the boundary of the mesh. The discrete Gaussian curvatures are
determined by the discrete metrics.

Discrete Gauss-Bonnet Theorem. The Gauss-Bonnet theorem states that the
total curvature is a topological invariant. It still holds on meshes as follows.

∑

vi∈V

Ki + λ
∑

fi∈F

Ai = 2πχ(M), (6)

where Ai denotes the area of face fi, and λ represents the constant curvature
for the background geometry; +1 for the spherical geometry, 0 for the Euclidean
geometry, and −1 for the hyperbolic geometry.

Circle Packing Metric. The concept of the circle packing metric was introduced
by Thurston in [46] as shown in Figure 17. Let Γ be a function defined on the
vertices, Γ : V → R

+, which assigns a radius γi to the vertex vi. Similarly,
let Φ be a function defined on the edges, Φ : E → [0, π

2 ], which assigns an
acute angle Φ(eij) to each edge eij and is called a weight function on the edges.
Geometrically, Φ(eij) is the intersection angle of two circles centered at vi and
vj . The pair of vertex radius function and edge weight function on a mesh Σ,
(Γ, Φ), is called a circle packing metric of Σ. Two circle packing metrics (Γ1, Φ1)
and (Γ2, Φ2) on the same mesh are conformally equivalent if Φ1 ≡ Φ2.

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

o

(a) (b)

Fig. 17. Circle Packing Metric. (a) Flat circle packing metric (b) Circle packing metric
on a triangle.
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Admissible Curvature Space. A mesh Σ with edge weight Φ is called a weighted
mesh, which is denoted as (Σ,Φ). In the following, we want to clarify the spaces
of all possible circle packing metrics and all possible curvatures of a weighted
mesh.

Let the vertex set be V = {v1, v2, · · · , vn}, and the radii Γ = {γ1, γ2, · · · , γn}.
Let ui be

ui =

⎧
⎨

⎩

log γi E
2

log tanh γi

2 H
2

log tan γi

2 S
2

(7)

where E
2, H

2, and S
2 indicate the background geometry of the mesh. We rep-

resent a circle packing metric on (Σ,Φ) by a vector u = (u1, u2, · · · , un)T . Sim-
ilarly, we represent the Gaussian curvatures at mesh vertices by the curvature
vector k = (K1,K2, · · · ,Kn)T . All the possible u’s form the admissible metric
space, and all the possible k’s form the admissible curvature space.

According to the Gauss-Bonnet theory (see Eqn. 6), the total curvature must
be 2πχ(Σ), and therefore the curvature space is n− 1 dimensional. We add one
linear constraint to the metric vector u,

∑
ui = 0, for the normalized metric. As

a result, the metric space is also n− 1 dimensional. If all the intersection angles
are acute, then the edge lengths induced by a circle packing satisfy the triangle
inequality. There is no further constraint on u. Therefore, the admissible metric
space is simply R

n−1.
A curvature vector k is admissible if there exists a metric vector u, which

induces k. The admissible curvature space of a weighted mesh (Σ,Φ) is a convex
polytope, specified by the following theorem. The detailed proof can be found
in [32].

The admissible curvature space for weighted meshes with hyperbolic or spher-
ical background geometries is more complicated. We refer the readers to [47] for
detailed discussion.

Ricci Flow. Suppose (Σ,Φ) is a weighted mesh with an initial circle packing
metric. The discrete Ricci flow is defined as follows.

dui(t)
dt

= (K̄i −Ki), (8)

where k̄ = (K̄1, K̄2, · · · , K̄n)T is the user defined target curvature. The discrete
Ricci flow has exactly the same form as the smooth Ricci flow, which deforms
the circle packing metric according to the Gaussian curvature, as in Eqn. 8.

The discrete Ricci flow can be formulated in the variational setting, namely,
it is a negative gradient flow of a special energy form. The energy is given by

f(u) =
∫ u

u0

n∑

i=1

(K̄i −Ki)dui, (9)

where u0 is an arbitrary initial metric. The energy is called the discrete Ricci
energy.
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Fig. 18. Euclidean Ricci flow method to compute a conformal mapping for a multiply
connected domain

Fig. 19. Hyperbolic Ricci flow method to compute a conformal mapping for a genus
two surface

Computing the desired metric with user-defined curvature k̄ is equivalent to
minimizing the discrete Ricci energy. For Euclidean or hyperbolic cases, the
discrete Ricci energy (see Eqn. 9) was first proved to be strictly convex in the
seminal work of Colin de Verdiere [30] for the Φ = 0 case, and was generalized to
all cases of Φ ≤ π/2 in [32]. The global minimum uniquely exists, corresponding
to the metric ū, which induces k̄. The discrete Ricci flow converges to this global
minimum. Although the spherical Ricci energy is not strictly convex, the desired
metric ū is still a critical point of the energy.

The energy can be optimized using Newton’s method. As shown in figure 17
(b), for each face [vi, vj , vk] there exists a unique circle orthogonal to all three
circles at the vertices, whose center is o. The distance from the center to edge
[vi, vj ] is denoted as dk

ij . The weight for an edge [vi, vj ] adjacent to [vi, vj , vk]
and [vj , vi, vl] is defined as

μij = dk
ij + dl

ij .

The Hessian matrix H = (hij) is given by the discrete Laplace form

hij =

⎧
⎨

⎩

0, [vi, vj ] ∈ E
dij , i = j∑

k dik, i = j
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Figure 18 shows one example for computing the conformal mapping of a mul-
tiply connected domain onto the plane. Figure 19 shows the result for comput-
ing the uniformization hyperbolic metric for a genus two surface. The universal
covering space of the surface with the uniformization metric is isometrically em-
bedded in the Poicaré disk.

4.4 Discrete Surface Yamabe Flow

For smooth surfaces, the Ricci flow and Yamabe flow are equivalent. Using the
symbols in the previous discussion, let Σ be a triangle mesh embedded in R

3. Let
eij be an edge with end vertices vi and vj . dij is the edge length of eij induced
by the Euclidean metric of R

3. A function defined on the vertices u : V → R is
the discrete conformal factor. The edge length lij is defined as

lij = eui+ujdij . (10)

Let Ki and K̄i denote the current vertex curvature and the target vertex curva-
ture respectively. The discrete Yamabe flow is defined as

dui(t)
dt

= K̄i −Ki, (11)

with initial condition ui(0) = 0. The convergence of Yamabe flow is proven
in [42]. Furthermore, Yamabe flow is the gradient flow of the following Yamabe
energy, let u = (u1, u2, · · · , un),n is the total number of vertices,

f(u) =
∫ u

u0

n∑

i

(K̄i −Ki)dui. (12)

The Yamabe energy is well defined and convex. The Hessian matrix can be easily
constructed as follows. Suppose faces [vi, vj , vk] and [vj , vi, vl] are adjacent to the
edge eij , define the weight of the edge eij as

wij = cot θk + cot θl, (13)

where θk is the angle at vk in fijk, θl is the angle at vl in face fjil. If the edge
is on the boundary, and only attaches to fijk, then

μij = cot θk.

It can be shown by direct computation, the differential relation between the
curvature and the conformal factor is

dKi =
∑

j

μij(dui − duj). (14)

So the Hessian matrix of the yamabe energy H = (hij) is given by

hij =

⎧
⎨

⎩

0 , [vi, vj ] ∈ E
μij , i = j
−∑k μik , i = j

(15)
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vi
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vk

vl
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vl

vj

vk

Fig. 20. Edge swap

Fig. 21. Conformal brain mapping using Yamabe flow method

The Hessian matrix is positive definite on the linear subspace
∑

i ui = 0. By
using the Hessian matrix (see Eqn. 15), the Yamabe energy (see Eqn. 12) can
be optimized effectively. But the major difficulty is that the admissible metric
space Ω(u) for a mesh with fixed connectivity is not convex,

Ω(u) = {u|∀fijk ∈M, lij + ljl > lli}
Therefore, during the optimization process using Newton’s method, we need to
ensure that the metric u is in the admissible metric space Ω(u) at each step.
If a degenerated triangle fijk is detected, then we swap the longest edge of it.
For example, if θk exceeds π, then we swap edge eij as shown in Figure 20. The
major difficulty for the discrete Ricci flow is to find a good initial circle packing
with all acute edge intersection angles. This problem does not exist for discrete
Yamabe flow. Therefore, Yamabe flow in general produces better conformality
in practice. Figure 21 shows the conformal brain mapping result using Yamabe
flow method.

4.5 Quasi-Conformal Mapping by Solving Beltrami Equations

Given a surface S, with a conformal structure, also given a measurable complex
value function defined on the surface μ : S → C, we want to find a quasi-
conformal map φ : S → C, such that φ satisfies the Beltrami equation:

∂φ

∂z̄
= μ

∂φ

∂z
.
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(a) µ = 0 (b) µ = 0.25 + 0.0i (c) µ = 0.0 + 0.25i

Fig. 22. Quasi-Conformal mapping for doubly connected domain

First we construct a conformal mapping φ1 : S → D1, where D1 is a planar
domain on C. Let g0 be the canonical Euclidean metric on the plane g0 = dzdz̄.
φ1 is a conformal map from metric surface (S,g) to a metric surface (D1,g0).
Then we construct a new metric on (D1,g0), such that

g1 = |dz + μdz̄|2.
Then we construct another conformal map φ2 : (D1,g1) → (D2,g0). Then the
composition

φ = φ2 ◦ φ1 : (S,g)→ (D2,g0)

is the desired quasi-conformal mapping. Figure 22 illustrates quasi-conformal
mappings for a doubly connected domain with different Beltrami coefficients.
For details, we refer readers to [48].

5 Applications

The conformal geometric methods have been broadly applied in many engi-
neering fields. In the following, we briefly introduce their major applications in
graphics, vision, geometric modeling and medical imaging.

5.1 Computing Conformal Mappings

Doubly Connected Domain. As shown in Figure 23, a doubly connected domain
is conformally mapped to a canonical planar annulus. The mapping can be con-
structed using holomorphic 1-form. The holomorphic 1-form group on the surface



212 X.D. Gu, F. Luo, and S.-T. Yau

Fig. 23. Conformal mapping for a doubly connected domain

Fig. 24. Conformal mapping for a simply connected domain

is of one dimension. Let ω be the generator. Suppose ∂S = γ1− γ2, then we can
find a constant c, such that

Im(
∫

γ1

cω) = 2πi, Im(
∫

γ2

cω) = −2πi.

Then we choose one point p ∈ S: for any point q ∈ S, find a path γ ⊂ S, and
define φ(q) so that

φ(q) : q → exp

∫

γ

cω,

maps the surface to the planar annulus.
The conformal mapping can be constructed using either Ricci flow or Yamabe

flow. We set the target curvature equal to zero for both interior vertices and
boundary vertices. Then by using curvature flow, we get a flat metric ḡ. We
isometrically embed the universal covering space of S with ḡ onto the plane,
then make each fundamental polygon a rectangle, with the period equal to 2π,
and then by using the exponential map, we can map each fundamental polygon
to a planar annulus.

Simply Connected Domains. The Riemann mapping for a topological disk to the
canonical planar unit disk can be constructed in the following way (as shown in
Figure 24). We choose a interior point p, and a point q on the boundary. Then
remove a small neighborhood around p, then we get an annulus S̃. Using holo-
morphic 1-form or curvature flow method, we map S̃ to a planar unit annulus,
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Fig. 25. Conformal mapping for a multiply connected domain

the two boundary circles are concentric. Then by a rotation, we can map q to the
point 1. We denote the mapping as φ̃ : S̃ → A. By shrinking the neighborhood of
p, φ̃ converges to the unique Riemann mapping φ : S → D, such that φ(p) = 0,
φ(q) = 1.

Multiply Connected Domains. A multiply connected domain as shown in Figure
25 can be conformally mapped to the unit disk with circular holes. Let the
boundary of the surface be

∂S = γ0 − γ1 − γ2 − · · · − γn,

where γ0 is the exterior boundary. The computation procedure is as follows:
choose γk, 1 < k < n, fill the γi’s with disks, where i = 0, i = k, denote the
resulting surface as Sk. Then we can find a conformal mapping φk : Sk →
Dk and remove all filled disks from Dk. Choosing a different inner boundary,
repeat the above procedure. The inner holes become rounder and rounder. With
an appropriate normalization condition, (the conformal mapping is not unique,
different mappings differ by a Möbius transformation), the mappings converge
with very fast rate.

Comparison. Curvature flow method is non-linear and requires higher quality
of triangulation, therefore it is less robust and less efficient comparing to the
holomorphic 1-form method.

Quasi-Conformal Maps. All the above algorithms can be directly generalized to
compute quasi-conformal mappings by solving Beltrami equations.

5.2 Geometric Modeling

One of the most fundamental problems in geometric modeling is to systematically
generalize conventional Spline schemes from Euclidean domains to manifold do-
mains. Conventional spline schemes are constructed based on Affine invariance.
If the manifold has an affine structure, then affine geometry can be defined on
the manifold, therefore, conventional splines can be directly defined on the man-
ifold. Due to the topological obstruction, general manifolds don’t have affine
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Fig. 26. Manifold splines. The yellow points are extraordinary points.

structures, but by removing several singularities, general surfaces can admit
affine structures.

Affine structures can be explicitly constructed using the methods introduced
above. For example, we can concentrate all the curvatures at the prescribed
singularity positions, and set the target curvatures to be zeros everywhere else.
Then we use curvature flow to compute a flat metric with cone singularities
from the prescribed curvature. The flat metric induces an atlas on the punctured
surface (with singularities removed), such that all the transition functions are
rigid motions on the plane. Another approach is to use holomorphic 1-forms,
a holomorphic 1-form induces a flat metric with cone singularities at the zeros,
where the curvatures are−2kπ. Figure 26 shows the manifold splines constructed
using the curvature flow method.

5.3 Medical Imaging

Conformal geometry has been applied for manifold fields in medical imaging.
For example, in brain imaging field, it is crucial to register different brain cortex
surfaces. Because brain surfaces are highly convoluted, and different persons have
different anatomical structures, it is quite challenging to find good matching
between cortex surfaces. Figure 27 illustrates one solution by mapping brains
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Fig. 27. Brain spherical conformal mapping

to the unit sphere in a canonical way. Then by finding an automorphism, the
registration between surfaces can be easily established.

In virtual colonoscopy, the colon surface is reconstructed from CT images. By
using the conformal geometric method, one can flatten the whole colon surface
onto a planar rectangle. Then polyps and other abnormalities can be found
efficiently on the planar image. Figure 28 shows an example for virtual colon
flattening based on conformal mapping.

Fig. 28. Colon conformal flattening

5.4 Vision

Surface matching is a fundamental problem in computer vision. The main frame-
work of surface matching can be formulated in the commutative diagram in
Figure 29.
S1, S2 are two given surfaces and f : S1 → S2 is the desired matching. We

compute φi : Si → Di which maps Si conformally onto the canonical domain Di.
D1 and D2 can also be surfaces other than simple planar domains. The topology
and the curvature of D1 and D2 incorporate the major feature information of the
original surfaces S1 and S2. We construct a diffeomorphism map f̄ : D1 → D2.
If there are certain feature constraints, they can be incorporated in f̄ . The final
map φ is induced by f = φ2 ◦ f̄ ◦ φ−1

1 .
Figure 30 shows one example of surface matching among different expressions

on a human face. The first row shows the surfaces in R
3. The second row illus-

trates the matching results using consistent texture mapping. The intermediate
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f

f̄

φ1 φ2

Fig. 29. Surface matching framework

Fig. 30. Matching among faces with different expressions
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Fig. 31. Computing finite portion of the universal covering space on the hyperbolic
space

Fig. 32. Computing the Fenchel-Nielsen coordinates in the Teichmüller space for a
genus two surface

conformal slit mappings are shown in the third row. For details, we refer readers
to [22]. Conformal geometric invariants can also be applied for shape analysis
and recognition, details can be found in [49].

Teichmüller theory can be applied for surface classification. By using Ricci
curvature flow, we can compute the hyperbolic uniformization metric. Then we
compute the pants decomposition using geodesics and compute the Fenchel-
Nielsen coordinates. In Figure 31, a set of canonical fundamental group basis
is computed (a). Then a fundamental domain is isometrically mapped to the
Poincaré disk with the uniformization metric (b). By using Fuchsian transfor-
mation, the fundamental domain is transferred (c) and a finite portion of the
universal covering space is constructed in (d). Figure 32 shows the pipeline for
computing the Teichmüller coordinates. The geodesics on the hyperbolic disk
is found in (a) and the surface is decomposed by geodesics (b). The shortest
geodesics between two boundaries of each pair of hyperbolic pants are computed
in (c),(d) and (e). The twisting angle is computed in (f). Details can be found
in [50].
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Fig. 33. Global conformal surface parameterization using holomorphic 1-form

Fig. 34. Vector field design using special flat metrics

5.5 Graphics

Conformal geometric methods have broad applications in computer graphics.
Isothermal coordinates are natural for global surface parameterization purpose.
Because conformal mapping doesn’t distort the local shapes, it is desirable for
texture mapping. Figure 33 shows one example of using holomorphic 1-form for
texture mapping.

Special flat metrics are valuable for designing vector fields on surfaces, which
plays an important role in non-photo-realistic rendering and special art form
design. Figure 34 shows the examples for vector fields design on surfaces using
curvature flow method.

6 Conclusion

In this work, we briefly summarize the recent developments in computational
conformal geometry. There are two major approaches, holomorphic differentials
and curvature flow. Holomorphic differential method is a linear method, which
is more efficient and robust to triangulations with lower quality. Curvature flow
method is nonlinear and requires higher quality triangulations, but more flexible.
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There are many future directions in both theories and algorithms:

1. The theoretic foundations for the current computational methods need to be
rigorously laid down. The convergence of the discrete conformal structure to
the smooth counterpart needs to be proven. The convergence rate needs to
be estimated.

2. More research focuses on quasi-conformal mappings. Especially the com-
putational method for extremal quasi-conformal mappings and Teichmüller
theories.

3. Generalization of the computational methods for discrete 3-manifolds. Es-
pecially the curvature flow method for canonical geometric structures of
3-manifolds.

4. Novel scanning technology which can measure and capture the Beltrami
coefficients from real life.
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Abstract. We present an algorithm for completing a C2 surface of up
to degree bi-6 by capping an n-sided hole with polar layout. The cap
consists of n tensor-product patches, each of degree 6 in the periodic
and degree 5 in the radial direction. To match the polar layout, one edge
of these patches is collapsed.

We explore and compare with alternative constructions, based on
more pieces or using total-degree, triangular patches.

1 Introduction

Vertices of high valence occur in control nets of surfaces of revolution and similar
objects and as higher-order saddle points; see Figure 1. Representing the neigh-
borhood of such a high-valent vertex in polar layout, i.e. surrounding the point
by one layer of triangles while the next layer of facets consists of quadrilaterals
with always four joining at a vertex, is a natural and compatible addition to
the established tensor-product layout of patches (see e.g. [1]). Polar layout can
be used to define subdivision surfaces (see Section 1.1), but engineers may well
prefer finite constructions, in the sense that the final output surface consists of
a finite number of polynomial or rational patches. Here, we therefore present fi-
nite polar curvature continuous patchworks that fill an n-sided hole in an existing
tensor-product spline complex.

Away from the central polar vertex, the net as in Figure 1 can be interpreted as
the control net of a C2 spline; for example a bi-3 spline. However, assuming that
the tensor-border is obtained from a piecewise bi-3 layer of patches generated
from a polar mesh is in general too restrictive for high-quality modeling. More

Fig. 1. Polar layout: (left) elliptic 8-sided dome; (right) 12-sided higher-order saddle
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Fig. 2. Tensor-border input: (left) A degree 3 polar tensor-border derived from
a polar control net, raised to degree 5; the central point is set to the limit point of
bi-3 polar subdivision [2]. (right) A degree 5 tensor-border not generated from a polar
control net; the derivatives may be scaled before applying Algorithm I. The central
point is user-set.

generally, we consider the following input: position, first and second derivative
along a closed curve of degree up to 6. We call such input a tensor-border of
degree p if curve and derivatives are of degree at most p. Figure 2 shows two
tensor-borders represented by coefficients in tensor-product BB-form (Bernstein-
Bézier form; see e.g. [3]).

In the following, we discuss and compare several possible approaches to con-
structing a cap that matches a given tensor-border. Section 2 contains the main
construction: Algorithm I generates one patch for each of the n sectors of the
polar layout. Each patch is of degree 6-5, degree 6 in the periodic direction (cir-
culating around the pole) and degree 5 in the radial direction (emanating from
the pole); one periodic edge is collapsed to form the pole. Most CAD pack-
ages do not mind tensor-product patches with one collapsed edge. However, it
raises the question, whether we can achieve the same good quality with sim-
ilar polynomial degree and without collapse, using, say, ‘triangular’ patches.
Section 3.1 shows that this is indeed possible (Algorithm II) and also presents
a non-collapsed construction using multiple tensor-product pieces (Algorithm
III). Section 3.2 shows that we can alternatively reduce the degree to bi-5 using
a collapsed-edge representation. The resulting curvature continuous patchworks
show good curvature distribution but the construction comes at the cost of (con-
siderably) more patches per sector (Algorithm IV). The discussion section points
out that non-uniformly spaced parameterizations are easy to realize within the
same framework.

1.1 Related Literature

A simple mesh-based algorithm generating C1 limit surfaces of degree bi-3 with
polar layout was introduced in [2]. The bi-3 construction can be joined with
Catmull-Clark subdivision [4] in a natural fashion [1]. Guided C2 subdivision,
both for the polar and for the all-quadrilateral layout of Catmull-Clark appeared
in [5]. [1] showed a construction with a fixed, finite number of patches that
is functionally equivalent to the polar subdivision scheme defined in [2]. Sim-
ilarly, a number of constructions have recently been developed to improve on
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Catmull-Clark surfaces in a finite setting [6,7,8,9,10]. Finite guided C2 surface
constructions via G2 patchworks with the layout of a Catmull-Clark input mesh,
using patches of degree bi-6 or even only bi-5 have been announced. Degener-
ate (triangular) Bézier patches joining with continuous curvature were analyzed
in [11].

2 C2 Polar Cap Construction Using One Patch of Degree
6-5 per Sector

Figure 3 illustrates the structure of each patch of degree 6-5 and Figure 4 shows
a constructed surface. The construction has four ingredients explained in detail
in Section 2.1:
1. a guide surface cap q : Ω � R

2 �→ R
3 consisting of n triangular patches of

total degree 2 (gray region in Figure 5 middle) ;
2. a polar concentric tessellation map (ct-map), ρ : [0..1]2 × {1, . . . , n} → R

2

(Figure 5 left) ;
3. the operator Hn,p that defines a surface ring or cap of n patches of periodic
degree p and radial degree 5 by (Hermite-)interpolating position, first and second
derivative at its two periodic edges ;

(0,0)

x�

u

v 00

10

20

60

62

0102030405

Fig. 3. A 6-5 patch x� : [0..1]2 → R
3 of degree 6 in the periodic and degree 5 in the

radial direction. (left) Domain, (right) patch with one edge collapsed: for i = 0, . . . , 6,
xi5 is the pole. The BB-coefficients displayed as circles are defined by the tensor-border.
The BB-coefficients displayed as black disks are defined by a quadratic expansion at
the central point.

Fig. 4. A 6-5 convex completion of a surface. (left) Bi-3 input ring (green, defining
the tensor-border) and 6-5 cap (red); (middle) Gaussian curvature shading; (right)
highlight shading.
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Fig. 5. Polar reparameterizations (ct-maps) and guide surfaces. One sector
(left) of the C2 bi-31 ct-map ρ, (right) of the G2 bi-21 ct-map ρ2. (middle) BB control
net p�

jk of a guide patch q of degree 2 (gray area, 2-link) or c of degree 3. (Note the
different indexing conventions for (collapsed) tensor-product and total degree patches.)

4. the functional

F : Cm([0..1]2) � f → Fm(f) :=
∫

�

∑

i+j=m;i,j≥0

(
m

ij

)
(∂m

uivjf)2 (1)

that acts on sufficiently smooth functions f defined over the unit square [0..1]2.

2.1 The Ingredients

1. The piecewise quadratic guide q consisting of n triangular, total-degree 2
polynomial pieces forms a C2 map if all pieces define the same quadratic. In
other words, its Bernstein-Bézier (BB)-coefficients p�

00, p�
10, p�

01, p�
20, p�

11, p�
02

(gray region in Figure 5 middle) are defined by one piece, say � = 0.

2. The polar concentric tessellation map (ct-map) (Figure 5 left),

ρ : [0..1]2 × {1, . . . , n} → R
2

that reparameterizes the domain is defined as follows. Its �th sector is defined by
a template map r : [0..1]2 → R

2 rotated about the origin by � 2π
n . The template

map is of degree bi-31, i.e. of degree 3 in the periodic u-direction and degree
1 in the radial v-direction (see Figure 5 left). Its BB-coefficients are ri1 := [ 0

0 ],
i = 0, 1, 2, 3,

r00 := [ 1
0 ] , r10 :=

[
1

sin α
2+cos α

]
, r20 := Rαr10, r30 := Rαr00 = [ cos α

sin α ] , α :=
2π
n
,

where Rα is the reflection across the line through the origin and [cos α
2 , sin

α
2 ].

By construction, the polynomial pieces of ρ join formally C2 across the sector
boundaries.

3. The operator Hn,p(b0,b1) defines a C2 surface ring or cap x ∈ C2([0..1]2 ×
{1, . . . , n}) consisting of n polynomial patches of periodic degree p and radial de-
gree 5 uniquely determined by (Hermite-)interpolating position, first and second
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derivative (the tensor-borders bk of degree p) at its two periodic edges corre-
sponding to v = 0 and v = 1, respectively. We denote by J(f , v), a tensor-border
read off from a patch f ∈ C2([0..1]2 × {1, . . . , n}) at its radial parameter v.

Below we will build a patch x of degree 6-5 as shown in Figure 3. Three layers
of BB-coefficients marked as black disks are defined by b0 and three layers
marked by circles are defined by b1.

Algorithm I: C2 cap construction of degree 6-5
Input. The tensor-border b of the hole in a C2 patch complex. The position of
the pole (see Figure 2).
Output. The n pieces x� of the output surface cap x : [0..1]2 × {1, . . . , n} → R

3

(see Figure 3, right) of degree 6-5, i.e. of degree 6 in the periodic direction with
one periodic edge collapsed to form the pole and degree 5 in the radial direction.

Algorithm: Set the pole, for example to the limit of bi-3 polar subdivision [2]
(cf. Figure 2). Form q ◦ ρ (with five BB-coefficients qk, k = 1, . . . , 5 still unde-
termined) and solve the linear 5× 5 system

min
qk

F3Hn,6

(
J(q ◦ ρ, 0);b

)
, (2)

i.e. minimize the sum of the functionals applied to each of the n patches in terms
of the unknown five BB-coefficients.

Theorem 1. The 6-5 construction yields a C2 surface.

Proof. Since b extends the C2 patch complex and q ◦ ρ is parametrically C2

except possibly where it is singular, we need only show that the surface is also C2

at the central point. For this we construct an auxiliary subdivision algorithm of
type (1/2,1/4,0) [12, Ch 7] as follows. Denote the univariate degree 3 boundary
of the template of ρ by r◦ ∈ R

2 and the 2π
n rotation matrix by R. With v = 0

corresponding to the collapsed edge, and recalling that the Taylor expansion
of any 6-5 patch x� generated by Algorithm I at (u, 0) is up to second order
determined by q ◦ ρ� = q(vR�r◦(u)), we can write

x�(u, v) := q0 + v[q1,q2](R�r◦(u)) + v2(R�r◦(u))T

[
q3 q4

q4 q5

]
(R�r◦(u)) + o(v2).

Repeated subdivision (by De Casteljau’s algorithm) of this representation in the
radial direction, at v = 1/2m yields a sequence of C2 polar 6-5 rings converging to
the pole with v−monomial eigenfunctions and eigencoefficients qk. In particular,
for j = 1 there are two (rather than n) distinct C2 eigenfunctions e10 and
e11 and for j = 2 there are three, e20, e21 and e22 such that e20, e21, e22 ∈
span{e210, e10e11, e211}. [12, Thm 7.16] then applies and completes the proof. |||

A similar proof, for C1 continuity, appeared in [1].

Theorem 2 (periodic degree estimation). For generic tensor-border data, a
parametrically C2 polar cap assembled from n patches by a symmetric (invariant
under index shift and flip) algorithm must have periodic degree at least 6.
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Fig. 6. A 6-5 construction for input not derived from a polar control net. (left) Input
and cap; (middle) Gaussian shading; (right) highlights.

Fig. 7. Wing tips feathering out a sharp edge. (left) Input data (green) with a sharp
edge, transition ring (red) mediating from the sharp edge to the smooth cap and C2

6-5 cap (gold); (right) highlight rendering thereof.

Proof. By [12, Thm 7.16], a (polar) subdivision algorithm of type (1/2,1/4,0)
must be of periodic degree at least twice the periodic degree of its C2 (polar)
characteristic ring. Since the periodic degree is at least three the algorithm must
generically generate surfaces of periodic degree 6. The proof of Theorem 1 shows
that any symmetric parametrically C2 polar cap of periodic degree m induces a
polar C2 subdivision algorithm of type (1/2,1/4,0) that is of periodic degree m.
Therefore m ≥ 6 must hold. |||

We conclude with examples where the tensor border has not been derived from
a control mesh. In Figure 6, the input tensor-border (green in left) is defined by
nine C2-connected generalized cylinders of periodic degree 5. In the airplane
wing tip data of Figure 7, the challenge is to slowly blend the sharp edge into
a rounded cap. To obtain the transition, Algorithm I is applied with a crease
in the tensor-border along a sector partitioning curve. The patches are then
subdivided in the radial direction and the resulting transition surface ring is
adjusted to have three C2-connected innermost layers of BB-coefficients. Then
Algorithm I is applied a second time with the transition ring now providing the
tensor-border b (red in Figure 7 left).

3 Alternative Constructions

Below, we explore constructions without edge collapse (Algorithm II and III) and
with edge collapse (Algorithm IV) where we trade lower degree for (many) more
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patches compared to the surface construction of Algorithm I. While these three
alternative constructions yield equally good shape and continuity as Algorithm
I, we think that the trade-off will only rarely be justified. However, we present
these alternatives to complete the picture but move fast on the details.

3.1 C2 Capping without Collapsed Edge

In this section, we present two C2 surface constructions without edge collapse.
We leverage the 6-5 cap x : [0..1]2 × {1, . . . , n} → R

3 constructed by Algorithm
I to provide data from which to determine a C2 guide surface p : Ω � R

2 �→ R
3

(see below and Figure 5 middle) of degree 3, that is then composed with a
reparametrization τ : [0..1]2 × {1, . . . , n} → Ω. Specifically, we
(i) extract data from x to be matched,
(ii) extract the same data from p ◦ τ (in terms of free coefficients of p), and
(iii) set the free coefficients by minimizing the difference of the data in (i) and
(ii).
Then the final surface is essentially (ii) with the coefficients set by (iii).

Ingredients. Analogous to Section 2.1, we define

1’. a guide c consisting of n polynomial pieces of total degree 3. The conditions
on its BB-coefficients p�

jk to be part of a piecewise C2 map [3] require, (a) the
2-link of the central point p�

00 define the same quadratic polynomial (in possibly
degree-raised BB-form) for all � (see the earlier construction of q), and (b) The
coefficients p�

30 can be chosen freely; then, for n ≥ 7 (which will hold since we
trisect each sector),

pj
21 :=

1
n

n−1∑

�=0

n−1∑

k=0

R� cos((j − �)kα)
2c + cos(kα)

, (3)

R� := 2c2p�
30 + cp�

03 + 4c(1− c)p�
20

− 2(1− c)p�
11 + (1− c)p�

02 + 2(1− c)2p�
10,

c := cosα, α := 2π/n,

and setting subsequently the coefficients p�
12 to satisfy C1 constraints across the

sector lines, makes p a C2 function.
2’. Analogous to the definition of ρ in the previous section, we define the
piecewise quadratic G2 ct-map ρ2 by rotations of a bi-21 template r with BB-
coefficients

ri1 := [ 0
0 ] , r00 := [ 1

0 ] , r10 :=
[

1
tan(α/2)

]
, r20 := [ cos α

sin α ] .

The bi-21 map ρ2 has a sibling σ2 of total degree 2 defined by the template

r0,0,2 := r00, r1,0,1 := r10, r2,0,0 := r20, r0,1,1 :=
r00
2
, r1,1,0 :=

r20
2
, r0,2,0 := [ 0

0 ] .

Analogously, ρ has a sibling σ of total degree 3 defined by the cubic curve of ρ
and the origin.
3’. We introduce the operator H55 that samples 2× 2 jets ∂i

u∂
j
vx, i, j ∈ {0, 1, 2}

at the corners of the polynomial pieces to construct tensor-borders (of degree 5).
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Fig. 8. Radial bisections followed by tri-section at the pole. (left) Once, (right)
twice. In both cases, we associate v = 0 with the collapsed edge of x and v = 1 at the
boundary between the gray regions of the domain. The light grey region is the focus
of Algorithms II, III, IV.

Fig. 9. Single vs double split. (left) Gauss curvature shading of a 6-5 cap (input
Figure 2 middle left); (middle) Gauss shading of degree 9 construction corresponding
to one bisection; (right) Gauss shading of degree 9 construction corresponding to the
double split in Figure 8 right.

C2 capping of total degree 9. To cap without a collapsed edge, we here
choose the central pieces to be ‘triangular’, i.e. of total degree d (which could in
turn be represented by three quad patches of degree bi-d).

Algorithm II: C2 cap construction of total degree 9
Input: The C2 cap x of degree 6-5 constructed by Algorithm I and the tensor-
border b := J(x, 1) (b := J(x, 1

2 ) for double bisection; see * below).
Output: A C2 cap consisting of N := 3n patches of total degree 9; plus N
patches of degree bi-95 for one bisection (plus n patches of degree 6-5 for double
bisection).
Algorithm. (i) Bisect x radially once or twice (see Figure 8).

* For elliptic configurations such as in Figure 1 left, the single bisection dis-
played in Figure 8 left suffices. For higher-order saddles, we recommend the
double split of Figure 8 right, resulting in Figure 9 right.

Then tri-sect the subpatches at the pole and in the layer next to it so that the
new polar valence is N . Apply H55 at the locations marked by � in Figure 8 to
generate a tensor-border of degree 5 in B-spline form.
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v = 0

c ◦ 1
4
σ2

b

c ◦ τ̇

c ◦ τ̈

c ◦ ...
τ

...
τ

τ̈

τ̇

00

10

20

30

40

50

1
4
ρ2

1/4 2/4 3/4 4/4

Fig. 10. G2 capping with a 5 × 3-split. (left) One sector is covered by 15 patches.
(right) One sector of the domain transition map τ of degree bi-53 (corresponding to
the middle three surface rings of one sector after tri-section in the circular direction
left, i.e. valence N = 3n; τ is symmetric with respect to the bisectrix of the sector.
The radial curves starting inward at 00 and 10 and symmetrically at 40, 50 are straight
lines. Only the two heavy-set lines starting at 20 and 30 are truly of piecewise degree 3.

(ii) Compose c ◦ ρ to yield a map of degree bi-93 with 6 + N undetermined
coefficients of c. Apply H55 at the same locations as in (i) to form a second
tensor-border of degree 5 in B-spline form.
(iii) Set the central point of c to the central point of the 6-5 cap x. Determine
the remaining N + 5 coefficients of c by minizing the sum of squared distances
between the B-spline control points generated in (i) and (ii).
(iv) The inner cap corresponding to v ∈ [0..1] is defined by c ◦ σ, in essence
trimming c along the degree 3 boundary of ρ. Since we trisected, this yields
three patches of total degree 9 per sector.
(v) For radial parameter v ∈ [1..2] the surrounding surface ring consists of N
patches of degree bi-95 defined by

HN,9(J(c ◦ ρ, 1);b),

i.e. the tensor-border of c ◦ ρ at v = 1 (consisting of N = 3n pieces) and the
tri-sected and degree-raised tensor-border.

G2 capping of total degree 6. Here we use a map τ : [0..1]2 → R
2 (Figure 10

right) to transition from C2 to G2 constraints. It consists of three C2-connected
pieces τ̇ , τ̈ ,

...
τ of piecewise degree bi-53. Since the radial degree of each piece is

3, J(τ, 1
4 ) := J(1

4ρ2, 1) (the C2 prolongation of 1
4ρ2 ) and J(τ, 1) , defined by

rotations of the sector template

τ̇00 := (1, 0) , τ̇10 := (1,
2
5

tan
α

2
), τ̇20 := (

1
10

(9 + cosα),
4
5

tan
α

2
); (4)

τ̇�1 :=
11
12
τ̇�0 , τ̇�2 :=

5
6
τ̇�0, � = 0, 1, 2, (5)

determine τ on [0..1] × [14 ..1] as a C2-connected map in radial direction whose
outermost tensor-border is C2 in the periodic direction.
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Algorithm III: G2 cap construction of total degree 6
Input: The tensor-border b and the cubic C2 cap c constructed by Algorithm
II; the G2 polar parameterizations ρ2 and σ2.
Output: N := 3n triangular patches of total degree 6, plus 2N patches of degree
6-5 corresponding to v = [14 ..

1
2 ] and a surrounding ring (darkest gray in Figure

10) plus 2N patches of degree bi-5 corresponding to v = [12 ..1] .

Algorithm: (a) Compose c ◦ 1
4σ2 to obtain the inner cap, corresponding to

v ∈ [0..14 ], of N triangular Bézier patches of degree 6 (see Figure 10 left).
(b) Apply H55 to the composition c ◦ τ to form three intermediate bi-5 rings
corresponding to v = [14 ..1] . The N patches corresponding to v = [14 ..

1
2 ] are

made to match J(c◦ 1
4ρ) and thereby to join with curvature continuity the inner

cap constructed in (a).
(c) The outermost N patches are constructed as in Algorithm II to meet the
outer tensor-border of the patches constructed in (b) in a parametrically C2

fashion.

Since the degree of ∂j
u(τ) at u = 0 is 1,1,3 for j = 0, 1, 2 (and symmetrically

at u = 1, the other sector boundary) the degree of ∂j
u(c ◦ τ) at u = 0 is 3,3,5

for j = 0, 1, 2. So we can apply H55 to obtain a surface ring of degree bi-5 that
reproduces this second order expansion at both sector boundaries. At v = 1

4 ,
the 2 × 2 jets also coincide with that of c ◦ 1

4ρ2. Therefore the construction in
(b) ensures curvature continuity across v = 1

4 and this completes the proof of
curvature continuity of the overall construction.

The number of patches is high (15n if one bisection is applied, 16n if we
radially bisect twice as in Figure 8 right). Figure 11 justifies trisection in the
periodic direction, echoing the theme that polar layout prefers high valencies.

Fig. 11. Bi-6 G2 construction of Algorithm III applied to the net of Figure 2. (top)
(left) three rings of one third of a sector of τ . (middle and right) Gauss curvature of
the surface is shown for three rings and a tensor-border split into (top, middle) two
subsectors, (top, right) three subsectors. (bottom) Construction with two subsectors
and two rings of degree bi-6.
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Fig. 12. Bi-5 construction. (left) Rings of the cap surface; (right) its Gauss curvature
shading.

Instead of trisecting in the periodic direction, we can improve the shape by
bisecting, replacing the three rings of degree 5-3 in τ by two rings of degree 5-4
and applying the operator H66 of [5] to obtain bi-6 patches. Figure 11 bottom,
shows the reparameterization patchwork, reduced to 2 × 2n patches instead of
3× 3n resulting in a better curvature distribution.

3.2 G2 Capping of Degree Bi-5

A slight modification of Algorithm III yields a curvature continuous cap of degree
bi-5 with one collapsed edge. This does not contradict Theorem 2 since the
transitions between sectors are G2, not parametrically C2. Note that Algorithm
IV accepts as input a tensor-border of at most degree 5.

Algorithm IV: G2 cap construction of degree bi-5
Input: The tensor-border b and the cubic C2 cap c constructed by Algorithm
II; the G2 polar parameterization ρ2.
Output: 5N := 15n patches of degree bi-5 with the N innermost having one edge
collapsed.
Algorithm: (a) Apply H55 to c ◦ 1

4ρ2 to yield an innermost bi-5 cap with col-
lapsed edge. (b) and (c) mimic those of Algorithm III.

Since the degree of ∂j
uρ2, for j = 0, 1, 2 at u = 0 and u = 1 is 1,1,2, the

operator H55 applied to c ◦ 1
4ρ2 reproduces the second order expansion at both

sector boundaries. Therefore the innermost bi-5 patches with collapsing edges
form a G2 connected cap except possibly at the pole. Since the expansion at
the pole is determined by ∂j

v(q ◦ 1
4ρ2), j = 0, 1, 2, we can retrace the proof

of curvature continuity at the pole from Theorem 1. Figure 12 shows the bi-5
patchwork corresponding to Figure 2.

4 Extensions and Discussion

The main construction, Algorithm I, generates a 6-5 cap appropriate for most
geometry processing pipelines. Due to the resulting good shape, the caps were
used as a guide surface in the subsequent sections. Algorithms III and IV generate
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Fig. 13. (left) Highly non-uniform input from conical surfaces capped by Algorithm
I with non-uniform ct-map. (middle left) Gauss curvature shading of capping; (middle
right) highlights. (right) The non-uniform bi-31 ct-map.

many (15n) patches mainly to obtain a fair transition from G2 connections at
the central point to the C2 input.

If the tensor-border is appropriatelyG2, we can use ρ2 to replace the 6-5 cap of
Algorithm I by an outer ring of patches of degree bi-4 and an inner cap of degree
bi-4 with edges collapsed to the central point. A C2 bi-3 polar subdivision can
be obtained by converting the 6-5 patch to the accelerated bi-3 form of [13]. (We
need only apply de Casteljeau’s algorithm repeatedly in the periodic direction
to obtain the required 2× 2 jets in bi-3 form.)

Alternatively, sampling the corner jets of the 6-5 patches results in high qual-
ity cappings that are C1 at the pole and C2 away from it. We can generate such
surfaces of bidegree bi-5 with one patch per sector, bi-4 with four patches per sec-
tor, or bi-3 with nine patches per sector, trading degree for number of pieces. As
with the curvature bounded subdivision algorithms in [14] and the constructions
displayed in Figure 11, the lower the degree, the more the curvature fluctuates.

An important bonus of the polar layout, illustrated in Figure 13, is that we can
adjust the C2 bi-31 ct-map ρ to non-uniform spacing, simply by manipulating
its cubic spline boundary.
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11. Bohl, H., Reif, U.: Degenerate Bézier patches with continuous curvature. Computer
Aided Geometric Design 14(8), 749–761 (1997)

12. Peters, J., Reif, U.: Subdivision Surfaces. In: Geometry and Computing, vol. 3.
Springer, New York (2008)
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A New Approach to Point Membership

Classification in B-rep Solids

Fritz Klein
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Abstract. A fundamental problem in computational geometry is deter-
mining whether a point is inside a B-rep solid. Methods currently used
for such point classification are unreliable or inefficient or both. A new
approach is illustrated by showing how a simple method for loops of pla-
nar curves represented by B-splines can be extended from two dimensions
to three. The plan in two dimensions is to construct a polygon so that
the point will be inside the loop if and only if it is inside the polygon.
Once such a polygon is found, it is easy to compute its winding number
with respect to the point. In three dimensions, an analogous (although
more complicated) method is robust and efficient.

1 Introduction

For a computational representation of a solid to be useful, one must be able to
reliably answer geometric questions about it. The most basic of such questions
is whether a given point lies inside, on, or outside the boundary of a solid.
The importance and difficulty of this question have been recognized for several
decades [1,2,3,4].

The standard method for deciding if a point is in the interior of an n-
dimensional region is to create a ray starting at the point and aiming in some
arbitrary direction, and then to count the number of “crossing” intersections
with the boundary of the region. The point is inside the region (or on its bound-
ary) if and only if there are an odd number of such intersections, but it can
be difficult to count them properly. A tangent intersection may or may not
count as a crossing; similar problems arise when the intersection is at a point
where the boundary’s derivative is not continuous. For loops of curves on a
plane, the algorithm by Nishita, Sederberg, and Kakimoto [5] is a reliable variant
of the standard method. It never actually computes an intersection; instead, it
recursively splits the curves into smaller pieces until the parity of the ray-curve
intersections is certain.

