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Preface

While we were busy putting together the present collection of articles celebrating
the twentieth birthday of our journal, Discrete & Computational Geometry, and, in
a way, of the field that has become known under the same name, two more years
have elapsed. There is no doubt that DCG has crossed the line between childhood
and adulthood.

By the mid-1980s it became evident that the solution of many algorithmic ques-
tions in the then newly emerging field of computational geometry required classical
methods and results from discrete and combinatorial geometry. For instance, visibility
and ray shooting problems arising in computer graphics often reduce to Helly-type
questions for line transversals; the complexity (hardness) of a variety of geometric
algorithms depends on McMullen’s upper bound theorem on convex polytopes or on
the maximum number of “halving lines” determined by 2n points in the plane, that
is, the number of different ways a set of points can be cut by a straight line into two
parts of the same size; proximity questions stemming from several application areas
turn out to be intimately related to Erdős’s classical questions on the distribution of
distances determined by n points in the plane or in space.

On the other hand, the algorithmic point of view has fertilized several fields of con-
vexity and of discrete geometry which had lain fallow for some years, and has opened
new research directions. Computing the convex hull or the diameter of a point set, or
estimating the volume of a convex body or the maximum density of a packing of trans-
lates of a given convex body, has motivated a wide range of exciting new questions
concerning classical concepts in discrete geometry. Motion planning problems have
triggered the systematic study of the “combinatorial complexity” of the boundary of
the union of geometric objects, and hence the development of Davenport–Schinzel
theory, the use of epsilon-nets, Vapnik–Chervonenkis dimension, and probabilistic
techniques. Similar methods have been needed for range searching, and this has also
led to a renaissance of geometric discrepancy theory.

In the last two decades, DCG has provided a common platform for mathematicians
working in the theory of packing and covering, and in convexity and combinatorial
geometry, as well as for computer scientists interested in computational geometry,
computational topology, geometric optimization, graph drawing, motion planning,
and so on. In fact, exceeding all the expectations of its editors, the journal has served
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as an effective catalyst in the creation of a new generation of researchers working on
the common borderline between mathematics and computer science.

The present selection of 28 exceptionally strong articles, many of which solve
longstanding open problems, reflects the current state of our subject, its many differ-
ent facets, and its strong links to other important disciplines.

Nevo and Barvinok–Novik study problems related to Barnette’s Lower Bound
and McMullen’s Upper Bound Theorem, respectively. Nagel gives a proof of the
Kalai–Kleinschmidt–Lee conjecture for the maximum number of empty simplices
in a simplicial polytope. Miller–Pak and Damian–Flatland–O’Rourke prove the ex-
istence of nonoverlapping unfoldings of certain manifolds. Billera–Hsiao–Provan
construct nearly polytopal CW spheres with special properties. Khachiyan–Boros–
Borys–Elbassioni–Gurvich show that generating all vertices of a polyhedron is a hard
problem. Braun establishes improved estimates for the roots of Ehrhart polynomials
of lattice polytopes. Przesławski–Yost give new conditions for the decomposability
of polytopes as a Minkowski sum, while Richardson–Vu–Wu describe the asymp-
totic behavior of certain random polytopes.

Schreiber–Sharir design optimal shortest path algorithms on polytopes. Niyogi–
Smale–Weinberger show how to find the homology of the underlying submani-
fold of a probability distribution with high confidence. Basu–Zell establish new
bounds on Betti numbers of projections of semialgebraic sets. Efficient algorithms
for snap rounding in pixel geometry and for computing optimal embeddings of paths,
trees, and cycles in two and three dimensions are presented by Hershberger and
by Agarwal–Klein–Knauer–Langerman–Morin–Sharir–Soss, respectively. Agarwal–
Har–Peled–Yu apply coresets to design approximation algorithms to shape fitting.
Shewchuk generalizes constrained Delaunay triangulations to higher dimensions,
while Boissonat–Cohen–Steiner–Vegter find the first provably correct implicit sur-
face meshing algorithm, where the mesh is isotopic to the surface.

Ackerman–Buchin–Knauer–Pinchasi–Rote and Gerken solve Murty’s and Erdős’s
many-decade-old problems for finite point configurations. Pfender proves that every
finite graph can be obtained as the visibility graph of a rational point set in the plane,
while Pelsmajer–Schaefer–Štefankovič construct the first examples showing that the
crossing number of a graph is not necessarily the same as its odd-crossing number.
Aliev uses convex geometry to make progress on an old Erdős–Moser problem in
additive number theory. Lee–Solomyak use dynamical systems to answer a ques-
tion of Lagarias on Delone sets. Gronchi–Longinetti solve an extremal problem for
polygons that plays a role in X-ray tomography. Bárány–Hubard–Jerónimo, Borcea–
Goaoc–Petitjean, and Cheong–Goaoc–Holmsen–Petitjean solve various hyperplane-
and line-transversal problems in Euclidean spaces.

Discrete & Computational Geometry saw the light of day in 1986, and this vol-
ume celebrates its majority. By now, the field, which has become inseparable from the
journal, has acquired its own characteristics, its own methodology and toolbox. Deep
connections have been discovered between its basic problems and many other fields of
mathematics and computer science, such as additive combinatorics, topology, real al-
gebraic geometry, randomized algorithms, and data structures. The field has its annual
conferences: the ACM Symposia, the Fall Workshops, and the European Workshops
on Computational Geometry, and a biennial meeting in Schloss Dagstuhl. Established
research institutes such as DIMACS, MSRI, and IPAM regularly run special semester
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programs dedicated to the subject, and Oberwolfach sponsors a meeting every few
years. We have several excellent textbooks for teaching discrete and computational
geometry, not to mention two comprehensive handbooks. The “genie” has been let
out of the bottle. Its movements and actions are now largely independent of the origi-
nal intentions of its “creators,” who include the founding editors of DCG. It has been
a tremendous pleasure and honor to edit the journal, to watch it grow alongside the
field proper, and to serve the community built around it. Our everlasting gratitude
must also go to the late Walter Kaufmann-Bühler, who had the foresight to accept our
original invitation to Springer-Verlag to publish a journal in this new field.

We dedicate the present volume to the members of the very active and gifted com-
munity of researchers who have taken part in the development of the field during the
past more-than-two decades; many of them are represented in its pages.

New York, Jacob E. Goodman
July 2008 János Pach

Richard Pollack

We would like to express our appreciation to those who helped us gather the pho-
tographs that appear in this volume: Ludwig Danzer, Wlodek Kuperberg, Ina Mette
and Ute Motz (of Springer), Willy Moser, Lori Smith, Emo Welzl, and Jörg M. Wills.



Walter Kaufmann-Bühler, Mathematics Editor, Springer-Verlag 
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There Are Not Too Many Magic Configurations

Eyal Ackerman · Kevin Buchin ·
Christian Knauer · Rom Pinchasi · Günter Rote

Abstract A finite planar point set P is called a magic configuration if there is an
assignment of positive weights to the points of P such that, for every line l determined
by P , the sum of the weights of all points of P on l equals 1. We prove a conjecture
of Murty from 1971 and show that if a set of n points P is a magic configuration,
then P is in general position, or P contains n− 1 collinear points, or P is a special
configuration of 7 points.

Keywords Magic configuration · Euler’s formula · Discharging method ·Murty’s
conjecture · Points · Lines · Euclidean plane

1 Introduction

Let P be a finite set of points in the plane. P is called a magic configuration if there
is an assignment of positive weights to the points of P such that, for every line l

determined by P , the sum of the weights of all points of P on l equals 1. Figure 1
shows an example of a point set that is a magic configuration. This special point
set (and any projective transformation of it) is called a failed Fano configuration.

The research by Rom Pinchasi was supported by a Grant from the G.I.F., the German-Israeli
Foundation for Scientific Research and Development.

E. Ackerman
Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel
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2 There Are Not Too Many Magic Configurations

Fig. 1 Failed Fano
configuration

We prove a conjecture of Murty [8] saying that apart from failed Fano configurations,
every set of n points that is a magic configuration is either in general position, or
contains n− 1 collinear points. A few other remarks on the history of the problem
can be found in The Open Problems Project [2].

Theorem 1 There do not exist magic configurations of cardinality n, other than

• Configurations with n− 1 collinear points, or
• Configurations in general position, that is, with no three points on a line, or
• A configuration with 7 points that up to a projective transformation is depicted in

Figure 1

We will now make some preliminary observations regarding magic configurations.
Many of these observations can be found already in Murty’s paper [8].

Assume that a configuration P of n ≥ 2 points in the plane is magic and that its
points are assigned positive weights that witness the fact that P is magic. Recall that
a line determined by P is called ordinary if it includes precisely two points of P .
By Gallai–Sylvester theorem [4, 10], the points of P must determine an ordinary line
unless they are all collinear.

We claim that unless P has n−1 collinear points, then for every point p ∈ P there
is an ordinary line not passing through p. Indeed, otherwise, by the theorem of Kelly
and Moser [6], the set P \ {p} determines at least 3

7 (n − 1) ordinary lines (see [1]
for the current best bound on the number of ordinary lines determined by n points).
Clearly all these lines must be passing through p. It follows that at most 1

7 (n − 1)
points of P \ {p} lie on an ordinary line through p and these are all the ordinary lines
determined by P , contradicting the Kelly–Moser theorem.

It is now easy to see that unless P has n− 1 collinear points, every point through
which there is an ordinary line must be assigned the weight 1

2 . To see this assume that
p is such a point and assume without loss of generality that it is assigned a weight that
is greater than 1

2 (otherwise look at the other point on the ordinary line through p).
Let q and r be two points different from p that constitute an ordinary line in P . One
of q and r is assigned a weight greater than or equal to 1

2 . The sum of the weights
assigned to the points on the line through that point and p will be strictly greater
than 1, a contradiction.

Denote by A the set of all points in P through which there is an ordinary line,
and assume that P does not have n − 1 collinear points. Then each point in A is
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Fig. 2 Duality between the
plane and the unit sphere

(a) The dual D(p) of a point p is the great circle that is the

intersection of S with the plane through the center of S that is

perpendicular to the line through p and the center of S

(b) The dual D(l) of a line l is the pair of antipodal points that

are the intersection points of S and the line through the center

of S that is perpendicular to the plane through l and the center

of S

assigned a weight of 1
2 . It follows that any line through two points in A must be

ordinary. Observe that |A| ≥ 3, as any noncollinear set of points determines at least
3 ordinary lines (see [6]) and this would be impossible if |A| ≤ 2. Denote by B the
set P \A. Clearly, every point in B must be assigned a weight that is strictly smaller
than 1

2 . Indeed, let b ∈ B and a ∈A. The line through a and b cannot be ordinary for
otherwise b ∈ A. Therefore it must contain a third point c. As the weight assigned
to a is 1

2 , it follows that the weight assigned to b can be at most 1
2 minus the weight

assigned to c.
Theorem 1 will therefore follow from the following theorem.

Theorem 2 Let A and B be two nonempty sets of distinct points in the Euclidean
plane such that |A| ≥ 3. Assume that all the ordinary lines determined by A∪B are
precisely all the lines determined by two points of A. Assume further that every point
in A ∪ B is assigned a positive weight such that the sum of the weights of all points
on any given line determined by A ∪ B is 1. Then the configuration of points A ∪ B

is a failed Fano configuration that is equal, up to a projective transformation, to the
one shown in Fig. 1, where A consists of the points whose weight is 1

2 .
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Fig. 3 A set of lines that
corresponds to the exceptional
configuration of Theorem 3

Instead of proving Theorem 2 we will prove its dual theorem on the sphere. We
refer here to the standard duality under which the dual D(p) of a point p in the plane
is a great circle on the unit sphere S that touches the plane at the origin. The dual
D(l) of a line l in the plane is a pair of antipodal points on S . For a point p in the
plane, D(p) is the great circle on S which is the intersection of S with the plane
through the center of S that is perpendicular to the line through p and the center of S
(see Fig. 2a). For a line l in the plane, D(l) is the pair of antipodal points that are the
intersection points of S and the line through the center of S that is perpendicular to
the plane through l and the center of S (see Fig. 2b). This duality preserves incidence
relations in the sense that if p is a point in the plane that is incident to a line l in the
plane, then D(p) is a great circle on S that is incident to the two points of D(l). Recall
that given an arrangement of curves, an ordinary intersection point is an intersection
point through which precisely two curves pass.

Theorem 3 Let A and B be two nonempty sets of distinct great circles on a sphere
S such that |A| ≥ 3. Assume that all the ordinary intersection points determined by
A∪B are precisely all the intersection points determined by A. Assume further that
every circle in A∪B is assigned a positive weight such that the sum of the weights of
all circles incident to any given intersection point on S is 1. Then the configuration
of circles A ∪ B is the sphere-dual of a failed Fano configuration that is equal, up
to a projective transformation, to the one shown in Fig. 1. The set A consists of the
circles dual to the points whose weight is 1

2 .

Figure 3 shows a projection to the plane of the exceptional configuration of Theo-
rem 3. The projection is a central projection through the center of S on a plane that
touches S . Under this projection every two antipodal points on S are projected to the
same point in the plane.

2 Proof of Theorem 3

We refer to the circles in A as red circles and to the circles in B as blue circles.
We remark that in all the next figures in this paper the solid lines represent the blue
circles, while the dashed lines represent the red circles.

For every circle s ∈ A ∪ B , let W(s) denote the weight assigned to s. As we
observed, for every s ∈A we have W(s)= 1/2, and for every s ∈ B , 0 <W(s) < 1/2.
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Table 1 Charge of objects of B before and after Steps 1–4

object of B ch(·) ch1(·) ch2(·) ch3(·) ch4(·)

bad crossing point −1 0 0 0 0

good crossing point ≥0 ≥0 ≥0 ≥0 ≥0

bad (but not evil) triangle 0 0 −1/4 ≥0 ≥0

evil triangle 0 0 −1/4 −1/4 0

0-quadrangle 1 1 ≥0 ≥0 ≥0

1-quadrangle 1 ≥0 ≥0 ≥0 ≥0

good 2-quadrangle 1 ≥0 ≥0 ≥0 ≥0

bad 2-quadrangle 1 −1 0 0 0

0-pentagon 2 2 ≥3/4 ≥0 ≥0

1-pentagon 2 ≥1 ≥3/4 ≥1/2 ≥1/2

2-pentagon 2 ≥0 ≥0 ≥0 ≥0

r-(k-gon) , k ≥ 6, r ≤ � k2 � k− 3 ≥k − 3− r ≥ 3
4 k− 3− r

2 ≥ 1
2 k− 3 ≥ 1

2 k − 3

We consider the arrangement B of the circles in B on the sphere S . For every face
f in B, the size of f is the number of edges of the face f . We will use the term
‘triangle’ for a face of size three, the term ‘quadrangle’ for a face of size four, etc.
Two faces in B are called adjacent, if they share an edge. Similarly, two edges in
B are called adjacent, if they are incident to the same crossing point. A great circle
s ∈ B and a face f of B are called adjacent, if s includes an edge of f . We begin by
assigning a charge ch(·) to the faces and vertices of the arrangement B: The charge
of a face of size k is k − 3, while the charge of a crossing point of exactly k blue
circles is k− 3. For every k ≥ 2 denote by fk the number of faces in B of size k, and
by tk the number of crossing points of exactly k blue circles. It follows from Euler’s
formula that

∑
k(k − 3)fk +∑k(k − 3)tk + 6 = 0. Therefore, the overall charge is

−6. Observe that any crossing point on a circle b ∈ B , even with a circle in A, is a
crossing point in B. Indeed, otherwise either it is an ordinary intersection point on b,
or it is an intersection point that is not ordinary of at least two circles in A.

Our plan is to redistribute the charges (discharge) in four steps, such that finally
every face and crossing point in B will have a nonnegative charge. Then it will follow
that the total charge is nonnegative, hence a contradiction. For each i = 1,2,3,4
we will denote by chi(·) the charge of an object (a face in B or a crossing point of
blue circles) after the ith step. For convenience, Table 1 summarizes the charges of
selected objects from B through the four steps of discharging.

Note that the only elements whose initial charge is negative are crossing points
through which there are precisely two blue circles. We call such a crossing point bad.
Observe that there are no faces of size two in B. Indeed, otherwise all blue circles pass
through the same two antipodal points p and p′ on the sphere S . As |A| ≥ 3, there is
a circle in A not passing through p, and hence also not through its antipodal point p′.
This circle intersects the circles in B in ordinary intersection points, a contradiction.

The following claim and its corollary will be useful throughout the analysis of the
discharging steps.
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Fig. 4 d is adjacent to two
triangles at two of its opposite
edges

Claim 4 Assume that there is a quadrangle d in B such that there are precisely two
blue circles through every vertex of d , and d is adjacent to two triangles at two of its
opposite edges. Then A∪B is the sphere-dual of a failed Fano configuration.

Proof Let t1 and t2 denote the two triangles adjacent to d at two of its opposite edges.
Let s1, s2, s3. and s4 denote the four blue circles that include the edges of d in the
counterclockwise order so that s1 and s3 separate d from t1 and t2, respectively. Let
x1, x2, x3, and x4 denote the four vertices of d listed in the counterclockwise order so
that x1 is the intersection point of s1 and s2. Since s1 and s2 are the only blue circles
through x1 and s4 and s1 are the only blue circles through x4, it follows that s2 and s4
meet at a vertex of t1 that we denote by x5. Similarly, s2 and s4 meet at a vertex of t2
that we denote by x′5. x5 and x′5 are therefore two antipodal points on the sphere S .
Therefore, x1, x2, x5 and their antipodal points on S are the only intersection points
on s2.

Since there are precisely two blue circles through x1, there must be a red circle
passing through x1. We denote this red circle by r1. r1 cannot cross t1 and therefore
it must cross d . Evidently, r1 must pass through x3. Similarly, there is a red circle r2
passing through x2 and x4. As |A| ≥ 3, there is a third red circle in A that we denote
by r3. r3 and s2 cannot cross at any other point but x5 (and hence also x′5). It follows
that there are precisely three red circles in A since a fourth red circle would have to
cross s2 at a point through which one of r1, r2, or r3 passes.

We claim that s1, s2, s3, and s4 are the only blue circles in B . Indeed, all other
blue circles s5, . . . , sk must cross s2 and s4 at x5 (and hence also at x′5). None of
r3, s5, . . . , sk can cross s1 at x1 or x4, and only one can cross s1 at the intersection
point of s1 and s3. Moreover, no two of r3, s5, . . . , sk cross s1 at a common point.
It follows that one of r3, s5, . . . , sk must cross s1 at an ordinary intersection point, a
contradiction.

Now it easily follows by inspection that A∪B must be the sphere-dual of a failed
Fano configuration. More specifically, by looking at Fig. 3, we see that the sphere-
dual of the failed Fano configuration has the properties of Claim 4. Moreover, from
the assumption of Claim 4 we were led to conclude that there are no lines additional
to those drawn in Fig. 4. It is easy to see that the only intersection point (modulo
antipodals) not already indicated in Fig. 4 is the common intersection point of s1, s3,
and r3. Hence there is a unique arrangement satisfying the conditions of the claim
and it is necessarily the sphere-dual of the failed Fano configuration. �

Corollary 5 Assume that B consists of precisely four circles, then A ∪ B is the
sphere-dual of a failed Fano configuration.



There Are Not Too Many Magic Configurations 7

(a) Step 1 (b) Step 2

(c) Step 3

Fig. 5 Discharging steps 1–3

Proof By previous arguments not all the circles in B are concurrent. If B has pre-
cisely three concurrent circles, then each of them has exactly four crossing points
in B. Since the circles in A cross the circles in B only at vertices of B, and |A| ≥ 3,
there must be two circles of A crossing a circle of B at the same point, which is
impossible. Therefore, B consists of four circles, no three of which are concurrent.
Thus, the arrangement B satisfies the conditions of Claim 4. �

We proceed by describing the four discharging steps and analyzing their effect on
the charges of the faces and intersection points of B.

Step 1 (Charging bad crossing points) Let C denote the arrangement of all circles
in A ∪ B . Since we assume that no ordinary intersection point in C lies on a blue
circle and that every pair of red circles cross at an ordinary point in C, it follows that
through each bad crossing point in B there is precisely one red circle. Let r be a red
circle passing through a bad crossing point p, and let f1 and f2 be the two faces in B
that are incident to p and are crossed by r (see Fig. 5a). Then, we take 1/2 units of
charge from each of f1 and f2 and charge it to p.

After Step 1 every crossing point of blue circles has a nonnegative charge. Let us
now examine the remaining charge at the faces of the arrangement B. A red circle can
cross the boundary of a face in B only at its vertices, for otherwise we would have
either an ordinary intersection point of C on a blue circle, or an intersection point of
two (or more) red circles that is not ordinary in C. Thus, every red circle that crosses a
face f in B induces, in fact, a red diagonal in f . A face f with m such red diagonals
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Fig. 6 A good 2-quadrangle
cannot be incident to exactly
one good crossing point

loses at most m units of charge in Step 1. We use an integer before the name of a
face in B to denote the number of its red diagonals. For example, a 2-hexagon is a
face of size six in B that has precisely two red diagonals. Since triangles cannot have
a (red) diagonal, we refer to them simply as ‘triangles’ instead of 0-triangles. Thus,
triangles do not lose charge in Step 1. Pentagons may have at most two red diagonals,
and thus they remain with a nonnegative charge as well. The only elements whose
charge might be negative after Step 1 are 2-quadrangles, as their charge might be −1,
in case they are incident to four bad crossing points.

A crossing point x of circles from C is called good, if there is a (necessarily one)
red circle through x and at least 3 blue circles through x. We call a 2-quadrangle
good, if it is incident to a good crossing point. We call a 2-quadrangle that is not
incident to any good crossing point a bad 2-quadrangle.

Claim 6 Any good 2-quadrangle is incident to at least two good crossing points.

Proof Assume to the contrary that d is a good 2-quadrangle that is incident to pre-
cisely one good crossing point x. Let s1, s2, s3, and s4 denote the four circles in B
that constitute the edges of d in the counterclockwise order so that s1 and s4 are in-
cident to x. As x is a good crossing point, there is another blue circle through x that
we denote by s0. (See Fig. 6.)

By our assumption, all the crossing points that are incident to d , with the excep-
tion of x, are incident to precisely two blue circles and one red circle. Considering
the crossing point of s1 and s2, we see that W(s1) +W(s2) = 1/2. Similarly, con-
sidering the crossing point of s2 and s3, we see that W(s2) + W(s3) = 1/2, and
in particular W(s1) = W(s3). Considering the crossing point of s3 and s4, we see
that W(s3) + W(s4) = 1/2. Therefore, W(s1) + W(s4) = W(s3) + W(s4) = 1/2.
But this is a contradiction because considering the circles through x we see that
W(s1)+W(s4)≤ 1/2−W(s0) < 1/2. �

As a corollary of Claim 6, we conclude that after Step 1 every good 2-quadrangle
has a nonnegative charge, as it is incident to at most two bad crossing points. We still
have to take care of the bad 2-quadrangles. This will be carried out in the next step.

Step 2 (Charging bad 2-quadrangles) In this step every bad 2-quadrangle compen-
sates for its charge shortage by taking 1/4 units of charge from each of its four neigh-
boring faces. That is, let f be a face in B adjacent to a bad 2-quadrangle d , then d
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Fig. 7 A bad triangle cannot be
adjacent to two bad quadrangles

takes the 1/4 units of charge from the charge of f (see Fig. 5b). Note that in such a
case f does not have red diagonals at the vertices of the edge common to f and d .

It is easy to check, by considering the different possibilities for f , that the only
elements that might have a negative charge after Step 2 are triangles adjacent to bad
2-quadrangles. We refer the reader to the proof of Claim 7 for a proof of this ob-
servation. We call a triangle that is adjacent to a bad 2-quadrangle a bad triangle.
Note that we may assume that a triangle might share an edge with at most one bad
2-quadrangle. Indeed, let t be a triangle adjacent to two bad 2-quadrangles d1 and d2.
Let s1, s2, and s3 denote the three blue circles that constitute the triangle t , such that
s1 and s2 separate t from d1 and d2, respectively (see Fig. 7).

There is a red circle r through the intersection point of s1 and s2. r crosses s3 at a
vertex x1 of d1 and at a vertex x2 of d2, which are therefore antipodal points on the
sphere S . It follows that s1, s2, s3, and another blue circle that passes through x1 and
x2 are the only blue circles in B . By Corollary 5, A∪B is the sphere-dual of a failed
Fano configuration.

Step 3 (Charging some of the bad triangles) In this step we use the excess charge
that exists at faces with at least five edges to charge part of the bad triangles.

Let f be a face in B with k edges, where k ≥ 5. Let t be a bad triangle adjacent to
a bad 2-quadrangle d . We transfer 1/4 units of charge from f to t , if f and t share a
vertex and f is adjacent to (that is, shares an edge with) d (see Fig. 5c).

Before continuing to the last step, we show that after Step 3, every face f with at
least five edges remains with a nonnegative charge.

Claim 7 Let f be a face with k edges, where k ≥ 5. Then after Step 3 f has a
nonnegative charge.

Proof Let r be the number of red diagonals of f . Assume first that k ≥ 6. Right
after Step 1, the charge of f is at least k − 3− r . f has exactly k − 2r vertices that
are not incident to a red diagonal, and hence at most k − 2r edges none of whose
vertices is incident to a red diagonal of f . It follows that f may be adjacent to at
most k − 2r (bad) 2-quadrangles. Therefore, the charge of f right after Step 2 is at
least k−3− r− k−2r

4 . As f may contribute 1/4 units of charge to at most k−2r bad
triangles, the charge of f right after Step 3 is at least k − 3− r − k−2r

2 = k
2 − 3≥ 0.
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(a) An evil pair (�, d) of degree 1 in H (b) An evil pair (�, d) of degree 2 in H

Fig. 8 Evil pairs

It is left to consider the case where f is a pentagon. If f is a 2-pentagon, then f

cannot be adjacent to any (bad) 2-quadrangle. Therefore, Step 2 as well as Step 3 do
not affect the charge of f and it remains at least 0, as it is right after Step 1. If f is
a 1-pentagon, then right after Step 1 the charge of f is at least 1. f may be adjacent
to at most one 2-quadrangle. Therefore, right after Step 2 the charge of f is at least
3/4. f contributes 1/4 units of charge in Step 3 to at most one bad triangle and hence
remains with a charge of at least 1/2 after Step 3.

Finally, if f is a 0-pentagon, then after Step 1 the charge of f is 2. Observe that if
f shares two adjacent edges e1 and e2 with bad 2-quadrangles d1 and d2, respectively,
then the common vertex of e1 and e2 cannot be a vertex of a bad triangle t . Indeed,
otherwise t is adjacent to two bad 2-quadrangles d1 and d2 which we have previously
shown to be only possible in the case where A ∪ B is the sphere-dual of a failed
Fano configuration. From this observation it follows that if f is adjacent to five bad
2-quadrangles, then it does not share a vertex with any bad triangle and hence the
charge of f right after Step 3 is 3/4. If f shares a vertex with five bad triangles, then
it may be adjacent to at most two bad 2-quadrangles (in fact one could show that even
that is not possible) and hence the charge of f after Step 3 is at least 1/4. In all other
cases f is adjacent to at most four bad 2-quadrangles and shares a vertex with at most
four bad triangles and hence the charge of f after Step 3 is at least 0 (we remark that
this last argument is by far suboptimal, yet suffices for our needs). �

Therefore, after Step 3 the only objects with a negative charge are those bad tri-
angles who did not receive 1/4 units of charge in Step 3. We call those triangles
evil.

Step 4 (Charging evil triangles) After Step 3 of discharging, the only elements with-
out the desired charge are evil triangles, as they are charged with−1/4 units of charge
each. We will use the excess charge that exists at the 0-quadrangles to charge with
1/4 units of charge each and every evil triangle.

For every 0-quadrangle q , consider the set E of edges of q that are not edges of
bad 2-quadrangles. Then the charge of q after Step 3 is |E|/4. For every e ∈ E let
�e ∈ B be the great circle that includes e. We call the pair (�e, q) a helping pair and
we designate 1/4 unit from the charge of q to the pair (�e, q).

For any evil triangle t , let d be the bad 2-quadrangle adjacent to it, and let � ∈ B

be the great circle that separates t and d . We call the pair (�, d) an evil pair. We will



There Are Not Too Many Magic Configurations 11

show that there are at least as many helping pairs as there are evil pairs. Thus we will
successfully charge each evil triangle with 1/4 units of charge taken of the excess
charge at the 0-quadrangles after step 3.

Define a bipartite graph H whose vertices are the evil pairs and the helping pairs.
Let (�, d) be an evil pair, let t be the evil triangle adjacent to d and �, and let f and
f ′ be the two faces in B, other than t , that are adjacent to both � and d . Let e and
e′ be the edges of f and f ′, respectively, on �. Since t is evil, then f and f ′ can be
either triangles or 0-quadrangles (see Fig. 8). Moreover, the edges e and e′ cannot be
edges of bad 2-quadrangles, as d is the only bad 2-quadrangle adjacent to t . Each of
(�, f ) and (�, f ′) is a helping pair, assuming f or f ′, respectively, are not triangles.
If f is not a triangle, we connect (�, d) in H to the helping pair (�, f ). Similarly,
if f ′ is not a triangle, we connect (�, d) in H to the helping pair (�, f ′). Observe
that if both f and f ′ are triangles, then by Claim 4, A ∪ B is the sphere-dual of a
failed Fano configuration. Therefore, we may assume that the degree in H of every
evil pair is either 1 or 2 (see Fig. 8). The degree in H of every helping pair is at most
2, because a helping pair (�, q) may be connected only to evil pairs (�′, d) such that
� = �′ and d is adjacent to q . It follows that the connected components of H that
include evil pairs are either paths alternating between evil pairs and helping pairs, or
theoretically, even cycles alternating between evil pairs and helping pairs. Therefore,
in order to show that there are at least as many helping pairs as there are evil pairs,
it is enough to show that no connected component in H is a path both of whose end
vertices are evil pairs.

Indeed, assume to the contrary that there is such a connected component in H . Let
its vertices be (�, d1), (�, q1), . . . , (�, qk−1), (�, dk), so that for every 1 ≤ i ≤ k − 1,
(�, qi) is a helping pair connected to both (�, di) and (�, di+1). It follows that there
is a great circle �′ ∈ B that includes all edges of d1, . . . , dk and q1, . . . , qk−1 that are
opposite to those included in �.

Since the degree in H of (�, d1) is 1, then the face in B, other than q1, adjacent to
both �, �′, and to d1 must be a triangle which we denote by q0. Similarly, the face in B,
other than qk−1, adjacent to both �, �′, and to dk must be a triangle which we denote
by qk . Observe that � and �′ meet at a vertex of q0 and at a vertex of qk (see Fig. 9).

We claim that the only triangles in B adjacent to �′ are q0, qk , and of course their
antipodal triangles on the sphere S . This is because for every 0≤ i ≤ k, the face ad-
jacent to �′ that shares an edge with qi cannot be a triangle as it admits a red diagonal
at least at one of its vertices. And moreover, we may assume that for every 1≤ i ≤ k,
the face adjacent to �′ that shares an edge with di is not a triangle. Indeed, otherwise
by Claim 4, A∪B is the sphere-dual of a failed Fano configuration (recall that there
is an evil triangle adjacent to di on the other side of � on S). This is a contradiction
to a theorem of Levi [7] saying that in any nontrivial arrangement of lines in the
real projective plane, every line must be adjacent to at least 3 triangular faces. (Here,
we apply Levi’s theorem after identifying antipodal points on the sphere S and thus
reducing the great circles in A ∪ B to a set of lines in the projective plane.) Since
the reference to Levi’s theorem is not widely available we refer the reader also to [3,
Sect. 5.4] and [5] for very short proofs of Levi’s theorem.

We conclude that after Step 4, all the faces in the arrangement B have a nonnega-
tive charge, and the same holds for every crossing point in B. Thus, the overall charge
is nonnegative, contradicting the fact the total charge in the beginning was −6.
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(a)

(b)

Fig. 9 A connected component in H both of whose endpoints are evil pairs

3 Notes and Concluding Remarks

If the arrangement B is in general position in the sense that no three blue circle from
B pass through the same point, then Theorem 3 and hence also its dual Theorem 2
could be strengthened as follows leaving the proof almost as is:

Theorem 8 Let A and B be two nonempty disjoint sets of points in the plane such
that |A| > 1, and B is in general position. Assume that no line determined by A

passes through a point of B . Then there is an ordinary line in A∪B through a point
in B , unless A∪B is, up to a projective transformation, the configuration in Fig. 1.

To see why Theorem 8 follows from the proof of Theorem 3, observe that if the
circles in B are in general position, then there are no good crossing points in C, and
hence the assumptions in Theorem 3 on the weights assigned to the circles in C are
not required. In Theorem 8 we allow more than two points of A to be collinear as
long as they are not collinear with a point of B . Indeed, in the proof of Theorem 3 we
did not really use the assumption that every intersection point determined by A is an
ordinary intersection point with respect to A ∪ B , but only that no intersection point
determined by circles from A is incident to a circle from B .
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Proving Theorem 8 for the case B is not required to be in general position would
imply that the following conjecture1 holds. Recall that an ordinary point in a point
configuration P is a point x ∈ P through which there is an ordinary line.

Conjecture 9 Let G= (V ,E) be the Sylvester Graph of a finite set of points P . That
is, V = {p ∈ P |p is an ordinary point in P } and E = {(p1,p2)|p1 and p2 determine
an ordinary line in P }. Then G is a complete (nonempty) graph if and only if no three
points in P are collinear, or P is a failed Fano configuration.

We would like to note a corollary of Theorem 8. It is well known that the set of
edges of a complete graph on 2n vertices can be partitioned into (necessarily 2n− 1)
edge-disjoint perfect matchings. A nice way to realize such a partitioning is to think
about the vertices of K2n as the vertices of a regular (2n − 1)-gon plus its center.
Then every one of the 2n− 1 directions of the edges of the (2n− 1)-gon induces a
perfect matching in which two points are matched if the straight line they determine
is parallel to the direction we choose, plus taking the center to be matched with the
remaining point. These 2n− 1 perfect matchings are edge-disjoint.

Now let G be a complete geometric graph on 2n vertices in general position in
the plane. We call a matching in G geometrically induced, if the lines containing the
edges of the matching are concurrent. If a matching of G is geometrically induced,
then the meeting point of all lines that include an edge of the matching is called the
center of the matching. The question is can we partition the set of edges of a complete
geometric graph G on 2n vertices in general position in the plane into edge-disjoint
geometrically induced perfect matchings. By Theorem 8, this is impossible unless
n= 1 or n= 2. Indeed, assume it is possible and let B be the set of 2n vertices of G,
and let A be the set of all points that are the centers of the geometrically induced
perfect matchings. Then A and B satisfy the assumptions in Theorem 8.

It is an interesting open question of what is the maximum possible number of edge-
disjoint geometrically induced perfect matchings of a complete geometric graph on
2n vertices in general position in the plane. It seems natural to conjecture that the
answer should be n+ 1. This number is attained for the set of vertices of a regular
2n-gon in the plane when n is even. Here observe that the geometrically induced
perfect matchings whose centers are the points at infinity that correspond to the n

directions of the edges of the regular 2n-gon plus the center of the 2n-gon, are all
pairwise edge-disjoint.

One can try to weaken the notion of a magic configuration and omit the restriction
of all weights assigned to the points being positive. In this case there seem to be a
much larger variety of magic configurations and yet not every configuration is magic.
In this context it is interesting to note that given that a configuration is magic (even in
the weak sense) it is very easy to assign the right weights (and in a unique way) to the
points, just as a function of the number of lines determined by the set that pass through
each of the points of the set. To this end let p1, . . . , pn denote the points of a magic
configuration P . For every 1≤ i ≤ n let xi denote the weight assigned to pi and let
ki be the number of lines determined by P that pass through pi . For convenience

1This conjecture is attributed to Sylvester according to Smyth [9].
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denote Y =∑n
i=1 xi . Fix i and consider the point pi . There are ki lines determined

by P that pass through pi . The sum of the weights assigned to the points of P on
each of these lines is 1. It follows that Y = ki − xi(ki − 1). Therefore, xi = ki−Y

ki−1 . We
can get an explicit expression for xi just in terms of kj (j = 1, . . . , n). Observe that

Y =∑n
j=1 xj =

∑n
j=1

Y−kj
1−kj

. Therefore,

Y =
∑n

j=1
kj

kj−1

1+∑n
j=1

1
kj−1

, and hence, xi = 1

ki − 1

(

ki −
∑n

j=1
kj

kj−1

1+∑n
j=1

1
kj−1

)

.

Observe in particular that if ki = ki′ , then xi = xi′ . It is also clear from here that
the weights assignment is unique, if exists.
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Computing the Detour and Spanning Ratio of Paths,
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Abstract The detour and spanning ratio of a graph G embedded in E
d measure how

well G approximates Euclidean space and the complete Euclidean graph, respec-
tively. In this paper we describe O(n logn) time algorithms for computing the detour
and spanning ratio of a planar polygonal path. By generalizing these algorithms, we
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obtain O(n log2 n)-time algorithms for computing the detour or spanning ratio of pla-
nar trees and cycles. Finally, we develop subquadratic algorithms for computing the
detour and spanning ratio for paths, cycles, and trees embedded in E

3, and show that
computing the detour in E

3 is at least as hard as Hopcroft’s problem.

1 Introduction

Suppose we are given an embedded connected graph G= (V ,E) in E
d . Specifically,

V consists of points in E
d and E consists of closed straight line segments whose

endpoints are in V . For any two points p and q in
⋃

e∈E e, let dG(p,q) be the shortest
path between p and q along the edges of G. The detour between p and q in G is
defined as

δG(p,q)= dG(p,q)

‖pq‖
where ‖pq‖ denotes the Euclidean distance between p and q . The detour of G is
defined as the maximum detour over all pairs of points in

⋃
e∈E e, i.e.,

δ(G)= sup
p 
=q

δG(p,q).

The challenge is in computing the detour quickly. Several cases of this generic
problem have been studied in the last few years. One variant results from restricting
the points p,q in the above definition to a smaller set. For example, the spanning
ratio or stretch factor of G is defined as the maximum detour over all pairs of vertices
of G, i.e.,

σ(G)= sup
p 
=q

p,q∈V
δG(p,q).

Such restrictions influence the nature of the problem considerably. In this paper we
study both, detour and spanning ratio.

The case of G being a planar polygonal chain is of particular interest. Alt et al. [6]
proved that if the detour of two planar curves is at most κ , then their Fréchet distance
is at most κ + 1 times their Hausdorff distance. The Fréchet and Hausdorff distances
are two commonly used similarity measures for geometric shapes [5]. Although the
Hausdorff distance works well for planar regions, the Fréchet distance is more suit-
able to measure the similarity of two curves [5]. However, the Fréchet distance is
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much harder to compute [6]. A relationship between the two measures suggests that
one could use the Hausdorff distance when the detours of the two given curves are
bounded and small. This is the only known condition (apart from convexity) under
which a linear relationship between the two measures is known.

Analyzing on-line navigation strategies also often involves estimating the detour
of curves [8, 17]. Sometimes the geometric properties of curves allow us to infer
upper bounds on their detour [4, 18, 24], but these results do not lead to efficient
computation of the detour of the curve.

Related Work Recently, researchers have become interested in computing the de-
tour and spanning ratio of embedded graphs. The spanning ratio of a graph G em-
bedded in E

d can be obtained by computing the shortest paths between all pairs of
vertices of G. Similarly, the detour of G can be determined by computing the detour
between every pair of edges e1 = (u1, v1) and e2 = (u2, v2). Although this seems to
involve infinitely many pairs of points, this problem is of constant size: For each pair
of points (p, q) in e1× e2, the type of the shortest connecting path dG(p,q) is deter-
mined by the two endpoints of e1 and e2 contained in this path. In the 2-dimensional
rectangular parameter space of all positions of p and q on e1 and e2, classification
by type induces at most four regions that are bounded by a constant number of line
segments. For each region, the maximization problem can be solved in time O(1),
after having computed the shortest paths between all pairs of vertices of G. This ap-
proach, however, requires Ω(n2) and Ω(m2) time for computing the spanning ratio
and detour, respectively, where n denotes the number of vertices and m is the number
of edges. Surprisingly, these are the best known results for these problems for arbi-
trary crossing-free graphs in E

2. Even if the input graph G is a simple path in E
2, no

subquadratic-time algorithm has previously been known for computing its detour or
spanning ratio.

Narasimhan and Smid [23] study the problem of approximating the spanning ratio
of an arbitrary geometric graph in E

d . They give an O(n logn)-time algorithm that
computes an (1− ε)-approximate value of the spanning ratio of a path, cycle, or tree
embedded in E

d . More generally, they show that the problem of approximating the
spanning ratio can be reduced to answering O(n) approximate shortest-path queries
after O(n logn) preprocessing.

Ebbers-Baumann et al. [10] have studied the problem of computing the detour of
a planar polygonal chain G with n vertices. They have established several geometric
properties, the most significant of which (restated in Lemma 2.1) is that the detour
of G is always attained by two mutually visible points p,q , one of which is a vertex
of G. Using these properties, they develop an ε-approximation algorithm that runs
in O((n/ε) logn) time. However, the existence of a subquadratic exact algorithm has
remained elusive.

New Results In this paper we present randomized algorithms with O(n logn) ex-
pected running time that compute the exact spanning ratio or detour of a polygonal
path with n vertices embedded in E

2. These are the first subquadratic-time algo-
rithms for finding the exact spanning ratio or detour, and they solve open problems
posed in at least two papers [10, 23]. Our algorithm for the spanning ratio is worst-
case optimal, as shown in [23], and we suspect that the algorithm for the detour is
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also optimal, although we are not aware of a published Ω(n logn) lower bound. By
extending these algorithms, we present O(n log2 n) expected time randomized algo-
rithms for computing the detour and spanning ratio of planar cycles and trees. We can
also obtain deterministic versions of our algorithms. They are more complicated and
a bit slower—they run in O(n logc n) time, for some constant c.

We also consider the problem of computing the detour and spanning ratio of 3-
dimensional polygonal chains, and show that the first problem can be solved in ran-
domized expected time O(n16/9+ε), for any ε > 0 (where the constant of proportion-
ality depends on ε), and the second problem can be solved in randomized expected
time O(n4/3+ε), for any ε > 0. Using the same extensions as in the planar case, this
leads to subquadratic time algorithms for 3-dimensional trees and cycles. We also
show that it is unlikely that an o(n4/3)-time algorithm exists for computing the de-
tour of 3-dimensional chains, since this problem is at least as hard as Hopcroft’s
problem, for which a lower bound of Ω(n4/3), in a special model of computation, is
given in [12].

Preliminary versions of this work appeared in [2, 20]; the 2-dimensional algorithm
described in [20] is significantly different from the one presented here.

2 Polygonal Chains in the Plane

Let the graph P = (V ,E) be a simple polygonal chain in the plane with n vertices.
That is, V = {p0, . . . , pn−1} is a set of n points in E

2, and E = {[pi−1,pi] | i =
1, . . . , n− 1}. Throughout the paper, we write P when referring to the set

⋃
e∈E e.

We extend the definition of the detour from points to any two subsets A and B of P ,
by putting

δP (A,B)= sup
a∈A,b∈B

a 
=b

δP (a, b),

which we call the P -detour between A and B . We also write δP (A) = δP (A,A).
Thus, δ(P ) = δP (P ) = δP (P,P ) and σ(P ) = δP (V,V ). Since P will be fixed
throughout this section, we will omit the subscript P from δ.

2.1 Overall Approach

Since computing the detour is more involved than computing the spanning ratio, we
present below the algorithm for solving the detour problem. Certain modifications
and simplifications, noted on the fly, turn the algorithm into one that computes the
spanning ratio.

We first describe an algorithm for the decision problem for the detour: “Given a
parameter κ ≥ 1, determine whether δ(P )≤ κ .” Our algorithm makes crucial use of
the following properties established in [10]. The proof of property (iii) is straightfor-
ward. It implies that the maximum detour is attained by a pair of co-visible points.
Property (ii) ensures that one of them can be assumed to be a vertex. Together, (ii)
and (iii) imply property (i).



Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D 19

Fig. 1 Transforming P into a
3-dimensional chain

Lemma 2.1 (Ebbers-Baumann et al. [10])

(i) Let V be the set of vertices in the polygonal chain P , and let κ ≥ 1. There is a
pair (p, q) ∈ P × P so that δ(p, q) > κ if and only if there is a pair (p′, q ′) ∈
P × V so that δ(p′, q ′) > κ and p′ is visible from q ′.

(ii) Assume that the detour attains a local maximum at two points, q , q ′ that are
interior points of edges e, e′ of P , correspondingly. Then the line segment qq ′
forms the same angle with e and e′, and the detour of q, q ′ does not change as
both points move, at the same speed, along their corresponding edges.

(iii) Let q , q ′ be two points on P , and assume that the line segment connecting them
contains a third point, r , of P . Then max{δ(q, r), δ(r, q ′)} ≥ δ(q, q ′). Moreover,
if the equality holds, then δ(q, r)= δ(r, q ′)= δ(q, q ′).

We observe that a claim analogous to property (i) does not hold for the spanning ratio:
while it is always attained by two vertices, by definition, these vertices need not be co-
visible. As an immediate corollary of Lemma 2.1, we always have δ(P )= δ(P,V ).
It thus suffices to describe an algorithm for the decision problem: Given a parameter
κ ≥ 1, determine whether δ(P,V )≤ κ . We will then use a randomized technique by
Chan [9] to compute the actual value of δ(P )= δ(P,V ).

2.2 Decision Algorithm

We orient P from p0 to pn−1. For a given parameter κ ≥ 1, we describe an algorithm
that determines whether for all pairs (p, q) ∈ V × P , so that p lies before q , the
inequality δ(p, q) ≤ κ holds. By reversing the orientation of P and repeating the
same algorithm once more, we can also determine whether for all pairs (p,w) ∈
V × P so that p lies after q the property δ(q,p)≤ κ is fulfilled.

For a point p ∈ P , we define the weight of p to be

ω(p)= dP (p0,p)/κ.

Let C denote the cone z=√x2 + y2 in E
3. We map each point p = (px,py) ∈ V to

the cone Cp = C+(px,py,ω(p)). That is, we translate the apex of C (i.e., the origin)
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to the point p̂ = (px,py,ω(p)). If we regard Cp as the graph of a bivariate function,
which we also denote by Cp , then for any point q ∈ E

2, Cp(q) = ‖qp‖ + ω(p)

holds. Let C = {Cp | p ∈ V }. We map a point q = (qx, qy) ∈ P to the point q̂ =
(qx, qy,ω(q)) in E

3. For any subchain π of P , we define π̂ = {q̂ | q ∈ π}.

Lemma 2.2 For any point q ∈ P and a vertex p ∈ V that lies before q on P ,
δ(p, q)≤ κ if and only if q̂ lies below the cone Cp .

Proof

δ(p, q)≤ κ ⇐⇒ dP (p, q)

‖qp‖ ≤ κ

⇐⇒ dP (p0, q)− dP (p0,p)

‖qp‖ ≤ κ

⇐⇒ dP (p0, q)

κ
≤ ‖qp‖ + dP (p0,p)

κ

⇐⇒ ω(q)≤ ‖qp‖ +ω(p)

⇐⇒ ω(q)≤ Cp(q).

That is, δ(p, q)≤ κ if and only if q̂ lies below the cone Cp . �

Since the cones Cp are erected on the chain P̂ , the point q̂ , for any q ∈ P , always
lies below all the cones erected on vertices appearing after q on P . Therefore, if we
denote by Vq the set of all vertices p ∈ V that precede q along P , Lemma 2.2 implies
that δ({q},Vq)≤ κ if and only if q̂ lies on or below each of the cones in C, i.e., if and
only if q̂ lies on or below the lower envelope of C.

The minimization diagram of C, the projection of the lower envelope of C onto the
xy-plane, is the additive-weight Voronoi diagram Vorω(V ) of V , under the weight
function ω. For a point p ∈ V , let Vorω(p) denote the Voronoi cell of p in Vorω(V ).
Vorω(V ) can be computed in O(n logn) time [13].

We first test whether Vorω(p) is nonempty for every vertex p ∈ V . If not, we
obtain a pair of vertices that attain a detour larger than κ , namely a vertex p that has
an empty Voronoi cell, and a vertex q whose cone Cq passes below p̂.

Note that if Vorω(p) is empty for some vertex p ∈ V , then we also know that the
spanning ratio of P is larger than κ . Conversely, if the spanning ratio is larger than κ ,
then some Voronoi cell Vorω(p) must be empty. Thus, the decision procedure for the
spanning ratio terminates after completing this step.

We can therefore assume, for the case of detour, that Vorω(p) is nonempty for
every vertex p ∈ V . To check whether P̂ lies below the lower envelope of C, we
proceed as follows. We partition P into a family E of maximal connected subchains
so that each subchain lies within a single Voronoi cell of Vorω(V ). Since Vorω(p)
is nonempty for every vertex p ∈ V, p is the only vertex of P that lies in Vorω(p).
Therefore every subchain in E is either a segment or consists of two connected seg-
ments with p as their common endpoint. For each such segment e ∈ E, if e lies in
Vorω(p), we can determine in O(1) time whether ê lies fully below Cp . If this is true
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for all segments, then P̂ lies below C. The total time spent is O(n) plus the number
of segments. Unfortunately, the number of segments may be quadratic in the worst
case, so we cannot afford to test them all.

We circumvent the problem of having to test all segments by using the observa-
tion (i) from Lemma 2.1 that it is sufficient to test all q ∈ P that are visible from p.
More precisely, let A denote the planar subdivision obtained by overlaying Vorω(V )

with P . Each edge of A is a portion of an edge of P or of Vorω(V ). For a vertex
p ∈ V , let fp denote the set of (at most two) faces of A containing p, and let Ep

denote the set of edges of A that are portions of P and that bound the faces in fp .
The discussion so far implies the following lemma.

Lemma 2.3 P̂ lies below all the cones of C if and only if
⋃{ê | e ∈ Ep} lies below

all the cones of C.

The algorithm thus proceeds as follows: We compute the Voronoi diagram Vorω(V )

in O(n logn) time [7]. By using the red-blue-merge algorithm of Guibas et al. [15]
(see also [11, 25]), we compute the sets of faces fp for all p ∈ V , which in turn
gives us the sets Ep for all p ∈ V . By the Combination Lemma of Guibas et al. [15],∑

p∈V |Ep| = O(n), and the set {Ep | p ∈ V } can be computed in O(n logn) time.
Finally, for each edge e ∈ Ep , we determine whether ê lies below Cp in O(1) time.
The overall running time of the algorithm is O(n logn).

As mentioned in the beginning, we next reverse the orientation of P and repeat
the algorithm to determine whether for each vertex p ∈ V lying after a point q ∈
P the inequality δ(p, q) ≤ κ holds. (Note that this reversal is not required in the
decision procedure for the spanning ratio.) Putting everything together, we obtain the
following.

Lemma 2.4 Let P be as polygonal chain with n vertices embedded in E
2, and let κ ≥

1 be a parameter. We can decide in O(n logn) time whether δ(P )≤ κ or σ(P )≤ κ .

Let W ⊆ V be a subset of vertices of P , and let Q be a subchain of P ; set
m = |W | + |Q|. Assuming that the weights of all vertices in W have been com-
puted, the decision algorithm described above can be used to detect in O(m logm)

time whether σ(W,Q)≤ κ . However, unlike δ(V,P ), the detour of the entire chain
P , δ(W,Q) need not be realized by a co-visible pair of points in W ×Q, so it is not
clear how to detect in O(m logm) time whether δ(W,Q)≤ κ . Instead we can make a
weaker claim. Let δ∗(W,Q)= sup(p,q)∈W×Q δ(p,q), where the supremum is taken
over all pairs of points such that the interior of the segment pq does not intersect the
interior of an edge of Q. Obviously, δ∗(W,Q) ≤ δ(W,Q). Clearly, the above deci-
sion algorithm can detect in O(m logm) time whether δ∗(W,Q)≤ κ . Lemma 2.1(iii)
implies that if δ(W,Q)= δ(P ), then δ∗(W,Q) = δ(W,Q), and in this special case
we can detect in O(m logm) time whether δ(W,Q) ≤ κ . Hence, we obtain the fol-
lowing.

Corollary 2.5 Let P be a polygonal chain with n vertices in E
2. After O(n) pre-

processing, for a given subset W of vertices of P , a subchain Q of P , and a given
parameter κ ≥ 1, we can decide, in O(m logm) time, whether δ∗(W,Q) ≤ κ or
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σ(W,Q) ≤ κ , where m = |W | + |Q|. Moreover, if δ(W,Q) = δ(P ), then we can
also detect in O(m logm) time whether δ(W,Q)≤ κ .

2.3 Computing δ(P ) and σ(P )

So far we have shown how to solve the decision problems associated with finding
the detour and spanning ratio of a path. Now we apply a randomized technique of
Chan [9], which does not affect the asymptotic running time of our decision algo-
rithms, to compute the actual detour δ(P ) or spanning ratio σ(P ). Suppose we have
precomputed the weights of all vertices in P . Let W be a subset of vertices of P , and
let Q be a subchain of P ; set m= |W |+|Q|. We describe an algorithm that computes
a pair (ξ, η) ∈W ×Q so that δ∗(W,Q)≤ δ(ξ, η)≤ δ(W,Q).

If |W | or |Q| is less than a prespecified constant, then we compute δ(W,Q) using
a naive approach and report a pair (ξ, η) that attains it. Otherwise, we partition W

into two subsets W1,W2 of roughly the same size, and partition Q into two subchains
Q1,Q2 of roughly the same size. We have four subproblems (Wi,Qj ), 1≤ i, j ≤ 2,
at our hand. Note that

δ(W,Q) = max{δ(W1,Q1), δ(W2,Q1), δ(W1,Q2), δ(W2,Q2)}, (1)

δ∗(W,Q) ≤ max{δ∗(W1,Q1), δ
∗(W2,Q1), δ

∗(W1,Q2), δ
∗(W2,Q2)}, (2)

where (2) is an easy consequence of the visibility constraints in the definition of δ∗.
Following Chan’s approach [9], we process the four subproblems in a random

order and maintain a pair of points (ξ, η) ∈ W × Q. Initially, we set (ξ, η) to be
an arbitrary pair of points in W ×Q. While processing a subproblem (Wi,Qj ), for
1≤ i, j ≤ 2, we first check in O(m logm) time whether δ∗(Wi,Qj ) > δ(ξ, η), using
Corollary 2.5. If the answer is yes, we solve the subproblem (Wi,Qj ) recursively and
update the pair (ξ, η); otherwise, we ignore this subproblem. By (1), (2), and induc-
tion hypothesis, the algorithm returns a pair (ξ, η) such that δ∗(W,Q) ≤ δ(ξ, η) ≤
δ(W,Q). Moreover, if δ(W,Q)= δ(P ), then δ∗(W,Q)= δ(W,Q), so the algorithm
returns the value of δ(W,Q). Chan’s analysis [9] (cf. proof of Lemma 2.1) shows
that the expected running time of the algorithm on an input of size m is O(m logm).
Hence, by invoking this algorithm on the pair (V ,P ), δ(V,P )= δ(P ) can be com-
puted in O(n logn) expected time.

The case of the spanning ratio is handled in a similar and simpler manner, replac-
ing (1) and (2) by

σ(W,Q)=max{σ(W1,Q1), σ (W2,Q1), σ (W1,Q2), σ (W2,Q2)} (3)

and applying Chan’s technique using this relationship. Hence, we obtain the follow-
ing main result of this section.

Theorem 2.6 The detour or spanning ratio of a polygonal chain P with n vertices
embedded in E

2 can be computed in O(n logn) randomized expected time.

Remark One can obtain an alternative deterministic solution that uses parametric
search [22], and runs in time O(n logc n), for some constant c. However, the resulting
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Fig. 2 Dotted lines indicate
(the only two) pairs of points
that attain the maximum detour

algorithm is considerably more involved on top of being slightly less efficient. We
therefore omit its description.

We extend the definition of δ∗(·, ·) to two disjoint subchains L and R of P as
follows. Let VL (resp. VR) be the set of vertices in L (resp. R). Define δ∗(L,R) =
max{δ∗(VL,R), δ(VR,L)}. Using the same argument as in the proof of Lemma 2.1,
we can argue that if δ(L,R)= δ(P ), then δ(L,R)= δ∗(L,R). The following corol-
lary, which will be useful in the next section, is an obvious generalization of the above
algorithm.

Corollary 2.7 Let L and R be two disjoint subsets of a polygonal chain P in E
2, with

a total of n vertices, preprocessed to report weights in O(1) time. Then σ(L,R) can
be computed in O(n logn) randomized expected time. We can also compute within the
same time a pair (p, q) ∈ L×R such that δ∗(L,R)≤ δ(p, q)≤ δ(L,R). Moreover,
if δ(L,R)= δ(P ), then δ(p, q)= δ(L,R).

As to lower bounds, it was shown by Narasimhan and Smid [23] that comput-
ing the spanning ratio of a planar polygonal chain requires Ω(n logn) time if self-
overlapping chains are allowed as input. Grüne [14] has shown that the same lower
bound holds if the input is restricted to polygonal chains that are monotonic, hence
simple. It is unknown whether the Ω(n logn) lower bound also holds for computing
the detour of a polygonal curve.

3 Planar Cycles and Trees

In this section we show that the tools developed for planar paths can be used for solv-
ing the detour and spanning ratio problems on more complicated graphs. Again, we
consider only the problem of computing the detour, because the resulting algorithms
can easily be adapted (and simplified) so as to compute the spanning ratio.

3.1 Polygonal Cycles in the Plane

Let us now consider the case in which P = (V ,E) is a closed (simple) polygonal
curve. This case is more difficult because there are two paths along P between any
two points of P . As a result, the detour of P might occur at a pair of points neither
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of which is a vertex of P . For example, the detour in a unit square occurs at the
midpoints of two opposite edges; in this case the lengths of the two paths between
the points must be equal.

For two points p,q ∈ P , let P [p,q] denote the subsets of P from p to q in coun-
terclockwise direction. We use here the notation dP (p, q) to denote the length of
P [p,q]; thus, in general, dP (p, q) 
= dP (q,p) and dP (p, q)+dP (q,p) is the length
|P | of the entire curve P . For a point p ∈ P , let π(p) denote the point on P such
that dP (p,π(p)) = dP (π(p),p) = |P |/2; obviously, π(π(p)) = p. Let Pp denote
the polygonal chain P [p,π(p)].

Lemma 3.1 Let p be a point on P , and let A,B be two portions of Pp , then
δP (A,B)= δPp (A,B).

This follows from the fact that the shortest path along P between any two points
a, b ∈A×B is contained in the polygonal chain Pp .

Now the P -detour between two points p,q ∈ P is defined as

δP (p, q)= min{dP (p, q), dP (q,p)}
‖pq‖ ,

and the detour of the whole of P is defined as

δ(P )= max
p,q∈P
p 
=q

δP (p, q).

Lemma 3.2 The detour δ(P ) of P is attained by a pair of points p,q ∈ P , such that
either one of them is a vertex of P , or q = π(p).

Proof Suppose δ(P ) = δP (p, q), where neither p nor q is a vertex, and q 
= π(p).
Suppose |P |/2− dP (p, q)= a > 0. We extend, on either end, P [p,q] by subpaths
P [p′,p] and P [q, q ′] of P , each of length a/2, and thereby obtain a polygonal sub-
chain P ′ = P [p′, q ′] ⊂ P of length |P |/2. Since a shortest path in P between any
two points of P ′ is contained in P ′, we have

δ(P )= δP (p, q)≤ δ(P ′)≤ δ(P ).

Thus, the maximum detour of P ′ is attained at p and q . By Lemma 2.1(ii), the detour
does not change as we simultaneously move p toward p′ and q toward q ′ at equal
speed, along their edges in P ′. This motion continues until one of the two points
reaches a vertex of P ′—which must be a vertex of P , too—or both endpoints p′, q ′ =
π(p′) of P ′ are reached. �

By using a rotating-caliper approach, we can compute maxp∈P δP (p,π(p)) in
O(n) time, so we focus on the case in which one of the points attaining the detour is
a vertex of P . We present a different divide-and-conquer algorithm, which will use
the algorithm described in Sect. 2.2 repeatedly. We can preprocess P in O(n) time,
so that, for any two points p,q ∈ P , dP (p, q) can be computed in O(1) time.
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Fig. 3 An instance of the
recursive problem;
dP (t1, t2)= dP (b1, b2)= l,
dP (t2, b1)= dP (b2, t1)= h,
|P | = 2(l + h),
dP (t1, t)= dP (b1, b)=w

Let t1, t2, b1, b2 be four points of P appearing in this counterclockwise order
along P , so that the following condition is satisfied.

b1 = π(t1) and b2 = π(t2). (4)

We observe that condition (4) implies dP (t1, t2) = dP (b1, b2) and dP (t2, b1) =
dP (b2, t1). Let m,m′ be the number of edges in P [b1, b2] and P [t1, t2], respectively.
Define

ρ(t1, t2, b1, b2)= δP (P [t1, t2],P [b1, b2]).
We describe a recursive algorithm that computes a pair of points (p, q) ∈

P [b1, b2]×P [t1, t2] such that δ(p, q)= ρ(t1, t2, b1, b2) if ρ(t1, t2, b1, b2)= δ(P ). If
ρ(t1, t2, b1, b2) < δ(P ), it returns an arbitrary pair of points in P [b1, b2] × P [t1, t2].

If min{m,m′} = 1, then we can compute ρ(t1, t2, b1, b2) in O(m+m′) time. Oth-
erwise, suppose, without loss of generality, that m′ ≥m, and let t be the middle vertex
of P [t1, t2] (i.e., the vertex for which each of P [t1, t], P [t, t2] has m′/2 edges), and
let b= π(t). It is easily seen that b ∈ P [b1, b2] (by condition (4)). Clearly,

ρ(t1, t2, b1, b2)=max{ρ(t1, t, b, b2), ρ(t, t2, b1, b), ρ(t1, t, b1, b), ρ(t, t2, b, b2)}.

Since P [t1, t] and P [b, b2] lie in P [b, t] = P [π(t), t], using Corollary 2.7, we can
compute in O((m′ + m) log(m′ + m)) randomized expected time a pair (p, q) ∈
P [t1, t] × P [b, b2] so that δ(p, q) = ρ(t1, t, b, b2) if ρ(t1, t, b, b2) = δ(P ). We can
compute a similar pair in P [t, t2] × P [b1, b] within the same time bound. Each of
the two 4-tuples (t1, t, b1, b) and (t, t2, b, b2) satisfies condition (4), and we solve
the problem recursively for them. Among the pairs computed by the four subprob-
lems, we return the one with the largest detour. The correctness of the algorithm is
straightforward.

Let m1 be the number of edges in P [b1, b]. Then P [b, b2] contains at most
m−m1 + 1 edges. Let T (m′,m) denote the maximum expected time of computing
ρ(t1, t2, b1, b2), with the relevant parameters m′ and m. Then we obtain the following
recurrence:

T (m′,m)≤ T

(
m′

2
,m1

)

+ T

(
m′

2
,m−m1 + 1

)

+O((m′ +m) log(m′ +m)),

for m′ ≥m,
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with a symmetric inequality for m ≥ m′, and T (m′,1) = O(m′), T (1,m) = O(m).
The solution to the above recurrence is easily seen to be

T (m′,m)=O((m′ +m) log2(m′ +m)).

Returning to the problem of computing δ(P ), we choose a vertex v ∈ P . Let P1 =
P [v,π(v)] and P2 = P [π(v), v]. Then

δ(P ) = max
{

max
x,y∈P1

δP (x, y), max
x,y∈P2

δP (x, y), δP (P1,P2)
}

= max{δ(P1), δ(P2), ρ(v,π(v),π(v), v)}.
The last equality follows from the fact that the 4-tuple (v,π(v),π(v), v) satisfies (4).
We can compute δ(P1), δ(P2) in O(n logn) randomized expected time, using Theo-
rem 2.6. Next we invoke the above algorithm on the 4-tuple (v,π(v),π(v), v). We
return the maximum of these values. If ρ(v,π(v),π(v), v)= δ(P ), then the above re-
cursive algorithm computes ρ(v,π(v),π(v), v). Hence, the total expected time spent
in computing δ(P ) is O(n log2 n).

The same method also applies to the computation of the spanning ratio of P , and
we thus obtain:

Theorem 3.3 The detour or spanning ratio of a polygonal cycle P with n edges in
E

2 can be computed in O(n log2 n) randomized expected time.

3.2 Planar Trees

Let T = (V ,E) be a tree embedded in E
2. With a slight abuse of notation, we will use

T to denote the embedding of the tree as well. We describe a randomized algorithm
for computing δ(T ). Without loss of generality, assume T is rooted at a vertex v0 so
that if we remove v0 and the edges incident upon v0, each component in the resulting
forest has at most n/2 vertices; v0 can be computed in linear time; refer to Fig. 4. We
partition the children of v0 into two sets A and B . Let TA (resp., TB ), denote the tree
induced by v0 and all vertices having ancestors in A (resp., B). The partition A, B is
chosen so that

1

4
n≤ ‖TA‖,‖TB‖ ≤ 3

4
n.

Since no descendent of v0 is the root of a subtree with size more than n/2, such a
partition can be found with a linear-time greedy algorithm.

We recursively compute δ(TA) and δ(TB). Let κ∗ = max{δ(TA), δ(TB)}. If
δ(TA,TB) > κ∗, then we need to compute δ(TA,TB). The following lemma, whose
proof is identical to that of Lemma 2.1 given in [10], will be useful.

Lemma 3.4 Let TA and TB be two subtrees of T , and let VA (resp. VB ) be the set of
vertices in TA (resp. TB ). There exists a pair of points (p, q) ∈ (VA×TB)∪(VB×TA)

such that δ(p, q)= δ(TA,TB). Moreover, if δ(TA,TB)= δ(T ) then p is visible from
q with respect to TA ∪ TB .
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Fig. 4 Partitioning T into
subtrees TA and TB

By Lemma 3.4, it suffices to compute δ(VA,TB) and δ(VB,TA), where VA and VB

are the sets of vertices in TA and TB , respectively. As in Sect. 2, we first describe a de-
cision algorithm that determines whether δ(TA,TB)≤ κ for some parameter κ ≥ κ∗.
We define the weight ω(p) of a point p ∈ T to be

ω(p)= dT (p, v0)

κ
.

Let C be the cone z = √x2 + y2. To determine whether δ(VA,TB) ≤ κ , we map
each point u= (ux,uy) ∈ VA to the cone Cu = C + (ux,uy,−ω(u)), and map each
point v = (vx, vy) ∈ TB to the point v̂ = (vx, vy,ω(v)). Let T̂B = {v̂ | v ∈ TB} be the
resulting tree embedded in E

3. Following the same argument as in Lemma 2.2, we
can argue that, for any (u, v) ∈ VA × TB , δ(u, v) ≤ κ if and only if v̂ lies below the
cone Cu. If δ(TA,TB) > κ ≥ κ∗, then δ(TA,TB)= δ(T ) and, by Lemma 3.4, there is a
co-visible pair of points in VA×TB whose detour is greater than κ . So we can restrict
our attention to co-visible pairs in VA × TB . Using this observation and Lemma 3.4,
we can determine whether δ(VA,TB)≤ κ , in O(n logn) time, by the same approach
as in Sect. 2. Similarly, we can determine whether δ(VB,TA)≤ κ in O(n logn) time.