For B-rep solids, there are more serious problems. The boundaries of B-rep
solids are collections of trimmed surfaces, where some of the trimming curves are
typically obtained by intersecting one surface with another. These intersection
curves are generally computed to within some tolerance, but this doesn’t guar-
antee that a particular ray will intersect the surfaces consistently with respect to
the curves. Ensuring such consistency is very difficult. In fact, if the surfaces that

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 235–250, 2009.
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comprise the boundary of the solid do not fit together perfectly, the concepts
of “inside” and “outside” cannot even be defined unambiguously. However, if a
B-rep solid is within some tolerance of being watertight, then there should be a
practical way to classify points whose distance to the boundary of the solid is
greater than that tolerance.

One approach to determining point membership classification more robustly
is to create algorithms that apply to restricted classes of B-rep solids. This is
the approach taken in [6] and [7], for example. An important recent method [8]
applies to sweeping solids, but a reliable method for general B-rep solids is still
needed.

This paper presents a new approach that is both robust and efficient. Fur-
thermore, it can yield more information than simply whether the point is inside
or outside the solid. It applies to solids whose component surfaces and boundary
curves are represented by B-splines, with only a few minor restrictions.

In Section 2 of this paper, a variant of the algorithm for curves in a plane
by Nishita, et al. [5] is presented; this variant will be easier to extend to three
dimensions. Section 3 describes an algorithm for solids whose boundaries consist
of triangular planar facets. In Section 4, that algorithm is extended to more
general B-rep solids, while Section 5 covers some of the complications involved
in this more general case. Section 6 describes other applications of the algorithm,
and Section 7 discusses possible future improvements to it.

2 Two Dimensions

Given a planar region R determined by a boundary and a point P in the plane,
we wish to determine if P is inside the boundary. Let us start by assuming that
the boundary is a single loop of consistently oriented planar curves. We also
assume (for now) that the loop is oriented counter-clockwise. If the curves are
line segments, a well-known alternative to ray-casting is to compute the winding
number of the loop as a sum of angles normalized by 2π. P is inside the boundary
if the winding number is 1 and outside if the winding number is 0.
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Fig. 1. Winding number calculation for a polygon
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In Figure 1, R is bounded by the polygon ABCD. The winding number is the
sum of the angle between PA and PB, the angle between PB and PC (which
in this example happens to be negative), the angle between PC and PD, and
the angle between PD and PA, all divided by 2π.

It should be noted that Poincaré found a more efficient way to compute the
winding number of a point with respect to a polygon that does not involve
computing any of the angles between segments; see [9] for details. However, it is
not clear how to make his two-dimensional algorithm work in three dimensions,
so I will not take advantage of it here.

In Figure 2, we have an example in which the winding number of a loop of
4 curves with respect to P is the same as the winding number of the polygon
obtained by replacing each curve with the line segment that connects its end
points. However, in Figure 3, the winding numbers for the loop of curves and
the polygon are not the same.

Suppose the curves in Figures 2 and 3 are represented by B-splines. For each
such curve, the minimum and maximum values of the coefficients determine
a rectangle that encloses the curve. Note that for each curve in Figure 2, the
rectangle that encloses the curve does not contain P . However, in Figure 3, P is
inside the rectangle that encloses the curve that connects points B and C (this
rectangle is drawn with dotted lines). Nishita, Sederberg, and Kakimoto [5] had
the important insight that a divide-and-conquer strategy could be employed,
recursively splitting such a curve into smaller pieces. We will use the following
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Fig. 4. Three curves that do not need to be split

variant of their method in order to find the contribution of each curve to the
winding number:

1. Find the bounding rectangle that encloses the curve.
2. Check whether the bounding rectangle contains P .

– If P is outside the bounding rectangle, measure the angle whose vertex
is P , and whose first side contains the starting point of the curve and
whose other side contains the ending point of the curve.

– If P is inside the bounding rectangle, split the curve into two pieces, and
add up the angles obtained by applying this procedure recursively to the
two shorter curves.

We apply this procedure to each curve, add up the results, and then divide
the final sum by 2π to get the winding number.

In the example of Figure 3, three of the four curves have bounding rectangles
that do not contain P . The contributions of those three curves to the winding
number are illustrated in Figure 4.

However, as shown in Figure 5, the curve connecting points B and C needs to
be split at point E. The bounding rectangle of the curve connecting E to C does
not contain P , so we can use the angle between PE and PC as before. However,
P is still inside the bounding rectangle of the curve connecting B to E, so we
split it at F . Now none of the bounding rectangles contain P , the positive sum
of the angles in Figure 4 is negated by the sum of the angles shown in Figure 5,
and we get the correct result: the winding number is 0 and P is outside the
boundary.

Several properties of curves represented by B-splines are used here. Because
of the convex hull properties of such curves, we can easily determine bounding
rectangles for them. It is also easy to split such a curve into smaller pieces by
using knot insertion. Furthermore, the bounding rectangles of the smaller curves
will generally be much smaller than the bounding rectangle of the larger one.
The procedure will work for curves other than those represented by B-splines
provided they share these necessary properties.

Suppose P lies on one of the curves. If we had infinite precision, the procedure
would never end. However, with finite precision, we would eventually get to a



A New Approach to Point Membership Classification in B-rep Solids 239

.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
.........
........
.........
.........
.........
.........
.........
......

............
................

.........................
..................................................................................................................

...........
...........

...........
...........

...........
...........
............
...........
............
............
............
.............
............
.............
.............
.............

..............
...............................................................................................................................................................

......................
.................
...

......................................... .........................................
.............
.............
......

.........
....
.........
....
.........
....
.........
....
.........
...

.............
.............

................
•

A
B

CD

•E

•F
P

Fig. 5. One curve must be split

point at which we could no longer split the curve, and we could use this even-
tuality as a stopping criterion. Alternatively, we could choose to stop splitting a
curve once each of the sides of its bounding rectangle is smaller than a specified
minimum length; if P is still inside the bounding rectangle when this minimum
size is reached, it would be categorized as being too close to the boundary to be
definitely inside or outside the region.

Let us now consider how this method fares when the curves forming the
boundary don’t fit together very well. That is, suppose there are small gaps
or overlaps between the ends. In this case, the computed winding number may
not be exactly 1 or 0, but it will usually be close to one or the other of those
values. The only two ways the winding number could be significantly different
from both 1 and from 0 are that P could lie on one of the curves or it could be
very close to a gap or overlap between two consecutive curves. In the latter case,
the algorithm could simply return the value of the winding number and allow
the user to decide how to handle this ambiguous situation.

An alternative for dealing with consecutive curves that don’t meet precisely
is to add additional line segments connecting them. Now the winding number
can be computed more precisely, but this precision should not be trusted if P
is within (or close to) the bounding rectangle of one of the added segments. For
more on these issues, see [9].

3 Boundaries That Are All Triangular Facets

The first step in extending this algorithm to three dimensions is to note that
in the two-dimensional case, the angles can be thought of as signed lengths of
arcs that are portions of a unit circle centered at P . The obvious extension to
three dimensions is to take each surface that is part of the boundary of a solid,
and find its solid angle with respect to P . This is determined by projecting the
boundaries of the surface onto the unit sphere centered at P , and computing
the area of the region of the sphere bounded by these projections. If the sum of
these projected areas is normalized by 4π (the surface area of the unit sphere),
we have the equivalent of the winding number in three dimensions.

This idea works very nicely if all the surfaces are planar with triangular
boundaries. The projected areas can be easily obtained using the Gauss-Bonnet
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Fig. 6. Projection of a triangle onto a sphere

theorem. In fact, because the projections of straight lines are geodesics, we need
only the following special case (known since the early 17th century): the area of
a geodesic triangle on the unit sphere is simply the sum of its angles minus π.

It is important, of course, to be careful about orientation. In Figure 6, the
vertices v0, v1, and v2 are arranged counter-clockwise as viewed from the pos-
itive normal direction, and their projections onto the sphere are also counter-
clockwise. In this case, the projected angles are all positive, so we add them
together and subract π to get a positive area for the geodesic triangle. If the
triangle were to be rotated so that the projections of the vertices are arranged
clockwise on the sphere, the projected angles would then all be negative; again
we would add them together, but would add π to get a negative area for the
geodesic triangle.

If P lies in the plane of a triangular face but outside its boundary, the face
can be ignored; its projected area is obviously zero. Two of the projected angles
will be usually be zero, and the other will be π or −π; either way the calcu-
lation described in the previous paragraph will give us the correct (zero) area.
Unfortunately, this calculation does not handle the case in which P is collinear
with two of the vertices but not between them. Now both vertices project to
the same point on the sphere and the corresponding angles are undefined. As a
consequence, this collinear case needs to be checked for specifically. Note that if
P is not close to the face, and close to but not on its plane, the projected area
will be small enough that any numerical instability with regard to any individual
angles or their signs does not affect the stability of the algorithm as a whole.

The instability that does matter, of course, arises when the point is on or close
to the face. It turns out, however, that this type of instability can be handled
more easily in the general case, to which we now turn.

4 General B-rep Solids

We can now extend the ideas of the previous two sections to more general B-rep
solids. However, three restrictions will be imposed here; later, I will discuss the
possibility of relaxing them.
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As with the two-dimensional procedure (and for the same reasons), we require
that the surfaces be represented as tensor product B-splines, and that their
trimming curves also be represented as B-splines. The second restriction is that
each trimming curve of a surface that does not collapse to a point in model space
must be associated with exactly one trimming curve of an adjoining surface
(which could be itself). This requirement can be illustrated with Figure 7. If one
surface with a boundary connecting points A and B borders on two surfaces, one
with a boundary connecting B to C, and the other with a boundary connecting
C to A, the boundary curve for the first surface needs to be split into two pieces
at (or near) C, so that each piece is associated with exactly one curve from
one of the other surfaces. Finally, we require each pair of adjoining curves to
be parametrically aligned. This could be accomplished by representing the pair
of curves as a single curve with four dependent variables (two for each surface).
Such curves are produced by the surface-intersection algorithm described in [10],
and can also be produced more generally by the method described in [11]. The
alignment does not need to be exact; the purpose of this restriction will be
discussed in Section 5.3.

One approach that would not require all these restrictions would be to project
each surface onto the unit sphere whose center is P , and then to use the Gauss-
Bonnet theorem to determine the area of the projection. One problem with this
idea is that it would take too much time to compute and integrate the geodesic
curvature of the projected boundary curves. A more serious problem is that the
projections of the curves could cross one another, in which case the conditions
for using Gauss-Bonnet are no longer satisified.

Instead, recall that in the two-dimensional algorithm, what we are essentially
doing is finding a polygon such that P is inside the region bounded by the curves
if and only if it is inside the polygon. What we will do for B-rep solids is find
a polytope with triangular facets such that P is inside the solid if and only if
it is inside the polytope, and then use the method of Section 3 to determine
whether P is inside the polytope. However, as we extend the algorithm from two
dimensions to three, we will encounter a number of additional problems that
must be solved along the way.

For the remainder of this section, the B-rep solids used as examples will be
bounded only by faces that could be represented as untrimmed surfaces; that is,
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Fig. 8. No surfaces need to be split

as surface functions whose domain is rectangular with nothing trimmed away.
For these examples, the issues of surface splitting and triangulation are straight-
forward; I will deal with more complicated faces in Section 5.

Consider the solid on the left side of Figure 8. It consists of 5 planar faces
and one face that is a portion of a cylinder. The point P is located at a corner
of the cube drawn in dotted lines; 3 of this cube’s sides are aligned with the 3
faces of the solid that meet at point b. Note that P is not inside the bounding
boxes of any of the faces. Suppose we now replace each boundary curve with a
straight line segment, resulting in the object on the right side of the figure. In
this particular example, this is already a polytope, but in general we would need
to add line segments so that all the facets are triangular. For visual clarity, I
have not drawn these additional line segments in this figure, or in the two that
follow.

On the left side of Figure 8, the only 2 curves that are not already line segments
are the curve connecting points c and d and the curve connecting points g and
h. When these curves are replaced by line segments, the resulting polytope is
simply a rectangular block; we can now classify the point with respect to the
solid by classifying it with respect to the polytope. With the diagonals of each
of the six sides of the block, we have a polytope with 12 triangular facets, and
can use the method described in Section 3.

In Figure 9, we start with the same solid, but P is now positioned so that
it is within the bounding box of the curved face. So, that face must be split.
In fact, after splitting the face along the segment connecting points j and k, P
is still inside the bounding box of one of the two pieces of the original face, so
that piece must be split again, this time along the segment connecting points m
and n. We now have 3 surfaces that are parts of the original upper surface along
with the other 5 surfaces that are the same as in Figure 8. On the right side of
the figure, all the curved pieces are replaced by line segments. Since the planar
surface in front was never split, there must be a line segment connecting d and
c, but this results in a “gap” bounded by the segments connecting d to c, c to
m, m to j, and j to d. A similar gap is bounded by the segments connecting g,
h, k, and n. We need to fill in these gaps by triangulating them; these triangles
along with the triangulations of the 8 surfaces give us the polytope we want.
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Fig. 9. One surface must be split
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Fig. 10. Gap between pieces of same original surface

A similar gap can arise between two portions of the same surface. The solid
on the left side of Figure 10 is topologically the same as the one in Figure 9,
but now suppose that the first split of the cylindrical surface is perpendicular
to the cylinder’s axis, with the boundary between the two halves shown as the
curve connecting a and b. Only one of these halves is subject to further splitting
because it is the only one whose bounding box contains P . The triangulation
of the unsplit half must include the line segment from a to b; there is a gap
between it and the piecewise linear path that connects a and b via points c and
d. This gap, as well as the gap between the front surface and the split cylindrical
surface, must be triangulated along with the 5 planar faces and the 4 pieces of
the cylindrical surface.

These examples suggest an algorithm that can be used when the solid fits
together perfectly, with no gaps or overlaps between surfaces. As we will see,
a fairly simple modification to this algorithm will allow it to be used more
generally.

I will first present the recursive portion of an algorithm for finding W , the
three-dimensional analog of the winding number. We will refer to this recursive
portion as
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Procedure R:
Given the point P , a face that is a trimmed surface, and a minimum box size,

1. Set Wf to zero.
2. Find the bounding box of the face; we will define its “size” as its maximum

dimension; that is, max(xmax − xmin, ymax − ymin, zmax − zmin).
3. Check whether the bounding box contains P .

– If P is outside the bounding box: determine a triangulation of the surface
such that for each boundary curve, there is a side of a triangle connecting
its end points. Project each triangle onto the unit sphere centered at P
and add the signed areas of the geodesic triangles to Wf .

– If P is inside the bounding box and the size of the box is less than or
equal to the minimum box size: halt the process and report that P is
neither definitely inside nor definitely outside the solid.

– If P is inside the bounding box and the size of the box is larger than the
miminum: split the surface into two pieces, keep track of places where
the boundary curves are split, and apply Procedure R recursively for the
two pieces of the surface. Then, triangulate the gap (if any) along the
split and add the projected areas of these triangles to Wf .

With Procedure R in place, the whole algorithm is:

1. Set W to zero.
2. Apply Procedure R to each surface, adding each Wf to W .
3. Triangulate any gaps between surfaces, and add the projected areas of these

triangles to W .
4. Divide W by 4π.

This algorithm actually works most of the time even when the solid has gaps
or overlaps, but unfortunately, not always. Consider the solid in Figure 11, in
which the two cylindrical faces do not quite meet precisely as shown in the
exaggerated side view in Figure 12. If this solid is aligned so that the bounding
box of the cylindrical surface on the right does not contain P , that surface will
not be split and P will be on the wrong side of the triangulated gap between
the two cylindrical surfaces.

To take care of this problem, we need a different criterion for deciding when
to split a surface. One approach would be to expand the surface’s bounding
box in both directions of each of its dimensions by an amount greater than any
potential imperfections in the solid, and to split the surface any time the point
is inside this expanded bounding box. This could be a problem if one doesn’t
know in advance how large such imperfections might be. An alternative would
be to expand the bounding box in a proportionate manner. For reasons that will
become clear in Section 6, I will suggest the following criterion:

We will split the surface if the point is inside its bounding box, or if its
“distance” to the bounding box is less than 0.5 times its distance to any end of
a boundary curve on the surface. Rather than compute the Euclidean distance
to the bounding box, we do a simpler infinity-norm type of calculation:
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Fig. 11. Point aligned with gap between surfaces
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Fig. 12. Side view (exaggerated)

max(0, Px − xmax, xmin − Px, Py − ymax, ymin − Py, Pz − zmax, zmin − Pz)
The choice of 0.5 as the factor we multiply by the distance is somewhat

arbitrary; I will discuss this issue in Section 6.
With this modification, both cylindrical surfaces in Figure 11 will be split

in enough places to ensure that P is inside the polytope, provided that we are
reasonably careful about the way we triangulate the gap. Details about gap
triangulation are covered in Section 5.3.

5 General B-rep Solids – Algorithmic Details

The purpose of this section is to provide details about the splitting and trian-
gulation of faces, as well as the triangulation of gaps between faces or between
portions of a face. In Section 4, the examples included only faces that were simple
enough that these issues were fairly obvious.

5.1 Splitting Faces

In the examples in Section 4, all the faces that needed to be split were rectangular
in parameter space; I will next describe how to split faces with more complicated
boundaries.

We will always split along an isoparametric line. Here is a quick way to decide
at which point and in which direction to split the face that also guarantees that
some boundary curve will be split. First, consider the set of all the end points
of the boundary curves; if there is only one such curve, we evaluate it at its
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Fig. 13. Splitting boundary curves in parameter space
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Fig. 14. New faces after splitting

parametric midpoint and add that point to the set. Now find the ranges of the
u and v coefficients of this set of points. If the u range is greater, we will split
along the constant u value at the center of the range, and similarly for v.

To illustrate how we split a face into two smaller faces, consider the face whose
image in parameter space is shown in Figure 13. There are 9 boundary curves
that form two loops, one of which is a hole inside the other. The range of u
coefficients is greater than the range of v coefficients, so we wish to split along
the dashed line which is constant in u. We need to find all the places where
any of the boundary curves intersect the dashed line; this amounts to solving a
univariate spline equation for each of the curves; see [12] for details. In this case,
4 of those equations have one solution (points A, B, C, and F ) and one of the
equations has two solutions (points D and E).

Figure 14 shows the new faces that result from splitting the face in Figure 13.
The face on the left has two boundary curves that are identical to those in
Figure 13 because they are completely to the left of the u value at which the
split takes place. It also contains portions of the 5 curves that are split, as well
as the line segments that connect points A to B, C to D, and E to F . The region
on the right has two boundary curves identical to those in Figure 13, portions
of the 5 curves that are split (although we get 2 curves from the curve that is
split at D and E), and the same line segments along the split, although these 3
line segments are oriented in the opposite direction. The new face on the left has
10 boundary curves forming a single loop, while the region on the right has 11
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boundary curves. The region on the right could be considered as one face with
two exterior loops, or as two separate faces.

Notice that the line segments along the split that we used as new boundary
curves alternate with line segments (BC and DE) that we did not need to create.
This alternation is the usual case, but not if there is a tangent intersection, for
example. The segments chosen are found by first sorting all the points, then
checking the midpoints of potential segments to see if they are in the interior
of the original face; we can use the algorithm presented in Section 2 for this
purpose. Note however, that it is important that the 3 curves that form the hole
in Figure 13 are oriented clockwise; then the midpoint of BC will have a winding
number of 0 with respect to the complete set of boundary curves.

Finally, it should be noted that the recursive splitting of the new faces could
result in the common segments AB, CD, and EF being split differently on either
side, resulting in a gap that would need to be triangulated.

We have seen in this section how to split complicated faces when they need
to be split. We turn next to complicated faces whose bounding boxes do not
contain P , and can thus be triangulated without further splitting.

5.2 Triangulating Faces

In the examples in Section 4, each face had 4 edges, and could be triangulated
simply by adding a segment connecting one pair of opposite corners. The general
case is only slightly more complicated, because in this context there is no need
to worry about such characteristics of the triangulation as maximum edge length
or aspect ratio.

We can also get away with triangulating each loop separately, as long as we
are careful about orientation. If we have an exterior boundary with a hole, the
projected area that we want can be computed more easily by triangulating the
region inside the exterior boundary as though the hole did not exist and then
separately triangulating the hole. Again, as long as orientations of the curves
are correct, the projected area will be correct.

Consider the following simple iterative method for creating the triangles we
need from a given loop of consistently oriented curves. Keep in mind that we
only create these triangles after we determine that the current surface does not
need to be split; this means that all triangles will be separated from P by the
same plane. Choose any curve and let its starting point be P0. For each Pi, let
Pi+1 be the starting point of the curve that connects to the end of the curve
starting at Pi. Then, the ith triangle can consist of the line segments connecting
P0, Pi+1, and Pi+2. This is a perfectly reasonable triangulation if the region is
convex in parameter space, but since all we care about is projected area, this
works fine even for non-convex regions.

5.3 Triangulating Gaps

The triangulation of gaps is easily accomplished, but we can’t use the same
method that we use for triangulating faces. Remember that we don’t triangulate
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a face if its bounding box contains P . However, a bounding box containing all
the curves that border upon a gap could contain P , so the method used in
the previous section cannot guarantee that P will be on the correct side of the
triangulation of the gap.

Consider once again Figure 11. Each of the curved surfaces will be split at least
twice. This will result in at least two points from each side of the gap that are
higher than P , but on opposite sides of it along the gap. If those four (or more)
points are triangulated, the triangles have to be above P as well. Triangulations
of the remaining portions of the gap must also each be entirely on one side of
P . This suggests the following general procedure:

We keep track of the points where each boundary curve is split both in model
space and in the parameter space of the 4-dependent variable curve that repre-
sents the curves on either side of the gap. Suppose the points to be triangulated
on one side of the gap are a0, a1,..., am and the points on the other side are b0,
b1,..., bn, with each list in order parametrically. Each triangle will consist of two
vertices that are consecutive points on one side of the gap and a third vertex
from the other side. The two vertices on the same side are shared with a triangle
from the surface triangulation on that side; the orientation of the new triangle
needs to be made consistent with that adjacent triangle. In order to ensure that
the gap triangulation stays on the proper side of P we proceed as follows:

Start by triangulating a0, a1, b0, and b1, giving us two triangles (one or both
of which could be degenerate). Now assume we have triangulated up to ai and bj .
The next triangle has these two points as vertices; the third vertex is chosen to be
either ai+1 or bj+1, whichever has the smaller parameter value. The parametric
alignment keeps each triangle on the correct side of P unless P is close to the
gap. If any triangle’s bounding box contains P , then P is too close to the gap
to consistently determine whether it is inside the solid.

It should be noted that what I have described so far does not completely
eliminate gaps between surfaces. Looking back at Figure 7, the point C could
actually be three separate points, one on each of the three surfaces. Triangulating
the gaps between each pair of surfaces could still leave a small triangular gap
between these 3 points. Such gaps where three or more surfaces come together
are not affected by surface splitting, so they don’t have a significant effect on the
winding number unless P is close to them. The safest course is to triangulate
these small gaps anyway, and this is easily accomplished; details are left to the
reader.

6 Other Applications of the Algorithm

In Section 4, two criteria were mentioned for deciding when it is necessary to
split a face. The criterion I chose is not the most efficient if the only information
we care about is whether a point is inside, outside or on the boundary; however,
it allows us to obtain a very useful estimate of the closest distance from P to
the boundary.

Let d be the closest distance from P to the boundary of a particular solid.
Each time we triangulate a face or portion thereof, we can determine the distance
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between its bounding box and P . We can keep track of the smallest such distance
L. If all faces are fully triangulated, then L is a lower bound on d; otherwise,
P is inside some bounding box of a face (or portion of a face) that wasn’t split,
and the lower bound L is 0. We can also keep track of the closest distance of
any of the points being triangulated to P . The smallest of these distances, U , is
clearly an upper bound on d.

If L is 0, then U is no greater than the minimum box size specified in Procedure
R; otherwise, the splitting criterion described in Section 4 ensures that U <= 2L.
One way this could be useful is that if L > 0, and P lies on a second solid whose
maximum diameter is less than L, then we can be certain that the boundaries
of the two solids do not intersect and that the second solid is inside the first if
and only if P is.

I chose 0.5 as the factor in the splitting criterion as a reasonable compromise
between tighter bounds on the distance from P to the boundary versus better
efficiency. Tighter bounds can be achieved by using a larger factor, but this will
require more splitting of faces; as the factor apporaches 1, the amount of required
splitting approaches infinity.

I will conclude this section by noting that the winding number provides more
information than can be obtained by ray-casting. If a ray intersects the boundary
an odd number of times, P is inside, but in this case the sign of the winding
number also indicates how the boundary is oriented. Along these same lines, the
method outlined in this paper could also be used to characterize points with
respect to objects with self-intersecting boundaries.

7 Future Improvements

In Section 4, several restrictions were imposed on the B-rep solids for which the
algorithm is valid. It should be possible to relax the restriction that adjoining
curves have a common parametrization; this is a possible area of future work.
Another useful extension would be to collections of faces that are not completely
joined; many “solids” in use today have open edges, but it would still be useful
to categorize points that aren’t close to such imperfections.

The algorithm as described here is reasonably efficient, but is not optimized
for speed; it would be good to have an alternate version that is much more
efficient even if it lacks the feature of determining useful bounds on the distance
to the boundary. One approach would be to see if the Poincaré method can be
extended to three-dimensional polytopes. The extra dimension would certainly
add many complications. If this is possible, then the algorithm would not need
to calculate areas of projected triangles, but would still need to recursively split
some of the faces, triangulate them and triangulate the gaps between them.

Another possible approach to optimizing the efficiency of the algorithm would
be to find bounding boxes that are oriented so that they fit more tightly around
the surfaces. It might be worth investigating whether the potential reduction in
the number of face divisions would be worth the higher cost of calculating such
bounds.
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The essence of this paper has been the extension of a two-dimensional point
membership classification method to three dimensions. An intriguing direction
for future research would be to see if we can continue extending the method to
four or more dimensions.

8 Conclusion

The primary contribution of this paper was to provide an algorithm for point
membership classification in B-rep solids that I believe to be much more robust
than standard methods.

Finally, I would like to thank Tom Grandine and Gershon Elber; my discus-
sions with each of them were extremely helpful in developing the ideas presented
here. Thanks are also due to an anonymous reviewer, whose comments resulted
in several useful improvements to this paper.
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Abstract. Statistical shape models, and in particular morphable mod-
els, have gained widespread use in computer vision, computer graphics
and medical imaging. Researchers have started to build models of almost
any anatomical structure in the human body. While these models provide
a useful prior for many image analysis task, relatively little information
about the shape represented by the morphable model is exploited. We
propose a method for computing and visualizing the remaining flexibility,
when a part of the shape is fixed. Our method, which is based on Prob-
abilistic PCA, not only leads to an approach for reconstructing the full
shape from partial information, but also allows us to investigate and vi-
sualize the uncertainty of a reconstruction. To show the feasibility of our
approach we performed experiments on a statistical model of the human
face and the femur bone. The visualization of the remaining flexibility
allows for greater insight into the statistical properties of the shape.

1 Introduction

Morphable models, i.e. statistical shape models based on dense point-to-point
correspondence, have become a widely used tool in computer vision, computer
graphics and medical imaging. The main idea behind a morphable model is to
span a space of shapes (3D surfaces) by taking linear combinations of exam-
ple shapes [1]. A probability distribution is estimated from the example shapes,
quantifying the probability of observing each linear combination. The most com-
mon use of morphable models is to restrict the solution-space of ill posed prob-
lems by penalizing unlikely instances of the shape. Typical examples include
image segmentation [2,3,4], registration [5,6] or 2D-3D surface reconstruction
[7,8,9]. In this context, the model is used to answer the following question:

– Given a shape, how likely is it that the shape belongs to the object class
represented by the morphable model?

These applications exploit only the fact that the variability of the shape as a
whole can be represented and quantified by the morphable model.

In this paper we are trying to get a deeper understanding of the information a
morphable model represents and how one part of the model influences the rest.
The central question we are trying to answer is:

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 251–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. Flexibility of a morphable model of the human face. The colors represent the
variability (in mm) for each point. Figure (a) shows the full flexibility of the morphable
model. In (b), the most likely reconstruction of the sketch depicted in (c) is shown,
together with the remaining variability.

– Given only a part of a shape, what is the most likely completion of this shape
and how much variance remains in the model given this partial information?

We illustrate this with an example. Assume we are given a morphable model of
the human face. Let s be a random variable representing the surface, with its
distribution given by the morphable face model. Figure 1(a) shows the mean face
E[s] and the variability represented by the model (which is, loosely speaking,
the variance var(s)). Now suppose we are given a rough sketch of the eyes, nose
and mouth in form of the black lines in Figure 1(c) and wish to reconstruct
a full face from these lines. Denoting the given lines by sb, we are interested
in the distribution of the random variable s|sb. Figure 1(b) shows the most
likely reconstruction s∗ := argmaxs p(s|sb) of the full shape, as well as the
remaining variability var(s|sb). Naturally, the shape variability is much lower
than in Figure 1(a) because the sketch sb is observed. Hence, knowledge of the
distribution of s|sb not only leads to an approach for the reconstruction of a
face from the sketch, but, equally interesting, indicates how well the face is
determined by the sketch. In the remainder of the paper we show how these
quantities can be computed, under the assumption that the shapes follow a
normal distribution.

One main assumption of morphable models is that the shapes, which are
usually represented as very high dimensional vectors, lie on an embedded linear
manifold (i.e. plane) within this high dimensional shape space. This manifold
is found by performing Principal Component Analysis (PCA) of the sample
covariance matrix. Unfortunately, standard PCA does not provide a probability
model in the shape space [10]. In particular, in our “high-dimension - small
sample” case, the covariance matrix becomes singular, which leads to various
problems in statistical reasoning. In the approach presented in this paper, we
use Probabilistic PCA (PPCA) [11], which defines a proper covariance structure
in the shape space. The PPCA approach also directly implies a method for
reconstructing a full shape given only partial information by using the posterior
mean as the best reconstruction.
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Knowledge of the best reconstruction and remaining variability of a shape
is important in many application domains. We are particularly interested in
the area of reconstructive medicine, where the problem arises frequently that a
traumatised structure has to be reconstructed to fit the remaining parts. Being
able to asses the remaining flexibility in a statistically sound way is important
for the planning of reconstructive surgical interventions and the prediction of
the outcome. Further, it is of general interest to know how much the different
parts of an anatomical structure determine its variability. This knowledge can
for example give important clues for designing implants and prostheses.

Several authors have proposed very similar methods for reconstruction of a
full surface from partial information [12,13,14,15,16]. In fact, the reconstruction
method resulting from the PPCA approach encompasses the one proposed by
Blanz and Vetter [12], and Basso and Vetter [13] as a special case. A similar
model based on factor analysis, which strongly resembles our PPCA model, was
proposed by Machade et al. in [17]. However, to the best of our knowledge, the
PPCA framework for model based reconstruction and the use of the full posterior
distribution for modeling and visualizing the remaining flexibility has not been
considered before. Indeed, the only work we are aware of that explicitly tries to
model the remaining flexibility is the one by Albrecht et al. [18]. In contrast to
our work it does not admit a probabilistic interpretation and requires a separate
algorithm for shape reconstruction.

2 Background

Before we present our model, we briefly review the mathematical concepts we
will use in the remainder of the paper. In order to apply statistical methods to
shapes we need to be able to represent them as random variables. A particularly
simple approach, is to sample the shape and organize the sampled points as a
vector in Euclidean space. Such a vector is usually referred to as a shape vector.

Two types of statistical shape models are distinguished in the literature. In
the Active Shape Models [19], the shape is given as a 2D contour and is relatively
sparsely sampled. In contrast, in the Morphable Model [1], the shape is given as
a 3D surface and the sampling is dense. From a mathematical point of view,
the concepts are the same. An important difference is, however, that in the case
of the Morphable Model the dimensionality of the shape vectors is much larger
than the number of observations. It is this property that motivates our work,
and we will therefore focus only on this case in the remainder of this paper.

2.1 Shape Vectors and Registration

Let {Γi ⊂ IR3|i = 1, . . . , n} be n surfaces, given in some suitable representation.
Define an arbitrary surface, say Γ1, as a reference surface. We assume that each
surface Γi was obtained by warping the reference surface Γ1 with a smooth vector
field φi : Γ1 → IR3. That is

Γi = {x+ φi(x)|x ∈ Γ1}.
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Let Γ̂1 be a suitable discretization of Γ1 of N points (e.g. Γ̂i is represented as a
triangle mesh with N vertices). Note, that the same discretization is induced by
the mapping φ for each surface Γi. We define the shape vector si ∈ IR3N as

si = (vi,1
x , vi,1

y , vi,1
z , . . . , vi,N

x , vi,N
y , vi,N

z )T ,

where the vector vi,j = (vi,j
x , vi,j

y , vi,j
z ) represents the x, y, z coordinates of the

j-th vertex of Γ̂i.
Usually we are given the surfaces Γ1, . . . , Γn rather than a reference surface

Γ1 and the corresponding vector fields {φi}ni=2. Finding a vector field φ that
maps between a given pair of surfaces is a central problem in medical imaging
and computer vision and is referred to as the registration or correspondence
problem. Many algorithms for surface registration have been described in the
literature (see e.g. [20] for an overview).

2.2 Principal Component Analysis and Statistical Shape Models

PCA is a well known and widely used method for dimensionality reduction and
data visualization. From n data sets, represented by vectors si ∈ IRm the mean
μ = 1

n

∑n
i=1 si and covariance matrix Σ ∈ IRm×m with Σ = 1

n

∑n
i=1(si−μ)(si−

μ)T can be estimated. PCA consists of an eigenvalue decomposition or principal
component transformation of Σ:

Σ = UD2UT , (1)

where U ∈ IRm×m is the orthonormal matrix of the eigenvectors of Σ, ordered
according to the size of the corresponding eigenvalues, which make up the diag-
onal of the matrix D2 = diag(σ2

1 , . . . , σ
2
m). Note that if n < m, we have σi = 0

for all i > n.
When building a PCA-based shape model, it is assumed that the training

datasets si and linear combinations thereof form a linear space of shapes that
can be modelled by a multivariate normal distribution N (μ,Σ). With the help
of a coefficient vector α, each shape can be represented as:

s = s(α) = UDα+ μ. (2)

Thanks to this representation the probability density functionN (μ,Σ) evaluated
at s(α) takes the form:

p(s(α)) = 1
z exp(−‖α‖22), (3)

where z =
√

(2π)m det(D) is a normalization factor [12].

2.3 Linear Gaussian Models

The PPCA model considered in this paper is a linear Gaussian model of the
form

y = Ax+ b+ ε, (4)
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where A ∈ IRm×n and b ∈ IRm are parameters, x ∼ N (μ,Λ) and ε ∼ N (0, L)
are normally distributed random variables. For this model, the predictive dis-
tribution p(y) and posterior distribution p(x|y) have a simple analytic form, as
summarized in the following theorem [21]:

Theorem 1 (Theorem for Linear Gaussian Models). Given a marginal
Gaussian distribution for x and a conditional distribution for y|x in the form

p(x) = N (μ,Λ) (5)
p(y|x) = N (Ax + b, L) (6)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (Aμ+ b, L+AΛAT ) (7)

p(x|y) = N (ΣATL−1(y − b) + Λ−1μ,Σ) (8)

where
Σ = (Λ +ATLA)−1. (9)

It is the fact that we have an analytic form of the posterior distribution that
allows us in the following to model and visualize the remaining variability.

3 Shape Modeling Using Probabilistic PCA

In this section we present our PPCA based method for modeling the shape
variability and show how it leads to a natural approach for shape reconstruction.
Further, we show how the resulting posterior distribution can be used to visualize
effectively the remaining flexibility in the model.

3.1 Mathematical Model

The mathematical model we use for shape modeling is obtained by applying
standard Probabilistic Principal Component Analysis, as proposed by Tipping
and Bishop [11], to a set of surfaces represented as shape vectors.

Let {si ∈ IR3N}ni=1 be n shape vectors as defined in section 2.1. The main
assumption in PPCA is that the high dimensional observations can be explained
by a mapping from a low dimensional latent space plus some additional Gaussian
noise. Let α be a d-dimensional latent variable

p(α) = N (0, Id). (10)

We model the conditional distribution of observing the shape vector s as

p(s|α) = N (Wα + μ, σ2I3N ) (11)

where W ∈ IR3N×d is a linear mapping and μ ∈ IR3N a shape vector. We can
interpret this as a generative model, where the shape s is given by the mapping
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W of the latent variable α plus some additive Gaussian noise ε ∼ N (0, σI3N ).
That is

s = Wα+ μ+ ε. (12)

According to Theorem 1 the predictive distribution

p(s) =
∫
p(s|α)p(α) dα. (13)

is again Gaussian with mean μ and covariance matrix WWT + σ2I3N . In sum-
mary, we obtain the distribution

p(s) = N (μ,WWT + σ2I3N ). (14)

Theorem 1 also provides us with an expression for the posterior distribution:

p(α|s) = N (M−1WTσ−2(s− μ),M−1), (15)

where
M = σ−2WTW + Id.

Tipping and Bishop [11] showed that the maximum likelihood solution for the
parameters μ,W, σ2 is

μML =
1
n

n∑

i=1

si (16)

WML = Ud(D2
d − σ2Id)

1
2 (17)

σML =
1

3N − d
3N∑

i=d+1

D2
ii. (18)

Here, Ud ∈ IR3N×d and Dd ∈ IRd×d are the sub-matrices corresponding to the
d largest eigenvalues of the covariance matrix decomposition in (1). Using these
maximum likelihood estimates in the generative model (12) yields a striking
similarity with the PCA model (2), which gives the method its name. However,
in contrast to the standard PCA, PPCA provides a fully probabilistic model.
This allows for the computation of the full posterior distribution and to deal
with missing data in a principled way.

3.2 Missing Data

Assume now that a part of the model is given. Without loss of generality, the
model can be partitioned as s = (sa, sb) with sb given and sa unknown. We would
like to reconstruct the full shape s ∈ IR3N from the partial shape sb ∈ IR3Ñ .
Equation 14 can be written as

p(s) = p(sa, sb) = N (
[
μa

μb

]
,

[
WaW

T
a WaW

T
b

WbW
T
a WbW

T
b

]
+ σI3Ñ ). (19)
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Using the well known formula for the conditional distribution of a multivariate
normal distribution, we have

p(sa|sb) = N (μsa|sb
, Σsa|sb

) (20)

with

μsa|sb
= μa +WaW

T
b (WbW

T
b + σI3Ñ )−1(sb − μb) (21)

and

Σsa|sb
= (WbW

T
b + σI3Ñ )−WaW

T
b (WbW

T
b + σI3Ñ )−1WbW

T
a ). (22)

The above equations give us a simple recipe for shape reconstruction. Unfortu-
nately, it requires the inversion of the matrix (WbW

T
b +σI), which is potentially

huge. Using the fact that the shape is determined by the latent variables, we
instead try to find an expression for p(α|sb):

p(sb|α) = N (Wbα+ μb, σ
2I3Ñ ) (23)

p(α) = N (0, Id) (24)

Again, we are in the position to apply Theorem 1:

p(α|sb) = N (M−1WT
b σ

−2(sb − μb),M−1), (25)

with
M = σ−2WT

b Wb + Id. (26)

In all practical cases, WT
b Wb will be small and can easily be computed. Once α

has been determined, the most likely shape s∗ is given by

s∗ = arg max
s
p(s|α) = Wα+ μ. (27)

This reconstruction is sufficient for the majority of shape modeling applications.
Hence, we hardly ever need to compute the full covariance matrix Σsa|sb

. It is,
however, interesting to write down the distribution p(sa|sb) in terms of the latent
variables:

p(s|sb) = p(sa|sb) =
∫
p(sa|α, sb)p(α|sb) dα =

∫
p(sa|α)p(α|sb) dα (28)

where we used the fact that sa and sb are conditionally independent given α.
This can be interpreted as a projection of the observation onto the latent space,
followed by the reconstruction of the full shape for the given α.

3.3 Reconstruction of Partial Shapes

We show now how the results from Section 3.2 can be used to reconstruct missing
parts of any shape that can be modeled by a morphable model. In order to model
the partial shape sb as a part of a given complete morphable model, it has to be
in correspondence with the reference shape (cf. Section 2.1).
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The latent variable α|sb is distributed according to Equation (25). The most
probable reconstruction is obtained by reconstructing the full shape from the
mean according to Equation (27). In addition to providing us with the most
probable reconstruction, p(α|sb) describes the distribution for all possible recon-
structions. By considering how strongly this distribution is concentrated around
its mean, we see exactly how reliable the reconstruction with the mean is. In
effect, p(α|sb) models the remaining flexibility of the morphable model given
the fixed part sb. In the next section, we will show how this flexibility can be
explored visually.

3.4 Visualizing the Remaining Variability

We reconstruct the shapes from the latent variable α using Equation (27), i.e.
s∗ := Wα + μ. According to the standard formula the covariance matrix of s∗

under this affine transformation becomes

WM−1WT . (29)

Note that this is a simpler distribution than the p(s|sb) given in Equation (20),
as we can ignore the Gaussian noise ε of the original model (12) here.

In order to visualize the main modes of variation of this distribution, we
perform an additional PCA, i.e. an eigenvalue decomposition of the covariance
matrix WM−1WT . When we choose the maximum likelihood estimator W =
WML from Equation (17), the covariance matrix decomposes as follows:

WMLM
−1WT

ML = Ud (D2
d − σ2Id)

1
2M−1(D2

d − σ2Id)
1
2 UT

d . (30)

By computing a (d× d)-dimensional eigenvalue decomposition of the inner part

(D2
d − σ2Id)

1
2M−1(D2

d − σ2Id)
1
2 =: ŨD̃2ŨT , (31)

we get the eigenvalue decomposition

WMLM
−1WT

ML = (UdŨ) D̃2 (UdŨ)T , (32)

without having to calculate a prohibitively large (3N × 3N)-dimensional PCA.
The main modes of variation of the shapes s∗ are the eigenvectors correspond-

ing to the largest eigenvalues. They model those deformations of the shapes
causing a maximum deformation of the full shape, while keeping the given part
sb virtually fixed.

By visualizing these modes of variation, we can see how much flexibility re-
mains in the model after fixing sb and thus how well sb determines the rest of the
shape. For instance, the eigenvector v1 corresponding to the largest eigenvalue
σ2

1 is the unique deformation with unit norm that changes the full model s as
much as possible, while keeping sb fixed within the limits of the noise modeled
by ε. By visualizing μ ± 3λ1v1 we can observe 99 % of the variation along this
first mode of variation.
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The Parameter σ was introduced in Equation (11) as the variance of additive
noise assumed to be present in the model. A maximum likelihood estimator was
given in Equation (18). When reconstructing partial shapes and examining the
remaining flexibility, σ controls how strictly the given part of the model sb is
matched.

The larger σ is chosen, the more the shape is allowed to deviate from sb. Of
course this results in a larger remaining flexibility as even the parts of the shape
constrained by sb are allowed to move slightly.

The maximum likelihood estimator for σ given in Equation (18) is:

σML =
1

3N − d
3N∑

i=d+1

D2
ii.

The number of non-zero eigenvalues is usually small compared to the dimension-
ality. Therefore, the maximum likelihood solution σML becomes small or even
zero, which will lead to the covariance matrix M in equation (26) being (close
to) singular. This results in little or no remaining flexibility as well as possible
overfitting in the reconstructed shapes.

Letting σ → 0 in Equation (17) and (14), leads to W = UdDd and thus the
use of the sample covariance matrix UdD

2
dU

T
d as our covariance estimator. It is

well known in statistics that in the “small sample, large dimension” case, the
maximum likelihood estimator of the covariance matrix provides a poor estimate
of the real covariance matrix. Letting σ2 > 0 be a parameter corresponds to the
usual shrinkage approach for covariance estimation and can be shown to improve
the estimate in such cases (see e.g. Schäfer and Strimmer [22]).

In a practical setting, σ is a very sensible parameter and has the natural inter-
pretation as controlling the balance between matching accuracy and flexibility.
So instead of the very small σML, it can for instance be chosen to match the
measurement error of the capturing device.

4 Results and Medical Applications

We conducted a number of experiments using statistical models of the human
face and the femur bone. The experiments show how the model can be used to
answer typical questions that arise in clinical practice.

4.1 Experimental Setup

For the femur experiments we used a statistical model built from 50 surfaces
of normal femurs. To establish correspondence among the surfaces, we used the
non-rigid registration algorithm proposed by Albrecht et al. [5]. For the face
experiments we used the data from the Basel Face Model1, which consists of 200
registered faces, acquired with a structured light scanner. All the experiments
have been performed with the parameter σ = 10. This value has deliberately
been chosen relatively large, to make the variations clearly visible in the paper.
1 Basel face model: http://faces.cs.unibas.ch
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4.2 Results

For our first experiment we considered the case where the nose is missing in a
face and has to be reconstructed. This is a case that actually occurs in clinical
practice, for example where a large tumor has to be removed. With our method
the reconstruction can be efficiently computed, requiring only a surface scan of
the patient. Figure 4.2 shows the reconstruction results as well as the variability
represented by the first mode of variation. It can be seen that the reconstruction
closely resembles the original nose. This is an indication that the shape of the
nose is rather well constrained, given the remaining facial surface. Figure 2(f)
shows an extremely unlikely reconstruction (with probability less than 10−13).
However, even such an unlikely reconstruction still looks natural.

Our second experiment shows that a valid reconstruction is also possible
when only a small part of the face is fixed. Figure 3 shows the reconstruction
and the variation captured by the first two principal components. In Figure 3(b)
the variability that remains for each point is color coded. The variability σvi for
the point vi is defined as

σvi =
√

var (vi
x)2 + var (vi

y)2 + var (vi
z)

2
,

(a) (b) (c)

(d) (e) (f)

Fig. 2. Reconstruction of a nose: (a) shows the surface with the nose removed. (b)
shows the real face while (c) shows the reconstructed nose. In (d) and (e) we see the
±3σ of the main mode of variation. (f) shows a nose where the first 7 components are
3σ from the mean.
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(a) (b)

(c)

(d) (e) (f)

Fig. 3. Reconstruction of the face where only a sketch (a) is given. (b) shows the best
reconstruction. The colors encode the variability (in mm) at the given point. (d), (c)
show ±3σ1 in the first mode of variation. (f), (e) show ±3σ2 in the second mode of
variation.

i.e. it is the norm of the variance measured in each direction. Of course, the
reconstruction from only a sketch shows much more variability than what can
be observed in the nose example. The last experiment shows how the model
can be used to investigate how well the femur bone is determined by the joint
surfaces. This variability can be helpful in prosthesis design. Figure 4 shows the
variability in the direction of the first two principal components.
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1st principal component mean 2nd principal component

−3σ1 +3σ1 −3σ2 +3σ2

Fig. 4. When a statistical model of the human femur bone is fitted to given joint sur-
faces (grey), considerable flexibility remains, visualized here by the first two principal
components with standard deviation σ1,2. The joint surfaces are taken from the mean,
seen in the middle, colored according to the remaining variability (in mm).

4.3 Reconstruction in Practice

For all reconstruction examples that we presented in this section the surfaces
were already in correspondence with the model. In practice, establishing the
correspondence is a pivotal step that both influences the reconstruction error
and the remaining variability. As this paper’s main focus is on modeling the
remaining flexibility and not the reconstruction of missing parts, we refer the
reader to the article by Basso and Vetter [13] for a more thorough evaluation of
the actual reconstruction using an equivalent method.

5 Conclusion

We presented a method for computing and visualizing the remaining flexibil-
ity in statistical shape models, when part of the shape is known. To model the
shape variability we use a probabilistic model based on PPCA. The flexibility
remaining in the model can be computed from the posterior distribution arising
from the PPCA model. We proposed to compute the remaining flexibility by
evaluating the principal components of this posterior distribution and showing
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the effect that changing the corresponding coefficients has on the shape. We pre-
sented experiments that illustrate typical applications of our model. Our results
for shape reconstruction are similar to those achieved in comparable reconstruc-
tion approaches. However, in contrast to other methods, we also showed in our
experiments the full range of possible reconstructions that complete the given
partial shape. Furthermore, our method allows us to assign a probability to every
reconstruction.

The main application of our method is to gain more insight into the infor-
mation represented by a morphable model, and learn more about the statistical
properties of the surfaces. The model allows us to investigate how strictly a given
part determines a shape. This is of particular interest in the medical domain,
where such questions frequently arise in the planning of reconstructive surgeries
as well as the designing of prosthesis.

In future work we will investigate the question whether it is possible to auto-
matically find the parts of the surface that best determine its shape. A particular
application we have in mind is to use this information in face modelling, for in-
vestigating which parts of the face determine the identity of a person and which
parts constitute the “remaining flexibility”.
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Abstract. Classical surface parameterization algorithms often place
singularities in order to enhance the quality of the resulting parameter
map. Unfortunately, singularities of positive integral index (as the north
pole of a sphere) were not handled since they cannot be described with
piecewise linear parameter functions on a triangle mesh. Preprocessing
is needed to adapt the mesh connectivity. We present an extension to
the QuadCover parameterization algorithm [1], which allows to handle
those singularities.

A singularity of positive integral index can be resolved using bilinear
parameter functions on quadrilateral elements. This generalization of
piecewise linear functions for quadrilaterals enriches the space of param-
eterizations. The resulting parameter map can be visualized by textures
using a rendering system which supports quadrilateral elements, or it
can be used for remeshing into a quad mesh.

1 Introduction

Classical algorithms for surface parameterization often use a global map which
flattens a given surface and transfers it to a 2d parameter domain. During recent
years, approaches have been given which allow the placement of singularities (or
cone points). Singularities are necessary in order to minimize overall distortion
of the parameterization.

For a given parameterization method, the amount of distortion is mainly deter-
mined by the location and type of singularities. Typical algorithms first place some
singularities and hold them fixed during the subsequent optimization. An accurate
singularity placement belongs to the main problems for parameterization.

The QuadCover algorithm also works in this manner. The singularities are
taken from a given input frame field (e.g. from principle curvatures).

A special case arises for singularities of index +1. They cannot be resolved
by a piecewise linear parameter function, since this would require its gradient to
increase to infinity. All existing parameterization algorithms using PL triangle
functions, face the same problem.

1.1 Previous Work

Surface parameterization is an active research area. We will shortly discuss early
and recent work which are closely related. More complete lists can be found
in [2,3].

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 265–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Early global parameterization methods were introduced by Haker, Gu and
Yau [4,5] and others. They studied conformal parameterizations which preserve
angles at the cost of possibly large length distortions. Angles and lengths can
not be preserved at the same time on general surfaces.

Other methods like Tong et al. [6] or Lai at al. [7] allow singular points
which enlarge the space of harmonic functions used for parameterization. A
good placement of singular points is an ongoing problem. [8] and [9] present
two approaches for an automatic placement of singularities which are suited for
conformal parameterizations.

With the QuadCover algorithm [1] we built upon an idea from Ray et al. [10],
which use two orthogonal input fields as guiding directions for the parameter
lines. The singularities are then taken from the guiding field. The idea of Quad-
Cover is to find a parameterization whose gradient matches this field as well as
possible.

1.2 Contributions

Typical parameterization algorithms use piecewise linear parameter functions
on triangle meshes. Unfortunately, this function space is too rigid for describing
vortex-like singularities. It is impossible to represent a vortex with piecewise
linear texture maps on a triangle grid.

We propose a procedure for handling singularities of positive integral index,
i.e. the indices are all integer numbers rather than fractional values. We therefore
introduce bilinear texture maps on quadrilateral elements and use them for the
construction of such singularities. The resulting parameterization can be visual-
ized by rendering systems which support bilinear textures on quads. Independent
from rendering, the parameterization can still be used for quad remeshing.

As in the classical QuadCover algorithm [1], we assume that the placement
of singularities is given by the original input field. The construction of a good
input field is still an unsolved problem.

The paper is structured as follows: The overview and the main ideas of Quad-
Cover are outlined in Sect. 2. The algorithm intensively uses branched covering
spaces. A short introduction into coverings is given in Sect. 3. Sect. 4 describes
QuadCover in detail.

The main contribution of this paper is provided in Sect. 5. We show the
relation between the index of a frame field singularity and a branch point of the
covering. We introduce the problem which occurs with singularities of positive
integral index. We then describe the extension of the QuadCover algorithm which
solves the problem. Finally, Sect. 6 shows some results of the extended algorithm.

2 Overview

Given a smooth manifold M with an atlas of charts {Ui}. A global parameter-
ization fi : Ui → IR2 maps all charts into a flat (u, v)-domain. The parameter
lines are the preimages of the unit grid ZZ× IR (ui lines), IR×ZZ (vi lines). They
induce a quadrilateral structure in each chart.
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Fig. 1. Different parameterizations of a sphere. Left: Classical algorithms may produce
8 singularities which are equally distributed. Middle: Use a radial guidance frame
field in QuadCover. Since index 1 singularities cannot be handled in the classic way,
the resulting u component nearly vanishes everywhere. Only the v component behaves
well. Right: The two singularities of index 1 are correctly resolved with the presented
method.

Whenever charts overlap, the parameter functions are related by transition
functions ξij . In order to ensure, that the quad structure is globally continu-
ous, we restrict all transition functions to leave the unit grid invariant. It is
constrained to be of the form

ξij(u, v) := fj(f−1
i (u, v)) = Jrij

(
u
v

)
+ dij , rij ∈ ZZ, dij ∈ ZZ2, (1)

where J is the rotation by 90 degrees in counter-clockwise direction. We call
these maps grid automorphisms. The numbers rij decide, whether the u lines in
chart Ui correspond to u, v, −u or −v-lines in Uj . They are called matchings
between the charts. The vectors dij encode a translational offset and are called
gaps (see Fig. 2).

Uj

Ui

fi fj

IR2

ξij

u

v

Fig. 2. Smooth manifold with two charts and matching rij = 1
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Frame fields. The parameterization is guided by a so-called frame field. In each
chart, it is just a collection of two vector fields. The goal is to find a parameter
map, whose gradients matches up with the given frames as well as possible.

The gradients of the parameter map in different charts are related by:
(∇uj

∇vj

)
= Jrij

(∇ui

∇vi

)
(2)

Thus, the ordered list (∇u,∇v,−∇u,−∇v) in Uj is the same as in Ui, but
cyclically shifted −rij times. In general, the gradients therefore do not describe
global continuous vector fields on M . Whenever u- and v-gradients are flipped in
different charts, the corresponding vectors must be identified. It turns out, that
there is an elegant way to describe this setting using vector fields on covering
spaces (see Sect. 3).

The algorithm. The QuadCover algorithm takes any frame field as input and
generates a parameter function whose gradients matches up with the input field
as well as possible. In practice, the principle curvature directions are often used
as starting frame field, but the user can start with any field. Details about the
algorithm are given in Sect. 4.

The resulting coordinates u and v can be used as texture map. Because of the
coupling of u and v, the texture pattern has to be symmetric due to a rotation
by 90 degrees. E.g. if one uses an image containing a quadrangular grid, then
the surface gets divided into quadrangles.

Special issues arise, when there are singularities. When tracing a small cy-
cle around a singularity p, the frame vectors turn by either a whole number of
revolutions (singularity of integral index) or just by a multiple of 90 degrees (sin-
gularity of fractional index k/4, k ∈ ZZ). The singularities with fractional index
can be naturally described with branch points in a covering space as described
in Sect. 4.

Singularities of index k ∈ IN in general cannot be represented with standard
piecewise linear functions. The nature of these singularities is that the parameter
function in its vicinity tends to infinity (e.g. the gradients of the longitudinal
part of the polar parameterization on a sphere). It turns out, that the space of
PL functions is not flexible enough to represent such singularities. A key idea
is to integrate additional quadrilateral elements and therefore extend the space
of PL functions to functions which are linear on each triangle and bilinear on
each quad. As for PL functions, this is a fully consistent space of continuous
functions, even if triangles and quads are mixed in the same geometry. The idea
and the algorithm will be presented in Sect. 5.

3 Frame Fields

This section gives a formal definition of frame fields and describes their relation
to covering spaces.
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Definition 1. Given a manifold M with charts Ui and matchings rij . A frame
field on M is a collection of two vector fields Ki,0, Ki,1 in each chart Ui. Let
Ki,2 := −Ki,0, Ki,3 := −Ki,1. All overlapping charts Ui ∩ Uj �= ∅ must hold:
Kj,m = Ki,(m−rij) mod 4, ∀m ∈ {0, 1, 2, 3}.

The algorithm uses the notion of branched covering surfaces for an equivalent
description of frame fields as explained below.

3.1 Branched Covering Spaces

A frame field on the input surface can be seen as two vector fields on a covering
surface. The advantage of this notion is, that standard vector field calculus can
now be applied to frame fields.

Coverings. First, recall some definitions about Riemann surfaces, see [11], [12].
We first give an abstract definition of a covering and explain below how we
actually construct one.

Definition 2. Let M be a Riemann surface. A 4-sheeted covering M ′ of M is
a Riemann surface with a local homeomorphism π : M ′ →M and the property:
For each point p ∈ M , there exists a neighborhood Up whose preimage π−1(Up)
is the union of exactly four pairwise disjoint topological disks. Fig. 3, left shows
a 4-sheeted covering.

In our setting, we allow some exceptional points p (branch points), where the
preimage of a neighborhood of p is the union of less than four topological disks
(e.g. as in Fig. 3, right)).

Construction. We construct a covering of M as follows: From each chart Ui,
make four copies (layers) and name them U ′

i,k, k ∈ {0, 1, 2, 3}. Let πi :
⋃

k U
′
i,k →

Ui be the operator which projects the copies back to Ui and τi,k : Ui → U ′
i,k the

inverse maps. The four layers U ′
i,k together with πi is called the 4-sheeted trivial

covering of the chart Ui (Fig. 3, left).

Ui

U ′
i,0

U ′
i,1

U ′
i,2

U ′
i,3

τ 0
τ 1τ 2

τ 3

πi

Fig. 3. Left: Trivial 4-sheeted covering. Right: Different branch points.
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Ui Uj

πi πj

Fig. 4. Left: Patching two coverings together with matching rij = 1. Right: A frame
field lifted to a vector field on the covering.

In the next step, we glue these layers at the overlaps of the adjacent charts
together. For each pair of charts the layers may be glued in four different ways,
which is defined by the corresponding matching rij .

Definition 3. A covering surface induced by given matchings rij is uniquely
defined by the following construction:

Let (U ′
i , πi) be 4-sheeted trivial coverings of all charts Ui. The covering surface

is given as the union of all U ′
i where the following points are identified: For

all overlapping charts Ui, Uj, identify the points τk
i (p) with τ

(k−rij) mod 4
j (p),

p ∈ Ui ∩ Uj, k ∈ {0, 1, 2, 3} (see Fig. 4, left).

Since the trivial coverings of charts have no branch points and the charts cover
the surface, we cannot get any branch point by this construction. Instead, they
can be invented by removing single points from the surface. Depending on the
matchings of charts in its vicinity, the covering could be extended to a branched
covering there.

3.2 Vector Fields on Covering Spaces

In this section, we show how frame fields can be described as vector fields on
a covering surface. It allows us to apply the classical theory for vector fields to
frame fields.

A frame field (Ki,0,Ki,1) on M with matchings rij canonically lifts to two
vector fields (K ′

0,K
′
1) on the covering which is induced by rij . In each chart,

define the vectors on its trivial covering as follows: For all p ∈ U ′
i,k set K ′

0(p) :=
Ki,k(πi(p)) and K ′

1(p) := Ki,(k+1)mod 4(πi(p)), k ∈ {0, 1, 2, 3}.
The result are two globally well defined vector fields K ′

0, K
′
1 on M ′, since the

layers of the covering are connected in the same way as the vector fields permute
when another chart is chosen (compare Def. 1 and 3, Fig. 4, right).

Moreover, the vector fields are symmetric on the layers. I.e. ifK ′
0(p) andK ′

1(p)
are the vectors in a given point in layer 0, then the vectors in all other layers
are: (K ′

1(p),−K ′
0(p)), (−K ′

0(p),−K ′
1(p)) and (−K ′

1(p),K
′
0(p)).
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Discretization. Each triangle of the mesh is considered as a chart. The transi-
tion function between two adjacent triangles is fully determined by the matching
and the translation vector associated with their common edge (see Eqn. (1)).
There is no need to really compute the covering surface. It is implicitly given by
the matchings.

Branch points are located at vertices. Let p be a vertex and all elements in
its star are enumerated clockwise from 0 to n − 1. The matchings at incident
edges to p are given by ri,(i+1) mod n. Let tp := ((

∑
i ri)mod 4) be the type

of the vertex. Branch points are characterized by tp �= 0. This means, starting
somewhere in the neighborhood of p and walking around the vertex ends on a
different layer in the covering. Fig. 3 shows branch points of type 1 and 2.

Discrete frame fields are piecewise constant. In each triangle, two vectors are
stored. Together with the matching numbers, a discrete frame field is thereby
uniquely described.

4 QuadCover Parameterization Algorithm

This section reviews the basic principles of the QuadCover algorithm. For further
details, refer to [1].

Compute potential function. Given a surface M together with a frame field
(Ki,0,Ki,1). Equivalently, given a covering surface M ′ with two vector fields
(K ′

0,K
′
1). The parameterization (u′, v′) : M ′ → IR2 can be projected back to

(u, v) : M → IR2 by taking the values in one of the layers. It does not matter
which one, because the parameter lines in all layers will be congruent.

First pass. QuadCover uses a variational approach in order to find a parame-
terization which fits best possible to the given frame field. More precisely, the
energy E(u′, v′) =

∫
M ′

(‖∇u′ −K ′
0‖2 + ‖∇v′ −K ′

1‖2
)
dA gets minimized. The

functions u′, v′ live in a space of PL functions, which may be discontinuous at
the edges (because of Eqn. (1)). The difference of function values at both sides
of an edge must be a constant (called gap at an edge).

In practice, u′ (and equivalently v′) is found using a discrete Hodge-Helmholtz
decomposition of the vector fields K ′

0 (resp. K ′
1). They can uniquely be written

as K ′
k = Pk + Ck + Hk, k ∈ {0, 1} with a potential Pk, a copotential Ck and a

harmonic vector field Hk. Any pair of functions u′, v′ satisfying ∇u′ = P0 +H0,
∇v′ = P1 +H1 minimizes the energy.

QuadCover integrates the vector fields Pk + Hk in each chart (triangle) of
the covering separately. The exact translation constant is left open at this stage.
The resulting map (u′, v′) is in general not injective, the images of triangles may
overlap. The common edge between adjacent triangles (of the covering) is by
construction parallel and of same length in texture space.

Second pass. For getting a valid global parameterization, it remains to ensure
that all gaps are ∈ ZZ2 (Eqn. (1)). QuadCover decreases the degrees of freedom
by translation, such that all triangles are connected. Thus, all gaps become 0,
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except at few edges which form a cut graph of the mesh. A cut graph is a set of
paths γi which cut the surface to a topological disk.

The second pass is based on the following observation: along each path γi of
this cut graph, the gap is always a constant di. This is because the derivative of
the function is locally integrable. Note, that there is an exception if two paths
γi, γj merge and run on top of each other. In this case, the gap turns into di +dj .
For further details, see [1].

The algorithm first computes the gaps di ∈ IR2 for all cut paths. Then, a
special parameter function (h′, k′) is computed, which is harmonic and whose
gaps at cut paths are exactly [di]−di. The maps h′ and k′ are uniquely described
by this property up to global constant summand. The final parameterization is
given as (u′ + h′, v′ + k′) and satisfies all needed conditions.

5 Singularities

5.1 Singularities in QuadCover

A characteristic of each parameterization is the location and type of its singu-
larities. The placement of singularities is important for low metric distortion.

Fractional index. For vector fields, the type of a singularity can be measured by
its index. Take a closed path, which runs counterclockwise around a singularity
p. The index indp(X) of a vector field X at p is defined as the number of whole
revolutions of the vectors along the path. The index is always an integer number.

When dealing with frame fields, the index is not constrained to be integer
since tracking a vector along a closed path may not necessarily end up in the
same frame vector. Therefore, the index can be multiples of 1/4, (Fig. 5).

In QuadCover, we detect singularities from the input frame field (in most
cases the principle curvature field). There is a difference about the handling of
singularities with integer index and those with fractional index. Integer indices
just appear as vector field singularities on the covering. Singularity of fractional
index are resolved using a branch point. Remember from Sect. 3.1 that the type
tp of a branch point can be seen as the layer shift when walking around the
branch point once. During the construction of the covering, a branch point of
type tp = 4(i mod 1) is placed at each point, where the frame field has a non-
integer singularity of index i. If you track one vector around the branch point,
you end up on a different layer, i.e. the parameter lines exchange or flip the sign.

Figure 5 shows the branch points of different singularities. For index 1/4 or
−1/4, the 4 layers of the covering are connected at the branch point (of type 1
or 3) forming a cyclic spiral. For index 1/2 or −1/2, two spirals (with two layers
each) are formed (branch point of type 2).

Branch points increase the topologically complexity of the cover. They can
be described by cutting an infinitesimally small hole into the surface. This en-
larges the fundamental group of the surface and therefore enriches the wealth of
parameter functions.
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Fig. 5. Parameterizations with different singularities and their coverings. Left: Index
= 1/4, Middle: Index = −1/4, Right: Index = −1/2.

The location of a branch point on the surface is fix during the whole opti-
mization. The reason is that only the parameter function on the covering gets
optimized, not the covering surface itself.

Integer index. Singularities of integer index do not have any affect on the
topology of the covering. The north pole of a sphere for example (Fig. 1, right)
does not lead to a branch point since walking around the pole ends up on the
same layer. The same is true for a saddle of index −1.

The nature of singularities with integer index is completely different. Since
they are not represented by the covering itself, they just arise as vector field sin-
gularities of the gradients. This may occur automatically during the
optimization.

Positive integer index. There is a special case for singularities with positive
integer index. Take a u function which has a local maximum at point p, thus
∇u has index 1 there. In a good parameterization, the gradients of u and v are
approximately perpendicular to each other. In this case, ∇v would be a vortex
around p.

Unfortunately, vortices cannot be described with a standard PL parameter
map on triangles because of the following reason: If γ is a curve which runs
around p, then the path integral

∫
γ ∇vds is a constant number, which stays

the same as the curve gets contracted. Therefore, in the near vicinity of p, the
gradients must tend to infinity (like an irrotational vortex). It is not possible to
represent such a function as a piecewise linear function on a triangle mesh.

Hence, if the input frame field has a singularity of index 1, the parameteriza-
tion algorithm ignores it and produces a parameter function which is far from
the guiding field (see Fig. 1, middle). We now explain a method which handles
this case and therefore provides better parameterizations.
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5.2 Handle Singularities of Positive Integral Index

Use quads. A regular triangle mesh is too rigid for a piecewise linear vortex-
like parameter function. Thus, we locally remesh the surface and invent some
quadrilateral elements. The shape of the surface stays the same, but the quads
allow a more complex structure of the parameter function.

Let p be a vertex, where the frame field has an index of k ∈ IN. Remesh the
vertex star as displayed in Fig. 6. All triangles in the star become degenerated
quads, whereas all newly inserted vertices are geometrically in the same location
as p.

p
q0

q1

q2
q3

q4

Q0

Q1

Q2

Q3

Q4

Fig. 6. Left: Vertex star of a singularity p. Right: Combinatoric of the remeshed
vertex star. It consists of 5 quads Qi. The inner vertices qi are geometrically located
in the same point p, thus the quads are degenerated.

Scalar functions on a mesh with quads are not longer forced to be piecewise
linear. We extend the space to functions, which are linear on each triangle and
bilinear on each quadrangle. Given function values at the vertices of a quad, the
function itself is then given by the unique bilinear function, which interpolates
these values. The resulting function is continuous, even if triangles and quads
are mixed in the same mesh.

Parameter functions on meshes with triangles and quads can be used as tex-
ture map. If the rendering system supports bilinear textures, one can easily
display singularities of integral index, see Fig. 7.

Fig. 7. Left: Bilinear texture on a coarse mesh with triangles and quads. Right: Image
of the elements in texture space. The quads in the vertex star of the singularity are
marked in grey.
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Using quadrilaterals, one can now map a polygon in texture space to a sin-
gle point on the surface. All the radial parameter lines which cross one of the
quadrangles in Fig. 7 run into the singularity.

Approximation. The original QuadCover algorithm works on triangles. It
would be straight forward to generalize it to quadrangles. The only difference is
that the function space for energy minimization changes. Although, an adaption
of the optimization algorithm to work with bilinear functions turned out to be
complicated, since the computation of the derivatives of the energy requires to
solve a non-linear integral. Instead, we simplified the problem and approximated
the optimal solution. This approximation replaces the quads by triangles again,
but with an altered connectivity. Thus the standard QuadCover algorithm can
be used. The quads are then used afterwards for the final description and vi-
sualization of the result. The outline of the extended QuadCover is listed in
Algorithm 1.

Algorithm 1. Modified QuadCover algorithm. Input: Guidance frame field
1: for all vertices p do
2: Measure index of frame field at p
3: if (index mod 1 == 0) and (index > 0) then
4: Store vertex p in array specialSingularities
5: Cut all outgoing edges from p open.
6: end if
7: end for
8: Run original QuadCover algorithm
9: for all p in specialSingularities do

10: Replace all adjacent triangles to p by a quadrilateral
11: Compute texture coordinates for the quads
12: end for

Lines 1–7 do a local remeshing at each vertex p with positive integer index.
All adjacent edges to p are cut open generating a hole in the surface, see Fig. 8.
Then, the QuadCover algorithm is applied to the triangle surface. Fig. 9 shows
the texture domain of the example from Fig. 7.

p p0

p1

p2

p3

p4

Fig. 8. Each vertex star of a singularity p with positive integer index will be cut open.
The right mesh shows the new combinatoric, the inner vertices pi are geometrically
located at p.
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Fig. 9. Texture domain after parameterization with modified mesh connectivity. The
surface from Fig. 7 left is taken as input.

Fig. 10. Left: The parameterization is guided by the gradient and cogradient of the
height function. Singularities of index 1 naturally appear at all local minima and max-
ima. They are correctly detected and resolved by the method. The singularities of
negative index at saddle points occur automatically, even if there is no parameter line
running directly into the saddle. Right: Parameterization on a 3-fold Lawson surface.
The height function was used for this parameterization, too.

In lines 9–12, the singularities get remeshed again. Each triangle of the vertex
star (which was previously cut open) is now replaced by a quadrangle. All quads
are connected as in the situation of Fig. 6, right.

It remains to compute the texture coordinates for the created vertices qi.
They are obtained by just averaging the texture coordinates of the old vertices
pi (from Fig. 8, right). In quadrangle Qj , compute the texture coordinates as:

fj(qj) := 1/2 (fj−1(pi−1) + di−1,i + fj(pj)) (3)
fj(qj+1) := 1/2 (fj(pj) + fj+1(pi+1) + di+1,i)

where di−1,i is the translational part of the transition between chart Qi−1 and
Qi, see Eqn. (1).
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6 Results

With this extension, QuadCover produces very stable parameterizations, even
when singularities of integral index are present. All what we need is a frame
field, which contains singularities at reasonable locations.

A good placement of singularities is still an open problem. The singularities
from principle curvature fields are mostly nice, but their location is not very
stable in nearly umbilic areas. Particularly, singularities of index 1 will mostly
split up into 4 singularities of index 1/4 each.

We tested the algorithm on some user generated frame fields. Fig. 10, left
shows the graph of the function f(u, v) = sin(u) cos(v). A frame field was pro-
duced using the gradient field of the height function and its 90 degrees rotated
field. The parameterization has two singularities of index 1 and two saddles of
index -1.

Fig. 10, right shows a Lawson surface. It is a constant mean curvature in IR3

and is made out of 30k triangles. The parameterization took several seconds.
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Abstract. Based on a natural approach for the time discretization of
gradient flows a new time discretization for discrete Willmore flow of
polygonal curves and triangulated surfaces is proposed. The approach is
variational and takes into account an approximation of the L2-distance
between the surface at the current time step and the unknown surface
at the new time step as well as a fully implicity approximation of the
Willmore functional at the new time step. To evaluate the Willmore
energy on the unknown surface of the next time step, we first ask for
the solution of a inner, secondary variational problem describing a time
step of mean curvature motion. The time discrete velocity deduced from
the solution of the latter problem is regarded as an approximation of
the mean curvature vector and enters the approximation of the actual
Willmore functional. To solve the resulting nested variational problem in
each time step numerically relaxation theory from PDE constraint opti-
mization are taken into account. The approach is applied to polygonal
curves and triangular surfaces and is independent of the co-dimension.
Various numerical examples underline the stability of the new scheme,
which enables time steps of the order of the spatial grid size.

1 Introduction

In this paper a new scheme for the time and space discretization of parametric
Willmore flow is presented. Willmore flow is the L2 gradient flow of surfaces for
the Willmore energy, which measures the squared mean curvature on the surface.
Let M be a closed d-dimensional surface embedded in R

m with m ≥ d+ 1 and
denote by x the identity map on M = M[x]. Then the Willmore energy is
defined as

w[x] :=
1
2

∫

M
h2 da

where h is the mean curvature onM, i. e., h is the sum of the principle curvatures
on M. Furthermore, the L2-metric

∫
M v1v2 da measures variations x + vin of

the surfaceM in direction of the surface normal n. Given energy and metric the
corresponding gradient flow – the Willmore flow – in the hypersurface case (cf.
Figure 1) (m = d+ 1) is given by the following fourth order parabolic evolution
problem

∂tx(t) = ΔM(t)h(t)n(t) + h(t) (|S(t)|22 −
1
2
h(t)2)n(t) ,

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 278–292, 2009.
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Fig. 1. Different time steps of the Willmore flow of an original ellipsoid curve with 100
vertices is shown (top row). The time step size was chosen of the order of the spatial
grid size h = τ = 0.0632847. Willmore flow of a deformed sphere towards a round
sphere is depicted in the bottom row. We show the surface at times t = 0, t = τ ,
t = 50τ , and t = 150τ , where τ = h = 0.02325548045.

which defines for a given initial surfaceM0 a family of surfacesM(t) for t ≥ 0
with M(0) = M0 problem [1,2,3]. Here, ΔM(t) is the Laplace Beltrami oper-
ator on M(t), S(t) denotes the shape operator on M(t), n(t) the normal field
on M(t), and | · |2 the Frobenius norm on the space of endomorphisms on the
tangent bundle T M(t). The Willmore functional is used e.g. for the modeling of
elastic surfaces [4,5,6,7]. The analytic treatment of the Willmore flow has been
considered by Polden [8,9] and sharp results on long time existence and regular-
ity were obtained by by Kuwert and Schätzle [3,10,11]. Willmore flow for curves
is called elastic flow of curves (cf. Figure 1) and has been considered by Dziuk,
Kuwert and Schätzle in [12]. A level set formulation has been developed by [13].
We refer to Deckelnick and Dziuk [14] for the convergence analysis in the graph
case and to Barrett, Garcke and Nürnberg [15], Bobenko and Schröder [16] and
Dziuk [17] for alternative numerical methods for Willmore flow on triangular
surfaces. An early variational approach for surface modeling is described in [18].
Nowadays fourth order problem are very popular in the context of image in-
painting and surface restoration [19,20,21,22,23]. Apart from fully explicit time
discretizations these numerical approach are characterized by a semi-implicit
time discretization, which requires the solution of a linear system of equations
in each time step. One observes significant restrictions on the time step size.
Effectively, one usually has to enforce time steps τ = O(h2), where h was the
spatial grid size.

This shortcoming motivated the development of a new concept for the time
discretization of Willmore flow picking up the variational time discretization
of general gradient flows. Given an energy e[·] on a manifold the gradient flow
ẋ = −gradge[x] with initial data x0 one defines a sequence of time discrete
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solutions (xk)k=0,···, where xk ≈ x(kτ) for the time step size τ via a variational
problem, to be solved in each time step, i.e.

xk+1 = argminx dist(x, xk)2 + 2τ e[x]

where dist(x, xk) = inf
γ∈Γ

∫ 1

0

√
gγ(s)(γ̇(s), γ̇(s)) ds is the shortest path length on

the manifold, given the metric g(·, ·). Here Γ denotes the set of smooth curves
γ with γ(0) = xk and γ(1) = x. As an immediate consequence, one obtains the
energy estimate e[xk+1]+ 1

2τ dist(xk+1, xk)2 ≤ 0+e[xk] . For geometric problems,
this approach has already been considered by Luckhaus and Sturzenhecker [24]
in case of mean curvature motion, which is the L2 gradient flow of the surface
area. They proposed a corresponding fully implicit time discretization based on
a variational problem in BV to be solved in each time step. In fact, in each
time step the symmetric distance between two consecutive shapes corresponding
to the current and the next time step is balanced by the time step τ times
the perimeter of the shape at the next time step. Chambolle [25] investigated a
reformulation of this approach in terms of a level set method. A related method
for anisotropic mean curvature motion is discussed in [26,27].

In case of Willmore flow, we will proceed as follows. We aim at balancing the
squared distance of the unknown surface at time tk+1 = tk + τ from the current
surface at time tk and a suitable approximation of the Willmore energy at time
tk+1 scaled by twice the time step size. Solving a fully implicit time discrete
problem for mean curvature motion for the unknown surface at time tk+1, we
can regard the corresponding difference quotient in time as a time discrete,
fully implicit approximation of the mean curvature vector. Based on this mean
curvature vector, the Willmore functional can be approximated. Thus, we are
led to a nested minimization problem in each time step. In the inner problem
on the new time step an implicit mean curvature vector is identified. Then, the
outer problem is the actual implicit, variational formulation of Willmore flow.
Indeed, the resulting two step time discretization experimentally turns out to be
unconditionally stable and effectively allows for time steps of the order of the
spatial grid size.

The paper is organized as follows. In Section 2 we derive the time discrete
scheme for Willmore flow, still continuous in space. Based on piecewise affine
finite elements on simplicial surfaces we derive a fully discrete numerical ap-
proach in Section 3. In Section 4 the duality technique from PDE constraint
optimization is revisited to derive a minimization algorithm for the optimization
problem. Finally, in Section 5 various examples for the Willmore of curves and
surfaces are investigated.

2 Derivation of the Two Step Time Discretization

Before we consider the actual time discretization of Willmore flow, let us briefly
review the time discretization of mean curvature motion. Following the above
abstract approach the variational time discretization of mean curvature motion
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for a given surfaceM =M[x] defines the mapping y = y[x] of the next time step
surfaceM[y] as the minimizer of the functional dist(M[y],M[x])2+2τ̃

∫
M[y]

da,
where τ̃ is the considered time step, dist(·, ·) is the L2 distance between surfaces,
and

∫
M[y] da the surface area ofM[y] as the underlying energy. Now, for y close

to x, we can consider a first order expansion in time and obtain the following
variational problem: Given a surface M[x] parameterized by a mapping x we
ask for a mapping y = y[x], which minimizes the functional

e[x, y] =
∫

M[x]

(y − x)2 + τ̃ |∇M[x]y|2 da

for given x. In what follows the time step size τ̃ is chosen independent of the
time step size for the actual time discrete Willmore flow. In our later spatially
discrete model we consider a τ̃ equal to the square of the spatial grid size. The
resulting weak form of the corresponding Euler-Lagrange equations is

0 =
∫

M[x]

(y − x) · θ + τ̃∇M[x]y : ∇M[x]θ da

for some test function θ, where A : B = tr(ATB). This equation coincides
with the nowadays classical scheme for a single semi–implicit time step of mean
curvature motion already proposed by Dziuk [28].

Now, we deduce from the time continuous evolution equation ∂tx = hn that
the difference quotient y[x]−x

τ̃ can be considered as a regularized approximation of

the mean curvature vector hn onM[x]. Thus, the functional 1
2

∫
M[x]

(y[x]−x)2

τ̃2 da
approximates the Willmore functional onM[x].

This enables us to define a time discretization of Willmore flow, which does
not require the explicit evaluation of the mean curvature on the unknown surface
of the next time step. Indeed, in the abstract variational problem

dist(M[x],M[xk])2 + τ

∫

M[x]

h2 da→ min

we consider the same linearization of the L2 distance as for mean curvature
motion and use the above approximation of the Willmore energy. Finally, we
obtain the following scheme:

Given an initial surface M[x0] we define a sequence of surfaces M[xk] with
k = 1, · · · , where xk+1 minimizes the functional

w[xk, x, y[x]] =
∫

M[xk]

(x− xk)2 da+
τ

τ̃2

∫

M[x]

(y[x]− x)2 da

for given xk. Hence, xk is assumed to approximate x(tk) with tk = kτ for the
given time step τ .

Thus, in each time step we have to solve the nested variational problem

xk+1 = argminxw[xk, x, y[x]] with (1)
y[x] = argminy e[x, y] .
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The inner problem is quadratic, hence the Euler–Lagrange equation is a linear
elliptic PDE and we end up with a PDE constrained optimization problem for
each time step.

To be more explicit, let us examine circles in the plane. Under Willmore flow
circles expand according the ODE Ṙ(t) = 1

2R(t)−3 for the radius. In comparison
to this the radius Rk+1 in the above time discrete scheme turns out to be a
solution of the nonlinear equation R−Rk

τ = 1
2

R4−3R2τ
(R2+τ)3 Rk

, which is an implicit
first order scheme for the above ODE (cf. Figure 3).

3 Finite Element Space Discretization

In this section we introduce a suitable space discretization based on piecewise
affine finite elements. Here, we follow the guideline for finite elements on surfaces
introduced by [29]. Thus, we consider simplicial meshesM[X ] - polygonal curves
for d = 1 and triangular surfaces for d = 2 - as approximations of the d dimen-
sional surfacesM[x]. Here, X is the identity on the simplicial meshM[X ] which
is described by a vector X̄ of vertex positions of the mesh. To clarify the notation
we will always denote discrete quantities with upper case letters to distinguish
them from the corresponding continuous quantities in lower case letters. Fur-
thermore, a bar on top of a discrete function indicates the corresponding nodal
vector, i.e. X̄ = (X̄i)i∈I , where X̄i = (X1

i , · · · , Xm
i ) is the coordinate vector of

the ith vertex of the mesh and I denotes the index set of vertices.
Hence, given some initial surface M[X0] we seek a sequence of discrete sur-

faces (M[Xk])k=1,··· of discrete surfaces. Locally, using also local indices each
element T of a polygonal curve is a line segment with nodes X1 and X2 and
elements T of a triangulation are planar triangles with vertices X0, X1, and X2

and face vectors F0 = X2 − X1, F1 = X0 − X2, and F2 = X1 − X0. Given a
simplicial surfaceM[X ] we denote by

V(M[X ]) :=
{
U ∈ C0(M[X ]) |Φ|T ∈ P1 ∀T ∈ M[X ]

}
.

the corresponding piecewise affine Finite Element space consisting of those func-
tions being affine on each element T of M[X ]. With a slight misuse of no-
tation the mapping X itself is considered as an element in V(M[X ])m. Let
{Φi}i∈I be the nodal basis of V(M[X ]). Thus, for U ∈ V(M[X ]) we obtain
U =

∑
i∈I U(Xi)Φi and Ū = (U(Xi))i∈I , in particular in accordance to our

above definition we recover X̄ = (Xi)i∈I .
Next, let us introduce the mass matrix M [X ] and the stiffness matrix L[X ]

on the discrete surfaceM[X ], whose entries are given by

Mij [X ] =
∫

M[X]

ΦiΦj da, Lij [X ] =
∫

M[X]

∇M[X]Φi · ∇M[X]Φj da .
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Fig. 2. The grids of the evolution under Willmore flow of the initial ellipsoid curve and
deformed sphere of Figure 1 are shown at the same times. We did not reparametrize
the curve since our scheme does not suffer from undesired tangential motions.

To apply mass and stiffness matrices to discrete maps fromM[X ] to R
m, we

need corresponding block matrices M[X ] and L[X ] in R
m�I×m�I :

M[X ] =

⎛

⎝
M [X ]

M [X ]
M [X ]

⎞

⎠ , L[X ] =

⎛

⎝
L[X ]

L[X ]
L[X ]

⎞

⎠ .

Both the mass and the stiffness matrices M and L can be assembled from cor-
responding local mass and stiffness matrices m(T ) and l(T ) for all simplices T
onM[X ].

Now, we have all the ingredients at hand to derive the fully discrete two step
time discretization of Willmore flow (cf. Figure 2), which can be regarded as the
discrete counterpart of (1). Given a discrete surface M(Xk) in time step k we
define Xk+1 ∈ V(M[Xk])m as the minimizer of the following spatially discrete,
nested variational problem

Xk+1 = arg minX∈V(M[Xk])m W [Xk, X, Y [X ]] with (2)
Y [X ] = arg minY ∈V(M[X])m E[X,Y ] ,

where

E[X,Y ] :=
∫

M[X]

(Y −X)2 + τ̃ |∇M[X]Y |2 da

= M[X ](Ȳ − X̄) · (Ȳ − X̄) + τ̃L[X ]Ȳ · Ȳ ,

W [Xk, X, Y ] :=
∫

M[Xk]

(X −Xk)2 da+
τ

τ̃2

∫

M[X]

(Y −X)2 da

= M[Xk](X̄ − X̄k) · (X̄ − X̄k) +
τ

τ̃2
M[X ](Ȳ − X̄) · (Ȳ − X̄)
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are the straightforward spatially discrete counterpart of the functionals e[x, y]
and w[xk, x, y], respectively. In analogy to the continuous case for given X the
nodal vector Ȳ [X ] solves the linear system of equations

(M[X ] + τ̃L[X ]) Ȳ [X ] = M[X ] X̄ . (3)

For the sake of completeness let us finally give explicit formulas for the entries
of the mass and stiffness matrices. Later in Section 4 we will have to compute
variations of these entries as well.

Polygonal curve. In the case of curves we consider a lumped mass matrix (cf.
[30]) and obtain directly for the global matrices

M [X ] = diag
(

1
2
(Qi +Qi+1)

)
, L[X ] = tridiag

(
− 1
Qi
,

1
Qi

+
1

Qi+1
,− 1

Qi+1

)

where Qi = |Xi − Xi−1| is the length of the jth line segment and diag() and
tridiag() denote diagonal or tridiagonal matrices with the corresponding entries
in each row. Here, we assume a cyclic indexing, i.e. we identify the indices i = 1
and i = 	I + 1 for closed curves with X0 = X�I .

Triangular surfaces. Due to the greater variability of triangular surfaces com-
pared to polygonal curves, let us consider the local matrices on triangles sepa-
rately. Denoting the local basis function on a triangle T by Φ0, Φ1, Φ3, where
Φi(Xj) = δij (with δij being the usual Kronecker symbol) we verify by a simple
straightforward computation (cf. [31]) that

m(T ) =

⎛

⎝
∫

T

ΦiΦj da

⎞

⎠

i,j=0,1,2

=
|T |
12

⎛

⎝
2 1 1
1 2 1
1 1 2

⎞

⎠ ,

with |T | = 1
2 |F2 ∧ F1| being the area of the triangle T , and

l(T )ij =
∫

T

∇TΦi · ∇TΦj da =
Fi · Fj

4|T | ,

where ∇T the gradient on planar T .

4 Numerical Solution of the Optimization Problem

In this section, we discuss how to solve the nonlinear optimization problem
(2) in each time step numerically. Here, we will confine ourselves to a gradient
descent approach and take into account a suitable duality technique to effectively
compute the gradient of the energy functional Ŵ [X ] = W [Xk, X, Y [X ]] given
the fact that the argument Y [X ] is a solution of the inner minimization problem
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and as such solves the linear system of equations (3). Indeed, we obtain for the
variation of Ŵ in a direction Θ ∈ V(M[Xk])m

∂XŴ [X ](Θ) = ∂XW [Xk, X, Y [X ]](Θ) + ∂YW [Xk, X, Y [X ]] (∂XY [X ](Θ)) .

A direct computation of ∂XY [X ](Θ) would require the solution of the inner
minimization problem and thus specifically a linear system (cf. (3)) would have
to be solved for every test function Θ. This can be avoided applying the following
duality argument:

From the optimality of Y [X ] in the inner problem, we deduce the equation
0 = ∂Y E[Y [X ], X ](Ψ) for any test function Ψ ∈ V(M[X ])m. Now, differentiating
with respect to X we obtain

0 = ∂X (∂Y E[Y [X ], X ](Ψ)) (Θ)
= ∂X∂Y E[Y,X ](Ψ,Θ) + ∂2

YE[Y [X ], X ](Ψ, ∂XY [X ](Θ))

for any test function Ψ . Let us now define P ∈ V(M[Xk])m as the solution of
the dual problem

∂2
YE[Y [X ], X ](P, Ψ) = ∂YW [Xk, X, Y [X ]](Ψ) . (4)

for all test functions Ψ ∈ V(M[Xk])m. Now, choosing Ψ = ∂XY [X ](Θ) one
obtains

(∂Y W ) [Xk, X, Y [X ]] (∂XY [X ](Θ)) = −∂X∂YE[Y,X ](P,Θ) .