Finally, returning to the problem of computing δ(T ), we first use the decision
algorithm to determine whether δ(TA,TB) > κ∗. If the answer is no, we return κ∗
and a pair of points, both from TA or both from TB , realizing this detour. Otherwise,
δ(T )= δ(TA,TB). Since each of TA,TB can be decomposed into two subtrees, each
of size at most 3/4 the size of TA or TB , respectively, we can plug this decision algo-
rithm into Chan’s technique, with the same twist as in Sect. 2, to obtain an algorithm
that computes δ(VA,TB) in O(n logn) randomized expected time.

Putting everything together, the expected running time of the above algorithm is
given by the recurrence

T (n)= T (n− k + 1)+ T (k)+O(n logn),

with n/4≤ k ≤ 3n/4. The recurrence solves to O(n log2 n). (As in the case of chains,
we need one preliminary global pass that computes the distances along T from v0 to
each of the vertices.)
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The algorithm for computing the spanning ratio proceeds in a similar but simpler
manner, as in the case of chains, and has the same randomized expected running time
bound. We thus conclude the following.

Theorem 3.5 The detour or spanning ratio of a planar tree with n vertices can be
computed in O(n log2 n) randomized expected time.

4 Polygonal Chains, Cycles, and Trees in E
3

Let P be a polygonal chain with n vertices embedded in E
3. We describe subquadratic

algorithms for computing the detour and spanning ratio of P , and a reduction showing
that the problem of computing the detour is at least as hard as Hopcroft’s problem.

4.1 Computing the Spanning Ratio

We begin with the simpler problem of computing the spanning ratio σ(P ) of P . We
solve this problem by adapting the technique for computing spanning ratios in the
plane, as described in Sect. 2. Specifically, consider the decision problem, where we
want to determine whether σ(P ) ≤ κ . We take the set V of vertices of P , and map
each p ∈ V to the point p̂ = (p,ω(p)) ∈ R

4, where ω(p)= dP (p0,p)/κ and p0 is
the starting point of P . We take the cone

C : x4 =
√
x2

1 + x2
2 + x2

3 ,

and define, for each p ∈ V , the cone Cp to be p̂+C. As in the planar case, σ(P )≤ κ

if and only if each point p̂, for p ∈ V , lies on the lower envelope of C= {Cq | q ∈ V }.
Let p = (a1, a2, a3) be a point in V , and let ω(p)= a4. A point ξ = (ξ1, ξ2, ξ3, ξ4)

lies below the cone

Cp : x4 − a4 =
√
(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

if and only if the point

ϕ(ξ)= (ξ1, ξ2, ξ3, ξ4, ξ
2
4 − ξ2

1 − ξ2
2 − ξ2

3 )

in E
5 lies in the halfspace

hp : x5 ≤−2a1x1 − 2a2x2 − 2a3x3 + 2a4x4 + (a2
1 + a2

2 + a2
3 − a2

4).

Therefore a point ξ ∈ E
4 lies in the lower envelope of C if and only if ϕ(ξ) lies in the

convex polyhedron
⋂

p∈V hp . Hence, the problem of determining whether σ(P )≤ κ

reduces to locating n points in a 5-dimensional convex polyhedron defined by the
intersection of n halfspaces. This problem can be solved in O(n4/3+ε) time using
a data structure for halfspace-emptiness queries [1]. Using Chan’s technique, as in
the planar case, we can compute σ(P ) itself within the same asymptotic time bound.
Finally, as for the planar case, the algorithm can be extended to compute the spanning
ratio of a polygonal cycle or tree embedded in E

3. That is, we have shown:
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Theorem 4.1 The spanning ratio of a polygonal chain, cycle, or tree with n vertices
embedded in E

3 can be computed in randomized expected time O(n4/3+ε), for any
ε > 0.

4.2 Computing the Detour

We next consider the problem of computing the detour δ(P ) of P . Here the algorithm
becomes considerably more involved and less efficient, albeit still subquadratic. As
in some of the preceding algorithms, we use a divide-and-conquer approach to com-
pute δ(P ). That is, we partition P into two connected portions, P1, P2, each consist-
ing of n/2 edges, recursively compute δ(P1) and δ(P2), and then compute explicitly
the detour between P1 and P2, as follows. Let o be the common endpoint of P1
and P2. For any point x in P , let ω(x) = dP (o, x) be the arc length of P (that is,
either of P1 or of P2) between o and x. For any x ∈ P1, y ∈ P2, we have

δP (x, y)= ω(x)+ω(y)

‖xy‖ .

For a pair of edges e ∈ P1 and e′ ∈ P2, define, as above,

δ(e, e′)= δP (e, e
′)= max

x∈e,x′∈e′
δP (x, x

′);

as in Sect. 2, we drop the subscript P in the function δ. Then

δ(P )=max
{
δ(P1), δ(P2), max

e∈P1,e
′∈P2

δ(e, e′)
}
.

Let A, B denote the set of edges of P1 and P2, respectively. It suffices to compute the
third term,

δ(A,B)= max
a∈A,b∈B δ(a, b).

Unlike the planar case, the detour of P is not necessarily attained at a vertex of P (for
example, there P might contain two long edges that orthogonally pass near each other
at a very small distance, and the detour could then be obtained between the two points
that realize the distance between the segments). This makes the 3-dimensional algo-
rithm considerably more complicated, and less efficient, than its 2-dimensional coun-
terpart. Consider first the decision problem, in which we wish to determine whether
δ(A,B)≤ κ , for some given κ ≥ 1.

For an edge e ∈A∪B , let e+ denote the ray that emanates from the endpoint, z+,
of e closer to o along P and that contains e; see Fig. 5. Similarly, let e− denote the
ray emanating from the point z− of e farther from o and containing e. We extend
the definition of ω(·) for points on the rays e+, e− even though these points might
not lie on P . For a point x ∈ e+ (resp., x ∈ e−), we define ω(x) = ω(z+)+ ‖z+x‖
(resp., ω(x)= ω(z−)− ‖xz−‖). Note that these definitions of ω are consistent with
the earlier definition, in the sense that all of them assume the same value for the points
on e. We can now define δ(·, ·) for points lying on the rays supporting the edges of
P1 and P2. Namely, for a given pair a, b, where a, b are either edges of P or the rays
supporting the edges, δ(a, b)=maxx∈a,y∈b(ω(x)+ω(y))/‖xy‖.
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Fig. 5 Decomposition of P and
rays e+ , e−

Lemma 4.2 Let a ∈ A and b ∈ B be a pair of edges. The following four conditions
are equivalent:

(i) δ(a, b) > κ ;
(ii) δ(a+, b) > κ and δ(a−, b) > κ ;

(iii) δ(a, b+) > κ and δ(a, b−) > κ ;
(iv) δ(a+, b+) > κ , δ(a+, b−) > κ , δ(a−, b+) > κ , and δ(a−, b−) > κ .

Proof Let a∗ (resp., b∗) be the line supporting the edge a (resp., b) oriented in the
direction of the ray a+ (resp., b+). Parametrize the lines a∗ and b∗ by the signed
distances along these lines from appropriate respective initial points ξ ∈ a,η ∈ b, and
denote these distances by t and s, respectively. Regard a∗ × b∗ as the parametric
ts-plane. Let u,v denote the positively oriented unit vectors along a∗ and b∗, respec-
tively. For x = ξ + tu ∈ a∗ and y = η + sv ∈ b∗, the condition δ(x, y) > κ can be
written as:

δ(x, y)= ω(ξ)+ω(η)+ t + s

‖(ξ − η)+ tu− sv‖ > κ,

or

κ‖(ξ − η)+ tu− sv‖ −ω(ξ)−ω(η)− t − s < 0. (5)

The left-hand side of (5) is a convex function on the st -parametric plane, being the
difference of a convex function and a linear function. The lemma is then an easy con-
sequence of this convexity property. Indeed (i) implies (ii)–(iv) because a = a+ ∩ a−
and b = b+ ∩ b−. For the converse implications, consider the implication (ii)⇒ (i).
Suppose that δ(x+, y+) > κ for x+ ∈ a+, y+ ∈ b and δ(x−, y−) > κ for x− ∈ a−,
y− ∈ b. By construction, x+x− ∩ a 
= ∅. Moreover, by convexity of (5), δ(x′, y′) > κ

for all x′ ∈ x+x−, y′ ∈ y+y−, thereby implying that δ(a, b) > κ . Similar arguments
imply that (iii) or (iv) implies (i). �

Using Lemma 4.2(iv) and the standard random-sampling technique [16], we
construct a four-level data structure to decide whether δ(A,B) > κ . The first
level constructs a complete bipartite decomposition for the set {(a, b) ∈ A × B |
δ(a+, b+) > κ}. The second level processes each bipartite clique Ai × Bi in the de-
composition, and represents the set {(a, b) ∈ Ai × Bi | δ(a−, b+) > κ} as the union
of complete bipartite subgraphs. The third level then refines further this decomposi-
tion, to collect pairs that also satisfy δ(a+, b−) > κ , and the fourth level finally tests
whether δ(a−, b−) > κ for any of the surviving pairs.
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We compute the first-level decomposition of {(a, b) ∈ A × B | δ(a+, b+) > κ},
as follows. (Similar procedures are then applied at each of the three other levels of
the data structure.) For each edge a ∈ A, we map the ray a+ to a point ζ(a+) =
(ζ1, . . . , ζ6) in R

6, where (ζ1, ζ2, ζ3) are the coordinates of the endpoint z+ of a+,
(ζ4, ζ5) is an appropriate parametrization of the orientation of a+, and ζ6 = ω(z+).
A similar parametrization will be used for the rays a−. Next, we map each edge b ∈ B

to a surface γ (b+) that represents the locus of all rays a+ for which δ(a+, b+)= κ .
Since δ increases as the parameter ζ6 increases and each 5-tuple (ζ1, . . . , ζ5) defines
a unique ray in E

3, it follows that γ (b+) is the graph of a totally defined 5-variate
function and δ(a+, b+) > κ (resp., δ(a+, b+) < κ) if and only if ζ(a+) lies above
(resp., below) γ (b+). We can thus regard the problem at hand as that of collecting, in
compact form, all pairs (ζ(a+), γ (b+)) for which ζ(a+) lies above γ (b+). Abusing
the notation slightly, set |A| = n and |B| =m.

We fix a sufficiently large constant r , draw a random sample R of cr log r edges
of B , where c is a sufficiently large constant independent of r , and compute the
vertical decomposition A‖ of the arrangement A of the surfaces {γ (b+) | b ∈ R}.
It is easily verified that these surfaces are all semi-algebraic of constant description
complexity. Hence, we can apply the result of Koltun [19], to conclude that A‖ has
O(r8+ε) cells, for any ε > 0. For each cell τ ∈ A‖, let Aτ = {e ∈ A | ζ(e+) ∈ τ },
let Bτ ⊆ B be the set of edges b for which the surface γ (b+) crosses τ , and let
B∗τ ⊆ B be the set of edges b for which the surface γ (b+) lies completely below τ .
The sets Aτ ,Bτ can be computed in O(m+ n) time under an appropriate model of
computation, in which we assume that the roots of a constant degree polynomial can
be computed in O(1) time; see [25].

Set nτ = |Aτ | and mτ = |Bτ |. Obviously,
∑

τ nτ = n and |B∗τ | ≤m. By the theory
of random sampling [16, 25] (where we use the fact that the VC-dimension of the
underlying range space is finite), mτ ≤m/r for all τ , with probability at least 1− η,
where η= η(r) is a constant that can be made arbitrarily small by choosing the value
of r sufficiently large. If mτ > m/r for a cell, we choose another random sample
and restart the above step. Since the probability of this event is a sufficiently small
constant, it does not affect the asymptotic expected running time of the algorithm and
we can ignore this step. Moreover, by splitting the cells into subcells, if needed, we
may also assume that nτ ≤ n/r8 for each τ ; the number of cells remains O(r8+ε).
By construction, δ(a+, b+) > κ for any pair e ∈Aτ and b ∈ B∗τ . We use the second-
level data structure, sketched below, to determine whether δ(Aτ ,B

∗
τ ) > κ . If mτ or

nτ is less than a prespecified constant, then we use a naive procedure to determine
whether δ(Aτ ,Bτ ) > κ . Otherwise, we recursively determine (using the first-level
data structure) whether δ(Aτ ,Bτ ) > κ . For an edge a ∈ Aτ and for an edge b ∈ B

such that γ (b+) lies above τ , δ(a+, b+) < κ , so there is no need to compare Aτ with
such edges.

To exploit the symmetry in the condition δ(a+, b+) > κ between A and B , we
next switch the roles of Aτ and Bτ , by mapping the rays b+, for b ∈ Bτ , to points
in R

6, and the rays a+, for a ∈ Aτ , to surfaces γ (a+), as above. We take a random
sample of cr log r of these surfaces, and construct the vertical decomposition of their
arrangement, as above. Repeating this for each cell τ , we end up with O(r16+ε)

subproblems, each involving at most n/r9 segments of A and at most m/r9 segments
of B , which we proceed to solve recursively, using the first-level data structure. In
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addition, we have subproblems involving pairs of sets of the form Aτ , B∗τ , or Bτ ′ , A∗τ ′ ,
which we pass to the second level of the structure.

The second-level structure is constructed in an analogous manner, with the only
difference that we use the rays a− instead of the rays a+. Thus, starting with a pair
of subsets Aτ , Bτ , we obtain a decomposition into O(r16+ε) subproblems, each in-
volving at most |Aτ |/r9 segments of Aτ and at most |Bτ |/r9 segments of Bτ , which
we process recursively using the second-level structure, and a collection of other
subproblems that we pass to the third level. The third level is again constructed in
complete analogy, using the rays a+ for the segments in A and the rays b− for the
segments in B . The fourth-level structure is constructed for the rays a−, b−, and is
a little simpler than the preceding levels, in the sense that whenever we detect a cell
that lies fully below a surface (γ (a−) or γ (b−)), we stop and report that δ(A,B) > κ .
Otherwise, we continue the processing recursively, as in the preceding levels.

For i = 1, . . . ,4 and for integers m,n > 0, let T (i)(n,m) denote the maximum
running time of the ith level data structure on a set of n edges of P1 and a set of m
edges of P2. Then

T (4)(n,m)=O(r16+ε) · T (4)
(

n

r9
,
m

r9

)

+O(m+ n),

and

T (i)(n,m)=O(r16+ε) ·
[

T (i)

(
n

r9
,
m

r9

)

+ T (i+1)(n,m)

]

+O(m+ n),

for i ≤ 3. The solutions to the above recurrences are easily seen to be T (i)(n,m) =
O((mn)8/9+ε), for any ε > 0 and for each i.

Hence, we obtain the following.

Lemma 4.3 Given a polygonal chain in E
3, two disjoint subchains A and B of P

with a total of m vertices, and a parameter κ ≥ 1, we can determine, in O(n16/9+ε)

randomized expected time, whether δ(A,B) > κ .

As in the planar case, we can use the randomized technique of Chan [9] to compute
the actual δ(A,B) within the same asymptotic expected running time bound. The
algorithm extends to polygonal cycles and trees in E

3.
In conclusion, we obtain the following.

Theorem 4.4 The detour of a polygonal chain, cycle, or tree with n edges in E
3 can

be computed in randomized expected time O(n16/9+ε), for any ε > 0.

Remark We remark that it is also possible to use the parametric search technique [22],
as in [3], to obtain a deterministic alternative solution. This however (a) results in a
considerably more involved algorithm, and (b) requires us to derandomize the deci-
sion algorithm, i.e., its vertical decomposition step. This too is doable, but is consid-
erably more complicated.
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Fig. 6 Reducing Hopcrofts’s problem to computing the detour of a 3-dimensional path. (i) An instance of
Hopcroft’s problem. (ii) Construction of the polygonal chain Π

4.3 Lower Bound

Finally, we show that computing the detour of a 3-dimensional path is as hard as
Hopcroft’s problem: Given a set L = {�1, . . . , �n} of n lines in R

2 and a set P =
{p1, . . . , pn} of n points in R

2, determine whether any line of L contains any point
of P . There is an abundance of evidence to suggest that Hopcroft’s problem has an
Ω(n4/3) lower bound [12]. The best known upper bound in any reasonable model of
computation is O(n4/32O(log∗ n)) [21].

To reduce an instance of Hopcroft’s problem to that of computing the detour of a 3-
dimensional path, we will first build a 3-dimensional path Π that is self-intersecting,
i.e., has infinite detour, if and only if the answer to Hopcroft’s problem is affirmative.
Then we show how the proof can be modified to cover the case where we know
a priori that the polygonal chains we are given as input do not self-intersect. The
construction uses techniques presented in Erickson [12].

Without loss of generality, we may assume that none of the given lines is y-
vertical. We begin by sorting the lines in L in increasing order of their slopes and
the points in P in increasing lexicographic order. Let 〈�1, . . . , �n〉 be the resulting
sequence of lines, and let 〈p1, . . . , pn〉 be the resulting sequence of points. We com-
pute a bounding rectangle R so that each line of L intersects the two y-vertical edges
of R, and all the points of P , as well as all the intersection points of lines in L, lie
inside R. These steps require O(n logn) time.

By construction, the ordering of L along the left edge of R in −y-direction is
�1, . . . , �n, and its ordering along the right edge of R is �n, . . . , �1. For each 1≤ i ≤ n,
we lift the segment R∩ �i orthogonally to the plane z= i, to obtain a line segment li .
Next, we transform each input point pj ∈ P to a line segment ej that is parallel to
the z-axis, whose endpoints are (pj ,0) and (pj , n+ 1); see Fig. 6.

This gives us a set of line segments so that the answer to Hopcroft’s problem for
the original lines and points is “yes” if and only if some segment li intersects some
segment ej . It remains to construct a polygonal chain that contains all these segments
without introducing any additional crossings. To do this, we first form a chain con-
taining all segments lj . It starts at the left endpoint of l1. The right endpoint of l1 is
connected to the right endpoint of l2. This connection consists of two segments; the
first one is parallel to the z-axis and leads from the plane z = 1 to the plane z = 2,
and the second one, contained in z= 2, is parallel to the y-axis. Next, l2 is traversed,
and its left endpoint is connected to the left endpoint of l3 in an analogous way. We
continue until the last endpoint of ln is reached. Clearly, the resulting chain is simple.
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Next, we connect the segments e1, . . . , en into a simple polygonal chain by con-
necting the upper endpoints of ei to ei+1 if i is odd and the lower endpoints if i is
even. This chain is clearly not self-intersecting since its xy-projection is monotone
in the lexicographic order. Finally, we connect the left endpoint of l1 in z= 1 to the
free endpoint of e1 in z= 0 by two additional segments. The resulting concatenation
of the two chains has the desired property. See Fig. 6.

One might state the problem of computing the detour of a 3-dimensional chain in
such a way that the input chains are known apriori not to have self-intersections. The
above lower bound proof can be adapted to this situation in the following way. First,
we move each of the original lines �i a distance of ε to the right, where ε is a formal
infinitesimal, i. e., ε is positive, but smaller than any real number. Then we construct
the polygonal chain in the same way as before. It will always be non-intersecting, but
its detour is bigger than c/ε, for some appropriate constant c > 0, if and only if there
was a point-line incidence in the original instance of Hopcroft’s problem. Reductions
using infinitesimals were formally shown to be correct, in the algebraic decision tree
model, by Erickson [12].

In conclusion, we have shown:

Theorem 4.5 An algorithm with running time f (n) for computing the detour of 3-
dimensional polygonal chains with n vertices implies an O(n logn+ f (n)) time al-
gorithm for Hopcroft’s problem.

Remark It is interesting to note that we have almost matched this lower bound with
the algorithm in Theorem 4.1 for computing the spanning ratio of P . We do not know
whether the preceding construction can be extended to yield a lower bound argument
for computing spanning ratios.

5 Conclusions

We have given O(n logn)-time randomized algorithms for computing the detour and
spanning ratio of planar polygonal chains. These algorithms lead to an O(n log2 n)-
time algorithms for computing the detour and spanning ratio of planar trees and
cycles. In three dimensions, we have given subquadratic algorithms for computing
the detour and spanning ratio of polygonal chains, cycles, and trees. Previously, no
subquadratic-time (exact) algorithms were known for any of these problems.

There are many open problems in this new area. The most obvious is: Which other
classes of graphs admit subquadratic-time algorithms for computing their detour or
spanning ratio? Also, it remains open to prove an Ω(n logn) lower bound for com-
puting the detour of a simple planar polygonal chain of n vertices; at present, such a
bound is only known for computing the spanning ratio. Finally, it seems likely that
the algorithm for computing the detour in E

3 can be improved.
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Robust Shape Fitting via Peeling and Grating Coresets
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Abstract Let P be a set of n points in R
d . A subset S of P is called a (k, ε)-kernel

if for every direction, the directional width of S ε-approximates that of P , when k

“outliers” can be ignored in that direction. We show that a (k, ε)-kernel of P of size
O(k/ε(d−1)/2) can be computed in time O(n+ k2/εd−1). The new algorithm works
by repeatedly “peeling” away (0, ε)-kernels from the point set.

We also present a simple ε-approximation algorithm for fitting various shapes
through a set of points with at most k outliers. The algorithm is incremental and works
by repeatedly “grating” critical points into a working set, till the working set provides
the required approximation. We prove that the size of the working set is independent
of n, and thus results in a simple and practical, near-linear ε-approximation algorithm
for shape fitting with outliers in low dimensions.

We demonstrate the practicality of our algorithms by showing their empirical per-
formance on various inputs and problems.
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1 Introduction

In many areas such as computational geometry, computer graphics, machine learning,
and data mining, considerable work has been done on computing descriptors of the
extent of a set P of n points in R

d . These descriptors, called extent measures, either
compute certain statistics of P itself such as diameter and width, or compute some
geometric shape enclosing P with respect to a certain optimization criterion, such as
computing the smallest radius of a sphere or cylinder, the minimum volume or surface
area of a box, and the smallest spherical or cylindrical shell that contain P . Motivated
by more recent applications, there has also been work on maintaining extent measures
of a set of moving points, e.g., using the kinetic data structure framework [6, 11].

The existing exact algorithms for computing extent measures are generally expen-
sive. For example, the best known algorithm for computing the smallest enclosing
cylindrical shell in R

3 requires O(n5) time [5]. Consequently, attention has shifted
to developing faster approximation algorithms; see, e.g., [4, 5, 10, 12]. Agarwal et al.
[7] proposed a unified framework for computing numerous extent measures approx-
imately in low dimensions. Their approach is to first extract a small subset from the
input, known as a coreset, and then return the extent measure of this subset as an
approximation to that of the original input. The running time of their algorithm, sub-
stantially improving upon many previous results, is typically of the form O(n+1/εc),
where n is the input size, c is a constant that may depend on the dimension d , and ε

is the approximation error.
Most of the existing work assumes that the input does not contain noisy data. How-

ever in the real world, noise may come from different sources during data acquisition,
transmission, storage and processing, and is unavoidable in general. Meanwhile, most
extent measures are very sensitive to noise; a small number of inaccurate data points
(i.e., the so-called outliers) may substantially affect extent measures of the entire
input. In order to compute more reliable extent measures on the input, it is thus nat-
ural to require that the outliers should be excluded from consideration. For example,
the smallest enclosing cylinder problem with k outliers is formulated as finding the
smallest cylinder that covers all but at most k of the input points.

Following up the work in [7, 19], we consider the problem of finding robust core-
sets for various extent measures that are able to handle outliers. Assuming there are at
most k outliers in the input, our goal is to compute a coreset of small size, so that the
best solution on the coreset with at most k outliers would provide an ε-approximation
to the original input with at most k outliers. We are mainly concerned with the case
in which the number k of outliers is small compared to the input size n. Otherwise,
random-sampling techniques have been effective in handling outliers [9].

Problem Statement Let P be a set of n points in R
d . For a direction u ∈ S

d−1 and
an integer 0 ≤ k < n, the level of a point a ∈ R

d in direction u is the size of the set
{p ∈ P | 〈u,p〉> 〈u,a〉}, i.e., the number of points in P that lie in the open halfspace
〈u,x − a〉> 0. This notion of level is the dual of the level of a point in an arrangement
of hyperplanes [23]. In this paper, when we refer to a direction u ∈ S

d−1, we always
assume for the sake of simplicity that no two points in P lie on the same level in that
direction; more careful but similar arguments would work for directions that do not
satisfy this assumption.
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Let P k[u] (resp. Pk[u]) denote the point of P whose level is k (resp. n − k −
1) in a direction u ∈ S

d−1. Let Uk(u,P ) = 〈u,P k[u]〉 denote the k-level of P in
direction u. Let Lk(u,P ) = 〈u,Pk[u]〉 = −Uk(−u,P ). For parameters k and �, the
(k, �)-directional width of P in direction u, denoted by Ek,�(u,P ), is defined as

Ek,�(u,P )=Uk(u,P )−L�(u,P ).

For simplicity, we denote Ek,k(u,P ) by Ek(u,P ) and E0(u,P ) by E(u,P ). Similarly,
we denote U0(u,P ) by U(u,P ) and L0(u,P ) by L(u,P ) respectively.

Given a set P of n points in R
d , a parameter ε > 0 and an integer 0 ≤ k < n/2,

a subset S ⊆ P is called a (k, ε)-kernel of P if for every u ∈ S
d−1 and every

0≤ a, b ≤ k,

(1− ε) · Ea,b(u,P )≤ Ea,b(u,S)≤ Ea,b(u,P ).

It implies that

Ua(u,S)≥Ua(u,P )− ε · Ea,b(u,P ),

Lb(u,S)≤ Lb(u,P )+ ε · Ea,b(u,P ).

Note that (0, ε)-kernel is the same as the notion of ε-kernel defined by Agarwal
et al. [7].

We are interested in computing a (k, ε)-kernel of small size for any given point
set P ⊂ R

d and parameters k and ε. Once we can compute small (k, ε)-kernels ef-
ficiently, we will immediately be able to compute robust coresets for various extent
measures, using the standard linearization and duality transforms; see [7] for details.

Related Results The notion of ε-kernels was introduced by Agarwal et al. [7] and
efficient algorithms for computing an ε-kernel of a set of n points in R

d were given
in [7, 14, 24]. Yu et al. [24] also gave a simple and fast incremental algorithm for
fitting various shapes through a given set of points. See [8] for a review of known
results on coresets.

Although there has been much work on approximating a level in an arrangement
of hyperplanes using the random-sampling and ε-approximation techniques [15, 21],
this line of work has focused on computing a piecewise-linear surface of small com-
plexity that lies within levels (±ε)k for a given integer k ≥ 0. These algorithms do
not extend to approximating a level in the sense defined in this paper.

Perhaps the simplest case in which one can easily show the existence of a small
(k, ε)-kernel is when all points of P are collinear in R

d . One simply returns the first
and last k+1 points along this line as the desired (k, ε)-kernel. In fact, this kernel has
exactly the same k-level directional width as P , for all directions. Note that the size of
this kernel is 2k+ 2, which is independent of the input size. Generalizing this simple
example, Har-Peled and Wang [19] showed that for any point set P ⊂ R

d , one can
compute a (k, ε)-kernel of size O(k/εd−1). Their algorithm is based on a recursive
construction, and runs in O(n + k/εd−1) time. Their result led to approximation
algorithms for computing various extent measures with k outliers, whose running
times are of the form O(n+ (k/ε)c).
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Our Results In Sect. 2 we prove that there exists a (k, ε)-kernel of size O(k/ε(d−1)/2)

for any set P of n points in R
d . This result matches the lower bound �(k/ε(d−1)/2).

Our construction is relatively simple and intuitive: it works by repeatly peeling
away (ε/4)-kernels from the input point set P . The running time is bounded by
O(n + k2/εd−1). The algorithm also leads to a one-pass algorithm for computing
(k, ε)-kernels. We tested our algorithm on a variety of inputs for d ≤ 8; the empirical
results show that it works well in low dimensions in terms of both the size of the
kernel and the running time.

Our result immediately implies improved approximation algorithms on a wide
range of problems discussed in [19]. To name a few, we can compute an
ε-approximation of the diameter with k outliers in O(n + k2/εd−1) time, an
ε-approximation of the minimum-width spherical shell with k outliers in
O(n+ k2d+1/ε2d(d+1)) time, and a subset of size O(k/εd) for a set of linearly mov-
ing points in R

d so that at any time the diameter (width, smallest-enclosing box, etc.)
with k outliers of this subset is an ε-approximation of that of the original moving
point set.

In Sect. 3 we present an incremental algorithm for shape fitting with k outliers,
which is an extension of the incremental algorithm by Yu et al. [24]. The algo-
rithm works by repeatedly grating points from the original point set into a working
set; the points that violate the current solution for the working set the most are se-
lected by the algorithm. We prove that the number of iterations of the algorithm is
O((k2/εd−1)d−1), which is independent of n. Our empirical results show that the al-
gorithm converges fairly quickly in practice. Interestingly, while the algorithm itself
does not make explicit use of (k, ε)-kernels at all, its analysis crucially relies on the
properties of our new algorithm for constructing (k, ε)-kernels.

2 Construction of (k,ε)-Kernel

In this section we describe an iterative algorithm for constructing a (k, ε)-kernel for
a set P of n points in R

d . Without loss of generality, we assume that ε ≤ 1/2.

2.1 Algorithm

Set δ = ε/4. Our algorithm consists of 2k + 1 iterations. At the beginning of the
ith iteration, for 0 ≤ i ≤ 2k, we have a set Pi ⊆ P ; initially P0 = P . We compute
a δ-kernel Ti of Pi , using an existing algorithm for computing δ-kernels [7, 14, 24].
We set Pi+1 = Pi \ Ti . After 2k + 1 iterations, the algorithm returns S =⋃2k

i=0 Ti as
the desired (k, ε)-kernel.

Intuitively, Ti approximates the extent measure of Pi . By peeling away Ti from Pi ,
important points (in the sense of approximating the extent measures) on the next level
of P get “exposed” and can then be subsequently captured in the next iteration of the
algorithm. By repeating this peeling process enough times, the union of these point
sets approximates the extents of all the first k levels. Similar peeling ideas have been
used for halfspace range searching [3, 16, 17] and computing k-hulls [18]. However,
unlike our approach, in which we peel away only a small number of points, these
algorithms peel away all points of level 0 in each step.
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2.2 Proof of Correctness

Let u ∈ S
d−1 be an arbitrary direction. For 0≤ j < n/2, let

Vj (u,P )= 〈P 0[u],P 1[u], . . . ,P j [u],Pj [u],Pj−1[u], . . . ,P0[u]〉
denote the ordered sequence of points realizing the top/bottom j levels of P in direc-
tion u. We call the ith iteration of the algorithm successful with respect to direction
u if Vk−1(u,P ) ∩ Ti 
= ∅ or unsuccessful otherwise. Since |Vk−1(u,P )| = 2k and
the algorithm consists of 2k + 1 iterations, at least one of them is unsuccessful with
respect to u.

Lemma 2.1 If the ith iteration is unsuccessful with respect to direction u, then
E(u,Pi)≤ (1+ ε/2)Ek(u,P ). In fact,

U(u,Pi) ≤ Uk(u,P )+ (ε/2)Ek(u,P ),

L(u,Pi) ≥ Lk(u,P )− (ε/2)Ek(u,P ).

Proof Since Ti ∩ Vk−1(u,P )= ∅, we have E(u,Ti )≤ Ek(u,P ); see Fig. 1. By con-
struction, Ti is a δ-kernel of Pi . Therefore,

E(u,Pi)≤ E(u,Ti )/(1− δ)≤ (1+ ε/2)Ek(u,P ),

proving the first inequality of the lemma. Note that U(u,Ti )≤Uk(u,P ). We have

U(u,Pi) ≤ U(u,Ti )+ (E(u,Pi)− E(u,Ti ))

≤ Uk(u,P )+ δE(u,Pi)

≤ Uk(u,P )+ (ε/2)Ek(u,P ).

The third claim in this lemma can be proved in a similar manner. �

Fig. 1 Illustration of
Lemma 2.1 (for k = 3). Double
circles represent points in Ti .
The union of double circles and
solid circles represent points in
Pi . Hollow circles represent
points in P \ Pi =

⋃i−1
j=0 Tj .

Here pj = Pj [u] and
qj = Pj [u]
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Lemma 2.2 S is a (k, ε)-kernel of P .

Proof To prove the claim, we fix an arbitrary direction u ∈ S
d−1 and argue that

Ea,b(u,S)≥ (1− ε)Ea,b(u,P )

for all 0≤ a, b ≤ k. We only discuss the case a = b = k; other cases can be handled
by slightly modifying the argument given below.

We first show that

Uk(u,S)≥Uk(u,P )− (ε/2)Ek(u,P ). (1)

If P �[u] ∈ S for all 0 ≤ � ≤ k, then Uk(u,S) ≥ Uk(u,P ) and hence (4) is clearly
true. So let us assume that there exists � ≤ k such that P �[u] /∈ S . Observe that for
any iteration i, we must have P �[u] ∈ Pi .

We define

Q= {p ∈ P | 〈u,p〉 ≥Uk(u,P )− (ε/2)Ek(u,P )
}
.

Then (1) is equivalent to |S ∩Q| ≥ k + 1.
Consider the ith iteration of the algorithm that is unsuccessful with respect to

direction u. Since P �[u] ∈ Pi and Ti is a δ-kernel of Pi ,

U(u,Ti ) ≥ U(u,Pi)− δ E(u,Pi)

≥ U�(u,P )− (ε/4)(1+ ε/2)Ek(u,P ) (by Lemma 2.1)

≥ Uk(u,P )− (ε/2)Ek(u,P ).

Hence Ti0[u] ∈ Q. Furthermore, since this iteration is unsuccessful, Ti0[u] /∈
{P 0[u], . . . ,P k−1[u]}, implying that |Ti ∩ (Q \ {P 0[u], . . . ,P k−1[u]})| ≥ 1.

Let m be the total number of successful iterations of the algorithm. Then
|S ∩ Vk−1(u,P )| ≥ m and therefore |S ∩ {P 0[u], . . . ,P k−1[u]}| ≥ m − k. Further-
more, as there are 2k + 1 − m unsuccessful iterations, the preceding argument
implies that |S ∩ (Q \ {P 0[u], . . . ,P k−1[u]})| ≥ 2k + 1 − m. Hence, |S ∩ Q| ≥
(m− k)+ (2k + 1−m)= k+ 1, which in turn implies (1).

Using a similar argument, we can prove that

Lk(u,S)≤ Lk(u,P )+ (ε/2)Ek(u,P ). (2)

Putting (1) and (2) together, we get that

Ek(u,S)=Uk(u,S)−Lk(u,S)≥ (1− ε)Ek(u,P ).

Since u is an arbitrary direction, S is indeed a (k, ε)-kernel of P . �

2.3 Time Complexity

Chan [14] has shown that a δ-kernel of size O(1/δ(d−1)/2) can be computed in
O(n+ 1/δd−1) time. Using this result, we obtain an algorithm for computing (k, ε)-
kernels of size O(k/δ(d−1)/2) with running time O(nk + k/εd−1). We can improve
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the running time to O(n+ k2/εd−1), using the following observation: for any point
set P ⊂ R

d , if R⊂ P is a (k, ε1)-kernel of P , and S ⊂R is a (k, ε2)-kernel of R,
then S is a (k, ε1 + ε2)-kernel of P .

We first invoke the O(n + k/εd−1)-time algorithm of Har-Peled and Wang [19]
to compute a (k, ε/2)-kernel R of P of size O(k/εd−1), and then apply the above
O(nk + k/εd−1)-time algorithm on R to compute a (k, ε/2)-kernel S of R of size
O(k/ε(d−1)/2). The resulting set S is the desired (k, ε)-kernel of P , and the total run-
ning time is bounded by O(n+ k2/εd−1). We conclude with the following theorem.

Theorem 2.3 Given a set P of n points in R
d and parameters k, ε > 0, one can

compute, in O(n+ k2/εd−1) time, a (k, ε)-kernel of P of size O(k/ε(d−1)/2).

It is easy to verify that for a point set P ′ which is an �(
√
ε )-net of the unit

hypersphere (i.e., the minimum distance in P ′ is �(
√
ε )), all points of P ′ must be in

every (0, ε)-kernel of P ′. By replicating k+ 1 times every point of P ′ and perturbing
slightly, the resulting point set P has the property that any (k, ε)-kernel of P must
contain �(k/ε(d−1)/2) points. Thus, in the worst case, a (k, ε)-kernel for P is of size
�(k/ε(d−1)/2), matching the upper bound given in Theorem 2.3.

We also note that performing 2k + 1 iterations in the above algorithm is
not only sufficient but also necessary to compute a (k, ε)-kernel. For example,
in R

2, consider �(n) (slightly perturbed) copies of the two points (−1,0) and
(1,0) on the x-axis, together with the following 2k + 2 points on the y-axis:
(0,1/εk−1), (0,1/εk−2), . . . , (0,1); (0,−ε), (0,−ε2), . . . , (0,−εk); (0,−εk+1),

(0, εk+1). If the number of iterations is 2k, the algorithm may only output the first 2k
points listed above along the y-axis together with a set of other points on the x-axis,
which is clearly not a (k, ε)-kernel in the y-direction.

2.4 Extensions

One-pass Algorithms In many applications it is desirable to compute a certain func-
tion in a single pass over the input data, using a small working memory and process-
ing each point quickly. Agarwal et al. [7], Agarwal and Yu [2], and Chan [14] de-
scribed such one-pass algorithms for computing ε-kernels. Our (k, ε)-kernel algo-
rithm suggests how to develop a one-pass algorithm for computing a (k, ε)-kernel
by using such an algorithm for ε-kernel as a subroutine. Suppose there is a one-pass
algorithm A that computes ε-kernels using N(ε) space and T (ε) time per point. To
compute a (k, ε)-kernel of a point set P in one pass, we proceed as follows. We si-
multaneously run 2k + 1 instances of A, namely A0,A1, . . . ,A2k , each of which
maintains an (ε/4)-kernel Ti (0 ≤ i ≤ 2k) of its own input seen so far. The input of
A0 is P0 = P , and the input Pi of Ai , for i ≥ 1, is initially empty. The algorithm
A0 processes each point in P0 in turn. For i ≥ 1, we insert a point p ∈ Pi−1 into Pi

whenever any of the following two events happens:

1. p is not added into Ti−1 after being processed by Ai−1;
2. p is deleted from Ti−1 by Ai−1.

It is easy to see that in the end Pi = Pi−1 \ Ti−1 and Ti is an (ε/4)-kernel of Pi , for
each 0≤ i ≤ 2k. Therefore, S =⋃2k

i=0 Ti is a (k, ε)-kernel of P as desired. The total
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space needed is O(k ·N(ε/4)) and the amortized time to process each point in P is
O(k · T (ε/4)). Thus we obtain the following result.

Theorem 2.4 Given a one-pass algorithm for computing ε-kernels in N(ε) space
and T (ε) time per point, there is a one-pass algorithm for computing (k, ε)-kernels
in O(k ·N(ε/4)) space and O(k · T (ε/4)) amortized time per point.

Polynomials Let F be a family of d-variate polynomials. The (k, �)-extent of F at
x ∈R

d , denoted by Ek,�(x,F), is defined by

Ek,�(x,F)= fi(x)− fj (x),

where fi (resp. fj ) is the function in F that has the k-th largest (resp. �-th smallest)
value in the set F(x)= {f (x) | f ∈F}. A subset G ⊆F is a (k, ε)-kernel of F if for
any 0≤ a, b ≤ k and any x ∈R

d ,

(1− ε)Ea,b(x,F)≤ Ea,b(x,G)≤ Ea,b(x,F).

We say that the dimension of linearization of F is m if there exists a map ϕ :
R

d → R
m so that each function f ∈ F maps to a linear function hf : Rm → R in

the sense that f (x) = hf (ϕ(x)) for all x ∈ R
d . Using Theorem 2.3 together with

the standard linearization and duality transforms as described in [7], we immediately
have the following.

Theorem 2.5 Let F be a family of n polynomials, and let m be the dimension of
linearization of F . Given parameters k, ε > 0, one can compute a (k, ε)-kernel of F
of size O(k/εm/2) in O(n+ k2/εm) time.

Roots of Polynomials To compute (k, ε)-kernels of fractional powers of polynomi-
als, we need the following observation from [24] (see also [7]):

Lemma 2.6 Let 0 < ε < 1, 0≤ a ≤ A≤ B ≤ b, and r be a positive integer. If Br −
Ar ≥ (1− εr)(br − ar), then B −A≥ (1− ε)(b− a).

Hence, in order to compute a (k, ε)-kernel of {f 1/r
1 , . . . , f

1/r
n }, where each fi is

a polynomial and r is a positive integer, it is sufficient to compute a (k, εr )-kernel of
{f1, . . . , fn}. Applying Theorem 2.5, we then have the following.

Theorem 2.7 Let F = {f 1/r
1 , . . . , f

1/r
n } be a family of n functions, where each fi is

a polynomial and r is a positive integer. Let m be the dimension of linearization of
{f1, . . . , fn}. Given parameters k, ε > 0, one can compute a (k, ε)-kernel of F of size
O(k/εrm/2) in O(n+ k2/εrm) time.

Theorems 2.5 and 2.7 immediately imply improved results for various shape-
fitting problems mentioned in [19], some of which have been listed in Introduction.
The details can be found in [19].
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3 Incremental Shape-Fitting Algorithm

In this section we present a simple incremental algorithm for shape fitting with k out-
liers. Compared to the shape-fitting algorithms derived directly from Theorems 2.5
and 2.7, the incremental algorithm does not enjoy a better bound on the running time,
but usually performs faster in practice. The algorithm does not make explicit use of
(k, ε)-kernels. However, by exploiting the construction of (k, ε)-kernels from the pre-
vious section, we show that the number of iterations performed by the algorithm is
independent of the input size n. We first describe and analyze the algorithm for the
special case in which we wish to find a minimum-width slab that contains all but at
most k points of a point set. We then show that the same approach can be extended to
a number of other shapes, including cylinders, spherical shells, and cylindrical shells.

3.1 Algorithm

A slab σ ⊆ R
d is the region bounded by two parallel hyperplanes. The width of σ

is the distance between the two hyperplanes. The hyperplane passing through the
middle of σ is called the center hyperplane of σ . For a given parameter c > 0, we
will use c · σ to denote the slab obtained by scaling σ by the factor of c with respect
to its center hyperplane. Let uσ ∈ S

d−1 denote the direction in the upper hemisphere
normal to the hyperplanes bounding σ .

Let Aopt(R, k) be an algorithm that returns a slab of the minimum width that
contains all but at most k points of R. The incremental algorithm proceeds as follows.
We start with an arbitrary subset R ⊆ P of constant size and compute σ =Aopt(R, k).
If 1

1−ε
· σ can cover all but at most k points of P , then we stop because we have

found an ε-approximation of Aopt(P, k). Otherwise, we add the points of Vk(uσ ,P )

(as defined in Sect. 2.2) to R and repeat the above step.
Note that the algorithm always terminates. If the number of iterations of the algo-

rithm is small, its running time would also be small. We next prove a bound on the
number of iterations that is independent of n.

3.2 Analysis

We will show that there exists a family H of O(k2/εd−1) great hyperspheres on
S
d−1 with the following property: the algorithm stops as soon as it computes a slab

σ1 such that, for some slab σ2 computed in an earlier iteration, uσ1 and uσ2 lie in
the same cell of the arrangement A(H) of H. This would immediately imply an

Fig. 2 One iteration of the
incremental algorithm (for
k = 1). Solid circles represent
points in R, and double circles
represent points to be added into
R in this iteration
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O((k2/εd−1)d−1) bound on the number of iterations. First we prove a useful property
of affine transforms. We then describe how to choose the great hyperspheres. Finally
we prove the desired property of the chosen hyperspheres and the convergence of the
algorithm.

We write an affine transform τ : Rd → R
d as τ(x) = AT · x + q0 for x ∈ R

d ,
where A is a d × d nonsingular matrix and q0 ∈ R

d is a fixed vector. Given τ , let
τ̃ : Sd−1 → S

d−1 be the map defined by τ̃ (u)=A−1u/‖A−1u‖ for u ∈ S
d−1. If the

transform τ is clear from the context, we simply use ũ to denote τ̃ (u).

Lemma 3.1 Let τ : Rd → R
d be an affine transform. For any direction u ∈ S

d−1,
any four points p,q, r, s ∈R

d , and any parameter c ∈R,

〈u,p− q〉 ≤ c · 〈u, r − s〉 ⇐⇒ 〈̃u, τ(p)− τ(q)〉 ≤ c · 〈̃u, τ(r)− τ(s)〉.
In particular, for any point set P and P̃ = τ(P ), we have P̃ i [̃u] = τ(P i[u]) for
0≤ i < |P |.

Proof Suppose τ(x)=AT · x + q0 for x ∈R
d . Then

〈̃u, τ(p)− τ(q)〉 = 〈A−1u/‖A−1u‖,AT (p− q)〉
= uT (AT )−1AT (p− q)/‖A−1u‖
= uT (p− q)/‖A−1u‖ = 〈u,p− q〉/‖A−1u‖.

Similarly, we have 〈̃u, τ(r)− τ(s)〉 = 〈u, r − s〉/‖A−1u‖. Hence the first claim of
the lemma follows. Setting c = 0 in the first claim, we know that 〈u,p〉 ≤ 〈u,q〉 if
and only if 〈̃u, τ(p)〉 ≤ 〈̃u, τ(q)〉. The second claim then follows. �

We need the following two lemmas to describe how to choose the desired family
of great hyperspheres.

Lemma 3.2 Let S be a set of n points in R
d . There exists a set H of O(n2) great

hyperspheres in S
d−1 so that for any u,v ∈ S

d−1 lying in the same cell of A(H), we
have Si[u] = Si[v], for i = 0, . . . , n− 1.

Proof For any pair of points p,q ∈ S, let hpq be the great hypersphere in S
d−1,

defined by the equation

〈u,p〉 = 〈u,q〉, u ∈ S
d−1.

We let H = {hpq | p,q ∈ S}. Clearly |H | = O(n2). Consider any cell � ∈ A(H).
By construction, it is easy to see that the relative ordering of the elements in
{〈u,p〉 | p ∈ S} is the same for all u ∈ �. Hence, Si[u] = Si[v] for any u,v ∈ �,
as desired. �

Lemma 3.3 Let S be a set of n points in R
d whose affine hull spans R

d , and let
δ > 0 be a parameter. There exist an affine transform τ and a set H of O(1/δ) great
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hyperspheres in S
d−1 so that for any u,v ∈ S

d−1 lying in the same cell of A(H) and
for any two points p,q ∈ S,

|〈̃u− ṽ, τ (p)− τ(q)〉| ≤ δ · E (̃v, τ (S)).

Proof Let B
d ⊆ R

d be a unit ball centered at the origin. By John’s Ellipsoid Theo-
rem [23], there exists an affine transform τ so that (1/d) ·Bd ⊆ conv(τ (S))⊆ B

d .
Agarwal et al. [7] proved that there exists a set H of O(1/δ) great hyperspheres in

S
d−1, such that for any u,v ∈ S

d−1 lying in the same cell of A(H), ‖ũ− ṽ‖ ≤ δ/d .
Note that E (̃v, τ (S))≥ 2/d , and for any p,q ∈ S, ‖τ(p)− τ(q)‖ ≤ 2. Thus,

|〈̃u− ṽ, τ (p)− τ(q)〉| ≤ ‖ũ− ṽ‖ · ‖τ(p)− τ(q)‖
≤ 2δ/d ≤ δ · E (̃v, τ (S)),

as claimed. �

We assume ε ≤ 1/2. Fix δ = ε/6≤ 1/12. Let S be a (k, δ)-kernel of P computed
by the algorithm in Sect. 2.1, and let X = P \ S . Using Lemmas 3.2 and 3.3, we
construct a decomposition of S

d−1 as follows. For each point p ∈ S , let Hp be a
family of O(1/δ) great hyperspheres that satisfy Lemma 3.3 for X ∪ {p}, and let
τp be the corresponding affine transform. Let � = {τp | p ∈ S}. Let G be the set of
O(|S|2) great hyperspheres that satisfy Lemma 3.2 for the set S . Set

H=G∪
( ⋃

p∈S
Hp

)

.

Note that |H| = O(|S|2 + |S|/δ) = O(k2/εd−1). The number of cells in A(H) is
O(|H|d−1)=O((k2/εd−1)d−1).

Next we prove crucial properties of the decomposition A(H).

Lemma 3.4 Let u ∈ S
d−1 be a direction. Set Q=X ∪ {Sk[u]}. For any affine trans-

form τ , we have

E (̃u, τ (Q))≤ (1+ δ) · Ek (̃u, τ (P )). (3)

Proof Since the algorithm described in Sect. 2.1 performs 2k + 1 iterations, at least
one of them, say the iteration i, was unsuccessful with respect to direction u. By
Lemma 2.1 and the fact X ⊆ Pi , we know that

U(u,X )≤U(u,Pi)≤Uk(u,P )+ (δ/2) · Ek(u,P ), (4)

L(u,X )≥ L(u,Pi)≥ Lk(u,P )− (δ/2) · Ek(u,P ). (5)

Therefore,

E
(
u,X ∪ {Sk[u]}) ≤ max

(〈u,Sk[u]〉,U(u,X )
)−min

(〈u,Sk[u]〉,L(u,X )
)

= max
(
Uk(u,S),U(u,X )

)−min
(
Lk(u,S),L(u,X )

)
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≤ (Uk(u,P )+ (δ/2) · Ek(u,P )
)

− (Lk(u,P )− (δ/2) · Ek(u,P )
)

(by (4) and (5))

≤ (1+ δ)Ek(u,P ).

Hence by Lemma 3.1, E (̃u, τ (Q))≤ (1+ δ) · Ek(̃u, τ (P )). �

Lemma 3.5 Let u,v ∈ S
d−1 be any two directions lying in the same cell of A(H).

Then, for any 0≤ a, b ≤ k, we have

Ea,b(v,Vk(u,P ))≥ (1− ε) · Ea,b(v,P ).

Proof We prove the claim for the case a, b = k; the argument easily adapts to other
cases. To this end, we show that for �≤ k,

〈v,P �[u]〉 ≥Uk(v,P )− (ε/2) · Ek(v,P ).

We start by considering the case P �[u] ∈ S . Observe that Vk(u,S) = Vk(v,S)
(we remind the reader that V is an ordered set, as such equality here means also
identical ordering by level). In particular, since P �[u] is clearly at level ≤ � of S ⊆ P

in direction u, P �[u] is also at level ≤ � of S in direction v. Hence,

〈v,P �[u]〉 ≥U�(v,S)≥Uk(v,S)≥Uk(v,P )− δ · Ek(v,P ),

where the last inequality follows from the fact that S is a (k, δ)-kernel of P .
Now consider the case P �[u] ∈ X . Set Q = X ∪ {Sk[u]}, and let τ ∈ � be the

affine transform that satisfies Lemma 3.3 for the set Q. Since �≤ k, we have

〈u,Sk[u]〉 ≤ 〈u,P k[u]〉 ≤ 〈u,P �[u]〉,
implying that 〈u,Sk[u] − P �[u]〉 ≤ 0, or equivalently by applying Lemma 3.1 with
c= 0,

〈̃u, τ(Sk[u])− τ(P �[u])〉 ≤ 0.

Therefore,

〈̃v, τ (Sk[u])− τ(P �[u])〉
= 〈̃u, τ(Sk[u])− τ(P �[u])〉 + 〈̃v − ũ, τ (Sk[u])− τ(P �[u])〉
≤ 〈̃v − ũ, τ (Sk[u])− τ(P �[u])〉. (6)

Note that u,v lie in the same cell of A(H), and P �[u],Sk[u] ∈Q=X ∪ {Sk[u]}.
By applying Lemma 3.3 to the right-hand side of (6), we obtain

〈̃v, τ (Sk[u])− τ(P �[u])〉
≤ δ · E (̃v, τ (Q))≤ δ(1+ δ) · Ek (̃v, τ (P ))≤ 2δ · Ek(̃v, τ (P )), (7)

where the second inequality follows from Lemma 3.4. By Lemma 3.1, (7) implies

〈v,Sk[u] − P �[u]〉 ≤ 2δ · Ek(v,P ). (8)
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Observing that Sk[u] = Sk[v] and using (8), we obtain

〈v,P �[u]〉 ≥ 〈v,Sk[u]〉 − 2δ · Ek(v,P )= 〈v,Sk[v]〉 − 2δ · Ek(v,P )

≥ Uk(v,P )− 3δ · Ek(v,P )≥Uk(v,P )− (ε/2) · Ek(v,P ).

Similarly, we can prove that for any 0 ≤ � ≤ k, 〈v,P�[u]〉 ≤ Lk(v,P ) + (ε/2) ·
Ek(v,P ).

Hence, Ek(v,Vk(u,P ))≥ (1− ε) · Ek(v,P ), as claimed. �

We are now ready to bound the number of iterations of the incremental algorithm.

Theorem 3.6 The number of iterations of the incremental algorithm for fitting the
minimum-width slab with k outliers is bounded by O((k2/εd−1)d−1), which is inde-
pendent of n.

Proof Let ui ∈ S
d−1 be the direction orthogonal to the slab computed in the ith it-

eration. We say that a cell � ∈ A(H) is visited if ui ∈ �. Suppose a cell is visited
by two iterations i and j during the execution of the algorithm. Assume i < j . Then
in iteration j , we have Vk(ui,P ) ⊆ R. Let σ be the slab returned by Aopt(R, k) in
iteration j . Then |σ |—the width of σ—is equal to Ea,b(uj ,R) for some appropriate
a, b ≤ k with a + b= k. By Lemma 3.5, we have

|σ | = Ea,b(uj ,R)≥ Ea,b(uj ,Vk(ui,P ))≥ (1− ε)Ea,b(uj ,P ),

or equivalently 1
1−ε
|σ | ≥ Ea,b(uj ,P ). This implies that the algorithm would satisfy

the stopping criterion in iteration j . Thus the number of iterations is bounded by
|A(H)| + 1=O((k2/εd−1)d−1). �

3.3 Other Shapes

The incremental algorithm of Sect. 3.1 for computing an ε-approximation of the
minimum-width slab with k outliers can be extended to fitting other shapes as well,
such as minimum-width spherical shells or cylindrical shells, minimum-radius cylin-
ders, etc. In this section we describe these extensions.

Spherical Shells and Cylindrical Shells A spherical shell is a closed region lying
between two concentric spheres in R

d . A cylinderical shell is a closed region lying
between two co-axial cylinders in R

d . Because fitting spherical shells or cylindrical
shells can be formulated as computing the minimum extent of a family F of m-variate
functions for some parameter m [7], we describe a general incremental algorithm for
the latter problem. For x ∈R

m and 0≤ k < n, we denote

Êk(x,F)= min
a+b=k

Ea,b(x,F),

where Ea,b(x,F) is as defined in Sect. 2.4. Let Aopt(F, k) be an algorithm that returns

x∗ = arg min
x∈Rm

Êk(x,F).
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The incremental algorithm starts by picking an arbitrary subset R ⊆ F of constant
size and compute x∗ =Aopt(R, k). If Êk(x∗,R)≥ (1− ε)Êk(x∗,F), then Êk(x∗,R)

is an ε-approximation of minx∈Rm Êk(x,F) and we can stop. Otherwise, we add
Vk(x

∗,F)—union of the 2(k + 1) functions of F that attain the k + 1 largest val-
ues and the k + 1 smallest values in F(x∗)= {f (x∗) | f ∈F}—to R, and repeat the
above step.

To analyze the above algorithm, we need the following lemma which is the dual
version of Lemma 3.5.

Lemma 3.7 Let F be a finite family of m-variate linear functions, and 0 < δ ≤ 1/2
be a parameter. Then there exists a set H of O(k2/δm) hyperplanes in R

m such that
for any u,v ∈R

m lying in the same cell of A(H), and any 0≤ a, b ≤ k, we have

Ea,b(v,Vk(u,F))≥ (1− δ) · Ea,b(v,F).

Lemma 3.8 Let F be a finite family of m-variate polynomials that admits a lin-
earization of dimension �, and 0 < δ ≤ 1/2 be a parameter. Then there exists a de-
composition of R

m into O(k2m/δm�) cells such that for any u,v ∈ R
m lying in the

same cell of the decomposition, and any 0≤ a, b ≤ k, we have

Ea,b(v,Vk(u,F))≥ (1− δ) · Ea,b(v,F).

Proof Let ϕ : Rm → R
� be the map so that each function f ∈ F maps to a lin-

ear function hf in the sense that f (x) = hf (ϕ(x)) for all x ∈ R
m. Note that

� = {ϕ(x) | x ∈ R
m}, the image of ϕ, is an m-dimensional surface in R

�. Let
F ′ = {hf | f ∈ F}. Applying Lemma 3.7 to F ′, we obtain a set H of O(k2/δ�)

hyperplanes in R
�. Set H−1 = {h−1 = ϕ−1(h ∩ �) | h ∈H}, where each h−1 ∈H−1

is an (m−1)-dimensional algebraic surface in R
m. If u,v ∈R

m lie in the same cell of
A(H−1), then ϕ(u),ϕ(v) lie in the same cell of A(H). Since f (x)= hf (ϕ(x)) for all
f ∈F and x ∈R

m, Lemma 3.7 implies that Ea,b(v,Vk(u,F))≥ (1− δ) · Ea,b(v,F).
The lemma now follows because A(H−1) induces a decomposition of R

m into
O((k2/δ�)m) cells [1]. �

Theorem 3.9 Let F = {f1, . . . , fn} be a family of m-variate nonnegative functions,
and 0 < ε ≤ 1/2 be a parameter. Suppose there exists an m-variate positive function
ψ(x) and an integer r ≥ 1, so that each gi(x) = ψ(x)f r

i (x) is a polynomial. Fur-
thermore, suppose G = {g1, . . . , gn} admits a linearization of dimension �. Then there
exists a decomposition D of R

m into O(k2m/εrm�) cells such that for any u,v ∈ R
m

lying in the same cell of D, and any 0≤ a, b ≤ k, we have

Ea,b(v,Vk(u,F))≥ (1− ε) · Ea,b(v,F).

In addition, the incremental algorithm computes an ε-approximation of
minx∈Rm Êk(x,F) in O(k2m/εrm�) iterations.

Proof We first make the following observation: for any δ ≤ 1, 1≤ i, j, h, �≤ n, and
x ∈R

m,
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gi(x)− gj (x)≥ (1− δ)
(
gh(x)− g�(x)

)

⇔ f r
i (x)− f r

j (x)≥ (1− δ)
(
f r
h (x)− f r

� (x)
)
. (9)

An immediate consequence of (9) is that gi(x)≥ gj (x) if and only if fi(x)≥ fj (x).
Consider the decomposition D of R

m obtained by applying Lemma 3.8 to the
family G with parameter δ = εr . Note that |D| = O(k2m/εrm�). For any u,v ∈ R

m

lying in the same cell of D, by Lemma 3.8 we have

Ea,b(v,Vk(u,G))≥ (1− εr) · Ea,b(v,G).
Using (9) and Lemma 2.6, we obtain that Ea,b(v,Vk(u,F))≥ (1− ε) · Ea,b(v,F), as
desired.

Using the proved result and the same argument as in Theorem 3.6, we immediately
obtain the second half of the theorem. �

The problem of computing the minimum-width spherical shell containing all but
at most k points of a point set P in R

d satisfies Theorem 3.9 with m = d , r = 2,
and � = d + 1 [7]. Hence the incremental algorithm for this problem terminates
in kO(d)/εO(d2) iterations. Similarly, the incremental algorithm for computing the
minimum-width cylindrical shell terminates in kO(d)/εO(d3) iterations, as it satisfies
Theorem 3.9 with m= 2d − 2, r = 2, and �=O(d2) [7]. We thus obtain the follow-
ing.

Corollary 3.10 Let P be a set of n points in R
d , and let 0 < ε ≤ 1/2 be a parameter.

The incremental algorithm computes an ε-approximation of the smallest spherical
shell containing all but k points of P in kO(d)/εO(d2) iterations, and the smallest
cylindrical shell containing all but k points of P in kO(d)/εO(d3) iterations.

Cylinders Unlike cylindrical shells and spherical shells, the problem of fitting cylin-
ders cannot be directly formulated as computing the minimum extent of a family of
functions. Instead, it can be reduced to computing minx∈Rm Uk(x,F) for a family F
of nonnegative functions, where Uk(x,F) is defined as the (k+ 1)-th largest value in
the set F(x). The incremental algorithm for such type of problems is as follows. Let
Aopt(F, k) be an algorithm that returns

x∗ = arg min
x∈Rm

Uk(x,F).

The algorithm starts by picking an arbitrary subset R⊆F of constant size and com-
pute x∗ = Aopt(R, k). If Uk(x

∗,R) ≥ (1 − ε) · Uk(x
∗,F), then we can stop be-

cause Uk(x
∗,R) is an ε-approximation of minx∈Rm Uk(x,F). Otherwise, we add

Uk(x
∗,F)—the k + 1 functions of F that attain the k + 1 largest values in F(x∗)=

{f (x∗) | f ∈F}—to R, and repeat the above step.

Theorem 3.11 Let F = {f1, . . . , fn} be a family of m-variate nonnegative functions,
and 0 < ε ≤ 1/2 be a parameter. Suppose there exists an m-variate positive function
ψ(x) and an integer r ≥ 1, so that each gi(x) = ψ(x)f r

i (x) is a polynomial. Fur-
thermore, suppose G = {g1, . . . , gn} admits a linearization of dimension �. Then there
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exists a decomposition D of R
m into O(k2m/εm�) cells such that for any u,v ∈ R

m

lying in the same cell of D, and any 0≤ a ≤ k, we have

Ua(v,Uk(u,F))≥ (1− ε) ·Ua(v,F).

In addition, the incremental algorithm computes an ε-approximation of
minx∈Rm Uk(x,F) in O(k2m/εm�) iterations.

Proof Let G′ = {g1, . . . , gn} ∪ {−g1, . . . ,−gn}. Since G admits a linearization of di-
mension �, G′ also admits a linearization of dimension �. Let D be the decompo-
sition of R

m obtained by applying Lemma 3.8 to G′ with parameter δ = ε. Then
|D| =O(k2m/εm�). For any u,v ∈R

m lying in the same cell of D, we have

Ea,a(v,Vk(u,G′))≥ (1− ε)Ea,a(v,G′).

By the symmetry of G′, we have Ea,a(v,Vk(u,G′))= 2ψ(v)(Ua(v,Uk(u,F)))r , and
Ea,a(v,G′)= 2ψ(v)(Ua(v,F))r . Hence the above inequality implies

(
Ua(v,Uk(u,F))

)r ≥ (1− ε)
(
Ua(v,F)

)r
.

It follows that Ua(v,Uk(u,F))≥ (1− ε) ·Ua(v,F), as desired.
As a direct consequence, the second half of the theorem follows. �

Note that the cylinder problem has the same linearization as the cylindrical shell
problem mentioned above. We then obtain the following.

Corollary 3.12 Let P be a set of n points in R
d , and let 0 < ε ≤ 1/2 be a parame-

ter. The incremental algorithm computes an ε-approximation of the smallest cylinder
containing all but k points of P in kO(d)/εO(d3) iterations.

We have not tried to optimize our bounds on the number of iterations, but we
believe that they can be improved. As shown in Sect. 4, the number of iterations in
practice is usually much smaller than the proved bounds here.

4 Experiments

In this section, we demonstrate the effectiveness of our algorithms by evaluating their
performances on various synthetic and real data. All our experiments were conducted
on a Dell PowerEdge 650 server equipped with 3 GHz Pentium IV processor and 3
GB memory, running Linux 2.4.20.

Computing (k, ε)-Kernels We implemented a simpler version of our (k, ε)-kernel
algorithm, which does not invoke Har-Peled and Wang’s algorithm [19] first. We
used an implementation of Yu et al. [24] for computing δ-kernels in each iteration.
Although the worst-case running time of the algorithm is larger than that mentioned
in Theorem 2.3, it is simple and works well in practice.

We used three types of synthetic inputs as well as a few large 3D geometric mod-
els [20]:
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Table 1 Performance of the (k, ε)-kernel algorithm on various synthetic data with k = 5. Running time is
measured in seconds

Input Input Approximation error Running time

type size d = 3 d = 4 d = 5 d = 8 d = 3 d = 4 d = 5 d = 8

Sphere 104 0.022 0.052 0.091 0.165 2.7 4.8 7.7 20.6

105 0.022 0.054 0.103 0.192 9.2 14.5 19.0 42.3

106 0.024 0.055 0.100 0.224 101.4 155.6 194.7 337.3

Cylinder 104 0.005 0.027 0.086 0.179 2.7 4.5 7.2 20.6

105 0.015 0.059 0.117 0.243 10.3 13.7 19.7 42.5

106 0.019 0.058 0.125 0.283 129.9 157.9 192.6 335.4

Clustered 104 0.001 0.010 0.026 0.061 2.5 4.4 7.7 19.0

105 0.012 0.020 0.031 0.078 7.7 11.5 16.8 36.4

106 0.016 0.021 0.045 0.087 80.1 104.8 138.6 266.5

Table 2 Performance of the
(k, ε)-kernel algorithm on
various 3D geometric models
with k = 5. Running time is
measured in seconds

Input Input Kernel Approx Running

type size size error time

Bunny 35,947 1001 0.012 3.9

Dragon 437,645 888 0.016 32.8

Buddha 543,652 1064 0.014 35.6

1. Points uniformly distributed on a sphere (sphere);
2. Points uniformly distributed on a cylindrical surface (cylinder);
3. Clustered point sets (clustered), consisting of 20 equal-sized clusters whose cen-

ters are uniformly distributed in the unit square and radii uniformly distributed
between [0,0.2];

4. 3D geometric models: bunny (∼36 K points), dragon (∼438 K points), buddha
(∼544 K points).

For each input data, we ran our (k, ε)-kernel algorithm with k = 5. The algorithm
performs 11 iterations and chooses roughly 100 points for the kernel in each itera-
tion. The output size of the algorithm varies between 800 and 1100. To compute the
approximation error between the k-level extents of the kernel S and of the input P ,
we choose a set � of 1000 random directions from S

d−1 and compute

err�(P,S)=max
u∈�

Ek(u,P )− Ek(u,S)
Ek(u,P )

.

Tables 1 and 2 summarize the approximation error and the running time of the al-
gorithm, for each input data. As can be seen, our algorithm works well in low dimen-
sions both in terms of the approximation error and the running time. Our algorithm
also performed quite well on several 3D geometric models. In high dimensions, the
performance of our algorithm deteriorates because of the curse of dimensionality.
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Fig. 3 Approximation errors
for different levels in each
iteration of the (k, ε)-kernel
algorithm. a Sphere with 105

points in R
3; b sphere with 105

points in R
5; c the budda model.