Thus, we can finally rewrite the variation of Ŵ with respect to X in a direction
Θ as

∂XŴ [X ](Θ) = ∂XW [Xk, X, Y [X ]](Θ)− ∂X∂Y E[Y,X ](P,Θ). (5)

The solution P of the dual problem (4) requires the solution of
∫

M[X]

P · Ψ + τ̃∇M[X]P : ∇M[X]Ψ da =
∫

M[X]

τ

τ̃2
(Y −X) · Ψ da

for all test functions Ψ . In matrix vector notation, this can be written as the
linear system of equations

(M[X ] + τ̃L[X ]) P̄ =
τ

τ̃2
M[X ](Ȳ − X̄) .

The terms on the right hand side of (5) are to be evaluated as follows

(∂XW ) [Xk, X, Y ](Θ) = 2M[Xk](X̄ − X̄k) · Θ̄ + 2
τ

τ̃2
M[X ](X̄ − Ȳ ) · Θ̄

+
τ

τ̃2
(∂XM[X ](Θ))(Ȳ − X̄) · (Ȳ − X̄) ,

∂X∂Y E[Y,X ](P,Θ) = ∂X

(
2M[X ](Ȳ − X̄) · P̄ + 2τ̃L[X ]Ȳ · P̄ ) (Θ)

= 2(∂XM[X ](Θ))(Ȳ − X̄) · P̄ − 2M[X ]Θ̄ · P̄
+2τ̃(∂XL[X ](Θ))Ȳ · P̄ .
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The computation remains of the variation of the mass and stiffness matrix with
respect to a variation θ of the simplicial grid,

∂XM[X ](Θ) =

⎛

⎝
∂XM [X ](Θ)

∂XM [X ](Θ)
∂XM [X ](Θ)

⎞

⎠ ,

∂XL[X ](Θ) =

⎛

⎝
∂XL[X ](Θ)

∂XL[X ](Θ)
∂XL[X ](Θ)

⎞

⎠ ,

where ∂XM [X ](Θ) = d
dεM [X + εΘ]|ε=0 and ∂XL[X ](Θ) = d

dεL[X + εΘ]|ε=0.
Finally, we can compute the descent direction in R

m�I of the energy Ŵ at a
given simplicial mesh M[X ] described by the nodal vector X̄ and obtain

gradXŴ [X ] =
(
∂XŴ [X ](Φres)

)

r∈I, s=1,··· ,m
,

where es denotes the sth coordinate direction in R
m.

In the concrete numerical algorithm we now perform a gradient descent method
with the Amijo step size control starting from the initial position given by the
previous time step.

Polygonal curve. We obtain for the derivatives of the mass matrix (using
again the usual Kronecker symbol δir) with respect to a variation of node r in
direction s

∂XM [X ](Φres) = diag
(

(Xs
i−1−Xs

i )(δ(i−1)r−δir)
2Qi

+
(Xs

i−Xs
i+1)(δir−δ(i+1)r)
2Qi+1

)
,

where as above Qi = |Xi − Xi−1|. Furthermore, we get for the derivatives for
the stiffness matrix in the same direction

∂XL[X ](Φres) = tridiag(∂XLi−1, ∂XLi, ∂XLi+1),

where

∂XLi−1 :=
(Xs

i−1 −Xs
i )(δ(i−1)r − δir)
Q3

i

,

∂XLi :=− (Xs
i−1 −Xs

i )(δ(i−1)r − δir)
Q3

i

− (Xs
i −Xs

i+1)(δir − δ(i+1)r)
Q3

i+1

,

∂XLi+1 :=
(Xs

i −Xs
i+1)(δir − δ(i+1)r)
Q3

i+1

.

Triangular surfaces. The first variation of |T | with respect to a variation of
node r in direction s is given by

∂X |T |(Φres) =
1
2
F1 ∧ F2

|F1 ∧ F2|D
90
s PsFr ,
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where Ps is a projection onto the plane spanned by the vectors es−1 and es+1

and D90
s a counter-clockwise rotation of 90 degree in this plane. It is suitable to

assume vertex indices to be in {0, 1, 2} and take them modulo 2 if this is not the
case. Now, we obtain for the derivative of the local mass matrix with respect to
a variation of node r in direction s

∂Xm(T )(Φres) =
∂X |T |(Φres)

12

⎛

⎝
2 1 1
1 2 1
1 1 2

⎞

⎠ .

The corresponding derivative of the local stiffness matrix is given by

∂X l(T )ij(Φres) =
1

4|T |((δr(i−1) − δr(i+1))F s
j + (δr(j−1) − δr(j+1))F s

i )

−∂X |T |(Φres)
4|T |2 Fi · Fj .

5 Numerical Results

We have applied the developed numerical algorithm to the evolution of curves in
R

2 and R
3 and of two dimensional surfaces in R

3. Here, we present first results
which in particular demonstrate the robustness of the proposed method. In fact,
the applications underline that time steps up to the order the spatial grid size
h are feasable.

Willmore flow for curves. At first we have studied the evolution of circles
in R

2. Figure 3 shows that the numerical solution will approximate the known
exact solution of expanding circles. In the next computations we consider a slight
generalization of the above Willmore flow model. In fact, we add λa[x] to the
Willmore energy, where λ is a fixed constant and a[x] denotes the length of the

Fig. 3. A circle of radius R0 = 2 expands in two dimension due to its propagation
via Willmore flow (left). The exact solution (grey dashed line) and the corresponding
discrete solution computed by the two step time discretization for 200 polygon vertices
and a time step size which equals the grid size (green crosses) are plotted for different
times t = 100 h, 500 h, 1000 h. The radius of the growing circle under Willmore flow
is plotted for the known continuous solution (green) and the discrete solution (red)
(right).
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Fig. 4. The evolution of a planar hypocycloid towards a fivefold covering of a circle is
shown at times t = 0.0, t = 685.7, t = 2987.4, t = 4850.1, t = 7965.8, t = 10630.6. The
curves are graphically rescaled to have similar size. Here the computational parameters
were λ = 0.025, N = 200 and τ = h = 0.5493.

Fig. 5. Evolution of a vertically perturbed hypocycloid towards a circle under Willmore
flow is shown at times t = 0.0, t = 1348.9, t = 4467.1, t = 5511.4, t = 6555.7,
t = 7406.6, t = 8257.2, t = 9108.4, t = 9297.0, t = 9361.3, t = 9426.8, t = 9489.1. The
computational data were δ = 0.1, λ = 0.025, N = 200 and τ = h = 0.5.

curve. Here, λ can be regarded as a Lagrangian multiplier with respect to a
length constraint. Hence, for proper choices of λ the generalized model avoids
expansion.

If X represents a discrete closed curve as above, we obtain for the discrete
length functional A[X ] =

∑
i∈I Qi. Furthermore, its gradient vector in R

m�I is
given by gradXA[X ] = L[X ]X̄.

As a first example for the resulting flow we consider the evolution of an ellipse
towards a circle under the elastic flow (cf. the first rows in Figure 1 and 2).

The initial parametrization is given as

x0(t) = (sin(t), 4 cos(t), 0) for t ∈ [0, 2π].
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Fig. 6. Willmore flow for an initial cubical surface with 768 (1st row), 1536 elements
(2nd row), and 3072 elements (3rd, 4th rows) are shown at times t = 0.0, t = 0.0366,
t = 0.0732, t = 0.1464, and t = 0.366, where h = 0.07322, h = 0.0517766, and
h = 0.0366, respectively.

The computational parameters are h = 0.0632847, τ = h and λ = 0.025. On
observes that the ellipse evolves to a circle and the polygonal vertices stay well-
distributed on the evolving curve. In the next application we pick up an example
already discussed by Dziuk and Deckelnick in [32], where a hypocycloid is con-
sidered as initial data. Here, the parametrization of the initial curve is given by

X0(t) =
(
−5

2
cos(t) + 4 cos(5t),−5

2
sin(t) + 4 sin(5t), δ sin(3t)

)

with δ = 0. In R
2 the initial curve evolves to a fivefold covering of a circle (cf.

Figure 4) since multiple coverings of a circle are stable stationary solutions in the
codimension one case [9]. This is not true for higher codimension with m ≥ 3.
If we start with an initial curve slightly perturbed in vertical direction, we have
chosen δ = 0.1, the curve begins to unfold and evolves to a single circle (cf.
Figure 5).

Willmore flow for surfaces. Spheres are minima of the Willmore functional
with energy 8π. In our first example for two dimensional surfaces in R

3 we show
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Fig. 7. Different time steps of Willmore flow towards the Clifford torus for an initial
macro torus with 522 (1st row), 1224 (2nd row), and 2736 elements (3rd and 4th row).
We render the surfaces at times t = 0.0, t = 0.09, t = 0.15, and t = 0.97, where
h = 0.0977, h = 0.0745, and h = 0.0089, respectively.

Fig. 8. From the evolution towards the Clifford torus (cf. Figure 7) discrete surfaces
at time t = 0.3735 are shown based on a computation with time step sizes towards a
sphere for an initial macro torus with 1224 elements for different time steps sizes (from
left to right) τ = h4, τ = h2, and τ = h, where h = 0.0745.

the evolution of a cubical surface into a round sphere (cf. Figure 6). In Figure 7
we depict the evolution of a coarse polygonal approximation of a torus towards
the Clifford torus M = {x ∈ R

3|(1 −
√
x2

1 + x2
2)

2 + x2
3 = 1

2} . Finally, in Figure
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8 we compare the discrete evolution at a fixed time for different choices of the
time step τ used in the computation.
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Abstract. Many applications within computer aided engineering re-
quire the support of a triangulation to gain geometrical and structural
insight into the original surface being approximated. Therefore, down-
stream applications such as computer numerically controlled (CNC) ma-
chine path generation, finite element analysis (FEA) and flattening are
triangulation dependant processes. However, despite the importance of
triangulation in these applications, very little work has been focused on
the downstream effects of triangulation. This paper investigates these
effects on the application of surface flattening and demonstrates how
subtle, but important changes in the triangulation can have a major
impact on the flattening results.

1 Introduction

The triangulation of trimmed and untrimmed parametric surfaces is a necessary
process needed for many computer aided design (CAD) and computer aided
manufacture (CAM) methods. By generating a computer based geometric ap-
proximation of the surface shape using a set of triangles, downstream engineering
applications such as CNC machine path generation, FEA, visualisation and flat-
tening can be carried out.

Downstream CAD/CAM applications are dependant on a triangulation since
they operate on its topological data. To generate the initial surface approxi-
mation, many different methods for creating a triangulation of trimmed and
untrimmed surfaces exist [2]–[4], [7]–[10], each using different success criteria to
evaluate the resulting approximation, such as the operating speed of the algo-
rithm, or the triangle shapes generated. For example, Rockwood et al. [9] use
a parameter space method that subdivides the 2D trimming region into mono-
tonic sub-regions, each sub-region is then sampled uniformly and the points
are then joined to create triangles using a tiling and coving method. The com-
pleted triangulation is finally mapped into 3D. The emphasis of this algorithm
is computational speed enabling real-time rendering of trimmed surfaces. Piegl
and Tiller [8], on the other hand, present a method which is computationally
more expensive but produces a better geometrical representation of the surface
without oversampling points. Their method uses a 3D geometrical surface subdi-
vision technique to sample 3D points on a given trimmed surface using a flatness
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criteria. These points are then joined by Delaunay triangulation [[6], [11]]. De-
spite the diversity of methods available, users must still select a triangulation
for a downstream application based on personal preference or experience. This
is because little literature is available on the required characteristics of a surface
triangulation to optimise the results for downstream engineering applications.

Within the field of FEA, it has been established that the quality of a triangu-
lation can affect the final results of a simulation. In particular, it has been shown
that triangles with high aspect ratios, i.e. ‘long thin’ triangles, are undesirable
as they are less numerically stable and can reduce the convergence rate of an
FEA simulation [12]. This type of triangulation criteria has been adopted by
many other areas of CAD/CAM without justification. Piegl and Tiller [8] and
Kumar et al. [2] attempt to eliminate the occurrence of ‘long thin’ triangles from
their triangulation schemes, but they give no indication as to why this would be
needed.

Triangle shapes can also become a source of debate when choosing a triangula-
tion scheme to use for a downstream application. When triangulating a trimmed
surface, the boundary edge triangles generally give less control, and often many
non-uniform triangle shapes are generated within these regions. Excluding the
boundary edges, the bulk of the surface approximation is commonly expressed
in terms of right angled triangles (RATs) [[2]-[4], [7]-[10]]. However, unlike equi-
lateral triangles, RATs are not unique in terms of connectivity which may affect
the performance of a downstream application.

This paper focuses on the engineering application of flattening and demon-
strates the downstream effects of triangulation. To remove any other possible
outside influences that could affect the performance of the downstream appli-
cation, any non-uniform triangles caused by boundary edge triangles will be
avoided by only producing triangulations of untrimmed surfaces. This does not
restrict the method, as boundaries can be recovered by projecting onto the re-
sulting flattened surface. As RATs are commonly used in the triangulation of
trimmed surfaces throughout industry, this paper will focus on this type of tri-
angle. It will also introduce the concept of right angle triangle configurations
(RATCs) within a triangulation and will show how different configurations of
RATs, generated from the same point sampling, produce different flattening
results.

2 Surface Flattening

The method of flattening is used to map a 3D surface into a two dimensional (2D)
plane, and is applicable to industries such a shoe making, textile and ceramic
decorations. These fields of work all involve making an item from a 2D material,
which will ultimately be placed onto a 3D model, such as a tea pot or human
body part. In conventional practice, a 2D pattern is designed by a field expert,
which is then used to create the item from the 2D material. Once completed,
it is placed onto the 3D model after which alterations can be made to produce
a better fit. Designing an initial 2D pattern is a specialised craft and can be a
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complicated task. However, use of a flattening simulation allows a designer to
create the final 3D model, which can then be flattened to produce a 2D pattern.
It has been shown that this approach can produce 2D patterns that have a better
initial fit as well as decreased production lead-time [[1], [14]]. There are many
methods available for flattening a 3D surface. However, the method chosen for
this paper is a modification of McCartney et al.’s [5] algorithm, which is a purely
geometrical approach, presented by Cader et al. [1].

2.1 McCartney et al.’s Flattening Method

McCartney et al.’s original method operates by producing an initial flattening,
which keeps the edge lengths of each triangle in 2D the same as the correspond-
ing 3D triangle. The first stage of the algorithm is to triangulate a surface,
producing a set of triangles T. The first triangle to be flattened is chosen from
the triangulation and is known as the seed triangle, ts,that has the 3D vertices,
(V1,V2,V3), (Fig. 1a) and edge lengths

l1 = ‖V2 −V1‖, l2 = ‖V2 −V3‖, l3 = ‖V3 −V1‖
The first two vertices are placed into 2D using the coordinates V

′
1 = (0, 0)

and V
′
2 = (l1, 0). The next stage is to create two 2D circles C1 and C2, which

have the centre points V
′
1, and V

′
2, as well as radii l1, and l2 respectively. The

position of the third vertex V
′
3 in 2D is determined by the intersection point

between C1 and C2 (Fig. 1b). Once the seed is flattened, any triangle in T that
shares an edge with ts may be flattened next. As the next triangle will share
an edge with ts, two of its points will already have been flattened, therefore,
only the third vertex needs to be calculated and this is done by using the circle
intersection method. Instances where all three vertices of a triangle have already
been flattened will occur during the process, which will mean that one vertex in
3D may have more than one position in 2D.

If the initial surface has zero curvature along one or both of its principal
curvature axes, then the surface is defined as a developable surface. Examples of
developable surfaces are planes, cylinders or cones. If a surface is developable it

(b) 3V

2V1V l1

l2
l3

C1
C2(a)

V1

V3

V2

l3 l2

l1

Fig. 1. (a) 3D triangle. (b) 2D flattening of 3D triangle.
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will flatten with no deformation to the original shape, however, it will be shown in
§3 that having a developable surface does not guarantee that the approximating
triangulation will not distort. If the surface is non-developable, then tearing and
overlapping will occur at the points where one 3D vertex has multiple positions
in 2D. If the surface is developable, generally, the multiple 2D positions will all
be the same and therefore no distortion should occur.

To remove any distortion which can arise from this flattening algorithm, Mc-
Cartney et al., use an energy release method, which extracts strain energy from
the flattened triangulation and reconnects the topology. Due to the circle inter-
section method runtime modifications of the flattened topology are not possible
and have to be postponed until the end. This is because the vertices that have
been flattened have the potential to act as centre points for circles, and mov-
ing a vertex will essentially move a possible centre of a circle. Over time, this
movement can accumulate so that the distance between the centre points is large
enough to force the circles not to intersect one another.

2.2 Modified McCartney’s Flattening

The modified algorithm utilises a cosine method to determine the position of the
triangle vertices in 2D rather than the intersection of circles. In the case of the
seed triangle, the first two vertices would be flattened using the same method
as McCartney et al. [5]. The edge lengths are then used to calculate the angle θ
incident to V1 (Fig. 1a) using the cosine rule:

θ = cos−1

(
l21 + l23 − l22

2l1l3

)

Therefore, the coordinates of the three flattened vertices (V
′
1,V

′
2,V

′
3), which

preserve the 3D edge lengths of the original triangle, are given as:

V
′
1 = (0, 0),V

′
2 = (l1, 0),V

′
3 = (l3 cos(θ), l3 sin(θ))

This produces a result which is equivalent to the circle intersection method,
but has the advantage that it allows for runtime modifications of the flattened
triangulation, which eliminates any tearing or overlapping as it occurs. Therefore,
in the situation where a duplicate 2D position for an existing flattened vertex has
to be calculated, an unbiased average of the two different positions is taken to
create a single position. It is again worth noting that if the surface is developable,
the position of the two vertices will be the same.

Cader et al. [1] have noted that the choice of seed triangle can effect the final
flattening. As the flattened seed triangle geometry is constrained, any distortion
spreads outwards from this seed triangle. Another aspect that can affect the final
output is the mapping order, i.e. the order in which the triangles are sequentially
flattened. Therefore, this method also provides a mapping order which is used to
decide which triangle will be flattened next. The seed triangle is denoted level 0
and will be the first triangle to be flattened. Any triangle which shares an edge
with the seed triangle will be denoted level 1, and any triangle which shares an
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edge will a triangle from level 1 will be denoted as level 2, etc. This method is
continued so that a ‘circular’ mapping order is created.

2.3 Flattening Success Criteria

This modified version of the flattening method does have one limitation in that
it was created for surfaces that are developable or ‘almost’ developable. Conse-
quently, the averaging process used to create a single position for a vertex can
cause the orientation of the triangle vertices to change from the convention of
anti-clockwise to clockwise. This causes a topological violation, as inconsistent
orientations of triangle vertices are introduced, causing the flattening to pro-
duce an unacceptable results with large changes in area and shape. Therefore,
if at any instance, during the averaging process, the orientation of the flattened
triangle vertices flip from anti-clockwise to clockwise, the algorithm terminates
and the flattening is said to have failed.

2.4 Accuracy Measurements

A successful unwrapping does not guarantee an acceptable flattening. The ac-
curacy of the flattening can be assessed using differences in area and shape as
proposed by Wang et al. [14]. The area difference measures the change in surface
area pre- and post- flattening. The relative area difference is given by:

δA =
Ao −Af

Ao

where Ao is the original area of the 3D surface and Af is the area of the flattened
surface. Since analytical forms of the flattened surface cannot be determined, the
areas are approximated by summing triangle areas within each triangulation, i.e.

Ao =
n−1∑

i=0

Δo
i and Af =

n−1∑

i=0

Δf
i

where Δo
i is the area of the ith triangle from the 3D triangulation consisting of

n triangles and Δf
i is the area of the ith flattened triangle.

The shape difference measures the change in the surface curve lengths pre- and
post- flattening, where the curve length is defined as the length of an arbitrary
iso-parameter line on the surface. The final relative edge length difference is
given by:

δS =
Lo − Lf

Lo

where Lo is the actual curve length of the curve segment on the original surface
and Lf is the corresponding curve length in the flattened model. Again, analyt-
ical forms of the curve lengths cannot be determined for the flattened model, so
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Lo and Lf are approximated by summing the length of each triangle edge in the
corresponding triangulation, i.e.

Lo =
m−1∑

j=0

Eo
j and Lf =

m−1∑

j=0

Ef
j

where Eo
j is the edge length of the jth edge in the 3D triangulation consisting of

m edges and Ef
j is the edge length of the jth edge in the flattened triangles.

3 Developable Surface Flattening Test

If a 3D surface is developable, then it will flatten into 2D without any distortion
to the original shape.

However, this is not true of a developable surface’s triangulation. In order to
flatten a developable surface without distortion, the triangulation must inherit
the property of developability from the original surface.

In particular, the topological information contained within the surface ap-
proximation, such as the vertices, edges and faces, must also contain an approx-
imation of zero curvature along the principal axes. One way to achieve this is
to ensure that the strings of points that are sampled on a developable surface
for triangulation are parallel with any axis that has zero curvature. Consider a
developable surface defining part of a cylinder which has zero curvature along
constant v values as shown in Fig. 2.

A triangulation consisting of RATs, was constructed from a grid of 20 × 20
points lying on the surface evaluated at equally spaced parametric points (ui, vi).
The grid size was used since it produced a good surface approximation, without
being computationally expensive. This triangulation consisted of 772 triangles
that was flattened using the modified flattening algorithm and produced no
deformation of the original triangulation. Fig. 3, shows the original 3D trian-
gulation of the surface and the flattened 2D result. The line of zero curvature,

Fig. 2. Cylinder part surface



Surface Triangulation and the Downstream Effects on Flattening 299

v

u

A = 0.000% 
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u

Line of zero curvature 

(a) (b) 

Fig. 3. (a) 3D triangulation of part cylinder. (b) Flattened triangulation.
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(a) (b) 

Fig. 4. (a) 3D triangulation of part cylinder. (b) Flattened triangulation.

which is parallel to the principal axis of curvature, is also shown on the 3D tri-
angulation. It is noted that the sampling points all lie parallel to the principal
axis of curvature.

The surface was sampled a second time using the same grid size. Points in the
u direction were skewed by distorting the parameter spacing along one boundary
and blending to the opposite fixed boundary. Points in the v direction remained
fixed, following constant values of v (Fig. 4a). The strings of points continued to
follow the lines of zero curvature and the triangulation topology inherited enough
information from the original surface to approximate a developable surface which
flattened without distortion (Fig. 4b).

A third grid of points was sampled with constant u values but skewed v values,
using the same approach as previously described, so that they no longer followed
the line of zero curvature along the principal axis of curvature (Fig. 5a). The
topological information of the triangulation no longer represents a developable
surface, which resulted in a distorted flattening (Fig. 5b).
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(a) (b) 

Fig. 5. (a) 3D triangulation of part cylinder. (b) Flattened triangulation.

v

u

Vertex positional 

movement 

Fig. 6. Flattened triangulation showing vertex positional movement

Fig. 6 shows the magnitude of positional movement for each vertex, i.e. the
difference between its original flattened position and its final position after all
averaging.

Fig. 7 shows the area difference between the 3D triangles and their corre-
sponding flattened triangles. It can be seen that the regions of the flattened
model that have vertex positional movement are the same regions that have an
area change. The distortion caused by this triangulation is an unexpected re-
sult for a developable surface, as it should flatten without inducing any vertex
positional movement, or triangle area change. This suggests that the sampling
points should always follow along the line of zero curvature to approximate a
developable surface. Furthermore, a developability measure of a triangulation,
rather than the original surface, may prove to be more appropriate when esti-
mating the performance of a flattening. In this test the area and shape differences
are small; however, increasing the magnitude of the skewing in the v parameter
direction will eventually cause the flattening to completely fail.
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v

u

Area difference 

Fig. 7. Flattened triangulation showing triangle area difference

4 RAT Configurations

Given a set of regularly sampled 2D points in a plane, the triangulation is not
unique. A unique triangulation can be created by sampling a given domain so
that the points can be joined to create a desired triangle shape. For example, the
domain could be sampled at points that can be connected to form a triangulation
consisting of equilateral triangles. In this case, there is a unique configuration of
equilateral triangles.

Randomly sampled points are more complex and a different approach is
needed. The Delaunay triangulation [[6], [11]] provides a possible solution. Thus
given a set of points, P , Delaunay will generally produce a unique triangulation
solution, independent of the starting point. It does this by ensuring that for
every triangle within the triangulation, no other point within the set P , other
than the points which make up the triangle vertices, are contained within the
circumcircle of that triangle. It also ensures that the minimum angle of every
triangle is maximised, which is essentially trying to make the triangles as close
to equilateral as possible.

However, a unique solution is not always guaranteed for random points, as
has been shown by Sugihara and Inagaki [13]. If four points all lie on the same
circumcircle, the points can be joined to make two triangles in two different
ways, by performing an interior edge flip, and still produce a legal Delaunay
triangulation. If more than four points lie on a common circumcircle, many
more legal solutions are possible. Consider if the whole 2D plane was sampled
for uniformly spaced points, which could be joined to create RATs, then using
a Delaunay triangulation to achieve a unique solution would not be possible.
This is because four points would always be on a circumcircle of a triangle.
Therefore, the final triangulation produced would be dependant on the starting
point. As no unique solution exists, the user must decide how best to join the
vertices to create RATs. In this type of situation, many different RATC can
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Uniform       Diamond Chevron 

Fig. 8. Three types of global right angle triangle configurations

form a legal triangulation consisting of RATs. With RATs being used by many
surface triangulation methods, and hence for downstream applications such as
flattening, the choice of RATC can be viewed as a variable and can have a
dramatic impact on the downstream application of flattening.

4.1 Global Triangulation Configurations

For a 2D domain which has been sampled to form RATs, there can exist thou-
sands of permutations for the triangulation that will still form a legal trian-
gulation. Three different RATCs will be used to investigate the effect of the
configuration on the flattening process (Fig. 8).

These are called uniform, diamond and chevron. The uniform and diamond
global RATCs were chosen as they are commonly used in many surface trian-
gulation schemes. The chevron configuration was introduced as an alternative
RATC. As can be seen, all three configurations are legal RAT triangulations,
generated from the same point sampling, and could result in an application
producing different results.

4.2 RATC Test

To consider the effects of RATC on the flattening process, an undevelopable
NURBS test surface, Fig. 9, was sampled uniformly using a 60 × 60 grid of
points and triangulated in each of the three different global configurations. Each
of these triangulations consisted of 6962 triangles and was flattened using the
same seed triangle. This seed triangle was chosen as it was defined by the same
vertices and edges in each of the three configurations, thus giving an unbiased
starting point to each flattening simulation. The flattening results for the three
triangulations are given in Table 1 and Figs. 10-12. The seed triangle is shaded
in black to show its location.

As can been seen from Tab. 1, the flattening process is dependent on the
global configuration of the triangulation. In the diamond configuration, only
82% of the triangles were processed before the flattening failed. However, the
chevron configuration resulted in the triangulation flattening successfully with
an area change of −0.27%, where a negative value indicates a reduction in area.
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Fig. 9. Non-developable NURBS surface

Table 1. Flattening Results

Number of triangles in each triangulation 6962

Global No of triangles Area Change Shape Change Successful

RATC flattened (%) (%)

Diamond 5903 -15.23 -15.74 NO

Chevron 6962 - 0.27 - 0.05 YES

Uniform 6962 - 0.18 - 0.08 YES

(a) (b) 

Fig. 10. (a) Diamond RAT 3D triangulation. (b) Flattening.

An unmodified version of this flattening would cause the triangulation to
have overlapping triangles or gaps between triangles. However, the averaging
process removes overlaps and tears, thus triangle areas can either increase or
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(a) (b) 

Fig. 11. (a) Half-Diamond RAT 3D triangulation. (b) Flattening.

(a) (b) 

Fig. 12. (a) Uniform RAT 3D triangulation. (b) Flattening.

decrease in these regions. The flattening was further improved by using the
uniform configuration, which reduced the area change by 33% compared to the
chevron configuration.

Further, it can be seen from the Fig. 12, that whilst the uniform configuration
induced less change in area, it produced some noticeable creasing in the top right
corner of the final flattening. In contrast, the chevron triangulation resulted in
visually less creasing (Fig. 11). This implies that for this surface, the chevron
configuration preserves the original shape better, and this is reflected in the
resulting shape change coefficients.

It can be seen from Figs. 11, 12 that both the chevron and uniform RATCs
produce similar results for the left and top edges, but different outcomes for the
right and bottom edges. The chevron configuration (Fig. 11) produces a better
flattening for the right edge, and the uniform configuration (Fig. 12) creates a
better approximation for the bottom edge. This could suggest that some RATCs
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may be optimised for certain surface characteristics, such as curvature. There-
fore, the optimum RATC for a surface triangulation may not be a global one,
but a collection of configurations, which will be placed strategically in different
areas of a surface triangulation depending on the local surface characteristics.

Currently, the failure of a surface flattening would be attributed either to the
type of triangulation, i.e. triangle shape, triangle size, or the flattening algorithm.
However, this test has shown that the performance of the flattening algorithm
is also dependent on the configuration of the RATs.

5 Discussion

It has been shown that the triangulation of a surface definition can impact on
the performance of the triangulation dependant downstream application of flat-
tening. Since the surface triangulation is the only means by which the flattening
process can get information about the original surface definition, it is important
that the triangulation approximates the original shape characteristics. It was
shown in §3 that if the points sampled on a developable surface are not aligned
to the lines of principal curvature, then the triangles generated from these points
will not approximate a developable surface. Depending on the amount of de-
viation from these axes of principal curvature, the final flattening can induce
distortion or fail altogether. Therefore, a measure for the developability of a sur-
face triangulation, rather than the original surface would be a better gauge of
determining the success of a surface flattening. Further research is required to
identify connections between the surface characteristics and the RATC.

Since RATs are commonly used for the triangulation of both trimmed and
untrimmed surfaces, the subject of RATCs was introduced and it was shown
that this also has an effect on the downstream application. Although the test
results for the test surface in §4 suggested that the uniform configuration would
be the best overall choice, experimental evidence has shown this not always
to be true in general. In fact, the diamond configuration can produce a better
flattening result for some surface definitions.

Experimental evidence also suggests that chevron and uniform configuration
flattenings have more in common than the diamond configuration flattenings.
Since the only difference between each configuration is the connectivity of the
points, the similarities may be due to the point valency. Both the chevron and
uniform configurations have a valency of 6, whereas the diamond configuration
has a mix of points with valency of either 8 or 4. This difference in valency could
explain the variation in results between the configurations.

Changing the RATC of a triangulation can change the point valences and
edges created, possibly altering the sequence of triangles being processed, even
if the seed triangle used is the same (c.f. §4). Thus the triangulation clearly
effects the flattening, as noted by Cader at al. [1].

It was also suggested in §4 that an optimum RATC could be one that consisted
of many different RATCs. However, further work needs to be done to establish
which RATC perform better on certain surface characteristics.
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Abstract. We spell out a formal equivalence between the naive Lapla-
cian editing and semi-supervised learning by bi-Laplacian Regularized
Least Squares. This allows us to write the solution to Laplacian mesh
editing in a ‘closed’ form, based on which we introduce the Generalized
Linear Editing (GLE). GLE has both naive Laplacian editing and gradi-
ent based editing as special cases. GLE allows using diffusion wavelets for
mesh editing. We present preliminary experiments, and shortly discuss
connections to segmentation.

1 Introduction

A remarkable similarity exists between semi-supervised manifold learning and
mesh editing: both seek to extrapolate data attached at some points to the whole
manifold.

Given a set of labeled samples, extrapolating labels throughout the entire
sample space is the task of semi-supervised learning. The qualification “mani-
fold” is added if the samples are assumed to belong to a manifold embedded into
a high-dimensional space – attaching labels is equivalent to defining a function
on this manifold.

Editing a mesh involves determining the new locations of vertices given new
locations of some of the vertices – the handles. The displacement vectors – the
differences between new and old vertex positions – can be considered to define a
function on the mesh. Thus, given the values of this function at the handles we
are trying to extrapolate to the whole mesh – a task that would otherwise qualify
as semi-supervised learning. If rotations at handles are also given, propagating
them throughout the mesh is again an instance of semi-supervised learning.

Does this similarity of the two fields extend beyond the objectives sought?
Laplacian based approaches to mesh editing start by extracting the surface’s
differential coordinates, and then reconstruct the surface by imposing the handle
constraints and requiring that the differential coordinates are preserved as much
as possible. The differential coordinates capture the local detail, so the more
they are preserved, the more the shape is preserved. When viewed from this
angle, Laplacian mesh editing seems to bear no resemblance to the methods of
semi-supervised learning.
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We show, however, that there exists a formal equivalence between the naive
(linear) Laplacian editing and semi-supervised learning by bi-Laplacian Regular-
ized Least Squares (Section 4). This allows us to write the solution to Laplacian
mesh editing in a “closed” form (Section 5). Based on this closed form we in-
troduce the Generalized Linear Editing (GLE) which has both naive Laplacian
editing and gradient based editing as special cases. GLE allows the use of diffu-
sion wavelets for mesh editing (Section 6). Preliminary experiments are presented
(Section 7), and connections to segmentation are discussed (Section 8).

Our contributions are threefold: clearly spelling out the formal relationship be-
tween manifold learning and mesh editing, introducing GLE, and using diffusion
wavelets for mesh editing. Although naive Laplacian editing is not practically
useful, it becomes so when embedded into nonlinear schemes such as [1]. There-
fore, understanding the properties of the naive Laplacian editing better, and
investigating its potential improvements may have considerable consequences on
the state of art.

2 Related Work

Immense attention has been received by direct surface manipulation methods
based on differential representations. The first examples were Poisson mesh
editing [2] and Laplacian coordinates [3,4]. As we learn from [5], it was gra-
dient domain image manipulation that inspired these approaches: specifically,
the Poisson surface editing of [6] motivated Poisson mesh editing. These initial
methods are now customarily referred as naive or linear – they optimize each of
x, y, z coordinates separately, and so do not allow dealing with handle rotations.
An excellent survey of these and other linear techniques is [5].

Remarkably, differential representations come with an elegant interpretation
of being local surface descriptors. For example, Laplacian coordinates are the
components of the mean-curvature normal. This interpretation offers a strong
intuition about how to deal with rotations, and led to new techniques a few
examples of which are [7,8,9]; a great survey is [10]. The interpretation also
inspired the development of other intrinsic coordinates: pyramid coordinates
[11], and rotation invariant coordinates [12].

In the light of all these developments, one might legitimately the need to study
any further the linear methods, generalize or alter them. The answer is best given
by an example: in a recent paper [1], the naive Laplacian editing is embedded into
an iterative scheme to obtain a non-linear method. The algorithm is guaranteed
to converge and is remarkably easy to implement. The method compares very
favorably with PriMo [13], a state-of-the-art non-linear technique. This makes
us believe that understanding the properties of the naive methods better, and
investigating their potential improvements will have considerable consequences
on the state of the art.

To the best of our knowledge, the connections to the semi-supervised learn-
ing have never emerged, perhaps due to the sheer beauty of the interpreta-
tion that differential coordinates came with. Yet we must mention the inspiring
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study of Lévy [14], where among other things he explains how Laplace-Beltrami
eigenfunctions can be used to manipulate shapes. He proposes pose transfer
by exchanging expansion coefficients of the coordinate functions in terms of
Laplace-Beltrami eigenfunctions. In addition, in [15] geometry filtering is per-
formed by modifying the expansion coefficients. Another work that uses the
Laplace-Beltrami expansion coefficients is [16], where the size of linear systems
associated with Laplacian editing are significantly reduced to achieve interactive
computational speed for manipulating large meshes. All of these works can be
interpreted as an approach to editing where the control is vested into these ex-
pansion coefficients, yet they discuss the connections neither to manifold learning
nor to Laplacian editing. In a different context, let us also mention the paper
[17] which studies mesh smoothing in the light of Laplacian eigenbasis and reg-
ularization.

Using different function bases to manipulate meshes would not be surprising to
the space deformation community. Just to mention a few, in [18,19,20,21] Radial
Basis Functions (RBF) are used to infer the space deformation that would satisfy
given constraints. There are many bases to choose from and, thus, flexibility to
decide based on time/quality constraints. However, to the best of our knowledge,
the idea to use different bases to generalize/modify a direct manipulation method
such as Laplacian editing is novel. Let us add that diffusion wavelets have found
only very limited use in digital geometry processing – the only work that we are
aware of is [22] where diffusion wavelets are used for mesh compression.

As for manifold learning, we can only mention some key papers that are di-
rectly relevant. Laplacian based regularization was introduced in [23], where
semi-supervised learning is reduced to minimization of an expression which con-
tains a penalty term to enforce the labels of labeled samples, and terms to ensure
“continuity” of labeling – “close” points get similar labels. The latter are called
the regularization terms; they ensure that learning results in a sufficiently smooth
function. As shown in [23], the Laplacian – the manifold’s Laplace-Beltrami op-
erator – makes a good regularization term for a variety of learning applications.
Diffusion maps, diffusion wavelets, diffusion wavelet packets and other related
concepts were introduced by R. Coifman and coworkers, and the definitive ref-
erence is the special issue [24].

3 Manifold Learning

We will avoid describing the most general setting for manifold learning, rather
our exposition will be geared towards surfaces in space – we will make assump-
tions and introduce notations most appropriate for our purposes. We will con-
centrate on versions of Laplacian regularized least squares learning, a concept
introduced in [23], heavily borrowing from it and from paper [25] with some
notational modifications.

We start with a connected surface S. Some of the points on the surface, say
{pi}li=1 have been labeled – real numbers {di}li=1 have been assigned to them.
Semi-supervised learning seeks a function f∗ that minimizes
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l∑

i=1

(f(pi)− di)2 + β‖f‖2E + γ‖f‖2I. (1)

The first term tries to enforce the function to take values prescribed at labeled
vertices. The last two terms are called regularization terms, and they aim to
make the function smooth in extrinsic and intrinsic senses. To clarify, extrinsic
smoothness could mean that function takes close values at points that are close
in Euclidean space; intrinsic smoothness would mean close function values for
points that are geodetically close. We will be mostly interested in the first and
last terms, dropping the middle terms of (1) in what follows.

Belkin et. al. [23] propose to use the surface integral of function’s gradient
as the intrinsic regularization term, which can be rewritten using Green’s theo-
rem as

‖f‖2I =
∫

S
fΔf,

where Δ is the Laplace-Beltrami operator of the surface. They also note that
iterated Laplacians Δk and linear combinations of these can be used in this
expression to yield other examples of intrinsic regularization terms; thus for a
self-adjoint linear differential operator L on the surface, we have the regulariza-
tion term

‖f‖2I =
∫

S
fLf.

The natural realm for discussing the minimization problem (1) is an appro-
priately chosen Reproducing Kernel Hilbert Space. We avoid these details, and
only point out to a few consequences. Let us denote by μi and ei : S → R
the eigenvalues and the eigenfunctions of the linear operator L. These satisfy
Lei = μiei. Since L is self-adjoint, the eigenfunctions constitute an orthogonal
basis for L2(S). For a function f =

∑
i ciei, the intrinsic regularizator easily

evaluates to
‖f‖2I =

∑

i

μic
2
i .

Now, the kernel function

K(p,q) =
∑

i

ei(p)ei(q)
μi

can be defined (note the similarity with the formula for matrix pseudoinverses);
the important point is that the solution of the semi-supervised learning problem
(1) can be written as

f∗(q) =
l∑

i=1

aiK(pi,q).

Notice that the summation is over the labeled points’ indices. Numbers ai are
the entries of the vector a which solves the equation

(γIl +K ′)a = d. (2)
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Here Il is the l × l identity matrix, K ′ is an l × l matrix with K ′
ij = K(pi,pj),

and d is the vector whose i-th entry is the label di.

4 Laplacian Editing Reinterpreted

Given a surface mesh, mesh editing allows a user to modify it by specifying
new positions for some surface points; these user constrained points are called
handles. Laplacian mesh editing is based on extracting the surface’s differential
coordinates, and then reconstructing the surface by imposing the user constraints
and requiring that the differential coordinates are preserved as much as possible;
for a recent survey we refer the reader to [5]. We will show that the naive or
linear version of Laplacian editing, the version where handle rotations are not
propogated, is equivalent to semi-supervised learning with the bi-Laplacian as
the regularizator.

Consider projection onto x-coordinateπx : S → R, i.e. the function whose
value πx(p) is the x-coordinate of the surface point p. This function, will be
assumed to satisfy

∫
S πx = 0, which in all cases can be achieved by translating

the origin to the center of mass of the surface. The differential coordinate δx(p)
is defined by

δx(p) = Δπx(p),

where Δ is the Laplace-Beltrami operator of the surface. In a similar way one
defines δy(p) and δz(p). As an aside, the differential coordinates are precisely
the components of the mean curvature normal.

The edited surface S′ is in one to one correspondence with the original surface,
so we will use the same letter to denote both a point on S and S′. Also, S′ has
its own function π′

x. Suppose that the handles are the points {pi}li=1, and the
user has specified new x-coordinates for these points as {x′i}li=1. Soft constraint
Laplacian mesh editing constructs the new surface by minimizing the expression

l∑

i=1

(π′
x(pi)− x′i)2 + γ

∫

S
(Δπ′

x − δx)2.

We are able to treat the x-coordinate separately, since in Laplacian editing mesh
coordinates are treated independently.

Now we will rewrite the problem. Let us introduce the function f = π′
x − πx,

the difference between the old and new x-coordinates. Along with the corre-
sponding functions for the other two coordinates, this function completely de-
termines the new surface in terms of the old. At the handle points pi the user
has specified the sought values of f , which we denote by di = x′i − πx(pi). Note
that

Δπ′
x − δx = Δπ′

x −Δπx = Δf.
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The equality ∫

S
(Δf)2 =

∫

S
fΔ2f

follows from Green’s theorem; this changes our optimization problem into

l∑

i=1

(f(pi)− di)2 + γ

∫

S
fΔ2f.

This is precisely equation (1) of semi-supervised learning with L = Δ2. Notice
that, the same derivation is valid for surfaces with boundary, if f assumed to
satisfy the Neumann boundary condition. With little thought the reader can see
that this assumption is implicit in Laplacian editing.

In a similar vein, let us show that gradient based editing of [2] is equivalent to
semi-supervised learning with Laplacian as regularizator; this is precisely Lapla-
cian Regularized Least Squares presented and studied in [23]. In fact, gradient
based editing seeks to minimize the expression

l∑

i=1

(π′
x(pi)− x′i)2 + γ

∫

S
(∇π′

x −∇πx)2,

where ∇ is the gradient. In other words, the reconstruction aims to preserve the
gradients of mesh coordinate functions – “gradient coordinates” ∇πx. Using our
notation and applying Green’s theorem this can be rewritten as

l∑

i=1

(f(pi)− di)2 + γ

∫

S
fΔf.

Clearly, this is the semi-supervised learning objective with L = Δ.
This proves our claim that formally, Laplacian mesh editing is an instance

of semi-supervised manifold learning. The formulas make clear that the preser-
vation of differential coordinates is equivalent to intrinsic regularization. This
equivalence has an intuitive appeal: regularization forces the displacement func-
tion f to be “smooth”, this in turn allows to protect the local surface detail –
the original goal behind the preservation of differential coordinates.

5 Consequences

After establishing the relationship to manifold learning, we can start importing
knowledge from the field. Let us discuss two such examples – they will motivate
a generalization of Laplacian and gradient editing.

First, we can write an explicit formula for the solution of the Laplacian and
gradient editing. In fact, consider the eigenvalues λi and eigenfunctions φi of the
Laplace-Beltrami operator. The eigenvalues are non-negative and constitute a
discrete set; we put them into non-decreasing order

λ0 = 0 < λ1 ≤ λ2 ≤ . . . ≤ λi < . . .



On Mesh Editing, Manifold Learning, and Diffusion Wavelets 313

Note that λ = 0 is always a simple eigenvalue because the surface is assumed to
be connected. The appropriately normalized eigenfunction corresponding to λi

will be denoted by φi. Notice that the bi-Laplacian has the same eigenfunctions
φi, with corresponding eigenvalues λ2

i .
Now the kernel function corresponding to Laplacian editing is given by

K(p,q) =
∞∑

i=1

φi(p)φi(q)
λ2

i

and the solution to the mesh editing problem is

f∗(q) =
l∑

i=1

aiK(pi,q),

where ai are found by solving the system (2). A similar formula is valid for
gradient based editing – one replaces λ2

i by λi in the definition of the kernel
function.

Second, there is an interpretation of regularized manifold learning schemes
which translates into a remarkable reading of Laplacian editing. To explain, we
follow [25] and write the minimization of bi-Laplacian regularized least squares
in terms of eigenvalues and eigenfunctions of the Laplace-Beltrami operator.

Remembering that the eigenfunctions φi constitute a basis for L2(S), we can
expand any function as f =

∑
i ciφi. When this expansion is plugged into the

bi-Laplacian regularizator in the objective function, the expression to minimize
reduces to

l∑

i=1

(f(pi)− di)2 + γ
∑

i

λ2
i c

2
i , (3)

while a similar formula for Laplacian based regularization would contain λi in-
stead of λ2

i . Thereby, we are trying to device a function by combining φi so
that this combination takes prescribed values in the least squares sense, but
we harshly penalize the use of high frequency eigenfunctions – eigenfunctions
corresponding to larger eigenvalues.

Thus, in some sense, Laplacian based semi-supervised learning assumes that
Laplacian eigenfunctions constitute the preferred “learning basis”. Preferred,
because they provide the smoothest basis for L2(S) in the sense explained in [25].
Higher penalty for high frequency eigenfunctions makes sure that the solution
is smooth enough. This fits very well with Occam’s razor – lower frequency
eigenfunctions are “simpler”. For example, under general conditions, the first
eigenfunction φ1 changes its sign only once, and has only one minimum and one
maximum.

In the context of mesh editing, we should perhaps talk about the “motion
basis” of an object. The motion basis would contain (linearly independent) dis-
placement functions for natural articulations of the object, ordered from the
simplest to the most complex. One could device a measure of complexity for lin-
ear combinations of motion basis functions. The objective of mesh editing would
be to find the simplest such combination that satisfies the user constraints.
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From this perspective, the fundamental assumption of Laplacian editing is
that Laplacian eigenfunctions constitute a good motion basis. Clearly, the dif-
ference between Laplacian and gradient based editing is in the penalty for using
high frequency eigenfunctions – Laplacian editing is harsher in this respect. Of
course, using higher iterated Laplacians in the regularizator further increases the
penalty for using high frequencies. An important question emerges – do we have
to base our regularization on Laplacian or its iterates? Can we set the penalties
manually for each eigenfunction?

Clearly such a modification of Laplacian editing, namely choosing the penal-
ties manually, can be obtained by simply changing the formula for the kernel
into

K(p,q) =
∞∑

i=1

φi(p)φi(q)
μi

.

We speculate that if the user agrees to set μi =∞ for all i > r, then this formula
can be efficiently implemented to allow the user to adjust the remaining penalty
weights μi interactively. Setting infinite penalties is equivalent to truncating
the sum in the formula for the kernel function – effectively keeping only r low
frequency eigenfunctions.

Remember that in discrete setting, the Laplacian and the kernel function are
n× n matrices, where n is the number of mesh vertices in the region of interest.
We will assume that one computes r eigenvectors in the preprocessing step. Of
course, computing the eigenvectors of a matrix is a considerable burden; yet if
r is in the range of a few hundreds, that many eigenvectors of the Laplacian for
a mesh as large as 250K vertices can be evaluated in about 15-20 minutes [15].
During the interactive session, editing will involve solving an l× l linear system
(2), where l is the number of handles, and evaluating the linear combination of l
columns of the kernel matrix – the columns associated with the handle vertices.
Of course, we should not pre-compute and store the whole n×n kernel matrix in
the main memory. Instead, storing only the r eigenvectors will reduce the space
requirement from O(n2) to O(nr). Now notice that the time complexity of the
interactive part – obtaining the new vertex coordinates after the user modifies
the penalty weights – is linear in the number of vertices, O(nl + nr). Also, the
new coordinates can be evaluated in parallel. Let us emphasize that we have
not implemented this approach, and we do not know how the omission of high
frequency eigenvectors will influence the result of editing.

6 GLE and Diffusion Wavelets

Once again, do we have to base our regularization on Laplacian or its iterates?
Can we use a different basis? These questions lead us to propose the following
Generalized Linear Editing, GLE for short. Similar to naive Laplacian editing,
GLE does not handle frame rotations, and the displacements of each coordinate
are evaluated independently. Thus, for brevity, we concentrate on obtaining the
x coordinates only; the other two coordinates require the same steps, perhaps
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with different bases and weights if wanted. At the cost of self-repetition, let us
clearly outline the algorithm:

1. Pick an orthonormal basis ei of L2(S); here S is the edited surface.
2. Assign penalty weights μi to each of the basis functions ei.
3. Define K(p,q) =

∑
i ei(p)ei(q)/μi.

4. Let l handle vertices pi, i = 1, ..., l and their x-coordinate displacements
di, i = 1, ..., l be given. Construct vector d whose ith entry is di. Solve the
equation

(γIl +K ′)a = d

for a, where K ′
ij = K(pi,pj) is an l× l matrix. Here γ is a user set positive

parameter – the larger is γ the less is pressure to satisfy the displacement
constraints, the more weight is given to the regularization term.

5. Compute the new x coordinate q′
x of the point q using the formula q′

x =
qx +

∑l
i=1 aiK(pi,q).

When dealing with some region of interest instead of the whole mesh, one will
require the boundary to stay constant. This can be achieved in GLE by using
basis functions that are supported on the region of interest.

One may also wish to enforce the handle constraints with different weights.
Suppose that weights wi are associated with handle vertices pi, i = 1, ..., l. One
then can construct the l× l diagonal matrix W with Wii = 1/wi; now in step 4,
one replaces the equation for a by (γW +K ′)a = d.

Notice that both the Laplacian and gradient based mesh editing are examples
of GLE. To provide further examples, let us use diffusion wavelets [26] as a basis.
The following discussion will be geared towards implementation, providing the
discrete counterparts of the steps above.

Let P be a set of points on a mesh. Clearly, any real-valued function on P can
be recorded as a vector in R|P |. Then, a diffusion operator T (that linearly acts
on these vectors) is a matrix that satisfies certain properties, most notably its
eigenvalues are in the [0, 1] interval. In the implementation of diffusion wavelets
that we worked with [27], among a few choices for T we used the following:
vertices of the mesh are considered as a point cloud, and for each point, one
finds a fixed number of nearest neighbors and assigns the corresponding matrix
entry to be exp(−Δ ∗ dist2), where dist is the distance to the point in question.
This choice on our part was forced by the fact that the diffusion wavelet code
was written by the manifold learning community and was geared toward working
with point clouds.

Diffusion wavelet construction uses the diadic powers of T to construct sub-
spaces Vi and Wi of R|P | together with their orthogonal bases; the subscript of a
subspace is called its level. These subspaces satisfy R|P | = W0⊕V0, V0 = W1⊕V1,
V1 = W2 ⊕ V2, and so on. In fact, in the implementation we worked with,
W0 = {0}, and V0 = R|P | with delta-function basis. To obtain the basis of
subspace Vi+1, one acts by the diadic power of the diffusion operator T 2i

on
the basis of Vi, and applies some thresholding and a special locality preserving
orthogonalization. An important property of these bases is that different levels
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represent different scales – together they provide a multi-scale basis of R|P |. For
example, the basis vectors in V0 represent the smallest scale possible – their sup-
port is just one vertex. Meanwhile, the basis vectors of subspaces of high level
have global nature, because they are obtained by many repetitive applications
of the diffusion operator – in a sense, the function values are diffused throughout
the mesh.

Fixing some maximum level m that one desires to work with, one can write

R|P | = W0 ⊕W1 ⊕W2 ⊕ · · · ⊕Wm ⊕ Vm.

In addition, gathering the bases of the subspaces appearing in this equality, one
obtains an orthogonal basis of R|P |. It is this basis that we will use for editing.
Let us construct the |P | × |P | matrix E which contains the basis vectors as its
columns. Next, we need penalty weights μk, k = 1, ..., |P |. Since functions in
higher levels are smoother, we have made a design decision to set μk = 1/lα,
where l is the level from which the basis vector ekcomes from, and α is a positive
user set parameter: the larger it is the more high-level functions are preferred.
Very similar results are obtained by setting μk = 1/βl, with β > 1.

Consider the matrix M which hasMkk = 1/μk, and has zeros everywhere else.
Notice that the discrete counterpart of the kernel function K(p,q) is a |P |× |P |
matrix which we denote by K as well; clearly, K = EMET . Implementing the
rest of the steps should be straightforward.

7 Results and Discussion

We provide preliminary results of GLE using diffusion wavelets. Our starting
surface is the unit sphere; the mesh is obtained through platonic subdivision
using the trimesh2 library. The number of vertices is |P | = 482. We choose
m = 12 because V12 is one-dimensional, and so no more basis vectors coming
from Wi’s are produced. Choosing a smaller value of m will lead to less smooth
edits, because smoother basis functions belong to higher levels. Figure 1 depicts
the result of applying the following editing constraints: the south pole stays the
same, the north pole’s z-coordinate increases by 1. For comparison, the result of
Laplacian editing using cotangent weights is shown in the same figure.

Diffusion wavelets work with more complicated constraints as well. The con-
straints for Figure 2 are as follows: the vertices with |z| < 0.1 are moved closer
to the origin by setting x→ 0.5x, y → 0.5y, and the vertices with |z| > 0.7 are
kept same.

Our preliminary implementation was done in MATLAB, and it uses the dif-
fusion wavelet code provided on Mauro Maggioni’s website [27]. To give an idea
about timing: computation of diffusion wavelet basis for |P | = 482 took about 9
seconds, and editing took about 0.5 seconds. However, if the number of vertices
is doubled, the time spent to compute the diffusion wavelet basis increases to
about 90 seconds, while edit time goes up to 6 seconds. The experiments were
run on T7200 @ 2.0GHz laptop with 1GB main memory, running Windows XP
Professional.
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Fig. 1. Diffusion wavelet deformations of the sphere are in red. The parameters are as
follows: m = 12, and α = 0, 1, 2, 4, 8, 16 in respective order. The result of Laplacian
editing with the same constraints is given last in green.

Fig. 2. Diffusion wavelet deformation of the sphere is in red; m = 12 and α = 16 were
used. The result of Laplacian editing with the same constraints is in green.

7.1 Discussion

First, going back to the experiment of Figure 1, notice that by increasing α we
decrease the penalty of using high level basis vectors, this effectively suppresses
the use of lower level vectors, and results in smoother, more global edits. Thus,
the choice of this parameter can be tuned by whether less smooth local or more
smooth global edits are wanted. Such scale control in Laplacian editing can only
be achieved by varying the region of interest. This is due to the global nature
of Laplacian eigenfunctions – their support is the whole mesh. This results in
a “butterfly effect” – one may intend to make a little bump on the sphere, but
would end up with an ellipsoid.

Second, the reader would have noted our use of uniform sphere sampling. With
the implementation of diffusion wavelets that we used, we feel that, at least
theoretically, uniformity is necessary. Indeed, the computed diffusion wavelet
basis vectors are orthogonal with respect to the standard inner product on R|P | –
an inner product that does not correspond to anything geometrically meaningful
unless the mesh vertices are distributed uniformly over the area of the surface.
However, in practice non-uniform sampling leads to mixed results. For example
Figure 3 a) shows a very satisfying result of diffusion wavelet editing on a sphere
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Fig. 3. a) Diffusion wavelet deformation of longitude-latitude triangulated sphere. The
parameter values m = 12 and α = 16 were used. Same constraints as for Figure 2. b)
Same as in a) except that the “squishing” circle passes through the poles. The result
of Laplacian editing with this constraint is in green.

mesh obtained using longitude-latitude triangulation. Figure 3 b) shows what
happens if constraints include both of the poles of this non-uniformly sampled
sphere. It is certainly not very satisfying when compared to Laplacian editing.

Let us conclude by noting that one could in principle circumvent this issue
by first sampling a uniform point cloud on the surface, evaluating the diffusion
wavelets, and then interpolating their values from the point cloud to the mesh
vertices.

8 Connections to Segmentation

Motion based segmentation. [28,29,30] inputs an animation sequence of a bound-
ary mesh, and clusters together points that move in accord to produce a seg-
mentation. Now one can imagine feeding to such an algorithm “animations”
generated by applying Laplacian editing or GLE to the mesh – this would give
a segmentation associated with a given mesh editing approach.

Do we need to explicitly produce these animations in order to get the associ-
ated segmentation? Looking at the solution of GLE,

f∗(q) =
l∑

i=1

aiK(pi,q),

we notice that the value of K(pi,q) measures how much point q is influenced by
editing the handle at pi. Consequently, within the GLE framework, the magni-
tude of the kernel function K(p,q) is a measure of how much the points p and
q move in accord – making the kernel function a natural measure of similarity
for motion based segmentation. This is not a new approach to segmentation: for
example, [31] spells out similar ideas and uses the Green’s function of Laplace-
Beltrami operator – the kernel function of gradient-based editing – to obtain
pose-invariant segmentation of meshes.
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The manifold learning perspective on this association of editing and segmen-
tation is interesting. Indeed, there is a similarity between mesh segmentation
and unsupervised manifold learning. In mesh segmentation the objective is to
assign a discrete set of labels, segment identifiers, to the mesh vertices. This is
similar to defining an integer valued function on a point cloud in a meaningful
way – an instance of unsupervised manifold learning. But for each supervised
method based on regularization, one can device a corresponding unsupervised
method by simply using the same regularization term. In this case one would
search for a function f : S → R satisfying appropriate conditions – such as being
a fuzzy membership function that clusters points into even clusters – that mini-
mizes ‖f‖2I . Thus, it is not surprising to have a segmentation scheme canonically
associated with an editing method.

We conclude by noticing that the connection between mesh editing and seg-
mentation can be helpful when designing bases for GLE, assuming that a basis
that produces better segmentations should result in better editing.

9 Summary and Future Work

We have stated the formal relationship between manifold learning and naive
Laplacian and gradient-based editing. As a result, we were able to introduce a
generalized editing approach that allows the use of diffusion wavelets for mesh
editing. We believe that diffusion wavelets are a very promising alternative to
Laplacian eigenfunctions because due to their multi-scale nature. More experi-
ments will be required to verify this; including experiments where handle rota-
tions are propagated either using the existing approaches or through some new
approach based once more on diffusion wavelets. Replacing the naive Laplacian
editing by GLE in iterative methods such as [1] would provide another venue for
experimentation. Another very important direction for future research is devis-
ing diffusion wavelets for triangle meshes rather than point clouds and resolving
the issue of non-uniform sampling. Faster algorithms to evaluate such wavelets
would be indispensable for practical applications.

On the intriguing side, we would like to investigate whether the equivalence
extends to non-linear mesh editing approaches as well, and if so, to exploit these
equivalences in the opposite direction – see if the insights gained from mesh
editing can help in the realm of manifold learning.
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8. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface defor-
mation. Comput. Graph. Forum 24(3), 601–609 (2005)

9. Lipman, Y., Cohen-Or, D., Gal, R., Levin, D.: Volume and shape preservation via
moving frame manipulation. ACM Trans. Graph. 26(1), 5 (2007)

10. Sorkine, O.: Differential representations for mesh processing. Computer Graphics
Forum 25(4), 789–807 (2006)

11. Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In:
3DPVT 2004: Proceedings of the 3D Data Processing, Visualization, and Trans-
mission, 2nd International Symposium, Washington, DC, USA, pp. 68–75. IEEE
Computer Society, Los Alamitos (2004)

12. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coor-
dinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)

13. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive
surface modeling. In: SGP 2006: Proceedings of the fourth Eurographics sympo-
sium on Geometry processing, Aire-la-Ville, Switzerland, Switzerland, Eurograph-
ics Association, pp. 11–20 (2006)
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Abstract. For the approximation of gradients from data values at ver-
tices of a uniform grid, we compare two methods based on cubic spline
interpolation with a classical method based on finite differences. For uni-
variate cubic splines, we use the so-called de Boor’s Not a Knot property
and a new method giving pretty good slopes. Then these methods are
used on parallels to the axes for estimating gradients on bivariate grids.
They are illustrated by several numerical examples.

Keywords: gradient approximation, cubic splines.

1 Introduction

Let Ω := [a, b]× [c, d] be a rectangular domain endowed with the tensor-product
partition Zm,n := Xm ⊗ Yn where Xm := {xi = a + ih, 0 ≤ i ≤ m} and
Yn := {yj = c + jk, 0 ≤ j ≤ n} are uniform partitions with steplength h and k
on [a, b] and [c, d] respectively.

Given a set of data values zi,j := f(Mi,j) at gridpoints Mi,j := (xi, yj), where
f is a (known or unknown) function, we want to compute good approximations
of the gradients gi,j := (∂1f(Mi,j), ∂2f(Mi,j)), with ∂1f := ∂f

∂x and ∂2f := ∂f
∂y .

They can be used e.g. for the computation of the area of the associated surface.
We first compare two methods of approximation of first derivatives, based on
univariate interpolation by C2 cubic splines, with classical approximations by
finite differences (FD). The first comes from the so-called de Boor’s Not a Knot
interpolating spline (abbr. NAK, see [3]). The second is a new method based
on a better approximation of end derivatives, giving pretty good slopes (abbr.
PGS). Moreover, it has been recently proved by the author that the FD method
comes from a specific cubic spline quasi-interpolant. Then, we use these methods
on parallels to the axes for estimating gradients on bivariate grids.

Here is a brief outline of the paper: in Section 2, we recall the classical fi-
nite difference formulas giving fourth order approximations of derivatives. In
Section 3.1, we recall the computation of derivatives using the de Boor’s NAK
condition which only gives an overall third order approximation of these deriva-
tives. In Section 3.2, we present our new PGS method which is based on a
systematic fourth order approximation of derivatives. For both methods, we de-
velop the full Cholesky decompositions which are particularly simple and lead

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 322–334, 2009.
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to efficient and fast algorithms. Section 4 presents univariate numerical results
illustrating the previous methods. Finally, in Section 5, we extend the univariate
results to the bivariate grid described above. In that case, partial derivatives are
estimated on parallels to the main axes. We present several numerical results il-
lustrating the three methods. They show that our PGS method is very satisfying
and overall slightly better than the two others.

There are, of course, many other ways of approximating gradients on uniform
grids. In particular, one could also expect rather good approximations of gradi-
ents by using C1 quadratic spline quasi-interpolants based either on criss-cross
triangulations, as in [4][6], or on uniform Powell-Sabin triangulations, as in [5].
We plan to do a comparison with the methods presented in this paper. For the
estimation of gradients from scattered data, see e.g. [11].

2 Approximation of Derivatives by Finite Differences

Classical approximations of the first derivatives y′i := ϕ′(xi), 0 ≤ i ≤ m, of a
univariate function ϕ defined on [a, b] by its values yi := ϕ(xi), are given by
finite differences (abbr. FD). As those given in Section 3 by cubic splines are in
O(h4), we take the following, which is exact on P4 (the space of polynomials of
degree at most 4), for 2 ≤ i ≤ n− 2 :

y′i ≈ di :=
1
h

(
1
12
yi−2 − 2

3
yi−1 +

2
3
yi+1 − 1

12
yi+2

)
.

Using Taylor’s expansions at xi, we obtain a fourth order approximation of the
first derivative:

di = y′i −
1
30
h4y

(5)
i +O(h5).

Near endpoints, there are two specific formulas:

y′0 ≈ d0 =
1
h

(
−25

12
y0 + 4y1 − 3y2 +

4
3
y3 − 1

4
y4

)
,

y′1 ≈ d1 =
1
h

(
−1

4
y0 − 5

6
y1 +

3
2
y2 − 1

2
y3 +

1
12
y4

)
.

Taylor’s expansions at x0 and x1 give respectively

d0 = y′0 −
1
5
h4y

(5)
0 + 0(h5), d1 = y′1 +

1
20
h4y

(5)
1 + 0(h5).

In a similar way, we take

y′m−1 ≈ dm−1 =
1
h

(
1
4
ym +

5
6
ym−1 − 3

2
ym−2 +

1
2
ym−3 − 1

12
ym−4

)
.

y′m ≈ dm =
1
h

(
25
12
ym − 4ym−1 + 3ym−2 − 4

3
ym−3 +

1
4
ym−4

)
,
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whose Taylor’s expansions at xm−1 and xm give respectively

dm−1 = y′m−1 +
1
20
h4y

(5)
m−1 + 0(h5), dm = y′m −

1
5
h4y(5)

m + 0(h5),

Remark. Recently, the author has proved that these quantities can be obtained
as first derivatives of a specific cubic spline quasi-interpolant

Qf =
m+2∑

i=0

λi(f)Bi

where the Bi’s are cubic B-splines with knots Xm and the λi’s are discrete linear
functionals defined by the following formulas

λi(f) := −1
6
fi−2 +

4
3
fi−1 − 1

6
fi, 2 ≤ i ≤ m,

where fi = f(xi), 0 ≤ i ≤ m, with specific formulas at the endpoints

λ0(f) :=
1
36

(35f0 + 4f1 − 6f2 + 4f3 − f4)

λ1(f) :=
1
18

(5f0 + 26f1 − 21f2 + 10f3 − 2f4)

λm+1(f) :=
1
18

(5fm + 26fm−1 − 21fm−2 + 10fm−3 − 2fm−4)

λm+2(f) :=
1
36

(35fm + 4fm−1 − 6fm−2 + 4fm−3 − fm−4)

Moreover, the infinite norm of this QI satisfies ‖Q‖∞ ≤ 32/9 and the values of
the QI on Xm satisfy f(xi)−Qf(xi) = O(h4) for all 0 ≤ i ≤ m.

3 Univariate Cubic Spline Interpolation

Let S := S2
3 (I,Xm) be the space of C2 cubic splines on the uniform partition of

I in m subintervals Ii := [xi−1, xi], 1 ≤ i ≤ m. The restriction pi(t) ∈ P3 of a
spline S ∈ S to this subinterval can be written in the cubic Bernstein basis, via
the change of variable t := (x− xi−1)/h, as follows:

pi(t) = yi−1b
(3)
0 (t) + (yi−1 +

h

3
di−1)b

(3)
1 (t) + (yi − h

3
di)b

(3)
2 (t) + yib

(3)
3 (t),

where di := S′(xi), 0 ≤ i ≤ m and

b
(3)
0 (t) := (1− t)3, b

(3)
1 (t) := 3t(1− t)2, b

(3)
2 (t) := 3t2(1 − t), b

(3)
3 (t) = t3.

The unknown derivative values are solutions of the system of m− 1 linear equa-
tions deduced from the C2 continuity of S at points xi :

D2S(x−i ) = D2S(x+
i ), or D2pi(1) = D2pi+1(0), 1 ≤ i ≤ m− 1,
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to which we must add two conditions at the endpoints, in order to get m + 1
equations for the m+ 1 unknowns {di, 0 ≤ i ≤ m}. As the second derivative in
x of pi is equal to

1
h2
D2pi(t) =

6
h2

(
(yi − yi−1 − (di + 2di−1))(1− t) + (yi−1 − yi +

h

3
(di−1 + 2di))t

)

the main equations are

3
h

(yi−1 − yi) + (di−1 + 2di) =
3
h

(yi+1 − yi)− (di+1 + 2di)

and, setting pi := (yi − yi−1)/h, they can be written

di−1 + 4di + di+1 = 3(pi + pi+1), 1 ≤ i ≤ m− 1.

3.1 De Boor’s Not a Knot Condition

Linear system. De Boor [3] suggest to take as additional conditions the C3

continuity of S at knots x = x1 and x = xm−1, therefore the corresponding
NAK cubic spline has no discontinuity at that point (whence the name ”Not a
Knot”). At the first point, this equation reads as follows:

y1−3
(
y1 − h

3
d1

)
+3
(
y0 +

h

3
d0

)
−y0 = y2−3

(
y2 − h

3
d2

)
+3
(
y1 +

h

3
d1

)
−y1,

or equivalently

d0 − d2 = (−2y0 + 4y1 − 2y2)/h = 2(p1 − p2).

Subtracting this equation from the first equation d0 + 4d1 + d2 = 3(p1 + p2), we
get

2d1 + d2 = (p1 + 5p2)/2.

In a similar way, at the point x = xm−1, one has

dm−2 − dm = (−2ym−2 + 4ym−1 − 2ym)/h = 2(pm−1 − pm).

Adding this equation to the last equation dm−2 + 4dm−1 + dm = 3(pm−1 + pm),
we get

dm−2 + 2dm−1 = (5pm−1 + pm)/2.

Setting d := [d1, . . . , dm−1]T ∈ R
m−1, c := [(p1 +5p2)/2, 3(p2 +p3) . . . , 3(pm−2 +

pm−1), (5pm−1 + pm)/2]T ∈ R
m−1, and introducing the tridiagonal and positive

definite matrix
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K :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 . . . 0 0
1 4 1 0 . . . 0 0
. . . 1 4 1 . . .
. . . 1 4 1 . . .
. . . . . . . . .
0 0 . . . 0 1 4 1
0 0 . . . 0 1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

we have to solve the system
Kd = c.

Errors on derivatives. The errors on derivatives:

e′i := di − y′i, 0 ≤ i ≤ m

satisfy the system of equations

2e′1 + e′2 = ε1 := (p1 + 5p2)/2− (2y′1 + y′2)
e′i−1 + 4e′i + e′i+1 = εi := 3(pi + pi+1)− (y′i−1 + 4y′i + y′i+1),
e′m−2 + 2e′m−1 = εm−1 := (5pm−1 + pm)/2− (y′m−2 + 2y′m−1)

where 2 ≤ i ≤ m− 2. Using Taylor’s expansions at xi, we obtain

εi = − 1
30
h4y

(5)
i +O(h5).

It remains to expand :

ε1 = (p1 + 5p2)/2− (2y′1 + y′2), εm−1 = (5pm−1 + pm)/2− (y′m−2 + 2y′m−1).

Using Taylor’s expansions at x1, we first obtain

(p1 + 5p2)/2 = 3y′1 + hy′′1 +
1
2
h2y

(3)
1 +

1
12
h3y

(4)
1 +

1
40
h4y

(5)
1 +O(h5)

y′2 + 2y′1 = 3y′1 + hy′′1 +
1
2
h2y

(3)
1 +

1
6
h3y

(4)
1 +

1
24
h4y

(5)
1 +O(h5).

and finally

2e′1 + e′2 = ε1 = − 1
12
h3y

(4)
1 − 1

60
h4y

(5)
1 +O(h5).

In a similar way, using Taylor’s expansions at xm−1, we first obtain

(5pm−1 +pm)/2 = 3y′m−1−hy′′m−1 +
1
2
h2y

(3)
m−1−

1
12
h3y

(4)
m−1 +

1
40
h4y

(5)
m−1 +O(h5)

y′m−2 + 2y′m−1 = 3y′m−1 − hy′′m−1 +
1
2
h2y

(3)
m−1 −

1
6
h3y

(4)
m−1 +

1
24
h4y

(5)
m−1 +O(h5).
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and finally

e′m−2 + 2e′m−1 = εm−1 =
1
12
h3y

(4)
m−1 −

1
60
h4y

(5)
m−1 +O(h5).

Therefore, we have

e′0 − e′2 = ε0 = 2(p1 − p2)− (y′0 − y′2)
e′m−2 − e′m = εm = 2(pm−1 − pm)− (y′m−2 − y′m).

The corresponding expansions are respectively

ε0 =
1
6
h3y

(4)
1 +O(h5), εm =

1
6
h3y

(4)
m−1 +O(h5).

The errors satisfy the system of linear equations (with 2 ≤ i ≤ m− 2) :

e′0 − e′2 = 1
6h

3y
(4)
1 +O(h5) (1)

2e′1 + e′2 = − 1
12h

3y
(4)
1 − 1

60h
4y

(5)
1 +O(h5) (2)

e′i−1 + 4e′i + e′i+1 = − 1
30h

4y
(5)
i +O(h5) (3)

e′m−2 + 2e′m−1 = 1
12h

3y
(4)
m−1 − 1

60h
4y

(5)
m−1 +O(h5) (4)

e′m−2 − e′m = 1
6h

3y
(4)
m−1 +O(h5) (5)

Doing the linear combinations (1) + 2(2) and 2(4)− (5) give the new equations

e′0+4e′1+e′2 = − 1
30
h4y

(5)
1 +O(h5), e′m−2+4e′m−1+e′m = − 1

30
h4y

(5)
m−1+O(h5).

In spite of the fact that all equations, except the first and the last, have a right
hand side in O(h4), the overall error e′i, for 0 ≤ i ≤ m, is only O(h3) (see
numerical examples in Section 5).

3.2 Improving De Boor’s Not a Knot Condition : PGS Method

Linear system. We shall improve on de Boor’s NAK condition of the previous
section, in order to get errors on derivatives which are all in O(h4). We call this
method PGS=”Pretty Good Slopes”. Instead of the first de Boor’s equation

d0 − d2 = 2(p1 − p2),

we consider the new equation :

(E0) ad0 + bd1 + cd2 = αp1 + βp2 + γp3,

where a, b, c, α, β, γ are free parameters. Of course, this equation must not be
identical to equation

(E1) d0 + 4d1 + d2 = 3(p1 + p2)



328 P. Sablonnière

So we get

ae′0 + be′1 + ce′2 = ε0 = αp1 + βp2 + γp3 − (ay′0 + by′1 + cy′2).

Using Taylor’s expansions at x1, swe obtain

ε0 = (α+ β + γ − a− b− c)y′1 +
1
2
hy′′1 (−α+ β + 3γ + 2a− 2c)

+
1
6
h2y

(3)
1 (α+ β + 7γ − 3a− 3c) +

1
24
h3y

(4)
1 (−α+ β + 15γ + 4a− 4c) +O(h4).

If we want ε0 to be a O(h4), the 6 parameters have to satisfy the 4 following
equations

α+ β + γ − a− b− c = 0
−α+ β + 3γ + 2a− 2c = 0
α+ β + 7γ − 3a− 3c = 0

−α+ β + 15γ + 4a− 4c = 0

from which we deduce, taking a and c as parameters :

b = 3a+ c, α =
1
6
(17a+ c), β =

1
3
(4a+ 5c), γ =

1
6
(−a+ c).

Therefore, the new equation reads as follows:

(E0) ad0 + (3a+ c)d1 + cd2 = αp1 + βp2 + γp3,

The linear combination (E0)− a(E1) of the two first equations gives

(c− a)(d1 + d2) = (α− 3a)p1 + (β − 3a)p2 + γp3 = (c− a)1
6
(p1 + 10p2 + p3).

As we must have c− a �= 0, we take for example c− a = 1 and we choose

a = 1, c = 2, b = 5, α =
19
6
, β =

14
3
, γ =

1
6
,

whence the new equation (E0) :

d0 + 5d1 + 2d2 =
1
6
(19p1 + 28p2 + p3).

Combining with equation (E1)

d0 + 4d1 + d2 = 3(p1 + p2)

we get the simpler and more symmetric equation

d1 + d2 =
1
6
(p1 + 10p2 + p3) = c′1,
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and similarly

dm−2 + dm−1 =
1
6
(pm−2 + 10pm−1 + pm) = c′m−1.

The new system is K ′d = c′ with the new matrix of size m− 1 :

K ′ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0
1 4 1 0 . . . 0 0
. . . 1 4 1 . . .
. . . 1 4 1 . . .
. . . . . .
0 0 . . . 0 1 4 1
0 0 . . . 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the new vector in the right-hand side

c′ = [c′1, 3(p2 + p3), . . . , 3(pm−2 + pm−1), c′m−1]
T .

Errors on derivatives. These errors e′i = d′i − y′i satisfy the equations

e′1 + e′2 = ε′1 := (p1 + 10p2 + p3)/6− (y′1 + y′2)
e′i−1 + 4e′i + e′i+1 = εi := 3(pi + pi+1)− (y′i−1 + 4y′i + y′i+1)

e′m−2 + e′m−1 = ε′m−1 := (pm−2 + 10pm−1 + pm)/6− (y′m−2 + y′m−1)

where 2 ≤ i ≤ m− 2. From Taylor’s expansions in Section 3.1, we deduce:

1
6
(p1 + 10p2 + p3) = 2y′1 + hy′′1 +

1
2
h2y

(3)
1 +

1
6
h3y

(4)
1 +

7
120

h4y
(5)
1 +O(h5),

y′1 + y′2 = 2y′1 + hy′′1 +
1
2
h2y

(3)
1 +

1
6
h3y

(4)
1 +

1
24
h4y

(5)
1 +O(h5),

whence, using the same technique for the last equation (m− 1):

ε′1 =
1
60
h4y

(5)
1 +O(h5), ε′m−1 =

1
60
h4y

(5)
m−1 +O(h5),

and, for 2 ≤ i ≤ m− 1,

εi = − 1
30
h4y

(5)
i +O(h5).

Therefore, we see that all right hand sides εi, 0 ≤ i ≤ m, are in O(h4), which
implies that all errors are also in O(h4). This result is confirmed by numerical
results (Section 5).
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4 Solving Tridiagonal Systems for Cubic Splines

As both matrices are positive definite, their Choleski decompositions are

K = LLT and K ′ = MMT

with lower bidiagonal matrices L and M :

L :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 . . . 0 0
κ1 λ2 0 0 . . . 0 0
0 κ2 λ3 0 . . .
. . . . . .
. . . κi−1 λi 0 . . .
. . . . . .
0 0 . . . 0 κm−3 λm−2 0
0 0 . . . 0 κm−2 λm−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 0 0 . . . 0 0
ν1 μ2 0 0 . . . 0 0
0 ν2 μ3 0 . . .
. . . . . .
. . . νi−1 μi 0 . . .
. . . . . .
0 0 . . . 0 νm−3 μm−2 0
0 0 . . . 0 νm−2 μm−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.1 Computation of the Matrix L and Solution of the System

For the matrix L, we obtain successively

λ2
1 = 2, hence λ1 =

√
2, κ1 = 1/λ1 = 1/

√
2,

λ2
i + κ2

i−1 = 4, hence λi =
√

4− κ2
i−1, κi = 1/λi, for 2 ≤ i ≤ m− 2,

λm−1 =
√

2− κ2
m−2,

For solving Kd = c, one has to solve successively

Lδ = c and LTd = δ,

which leads to the simple algorithm:

δ1 = c1/λ1, δi = (ci − κi−1δi−1)/λi, i = 2 . . .m− 1,

dm−1 = δm−1/λm−1 di = (δi − κidi+1)/λi, i = m− 2 . . . 1.

The computational cost for (un) is (about) 3m flops, for L also 3m flops, and
for the solution of each system 3m flops, thus the global cost is about 12m flops.
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4.2 Computation of the Matrix M and Solution of the System

In the same way, for the matrix M , we obtain successively

μ2
1 = 1, hence μ1 = 1 and ν1 = 1/μ1 = 1.

μ2
i + ν2

i−1 = 4, hence μi =
√

4− ν2
i−1, νi = 1/μi, for 2 ≤ i ≤ m− 2,

μm−1 =
√

1− ν2
m−2,

For solving K ′d′ = c′, one has to solve successively

Mδ′ = c′ and MTd′ = δ′,

which leads to the simple algorithm:

δ′1 = c′1/μ1, δ′i = (c′i − νi−1δ
′
i−1)/μi, i = 2 . . .m− 1,

d′m−1 = δ′m−1/μm−1 d′i = (δ′i − νid
′
i+1)/μi, i = m− 2 . . . 1.

The computational cost is about 12m flops, as for the preceding system.

5 Numerical Results

We compare the computations of derivatives using the three above methods
(FD=finite differences, NAK=Not a Knot, PGS=Pretty Good Slopes) on various
types of functions. Tables give the max of absolute values of errors at data points.
The notation 4.88(−4) means 4.88× 10−4.

We easily verify the convergence orders O(h4) for FD and PGS and O(h3) for
NAK. We also notice that PGS is in general better than FD: though one has to
solve a linear system, the computational time is not much higher.

Examples 1 & 2 : f(x) =
1

1 + 5x2
, f(x) = exp(−3x) sin(3πx), x ∈ [−1, 1].

m FD NAK PGS
32 2.52(-3) 4.88(-4) 4.88(-4)
64 1.73(-4) 3.52(-5) 3.03(-5)
128 1.10(-5) 4.20(-6) 1.86(-6)
256 6.96(-7) 5.14(-7) 1.16(-7)
512 4.36(-8) 6.35(-8) 7.27(-9)
1024 2.72(-9) 7.89(-9) 4.54(-10)
2048 1.70(-10) 9.83(-10) 2.84(-11)

m FD NAK PGS
32 0.08 0.75 0.08
64 1.95(-2) 7.56(-2) 1.60(-2)
128 1.72(-3) 7.92(-3) 1.31(-3)
256 1.21(-4) 8.84(-4) 9.07(-5)
512 8.00(-6) 1.03(-4) 5.92(-6)
1024 5.11(-7) 1.25(-5) 3.77(-7)
2048 3.23(-8) 1.53(-6) 2.38(-8)

Examples 3 & 4: f(x) = 1/ cosh(x − 0.5), x ∈ [−1, 1], f(x) = exp(−x2),
x ∈ [−2, 2].



332 P. Sablonnière

m FD NAK PGS
32 1.47(-4) 3.52(-5) 1.06(-4)
64 8.23(-6) 1.15(-5) 5.94(-6)
128 4.75(-7) 1.85(-6) 3.46(-7)
256 2.84(-8) 2.56(-7) 2.08(-8)
512 1.73(-9) 3.35(-8) 1.27(-9)
1024 1.07(-10) 4.28(-9) 7.86(-11)
2048 6.64(-12) 5.40(-10) 4.88(-12)

m FD NAK PGS
32 2.54(-4) 4.28(-4) 1.42(-4)
64 1.65(-5) 5.88(-5) 4.27(-6)
128 1.04(-6) 7.54(-6) 1.73(-7)
256 6.50(-8) 9.49(-7) 1.08(-8)
512 4.06(-9) 1.19(-7) 6.77(-10)
1024 2.54(-10) 1.49(-8) 4.23(-11)
2048 1.58(-11) 1.86(-9) 2.64(-12)

6 Estimation of Gradients

6.1 The Methods

We remind the reader of the notations of the introduction : Ω := [a, b]× [c, d] is a
rectangular domain endowed with the tensor-product partition Zm,n := Xm⊗Yn

where Xm := {xi = a + ih, 0 ≤ i ≤ m} and Yn := {yj = c+ jk, 0 ≤ j ≤ n} are
uniform partitions with steplength h and k on [a, b] and [c, d] respectively.

Given a set of data values zi,j := f(Mi,j) at gridpoints Mi,j := (xi, yj), where
f is a (known or unknown) function, we want to find good approximations of
the gradients gi,j := (pi,j = ∂1f(Mi,j), qi,j = ∂2f(Mi,j). The method consists
of approximating derivatives in x (resp. in y) of restrictions of f to the n +
1 horizontal lines (resp. to the m + 1 vertical lines) for ∂1f(Mi,j) (resp. for
∂2f(Mi,j)). Thus, for NAK and PGS methods, one has to solve n+1 tridiagonal
systems in m+1 variables and m+1 tridiagonal systems in n+1 variables. The
global computational cost is about 24mn flops, i.e. proportional to the number
of data points.

6.2 Numerical Examples

We now compare the results obtained by using both methods with those obtained
by using finite differences in x and y. We denote by RF , RK , RS respectively the
ratios of successive errors. They should be close to 8 (resp. 16) for a conver-
gence order equal to 3 (resp. 4). The following tables give the maximum values
of errors on all gridpoints for both partial derivatives. However, when f satisfies
f(x, y) = f(y, x) (examples 1 and 2), we only give one table.

Examples 1 & 2 : f(x, y) = x5y5, Ω = [0, 1]2; f(x, y) = exp(−x2 − y2),
Ω = [−1, 1]2, m = n.

n FD RF NAK RK PGS RS

8 5.8(-3) 3.7(-2) 4.3(-3)
16 3.7(-4) 15.7 4.9(-3) 7.5 2.7(-4) 15.9
32 2.3(-5) 16.1 6.4(-4) 7.6 1.7(-5) 15.9
64 1.4(-6) 16.4 8.1(-5) 7.9 1.0(-6) 16.3
128 8.9(-8) 15.7 1.0(-5) 8.1 6.6(-8) 15.1

n FD RF NAK RK PGS RS

8 2.0(-2) 1.6(-2) 1.4(-2)
16 6.6(-4) 30.3 2.5(-3) 6.4 4.1(-4) 34
32 1.6(-5) 41.2 3.2(-4) 7.8 8.5(-6) 48
64 1.0(-6) 16 4.1(-5) 7.8 1.8(-7) 47
128 6.5(-8) 15.4 5.1(-6) 8 1.2(-8) 15
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Example 3. f(x, y) = sin(π(x + 3y)), Ω = [0, 1]2, m = n. The two tables give
max errors on partial derivatives in x and y.

n FD RF NAK RK PGS RS

8 1.4(-2) 3.4(-2) 1.1(-2)
16 9.3(-4) 15.5 4.3(-3) 7.96.8(-4) 15.7
32 5.8(-5) 16 5.3(-4) 8;1 4.3(-5) 15.8
64 3.6(-6) 16.1 6.6(-5) 8.0 2.7(-6) 15.9
128 2.3(-7) 15.6 8.3(-6) 8.0 1.7(-7) 15.9
256 1.4(-8) 16.4 1.0(-6) 8.3 1.0(-8) 16.3

FD RF NAK RK PGS RS

2.9 2.6 2.4
0.21 15.8 0.34 7.8 0.16 14.8

1.4(-2) 15 4.3(-2) 7.9 1.0(-2) 16
8.8(-4) 15.9 5.4(-3) 8.0 6.5(-4) 15.4
5.5(-5) 16 6.7(-4) 8.0 4.1(-5) 15.8
3.5(-6) 15.7 8.4(-5) 8.0 2.5(-6) 16.4

These examples confirm the convergence rates observed in the univariate case
and the good behaviour of the PGS method.

The two following examples are more complex : the corresponding functions
have huge variations. We still observe the good behaviour of FD and PGS meth-
ods, with a slight advantage to the latter. However, the computational cost of
the PGS method, in the bivariate case, is between 4 and 6 times that of the FD
method.

Example 4 : Franke’s function [7][1]

f2(x, y) = .75 exp(−1
4
((9x− 2)2 + (9y − 2)2)

+ .75 exp(− 1
49

(9x+ 1)2 − 1
10

(9y + 1))

+ .5 exp(−1
4
((9x− 7)2 + (9y − 3)2)− .2 exp(−(9x− 4)2 − (9y − 7)2),

Ω = [0, 1]2, m = n.

n FD RF NAK RK PGS RS

16 0.12 7.25 6.6(-2) 9.1 7.9(-2) 13.3
32 1.1(-2) 10.9 1.1(-2) 6 2.2(-3) 35.9
64 7.4(-4) 14.9 1.5(-3) 7.3 1.3(-4) 16.9
128 4.8(-5) 15.6 1.8(-4) 8.3 8.0(-6) 16.2

FD RF NAK RK PGS RS

0.11 9.9 0.15 3.6 0.18 8.9
2.4(-2) 4.6 1.1(-2) 13.6 1.6(-2) 11.2
7.6(-4) 31.6 1.5(-3) 7.3 4.7(-4) 34
4.8(-5) 16 1.9(-4) 8.1 1.4(-5) 34

Note that the results for ∂2f are rather unstable. We need finer meshes to get
correct estimates of the order.

Example 5 : Nielson’s function [9][1]

f(x, y) = 0.5 y (cos(4(x2 + y − 1)))4, (x, y) ∈ [0, 1]2

n FD RF NAK RK PGS RS

16 2.36 2.25 2.27
32 0.29 8.1 0.33 6.8 0.23 9.9
64 2.2(-2) 13.2 4.4(-2) 7.5 1.7(-2) 13.8
128 1.5(-3) 14.9 5.6(-3) 7.8 1.1(-3) 15.3

FD RF NAK RK PGS RS

0.18 0.21 0.15
1.3(-2) 13.3 2.8(-2) 7.5 1.0(-2) 15
8.9(-4) 15.2 3.6(-3) 7.8 6.6(-4) 15.2
5.7(-5) 15.7 4.5(-4) 7.9 4.2(-5) 15.7



334 P. Sablonnière

References
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Abstract. We consider the problem of better approximating surfaces
by triangular meshes. The approximating triangulations are regarded as
finite metric spaces and the approximated smooth surfaces are viewed as
their Haussdorff-Gromov limit. This allows us to define in a more natural
way the relevant elements, constants and invariants, such as principal di-
rections and Gauss curvature, etc. By a “natural way” we mean intrinsic,
discrete, metric definitions as opposed to approximating or paraphrasing
the differentiable notions. Here we consider the problem of determining
the Gauss curvature of a polyhedral surface, by using the metric cur-
vatures in the sense of Wald, Menger and Haantjes. We present three
modalities of employing these definitions for the computation of Gauss
curvature.