Similar results were observed
for other types of inputs as well

We also recorded how the approximation error decreases for each of the first 40
levels, after each iteration of the algorithm. The results are shown in Fig. 3. Ob-
serve that the approximation error for every level monotonically decreases during the
execution of the algorithm. Moreover, the error decreases rapidly in the first few it-
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Table 3 Performance of the incremental algorithm for computing (a) the minimum-width annulus with
k = 10 outliers, (b) the smallest enclosing circle with k = 10 outliers. The numbers of iterations performed
by the algorithm are in parentheses. Running time is measured in seconds

Input Input Running Output

width size time width

w = 0.05 104 6.15(4) 0.0503

105 14.51(5) 0.0498

106 18.26(5) 0.0497

w = 0.50 104 5.74(4) 0.4987

105 6.45(4) 0.4999

106 22.18(5) 0.4975

w = 5.00 104 53.46(5) 4.9443

105 67.26(5) 4.9996

106 75.42(5) 4.9951

(a)

Input Input Running Output

radius size time radius

r = 1.000 104 0.05(3) 0.993

105 0.14(4) 0.999

106 0.41(4) 0.999

(b)

erations and then it stabilizes. For example, in our experiments for d = 3, the error
reduces to less than 0.1 within 7 iterations even for the level k = 40 and then it de-
creases very slowly with each iteration. This phenomenon suggests that in practice
it is unnecessary to run the algorithm for full 2k + 1 iterations in order to compute
(k, ε)-kernels. The larger the number of iterations is, the larger the kernel size be-
comes, but the approximation error does not decrease much further.

Incremental Algorithm We applied the incremental shape-fitting algorithm for com-
puting an ε-approximate minimum-width annulus of a point set with k outliers in R

2.
We first implemented a brute-force O(n5) exact algorithm for this problem. Clearly,
this algorithm is slow even on medium-sized input. Here our focus is to study the
number of iterations of the incremental algorithm; a faster implementation of the
exact algorithm would naturally result in a faster implementation of the incremen-
tal algorithm. We used the slow exact algorithm as a subroutine to solve the small
subproblems in each iteration of the incremental algorithm. We tested this algorithm
on a set of synthetic data, generated by uniformly sampling from annuli with fixed
inner radius r = 1.00 and widths w varying from 0.05 to 5.00, and then artificially
introducing k = 10 extra outlier points. The experimental results are summarized in
Table 3a; see also Fig. 4 for a few snapshots of the running algorithm. As can be seen,
the number of iterations of the incremental algorithm is never more than 5. In other
words, the algorithm is able to converge to an approximate solution very quickly.

We also applied the incremental algorithm for computing an ε-approximate small-
est enclosing circle of a point set with k outliers in R

2. Again, we implemented a
brute-force O(n4) exact algorithm for this problem to solve the small subproblems
in each iteration; implementing a faster algorithm (such as an algorithm by Matoušek
[22] or by Chan [13]) would result in a faster incremental algorithm. We tested our
algorithm on a set of synthetic data, generated by uniformly sampling from a circle
of radius r = 1.00, and then artificially introducing k = 10 extra outlier points. The
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Fig. 4 Snapshots of the incremental algorithm for computing minimum-width annulus with k = 3 outliers
on an input of size 40. Black points represent points in R at the beginning of each iteration

experimental results are shown in Table 3b. Similar to the annulus case, the number
of iterations of the incremental algorithm is also small.

5 Conclusions

We have presented an iterative algorithm, with O(n + k2/εd−1) running time, for
computing a (k, ε)-kernel of size O(k/ε(d−1)/2) for a set P of n points in R

d . We also
presented an incremental algorithm for fitting various shapes through a set of points
with outliers, and exploited the (k, ε)-kernel algorithm to prove that the number of
iterations of the incremental algorithm is independent of n. Both our algorithms are
simple and work well in practice.

We conclude by mentioning two open problems: Can a (k, ε)-kernel of size
O(k/ε(d−1)/2) be computed in time O(n + k/εd−1)? Can the number of iterations
in the incremental algorithm for computing the minimum-width slab be improved to
O(1/ε(d−1)/2)? For the first question, an anonymous referee pointed out that one can
use the dynamic algorithm for ε-kernels [7] to obtain an algorithm with running time
O
(
n+ k/ε3(d−1)/2 · polylog(k,1/ε)

)
. This bound provides an improvement over the

current running time for a sufficiently large k.

Acknowledgements The authors thank Yusu Wang for helpful discussions and two anonymous referees
for constructive comments that greatly improved the presentation of the paper.
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Siegel’s Lemma and Sum-Distinct Sets

Iskander Aliev

Abstract Let L(x)= a1x1 + a2x2 + · · · + anxn, n≥ 2, be a linear form with integer
coefficients a1, a2, . . . , an which are not all zero. A basic problem is to determine
nonzero integer vectors x such that L(x)= 0, and the maximum norm ‖x‖ is relatively
small compared with the size of the coefficients a1, a2, . . . , an. The main result of this
paper asserts that there exist linearly independent vectors x1, . . . ,xn−1 ∈ Z

n such that
L(xi )= 0, i = 1, . . . , n− 1, and

‖x1‖ · · · ‖xn−1‖< ‖a‖
σn

,

where a= (a1, a2, . . . , an) and

σn = 2

π

∫ ∞

0

(
sin t

t

)n

dt.

This result also implies a new lower bound on the greatest element of a sum-
distinct set of positive integers (Erdös–Moser problem). The main tools are the
Minkowski theorem on successive minima and the Busemann theorem from convex
geometry.

1 Introduction

Let a = (a1, . . . , an), n ≥ 2, be a nonzero integral vector. Consider the linear form
L(x)= a1x1+a2x2+· · ·+anxn. Siegel’s lemma with respect to the maximum norm
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I. Aliev (�)
School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King’s
Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
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‖ · ‖ asks for an optimal constant cn > 0 such that the equation

L(x)= 0

has an integral solution x= (x1, . . . , xn) with

0 < ‖x‖n−1 ≤ cn‖a‖. (1)

The only known exact values of cn are c2 = 1, c3 = 4
3 and c4 = 27

19 (see [1] and
[15]). Note that for n= 3,4 the equality in (1) is not attained. Schinzel [15] showed
that, for n≥ 3,

cn = sup�
(
Hn−1

α1,...,αn−3

)−1 ≥ 1,

where �(·) denotes the critical determinant, Hn−1
α1,...,αn−3

is a generalized hexagon in

R
n−1 given by

|xi | ≤ 1, i = 1, . . . , n− 1,

∣
∣
∣
∣
∣

n−3∑

i=1

αixi + xn−2 + xn−1

∣
∣
∣
∣
∣
≤ 1,

and αi range over all rational numbers in the interval (0, 1 ]. The values of cn for
n≤ 4 indicate that, most likely, cn =�(Hn−1

1,...,1)
−1. However, a proof of this conjec-

ture does not seem within reach at present. The best known upper bound

cn ≤√n (2)

follows from the classical result of Bombieri and Vaaler [3, Theorem 1].
In this paper we estimate cn via values of the sinc integrals

σn = 2

π

∫ ∞

0

(
sin t

t

)n

dt.

The main result is as follows:

Theorem For any nonzero vector a ∈ Z
n, n ≥ 5, there exist linearly independent

vectors x1, . . . ,xn−1 ∈ Z
n such that L(xi )= 0, i = 1, . . . , n− 1, and

‖x1‖ · · · ‖xn−1‖< ‖a‖
σn

. (3)

From (3) we immediately get the bound

cn ≤ σ−1
n , (4)

and since

σ−1
n ∼

√
πn

6
, as n→∞ (5)
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(see Sect. 2), the theorem asymptotically improves the estimate (2). It is also known
(see, e.g., [13]) that

σn = n

2n−1

∑

0≤r<n/2, r∈Z

(−1)r (n− 2r)n−1

r! (n− r)! .

The sequences of numerators and denominators of σn/2 can be found in [16].

Remark 1

(i) Calculation shows that for all 5 ≤ n ≤ 1000 the bound (4) is slightly better
than (2).

(ii) For n ≤ 4 the constant σ−1
n in (3) can be replaced by cn. This follows from the

observation that any origin-symmetric convex body in R
n, n≤ 3, has anomaly 1

(see [17]).

A. Schinzel (personal communication) observed that, with respect to maximum
norm, Siegel’s lemma can be applied to the following well-known problem from
additive number theory. A finite set {a1, . . . , an} of integers is called a sum-distinct
set if any two of its 2n subsums differ by at least 1. We shall assume, without loss
of generality, that 0 < a1 < a2 < · · ·< an. In 1955 Erdös and Moser [8, Problem 6]
asked for an estimate on the least possible an of such a set. They proved that

an > max

{
2n

n
,

2n

4
√
n

}

(6)

and Erdös conjectured that an > C02n, C0 > 0. In 1986 Elkies [7] showed that

an > 2−n

(
2n

n

)

(7)

and this result is still cited by Guy [11, Problem C8] as the best known lower bound
for large n. Following [7], note that references [8] and [11] stated the problem equiv-
alently in terms of an “inverse function”. They asked one to maximize the size m

of a sum-distinct subset of {1,2, . . . , x}, given x. Clearly, the bound an > C1n
−s2n

corresponds to

m< log2 x + s log2 log2 x + log2
1

C1
− o(1).

Corollary 1 For any sum-distinct set {a1, . . . , an} with 0 < a1 < · · · < an, the in-
equality

an > σn2n−1 (8)

holds.

Since

2−n

(
2n

n

)

∼ 2n

√
πn

and σn2n−1 ∼ 2n

√
2πn/3

, as n→∞,
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Corollary 1 asymptotically improves the result of Elkies with factor
√

3/2.

Remark 2

(i) Sum-distinct sets with a minimal largest element are known up to n = 9 (see
[5]). In the latter case the estimate (8) predicts a9 ≥ 116 and the optimal bound is
a9 ≥ 161. Calculation shows that for all 10≤ n≤ 1000 the bound (8) is slightly
better than (7).

(ii) Professor Noam Elkies kindly informed the author about the existence of an un-
published result by him and Andrew Gleason which asymptotically improves (7)
with factor

√
2.

2 Sections of the Cube and Sinc Integrals

Let C = [−1,1]n ⊂ R
n and let s = (s1, . . . , sn) ∈ R

n be a unit vector. It is a well-
known fact (see, e.g., [2]) that

vol n−1
(
s⊥ ∩C

)= 2n

π

∫ ∞

0

n∏

i=1

sin si t

si t
dt, (9)

where s⊥ is the (n− 1)-dimensional subspace orthogonal to s. In particular, the vol-
ume of the section orthogonal to the vertex v= (1, . . . ,1) of C is given by

vol n−1
(
v⊥ ∩C

)= 2n

π

∫ ∞

0

(
sin(t/

√
n)

t/
√
n

)n

dt = 2n−1√nσn.

Laplace and Pólya (see [12, 14] and, e.g., [6]) both gave proofs that

lim
n→∞

vol n−1(v⊥ ∩C)

2n−1
=
√

6

π
.

Thus, (5) is justified.

Lemma 1 For n≥ 2,

0 < σn+1 < σn ≤ 1.

Proof This result is implicit in [4]. Indeed, Theorem 1(ii) of [4] applied with a0 =
a1 = · · · = an = 1 gives the inequalities

0 < σn+1 ≤ σn ≤ 1.

The strict inequality σn+1 < σn follows from the observation that in this case the
inequality in (3) of [4] is strict with an+1 = a0 = y = 1. �
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3 An Application of the Busemann Theorem

Let | · | denote the euclidean norm. Recall that we can associate with each star body L

the distance function fL(x)= inf{λ > 0 : x ∈ λL}. The intersection body IL of a star
body L⊂R

n, n≥ 2, is defined as the o-symmetric star body whose distance function
fIL is given by

fIL(x)= |x|
vol n−1(x⊥ ∩L)

.

Intersection bodies played an important role in the solution to the famous Busemann–
Petty problem. The Busemann theorem (see, e.g., Chap. 8 of [9]) states that if L is
o-symmetric and convex, then IL is the convex set. This result allows us to prove the
following useful inequality. Let f = fIC denote the distance function of IC.

Lemma 2 For any nonzero x ∈R
n,

f

(
x
‖x‖

)

≤ f (v)= 1

σn2n−1
, (10)

with equality only if n= 2 or x/‖x‖ is a vertex of the cube C.

We proceed by induction on n. When n = 2 the result is obvious. Suppose
now (10) is true for n − 1 ≥ 2. Since, if some xi = 0, the problem reduced to that
in R

n−1, we may assume inductively that xi > 0 for all i. Clearly, we may also as-
sume that w= x/‖x‖ is not a vertex of C, in particular, w 
= v.

Let Q = [0,1]n ⊂ R
n and let L be the two-dimensional subspace spanned by

vectors v and x. Then P = L ∩Q is a parallelogram on the plane L. To see this,
observe that the cube Q is the intersection of two cones {y ∈ R

n : yi ≥ 0} and {y ∈
R

n : yi ≤ 1} with apexes at the points o and v, respectively.
Suppose that P has vertices o, u, v, v− u. Then the edges ou, ov− u of P belong

to coordinate hyperplanes and the edges uv, vv−u lie on the boundary of C. Without
loss of generality, we may assume that the point w lies on the edge uv. Let

v′ = σnv= vol n−1(v⊥ ∩C)

2n−1

v
|v| ∈

1

2n−1
IC,

u′ = σn−1u.

Since the point u lies in one of the coordinate hyperplanes, by the induction hypoth-
esis

f (u′)= f (σn−1u)≤ 1

2n−1
.

Thus, u′ ∈ (1/2n−1)IC. Consider the triangle with vertices o, u, v. Let w′ be the point
of intersection of segments ow and u′v′. Observing that by Lemma 10

|σnw|< |w′|< |σn−1w|,
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we get

1

σn−1
<
|w|
|w′| <

1

σn
. (11)

By the Busemann theorem IC is convex. Therefore w′ ∈ (1/2n−1)IC and thus

|w′| ≤ vol n−1(w⊥ ∩C)

2n−1
.

By (11) we obtain

f

(
x
‖x‖

)

= f (w)= |w|
vol n−1(w⊥ ∩C)

≤ |w|
2n−1|w′| <

1

σn2n−1
.

Applying Lemma 2 to a unit vector s and using (9) we get the following inequality
for sinc integrals.

Corollary 2 For any unit vector s= (s1, . . . , sn) ∈R
n,

‖s‖
∫ ∞

0

n∏

i=1

sin si t

si t
dt ≥

∫ ∞

0

(
sin t

t

)n

dt,

with equality only if n= 2 or s/‖s‖ is a vertex of the cube C.

Remark 3 Note that IC is symmetric with respect to any coordinate hyperplane. This
observation and Busemann’s theorem immediately imply (10) with nonstrict inequal-
ity in all cases.

4 Proof of the Theorem

Clearly, we may assume that ‖a‖ > 1 and, in particular, that the inequality in
Lemma 2 is strict for x = a. We also assume, without loss of generality, that
gcd(a1, . . . , an)= 1.

Let S = a⊥ ∩C and �= a⊥ ∩Z
n. Then S is a centrally symmetric convex set and

� is an (n− 1)-dimensional sublattice of Z
n with determinant (covolume) det� =

|a|. Let λi = λi(S,�) be the ith successive minimum of S with respect to �, that is

λi = inf
{
λ > 0 : dim(λS ∩�)≥ i

}
.

By the definition of S and � it is enough to show that

λ1 · · ·λn−1 <
‖a‖
σn

.

The (n − 1)-dimensional subspace a⊥ ⊂ R
n can be considered as a usual (n − 1)-

dimensional Euclidean space. The Minkowski Theorem on Successive Minima (see,
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e.g. Chap. 2 of [10]), applied to the o-symmetric convex set S ⊂ a⊥ and the lattice
�⊂ a⊥, implies that

λ1 · · ·λn−1 ≤ 2n−1 det�

vol n−1(S)
= 2n−1|a|

vol n−1(a⊥ ∩C)
= 2n−1f (a),

and by Lemma 2 we get

λ1 · · ·λn−1 ≤ 2n−1f (a)= 2n−1f

(
a
‖a‖

)

‖a‖< 2n−1f (v)‖a‖ = ‖a‖
σn

.

This proves the theorem.

5 Proof of Corollary 1

For a sum-distinct set {a1, . . . , an} consider the vector a= (a1, . . . , an). Observe that
any nonzero integral vector x with L(x) = 0 must have the maximum norm greater
than 1. Therefore (3) implies the inequality

2n−1 <
‖a‖
σn

.

Acknowledgements The author thanks Professors D. Borwein and A. Schinzel for valuable comments
and Professor P. Gruber for fruitful discussions and suggestions.
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Slicing Convex Sets and Measures by a Hyperplane

Imre Bárány · Alfredo Hubard · Jesús Jerónimo

Abstract Given convex bodies K1, . . . ,Kd in R
d and numbers α1, . . . , αd ∈ [0,1],

we give a sufficient condition for existence and uniqueness of an (oriented) halfspace
H with Vol(H ∩Ki) = αi · VolKi for every i. The result is extended from convex
bodies to measures.

Keywords Convex bodies ·Well separated families · Sections of convex sets and
measures

1 Transversal Spheres

A well known result in elementary geometry states that there is a unique sphere which
contains a given set of d+1 points in general position in R

d . A similar thing happens
with d-pointed sets and hyperplanes. What happens if we consider convex bodies
instead of points?
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These questions are the main motivation for the present paper. The first result in
this direction is due to Kramer and Németh [7]. They used the following, very natural
definition.

A family F of connected sets in R
d is said to be well separated, if for any k ≤ d+1

distinct elements, K1, . . . ,Kk , of F and for any choice of points xi ∈ Ki , the set
aff {x1, . . . , xk} is a (k− 1)-dimensional flat. Here [k] stands for the set {1,2, . . . , k}.
It is well known (cf. [1, 4]), and also easy to check the following.

Proposition 1 Assume F = {K1, . . . ,Kn} is a family of connected sets in R
d . The

following conditions are equivalent:

1. The family F is well separated.
2. The family F ′ = {convK1, . . . , convKn} is well separated.
3. For every pair of disjoint sets I, J ⊂ [n] with |I | + |J | ≤ d + 1, there is a hyper-

plane separating the sets Ki, i ∈ I from the sets Kj , j ∈ J .

By an elegant application of Brouwer’s fixed point theorem, Kramer and Németh
proved the following:

Theorem KN Let F be a well separated family of d + 1 compact convex sets in R
d .

Then there exists a unique Euclidean ball which touches each set and whose interior
is disjoint from each member of F .

Denote by B(x, r), resp. S(x, r), the Euclidean ball and sphere of radius r and
center x. We say that the sphere S(x, r) supports a compact set K if S(x, r)∩K 
= ∅
and either K ⊂ B(x, r) or K ∩ intB(x, r) = ∅. This definition is due to Klee et al.
[6]. They proved the following:

Theorem KLH Let F = {K1,K2, . . . ,Kd+1} be a well separated family of compact
convex sets in R

d , and let I, J be a partition of [d + 1]. Then there is a unique
Euclidean sphere S(x, r) that supports each element of F in such a way that Ki ⊂
B(x, r) for each i ∈ I and Kj ∩ intB(x, r)= ∅ for each j ∈ J .

The case I = ∅ corresponds to Theorem KN. We are going to generalize these
results. Let Qd = [0,1]d denote the unit cube of R

d . Given a well separated family
F of convex sets in R

d , a sphere S(x, r) is said to be transversal to F if it inter-
sects every element of F . Finally, a convex body in R

d is a convex compact set with
nonempty interior.

Theorem 1 Let F = {K1, . . . ,Kd+1} be a well separated family of convex bodies
in R

d , and let α = (α1, . . . , αd+1) ∈ Qd+1. Then there exists a unique transversal
Euclidean sphere S(x, r) such that Vol(B(x, r) ∩ Ki) = αi · Vol(Ki) for every i ∈
[d + 1].

Remark 1 The transversality of S(x, r) only matters when αi is equal to 0 or 1;
otherwise the condition Vol(B(x, r) ∩Ki)= αi ·Vol(Ki) plus convexity guarantees
that S(x, r) intersects Ki .
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2 Transversal Hyperplanes and Halfspaces

In a similar direction, Cappell et al. [3] proved an analogous theorem for the case
of supporting hyperplanes, which can be seen as spheres of infinite radius. Given a
family F of sets in R

d , a hyperplane will be called transversal to F if it intersects
each member of F . The following result is a special case of Theorem 3 of Cappell
et al. [3] (cf. [2] as well):

Theorem C Let F = {K1, . . . ,Kd} be a well separated family of compact convex
sets in R

d with a partition I, J of the index set [d]. Then there are exactly two hyper-
planes, H1 and H2, transversal to F such that both H1 and H2 have all Ki (i ∈ I )

on one side and all Kj (j ∈ J ) on the other side.

Theorem C was also proved by Klee et al. [5] using Kakutani’s extension of
Brouwer’s fixed point theorem. We are going to formulate this theorem in a slightly
different way, more suitable for our purposes. So, we need to introduce new notation
and terminology.

A halfspace H in R
d can be specified by its outer unit normal vector, v, and by

the signed distance, t ∈R, of its bounding hyperplane from the origin. Thus, there is
a one-to-one correspondence between halfspaces of R

d and pairs (v, t) ∈ Sd−1 ×R.
We denote the halfspace {x ∈ R

d : 〈x, v〉 ≤ t} by H(v ≤ t). Analogously we write
H(v = t) = {x ∈ R

d : 〈x, v〉 = t}, which is the bounding hyperplane of H(v ≤ t).
Furthermore, given a set K ⊂ R

d , a unit vector v and a scalar t , we denote the set
H(v = t)∩K by K(v = t), analogously K(v ≤ t)=H(v ≤ t)∩K .

Suppose next that F = {K1, . . . ,Kd} is a well separated family of convex sets in
R

d . Assume a1 ∈K1, . . . , ad ∈Kd . The unit normal vectors to the unique transversal
hyperplane containing these points are v and −v. We want to make the choice be-
tween v and−v unique and depend only on F . We first make it depend on a1, . . . , ad .
Define v = v(a1, . . . , ad) as the (unique) unit normal vector to aff{a1, . . . , ad} satis-
fying

det

∣
∣
∣
∣
v a1 a2 · · · ad
0 1 1 · · · 1

∣
∣
∣
∣> 0,

in other words, the points v + a1, a1, a2, . . . , ad , in this order, are the vertices of a
positively oriented d-dimensional simplex. Clearly, with −v in place of v the de-
terminant would be negative. This gives rise to the map v : K −→ Sd−1 where
K = K1 × · · · × Kd . This definition seems to depend on the choice of the ai , but
in fact, it does not. Write H(v = t)= aff{a1, . . . , ad}.

Proposition 2 Under the previous assumption, let bi ∈ Ki(v = t) for each i. Then
v(a1, . . . , ad)= v(b1, . . . , bd).

Proof This is simple. The homotopy (1− λ)ai + λbi (λ ∈ [0,1]) moves the ai to the
bi continuously, and keeps (1−λ)ai+λbi in Ki(v = t). The affine hull of the moving
points remains unchanged, and does not degenerate because F is well separated. So
their outer unit normal remains v throughout the homotopy. �
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The previous proposition is also mentioned by Klee et al. [5]. With this definition,
a transversal hyperplane to F determines v and t uniquely. We call H(v = t) a pos-
itive transversal hyperplane to F , and similarly, H(v ≤ t) is a positive transversal
halfspace to F .

Theorem 2 Let F = {K1, . . . ,Kd} be a family of well separated convex bodies in R
d ,

and let α = (α1, . . . , αd) ∈Qd . Then there is a unique positive transversal halfspace,
H , such that Vol(Ki ∩H)= αi ·Vol(Ki) for every i ∈ [d].

Theorem C follows since the partition I, J gives rise to α,β ∈Qd via αk = 1 if
k ∈ I , otherwise αk = 0, and βk = 1 if k ∈ J , otherwise βk = 0. By Theorem 2, there
are unique positive transversal halfspaces H(α) and H(β) with the stated properties.
Their bounding hyperplanes satisfy the statement of Theorem C and they are obvi-
ously distinct. We mention, however, that Theorem C will be used in the proof of the
unicity part of Theorem 2.

Remark 2 When all αi = 1/2, the existence of such a halfspace is guaranteed by
Borsuk’s theorem, even without the condition of convexity or F being well sepa-
rated. (Connectivity of the sets implies that the halving hyperplane is a transversal
to F .) The case of general αi , however, needs some extra condition as the following
two examples show. If all Ki are equal, then each oriented hyperplane section cuts
off the same amount from each Ki , so α1 = · · · = αd must hold. The second example
consists of d concentric balls with different radii, and if the radius of the first ball is
very large compared to those of the others and α1 is too small, then a hyperplane cut-
ting off α1 fraction of the first ball is disjoint from all other balls. Thus no hyperplane
transversal exists that cuts off an α1 fraction of the first set.

Remark 3 Cappell et al. prove, in fact, a much more general theorem [3]. Namely,
assume that F is well separated and consists of k strictly convex sets, k ∈ {2, . . . , d}
and let I, J be a partition of [k]. Then the set of all supporting hyperplanes separating
the Ki (i ∈ I ) from the Kj (j ∈ J ) is homeomorphic to the (d − k)-dimensional
sphere.

3 Extension to Measures

Borsuk’s theorem holds not only for volumes but more generally for measures. Sim-
ilarly, our Theorem 2 can and will be extended to nice measures that we are to define
soon. We need a small piece of notation.

Let μ be a finite measure on the Borel subsets of R
d and let v ∈ Sd−1 be a unit

vector. Define

t0 = t0(v)= inf{t ∈R : μ(H(v ≤ t)) > 0},
t1 = t1(v)= sup{t ∈R : μ(H(v ≤ t)) < μ(Rd)}.

Note that t0 =−∞ and t1 =∞ are possible.
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Let H(s0 ≤ v ≤ s1) denote the closed slab between the hyperplanes
H(v = s0) and H(v = s1). Define the set K by

K =
⋂

v∈Sd−1

H(t0(v)≤ v ≤ t1(v)).

K is called the support of μ. Note that K is convex (obviously) and μ(Rd \K)= 0.

Definition 1 The measure μ is called nice if the following conditions are satisfied:

(i) t0(v) and t1(v) are finite for every v ∈ Sd−1,
(ii) μ(H(v = t))= 0 for every v ∈ Sd−1 and t ∈R,

(iii) μ(H(s0 ≤ v ≤ s1)) > 0 for every v ∈ Sd−1 and for every s0, s1 satisfying t0(v)≤
s0 < s1 ≤ t1(v).

If μ is a nice measure, then its support is full-dimensional since, by (ii), it is not
contained in any hyperplane.

The function t �→ μ(K(v ≤ t)) is zero on the interval (−∞, t0], is equal to μ(K)

on [t1,∞), strictly increases on [t0, t1], and, in view of (iii), is continuous. Assume
α ∈ [0,1]. Then there is a unique t ∈ [t0, t1] with

μ(K(v ≤ t))= α ·μ(K).

Denote this unique t by g(v); this way we defined a map g : Sd−1 −→ R. The fol-
lowing simple lemma is important and probably well known.

Lemma 1 For fixed α ∈ [0,1] the function g is continuous.

Proof When α = 1, g(v) is the support functional of K , which is not only continuous
but convex (when extended to all v ∈R

d ). Similarly, g is continuous when α = 0.
Assume now that 0 < α < 1. Let v0 ∈ Sd−1 be an arbitrary point. In order to prove

the continuity of g at v0 we show first that K(v = g(v)) and K(v0 = g(v0)) have a
point in common whenever v it is close enough to v0.

Obviously, K(v0 = g(v0)) is a (d − 1)-dimensional convex set lying in the hyper-
plane H(v0 = g(v0)). Then, for every small enough neighbourhood of v0, and for
each v in such a neighbourhood, the supporting hyperplane of K with unit normal v
(and −v) is also a supporting hyperplane of K(v0 ≥ g(v0)) (and K(v0 ≤ g(v0))).

Assume sv ≤ Sv and let H(v = sv) and H(v = Sv) be the two supporting hyper-
planes (with normal v) to K(v0 = g(v0)) which is a (d − 1)-dimensional convex set.
Since K(v0 = g(v0)) is a (d − 1)-dimensional convex set, condition (iii) implies that
sv < Sv . It follows that

K(v ≤ sv)⊂K(v0 ≤ g(v0))⊂K(v ≤ Sv),

and so

μ(K(v ≤ sv))≤ μ(K(v0 ≤ g(v0))≤ μ(K(v ≤ Sv)).
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As μ(K(v0 ≤ g(v0)) = α · μ(K), we have sv ≤ g(v) ≤ Sv . Consequently, K(v =
g(v)) and K(v0 = g(v0)) have a point, say z = z(v), in common. This z(v) is not
uniquely determined but that does not matter.

It is easy to finish the proof now. Clearly g(v)= 〈v, z(v)〉 and g(v0)= 〈v0, z(v)〉
for all v in a small neighbourhood of v0. Assume the sequence vn tends to v0.
We claim that every subsequence, vn′ , of vn contains a subsequence vn′′ such that
limg(vn′′)= g(v0), which evidently implies the continuity of g at v0.

For the proof of this claim observe first that, since K(v0 = g(v0)) is compact,
z(vn′) contains a convergent subsequence z(vn′′) tending to z0, say. Taking limits
gives zo ∈K(v0 = g(v0)). Then g(vn′′)= 〈vn′′ , z(vn′′)〉→ 〈v0, z0〉 = g(v0). �

Theorem 2 is extended to measures in the following way.

Theorem 3 Suppose μi is a nice measure on R
d with support Ki for all i ∈ [d].

Assume the family F = {K1, . . . ,Kd} is well separated and let α = (α1, . . . , αd) ∈
Qd . Then there is a unique positive transversal halfspace, H , such that μi(Ki ∩H)=
αi ·μi(Ki), for every i ∈ [d].

Corollary 1 Assume μi are finite measures on R
d satisfying conditions (i) and (ii)

of Definition 1. Let Ki be the support of μi for all i ∈ [d]. Suppose the family
F = {K1, . . . ,Kd} is well separated and let α = (α1, . . . , αd) ∈ Qd . Then there is
a positive transversal halfspace, H , such that μi(Ki ∩H) = αi · μi(Ki), for every
i ∈ [d].

The corollary easily follows from Theorem 3; we omit the simple details.
Theorem 2 is a special case of Theorem 3: when μi is the Lebesgue measure (or

volume) restricted to the convex body Ki for all i ∈ [d] and the family F is well
separated. Also, Theorem C is a special case of Theorem 3: when μi and Ki are the
same as above, and, for a given partition I, J of [d], we set αi = 1 for i ∈ I, and
αj = 0 for j ∈ J. Theorem 1 follows from Theorem 3 via “lifting to the paraboloid”.
This is explained in the last section.

4 Proof of Theorem 3

In the proof we will use Brouwer’s fixed point theorem. We will define a contin-
uous mapping from a topological ball to itself, such that a fixed point of this map
yields a halfspace with the desired properties. Set K = K1 × · · · × Kd . Given a
point x = (x1, . . . , xd) ∈ K we consider the hyperplane aff {x1, . . . , xd}. Since the
family F is well separated, this hyperplane is well defined for each x ∈ K . Let
H(v ≤ t) be the (unique) positive transversal halfspace whose bounding hyperplane
is aff {x1, . . . , xd}.

In Sect. 2 we defined the map v :K −→ Sd−1 which is the properly chosen unit
normal to aff{x1, . . . , xd}. Clearly, this function is continuous.

We prove existence first. We start with the case when αi ∈ (0,1) for every i ∈ [d].
We turn to the remaining case later by constructing a suitable sequence of halfspaces.
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Let gi : Sd−1 −→ R be the function such that for each v ∈ Sd−1, gi(v) is the
real number for which μi(Ki(v ≤ gi(v))) = α · μi(Ki) for each i ∈ [d]. Each gi
is a continuous function by Lemma 1. Let h : Sd−1 −→ K be the function sending
v �→ (s1, . . . , sd) where si is the Steiner point of the (d − 1)-dimensional section,
Ki(v = gi(v)) for each i ∈ [d]. As is well known, the family of sections Ki(v = t)

depend continuously (according to the Hausdorff metric) on the corresponding family
of hyperplanes, {H(v = t)} whenever every section is (d − 1)-dimensional, which
is obviously the case because αi ∈ (0,1). It is also well known that the function
that assigns to a compact convex set its Steiner point is continuous. Hence, h is a
continuous function.

It follows that

f := h ◦ v :K −→K

is a continuous function. As K is a compact convex set in R
d × · · · ×R

d Brouwer’s
fixed point theorem implies the existence of a point x ∈ K such that f (x) = x.

Consider a fixed point, x = (x1, . . . , xd), of f . Then the halfspace H(v ≤ t) whose
bounding hyperplane is aff {x1, . . . , xd} is a positive transversal halfspace to F and it
has the required properties.

Next we prove existence for vectors α = (α1, . . . , αd) ∈ Qd that may have 0,1
components as well. Consider the sequence {αn} ⊂Qd αn = (αn

1 , . . . , α
n
d ) (defined

for every n≥ 2), such that for every entry αi = 0 we define αn
i = 1

n
, for every entry

αi = 1 we define αn
i = 1− 1

n
, and for every entry αi /∈ {0,1} we define αn

i = αi. Also,
for every n≥ 2 we consider the unique positive transversal halfspace H(vn ≤ tn) with
μi(Ki(vn ≤ tn))= αn

i ·μi(Ki), for each i. The compactness of K implies that the set
of all possible (v, t) ∈ Sd−1×R such that the hyperplane H(v = t) is transversal to F
is compact. Thus there exists a convergent subsequence {(vn′ , tn′)} which converges
to a point (v, t) ∈ Sd−1 ×R. Clearly, H(v ≤ t) is a positive transversal halfspace to
F which satisfies μi(Ki(v ≤ t))= αi ·μi(Ki) for every i.

Next comes uniqueness. We start with the 0,1 case, that is, when α = (α1, . . . , αd)

with all αi ∈ {0,1}. Such an α defines a β ∈Qd via βi = 1− αi for every i. By the
previous existence proof there is a unique positive transversal halfspace H(v ≤ t) for
α and another one H(u ≤ s) for β . These two halfspaces are distinct, first because
u = v is impossible, and second because of the following fact which implies that
u 
= −v.

Proposition 3 For every pair of points (a1, . . . , ad) and (b1, . . . , bd) in K ,
v(a1, . . . , ad) and −v(b1, . . . , bd) are distinct.

Proof Assume v(a1, . . . , ad) = −v(b1, . . . , bd). Then the affine hulls of the ai and
the bi are parallel hyperplanes. We use the same homotopy as in the proof of Propo-
sition 2. As λ moves from 0 to 1, the moving points (1− λ)ai + λbi stay in Ki , and
their affine hull remains parallel with aff{a1, . . . , ad}. So the outer normal remains
unchanged throughout the homotopy. A contradiction. �

The condition μi(Ki(v ≤ t)) = αiμi(Ki) implies, in the given case, that all Ki

(i ∈ I ) are in H(v ≤ t) and all Kj (j ∈ J ) are in H(v ≥ t). Thus H(v = t) is a
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transversal hyperplane satisfying the conditions of Theorem C with partition I, J

where I = {i ∈ [d] : αi = 0} and J = {j ∈ [d] : αj = 1}. The same way, H(u = s)

is a transversal hyperplane satisfying the conditions of Theorem C with the same
partition J, I .

The uniqueness of H(v ≤ t) follows now easily. If we had two distinct positive
transversal halfspaces H(v1 ≤ t1) and H(v2 ≤ t2) for α, then we would have four
distinct transversal hyperplanes with Ki (i ∈ I ) on one side and Kj (j ∈ J ) on the
other side, contradicting Theorem C.

Now we turn to uniqueness for general α. Assume that there are two distinct
positive transversal halfspaces H(v1 ≤ t1) and H(v2 ≤ t2) for α. Their bounding
hyperplanes cannot be parallel. Define M = H(v1 ≤ t1) ∩ H(v2 ≤ t2) and N =
H(v1 ≥ t1) ∩ H(v2 ≥ t2). The partition I, J of the index set [d] is defined as fol-
lows: i ∈ I if M ∩ intKi 
= ∅ and j ∈ J if M ∩ intKj = ∅. Set K ′

i =M ∩ Ki for
every i ∈ I and K ′

j = N ∩ Kj for every j ∈ J. Let F ′ be the family consisting
of all the convex bodies K ′

i (i ∈ I ) and K ′
j (j ∈ J ). It is quite easy to see that no

member of F ′ is empty. Moreover, F ′ is evidently well separated. Given the parti-
tion I, J , define γ by γi = 1 for i ∈ I and γj = 0 for j ∈ J . Then there are two
transversal halfspaces (with respect to F ′), namely H(vk ≤ tk) k = 1,2 satisfying
μi(Ki(vk ≤ tk))= γiμi(Ki) for every i. But every γi ∈ {0,1} and we just established
uniqueness in the 0,1 case. �

5 Proof of Theorem 2

We will use the well-known technique of lifting the problem from R
d to a paraboloid

in R
d+1, and then apply Theorem 3.

In this section we change notation a little. A point in R
d is denoted by x =

(x1, . . . , xd), a point in R
d+1 is denoted by x = (x1, . . . , xd, xd+1). The projection

of x is π(x) = (x1, . . . , xd), and the lifting of x is �(x) = (x1, . . . , xd, |x|2) where
|x|2 = x2

1 + · · · + x2
d . Clearly, �(x) is contained in the paraboloid

P = {x ∈R
d+1 : x = (x1, x2, . . . , xd, |x|2)}.

A set K ⊂R
d lifts to �(K)= {�(x) ∈ P : x ∈K}. Also, π(�(K))=K .

A hyperplane is called non-vertical if π(H) = R
d . The lifting gives a bijective

relation between non-vertical hyperplanes in R
d+1 (intersecting P ) and (d − 1)-

dimensional spheres in R
d in the following way. Assume S = S(u, r) is the sphere

centered at u, with radius r in R
d . Of course, �(S)⊂ P , but more importantly,

�(S)= P ∩H,

where H is the hyperplane with equation xd+1 = 2〈u,x〉 + r2 − |u|2. Conversely,
given a non-vertical hyperplane H with equation xd+1 = 2〈u,x〉 + s where s = r2 −
|u|2 with some r > 0,

π(H ∩ P)= S(u, r).

As a first application of this lifting, here is a simple proof of a slightly stronger ver-
sion of Theorem KLH (we can replace the convexity assumption by connectedness).
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Consider a family of d + 1 well separated connected compact sets in R
d and a parti-

tion of the sets into two classes. Lift the family into the paraboloid, and for each lifted
set, consider its convex hull. This gives a (d + 1)-element family of convex bodies in
R

d+1. The lifted family is well separated. This can be seen using Proposition 1: the
lifting of the separating (d − 1)-dimensional planes of the original family yield (ver-
tical) separating hyperplanes of the corresponding lifting. Thus Theorem 3 applies
to the lifted family (with the obviously induced partition) and gives a hyperplane H

such H ∩P projects onto a sphere S in R
d satisfying the requirements of Theorem 1.

We omit the straightforward detail.
We apply Theorem 3 to the paraboloid lifting to obtain Theorem 1, in the

same way. The family F = {K1, . . . ,Kd+1} lifts to the family �(F) = {�(K1), . . . ,

�(Kd+1)}, and we define the measures μi via

μi(C)=Volπ(C ∩ �(Ki)),

where C is a Borel subset of R
d+1. Clearly, μi is finite and �(F) is well separated.

Its support is conv�(Ki). It is easy to see that μi is a nice measure by checking that
it satisfies all three conditions.

Thus Theorem 3 applies and guarantees the existence of a unique positive transver-
sal (to �(F)) halfspace H ⊂R

d+1 with μi(H ∩ �(Ki))= αi ·μi(Ki) for each i. This
translates to the ball B = π(H ∩ P) and sphere S = π(H 0 ∩ P) (where H 0 is the
bounding hyperplane of H ) as follows: S is a transversal sphere of the family F and
Vol(B ∩Ki)= αi ·VolKi . Unicity of S follows readily. �
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A Centrally Symmetric Version of the Cyclic Polytope

Alexander Barvinok · Isabella Novik

Abstract We define a centrally symmetric analogue of the cyclic polytope and study
its facial structure. We conjecture that our polytopes provide asymptotically the
largest number of faces in all dimensions among all centrally symmetric polytopes
with n vertices of a given even dimension d = 2k when d is fixed and n grows. For
a fixed even dimension d = 2k and an integer 1≤ j < k we prove that the maximum
possible number of j -dimensional faces of a centrally symmetric d-dimensional poly-
tope with n vertices is at least (cj (d)+ o(1))

(
n

j+1

)
for some cj (d) > 0 and at most

(1−2−d+o(1))
(

n
j+1

)
as n grows. We show that c1(d)≥ 1−(d−1)−1 and conjecture

that the bound is best possible.

1 Introduction and Main Results

To characterize the numbers that arise as the face numbers of simplicial complexes
of various types is a problem that has intrigued many researchers over the last half
century and has been solved for quite a few classes of complexes, among them the
class of all simplicial complexes [13, 14] as well as the class of all simplicial poly-
topes [4, 22]. One of the precursors of the latter result was the Upper Bound Theorem
(UBT, for short) [16] that provided sharp upper bounds on the face numbers of all
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d-dimensional polytopes with n vertices. While the UBT is a classic by now, the situ-
ation for centrally symmetric polytopes is wide open. For instance, the largest number
of edges, fmax(d,n;1), that a d-dimensional centrally symmetric polytope on n ver-
tices can have is unknown even for d = 4. Furthermore, no plausible conjecture about
the value of fmax(d,n;1) exists.

In this paper, we establish certain bounds on fmax(d,n;1) and, more generally, on
fmax(d,n; j), the maximum number of j -dimensional faces of a centrally symmet-
ric d-dimensional polytope with n vertices. For every even dimension d we construct
a centrally symmetric polytope with n vertices, which, we conjecture, provides as-
ymptotically the largest number of faces in every dimension as n grows and d is
fixed among all d-dimensional centrally symmetric polytopes with n vertices, see the
discussion after Theorem 1.4 for the precise statement of the conjecture.

Let us recall the basic definitions. A polytope will always mean a convex polytope
(that is, the convex hull of finitely many points), and a d-polytope—a d-dimensional
polytope. A polytope P ⊂R

d is centrally symmetric (cs, for short) if for every x ∈ P ,
−x belongs to P as well, that is, P = −P . The number of i-dimensional faces
(i-faces, for short) of P is denoted fi = fi(P ) and is called the ith face number
of P .

The UBT proposed by Motzkin in 1957 [17] and proved by McMullen [16] asserts
that among all d-polytopes with n vertices, the cyclic polytope, Cd(n), maximizes the
number of i-faces for every i. Here the cyclic polytope, Cd(n), is the convex hull of
n distinct points on the moment curve (t, t2, . . . , td) ∈ R

d or on the trigonometric
moment curve (cos t, sin t, cos 2t, sin 2t, . . . , coskt, sin kt) ∈R

2k (assuming d = 2k).
Both types of cyclic polytopes were investigated by Carathéodory [5] and later by
Gale [10] who, in particular, showed that the two types are combinatorially equivalent
(for even d) and independent of the choice of points. Cyclic polytopes were also
rediscovered by Motzkin [12, 17] and many others. We refer the readers to [2] and
[23] for more information on these amazing polytopes.

Here we define and study a natural centrally symmetric analogue of cyclic
polytopes—bicyclic polytopes.

1.1 The Symmetric Moment Curve and Bicyclic Polytopes

Consider the curve

SM2k(t)= (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k− 1)t, sin(2k − 1)t) for t ∈R,

which we call the symmetric moment curve, SM2k(t) ∈ R
2k . The difference between

SM2k and the trigonometric moment curve is that we employ only odd multiples of
t in the former. Clearly, SM2k(t + 2π) = SM2k(t), so SM2k defines a map SM2k :
R/2πZ→ R

2k . It is convenient to identify the quotient R/2πZ with the unit circle
S

1 ⊂ R
2 via the map t �→ (cos t, sin t). In particular, {t, t + π} is a pair of antipodal

points in S
1. We observe that

SM2k(t + π)=−SM2k(t),

so the symmetric moment curve SM2k(S
1) is centrally symmetric about the origin.
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Let X ⊂ S
1 be a finite set. A bicyclic 2k-dimensional polytope, B2k(X), is the

convex hull of the points SM2k(x), x ∈X:

B2k(X)= conv(SM2k(X)).

We note that B2k(X) is a centrally symmetric polytope as long as one chooses X

to be a centrally symmetric subset of S
1. In the case of k = 2 these polytopes were

introduced and studied (among certain more general 4-dimensional polytopes) by
Smilansky [20, 21], but to the best of our knowledge the higher-dimensional bicyclic
polytopes have not yet been investigated. Also, in [20] Smilansky studied the convex
hull of SM4(S

1) (among convex hulls of certain more general 4-dimensional curves)
but the convex hull of higher dimensional symmetric moment curves has not been
studied either.

We recall that a face of a convex body is the intersection of the body with a sup-
porting hyperplane. Faces of dimension 0 are called vertices and faces of dimension
1 are called edges. Our first main result concerns the edges of the convex hull

B2k = conv(SM2k(S
1))

of the symmetric moment curve. Note that B2k is centrally symmetric about the ori-
gin.

Let α 
= β ∈ S
1 be a pair of non-antipodal points. By the arc with the endpoints α

and β we always mean the shorter of the two arcs defined by α and β .

Theorem 1.1 For every positive integer k there exists a number

2k− 2

2k− 1
π ≤ψk < π

with the following property: if the length of the arc with the endpoints α 
= β ∈ S
1

is less than ψk , then the interval [SM2k(α),SM2k(β)] is an edge of B2k ; and if the
length of the arc with the endpoints α 
= β ∈ S

1 is greater than ψk , then the interval
[SM2k(α),SM2k(β)] is not an edge of B2k .

It looks quite plausible that

ψk = 2k− 2

2k− 1
π

and, indeed, this is the case for k = 2, cf. Sect. 4.
One remarkable property of the convex hull of the trigonometric moment curve in

R
2k is that it is k-neighborly, that is, the convex hull of any set of k distinct points

on the curve is a (k − 1)-dimensional face of the convex hull. The convex hull of the
symmetric moment curve turns out to be locally k-neighborly.

Theorem 1.2 For every positive integer k there exists a number φk > 0 such that if
t1, . . . , tk ∈ S

1 are distinct points that lie on an arc of length at most φk , then

conv(SM2k(t1), . . . ,SM2k(tk))

is a (k − 1)-dimensional face of B2k .
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From Theorems 1.1 and 1.2 on one hand and using a volume trick similar to that
used in [15] on the other hand, we prove the following results on fmax(d,n; j)—the
maximum number of j -faces that a cs d-polytope on n vertices can have.

Theorem 1.3 If d is a fixed even number and n→∞, then

1− 1

d − 1
+ o(1)≤ fmax(d,n;1)

(
n
2

) ≤ 1− 1

2d
+ o(1).

Theorem 1.4 If d = 2k is a fixed even number, j ≤ k− 1, and n→∞, then

cj (d)+ o(1)≤ fmax(d,n; j)
(

n
j+1

) ≤ 1− 1

2d
+ o(1),

where cj (d) is a positive constant.

Some discussion is in order. Recall that the cyclic polytope is �d/2�-neighborly,
that is, for all j ≤ �d/2�, every j vertices of Cd(n) form the vertex set of a face. Since
Cd(n) is a simplicial polytope, its neighborliness implies that fj (C(d,n)) = ( n

j+1

)

for j < �d/2�. Now if P is a centrally symmetric polytope on n vertices then no two
of its antipodal vertices are connected by an edge, and so f1(P ) ≤ (n2

)− n
2 . In fact,

as was recently shown by Linial and the second author [15], this inequality is strict
as long as n > 2d . This leads one to wonder how big the gap between fmax(d,n;1)
and

(
n
2

)
is. Theorems 1.3 and 1.4 (see also Propositions 2.1 and 2.2 below) provide

(partial) answers to those questions. In Sect. 7.3, we discuss several available lower
bounds for cj (d).

Let us fix an even dimension d = 2k and let X ⊂ S
1 be a set of n equally spaced

points, where n is an even number. We conjecture that for every integer j ≤ k − 1

lim sup
n→+∞

fj (B2k(X))
(

n
j+1

) = lim sup
n→+∞

fmax(d,n; j)
(

n
j+1

) .

It is also worth mentioning that recently there has been a lot of interest in the
problems surrounding neighborliness and face numbers of cs polytopes in connection
to statistics and error-correcting codes, see [7–9, 18]. In particular, it was proved in
[9] that for large n and d , if j is bigger than a certain threshold value, then the ratio
between the expected number of j -faces of a random cs d-polytope with n vertices
and

(
n

j+1

)
is smaller than 1− ε for some positive constant ε. The upper bound part

of Theorem 1.4 provides a real reason for this phenomenon: the expected number of
j -faces is “small” because the j th face number of every cs polytope is “small”.

In 1980s, in an attempt to come up with a centrally symmetric variation of cyclic
polytopes, Björner [3] considered convex hulls of certain symmetric sets of points
chosen on the odd-moment curve

OMm(t)= (t, t3, t5, . . . , t2m−1), OMm(t) ∈R
m for t ∈R.

The authors are not aware of any results similar to Theorems 1.1 and 1.2 for such
polytopes. The curves OM2k ⊂R

2k and SM2k ⊂R
2k behave differently with respect
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to the affine structure on R
2k : there are affine hyperplanes in R

2k intersecting OM2k
in as many as 4k − 1 points while any affine hyperplane in R

2k intersects SM2k in at
most 4k− 2 points, cf. Sect. 3.3. In contrast, the ordinary and trigonometric moment
curves in even dimensions behave quite similarly to each other.

As the anonymous referee pointed out to the authors, SM2k is an algebraic curve
of degree 4k− 2 (it is rationalized by the substitution s = tan(t/2)) and 4k− 2 is the
minimum degree that an irreducible centrally symmetric algebraic curve in R

2k not
lying in an affine hyperplane can have. (Note that the degree of OM2k is 4k− 1.)

The structure of the paper is as follows. In Sect. 2 we prove the upper bound
parts of Theorems 1.3 and 1.4. In Sect. 3 we discuss bicyclic polytopes and their
relationship to non-negative trigonometric polynomials and self-inversive polynomi-
als. Section 4 contains new short proofs of results originally due to Smilansky on
the faces of 4-dimensional bicyclic polytopes. It serves as a warm-up for Sects. 5
and 6 in which we prove Theorems 1.1 and 1.2 as well as the lower bound parts of
Theorems 1.3 and 1.4. We discuss 2-faces of B6, values of fmax(2k,n; j) for j ≥ k,
and lower bounds for constants cj (d) of Theorem 1.4 in Sect. 7, where we also state
several open questions.

2 Upper Bounds on the Face Numbers

The goal of this section is to prove the upper bound parts of Theorems 1.3 and 1.4.
The proof uses a volume trick similar to the one utilized in the proof of the Danzer–
Grünbaum theorem on the number of vertices of antipodal polytopes [6] and more
recently in [15, Theorem 1], where it was used to estimate maximal possible neigh-
borliness of cs polytopes.

The upper bound part of Theorem 1.3 is an immediate consequence of the follow-
ing more precise result on the number of edges of a centrally symmetric polytope.

Proposition 2.1 Let P ⊂R
d be a cs d-polytope on n vertices. Then

f1(P )≤ n2

2
(1− 2−d).

Proof Let V be the set of vertices of P . For every vertex u of P we define

Pu := P + u⊂ 2P

to be a translate of P , where “+” denotes the Minkowski addition. We claim that if
the polytopes Pu and Pv have intersecting interiors then the vertices u and −v are
not connected by an edge. (Note that this includes the case of u = v, since clearly
int(Pv) ∩ int(Pv) 
= ∅ and (v,−v) is not an edge of P .) Indeed, the assumption
int(Pu) ∩ int(Pv) 
= ∅ implies that there exist x, y ∈ int(P ) such that x + u= y + v,
or equivalently, that (y − x)/2 = (u − v)/2. Since P is centrally symmetric, and
x, y ∈ int(P ), the point q := (y − x)/2 is an interior point of P . As q is also the
barycenter of the line segment connecting u and −v, this line segment is not an edge
of P .
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Now normalize the Lebesgue measure dx in R
d in such a way that vol(2P) = 1

and hence

vol(P )= vol(Pu)= 2−d for all u ∈ V.

For a set A ⊂ R
d , let [A] : Rd → R be the indicator of A, that is, [A](x) = 1 for

x ∈A and [A](x)= 0. Define

h=
∑

u∈V
[intPu].

Then
∫

2P
hdx = n2−d,

and hence by the Hölder inequality
∫

2P
h2dx ≥ n22−2d .

On the other hand, the first paragraph of the proof implies that

∫

2P
h2(x)dx =

∑

u,v∈V
vol(Pu ∩ Pv)≤ n2−d + 2

((
n

2

)

− f1(P )

)

2−d,

and the statement follows. �

As a corollary, we obtain the following upper bound on the number fj (P ) of
j -dimensional faces for any 1≤ j ≤ (d − 2)/2. This upper bound implies the upper
bound part of Theorem 1.4.

Proposition 2.2 Let P ⊂ R
d be a cs d-polytope with n vertices, and let j ≤

(d − 2)/2. Then

fj (P )≤ n

n− 1
(1− 2−d)

(
n

j + 1

)

.

Proof We rely on Proposition 2.1 and two additional results.
The first result is an adaptation of the well-known perturbation argument, see, for

example, [11, Sect. 5.2], to the centrally symmetric situation. Namely, we claim that
for every cs d-polytope P there exists a simplicial cs d-polytope Q such that f0(P )=
f0(Q) and fj (P ) ≤ fj (Q) for all 1 ≤ j ≤ d − 1. The polytope Q is obtained from
P by pulling the vertices of P in a generic way but so as to preserve the symmetry.
The proof is completely similar to that of [11, Sect. 5.2] and hence is omitted.

The second result states that for every (d − 1)-dimensional simplicial complex K

with n vertices, we have

fj (K)≤ f1(K)

(
n

j + 1

)/(n

2

)

for 1≤ j ≤ d − 1.
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The standard double-counting argument goes as follows: every j -dimensional sim-
plex of K contains exactly

(
j+1

2

)
edges and every edge of K is contained in at most

(
n−2
j−1

)
of the j -dimensional simplices of K . Hence

fj (K)/f1(K)≤
(
n− 2

j − 1

)/(j + 1

2

)

=
(

n

j + 1

)/(n

2

)

.

The statement now follows by Proposition 2.1. �

3 Faces and Polynomials

In this section, we relate the facial structure of the convex hull B2k of the symmetric
moment curve (Sect. 1.1) to properties of trigonometric and complex polynomials
from particular families.

3.1 Preliminaries

A proper face of a convex body B ⊂ R
2k is the intersection of B with its supporting

hyperplane, that is, the intersection of B with the zero-set of an affine function

A(x)= α0 + α1ξ1 + · · · + α2kξ2k for x = (ξ1, . . . , ξ2k)

that satisfies A(x)≥ 0 for all x ∈ B .
A useful observation is that B2k remains invariant under a one-parametric group

of rotations that acts transitively on SM2k(S
1). Such a rotation is represented by a

2k× 2k block-diagonal matrix with the j th block being

(
cos(2j − 1)τ sin(2j − 1)τ
− sin(2j − 1)τ cos(2j − 1)τ

)

for τ ∈R. If {t1, . . . , ts} ⊂ S
1 are distinct points such that

conv(SM2k(t1), . . . ,SM2k(ts))

is a face of B2k and points t ′1, . . . , t ′s ∈ S
1 are obtained from t1, . . . , ts by the rotation

t ′i = ti + τ for i = 1, . . . , s of S
1, then

conv(SM2k(t
′
1), . . . ,SM2k(t

′
s))

is a face of B2k as well.
Finally, we note that the natural projection R

2k → R
2k′ for k′ < k that erases

the last 2k − 2k′ coordinates maps B2k onto B2k′ and B2k(X) onto B2k′(X). Hence,
if for some sets Y ⊂ X ⊂ S

1 the set conv(SM2k′(Y )) is a face of B2k′(X), then
conv(SM2k(Y )) is a face of B2k(X). We call a face of B2k an old face if it is an
inverse image of a face of B2k′ for some k′ < k, and call it a new face otherwise.
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3.2 Raked Trigonometric Polynomials

The value of an affine function A(x) on the symmetric moment curve SM2k is repre-
sented by a trigonometric polynomial

A(t)= c+
k∑

j=1

aj cos(2j − 1)t +
k∑

j=1

bj sin(2j − 1)t. (1)

Note that all summands involving the even terms sin 2j t and cos 2j t except for the
constant term vanish from A(t). We refer to such trigonometric polynomials as raked
trigonometric polynomials of degree at most 2k − 1. As before, it is convenient to
think of A(t) as defined on S

1 =R/2πZ.
Admitting, for convenience, the whole body B2k and the empty set as faces of B2k ,

we obtain the following result.

Lemma 3.1 The faces of B2k are defined by raked trigonometric polynomials of de-
gree at most 2k − 1 that are non-negative on S

1. If A(t) is such a polynomial and
{t1, . . . , ts} ⊂ S

1 is the set of its zeroes, then the face of B2k defined by A(t) is the
convex hull of {SM2k(t1), . . . ,SM2k(ts)}.

It is worth noticing that if a polynomial A(t) of Lemma 3.1 has degree smaller
than 2k−1, then the convex hull of {SM2k−2(t1), . . . ,SM2k−2(ts)} is a face of B2k−2.
Thus all new faces of B2k are defined by raked trigonometric polynomials of degree
2k− 1.

3.3 Raked Self-Inversive Polynomials

Let us substitute z= eit in (1). Using that

cos(2j − 1)t = z2j−1 + z1−2j

2
and sin(2j − 1)t = z2j−1 − z1−2j

2i

we can write A(t)= z−2k+1D(z), where

D(z)= cz2k−1 +
k∑

j=1

aj − ibj

2
z2j+2k−2 +

k∑

j=1

aj + ibj

2
z2k−2j .

In other words, D(z) is a polynomial satisfying

D(z)= z4k−2D(1/z) (2)

and such that

D(z)= cz2k−1 +
2k−1∑

j=0

d2j z
2j , (3)

so that all odd terms with the possible exception of the middle term vanish. We note
that (2) is equivalent to d2j = d4k−2−2j for j = 0, . . . ,2k− 1.
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The polynomials D(z) satisfying (2) are well studied and known in the literature
by the name self-inversive polynomials, see for instance [19, Chap. 7]). (Some sources

both (2) and (3) as raked self-inversive polynomials. We note that any polynomial
D(z) satisfying (2) and (3) gives rise to a raked trigonometric polynomial A(t) of
degree at most 2k − 1 such that A(t) = z−2k+1D(z) for z = eit . Furthermore, the
multiplicity of a root t of A is equal to the multiplicity of the root z = eit of D.
Hence we obtain the following restatement of Lemma 3.1.

Lemma 3.2 The faces of B2k are defined by raked self-inversive polynomials D(z)

that satisfy (2) and (3) and all of whose roots of modulus one have even multiplicities.
If D(z) is such a polynomial and {eit1, . . . , eits } is the set of its roots of modulus 1,
then the face of B2k defined by D(z) is the convex hull of {SM2k(t1), . . . ,SM2k(ts)}.

Clearly, new faces of B2k are defined by polynomials of degree 4k − 2, see
Sect. 3.1.

Let D(z) be a polynomial satisfying (2), and let

M = {ζ1, . . . , ζ1, ζ2, . . . , ζ2, . . . , ζs, . . . , ζs}
be the multiset of all roots of D where each root is listed the number of times equal
to its multiplicity. We note that if degD = 4k − 2 then 0 /∈M and |M| = 4k − 2.
We need a straightforward characterization of the raked self-inversive polynomials in
terms of their zero multisets M .

Lemma 3.3 A multiset M ⊂C \ {0} of size |M| = 4k− 2 is the multiset of roots of a
raked self-inversive polynomial of degree 4k−2 if and only if the following conditions
(a) and (b) are satisfied.

(a) We have

M =M−1,

that is, ζ ∈M if and only if ζ
−1 ∈M and the multiplicities of ζ and ζ

−1
in M

are equal, and
(b)

∑

ζ∈M
ζ 2j−1 = 0 for j = 1, . . . , k− 1.

Proof It is known and not hard to see that M is the zero-multiset of a self-inversive
polynomial if and only if M−1 =M [19, p. 149, 228]. Indeed, if D(0) 
= 0 then (2)
implies M =M−1. Conversely, suppose that M is the multiset satisfying M =M−1

and such that |M| = 4k − 2. Then

∏

ζ∈M
|ζ | = 1,

analogy with raked trigonometric polynomials, we refer to polynomials D satisfying
require that a self-inversive polynomial D satisfies D(0) 
= 0, but we do not.) In
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and hence we can choose numbers aζ such that

∏

ζ∈M

aζ

aζ
=
∏

ζ∈M
(−ζ ).

Then the polynomial

D(z)=
∏

ζ∈M
aζ (z− ζ )

satisfies (2).
Let

sm =
∑

ζ∈M
ζm and let D(z)=

4k−2∑

m=0

d4k−2−mz
m.

Using Newton’s formulas to express elementary symmetric functions in terms of
power sums, we obtain

mdm +
m∑

j=1

sj dm−j = 0 for m= 1,2, . . . ,4k− 2.

Hence we conclude that

d1 = d3 = · · · = d2k−3 = 0 if and only if s1 = s3 = · · · = s2k−3 = 0,

which completes the proof. �

Note that even if a raked self-inversive polynomial D has 0 as its root, it must still
satisfy

∑
ζ∈M ζ 2j−1 = 0, for all 1 ≤ j ≤ k − 1, where M is the multiset of all roots

of D.
We conclude this section with the description of a particular family of faces of B2k .

3.4 Some Simplicial Faces of B2k

Let

A(t)= 1− cos((2k − 1)t).

Clearly, A(t) is a raked trigonometric polynomial and A(t)≥ 0 for all t ∈ S
1. More-

over, A(t)= 0 at the 2k− 1 points

τj = 2πj

2k − 1
for j = 1, . . . ,2k− 1

on the circle S
1, which form the vertex set of a regular (2k − 1)-gon. By Lemma 3.1

the set

Δ0 = conv(SM2k(τ1), . . . ,SM2k(τ2k−1))

is a face of B2k .
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One can observe that Δ0 is a (2k − 2)-dimensional simplex. To prove that, we
have to show that the points SM2k(τ1), . . . ,SM2k(τ2k−1) are affinely independent,
or, equivalently, that the affine hyperplanes in R

2k passing through these points form
a one-parametric family (topologically, this set of hyperplanes is a circle). As in
Sect. 3.3, those hyperplanes correspond to non-zero complex polynomials D(z) that
satisfy (2) and (3) and for which D(eiτj )= 0 for j = 1, . . . ,2k − 1. Hence for each
such D we must have

D(z)= (z2k−1 − 1)D1(z),

for some polynomial D1(z) with degD1 = s ≤ 2k− 1. Moreover, it follows from (2)
that

D1(z)=−z2k−1D1(1/z). (4)

Let M be the multiset of all roots of D and let M1 be the multiset of all roots of
D1. Applying Lemma 3.3, we deduce that

∑

ζ∈M1

ζ 2j−1 =
∑

ζ∈M
ζ 2j−1 = 0 for j = 1, . . . , k − 1.

Now, as in the proof of Lemma 3.3 we conclude that the odd-power coefficients of z in
D1 are zeros except, possibly, for that of z2k−1. In view of (4), all other coefficients of
D1 except, possibly, the constant term, must be zeros as well. Summarizing, D1(z)=
αz2k−1 − α for some α ∈ C \ {0}. Normalizing |D(0)| = 1 we get a one-parametric
family of polynomials D(z)= (z2k−1− 1)(αz2k−1− α), |α| = 1, that corresponds to
the set of affine hyperplanes in R

2k passing through the vertices of Δ0.
Therefore Δ0 is indeed a (2k − 2)-dimensional simplex. Furthermore, we have a

one-parametric family of simplicial faces

Δτ = conv(SM2k(τ1 + τ), . . . ,SM2k(τ2k−1 + τ)) for 0≤ τ < 2π

of B2k . The dimension of the boundary of B2k is (2k − 1), so this one-parametric
family of simplices covers a “chunk” of the boundary of B2k . Borrowing a term from
the polytope theory, we may call Δτ a “ridge” of B2k . As follows from Sect. 4, for
k = 2 the simplices Δτ are the only ridges of B2k .

4 The Faces of B4

In this section we provide a complete characterization of the faces of B4. This result
is not new, it was proved by Smilansky [20] who also described the facial structure of
the convex hull of the more general curve (cospt, sinpt, cosqt, sinqt), where p and
q are any positive integers. Our proof serves as a warm-up for the following section
where we discuss the edges of B2k for k > 2.
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Theorem 4.1 [20] The proper faces of B4 are

(0) the 0-dimensional faces (vertices)

SM4(t), t ∈ S
1;

(1) the 1-dimensional faces (edges)

[SM4(t1),SM4(t2)],

where t1 
= t2 are the endpoints of an arc of S
1 of length less than 2π/3; and

(2) the 2-dimensional faces (equilateral triangles)

Δt = conv(SM4(t),SM4(t + 2π/3),SM4(t + 4π/3)), t ∈ S
1.

Proof We use Lemma 3.2. A face of B4 is determined by a raked self-inversive poly-
nomial D of degree at most 6. Such a polynomial D has at most 3 roots on the
circle S

1, each having an even multiplicity. Furthermore, by Lemma 3.3, the sum of
all the roots of D is 0. Therefore, we have the following three cases.

Polynomial D has 3 double roots ζ1 = eit1, ζ2 = eit2, ζ3 = eit3 . Since ζ1 + ζ2 +
ζ3 = 0, the points t1, t2, t3 ∈ S

1 form the vertex set of an equilateral triangle, and we
obtain the 2-dimensional face defined in Part (2).

Polynomial D has two double roots ζ1 = eit1, ζ2 = eit2 , and a pair of simple roots
ζ and ζ−1 with |ζ | 
= 1. Applying a rotation, if necessary, we may assume without
loss of generality that t1 =−t2 = t . Since we must have

ζ + ζ−1 + 2eit + 2e−it = 0,

we conclude that ζ ∈R. Hence the equation reads

ζ + ζ−1 =−4 cos t for some ζ ∈R, |ζ | 
= 1.

If | cos t |> 1/2 then the solutions ζ, ζ−1 of this equation are indeed real and satisfy
|ζ |, |ζ−1| 
= 1. If | cos t | ≤ 1/2 then {ζ, ζ−1} is a pair of complex conjugate numbers
satisfying |ζ | = |ζ−1| = 1. Therefore, the interval [SM4(−t),SM4(t)] is a face of B4

if and only if −π/3 < t < π/3 or 2π/3 < t < 4π/3, so we obtain the 1-dimensional
faces as in Part (1).