1 Introduction

The paramount importance of triangulations of surfaces and their ubiquity in
various implementations, such as numerous algorithms applied in robot and com-
puter vision, computer graphics and geometric modeling, has hardly to be under-
lined here. Applications range from industrial ones, to biomedical engineering,
cartography and astrography – to name just a few.

In consequence, determining the intrinsic properties of the surfaces under
study, and especially computing their Gaussian curvature is essential. However
Gauss curvature is a notion that is defined for smooth surfaces only, and usually
attacked with differential tools. A common approach for dealing with non-smooth
surfaces is to use discretizations of these differential tools such as numerical
schemes for first and second order derivatives. Such an approach, though effective
in various problems, can hardly represent good approximations for curvature for
piecewise-flat (e.g. triangulated surface reconstructed from sample points), and
even less so for grayscale images (see Figure 1 for a standard example), which
are the actual objects under study in all real life aspects.

Moreover, since considering triangulations, one is faced with finite graphs, or,
in many cases (when given just the vertices of the triangulation) only with finite
– thus discrete – metric spaces. Therefore, the following natural questions arise:

Question 1. Can one find discrete, metric equivalents of the differentiable no-
tions, notions that are intrinsically more apt to describe the properties of the
finite spaces under investigations?

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 335–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A discrete grayscale “surface” reconstructed from sample points (left) of the
ubiquitous “Lena” of image processing (right)

Question 2. Is one fully justified in employing discrete metric spaces when eval-
uating numerical invariants of continuous surfaces?

In this paper we review some fundamental studies that concerned these and
other similar questions and show that the answers for them are affirmative. The
outcome of this study is a fully rigorous mathematical theory of metric geometry
which is, in a one sentence summary, the ability to apply differential geometry in
metric spaces, the metric of whom may not be smooth. It is shown that their role
is not restricted to that of being yet another discrete version of Gauss curvature,
but permits one to attach a meaningful notion of curvature to points where the
surface fails to be smooth, such as cone points and critical lines.

This metric method has already been successfully used in the such diverse
fields as geometric group theory, geometric topology and hyperbolic manifolds,
and geometric measure theory. Their relevance to computer graphics in particu-
lar and applied mathematics in general is made even more poignant by the study
of clouds of points (see [13], [17]), in image processing (wavelets) [27] and also
in applications in chemistry and biology (see [25]).

We propose to employ metric geometry to the study of triangulated surfaces,
with a view to applications. Our method permits applying curvature reconstruc-
tion to cases where the classical notions do not apply, such as surfaces with
“folds”, “ridges” and “facets”. The idea of using metric geometry in such “real
life problems” is where the main novelty of this paper lies.

This is becoming more and more pertinent in recent years, because, starting
with [12], isometric embeddings of manifolds have been considered, in various
aspects and applications of and Image Processing and Computer Graphics. (We
mention [5], (and its subsequent papers), [14], [26], but this represents a far from
exhaustive list.)
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The paper is organized as follows: in Section 2 we concentrate our efforts on
the theoretical level and study the Lipschitz and Gromov-Hausdorff distances be-
tween metric spaces, and show that approximating smooth surfaces by nets and
triangulations is not only permissible, but is, in a way, the natural thing to do.
In particular we show that every compact surface is the Gromov-Hausdorff limit
of a sequence of finite graphs. In Section 3 we introduce two metric analogues for
the curvature of curves, namely the Menger, and Haantjes curvatures and study
their mutual relationship. Furthermore, we show how to relate to these notions
as metric analogues of sectional curvature and how to employ them in the eval-
uation of Gauss curvature of triangulated surfaces. Further in this section we
present a metric version of curvature for, not necessarily smooth, surfaces. This
is the embedding, or Wald curvature. We study its proprieties and investigate the
relationship between Wald and Gauss curvatures, and show that for smooth sur-
faces they coincide. Hence, the Wald curvature represents a legitimate discrete
candidate for approximating the Gaussian curvature for triangulated surfaces.
Section 4 is dedicated to developing formulas that allow the computation of Wald
curvature: first the precise ones, based upon the Cayley-Menger determinants,
and then we develop (after Robinson) elementary formulas that approximate
well the embedding curvature. In Section 5 in which we present some prelimi-
nary numerical results obtained by employing metric geometry tools for sampled
surfaces and approximating Gaussian curvature by metric curvatures. Finally,
in Section 6, we bring a few brief concluding remarks.

2 The Gromov-Haussdorff Limits

In this section we give a brief review of metric geometry, and mention those
results and theorems that are the most relevant to the latter part of the paper.
While most of the detailed and lengthy proofs are omitted, we try to give a flavor
of the theory and its techniques. However, the main theorem will be stated along
with its proof. For the full depth of the material presented in this section, we
refer the reader to the beautiful and inspiring (but not always easy to follow)
[11], and to [6], for an excellent, clear textbook. (A somewhat lengthier “digest”
can be found in [23].)

We start by first introducing the classical Hausdorff distance:

Definition 1. Let (X, d) be a metric space and let A,B ⊆ X. We define the
Hausdorff distance between A and B as:

dH(A,B) = inf{r > 0 |A ⊂ Ur(B), B ⊂ Ur(A)} ,

where Ur(A) is the r-neighborhood of A, Ur(A)
�
=
⋃

a∈ABr(a).

Another equivalent way of defining the Hausdorff distance is as follows:

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)} .
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Note that, while in general dH is only a semi-metric, we have the following

Proposition 1. Let (X, d) be a metric space. Then dH is a metric on the set
M(X) of closed subsets of X.

Moreover, we have the following important results, (the second one being due to
Blaschke), which we bring without their lengthy proofs (see [6], pp. 253-254):

Theorem 3. (a) If X is complete, then M(X) complete.
(b) If X is compact, then M(X) compact.

We wish to extend the Hausdorff metric to non-compact spaces. To do this, we
proceed along the following basic guide-lines: we want to obtain the maximum
distance dGH that satisfies the two conditions below:

1. dGH(A,B) ≤ dH(A,B), for any A,B ⊂ X (i.e. sets that are close as subsets
of a given metric space X will still be close as abstract metric spaces);

2. X is isometric to Y iff dGH(X,Y ) = 0.

The definition we seek is the following one:

Definition 2. Let X,Y be metric spaces. Then the Gromov-Hausdorff distance
between X and Y is defined by:

dGH(X,Y ) = inf dZ
H(f(X), g(Y )) ;

where the infimum is taken over all metric spaces Z in which both X and Y can
be isometrically embedded and over all such isometric embeddings.

Remark 1. It is sufficient to consider embeddings f into the disjoint union of the
spaces X and Y , X

∐
Y . X

∐
Y is made into a metric space by defining

d(x, y) =
{
infz∈X∩Y (dX(x, z) + dY (z, y)) , (x ∈ X) and (y ∈ Y ) ;
∞ , X ∩ Y = ∅ .

The following notion is also important both in the theoretical setting and for
our applicative purposes:

Definition 3. Let (X, d) be a metric space, and let A ⊂ X. A is called an ε-net
iff d(x,A) ≤ ε, for all x ∈ X.

The approximation of spaces by ε-nets is, as already hinted above, an important
topic, both in the Differential Geometric context (see, e.g. [11]) and for its Vision
and Graphics applications. In presenting some of its applications, we begin by
citing the following basic result:

Theorem 4. dGH is a finite metric on the set of isometry classes of compact
metric spaces.

Moreover, the following important result holds:
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Proposition 2. Let X, {Xn}∞1 compact metric spaces. Then: Xn−→
GH

X iff for
all ε > 0, there exist finite ε-nets S ⊂ X and Sn ⊂ Xn, such that Sn−→

GH
S and,

moreover, |Sn| = |S|, for large enough n.

The proposition above can be summarized as the convergence of geometric prop-
erties of Sn to those of S, as Xn−→

GH
X . A typical example is that of the intrinsic

metric i.e. the metric induced by a length structure (i.e. path length) by a met-
ric on a subset of a given metric space. (The classical example of surfaces in
R

3 being the motivating one.) It can be stated in an equivalent but less concise
and elegant manner, that is, perhaps, more familiar to the Applied Mathematics
community:

Proposition 3. Let X,Y be compact metric spaces. Then:
(a) If Y is a (ε, δ)-approximation of X, then dGH(X,Y ) < 2ε+ δ.
(b) If dGH(X,Y ) < ε, then Y is a 5ε-approximation of X.

Recall that ε-δ-approximations are defined as follow:

Definition 4. Let X,Y be compact metric spaces, and let ε, δ > 0. X,Y are
called ε-δ-approximations (of each-other) iff: there exist sequences {xi}Ni=1 ⊂ X
and {yi}Ni=1 ⊂ Y such that
(a) {xi}Ni=1 is an ε-net in X and {yi}Ni=1 is an ε-net in Y ;
(b) | dX(xi, xj)− d(yi, yj) | < δ for all i, j ∈ {1, ..., N}.
An (ε, ε)-approximation is called, for short an ε-approximation.

Amongst metric spaces, those whose metric d is intrinsic, are called length spaces
and are of special interest in Geometry. The following theorem shows that length
spaces are closed in the GH-topology:

Theorem 5. Let {Xn} be length spaces and let X be a complete metric space
such that Xn−→

GH
X. Then X is a length space.

The next theorem and its corollary are of paramount importance (and not only
for our present study):

Theorem 6 (Gromov). Any compact length space is the GH-limit of a se-
quence of finite graphs.

Since the proof of the theorem above is constructive and thus also important in
applications, we bring it below:

Proof. Let ε, δ (δ 	 ε) small enough, and let S be a δ-net in X . Also, let G =
(V,E) be the graph with V = S and E = {(x, y) | d(x, y) < ε}. We shall prove
that G is an ε-approximation of X , for δ small enough (for δ < ε2

4 \diam(X), to
be more precise).

But, since S is an ε-net both in X and in G, and since dG(x, y) ≥ dX(x, y),
it is sufficient to prove that:

dG(x, y) ≤ dX(x, y) + ε .
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Let γ be the shortest path between x and y, and let x1, ..., xn ∈ γ, such that
n ≤ length(γ)/ε (and dX(xi, xi+1) ≤ ε/2). Since for any xi there exists yi ∈ S,
such that dX(xi, yi) ≤ δ, it follows that dX(yi, yi+1) ≤ dX(xi, xi+1) + 2δ < ε.

Therefore, (for δ < ε/4), there exists an edge e ∈ G, e = yiyi+1. From this we
get the following upper bound for dG(x, y):

dG(x, y) ≤ Σn
0 dX(yi, yi+1) ≤ Σn

0 dX(xi, xi+1) + 2δn

But n < 2 length(γ)/ε ≤ 2diam(X)/ε. Moreover: δ < ε2/4 diam(X). It follows
that:

dG(x, y) ≤ dX(x, y) + δ
4diam(X)

ε
< dX(x, y) + ε .

Thus, for any ε > 0, there exists an ε-approximation of X , G = Gε. Hence
Gn→

εX .

Corollary 7. Let X be a compact length space. Then X is the Gromov-
Hausdorff limit of a sequence {Gn}n≥1 of finite graphs, isometrically embedded
in X.

Remark 2. (a) If Gn→
εX , Gn = (Vn, En). If there exists N0 ∈ N such that

(∗) |En| ≤ N0, for all n ∈ N ,

then X is a finite graph.
(b) If condition (∗) is replaced by:

(∗∗) |Vn| ≤ N0, for all n ∈ N ,

then X will still be always a graph, but not necessarily finite.

By Theorem 5, geometric properties of metric spaces are inherited by their
Gromov-Hausdorff limits. Thus, we can use the Gromov-Hausdorff limit each
and every time the geometric properties of Xn can be expressed in term of a
finite number of points, and, by passing to the limit, automatically obtain pro-
prieties of X . This is essentially the affirmative answer for Question 1. Moreover,
this is the apparatus used in “the great scheme of things” of Differential Geome-
try, mainly for the Cheeger-Gromov Precompactness Theorem (see, [11]) and its
subsequent developments in “classical” Riemannian Geometry (see, e.g. [19]),
the theory of Alexandrov spaces (see, e.g. [21]), and, more recently, in the study
of metric measure spaces ([11], [28], [30], [15], [20]).

In the next section we will consider Question 2 and discuss the ability of
efficient approximation of some geometric properties of a smooth surface by
those of a sequence of sampled surfaces, where the smooth surface is considered
as the Gromov-Hausdorff limit of the sampled surfaces. The property we will
focus on is curvature. Moreover, in view of the Theorem 6 and its Corollary,
triangulations are considered as the finite graphs given by their 1-skeleta. We
shall not, however, adopt the methods mentioned in the preceding paragraph,
but rather a more direct (and more classical) approach, since we believe it is
better fitted for applicative goals.
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3 Metric Curvatures

In the light of the discussion at the end of the previous section, we focus in
this section on a number of metric versions of curvature for rather general
metric spaces. We begin by introducing metric analogues for the curvature of
plane curves and in the sequel some metric definitions for Gauss curvature are
considered.

We begin by introducing the most elementary of the metric curvatures, the
Menger curvature: this is a metric expression for the circumradius of a triangle
– thus giving in the limit a metric definition of the osculatory circle – and it is
based upon some elementary high-school formulas:

Definition 5. Let (M,d) be a metric space, and let p, q, r ∈M be three distinct
points. Then:

KM (p, q, r) =

√
(pq + qr + rp)(pq + qr − rp)(pq − qr + rp)(−pq + qr + rp)

pq · qr · rp ;

is called the Menger Curvature of the points p, q, r. (Here and throughout this
section the distance between the points p, q is denoted, for brevity, by pq, etc.)

We can now define the Menger curvature at a given point by passing to the limit:

Definition 6. Let (M,d) be a metric space and let p ∈ M be an accumulation
point. We say that M has at p Menger curvature κM (p) iff for any ε > 0, there
exists δ > 0, such that for any triple of points p1, p2, p3, satisfying d(p, pi) <
δ, i = 1, 2, 3; the following inequality holds: |KM (p1, p2, p3)− κM (p)| < ε.

Applications of Menger curvature include, most notably, estimates (obtained via
the Cauchy integral) for the regularity of fractals and the flatness of sets in the
plane (see [18]). Also, it was employed, in a more practical implementation, for
curve reconstruction (see [10]).

Since κM (p) is modeled after a specific geometric property of the Euclidean
plane, it conveys this Euclidean type of curvature upon the space it is defined on.
Therefore it is unsuited for the geometrization of generic metric spaces. There
exists, however, another notion of curvature that does not closely mimic R

2,
therefore is better fitted for generalizations (e.g. for the metrization of graphs –
see [25]):

Definition 7. Let (M,d) be a metric space and let c : I = [0, 1] ∼→ M be a
homeomorphism, and let p, q, r ∈ c(I), q, r = p. Denote by q̂r the arc of c(I)
between q and r, and by qr the line segment from q to r.

Then c has Haantjes curvature κH(p) at the point p iff:

κ2
H(p) = 24 lim

q,r→p

l(q̂r)− d(q, r)
(
l(q̂r)

)3 ;

where “l(q̂r)” denotes the length – in intrinsic metric induced by d – of q̂r.
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Remark 3. It should be noted that κH exists only for rectifiable curves, but if κM

exists at any point p of c, then c is rectifiable. Moreover, the following theorem
(see [4], Theorem 10.2):

Theorem 8. Let c : I → M be a rectifiable curve, and let p ∈ M . If κM (p)
exists (and is finite), then κH(p) exists and κH(p) = κM (p) .

It follows that Haantjes curvature represents, in fact, the more general notion
(which should not be surprising in view of the fact, noted above, that the Menger
curvature is inherently Euclidean).

Of course, both Menger and Haantjes curvatures can be employed, as approxi-
mations to sectional curvatures, of triangulated surfaces. In Section 5 we include
some preliminary results in this direction.

3.1 Wald Curvature

A more powerful approach stems from Gauss’ original method of comparing
surface curvature to a standard, model surface (i.e. the unit sphere in R

3). It
was Wald’s idea to use more types of gauge surfaces and to restrict oneself to
the study of the minimal geometric figure that allows this comparison.

Definition 8. Let (M,d) be a metric space, and let Q = {p1, ..., p4} ⊂ M ,
together with the mutual distances: dij = dji = d(pi, pj); 1 ≤ i, j ≤ 4. The set Q
together with the set of distances {dij}1≤i,j≤4 is called a metric quadruple.

Remark 4. One can define metric quadruples in slightly more abstract manner,
without the aid of the ambient space: a metric quadruple being a 4 point metric
space, i.e. Q =

({p1, ..., p4}, {dij}
)
, where the distances dij verify the axioms for

a metric.

Before passing to the next definition, let us introduce the following notation: Sκ

denotes the complete, simply connected surface of constant Gauss curvature κ
(or space form), i.e. Sκ ≡ R

2, if κ = 0; Sκ ≡ S
2√

κ
, if κ > 0; and Sκ ≡ H

2√−κ
, if

κ < 0. Here Sκ ≡ S
2√

κ
denotes the sphere of radius R = 1/

√
κ, and Sκ ≡ H

2√−κ

stands for the hyperbolic plane of curvature
√−κ, as represented by the Poincaré

model of the plane disk of radius R = 1/
√−κ .

Definition 9. The embedding curvature κ(Q) of the metric quadruple Q is de-
fined to be the curvature κ of the gauge surface Sκ into which Q can be isomet-
rically embedded. (See Figure 3.1 for embeddings of a metric quadruple in S

2√
κ

and H
2√−κ

, respectively.)

The embedding curvature at a point can now be defined in a natural way as a
limit:

Definition 10. (M,d) be a metric space, let p ∈ M and let N be a neighbour-
hood of p. Then N is called linear iff N is contained in a geodesic curve.



Metric Methods in Surface Triangulation 343

d34

X

S
2

p
p

p

p
1

2

3
4

dd
14

d

d

12
24

23

d
24

d
14d23

d
12

d34

d

d

12

12

f

R =  1
k

k

d24

d34

X
p

p

p

p
1

2

3
4

d
14

d

d

12

23 d12

H
2

d34

d24

f

d
d

d

d23

12

13

14

R = 
1   

-k

k

Fig. 2. Embedding of a metric quadruple in S
2√

κ (left) and H
2√

κ (right)

Definition 11. Let (M,d) be a metric space, and let p ∈M be an accumulation
point. Then M has (embedding) Wald curvature κW (p) at the point p iff

1. Every neighbourhood of p is non-linear;
2. For any ε > 0, there exists δ > 0 such that if Q = {p1, ..., p4} ⊂ M and if

d(p, pi) < δ , i = 1, ..., 4; then |κ(Q)− κW (p)| < ε.

Note that if one uses the second (abstract) definition of the metric curvature of
quadruples, then the very existence of κ(Q) is not assured, as it is shown by the
following counterexample (see [4]):

Counterexample 9. The metric quadruple of lengths d12 = d13 = d14 = 1,
d23 = d24 = d34 = 2 admits no embedding curvature.

Moreover, even if a quadruple has an embedding curvature, it still may be not
unique (even if Q is not linear), indeed, one can study the following examples:

Example 10. (a) The quadruple Q of distances dij = π/2, 1 ≤ i < j ≤ 4 is
isometrically embeddable both in S0 = R

2 and in S1 = S
2.

(b) The quadruple Q of distances d13 = d14 = d23 = d24 = π, d12 =
d34 = 3π/2 admits exactly two embedding curvatures: κ1 ∈ (1.5, 2) and κ2 = 3.

However, for “good” metric spaces (i.e. spaces that are locally “plane like”) the
embedding curvature exists and it is unique. Moreover, this embedding curvature
coincides with the classical Gaussian curvature. The proof of this result is rather
involved, hence we shall not present here even a sketch of it. However, we note
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that the proof makes appeal to the notion of semi-dependent quadruples, which
we describe below because it will prove useful in the following section.

Definition 12. A metric quadruple Q = Q(p1, p2, p3, p4), of distances dij =
dist(pi, pj), i = 1, ..., 4, is called semi-dependent (or a sd-quad, for brevity), iff
3 of its points are on a common geodesic, i.e. there exist 3 indices, e.g. 1,2,3,
such that: d12 + d23 = d13.

Note that for sd-quads the uniqueness of the embedding curvature is assured:

Proposition 4. An sd-quad admits at most one embedding curvature.

In fact, a classification criterion for embedding curvature possibilities can be
given (cf. Berestkovskii [1], see also [21], Theorem 18):

Theorem 11. Let M , Q be as above. Then one and only one of the following
assertion holds:

1. Q is linear.
2. Q has exactly one embedding curvature.
3. Q can be isometrically embedded in some Sm

κ , m ≥ 2; where κ ∈ [κ1, κ2]
or (−∞, κ0], where Sm

κ ≡ R
m, if κ = 0; Sm

κ ≡ S
m√

κ
, if κ > 0; and

Sm
κ ≡ H

m√−κ
, if κ < 0. Moreover, m = 2 iff κ ∈ {κ0, κ1, κ2}. (Here S

m√
κ

denotes the m-dimensional sphere of radius R = 1/
√
κ, and H

m√−κ
stands

for the m-dimensional hyperbolic space of curvature
√−κ, as represented by

the Poincaré model of the ball of radius R = 1/
√−κ) .

4. There exist no m and k such that Q can be isometrically embedded in Sm
κ .

3.2 Wald and Gauss Curvatures Comparison

The discussion above would have little relevance in Differential Geometry in
general and for the problem of approximating curvatures of triangulated surfaces,
in particular, were it not for the fact that the metric (Wald) and the classical
(Gauss) curvatures coincide whenever the second notion makes sense, that is for
smooth (i.e. of class ≥ C2) surfaces in R

3. More precisely the following theorem
holds:

Theorem 12 (Wald [31]). Let S ⊂ R
3, S ∈ Cm, m ≥ 2 be a smooth surface.

Then, given p ∈ S, κW (p) exists and κW (p) = κG(p).

Moreover, Wald also proved the following partial reciprocal theorem:

Theorem 13. Let M be a compact and convex metric space. If κW (p) exists,
for all p ∈M , then M is a smooth surface and κW (p) = κG(p), for all p ∈M .

Note that if one tries to restrict oneself, in the building of Definition 11 only to
sd-quads, then Theorem 13 holds only if the following presumption is added:
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Condition 14. M is locally homeomorphic to R
2.

Unfortunately, the proof of these facts is laborious and, as such, beyond the
scope of this paper. Therefore we shall restrict ourselves to note that the main
idea is to show that if a metric M space admits a Wald curvature at any point,
than M is locally homeomorphic to R

2, thus any metric proprieties of R
2 can

be translated to M , in particular the first fundamental form. (For the detailed
proofs of the results above, see [3], [4] and, for a a succinct description of the
principal steps of the proofs, [24].)

4 Computing Wald Curvature

In this section we bring formulas for the computation and approximation of
embedding curvature of quadruples. In the beginning we follow the classical ap-
proach of Wald-Blumenthal (see, e.g., [3], [4]) that employs the so-called Cayley-
Menger determinants (see below). Unfortunately, the formulas obtained, albeit
precise, are transcendental, and as such difficult to employ in practical imple-
mentations. Therefore we next present the approximate formulas developed by
C.V. Robinson [22].

The Cayley-Menger Determinant. Given a general metric quadruple Q =
Q(p1, p2, p3, p4), of distances dij = dist(pi, pj), i = 1, ..., 4; denote by D(Q) =
D(p1, p2, p3, p4) the following determinant:

D(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

12 d
2
13 d

2
14

1 d2
12 0 d2

23 d
2
24

1 d2
13 d

2
23 0 d2

34

1 d2
14 d

2
24 d

2
34 0

∣∣∣∣∣∣∣∣∣∣

(4.1)

The determinant D(Q) = D(p1, p2, p3, p4) is called the Cayley-Menger deter-
minant (of the points p1, ...p4). This definition readily generalizes to any dimen-
sion, as do the results below. To get some geometric intuition regarding formula
(4.1) we first examine the Euclidean case (see [3], [2] for details).

We start with the following proposition:

Proposition 5. The points p1, ..., p4 are the vertices of a non-degenerate sim-
plex in R

3 iff D(p1, p2, p3, p4) = 0 .

In fact, a much stronger result can be proven:

Theorem 15. Let dij > 0 , 1 ≤ 4 , i = j. Then there exists a simplex T =
T (p1, ..., p4) ⊆ R

3 such that dist(xi, xj) = dij , i = j; iff D(pi, pj) < 0, for any
{i, j} ⊂ {1, ..., 4} and D(pi, pj , pk) > 0, for any {i, j, k} ⊂ {1, ..., 4}; where, for
instance,
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D(p1, p2) =

∣∣∣∣∣∣

0 1 1
1 0 d2

12

1 d2
12 0

∣∣∣∣∣∣

and

D(p1, p2, p3) =

∣∣∣∣∣∣∣∣

0 1 1 1
1 0 d2

12 d
2
13

1 d2
12 0 d2

23

1 d2
13 d

2
23 0

∣∣∣∣∣∣∣∣
;

etc...

The development of the expressions of volumes as Cayley-Menger determi-
nants, in the spherical and hyperbolical cases, are far too technical for this lim-
ited exposition; suffice therefore to add that they essentially reproduce the proof
given in the Euclidean case, taking into account the fact that, when performing
computations in the spherical (resp. hyperbolic) metric, one has to replace the
distances dij by cos dij (resp. cosh dij) – see [3] for the full details. Now the
following formula for the embedding curvature κ(Q) of Q (and its dependence
upon the curvature’s sign of the embedding space) is natural:

κ(Q) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if D(Q) = 0 ;
κ, κ < 0 if det(cosh

√−κ · dij) = 0 ;
κ, κ > 0 if det(cos

√
κ · dij) and

√
κ · dij ≤ π

and all the principal minors of order 3 are ≥ 0.

(4.2)

Approximate Formulas. We have noted in the preceding section that the
formulas (4.2) we just developed are not only transcendental, but also the com-
puted curvature may fail to be unique. However, uniqueness is guaranteed for
sd-quads. Moreover, the relatively simple geometric setting of sd-quads facili-
tates the development of simple (i.e. rational) formulas for the approximation of
the embedding curvature.

Theorem 16 ([22]). Given the metric semi-dependent quadruple
Q = Q(p1, p2, p3, p4), of distances dij = dist(pi, pj), i, j = 1, ..., 4; the embedding
curvature κ(Q) admits a rational approximation given by:

K(Q) =
6(cos�02 + cos�02′)

d24

(
d12 sin2(�02) + d23 sin2(�02′)

) (4.3)

where: �02 = �(p1p2p4) , �02′ = �(p3p2p4) represent the angles of the Euclidian
triangles of sides d12, d14, d24 and d23, d24, d34 , respectively.

Moreover, the absolute error R satisfies the following inequality:

|R| = |R(Q)| = |κ(Q)−K(Q)| < 4κ2(Q)diam2(Q)/λ(Q) , (4.4)

where λ(Q) = d24(d12 sin �02 + d23 sin �02′)/S2, and where S = Max{p, p′};
2p = d12 + d14 + d24 , 2p′ = d32 + d34 + d24.
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Since Robinson’s result is, unfortunately, rather forgotten, and since the proof
is a good illustration of the classical methods employed in the study of embedding
curvature, we include it below.

Proof. The basic idea of the proof is to mimic, in a general metric setting, the
Gauss map (see, e.g. [9]) – in this case one measures the curvature by the amount
of “bending” one has to apply to a general planar quadruple so that it can be
isometrically embedded as a sd-quad) in Sκ, for some κ.

Consider two planar (i.e. embedded in R2 ≡ S0) triangles �p1p2p4 and
�p2p3p4, and denote by �pκ

1p
κ
2p

κ
4 and �pκ

2p
κ
3p

κ
4 their respective isometric em-

beddings into Sκ. Then pi,κpj,κ will denote the geodesic (of Sκ) through pi,κ

and pj,κ. Also, let �κ2 and �κ2′ denote, respectively, the following angles of
�p1,κp2,κp4,κ and �p2,κp3,κp4,κ : �κ2 = �p1,κp2,κp4,κ and �κ2′ = �p2,κp3,κp4,κ

(see Figure 4).
But �κ2 and �κ2′ are strictly increasing as functions of κ. Therefore the

equation
�κ2 + �κ2′ = π (4.5)

has at most one solution κ∗, i.e. κ∗ represents the unique value for which the
points p1, p2, p3 are on a geodesic in Sκ (for instance on p1p3), therefore κ∗ is
precisely the embedding curvature, i.e. κ∗ = κ(Q) , where Q = Q(p1, p2, p3, p4).

Equation (4.5) is equivalent to

cos2
�κ∗2

2
+ cos2

�κ∗2′

2
= 1

The basic idea being the comparison between metric triangles with equal
sides, embedded in S0 and Sκ, respectively, it is natural to consider instead of
the previous equation, the following equality:

θ(κ, 2) · cos2
�02
2

+ θ(κ, 2′) · cos2
�02′

2
= 1 , (4.6)

where we denote:
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θ(κ, 2) =
cos2 �κ∗2

2

cos2 �02
2

; θ(κ, 2′) =
cos2 �κ∗2′

2

cos2 �02
2

.

Since we want to approximate κ(Q) by K(Q) we shall resort – naturally – to
expansion into MacLaurin series. We are able to do this because of the existence
of the following classical formulas:

cos2
�κ2
2

=
sin(p

√
κ) · sin(d

√
κ)

sin(d12
√
κ) · sin(d24

√
κ)

; κ > 0 ;

cos2
�κ2
2

=
sinh(p

√
κ) · sinh(d

√
κ)

sinh(d12
√
κ) · sinh(d24

√
κ)

; κ < 0 ;

and, of course

cos2
�02
2

=
pd

d12d24
;

where d = p−d14 = (d12+d24−d14)/2 (and the analogous formulas for cos2 �κ′2
2 ).

By using the development into series of f1(x) = sin
√

x√
x

and f2(x) = sinh
√

x√
x

;
one (easily) gets the desired expansion for θ(κ, 2):

θ(κ, 2) = 1 +
1
6
κd12d24

(
cos(�02)− 1

)
+ r ; (4.7)

where: |r| < 3
8κ

2p4 , for |κp2| < 1/16 .
From (4.7) and (4.6), we obtain:

[
1 +

1
6
κ∗d12d24

(
cos(�02)− 1

)
+ r
]
cos2

�02
2

+ (4.8)

[
1 +

1
6
κ∗d23d24

(
cos(�02′)− 1

)
+ r′

]
cos2

�02′

2
= 1 ;

for: |r|+ |r′| < 3
4 (κ∗)2(Max{p, p′})4 = 3

4 (κ∗)2S4 .
By solving the linear equation (in variable κ∗) (4.8) and using some elementary

trigonometric transformation one has:

κ∗ =
6(cos�02 + cos�02′)

d24

(
d12 sin2(�02) + d23 sin2(�02′)

) +R ;

where:

|R| < 12(|r|+ |r′|)
d24

(
d12 sin2(�02) + d23 sin2(�02′)

)

<
9(κ∗)2 max{p, p′}

d24

(
d12 sin2(�02) + d23 sin2(�02′)

) .

But κ∗ ≡ κ(Q), so we get the desired formula (4.3) .
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To prove the correctness of the bound (4.4) one has only to observe that:

S = Max{p, p′} < 2diam(Q),
(
diam(Q) = max

1≤i<j≤4
{dij}

)
,

and perform the necessary arithmetic manipulations.

Example 17 ([22]). Let Q0 be the quadruple of distances d12 = d23 = d24 =
0.15, d14 = d34 and of embedding curvature κ = κ(Q0) = 1. Then κS2 < 1/16
and K(Q0) ≈ 1.0030280, which shows that the actual computed error can be far
less then the one given by formula (4.4), which, in this case gives |R| < 0.45.

Remark 5. (a) The function λ = λ(Q) is continuous and 0-homogenous as a
function of the dij-s. Moreover: λ(Q) ≥ 0 and λ(Q) = 0⇔ sin �02 = sin �02′ =
0, i.e. iff Q is linear. (Therefore for sd-quads λ(Q) > 0. Moreover, when λ(Q)
tends to 0, Q approaches linearity.)

(b) Since λ(Q) = 0 it follows that: K(Q) ∈ R for any quadrangle Q.
Moreover: sign(κ(Q)) = sign(K(Q)).

(c) If Q is any sd-quad, then κ2(Q)diam2(Q)/λ(Q) < ∞. Moreover,
|R| is small if Q is not close to linearity. In this case |R(Q)| ∼ diam2(Q) (for any
given Q).

Since the Gaussian curvature KG(p) at a point p is given by:

KG(p) = lim
n→0

κ(Qn) ;

where Qn → Q = �p1pp3p4 ; diam(Qn)→ 0, from Remark 5(c) we immediately
infer that the following holds:

Theorem 18. Let S be a differentiable surface. Then, for any point p ∈ S:

KG(p) = lim
n→0

K(Qn) ;

for any sequence {Qn} of sd-quads that satisfy the following condition:

Qn → Q = �p1pp3p4 ; diam(Qn)→ 0 .

Remark 6. In the following special cases even “nicer” formulas are obtained:

1. If d12 = d32, then

K(Q) =
12

d13 · d24
· cos�02 + cos�02′

sin2 �02 + sin2 �02′
; (4.9)

(here we have of course: d13 = 2d12 = 2d32); or, expressed as a function of
distances alone:

K(Q) = 12
2d2

12 + 2d2
24 − d2

14 − d2
13

8d2
12d

2
24 − (d2

12 + d2
24 − d2

14)2 − (d2
12 + d2

24 − d2
34)2

(4.10)

2. If d12 = d32 = d24 and if the following condition also holds:
3. �02′ = π/2; i.e. if d2

34 = d2
12 + d2

24 or, considering 2., also: d2
34 = 2d2

12 , then

K(Q) =
6 cos�02

d12(1 + sin2 �02)
=

2d2
12 − d2

14

4d4
12 + 4d2

14d
2
12 − d4

14

. (4.11)
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5 Experimental Results

In this section we view some preliminary numerical results of approximating
Gauss curvature of the torus by the metric curvature computed on a sequence of
sampled tori with increasing resolutions. The precise parametrization of the torus
is known, therefore computational error can be precisely assessed, in particular
if one uses (as it is commonly done) the standard square grid in the parametric
plane. In addition to that the torus was chosen since it has both positive, zero
and negative Gauss curvature. Computations were done using various definitions
of metric curvatures. In the graphs below (Figures 4 and 5) approximation re-
sults are given. In both examples Haantjes and Robinson approximations are
done while computing sectional curvatures along the mesh edges. Therefore in
order to approximate Gauss curvature more accurately one needs to adjust the
triangulation so that its edges will best coincide with geodesic lines of the sur-
face. This is done by adding all the diagonals, in one direction, in the square
grid mentioned above. The second graph shows improvement of the results after
such an adjustment was done.

We also analyzed the relative performances of the considered algorithms as
displayed in the regions of various sign of Gauss curvature, both for the original
numerical schemes and for the improved ones. Notice that both Robinson and
Wald based algorithms display a “jump” at the boundary between the elliptic
and hyperbolic regions – see Figure 6. This step-function behaviour is due to the
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trichotomy intrinsic to both methods, trichotomy that is induced by the sign of
the curvature.
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Fig. 7. Mean curvature, computed using the Haantjes curvature (left) and Wald cur-
vature (right) of the grayscale “Lena”

Fig. 8. Wald curvature (right) of a cerebral radiographic image (left)

Of course, for a better evaluation of the capabilities and limits of the metric
methods, further experiments on more diverse surfaces and with finer meshes
are to be undertaken. In addition, some experiments were also performed on
real data, both on standard test images (see Figure 7) and on medical images
(see Figure 8). We shall briefly discuss the performance of our methods, as shown
by these examples, in the concluding section below.

6 Final Remarks

In the preceding sections we brought positive answers to both of the ques-
tions posed in the introduction. More precisely, we have shown that using the
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Gromov-Hausdorf, one can assure the convergence of geometric properties of ap-
proximating meshes, or just of point samples, to those of the targeted smooth
surface. Moreover, for curvature, there are a number of excellent options for the
purely metric quantities representing discretizations of the classical notions.

However, as can be seen from the results above, the convergence rates of
these metric methods is rather slow, and, at least for smooth surfaces, they
are outperformed by more classical methods. Even when good convergence is
theoretically assured, as in the case of Robinson’s formula, numerical instability
is high. One is therefore entitled to ask oneself whether there are means to
improve their performance and, moreover, if there is a place for such methods,
beyond the theoretical setting mentioned above.

To the first of these questions, one can answer in various ways, trying to il-
luminate the various facets of this problem. Results regarding the convergence
rate, in the Gromov-Hausdorf, of the considered approximations, can be found
in [8]. The influence of the shape of simplices of the triangulation on the perfor-
mance of approximation algorithms, as far as curvature is concerned, has also
been extensively studied. Due to the lack of space, we include here only two
references: [7] for a far reaching theoretical study, and [26] for some applicative
aspects. For the Wald curvature, better ways or “sampling” the directions on the
surfaces can, and should, be devised. But beyond these potential improvements,
more-or-less technical in nature, the importance of these metric curvatures lies
in the applications were a semi-discrete (or semi-continuous) notion is required
(such as those introduced in [25] and [27]). In addition, they offer natural quanti-
zation of the error in “guessing” a smooth surface, whenever a learning approach
is adopted (see [26]).
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Abstract. Digital shape reconstruction (DSR) deals with creating CAD
models of physical objects using 3D scanned data. Our primary interest
is to reconstruct mechanical engineering objects that are usually com-
posed of a hierarchy of surfaces – primary surfaces, connecting features
(fillets) and vertex blends – and are structured by well-defined topolog-
ical rules. After an overview of segmenting large polygonal meshes by
the functional decomposition paradigm, we focus on the reconstruction
of vertex blends using setbacks. This topic was thoroughly studied more
than a decade ago in the context of constructive CAD; now the concept
is revisited for DSR. A new method is presented to locate the optimal
cross-sectional termination of fillets and construct the boundary curves
of vertex blends on the mesh. These will correspond to the vertex blend
boundaries of the final CAD model, as well. Finally, we discuss special
cases of self-intersecting segmenting curve networks, and show how these
problems can be resolved by setback vertex blends.

Keywords: digital shape reconstruction, functional decomposition, seg-
mentation, vertex blends, setbacks.

1 Introduction

The goal of Digital Shape Reconstruction (formerly known as reverse engineer-
ing) is to create digital models from physical objects. DSR is a category within a
broader discipline called Digital Shape Sampling and Processing (DSSP), which
includes all point cloud related computations and techniques used in a wide va-
riety of fields [1]. In some applications, e.g. medical areas, it is often sufficient to
convert the measured point cloud into a polygonal mesh; lots of well-established
triangulation based techniques are available to process them [2].

For CAD/CAM/CAE applications, usually further steps are required to create
high quality surface models. In the functional decomposition approach first a
likely topological structure of the unknown object is extracted automatically;
then utilising this structure high-quality, constrained surfaces are computed with
none or minimal user assistance [3]. The key issue is to properly segment the
polygonal mesh into regions that correspond to the “not yet known” surface
entities. Once such segmentation is available, good approximating surfaces are
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(a) Typical surface layout

primary
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feature
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(b) Simplified topological structure

Fig. 1. An example of a mechanical engineering object

fitted to the regions automatically, which are eventually trimmed and stitched
together to obtain a boundary representation CAD model.

The majority of CAD objects in mechanical engineering are constructed by
certain simple rules. As a result, the bounding surfaces can be arranged into a
well-defined hierarchy, see Fig. 1a:

1. Primary surfaces are to satisfy various functional or aesthetic requirements;
these are relatively large surfaces, which can be classified as simple, analytic
types (such as planes, cylinders), swept surfaces (such as extrusions, surfaces
of revolution) or free-form surfaces.

2. Connecting features lie between the primary surfaces; these are relatively
narrow, highly-curved surface elements that join the primaries smoothly.
The majority of connecting features represent fillets: however, other types,
such as step surfaces, also frequently occur. In this paper, the algorithms
will be described for fillets, though they directly generalise for more complex
connecting feature types, as well.

3. Vertex blends smoothly connect fillets (features) and primaries, being repre-
sented by small, typically doubly-curved n-sided patches. (Alternatively, the
term corner patch is used.)

1.1 Motivation

Segmentation is the most crucial part of shape reconstruction. The quality of
the final surfaces depends on the correct segmentation: misclassified points of-
ten drastically worsen the quality of primary surfaces and fillets, or even may
prohibit the creation of complete and consistent CAD models. Segmentation is
a very difficult task since ‘a priori’ neither the surfaces, nor their topological
structure is known [3].

Our goal is to define an optimal segmenting curve network on the mesh,
which will one-to-one correspond to the edge-loop-face structure of the final
CAD model. The segmenting curve network partitions the mesh, and defines the
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(a) Curvature
on the mesh

(b) Polygonal
segmentation

(c) Segmenting
curve network

(d) CAD model

Fig. 2. Sequence of vertex blend creation

point sets to be individually approximated. This defines (i) the mathematical
surfaces to be fitted and (ii) the corresponding network of edges that will trim
these surfaces. Of course, the final vertex blend surfaces can only be fitted once
the adjacent primaries and fillets have been computed, but without creating the
vertex blend structure on the mesh, we cannot create the correct point regions
to be approximated by the primaries and the fillets.

In constructive CAD, designers do not create vertex blends explicitly, as CAD
systems generate them as a ‘by product’ of the filleting operations. At the same
time, creating smooth and natural vertex blends used to be a very difficult
problem in geometric modelling and a huge amount of effort was invested to
work out robust solutions. At first sight the problem may seem to be simple,
but difficulties arise when convex and concave fillets with different radii need
to be connected, that span different angles, including tangential and cuspate
cases, etc. The analysis of these problems led to the introduction of the so-called
setback type vertex blends that we are also going to apply; see details in [4,5].

To sum it up: our main interest is to compute a topologically consistent and
geometrically pleasing structure of vertex blends on the mesh, which is an im-
portant step to complete DSR by functional decomposition. This facilitates the
completion of the segmenting curve network, that integrates the individually
traced longitudinal boundary curves of the “to be reconstructed” fillets. It also
facilitates the actual creation of surfaces, when the final CAD model is com-
puted. The process is illustrated in Fig 2, showing the individual steps from
numerical curvature estimation through creating the segmenting curve network
on the mesh to the final surface representation.

1.2 Previous Works

Digital shape reconstruction from 3D measured point clouds is an emerging
high technology that has been intensely studied since the mid-nineties. Data
acquisition and surface reconstruction techniques have been rapidly evolved, and
by now several commercial systems can serve various engineering and medical
applications. The earliest attempts of producing consistent and complete CAD
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models came from the computer vision community [6]. A broader overview on
the most difficult problems from the geometric modelling point of view was first
published in [3].

The conventional techniques of digital shape reconstruction aimed at creating
only individual surfaces using manual segmentation methods or region grow-
ing techniques, such as [7,8]. The former approach was quite tedious and error
prone for complex parts, while the second often lacked global consistency be-
tween the adjacent surface elements. Detecting features is still an open research
area; in a recent publication a feature sensitive metric was proposed to support
segmentation [9].

There have been alternative approaches that focused on objects bounded by
simple analytic surfaces only; these limited the scope of object reconstruction,
but developed useful techniques to apply various constrained fitting methods
amongst the surface entities [10,11,12,13].

Another trend of digital shape reconstruction aimed at building complex sur-
face models in a highly automatic manner, thus minimising user assistance
[14,15]. A global structure of quadrilateral tiles was built, which assured wa-
tertight connections. The method worked in a computationally highly efficient
manner, but it could not satisfy the CAD/CAM user community fully, since the
structure lacked a proper alignment with the geometric features of the object
and the most frequent engineering surface elements could not be reproduced in
exact, trimmed form.

Currently there are two leading approaches to build full CAD models, that are
capable to support downstream CAD/CAM applications, see [16]. The first ap-
proach – “redesign” – mimics the sequence of operations of constructive CAD,
but at each operation it is possible to extract and utilise corresponding mea-
sured data. In this way, a parametric history file can be created, however, the
operations of constructive CAD need to be performed step by step [20]. The
alternative approach – “functional decomposition” – places the emphasis on the
global automation of the reconstruction process. The user can extract automat-
ically or with minimal assistance the full structure of the object, which makes
it possible to generate a complete CAD model that consists of primary surfaces
and connecting features stitched together [21]. This paper investigates one par-
ticular aspect of the latter approach of creating vertex blends to join various
fillets.

2 Technical Background

Functional decomposition is an automatic procedure (i) to create a topological
structure on the polygonal mesh, and (ii) generate a surface model according to
this structure with its implied geometric properties and dependencies. For further
details the reader is referred to [17]. In this section we discuss this framework
focusing on the segmentation process, but keeping in mind the successive steps,
as well. This will be followed by an overview on setback vertex blends.
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2.1 Segmentation

The reconstruction of vertex blends is part of segmentation. A schematic object
illustrates this process, see Figs. 1a and 1b. We assume that the input is a good
quality triangulated mesh (noise reduced, holes filled, properly decimated, etc.).
Segmentation consists of the following five phases, each operation builds on top
of the previous one.

1. Hierarchical Morse segmentation. First we locally compute curvature-like
measures at the vertices of the mesh and apply a segmentation technique
based on discrete Morse-theory [18,19]. This partitions the mesh into a set of
topologically meaningful components that correspond to the primary regions.
The boundaries of the components are zig-zagged polylines.

2. Primary regions and separator set. In order to obtain a more suitable repre-
sentation we compute the likely polygonal extent of the fillets and the vertex
blends by thickening the polyline boundaries over the mesh. This yields the
so-called separator set, see Fig. 1b, which separates the resulting, somewhat
shrunken primary regions.

3. Extract a feature skeleton. The feature skeleton is the medial axis of the
separator set. Its edges and nodes will correspond to the fillets and vertex
blends, resp. The feature skeleton replaces the zig-zagged polylines by a set
of smoothed contour lines, running in the middle of the separator set.

4. Extract longitudinal boundaries. The next step is to trace a pair of boundary
curves for each individual fillet. This is an automatic process: boundary
generation is driven by the contour lines of the feature skeleton and the
width of the underlying separator set.

5. Create vertex blends and complete segmenting curve network. The individ-
ual boundary curves of the fillets need to be integrated into a consistent
segmenting curve network. This involves the computation of vertex blends,
which simultaneously determines the cross-sectional terminations of the in-
coming fillets and supplements small corner arcs for the loops of primary
regions, as will be discussed in details in Sec. 3.

The above segmentation steps result in a geometrically well-aligned struc-
ture that is needed for creating high-quality surface models. Until now we have
performed mesh operations only, the forthcoming ones are to define surface ge-
ometries step by step. Based on the primary regions an automatic classification
is performed which will set the most likely surface type for each region (analytic,
swept, free-form, etc.). The primary surfaces will approximate the primary re-
gion data by the detected surface type. The fillets are dependent entities, which
not only approximate the underlying data, but are also constrained to smoothly
join the adjacent – already existing – primaries. For rolling ball blends tangential
(G1) continuity is assured, for free-form objects generally curvature continuous
fillets are needed. Vertex blends are also dependent entities that need to connect
the already existing fillets and primaries. The final CAD model is created by
trimming and stitching the individual surface entities together.
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2.2 Vertex Blends

Vertex blends are relatively small surface elements that smoothly connect incom-
ing fillets at their junction. The simplest form of a vertex blend is the well-known
“suitcase-corner,” which is a three-sided patch (an octant of a sphere) that con-
nects three fillets of the same radii. The corners of the vertex blend are obtained
by intersecting the adjacent fillet boundaries. Unfortunately, it is hardly possible
to generalise this blending technique to a wide variety of complex vertex blend
configurations due to geometrical and topological problems.

To create general vertex blends that connect an arbitrary number of fillets
and permit arbitrary combination of convex and concave edges with different
radii, the concept of setback type vertex blends was introduced [4,5]. The basic
idea is to extend the vertex blends and shrink the incoming fillets by setback
distances. The scheme produces natural transitions for many difficult vertex
blend configurations.

The terminology along with a few special cases is explained in Fig. 3. In
the most general case n fillets are blended using a 2n-sided vertex blend. The
boundary edges of the vertex blend, called profile and spring curves, alternate.
The profile curve is a shared boundary with a fillet (Pi in Fig. 3a); the spring
curve is shared boundary with a primary surface, denoted by Si. A profile curve
always connects two adjacent primary surfaces, the spring curve always connects
the boundaries of two adjacent fillets.

Fig. 3b shows a special case where one of the profile curves degenerates; this
corresponds to a vertex blend with a sharp edge. Fig. 3c illustrates the case of
a missing spring curve, where two adjacent profile curves come together at the
intersection point of two longitudinal fillet boundaries. In principle, any number
of sides between n and 2n can represent a valid vertex blend configuration.

As discussed earlier, vertex blends are always dependent on their neighbour-
ing fillets and primaries, and must be fitted using constrained algorithms. There
are different methods to approximate the vertex blend regions by smooth sur-
faces. In this paper we do not deal with the geometric aspects of fitting, just
mention two basic approaches. Using the trimmed approach, a single quadrilat-
eral surface is fitted to the data points and that is trimmed by the projected
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Fig. 3. Configurations of setback vertex blend with central split
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boundaries of the region in order to make it stitchable to the adjacent surfaces.
An alternative way is the central split approach, where the vertex blend region
is subdivided into n quadrilateral patches around a centre point, as can be de-
picted in Fig. 3. A separate surface is then fitted to each of these patches with
appropriate continuity constraints. We have preferred the central split approach
in our implementation; however, trimmed vertex blend fitting is also possible.

3 Computing the Boundaries of Vertex Blends

In the previous steps the adjacency relationships of the regions have already been
defined, and now the set of neighbouring primaries and fillets is already known
for each vertex blend. For each fillet a constant or variable width function has
been estimated and a pair of longitudinal boundary curves have been traced on
the mesh, as shown in Fig. 4a. In this section we present the algorithm that fully
defines the setback vertex blends and integrates the independently generated
fillet boundaries into a single, consistent segmenting curve network, as depicted
in Fig. 4b.

As discussed earlier, the location of vertex blend boundaries significantly in-
fluences the quality of fillets and vertex blends that will be fitted later. We define
the following postulates to govern our algorithm:

1. Orthogonal profile curves. The profile curves terminate the fillets and thus
influence their internal parameterisations. If the profile curves are ‘close to
orthogonal’ to the longitudinal boundaries, the u and v iso-parameter lines
of the fillet will span a natural, ‘close to orthogonal’ grid, which is a desired
requirement for high-quality fillets.

2. Tangent continuous spring curves. Fillet boundaries and spring curves need
to be connected with at least tangent continuity in order to obtain smooth
trim-loops for the primary surfaces. Having the orthogonality criterion, this
also implies that the boundary curves of a vertex blend are also ‘close to

(a) Longitudinal feature boundaries (b) Setback vertex blend

Fig. 4. Reconstruction of vertex blends
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(a) Without setbacks: skewed (b) With setbacks: natural

Fig. 5. Iso-parameter lines of transition surfaces

orthogonal’ at its corners, which yields a natural local parameterisation for
the corner quadrilaterals (Fig. 4b).

3. Symmetric spring curves. As a consequence of the central split approach,
the internal parameterisation of the vertex blends depends on the position
of the centre point and the middle points of the spring curves. If the adjacent
setback distances significantly differ, an uneven parameterisation is created
and low quality surfaces may be obtained.

Fig. 5a illustrates a case with non-orthogonal profile curves. As setbacks are
missing, the boundaries of the fillets intersect at different angles, and the param-
eter lines of the fillets get skewed. Fig. 5b shows the natural parameterisation of
the vertex blend and the incoming fillets when the setbacks and the boundary
curves are optimised.

In this section, we first describe methods to estimate the optimal setback dis-
tances and construct profiles and spring curves. Finally, some interference issues
between independently generated fillets and vertex blends will be discussed.

3.1 Estimation of Setback Distances

The notations used for computing setback distances can be depicted in Fig. 6.
Consider the vertex blend with centre point O and n outgoing fillets indexed by
i ∈ [0, n− 1] in counter-clockwise order. Any index out of this range should be
interpreted in mod n. Let Ci denote the midline curve of the fillet i starting at O
and parameterised by quasi-arc length. Similarly, let BR

i , BL
i be the right and the

left longitudinal boundary curves, respectively. We rely on the bijective mapping
defined between the midline and the boundary curves, referred by μR

i : Ci �→ BR
i

and μL
i : Ci �→ BL

i .
For each fillet there are two setback distances to be determined on its two

boundary curves, denoted by sR
i and sL

i . To make these values comparable, we
define them in the same domain, in the parametric space of the midline Ci.
Given a setback distance, the related setback point can be expressed by the
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mappings μR
i (CR

i (sR
i )) and μL

i (CL
i (sL

i )). In other words, the setback distance is
the parametric position of the setback point related to the corresponding point
on the midline.

The domain of the possible setback distances is limited by the surrounding
geometry. The intersection of the related fillet boundary curves (or their exten-
sions) defines a minimum for the setback distance. For example, the constraint
sL

i ≥ mL
i results from the intersection of the boundary curves BL

i and BR
i+1, see

Fig. 6. The upper limit for the setback distance is defined by the setback at the
other end of the fillet, related problems will be investigated later in Sec. 3.3.

To find the optimal setback distances for each (not yet existing) boundary
curve of the vertex blend, we define an error function that expresses its imper-
fection in terms of the related setbacks. Suppose EP

i (sR
i , s

L
i ) describes the devi-

ation of Pi from the perfect profile orthogonal to the midline, while ES
i (sL

i , s
R
i+1)

measures the asymmetry of the spring curve between fillet i and i+ 1. With an
additional term E∗

i (sR
i , s

L
i ) we can avoid the setback distances becoming unduly

large. So the following total error term is formulated:

E(sR
0 , s

L
0 , . . . , s

L
n−1) =

n−1∑

i=0

(
EP

i (sR
i , s

L
i ) + λES

i (sL
i , s

R
i+1) + νE∗

i (sR
i , s

L
i )

)
.

After setting the weights λ and ν to balance the partly contradicting constraints,
the optimal sR

i , sL
i values are defined by minimising this expression.

The error term of the profile curves Pi is estimated using the approximate wi

widths of the setbacks as

EP
i (sR

i , s
L
i ) =

(
sR

i − sL
i

wi

)2

,

which intuitively corresponds to the tangent of the angle between the actual and
the ideal profile curve, if projected to a local plane. The asymmetry of the spring
curves Si is expressed similarly as the difference of the setback distances over
their minima, normalised by the average fillet width w̄i = (wi + wi+1)/2:

ES
i (sL

i , s
R
i+1) =

(
(sL

i −mL
i )− (sR

i+1 −mR
i+1)

w̄i

)2

.
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Finally, the term to reduce the bias is defined to increase quadratically while
moving away from mR

i , mL
i , normalised against the fillet widths:

E∗
i (sR

i , s
L
i ) =

(
sR

i −mR
i

wi

)2

+
(
sL

i −mL
i

wi

)2

.

The optimal setback distances minimising the total error at a vertex blend
can be obtained in different ways. One can observe that E(sR

0 , s
L
0 , . . . , s

L
n−1), the

total error, is a quadratic function of each of its variables and diverges to +∞
while any of them increases or decreases. Therefore the expression attains its
minimum where the partial derivatives vanish:

∂E

∂sR
i

= 0,
∂E

∂sL
i

= 0, i ∈ 0, . . . , n− 1.

This reduces to a sparse linear system of 2n equations that can be solved. Since
all error terms were simple approximations, computing the exact solution might
be an overkill. Instead, a few iterations to refine each variable against the error
terms yields satisfactory results.

Very short spring curves are undesired, as they worsen the quality of the
related surface elements. It is hard to express this constraint algebraically, but
such cases can be eliminated in a post-processing step. If a spring curve turns
out to be very short, that is, sL

i ≈ mL
i and sR

i+1 ≈ mR
i+1, the setback distances

are snapped to their minima resulting in no spring curve. The effect of such
modifications on the adjacent profile curves is negligible.

3.2 Construction of the Boundary Curves

Once the setback distances are available, the setback points are also defined.
Based on this, we define the boundary curves of the vertex blend using in-
terpolating cubic B-splines. Each curve interpolates 5 so-called marker points
(Q0, Q1, . . . , Q4) that lie on the mesh. Q0 and Q4 are the endpoints of the seg-
ment. The two tangents of the curve are set by a well-known technique using
two parabolas spanned by (Q0, Q1, Q2) and (Q2, Q3, Q4), respectively. These
constraints still allow infinitely many boundary segments. In order to find a
simple and natural construction, we revisit double-quadratic arcs, that are com-
posed of two twisted parabolas sharing a common tangent line at the middle.
The final B-spline representation will closely approximate this double-quadratic
arc, but will also assure C2 continuity at the middle marker.

Spring curves. In addition to the endpoints, the end-tangents of the spring
curves are inherited from the fillet boundaries, as determined by the tangent
continuity rule. Below we overview the possible cases and construct the spring
curves accordingly, see Fig. 8.

The endpoints P0, P1 and tangents t0, t1 define two lines that are typically
not coplanar. Let B0 = P0 + λ0t0 and B1 = P1 + λ1t1 denote the endpoints
of their perpendicular transversal. Different configurations are identified based
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Fig. 8. Construction of spring curves

on the signs of λ0 and λ1, see Fig. 7. If both λ0 > 0 and λ1 > 0, we call the
case convergent (a); the λ0 < 0 and λ1 < 0 case is referred as divergent (b); the
rest corresponds to the case called deflecting (c). Special rules are applied for
(almost) parallel tangents.

The details of the spring curve construction for the convergent case can be
depicted in Fig. 8a. Points D0 and D1 split segments P0B0 and P1B1 at equal
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Fig. 10. B-spline boundaries created for a vertex blend

proportion, which is chosen depending on the fullness of the curve segment.
Let E denote the midpoint of D0D1, then the spring curve is composed of two
parabolic arcs defined by P0D0E and ED1P1.

The construction of a divergent spring curve is similar, see Fig. 8b. The differ-
ence is that point Di is defined to be on the opposite side of Pi with respect to
Bi, i ∈ {0, 1}. Note that divergent spring curves tend to occur rarely in practice.

Almost parallel tangents result in unstable, distant transversals, which has
to be addressed separately, as shown in Fig. 8c. To overcome this issue, we
restrict points B0, B1, to remain within a limited distance, which is typically
defined by some related geometric entity, e.g. the centre of the vertex blend. As
a consequence of this, the fullness of the resulting spring curve is also limited.

In the case of deflecting tangents the actual transversal is ignored, see Fig. 8d.
Instead, the midpoint of P0P1 is projected to the tangent lines, defining C0 and
C1. Sections P0C0 and P1C1 are split proportionally to obtain D0 and D1, again
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leaving some freedom of choosing the appropriate expansion for the spring curve.
The rest of the construction is identical to the other cases.

Profile curves. The construction of profile curves follows the same logic as above;
the only difference is that instead of a twisted double-quadratic segment, here we
enforce the profile into a single plane defined by the setback points μR

i (Ci(sR
i )),

μL
i (Ci(sL

i )), and the midpoint Ci((sR
i +sL

i )/2). The tangents at the endpoints will
be perpendicular to the locally estimated surface normals. For a more complex
connecting feature this B-spline may significantly deviate from its projection on
the mesh, and additional interpolating points may need to be inserted to refine
its shape, however, for the profile of fillets five interpolation points are sufficient.

Fig. 10 shows a vertex blend, where two concave and one convex fillets run
together. The geometric configuration forces to add two spring curves, thus the
vertex blend becomes 5-sided. The markers of the B-spline boundaries created
by the above algorithm are also shown.

3.3 Resolving Interference Issues

It is an intrinsic characteristic of functional decomposition that it builds up the
entire structure automatically in one go and no ‘historical’ sequence of opera-
tions is created as in constructive CAD. The fillet boundaries and the setback
distances have been computed independently and it may happen that unwanted
interferences, e.g. overlaps occur, which need to be removed in a post-processing
phase to get a valid segmenting curve network. In this section we deal with
detecting and eliminating such self-intersections using special setback vertex
blends. Two typical examples are presented.

Interfering vertex blends. If two vertex blends are connected with a very short
fillet, there is a good chance that the setbacks overlap. A clear indication of this
problem is that the sum of the setback distances at the two ends of the fillet
exceeds the length of the related midline.

A proposed resolution of interfering vertex blends is illustrated in Fig. 9.
Instead of two separate entities we create a composite vertex blend that covers
both vertex areas and excludes the short fillet region. The setbacks and the
boundary curves of the composite vertex blend are computed in the same manner
as for a regular one but all incoming fillets are treated as if they joined at a single
vertex. As a result, spring curves SR and SL are constructed corresponding to
the short fillet between AB, see Fig. 9a. In this example, a degree 3 (vertex A)
and a degree 4 (vertex B) were merged to a composite degree 5 vertex blend –
with 5 profile curves and 4 spring curves, i.e. altogether a 9-sided patch is to be
generated.

After the construction of the boundaries, the internal subdivision of the com-
posite vertex blend has to be created. One possible way is to apply a central split
as if it was a regular vertex blend. However, such composite vertex blends are
usually elongated, which may lead to distorted quadrilaterals. For this reason we
propose an alternative structure, called multi-central split. As it can be depicted
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(a) Overlapping fillets (b) Insertion of a vertex blend

Fig. 11. Resolution of overlapping fillets

in Fig. 9b, this structure is also made up of quadrilaterals only, but here the two
central splits are directly connected, cancelling out the original short fillet.

The problem of interference is not restricted to a single pair of vertex blends
and it is possible that more than two vertex blends have to be merged into
a composite vertex blend. The proposed technique is capable of handling such
cases as well. The use of multi-central split is absolutely inevitable in complex
cases with more than 2 vertex blends merged.

Overlapping features. Another common case of interference occurs when seg-
mentation indicates that two fillets overlap, i.e. the individually traced fillet
boundary curves intersect each other, see Fig. 11a. The problem is not originat-
ing in the vertex blend construction; but it is caused by the lack of vertex blends
in the neighbourhood. This situation is resolved by inserting a new vertex blend
in the post-processing phase.

Overlap can be detected by the intersection of fillet boundaries. Taking their
polyline representation (projection) on the triangular mesh, if they intersect, the
related polylines also share a triangle or a vertex, so the search to locate them
can be performed in an efficient way.

Once such an intersection is found, we insert a special vertex blend as illus-
trated in Fig. 11b. This connecting surface element fully covers the area of the
overlap, but retains the fillets outside the overlapping area. It may make sense to
slightly overextend the vertex blend and insert spring curves using the setback
mechanism. In this way, more space is created locally and a smoother connection
is produced. Without spring curves the primary surface fitting may be unstable
in the vicinity of the narrow, spike-like corner since none or only a small number
of data points exist there. With the spring curves, the vertex blend will connect
where the primary surfaces are already stable. In Fig. 11, four fillets meet at an
8-sided vertex blend. Multi-central split is also possible.

4 Examples

The presented vertex blend algorithm has been partly integrated into the seg-
menting module of a well-known commercial system, Geomagic Studio [21], and
has been used to digitally reconstruct a wide range of parts in various industries.
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(a) Curvature map on the polygonal mesh

(b) Iso-parameter lines of the final CAD model

Fig. 12. Comparison of vertex blends without/with setbacks

The previous, rendered pictures and the forthcoming examples have also been
generated by Geomagic Studio.

First we show the difference between vertex blends without and with setbacks,
as can be depicted in Fig. 12. The left pictures show a vertex blend that connects
free-form steps without applying setbacks, while on the right side a properly
parameterised representation is shown applying setbacks. In the second case,
the iso-parameter lines (see Fig. 12b) are perfectly aligned with the principal
curvature lines of the fillets. Fig. 13 shows two further examples of setback vertex
blends. On the left side, two small fillets merge into a large one, altogether 4
fillets are connected with a 7-sided vertex blend. On the right side a convex-
concave junction with and additional artificial (flat) fillet is shown, that forms a
6-sided vertex blend.

The example in Fig. 14 shows the reconstruction steps of a real industrial
part. The curvature map estimated on the polygonal mesh (a) is followed by the
automatically computed segmenting curve network (b), and the final CAD model
(c). The structure of this part has been generated by means of the segmentation
method described in this paper. The pictures show the corresponding boundary
representation of the created CAD model including the automatically generated
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(a) Curvature map and segmenting curve network on the mesh

(b) Iso-parameter lines of the generated surfaces

(c) Automatically created CAD model

Fig. 13. Examples of setback vertex blends

setback vertex blends with central splitting. (Note: for 4-sided vertex blends
central splitting does not need to be applied.)
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(a) Curvature map and the feature skeleton on the mesh

(b) Segmenting curve network and the polygonal mesh

(c) Automatically generated CAD model

Fig. 14. Reconstruction steps of an industrial part
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5 Conclusion

The process of creating functionally decomposed CAD models from measured
data consists of two basic phases [17]. In the first phase, the topological struc-
ture of the model is extracted using a multi-step segmentation procedure, that
produces a consistent segmenting curve network being isomorphic to the edge
structure of the final CAD model. In the second phase, this structure drives the
geometric computations to classify and fit surfaces by a well-defined dependency
of (i) primary surfaces, (ii) fillets, and (iii) vertex blends, and trim and stitch
them together.

The algorithm presented here is the final touch to build up a segmenting
network over a polygonal mesh; the created structure of vertex blends determines
the extent of fillets and closes the corner sections of primary surface loops. In
order to stitch together independently traced fillet boundaries in a consistent
manner, the use of setback type vertex blends was proposed. Setback vertex
blends help to resolve difficult topological configurations and make it possible to
fit smooth, connecting surfaces with optimised parameterisation.
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Abstract. We generalize the classic self-organizing map (SOM) in flat
Euclidean space (linear manifold) onto a Riemannian manifold. Both
sequential and batch learning algorithms for the generalized SOM are
presented. Compared with the classical SOM, the most novel feature of
the generalized SOM is that it can learn the intrinsic topological neigh-
borhood structure of the underlying Riemannian manifold that fits to the
input data. We here compared the performance of the generalized SOM
and the classical SOM using real 3-Dimensional facial surface normals
data. Experimental results show that the generalized SOM outperforms
the classical SOM when the data lie on a curved Riemannian manifold.

Keywords: SOM, Riemannian Manifold, Manifold Learning, Pattern
Recognition.

1 Introduction

The self-organizing map (SOM) [1], also known as the topology-preserving map,
has been a topic of sustained research activity for several decades. As an un-
supervised learning strategy, the SOM can automatically learn the underlying
topological neighborhood structure of the input space by applying a very simple
adaptation rule. The basic idea of the SOM is to locate and adapt the best-
matching unit (BMU) together with its topological neighbors with respect to
the current input vector. This is done so as to adaptively learn the topological
neighborhood structure of the input space that fits to the properties of the input
data.

Because of its simplicity and effectiveness, the SOM has been widely and
successfully applied in many fields such as data mining [2], biomedical applica-
tions [3,4], content-based information retrieval [5], dynamical system identifica-
tion [6] and data visualization [7]. However, the classical SOM can only reveal
flat Euclidean topological neighborhood structure in the input space, and will
fail to discover a non-Euclidean topological neighborhood structure of the input
space [8].

To solve this problem, many researchers [8,9] have investigated how to com-
bine the classical SOM with kernel methods and this has led to the Kernel-SOM.
In Kernel-SOM, data in original input space are firstly nonlinearly transformed

E.R. Hancock et al. (Eds.): Mathematics of Surfaces 2009, LNCS 5654, pp. 375–390, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to a higher, possibly infinite dimensional space, and then the classical SOM is ap-
plied to the transformed data. The key issue here is that the learning procedure
on the transformed higher dimensional data can be indirectly derived, by using
the kernel trick, from the learning procedure on the original input data. The
resulting Kernel-SOM can preserve a non-Euclidean topological neighborhood
structure which corresponds to the distance metric in the transformed higher
dimensional space. Different non-Euclidean topological neighborhood structures
can be learned by applying different kernel functions, i.e. the resulting non-
Euclidean topological neighborhood structure is kernel function dependent.
Thus, when the data lie on a specific Riemannian manifold, the non-Euclidean
topological neighborhood structure learned by Kernel-SOM is not the intrinsic
topological neighborhood structure of the underlying Riemannian manifold on
which the data reside.

In fact, in many real applications, the data may reside on some specific Rie-
mannian manifold. For example, an unit surface normal of an object in R

3 is a
data point lying on unit 2-sphere manifold S2. A set of unit surface normals of an
object in R

3 is a data point lying on Riemannian manifold S2(n), where n is the
cardinality of the set. To learn the intrinsic topological neighborhood structure
of the underlying Riemannian manifold from such data, both the classic SOM
and the Kernel-SOM do not apply. This paper aims to overcome this problem
by generalizing the classical SOM onto a Riemannian manifold.

To the best of our knowledge, studies on this topic are far less extensive.
Ritter [10] proposed a method for learning a SOM in non-Euclidean space. How-
ever, it can only arrange the output neurons in a spherical or hyperbolic lattice
topology, and still uses the Euclidean distance metric for locating the BMU.
Shi [11] proposed a geodesic distance based SOM, referred to as GDBSOM. The
GDBSOM uses a geodesic distance metric instead of a Euclidean distance metric
to locate the BMU. However, when updating the codebook vectors, it does not
consider how to guarantee that the updated codebook vectors still reside on the
underlying manifold. Simila [12] incorporated manifold learning technique (such
as LLE) into the classical SOM and proposed the M-SOM. In M-SOM, manifold
learning is first applied to learn the internal coordinates on the underlying mani-
fold, next the codebook vectors of the SOM are adapted in both the internal and
observation coordinates, with similarities defined on the internal coordinates.

In this paper, we approach with this problem in a quite different style by di-
rectly generalizing the classical SOM onto a Riemannian manifold. More specifi-
cally, to locate the BMU, the Riemannian geodesic distance metric is applied. In
the adaptation step, codebook vectors are adapted along the intrinsic geodesic
curve with the aid of the Riemannian Exponential and Log maps.

The structure of the paper is as follows. In Section 2 we give a brief intro-
duction to the classic SOM. Section 3 presents some preliminaries concerning
Riemannian manifolds. In addition, we also detail how to implement the Rie-
mannian Exponential and Riemannian Log maps on the specific Riemannian
manifold S2(n). We present both the sequential and batch learning algorithms
for learning a SOM on a Riemannian manifold in Section 4. Experiments are
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carried out in Section 5 using real 3-Dimensional facial needle-map data. Per-
formance comparison between the classical SOM and the generalized SOM are
also performed. We conclude the paper in Section 6 by offering conclusions and
direction for future work.

2 Self-organizing Map

The classical self-organizing map (SOM) in a flat Euclidean space (linear mani-
fold) consists of a regular output grid (usually 1- or 2-dimensional), onto which
the distribution of input vectors is projected nonlinearly [1]. The mapping tends
to preserve the topological-metric relations between input vectors, i.e., similar
inputs fed into the SOM will give similar outputs.

A SOM can be represented as a set of output neurons, denoted by {i}Ki=1,
on the output layer, where K is the number of neurons on the output layer.
Each output neuron i is fully connected to all the input neurons and contains a
d-dimensional codebook vector wi ∈ R

d (also referred to as a prototype vector).
A SOM can be trained by iterative sequential or batch learning algorithms.

2.1 Sequential Learning Algorithm

Let {xi|xi ∈ R
d}Ni=1 be the learning dataset. One round of the sequential learning

algorithm for SOM is briefly described as follow.

1) Choose the current learning sample: Randomly select a sample from the
dataset {xi}Ni=1 as the current learning sample x(t).

2) Locate the best-matching unit (BMU): The output neuron whose codebook
vector is closest to the current learning sample x(t) is referred as the BMU,
denoted by c(x(t)) and satisfying

c(x(t)) = arg min
1≤i≤K

‖ x(t)−wi(t) ‖. (1)

3) Update the codebook vectors: The codebook vectors of the BMU and its
topological neighborhood output nodes are updated using the following simple
rule

wi(t+ 1) = wi(t) + α(t) · hc(x(t)),i(t) · (x(t)−wi(t))︸ ︷︷ ︸
�

. (2)

where t denotes the learning step, which decreases monotonically with the learn-
ing steps and α(t) is the learning rate. The Gaussian neighborhood function
defined as

hc(x(t)),i(t) = exp

(
−‖ri − rc(x(t))‖2

2σ2(t)

)
(3)

where ri and rc(x(t)) are the vector locations of neuron i and neuron c(x(t)) on
the output grid, respectively and σ(t) is the width of the neighborhood function,
which is also decreasing monotonically with the learning steps. Notice that the
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Fig. 1. Sequential adaptation of codebook vector in classical SOM

neighborhood function is not limited to be a Gaussian, and alternative neigh-
borhood functions can also apply [1].

The aim of the updating process in (2) is to move the codebook vector wi(t)
closer to the current learning sample x(t) with respect to α(t) and hc(x(t)),i(t).
Fig.1. illustrates the effect of the update Equation (2) in a 2-dimensional Eu-
clidean space. With the update equation, the black point corresponding to code-
book vector wi(t) is moved to the red point with a distance of ‖�‖ along the
direction of x(t) − wi(t). The vector corresponding to the red point is the re-
sulting updated codebook vector wi(t+ 1).

2.2 Batch Learning Algorithm

In the sequential learning algorithm, only a single learning sample is fed to the
SOM at each learning step, and the codebook vectors of the BMU together with
its topological neighborhood nodes are updated. However, in a batch learning
algorithm, the entire learning dataset is fed to the SOM before any adaptations
are made. We briefly describe one round of batch learning as follows:

1) The entire learning dataset is first partitioned into Voronoi regions {Vj}Kj=1

of the codebook vectors {wj}Kj=1. More specifically, sample xi ∈ {xi}Ni=1 is par-
titioned into Voronoi region Vj if the BMU of xi is the output neuron j.

2) Let nj be the number of samples in the Voronoi region Vj , then the average
of the samples contained in Vj , denoted by xj , can be computed, i.e.

xj =
1
nj

∑nj

p=1
xp. (4)

where xp ∈ Vj , 1 ≤ p ≤ nj .
3) The codebook vectors are updated by using a simple linear weighted average

scheme:

wi(t+ 1) =

∑K
j=1 hji(t) · nj · xj
∑K

j=1 hji(t) · nj

. (5)
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The batch learning algorithm can effectively accelerate the learning process and
lessen the impact of the order of the sample data fed to the SOM. When the size
of the learning dataset is large, batch learning is to be preferred.

3 Riemannian Manifolds

Let M be a Riemannian manifold. A Riemannian metric on M is a smoothly
varying inner product < ·, · > on the tangent plane TwM at each point w ∈M .
The norm of a vector v ∈ TwM is given by ‖v‖ =< ·, · > 1

2 . Given a smooth curve
segment on M, its length is computed by integrating the norm of the unit tangent
vectors along the curve. Let w and x be two points lying on M. The Riemannian
distance between them, denoted by d(w, x), is defined as the minimum of lengths
over all possible smooth curves between w and x. The geodesic is a smooth curve
that locally minimizes the length between two points on M.

3.1 Riemannian Exponential Map and Riemannian Log Map

Let v ∈ TwM be a vector on the tangent plane to M at w ∈ M and v �= 0.
γv

w be the geodesic that passes through point w (a.k.a. the base point) in the
direction of v . The Riemannian Exponential map of v at base point w, denoted
by Expw(v), maps v to the point, say x, on M along the geodesic at distance
‖v‖ from w, i.e.

x = Expw(v). (6)

Note that the Exponential map preserves the geodesic distance from the base
point to the mapped point, i.e. d(w, x) = d(w,Expw(v)) = ‖v‖.

The Riemannian Log map is the inverse of Riemannian Exponential map:

v = Logw(x). (7)

We illustrate the concepts described above by using a unit 2-sphere manifold S2.
Riemannian Exponential map and Log map on S2 at base point w are illustrated
in Fig.2.

Fig. 2. Exponential and Log maps on S2
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3.2 Intrinsic Average and Weighted Intrinsic Average

The intrinsic average of the N points {x1, x2, · · · , xN} lying on a Riemannian
manifold M is defined as

x = IntrinsicAvg(x1;x2; · · · ;xN )

= arg min
x∈M

∑N

i=1
(d(x, xi))2.

(8)

Pennec [13] first proposed an iterative gradient-descent method to solve the
aforementioned minimization problem

xj+1 = Expxj

(
τ

N

∑N

i=1
Logxj

(xi)
)
. (9)

where τ is the step size. The uniqueness of the solution can be guaranteed when
the data are well localized [14].

Let wi be the weight value of xi, wi ≥ 0, 1 ≤ i ≤ N . Likewise, the weighted
intrinsic average

x = WIntrinsicAvg(w1, x1;w2, x2; · · · ;wN , xN ). (10)

can be computed using the following iteration equation:

xj+1 = Expxj

(
τ

∑N
i=1wi

∑N

i=1
wi · Logxj

(xi)

)
. (11)

3.3 Embedding

Nash [15] has proved that every Riemannian manifold M can be isometrically
embedded into some Euclidean space R

d, i.e., there exists embedding mapping
Φ : M → R

d, which embed M into its ambient Euclidean space R
d. Under the

embedding Φ, points on M can be depicted by corresponding vectors in the
Euclidean space R

d. For example, a unit 2-sphere manifold S2 can be embedded
into a 3-dimensional Euclidean space by defining embedding mapping Φ : M →
R

3. Under this embedding, data point w lying on manifold S2 can be depicted by
a corresponding vector w in 3-dimensional Euclidean space. From now on, data
point on M , unless otherwise stated, is depicted by the corresponding vector in
the ambient Euclidean space R

d.

3.4 Riemannian Exponential Map and Log Map on S2(n)

We commence by considering how to implement Riemannian Exponential map
and Riemannian Log map on a unit 2-sphere manifold S2, which has been em-
bedded into the Euclidean space R

3.
Let point p0 = (0, 0, 1)T ∈ S2 be the base point, then a vector on the tangent

plane Tp0
S2 can be written in the form of v = (vx, vy)T . Notice that here we
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choose the x and y axes of the ambient Euclidean space R
3 as the coordinate

system of Tp0
S2. Thus the Riemannian Exponential map on S2 with base point

p0 is given as [16]

Expp0
(v) =

(
vx · sin ‖v‖‖v‖ , vy · sin ‖v‖‖v‖ , cos ‖v‖

)T

. (12)

The corresponding Riemannian Log map for a point q = (qx, qy, qz)T on S2 is
given by

Logp0
(q) =

(
qx · β

sinβ
, qy · β

sinβ

)T

. (13)

where β = arccos(qz). Notice that the antipodal point −p0 is not in the domain
of the Log map.

As stated above, a unit vector p ∈ R
3 can be considered as a point on the

manifold S2. Thus, a matrix U ∈ R
n×3, in which each row is a unit vector, can

be considered as a point on manifold S2(n) =
∏n

i=1S
2. The Exponential and

Log maps for S2(n) are just the direct products of n copies of the corresponding
maps for S2.

4 Learning SOM on Riemannian Manifold

In this section, we consider how to learn a SOM from data lying on a Riemannian
manifold M . Note that the Riemannian manifold M has been embedded into an
appropriate Euclidean space Rd by the embedding mapping Φ : M → Rd.

4.1 Sequential Learning Algorithm

First, we illustrate why the classic SOM can not accurately learn the intrinsic
topological neighborhood structure of the underlying Riemannian manifold on
where the data reside. Let us commence by starting from a simple case where the
data reside on the Riemannian manifold S2. Note that S2 has been embedded
into the Euclidean space R

3 as shown in Fig.3.
To learn a SOM on S2, if we use the classical updating equation (2), then

the resulting effect is to move the black point corresponding to vector wi(t) to
the blue point corresponding to vector w

′
i(t+ 1) by a distance of ‖�‖ along the

direction of x(t) −wi(t), as shown in Fig.3. Note that the resulting data point
corresponding to the updated codebook vector w

′
i(t + 1) is not guaranteed to

still reside on the manifold S2. Thus the classical SOM fails to accurately learn
the intrinsic geometric and topological properties of data lying on S2.

The correct procedure for moving wi(t) closer to the current learning sample
x(t) is to move the black point corresponding to vector wi(t) to the red point
by a distance of ‖�‖ along the geodesic between wi(t) and x(t). This can be
implemented by three successive steps as follows

1) Map point x(t) to the vector v on the tangent plane using Riemannian Log
map.
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Fig. 3. Adaptation of codebook vector on S2

2) Calculate �= α(t) · hc(x(t)),i(t) · Logwi(t)(x(t)), the magnitude and the
direction of adjustment, with respect to α(t) and hc(x(t)),i(t).

3) Map the � back to the point on manifold S2 using the Riemannian Expo-
nential map.

The aforementioned 3 steps can be formulated as the following update
equation

wi(t+ 1) =

(step 3)
︷ ︸︸ ︷

Expwi(t)

⎛

⎜⎝α(t) · hc(x(t)),i(t) ·
(step 1)︷ ︸︸ ︷

Logwi(t)(x(t))
︸ ︷︷ ︸

⎞

⎟⎠

(step 2),�

. (14)

While the update equation(14) can move the codebook vector closer to the
current learning example, on the other hand, it can also guarantee the re-
sulting codebook vector still reside on S2. Notice that the BMU of x(t)
is located by using the Riemannian geodesic distance metric, i.e. c(x(t)) =
argminK

i=1 ‖Logx(t) (wi(t)) ‖.
Given data on any Riemannian manifoldM , if the classical update equation in

(2) is applied, the resulting codebook vector can not be guaranteed to still reside
on M , and thus fails to accurately learn the intrinsic structure properties of the
underlying manifold. Fortunately, our proposed scheme elegantly circumvents
this problem.

In fact, the update equation (2) in the classical SOM is a special case of (14)
in the generalized SOM. When the Riemannian manifold M approaches to a
linear manifold, we have

Logwi(t)(x(t)) = x(t)−wi(t). (15)
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and
Expwi(t)(�) = wi(t)+ � . (16)

Thus

the right-side of (14) becomes
= Expwi(t)(�) = wi(t)+ �
= wi(t) + α(t) · hc(x(t)),i(t) · Logwi(t)(x(t))

= wi(t) + α(t) · hc(x(t)),i(t) · (x(t)−wi(t))

. (17)

Substituting (17) into (14), we have

wi(t+ 1) = wi(t) + α(t) · hc(x(t)),i(t) · (x(t)−wi(t)). (18)

Equation (18) is identical to Equation (2). In other words, the classical SOM is
a special case of the generalized SOM.

4.2 Batch Learning Algorithm

Likewise, for data that reside on a Riemannian manifoldM , points corresponding
to the updated codebook vectors are not guaranteed to still reside on M when
applying formula (4) and (5). In fact, batch learning algorithm for a SOM on a
Riemannian manifold should first compute the intrinsic average xj of samples
in each Voronoi region Vj , and then update the codebook vector to a weighted
intrinsic average of xj , 1 ≤ j ≤ K. More specifically, Equation (4) and (5) should
be replaced respectively by

xj = IntrinsicAvg(x1;x2; · · · ;xnj ). (19)

wi(t+ 1) = WIntrinsicAvg(w1i,x1; · · · ;wKi,xK). (20)

where wji is the weight value of xj , defined as

wji =
hji(t) · nj∑K
j=1hji(t) · nj

. (21)

The right-sides of (19) and (20) can be solved by applying (9) and (11),
respectively.

4.3 Initialization

Another key issue in our proposed learning algorithms is the initialization of
the SOM. An appropriate initialization scheme must guarantee that the points
corresponding to the initialized codebook vectors lie on the Riemannian manifold
M , from where data are sampled.

We here present a simple randomized initialization scheme. When initializing
the codebook vector wi, we first randomly select two samples, denoted by x and
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y, from dataset {xi}Ni=1. Then, wi is initialized by taking the mid point between
x and y as follows

wi = Expx

(
1
2
· Logx(y)

)
. (22)

We repeat the above procedure K times until all the codebook vectors of the
SOM have been initialized.

5 Experimental Results

In this section, we compare the performance between the classic SOM and the
generalized SOM by performing experiments on both synthetic data and real
word 3D facial shape data.

5.1 Experiments on Synthetic Data

We use standard Swiss-roll datasets in this section. We randomly select 2000
points in a Swiss-roll dataset. These points are used as training samples. After
training, the distribution of the codebooks of the SOM are plotted.

Results are shown in Fig.4. The left plot in Fig.4 is the distribution of 2000
sample points, the center and right plots are the learning results of the classical
SOM and the generalized SOM, respectively. More specifically, for example, the
right plot in Fig.4 is obtained by directly plotting the codebook vectors of the
trained generalized SOM.

The center plot in Fig.4 clearly demonstrates that the updated codebook vec-
tors in the classical SOM can not be guaranteed to still reside on the underlying

Fig. 4. Experimental results on Swiss-roll data. Left: samples of Swiss-roll data. Center:
learning result of the classical SOM. Right: learning result of the generalized SOM.
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manifold, as claimed in previous section. Thus, the resulting codebook vectors
can not accurately reflect the structure of the underlying manifold. However,
since the generalized SOM moves the codebook vectors along geodesics, they
can be guaranteed still to reside on the underlying manifold, as depicted in the
right plot in Fig.4.

From Fig.4, we can easily conclude that compared with the classical SOM,
the generalized SOM can more accurately learn the topological neighborhood
structure of the underlying manifold.

5.2 Experiments on Real Data

Our second application involves a facial needle-map (a set of facial surface nor-
mals) as the representation of a 3D facial surface shape.

To explore the effectiveness of the generalized SOM, both facial needle-maps
extracted from range images, referred as Dataset-I, and the facial needle-maps re-
covered from 2D brightness images using shape-from-shading, referred as Dataset-
II, are used in our experiments. Dataset-I contains range images obtained from the
UND database [17], and Dataset-II is a set of facial needle-maps recovered from
FERET database by applying the non-Lambertian shape-from-shading method,
which was proposed by Smith&Hancock [18].

Dataset-I: Facial Needle-maps from UND. Dataset-I is obtained from
the biometrics database from University of Notre Dame [17]. UND biometrics
database provides both 3D range images and 2D face images for each subject.
We select 200 range images for 200 subjects(100 females and 100 males, each
subject has only one range image). Each selected 3D range image is geometrically
aligned and get a corresponding facial surface height matrix H114×100. Entry
value H(i, j) is the facial surface height value corresponding to facial image
location (i, j). The needle-map N114×100×3 then can be directly computed from
the facial surface height matrix H114×100 of the aligned 3D range image. More
details about constructing Dataset-I can be found in Wu&Hancock [19]. Fig.5
presents 4 needle-maps extracted from Dataset-I.

Dataset-II: Recovered Facial Needle-maps from FERET. FERET [20] -
the outcome of FERET program sponsored by DARPA - has become a standard
face image database in the face recognition literatures. Each subject has different
facial images with a variety of pose, angle of view, illumination, expression and
age. Different gender and ethnicity categories are also covered by the database.
In our experiments, 200 frontal facial images for 200 subjects are selected from
FERET (103 females and 97 males, each subject has only one face image). Each
selected image is pre-processed to a resolution of 142×124 by cropping, rotating,
scaling and aligning. Face images are aligned with each other based on the central
points of the left and right eyes.

After pre-processing, we use non-Lambertian shape-from-shading to recover
the needle-map N142×124×3 for each facical image [18]. Fig.6 presents 4 example
recovered needle-maps from Dataset-II.
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Fig. 5. Four needle-maps in Dataset-I. The first row shows the needle-maps. The second
row contains images obtained by visualizing the 3rd component of each needle-map as
a 2D image.

Fig. 6. Four recovered needle-maps from Dataset-II. The first row contains the 4 orig-
inal 2D facial images from FERET. The second row contains the 4 recovered facial
needle-maps corresponding to the 4 2D facial images in the first row. The third row
contains 4 images obtained by visualizing the 3rd component of each needle-map as a
2D image.
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Localizing the facial needle-map. Here, we represent 2D facial image by
using local feature vectors (LFV s) [21] to lower the input dimensionality of the
SOM and lessen the problems associated with the high dimensionality of facial
surface needle-maps.

Let Nh×w×3 denote a facial needle-map matrix, where h and w are the height
and the width of facial surface, respectively. The facial needle-map can be repre-
sented by several small local facial needle-map matrices (LFNMs). The original
facial needle-map is partitioned into L non-overlapping sub-blocks with equal size
of h

′ ×w′ × 3, where h
′
and w

′
are the height and the width of each sub-block,

respectively, and L = � h
h′ 	 × � w

w′ 	. As an example, a facial surface needle-map
N142×124×3 in Dataset-II can be represented by L = � 1424 	 × � 1244 	 = 1085
LFNMs, each with a size of 4× 4× 3.

We use the LFNMs, rather than the original facial needle-maps, as training
patterns for the SOM. Notice that each LFNM with size of h

′×w′×3 is actually
a point lying on Riemannian manifold S2(h

′ × w′
).

Classification. Let {Ti}Ni=1 be the training facial needle-maps, L be the number
of LFNMs for each facial needle-map. Thus there are in total N ×K LFNMs
used as training patterns.