Finally, Lemma 3.1 applied to A(t) = 1 − cos(τ − t) yields that SM4(τ ) is a
0-dimensional face (vertex) of B4 for every τ ∈ S

1, which concludes the proof. �

5 Edges of B2k

In this section we prove Theorems 1.1 and 1.3. Our main tool is a certain deformation
of simplicial faces of B2k , cf. Sect. 3.4.
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5.1 Deformation

Let M be a finite multiset of non-zero complex numbers such that M = M−1. In
other words, for every ζ ∈M we have ζ−1 ∈M and the multiplicities of ζ and ζ−1

in M are equal. In addition, we assume that the multiplicities of 1 and −1 in M are
even, possibly 0. For every λ ∈ R \ {0} we define a multiset Mλ, which we call a
deformation of M , as follows.

We think of M as a multiset of unordered pairs {ζ, ζ−1}. For each such pair, we
consider the equation

z+ z−1 = λ(ζ + ζ−1). (5)

We let Mλ to be the multiset consisting of the pairs {z, z−1} of solutions of (5) as
{ζ, ζ−1} range over M . Clearly, |Mλ| = |M| and M−1

λ =Mλ. In addition, if M =M

then Mλ =Mλ, since λ in (5) is real.
Our interest in the deformation M �→Mλ is explained by the following lemma.

Lemma 5.1 Let D(z) be a raked self-inversive polynomial of degree 4k − 2 with
real coefficients and such that D(0) 
= 0. Let M be the multiset of all roots of D and
suppose that both 1 and −1 have an even, possibly 0, multiplicity in M . Then, for
every real λ 
= 0, the deformation Mλ of M is the multiset of all roots of a raked
self-inversive polynomial Dλ(z) of degree 4k − 2 with real coefficients.

Proof We use Lemma 3.3. Since D has real coefficients, we have M =M , so by
Lemma 3.3, we have M =M−1 as well. Then Mλ =M−1

λ and Mλ =Mλ, so Mλ is
the multiset of the roots of a self-inversive real polynomial Dλ of degree 4k − 2. It
remains to check that

∑

ζ∈Mλ

ζ 2j−1 = 0 for j = 1, . . . , k − 1.

We have

(x + x−1)2n−1 =
n∑

m=1

(
2n− 1

n+m− 1

)

(x2m−1 + x−2m+1). (6)

Since by Lemma 3.3
∑

ζ∈M
ζ 2j−1 =

∑

ζ∈M
ζ 1−2j = 0 for j = 1, . . . , k − 1,

it follows by (6) that
∑

ζ∈M
(ζ + ζ−1)2j−1 = 0 for j = 1, . . . , k− 1.

Therefore, by (5), we have
∑

ζ∈Mλ

(ζ + ζ−1)2j−1 = 0 for j = 1, . . . , k − 1,
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from which by (6) we obtain

∑

ζ∈Mλ

ζ 2j−1 = 1

2

∑

ζ∈Mλ

(ζ 2j−1 + ζ−2j+1)= 0 for j = 1, . . . , k− 1,

as claimed. Hence Dλ(z) is a raked self-inversive polynomial. �

To prove Theorem 1.1 we need another auxiliary result.

Lemma 5.2 Let α,β ∈ S
1 be such that the interval [SM2k(α),SM2k(β)] is an edge

of B2k and let α′ 
= β ′ ∈ S
1 be some other points such that the arc with the end-

points α′, β ′ is shorter than the arc with the endpoints α,β ∈ S
1. Then the interval

[SM2k(α
′),SM2k(β

′)] is an edge of B2k .

Proof Because of rotational invariance, we assume, without loss of generality, that
α = τ and β =−τ for some 0 < τ < π/2. Let A(t) be a raked trigonometric polyno-
mial that defines the edge [SM2k(α),SM2k(β)], see Lemma 3.1. Hence A(t)≥ 0 for
all t ∈ S

1 and A(t)= 0 if and only t =±τ . Let A1(t)= A(t)+A(−t). Then A1(t)

is a raked trigonometric polynomial such that A1(t)≥ 0 for all t ∈ S
1 and A1(t)= 0

if and only if t =±τ . Furthermore, we can write

A1(t)= c+
k∑

j=1

aj cos(2j − 1)t

for some real aj and c. Moreover, we assume, without loss of generality, that ak 
= 0.
(Otherwise choose k′ to be the largest index j with aj 
= 0 and project B2k onto
B2k′ , cf. Sect. 3.1.) Hence the polynomial D(z) defined by A1(t)= z−2k+1D(z) for
z= eit , see Sect. 3.3, is a raked self-inversive polynomial of degree 4k − 2 with real
coefficients satisfying D(0) 
= 0. Moreover, the only roots of D(z) that lie on the
circle |z| = 1 are eiτ and e−iτ and those roots have equal even multiplicities.

Choose an arbitrary 0 < τ ′ < τ and let

λ= cos τ ′

cos τ
> 1.

Let Dλ be the raked self-inversive polynomial of degree 4k − 2 whose existence is
established by Lemma 5.1. Since

eiτ
′ + e−iτ ′ = λ(eiτ + e−iτ ),

the numbers eiτ
′

and e−iτ ′ are roots of Dλ of even multiplicity. Moreover, suppose
that z is a root of Dλ such that |z| = 1. Then z+ z−1 ∈R and −2≤ z+ z−1 ≤ 2. By
(5) and from the fact that λ > 1, it follows that there is a pair ζ, ζ−1 of roots of D such
that ζ + ζ−1 ∈R and−2 < |ζ + ζ−1|< 2. It follows then that |ζ | = |ζ−1| = 1, which
necessarily yields that {ζ, ζ−1} = {eiτ , e−iτ }, and hence that {z, z−1} = {eiτ ′ , e−iτ ′ }.
Therefore, by Lemma 3.2, [SM2k(−τ ′),SM2k(τ

′)] is an edge of B2k . Using rotational
invariance, we infer that [SM2k(α

′),SM2k(β
′)] is an edge of B2k , where points α′, β ′

are obtained from τ ′,−τ ′ by an appropriate rotation of S
1. �
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We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 In view of Lemma 5.2, it remains to show that one can
find an arbitrarily small δ > 0 and two points α,β ∈ S

1 such that the interval
[SM2k(α),SM2k(β)] is an edge of B2k and the length of the arc with the endpoints α

and β is at least 2π(k−1)
2k−1 − δ.

Consider the polynomial

D(z)= (z2k−1 − 1)2 = z4k−2 − 2z2k−1 + 1.

Clearly, D(z) is a raked self-inversive polynomial of degree 4k − 2 and the multiset
M of the roots of D consists of all roots of unity of degree 2k − 1, each with multi-
plicity 2. In fact, D(z) defines a simplicial face of B2k , cf. Sect. 3.4. Note that since
B2k is not polyhedral, a face of a face of B2k does not have to be a face of B2k .

For ε > 0 we consider the deformation D1+ε(z) of D(z) and its roots, see
Lemma 5.1. In view of equation (5), for all sufficiently small ε > 0, the multiset
M1+ε of the roots of D1+ε consists of two positive simple real roots defined by the
equation

z+ z−1 = 2(1+ ε)

and 2k− 2 double roots on the unit circle defined by the equation

z+ z−1 = 2(1+ ε) cos
2πj

2k− 1
for j = 1, . . . ,2k − 2.

The first two of these roots are deformations of the double root at 1 (one of them is
strictly larger and another one is strictly smaller than number 1), while the other roots
are deformations of the remaining 2k − 2 roots of unity.

For ε > 0 small enough let ζj (ε) denote the deformation of the root

ζj = cos
2πj

2k− 1
+ i sin

2πj

2k− 1
for j = 1, . . . ,2k − 2

that lies close to ζj , see Fig. 1. Thus we have

ζ−1
j (ε)= ζj (ε)= ζ2k−1−j (ε). (7)

Fig. 1 The roots of unity (black
dots) and their deformations
(white dots) for k = 3
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Write

ζj (ε)= eiαj where 0 < αj < 2π for j = 1, . . . ,2k− 2.

Then

cosαj = (1+ ε) cos
2πj

2k − 1
,

and hence

αj = 2πj

2k− 1
− ε ctg

2πj

2k− 1
+O(ε2). (8)

We now prove that the interval

[SM2k(α1),SM2k(αk)]

is an edge of B2k . We obtain this edge as the intersection of two faces of B2k . The
first face is

conv(SM2k(α1), . . . ,SM2k(α2k−2)), (9)

which by Lemmas 3.2 and 5.1 is indeed a face of B2k . The second face is obtained
by a rotation of (9). Namely, consider the clockwise rotation of the circle |z| = 1 that
maps ζk−1(ε) onto ζ1(ε). Because of (7) this rotation also maps ζ2k−2(ε) onto ζk(ε).
Furthermore, for j = 1, . . . ,2k− 2 define

ζ ′j (ε)= e
iα′j , where 0 < α′j < 2π,

as the image under this rotation of ζj+k−2(ε) if j ≤ k, of ζj−k−1(ε) if j > k+ 1, and
of ζk−2(ε) if j = k + 1. By rotational invariance, see Sect. 3.1,

conv(SM2k(α
′
1), . . . ,SM2k(α

′
2k−2)) (10)

is a face of B2k as well.
Using (8), we conclude that

α′j − αj = ε

(

ctg
2πj

2k− 1
− ctg

2πj − 3π

2k− 1
− ctg

π

2k − 1
− ctg

2π

2k− 1

)

+O(ε2)

for 1≤ j ≤ 2k − 2, j 
= k + 1

and

α′k+1 = o(1) as ε→ 0+ .

Therefore for a sufficiently small ε > 0 and j 
= k+ 1, the value of α′j is close to and
strictly smaller than αj unless j = 1 or j = k, in which case the two values are equal.
Furthermore, α′k+1 
= αj for all j . Thus faces (9) and (10) intersect along the interval

[SM2k(α1),SM2k(αk)],
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and this interval is an edge of B2k . Since α1 and αk are the endpoints of an arc of
length

π
2k − 2

2k − 1
−O(ε),

the statement follows. �

Proof of Theorem 1.3 The upper bound follows by Proposition 2.1. To prove the
lower bound, consider the family of polytopes B2k(Xn), where Xn ⊂ S

1 is the set of
n equally spaced points (n is even). The lower bound then follows by Theorem 1.1. �

6 Faces of B2k

In this section, we prove Theorems 1.2 and 1.4. Theorem 1.2 is deduced from the
following proposition.

Proposition 6.1 For every positive integer k there exists a number φk > 0 such that
every set of 2k distinct points t1, . . . , t2k ∈ S

1 lying on an arc of length at most φk is
the set of the roots of some raked trigonometric polynomial A : S1 →R,

A(t)= c0 +
k∑

j=1

aj sin(2j − 1)t +
k∑

j=1

bj cos(2j − 1)t.

To prove Proposition 6.1, we establish first that the curve SM2k(t) is nowhere
locally flat.

Lemma 6.2 Let

SM2k(t)= (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t)

be the symmetric moment curve. Then, for every t ∈R
1, the vectors

SM2k(t),
d

dt
SM2k(t),

d2

dt2
SM2k(t), . . . ,

d2k−1

dt2k−1
SM2k(t)

are linearly independent.

Proof Because of rotational invariance, it suffices to prove the result for t = 0. Con-
sider the 2k vectors

SM2k(0),
d

dt
SM2k(0), . . . ,

d2k−1

dt2k−1
SM2k(0),

that is, the vectors

aj = (−1)j (1,0,32j ,0, . . . ,0, (2k − 1)2j ) and

bj = (−1)j (0,1,0,32j+1, . . . , (2k − 1)2j+1,0)
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for j = 0, . . . , k − 1. It is easy to see that the set of vectors {aj , bj : j = 0, . . . ,
k−1} is linearly independent if and only if both sets of vectors {aj , j = 0, . . . , k−1}
and {bj : j = 0, . . . , k − 1} are linearly independent. And indeed, the odd-numbered
coordinates of (−1)j aj form the k× k Vandermonde matrix

⎛

⎜
⎝

1 1 1 . . . 1
1 32 52 . . . (2k − 1)2

. . . . . . . . . . . . . . .

1 32k−2 52k−2 . . . (2k− 1)2k−2

⎞

⎟
⎠

while the even-numbered coordinates of (−1)j bj form the k×k Vandermonde matrix

⎛

⎜
⎝

1 3 5 . . . (2k − 1)
1 33 53 . . . (2k − 1)3

. . . . . . . . . . . . . . .

1 32k−1 52k−1 . . . (2k − 1)2k−1

⎞

⎟
⎠ .

Hence the statement follows. �

Next, we establish a curious property of zeros of raked trigonometric polynomials.

Lemma 6.3 Let

A(t)= c0 +
k∑

j=1

aj sin(2j − 1)t +
k∑

j=1

bj cos(2j − 1)t

be a raked trigonometric polynomial A : S1 → R that is not identically 0. Suppose
that A has 2k distinct roots in an arc Ω ⊂ S

1 of length less than π . Then, if A has
yet another root on S

1, that root must lie in the arc Ω + π .

Proof Consider the derivative of A(t),

A′(t)=
k∑

j=1

aj (2j − 1) cos(2j − 1)t −
k∑

j=1

bj (2j − 1) sin(2j − 1)t,

as a map from S
1 to R. Substituting z= eit , we can write

A′(t)= 1

z2k−1
P(z),

where P(z) is a polynomial of degree at most 4k − 2, cf. Sect. 3.3. Hence the total
number of the roots of A′ in S

1, counting multiplicities, does not exceed 4k− 2.
Let t0, t1 ∈Ω be the roots of A closest to the endpoints of Ω . By Rolle’s theorem,

A′ has at least 2k−1 distinct roots between t0 and t1 in Ω . Since A′(t+π)=−A′(t),
we must have another 2k − 1 distinct roots of A′ in the arc Ω + π between t0 + π

and t1 + π , see Fig. 2.
Suppose that A has a root z ∈ S

1 outside of Ω ∪ (Ω +π). Then either z lies in the
open arc with the endpoints t0 and t1 + π or z lies in the open arc with the endpoints
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Fig. 2 The roots of A (black
dots) and roots of A′ (white
dots)

t1 and t0 + π . By Rolle’s theorem, A′ has yet another root in S
1 between t0 on z in

the first case, and between z and t1 in the second case, which is a contradiction. �

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 First, we observe that for any 2k points t1, . . . , t2k ∈ S
1

there is an affine hyperplane passing through the points SM2k(t1), . . . ,SM2k(t2k)

in R
2k and hence there is a non-zero raked trigonometric polynomial A such that

A(t1) = · · · = A(t2k) = 0. Moreover, if t1, . . . , t2k are distinct points that lie in an
arc Ω of length less than π then the hyperplane is unique. Indeed, if the hyperplane
is not unique then the points SM2k(t1), . . . ,SM2k(t2k) lie in an affine subspace of
codimension at least 2. Therefore, for any point t2k+1 ∈Ω \ {t1, . . . , t2k} there is an
affine hyperplane passing through SM2k(t1), . . . ,SM2k(t2k+1) and hence there is a
raked trigonometric polynomial that has 2k + 1 roots in Ω and is not identically 0,
contradicting Lemma 6.3.

Suppose now that no matter how small φk > 0 is, there is always an arc Ω ⊂ S
1

of length at most φk and a non-zero raked trigonometric polynomial A of degree
2k − 1 that has 2k distinct roots in Ω and at least one more root elsewhere in S

1. By
Lemma 6.3, that remaining root must lie in the arc Ω + π . In other words, for any
positive integer n there exists an arc Ωn ⊂ S

1 of length at most 1/n and an affine
hyperplane Hn which intersects SM2k(Ωn) in 2k distinct points and also intersects
the set SM2k(Ωn + π). The set of all affine hyperplanes intersecting the compact
set SM2k(S

1) is compact in the natural topology; for example if we view the set of
affine hyperplanes in R

2k as a subset of the Grassmannian of all (linear) hyperplanes
in R

2k+1. Therefore, the sequence of hyperplanes Hn has a limit hyperplane H . By
Lemma 6.2, the affine hyperplane H is the (2k − 1)th order tangent hyperplane to
SM2k(S

1) at some point SM2k(t0) where t0 is a limit point of the arcs Ωn. Also, H
passes through the point −SM2k(t0). The corresponding trigonometric polynomial
A(t) is a raked polynomial of degree at most 2k − 1 that is not identically 0 and has
two roots t0 and t0 + π with the multiplicity of t0 being at least 2k.

Let

A(t)= c0 +
k∑

j=1

aj sin(2j − 1)t +
k∑

j=1

bj cos(2j − 1)t.
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Since A(t0) = A(t0 + π) = 0 we conclude that c0 = 0. This, however, contradicts
Lemma 6.2 since the non-zero 2k-vector

(b1, a1, b2, a2, . . . , bk, ak)

turns out to be orthogonal to vectors

SM2k(t0),
d

dt
SM2k(t0), . . . ,

d2k−1

dt2k−1
SM2k(t0).

�

Proof of Theorem 1.2 Let φk > 0 be the number whose existence is established in
Proposition 6.1. Given k distinct points t1, . . . , tk lying on an arc of length at most φk ,
we must present a raked trigonometric polynomial A that has roots of multiplicity two
at t1, . . . , tk and no other roots on the circle. In geometric terms, we must present an
affine hyperplane that is the first order tangent to the points SM2k(t1), . . . ,SM2k(tk)

and does not intersect SM2k(S
1) anywhere else. As in the proof of Proposition 6.1,

such a hyperplane is obtained as a limit of the affine hyperplanes that for every j =
1, . . . , k intersect SM2k(S

1) at two distinct points converging to tj . �

Proof of Theorem 1.4 The upper bound follows by Proposition 2.2. To prove the
lower bound, consider the family of polytopes B2k(Xn), where Xn ⊂ S

1 is the set of
n equally spaced points (n is even). The lower bound then follows by Theorem 1.2. In
fact, one can show that cj (2k)≥ 2−j : to obtain this inequality consider the polytope
B2k(Z) where Z = Y ∪ (Y + π) and Y lies in an arc of length at most φk as defined
in Theorem 1.2. �

It was observed by G. Ziegler [24] that the bound cj (d)≥ 2−j can also be obtained
by considering the family of cs polytopes Pn = conv(Qn ∪ (−Qn)), where Qn is the
d-dimensional cyclic polytope whose vertices are (i, i2, . . . , id ) for 1≤ i ≤ n.

7 Concluding Remarks

We close the paper with three additional remarks on the face numbers of centrally
symmetric polytopes and several open questions.

7.1 The Upper Half of the Face Vector

Theorems 1.3 and 1.4 provide estimates on fmax(2k,n; j)—the maximal possible
number of j -faces that a cs 2k-polytope on n vertices can have—for j ≤ k− 1. What
can be said about fmax(2k,n; j) for j ≥ k? Here we prove that for every k ≤ j < 2k,
the value of fmax(2k,n; j) is of the order of nk .

Theorem 7.1 For every positive even integer d = 2k and an integer k ≤ j < 2k, there
exist positive constants γj (d) and Γj (d) such that

γj (d)+ o(1)≤ fmax(d,n; j)
(
n
k

) ≤ Γj (d)+ o(1) as n→+∞.
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Proof The upper bound estimate follows from the Upper Bound Theorem [16] which
holds for all polytopes. To verify the lower bound, consider a cs 2k-polytope Pn on
n vertices that satisfies fk−1(Pn) = fmax(2k,n; k − 1). As in the proof of Proposi-
tion 2.2 we can assume that Pn is a simplicial polytope. Let

h(Pn)= (h0(Pn),h1(Pn), . . . , h2k(Pn))

be the h-vector of Pn (see for instance [23, Chap. 8]), that is, the vector whose entries
are defined by the polynomial identity

d∑

i=0

hi(Pn)x
2k−i =

d∑

i=0

fi−1(Pn)(x − 1)2k−i .

Equivalently,

fj−1(Pn)=
j∑

i=0

(
2k − i

2k− j

)

hi(Pn), j = 0,1, . . . ,2k. (11)

The h-numbers of a simplicial polytope are well-known to be nonnegative and sym-
metric [23, Chap. 8], that is, hj (Pn) = h2k−j (Pn) for j = 0,1, . . . ,2k. Moreover,
McMullen’s proof of the UBT implies that the h-numbers of any simplicial 2k-
polytope with n vertices satisfy

hj ≤
(
n− 2k + j − 1

j

)

=O(nj ), for 0≤ j ≤ k.

Substituting these inequalities into (11) for j = k− 1 and using that

fk−1(Pn)= fmax(2k,n; k− 1)=Ω(nk)

by Theorem 1.4, we obtain

hk(Pn)=Ω(nk).

Together with nonnegativity of h-numbers and (11), this implies that

fmax(2k,n; j)≥ fj (Pn)=Ω(nk) for all k ≤ j < 2k,

as required. �

7.2 2-Faces of B6

We provide some additional estimates on the extent to which B6 is 3-neighborly.

Theorem 7.2 Let t1, t2, t3 ∈ R be such that the points z1 = eit1 , z2 = eit2 , and z3 =
eit3 are distinct and lie on an arc of the unit circle of length at most arccos(1/8). Then
the convex hull of the set {SM6(t1),SM6(t2),SM6(t3)} is a 2-dimensional face of B6.
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Proof As in Proposition 6.1 and Theorem 1.2, the proof reduces to verifying the
following statement:

Let z1, . . . , z6 ∈ C be distinct points that lie on an arc of the unit circle |z| = 1 of
length at most arccos(1/8). Let D(z) be a raked self-inversive polynomial of degree
10 such that D(zj )= 0 for j = 1, . . . ,6. Then none of the remaining roots of D has
the absolute value of 1.

Let z7, z8, z9, and z10 be the remaining roots of D (some of the roots may coin-
cide). Let Φ be an arc of the unit circle |z| = 1 of length l ≤ arccos(1/8) that contains
z1, . . . , z6. Consider the line L through the origin that bisects Φ . Since D is a raked
polynomial, we must have

10∑

j=1

zj =
10∑

j=1

z3
j = 0, (12)

cf. Lemma 3.3. Let Σ1 be the sum of the orthogonal projections of z1, . . . , z6 onto L

and let Σ2 be the sum of the orthogonal projections of z7, . . . , z10 onto L, so

Σ1 +Σ2 = 0.

As cos l ≥ 1/8, we have cos(l/2)≥ 3/4, and hence

|Σ2| = |Σ1| ≥ 6 · 3

4
= 9

2
. (13)

Therefore, for at least one of the roots of D, say, z9 we have |z9| > 1. Then, for
another root of D, say, z10 we have |z10| = 1/|z9| < 1, cf. Lemma 3.3. If |z7| > 1
then |z8| < 1 and we are done. Hence the only remaining case to consider is |z7| =
|z8| = 1. In this case, by (13), we should have |z9| ≥ 2. Using that z10 = 1/z9 we
obtain

|z3
9 + z3

10| = |z3
9| + |z3

10|> 8=
8∑

j=1

|zj |3 ≥ |
8∑

j=1

z3
j |,

which contradicts (12). �

7.3 Lower Bounds for cj (d)

I. Bárány [1] suggested to the authors to look at the following family of polytopes as
a source of cs polytopes with many faces. Consider R

2k as a direct sum of k copies
of R

2:

R
2k =R

2 ⊕ · · · ⊕R
2,

and let Ci denote the unit circle S
1 ⊂R

2 in the ith copy. Let n= km be the multiple
of an even integer m≥ 4 and let Xi ⊂ Ci be a set of m equally spaced points. Define

Pn,k := conv

(
k⋃

i=1

Xi

)

.
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In other words, Pn,k is the join of k cs m-gons. Thus Pn,k is a cs 2k-dimensional
polytope with the property that for every subset of indices I ⊂ {1, . . . , k} and a choice
of points xi ∈Xi , one for each i ∈ I , the set conv(xi : i ∈ I ) is a face of Pn,k . Hence

fj (Pn,k)≥
(

k

j + 1

)(
n

k

)j+1

for 0≤ j ≤ k − 1,

which gives the bound

cj (2k)≥ k(k − 1) · · · (k − j)

kj+1
.

We note that for j = 1 the obtained bound c1(2k) ≥ 1 − k−1 is weaker than the
bound c1(2k) ≥ 1 − (2k − 1)−1 of Theorem 1.3. Also for j = k − 1, the obtained
bound ck−1(2k)= k!/kk ≈ e−k is weaker than the bound ck−1(2k)≥ 2−k following
from the proof of Theorem 1.4. Still, we can conclude that for any fixed j ,

lim
d→+∞ cj (2k)= 1.

7.4 Open Questions

There are several natural questions that we have not been able to answer so far.

• It seems plausible that ψk in Theorem 1.1 satisfies

ψk = 2k − 2

2k − 1
π,

but we are unable to prove that.
• We do not know what is the best value of φk in Theorem 1.2 for k > 2 nor the

values of cj (d) in Theorem 1.4.
• The most intriguing question is, of course, whether the class of polytopes B2k(X)

indeed provides (asymptotically or even exactly) polytopes with the largest number
of faces among all centrally symmetric polytopes with a given number of vertices.
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On Projections of Semi-Algebraic Sets Defined by Few
Quadratic Inequalities

Saugata Basu · Thierry Zell

Abstract Let S ⊂ R
k+m be a compact semi-algebraic set defined by P1 ≥ 0, . . . ,

P� ≥ 0, where Pi ∈ R[X1, . . . ,Xk,Y1, . . . , Ym], and deg(Pi) ≤ 2, 1 ≤ i ≤ �. Let π
denote the standard projection from R

k+m onto R
m. We prove that for any q > 0, the

sum of the first q Betti numbers of π(S) is bounded by (k+m)O(q�). We also present
an algorithm for computing the first q Betti numbers of π(S), whose complexity is
(k +m)2O(q�)

. For fixed q and �, both the bounds are polynomial in k+m.

Keywords Betti numbers · Quadratic inequalities · Semi-algebraic sets · Spectral
sequences · Cohomological descent

1 Introduction

Designing efficient algorithms for computing the Betti numbers of semi-algebraic
sets is one of the outstanding open problems in algorithmic semi-algebraic geome-
try. There has been some recent progress in this area. It has been known for a while
that the zero-th Betti number (which is also the number of connected components)
of semi-algebraic sets can be computed in single exponential time. Very recently, it
has been shown that even the first Betti number, and more generally the first q Betti
numbers for any fixed constant q , can be computed in single exponential time [7, 9].
Since the problem of deciding whether a given semi-algebraic set in R

k is empty or
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not is NP-hard, and that of computing its zero-th Betti number is #P-hard, the exis-
tence of polynomial time algorithms for computing the Betti numbers is considered
unlikely.

One particularly interesting case is that of semi-algebraic sets defined by quadratic
inequalities. The class of semi-algebraic sets defined by quadratic inequalities is the
first interesting class of semi-algebraic sets after sets defined by linear inequalities, in
which case the problem of computing topological information reduces to linear pro-
gramming for which (weakly) polynomial time algorithms are known. From the point
of view of computational complexity, it is easy to see that the Boolean satisfiability
problem can be posed as the problem of deciding whether a certain semi-algebraic
set defined by quadratic inequalities is empty or not. Thus, deciding whether such a
set is empty is clearly NP-hard and counting its number of connected components
is #P-hard. However, semi-algebraic sets defined by quadratic inequalities are dis-
tinguished from arbitrary semi-algebraic sets in the sense that, if the number of in-
equalities is fixed, then the sum of their Betti numbers is bounded polynomially in
the dimension. The following bound was proved by Barvinok [2].

Theorem 1.1 Let S ⊂ R
k be a semi-algebraic set defined by the inequalities, P1 ≥

0, . . . ,P� ≥ 0, deg(Pi) ≤ 2,1 ≤ i ≤ �. Then,
∑k

i=0 bi(S) ≤ kO(�), where bi(S) de-
notes the i-th Betti number, which is the dimension of the i-th singular cohomology
group of S, Hi(S;Q), with coefficients in Q.

In view of Theorem 1.1, it is natural to consider the class of semi-algebraic sets
defined by a fixed number of quadratic inequalities from a computational point of
view. Algorithms for computing various topological properties of this class of semi-
algebraic sets have been developed, starting from the work of Barvinok [1], who
described an algorithm for testing whether a system of homogeneous quadratic equa-
tions has a projective solution. Barvinok’s algorithm runs in polynomial time when
the number of equations is constant. This was later generalized and made constructive
by Grigoriev and Pasechnik in [16], where an algorithm is described for computing
sample points in every connected component of a semi-algebraic set defined over a
quadratic map. More recently, polynomial time algorithms have been designed for
computing the Euler–Poincaré characteristic [8] as well as all the Betti numbers [6]
of sets defined by a fixed number of quadratic inequalities (with different dependence
on the number of inequalities in the complexity bound). Note also that the problem
of deciding the emptiness of a set defined by a single quartic equation is already NP-
hard and hence it is unlikely that there exists polynomial time algorithms for any of
the above problems if the degree is allowed to be greater than two.

A case of intermediate complexity between semi-algebraic sets defined by poly-
nomials of higher degree and sets defined by a fixed number of quadratic sign con-
ditions is obtained by considering projections of such sets. The operation of linear
projection of semi-algebraic sets plays a very significant role in algorithmic semi-
algebraic geometry. It is a consequence of the Tarski–Seidenberg principle (see for
example [10], p. 61) that the image of a semi-algebraic set under a linear projection
is semi-algebraic, and designing efficient algorithms for computing properties of pro-
jections of semi-algebraic sets (such as its description by a quantifier-free formula) is
a central problem of the area and is a very well-studied topic (see for example [22]
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or [10], Chap. 14). However, the complexities of the best algorithms for comput-
ing descriptions of projections of general semi-algebraic sets is single exponential
in the dimension and do not significantly improve when restricted to the class of
semi-algebraic sets defined by a constant number of quadratic inequalities. Indeed,
any semi-algebraic set can be realized as the projection of a set defined by quadratic
inequalities, and it is not known whether quantifier elimination can be performed ef-
ficiently when the number of quadratic inequalities is kept constant. However, we
show in this paper that, with a fixed number of inequalities, the projections of such
sets are topologically simpler than projections of general semi-algebraic sets. This
suggests, from the point of view of designing efficient (polynomial time) algorithms
in semi-algebraic geometry, that projections of semi-algebraic sets defined by a con-
stant number of quadratic inequalities is the next natural class of sets to consider,
after sets defined by linear and (constant number of) quadratic inequalities, and this
is what we proceed to do in this paper.

In this paper, we describe a polynomial time algorithm (Algorithm 2) for comput-
ing certain Betti numbers (including the zero-th Betti number which is the number
of connected components) of projections of sets defined by a constant number of
quadratic inequalities, without having to compute a semi-algebraic description of the
projection. More precisely, let S ⊂R

k+m be a compact semi-algebraic set defined by
P1 ≥ 0, . . . ,P� ≥ 0, with Pi ∈ R[X1, . . . ,Xk,Y1, . . . , Ym], deg(Pi) ≤ 2, 1 ≤ i ≤ �.
Let π : Rk+m→ R

m be the projection onto the last m coordinates. In what follows,
the number of inequalities, �, used in the definition of S will be considered as some
fixed constant. Since, π(S) is not necessarily describable using only quadratic in-
equalities, the bound in Theorem 1.1 does not hold for π(S) and π(S) can in principle
be quite complicated. Using the best known complexity estimates for quantifier elim-
ination algorithms over the reals (see [10]), we get single exponential (in k and m)
bounds on the degrees and the number of polynomials necessary to obtain a semi-
algebraic description of π(S). In fact, there is no known algorithm for computing a
semi-algebraic description of π(S) in time polynomial in k and m. Nevertheless, we
are able to prove that for any fixed constant q > 0, the sum of the first q Betti num-
bers of π(S) are bounded by a polynomial in k and m. More precisely, we obtain the
following complexity bound (see Sect. 4).

Theorem 1.2 Let S ⊂R
k+m be a compact semi-algebraic set defined by

P1 ≥ 0, . . . ,P� ≥ 0,Pi ∈R[X1, . . . ,Xk,Y1, . . . , Ym],deg(Pi)≤ 2, 1≤ i ≤ �.

Let π : Rk+m → R
m be the projection onto the last m coordinates. For any q > 0,

0≤ q ≤ k,
q∑

i=0

bi(π(S))≤ (k +m)O(q�).

We also consider the problem of computing the Betti numbers of π(S). Previously,
there was no polynomial time algorithm for computing any non-trivial topological
property of projections of sets defined by few quadratic inequalities. We describe a
polynomial time algorithm for computing the first few Betti numbers of π(S). The
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algorithm (Algorithm 2 in Sect. 7) computes b0(π(S)), . . . , bq(π(S)). The complex-

ity of the algorithm is (k +m)2O(q�)
. If the coefficients of the input polynomials are

integers of bit-size bounded by τ , then the bit-size of the integers appearing in the in-
termediate computations and the output are bounded by τ(k+m)2O(q�)

. Note that the
output of the algorithm includes b0(π(S)), which is the number of connected com-
ponents of π(S). Alternatively, one could obtain b0(π(S)), . . . , bq(π(S)) by com-
puting a semi-algebraic description of π(S) using an efficient quantifier elimination
algorithm (such as the one described in [4]) and then using the algorithm described
in [7] to compute the first few Betti numbers. However, the complexity of this method
would be worse: single exponential in k and m. Thus, our algorithm is able to com-
pute efficiently non-trivial topological information about the projection, even though
it does not compute a semi-algebraic description of that projection (it is not even
known whether such a description could be computed in polynomial time).

In order to obtain Algorithm 2, we rely heavily on a certain spectral sequence,
namely the cohomological descent spectral sequence. Even though variants of this
spectral sequence have been known for some time [12, 13, 18, 21, 23, 24], to our
knowledge this is the first time it has been used in designing efficient algorithms. As
most constructions of the descent spectral sequence tend to use procedures which are
infinitary in nature, it was more convenient for our algorithmic purposes to take a
more constructive approach to building the sequence. This new construction is for-
mally analogous to that of the Mayer–Vietoris spectral sequence, which has been used
several times recently in designing algorithms for computing Betti numbers of semi-
algebraic sets (see [5–7, 9]), and thus this construction (see Proposition 5.3 below)
might be of independent interest.

2 Main Ideas

There are two main ingredients behind the results in this paper. The first is the use
of cohomological descent, a spectral sequence first introduced by Deligne [12, 23] in
the context of sheaf cohomology. This descent spectral sequence is used to compute
the cohomology of the target of a continuous surjection (under certain hypotheses
only, the limit of this spectral sequence is not, in general, the homology of the target).
The first terms of the sequence are cohomology groups of certain fibered products
over the surjection, and this allows to bound the Betti numbers of the target space
in terms of the Betti numbers of those fibered products. This estimate was first used
by Gabrielov, Vorobjov and Zell in [14] to give estimates on the Betti numbers of
projections of semi-algebraic sets (and more generally, of semi-algebraic sets defined
by arbitrary quantified formulas) without resorting to quantifier elimination. Another
use of this sequence to establish upper-bounds can be found in [25] which contains
effective estimates for the Betti numbers of semi-algebraic Hausdorff limits.

The most striking feature of this spectral sequence argument is that it enables one
to deduce properties (for instance, bounds on the Betti numbers) of the projection
of a set without having to explicitly describe the projection. For instance, consider
a semi-algebraic subset of R

k defined by a polynomial having a constant number
(say m) of monomials (often referred to as a fewnomial). It is known due to classical
results of Khovansky [19] (see also [3]) that the Betti numbers of such sets can be
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bounded in terms of m and k independent of the degree of the polynomial. Using
the spectral sequence argument mentioned above, it was proved in [14] that even the
Betti numbers of the projection of such a set can be bounded in terms of the number
of monomials, even though it is known (see [15]) that the projection itself might not
admit a description in terms of fewnomials.

The construction of the descent spectral sequence given in [14] involves consid-
eration of join spaces and their filtrations and is not directly amenable for algorith-
mic applications. In Sect. 5, we give an alternate construction of a descent spectral
sequence. When applied to surjections between open sets this spectral sequence con-
verges to the cohomology of the image. The proof of this fact is formally analogous
to the proof of convergence of the spectral sequence arising from the generalized
Mayer–Vietoris sequence. This new proof allows us to identify a certain double com-
plex, whose individual terms correspond to the chain groups of the fibered products
of the original set. The fibered product (taken a constant number of times) of a set
defined by few quadratic inequalities is again a set of the same type.

However, since there is no known algorithm for efficiently triangulating semi-
algebraic sets (even those defined by few quadratic inequalities) we cannot directly
use the spectral sequence to actually compute the Betti numbers of the projections.
In order to do that we need an additional ingredient. This second main ingredient is
a polynomial time algorithm described in [6] for computing a complex whose co-
homology groups are isomorphic to those of a given semi-algebraic set defined by a
constant number of quadratic inequalities. Using this algorithm we are able to con-
struct a certain double complex, whose associated total complex is quasi-isomorphic
to (implying having isomorphic homology groups) a suitable truncation of the one
obtained from the cohomological descent spectral sequence mentioned above. This
complex is of much smaller size and can be computed in polynomial time and is
enough for computing the first q Betti numbers of the projection in polynomial time
for any fixed constant q .

The rest of the paper is organized as follows. In Sect. 3 we recall certain basic facts
from algebraic topology including the notions of complexes, and double complexes
of vector spaces and spectral sequences. We do not prove any results since all of them
are quite classical and we refer the reader to appropriate references [10, 11, 20] for the
proofs. In Sect. 4 we prove the estimate on the sum of Betti numbers (Theorem 1.2)
of projections of semi-algebraic sets defined by quadratic inequalities. In Sect. 5, we
give our new construction of the cohomological descent spectral sequence. In Sect. 6,
we briefly describe Algorithm 1 which is used to compute cohomology groups of
semi-algebraic sets given by quadratic inequalities. This algorithm runs in polynomial
time when the number of inequalities is constant. We only describe the inputs, outputs
and the complexity estimates of the algorithms, referring the reader to [6] for more
details. Finally, in Sect. 7 we describe our algorithm (Algorithm 2) for computing
the first few Betti numbers of projections of semi-algebraic sets defined by quadratic
inequalities.

3 Topological Preliminaries

We first recall some basic facts from algebraic topology, related to double complexes,
and spectral sequences associated to double complexes as well as to continuous maps
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between semi-algebraic sets. We refer the reader to [11, 20] for detailed proofs. We
also fix our notations for these objects. All the facts that we need are well known, and
we merely give a brief overview.

3.1 Complex of Vector Spaces

A co-chain complex is a sequence C• = {Ci | i ∈ Z} of Q-vector spaces together with
a sequence of homomorphisms δi : Ci → Ci+1 for which δi+1 ◦ δi = 0 for all p.

The cohomology groups, Hi(C•) are defined by,

Hi(C•)=Zi(C•)/Bi(C•),

where Bi(C•)= Im(δi−1), and Zi(C•)=Ker(δi). The cohomology groups, H ∗(C•),
are all Q-vector spaces (finite dimensional if the vector spaces Ci are themselves fi-
nite dimensional). We will henceforth omit reference to the field of coefficients Q

which is fixed throughout the rest of the paper.
Given two complexes, C• = (Ci, δi) and D• = (Di, ∂i), a homomorphism of

complexes, φ : C• → D•, is a sequence of linear maps φi : Ci → Di verifying
∂i ◦ φi = φi+1 ◦ δi for all i.

In other words, the following diagram is commutative for all i.

A homomorphism of complexes, φ : C• → D•, induces homomorphisms, φ∗ :
H ∗(C•)→H ∗(D•). The homomorphism φ is called a quasi-isomorphism if the ho-
momorphisms φ∗ are isomorphisms.

3.2 Double Complexes

A double complex is a bi-graded vector space

C•,• =
⊕

i,j∈Z

Ci,j ,

with co-boundary operators d : Ci,j → Ci,j+1 and δ : Ci,j → Ci+1,j such that d2 =
δ2 = dδ + δd = 0. We say that C•,• is a first quadrant double complex if it satisfies
the condition that Ci,j = 0 when i, j < 0.

Given a double complex C•,•, we can construct a complex Tot•(C•,•), called the
associated total complex of C•,• and defined by Totn(C•,•)=⊕i+j=n C

i,j , with
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Fig. 1

dr :Ei,j
r →E

i+r,j−r+1
r

differential Dn : Totn(C•,•)−→ Totn+1(C•,•) given by Dn = d + δ.

3.3 Spectral Sequences

A (cohomology) spectral sequence is a sequence of bi-graded complexes {Ei,j
r |

i, j, r ∈ Z, r ≥ a} endowed with differentials d
i,j
r : Ei,j

r → E
i+r,j−r+1
r such that
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(dr )
2 = 0 for all r . Moreover, we require the existence of isomorphism between the

complex Er+1 and the homology of Er with respect to dr :

E
i,j

r+1
∼=Hdr (E

i,j
r )= kerdi,j

r

d
i+r,j−r+1
r (E

i+r,j−r+1
r )

.

The spectral sequence is called a first quadrant spectral sequence if the initial
complex Ea lies in the first quadrant, i.e. Ei,j

a = 0 whenever ij < 0. In that case, all
subsequent complexes Er also lie in the first quadrant. Since the differential di,j

r maps
outside of the first quadrant for r > i, the homomorphisms of a first quadrant spectral
sequence dr are eventually zero, and thus the groups Ei,j

r are all isomorphic to a fixed
group E

i,j∞ for r large enough, and we say the spectral sequence is convergent.
Given a double complex C•,•, we can associate to it two spectral sequences,

′Ei,j
∗ , ′′Ei,j

∗ (corresponding to taking row-wise or column-wise filtrations respec-
tively).

If the double complex lies in the first quadrant, both of these spectral sequences
are first quadrant spectral sequence, and both converge to H ∗(Tot•(C•,•)), meaning
that the limit groups verify

⊕

i+j=n

′Ei,j
∞ ∼=

⊕

i+j=n

′′Ei,j
∞ ∼=Hn(Tot•(C•,•)), (3.1)

for each n≥ 0.
The first terms of these are ′E1 = Hδ(C

•,•), ′E2 = HdHδ(C
•,•), and ′′E1 =

Hd(C
•,•), ′′E2 =HδHd(C

•,•).
Given two (first quadrant) double complexes, C•,• and C̄•,•, a homomorphism of

double complexes φ : C•,• → C̄•,• is a collection of homomorphisms, φi,j : Ci,j →
C̄i,j , such that the following diagrams commute.

A homomorphism of double complexes, φ : C•,• → C̄•,• induces homomor-
phisms φ

i,j
r : Ei,j

r → Ē
i,j
r between the terms of the associated spectral sequences

(corresponding either to the row-wise or column-wise filtrations).
We will need the following useful fact (see [20], p. 66, Theorem 3.4 for a proof).

Theorem 3.1 If φi,j
s is an isomorphism for some s ≥ 1 (and all i, j ), then E

i,j
r and

Ē
i,j
r are isomorphic for all r ≥ s. In other words, the induced homomorphism, φ :

Tot•(C•,•)−→ Tot•(C̄•,•) is a quasi-isomorphism.
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4 Proof of Theorem 1.2

The proof of Theorem 1.2 relies on the bounds from Theorem 1.1, and on the follow-
ing theorem that appears in [14].

Theorem 4.1 Let X and Y be two semi-algebraic sets and f : X → Y a semi-
algebraic continuous surjection such that f is closed. Then for any integer n, we
have

bn(Y )≤
∑

i+j=n

bj (W
i
f (X)), (4.1)

where Wi
f (X) denotes the (i + 1)-fold fibered product of X over f :

Wi
f (X)= {(x̄0, . . . , x̄i ) ∈Xi+1 | f (x̄0)= · · · = f (x̄i)}.

This theorem follows from the existence of a spectral sequence E
i,j
r converging

to H ∗(Y ) and such that E
i,j

1
∼= Hj(Wi

f (X)). Since, in any spectral sequence, the

dimensions of the terms E
i,j
r are decreasing when i and j are fixed and r increases,

we obtain using the definition (3.1) of convergence:

bn(Y )=
∑

i+j=n

dim(E
i,j∞ )≤

∑

i+j=n

dim(E
i,j

1 ),

yielding inequality (4.1).
The spectral sequence E

i,j
r , known as cohomological descent, originated with the

work of Deligne [12, 23], in the framework of sheaf cohomology. In [14], the se-
quence is obtained as the spectral sequence associated to the filtration of an infinite
dimensional topological object, the join space, constructed from f . For the purposes
of Algorithm 2, we will give a different construction of this sequence (see Sect. 5).

Proof of Theorem 1.2 Since S is compact, the semi-algebraic continuous surjection
π : S→ π(S) is closed: applying Theorem 4.1 to π , inequality (4.1) yields for each
n with 0≤ n≤ q ,

bn(π(S))≤
∑

i+j=n

bj (W
i
π (S)). (4.2)

Notice that Wi
π(S)= {(x̄0, . . . , x̄i , y) | Ph(x̄t , y)≥ 0,1≤ h≤ �,0≤ t ≤ i}. Thus,

each Wi
π(S)⊂R

(i+1)k+m is defined by �(i + 1) quadratic inequalities. Applying the
bound in Theorem 1.1 we get that,

bj (W
i
π (S))≤ ((i + 1)k +m)O(�(i+1)). (4.3)

Using inequalities (4.2) and (4.3) and the fact that q ≤ k, we get that,

q∑

i=0

bi(π(S))≤ (k +m)O(q�),

which proves the theorem. �
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5 Cohomological Descent

This section is devoted a new construction of the cohomological descent spectral
sequence (already discussed in Sect. 4). In Theorem 5.6, we obtain this sequence
as the spectral sequence associated to a double complex associated to the fibered
powers of X, rather than through the filtration of the join space. Convergence to the
cohomology of the target space occurs when the map f :X→ Y is locally split (see
definition below). By deformation, we are able to extend the result to our case of
interest: the projection of a compact semi-algebraic set (Corollary 5.8).

We will use this construction for Algorithm 2.

Definition 5.1 A continuous surjection f : X → Y is called locally split if there
exists an open covering U of Y such that for all U ∈ U , there exists a continuous
section σ : U → X of f , i.e. σ is a continuous map such that f (σ (y)) = y for all
y ∈U .

In particular, if X is an open semi-algebraic set and f :X→ Y is a projection, the
map f is obviously locally split. This specific case is what we will use in Algorithm 2,
as we will reduce the projection of compact semi-algebraic sets to projections of open
semi-algebraic sets (see Proposition 5.7) in order to apply the spectral sequence.

Recall that for any semi-algebraic surjection f : X→ Y , we denoted by W
p
f (X)

the (p+ 1)-fold fibered power of X over f ,

W
p
f (X)= {(x̄0, . . . , x̄p) ∈Xp+1 | f (x̄0)= · · · = f (x̄p)}.

The map f induces for each p ≥ 0, a map from W
p
f (X) to Y , sending (x̄0, . . . , x̄p) to

the common value f (x̄0)= · · · = f (x̄p), and abusing notations a little we will denote
this map by f as well.

5.1 Singular (Co-)homology

We recall here the basic definitions related to singular (co-)homology theory directing
the reader to [17] for details.

For any semi-algebraic set X, let C•(X) denote the complex of singular chains of
X with boundary map denoted by ∂ .

Recall that C•(X) is defined as follows: For m ≥ 0, a singular m-simplex s is
a continuous map, s : �m → X, where �m is the standard m-dimensional simplex
defined by,

�m =
{

(t0, . . . , tm) | ti ≥ 0,
m∑

i=0

ti = 1

}

.

Cm(X) is the vector space spanned by all singular m-simplices with boundary maps
defined as follows. As usual we first define the face maps

fm,i :�m→�m+1,

by fm,i((t0, . . . , tm))= (t0, . . . , ti−1,0, ti+1, . . . , tm+1).



108 On Projections of Semi-Algebraic Sets Defined by Few Quadratic Inequalities

For a singular m-simplex s we define

∂s =
m∑

i=0

(−1)is ◦ fm−1,i (5.1)

and extend ∂ to Cm(X) by linearity. We will denote by C•(X) the dual complex and
by d the corresponding co-boundary map. More precisely, given φ ∈ Cm(X), and a
singular (m+ 1)-simplex s of X, we have

dφ(s)=
m+1∑

i=0

(−1)iφ(s ◦ fm,i). (5.2)

If f : X → Y is a continuous map, then it naturally induces a homomor-
phism f∗ : C•(X)→ C•(Y ) by defining, for each singular m-simplex s :�m → X,
f∗(s) = s ◦ f : �m → Y , which is a singular m-simplex of Y . We will denote
by f ∗ : C•(Y )→ C•(X) the dual homomorphism. More generally, suppose that
s = (s0, . . . , sp) : �m → W

p
f (X) is a singular m-simplex of W

p
f (X). Notice that

each component, si ,0 ≤ i ≤ p are themselves singular m-simplices of X and that
f∗(s0) = · · · = f∗(sp) are equal as singular m-simplices of Y . We will denote their
common image by f∗(s).

We will require the notion of small simplices subordinate to an open covering
of a topological space (see [17]). Assuming that f : X→ Y is locally split, let U
be an open covering of Y on which local continuous sections exist. We denote by
V the open covering of X given by the inverse images of elements of U , i.e. V =
{f−1(U) | U ∈ U}. We let CU• (Y ) be the sub-complex of C•(Y ) spanned by those
singular simplices of Y whose images are contained in some element of the cover U .
Similarly, we let CV• (X) be the sub-complex of C•(X) spanned by the simplices of
X with image in V , and more generally, for any integer p, CV• (W

p
f (X)) denotes the

sub-complex of C•(Wp
f (X)) spanned by simplices with image contained in V p+1

for some V ∈ V . The corresponding dual co chain complexes will be denoted by
C•U (Y ) and C•V (W

p
f (X)) respectively. We will henceforth call any singular simplex

of CU• (Y ) and any singular simplex of CV• (W
p
f (X)) admissible simplices.

The inclusion homomorphism, ι• : CU• (Y ) ↪→ C•(Y ) induces a dual homomor-
phism, ι• : C•(Y )→ C•U (Y ). We also have corresponding induced homomorphisms,
ι• : C•(Wp

f (X))→ C•V (W
p
f (X)) for each p ≥ 0.

Proposition 5.2 The homomorphism ι• : C•(Y )→ C•U (Y ) (resp. C•(Wp
f (X))→

C•V (W
p
f (X)) for each p ≥ 0) is a chain homotopy equivalence. In particular, we have

H ∗(C•U (Y )) ∼= H ∗(C•(Y )) ∼= H ∗(Y ) and H ∗(C•V (W
p
f (X))) ∼= H ∗(C•(Wp

f (X))) ∼=
H ∗(Wp

f (X)).

Proof This follows from a similar result for homology, see Proposition 2.21
in [17]. �
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5.2 A Long Exact Sequence

For each p ≥ 0, we now define a homomorphism,

δp : C•(Wp
f (X))−→ C•(Wp+1

f (X))

as follows: for each i,0≤ i ≤ p, define πp,i :Wp
f (X)→W

p−1
f (X) by,

πp,i(x0, . . . , xp)= (x0, . . . , x̂i , . . . , xp)

(πp,i drops the i-th coordinate).

We will denote by (πp,i)∗ the induced map on C•(Wp
f (X))→ C•(Wp−1

f (X)) and

let π∗p,i : C•(Wp−1
f (X))→ C•(Wp

f (X)) denote the dual map. For φ ∈ C•(Wp
f (X)),

we define δpφ by,

δpφ =
p+1∑

i=0

(−1)iπ∗p+1,i φ. (5.3)

Note that for any open covering V of X, the map δp induces by restriction a map
C•V (W

p
f (X))→ C•V (W

p+1
f (X)) which we will still denote by δp .

The following proposition is analogous to the exactness of the generalized Mayer–
Vietoris sequence (cf. Lemma 1 in [5]).

Proposition 5.3 Let f : X→ Y be a continuous, locally split surjection, where X

and Y are semi-algebraic subsets of R
n and R

m respectively. Let U denote an open
covering of Y in which continuous sections of f can be defined on every U ∈ U ,
and V denote the open covering of X obtained by inverse image of U under f . The
following sequence is exact.

0−→ C•U (Y )
f ∗−→ C•V (W

0
f (X))

δ0−→ C•V (W
1
f (X))

δ1−→ · · ·

· · · δp−1−→ C•V (W
p
f (X))

δp−→ C•V (W
p+1
f (X))

δp+1−→ · · ·

Proof We will start by treating separately the first two positions in the sequence, then
prove exactness for p ≥ 1.

(A) f ∗ : C•U (Y )→ C•V (X) is injective.

Let U ∈ U and let s be a simplex whose image is contained in U . If σ is a
continuous section of f defined on U , the simplex t = σ∗(s) is in CV• (X), and
verifies f∗(t)= s. Hence, f∗ : CV• (X)→ CU• (Y ) is surjective, so f ∗ is injective.

(B) f ∗(C•U (Y ))= ker δ0.

Let φ ∈ Cm
V (X). Any simplex s ∈ CV

m(W 1
f (X)) is a pair (s0, s1) of simplices

in CV
m(X) verifying f∗(s0) = f∗(s1). We then have δ0φ(s) = φ(s1)− φ(s0). If

φ = f ∗ψ for some ψ ∈Cm
U (Y ), we have for any s,

δ0φ(s)= f ∗ψ(s1)− f ∗ψ(s0)=ψ(f∗(s1))−ψ(f∗(s0))= 0,
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since we must have f∗(s0)= f∗(s1). Thus, we have f ∗(C•U (Y ))⊂ ker δ0.
Conversely, if φ is such that δ0φ = 0, this means that for any pair (s0, s1) of

simplices in CV
m(X) verifying f∗(s0) = f∗(s1), we have φ(s0) = φ(s1). Since

we just proved in part (A) that f∗ : CV• (X)→ CU• (Y ) is surjective, any element
t ∈ CU

m(Y ) is of the form t = f∗(s) for some s ∈ CV
m(X). Thus, we can define

ψ ∈ Cm
U (Y ) by ψ(t) = φ(s), and the condition δ0φ = 0 ensures that ψ is well

defined since its value does not depend on the choice of s in the representation
t = f∗(s). This yields the reverse inclusion, and hence exactness at p = 0.

(C) δp+1 ◦ δp = 0.

From the definitions of the maps π∗p+1,i , π
∗
p+2,j we have that for 0 ≤ i ≤

p+ 1, 0≤ j ≤ p+ 2,

π∗p+2,j ◦ π∗p+1,i (φ)= π∗p+2,i+1 ◦ π∗p+1,j (φ) if j < i. (5.4)

Let φ ∈ Cm
V (W

p
f (X)). Now from the definitions of δp and δp+1 we have that,

δp+1 ◦ δp(φ) = δp+1

(
p+1∑

i=0

(−1)iπ∗p+1,i (φ)

)

,

=
p+1∑

i=0

(−1)iδp+1(π∗p+1,i (φ)),

=
p+1∑

i=0

p+2∑

j=0

(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ),

=
p+1∑

i=0

[ ∑

0≤j<i

(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)

+
∑

i≤j≤p+2

(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)

]

,

=
∑

i≤j
(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)

+
∑

i>j

(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ).

Now using (5.4), the previous line becomes

=
∑

i≤j
(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)+

∑

i>j

(−1)i+jπ∗p+2,i+1 ◦ π∗p+1,j (φ).
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Interchanging i and j in the second summand of the previous line, we get

=
∑

i≤j
(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)+

∑

i<j

(−1)i+jπ∗p+2,j+1 ◦ π∗p+1,i (φ).

Finally, replacing j + 1 by j in the second summand above, we obtain

=
∑

i≤j
(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)+

∑

i<j−1

(−1)i+j−1π∗p+2,j ◦ π∗p+1,i (φ),

and isolating the terms corresponding to j = i and j = i + 1 in the first sum
gives

= (−1)2iπ∗p+2,i ◦ π∗p+1,i (φ)+ (−1)2i+1π∗p+2,i ◦ π∗p+1,i+1(φ)

+
∑

i<j−1

(−1)i+jπ∗p+2,j ◦ π∗p+1,i (φ)+
∑

i<j−1

(−1)i+j−1π∗p+2,j ◦ π∗p+1,i (φ),

= 0,

(since, again, by (5.4), we have π∗p+2,i ◦ π∗p+1,i+1 = π∗p+2,i ◦ π∗p+1,i ).

(D) Im(δp)⊃Ker(δp+1).

Let φ ∈ Ker(δp+1). In other words, for each admissible singular m-simplex
s = (s0, . . . , sp+1) :�m→W

p+2
f (X)

p+2∑

i=0

(−1)iφ((s0, . . . , ŝi , . . . , sp+2))= 0. (5.5)

For each admissible singular m-simplex s of Y let s∗ denote a fixed admissible
singular m-simplex of X such that f∗(s∗) = s. Such a choice is possible since,
as we proved in part (A), f∗ is surjective onto CU• (Y ). Let ψ ∈ Cm

V (W
p
f (X))

be defined as follows. For an admissible singular m-simplex t = (t0, . . . , tp) of
W

p
f (X) we define

ψ(t)= φ(f∗(t)∗, t0, . . . , tp).

Now for an admissible singular m simplex t = (t0, . . . , tp+1) of Wp+1
f

δpψ(t) =
p+1∑

i=0

(−1)iπ∗p+1,iψ(t)

=
p+1∑

i=0

(−1)iψ((t0, . . . , t̂i , . . . , tp+1))

=
p+1∑

i=0

(−1)iφ((f∗(t)∗, t0, . . . , t̂i , . . . , tp+1)).
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Now let s denote the admissible singular m-simplex of Wp+2
f (X) defined by

s = (f∗(t)∗, t0, . . . , t̂i , . . . , tp+1). Now applying (5.5), we get

p+2∑

i=0

(−1)iφ((s0, . . . , ŝi , . . . , sp+2))= 0.

Separating the first term from the rest we obtain,

φ((t0, . . . , tp+1))=
p+1∑

i=0

(−1)iφ((f∗(t)∗, t0, . . . , t̂i , . . . , tp+1))= δpψ(t).

This finally proves the exactness of the sequence. �

5.3 The Descent Double Complex

Now, let D•,•(X) denote the double complex defined by, Dp,q(X) = Cq(W
p
f (X))

with vertical and horizontal homomorphisms given by d̃q = (−1)pdq and δ respec-
tively, where d is the singular coboundary operator (5.2) and δ is the map defined
in (5.3). Also, let Dp,q(X)= 0 if p < 0 or q < 0.

Lemma 5.4 The families of maps d̃ and δ make D•,• into a double complex.

Proof We need to check that d̃2 = δ2 = d̃δ + δd̃ = 0. We know that d̃2 = d2 = 0
since C•(Wp

f (X)) is a cochain complex for all p, and we proved that δ2 = 0 in
Proposition 5.3.

Now, suppose that φ ∈ Cq(W
p
f (X)) and let s = (s0, . . . , sp+1) be an admissible

singular (q + 1)-simplex of Wp+1
f (X). Then,

d̃(δφ)(s) = d̃

(
p+1∑

i=0

(−1)iφ((s0, . . . , ŝi , . . . , sp+1))

)

,
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= (−1)p
q+1∑

j=0

p+1∑

i=0

(−1)i+jφ(s0 ◦ fq,j , . . . , ̂si ◦ fq,j , . . . , sp+1 ◦ fq,j ).

We also have

δ(d̃φ)(s) = δ

(

(−1)p+1
q+1∑

j=0

(−1)jφ(s0 ◦ fq,j , . . . , sp+1 ◦ fq,j )
)

,

= (−1)p+1
q+1∑

j=0

p+1∑

i=0

(−1)i+jφ(s0 ◦ fq,j , . . . , ̂si ◦ fq,j , . . . , sp+1 ◦ fq,j ).

Thus, it follows that d̃δ + δd̃ = 0, so D•,• is indeed a double complex. �

If f : X→ Y is locally split, and if V is the corresponding open covering of X

defined in Sect. 5.1, the double complex D•,• induces by restriction a double complex

D
•,•
V , where D

p,q

V = C
q

V (W
p
f (X)) when p ≥ 0 and q ≥ 0 and D

•,•
V = 0 otherwise.

The initial terms of the two spectral sequences associated with D
•,•
V (cf. Sect. 3.3)

are as follows. The first terms of the spectral sequence ′Ei,j∗ are ′E1 =Hδ(D
•,•
V (X)),

′E2 =H
d̃
Hδ(D

•,•
V (X)). By the exactness of the sequence in Proposition 5.3, we have

that the spectral sequence ′Ei,j
∗ degenerates at the ′E2 term as shown below.
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and, by Proposition 5.2,

The degeneration of this sequence at ′E2 shows that

H ∗(Tot•(D•,•V (X)))∼=H ∗(Y ).

The initial term ′′E1 of the second spectral sequence is given by,

Since this spectral sequence also converges to H ∗(Tot•(D•,•V )(X)), we have the
following proposition.

Proposition 5.5

H ∗(Tot•(D•,•V )(X))∼=H ∗(Y ).

Proposition 5.5 now implies,

Theorem 5.6 For any continuous semi-algebraic surjection f : X→ Y , where X

and Y are open semi-algebraic subsets of R
n and R

m respectively (or, more generally,
for any locally split continuous surjection f ), the spectral sequence associated to
the double complex D•,•(X) with E1 = Hd(D

•,•(X)) converges to H ∗(C•(Y )) ∼=
H ∗(Y ). In particular,

(A) E
i,j

1 =Hj(Wi
f (X)), and
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(B) E∞ ∼=H ∗(Tot•(D•,•(X)))∼=H ∗(Y ).

Proof By Proposition 5.2, we have that the component-wise homomorphisms, ι•,
induces a homomorphism of double complexes,

ι•,• :D•,• →D
•,•
V ,

which in turn induces an isomorphism between the E1 terms of the correspond-
ing spectral sequences. Hence, by Theorem 3.1 we have that, H ∗(Tot•(D•,•V )) ∼=
H ∗(Tot•(D•,•)). The Theorem now follows from Proposition 5.5. �

5.4 Truncation of the Double Complex

If we denote by D
•,•
q (X) the truncated complex defined by,

D
i,j
q (X) =Di,j (X), if 0≤ i + j ≤ q + 1,

= 0, otherwise,

then it is clear that,

Hi(Y )∼=Hi(Tot•(D•,•q (X))), for 0≤ i ≤ q. (5.6)

Now suppose that X ⊂ R
k+m is a compact semi-algebraic set defined by the in-

equalities, P1 ≥ 0, . . . ,P� ≥ 0. Let π denote the projection map, π : Rk+m → R
m.

Let ε > 0 and let X̃ ⊂R
k+m be the set defined by P1 + ε > 0, . . . ,P� + ε > 0.

Proposition 5.7

(A) For ε > 0 sufficiently small, we have

H ∗(Wp
π (X̃))∼=H ∗(Wp

π (X)), for all p ≥ 0,

and H ∗(π(X̃))∼=H ∗(π(X)).

(B) The map, π |
X̃

is a locally split semi-algebraic surjection onto its image.

Proof When ε > 0 is small, the sets X and X̃ are homotopy equivalent and so are
the sets π(X) and π(X̃) and the fibered products W

p
π (X̃) and W

p
π (X) for all p ≥

0 (see [3]). The first part of the proposition follows from the homotopy invariance
property of singular cohomology groups. The second part of the proposition is clear
once we note that X̃ is an open subset of R

k+m: projections of open sets always admit
local continuous sections. �

We can combine Theorem 5.6 and Proposition 5.7 to construct, from the projection
of a compact basic semi-algebraic set, a double complex giving rise to a cohomolog-
ical descent spectral sequence.
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Corollary 5.8 Let X ⊂ R
k+m be a compact semi-algebraic set defined by P1 ≥

0, . . . ,P� ≥ 0 and π : Rk+m → R
m the projection onto the last m co-ordinates.

The spectral sequence associated to the double complex D•,•(X) with E1 =
Hd(D

•,•(X)) converges to H ∗(C•(π(X)))∼=H ∗(π(X)). In particular,

(A) E
i,j

1 =Hj(Wi
f (X)), and

(B) E∞ ∼=H ∗(Tot•(D•,•(X)))∼=H ∗(π(X)).

Remark 5.9 Note that it is not obvious how to prove directly an exact sequence at
the level of singular (or even simplicial) cochains for the projection of a compact set,
as we do in Proposition 5.3 in the locally-split setting. One difficulty is the fact that
semi-algebraic maps are not, in general, triangulable.

Now let X be a compact semi-algebraic set defined by a constant number of
quadratic inequalities and f a projection map. We cannot hope to compute even
the truncated complex D

•,•
q (X) since these are defined in terms of singular chain

complexes which are infinite-dimensional. We overcome this problem by computing
another double complex D•,•q (X), such that there exists a homomorphism of double
complexes, ψ : D•,•q (X) −→D

•,•
q (X), which induces an isomorphism between the

′E1 terms of the spectral sequences associated to the double complexes D
•,•
q (X) and

D•,•q (X). This implies, by virtue of Theorem 3.1, that the cohomology groups of the
associated total complexes are isomorphic, that is,

H ∗(Tot•(D•,•q (X)))∼=H ∗(Tot•(D•,•q (X))).

The construction of the double complex D•,•q (X) is described in Sect. 7.

6 Algorithmic Preliminaries

We now recall an algorithm described in [6], where the following theorem is proved.

Theorem 6.1 There exists an algorithm, which takes as input a family of polynomials
{P1, . . . ,Ps} ⊂ R[X1 . . . ,Xk], with deg(Pi)≤ 2, and a number �≤ k, and outputs a
complex D•,•� . The complex Tot•(D•,•� ) is quasi-isomorphic to C�•(S), the truncated
singular chain complex of S, where

S =
⋂

P∈P
{x ∈R

k | P(x)≤ 0}.

Moreover, given a subset P ′ ⊂P , with

S′ =
⋂

P∈P ′
{x ∈R

k | P(x)≤ 0}

the algorithm outputs both complexes D•,•� and D′•,•� (corresponding to the sets S

and S′ respectively) along with the matrices defining a homomorphism #P,P ′ , such
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that #∗P,P ′ : H ∗(Tot•(D•,•� )) ∼= H ∗(S)→ H ∗(S′) ∼= H ∗(Tot•(D′•,•� )) is the homo-
morphism induced by the inclusion i : S ↪→ S′. The complexity of the algorithm is
∑�+2

i=0

(
s
i

)
k2O(min(�,s))

.

For completeness, we formally state the input and output of the algorithm men-
tioned in Theorem 6.1.

We first introduce some notations which will be used to describe the input and
output of the algorithm. Let Q= {Q1, . . . ,Qs} ⊂R[X1, . . . ,Xk] be a family of poly-
nomials with deg(Qi) ≤ 2,1 ≤ i ≤ s. For each subset J ⊂ {1, . . . , s}, we let SJ de-
note the semi-algebraic set defined by {Qj ≥ 0 | j ∈ J }. Notice that for each pair
I ⊂ J ⊂ {1, . . . , s}, we have an inclusion SJ ⊂ SI .