After training the SOM, we can obtain the BMU matrix, denoted
BMU Train, by feeding N training facial needle-maps to the trained SOM:

BMU Train =

⎛

⎜⎜⎝

b11 b12 · · · b1L

b21 b22 · · · b2L

· · · · · · bij · · ·
bN1 bN2 · · · bNL

⎞

⎟⎟⎠ . (23)

where bij is the BMU which is activated by feeding the j-th LFNM of the i-th
training facial needle-map to the trained SOM.

Given a test facial needle-map, we first partition it intoLLFNMs, then we feed
each of theL LFNMs to the trained SOM in turn, and thus obtain a BMU vector,
denoted BMU Test = (t1, t2, · · · , tL), where ti is the BMU which is activated by
feeding the i-th LFNM of the testing needle-map to the trained SOM.

From BMU Test and BMU Train, we can obtain a confidence matrix using
soft-kNN technique [21]

D(BMU Test,BMU Train) = (cij). (24)

where cij (1 ≤ i ≤ N , 1 ≤ j ≤ L) is the confidence value which measures
the similarity between the j-th LFNM of the test facial needle-map and the
corresponding LFNM of the i-th training facial needle-map.

We can determine the gender by utilizing the confidence values cij , 1 ≤ i ≤
N, 1 ≤ j ≤ L. Let M and F be the sets of male and female training facial
needle-maps, respectively. Obviously, M ∪ F = {Ti}Ni=1 and M ∩ F = ∅. The
s imilarity confidence value between the testing facial needle-map and the i-th
training facial needle-map, denoted sci , can be obtained by aggregating the
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corresponding L confidence values, i.e. sci =
∑L

j=1cij . Here, we present two
different schemes as follows.

1) Most Similar Subject: This scheme makes a decision with the maximum
rule after the similarity confidence values between the test facial needle-map and
the entire set of training needle-maps are computed. We can locate the training
facial needle-map, denoted Ti∗ , which corresponds to the maximum similarity
confidence value with respect to the test facial needle-map.

Ti∗ = arg max
Ti∈M∪F

sci = arg max
Ti∈M∪F

∑L

j=1
cij . (25)

We then classify the gender of the test facial needle-map as the gender of Ti∗ .
2) Most Similar Class: Let Mavg be the average similarity confidence value

between the test facial needle-map and the entire set of male training facial
needle-maps. Favg be the average similarity confidence value between the test
facial needle-map and the entire set of female training facial needle-maps.

Mavg =
1

‖{Ti}‖
∑

Ti∈M

∑L

j=1
cij . (26)

Favg =
1

‖{Ti}‖
∑

Ti∈F

∑L

j=1
cij . (27)

If Mavg > Favg, we classify the gender of the test facial needle-map as male.

Results and Analysis. In the following experiments, the size of SOM is set
to be 30× 16 and the output neurons of the SOM are arranged in 2D hexagonal
lattice structure. Batch learning algorithms for both the classical SOM and the
generalized SOM are implemented. Note that 10-fold cross validation is applied.

Table 1. Number of erroneously classified needle-maps and corresponding accuracy
rate on Dataset-I

sub-block size
Method

classical SOM generalized SOM

4 × 4 × 3 31 (84.5%) 25 (87.5%)
8 × 8 × 3 36 (82.0%) 27 (86.5%)
16 × 16 × 3 50 (75.0%) 39 (80.5%)
32 × 32 × 3 53 (73.5%) 48 (76.0%)

Table 2. Number of erroneously classified needle-maps and corresponding accuracy
rate on Dataset-II

sub-block size
Method

classical SOM generalized SOM

4 × 4 × 3 34 (83.0%) 21 (89.5%)
8 × 8 × 3 37 (81.5%) 26 (87.0%)
16 × 16 × 3 46 (77.0%) 32 (84.0%)
32 × 32 × 3 55 (72.5%) 36 (82.0%)
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Table 1 shows the experimental results for both the classical SOM and the
generalized SOM on Dataset-I. Table 2 presents the experimental results on
Dataset-II.

From Table 1 and Table 2, it is clear that both classical SOM and the gen-
eralized SOM achieve the best accuracy rates when the size of sub-block of is
4×4×3. The best accuracy rate for the generalized SOM on Dataset-I is 87.5%,
which is 3% higher than that (84.5%) obtained with the classical SOM. The
best accuracy rate for the generalized SOM on Dataset-II is 89.5%, which is
6.5% higher than that (83.0%) obtained using the classical SOM.

We also carried out experiments by gradually changing the size of sub-block
from 4× 4× 3 to 32× 32× 3. From Table 1 and Table 2, the accuracy rates for
both the classical SOM and the generalized SOM decrease when the size of sub-
block becomes large. However, the generalized SOM consistently outperforms
the classical SOM under different sub-block sizes on both datasets.

6 Conclusion

In this paper, we generalize the classical SOM from a flat Euclidean space to
a curved Riemannian manifold. Both sequential and batch learning algorithms
for learning a SOM on a Riemannian manifold are presented. We prove that the
classic SOM learning algorithms are a special cases of the generalized learning
algorithms of the generalized SOM. The generalized SOM can learn the intrinsic
topological neighborhood structure of the underlying Riemannian manifold on
which the data resides. We compare the generalized SOM with the classical SOM
on both synthetic data and real world facial surface normal data. Experimental
results show that the generalized SOM outperforms the classical SOM when the
data lies on a curved manifold.

The essential idea underlying the generalized SOM is to move the codebook
vector closer to the learning sample along a geodesic. Thus, as long as we can
approximately compute the geodesic, the generalized SOM can be applied. Many
studies concerning fast algorithms for approximating geodesics [22,23,24] have
been conducted. These algorithms can be incorporated into the generalized SOM.
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Abstract. We consider the problem of constructing quasi-conformal
mappings between surfaces by solving Beltrami equations. This is of
great importance for shape registration.

In the physical world, most surface deformations can be rigorously
modeled as quasi-conformal maps. The local deformation is characterized
by a complex-value function, Beltrami coefficient, which describes the
deviation from conformality of the deformation at each point.

We propose an effective algorithm to solve the quasi-conformal map
from the Beltrami coefficient. The major strategy is to deform the con-
formal structure of the original surface to a new conformal structure by
the Beltrami coefficient, such that the quasi-conformal map becomes a
conformal map. By using holomorphic differential forms, conformal maps
under the new conformal structure are calculated, which are the desired
quasi-conformal maps.

The efficiency and efficacy of the algorithms are demonstrated by ex-
perimental results. Furthermore, the algorithms are robust for surfaces
scanned from real life, and general for surfaces with different topologies.

Keywords: Quasic-Conformal Map, Beltrami Equation, Riemannian
Metric, Uniformization.

1 Introduction

Computing the mappings between surfaces is of fundamental importance in many
fields in science and engineering. Mappings will introduce distortions on sur-
faces, which can be measured by area distortion and angle distortion. Mappings
without area or angle distortions are isometric, those without angle distortions
are conformal. Isometric and conformal mappings are extremely rare in real-
ity. Most mappings in the physical world have bounded angle distortion, which
can be categorized as quasi-conformal mappings. Conformal mappings are fully
determined by boundary conditions. Quasi-conformal mappings are determined
by both boundary conditions and a function, the so-called Beltrami coefficient,
defined on the source surface, therefore it gives point-wise control to the users.
The detailed control of the mapping is crucial for many practical applications.
This work focuses on how to construct quasi-conformal mappings from the given
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p q p q

(a) Original face (b) Conformal mapping (c) Circle packing from (b)

(d) Checker-board texture (e) Quasi-conformal mapping (f) Circle packing from (e)

Fig. 1. Conformal and Quasi-Conformal mappings for a topological disk

Beltrami coefficients. Although the discussions are mainly on genus zero surfaces
with an arbitrary number of boundaries, the method can be directly applied to
surfaces with general topologies.

Suppose two surfaces S1, S2 have Riemannian metrics g1 and g2. A home-
omorphism φ maps S1 to S2. We say φ is conformal, if it is angle-preserving.
Mathematically, the pull back metric φ∗g2 = e2ug1. Locally, conformal mapping
is just scaling, therefore the local shapes are well preserved. Figure 1 shows a
conformal map from a human face surface (a) to the planar disk (b). From the
planar image (b), it is obvious that the major facial features are well preserved.
If we put a checker-board on the disk, and pull back the texture onto the face
surface, all the right-angled corners of checkers are preserved (d). Geometrically,
a conformal mapping maps infinitesimal circles to infinitesimal circles. As shown
in the figure, the regular circle packing on the texture is pulled back to the face,
and the shape of the circles is well preserved as shown in (c).

In general, conformal mappings are rare. Most mappings in physical world are
quasi-conformal. Conformal mappings have no angle distortions, while
quasi-conformal mappings introduce bounded angle distortion. Geometrically,
a quasi-conformal map transforms infinitesimal circles on the source surface to
infinitesimal ellipses on the target surface with bounded eccentricity. Figure 1(e)
shows a quasi-conformal map from the face surface to the unit disk. Frames (c)
and (f) show that the circles on the texture are mapped to the ellipses.



Surface Quasi-Conformal Mapping by Solving Beltrami Equations 393

1 + |μ|

1− |μ|

K = 1+|μ|
1−|μ|

θ

θ = 1
2argμ

Fig. 2. Illustration of how Beltrami coefficient µ measures the distortion by a quasi-
conformal mapping that maps a small circle to an ellipse with dilatation K

Quasi-conformal maps are controlled by both boundary condition and the so-
called Beltrami coefficient μ. The characteristics of the infinitesimal ellipses, the
orientation of the axis and the ratio between the longer axis and shorter axis
are encoded in μ, but the scale factor is absent. In detail, let φ : S1 → S2 be
the map, z and w local conformal parameters of (S1,g1) and (S2,g2), such that
g1 = e2u1dzdz̄, g2 = e2u2dwdw̄, then φ has a local representation. The Beltrami
coefficient is defined as

∂φ

∂z̄
= μ(z)

∂φ

∂z
. (1)

The ratio between the two axis of the ellipse is given by K = 1+|μ(z)|
1−|μ(z)| and

the orientation of the axis is related to argμ(z). As shown in Figure 2, two
orthogonal lines associated with the circle are the principal distortion directions
and the angle is measured between corresponding principal distortion directions.

The fundamental problem is to find a quasi-conformal map φ, which satisfies
the given Beltrami coefficient μ, namely, solving Beltrami equations (see Eqn. 1).
The major strategy is as follows. First, we compute conformal maps, φ1 : S1 →
D1, φ2 : S2 → D2, where D1 and D2 are domains on the complex plane, with
the canonical Euclidean metric g0 = dzdz̄. Then we construct a quasi-conformal
map τ : (D1,g0)→ (D2,g0), such that the Beltrami coefficient of τ equals to μ.
Then the pullback metric on D1 induced by τ is

τ∗(g0) = |∂τ
∂z
|2|dz + μdz̄|2,

which is conformal to the metric g1 = |dz + μdz̄|2, and then τ : (D1,g1) →
(D2,g0) is a conformal map. By changing the metric on D1 from g0 to g1,
the quasi-conformal map τ becomes conformal and can be computed by using
mature methods for conformal mappings, such as using Gu-Yau’s method based
on holomorphic differential forms. Finally, the desired quasi-conformal mapping
satisfying the Beltrami equation (see Eqn. 1) is given by φ = φ−1

2 ◦ τ ◦ φ1.
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Figure 1 (e) and (f) show a quasi-conformal map, whose Beltrami coefficient is
given by μ(z) = z, where z is the conformal parameter as shown in (b). Near
the nose tip, μ(z) is close to zero, therefore, the mapping there is close to be
conformal, and the ellipses are rounder as illustrated in (f).

The paper is organized in the following way: Section 2 briefly review the
most related works in the field; Section 3 introduces the theoretic background;
Section 4 focuses on the computational methodologies; Section 5 reports the
experimental results; the paper is concluded in Section 6.

2 Previous Work

Recently, with the development of digital scanning technology, computing confor-
mal mappings between surfaces becomes more and more important. In computer
graphics and discrete mathematics, much sound research has focused on discrete
conformal mappings.

The computational method of current work is mainly based on harmonic maps
and holomorphic differential forms. Here, we briefly overview most related work,
and refer readers to [1, 2] for thorough surveys. For example, curvature flow is
another important method for computing conformal mappings. In current work,
we skip the curvature flow methods, such as discrete Ricci flow [3, 4].

Discrete harmonic maps were constructed in [5], where the cotan formula was
introduced. First order finite element approximations of the Cauchy-Riemann
equations were introduced by Levy et al. [6]. Discrete intrinsic parameterization
by minimizing Dirichlet energy was introduced by [7]. Mean value coordinates
were introduced in [8] to compute generalized harmonic maps; Discrete spherical
conformal mappings were used in [9] and [10].

Discrete holomorphic forms were introduced by Gu and Yau [11] to compute
global conformal surface parameterizations for high genus surfaces. Another ap-
proach of discrete holomorphy was introduced in [12] using discrete exterior
calculus [13]. The problem of computing optimal holomorphic 1-forms to reduce
area distortion was considered in [14]. Gortler et al. [15] generalized 1-forms to
the discrete case, using them to parameterize genus one meshes. Tong et al. [16]
generalized the 1-form method to incorporate cone singularities. Discrete one-
forms have been applied for meshing point clouds in [17], surface tiling [18],
surface quadrangulation [19]. The holomorphic 1-form method has been applied
in virtual colonoscopy [20]. The colon surface is reconstructed from MRI images,
and conformally mapped to the planar rectangle. This improves the efficiency
and accuracy for detecting polyps. Conformal mapping is used for brain cortex
surface morphology study in [10]. By mapping brain surfaces to spheres, cor-
tex surface registration and comparison become straightforward. Holomorphic
1-form method has also been applied in computer vision [21, 22] for 3D shape
matching, recognition and stitching. In geometric modeling field, constructing
splines on general surfaces is one of the most fundamental problems. It is proven
in [23] that if the surface has an affine structure, then splines can be general-
ized to it directly. Holomorphic 1-forms can be applied for computing the affine
structures of general surfaces.
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3 Theoretical Background

In this section, we briefly introduce the major concepts in differential geometry
and Riemann surface theory, which are necessary to explain the quasi-conformal
maps. We refer readers to [24, 25] for detailed information.

3.1 Conformal Structure and Riemann Surface

A Riemann surface is a surface with a complex structure, such that complex
analysis can be defined on the surface.

Suppose f : C → C is a complex function. f(x, y) = (u(x, y), v(x, y)), f is
holomorphic, if it satisfies the following Cauchy-Riemann equations,

{
∂u
∂x = ∂v

∂y
∂u
∂y = − ∂v

∂x

If a holomorphic function f is a bijection, and the inverse f−1 is also holomor-
phic, then f is biholomorphic.

As shown in Fig.3, suppose S is a surface covered by a collection of open sets
{Uα}, S ⊂

⋃
α Uα. A chart is (Uα, φα), where φα : Uα → C is a homeomorphism.

The chart transition function φαβ : φα(Uα∩Uβ)→ φβ(Uα∩Uβ), φαβ = φβ ◦φ−1
α .

The collection of the charts A = {(Uα, φα)} is called the atlas of S. If all chart
transition functions are biholomorphic, then the atlas is called a conformal atlas
of the surface. Two conformal atlases are compatible, if their union is still a
conformal atlas. The union of all compatible conformal atlases is called the
conformal structure of the surface. A surface with a conformal structure is called
a Riemann surface.

Suppose S has a Riemannian metric g, the local coordinates zα is called
isothermal, if the metric has local representation

g = e2λ(z)dzdz̄.

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)

Fig. 3. A surface is covered by an atlas. If all chart transitions are holomorphic, the at-
las is a conformal atlas. If all local coordinates are isothermal, the surface is a Riemann
surface.
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A conformal structure is compatible with the Riemannian metric, if all its local
coordinates are isothermal. In practice, the surfaces of interest are embedded
in R

3, therefore with the induced Euclidean metric. The conformal structure
compatible to the induced metric is our major focus.

Suppose ω is a complex differential form, such that on each chart (Uα, φα)
with local complex parameter zα, ω = fα(zα)dzα. Suppose two charts overlap
Uα ∩ Uβ , then

fβ(zβ) = fα(zα(zβ))
dzα

dzβ
.

If fα is conformal for arbitrary local coordinates, then ω is called a holomorhic
1-form. All holomorphic 1-forms form a group, which is isomorphic to the first
cohomology group of the surface. The holomorphic 1-form plays a crucial role in
computing conformal mappings.

3.2 Quasi-Conformal Mapping

Suppose (S1,A1) and (S2,A2) are two Riemann surfaces and Ai’s are their
conformal structures. Suppose (Uα, φα) is a local chart of A1, and (Vβ , ψβ), is a
local chart of A2. φ : S1 → S2 is a conformal map if and only if

ψβ ◦ φ ◦ φ−1
α : φα(Uα)→ ψβ(Vβ)

is biholomorphic. A conformal map preserves angles.
A generalization of the conformal map is called the quasi-conformal map

which is an orientation-preserving homeomorphism between Riemann surfaces
with bounded conformality distortion, in the sense that the first order approx-
imation of the quasi-conformal homeomorphism takes small circles to small el-
lipses of bounded eccentricity. Thus, a conformal homeomorphism that maps a
small circle to a small circle can also be regarded as quasi-conformal.

Mathematically, φ is quasi-conformal provided that it satisfies the Beltrami
equation in Eqn. 1 on a local chart for some complex valued Lebesgue measurable
μ satisfying |μ|∞ < 1. μ is called the Beltrami coefficient, which is a measure of
conformality. In particular, the map φ is conformal around a small neighborhood
of p when μ(p) = 0. In general, φ maps an infinitesimal circle to a infinitesimal
ellipse. From μ(p), we can determine the angles of the directions of maximal
magnification as well as the amount of maximal magnification and maximal
shrinking. Specifically, the angle of maximal magnification is argμ(p)/2 with
magnifying factor 1 + |μ(p)|; the angle of maximal shrinking is the orthogonal
angle (argμ(p)−π)/2 with shrinking factor 1−|μ(p)|. The distortion or dilation
is given by:

K =
1 + |μ(p)|
1− |μ(p)| (2)

Thus, the Beltrami coefficient μ gives us all the information about the confor-
mality of the map (See Fig. 2).
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In terms of the metric tensor, considering the effect of the pullback under φ
of the canonical Euclidean metric g0, the resulting metric is given by:

φ∗(g0) = |∂φ
∂z
|2|dz + μ(z)dz)|2 (3)

4 Computational Algorithm

This section introduces the computational algorithms for computing conformal
mappings for surfaces based on holomorphic 1-form method.

4.1 Conformal Mapping

Doubly Connected Domain. Figure 4 shows a human face surface, with the
mouth sliced open, therefore it is a doubly connected domain (a topological
annulus). We denote the surface as S, its outer boundary as γ1 and the inner
boundary as γ0, namely ∂S = γ1 − γ0. The conformal mapping φ : S → C is
constructed as follows:

1. Compute a holomorphic 1-form ω, such that

Im(
∫

γ1

ω) = 2π,

where Im() denotes the imaginary part.

γ0

γ1

τ
τ+τ−

(a) Input face (b) Exact harmonic form (c) Closed harmonic form

(d) Holomorphic form (e) Conformal image (f) Circle packing from (e)

Fig. 4. Conformal mapping for doubly connected domain
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2. Choose a base point p ∈ S, Im(φ(p)) = 0. For any point q ∈ S, find an
arbitrary path γ connecting p and q, then

φ(q) = exp(
∫

γ

ω).

We applied Gu-Yau’s algorithm for computing the holomorphic 1-form, which
is similar to that introduced in [11].
1. Compute a harmonic function f : S → R, such that

⎧
⎨

⎩

Δf = 0
f |γ0 = 0
f |γ1 = 1

Let ω1 = df . Figure 4 (b) shows the exact harmonic 1-form ω1.
2. Find a path τ connecting the two boundaries as shown in Fig. 4 (a). Slice the

surface along the path to get a topological quadrilateral S̃, with boundaries
γ0, τ

+, γ1, τ
−.

3. Randomly set a function g : S̃ → R, such that
{
gτ+ = 2π
gτ− = 0

g is random on other points.
4. The gradient of g is a closed 1-form on S, denoted as ω̃2 = dg. Compute a

function h : S → R, such that

∇ · (ω̃2 + dh) = 0,

with Neuman boundary condition

< ω̃2 + dh,n >= 0,

where n is the normal to the boundaries γ0, γ1. Let ω2 = ω̃2 + dh, Fig. 4 (c)
shows the closed harmonic 1-form ω2.

5. Find a constant c, such that
∫

τ

∗ ω2 = c

∫

τ

ω1,

where ∗ is the Hodge star operator. Then ω = cω1 +
√−1ω2 is the desired

holomorphic 1-form. Figure 4 (d) shows the holomorphic 1-form ω.

Simply Connected Domain. The construction of a conformal mapping for
a simply connected domain (a topological disk) to the planar unit disk is very
straight forward. Given a surface which is a topological disk, as shown in Fig. 1
(a), a small hole is punched at the point p. Then we map the punched disk, which
is a topological annulus, to the planar annulus with the unit outer boundary. We
choose a point q different from p, and map q to the real axis. We then shrink the
size of the hole, and get another conformal mapping, still the outer boundary is
with radius one, q is mapped to the real axis. If the size of the hole shrinks to
zero, the conformal mapping of the annulus converges to the conformal mapping,
such that p is mapped to the origin, q is mapped to the real axis. Figure 5 shows
the conformal mapping result for a semi-cortex surface to the unit planar disk.
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Fig. 5. Conformal mapping for simply connected domain

Multiply-Connected Domains. The construction of conformal mapping from
a multiply connected domain to a planar disk with circular holes can be de-
duced to the doubly connected case by using Koebe’s method [26]. As shown in
Fig. 9, the human face surface in (a) is segmented to D0, D1, D2, D3, where D0

is a multiply connected domain. The domain is conformally mapped to a planar
disk with circular holes as shown in (b). The conformality is illustrated by tex-
ture mapping a circle packing pattern in (c), where all the small circles on the
texture are mapped to circles on the surface.

The algorithm is as follows. The face surface is denoted as S. First, D1 is
removed from the surface S as shown in (d). Then the doubly connected domain
S − D1 is conformally mapped to a planar annulus as shown in (e). Then D1

is glued back to the planar annulus by solving a harmonic map, such that the
boundary of D1 is mapped to the inner circle of the planar annulus. By using
a scaling and a Möbius transformation, the conformal mapping is normalized,
such that the point p ∈ S is mapped to the origin, and the boundary point q ∈ S
is mapped to +1. The result is shown in (f). A similar procedure is repeated for
segment D2 shown in (g), (h) and (i), and for segment D3 in (j), (k) and (l). By
repeating this procedure, the images of the inner holes are getting rounder and
rounder. Eventually, the images converge to a planar disk with circular holes
where p is mapped to the origin, q is mapped to +1, as shown in (b).

The detailed proof for the convergence of Koebe’s algorithm can be found
in [26]. The convergence is very fast. In the example, the procedure only goes
through each segment Dk, k = 1, 2, 3 once, and the images of the inner bound-
aries are very close to circles as shown in Fig. 9 (l).
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(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i

Fig. 6. Quasi-Conformal mapping for a simply connected domain

4.2 Quasi-Conformal Maps

Simply Connected Domain. Given a surface S, which is a topological disk,
two points p, q ∈ S, we want to compute a quasi-conformal map φ : S → D, such
that φ satisfies the Beltrami equation

∂φ

∂z
= μ(z)

∂φ

∂z
,

where z is the isothermal coordinate of S. Furthermore

φ(p) = 0, φ(q) ∈ R
+.

First, we compute a conformal map φ1 : S → D, where D is the planar unit
disk with the canonical Euclidean metric:

g0 = dzdz.

Assume the Beltrami coefficient is defined on D, μ : D→ C, then we construct
a new Riemannian metric g for D,

g(z) = |dz + μ(z)dz|2. (4)

We compute a conformal map φ2 : (D,g) → (D,g0), such that φ2(φ1(p)) =
0, φ2(φ1(q)) ∈ R

+. Then the quasi-conformal map is given by φ = φ2 ◦ φ1,
φ : S → (D,g0), which satisfies the Beltrami equation.
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(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i

Fig. 7. Quasi-Conformal mapping for a doubly connected domain

Doubly Connected Domain. Similarly, if S is a topological annulus, first
a conformal map φ1 : S → A2 is computed using the algorithm discussed
above, where A2 is a planar annulus with canonical Euclidean metric g0, whose
boundaries are concentric circles. Similarly, a new metric g is constructed for
T 2 using Formula 4. Then a conformal map φ2 : (A2,g) → (Ã2,g0) is com-
puted, where Ã2 is another planar annulus with canonical Euclidean metric and
concentric boundary circles. The shape of Ã2 is determined automatically by
(T 2,g). The quasi-conformal map φ is given by the composition of φ1 and φ2,
φ : φ2 ◦ φ1 : S → (Ã2,g0).

Multiply Connected Domain. Suppose S is a multiply connected domain
with boundaries

∂S = γ0 − γ1 − · · · − γn

First, we fill all the holes with topological disks D1, D2, · · ·Dn, such that ∂Dk =
γk. Then S̃ = S ∪ {⋃k Dk} is a simply connected domain. Then we compute a
conformal map φ1 : S̃ → D. We can extend the Beltrami coefficient μ to μ̃ on D

from φ1(S) to φ1(Dk)’s by solving harmonic functions using Dirichlet boundary
condition,

μ̃(p) = μ(p), ∀p ∈ S;Δμ̃(p) = 0, p ∈
⋃

k

Dk.
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(a) µ = 0.25 (b) µ = 0.25i (c) µ = 0.25 + 0.25i

Fig. 8. Quasi-Conformal mapping for a multiply connected domain

Then we can compute a quasi-conformal map φ2 : (D,g0)→ (D,g0), such that

∂φ2

∂z̄
= μ̃(z)

∂φ2

∂z

Then we can compute a conformal map from a planar multiply connected domain
(φ2 ◦ φ1(S),g0) with canonical Euclidean metric to a planar disk with circular
holes, φ3 : φ2 ◦ φ1(S) → (D,g0). The desired quasi-conformal map φ is the
composition

φ = φ3 ◦ φ2 ◦ φ1 : S → (D,g0),

which satisfies the Beltrami equation (see Eqn. 1).

4.3 Discrete Algorithm

In practice, all the surfaces are approximated by simplicial-complexes embedded
in R

3, denoted asM = (V,E, F ), where V,E, F are the sets of vertices, edges and
faces respectively. We use vi to denote the i-th vertex, [vi, vj ] the halfedge from
vi to vj , [vi, vj , vk] the face with vertices vi, vj , vk, sorted counter clockwisely.
A discrete 0-form f : V → R is a real valued function defined on the vertices.
A discrete 1-form ω : E → R, defined on edges. The exterior differentiation
operator is defined as

df([vi, vj ]) = f(vj)− f(vi).
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and
dω([vi, vj , vk]) = ω([vi, vj ]) + ω([vj , vk]) + ω([vk, vi]).

ω is a closed 1-form, if dω = 0.
Suppose two faces [vi, vj , vk] and [vj , vi, vl] share an edge [vi, vj ]. The weight

on edge [vi, vj ] is defined as

wij = cot θij
k + cot θij

l ,

where θij
k is the corner angle at the vertex vk in the face [vi, vj , vk]: θij

l is defined
in the similar way. If the edge [vi, vj ] is on the boundary and only attached to
[vi, vj , vk] then the edge weight is defined as

wij = cot θij
k .

The discrete harmonic energy of a 0-form f : V → R is defined as

E(f) =
∑

[vi,vj ]

wij(f(vj)− f(vi))2.

The divergence operator is defined as

∇ · ω(vj) =
∑

j

wijω([vi, vj ]),

where vj are all the vertices connecting to vi. A discrete harmonic 1-form satisfies
∇ · ω = 0.

Let ω be a closed 1-form. A face [vi, vj , vk] can be isometrically embedded on
the plane, and then ω has local representation as ω = adx + bdy. The Hodge
star operator is defined as ∗ω = −bdx + ady, where a, b are two real numbers
and the wedge product between two closed 1-forms ωk = akdx + bkdy, k = 1, 2
is given by

ω1 ∧ ω2 =
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ dx ∧ dy (5)

The inner product between ω1 and ω2 is defined as

< ω1, ω2 >=
∫

M

ω1 ∧ ∗ω2. (6)

Let M be a triangular mesh of genus g. We first compute its first homology
group H1(M,Z) basis by CW-cell decomposition, which we denote by
{γ1, γ2, · · · , γ2g}. Then we compute the dual basis for the cohomology group
H1(M,R), {τ1, τ2, · · · , τ2g}, such that

∫

γi

τj = δij .

Then we find 0-forms gi : M → R, such that

∇ · (τi + dgi) = 0, i = 1, 2, · · · , 2g,
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then ωi = τi + dgi’s are harmonic 1-forms. The Hodge star of a harmonic 1-form
is also harmonic, therefore

∗ωi =
∑

j

λijωj ,

the coefficient of λij can be computed by solving the linear system

< ωk, ωi >=
∑

j

λij

∫

M

ωk ∧ ωj , k = 1, 2, · · · , 2g,

the left hand side is computed using formula 6, the right hand side by Formula
5. The holomorphic 1-form basis is given by

{ω1 +
√−1∗ω1, ω2 +

√−1∗ω2, · · · , ω2g +
√−1∗ω2g}.

Surfaces with boundaries can be converted to symmetric closed surfaces by
double covering and therefore their holomorphic 1-form group basis can be com-
puted in the similar way. For details, we refer readers to Gu and Yau’s work [11].
Conformal mappings between genus zero surfaces with boundaries can be car-
ried out using holomorphic 1-forms, which can be approximated in the discrete
setting.

By the above discrete forms and the operators, the algorithms described in
previous two subsections can be carried out in the discrete setting.

5 Experimental Results

Most of the surfaces are captured using 3D scanner based on phase shifting
principle [27, 28]. The scanned resolution is 640× 480, at 60 frames per second.
The triangulations are directly determined by the pixel grid structure of the
scanned images. We did not perform preprocessing operations, such as smooth-
ing, denoising and mesh simplification. The raw data sets are computed using the
algorithms described above. This demonstrates the robustness of our method.

All the algorithms are implemented using generic C++ on a Windows XP
platform with Dual 2.33GHz CPU and 3.98 GB of RAM. The linear systems are
in general symmetric and positive definite. We use the Matlab C++ library as
the linear solver.

In our experiment, the surfaces are described as triangular meshes. The Bel-
trami coefficient μ is a function over the whole surface. In Fig. 1(e), the μ is
set to be x+ iy for each vertex. The quasi-conformal mappings are constructed
using holomorphic differential forms, which is general for surfaces with different
topologies. In other cases, it is set to be a constant complex number. Table 1
lists the computational time for each case with different Beltrami coefficient μ.
For large meshes with 160k faces, the processing time for Koebe’s method [26]
with multiple iterations is about 2.5 minutes. This demonstrates the efficiency
of our algorithm.
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D0

D1

D2D3

p
q p q

(a) Original surface (b) Planar domain (c) Texture mapping

(d) D1 is removed (e) Conformal mapping for (f) Möbius transform
S − D1 D1 is glued back

(g) D2 is removed (h) Conformal mapping for (i) Möbius transform
S − D2 D2 is glued back

(j) D3 is removed (k) Conformal mapping for (l) Möbius transform
S − D3 D3 is glued back

Fig. 9. Conformal mapping for a multiply connected domain using Koebe’s algorithm
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Table 1. Computational Time

Figure #Vertex #Face #Boundary Beltrami Coefficient µ Iterations Time

Fig. 1(e) 80593 160054 1 x + iy 1 102s

Fig. 6(a) 80593 160054 1 0.00 + 0.00i 1 73s
Fig. 6(b) 80593 160054 1 0.25 + 0.00i 1 110s
Fig. 6(c) 80593 160054 1 0.00 + 0.25i 1 105s

Fig. 7(a) 80724 160054 2 0.00 + 0.00i 1 78s
Fig. 7(b) 80724 160054 2 0.25 + 0.00i 1 110s
Fig. 7(c) 80724 160054 2 0.00 + 0.25i 1 112s

Fig. 9(c) 15160 29974 4 0.00 + 0.0i 2 156s
Fig. 8(a) 15160 29974 4 0.25 + 0.0i 2 160s
Fig. 8(b) 15160 29974 4 0.00 + 0.25i 2 156s
Fig. 8(c) 15160 29974 4 0.25 + 0.25i 2 157s

Besides the scanned data sets, we also test human cortex surface as shown in
Fig. 5. The surface is reconstructed from MRI images. Furthermore, we tested
some synthetic data to verify the accuracy of our method. The algorithm recovers
the correct solution with high accuracy.

6 Conclusion and Future Works

This work introduces a rigorous method for computing quasi-conformal map-
pings by solving Beltrami equations. The method is efficient and robust. The
major point is to deform the Riemannian metric by the Beltrami coefficient and
convert a quasi-conformal mapping to a conformal mapping. In the current work,
the method is based on holomorphic differentials, and it can be directly gener-
alized to discrete Ricci flow [29,3,4] and to the Yamabe flow method [30,31,32].

In the future, we plan to apply quasi-conformal mappings to shape regis-
tration, surface comparison, shape recognition, and many other applications in
computer graphics, computer vision, medical imaging and geometric modeling.
Also, we will explore rigorous algorithms for computing extremal quasi-conformal
maps.
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Várady, T. 356
Vetter, T. 251
Vuong, A.-V. 19

Yau, S.-T. 189, 391
Yu, D.J. 375

Zeng, W. 391


	Cover Page
	Lecture Notes in Computer Science 5654
	Title Page
	ISBN 3642035957
	Preface
	Organization
	Table of Contents
	Computing Isophotes on Free-Form Surfaces Based on Support Function Approximation
	Introduction
	Dual Implicitization
	Dual Surface and Support Functions
	Quadratic Polynomial Surfaces
	Ruled Surfaces with Polynomial Direction Vectors of Low Degree
	Polynomial Translational Surfaces of Low Degree
	Special Cubic Polynomial Surfaces

	Offsets, Isophotes and Contour Generators
	The Inverse Gauss Map
	PN Parameterizations and Offset Surfaces
	Isophotes
	Other Applications of the Dual Surface

	Support Function Approximation
	Piecewise Quadratic Approximation
	Approximate Dual Implicitization
	Isophote Approximation

	Conclusion
	References

	Swept Volume Parameterization for Isogeometric Analysis
	Introduction
	Swept Volume Parameterization
	NURBS Representation of Swept Volumes
	Boundary Conditions
	Guiding Curves and Reference Shape
	Controlling the Shape
	Variational Design
	Examples

	Isogeometric Analysis for Swept Volumes
	Weak Form and Geometry Function
	Galerkin Projection
	Boundary Conditions, Quadrature, Refinement

	Simulation Examples
	Simulation of Swept Volumes
	Experimental Comparison with a Traditional Simulation Tools

	Conclusion
	References

	Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes
	Introduction
	Support
	The Characteristic Ring
	Checking $C^{1}$ Continuity
	Region of Analysis
	Sharper Bounds for the Region of Analysis
	Simplification of the Test
	Other Schemes
	Summary
	References

	The Invariant Functions of the Rational Bi-cubic Bezier Surfaces
	Introduction and Scope
	Mathematical Preliminaries
	Functional Independence
	General Observations on Invariants
	Sign-Pattern
	Equivalent Curve and Surface Parametrisations

	Generalised Invariance Results for Rational Bézier Paths
	Summary of the Generalised Invariant-Geometry Conditions
	Generalised Weight-Normalisations for the Bézier Paths

	An Invariant-Geometry Functional Equation for the Bi-cubic Bézier Surfaces
	The Functional Solutions for the Bi-cubics
	Reduced Invariant-Geometry Conditions for the Bi-cubics
	Invariant-Geometry Transformations and the Invariant Functions for the Bi-cubics

	Properties of the Invariant Functions for the Bi-cubics
	Canonical-Form Invariants for the Bi-cubic Bézier Surfaces
	A Lie Group Perspective
	The Fundamental Theorem
	Application to Bézier Paths and Bi-cubic Surfaces

	Examples
	Further Work
	References
	Appendix

	Crazy Cuts: Dissecting Planar Shapes into Two Identical Parts
	Introduction
	Solving Two Piece Jigsaw Puzzles
	Self Docking of Shapes
	Finding Crazy Cuts
	An Efficient Algorithm for Finding Crazy Cuts for Polygons
	Algorithm for Crazy Cuts for Pixelized Shapes

	Concluding Remarks
	References

	Piecewise Rational Manifold Surfaces with Sharp Features
	Introduction
	A Construction of Rational Manifold Surfaces
	Charts and Subcharts
	Transition Functions and Domain
	Manifold Surface by Blending

	Extension to Sharp Features
	Sharp Edges and $k$-Vertices
	$k$–Charts and Their Subcharts
	Parameterization of Semi-subcharts
	Feature Lines and Geometry Functions

	Examples
	Conclusions
	References

	Deriving Box-Spline Subdivision Schemes
	Introduction
	Univariate Binary Schemes
	Bivariate Binary Quadrilateral Schemes
	Deriving the Mask
	Deriving Stencils
	Continuity
	Safe Extrusion Directions
	Diagonal Terms
	Four-Arrow, Four-Direction Scheme
	Eight-Arrow, Four-Direction Scheme
	Six-Arrow Schemes
	More Arrows — Larger Stencils

	Longer Arrows
	Triangular Schemes
	Ternary and Higher Arities
	Ternary Univariate Schemes
	Ternary Bivariate Schemes

	Summary
	References

	Geometric Characterizations of Graphs Using Heat Kernel Embeddings
	Introduction
	Heat Kernels on Graphs
	Heat Equation
	Geodesic Distance from the Heat Kernel

	Heat Kernel Embedding
	Co-ordinate Embedding
	Point Distribution Statistics

	Geometric Characterisation
	Sectional Curvature
	The Gauss-Bonnet Theorem
	Gaussian Curvature

	Graph Similarity
	Hausdorff Distance
	A Probabilistic Similarity Measure (PSM)
	Multidimensional Scaling

	Experiments
	Conclusion
	References

	Compressive Algorithms—Adaptive Solutions of PDEs and Variational Problems
	Introduction
	Optimal Adaptive Frame Solvers for Operator Equations
	The State of the Art
	The Frame Discretization
	Optimality of Adaptive Frame Approximations
	Numerical Experiments
	Poisson Equation on the Interval
	Poisson Equation on the L-Shaped Domain
	Towards Domain Decomposition Methods

	Sparse Recovery and Variational Problems
	$l_{1}$-Minimization and Iterative Soft-Thresholding Algorithms
	Accelerated Projected Gradient Methods
	Domain Decomposition Methods
	Subspace Correction Methods
	Joint Sparsity and Iterative $Firm-Thresholding$ Algorithms
	Compressive Algorithms Meet Free-Discontinuity Problems

	Conclusion and Future Perspectives
	References

	Symmetry-Aware Mesh Processing
	Introduction 
	Background and Previous Work 
	Overview 
	Geometric Symmetrization 
	Symmetric Remeshing 
	Applications 
	Beautification of Meshes for Symmetric Objects
	Symmetry Enhancement
	Attribute Transfer
	Simplification

	Conclusion 
	References

	Recent Advances in Computational Conformal Geometry
	Introduction
	Previous Work
	Holomorphic Differentials

	Theoretic Background
	Harmonic Maps
	Conformal Mappings
	Conformal Structure
	Holomorphic Differentials
	Surface Ricci Flow
	Quasi-Conformal Maps
	Teichmüller Space

	Computational Methods
	Harmonic Maps
	Holomorphic Differential Approach
	Discrete Surface Ricci Flow
	Discrete Surface Yamabe Flow
	Quasi-Conformal Mapping by Solving Beltrami Equations

	Applications
	Computing Conformal Mappings
	Geometric Modeling
	Medical Imaging
	Vision
	Graphics

	Conclusion
	References

	Finite Curvature Continuous Polar Patchworks
	Introduction
	Related Literature

	C2 Polar Cap Construction Using One Patch of Degree 6-5 per Sector
	The Ingredients

	Alternative Constructions
	$C^{2}$ Capping without Collapsed Edge
	$G^{2}$ Capping of Degree Bi-5

	Extensions and Discussion
	References

	A New Approach to Point Membership Classification in B-rep Solids
	Introduction
	Two Dimensions
	Boundaries That Are All Triangular Facets
	General B-rep Solids
	General B-rep Solids – Algorithmic Details
	Splitting Faces
	Triangulating Faces
	Triangulating Gaps

	Other Applications of the Algorithm
	Future Improvements
	Conclusion
	References

	Probabilistic Modeling and Visualization of the Flexibility in Morphable Models
	Introduction
	Background
	Shape Vectors and Registration
	Principal Component Analysis and Statistical Shape Models
	Linear Gaussian Models

	Shape Modeling Using Probabilistic PCA 
	Mathematical Model
	Missing Data
	Reconstruction of Partial Shapes
	Visualizing the Remaining Variability

	Results and Medical Applications
	Experimental Setup
	Results
	Reconstruction in Practice

	Conclusion
	References

	Parameterizing Singularities of Positive Integral Index
	Introduction
	Previous Work
	Contributions

	Overview
	Frame Fields
	Branched Covering Spaces
	Vector Fields on Covering Spaces

	QuadCover Parameterization Algorithm
	Singularities
	Singularities in QuadCover
	Handle Singularities of Positive Integral Index

	Results
	References

	Two Step Time Discretization of Willmore Flow
	Introduction
	Derivation of the Two Step Time Discretization
	Finite Element Space Discretization
	Numerical Solution of the Optimization Problem
	Numerical Results
	References

	Surface Triangulation and the Downstream Effects on Flattening
	Introduction
	Surface Flattening
	McCartney et al.'s Flattening Method
	Modified McCartney's Flattening
	Flattening Success Criteria
	Accuracy Measurements

	Developable Surface Flattening Test
	RAT Configurations
	Global Triangulation Configurations
	RATC Test

	Discussion
	References

	On Mesh Editing, Manifold Learning, and Diffusion Wavelets
	Introduction
	Related Work
	Manifold Learning
	Laplacian Editing Reinterpreted
	Consequences
	GLE and Diffusion Wavelets
	Results and Discussion
	Discussion

	Connections to Segmentation
	Summary and Future Work
	References

	Gradient Approximation on Uniform Meshes by Finite Differences and Cubic Spline Interpolation
	Introduction
	Approximation of Derivatives by Finite Differences
	Univariate Cubic Spline Interpolation
	De Boor's Not a Knot Condition
	Improving De Boor's Not a Knot Condition : PGS Method

	Solving Tridiagonal Systems for Cubic Splines
	Computation of the Matrix $L$ and Solution of the System
	Computation of the Matrix $M$ and Solution of the System

	Numerical Results
	Estimation of Gradients
	The Methods
	Numerical Examples

	References

	Metric Methods in Surface Triangulation
	Introduction
	The Gromov-Haussdorff Limits
	 Metric Curvatures
	Wald Curvature
	Wald and Gauss Curvatures Comparison

	Computing Wald Curvature
	Experimental Results
	Final Remarks
	References

	Setback Vertex Blends in Digital Shape Reconstruction
	Introduction
	Motivation
	Previous Works

	Technical Background
	Segmentation
	Vertex Blends

	Computing the Boundaries of Vertex Blends
	Estimation of Setback Distances
	Construction of the Boundary Curves
	Resolving Interference Issues

	Examples
	Conclusion
	References

	Learning a Self-organizing Map Model on a Riemannian Manifold
	Introduction
	Self-organizing Map
	Sequential Learning Algorithm
	Batch Learning Algorithm

	Riemannian Manifolds
	Riemannian Exponential Map and Riemannian Log Map
	Intrinsic Average and Weighted Intrinsic Average
	Embedding
	Riemannian $Exponential Map$ and Log Map on $S^{2}(n)$

	Learning SOM on Riemannian Manifold
	Sequential Learning Algorithm
	Batch Learning Algorithm
	Initialization

	Experimental Results
	Experiments on Synthetic Data
	Experiments on Real Data

	Conclusion
	References

	Surface Quasi-Conformal Mapping by Solving Beltrami Equations
	Introduction
	Previous Work
	Theoretical Background
	Conformal Structure and Riemann Surface
	Quasi-Conformal Mapping

	Computational Algorithm
	Conformal Mapping
	Quasi-Conformal Maps
	Discrete Algorithm

	Experimental Results
	Conclusion and Future Works
	References

	Author Index