Algorithm 1 (Build Complex)

Input: A family of polynomials Q = {Q1, . . . ,Qs} ⊂ R[X1, . . . ,Xk] with
deg(Qi)≤ 2, for 1≤ i ≤ s.

Output:

(A) For each subset J ⊂ {1, . . . , s}, a description of a complex F •J , consisting
of a basis for each term of the complex and matrices (in this basis) for the
differentials, and

(B) for each pair I ⊂ J ⊂ {1, . . . , s}, a homomorphism, φI,J : F •I −→ F •J .

The complexes, F •J and the homomorphisms φI,J satisfy the following.

(A) For each J ⊂ {1, . . . , s},
H ∗(F •J )∼=H ∗(SJ ). (6.1)

(B) For each pair I ⊂ J ⊂ {1, . . . , s}, the following diagram commutes.

Here, (φI,J )
∗ is the homomorphism induced by φI,J , the vertical homo-

morphisms are the isomorphisms from (6.1), and r∗ is the homomorphism
induced by restriction.

Complexity: The complexity of the algorithm is k2O(s)
. �

For the purposes of this paper, we need to slightly modify Algorithm 1 in or-
der to be able to handle permutations of the co-ordinates. More precisely, suppose
that σ ∈Sk is a given permutation of the co-ordinates, and for any I ⊂ {1, . . . , s},
let SI,σ = {(xσ(1), . . . , xσ(k)) | (x1, . . . , xk) ∈ SI }. Let F •I,σ denote the complex com-
puted by the algorithm corresponding to the set SI,σ . It is easy to modify Algorithm 1
slightly without changing the complexity estimate, such that for any fixed σ , the al-
gorithm outputs, complexes F •I ,F •I,σ as well as the matrices corresponding to the



118 On Projections of Semi-Algebraic Sets Defined by Few Quadratic Inequalities

induced isomorphisms, φ•σ : F •I → F •I,σ . We assume this implicitly in the description
of Algorithm 2 in the next section.

7 Algorithm for Projections

Let S ⊂R
k+m be a basic semi-algebraic set defined by

P1 ≥ 0, . . . ,P� ≥ 0,Pi ∈R[X1, . . . ,Xk,Y1, . . . , Ym],
with deg(Pi) ≤ 2, 1 ≤ i ≤ �. Let π : Rk+m → R

m be the projection onto the last m
coordinates.

The algorithm will compute a double complex, D•,•q (S), such that Tot•(D•,•q (S))

is quasi-isomorphic to the complex Tot•(D•,•q (S)). The double complex, D•,•q (S) is
defined as follows.

We introduce k(q + 2) variables, which we denote by Xi,j , 1 ≤ i ≤ k,0 ≤ j ≤
q + 1. For each j,0≤ j ≤ q + 1, we denote by, Pi,j the polynomial

Pi(X1,j , . . . ,Xk,j , Y1, . . . , Ym)

(substituting X1,j , . . . ,Xk,j in place of X1, . . . ,Xk in the polynomial Pi ). We con-
sider each Pi,j to be an element of R[X1,0, . . . ,Xk,q+1, Y1, . . . , Ym]. For each p,0≤
p ≤ q + 1, we denote by Sp ⊂R

k(q+2)+m the semi-algebraic set defined by,

P1,0 ≥ 0, . . . ,P�,0 ≥ 0, . . . ,P1,p ≥ 0, . . . ,P�,p ≥ 0.

Note that, for each p,0 < p ≤ q + 1, and each j,0 ≤ j ≤ p we have a natural
map, πp,j : Sp→ Sp−1 given by,

πp,j (x̄0, . . . , x̄p, . . . , x̄q+1, ȳ)= (x̄0, . . . , x̄p, . . . , x̄j , . . . , x̄q+1, ȳ).

Note that in the definition above, each x̄i ∈ R
k and πp,j exchanges the coordinates

x̄j and x̄p .
We are now in a position to define D•,•q . We follow the notations introduced in

Sect. 6. Let Q= {Q1, . . . ,Q�(q+2)} = {P1,0, . . . ,P�,q+1}. For 0≤ j ≤ q + 1, we let
Lj = {1, . . . , (j + 1)�} ⊂ {1, . . . , (q + 2)�}.

Di,j
q (X) = F

j
Li
, 0≤ i + j ≤ q + 1,

= 0, otherwise.

The vertical homomorphisms, d , in the complex D•,•q are those induced from the

complexes F •Li
or zero. The horizontal homomorphisms, δj : Fj

Li
−→ F

j
Li+1

are de-
fined as follows.

For each h, 0 ≤ h ≤ i + 1, Algorithm 1 produces a homomorphism, φi+1,h :
F

j
Li
−→ F

j
Li+1

, corresponding to the map πi+1,h (see remark after Algorithm 1). The

homomorphism δ is then defined by, δ =∑i+1
h=0(−1)hφi+1,h. We have the following

proposition.
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Proposition 7.1 The complex Tot•(D•,•q (S)) is quasi-isomorphic to the complex
Tot•(D•,•q (S)).

Proof It follows immediately from Theorem 6.1 that the columns of the complexes
D•,•q (S) and D

•,•
q (S) are quasi-isomorphic. Moreover, it is easy to see that the quasi-

isomorphisms induce an isomorphism between the ′′E1 term of their associated
spectral sequences. Now by Theorem 3.1 this implies that Tot•(D•,•q (S)) is quasi-
isomorphic to the complex Tot•(D•,•q (S)). �

Algorithm 2 (Computing the first q Betti Numbers)

Input: A S ⊂R
k+m be a basic semi-algebraic set defined by

P1 ≥ 0, . . . ,P� ≥ 0,

with Pi ∈R[X1, . . . ,Xk,Y1, . . . , Ym], deg(Pi)≤ 2, 1≤ i ≤ �.
Output: b0(π(S)), . . . , bq(π(S)), where π :Rk+m→R

m be the projection onto the
last m coordinates.

Procedure:

Step 1: Using Algorithm 1 compute the truncated complex D•,•q (S).
Step 2: Compute using linear algebra, the dimensions of Hi(Tot•(D•,•q )), 0 ≤

i ≤ q.

Step 3: For each i, 0≤ i ≤ q , output, bi(π(S))= dim(H i(Tot•(D•,•q ))).

Complexity Analysis: The calls to Algorithm 1 has input consisting of (q+ 1)� poly-
nomials in qk+m variables. Using the complexity bound of Algorithm 1 we see that
the complexity of Algorithm 2 is bounded by (k +m)2O(q�)

. �
Proof of Correctness: The correctness of the algorithm is a consequence of Proposi-
tion 7.1 and Theorem 3.1. �

8 Conclusion and Open Problems

For any fixed q and �, we have proved a polynomial bound on the sum of the first q
Betti numbers of the projection of a bounded, basic closed semi-algebraic set defined
by � quadratic inequalities. We have also described a polynomial time algorithm to
compute the first q Betti numbers of the image of such a projection.

Since it is not known whether quantifier elimination can be performed efficiently
for sets defined by a fixed number of quadratic inequalities, many questions are left
open.

Our bounds become progressively worse as q increases, becoming exponential
in the dimension as q approaches k. However, we do not have any examples (of
projections of semi-algebraic sets defined by quadratic inequalities) where the higher
Betti numbers behave exponentially in the dimension. This leaves open the problem
of either constructing such examples, or removing the dependence on q from our
bounds.

Another interesting open problem is to improve the complexity of Algorithm 2,
from (k + m)2O(q�)

to (k + m)O(q�). Note that this would imply an algorithm with
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complexity kO(q�) for computing the first q Betti numbers of a semi-algebraic set
defined by � quadratic inequalities in R

k . The best known algorithm for computing
all the Betti numbers of such sets has complexity k2O(�)

[6]. The only topological
invariants of such sets that we currently know how to compute in time kO(�) are
testing for emptiness [1, 16] and the Euler–Poincaré characteristic [8].
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Enumeration in Convex Geometries and Associated
Polytopal Subdivisions of Spheres

Louis J. Billera · Samuel K. Hsiao · J. Scott Provan

Abstract We construct CW spheres from the lattices that arise as the closed sets of a
convex closure, the meet-distributive lattices. These spheres are nearly polytopal, in
the sense that their barycentric subdivisions are simplicial polytopes. The complete
information on the numbers of faces and chains of faces in these spheres can be
obtained from the defining lattices in a manner analogous to the relation between
arrangements of hyperplanes and their underlying geometric intersection lattices.

Keywords Abstract convexity · Quasisymmetric functions ·Meet-distributive
lattice · Join-distributive lattice

1 Introduction

A well known result due to Zaslavsky [29] shows that the numbers of faces in an
arrangement of hyperplanes in a real Euclidean space can be read from the underlying
geometric lattice of all intersections of these hyperplanes. This result was extended
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to the determination of the numbers of chains of faces in arrangements in [2, 8].
In [3], the numbers of chains in an arrangement were shown to depend only on the
numbers of chains in the associated geometric lattice. A particularly simple form of
this relationship, in terms of quasisymmetric functions, was given in [5].

Geometric lattices (matroids) are combinatorial abstractions of linear span in vec-
tor spaces. There is a different combinatorial model for convex span, known as con-
vex geometries (or anti-matroids) [12–15], for which the corresponding lattices are
the meet-distributive lattices. We show here that a similar situation exists for these;
that is, for each convex geometry, we construct a regular CW sphere, whose enu-
merative properties are related to those of the underlying geometry in essentially the
same way. Moreover, these spheres are nearly polytopes, in the sense that their first
barycentric subdivisions are combinatorially simplicial convex polytopes.

We begin by establishing some notation. Our basic object of study is a com-
binatorial closure operation called a convex or anti-exchange closure. This is de-
fined on a finite set, which we will take, without loss of generality, to be the set
[n] := {1,2, . . . , n}.

Definition 1.1 A convex closure is a function 〈·〉 : 2[n] → 2[n], A �→ 〈A〉, such that,
for A,B ⊆ [n],
(1) A⊆ 〈A〉
(2) if A⊆ B then 〈A〉 ⊆ 〈B〉
(3) 〈A〉 = 〈〈A〉〉
(4) if x, y /∈ 〈A〉 and x ∈ 〈A∪ y〉 then y /∈ 〈A∪ x〉.

The last condition is often called the anti-exchange axiom, and the complements
of the closed sets of such a closure system has been called an anti-matroid. We will
call a set together with a convex closure operator on it a convex geometry. The set
of closed sets of a convex geometry, that is, those sets A satisfying A= 〈A〉, form a
lattice when ordered by set inclusion. Such lattices are precisely the meet-distributive
lattices. A lattice L is meet-distributive if for each y ∈ L, if x ∈ L is the meet of (all
the) elements covered by y, then the interval [x, y] is a Boolean algebra.

One example of an anti-exchange closure operator is ideal closure on a partially
ordered set P ; here, for A⊆ P , 〈A〉 denotes the (lower) order ideal generated by A.
The lattices of closed sets of these are precisely the distributive lattices. Another
class of examples comes from considering convex closure on a finite point set in
Euclidean space. Figure 1 illustrates the convex geometry formed by three collinear
points a, b, c. Note that the set {a, c} is not closed since its closure is {a, b, c}.

Meet-distributive lattices were first studied by Dilworth [11] and have reappeared
in many contexts since then (see [21]). Their study in the context of theory of convex
geometries was extensively developed about 20 years ago in a series of papers by
Edelman and coauthors [12–15]. See also [20] and [10] for general discussions. An
important (and characterizing) property of convex geometries is that every set has a
unique minimal generating set, that is, for each A ⊆ [n], there is a unique minimal
subset ext(A)⊆A so that 〈A〉 = 〈ext(A)〉 [13, Theorem 2.1]. The elements of ext(A)

are called the extreme points of A.
A simplicial complex on a finite set V is a family of subsets �⊆ 2V such that if

τ ⊆ σ ∈� then τ ∈� and {v} ∈� for all v ∈ V . The elements of � are called the
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Fig. 1 The convex geometry of
three collinear points and its
associated meet-distributive
lattice L

faces of the complex and the elements of V are its vertices. We will need an operation
on simplicial complexes known as stellar subdivision.

Definition 1.2 The stellar subdivision of a simplicial complex � over a nonempty
face σ ∈� is the simplicial complex sdσ (�) on the set V ∪ {vσ }, where vσ is a new
vertex, consisting of

(1) all τ ∈� such that τ 
⊇ σ , and
(2) all τ ∪ {vσ } where τ ∈�, τ 
⊇ σ and τ ∪ σ ∈�.

The use of stellar subdivision to describe order complexes of posets was begun
in [22], where it was shown that the order complex of any distributive lattice can be
obtained from a simplex by a sequence of stellar subdivisions. Although this result
and some of its implications were discussed in [23], its proof was never published.
We will give a generalization of this result to meet-distributive lattices in the next
section. The proof is an adaptation of that in [22].

More recently, stellar subdivision was used in [9] to produce the order complex of
a so-called Bier poset of a poset P from the order complex of P .

In Sect. 2, we describe the order complex of a meet-distributive lattice as a stellar
subdivision of a simplex. We use this in Sect. 3 to construct the sphere associated
with the lattice. Finally, in Sect. 4 we relate enumeration in this sphere to that of the
lattice.

2 Order Complexes of Meet-Distributive Lattices

Let L be an arbitrary meet-distributive lattice. We can assume L is the lattice of
closed sets of a convex closure 〈·〉 on the set [n], for some n > 0. L has unique
maximal element 1̂= 〈[n]〉 and minimal element 0̂= 〈∅〉 (we may assume 〈∅〉 = ∅,
although this will not be important here). For simplicity of notation, we will write
〈i〉 for the principal closed set 〈{i}〉 whenever i ∈ [n]. These are precisely the join-
irreducible elements of L, that is, those x ∈ L \ {0̂} that cannot be written as y ∨ z,
with y, z < x. (This follows, for example, from [13, Theorem 2.1(f)].)

In fact, the convex closure 〈·〉 is uniquely defined from the lattice L: we take [n]
to be an enumeration of the join-irreducible elements of L and define, for A⊆ [n],

〈A〉 =
{

j ∈ [n]
∣
∣
∣j ≤

∨

i∈A
i

}

.
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Thus we are free, without loss of generality, to use the closure relation when making
constructions concerning the lattice L.

Consider the simplex of all principal closed sets (join-irreducibles) {〈i〉 | i ∈ [n]},
and let �0 be the simplicial complex consisting of this simplex and all its faces (sub-
sets). Note that �(L \ {0̂}), the order complex of L \ {0̂}, is a simplicial complex on
the vertex set V = {〈A〉 |A⊆ [n],A 
= ∅}.

Theorem 2.1 For any meet-distributive lattice L, �(L \ {0̂}) can be obtained from
the simplex of join-irreducible elements by a sequence of stellar subdivisions.

Proof Suppose L is the lattice of closed sets of a convex closure 〈·〉 on [n]. Let
A1,A2, . . . ,Ak be a reverse linear extension of L \ {0̂}, that is, the Ai are all the
nonempty closed subsets in [n], ordered so that we never have Ai ⊆ Aj if i < j . In
particular, A1 = [n].

The order complex �(L \ {0̂}) can be obtained from �0 by a sequence of stellar
subdivisions as follows. For i = 1, . . . , k, let

�i = sdext(Ai)(�i−1),

where, by a slight abuse of notation, ext(Ai) will denote the face of �i−1 having
vertices 〈j〉, j ∈ ext(Ai). The new vertex added at the ith step will be denoted simply
by Ai . Note that because of the ordering of the Ai , the face ext(Ai) is in the complex
�i−1, so each of these subdivisions is defined.

We claim that �k =�(L \ {0̂}). The proof proceeds by induction on n. The case
n= 1 is clear.

When n > 1, consider the complex �1 = sdext(A1)(�0). Since �0 is a simplex,
the new vertex A1 is a cone point, that is, it is in every maximal simplex of �1. The
base of this cone (the link of A1) consists of all the facets F1, . . . ,Fm of �0 that
are opposite to vertices in ext(A1). By relabeling if necessary, we can assume that
ext(A1) = {1,2, . . . ,m}, and Fi = {〈j〉 | j 
= i}. Since all further subdivisions are
made on faces not containing A1, the vertex A1 remains a cone point in all �i . So it
is enough to consider the effect of further subdivisions on each of the facets Fi .

Now, by induction, the face Fi is subdivided so that it becomes the order complex
of Li \ {0̂}, where Li is the lattice of closed subsets of [n] \ {i}. Since A1 is a cone
point in �k , and A1 is in every maximal chain in L, it follows that �k is the order
complex of L \ {0̂}. �

Notice that the stellar subdivisions over the principal closed sets (join-irreducibles)
are redundant and can be omitted without loss. Figure 2 gives the sequence of sub-
divisions leading to the order complex of the meet-distributive lattice generated by
the example of three collinear points. In this example, once �3 is constructed, every
subsequent subdivision is over a principal closed set and therefore has no effect on
the complex.

By a polyhedral ball we will mean a simplicial complex that is topologically a
d-dimensional ball and can be embedded to give a regular triangulation, that is, one
that admits a strictly convex piecewise-linear function (see, for example, [4] for the
definitions). Polyhedral balls are known to satisfy strong enumerative conditions [6].
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Fig. 2 The sequence of �i for the example in Fig. 1

Corollary 2.2 For any meet-distributive lattice L 
= Bn, the order complex �(L \
{0̂, 1̂}) is a polyhedral ball.

Proof Let L be the lattice of closed sets of the convex closure 〈·〉 on [n]. Since L 
=
Bn, we have that ext([n]) 
= [n], and so every stellar subdivision that is involved in
producing �(L \ {0̂}) takes place on the boundary of the simplex �0.

Since being the boundary complex of a simplicial convex polytope is preserved
under taking stellar subdivisions [23], we conclude that the boundary of �(L\ {0̂}) is
the boundary of a simplicial convex polytope Q. By means of a projective transforma-
tion that sends the vertex A1 = [n] = 1̂ to the point at infinity, we see that the image
of Q under such a map is the graph of a strictly convex function over �(L\ {0̂, 1̂}). �

It was shown in [23] that stellar subdivision preserves the property of being vertex
decomposable, which in turn implies shellability. As a consequence we get that both
�(L \ {0̂}) and �(L \ {0̂, 1̂}) are vertex decomposable and hence shellable, as stated
in [7, Theorem 8.1] (and its proof) in the language of greedoids. Theorem 2.1 was
first proved for distributive lattices in [22] precisely to show that order complexes of
distributive lattices were shellable. The result in [22] was stated for �(L), which is a
cone over the complex we consider.

3 The Associated CW Spheres

We define now a triangulated sphere derived from the order complex of a meet-
distributive lattice L. It will turn out that this triangulated sphere is the barycentric
subdivision of a regular CW sphere that has the same enumerative relationship to L∗
(the dual to L) as an arrangement of hyperplanes (oriented matroid) has to the under-
lying geometric lattice.

3.1 The complex ±�

For a meet-distributive lattice L, let �=�(L \ {0̂}), a triangulation of the (n− 1)-
simplex �0. We will define a triangulation ±� of the n-dimensional crosspolytope
On as follows. If the vertex set of the simplex �0 is [n] = {1,2, . . . , n}, then that
of the crosspolytope is ±[n] = {±1,±2, . . . ,±n}. Faces of the crosspolytope are all
σ ⊆±[n] such that not both i and −i are in σ .
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Fig. 3 Triangulation of the
boundary of the octahedron
induced by reflecting �6

We reflect the triangulation � to obtain a triangulation ±� of the crosspolytope,
much as the crosspolytope can be built by reflecting the simplex generated by the unit
vectors. We consider the simplex �0 to be embedded as the convex hull of the unit
vectors and define the triangulation ±� by reflecting the triangulation �.

Formally, ±� is the simplicial complex whose vertices are all equivalence classes
of pairs (A, ε), where A ∈ L \ {0̂}, ε is a map from [n] to {±1}, and we identify
(A, ε) and (A, ε′) when ε|ext(A) = ε′|ext(A). For arbitrary ε : [n] → {±1} and σ =
{A1,A2, . . . ,Ak} ∈�, let

σε := {(A1, ε), (A2, ε), . . . , (Ak, ε)}
and

�ε = {σε|σ ∈�}.
�ε is essentially the triangulation � transferred to the face of the crosspolytope given
by the sign pattern ε. Finally, define

±�=
⋃

ε

�ε,

the union being taken over all ε : [n]→ {±1}.
Remark 3.1 Note that boundary faces of � can result in faces of ±� having more
than one name; in fact, σ ε = σρ if and only if ε and ρ agree on the set

ext(σ ) :=
k⋃

i=1

ext(Ai).

Figure 3 shows the complex ±� for the example of three collinear points.

Theorem 3.2 For any meet-distributive lattice L, ±�(L \ {0̂}) can be obtained from
the n-dimensional crosspolytope by a sequence of stellar subdivisions, and so it
is combinatorially the boundary complex of an n-dimensional simplicial polytope,
where n is the number of join-irreducibles of L.
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Proof As before, suppose L is the lattice of closed sets of a convex closure 〈·〉 on [n],
and let A1,A2, . . . ,Ak be a reverse linear extension of L \ {0̂}. We can extend this
order to an order on all pairs (Ai, ε), ε : [n] → {±1}, by ordering lexicographically,
with the given order on the first coordinate and any order on the second.

It is now relatively straightforward to adapt the proof of Theorem 2.1 to show that
the complex ±� is obtained by carrying out stellar subdivisions over faces of On in
the order given by the order of the (Ai, ε). The subdivision corresponding to (Ai, ε)

is done over the face {ε(j) · j | j ∈ ext(Ai)} of On; in ±�, every face containing
{ε(j) · j | j ∈ ext(Ai)} is subdivided as it would be by doing the subdivision in the
boundary of On. Again, since stellar subdivision preserves the property of being the
boundary complex of a polytope, the result follows. �

3.2 The poset QL

We construct a regular CW complex $ having ±� as its barycentric subdivision.
Equivalently, if F($) is the face poset of $, then �(F($))=±�.

We begin by defining a poset QL associated to any meet-distributive lattice L.
The elements of QL are all equivalence classes of pairs (A, ε), where A ∈ L and ε

is a map from [n] to {±1} as before. We define the order relation on QL by (A, ε)≤
(B, δ) if and only if A ⊆ B and the maps ε, δ agree on the set ext(A) ∩ ext(B).
We include an element 1̂ ∈QL for convenience; the element (0̂,∅) corresponding to
0̂ ∈ L serves as 0̂ in QL. Note that when L is distributive, QL is the signed Birkhoff
poset of [19].

Proposition 3.3 �(QL \ {0̂, 1̂})=±�.

Proof The maximal simplices in ±� are the simplices

σε := {(A1, ε), (A2, ε), . . . , (An, ε)},
where A1 ⊆A2 ⊆ · · · ⊆An is a maximal chain in L \ {0̂}. Then clearly,

(A1, ε) < (A2, ε) < · · ·< (An, ε)

is a maximal chain in QL \ {0̂, 1̂}.
Conversely, if

(A1, ε1) < (A2, ε2) < · · ·< (An, εn)

is a maximal chain in QL \ {0̂, 1̂}, then, if we let σ = {A1,A2, . . . ,An} ∈�, we have
ext(σ )= [n] and so there is an ε : [n]→ {±1} such that εi = ε|ext(Ai) for each i. Thus

{(A1, ε1), (A2, ε2), . . . , (An, εn)} = σε

is a maximal simplex in ±�. �

Next, we define a cell complex $L from the lattice L (the underlying convex
closure 〈·〉 on [n]) and the simplicial complex ±� as follows. For each A ∈ L \ {0̂}
and ε : [n] → {±1}, we define a cell C(A,ε) that is a union of simplices in ±�. For
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A= [n], we take C(A,ε) to be the star of (A, ε) in the complex ±�, that is, the union
of all maximal simplices containing the vertex (A, ε).

For proper closed sets A ∈L, we consider the subgeometry 〈·〉 restricted to subsets
of A, with lattice LA = [0̂,A] and order complex �A =�(LA \ {0̂}). The complex
�A is the subcomplex of � subdividing the face of �0 spanned by the vertices i ∈
A, and the corresponding complex ±�A is the subcomplex of ±� subdividing the
faces of the crosspolytope spanned by all vertices ±i, i ∈ A. For any A ∈ L and any
ε : [n]→ {±1}, we define the cell C(A,ε) to be the star of (A, ε) in the complex±�A.

Since ±�A is the boundary of a simplicial polytope by Theorem 3.2, each cell
C(A,ε) is topologically a disk of dimension |A| − 1, and its boundary is the link of
the vertex (A, ε) in the complex ±�A and so is a sphere. We define $L to be the
collection of all the cells C(A,ε), A ∈ L \ {0̂}.

Lemma 3.4 The boundary of C(A,ε) is the union of all cells C(B,δ), where B ⊆ A,
B 
=A and the maps ε, δ agree on ext(A)∩ ext(B).

Proof By definition, we have

C(A,ε) =
⋃

A∈σ∈�
γ |ext(A)=ε|ext(A)

σ γ . (3.1)

Since ∂C(A,ε) is the link of (A, ε) in ±�A, that is,

∂C(A,ε) =
⋃

τ∈lk�A
(A)

γ |ext(A)=ε|ext(A)

τ γ ,

the statement of the lemma is equivalent to

⋃

τ∈lk�A
(A)

γ |ext(A)=ε|ext(A)

τ γ =
⋃

B�A

δ|ext(A)∩ext(B)=ε|ext(A)∩ext(B)

C(B,δ). (3.2)

Here the unions are over γ : [n] → {±1} and δ : [n] → {±1}, respectively, and
lk�A

(A)= {τ ∈�A |A /∈ τ, τ ∪ {A} ∈�A} is the link of A in �A.
To see the equality in (3.2), note that if τγ , τ ∈ lk�A

(A), γ |ext(A) = ε|ext(A), ap-
pears on the left side, then τγ ⊆ C(B,γ ), where B is a maximal element of τ . Since
γ |ext(A)∩ext(B) = ε|ext(A)∩ext(B), the cell C(B,γ |ext(B)) appears on the right side.

For the opposite inclusion, suppose τγ is a maximal simplex of ±�A in C(B,δ),
where B � A and δ|ext(A)∩ext(B) = ε|ext(A)∩ext(B). Then γ |ext(B) = δ|ext(B) by (3.1),
and so

γ |ext(A)∩ext(B) = δ|ext(A)∩ext(B) = ε|ext(A)∩ext(B).

Since i ∈ ext(A)∩B implies i ∈ ext(B) (otherwise i ∈ 〈B \ {i}〉 ⊆ 〈A\ {i}〉), we have
that the only places where γ | ext(A) and ε might not agree are outside of B . Since
ext(τ )⊆ B , we may, by Remark 3.1, adjust γ to γ ′ outside of B so that τγ ′ = τγ and
γ ′|ext(A) = ε|ext(A). Thus τγ appears on the left of (3.2), establishing the equality. �
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We can now prove the main result of this section.

Theorem 3.5 The cells in $L form a regular CW sphere, with face poset QL \ {0̂, 1̂}
and barycentric subdivision ±�.

Proof Since each �ε is a cone on ([n], ε),

|$L| =
⋃

(A,ε)∈QL\{0̂,1̂}
C(A,ε) =

⋃

ε:[n]→{±1}
C([n],ε) = |±�|,

so |$L| is a sphere by Theorem 3.2.
By construction, the only inclusions C(B,δ) ⊆ C(A,ε) possible among cells is when

C(B,δ) ⊆ ∂C(A,ε), so C(B,δ) ⊆ C(A,ε) if and only if (B, δ)≤ (A, ε) in QL \ {0̂, 1̂} by
Lemma 3.4.

To see that |$L| is a regular CW sphere, one can assemble |$L| according to a
linear extension of the poset QL \ {0̂, 1̂}. By Lemma 3.4, all the boundary faces of
any cell C(A,ε) will be present when it comes time to attach it.

Since the poset of inclusions among the faces of $L is QL \ {0̂, 1̂}, it will have
±� as barycentric subdivision by Proposition 3.3. �

3.3 Join-distributive lattices

We note briefly that everything in this section works for a join-distributive lattices,
that is, a lattice L whose dual L∗ (reverse all order relations) is meet-distributive.
Here we have to reverse the roles of 0̂ and 1̂. In particular, both L and L∗ have the
same order complex, so we have �(L \ {1̂})=�(L∗ \ {0̂})=�, which gives rise to
the same simplicial polytope ±�.

For join-distributive L, the poset QL = (QL∗)∗, and so the corresponding spheri-
cal complex $L is defined by defining the maximal cells to correspond to the maxi-
mal elements of QL \ {1̂} (the minimal elements of QL∗ \ {0̂}). Here, the CW sphere
$L = ($L∗)∗ is the dual to $L∗ .

Figure 4 shows the CW sphere for both the meet-distributive L from three collinear
points and the corresponding join-distributive L∗. Note that both ±� and $L retain
the full (Z/2Z)n symmetry of the crosspolytope.

Fig. 4 The spheres $L and $L∗ for L from three collinear points
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We remark that if L is the lattice of the convex geometry on n collinear points,
then one can verify that QL∗ is isomorphic to the Tchebyshev poset Tn of [18]. Het-
yei showed that Tn is the face poset of a regular CW sphere and its order complex
subdivides a crosspolytope. In fact his proof of the latter assertion uses essentially the
reflection construction discussed at the beginning of Sect. 3.1.

4 Enumerative Properties of QL

For a graded poset P (with 0̂ and 1̂) with rank function ρ, define

ν(P )=
∑

t∈P
(−1)ρ(t)μ(0̂, t), (4.1)

where μ denotes the Möbius function as defined in [24, Chap. 3]. If L is the in-
tersection lattice of a real hyperplane arrangement, a well known result due to Za-
slavsky [29] gives ν(L) as the number of connected components in the complement
of the arrangement. He extended this to show how all the face numbers of an arrange-
ment depend solely on the lattice of intersections. As a generalization, [8, Proposi-
tion 4.6.2] expresses the flag numbers of an arrangement, that is, the enumerators of
chains of faces having prescribed rank sets, in terms of the functional ν applied to
intervals in the intersection lattice.

We now show that for join-distributive L, the flag numbers of QL may be com-
puted similarly from intervals in L. (For meet-distributive L, the flag numbers of QL

can be obtained from this by duality.) Suppose that L consists of the closed sets of
a convex geometry ordered by reverse inclusion. In analogy with the zero map on
oriented matroids [8], we define the map z :QL \ {0̂}→ L by z((A, ε))=A.

Proposition 4.1 Let c= {A1 <A2 < · · ·<Ak = 1̂} be a chain in the join distributive
lattice L and z−1(c) denote the set of chains in QL that are mapped by z to c. Then

|z−1(c)| =
k−1∏

i=1

ν([Ai,Ai+1]).

Proof Given a sign function εi : [n] → {±1} for some 2 ≤ i ≤ k, there are
2| ext(Ai−1)\ext(Ai)| essentially different sign functions εi−1 : [n] → {±1} such that
(Ai−1, εi−1) < (Ai, εi) in QL, since the only restriction on εi−1 is that it agree
with εi on ext(Ai) ∩ ext(Ai−1). Thus, starting with εk = ∅, there are precisely∏k−1

i=1 2| ext(Ai)\ext(Ai+1)| ways to build a sequence of sign functions εk, . . . , ε2, ε1 re-
sulting in a chain (A1, ε1) < · · ·< (Ak, εk) in QL.

To complete the proof it suffices to show that for 1≤ i ≤ k,
∑

Ai≤B≤Ai+1

(−1)ρ(Ai ,B)μ(Ai,B)= 2| ext(Ai)\ext(Ai+1)|. (4.2)

The Möbius function of a join-distributive lattice satisfies

(−1)ρ(Ai ,B)μ(Ai,B)=
{

1 if [Ai,B] is a Boolean lattice,
0 otherwise.
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(This follows, for example, from [13, Theorems 4.2, 4.3].) By definition of join-
distributivity, for B ∈ [Ai,Ai+1] the interval [Ai,B] is a Boolean lattice pre-
cisely when B is less than or equal to the join of atoms of [Ai,Ai+1], which are
those Ai \ {a} such that a ∈ ext(Ai) \ ext(Ai+1). Hence the left side of (4.2) re-
duces to a sum of the form

∑
B 1 with B ranging over a Boolean lattice of rank

|ext(Ai) \ ext(Ai+1)|. �

The complete enumerative information on chains in a graded poset P is carried by
the formal power series

FP :=
∑

0̂=t0<t1<···<tk=1̂
0<i1<···<ik

x
ρ(t0,t1)
i1

x
ρ(t1,t2)
i2

· · ·xρ(tk−1,tk)

ik
,

where ρ(s, t)= ρ(t)− ρ(s). As P ranges over the family of graded posets, the FP

span the (Hopf) algebra of quasisymmetric functions, denoted Q. The definition of
FP is due to Ehrenborg [16]. See [25, Sect. 7.19] for further background on quasi-
symmetric functions.

In the context of combinatorial Hopf algebras [1], the functional ν can be seen as
the pullback of a certain “odd character” νQ to the Hopf algebra of graded posets
along the map P �→ FP ; that is, ν(P ) = νQ(FP ). By the general theory there is an
induced Hopf algebra map ϑ :Q→Q satisfying

ϑ(FP )=
∑

0̂=t0<t1<···<tk=1̂
0<i1<···<ik

ν([t0, t1]) · · ·ν([tk−1, tk])xρ(t0,t1)
i1

· · ·xρ(tk−1,tk)

ik
.

In fact ϑ is precisely the map introduced by Stembridge [26] to relate the quasisym-
metric weight enumerator for P -partitions of a labeled poset to the enriched quasi-
symmetric weight enumerator of that poset. See [1, Examples 2.2, 4.4, 4.9].

The main result of this section is an extension of [19, Theorem 5.15]:

Theorem 4.2 For a join-distributive lattice L, we have

2FQL
= ϑ(F

L∪{0̂}),

where 0̂ denotes a new minimum element adjoined to L.

Proof This is essentially the argument used to prove [3, Theorem 3.1]. Extend z to a
map z :QL→ L∪ {0̂} by requiring z(0̂)= 0̂. By Proposition 4.1,

FQL
=

∑

c={0̂=A0<···<Ak=1̂}⊆L∪{0̂}
i1<···<ik

|z−1(c)|xρ(A0,A1)
i1

· · ·xρ(Ak−1,Ak)

ik

=
∑

0̂=A0<···<Ak=1̂
i1<···<ik

ν([A1,A2]) · · ·ν([Ak−1,Ak])xρ(A0,A1)
i1

· · ·xρ(Ak−1,Ak)

ik
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= 1

2

∑

0̂=A0<···<Ak=1̂
i1<···<ik

ν([A0,A1]) · · ·ν([Ak−1,Ak])xρ(A0,A1)
i1

· · ·xρ(Ak−1,Ak)

ik

= 1

2
ϑ(F

L∪{0̂}).

The third equality holds because 0̂ is covered by only one element in L∪{0̂}, implying
that μ(0̂,A1) vanishes if ρ(A1) > 1; hence ν([0̂,A1])= μ(0̂, 0̂)−μ(0̂, [n])= 2. �

Analogously, if Z is the face lattice of the zonotope associated with a hyperplane
arrangement and L is the intersection lattice of the arrangement, then

2FZ = ϑ(F
L∪{0̂})

[3, 5, Proposition 3.5]. It is easy to see that a join-distributive lattice L must be semi-
modular, as are geometric lattices. One is led to speculate whether this relationship
holds for all semimodular lattices, namely, whether for any semimodular lattice L,
there exists a regular CW sphere $L with face poset QL (with 0̂, 1̂ adjoined) such
that

2FQL
= ϑ(F

L∪{0̂}).

The role played by convex closures in this work might be played instead by interval
greedoids (see [10, Theorem 8.8.7]; we are grateful to Anders Björner for suggesting
this connection). Note that this would imply the existence of spheres $L for geomet-
ric lattices that are not necessarily orientable. In nonorientable case, one might also
ask for the relationship of ϑ(F

L∪{0̂}) to the (dual) face counts of the homotopy-sphere
arrangements of Swartz [28]. Simple examples suggest the former might provide
lower bounds for the latter. In the orientable case, these bounds are clearly achieved
by the results of [3, 5]. One could speculate further that achieving the bounds implies
orientability.

There is a well-known bijection between multichains of a fixed length in a dis-
tributive lattice J (P ) and P -partitions (order-preserving maps) whose parts have a
certain fixed upper bound [24, Proposition 3.5.1]. Edelman and Jamison [13, Theo-
rem 4.7] extended this to a bijection between multichains in a meet-distributive lattice
and extremal functions, which are generalizations of P -partitions. We will conclude
with a discussion of an analogous correspondence between multichains in QL and a
new class of functions called enriched extremal functions, which are generalizations
of enriched P -partitions [26]. (We are grateful to Paul Edelman for suggesting that
we seek such a correspondence.)

Let L be the lattice of closed sets of a convex closure 〈·〉 on the set [n]. Consider
the linear ordering −1≺ 1≺−2≺ 2≺ · · · of the set of non-zero integers Z \ {0}. For
a function f : [n]→ Z \ {0} and a closed set A, let fA denote the minimum element
of {f (a) | a ∈A} with respect to ≺.

Definition 4.3 Given a convex closure on [n], a function f : [n] → Z \ {0} is called
enriched extremal function provided that

(1) For every closed set A there exists a ∈ ext(A) such that f (a)= fA, and
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(2) For every a ∈ [n], if f (a) < 0 then a ∈ ext{b ∈ [n] | f (b)& f (a)}.

We remark that if f satisfies condition (1) then {a ∈ [n] | f (a)& b} is closed for
any b ∈ Z \ {0}. This justifies the notation used in (2).

For the convex closure on three collinear points there are four enriched ex-
tremal functions f : {a, b, c} → {−1,1}. They are given by (f (a), f (b), f (c)) =
(1,1,1), (−1,1,1), (1,1,−1), and (−1,1,−1).

Notice that if 〈·〉 is the upper-order-ideal closure on a poset P = ([n],≤P ),
then f is an enriched extremal function if and only if for all a <P b, we have
(1) f (a) ' f (b), and (2) f (a) = f (b) implies f (a) > 0; in other words f is an
enriched P -partition with respect to a natural labeling of P [26].

The zeta polynomial of a graded poset Q, denoted Z(Q, t), is determined by the
property that for a positive integer m, Z(Q,m) is the number of multichains in QL

of the form 0̂ = q0 ≤ q1 ≤ · · · ≤ qm = 1̂. It will be convenient to introduce another
polynomial Z(Q, t) given by

Z(Q, t)=
∑

q maximal in Q\{1̂}
Z([0̂, q], t).

Thus Z(Q,m) is the number of multichains in Q of the form 0̂ = q0 ≤ · · · ≤ qm,
where qm is a maximal element in Q \ {1̂}.

For a positive integer m, recall ±[m] = {−m, . . . ,−2,−1,1,2, . . . ,m}.

Proposition 4.4
Suppose that L is the meet-distributive lattice of closed sets of a convex closure 〈·〉

on [n]. Then for m≥ 1,

Z(QL,m)= # of enriched extremal functions f : [n]→±[m].

Sketch of proof Given a multichain ([n], ε0) = (A0, ε0) ≥ (A1, ε1) ≥ · · ·
≥ (Am, εm)= (∅,∅) in QL \ {1̂}, we obtain an enriched extremal function f : [n]→
{±1, . . . ,±m} by setting, for a ∈Ai−1 \Ai ,

f (a)=
{−i if a ∈ ext(Ai−1) and εi−1(a)=−1,
i otherwise.

Conversely, for an enriched extremal function f : [n] → ±[m], if we write {|f (1)|,
|f (2)|, . . . , |f (n)|} = {s1 < s2 < · · · < sk} then we can recover the corresponding
multichain by setting Ai = {a ∈ [n] | f (a) & −sj } for 1 ≤ j ≤ k and sj−1 ≤ i < sj ,
where s0 = 0, and setting εi(a) equal to the sign of f (a). �

To obtain a similar formula for the zeta polynomial Z(QL,m), we extend 〈·〉 to a
convex closure on [n+1] by declaring that 〈n+1〉 = [n+1]. If L′ denotes the lattice
of closed sets for the new closure then it is easy to see that Z(QL′ ,m)= 2 Z(QL,m).
It follows that

2 Z(QL,m)= # of enriched extremal functions f : [n+ 1]→±[m].
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Proposition 4.4 may be viewed as the enriched analogue of [13, Theorem 4.7],
which asserts that Z(L,m) enumerates certain extremal functions and that by reci-
procity (−1)nZ(L,−m) enumerates strictly extremal functions. It turns out that for
QL we have self-reciprocity, that is,

Z(QL,−t)= (−1)n+1Z(QL, t)

and

Z(QL,−t)= (−1)nZ(QL, t)

for any meet-distributive lattice L (cf. [26, Proposition 4.2]). This follows, for exam-
ple, from [24, Proposition 3.14.1] and the fact that QL is an Eulerian poset of rank
n+ 1.

A further corollary of Proposition 4.4 is that if L is the lattice of upper order ideals
of a poset P and P0 denotes the poset obtained from P by adjoining a new minimum
element, then

2 Z(QL,m)= # of enriched P0-partition f : P0 →±[m].
(See also [19, Corollary 5.3].) As an application we describe a way to translate the re-
cent counterexamples of Stembridge’s enriched poset conjecture [27] into new coun-
terexamples of Gal’s real root conjecture for flag triangulations of spheres [17].

It can be shown (e.g., [24, Chap. 3, Exercise 67b]) that the generating function for
Z(QL,m) satisfies

∑

m≥0

Z(QL,m)tm = t · h�(QL\{0̂,1̂})(t)
(1− t)n+1

,

where h�(QL\{0̂,1̂})(t) denotes the h-polynomial of the order complex �(QL \{0̂, 1̂}).
Stembridge found examples of a poset P such that the numerator of the rational
generating function enumerating enriched P0-partitions has non-real roots, thereby
disproving an earlier conjecture of his [26]. From such a poset one can construct
via our results a flag simplicial complex (meaning every minimal non-face has size
two)—namely �(QL \ {0̂, 1̂}), where L is the lattice of upper order ideals of P—that
barycentrically subdivides a regular CW sphere and whose h-polynomial has non-
real roots. In fact, this simplicial sphere will be a simplicial polytope. We have thus
provided additional counterexamples of Gal’s conjecture that the h-polynomial of a
flag simplicial triangulation of a sphere should have only real roots [17].
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Isotopic Implicit Surface Meshing

Jean-Daniel Boissonnat · David Cohen-Steiner ·
Gert Vegter

Abstract This paper addresses the problem of piecewise linear approximation of im-
plicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function
and the one of a piecewise linear approximation of it are isotopic. Then, we deduce
from this criterion an implicit surface meshing algorithm certifying that the output
mesh is isotopic to the actual implicit surface. This is the first algorithm achieving
this goal in a provably correct way.

Keywords Topology · Triangulations ·Morse theory · Algorithms

1 Introduction

Implicit equations are a popular way to encode geometric objects; See, e.g., [4, 25].
Typical examples are CSG models, where objects are defined as results of boolean
operations on simple geometric primitives. Given an implicit surface, associated geo-
metric objects of interest, such as contour generators, are also defined by implicit
equations. Another advantage of implicit representations is that they allow for ef-
ficient blending of surfaces, with obvious applications in CAD or metamorphosis.
Finally, this type of representation is also relevant to other scientific fields, such as
level set methods or density estimation [8].

However, most graphical algorithms, and especially those implemented in hard-
ware, cannot process implicit surfaces directly, and require that a piecewise linear
approximation of the considered surface has been computed beforehand. As a conse-
quence, polygonization of implicit surfaces has been widely studied in the literature.
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There are two general classes of methods devoted to this problem: continuation meth-
ods and adaptive enumeration methods. A continuation algorithm is surface based in
the sense that it starts from a seed point on the surface, and computes successive
vertices of the mesh while following the surface in some tangent direction. None of
the algorithms in this category comes with topological guarantees: they might miss
some connected components, or merge different components into a single one. Adap-
tive enumeration methods, also called extrinsic polygonization methods [25], are grid
based, or, more generally, based on a tessellation of the ambient 3D space. They con-
sist of two steps: first build a tessellation of space, and then analyze the intersection of
the considered surface with each cell of the tessellation to construct the approxima-
tion. The celebrated marching cube algorithm [16] belongs to this category. The goal
of an implicit surface polygonizer is twofold: its output should be geometrically close
to the original surface, and have the same topology. While the former is achieved by
several polygonization schemes [26], the latter has been barely addressed up to now.

Some algorithms achieve topological consistency, that is, ensure that the result
is indeed a manifold, by taking more or less arbitrary decisions when a topologi-
cally ambiguous configuration is encountered. This implies that their output might
have a topology different from the one of the original surface, except in very specific
cases [15]. The problem of topologically correct polygonization of implicit curves in
the plane is treated by Snyder in [24], who uses an adaptive enumeration method. His
algorithm combines interval arithmetic with a quadtree tessellation of the domain of
interest. It seems hard to generalize this method to implicit surfaces in three-space.
Moreover, this algorithm seems to have high complexity due to the large number of
calls to the interval version of Newton’s method.

When the conference version of the present paper was published (Proceedings
of STOC’04), there was only one paper devoted to the problem of homeomorphic
polygonization of surfaces [19]. Since then there has been several papers [5, 7, 18]
that solve the same problem as ours, or a related one. The main theoretical tool used
in [19] is Morse theory. The authors first find a level set of the considered function
that can be easily polygonized. This initial polygonization is then progressively trans-
formed into the desired one, by computing intermediate level sets. This requires in
particular to perform topological changes when critical points are encountered. This
algorithm has an intuitive justification and seems to work on simple cases. Unfortu-
nately, the authors do not give any proof of its correctness, and it is not clear to us
whether it can deal with complex shapes in a robust way. In particular, the method
does not guarantee that the mesh produced are self-intersection free.

In this paper, we give the first certified algorithm for the more difficult prob-
lem of isotopic implicit surface polygonization. This means that our output can
be continuously deformed into the actual implicit surface without introducing self-
intersections [14]. For instance, if the original implicit surface is knotted, then our
output is guaranteed to be knotted in the same way, which would not be guaranteed
by an algorithm ensuring only homeomorphic polygonization. Moreover, the whole
algorithm can be implemented in the setting of interval analysis. We only assume that
the considered isosurface is smooth, that is, does not contain any critical point. By
Sard’s theorem [22], this is a generic condition. Our polygonization is the zero-set of
the linear interpolation of the implicit function on a mesh of R

3. We first exhibit a set
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of conditions on the mesh used for interpolation that ensure the topological correct-
ness (Sect. 2). Then, we describe an algorithm for building a mesh satisfying these
conditions, thereby leading to a provably correct isotopic polygonization algorithm
(Sect. 3).

We note that since the publication of the conference version of the present pa-
per, another method appeared that solves exactly the same problem as ours [18]. One
difference between the two methods is that [18] uses octrees instead of triangula-
tions. A more important difference is in the refinement stopping criterion: in [18],
cells are subdivided until the intersection of the implicit surface with each cell is
sufficiently flat. By contrast, we stop refinement as soon as a certain global criterion
ensuring topological correctness is met. Hence, we may expect that our method is
faster than [18]. This remains to be proved though, since we did not implement our
method.

2 A Condition for Isotopic Meshing

Let f be a C2 function from R
3 to R, and M be its zero-set. We assume that M , the

surface we want to polygonize, is compact (condition a1). In what follows, T denotes
a triangulation of a domain �⊂ R

3 containing M and f̂ the function that coincides
with f at the vertices of T and that is linearly interpolated on the simplices of T .
A vertex v will be said to be larger (resp. smaller) than a vertex u if f (v) is larger
(resp. smaller) than f (u); the sign of f at a vertex will be referred to as the sign of
that vertex. We set M̂ = f̂−1(0).

2.1 Topological Background

Collapses Loosely speaking, a collapse [20] is an operation which consists of re-
moving cells from a simplicial complex without changing its connectivity. More pre-
cisely:

Definition 1 If L is a simplicial complex and K a subcomplex of L, one says that
there is an elementary collapse from L to K if there is a p-simplex s of L and a
(p− 1)-face t of s such that:

– s is not a face of any simplex of L.
– t is not a face of any simplex of L other than s.
– L is the union of K , s, and all the faces of s.
– ∂s \K is the relative interior of t .

Definition 2 If L is a simplicial complex and K a subset of L, one says that L

collapses to K if there is a subdivision L′ of L such that a subdivision of K can be
obtained from L′ by a sequence of elementary collapses.

Definition 2 is illustrated in Fig. 2. In Fig. 2, the complexes in the middle and on
the right do not collapse to the bold curve because they would need to be “torn” in
order to do so.
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Fig. 1 Elementary collapse

Fig. 2 The grey complex L on the left collapses to the bold curve K (dashed edges represent the subdivi-
sion L′). This is not true for the two other complexes

Smooth Morse theory The topology of implicit surfaces is usually investigated
through Morse theory [17]. Given a real function f defined on a manifold, Morse
theory studies the topological changes in the sets f−1(] −∞, a]) (lower level-sets)
when a varies. In our case, as f is defined on R

3, this amounts to studying how the
topology of the part of the graph of f lying below a horizontal hyperplane changes
as this hyperplane sweeps R

4. Classical Morse theory assumes that f is of class C2.
In this case, as is well known, these topological changes are related to the critical
points of f , that is, the points where the gradient ∇f of f vanishes. More precisely,
the only topological changes occur when f−1(a) passes through a critical point p.
The value a is then called a critical value. Generically, in the 2-dimensional case, the
topology of f−1(] −∞, a]) can change in three possible ways, according to the type
of the critical point p (see Fig. 3).

In Fig. 3, the sets f−1(]−∞, a]) are displayed as light grey regions. The leftmost
column depicts the situation where p is a local maximum, that is, when the Hessian of
f at p is positive. In this case, f−1(] −∞, a+ ε]) is obtained from f−1(] −∞, a−
ε]) by gluing a topological disk along its boundary. In the case of a saddle point
(i.e. the Hessian has critical values of both signs), passing a critical value amounts to
gluing a thickened topological line segment (in grey) along its “thickened” boundary
(in bold). Finally, passing through a local minimum (negative Hessian) just amounts
to adding a disk disconnected from f−1(] − ∞, a − ε]). If p does not fall in any
of these categories, that is, if the Hessian at p is degenerate, then classical Morse
theory cannot be applied. C2 functions the critical points of which all have non-
degenerate Hessian are called Morse functions. From now on, we will assume that f
is a Morse function (condition a2). Also, we require that 0 is not a critical value of f
(condition a3), which implies that M is a manifold.

The number n of negative eigenvalues of the Hessian at p is classically called the
index of p. However, for consistency reasons that will appear later, we call the index
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Fig. 3 Smooth Morse theory in 2D

of p the integer (−1)n. The index of f on a region V is the sum of the indices of all
critical points of f lying in V . The index satisfies the following important theorem:

Theorem 1 (Poincaré-Hopf index theorem) The index of f on one of its lower level-
sets is the Euler characteristic of that lower level-set.

PL Morse theory Morse theory has been extended to a broad class of non-smooth
functions by Goresky and McPherson [11]. We now outline the special case of PL
functions, that is, we consider the case of f̂ . We assume from now on that no two
neighboring vertices map to the same value under f , and that no vertex of T maps to
0 under f (conditions b1 and b2), which guarantees that M̂ is a manifold. We refer
to these assumptions as genericity assumptions. Let us first recall some well-known
definitions [10, 11]:

Definition 1 The star of a vertex is the union of all simplices1 containing this vertex.
The link of a vertex is the boundary of its star.

Definition 2 The lower star St−(v) of f̂ at a vertex v is the union of all simplices
incident on v whose vertices other than v are smaller than v. The lower link Lk−(v)
of f̂ at a vertex v is the union of all simplices of the link of v all vertices of which are
smaller than v. The upper star St+(v) and the upper link Lk+(v) are defined similarly.

1By simplex we mean a closed cell of T of any dimension.
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Fig. 4 Morse theory for PL functions in 2D. Plus and minus signs indicate whether neighbors of v are
larger or smaller than v. Lower links are displayed in bold, sets f̂−1(] −∞, f (v)− ε]) in grey, and sets
f̂−1([f (v)− ε,f (v)+ ε]) in light grey

Figure 4 shows that—for small ε—the topological changes between lower level-
sets f̂−1(]−∞, f (v)− ε]) and f̂−1(]−∞, f (v)+ ε]) are determined by the topol-
ogy of Lk−(v). In particular, in 2D, topological changes occur whenever Lk−(v) is
not connected or equals the link of v (right and middle cases in Fig. 4). This is what
motivates the next definition in the higher dimensional case:

Definition 3 A critical point of f̂ is a vertex whose lower link is not collapsible.2

A vertex that is not a critical point of f̂ will be called regular.

With this definition, topological changes in lower level-sets occur exactly at crit-
ical points, which is consistent with smooth Morse theory. The index of a vertex v

is defined to be 1 minus the Euler characteristic of Lk−(v) [2]. In particular, regular
points all have index 0. The converse is not true however in dimension at least 3. Also,
checking if a vertex is regular is easy for PL functions defined on three-dimensional
meshes: it is sufficient to check that the lower link and the upper link are both non-
empty and connected.3 Define the index of f̂ on a region V to be the sum of the
indices of all critical points of f̂ lying in V . Again, this definition is consistent with
the smooth case, since the PL index can be shown to also satisfy the Poincaré-Hopf
index theorem [2]. The following lemma will be used later:

Lemma 2 If the gradients of f̂ on tetrahedra incident to a vertex v all have a positive
inner product with some vector, then v is regular.

Proof By Proposition 1.2 page 450 in [1], f̂−1(] − ∞, f (v) + ε]) retracts by de-
formation on f̂−1(] −∞, f (v)− ε]) for sufficiently small ε. Hence Lk−(v) has the
homology groups of a point, implying that it is collapsible since it is a subcomplex
of the 2-sphere. �

2A complex is collapsible if it collapses to a point.
3This follows from Alexander duality together with the fact that contractible subcomplexes of the 2-sphere
are collapsible.
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2.2 Main Result

We assume throughout the paper that f and T satisfy conditions a1, a2, a3, b1, b2.
That is, M is compact, f is a Morse function, 0 is not a critical value of f , no vertex
of T map to 0 by f , and no two neighboring vertices of T map to the same value
by f . Additionally, we assume that the following condition holds:

0. f does not vanish on any tetrahedron of T containing a critical point of f .

Theorem 3 Let W be a subcomplex of T satisfying the following conditions:

1. f does not vanish on ∂W .
2. W contains no critical point of f .
2′. W contains no critical point of f̂ .
3. W collapses to M̂ .
4. f and f̂ have the same index on each bounded component of � \W .

Then M and M̂ are isotopic in W . Moreover, the Hausdorff distance between M

and M̂ is smaller than the “width” of W , that is, the maximum over the components
V of W of the Hausdorff distance between the subset of ∂V where f is positive and
the one where f is negative.

Here, isotopic in W means that M can be continuously deformed into M̂ while
remaining a manifold embedded in W , so that M could not be a knotted torus if
M̂ is an unknotted one, for instance. We first prove that under the conditions of the
theorem, M and M̂ are homeomorphic. Under the assumptions of the theorem, the
fact that they actually are isotopic will be a direct consequence of a result obtained
in [6]. Before proving the theorem, we first show by some examples that none of its
assumptions can be removed. In the three following pictures, (local) minima of f are
represented by min, (local) maxima by max, and saddle points by s. Critical points
of f̂ are represented similarly but with a caret. The sign preceding a critical point
symbol indicates the sign of the considered function (f or f̂ ) at the critical point.

Figure 5 shows that condition 0 cannot be removed even in the 2D case. By allow-
ing for critical points of f inside a triangle of T with positive vertices, one can build
an example where M has an extra component with respect to M̂ without violating

Fig. 5 Condition 0 is necessary
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Fig. 6 Critical points do not
determine the topology of
level-sets

Fig. 7 Condition 2′ and 4 are
necessary

conditions involving critical points and their indices. Indeed, in Fig. 5, f has index 0
on the triangle, since minima have index 1 and saddle points have index −1.

The situation in Fig. 6 is a 2D example of two zero-sets M (boundary of the grey
region) and M ′ which are not homeomorphic, though their defining functions have the
same critical points, with the same indices. The dashed curve represents a negative
level-set of the function defining M ′. Such an example can also be built such that
M ′ = M̂ for some mesh T . This shows the importance of the set W in the theorem.
In particular, conditions 1 and 3 cannot be removed. Indeed, if one drops 1, taking
for W any set satisfying 2 and 3 makes the theorem fail. On the other hand, if one
drops 3, any W satisfying 2 and 1 also makes the theorem fail.

Figure 7 shows a 3D example where M is a torus whereas M̂ is a sphere. This is
because f̂ has an extra negative minimum inside f̂−1(] −∞,0]) whereas f has an
index 1 saddle point outside the bounding box �. Depending on whether this extra
minimum lies in W or not (see the circle arc with arrows at both ends in Fig. 7), one
obtains counterexamples to the theorem if assumptions 2′ or 4 are dropped. One can
build similar examples showing that condition 2 is also needed.

We now return to the proof of Theorem 3.

2.3 Proof of the Theorem

Lemma 4 Let S and T be two subsets of a topological space X that meet (i.e.
S ∩ T 
= ∅). Assume the boundary of S, as well as T and X \ T , are connected. If
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X \ S and X \ T meet but their boundaries do not, then S is contained in the interior
of T or the other way around.

Proof The boundary of S is the disjoint union of ∂S ∩ int(T ) and ∂S ∩ int(X \ T )

since ∂S ∩ ∂T is empty. So we have a partition of ∂S in two relatively open sets. As
it is connected, one has to be empty. If ∂S ∩ int(T ) is empty then ∂S ⊂ int(X \ T )

that is, T ∩ ∂S is empty. As a consequence, T is included in int(S) or in int(X \ S)
by connectedness. Since S and T meet, we have that T ⊂ int(S).
Now if ∂S ∩ int(X \ T ) is empty then X \ T is contained in int(S) or in int(X \ S) by
connectedness again. Similarly as above it has to be contained in int(X \ S), which
implies that S ⊂ T . Thus int(S) ⊂ int(T ) so ∂S ⊃ S \ int(T ) = S ∩ ∂T . If S would
meet ∂T , then ∂S and ∂T would meet, which is impossible. Hence, S is included in
the interior of T . �

Lemma 5 Let V be a connected component of W . M ∩ V is a connected smooth
compact manifold without boundary.

Proof Condition 3 implies easily that V collapses to M̂ ∩V . Therefore V contains a
simplex having positive and negative vertices. As a consequence, f vanishes on V .
Since f does not vanish on ∂W (condition 1), M intersects V . Also, M does not meet
the boundary of V (condition 1), so M ∩ V is a smooth compact manifold without
boundary.

Because V , which is connected, collapses to M̂ ∩V , M̂ ∩V is a connected closed
surface. Therefore, the complement of M̂ ∩ V has exactly two components, one of
which is bounded. Because V collapses to M̂ ∩ V , R

3 \ V also has exactly one
bounded component which we denote by A and one unbounded component we de-
note by B (see Fig. 8). The complement of A, which is B ∪V , is connected, because
B and V are connected. For the same reason, A ∪ V is also connected. Moreover,
the complement of A ∪ V , being equal to B , is also connected. In summary, A is
connected as well as its complement, and the same is true for A∪ V .

Call now Mi , i = 1, . . . , n the connected components of M ∩ V (see Fig. 8).
For each i, let Ni be the bounded component of R

3 \Mi . Mi = ∂Ni does not meet
∂(A∪ V )⊂ ∂W (1), and A∪V is connected as is its complement. So Ni is included
in A∪V thanks to Lemma 4. Now Ni contains at least one critical point of f . But as
Ni ⊂ A ∪ V , such a point has to lie in A, by 2. So Ni meets A, but since ∂Ni =Mi

does not meet ∂A ⊂ W̄ , Ni contains A by Lemma 4 again. Suppose M ∩ V is not
connected. Then N1 and N2 both contain A so they intersect. Because M is smooth,
their boundaries do not intersect. So one has w.l.o.g. N2 ⊂ N1. Now f vanishes on
∂(N1 \N2) = ∂N1 ∪ ∂N2, and therefore has an extremum in N1 \N2, which is im-
possible by 2 because N1 \N2 ⊂ V . �

So M ∩V and M̂ ∩V are connected compact surfaces without boundary. As seen
in the preceding proof, A contains all critical points of f enclosed by M ∩ V . Also,
A contains all critical points of f̂ enclosed by M̂ ∩ V by 2′. From condition 4, we
deduce that the volumes enclosed by M ∩ V and by M̂ ∩ V have the same Euler
characteristic, since the Euler characteristic of a lower level set is the index of the
considered function on that lower level set (Theorem 1). So M ∩ V and M̂ ∩ V have
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Fig. 8 Proof of Lemma 5

the same genus and are thus homeomorphic. To complete the proof that M and M̂

are homeomorphic, it remains to check that:

Lemma 6 M is included in W .

Proof Let D be some component of � \W . We claim that M ∩ D is empty. First
M̂ ∩D is empty by condition 1 so w.l.o.g. vertices lying in the closure of D are all
positive. If M ∩D is not empty then some component E of f−1(]−∞,0]) meets D.
Moreover, ∂D does not meet E. Indeed, f is positive at vertices of ∂D, and does
not vanish on ∂D ⊂ ∂W ∪ ∂� by condition 1. So E, being connected, is included
in the interior of D. But then E is compact and thus f reaches its minimum on E,
implying that E contains a (negative) critical point of f . This is impossible since the
tetrahedron containing this critical point would have negative vertices by condition 0,
though being included in D. �

The proof of the bound on the Hausdorff distance between M and M̂ is not diffi-
cult. Pick any point p in M̂ and let V be the component of W containing it. Assume
w.l.o.g. that f (p) > 0 and let p′ be the closest point of p on the component of ∂V

where f is negative. By the intermediate value theorem, the line segment pp′ meets
M at a point q . The distance between p and q is smaller than the distance between
p and p′ which is smaller than the Hausdorff distance between the two components
of ∂V . This shows one part of the bound. The other part can be proved in a similar
way.

Now that we know that M and M̂ are homeomorphic, the fact that they are isotopic
is a consequence of Proposition 7, which is proved in [6].

Proposition 7 Let M̂ be an orientable compact surface without boundary and let M
be a surface such that

• M̂ is homeomorphic to M ,
• M separates the sides of a topological thickening4 W̃ of M̂ .

Then M is isotopic to M̂ in W̃ .

4This means that there is a homeomorphism # : W̃ → M̂ × [0,1] mapping M̂ to M̂ × {1/2}.
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Indeed, considering a regular neighborhood of W [20] yields the desired topolog-
ical thickening W̃ , as can be seen from the uniqueness theorem for regular neighbor-
hoods from piecewise-linear topology [20].

3 Algorithm

In the algorithm, we take as W a set that is related to the notion of watershed from
topography. This set satisfies properties 2′ and 3 by construction. In Sect. 3.1, we give
its definition, basic properties, and construction algorithms. Section 3.2 describes the
meshing algorithm itself, which ensures that W fulfills also conditions 0, 1, 2, and 4,
and proves its correctness.

3.1 PL Watersheds

We first assume that the mesh T conforms to M̂ , i.e. M̂ is contained in a union of
triangles of T . We will see later how to remove this assumption, which is in con-
tradiction with the genericity assumptions. Define W+ as the result of the following
procedure:

Positive Watershed Algorithm

set W+ = M̂ .
mark all vertices of M̂ .
while there is a positive regular unmarked vertex v of T

such that the vertices of Lk−(v) are marked
do

set W+ =W+ ∪ St−(v).
mark v.

end while
return W+

W− is defined as the result of the same algorithm applied to −f . We set W =
W+∪W−. Note that W contains no critical point of f̂ . Also, positive marked vertices
are exactly the vertices of W+.

Lemma 8 W collapses to M̂ .

Proof It is sufficient to show the result for W+. Let W+
i be the state of W+ after i

steps of the algorithm, and let vi be the i-th marked vertex. As W+
0 = M̂ , the only

thing we have to show is that W+
i+1 collapses to W+

i for all i. Let us first show that
Lk−(vi) is included in W+

i . If it is not the case, let u be the largest vertex of some
simplex s of Lk−(vi) that is not in W+

i . Simplex s is in St−(u) which is therefore not
included in W+

i . This is a contradiction since vi is marked. Therefore Lk−(vi)⊂W+
i .

Now since vi is regular, Lk−(vi) is collapsible. Consider a sequence of elemen-
tary collapses allowing to collapse Lk−(vi) to p and let sj ⊂ Lk−(vi), j = 1, . . . , n
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Fig. 9 Construction of W+:
lower stars of regular vertices
(such as v1) are added one by
one. Lower stars of critical
vertices (v2) are discarded

be the sequence of simplices defining these elementary collapses. The simplices
conv(sj ∪ vi), j = 1, . . . , n and the edge pvi define a valid sequence of elementary
collapses allowing to collapse W+

i+1 =W+
i ∪ St−(vi) to W+

i , which concludes the
proof. �

One may prefer a more intrinsic definition of W+. In the same spirit as in [9], one
can define a partial order on the vertices of T by the closure of the acyclic relation ≺
defined by u≺ v if u ∈ Lk−(v) or u= v. We will denote this order ≺ again and say
that v flows into u whenever u ≺ v. The next lemma shows that the vertices of W+
do not depend on the order in which the vertices are considered in the construction.

Lemma 9 The vertices of W+ are exactly the positive vertices that do not flow into
any positive critical point of f̂ .

Proof The vertices of W+ have this property by construction. Let p be a positive
vertex not belonging to W+ and assume p does not flow into any positive critical
point. In particular, p is regular by reflexivity. Hence, as p /∈ W+, the lower link
of p, which is not empty, has to contain an unmarked vertex. It cannot contain a
critical point because as T conforms to M̂ , vertices in Lk−(p) are all non-negative,
and so p would flow into a positive critical point. There is thus an unmarked vertex
in Lk−(p). If we can choose an unmarked positive vertex p1 in Lk−(p), then p1 does
not belong to W+, and flows into a positive critical point. Repeating this process with
p replaced by p1, we find a strictly decreasing sequence of positive vertices, that
thus has to end. Let pk be its last term. The lower link Lk−(pk) contains no positive
unmarked vertices. But as T conforms to M̂ , vertices in Lk−(pk) are all non-negative.
Since vertices of M̂ are marked, we get a contradiction. �

Note that W is the union of simplices with all their vertices in W . As a result,
we get an intrinsic definition of W , and not only of its vertices. From an algorithmic
point of view, it may be efficient to examine the vertices in increasing order in the
construction of W+. One can for instance maintain the ordered list of vertices neigh-
boring W , always consider the first element of this list for marking, and discard it if it
cannot be marked. Indeed, with this strategy, a vertex that cannot be marked at some
point will never be marked.
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Another consequence of Lemma 9, which will be useful later, goes as follows.
Let c be the minimum of |f̂ (v)|, and hence the minimum of |f (v)| over all critical
points v of f̂ .

Lemma 10 W contains all vertices the image of which under |f | is smaller than c.

Proof Let p be such that |f (p)| < c. Without loss of generality, assume that p is
positive. Any critical point v into which p flows satisfies f (v) < f (p). So it cannot
be positive by definition of c: by Lemma 9, p lies in W+. �

Non conforming case We now drop the assumption that T conforms to M̂ and as-
sume genericity again. From T and M̂ one can build a mesh S that is finer than T ,
conforms to M̂ , and has all its extra vertices on M̂ . Indeed, it suffices to triangulate
the overlay of M̂ and T without adding extra vertices except those of M̂∩T . This can
be done as the cells of the overlay are convex. The construction of W described above
can then be applied to S. A positive vertex of T has its lower link in S containing only
vertices of M̂ if and only if its lower link in T contains only negative vertices. Thus,
in order to find the positive vertices of W ∩ T , one can apply the positive watershed
algorithm described above to T , if at the initialization step one marks all negative
vertices having a positive neighbor instead of those of M̂ . Still, note that if a negative
critical point has a positive neighbor, then this neighbor will not be marked by this
modified algorithm, whereas it could have been marked by the standard algorithm
applied to S. However, if we assume that vertices having a neighbor of opposite sign
are regular (condition c), then this does not happen and the result W ′ of the modified
algorithm is equal to W . The negative vertices of W ∩ T are determined similarly. In
our meshing algorithm, we will not build the mesh S, but rather make sure condition c
holds, and apply the modified algorithm.

Updating W ′ The intrinsic definition of W—or W ′—given above yields an effi-
cient way of updating W when T undergoes local transformations. It is sufficient to
describe the algorithm for updating the vertices of W+. Let T1 be a mesh obtained
from T by removing some set of tetrahedra E and remeshing the void left by E.
Call A the set of positive critical points of the linear interpolation of f on T1 that
lie in E. Then the vertex set of the positive watershed W+

1 associated with T1 can
be computed from the vertex set of W+ by performing the following two operations.
To begin with, the set of vertices of T1 that flow into A must be removed from W+
(Lemma 9), which amounts to a graph traversal. The remaining vertices of T1 all be-
long to W+

1 . Then, mark these vertices and apply the positive watershed algorithm
loop to get the other vertices of W+

1 .

Remark The watershed we compute is in general strictly included in the ‘true wa-
tershed’. The ‘true watershed’ seems hard to compute, though, and can intersect a
triangle in a very complicated way. There might be interesting intermediate defin-
itions between ours and the true one, for instance based on the PL analog of the
Morse complex introduced in [10].
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3.2 Main Algorithm

Theorem 3 enables us to build a mesh isotopic to M using two simple predicates,
vanish and vanish’. The predicate vanish (resp. vanish’) takes a triangle or a box
and return true if f (resp. ∇f ) vanishes on that triangle or that box. We actually do
not even need predicates, but rather filters. More precisely, vanish (or vanish’) may
return true even if f does not vanish on the considered element, but not the other way
around. Still, we require that vanish returns the correct answer if the input triangle or
box is sufficiently small. Such filters can be designed using interval analysis.

Our algorithm also requires to build a refinable triangulation of space such that f̂
(resp. ∇f̂ ) converges to f (resp. ∇f ) when the size of the elements tends to 0. As no-
ticed by Shewchuk [23], this is guaranteed provided all tetrahedra have dihedral and
planar angles bounded away from π . In [3], Bern, Eppstein and Gilbert described
an octree-based algorithm yielding meshes the angles of which are bounded away
from 0. In our case, which is much easier, the desired triangulation can simply be
obtained by adding a vertex at the center of each square and each cube of the oc-
tree, triangulating the squares radially from their center, and doing the same with the
cubes. Indeed, resulting planar and dihedral angles are all bounded away from π .
One can expect that this scheme does not produce too many elements upon refine-
ment, because the size of elements is allowed to change rapidly as we do not require
that these have a bounded aspect ratio (see Fig. 10). The main algorithm uses an oc-
tree O , the associated triangulation T , and the watershed W ′. We will say that two
(closed) boxes of O are neighbors if they intersect. O is initialized to a bounding
box � of M . Such a bounding box can be found by computing the critical points of
the coordinate functions restricted to M , if possible, or by using interval analysis. Be-
sides, we maintain five sets of boxes ordered by decreasing size. Critical1 is a certain
set of boxes obtained by interval analysis (see below). This set has the property that
the union of its boxes, which we call the critical set, encloses all critical points of f
but does not intersect M . Critical2 contains all boxes containing a critical point of f̂
that is not in a box belonging to Critical1. Index contains all boxes neighboring a box
b in Critical1 such that f and f̂ have different indices on the connected component of
the critical set that contains b. We defer the description of a method that computes the

Fig. 10 Octree and
triangulation used in the
algorithm. In this 2D example,
only the edges of the
triangulation of the box on the
right are shown (dashed)
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index of f on a box in a certified way to the appendix. Boundary1 contains all boxes
containing two neighboring vertices of opposite signs one of which is critical for f̂
(condition c, see paragraph Non conforming case). Boundary2 contains all boxes
that are not included in W ′, and that contain a triangle t of ∂W ′ such that vanish(t)
is true. Finally, for our algorithm to work, we need to introduce a slight modification
of the watershed W ′, which we call W ′′. The modification consists of taking as W ′′+
vertices—and the same for W ′′−—the positive vertices that do not flow into positive
critical points of f̂ nor into vertices lying in a box containing a positive critical point
of f . With this modification, Lemma 8 still holds and Lemma 10 holds if one replaces
c by the minimum c′ of c and the minimum of |f | on the boxes containing a critical
point of f . Also, c′ is positive as f does not vanish on these boxes.

Main Algorithm

Initialization Refine O until all boxes b satisfy either vanish(b) is false or
vanish’(b) is false. Insert all boxes b such that vanish’(b) is true in Critical1.
compute T and W ′′, and the four sets Critical2, Boundary1,
Boundary2, and Index.
while (true) do

update T , W ′′, and the four sets.
if Critical2 
= ∅ then

split its first element.
else if Boundary1 
= ∅ then

split its first element.
else if Boundary2 
= ∅ then

split its first element.
else if f and f̂ have different indices on some component of the critical set then

split the first element of Index.
else

return M̂

end if
end while

Thanks to Theorem 3 applied to W ′′, the correctness of this algorithm amounts
to its termination. We now show that the main algorithm terminates. First note that
after the initialization step, no box containing a critical point of f is split, because
such boxes belong to Critical1. The magnitude of ∇f is thus larger than a certain
constant gmin on the complement C of the union of these boxes. Let us show that
the size of the boxes of Critical2 that are split at some point is bounded from below.
As ∇f̂ converges to ∇f , there is a number s1 such that for each tetrahedron with
diameter smaller than s1, ‖∇f −∇f̂ ‖ is smaller than gmin/2 on the interior of that
tetrahedron. If the tetrahedron is included in C, ‖∇f ‖> gmin, which implies that ∇f̂

and ∇f make an angle smaller than π/6.

Lemma 11 Let A⊂R
3 be such that ∂A is a manifold included in C and containing

no vertex of T . Suppose that all boxes meeting ∂A are smaller than s1. Then f and
f̂ have the same index on A.
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Fig. 11 Proof of Lemma 11

The proof of Lemma 11 resorts to stratified Morse theory, which is an extension
of both the smooth and PL Morse theory to the case of piecewise smooth functions.
We refer to [11] for a complete exposition of this subject.

Proof For p ∈ ∂A, let d(p) denote the largest number such that the simplices of
T that meet the open ball centered at p of radius d(p) all share a vertex, v(p). The
quantity d(p) is the 3-dimensional analog of the local feature size function introduced
by Ruppert [21]. We call dmin the minimum of d , which is known to be positive, and
set k equal to the minimum of dmin and e, where e is half the distance from ∂A to the
closest box that does not meet ∂A.

Let us now consider a smooth nonnegative function φ : R3 → R with support in-
cluded in the open ball centered at 0 of radius k. The convolution of f̂ and φ is a
smooth function f̃ . Let p be a point at distance less than e from ∂A. The gradient of
f̃ at p is a weighted average of the gradients of f̂ at points lying in the open ball cen-
tered at p and with radius k. All gradients involved in this average are gradients of f̂
on tetrahedra incident on v(p). Moreover, the size of these tetrahedra is smaller than
s1 because k ≤ e. As a consequence, all gradients considered make an angle smaller
than π/6 with the gradient of f at v(p). As the weights in the average are nonnega-
tive, we have that the angle between ∇f̃ (p) and ∇f (v(p)) is smaller than π/6. Also,
the angle between ∇f (v(p)) and ∇f (p) is less than π/3 since both vectors make
an angle smaller than π/6 with the gradient of f̂ on some tetrahedron containing p

and v(p). Finally, we get that ∇f̃ (p) and ∇f (p) have a positive inner product.
Let now U1 be a neighborhood of ∂A whose closure does not contain any vertex

of T and let U2 be an open set such that U1∪U2 =R
3. We also require that the Haus-

dorff distance between U1 and ∂A is smaller than e and that U2 ∩ ∂A= ∅. Denote by
{u1, u2} a partition of unity subordinate to the covering {U1,U2}. This means that u1
and u2 are nonnegative smooth function defined on R

3, with support in U1 and U2
respectively, and such that u1+ u2 = 1. In particular, u2 equals 1 on the complement
of U1, and u1 equals 1 on the complement of U2. So the function g = u2f̂ + u1f̃

coincide with f̂ on R
3 \U1 and with f̃ on R

3 \U2. Now recall that ∇f̃ and ∇f have
a positive inner product on ∂A, which is contained in the complement of U2. Hence
the linear homotopy between both vector fields does not vanish on ∂A: by normaliza-
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tion, one gets a homotopy between ∇f̃ /‖∇f̃ ‖ and ∇f/‖∇f ‖, considered as maps
from ∂A to the unit sphere. Because the degree (see [13] p. 134 for a definition) is
invariant under homotopy, we deduce that these maps have the same degree, which
shows that f and f̃ have the same index on A. Now as g and f̃ coincide in a neigh-
borhood of ∂A, f and g have the same index on A. To complete the proof, it thus
suffices to show that g and f̂ also have the same index on A. Now the critical points
of f̂ are critical for g, with the same index, as U1 contains no such point. Potential
other critical points of g can only lie in U1. But the gradient of g at any point p of
U1 where it is defined is a convex combination of ∇f̃ (p) and ∇f̂ (p): it thus has a
positive inner product with ∇f (p). By the result of [1] which we mentioned when we
stated Lemma 2, this implies that the index of p is 0. We thus proved the announced
claim. �

Suppose that some box b of Critical2 of size smaller than s1 is split. Let v be a
critical point of f̂ included in b. All the boxes containing v are in Critical2 and their
size is smaller than s1 since we consider boxes in decreasing order. Now the gradi-
ents of f̂ on tetrahedra incident on v all have a positive inner product with ∇f (v)

(recall ∇f and ∇f̂ make an angle less than π/6), which is a contradicts Lemma 2,
implying that v is not critical. So the conclusion is that Critical2 becomes—at least
temporarily—empty after a finite number of consecutive splittings of boxes in Criti-
cal2.

Now if the algorithm splits a box b in Boundary1, then b contains a critical point
of f̂ . This critical point, which we assume to be positive, belongs to a box containing
a critical point of f as Critical2 is empty. So the maximum of |f | on b is larger than
the minimum of |f | on the boxes containing a critical point of f (i.e. c′). On the
other hand, f vanishes on b since b contains a negative vertex. This cannot happen
if the size of b is below a certain value, so that boxes in Boundary1 cannot be split
indefinitely.

Suppose that the algorithm splits arbitrarily small boxes in Boundary2. If a small
enough box b is split, then b contains a triangle t of W ′′ on which f vanishes. So, if
the size of b is small enough, the maximum of |f | on b will be smaller than c′. By
Lemma 10, all vertices of b will then belong to W ′′ so b⊂W ′′ which is a contradic-
tion. Thus the size of split boxes in Boundary2 is also bounded from below.

To complete the proof of termination, we need to prove that Index does not contain
boxes that are too small. This is true by applying Lemma 11 to smooth neighborhoods
of each connected component of the critical set. Finally:

Theorem 12 The main algorithm returns an isotopic piecewise linear approximation
of M .

If one wishes to guarantee in addition that the Hausdorff distance between M

and its approximation is less than say ε, by Theorem 3 it is sufficient to modify the
positive watershed algorithm so as to control that the width of W is smaller than ε.
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4 Conclusion

We have given an algorithm that approximates regular level sets of a given function
with piecewise linear manifolds having the same topology. Though no implemen-
tation has been carried out, we believe that it should be rather efficient due to the
simplicity of the involved predicates and the relative coarseness of the required space
decomposition.

Appendix

We now briefly explain how to compute the index of a generic smooth function f :
R

3 → R on a box B ⊂ R
3 in a certified way. Without loss of generality, we assume

that B = [0,1]3. Our approach is based on a recursive definition of the index of a
vector field introduced in [12]. The central formula in this work is the following (see
Fig. 12). If V denotes a vector field (in our case, V = ∇f ) defined on a compact
smooth n-manifold M and not vanishing on ∂M , then the index of V satisfies:

Ind(V )= χ(M)− Ind(∂−V ).

Here ∂−V is a vector field defined on ∂−M , which is the set of boundary points where
V points inwards. On ∂−M , ∂−V coincides with the projection of V on the tangent
space of ∂M . Now suppose we can find a (n− 1)-submanifold M1 ⊂ ∂−M that con-
tains all zeroes of ∂−V . Then, to compute the index of V on M , it is sufficient to
compute the index of ∂−V on M1 (and the Euler characteristic of M1). By repeated
application of this principle, we can express the index of V as a sum of Euler char-
acteristics and indices of vector fields defined over 1-manifolds, which are trivial to
compute.

To apply this strategy to our case, in which M = B has edges and corners, we
conceptually consider offsets of M , which are smooth, and let the offset parameter
go to 0. Almost by definition, in this setting the zeros of ∂−V are the points where
V belongs to the normal cone and points inwards. Using interval analysis, it is not
difficult to find a subset B1 of ∂−B that contains all such points, and such that ∂−V

Fig. 12 An index 2 vector
field V on a square C

represented by a few flow lines.
∂−C is in bold. The dot on ∂−C
represents the unique zero
of ∂−V , which has index −1
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does not vanish on ∂B1. To do this, we recursively subdivide the faces of the cube
until all cells satisfy one of the two following conditions: either the cell does not
contain a zero of ∂−V , or it is included in ∂−B . The union of the cells of the latter
type will then provide a suitable B1. For a square C lying on the face supported by,
say, the plane z= 1, sufficient conditions ensuring that C does not contain any zero
of ∂−V are

(Vz(C) > 0) or (0 /∈ Vx(C)) or (0 /∈ Vy(C)).

Here Vz(C) > 0 for instance means that the z-coordinate of V is positive on C. The
condition under which C is included in ∂−B is obviously Vz(C) < 0. Edges of the
cube might also have to be subdivided. Without loss of generality we assume that
edge E is supported by the line with equation x = y = 1. Then sufficient conditions
under which E cannot contain a zero are as follows:

(Vx(E) > 0) or (Vy(E) > 0) or (0 /∈ Vz(E)).

Also, the condition under which E is included in ∂−B is (Vx(E) < 0) and
(Vy(E) < 0). It can be checked that this subdivision process terminates if V has
no zeroes on the surface of the cube, which is a generic condition. Upon termination
of the subdivision process, we obtain a set B1 to which the formula can be applied. It
thus remains to recursively subdivide the boundary edges of B1 in a similar way as
above to complete the computation of the index of V .
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Line Transversals to Disjoint Balls

Ciprian Borcea · Xavier Goaoc · Sylvain Petitjean

Abstract We prove that the set of directions of lines intersecting three disjoint balls
in R

3 in a given order is a strictly convex subset of S
2. We then generalize this result

to n disjoint balls in R
d . As a consequence, we can improve upon several old and new

results on line transversals to disjoint balls in arbitrary dimension, such as bounds on
the number of connected components and Helly-type theorems.

Keywords Transversal · Geometric permutation · Convexity

1 Introduction

Helly’s theorem [12] of 1923 opened a large field of inquiry designated now as geo-
metric transversal theory. A typical concern is the study of all k-planes (also called
k-flats) which intersect all sets of a given family of subsets (or objects) in R

d . These
are the k-transversals of the given family and they define a certain subspace of the
corresponding Grassmannian. True to its origin, transversal theory usually implicates
convexity in some form, either in its assumptions, its proofs or most likely, both.

In what follows, k = 1 and the objects will be pairwise disjoint closed balls with
arbitrary radii in R

d . Our main result is the following convexity theorem:
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Theorem 1 The directions of all oriented lines intersecting a given finite family of
disjoint balls in R

d in a specific order form a strictly convex subset of the sphere
S
d−1.

As a first consequence, the connected components in the space of line transver-
sals correspond to the possible geometric permutations of the given family, where a
geometric permutation is understood as a pair of orderings defined by a single line
transversal with its two orientations. This is not true in general, not even for n ≥ 4
disjoint line segments in R

3.
Before discussing other implications, we want to emphasize that the key to our

theorem resides in the case of three disjoint balls in R
3, and the approach we use

to settle this case is geometrically quite revealing, in that it shows the nuanced de-
pendency of the convexity property on the curve of common tangents to the three
bounding spheres.

1.1 Relation to Previous Work

Helly’s theorem [12] states that a finite family S of convex sets in R
d has non-empty

intersection if and only if any subfamily of size at most d + 1 has non-empty inter-
section. Passing from k = 0 to k = 1, one of the early results is due to Danzer [7]
who proved that n disjoint unit disks in the plane have a line transversal if and only
if every five of them have a line transversal. Hadwiger’s theorem [11], which allows
arbitrary disjoint convex sets in the plane as objects, showed the importance of the
order in which oriented line transversals meet the objects: when every three objects
have an oriented line transversal respecting some fixed order of the whole family,
there must be a line transversal for the family.

This stimulated interest in comparing, for arbitrary dimension, two equivalence
relations for line transversals: a coarse one, geometric permutation, determined by
the order in which the given disjoint objects are met (up to reversal of orientation)
and a finer one, isotopy, determined by the connected components of the space of
transversals.

In general, for d ≥ 3, the gap between the two notions may be wide [8], and fami-
lies for which the two notions coincide are thereby “remarkable”. The first examples
of such families are “thinly distributed” balls1 in arbitrary dimension, as observed by
Hadwiger [9, 10]. Then, the work of Holmsen et al. [14] showed that disjoint unit
balls in R

3 provide remarkable cases as well. They verified the convexity property
in the case of equal radii, and their method can be extended to the larger class of
“pairwise inflatable” balls2 in arbitrary dimension [6], inviting the obvious question
regarding disjoint balls of arbitrary radii. The significance of this problem is also dis-
cussed in the recent notes [19, p. 191–195] where one can find ample references to
related literature.

1A family of balls is thinly distributed if the distance between the centers of any two balls is at least twice
the sum of their radii.
2A family of balls is pairwise inflatable if the squared distance between the centers of any two balls is at
least twice the sum of their squared radii.
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Our solution for the case of arbitrary radii is based on a new approach, suggested
by the detailed study of the curve of common tangents to three spheres in R

3 [2]. The
main ideas are outlined in Sect. 3 as a preamble to the detailed proof in Sects. 4 to 6.

In dimension three particularly, there are connections with other problems in visi-
bility and geometric computing. Changes of visibility (or “visual events”) in a scene
made of smooth obstacles typically occur for multiple tangencies between a line and
some of the obstacles [20]. Tritangent and quadritangent lines play a prominent role in
this picture as they determine the 1- and 0-dimensional faces of visibility structures.
An attractive case is that of four balls in R

3 which allow, generically, up to twelve
common real tangents [17]. Degenerate configurations are identified in [3]. Variations
on such problems, where reliance on algebraic geometry comes to the forefront, are
surveyed in [22]. See also a brief account in [1].

1.2 Further Implications

Danzer’s theorem [7] motivated several other attempts to generalize Helly’s result for
k = 1, that is, for line transversals. Whereas Helly’s theorem only requires convexity,
the case k = 1 appears to be more sensitive to the geometry of the objects. In partic-
ular, Holmsen and Matoušek [15] showed that no such theorem holds in general for
families of disjoint translates of a convex set, not even with restriction on the ordering
à la Hadwiger. Our Theorem 1 has consequences in this direction, presented below
in Sect. 7.

Hadwiger’s proof of his Transversal Theorem [11] relies on the observation that
any minimal pinning configuration, that is, any family of objects with an isolated line
transversal that would become non-isolated should any of the objects be removed,
has size 3 if the objects are disjoint convex sets in the plane. Theorem 1 implies that
any minimal pinning configuration of disjoint balls in R

d has size at most 2d − 1
(Corollary 14). A generalization of Hadwiger’s theorem for families of disjoint balls
then follows (Corollary 15).

2 Preliminaries

2.1 Notations and Prerequisites

For any two vectors a, b of R
3, we denote by 〈a,b〉 their dot product and by a× b

their cross product. These expressions will retain their algebraic meaning when a and
b are complex vectors.

The space of directions in R
3 is the real projective space P

2 = P
2(R) envisaged

either as the space of lines through the origin (and then the direction of a line is
given by its parallel through the origin) or as the “plane at infinity” in the completion
P

3 = R
3 ∪ P

2 (and then the direction of a line is simply its point of intersection
with the plane at infinity). A non-zero vector u ∈R

3 may also stand for the direction
(u1 : u2 : u3) it defines in P

2.
Convexity in P

2 is relative to the metric induced by the standard metric of the
sphere through the identification S

2/Z2 = P
2. All considerations can be pulled-back

to S
2 by orienting the lines.
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In following our convexity arguments related to three disjoint balls in R
3, it

may be helpful to bear in mind that the regions of P
2 determined by directions of

line transversals are always contained in the simply-connected side of some smooth
conic3. When testing convexity, one may use affine charts R

2, and verify locally, then
globally, that the boundary curve “stays on the same side of its tangent”. If this prop-
erty were to fail at some point, one must have an inflection point there or, in one word,
a flex.

We denote by B0,B1,B2 three balls in R
3 with respective centers c0, c1, c2 and

squared radii s0, s1, s2, sk = r2
k . Since degenerate cases are eventually shown to

follow from the generic case (Lemma 10), we assume here that we have a non-
degenerate triangle of centers.

2.2 Direction-sextic

The directions of common tangent lines to B0,B1,B2 make up an algebraic curve
of degree six in P

2, which we call the direction-sextic and denote by σ . To take
advantage of symmetries in expressing σ , we introduce the edge vectors eij = cj − ci
and denote by δij = 〈eij , eij 〉 their squared norms. For a direction u ∈R

3 \ {(0,0,0)},
we put:

q = q(u)= 〈u,u〉,
tij = tj i = 〈eij × u, eij × u〉 = δij q − 〈eij ,u〉2.

Thus in P
2(C), the equation tij = 0 gives the two tangents from eij to the imaginary

conic q = 0.

Proposition 2 The direction-sextic for B0,B1,B2 can be given by means of the Cay-
ley determinant:

σ = σ(u)= det

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 1 1

1 0 qs0 qs1 qs2

1 qs0 0 t01 t02

1 qs1 t01 0 t12

1 qs2 t02 t12 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Proof One way to find the equation of the direction curve is to begin with a de-
scription of lines in R

3 by parameters (p,u) ∈ R
3 × P

2, where p is the orthogonal
projection of the origin on the given line, and u is the direction of the line. With
c0 = 0 and abbreviations:

ai = ai(u)= 〈ci × u, ci × u〉 + (s0 − si)〈u,u〉 = t0i + (s0 − si)q, i = 1,2,

3The complement of any proper non-empty conic in the real projective plane consists of two connected
components, one homeomorphic to a Möbius strip and the other to a disc.
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affine common tangents obey the system (see e.g. [3] or [17]):

〈p, ci〉 = ai(u)
2〈u,u〉 , i = 1,2, 〈p,u〉 = 0, 〈p,p〉 = s0.

The direction-sextic is obtained by eliminating p from this system. The fact that
the resulting equation allows the stated Cayley determinant expression is given a
natural explanation in [2], but can be directly verified by computation. �

The direction of an oriented line can be represented either by a point on the unit
sphere or, by the whole ray emanating from the origin and passing through that point.
Our expression “cone of directions” stems from the latter representation, which con-
verts questions of convexity in S

2 into equivalent questions of convexity in R
3. In the

projective context, it will be understood that we mean the image via S
2/Z2 = P

2.

2.3 Cone of Directions

The cone of directions K(B0B1B2) of B0,B1,B2 is the set of directions of all ori-
ented line transversals to these balls which meet them in the stated order: B0 ≺
B1 ≺ B2. The boundary of K(B0B1B2) consists of [6, Lemma 9] certain arcs of
the direction-sextic σ and certain arcs of directions of inner special bitangents i.e.
tangents to two of the balls passing through their inner similitude center [13]. Fig-
ure 1 offers an illustration of a cone of directions. The plane of the picture must be
conceived as an affine piece R

2 ⊂ P
2.

We recall the fact that a common tangent (here called bitangent) for two disjoint
spheres (more precisely, the boundary of two disjoint balls) passes through their inner
similitude center if and only if it is contained in a common tangent plane which has
the two spheres on opposite sides. If a transversal for the two balls has the direction
of an inner special bitangent, it must actually be that bitangent. The cone of directions

Fig. 1 Left: The trace of three balls B0,B1,B2 on their plane of centers. Right: A planar depiction
(hatched area) of K(B1B0B2). The direction-sextic is drawn in thick grey, the Hessian in black, and the
conics of inner special bitangents in thin grey



Line Transversals to Disjoint Balls 161

for a pair of disjoint balls is bounded precisely by their inner special bitangents. In
P

2 they trace a (circular) conic.
The points of σ that appear on the boundary ∂K(B0B1B2) can be characterized as

follows:

Proposition 3 The direction of a tritangent � meeting the three balls B0,B1,B2 in
the prescribed order belongs to ∂K(B0B1B2) if and only if � intersects the triangle
of centers c0c1c2.

Proof The set of directions of common transversals to disjoint balls is a proper subset
of P

2.
Assume that � is neither parallel to the plane of centers, nor contained in it.
If � does not intersect the triangle of centers, then, in the projected configuration

on �⊥, there is a line λ through two of the projected centers, separating the foot of
� from the third projected center. When moving � parallel to itself and closer to λ,
along a perpendicular to the latter, all distances to centers decrease. This shows that
there are lines parallel to � intersecting the open balls, and therefore the direction of
� is not on the boundary.

On the other hand, when the tritangent � intersects the triangle of centers in a
point P , there is no motion of � parallel to itself which can decrease all distances to
the centers. Indeed, reasoning in �⊥ with respect to the triangle of projected cen-
ters, this would decrease all areas over edges, while these areas have a constant
sum. This shows that no other transversal but � can have its direction.4 Looking
now in the plane spanned by � and the normal ν to the plane of centers at P ,
the rotation of �, with center P , brings its direction inside K(B0B1B2) when ap-
proaching the plane of centers, and takes it outside K(B0B1B2) when approach-
ing ν. Indeed, when rotating towards the plane of centers all distances to centers
decrease, while increasing in the opposite sense. Some other transversal with di-
rection between � and ν (and parallel to the �, ν-plane) cannot exist since by the
same argument of rotating towards the plane of centers, one would obtain a real-
ization of the direction of � not passing through P . Thus, the direction of � is in
∂K(B0B1B2).

If � is parallel to the plane of centers (but not contained in it), we may consider any
parallel plane which is closer to c0c1c2 than � is, and find in this plane transversals to
the open balls parallel to �. Thus, � cannot be on the boundary.

Finally, if � is in the plane of centers, we look at the “section configuration” traced
in that plane. Either all three discs are on one side of � and then � does not cross the
triangle of centers and is not on the boundary, or � has two discs on one side with the
third on the other side and must cross the triangle of centers. Then, it is actually an
inner special bitangent for two pairs of balls (and an outer special bitangent for the
third pair) and belongs to the boundary. �

4One could conclude from here using [6, Lemma 9], which shows that a direction of K(B0B1B2) is in the
interior if and only if there is a line transversal to the open balls with that direction.
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Proposition 4 For three disjoint balls, we have:

(i) The cone of directions K(B0B1B2) consists of a single point if and only if there
is a tritangent contained in the plane of centers and tracing in it a pinned pla-
nar configuration, that is, the disc traced by B1 is on the opposite side of the
tritangent from the discs traced by B0 and B2;

(ii) In all other cases, the cone of directions K(B0B1B2) is the closure of its interior.

Proof (i) Sufficiency: the plane intersecting the plane of centers along the tritangent
and perpendicular to it, will have B1 on one side, and B0 and B2 on the other. An
oriented transversal meeting B0 first, then B1, and then B2 must be contained in this
separating perpendicular plane, and thus coincide with the given tritangent. Necessity
is covered by our arguments in (ii).

(ii) Suppose we are not in case (i), and the centers are not aligned. If we have a
transversal � with direction belonging to the boundary of K(B0B1B2), we may as-
sume the transversal is not in the plane of centers, since a non-pinned planar case is
clear. But then � and its reflection in the plane of centers define a plane perpendicu-
lar to the latter and all lines between them (passing through their intersection) have
directions belonging to the interior, because all distances from centers decrease.

The case of collinear centers is trivial; there is only one geometric permutation
(given by the line of centers) and the cone of directions is a disc-like region bounded
by a conic. �

Corollary of the proof Cones of directions and connected components of transversals
for three disjoint balls in R

3 are contractible.
Indeed, the argument above shows that we may contract first to the segment in

K(B0B1B2) consisting of directions in the plane of centers, and then contract this
segment.

Obviously, the same holds true at the level of the connected components in the
space of transversals.

2.4 Hessian and Flexes

The Hessian of the direction-sextic σ is defined as the determinant of the matrix of
second derivatives:

H(σ)=H(σ)(u)= det

(
∂2σ

∂ui∂uj

)

.

The Hessian curve, or simply “the Hessian”, is the projective curve defined by the
zero-set of this determinant.

The Hessian of a direction-sextic for three balls in R
3 is thus an algebraic curve

of degree twelve. The intersection between σ and its Hessian H(σ) consists of all
singular points of σ and all flexes of σ [4].

3 Outline of the Proof

For d = 2 the convexity theorem is elementary, and for d ≥ 3 it is easily reduced to
the case of three disjoint balls in R

3. The key property used to settle this case is the
following:
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Proposition 5 For disjoint balls B0,B1,B2, any arc of their direction-sextic σ which
belongs to the boundary ∂K(B0B1B2) contains no flex or singularity of σ between
its endpoints.

The convexity of the cone of directions K(B0B1B2) can then be inferred from the
known fact that a simple C1-loop in R

2 ⊂ P
2 with no inflection (in Euclidean terms:

with positive curvature on its algebraic arcs) bounds a convex interior [23].
Thus, what is essential for this approach, is to obtain sufficient control over the

flexes of σ . At first sight, the fact that the intersection of σ and the Hessian H(σ) in
P

2(C) has, counting multiplicities, 6×12= 72 points, leaves little hope for the possi-
bility of “tracking” all flexes. However, there is another way to exploit the Hessian: fix
a direction and consider the ball configurations which have a tritangent with that di-
rection and give the same planar configuration of four points when projecting, tangent
and centers, on some orthogonal plane; evaluate the Hessians of the corresponding
direction-sextics and determine which can vanish for the given direction.

The important point is that one can anticipate, from the form of the equations, that
the computations must result in polynomials of low degree, which will be subject, in
their turn, to geometric control.

The unfolding of this scenario is presented below and involves a certain amount
of explicit computations. Although no part is too complicated to be done by hand, we
have relied on Maple [18] in a few instances.

4 Absence of Flexes and Singularities

4.1 The Hessian Test

Following Proposition 3, we need only consider directions of tangents to the three
balls that cross the triangle of centers and are not directions of inner special bitan-
gents. When projecting along such a tangent on a perpendicular plane, the projected
centers form a triangle containing the point image of the tangent as an interior point.
One may start with the latter planar configuration, a triangle and an interior point,
and ask which ball configurations yield this picture (by projection along a common
tangent intersecting at the interior point)? Since the radii of the balls are given, one
has only to “lift” the vertices of the triangle in the normal direction and obtain all the
desired configurations.

We equip R
3 with a coordinate frame such that the triangle lies in the plane

e⊥3 ⊂ R
3 and has its vertices at c̃0 = 0, c̃1, c̃2, with the understanding that there is

a point inside, with squared distances si to these vertices. Then, we use three real
parameters, x0, x1 and x2, to describe the possible positions of the three centers:

c0 = c̃0 + x0e3, c1 = c̃1 + x1e3, c2 = c̃2 + x2e3.

We use Proposition 2 to express the corresponding direction-sextic σ and its
Hessian H(σ) as functions of x= (x0, x1, x2) ∈R

3 depending on c̃0, c̃1, c̃2, s0, s1, s2.
Proposition 5 is now equivalent to proving that

H(σ)(0,0,1) 
= 0
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holds for all initial data (triangle and interior point) and all (x0, x1, x2) corresponding
to disjoint balls.

4.2 A Quadric and a Quartic

We have reduced the probe for flexes to the study of a polynomial function of x (and
parameters) which can be explicitly computed.

The parameters involved are the following:

c̃0 = (0,0,0), c̃1 = (a,0,0), c̃2 = (b, c,0),

the triangle of centers (c̃0, c̃1, c̃2) having interior point:

p =
∑

pi c̃i
∑

pi

= p1c̃1 + p2c̃2
∑

pi

, p0,p1,p2 > 0.

Let vk = p− c̃k . Then sk = r2
k = 〈vk,vk〉.

The computation gives the result:

H(σ)(0,0,1)= 21252a6c6

(
∑

pi)5
[H2(x)+H4(x)],

where H2 and H4 have degree respectively 2 and 4 in x= (x0, x1, x2):

H2 =H2(x)=−a2c2
(∏

pk

)∑
pipj (xi − xj )

2,

H4 =H4(x)=
∑

p3
ksk(xi − xk)

2(xj − xk)
2,

with cyclic products and sums for {i, j, k} = {0,1,2}. Thus, away from (0,0,0), H2
is negative and H4 is positive. The aim is now to show that ball disjointness is enough
to ensure the positivity of H2 +H4.

4.3 Hyperboloid and Octant

We can further transform these expressions by retaining as parameters the (positive
numbers) pi and qj = pj rj , and renaming the squares zk = (xi − xj )

2. This gives:

H2 =H2(z)=−a2c2
(∏

pk

)∑
pipj zk,

H4 =H4(z)=
∑

pkq
2
k zizj .

From now on, assume that
∑

pi = 1. We have to replace � = a2c2, which is
four times the squared area of the triangle c̃0, c̃1, c̃2, by its expression in terms of pi

and qj .

Lemma 6 We have:

�= a2c2 = Q

4
∏

p2
k

, with Q=
∑

(2q2
i q

2
j − q4

k ).
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Proof This is an elementary computation, which may be conducted as follows. By
the definition of vi , we have

∑
pivi = 0.

From 〈∑pivi ,vj 〉 = 0, we obtain a linear system for 〈vi ,vj 〉, i 
= j :

pi〈vi ,vk〉 + pj 〈vj ,vk〉 = −pk〈vk,vk〉 = −pksk,

with solutions:

〈vi ,vj 〉 =
p2
ksk − p2

i si − p2
j sj

2pipj

= q2
k − q2

i − q2
j

2pipj

.

Four times the squared area of a triangle p, c̃i , c̃j is a Gram determinant:
∣
∣
∣
∣
〈vi ,vi〉 〈vi ,vj 〉
〈vi ,vj 〉 〈vj ,vj 〉

∣
∣
∣
∣= sisj − 〈vi ,vj 〉2 = Q

4p2
i p

2
j

,

where Q=∑(2q2
i q

2
j − q4

k ). Hence the area of the triangle c̃0, c̃1, c̃2 is:

1

4
Q1/2

∑ 1

pipj

= Q1/2

4
∏

pk

,

resulting in:

�= a2c2 = Q

4
∏

p2
k

. �

Several new substitutions will be in order for the study of H2+H4. Since a positive
factor won’t affect sign considerations, we will use the symbol ∗H for any positive
multiple of H2 +H4. We have found above:

∗H = ∗H(z)=−1

4
Q
∑ zk

pk

+
∑

pkq
2
k zizj ,

with the shorthand Q=∑(2q2
i q

2
j − q4

k ). We put pipj zk = q2
kwk and obtain, up to a

positive factor:

∗H = ∗H(w)=−1

4
Q
∑

q2
kwk +

∏
q2
k

∑
wiwj .

With one more positive rescaling, and ak = Q

4q2
i q

2
j

, we have:

∗H = ∗H(w)=
∑

wiwj −
∑

akwk.

We can turn now to the conditions expressing the fact that the spheres with centers
ci = c̃i + xie3 and radii ri are disjoint. They are:

zk = (xi − xj )
2 > (ri + rj )

2 − δij = (ri + rj )
2 − 〈vi − vj ,vi − vj 〉,
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that is,

zk >
q2
k − (qi − qj )

2

pipj

.

In w-coordinates, the “disjointness conditions” become

wk > 1−
(
qi − qj

qk

)2

.

Note that from
∑

pivi = 0 it follows that qk = ‖pivi‖ > 0 are the lengths of
the three edges in a triangle, and therefore the latter expressions are positive by the
triangle inequality.

The purpose now is to study the position of the octant defined by the disjointness
conditions relative to the affine quadric in R

3 defined by ∗H(w)= 0. We use first a
translation by β , in order to absorb the linear part in ∗H :

∗H = ∗H(w)=
∑

(wi − βi)(wj − βj )−
∑

βiβj ,

with β respecting:

βi + βj = ak, that is βk = 1

2
(ai + aj − ak).

This makes

∑
βiβj = 1

4

∑
(ak + ai − aj )(ak − ai + aj )= 1

4

∑
(2aiaj − a2

k ),

and results in

∑
βiβj = 1

4

(
Q

4
∏

q2
k

)2∑
(2q2

i q
2
j − q4

k )=
Q3

43
∏

q4
k

> 0.

Thus, with translated coordinates tk = wk − βk we have a hyperboloid of two
sheets:

∗H = ∗H(t)=
∑

ti tj − Q3

43
∏

q4
k

= 0,

which lies on the positive side of its asymptotic cone
∑

ti tj = 0.

Lemma 7
∑

ti tj = 0 is a circular cone with axis t0 = t1 = t2. The two components
of its smooth points circumscribe the positive and negative open octants, which are
both contained in the positive part

∑
ti tj > 0.

The open octant defined by our disjointness conditions wk > 1 − (
qi−qj
qk

)2 is a
translate of the open positive octant, and its position relative to the hyperboloid
∗H(w) = 0 is determined by the position of its vertex V. Continuing to refer here
to w-coordinates, we have:
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Lemma 8 The point V= (1− (
qi−qj
qk

)2)0≤k≤2 is on the “positive side” of the hyper-
boloid ∗H(w)= 0 and on the “positive side” of the plane

∑
tk =∑(wk − βk)= 0,

that is:

∗H(V) > 0 and
∑(

1−
(
qi − qj

qk

)2)

>
Q

8
∏

q2
k

∑
q2
k .

Proof A Maple assisted computation shows that ∗H(V) factors as

∗H(V)= 3
∏

(qi + qj − qk)
2

4
∏

q2
k

,

from which the first inequality follows.
The second inequality, which determines on which of the two components of the

positive side of the hyperboloid V lies, is satisfied for q0 = q1 = q2, and by continuity,
must be satisfied for any other triangle edges, since vertex V cannot “jump” from one
component to the other. �

It is now clear, geometrically, that the octant where the disjointness conditions are
satisfied and the hyperboloid indicating a flex or a singularity for the corresponding
configuration have no point in common. This completes the proof of Proposition 5.

5 Convexity of the Cone for 3 Balls in R
3

We consider now three disjoint closed balls B0,B1,B2 described by parameters: cen-
ters c0, c1, c2 and radii r0, r1, r2. We shall prove first the convexity of any cone of
directions in the generic case i.e. when the centers and radii are in the complement
of a proper algebraic subset. Then, we will show that the generic case implies the
general case.

Lemma 9 The direction cone K(B0B1B2) of a generic triple of disjoint balls in R
3

is strictly convex.

Proof If ∂K(B0B1B2) is made only of directions of inner special bitangents, strict
convexity is immediate, since K(B0B1B2) is then an intersection of convex regions
bounded by conics. Otherwise, genericity allows us to assume that the direction-
sextic σ is non-singular at all its contacts with any of the three conics determined
by inner special tangents. Since the direction-sextic necessarily lies on the simply-
connected side of each of the three conics, these contacts are tangency points at which
∂K(B0B1B2) is locally convex. Thus, if we start at some point of ∂K(B0B1B2) and
follow the boundary curve, we obtain, by Proposition 5, a differentiable simple loop
of class C1, which is, locally, always on the same side of its tangent. For any affine
plane R

2 ⊂ P
2 covering the loop, and any Euclidean metric in it, this means positive

curvature on all its algebraic arcs and this implies [23] that our simple loop bounds
a compact convex set. In fact strictly convex, because of non-vanishing curvature. By
Proposition 4 and its Corollary, this strictly convex set is K(B0B1B2). �
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The passage from the generic case to the general case is based on:

Lemma 10 Let B = (B0,B1,B2) be a configuration of three disjoint closed balls,
and suppose K(B0B1B2) has non-empty interior. If B is the limit of a sequence
of configurations B(ν) with a convex cone of directions for the given ordering, then
K(B0B1B2) is convex as well.

Proof By Proposition 4, it is enough to prove that, for any two points in the interior,
the (geodesic) segment joining them is contained in K(B0B1B2).

Take two interior points. By assumption, for sufficiently large ν, the segment join-
ing them is contained in all corresponding cones for B(ν). Consider one point of the
segment, and project the sphere configuration along the direction defined by the point,
on a perpendicular plane. We have to prove that the disks representing the projected
balls have at least one point in common.

Suppose they don’t. Then so would discs with the same centers and radii increased
by a small ε > 0. But then we can find, for sufficiently large ν, configurations B(ν)

with centers projecting less than ε/2 away from those of B and corresponding radii
with less than ε/2 augmentation. Then the point of the segment cannot be in the
respective cones of directions, a contradiction.

Note that strict convexity still follows from non-zero curvature on smooth arcs for
non-collinear centers, while for collinear centers it is obvious because of rotational
symmetry. �

Lemmas 9 and 10 immediately imply Theorem 1 for the case of three balls in R
3:

Proposition 11 The directions of all oriented lines intersecting three disjoint balls
in R

3 in a specific order form a strictly convex subset of the sphere S
2.

6 Convexity of the Cone for n Balls in R
d

The convexity result of Proposition 11 generalizes to arbitrary n and d as follows:

Proof of Theorem 1 Recall that, for any collection of balls in R
3, a direction will be

realized by some transversal if and only if the orthogonal projection of the balls on
a perpendicular plane has non-empty intersection. By Helly’s Theorem in the plane,
the direction cone for a sequence of n ≥ 3 balls is the intersection of the direction
cones of all its triples. Thus, the direction cone of n ordered 3-dimensional disjoint
balls is strictly convex for any n.

Given a sequence S of n disjoint balls in R
d , let K be its direction cone for a

prescribed order of intersection. Let u and v be two directions in K , �u and �v be
two corresponding line transversals and let E denote the 3-dimensional affine space
these two lines span (or a 3-space containing their planar span, should the lines be
coplanar).

E∩S is a collection of 3-dimensional disjoint balls whose corresponding direction
cone is convex on S

2. Thus, for any direction on the small arc of great circle joining
u and v there exists an order-respecting transversal to S , because it already exists
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Fig. 2 a The trace of three disjoint balls on the plane of centers, with ball B1 moving on the horizontal
axis towards ball B0. The small square is used for close-ups below. b, c, d The direction-sextic (in thick
gray), its Hessian (in black) and arcs of inner special bitangent conics, when balls B0 and B1 are disjoint
(b), tangent (c) and intersecting (d)

in E. It follows that K is convex, and again, from the three dimensional case, strictly
convex. �

Let us emphasize the importance of the assumption that the balls are disjoint.
Figure 2 illustrates a transition from convex to non-convex direction cones as three
disjoint balls move and allow an overlap.

7 Implications

This section explores some consequences of Theorem 1. Similar results were proven
for the case of unit balls in [6] and, with Theorem 1, the proofs carry through. We
thus omit all arguments here and point to the relevant lemmata in [6].
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7.1 Isotopy and Geometric Permutations

An immediate corollary of Theorem 1 is the correspondence of isotopy and geometric
permutations for line transversals to disjoint balls:

Corollary 12 The set of line transversals to n disjoint balls in R
d realizing the same

geometric permutation is contractible.

The proof given by Cheong et al. [6, Lemma 14] for disjoint unit balls immediately
extends, with Theorem 1, to the case of disjoint balls.

Smorodinsky et al. [21] showed that in the worst case n disjoint balls in R
d ad-

mit *(nd−1) geometric permutations. The same bound thus applies for the number
of connected components of line transversals, improving on the previous bounds of
O(n3+ε) for d = 3 and of O(n2d−2) for d ≥ 4 due to Koltun and Sharir [16]. If the
radii of the balls are in some interval [1, γ ] where γ is independent of n and d , then
the number of components of transversals is O(γ logγ ), following the bound on the
number of geometric permutations obtained by Zhou and Suri [24]. These results are
summarized as follows:

Corollary 13 In the worst case, n disjoint balls in R
d have *(nd−1) connected com-

ponents of line transversals. If the radii of the balls are in the interval [1, γ ], where
γ is independent of n and d , this number becomes O(γ logγ ).

7.2 Minimal Pinning Configurations

A minimal pinning configuration is a collection of objects having an isolated line
transversal that ceases to be isolated if any of the objects is discarded. An important
step in the proof of Hadwiger’s transversal theorem [11] is the observation that, in
the plane, any minimal pinning configuration consisting of disjoint convex objects
has cardinality 3. Cheong et al. [6, Proposition 13] proved that any minimal pinning
configuration consisting of disjoint unit balls in R

d has cardinality at most 2d − 1.
With Theorem 1, the same holds for disjoint balls of arbitrary radii:

Corollary 14 Any minimal pinning configuration consisting of disjoint balls in R
d

has cardinality at most 2d − 1.

7.3 A Hadwiger-Type Result

A result in the flavor of Hadwiger’s Transversal Theorem [6, Theorem 1] generalizes
to disjoint balls of arbitrary radii:

Corollary 15 A sequence of n disjoint balls in R
d has a line transversal if any sub-

sequence of size at most 2d has an order-respecting line transversal.

The “pure” generalizations [6, 14] of Helly’s theorem, i.e. without additional con-
straints on the ordering à la Hadwiger, use the fact that n≥ 9 disjoint unit balls have
at most 2 geometric permutations [5]. Since the latter is not true for balls of arbitrary
radii [21], obtaining a Helly-type theorem for line transversals in this case requires
different arguments.
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Norm Bounds for Ehrhart Polynomial Roots

Benjamin Braun

Abstract M. Beck et al. found that the roots of the Ehrhart polynomial of a
d-dimensional lattice polytope are bounded above in norm by 1+ (d + 1)!. We pro-
vide an improved bound which is quadratic in d and applies to a larger family of
polynomials.

Keywords Lattice polytopes · Polynomial roots · Ehrhart theory

Let P be a convex polytope in Rn with vertices in Zn and affine span of dimension d ;
we refer to such polytopes as lattice polytopes and to elements of Zn as lattice points.
A remarkable theorem due to Ehrhart [5] is that the number of lattice points in the
t th dilate of P , for non-negative integers t , is given by a polynomial in t of degree
d called the Ehrhart polynomial of P . We denote this polynomial by LP (t), and
let EhrP (x) =∑t≥0 LP (t)x

t denote its associated rational generating function. For
more information regarding Ehrhart theory, see [2].

In [1] it was shown that for a lattice polytope P of dimension d , the roots of
LP (t) are bounded above in norm by 1+ (d + 1)!. However, the authors suggested
that a bound that is polynomial in d should exist and questioned whether this is a
property of Ehrhart polynomials in particular or of a broader class of polynomials
(see Remark 4.4 on p. 26 of [1]). Our answer is the following:

Theorem 1 If f is a nonzero polynomial of degree d with real-valued, non-negative
coefficients when expressed with respect to the polynomial basis

Bd :=
{(

t + d − j

d

)

: 0≤ j ≤ d

}

,
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then all the roots of f lie inside the disc with center −1/2 and radius d(d − 1
2 ).

The link between this situation and Ehrhart polynomials is that for a polynomial f
of degree d over the complex numbers, there always exist complex values hj so that

∑d
j=0 hjx

j

(1− x)d+1
=
∑

t≥0

f (t)xt .

As a result, f can be expressed as

f (t)=
d∑

j=0

hj

(
t + d − j

d

)

.

This is easily seen by expanding the rational function as a formal power series. We
then apply the following theorem, originally due to Stanley:

Theorem 2 (See [7] and [2]) If P is a d-dimensional lattice polytope with

EhrP (x)=
∑d

j=0 hjx
j

(1− x)d+1
,

then the hj are non-negative integers.

Thus, our result applies to Ehrhart polynomials and more generally to Hilbert poly-
nomials of certain Cohen–Macaulay modules (see Corollary 4.1.10 of [3]).

Proof of Theorem 1 Let d be a positive integer, let Dd := {z: |z+ 1
2 | ≤ d(d− 1

2 )}, and
let f be as given in the theorem. It is enough to show that for any complex number
z not in Dd there exists an open half-plane with zero on the boundary containing
Bd(z) := {

(
z+d−j

d

)
: 0 ≤ j ≤ d}, since this implies that f (z) is a nontrivial, non-

negative linear combination of elements in a common open half-plane and is hence
nonzero.

Each element of Bd(z) is given by the product of 1/d! and d consecutive members
of M := {(z+ d), (z+ d − 1), . . . , (z− d + 2), (z− d + 1)}. The elements of M are
contained in a disk D(z) of diameter 2d − 1 centered at z + 1

2 . We claim that if
|z+ 1

2 |> d(d − 1
2 ), which holds for z /∈Dd , then the angular width of D(z) is less

than π
/
d . To see this, consider one of the lines through the origin tangent to D(z). The

triangle formed by the origin, the point of tangency, and z+ 1
2 is a right triangle with

hypotenuse of length |z + 1
2 | and a side of length d − 1

2 opposite the interior angle
formed at the origin. Hence, the interior angle at the origin is sin−1(d − 1

2/|z+ 1
2 |),

and thus the total angular width of D(z) is 2 sin−1(d − 1
2/|z+ 1

2 |). Finally, we see
that

2 sin−1
(

d − 1
2

|z+ 1
2 |
)

< 2 sin−1
(

d − 1
2

d(d − 1
2 )

)

= 2 sin−1
(

1

d

)

<
π

d
.
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Therefore, the elements of M all lie in a cone in the plane with apex the origin and
angle width less than π/d . Thus, the angular difference between (z+ d − j) · · · (z−
j + 1) and (z+ d − j − 1) · · · (z− j) is less than π/d for any j , 0≤ j < d . Hence,
Bd(z) lies in an open half-plane and our proof is complete. �

All the polynomials in Bd have roots contained in {−d,−d + 1, . . . , d − 1}. For
1≤ j ≤ d , the number of polynomials in Bd with −j as a root is equal to the number
with −1 + j as a root. Thus, the location of the center of the disc in our theorem
should not come as a surprise since the roots of the elements of Bd are highly sym-
metric with respect to the point −1/2. The line x =−1/2 also plays a prominent role
for Ehrhart polynomials of cross-polytopes, as shown in [4] and [6].

It is interesting that our result only depends on f having a “nice” representa-
tion with respect to Bd . In our situation, the reason that Bd is better than the stan-
dard monomial basis is that each of the polynomials in Bd is of full degree d , and
hence each such polynomial has d roots. By adapting our method, one can obtain
root bounds for any polynomial in the non-negative real span of any basis for degree
d polynomials containing only polynomials of degree d having positive real leading
coefficients and known roots.

Acknowledgements Thanks to John Shareshian for suggestions and advice, Matthias Beck and Sinai
Robins for introducing me to Ehrhart theory, an anonymous referee for thoughtful comments, and Laura
Braun for support and encouragement.
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Helly-Type Theorems for Line Transversals to Disjoint
Unit Balls

Otfried Cheong · Xavier Goaoc ·
Andreas Holmsen · Sylvain Petitjean

Abstract We prove Helly-type theorems for line transversals to disjoint unit balls
in R

d . In particular, we show that a family of n ≥ 2d disjoint unit balls in R
d has a

line transversal if, for some ordering≺ of the balls, any subfamily of 2d balls admits a
line transversal consistent with ≺. We also prove that a family of n≥ 4d − 1 disjoint
unit balls in R

d admits a line transversal if any subfamily of size 4d − 1 admits a
transversal.

Keywords Geometric transversal theory · Helly-type theorem · Hadwiger-type
theorem · Spheres · Balls · Line transversal

1 Introduction

Helly’s celebrated theorem, published in 1923, states that a finite family of convex
sets in R

d has non-empty intersection if and only if any subfamily of size at most
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d + 1 has non-empty intersection. Subsequent results of similar flavor (that is, if
every subset of size k of a set S has property P then S has property P) have been
called Helly-type theorems and the minimal such k is known as the associated Helly
number. Helly-type theorems and tight bounds on Helly numbers have been the object
of active research in combinatorial geometry. In this paper, we investigate Helly-type
theorems for the existence of line transversals to a family of objects, i.e. lines that
intersect every member of the family.

History The earliest Helly-type theorems in geometric transversal theory appeared
about five decades ago. In 1957, Hadwiger [14] showed that an ordered family S of
compact convex sets in the plane admits a line transversal if every triple admits a line
transversal compatible with the ordering. (Note that a line transversal to S may not
respect the ordering on S ; to prove the existence of a line transversal that respects
the ordering on S one needs the assumption that any four-tuple admits an order-
respecting line transversal.) In what follows, we shall talk about a Hadwiger-type
theorem when the family of objects under consideration is ordered.

The same year, Danzer [6] proved the following result concerning families of pair-
wise disjoint unit discs in the plane: if such a family consists of at least 5 discs, and if
any 5 of these discs are met by some line, then there exists a line meeting all the discs
of the family. This answered a question of Hadwiger [11], who gave an example (5
circles, almost touching and with centers forming a regular pentagon) which shows
that 5 cannot be replaced by 4. Grünbaum [9] showed that the same result holds if
“unit disc” is replaced by “unit square”, and conjectured that the result holds for fam-
ilies of disjoint translates of any compact convex set in the plane. This long-standing
conjecture was finally proved by Tverberg [21]. A weaker form of the conjecture
which assumed 128 instead of 5 had been established earlier by Katchalski [18].

Danzer [6] conjectured that Helly-type theorems exist for line transversals to dis-
joint unit balls in arbitrary dimension. The first positive result was obtained by Had-
wiger [12, 13] for the case of families of “thinly distributed” balls, where the distance
between any two balls is at least the sum of their radii. This result was extended by
Ambrus et al. [1] to disjoint unit balls, in arbitrary dimension, the centers of which are

at distance at least 2
√

2+√2. Danzer’s conjecture for three-dimensional disjoint unit
balls, without additional assumption on their distribution, was only settled in 2001 by
Holmsen et al. [17]. It should be stressed that in dimension three (and higher), nei-
ther Hadwiger nor Helly-type theorems exist for line transversals to general convex
objects, not even for translates of a convex compact set [16].

In his paper [6], Danzer also asked whether the Helly number for line transversals
to disjoint unit balls in R

d is a strictly increasing function of d . The only known
lower bound is the planar example of Hadwiger [11]. This number was proved to be
at most d2 for thinly distributed balls in R

d by Hadwiger [12, 13], a bound improved
to 2d − 1 by Grünbaum [10] using the topological Helly theorem. For disjoint unit
balls in dimension three, Holmsen et al. [17] proved bounds of respectively 12 and 46
for the Hadwiger-type and Helly-type theorems, which were later improved to 12
and 18 by Cheong et al. [5].

We refer the reader to the recent survey by Wenger [22] for a broader discussion
of geometric transversal theory.



Helly-Type Theorems for Line Transversals to Disjoint Unit Balls 177

Our Results In this paper we complete the proof of Danzer’s conjecture. More pre-
cisely, we show that Helly-type theorems exist for line transversals to families of
pairwise-inflatable balls in R

d . A family F of balls in R
d is called pairwise-inflatable

if for every pair of balls B1,B2 ∈F we have γ 2 > 2(r2
1 + r2

2 ), where ri is the radius
of Bi , and γ is the distance between their centers. A family of disjoint unit balls is
pairwise-inflatable, since γ 2 > 2(r2

1 + r2
2 ) implies γ > r1+ r2 when r1 = r2, and so is

a family of balls that is “thinly distributed” in Hadwiger’s sense. Pairwise-inflatable
families of balls are not only more general than families of disjoint congruent balls
but allow to generalize most of our proofs obtained in three or four dimensions to
arbitrary dimension; the key property, which we prove in this paper, is that the set of
pairwise-inflatable families is closed under intersection with affine subspaces, unlike
the set of families of disjoint congruent balls.

An order-respecting line transversal to a subset of an ordered family is a line
transversal that respects the order induced by the family on that subset. An ordered
family F of pairwise-inflatable balls is said to have property (OR)T if it admits a
(order-respecting) line transversal. If every k or fewer members of F admit a (order-
respecting) line transversal then F is said to have property (OR)T (k). Our first main
result requires that the line transversals to the subfamilies induce consistent order-
ings:

Theorem 1 For any ordered family of pairwise-inflatable balls in R
d , ORT (2d) im-

plies T and ORT(2d + 1) implies ORT .

We then remove the condition on the ordering at the cost of increasing the Helly
number to 4d − 1 and restricting ourselves to disjoint unit balls:

Theorem 2 For any family of disjoint unit balls in R
d , T (4d − 1) implies T .

Our results are thus both qualitative and quantitative: we generalize Danzer’s result
to arbitrary dimension and prove that the Helly number grows at most linearly with
the dimension. We build on the work of Holmsen et al. [17] who obtained results
similar to Theorems 1 and 2 for disjoint unit balls in three dimensions, albeit with
larger bounds on Helly numbers (12 and 46 instead of 6 and 11, respectively). A
previous version of this paper, also restricted to disjoint unit balls in three dimensions,
appeared in the Symposium on Computational Geometry 2005 [4].

Paper Outline To prove Theorem 1, we start with a family of balls having property
ORT(2d) and continuously shrink them until that property no longer holds, following
Hadwiger’s approach [14]. Before the set of order-respecting line transversals to a 2d-
tuple of balls disappears, it first reduces to a single line (Corollary 12) and this line is
an isolated line transversal to 2d − 1 of the balls (Proposition 13). That line has then
to be a line transversal to the whole family and Theorem 1 follows; considerations on
geometric permutations yield Theorem 2.

Proving the two properties mentioned above (Corollary 12 and Proposition 13) is
elementary in the plane but requires considerably more work in higher dimension.
Our proofs rely on Proposition 4, the cornerstone of this paper, which shows that
the directions of order-respecting line transversals to a family of pairwise-inflatable
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balls form a strictly convex subset of S
d−1. This directly implies Corollary 12 and

yields that order-respecting line transversals form a contractible set in line space.
From there, a well-known topological analogue of Helly’s theorem (Theorem 3) leads
to a weaker version of Theorem 1 sufficient to prove Proposition 13.

2 Preliminaries

Transversals Let F be a finite family of disjoint compact convex sets F in R
d with

a given linear order ≺F . We will call F a sequence to stress the existence of this
order. A line transversal to a sequence F is an oriented line that intersects all the
objects of F in the order prescribed by ≺F . A line transversal is strict if it intersects
the interior of each object in F .

For a sequence F , let K(F)⊂ S
d−1 denote the set of directions of line transversals

to F . That is, a direction vector v ∈ S
d−1 is in K(F) if there is a line transversal to

F with direction v. Note that the direction vector of a line transversal determines the
order in which it intersects a family of disjoint convex objects. Thus, if sequences
F1 and F2 are two distinct orderings of the same collection of objects, then K(F1)

and K(F2) are disjoint. We will call K(F) the cone of directions of F . Similarly, let
K◦(F) be the set of directions of strict line transversals to F .

Note that all our line transversals must respect a given order. Only in Sect. 5 will
we consider line transversals without order restriction. For clarity, let us call such a
line transversal an unordered line transversal.

We consider the natural topology over the set of oriented lines in R
d : U is a neigh-

borhood of a line � if and only if for some δ > 0 it contains all lines �′ such that the
shortest distance between � and �′ and the angle between their direction vectors are
both less than δ. An isolated line transversal to a family of objects F is an isolated
point of the set of line transversals to F , that is, a line transversal � which is a con-
nected component of the line transversals to F .

Given a ball A and a direction v in R
d , we denote by Pv(A) the (d − 1)-

dimensional ball obtained by projecting A orthogonally on an hyperplane with nor-
mal v. Observe that a sequence of balls F has a line transversal with direction v if and
only if the balls Pv(F) := {Pv(A) | A ∈ F} have non-empty intersection. Similarly,
F has a strict line transversal with direction v if and only if the intersection of Pv(F)

has non-empty interior.

Inflatable Balls A collection F of balls in R
d is called pairwise-inflatable if for

every two balls B1,B2 ∈ F we have γ 2 > 2(r2
1 + r2

2 ), where ri is the radius of Bi ,
and γ is the distance between their centers. Note that for balls of equal radius, this
condition only enforces that they are disjoint (and so any family of disjoint congruent
balls is pairwise-inflatable). The more unequal the radius of the balls, however, the
stronger the distance constraint. At the limit, when r1 = 0, the constraint is γ >

√
2r2.

Pairwise-inflatability is less restrictive than Hadwiger’s notion of “thinly distributed”
balls, which can be defined as γ 2 > 4(r1 + r2)

2 for each pair of balls.
The class of families of pairwise-inflatable balls is closed under intersection with

affine subspaces (as proved in Lemma 5). This property (which does not hold for unit-
radius balls) will allow us to carry results proved in three dimensions over to R

d .
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Topological Machinery We use a few notions from topology that we now re-
view (these can be found, for instance, in the introductory chapter of Matoušek’s
book [19]). Given a topological space A and a subset B ⊂ A, B is a deformation
retract of A if there exists a continuous map F :A× [0,1]→A such that

⎧
⎨

⎩

F(a,0)= a for any a ∈A,

F(b, t)= b for any b ∈ B and t ∈ [0,1],
F (a,1) ∈ B for any a ∈A.

Two topological spaces A,B are homotopy equivalent if there exists a third space
C such that both A and B are deformation retracts of C. A space that is homotopy
equivalent to a single point is said to be contractible. A homology cell is a non-empty
set with trivial homology, e.g. a point. Since homology is invariant under homotopy
equivalence, any contractible space is a homology cell. A generalization of Helly’s
theorem based on topology instead of convexity was originally given by Helly him-
self [15]. We will use a version proved by Debrunner using modern tools (singular
homology) [7], as it allows us to work with open sets.

Theorem 3 (Topological Helly Theorem [7]) Let {Xj }j∈J be a finite family of open
subsets of Euclidean d-space R

d such that the intersection Xj1 ∩ · · · ∩Xjr of each r

sets of this family is nonempty for r ≤ d + 1 and is even a homology cell for r ≤ d .
Then

⋂
j∈J Xj is a homology cell.

In fact, we only use a weaker version of this theorem where “homology cell” is re-
placed by “contractible”.

Compatible Directions Let D be a set of directions in R
d completely contained in

the interior of a hemisphere of S
d−1, and let L(D) be the set of lines with directions

in D. We parametrize L(D) as a subset of R
2d−2, using the points of intersection of

a line � ∈ L(D) with two parallel hyperplanes that are not parallel to any direction
in D. Our aim is to apply the Topological Helly Theorem to sets of line transversals
to pairwise-inflatable balls. Unfortunately, such sets are not necessarily homology
cells, and may in fact even be disconnected: two lines intersecting disjoint objects in
different orders cannot be in the same connected component of transversals to these
objects. We overcome this difficulty by restricting the set of directions that we allow
for transversals. For a sequence F of pairwise-inflatable balls in R

d−1, let

U(F) := {c(Y )− c(X)
∣
∣X,Y ∈F; X ≺F Y

}
,

where c(X) denotes the center of ball X. Let DF be the set of directions making
a positive dot-product with each u ∈ U(F). Note that DF is an open convex set
on the sphere of directions S

d−1. Clearly a line transversal � ∈ L(DF ) for a subset
F ′ ⊂F respects the order on F ′. Such a line transversal is called a transversal to F ′
compatible with F .

3 The Cone of Directions is Strictly Convex

We now establish the cornerstone of this paper, a generalization of the first lemma by
Holmsen et al. [17] to arbitrary dimension:
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Proposition 4 Let F be a sequence of pairwise-inflatable balls in R
d . Then K(F) is

strictly convex.

The proof of this proposition is based on Lemma 7, which shows that some well-
chosen fibers over 1-dimensional slices of the cone of directions of unit balls in R

4

are convex. We also need some properties of families of pairwise-inflatable balls. We
start by showing that this class is closed under intersection with affine subspaces.

Lemma 5 Let F be a family of pairwise-inflatable balls in R
d , and let E be an affine

subspace of dimension k < d . Then F ′ := {B ∩ E | B ∈ F} is a family of pairwise-
inflatable balls in E.

Proof We prove the claim for k = d − 1 and the lemma follows by induction. Let
B1,B2 ∈F with respective radii r1 and r2 and centers at distance γ apart. Since F is
pairwise-inflatable we have γ 2 > 2(r2

1 + r2
2 ). For i = 1,2 let B ′i = Bi ∩E, ρi denote

the radius of B ′i and δi be the distance between the center of Bi and that of B ′i . First,
observe that

γ 2 ≤�2 + (δ1 + δ2)
2,

where � is the distance between the centers of B ′1 and B ′2. If E separates the centers
of B1 and B2 the equality holds. If E does not separate the centers, then replacing B2

by its mirror image with respect to E increases γ while leaving all other quantities
unchanged, hence the inequality. Then from (δ1 − δ2)

2 ≥ 0 we deduce (δ1 + δ2)
2 ≤

2(δ2
1 + δ2

2) and since r2
i = ρ2

i + δ2
i we finally obtain

�2 ≥ γ 2 − (δ1 + δ2)
2 > 2(r2

1 + r2
2 )− 2(δ2

1 + δ2
2)= 2(ρ2

1 + ρ2
2)

and the claim follows. �

The following lemma shows that two pairwise-inflatable balls in dimension d can
always be “inflated”1 to two disjoint equal-radius balls in dimension d + 1.

Lemma 6 Let E be a d-dimensional subspace of R
d+1, and let B ′1,B ′2 ⊂ E be

pairwise-inflatable d-dimensional balls in E. Then there exist two disjoint (d + 1)-
dimensional balls B1,B2 of equal radius in R

d+1 such that B ′1 = B1 ∩ E and
B ′2 = B2 ∩E.

Proof Let qi and ρi be the center and radius of B ′i , for i = 1,2. Consider the line
orthogonal to E through qi . Pick a point pi on this line at distance δi from qi , in such
a way that p1 and p2 are on opposite sides of E. Let also Bi be the ball with center

pi and radius ri =
√
δ2
i + ρ2

i . Clearly B ′i = Bi ∩E and it remains to pick δi such that
r1 = r2 and B1 and B2 are disjoint.

1Hence the name “pairwise-inflatable”.
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Let � be the distance between q1 and q2. Without loss of generality, we assume
ρ1 > ρ2. Since �2 > 2(ρ2

1 + ρ2
2), there exists σ > 0 such that

σ 2 < min{�2 − 2(ρ2
1 + ρ2

2), ρ
2
1 − ρ2

2}
and we can define

δ1 = (ρ2
1 − ρ2

2 − σ 2)/(2σ) and δ2 = δ1 + σ.

Now, since 2σδ1+ σ 2 = ρ2
1 − ρ2

2 we have that δ2
2 = δ2

1 + ρ2
1 − ρ2

2 , and it follows that
B1 and B2 have equal radius r = r1 = r2. Now, the distance γ between their centers
satisfies

γ 2 =�2 + (δ1 + δ2)
2 = (�2 + 2δ1δ2)+ δ2

1 + δ2
2 .

Since

�2 − 2(ρ2
1 + ρ2

2) > σ 2 = (δ2 − δ1)
2 = δ2

1 + δ2
2 − 2δ1δ2

it follows that

�2 + 2δ1δ2 > δ2
1 + δ2

2 + 2(ρ2
1 + ρ2

2)

and finally

γ 2 > 2(δ2
1 + ρ2

1)+ 2(δ2
2 + ρ2

2)= 4r2.

This shows that B1 and B2 are disjoint. �

Let now F = (O,x, y, z,w) be an orthogonal frame in four-dimensional space R
4.

Let H denote the plane (O,x, y), and let H(z,w) be the translated copy of H going
through the point2 (0,0, z,w). Given two disjoint convex sets A and B in R

4, we
denote by QF

AB ⊂ R
2 × S

1 the set of all (z,w,α) such that there is an oriented line
in H(z,w) that intersects A before B and that makes an angle α with the x-axis.

Lemma 7 If A and B are disjoint congruent balls in R
4 then QF

AB is convex for any
orthogonal frame F of R

4.

We prove this lemma by showing that QF
AB is the volume under the graph of a

concave function of two variables, which involves showing that the Hessian of this
function is negative definite. We thus follow the approach of Holmsen et al. [17, proof
of Lemma 1] but the details (postponed to Appendix) are more involved.

We proceed to prove the convexity of K(F) (but not yet its strict convexity) for
the 3-dimensional case.

Lemma 8 Let F be a sequence of pairwise-inflatable balls in R
3. Then K(F) is

convex.

2By abuse of notation, we use the letters z and w to label the coordinate axes and to represent the coordi-
nates of some specific point, the meaning being clear from the context.
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Proof We need to show that for any pair v1, v2 ∈ K(F) the great circle arc joining
them on S

2 lies in K(F) (since K(F) is contained in an open hemisphere of S
2, there

is a unique such arc of length less than π ). We thus let �1, �2 be line transversals to
F with directions v1, v2, and pick a plane H parallel to both �1 and �2. We embed
the 3-dimensional space as an affine 3-space of R

4, and equip R
4 with a frame F =

(O,x, y, z,w) such that {w = 0} is our original 3-dimensional space, and such that
(O,x, y) coincides with H .

For any pair of balls (B ′1,B ′2) from F with B ′1 ≺F B ′2, Lemma 6 gives us two
balls B1,B2 ⊂R

4 of equal radius such that B ′i = Bi ∩ {w = 0}. By Lemma 7, QF
B1B2

is convex and so QF
B ′1B ′2

=QF
B1B2

∩ {w = 0} is convex as well. It follows that

Q :=
⋂

A,B∈F ,A≺FB

QF
AB

is a convex set.
Each point in Q corresponds to a family of parallel and coplanar lines such that

each pair (A,B) in F is intersected by at least one of them in the correct order.
Helly’s theorem (in one dimension) implies that there is a line transversal to F in this
family and this transversal is trivially order-respecting. Let q1, q2 ∈Q be the points
representing the line transversals �1 and �2. For any direction v on the great circle
arc v1v2 there is a point q on the segment q1q2 whose associated line transversal has
direction v. �

We now characterize the boundary of K(F). This will allow us to show that K(F)

is not only convex, but even strictly convex. The result will then carry over rather
effortlessly to arbitrary dimension. Recall that K◦(F) is the set of directions of strict
transversals to F . The next lemma shows that K◦(F) is the interior of K(F).

Lemma 9 Let F be a sequence of disjoint balls in R
3, v ∈ S

2 and D :=⋂Pv(F).
Then v ∈ ∂K(F) if and only if D is a point and v ∈ int(K(F)) if and only if D has
non-empty interior.

Proof Clearly v ∈ K(F) if and only if D is non-empty. Since Pv(F) is a family
of discs, D is either empty, a point, or has non-empty interior. If D has non-empty
interior, then a small perturbation of the direction v cannot cause D to become empty,
and so v ∈ int(K(F)). It remains to show that if D is a point, then v ∈ ∂K(F).

We thus assume that D is a point. Let k ≥ 2 be the number of discs that have this
point on their boundary, and let � be the (unique) transversal of F with direction v. If
k = 2 then � lies in a plane separating two balls and there are directions v′ arbitrarily
close to v such that no line transversal with direction v′ to these two balls exists (see
Fig. 1). Thus, v ∈ ∂K(F). If k ≥ 3 then by Helly’s theorem in the plane there are three
balls whose projections intersect in a single point. Let A denote the middle one with
respect to ≺F and let �′ be the line through the center of A and its tangency point
with � (see Fig. 2). Consider a rotation of v by a small angle δ around �′. This rotation
leaves Pv(A) invariant and moves the centers of the two other projections along lines
orthogonal to Pv(�

′), either both away from Pv(�
′) or both towards Pv(�

′), depending
on the sign of δ. Any sufficiently small rotation that moves the centers away from
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Fig. 1 Perturbation removing all transversals when k = 2: 3D view (left) and projections (right)

Fig. 2 Perturbation removing all transversals when k = 3: 3D view (left) and projections (right)

Pv(�
′) turns v into a direction v′ such that no transversal to the three balls exists in

the direction v′. In that case we again have v ∈ ∂K(F). �

Lemma 10 If F is a sequence of pairwise inflatable balls in R
3 then K(F) is strictly

convex.

Proof We already know that K(F) is convex. If K(F) is not strictly convex then
it has to contain on its boundary a great circle arc. By the previous lemma, if v ∈
∂K(F) then Pv(F) is a point. This implies, by Helly’s theorem, that the boundary of
K(F) consists of (finitely many) curve arcs that are either (a) directions of bitangent
lines lying in bitangent planes or (b) directions of tritangent lines. The directions of
bitangent lines lying in bitangent planes to two balls contain a great circle arc only if
the two balls are tangent, which cannot occur in our situation.

Therefore, if K(F) is not strictly convex then it contains in its boundary a great
circle arc of directions of lines tangent to three balls. These directions, being on a
great circle arc, are parallel to a given plane. In projective geometry, parallels to a
plane are recast as lines intersecting the “line at infinity” of that plane. Thus, if K(F)

is not strictly convex, F contains three balls with infinitely many common tangents
that intersect a fixed line at infinity. Such configurations were tabulated by Megyesi
and Sottile [20]. Their cases (i), (iii), and (iv) cannot arise with disjoint spheres and
the fixed line at infinity. The remaining possibility (case (ii)) is that the three spheres
are tangent to a cone whose apex lies on the fixed line. In our case, that line is at
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infinity so this cone is a cylinder and the spheres have equal radii and aligned centers;
all common tangents then have the same direction and cannot form a great circle
arc. �

We will need the generalization of Lemma 9 to arbitrary dimension.

Lemma 11 If F is a sequence of disjoint balls in R
d , then K◦(F)= int(K(F)).

Proof As in the proof of Lemma 9 we observe that K◦(F) ⊂ int(K(F)), and it re-
mains to prove the other inclusion. Let v ∈ int(K(F)) and pick v1, v2 ∈ K(F) in a
neighborhood of v such that v lies in the interior of the great circle arc v1v2. Let
�1, �2 be two line transversals to F with directions v1, v2, and let E be an affine sub-
space of dimension three containing both lines (E is unique if the lines are skew). By
Lemma 5, the section of F by E is a sequence F ′ of pairwise-inflatable balls. Since
v1 and v2 belong to K(F ′) and v is interior to the great circle arc they span, Lemma 10
implies that v ∈ int(K(F ′))=K◦(F ′) and, by Lemma 9, there is a strict transversal
to F ′ with direction v. This line is also a strict transversal to F and Lemma 9 yields
that v ∈K◦(F). �

We can now finally prove the main result of this section.

Proof Proposition 4 Let v1, v2 ∈K(F) with v1 
= v2. Since K(F) is a closed convex
set contained in an open hemisphere of S

d−1, there is a unique great circle arc of
length less than π connecting v1 and v2. We need to show that all interior points of
this great circle arc lie in the interior of K(F).

Let �1, �2 be two line transversals to F with directions v1 and v2. Let E be an
affine subspace of dimension three containing both transversals. The space E inter-
sects every ball in F and, by Lemma 5, the section of F by E is a sequence F ′ of
pairwise-inflatable balls.

Let v be an interior point of the great circle arc v1v2. The direction v lies in E,
and since K(F ′) is strictly convex by Lemma 10, we have v ∈ int(K(F ′))=K◦(F ′).
A strict transversal to F ′ is a strict transversal to F , and so Lemma 11 implies v ∈
K◦(F)= int(K(F)). �

Proposition 4 has the following important corollary:

Corollary 12 Let F be a sequence of pairwise-inflatable balls in R
d . If K(F) has

empty interior then it is a point.

4 Pinning Number of Pairwise-Inflatable Balls

A family F of objects pins a line � if � is an isolated transversal to F . The pinning
number of a class C of families of objects is defined as the smallest integer k such
that the following holds: if a family F ∈ C pins a line � then some subfamily F ′ ⊂F
of size at most k already pins �. A key ingredient in Hadwiger’s original proof of his
theorem [14] is the fact that the pinning number of disjoint planar convex sets is 3. In
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this section we show a similar result for pairwise-inflatable balls in R
d . Note that the

pinning number k is simply the Helly number for the property of “not being pinned”:
if a line transversal to a family F is not pinned by any subfamily of size k then it is
not pinned by F .

Proposition 13 The pinning number of pairwise-inflatable balls in R
d is at most

2d − 1.

Our proof is based on Lemma 14, which shows that sets of compatible transver-
sals are contractible and therefore homology cells, and Lemma 15, which applies the
Topological Helly Theorem to these sets of lines and obtains a weak version of our
Theorem 1. We state the next lemma using the notion of “compatible” transversal
introduced in Sect. 2:

Lemma 14 Let F be a sequence of pairwise-inflatable balls in R
d and F ′ be a

subsequence of F . Then the set L of line transversals to F ′ compatible with F is a
contractible subset of R

2d−2.

Note the restriction on the direction of lines in L: there may be strict order-
respecting line transversals to F ′ that are not compatible with F .

Proof Given a line � ∈ L, let v� be its direction. A transversal � to F ′ is barycentric
if it goes through the center of mass of the intersection of Pv�(F ′). For any direction
v in K(F ′) there is a unique barycentric transversal to F ′, which we denote bF ′(v).

Let L∗ denote the set of barycentric transversals to F ′ with directions in DF . The
projection of a ball changes continuously with the direction of projection, so bF ′ is
continuous. Since the direction of a line changes continuously with the line, b−1

F ′ is
also continuous. Thus, bF ′ defines a homeomorphism between L∗ and K(F ′)∩DF .

By Lemma 4, K(F ′) is convex and so is DF . Thus, K(F ′) ∩DF is convex and
hence contractible. It follows that L∗ is also contractible. The map

{
L× [0,1]→L,

(�, t) �→ �+ t (bF ′(v�)− �),

is continuous and shows that L∗ is a deformation retract of L. Since L∗ is con-
tractible, so is L. �

We can now apply the Topological Helly Theorem to obtain a “weak” Hadwiger-
type result.

Lemma 15 Let F be a sequence of at least 2d − 1 pairwise-inflatable balls in R
d .

If every subfamily F ′ ⊂ F of 2d − 1 balls admits a strict line transversal with a
direction in DF , then F admits a strict line transversal.

Proof We apply Theorem 3 on L(DF ). With the parametrization discussed above,
L(DF )⊂ R

2d−2. For S ∈ F let XS be the subset of L(DF ) of lines intersecting the
interior of ball S. Clearly, XS is an open set in R

2d−2. Consider now the intersection
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Y := XS1 ∩ . . . ∩ XSr of r such sets. The set Y consists of exactly those lines in
L(DF ) that are strict transversals of S1, . . . , Sr . The assumption of the lemma implies
that Y 
= ∅ for r ≤ 5. By Lemma 14, Y is contractible and hence a homology cell.
Theorem 3 now implies that

⋂
S∈F XS 
= ∅, and so there is an order-respecting strict

line transversal for F . �

In principle, Lemma 15 is the Hadwiger-type result we are looking for. Its draw-
back is that it requires a subfamily of balls to have not only an order-respecting
transversal, but one that, in a sense, respects the order on the entire family of balls.
This is nonetheless enough to prove the desired result on the pinning number of
pairwise-inflatable balls:

Proof of Proposition 13 Let F be a family of at least 2d pairwise-inflatable balls
in R

d admitting an isolated line transversal �. Let ≺ be the order on F induced by �.
Lemma 14 implies that the set of line transversals to F respecting ≺ is connected,
and so � is the only order-respecting line transversal to F .

Since � is not a strict transversal, F has no strict order-respecting transversal. By
Lemma 15, there is a subfamily F ′ ⊂ F of 2d − 1 balls that has no strict order-
respecting transversal with direction in DF , that is K◦(F ′) ∩ DF = ∅. However,
K(F ′) ∩ DF 
= ∅ since it contains the direction of �. Since K(F ′) is convex, by
Lemma 4, and DF is open, it follows that K◦(F ′) = ∅ and F ′ has no strict order-
respecting transversal at all. Now, K(F ′) is non-empty but has empty interior, so,
by Corollary 12, K(F ′) is a single direction v. Since K(F ′)= {v}, the balls Pv(F ′)
intersect in a unique point and � is the only order-respecting line transversal of F ′,
and is thus isolated. �

5 Hadwiger and Helly-Type Theorems

We can now prove the main results of this paper.

A Hadwiger-Type Theorem Propositions 12 and 13 are all we need to reproduce
Hadwiger’s original proof of the 2-dimensional case.

Proof of Theorem 1 We simultaneously shrink all the balls and continue shrinking
as long as every subset of size 2d has a transversal. If all the centers are aligned
then the theorem trivially holds. Otherwise, at some point in the shrinking process a
subfamily F ′ of size 2d stops having a transversal. The cone K(F ′) changes contin-
uously during the shrinking and must have empty interior before disappearing. Thus,
by Corollary 12, at that moment the sequence F ′ has a unique transversal �.

Now, by Proposition 13, there is then a subfamily F ′′ ⊂F ′ of at most 2d− 1 balls
such that � is the unique transversal of F ′′. For any ball X ∈F \F ′′, the set F ′′ ∪ {X}
has a line transversal �X . Since the only line transversal of F ′′ is �, we must have
�X = �, and � intersects X. It follows that � is an unordered line transversal for F .

Similarly, if any subfamily of size 2d + 1 admits a line transversal there exists a
subfamily F ′ of 2d − 1 balls having a unique line transversal �. For any X,Y ∈ F
with X ≺ Y , the subfamily F ′ ∪ {X,Y } admits a line transversal that must be �, and
� intersects X before Y . It follows that � is an (order-respecting) line transversal
of F . �
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Removing the Ordering Assumption We now generalize Theorem 1 by removing
the restriction on the ordering. However, we restrict ourselves to the case of disjoint
unit balls in R

d as we build on the following result by Cheong et al. [5].

Theorem 16 [5] Let F be a family of at least nine disjoint unit balls in R
d . Then F

admits at most two distinct geometric permutations, which differ only in the swapping
of two adjacent balls.

Proof of Theorem 2 We first shrink the balls simultaneously until some subfamily
F4d−1 of 4d − 1 balls is about to lose its last unordered transversal.

If F4d−1 admits more than one (unordered) line transversal (all of which vanish if
the balls are shrunk any further), each transversal must realize a different geometric
permutation. Theorem 16 then implies that F4d−1 has exactly two line transversals,
�1 and �2, with two distinct geometric permutations. By Proposition 13, for each �i
there are 2d− 1 balls in F4d−1 for which �i is the only line transversal respecting the
ordering induced by �i . There is thus a subfamily F ′ of F4d−1 of exactly 4d−2 balls
(we can complete F ′ using balls from F4d−1 if needed) for which �1 and �2 are the
only line transversals respecting their respective orders. By Theorem 16, F ′ admits
at most two geometric permutations, and so �1 and �2 are its only line transversals.
Since any subfamily of 4d − 1 balls has a line transversal, any ball of F \ F ′ must
intersect �1 or �2. If all the balls intersect both lines then the theorem is proved.
Otherwise, there exists a ball A that intersects, say, �1 but not �2. Then F ′ ∪ {A} is
a family of 4d − 1 balls with a unique transversal. We are left with a set F4d−1 of
4d − 1 balls that has a unique transversal �.

Let≺� be the order on F4d−1 induced by �. By Proposition 13, there is a subfamily
F2d−1 ⊂F4d−1 such that � is the unique transversal of F2d−1 respecting≺�. For each
Z ∈ F4d−1 \F2d−1, let FZ denote the set F4d−1 \ {Z}. If one of the subsets FZ has
no other transversal than � then every other ball of F intersects � and the proof is
complete.

We now assume that every FZ has some transversal �Z distinct from � and ob-
tain a contradiction. Since FZ contains F2d−1, �Z realizes a geometric permuta-
tion different from that of �. By Theorem 16, the order induced by �Z on F4d−1
differs from ≺� by the swapping of two adjacent balls X,Y . Since �Z realizes a
geometric permutation of F2d−1 different from �, we must have X,Y ∈ F2d−1. Let
Z1,Z2 ∈F4d−1 \F2d−1, and consider the set F4d−1 \{Z1,Z2}. It admits the transver-
sals �, �Z1 , and �Z2 but, by Theorem 16, at most two geometric permutations. Since
� is the unique transversal respecting ≺�, �Z1 and �Z2 must realize the same geo-
metric permutation on F4d−1 \ {Z1,Z2}. Thus the balls X,Y ∈ F do not depend on
the choice of Z. Let ≺ be the order on F4d−1 obtained from ≺� by swapping X

and Y . For any Z ∈ F4d−1 \ F2d−1 the subfamily FZ admits a line transversal re-
specting ≺. On the other hand, F4d−1 does not admit such a transversal as � is its
only transversal. By (the second half of) Theorem 1, there is a subset F2d+1 ⊂F4d−1
of at most 2d + 1 balls that does not admit a transversal respecting ≺. We must
have X,Y ∈F2d+1, as without both X and Y , ≺� and ≺ are equivalent. This implies
that |F2d−1 ∪ F2d+1| ≤ 4d − 2. There is therefore a Z ∈ F4d−1 \ F2d−1 such that
F2d−1 ∪F2d+1 ⊆ FZ . However, �Z cannot be a line transversal to F2d+1, a contra-
diction. �
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6 Conclusion and Open Problems

We conclude this paper with a few comments on our results followed by open prob-
lems they suggest.

• Weaker versions of Theorems 1 and 2 (with constants quadratic in d) can be ob-
tained more easily, using only Lemma 4 and the reasoning of Holmsen et al. [17].

• In the plane, if three disjoint convex sets {C1, . . . ,C3} pin a line � then they are
all tangent to � and alternate: the first and the third are on the same side of �, the
second is on the other side. Thus, if � does not intersect a fourth convex set C4 some
triple {Cx,Cy,C4} has no line transversal at all. This explains why, in Hadwiger’s
original proof the “Hadwiger number” is the same as the pinning number. A way
to reduce the bound in Theorem 1 to 2d − 1 could be to prove a similar statement:
given a sequence of pairwise inflatable balls F that pins a line � and a ball C not
intersecting �, there is a subsequence F ′ ⊂ F of size |F | − 1 such that F ′ ∪ {C}
has no transversal respecting the ordering on F ′. We have no idea whether such a
statement actually holds.

• To apply the Topological Helly Theorem, we did not actually need that K(F) is
convex, only that it is contractible. This may be important for further generaliza-
tion.

• For general convex sets, even smooth ones, the pinning number is at least 6 as
the following example using six unit-radius cylinders in R

3, due to Günter Rote,
shows: the first three cylinders are parallel to the x-axis and their axes go through
the points (0,1,0), (0,−1,1) and (0,1,2) respectively. The last three cylinders are
parallel to the y-axis and their axes go through the points (1,0,10), (−1,0,11) and
(1,0,12) respectively. The six cylinders have only one transversal—the z-axis—
but any five have an infinite number of transversals.

• Lemmas 5 and 6 imply that two disjoint balls A,B ⊂ R
d are pairwise-inflatable

if and only if they can be expressed as sections of two disjoint congruent balls in
some higher-dimensional space. Generalizing this, let us call a set F of balls in
R

d inflatable if F can be expressed as the intersection of a higher-dimensional set
of disjoint congruent balls with a d-dimensional affine subspace. Batog recently
showed that it is NP-hard to decide whether a given collection of balls is inflat-
able [2].

Problem 1 What is the maximum number of geometric permutations of pairwise-
inflatable balls in R

d?

To generalize Theorem 2 to pairwise-inflatable balls, one would need to extend
Theorem 16 to those families. It is known that the number of geometric permutations
of n disjoint balls in R

d is at most 3 if the balls have equal radii and *(nd−1) if the
ratio

largest radius

smallest radius
is not bounded independently of n [23].

Problem 2 For which classes of objects is the cone of directions K(A1, . . . ,An)

convex, or at least contractible?
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Our proof of convexity for the cone of directions of balls collapses for balls that
are not pairwise-inflatable. In fact, the set QF

AB is not necessarily convex if B is
much smaller than A but very close to it. Note that this problem was recently solved
by Borcea et al. [3] for disjoint balls in arbitrary dimension.

Problem 3 For which classes of objects is the set of order-respecting line transver-
sals always connected?

Our proof of Theorem 1 follows from (i) a bounded pinning number and (ii) the
fact that as the set of order-respecting line transversals to a sequence disappears it
first reduces to a single line. For strictly convex objects, property (ii) follows from
the connectivity of the set of order-respecting transversals. Surprisingly, it is an open
question whether this set is connected for even 4 disjoint balls in R

3, whereas it
is known to be connected for any triple of disjoint convex objects [8, Lemma 74].
We conjecture that general convex sets in R

d have a bounded pinning number. Thus,
understanding how general this connectivity property is would provide insight in how
general the example of Holmsen and Matousek [16], convex sets whose translates do
not admit a Hadwiger theorem, actually is. Of course, a positive answer to Problem 2
for a particular family of convex sets implies a positive answer to Problem 3 for that
family as well.

Problem 4 Given a collection of disjoint unit balls, assume that any subset of size
2d − 1 admits a line transversal. Does any subset of size 2d − 1 admit a compatible
line transversal?

In other words, can our “weak Hadwiger theorem” (Lemma 15) be strengthened
into a Hadwiger theorem with a better constant than Theorem 1?

Problem 5 Is the pinning number of disjoint unit balls in R
d equal to 2d − 1?

Surprisingly, the only known lower bound on the Helly number is the construction
done by Hadwiger fifty years ago. Note that the bound in our Hadwiger theorem
has to be higher than the pinning number of the corresponding family and one can
therefore look for a lower bound on the pinning number. Intuitively, considerations
on the dimension suggest that the pinning number in dimension d cannot be less
than 2d − 1, the dimension of the underlying line space being 2d − 2.

Acknowledgements We thank Gregory Ginot for helpful discussions and suggesting the proof of
Lemma 14, Günter Rote for the lower bound construction with cylinders mentioned in the conclusion,
and Guillaume Batog for helpful discussions on inflatability.

Appendix Proof of Lemma 7

Proof Let F be the frame (O,x, y, z,w). We first observe that a translation of F

along the x- or y-axis leaves QF
AB unchanged, while a translation of F along the z-

or w-axis causes an equivalent translation of QF
AB . Rotating the x- and y-axes while

leaving the z- and w-axes fixed causes a translation of QF
AB along the α-axis. Finally,
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scaling F causes QF
AB to be stretched along the z- and w-axes. Since convexity is

invariant under affine transformations, we can therefore assume that A and B are
unit-radius balls with centers at (0,0,0,−b) and (e,0,0, b), where b > 0, e > 0.
The disjointness of A and B implies that e2 + 4b2 − 4 > 0. Let D denote the lune-
shaped region in the (z,w) plane that corresponds to the intersection of the two unit
discs with centers (0,−b) and (0, b). If (z,w) /∈D then H(z,w) does not intersect
both A and B . If b > 1 then D is empty. If b = 1 then D is reduced to z = w = 0,
H(0,0) intersects both A and B in a point, and so QF

AB is a point. In the following
we can therefore assume b < 1.

Let

R(z,w)=
√

1− z2 −w2,

and let R+ =R(z,w+ b) and R− =R(z,w− b). If (z,w) ∈D then H(z,w)∩A is
the disc with center (0,0) and radius R+, while H(z,w) ∩ B is the disc with center
(0, e) and radius R−. Now, let

f (z,w)= R+ +R−
e

.

Since A and B are disjoint, the discs H(z,w) ∩ A and H(z,w) ∩ B are disjoint,
implying that R+ +R− < e, and so 0≤ f (z,w) < 1. Consider

G(z,w)= arcsin(f (z,w)).

Since (z,w,α) ∈ QF
AB if and only if (z,w) ∈ D and −G(z,w) ≤ α ≤ G(z,w), it

suffices to show that G is a concave function. A sufficient condition for this is that
its Hessian H(G) be negative definite, which we endeavor to prove now. By sym-
metry with respect to the z- and w-axes, we need to prove negative definiteness only
for z, w ≥ 0.

In what follows, subscripts are used to denote partial derivatives. Also, reference
to z,w as arguments of functions is dropped when no confusion can arise.

The Hessian of G is

H(G)=
(

Gzz Gzw

Gzw Gww

)

= (1− f 2)H(f )+ f (∇f )(∇f )T

(1− f 2)3/2
,

where H(f ) is the Hessian of f and ∇f = (fz, fw)
T is its gradient. The Hessian of

G is negative definite if and only if

(i) Gzz < 0 and (ii) detH(G)=GzzGww −G2
zw > 0.

We prove these two inequalities in turn. For this, we need the following derivatives:

Rz = −z

R
, Rw = −w

R
, Rzz = w2 − 1

R3
, Rzw = −zw

R3
,

Rww = z2 − 1

R3
, Rzzz = 3(w2 − 1)z

R5
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(i) The first inequality is simple to check. We have

Gzz = (1− f 2)fzz + f f 2
z

(1− f 2)3/2
.

Since the denominator is strictly positive for all z and w, the sign of Gzz is determined
by its numerator which we denote by g(z,w). The derivative of g with respect to z

is:

gz = (1− f 2)fzzz + f 3
z .

For z > 0, we have Rz < 0 and Rzzz < 0, so fz < 0 and fzzz < 0 implying that gz < 0.
It follows that the function z �→ g(z,w) is decreasing for z > 0. Since g(0,w) < 0 it
follows that g(z,w) < 0 for z,w ≥ 0, so Gzz < 0.

(ii) The second inequality is considerably more challenging. Let us introduce the
following notations:

γ+ =R2+, γ− =R2−, γ = 1− z2 −w2 + b2,

P = γ+γ−, S = γ+ + γ−.

γ+, γ− and γ satisfy the following constraints:

0 < γ+ ≤ 1− b2 < 1, 0 < γ− ≤ 4b(1− b) < 1 and

0 < 2b2 ≤ γ < 1+ b2 < 2.

Expanding detH(G) gives detH(G)= (1− f 2)�, where

�= (1− f 2)�1 + f�2,

�1 = detH(f )= fzzfww − f 2
zw, �2 = f 2

wfzz + f 2
z fww − 2fzfwfzw.

We first find that

�1 = 1

e2P 2
(μ1 +μ2

√
P ),

where

μ1 = S2 − 2P = γ 2− + γ 2+ > 0 and μ2 = P + γ (2− γ ) > 0.

Also,

�2 = 1

e3P
3
2

(λ−
√
γ− + λ+

√
γ+ ),

where

λ− = γ (γ − 2)+ 2γ+(γ − 1)+ P and λ+ = γ (γ − 2)+ 2γ−(γ − 1)+ P.

Note that since λ−(z,0) = λ+(z,0) = 4z2(z2 − 1) ≤ 0, we can’t conclude yet and
have to go further along.
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Putting everything together, we get

�= χ

e4P 2
,

where

χ = χ1 + χ2
√
P ,

χ1 = μ1(e
2 − S)+ P(λ+ + λ− − 2μ2),

χ2 = μ2(e
2 − S)− 2μ1 + λ−γ− + λ+γ+.

We want to prove that χ > 0, implying � > 0. Let δ = e2 + 4b2 − 4. Noting that
S + 4− 2γ = γ+ + γ− + 4− 2γ = 4− 4b2, we get that e2− S = δ+ 4− 2γ . So we
have:

χ1 = μ1δ+ χ∗1 , χ2 = μ2δ + χ∗2 ,

where

χ∗1 = 2μ1(2− γ )+ P(λ+ + λ− − 2μ2),

χ∗2 =−2μ1 + 2μ2(2− γ )+ λ−γ− + λ+γ+.

Let χ∗ = χ∗1 + χ∗2
√
P . Then

χ = (μ1 +μ2
√
P )δ + χ∗ > χ∗,

since μ1 > 0,μ2 > 0, δ > 0.
Let us prove that χ∗ ≥ 0. Let

θ1 = 2S2 − 4P − SP − 2Pγ, θ2 = 2(2− γ )− S.

We can rewrite χ∗1 and χ∗2 in terms of θ1 and θ2:

χ∗1 = (2− γ )θ1 − Pγ θ2, χ∗2 =−θ1 + γ (2− γ )θ2.

Now observe that χ∗ factors:

χ∗ = χ∗1 + χ∗2
√
P = (2− γ −√P )(θ1 + θ2γ

√
P ).

Noting that θ2 = 4(w2 + z2)≥ 0 and

θ1 = 2S2 − 8P + P(2(2− γ )− S)= 2(γ+ − γ−)2 + Pθ2 ≥ 0,

we see that the second factor of χ∗ is positive. It remains to observe that 2 − γ +√
P > 0 and that

(2− γ )2 − P = 4(z2(1− b2)+w2)≥ 0,

to conclude that 2−γ −√P ≥ 0 and χ∗ ≥ 0. Overall, χ > 0,� > 0 and detH(G) >

0, which concludes the proof. �
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Grid Vertex-Unfolding Orthogonal Polyhedra

Mirela Damian · Robin Flatland ·
Joseph O’Rourke

Abstract An edge-unfolding of a polyhedron is produced by cutting along edges and
flattening the faces to a net, a connected planar piece with no overlaps. A grid un-
folding allows additional cuts along grid edges induced by coordinate planes passing
through every vertex. A vertex-unfolding allows faces in the net to be connected at
single vertices, not necessarily along edges. We show that any orthogonal polyhedra
of genus zero has a grid vertex-unfolding. (There are orthogonal polyhedra that can-
not be vertex-unfolded, so some type of “gridding” of the faces is necessary.) For
any orthogonal polyhedron P with n vertices, we describe an algorithm that vertex-
unfolds P in O(n2) time. Enroute to explaining this algorithm, we present a sim-
pler vertex-unfolding algorithm that requires a 3 × 1 × 1 refinement of the vertex
grid.
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1 Introduction

Two unfolding problems have remained unsolved for many years [3, 5]: (1) Can every
convex polyhedron be edge-unfolded? (2) Can every polyhedron be unfolded? An
unfolding of a 3D object is an isometric mapping of its surface to a single, connected
planar piece, the “net” for the object, that avoids overlap. An edge-unfolding achieves
the unfolding by cutting edges of a polyhedron, whereas a general-unfolding places
no restriction on the cuts. A net representation of a polyhedron finds use in a variety
of applications [8]—from flattening monkey brains [10] to manufacturing, from sheet
metal [12] to low-distortion texture mapping [11].

It is known that some nonconvex polyhedra cannot be unfolded without overlap
with cuts along edges. However, no example is known of a nonconvex polyhedron
that cannot be unfolded with unrestricted cuts. Advances on these difficult problems
have been made by specializing the class of polyhedra, or easing the stringency of the
unfolding criteria. On one hand, it was established in [1] that certain subclasses of or-
thogonal polyhedra—those whose faces meet at right angles and whose edges are par-
allel to coordinate axes—that are multiples of 90◦—have an unfolding. In particular,
the class of orthostacks, stacks of extruded orthogonal polygons, was proven to have
an unfolding (but not an edge-unfolding). On the other hand, loosening the criteria
of what constitutes a net to permit connection through points/vertices, the so-called
vertex-unfoldings, led to an algorithm to vertex-unfold any triangulated manifold [6]
(and indeed, any simplicial manifold in higher dimensions). A vertex unfolding maps
the surface to a single, connected piece K in the plane, but K may have “cut vertices”
whose removal disconnects K .

A second loosening of the criteria is the notion of grid unfoldings, which are es-
pecially natural for orthogonal polyhedra. A grid unfolding adds edges to the surface
by intersecting the polyhedron with planes parallel to Cartesian coordinate planes
through every vertex. The two approaches were recently married in [7], which estab-
lished that any orthostack may be grid vertex-unfolded. For orthogonal polyhedra, a
grid unfolding is a natural median between edge-unfoldings and unrestricted unfold-
ings.

Our main result is that any orthogonal polyhedron, without shape restriction ex-
cept that its surface be homeomorphic to a sphere, has a grid vertex-unfolding. We
present an algorithm that grid vertex-unfolds any orthogonal polyhedron with n ver-
tices in O(n2) time. We also present, along the way, a simpler algorithm for 3×1×1
refinement unfolding, a weakening of grid unfolding that we define in the following.
We believe that the techniques in our algorithms may help show that all orthogonal
polyhedra can be grid edge-unfolded.

2 Definitions

We distinguish between a strict net, in which the net boundary does not self-touch,
and a net for which the boundary may touch but no interior points overlap. The latter
corresponds to the physical model of cutting out the net from a sheet of paper, with
perhaps some cuts representing edge overlap, and this is the model we use in this
paper. We also insist as part of the definition of a vertex-unfolding, again keeping
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Fig. 1 Definitions. a Shaded connected pieces are bands; A, B and D are protrusions; C is a dent. b An
unfolding tree captures band adjacency structure and determines the algorithm’s recursive calls

in spirit with the physical model, that the unfolding “path” never self-crosses on the
surface in the following sense. If (A,B,C,D) are four gridfaces incident in that
cyclic order to a common vertex v, then the net does not include both the connections
AvC and BvD.1

We use the following notation to describe the six type of faces of an orthogonal
polyhedron, depending on the direction in which the outward normal points: front:
−y; back: +y; left: −x; right: +x; bottom: −z; top: +z. We take the z-axis to define
the vertical direction; vertical faces are parallel to the xz-plane or the yz plane. Di-
rections clockwise and counterclockwise are defined from the perspective of a viewer
positioned at y =−∞. We distinguish between an original vertex of the polyhedron,
which we call a corner vertex or just a vertex, and a gridpoint, a vertex of the grid
(which might be an original vertex). A gridedge (gridface) is an edge (face) of the
grid that lies on the surface of the polyhedron.

A k1 × k2 × k3 refinement of a surface [4] starts with a grid unfolding and fur-
ther partitions each gridface into a grid of edges. Positive integers k1, k2, and k3
are associated with the amount of refinement in the x, y, and z dimensions, respec-
tively; e.g., z-perpendicular gridfaces are refined into a k1 × k2 grid, and similarly
x-perpendicular (y-perpendicular) gridfaces are refined into a k2 × k3 (k1× k3) grid.
We will consider refinements of grid unfoldings, with the convention that a 1× 1× 1
refinement is an unrefined grid unfolding.

Let O be a solid orthogonal polyhedron with the surface homeomorphic to a
sphere (i.e., genus zero). Let Yi be the plane y = yi orthogonal to the y-axis. Let
Y0, Y1, . . . , Yi, . . . be the finite sequence of parallel planes passing through every ver-
tex of O , with y0 < y1 < · · · < yi < · · · . We define layer i to be the portion of O

between planes Yi and Yi+1. Observe that a layer may include a collection of disjoint
connected components; we call each such component a slab. The band of a slab is
the connected surface piece composed of gridfaces parallel to the y axis that sur-
round the slab. Referring to Fig. 1a, layer 0, 1, and 2 each contain one slab (with
outer bands A, B , and D, respectively). Note that each slab is bounded by an outer
(surface) band, but it may also contain inner bands, bounding holes. Outer bands are

1This was not part of the original definition in [6] but was achieved by those unfoldings.
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called protrusions and inner bands are called dents (C in Fig. 1a). In other words,
band A is a protrusion if a traversal of the rim of A in Yi , counterclockwise from
the viewpoint of y = −∞, has the interior of O to the left of A, and a dent if this
traversal has the interior of O to the right.

For each i, define Pi = ∂O ∩ Yi as the portion of the surface of O lying in plane
Yi . P

+
i is the portion of Pi with normal in direction +y (composed of back faces),

and P−i the portion with normal in direction −y (composed of front faces). By con-
vention, band points in Pi that are not incident to either front or back faces (e.g., when
one band aligns with another), belong to both P+i and P−i . Thus Pi = P+i ∪ P−i .

3 Dents vs. Protrusions

We observe that dents may be treated exactly the same as protrusions with respect
to unfolding, because an unfolding of a 2-manifold to another surface (in our case,
a plane) depends only on the intrinsic geometry of the surface, and not on how it is
embedded in R

3. Note that we are concerned only with the final unfolded “flat state”
[3, 5], and not with possible intersections during a continuous sequence of partially
unfolded intermediate states. Our unfolding algorithm relies solely on the amount of
surface material surrounding each point: the cyclic ordering of the gridfaces incident
to a vertex, and the pair of gridfaces sharing a gridedge. All these local relationships
remain unchanged if we conceptually “pop-out” dents to become protrusions, i.e.,
a “Flatland” creature living in the surface could not tell the difference; nor can our
algorithm. We note that the popping-out is conceptual only, for it could produce self-
intersecting objects. Also dents are gridded independently of the rest of the object so
as to avoid unnecessary surface cuts that would correspond to y-planes containing
dent vertices only. From the point of view of unfolding, it does not matter whether
dents are popped out or not.

Although the dent/protrusion distinction is irrelevant to the unfolding, the interre-
lationships between dents and protrusions touching a particular Yi do depend on this
distinction. To cite just the simplest example, there cannot be two nested protrusions
to the same side of Yi , but a protrusion could have a dent in it to the same side of Yi

(e.g., protrusion B encloses dent C to the same side of Y1 in Fig. 1a). These relation-
ships are crucial to the connectivity of the band graph Gb , discussed in Appendix.

4 Overview

The two algorithms we present share a common central structure, with the second
achieving a stronger result; both are vertex-unfoldings that use orthogonal cuts only.
We note that it is the restriction to orthogonal cuts that makes the vertex-unfolding
problem difficult: if arbitrary cuts are allowed, then a general vertex-unfolding can be
obtained by simply triangulating each face and applying the algorithm from [6].

The (3 × 1 × 1)-algorithm unfolds any genus-0 orthogonal polyhedron that has
been refined in one direction 3-fold. The bands themselves are never split (unlike
in [1]). The algorithm is simple. The (1× 1× 1)-algorithm also unfolds any genus-0
orthogonal polyhedron, but this time achieving a grid vertex-unfolding, i.e., without
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refinement. This algorithm is more delicate, with several cases not present in the
(3 × 1 × 1)-algorithm that need careful detailing. Clearly this latter algorithm is
stronger, and we vary the detail of presentation to favor it. The overall structure of
the two algorithms is the same:

1. A band “unfolding tree” Tu is constructed by shooting rays vertically from the top
of bands. The root of Tu is a frontmost band (of smallest y-coordinate), with ties
broken arbitrarily.

2. A forward and return connecting path of vertical front/back gridfaces is identified,
each of which connects a parent band to a child band in Tu.

3. Each band is unfolded horizontally as a unit, but interrupted when a connecting
path to a child is encountered. The parent band unfolding is suspended at that
point, and the child band is unfolded recursively.

4. The vertical front and back faces of each slab are partitioned according to an
illumination model, with variations for the more complex (1× 1× 1)-algorithm.
Front/back gridfaces are attached below and above appropriate horizontal sections
of the band unfolding.

The final unfolding lays out all bands horizontally, with the front and back gridfaces
hanging below and above the bands. Nonoverlap is guaranteed by this strict two-
direction structure.

Although our result is a broadening of that in [7] from orthostacks to all orthogonal
polyhedra, we found it necessary to employ techniques different from those used
in that work. The main reason is that, in an orthostack, the adjacency structure of
bands yields a path, which allows the unfolding to proceed from one band to the next
along this path, never needing to return. In an orthogonal polyhedron, the adjacency
structure of bands is generally not linear. Thus in our algorithm, unfolding band-by-
band leads to a tree traversal (e.g., Fig. 1b), which requires traversing each arc in both
directions. It is this aspect which we consider our main novelty, and which leads us
to hope for an extension to edge-unfoldings as well.

5 (3 × 1 × 1)-Algorithm

5.1 Computing the Unfolding Tree Tu

Define a z-beam to be a front or back rectangle on the surface of O whose top and
bottom edges are gridedges on two bands. In the degenerate case, a z-beam has height
zero and connects two rims along a section where they coincide. We say that two
bands, bi and bj , are z-visible if there is a z-beam connecting a gridedge of bi to a
gridedge of bj . There can be many z-beams connecting two bands, so for each pair
of bands we select a representative z-beam of minimal (vertical) height. Let G be the
graph that contains a node for each band of O and an arc for each pair (bi, bj ) of
z-visible bands such that i 
= j .

Lemma 1 G is connected.

Proof First observe that every gridface of O is either part of a band or part of a
z-beam (possibly a z-beam connecting a band to itself). Now consider making vertical
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Fig. 2 a Orthogonal polyhedron. b Unfolding tree Tu . c Unfolding of bands and front (hachured) grid-
face pieces connecting to A. Vertex connection through the pivots points pB , pB′ , pC , pD is shown
exaggerated for clarity

cuts on the surface of O along the extent of the left and right sides of each z-beam.
Since O is connected and only vertical cuts are made, the resulting structure remains
connected and can be viewed as a multigraph, where bands are nodes and z-beams
are edges. Since G is the subset of this multigraph obtained by removing self-loops
and duplicate edges, G is also connected. �

Let the unfolding tree Tu be any spanning tree of G, with the root selected arbitrar-
ily from among all bands adjacent to Y0. We apply the 3×1×1 refinement procedure
to partition each front, back, top, and bottom gridface of O into three congruent sub-
faces, by adding two new gridedges orthogonal to the x-axis. This partitions the top
and bottom edges of each z-beam into three refined gridedges and divides the beam
itself into three vertical columns of refined gridfaces. See Fig. 2a. Let A be an arbi-
trary band, let B be one of its children in Tu, and let e be the gridedge on B’s rim
where the z-beam from A attaches. We define the pivot point pB for band B to be
the 1

3 -point of e (or, in circumstances to be explained later, the 2
3 -point), and so it

coincides with a point of the 3× 1× 1-refined grid. The unfolding of O will follow
the connecting vertical ray that extends from pB on B to A. Note that if e belongs
to both A and B , then the ray connecting A and B degenerates to a point. To either
side of a connecting ray we have two connecting paths of gridfaces, the forward and
return path. In Fig. 2a, these connecting paths are the shaded strips on the front face
of A.

5.2 Unfolding Bands into a Net

Starting at a frontmost root band, each band is unfolded as a conceptual unit, but
interrupted by the connecting rays incident to it from its front and back faces. In
Fig. 2, band A is unfolded as a rectangle, but interrupted at the rays connecting to
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(front children) B , C and (back child) B ′. At each such ray the parent band unfolding
is suspended, the unfolding follows the forward connecting path to the child, the child
band is recursively unfolded, then the unfolding returns along the return connecting
path back to the parent, resuming the parent band unfolding from the point it left off.

Figure 2 illustrates this unfolding algorithm. The clockwise unfolding of A, laid
out horizontal to the right, is interrupted to traverse the forward path down to B ,
and B is then unfolded as a rectangle (composed of its contiguous gridfaces). The
base pB of the connecting ray is called a pivot point because the counterclockwise
unfolding of B is rotated 180◦ counterclockwise about pB so that the unfolding of
B is also to the right. It is only here that we use point-connections that render the
unfolding a vertex-unfolding. The unfolding of B proceeds counterclockwise back to
pB , crosses over A to unfold B ′, then a clockwise rotation by 180◦ around the second
image of pivot pB ′ orients the return path to A so that the unfolding of A continues
to the right. Note that the unfolding of C is itself interrupted to unfold child D. Also
note that there is edge overlap in the unfolding at each of the pivot points, and this
overlap could not be eliminated without violating the condition that all surface pieces
face the same way (up, in our case).

The reason for the 3× 1× 1 refinement is that the upper edge e′ of the back child
band B ′ has the same (x, z)-coordinates as the upper edge e of B on the front face.
In this case, the gridfaces of band A induced by the connecting paths to B would be
“overutilized” if there were only two. Let a1, a2, a3 be the three faces of A induced by
the 3× 1× 1 refinement of the connecting path to B , as in Fig. 2. Then the unfolding
path winds around A to a1, follows the forward connecting path to B , returns along
the return connecting path to a2, crosses over A and unfolds B ′ on the back face, with
the return path now joining to a3, at which point the unfolding of A resumes. In this
case, the pivot point pB ′ for B ′ is the 2

3 -point of e′. Other such conflicts are resolved
similarly. It is now easy to see that the resulting net has the general form illustrated
in Fig. 2c:

1. The faces of each band fall within a horizontal rectangle whose height is the band
width.

2. These band rectangles are joined by front/back connecting paths on either side,
connecting through pivot points.

3. The strip of the plane above and below each band face that is not incident to a
connecting path, is empty.

4. The net is therefore an orthogonal polygon monotone with respect to the horizon-
tal.

5.3 Attaching Front and Back Faces to the Net

Finally, we “hang” front and back faces from the bands as follows. The front face of
each band A is partitioned by imagining A to illuminate downward lightrays from
the rim in the front face. The pieces that are illuminated are then hung vertically
downward from the horizontal unfolding of the A band. The portions unilluminated
will be attached to the obscuring bands.

In the example in Fig. 2, this illumination model partitions the front face of A into
three pieces (the striped pieces in Fig. 2c). These three pieces are attached under A;
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the portions of the front face obscured by B but illuminated downward by B are hung
beneath the unfolding of B (not shown in the figure), and so on. Because the vertical
illumination model produces vertical strips, and because the strips above and below
the band unfoldings are empty, there is always room to hang the partitioned front face.
Thus, any orthogonal polygon may be vertex-unfolded with a 3× 1× 1 refinement
of the vertex grid.

Although we believe this algorithm can be improved to 2× 1× 1 refinement, the
complications needed to achieve this are similar to what is needed to avoid refinement
entirely, so we instead turn directly to 1× 1× 1 refinement.

6 (1 × 1 × 1)-Algorithm

Although the (1 × 1 × 1)-algorithm follows the same general outline as the
(3× 1× 1)-algorithm, there are significant complications, which we outline before
going into detail. First, without the refinement of z-beams into three strips to allow
avoidance of conflicts on opposite sides of a slab (e.g., B and B ′ in Fig. 2a), we
found it necessary to replace the z-beams by a pair of z-rays that are in some sense
the boundary edges of a z-beam. Selecting two rays per band permits a 2-coloring
algorithm (Theorem 4) to identify rays that avoid conflicts. Generating the ray-pairs
(Sect. 6.1.1) requires care to ensure that the band graph Gb is connected (Appendix).
This graph, and the 2-coloring, lead to an unfolding tree Tu (Sect. 6.2). From here on,
there are fewer significant differences compared to the (3× 1× 1)-algorithm. With-
out the luxury of refinement, there is more need to share vertical paths on the front or
back face of a slab (Fig. 11). Finally, the connecting paths obscure the illumination
of some grid faces, which must be attached to the connecting paths. We now present
the details, in this order:

1. Determine Conflict-Free Pivot Points (Sect. 6.1) via
a. Ray-Pair Generation (Sect. 6.1.1)
b. Ray Graph (Sect. 6.1.2)

2. Construct Tu (Sect. 6.2)
3. Select Connecting Paths (Sect. 6.2.1)
4. Determine Unfolding Directions (Sect. 6.2.2)
5. Recurse:

a. Unfold Bands into a Net (Sect. 6.3)
b. Attach Front and Back Faces to the Net (Sect. 6.4)

6.1 Determining Conflict-Free Pivot Points

The pivot pA for a band A is the gridpoint of A where the unfolding of A starts and
ends. The y-edge of A incident to pA is the first edge of A that is cut to unfold A.

Let A be an arbitrary band delimited by planes Yi and Yi+1. Say that two gridpoints
u ∈ Yi and v ∈ Yi+1 are in conflict if the upward rays emerging from u and v hit first
the endpoints of the same y-edge of A; otherwise, u and v are conflict-free. If u lies
either on a vertical edge, or on a vertically extreme horizontal edge, then the ray at u
degenerates to u itself.
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Our goal is to select conflict-free pivots for all bands in Tu, which will help us
later avoid competition over the use of certain gridfaces in the unfolding, an issue
that will become clear in Sect. 6.3. Selecting these pivots is the most delicate aspect
of the (1× 1× 1)-algorithm. Ultimately, we represent pivoting conflicts in the form
of a graph Gr (Sect. 6.1.2), from which Tu will be derived.

6.1.1 Ray-Pair Generation

In order to avoid pivoting conflicts, for each band we will need two choices for its
connecting ray. Thus the algorithm generates the rays in pairs. Because there is no
refinement, the two rays originate at grid points on the same band, but they may
terminate on different bands. A simple example is shown in Fig. 3a, where the ray pair
originating on band D hits two different bands, B and C. This example also suggests
that one cannot consider ray pairs connecting pairs of bands, as in the (3× 1× 1)-
algorithm (which would connect D to A in this example), but instead we focus on
shooting pairs of rays upward from strategic locations on the boundary of each band,
and then selecting a subset of these rays so that the conflicts can be resolved and Tu
is connected. To ensure connectedness of all bands, several ray-pairs must be issued
upward from each band. Figure 3b shows an example: no pair of rays can emanate
upward from the top of B ∩ P−i or C ∩ P−i ; one pair of rays shoots upward from the
top of each component of A ∩ P−i : (r1, r2) connects A to B and (r3, r4) connects A

to C; finally, one pair of rays (r5, r6) issues from the top of A∩ P+i , which connects
A to D. So, overall, three pairs of rays are generated for band A. We now turn to
describing in detail the method for generating ray-pairs.

Let band A intersect plane Yi . The algorithm is a for-loop over all A. We identify
chunks, A1,A2, . . . ,Am, of the rim A ∩ Yi , where each chunk Aj is a connected
component of either A∩P−i or A∩P+i that contains at least one horizontal gridedge.
(Note that these chunks do not necessarily cover A∩ Yi .) We define S(Aj ) as the set
of all vertical segments s = (a, b), with a ∈Aj , such that

Fig. 3 a The ray pair (r1, r2) connects band D to two different bands B and C. b To ensure connectivity,
three pairs of rays must be issued for A: (r1, r2), (r3, r4), and (r5, r6)
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Fig. 4 Generating ray-pairs: a (r1, r2) for A; S(B)= ∅. b (r1, r2) for A (note that r2 runs along source
band A); degenerate ray-pair (r ′1, r ′2) for B . c S(A)= ∅; (r1, r2) for B

1. s is either a point, with b= a, or a front/back segment, with a below b.
2. b ∈ B for some band B 
=A.
3. The open segment s \ {a, b} may contain points of A (see r2 in Fig. 4b), but no

points of other bands.

For each band A, for each chunk Aj ⊆A, if S(Aj ) contains at least two rays connect-
ing A to the same band B , we select one ray pair (r1, r2) that satisfies two restrictions:
(i) among the segments in S(Aj ) incident to a highest x-gridedge in Aj , r1 is the left-
most one, and (ii) r2 is the segment one x-gridedge to the right of r1. Figure 4 shows
a few examples. As mentioned earlier, several ray pairs could be generated for any
one band, and indeed several pairs could connect two bands (e.g., see Fig. 4b where
bands A and B are connected by two ray pairs).

Let Gb be the band graph whose nodes are bands. Two bands are connected by
an arc in Gb if the ray-pair algorithm generates a ray connecting them. We call a
collection of bands in Gb ray-connected if they are in the same connected component
of Gb . We establish that Gb is a connected graph, i.e., all bands are ray-connected to
one another, even if only one ray per pair is employed:

Lemma 2 Gb is connected. Furthermore, the subgraph of Gb induced by exactly one
ray per ray-pair (arbitrarily selected) is connected.

Whereas the connectedness of bands by z-beams in the (3× 1× 1)-algorithm is
straightforward, the complex possible relationships between bands makes connected-
ness via rays more subtle. We relegate the proof to the Appendix (Appendix) in order
to not interrupt the main flow of the algorithm.

The over-generation of ray-pairs noted above is designed to ensure connectedness.
Eventually many rays will be discarded by the time Tu is constructed in Sect. 6.2.

6.1.2 Ray Graph Gr

One pair of rays per pair of bands suffices to ensure that all bands are ray-connected.
If multiple pairs of rays exist for a pair of bands, pick one pair arbitrarily and discard
the rest. Then define a ray graph Gr as follows. The nodes of Gr are vertical rays,
perhaps degenerating to points, connecting gridpoints between two bands that both
intersect a common Yi plane. The arcs of Gr record two types of potential pivoting
conflicts:
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Fig. 5 Building Gr . a Gr is a 4-cycle; {r1, r2} and {r3, r4} are x-arcs and the others are y-arcs. b Gr is
a path; {r2, r5} and {r3, r6} are y-arcs and the others are x-arcs

(i) The nodes for each pair of rays issuing from the top of a band B are adjacent
in Gr . Call such arcs x-arcs; geometrically they can be viewed as parallel to the
x-axis.

(ii) The nodes for two rays incident to opposite sides of the rim of a band A, con-
nected by a y-segment on the band, are adjacent in Gr . Call such arcs y-arcs;
geometrically they can be viewed as parallel to the y-axis.

Figure 5 shows two simple examples of Gr involving nodes on opposite sides of
one band A. Before proceeding, we list the consequences of the two types of arcs
in Gr . Assuming that we can 2-color Gr {red, blue}, and we select the base of (say)
the red rays as pivots, then: (i) exactly one pivot is selected for each band, and (ii) no
two pivot rays are in conflict across a band. So our goal now is to show that Gr is
2-colorable. Because a graph is 2-colorable if and only if it is bipartite, and a graph is
bipartite if and only if every cycle is of even length, we aim to prove that every cycle
in Gr is of even length. We start by listing a few relevant properties of Gr :

1. Every node r ∈Gr has exactly one incident x-arc. The rays are generated in pairs,
and the pairs are connected by an x-arc. As no such ray is shared between two
bands, at most one x-arc is incident to any r .

2. Nodes have at most degree 3, with the following structure: degree-1 nodes have an
incident x-arc; degree-2 nodes have both an incident x- and y-arc; and degree-3
nodes have an incident x-arc and two incident y-arcs.

3. Each x-arc spans exactly one pair of adjacent y-gridlines, and each y-arc spans
exactly one band rim-to-rim. The former is by the definition of ray pairs, which
issue from adjacent gridpoints, and the latter follows from the grid partitioning of
the object into bands.

Our next step requires embedding Gr in an xy-plane -. Toward that end, we coor-
dinatize the nodes and arcs of Gr as follows. A node r ∈Gr is a z-ray, and is assigned
the (x, y) coordinates of the ray. Note that this means collinear rays get mapped to
the same point; however, we treat them as distinct. The x-arcs are then parallel to the
x-axis, and the y-arcs are parallel to the y-axis. In essence, this coordinatization is a
view from z=+∞.

Figure 6 shows a more complex example illustrating this viewpoint. The object
is composed of 7 bands Bi , one of which (B3) is a dent. There are 12 ray nodes,
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Fig. 6 a, b Two side views of an object; z-rays and y-arcs are marked with thick lines. c Gr coordinatized
into xy-plane -; (r5, r6, r10, r9) is a 4-cycle; (r1, r3, r4, r8, r7, r11, r12, r9, r5, r2) is a 10-cycle

two pairs of which lie on the same z-vertical line, namely (r4, r5) and (r8, r9). Note
that there are y-arcs crossing both the top of and the bottom2 of B4. The graph Gr

has a 4-cycle and a 10-cycle, both detailed in the caption (as well as a 12-cycle not
detailed).

Lemma 3 Every cycle in Gr is of even length.

Proof Let C be a cycle in Gr . The coordinatization described above maps C to a
(perhaps self-crossing) closed path in the xy-plane -, a path which may visit the
same (x, y) point more than once, and/or traverse the same edge in - more than once.
Any such closed path on a grid must have even length, for the following reason.

First, by Property (3) above, each edge of the path in - connects adjacent grid
lines: an edge never “jumps over” one or more grid lines. Second, any such closed
lattice path changes parity with each step, in the following sense. Number the x-
and y-gridlines with integers 0,1,2, . . . left to right and bottom to top, respectively.
Define the parity of a gridpoint of - to be the sum of its x- and y-gridline coordinates,
mod 2. Then each step of the path, necessarily in one of the four compass directions,
changes parity, as it changes only one of x or y. Returning to the start point to close
the path must return to the starting coordinates, and so to the same parity. Thus, there
must be an even number of parity changes along any closed path. Therefore, C has
an even number of edges. �

We have now established this:

Theorem 4 Gr is 2-colorable.

2A dent is included in this example precisely to introduce such a bottom y-arc into Gr .
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Note that nowhere in the above proof do we assume genus zero, so this theorem holds
for polyhedra of arbitrary genus.

Band Pivoting We are finally ready to specify the pivot points. By Theorem 4, we
can 2-color the nodes of Gr {red,blue}. We choose all red ray-nodes of Gr to be
pivoting rays, in that their base points become pivot points. As remarked before, this
selection guarantees that each band is pivoted, and no two pivots are in conflict. For
the root band we choose a pivot point—the point at which the unfolding starts and
ends—to be a grid point on the front rim connected by a y-segment to a blue ray.
Because the rays are generated in pairs, there must be a blue ray incident to the
root band. This choice guarantees that the root pivot is not in conflict with any other
(necessarily red) pivot.

6.2 Unfolding Tree Tu

The next task is to define a band spanning tree Tu, based on the band graph Gb .
Define G′b , to retain just the arcs of Gb corresponding to the red ray nodes (in the
above 2-coloring) in Gr . This maintains the connectivity by Lemma 2. Then take Tu
to be any spanning tree of G′b rooted at a frontmost band. The arcs in Tu and their
associated rays thus determine a pivot point for each band.

With Tu finally in hand, the remainder of the (1 × 1× 1)-algorithm follows the
overall structure of the 3× 1× 1 algorithm, with variations as mentioned before, as
detailed below.

6.2.1 Selecting Connecting Paths

Having established a pivot point for each band, we are now ready to define the for-
ward and return connecting paths for a child band in Tu. A “path” here refers to a
connected sequence of gridfaces that the unfolding follows to get from one band to
another. Let B be an arbitrary child of band A. If the pivot point pB of B is at the
intersection of B and A, then both forward and return connection paths for B re-
duce to point pB (see Fig. 7). If B does not intersect A, then a ray r connects pB

to A (Figs. 8a and 10a). The connecting paths are the two vertical paths separated
by r composed of the gridfaces sharing an edge with r (paths k1 and k2 in Figs. 8a
and 10a). The path first encountered in the unfolding of A is used as a forward con-
necting path; the other path is used as a return connecting path.

Fig. 7 Unfolding B when the ray connecting B to A degenerates to pB



Grid Vertex-Unfolding Orthogonal Polyhedra 207

Fig. 8 Unfolding B: u1 is not a corner vertex of A a pB incident to a left gridface of B b pB incident to
a top gridface of b

6.2.2 Determining Unfolding Directions

A top-down traversal of Tu assigns an unfolding direction to each band in Tu as fol-
lows. The root band in Tu may unfold either clockwise or counterclockwise, but for
definiteness we set the unfolding direction to clockwise. Let B be the band in Tu cur-
rently visited and let A be the parent of B . If the upward ray r incident to pB connects
B to a bottom gridpoint of A, then B unfolds in the same clockwise/counterclockwise
direction as A. Otherwise, r connects B to a top or a side (for degenerate rays) grid-
point of A; in this case, B unfolds in the direction opposite to that of A. In other
words, A and B unfold in the same direction if B “hangs below” A, and in opposite
direction otherwise.

6.3 Unfolding Bands into a Net

Let A be a band to unfold, initially the root band. The unfolding of A starts at its
pivot point pA and proceeds in the unfolding direction (clockwise or counterclock-
wise) of A. Henceforth we assume without loss of generality that the unfolding of A
proceeds clockwise (with respect to a viewpoint at y =−∞); the counterclockwise
unfolding of A is a vertical reflection of the clockwise unfolding of A. In the follow-
ing we describe our method to unfold every child B of A recursively. As mentioned
earlier, each band unfolds horizontally, from left to right, with recursive interruptions
to unfold its children.

Without loss of generality, we assume that A and B are both protrusions (cf.
Sect. 3). The possible unfoldings for a child B fall naturally into three cases. Case 1
handles the situation when B’s pivot is at the intersection of A and B . Cases 2 and 3
handle situations when B’s pivot is connected by a ray to A; Case 2 deals with situ-
ations in which B’s connecting paths do not overlap any other connecting paths, and
Case 3 addresses overlapping paths.

Case 1: Pivot pB ∈ A ∩ B . Then, whenever the unfolding of A reaches pB , we
unfold B as in Fig. 7. The unfolding uses the two band gridfaces of A incident to pB
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(a0 and a1 in Fig. 7). Let b0 be the first gridface of B in counterclockwise order about
pB . In the unfolding, we rotate b0 around pB so that the counterclockwise unfolding
of B extends horizontally to the right. The unfolding of B proceeds counterclockwise
back to pB , then the band gridface a1 incident to pB is oriented about pB so that the
unfolding of A continues to the right.

Note that, because the pivots of any two children of A are conflict-free, there is
no competition over the use of a0 and a1 in the unfolding. Note also that the un-
folding path does not self-cross. For example, the cyclic order of the gridfaces inci-
dent to pB in Fig. 7a is (a0,Afront, b0, b1,Aback, a1), and the unfolding path follows
(a0, b0, . . . , b1, a1).

Case 2: Pivot pB 
∈A ∩B and the (forward, return) connecting paths for B do not
overlap other connecting paths (except at their boundaries); we will later see that
connecting paths may overlap. Let us settle some notation first (cf. Fig. 8a): r is the
ray connecting B to A; k1 and k2 are forward and return connecting paths for B (one
to either side of r); u1 is the endpoint of r that lies on A; and u2 is the other endpoint
of the y-edge of A incident to u1. We discuss three situations:

Case 2a: u1 is neither a reflex corner nor a bottom corner of A. In this case, when-
ever the unfolding of A reaches k1, the unfolding of B proceeds according to one of
three subcases, depending on the position of pB . If pB touches a left gridface of B ,
the unfolding proceeds as in Fig. 8a, and if it touches a right gridface, the unfolding
proceeds as in Fig. 8b. In both cases, b0, the first gridface of B in counterclockwise
order around pB , is rotated so that the unfolding of B extends to the right, B is recur-
sively unfolded, and the return path k2 is rotated about pB so that the unfolding of A
continues to the right. The final subcase occurs when pB touches only top gridfaces
of B . Then the unfolding is identical to that in Fig. 8b but with bs a top gridface.

Case 2b: u1 is a reflex corner of A. In this case, the unfolding of B proceeds as in
Fig. 9a,b. It is the existence of the vertical strip incident to u1 (marked t in Fig. 9) that

Fig. 9 Unfolding B: u1 is a corner vertex of A. a t is a left strip b t is a right strip
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Fig. 10 Unfolding B: u1 is a bottom corner of A a rightmost, and b leftmost gridface of A vertically
aligned with leftmost gridface of B

makes handling this case different from Case 2a. Note, however, that the existence
of t implies the existence of at least two gridfaces on either the return path or the
forward path for B , depending on whether t is a left (Fig. 9a) or a right (Fig. 9b) strip
of gridfaces. In the former case the unfolding starts as in Case 2a (Fig. 9a), and once
the unfolding of B returns to pB , it continues along the return path k2 up to u1, then
unfolds t and orients it about u1 so that the unfolding of A continues to the right.
The gridface(s) that cover the gap above k2 (marked k3 in Fig. 9a) will be attached
below the adjacent top gridface of A (a1 in Fig. 9a) in the last phase of the unfolding
algorithm (Sect. 6.4).

If t is a strip of right gridfaces, then we unfold t before descending along the
forward path down to B , as in Fig. 9b (note the vertical symmetry with the unfolding
in Fig. 9a); the unfolding of B then proceeds as in Case 2a (Fig. 8b).

Case 2c: u1 is a bottom corner of A. In this case, the unfolding proceeds as in
Fig. 10a or 10b, depending on whether u1 is a right or a left bottom corner of A.
The unfolding illustrated in Fig. 10a follows the familiar unfolding pattern: orient the
first gridface of B in counterclockwise order around pB so that the unfolding of B

extends to the right; once the unfolding of B returns to pB , follow the return path
back to A and unfold the gridface of A clockwise to the right of u1 (a1 in Fig. 10a)
so that the unfolding of A continues to the right. A similar pattern applies to the case
illustrated in Fig. 10b, with one subtle difference meant to aid in unfolding front and
back faces (discussed in Sect. 6.4): in unfolding bands, we aim at maintaining the
vertical position of the (forward, return) connecting paths in the unfolding, so that
vertical strips hanging below these connecting paths in 3D could also hang vertically
in the 2D unfolding. More on this in Sect. 6.4. Observe that the z-vertical edges of k1
and k2 from Fig. 10a hang remain vertical in the unfolding. However, the z-vertical
edges of k2 from Fig. 10b must unfold as horizontal edges, otherwise it would not
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Fig. 11 a Return path for C includes k4, k3, k1; forward path for B is k1. b Unfolding for (a). c Return
path for B includes k5, k4, k2; forward path for C is k2. d Return path for B is k2; forward path for C

includes k2, k3. e Forward (return) paths are identical for B and C

be possible to orient a1 around u1 so as to continue unfolding A to the right of k2.
This is the reason for employing the gridface strip marked t in the unfolding, so that
z-vertical sides of t remain vertical in the unfolding, and any gridface strip hanging
below t could be attached to t vertically in the unfolding.

We note that Fig. 10 illustrates only the situation in which pB is incident to a left
gridface of B , but it should not be difficult to observe that the same idea applies to
any top pivot of B; the pivot position only affects the start and end unfolding position
of B , and everything else remains the same.

Case 3: Pivot pB 
∈A ∩B and a connecting path for B overlaps a connecting path
for another descendant C of A. This case is slightly more complex, because it in-
volves conflicts over the use of the connecting paths for B . The following three situ-
ations are possible.

Case 3a: The forward path k1 for B overlaps the return path for another descendant
C of A. This situation is illustrated in Fig. 11a. In this case, the unfolding of B starts
as soon as the unfolding along the return path from C to A meets a gridface of B

incident to pB (gridface b0 in Fig. 11a). At this point we recursively unfold B as
before (see Fig. 11b), then the unfolding continues along the return path for C back
to A. Figure 11b shows gridface k1 in two positions: we let k1 hang down only if the
next gridface to unfold is a right gridface of a child of A (see also the transition from
k7 to c5 in Fig. 12); otherwise, use k1 in the upward position, a freedom permitted to
us by rotating about vertex u.
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Fig. 12 a An example. b The vertex-unfolding

Case 3b: The return path for B overlaps the forward path for another descendant C
of A. This situation is illustrated in Figs. 11c and 11d. The case depicted in Fig. 11c is
similar to the one in Fig. 11a and is handled in the same manner. For the case depicted
in Fig. 11d, notice that k2 is on both the forward path for C and the return path for B .
However, no conflict occurs here: from k2 the unfolding continues downward along
the forward path to C and unfolds C next.

Case 3c: The forward path k1 for B overlaps the forward path for another descen-
dant C of A. This situation occurs when either B or another band C incident to B

is a dent, as illustrated in Fig. 11e. Again, no conflict occurs here: the recursive un-
folding of C, which returns to pC = pB , is followed by the recursive unfolding of
B , which returns to pB , then the unfolding continues along the return path for B (C)
back to A. We note that the forward paths for B and C overlap if and only if their re-
verse paths overlap, so this case also handles the situation in which the reverse paths
overlap.

Figure 12 shows a more complex example that emphasizes these subtle unfolding
issues. Note that the return path k1, k8, k9 for B overlaps the forward path k9 for C;
and the return path k5, k6 and k7 for G overlaps the forward path for H , which in-
cludes k7. The unfolding produced by the method described in this section is depicted
in Fig. 12b.

6.4 Attaching Front and Back Faces to the Net

Front and back faces of a slab are “hung” from bands following the basic idea of
the illumination model discussed in Sect. 5.3. There are three differences, however,
caused by the employment of some front and back gridfaces for the connecting paths,
which can block illumination from the bands.

1. We illuminate both upward and downward from each band: each x-edge illumi-
nates the vertical front/back face it attaches to. This alone already suffices to han-
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dle the example in Fig. 12: all front and back faces are illuminated downward from
the top of A, upward from the bottom of A, and upward from the top of B .

2. Some gridfaces still might not be illuminated by any bands, because they are ob-
scured both above and below by paths in connecting gridfaces. Therefore we in-
corporate the connecting gridfaces into the band for the purposes of illumination.
For example, in Fig. 10a, k2 illuminates downward and k1 illuminates upward.
The reason this strategy works is that, with one exception, each vertical connect-
ing strip remains vertical in the unfolding, and so illuminated strips can be hung
safely without overlap. Note that although k2 illuminates downward, it is rotated
about pB so that what was down in 3D becomes up in the unfolding. So the faces
illuminated downward from k2 get “hung upward.”

3. The one exception is the return connecting path k2 in Fig. 10b. This paths unfolds
“on its side,” i.e., what is vertical in 3D becomes horizontal in 2D. Note, how-
ever, that the gridface t below such a path (a gridface always present), is oriented
vertically. We thus consider t to be part of the connecting path for illumination
purposes, permitting the strip below to be hung under t .

Because our cases are exhaustive, all gridfaces of (say) the front face of A are either
illuminated by A, or by some descendant of A on the front face, augmented by the
connecting paths as just described. (In fact every gridface is illuminated twice, from
above and below.) Hanging the strips then completes the unfolding.

6.5 Algorithm Complexity

Because there are so few unfolding algorithms, that there is some algorithm for a class
of objects is more important than the speed of the algorithm. Nevertheless, we offer
an analysis of the complexity of our algorithm. Let n be the number of corner vertices
of the polyhedron, and N =O(n2) be the number of gridpoints. The vertex grid can
be easily constructed in O(N) time, leaving a planar surface map consisting of O(N)

gridpoints, gridedges, and gridfaces. The computation of connecting rays (Sect. 6.2)
requires determining the components of A ∩ P+i and A ∩ P−i , for each band A and
incident plane Yi . These can be easily read from the planar map by running through
the n vertices of each of the O(n) bands and determining, for each vertex, whether it
belongs to P+i or P−i . Each of the O(n) band components shoots a vertical ray from
one corner vertex, in a 2D environment (the plane Yi ) of n noncrossing orthogonal
segments. Determining which band a ray hits involves a ray-shooting query. Although
an implementation would employ an efficient data structure, perhaps BSP trees [9],
for complexity purposes the naive O(n) query cost suffices to lead to O(n2) time
to construct Gr . Selecting pivots (Sect. 6.1) involves 2-coloring Gr in O(n) time,
and computing the unfolding tree Tu in a breadth-first traversal of Gr , which takes
O(n) time. Unfolding bands (Sect. 6.3) involves a depth-first traversal of Tu in O(n)

time, and laying out the O(N) gridfaces in O(N) time. Thus, the algorithm can be
implemented to run in O(N)=O(n2) time.

7 Further Work

Extending these algorithms to arbitrary genus orthogonal polyhedra remains an in-
teresting open problem. Holes that extend only in the x and z directions within a slab
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seem unproblematic, as they simply disconnect the slab into several components.
Holes that penetrate several slabs (i.e., extend in the y direction) present new chal-
lenges, as they may obstruct vertical band visibility necessary to establish that the
band graph is connected. One idea to handle such holes is to place a virtual xz-face
midway through the hole, and treat each half-hole as a dent (protrusion).
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Appendix: Proof of Lemma 2 (Connectedness of Gb)

For a band A, let ri(A) be the closed region of Yi whose boundary is the rim of A,
i.e., A∩Yi . Two subsets of Pi = ∂O ∩Yi ⊂ Yi are path-connected, or just connected,
if there are points in each that are connected by a path that lies in Pi . We first develop
notation to describe the relevant portions of ri(A) that are connected to each band A.
Recall from Sect. 2 that P+i is composed of back faces and P−i of front faces.

We decompose the set of points in Pi into sets ci(A) for all bands A that meet P .
The sets ci(A) will have disjoint interiors, overlapping only on their boundaries. Ini-
tially assign ci(A)=A∩ Pi ; we now augment these sets. Let p be an arbitrary point
in Pi . We consider four cases, which ultimately reduce to a single case. First let p
be on a front face, i.e., on P−i . Then p is either on a protrusion that lies behind Yi

(Fig. 13a), or on a dent in front of Yi (Fig. 13b). Symmetric cases occur when p is on
a back face (on P+i ), either on a protrusion in front of Yi (Fig. 13c), or a dent behind
Yi (Fig. 13d). Let p be on a front face of a band A (encompassing the first two cases).
If p is path-connected to A, we add p to ci(A). Otherwise, p must be in ri(B) of
a unique dent band B , which is itself in a protrusion B ′, both in front of Yi . In this
case, we add p to ci(B). For example, in Fig. 17a, p lies on the front face of A and is
path-connected to A, and therefore p ∈ ci(A) (even though it is also path-connected
to the surrounding dent B). In Fig. 18a, however, p lies on the front face of A′ but is
not path-connected to A′, and therefore p is instead in the set ci(B) for the surround-
ing dent B . Figure 16b illustrates the symmetric case where p is on the back face of
protrusion B ′, and because p is path-connected to B ′, p ∈ ci(B

′) (even though p is
also path-connected to B).

The above definition of ci(A) ensures that ∪ci(A) = Pi , where the union is over
all A that meet Pi . Moreover the ci sets have disjoint interiors. We now concentrate

Fig. 13 Four cases: p is located on: a front face of protrusion behind Yi , b front face of dent in front
of Yi , c back face of protrusion in front of Yi , d back face of dent behind Yi
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on the boundaries of the ci sets, and raise the observation we need to a lemma for
later reference:

Lemma 5 For protrusion A and dent B on opposite sides of Yi such that ci(A) ∩
ci(B) is nonempty, it must be that A ∩ B is nonempty, i.e., the band rims share one
or more points.

Proof Suppose to the contrary that A ∩ B is empty. Then either ri(A) and ri(B) are
disjoint, in which case ci(A) ∩ ci(B) is empty, a contradiction, or ri(A)⊃ ri(B), in
which case B is a cavity in object O , violating our genus-zero assumption. �

This lemma justifies the following definition:

ci(A,B)=
{
A∩B, if A∩B 
= ∅, and at least one of A and B is a dent,

ci(A)∩ ci(B) otherwise.

This definition is intended to identify gridpoints on either A or B from which
rays are issued by the ray-pair generation algorithm (Sect. 6.1.1). The reason for
treating intersecting dents and protrusions differently is a subtle one, and is captured
by Fig. 16b: B is a dent behind Yi and B ′ is a protrusion in front of Yi ; ci(B ′) is the
piece of the back face of B ′ enclosed by B; u is a highest gridpoint in B ∩B ′, while
w is a highest gridpoint in ci(B) ∩ ci(B

′); u is a potential ray basepoint, while w is
not. The above definition eliminates points such as w from the set ci(A,B).

Our connectivity proof for Gb proceeds as follows. Let P 1
i , P

2
i , . . . denote the

connected components of Pi , with Pi = P 1
i ∪ P 2

i ∪ · · ·. The bands incident to each
of these are connected by rays (as discussed in Sect. 6.1.2) that lie in planes other
than Yi (see Fig. 14 for an example). We first argue that, to prove that Gb is ray-
connected, it suffices to prove that each Pm

i is ray-connected. Remove from O all
the slabs S1, S2, . . . incident to Y0. Establish that the bands in the resulting object O ′
are ray-connected, via induction. The inductive hypothesis implies that the bands in
each connected component of O ′ are ray-connected. Now put back the slabs. Each
Sm corresponds to a component Pm

i . We will prove that all bands incident to Pm
i

are ray-connected to one another. This along with the fact that O itself is connected
implies that all bands are ray-connected. Henceforth we concentrate on one such
connected component Pm

i , call it Q ⊂ Yi for succinctness. Let χ be the collection
of all bands that intersect Q. Then

⋃
A∈χ ci(A)=Q. The idea of the connectedness

Fig. 14 P1 contains two
connected components, one
incident to A, B , D, and one
incident to C, E; pairs of bands
incident to different components
are connected by rays that lie
in Y2
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proof is that the bands get connected in upward chains, and ultimately to each other
through “common ancestor” higher bands. We choose to prove it by contradiction,
arguing that a highest disconnected component cannot exist.

Lemma 6 All bands in χ are ray-connected. Furthermore, if one arbitrary ray in
each ray-pair is discarded, χ remains ray-connected.

Proof For the purpose of contradiction, assume that not all bands in χ are ray-
connected. Let χ1, χ2, . . . be the maximal subsets of χ that are ray-connected. Let
Qj =⋃A∈χj

ci(A). Then Q=⋃j Qj . Since Q is connected, the subsets Qj are not
disjoint, in that for every Qj there is an Qk such that Qj ∩Qk is nonempty. This
along with Lemma 5 implies that

Qjk =
⋃

A∈χj

⋃

B∈χk

ci(A,B)

is also nonempty. Let j and k be such that Qjk contains a highest x-gridedge (grid-
point, if Qjk contains only isolated points) among all Qjk . Let u be the leftmost
highest gridpoint in Qjk . Let A ∈ χj and B ∈ χk be such that u ∈ ci(A,B).

We have thus identified two bands A and B , ray-disconnected because they lie in
different components of Q, which contribute this highest gridpoint u in the “highest”
intersection Qjk . We now examine in turn the four protrusion/dent possibilities for
these two bands.

Case 1. A and B are both protrusions on opposite sides of Yi . Assume without loss
of generality that A is behind Yi , B is in front of Yi , and u is on B (as depicted in
Fig. 15). We discuss two subcases:

a. u is on a top edge of A or B; choose B without loss of generality (Figs. 15a, b).
Then our ray-pair algorithm generates a ray-pair (r, r ′), with r incident to u and r ′
incident to the gridpoint u′ clockwise from u. Consider r (the analysis is similar
for r ′). If r hits A, then in fact A and B are ray-connected, contradicting the fact
that A and B belong to different ray-connected components of χ . So let us assume

Fig. 15 Case 1: A and B are both protrusions on opposite sides of Yi a D is a protrusion b D is a dent
with a vertical side incident to u c D is a dent with a bottom edge incident to u
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that r hits another band D ∈ χ�. Figure 15a, b illustrates the situation when D is a
protrusion (dent). If �= j , then D and A are ray-connected in χj , and since B and
D are ray-connected, it follows that B and A are ray-connected, a contradiction.
On the other hand, if � 
= j , then ci(A,D) (and implicitly Qj�) has a gridpoint
higher than u, contradicting our choice of j , k and u.

b. u is not on a top edge of A or B , and so must be on a vertical (left, right) edge
of A or B; again we choose B without loss of generality (Fig. 15c). Then u must
be at the intersection between a dent D in protrusion A, and B . Because A∩D is
empty, we fall into the second case of the definition of ci(A,D), which is therefore
ci(A) ∩ ci(D). In this case, the same arguments as in Case a show that D and A

are ray-connected, meaning that D ∈ χj . Let u1 be the leftmost among the highest
gridpoints of D ∩ ci(B). Then our ray-pair algorithm generates a ray-pair (r, r ′)
from u1 and its right neighbor u′1. Consider r (the analysis is similar for r ′). If r
hits B , then B is ray-connected to D, which is ray-connected to A, a contradiction.
If r hits a band E other than D, then it must be that E ∈ χk , the same component
containing B . Otherwise B and E would yield an intersection point higher than
u, contradicting our choice of A and B . This means that B is ray-connected to E,
which is ray-connected to D, which is ray-connected to A, a contradiction.

Case 2. A is a protrusion and B is a dent, both on a same side of Yi . The case when
A and B are both in front of Yi (illustrated in Fig. 16a) is identical to Case 1 above,
once one conceptually pops out B into a protrusion. We now discuss the case when
A and B are both behind Yi .

Assume first that ci(A,B) contains no top edges of B , as depicted in Fig. 16b. Let
B ′ be a protrusion in front of Yi covering the top of B . Then ci(A,B ′) and ci(B

′,B)

each contains a gridpoint higher than u (see point w′ ∈ ci(A,B ′) and w ∈ ci(B,B ′)
in Fig. 16). The following two contradictory observations settle this case:

a. It must be that B ′ 
∈ χk ; otherwise Qjk would contain a gridpoint in ci(A,B ′)
higher than u.

b. If B ′ ∈ χ�, then it must be that �= k; otherwise Q�k would contain a gridpoint in
ci(B

′,B) higher than u.

Fig. 16 Case 2: A is a protrusion and B is a dent a in front of Yi b behind Yi
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Fig. 17 Case 3: A is a protrusion behind Yi ; B is a dent in B ′ , both in front of Yi

If ci(A,B) contains at least one top gridedge of B , then arguments similar to the
ones used for the case illustrated in Fig. 15a (conceptually popping B to become a
protrusion) settle this case as well.

Case 3. A is a protrusion and B is a dent on opposite sides of Yi (see Fig. 17). Let B ′
be the protrusion in front of Yi enclosing B . We discuss three subcases:

a. ci(A) contains a top edge of B (see Fig. 17a). This means that ci(A) ∩ ri(B) is
nonempty, and the ray-pair algorithm shoots a ray-pair (r, r ′) upward from the
endpoints of a highest gridedge {u1, u

′
1} of A∩ ri(B). Consider ray r (the analysis

is similar for r ′). If r hits B , then A and B are in fact ray-connected, a contradic-
tion. If r hits a band D other than B , then arguments similar to the ones for the
case illustrated in Fig. 15a (Case 1) lead to a contradiction.

b. ci(A) contains a bottom edge of B . This case is symmetrical to the one above in
that a ray upward from a gridpoint of B ∩ ri(A) hits A, thus ray-connecting A

and B .
c. ci(A) contains neither a top nor a bottom edge of B (see Fig. 17b). Arguments

similar to the ones used in Case 1 (protrusions on opposite sides of Yi) show that
A and B ′ are ray-connected. That B and B ′ are ray-connected follows immediately
from the fact that ci(B,B ′) has a gridpoint higher than u (w in Fig. 17b). These
together imply that A and B are ray-connected, a contradiction.

Case 4. A and B are both dents: A is a dent behind Yi enclosed within protrusion
A′, and B is a dent in front of Yi enclosed within protrusion B ′ (see Fig. 18). The
genus-zero assumption implies that ri(A) ∩ ri(B) is a polygonal region of positive
area. Since u ∈ ci(A)∩ ci(B), we have that u ∈ ri(A)∩ ri(B). Let β be the boundary
segment of ri(A)∩ ri(B) incident to u. We discuss two subcases:

a. β ⊂ P−i , meaning that β ⊂ A (see Fig. 18a). An analysis similar to the one for
the case illustrated in Fig. 17a (Case 3) shows that A and B are ray-connected, a
contradiction.
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Fig. 18 Case 4: A is a dent behind Yi , enclosed within protrusion A′ . B is a dent in front of Yi , enclosed
within protrusion B ′

b. β ⊂ P+i , meaning that β ⊂ B (see Fig. 18b). We show that A and A′ are ray-
connected, B and B ′ are ray-connected, and A′ and B ′ are ray-connected. This
implies that A and B are ray-connected, a contradiction. First note that the ray-
pair algorithm shoots a ray-pair (r, r ′) upward from a highest gridedge on β . An
analysis similar to the one for the case illustrated in Fig. 15a (conceptually popping
B to become a protrusion) shows that r and r ′ must hit B ′, thus ray-connecting B

and B ′. That A and A′ are ray-connected follows immediately from the fact that
ci(A,A′) has a gridpoint higher than u, and similarly for A′ and B ′.

Having exhausted all possible cases, the connectivity claim of the lemma is estab-
lished. Because the proof for each of these cases goes through by considering either
the first or second ray of a ray-pair, retaining either ray suffices to preserve connec-
tivity. Thus the second claim of the lemma is established as well. �

References

1. Biedl, T., Demaine, E., Demaine, M., Lubiw, A., O’Rourke, J., Overmars, M., Robbins, S., White-
sides, S.: Unfolding some classes of orthogonal polyhedra. In: Proc. 10th Canad. Conf. Comput.
Geom., pp. 70–71, 1998

2. Damian, M., Flatland, R., O’Rourke, J.: Grid vertex-unfolding orthogonal polyhedra. In: 23rd Symp.
Theoretical Aspects Comput. Sci., 2006. Lecture Notes Comput. Sci., vol. 3884, pp. 264–276.
Springer, Berlin (2006)

3. Demaine, E.D., O’Rourke, J.: A survey of folding and unfolding in computational geometry. In:
Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. Cambridge
University Press, Cambridge (2005)

4. Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2004. In: Proc. 17th Canad. Conf. on
Comput. Geom., pp. 303–306, 2005

5. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, Cambridge (2007). http://www.gfalop.org

6. Demaine, E.D., Eppstein, D., Erickson, J., Hart, G.W., O’Rourke, J.: Vertex-unfoldings of simplicial
manifolds. In: Bezdek, A. (ed.) Discrete Geometry, pp. 215–228. Dekker, New York (2003)

7. Demaine, E.D., Iacono, J., Langerman, S.: Grid vertex-unfolding of orthostacks. In: Japan Conf.
Discrete Comput. Geom. 2004. Lecture Notes Comput. Sci., vol. 3742, pp. 76–82. Springer, Berlin
(2005). Int. J. Comput. Geom. Appl. (to appear)



Grid Vertex-Unfolding Orthogonal Polyhedra 219

8. O’Rourke, J.: Folding and unfolding in computational geometry. In: Discrete Comput. Geom., Japan
Conf. Discrete Comput. Geom., 1998. Lecture Notes Comput. Sci., vol. 1763, pp. 258–266. Springer,
Berlin (2000).

9. Paterson, M.S., Yao, F.F.: Optimal binary space partitions for orthogonal objects. J. Algorithms 13,
99–113 (1992)

10. Schwartz, E.L., Shaw, A., Wolfson, E.: A numerical solution to the generalized map-maker’s problem:
flattening nonconvex polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 11(9), 1005–1008
(1989)

11. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. 23(3), 853–
860 (2004)

12. Wang, C.-H.: Manufacturability-driven decomposition of sheet metal products. PhD thesis, Carnegie
Mellon University, The Robotics Institute (1997)



Empty Convex Hexagons in Planar Point Sets

Tobias Gerken

Abstract Erdős asked whether every sufficiently large set of points in general posi-
tion in the plane contains six points that form a convex hexagon without any points
from the set in its interior. Such a configuration is called an empty convex hexagon.
In this paper, we answer the question in the affirmative. We show that every set that
contains the vertex set of a convex 9-gon also contains an empty convex hexagon.

Keywords Erdős-Szekeres problem · Ramsey theory · Convex polygons and
polyhedra · Empty hexagon problem

1 Introduction

In 1935, Erdős and Szekeres [5] proved that for each positive integer n there exists
a smallest positive integer g(n) such that every planar set of at least g(n) points
in general position contains n points that are the vertices of a convex n-gon. Here,
general position means that no three points are collinear.

The best known bounds for g(n) are 2n−2 + 1 ≤ g(n) ≤ (2n−5
n−2

) + 1. The lower
bound is due to Erdős and Szekeres [6] and the upper bound was established recently
by Tóth and Valtr [11]. The lower bound is sharp for n≤ 5 and is conjectured to be
sharp for all n by Erdős and Szekeres [5, 6]. For a survey of results related to the
Erdős–Szekeres theorem, see [1, 2, 9, 11].

In 1978, Erdős [3, 4] posed the problem of determining the smallest positive inte-
ger h(n), if it exists, such that any set X of at least h(n) points in general position in
the plane contains n points that are the vertices of an empty convex polygon; that is,
a convex n-gon whose interior does not contain any point of X. Trivially, h(n) = n

T. Gerken (�)
Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3,
85747 Garching, Germany
e-mail: gerken@ma.tum.de
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for n≤ 3. It is easy to see that h(4)= 5. In 1978, Harborth [7] proved that h(5)= 10,
while Horton [8] showed in 1983 that for all n≥ 7, h(n) does not exist. The problem
of determining the existence of h(6) has since been open. Based on computer exper-
iments, Overmars [10] showed that h(6) ≥ 30 (if it exists). In this paper, we prove
the following theorem which implies that every sufficiently large planar point set in
general position contains the vertex set of an empty convex hexagon.

Theorem 1 h(6)≤ g(9).

The above bounds yield 129≤ g(9)≤ 1717. Note that there exist sets of points with-
out empty convex hexagons that have eight points on the convex hull [10].

2 Overview of the Proof

Proof In the following, let X be a finite planar set of points in general position that
contains the vertex set of a convex 9-gon. By the Erdős–Szekeres theorem [5] this
is always the case if |X| ≥ g(9). Let H ⊆ X be the vertex set of a convex 9-gon
in X with the minimum |X ∩ conv(H)|, where conv(M) denotes the convex hull of
the set M . Let I := conv(H) ∩ (X \H) be the set of points of X inside the convex
hull of H . Note that conv(I ) is a convex polygon and denote by ∂I its vertex set. If
|I |> 2, let J := conv(I )∩ (X \∂I) be the set of points of X inside the convex hull of
∂I . Note that conv(J ) is again a convex polygon and denote by ∂J its vertex set; see
Fig. 1. Let i := |∂I | and j := |∂J |. Note that 0 ≤ i, j ≤ 8 as otherwise there would
be a 9-gon H ′ with smaller |X ∩ conv(H ′)|. This leaves the 57 cases 0 ≤ i ≤ 2 and
(i, j) ∈ {3, . . . ,8} × {0, . . . ,8}. We argue that in each case either an empty convex
u-gon can be found (u ≥ 6) or a convex 9-gon H ′ with smaller |X ∩ conv(H ′)| is
present which contradicts the minimality condition imposed on H . (More precisely,
the vertex set of an empty convex u-gon can be found. In the following, we do not
make this distinction when the meaning is clear from the context.)

Fig. 1 Basic notation
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Table 1 Overview of the proof structure: for example, the proof for the case (8,5) is given in Sects. 6
(special case) and 10 (general case)

i/j 0 1 2 3 4 5 6 7 8

0 3 – – – – – – – –

1 3 – – – – – – – –

2 3 – – – – – – – –

3 4 4 4 4 4 4 4 4 4

4 5 5 5 5 5 5 5 5 5

5 6 7.1 8 8 8 8 8 8 8

6 3 7.2 7.3 4/5 9 9 9 9 9

7 3 7.3 3 4/5 5 6/10 3/10 3/10 3/10

8 3 3 3 4 5 6/10 3/10 3/10 3/10

2.1 Notation

We use (i, j) to denote a specific case, where i and j are defined as above. Sometimes
we use the notation (i, j, k), where k refers to the number of points of X inside the
convex hull of J ; that is, the cardinality of K := conv(J ) ∩ (X \ ∂J ). The notation
≥ x indicates that x is a lower bound for i, j or k. Refer to Table 1 for locating the
proof of a specific case.

2.2 Definitions

Given three points in general position, P,Q,R, define the halfplane HPQ(R) as the
open halfplane defined by the line PQ that contains R. A convex chain is a set of
consecutive vertices of a convex polygon. Given a convex chain of three points, ABC,
the 3-sector specified by this chain is defined as

(ABC) := [HAB(C)∩HBC(A)] \ conv({A,B,C}).
Note that three points in general position, S,T ,U , lying in (ABC) can be used to
construct a convex hexagon if A,B,C ∈ (ST U); see Fig. 2a.

Given a convex chain of four points, ABCD, the corresponding 4-sector is defined
as

(ABCD) := [(ABC)∩ (BCD)] \ conv({A,B,C,D}).
Note that two points, S,T , lying in (ABCD) can be used to construct a convex
hexagon if the line ST does not intersect conv({A,B,C,D}); see Fig. 2b. This means
that by construction, given an edge PQ of conv(I ) (respectively conv(J )), at most
three vertices of conv(H) (respectively conv(I )) can lie in an open halfplane that is
defined by the line PQ and does not include any other point of I (respectively J ) if
no empty convex hexagon is to occur. In the following figures, we use the notation
(PQ) to hint to this fact; see Fig. 2c.

Finally, given a convex chain of five points, ABCDE, the corresponding 5-sector
is defined as

(ABCDE) := [(ABCD)∩ (BCDE)] \ conv({A,B,C,D,E}).
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Fig. 2 Definition: sector

Note that a single point lying in (ABCDE) can be used to construct a convex
hexagon; see Fig. 2d.

3 Elementary Cases

Note that the cases (0,0), (≥ 6,0) and (≥ 3,≥ 6,0) are trivial as an empty convex
hexagon is present. The cases (1,0) and (8,1) can be dealt with by considering a line
through the single interior point and one of the vertices of the convex 9- respectively
8-gon. Due to the general position, on one side of this line a convex chain of four
vertices must be present which together with the two preselected points can be used
to construct an empty convex hexagon. A similar argument settles the cases (2,0),
(8,2) and (7,2).

4 The Cases (3,≥ 0) and (≥ 6,3)

We approach the cases (3,≥ 0) and (≥ 6,3) in two batches:

4.1 The Cases (3,≥ 0) and (8,3)

Follow the notation as indicated in Fig. 3. The variables stand for the number of
vertices of the convex 9- respectively 8-gon in each sector. Assume that no empty
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Fig. 3 Notation for the cases
(3,≥ 0) and (≥ 6,3)

convex hexagon is present. Note that

1≤ a1 + b1 + a2 ≤ 3, (4.1)

1≤ a2 + b2 + a3 ≤ 3, (4.2)

1≤ a3 + b3 + a1 ≤ 3 (4.3)

by construction and as otherwise a convex chain of four vertices together with two
vertices of the triangle could be used to form an empty convex hexagon. Also,

0≤ bi ≤ 2 (1≤ i ≤ 3) (4.4)

as otherwise a convex chain of three points together with two vertices of the triangle
and either the third vertex of the triangle or (if existent) one of its interior points
can be used to form an empty convex hexagon. Summing up the upper bounds in
(4.1–4.4) yields

2 ·
3∑

i=1

(ai + bi)≤ 15. (4.5)

Therefore, at most seven vertices can be placed around the triangle and in the two
cases at hand an empty convex hexagon is present.

4.2 The Cases (6,3) and (7,3)

The cases (6,3,0) and (7,3,0) can be settled by a careful investigation of the
(a1, b1, a2, b2, a3, b3)-tuples that are feasible for the set of constraints (4.1–4.4). Note
that tuples (ai, bi, ai+1) with ai = ai+1 = 0 are not feasible, as a convex 9-gon H ′
with smaller |X ∩ conv(H ′)| could be constructed; see Fig. 4. In Fig. 4a, replace
the vertices of the 9-gon lying in the union of sectors (AQB) and (BRC) (at least
one by construction and at most four in total if no empty convex hexagon is present)
by points from the convex chain AQRC of length four. In Fig. 4b, accordingly re-
place the at most four vertices of the 9-gon lying in the union of sectors (AQB1),
(B1QPRB2) and (B2RC).
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Fig. 4 (x,3): degenerate cases with (ai , bi , ai+1) = (0,1,0) and (ai , bi , ai+1) = (0,2,0) respectively.
Numbers indicate the number of vertices of the 9-gon that can lie in each sector without forming an empty
convex hexagon

Table 2 Cases (6,3,0) and (7,3,0): Combinatorial subcases under the assumptions (i) a1 ≥ a2 ≥ a3 and
(ii) b2 ≥ b3 for fixed (a1, b1, a2)

a1 a2 a3 b1 b2 b3 Solution

3 0 0 * * * Infeasible

2 1 1 0 (≤1) 0
∑3

i=1 (ai + bi )≤ 5

2 1 0 0 (≤2) (≤1) (2,0,1,2,0,1)

2 0 0 * * * Infeasible

1 1 1 (≤1) (≤1) (≤1) (1,1,1,1,1,1)

1 1 0 1 2 2 (1,1,1,2,0,2)

1 1 0 1 2 1 (1,1,1,2,0,1)

1 1 0 1 2 0
∑3

i=1 (ai + bi )= 5

1 1 0 1 (≤1) (≤1)
∑3

i=1 (ai + bi )≤ 5

1 1 0 0 2 2 (1,0,1,2,0,2)

1 1 0 0 (≤2) (≤1)
∑3

i=1 (ai + bi )≤ 5

1 0 0 * * * Infeasible

0 0 0 * * * Infeasible

*Marks an arbitrary entry

Note that constraint (4.1) implies a1 + a2 ≤ 3

Now assume without loss of generality that (i) a1 ≥ a2 ≥ a3 and (ii) b2 ≥ b3

for fixed (a1, b1, a2); see Fig. 3. Then the only solutions to the above set of
constraints (modulo rotations and reflections) are (2,0,1,2,0,1), (1,1,1,1,1,1),
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Fig. 5 The case (6,3,0) with (2,0,1,2,0,1)

(1,1,1,2,0,2), (1,1,1,2,0,1) and (1,0,1,2,0,2); see Table 2. These can be
treated individually as follows:

• The subcase (2,0,1,2,0,1) can be treated as indicated in Fig. 5. Here and in the
following, numbers indicate the number of vertices of the outer polygon that can lie
in each sector without forming an empty convex hexagon. As the union of sectors
allows for at most eight points in convex position in the outmost layer, due to the
presence of a convex 9-gon an empty convex hexagon must occur.

• Figure 6 indicates how to settle the subcase (1,1,1,1,1,1), provided the vertex
Q of triangle PQR lies inside the triangle BDF . In that case the quadrilateral
BQDC exists. Similarly we can treat the case that some other of the points P , Q
lies inside the triangle BDF . If none of the points P,Q,R lies inside the triangle
BDF , the empty convex hexagon PBQDRF occurs.

• Figure 7 indicates how to settle the subcase (1,1,1,2,0,2), provided that the point
Q lies outside the triangle BCD. In that case the quadrilateral CBQD exists. If Q
lies inside the triangle BCD, the empty convex hexagon BQDERP occurs.

• The subcase (1,1,1,2,0,1) can be treated as indicated in Fig. 8.
• Figure 9 indicates how to settle the subcase (1,0,1,2,0,2).

The proof for the cases (6,3,≥ 1) and (7,3,≥ 1) is given in the following Sect. 5.

5 The Cases (4,≥ 0) and (≥ 7,4)

The cases (4,≥ 0) and (≥ 7,4) can be dealt with simultaneously in three steps:
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Fig. 6 The case (6,3,0) with (1,1,1,1,1,1). It is assumed that Q ∈�BDF

Fig. 7 The case (7,3,0) with (1,1,1,2,0,2). It is assumed that Q 
∈ �BCD
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Fig. 8 The case (6,3,0) with (1,1,1,2,0,1)

Fig. 9 The case (6,3,0) with (1,0,1,2,0,2)
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Fig. 10 Notation for the cases
(4,≥ 0) and (≥ 7,4)

5.1 Step 1a

First, consider the cases (4,0) and (8,4,0). We use the same type of approach as in
Sect. 4. Following the notation as indicated in Fig. 10, where variables again refer to
the number of vertices of the 9- respectively 8-gon lying in each sector, we arrive at
the set of inequalities

1≤ a1 + b1 + a2 ≤ 3, (5.1)

1≤ a3 + b3 + a4 ≤ 3, (5.2)

if no empty convex hexagon is to occur. (Vertices lying in more than one sector are
assigned arbitrarily to one particular sector they lie in and therefore only counted
once.) If no empty convex hexagon is to be present, the constraint

0≤ b2 + b4 ≤ 1 (5.3)

must also hold. By summing up the upper bounds in (5.1–5.3), it follows that at most
seven vertices can be placed around the 4-gon, a contradiction in these two cases.

5.2 Step 1b

We next consider the case (7,4,0) and evaluate the feasible solutions to the set of
constraints (5.1–5.3). By symmetry, any feasible (a1, b1, a2, b2, a3, b3, a4, b4)-tuple
must also satisfy the following set of inequalities:

1≤ a1 + b4 + a4 ≤ 3, (5.4)

1≤ a2 + b2 + a3 ≤ 3, (5.5)

0≤ b1 + b3 ≤ 1. (5.6)

It follows directly from (5.3) and (5.6) that
∑4

i=1 bi ≤ 2. Furthermore, it follows
from (5.1) and (5.2) (respectively (5.4) and (5.5)) that if b2 = b4 = 0 or b1 = b3 = 0,
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Fig. 11 The case (7,4,0) with (2,1,0,1,2,0,1,0)

at most six vertices can be placed around the 4-gon. Therefore, (b1, b2, b3, b4) =
(1,1,0,0) without loss of generality. By choosing a1 ∈ {0,1,2}, it follows that only
the following (a1, b1, a2, b2, a3, b3, a4, b4)-tuples are feasible: (2,1,0,1,2,0,1,0),
(1,1,1,1,1,0,2,0) and (0,1,2,1,0,0,3,0) (modulo rotations and reflections).
These can be treated individually as follows:

• The subcase (2,1,0,1,2,0,1,0) can be treated as indicated in Fig. 11. Note that
at most two of the points D,E,F can lie in one of the sectors (QPR) and (RPS)

without the occurrence of an empty convex hexagon. The same holds for A,B,C

and the sectors (QRP) and (PRS). This is indicated by the arrows. Note that one
4- and one 5-sector arise.

• Figure 12 indicates how to settle the subcase (1,1,1,1,1,0,2,0), provided that
the vertex Q of the quadrilateral PQRS lies outside the triangle BCD. In that
case, the quadrilateral BQDC exists. Note that if Q lies inside the triangle BCD,
there exists an empty convex hexagon BQDRSP .

• The subcase (0,1,2,1,0,0,3,0) can be treated as indicated in Fig. 13. Note that if
B and C both lie in (PSQ) or both lie in (QSR), an empty convex hexagon occurs
(ABCQSP and BCDRSQ respectively). Again, this is indicated by the arrows.

5.3 Step 2

Now we investigate the cases (4,1) and (8,4,1). Consider the sectors occurring
when rays emanate from the single point in J (respectively K) through the vertices
of the convex 4-gon. Each of the four sectors can only contain two vertices of the
convex 9- respectively 8-gon as otherwise an empty convex hexagon could be con-
structed. Since 4 · 2 < 9, in the case of the 9-gon an empty convex hexagon must
occur. The case of the 8-gon is settled with a similar sector argument on the next
level as indicated in Fig. 14.
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Fig. 12 The case (7,4,0) with (1,1,1,1,1,0,2,0). It is assumed that Q 
∈ �BCD

Fig. 13 The case (7,4,0) with (0,1,2,1,0,0,3,0)
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Fig. 14 The case (8,4,1)

5.4 Step 3

In dealing with the cases (4,≥ 2), fix a point P ∈ J , construct the sectors as in
Step 2 and afterwards replace P with an appropriate point from J in each sector (if
necessary). Now argue as in Step 2. Proceed accordingly in the cases (8,4,≥ 2) by
choosing an arbitrary P ∈K .

5.5 Remark

The approach of Sects. 5.3 and 5.4 also works straightforwardly in the cases
(6,3,≥ 1) (as indicated in Fig. 15), (7,3,≥ 1) and (7,4,≥ 1) (as indicated in
Fig. 16). Again, the idea is to fix a point P ∈ K and to create sectors from rays
emanating from P that pass through the vertices of the j -gon. Argue that each of
these sectors can only contain at most two vertices of the i-gon without the occur-
rence of an empty convex hexagon. This remains true if other points of K should lie
in some of the sectors. Now create another set of sectors such that their union covers
the complete region outside of conv(I ) as indicated in the figures. This approach is
extended in Sect. 10 dealing with the cases (≥ 7,≥ 5,≥ 1).

6 The Cases (5,0) and (≥ 7,5,0)

6.1 The cases (5,0) and (8,5,0)

We use the same basic approach as in Sects. 4 and 5, extending the concept and
notation of Figs. 3 and 10 in the natural way. We arrive at the set of inequalities

bi = 0 (1≤ i ≤ 5) and (6.1)

1≤ ai + ai+1 ≤ 3 (1≤ i ≤ 5, a6 := a1) (6.2)
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Fig. 15 The case (6,3,1)

Fig. 16 The case (7,4,1)

if no empty convex hexagon is to be present (again counting vertices lying in more
than one sector only once). This set of inequalities yields

2 ·
5∑

i=1

(ai + bi)≤ 15, (6.3)

which implies the desired contradiction that an outer convex polygon with at most
seven vertices can be present.
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Fig. 17 The case (7,5,0)

6.2 The Case (7,5,0)

A closer investigation of the constraints (6.1–6.3) shows that in this case the only fea-
sible (a1, b1, a2, b2, a3, b3, a4, b4, a5, b5)-tuple (modulo rotation) is (2,0,1,0,2,0,
1,0,1,0). This case can be settled as indicated in Fig. 17.

7 Individual Cases

7.1 The Case (5,1)

This case can be dealt with as indicated in Fig. 18. Observe that P must lie in one
of the triangles �ABD, �BCE, �CDA, �DEB or �EAC (as these cover the
convex 5-gon). Without loss of generality P is inside the triangle ABD (as in the
figure). The line PD cuts the 5-gon into the two quadrilaterals AEDP and PDCB

(and one triangle). It follows that m1 +m2 ≤ 1 and n1 + n2 ≤ 1 if no empty convex
hexagon is to be present. (As in previous sections, variables refer to the number of
vertices of the 9-gon lying in the corresponding sectors.) This leads to at most eight
points that can be placed in convex position around the 5-gon without creating an
empty convex hexagon.
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Fig. 18 The case (5,1)

Fig. 19 The case (6,1).
See Sect. 7.2 for details

7.2 The Case (6,1)

This case can be dealt with as indicated in Fig. 19. Note that P must lie in one of the
4-gons ADEF or ABCD (as in the figure). Note furthermore that if in the latter case,
P ∈ �ABC or P ∈ �BCD, an empty convex hexagon occurs (APCDEF respec-
tively BPDEFA). Therefore, assume that the convex 4-gons APCB and CBPD

exist and argue as indicated in the figure.
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Fig. 20 The case (6,2).
See Sect. 7.3 for details

7.3 The Cases (6,2) and (7,1)

The case (6,2) can be dealt with as indicated in Fig. 20. Note that if four vertices
of the 6-gon lie on one side of the line PQ, an empty convex hexagon can be con-
structed. The case (7,1) is treated similarly. Here, one of the vertices of the convex
7-gon takes the role of P .

8 The Cases (5,≥ 2)

8.1 A Key Observation

The following observation is needed in later sections.

Observation 1 Suppose that j > 2 and let 2 ≤ t ≤ min{i − 1, j}. Consider a se-
quence of t consecutive vertices V1,V2, . . . , Vt of conv(J ). Denote by Tn the set of
vertices of the i-gon conv(I ) lying in the halfplane that is defined by the line VnVn+1
and that does not contain any other points of J . If |⋃t−1

n=1 Tn| < t , a 9-gon H ′ with
smaller |X ∩ conv(H ′)| can be constructed.

Proof We prove by induction over t . We use Ul (l ∈ N0) to denote vertices
of conv(I ). Note that |Tn|> 0 for all n by the definition of J .

Let t = 2. Assume that T1 =: {U1}; see Fig. 21. We claim that at most four ver-
tices of the 9-gon can lie in the union of the 3-sectors (U0V1U1) and (U1V2U2),
where U0 and U2 are the vertices of conv(I) preceding and succeeding U1. (Note that
U0 
=U2 as we presume t < i.) The bound follows directly if no other point of J lies
within the triangles�U0V1U1 respectively�U1V2U2. Otherwise replace V1 (respec-
tively V2) by appropriate V ′1 ∈ J ∩�U0V1U1 and V ′2 ∈ J ∩�U1V2U2 to obtain new
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Fig. 21 Observation 1: t = 2

3-sectors (U0V
′
1U1) and (U1V

′
2U2) such that the corresponding triangles �U0V

′
1U1

and �U1V
′
2U2 do not contain any points of J . Note that these 3-sectors cover the

region outside of conv(I ) that was originally covered by (U0V1U1) and (U1V2U2).
(In fact, they cover a larger region.) Each of them allows for at most two vertices of
the 9-gon without the occurrence of an empty convex hexagon and the claim follows.
Replacing these vertices by points from the convex chain U0V1V2U1 of length four
yields a 9-gon H ′ with smaller |X ∩ conv(H ′)|. (A similar argument was used in
Sect. 4.2.)

Now let t > 2. We have to prove that if |⋃t−1
n=1 Tn| < t , a 9-gon H ′ with smaller

|X ∩ conv(H ′)| can be constructed. If |⋃t−1
n=1 Tn| < t − 1, we are done by the in-

duction hypothesis as |⋃t−2
n=1 Tn| ≤ |

⋃t−1
n=1 Tn|. Therefore, assume that |⋃t−1

n=1 Tn| =
t − 1. Label the consecutive vertices of conv(I ) as Ul (l ∈ N0) in such a way that
U1 ∈ T1 and U0 
∈ T1. By the induction hypothesis this implies U2 ∈ T1 as otherwise
|T1| = 1. Now construct sectors as follows: start with the 3-sector (U0V1U1) that
can hold at most two vertices of the 9-gon without the occurrence of an empty con-
vex hexagon. (As above, replace V1 by V ′1 if necessary.) Next construct the 4-sectors
(U1V1V2U2), (U2V2V3U3), . . . , (Ut−2Vt−2Vt−1Ut−1) that can hold at most one ver-
tex of the 9-gon each if no empty convex hexagon is to occur; see Fig. 22.

Note that at each step the construction is well-defined by the induction hypoth-
esis. We can construct the 4-sector (U1V1V2U2) as U1,U2 ∈ T1. Assume there
exists a smallest p ∈ N such that UpVpVp+1Up+1 is not a convex quadrilateral.

This means that Up ∈
(⋃p−1

m=1 Tm
) \ Tp or Up+1 ∈

(⋃t−1
m=p+1 Tm

) \ Tp . In the first

case, this implies |⋃t−1
m=p Tm| ≤ (t − 1) − p. In the second case, it follows that

|⋃p

m=1 Tm| ≤ p. In both cases, the induction hypothesis implies that a 9-gon H ′
with smaller |X ∩ conv(H ′)| can be constructed.

Therefore, the 4-sectors can be constructed as described. Finally construct the
3-sector (Ut−1VtUt ) that can hold at most two vertices of the 9-gon without the
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Fig. 22 Observation 1: t > 2

occurrence of an empty convex hexagon. (As above, replace Vt by V ′t if neces-
sary.) Note that Ut 
∈ Tt−1 as we presume |⋃t−1

n=1 Tn| = t − 1. It follows that at most
2 · 2+ (t − 2) · 1= t + 2 vertices of the 9-gon can lie in the union of sectors

(U0V1U1)∪
t−2⋃

l=1

(UlVlVl+1Ul+1)∪ (Ut−1VtUt ).

Replacing these vertices by points from the convex chain U0V1V2 · · ·VtUt of length
t + 2 yields a 9-gon H ′ with smaller |X ∩ conv(H ′)|. �

8.2 The Cases (5,≥ 2)

Consider the line through two consecutive vertices of conv(J ), say P and Q, and let
TPQ be the set of vertices of the convex 5-gon lying in a halfplane that is defined by
the line PQ and that does not contain any other points of J . (This halfplane is unique
if |J |> 2.) Consider possible values for |TPQ|:
• |TPQ| = 0: This case is not possible by the definition of J .
• |TPQ| = 1: In this case, a 9-gon H ′ with smaller |X ∩ conv(H ′)| can be con-

structed. Set t = 2 in Observation 1.
• 2≤ |TPQ| ≤ 3: This is the assumption for our subsequent considerations.
• |TPQ| > 3: In this case, an empty convex hexagon can be constructed by using a

convex chain of four vertices of the 5-gon together with P and Q.
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Fig. 23 The cases (5,≥ 2): Example with |TPQ ∪ TQR | ≥ 4

Therefore, assume that

2≤ |TPQ| ≤ 3. (8.1)

Let R be the next vertex on the convex hull of J after passing through P and Q

(if |J | = 2 then R = P ). Define the set TQR accordingly (take the other halfplane if
|J | = 2). For the same reasons as above assume that

2≤ |TQR| ≤ 3 (8.2)

and consider the following three possibilities:

8.2.1 |TPQ ∪ TQR| ≥ 4

In this case we can choose consecutive vertices A,B,C,D of the 5-gon such that
A,B ∈ TPQ and C,D ∈ TQR . Label the remaining vertex of the 5-gon E. Con-
struct the two 4-sectors (APQB) and (CQRD) that can hold at most one vertex
of the 9-gon each without the occurrence of an empty convex hexagon. Next con-
struct the 3-sector (BQC) that can hold at most two vertices of the 9-gon if no empty
convex hexagon is to occur. Construct furthermore the two 3-sectors (DRE) and
(EPA). Note that the union of these five sectors covers the complete region outside
of conv(I ); see also Fig. 23. Each of the two latter 3-sectors can hold at most two ver-
tices of the 9-gon without the occurrence of an empty convex hexagon. (If necessary,
replace R (respectively P ) by appropriate R′ ∈ J ∩ �DRE and P ′ ∈ J ∩ �EPA

to obtain new 3-sectors (DR′E) and (EP ′A) such that the corresponding triangles
�DR′E and�EP ′A do not contain any points of J as in the proof of Observation 1.)
It follows that at most 2 · 1+ 3 · 2= 8 vertices of the 9-gon can be placed around the
5-gon without the occurrence of an empty convex hexagon. Note in particular that the
case (5,2) is covered by the argument in this subsection.
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8.2.2 |TPQ ∪ TQR| = 3

The case |TPQ∪TQR| = 3 can be treated by the same approach as in the previous sub-
section. Choose consecutive vertices A,B,C of the 5-gon such that A,B ∈ TPQ and
B,C ∈ TQR . Label the remaining vertices of the 5-gon D and E such that the vertices
C, D, E are consecutive. Construct the two 4-sectors (APQB) and (BQRC). Next
construct the 3-sectors (CRD), (DRE) and (EPA). As above, replace the points R

and P by appropriate points in J and modify the 3-sectors if necessary. Again, we
arrive at the contradiction that at most 2 · 1+ 3 · 2 = 8 vertices of the 9-gon can be
placed around the 5-gon without the occurrence of an empty convex hexagon.

8.2.3 |TPQ ∪ TQR| ≤ 2

This case leaves the possibility of constructing a 9-gon H ′ with smaller |X ∩
conv(H ′)|. Set t = 3 in Observation 1.

9 The Cases (6,≥ 4)

The approach is similar to the one in Sect. 8. The key idea is to partition the region
outside of conv(I ) into two 3-sectors and four 4-sectors. Each 3-sector is defined
by two consecutive vertices of the 6-gon and one vertex of conv(J ). It can hold
at most two vertices of the 9-gon if no empty convex hexagon is to occur. Each
4-sector is defined by two consecutive vertices of the 6-gon and two consecutive
vertices of conv(J ). It can hold at most one vertex of the 9-gon without the occurrence
of an empty convex hexagon. It follows that a total of 2 · 2+ 4 · 1= 8 vertices of the
9-gon can be placed around the 6-gon without the occurrence of an empty convex
hexagon.

Consider a chain of consecutive vertices of conv(J ), VWXYZ, where V = Z if
j = 4. Define the sets TVW , TWX , TXY and TYZ as in Sect. 8 (that is, TVW is the set
of vertices of the convex 6-gon lying in the halfplane defined by the line VW that
does not contain any other points of J , etc.). As in Sect. 8, we assume that

2≤ |TKL| ≤ 3 ((K,L) ∈ {(V ,W), (W,X), (X,Y ), (Y,Z)}). (9.1)

By setting t = 3,4,5 in Observation 1 (Sect. 8), it follows that we may also assume
that

|TKL ∪ TLM | ≥ 3, (9.2)

|TKL ∪ TLM ∪ TMN | ≥ 4, (9.3)

|TVW ∪ TWX ∪ TXY ∪ TYZ| ≥ 5 (9.4)

with (K,L,M) ∈ {(V ,W,X), (W,X,Y ), (X,Y,Z)} (in (9.2)) and (K,L,M,N) ∈
{(V ,W,X,Y ), (W,X,Y,Z)} (in (9.3)). Note that (9.4) also holds in the case (6,4),
where Observation 1 does not apply (since t > j ). Note furthermore that by construc-
tion it is not possible that there is a P ∈ TKL ∩ TMN with P 
∈ TLM ((K,L,M,N) ∈
{(V ,W,X,Y ), (W,X,Y,Z)}). We now give an explicit construction for the two
3-sectors and the four 4-sectors. A concrete example can be found in Fig. 24. The
combinatorial subcases are depicted in Fig. 25.
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Fig. 24 The cases (6,≥ 4): Example with TWX ∩ TXY 
= ∅

9.1 TWX ∩ TXY 
= ∅

Label the consecutive vertices of the 6-gon A,B,C,D,E,F such that B ∈ TWX , C ∈
TWX ∩ TXY and D ∈ TXY . Note that F 
∈ TWX and F 
∈ TXY as otherwise |TWX|> 3
or |TXY |> 3. Consider the following possibilities:

(1) A 
∈ (TVW ∪ TWX); see Fig. 25a. It follows from (9.1) and (9.2) that B,C ∈ TVW

and D ∈ TWX . (9.3) implies E ∈ TXY . Construct the three 4-sectors (BVWC),
(CWXD) and (DXYE). Next, construct the 3-sector (AVB). (Replace V by an
appropriate V ′ ∈ J ∩�AVB if necessary.)

• If E ∈ TYZ then (9.4) implies F ∈ TYZ . Construct the 4-sector (EYZF) and
the 3-sector (FZA). (Again, replace Z by Z′ if necessary.)

• If E 
∈ TYZ then it follows from (9.1) that A,F ∈ TYZ . (F 
∈ TXY implies in
particular F 
∈ TXY \ TYZ .) In this case construct the 3-sector (EYF) together
with the 4-sector (FYZA).

In both cases we arrive at a set of four 4-sectors and two 3-sectors as claimed. In
the following cases, assume that A ∈ (TVW ∪ TWX).

(2) E 
∈ (TXY ∪ TYZ). This case is symmetric to the previous one. Therefore, in the
following assume that E ∈ (TXY ∪ TYZ).

(3) A ∈ TWX \ TVW ; see Fig. 25b. It follows from (9.1) that E,F ∈ TVW .
(F 
∈ TWX implies in particular that F 
∈ TWX \ TVW .) Construct the 3-sectors
(FWA) and (BXC) together with the 4-sectors (EVWF), (AWXB) and
(CXYD). It follows that D ∈ TYZ as otherwise |TYZ ∪ TVW | = |{E,F }| < 3.
Note that (E ∈ TVW ) ∧ (E ∈ (TXY ∪ TYZ)) implies E ∈ TYZ . Therefore, we
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Fig. 25 The cases (6,≥ 4): Combinatorial subcases. The assumption in (a)–(c) is that B ∈ TWX ,
C ∈ TWX∩TXY and D ∈ TXY . In (a), A 
∈ (TVW ∪TWX). In (b), A ∈ TWX \TVW and E ∈ (TXY ∪TYZ).
In (c), A ∈ TVW and E ∈ TYZ . In (d), it is assumed that A,B ∈ TWX \TXY and C,D ∈ TXY \TWX . Only
those point positions that are essential for the construction of the sectors are indicated

can construct the 4-sector (DYZE). Again the six sectors can be constructed as
claimed. In the following assume that A ∈ TVW .

(4) E ∈ TXY \ TYZ . This case is symmetric to the previous one. Therefore, in the
following assume that E ∈ TYZ .

(5) A ∈ TVW and E ∈ TYZ ; see Fig. 25c. Construct the 4-sectors (BWXC) and
(CXYD). Consider the following four possibilities:

• B ∈ TVW ∧ D ∈ TYZ . Construct the 4-sector (AVWB) together with the
3-sector (FVA). (Replace V by V ′ if necessary.) Accordingly, construct the
4-sector (DYZE) together with the 3-sector (EZF). (Replace Z by Z′ if nec-
essary.)

• B 
∈ TVW ∧ D ∈ TYZ . Construct the 4-sector (DYZE) together with the
3-sector (EZ′F) as in the previous subcase. If B 
∈ TVW , it follows from (9.1)
that F ∈ TVW . In this case, construct the 3-sector (AWB) together with the
4-sector (FVWA).

• B ∈ TVW ∧D 
∈ TYZ . This subcase is symmetric to the previous one.
• B 
∈ TVW ∧ D 
∈ TYZ . It follows that F ∈ TVW and F ∈ TYZ . Accordingly,

construct the 4-sectors (FVWA) and (EYZF) together with the 3-sectors
(AWB) and (DYE).
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In each case, we arrive at a set of four 4-sectors and two 3-sectors that cover the
complete region outside of conv(I ) as claimed.

9.2 TWX ∩ TXY = ∅
See Fig. 25d. Then by construction, there exist consecutive vertices A,B,C,D of
conv(I) such that A,B ∈ TWX \ TXY and C,D ∈ TXY \ TWX . Construct the 4-sectors
(AWXB) and (CXYD) as well as the 3-sector (BXC). Label the remaining vertices
of the 6-gon E,F such that D,E,F are consecutive. Now distinguish four possibil-
ities:

• D ∈ TYZ ∧ A ∈ TVW . It follows that E ∈ TYZ as otherwise |TXY ∪ TYZ| < 3.
Accordingly, F ∈ TVW as otherwise |TVW ∪ TWX| < 3. Construct the 4-sectors
(DYZE) and (FVWA) together with the 3-sector (EZF). (Replace Z by an ap-
propriate Z′ if necessary.)

• D 
∈ TYZ ∧A ∈ TVW . As in the previous case, construct the 4-sector (FVWA). If
E ∈ TXY \ TYZ it follows that |TYZ ∪ TVW ∪ TWX| = |{A,B,F }|< 4. Therefore,
assume that E ∈ TYZ . It follows that F ∈ TYZ as otherwise |TYZ|< 2. Construct
the 3-sector (DYE) and the 4-sector (EYZF).

• D ∈ TYZ ∧A 
∈ TVW . This case is symmetric to the previous one.
• D 
∈ TYZ ∧A 
∈ TVW . Note that this case is not feasible as it would imply |TYZ ∪

TVW | = |{E,F }|< 3.

In each feasible case, we can construct the six sectors as claimed above.

10 The Cases (≥ 7,≥ 5,≥ 1)

Up to this point, we have settled all cases except for (≥ 7,≥ 5,≥ 1). These cases,
except for three special cases (see below), can all be settled via the same set of ar-
guments. As above, let K := conv(J ) ∩ (X \ ∂J ). Fix a point P ∈K . Consider rays
emanating from P through each vertex of the convex j -gon conv(J ). This divides
the region outside the j -gon into j sectors and in each sector at most two vertices
of conv(I ) can lie without forming an empty convex hexagon. (To see this, construct
3-sectors and replace P by an appropriate P ′ ∈K where needed.) Consider all pos-
sible vertex distributions. (These are summarized in Table 3.) We want to partition
the region outside the convex i-gon conv(I ) into sectors and to show that in each
case at most eight vertices of the 9-gon can be placed inside the union of these sec-
tors without creating an empty convex hexagon. The following three simple rules are
sufficient to prove this:

10.1 The First Rule

The first rule deals with two vertices of conv(I ) lying in the same sector.

Rule 1 Let A1,A2 denote two consecutive vertices of conv(I ) lying in the same sec-
tor (aPb), where a and b are consecutive vertices of conv(J ). Then no vertex of
the 9-gon can lie in the sector (A1abA2) without the occurrence of an empty convex
hexagon.
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Table 3 The cases
(≥ 7,≥ 5,≥ 1): Combinatorial
subcases. (- indicates possible
permutations)

(7,5,≥ 1) (8,5,≥ 1)

-(2,2,2,1,0) -(2,2,2,2,0)

-(2,2,1,1,1) -(2,2,2,1,1)

(7,6,≥ 1) (8,6,≥ 1)

-(2,2,2,1,0,0) -(2,2,2,2,0,0)

-(2,2,1,1,1,0) -(2,2,2,1,1,0)

(2,1,1,1,1,1) -(2,2,1,1,1,1)

(7,7,≥ 1) (8,7,≥ 1)

-(2,2,2,1,0,0,0) -(2,2,2,2,0,0,0)

-(2,2,1,1,1,0,0) -(2,2,2,1,1,0,0)

-(2,1,1,1,1,1,0) -(2,2,1,1,1,1,0)

(1,1,1,1,1,1,1) (2,1,1,1,1,1,1)

(7,8,≥ 1) (8,8,≥ 1)

-(2,2,2,1,0,0,0,0) -(2,2,2,2,0,0,0,0)

-(2,2,1,1,1,0,0,0) -(2,2,2,1,1,0,0,0)

-(2,1,1,1,1,1,0,0) -(2,2,1,1,1,1,0,0)

(1,1,1,1,1,1,1,0) -(2,1,1,1,1,1,1,0)

(1,1,1,1,1,1,1,1)

Fig. 26 Rule 1

Proof The claim follows directly from the presence of an empty convex 5-gon
A1aP

′bA2, where P ′ ∈ J ∩�aPb is chosen appropriately; see Fig. 26. �
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Fig. 27 Rule 2

10.2 The Second Rule

The second rule gives an upper bound on the number of vertices of the 9-gon that can
lie between two non-empty sectors.

Rule 2 Let A1,A2 denote two consecutive vertices of conv(I ) lying in distinct sec-
tors (a1Pb1) and (a2Pb2), where a1 and b1 respectively a2 and b2 are consecutive
vertices of conv(J ). Suppose that a1, b1, a2, b2 are part of a chain of consecutive ver-
tices of conv(J ). Let S := (A1b1a2A2) if A1b1a2A2 is a convex quadrilateral and
S := (A1b1A2)∪ (A1a2A2) otherwise. Then at most two vertices of the 9-gon can lie
within S .

Remark 1 It is possible in Rule 2 that b1 = a2.

Proof A 3-sector that does not contain any points of J and covers the region S can
be constructed by choosing A1, A2 and an appropriate ar among the consecutive
vertices of conv(J ) between b1 and a2 (inclusively); see Fig. 27. �

10.3 Application of Rules 1 and 2

The first two rules are already sufficient to settle the cases (7,5,≥ 1) with distribu-
tions -(2,2,2,1,0), (7,6,≥ 1) with distributions -(2,2,2,1,0,0), (7,7,≥ 1) with
distributions -(2,2,2,1,0,0,0), (7,8,≥1) with distributions -(2,2,2,1,0,0,0,0),
(8,5,≥ 1) with distributions -(2,2,2,2,0), (8,6,≥ 1) with distributions -(2,2,2,
2,0,0), (8,7,≥ 1) with distributions -(2,2,2,2,0,0,0) and (8,8,≥ 1) with distri-
butions -(2,2,2,2,0,0,0,0). To see this, apply Rule 1 whenever two consecutive
vertices of conv(I ) lie in the same sector. Note that two such vertices correspond to a
2 in the underlying distribution. For consecutive vertices of conv(I ) lying in distinct
sectors, apply Rule 2. Note that in the cases at hand, Rule 2 needs to be applied ex-
actly four times as there are always exactly four non-zero entries in the corresponding
distribution sequences. It follows that at most 4 · 2= 8 vertices of the 9-gon can be
placed without the occurrence of an empty convex hexagon. An example is given in
Fig. 28.
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Fig. 28 Application of Rules 1 and 2: Example for the case (7,6,≥ 1) with distribution (2,0,2,1,0,2)

Fig. 29 Rule 3

10.4 The Third Rule

The third rule deals with a sequence of sectors, where each sector contains at most
one vertex of conv(I ). See also Fig. 29.
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Fig. 30 Proof of Rule 3: n= 1

Rule 3 Let 1≤ n≤ i−2. Consider a sequence A0,A1, . . . ,An+1 of consecutive ver-
tices of conv(I ). For 1≤ l ≤ n+ 1, let Al ∈ (alP bl), where al and bl are consecutive
vertices of conv(J ). Suppose that for 1≤ l ≤ n, each sector (alP bl) contains exactly
one vertex of conv(I ) and that a1, b1, a2, b2, . . . , an+1, bn+1 are part of a chain of
consecutive vertices of conv(J ). Then at most n+ 2 vertices of the 9-gon lie in the

union of sectors
⋃n+1

l=1 (Al−1alAl).

Remark 2 It is possible in Rule 3 that bl = al+1 (1 ≤ l ≤ n) or bn+1 = a1. Further-
more, it is possible that A0 and An+1 both lie in (an+1Pbn+1).

Proof We prove by induction over n.
If n = 1, we can argue that it is not possible that A1 lies above the line a1b1

while A0 and A2 lie below it, where lying below refers to lying in the halfplane
defined by a1b1 that includes P . Otherwise, |Ta1b1 | = 1 and a 9-gon H ′ with smaller
|X∩ conv(H ′)| could be constructed. (Set t = 2 in Observation 1 in Sect. 8.) Assume
that A0 also lies above a1b1. (The case that only A1 and A2 lie above the line is
similar.) Construct the 4-sector (A0a1b1A1) together with the 3-sector (A1a2A2).
If necessary, replace a2 by an appropriate a′2 ∈ �A1a2A2 to obtain a new 3-sector
(A1a

′
2A2) with no points of J lying in �A1a

′
2A2. Together, the 4- and the 3-sector

cover (at least) the region of (A0a1A1) ∪ (A1a2A2). This is clear for points lying
in (A1a2A2) since (A1a

′
2A2) covers (at least) this region. Note that there cannot be

a point Q ∈ ((A0a1A1) \ (A1a
′
2A2)) \ (A0a1b1A1). Such a point would have to lie

in the shaded region in Fig. 30. If a2 lies to the right of b1A1 (or a2 = b1) then
Q ∈ (A1a

′
2A2). Otherwise b1 ∈ (A1a2A2) and we could have chosen a′2 := b1. The

4- and the 3- sector allow for at most 1 + 2 = 3 vertices of the 9-gon without the
occurrence of an empty convex hexagon.

For the induction step, assume that the claim is true for 1,2, . . . , n − 1. By the
induction hypothesis, we know that at most (n − 1) + 2 vertices of the 9-gon can
lie in the union of sectors

⋃n
l=1(Al−1alAl). At most two additional vertices of the

9-gon can lie in the sector (AnanAn+1) \⋃n
l=1(Al−1alAl) without the occurrence of

an empty convex hexagon as it is part of the 3-sector (AnanAn+1). Therefore, the
number of vertices of the 9-gon that can lie in the union of sectors

⋃n+1
l=1 (Al−1alAl)

is at most (n− 1+ 2)+ 2 = n+ 3 if no empty convex hexagon is to occur. It also
follows from the induction hypothesis that at most (n− 1)+ 2 vertices of the 9-gon
can lie in the union of sectors

⋃n+1
l=2 (Al−1alAl) without the occurrence of an empty
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convex hexagon. Accordingly, at most two additional vertices of the 9-gon can lie
in the sector (A0a1A1) \⋃n+1

l=2 (Al−1alAl) if no empty convex hexagon is to occur.
Therefore, the above bound is sharp if and only if exactly two vertices of the 9-gon
lie in the sectors (A0a1A1) and (Anan+1An+1) respectively.

It follows that A0 must lie below the line a1b1 and An+1 must lie below the
line anbn as otherwise one could again replace one of the 3-sectors (A0a1A1) and
(Anan+1An+1) by the 4-sector (A0a1b1A1) respectively (AnanbnAn+1) as above.
This sector could hold only one vertex of the 9-gon (without the occurrence of an
empty convex hexagon) and the union of all sectors would still cover the same re-
gion.

This implies |⋃n
l=1 Tal bl | = n < n + 1, though, and a 9-gon H ′ with smaller

|X ∩ conv(H ′)| can be constructed by Observation 1. To see this, note that
a1, b1, a2, b2, . . . , an, bn are part of a chain of consecutive vertices of conv(J ) of
length L≥ n+ 1. Therefore, the claim follows. �

10.5 Application of Rules 1–3

Based on the three rules we can now settle all the remaining subcases of
(≥ 7,≥ 5,≥ 1) with the exception of (7,7,≥ 1) with distribution (1,1,1,1,1,1,1),
(7,8,≥ 1) with distribution (1,1,1,1,1,1,1,0) and (8,8,≥ 1) with distribution
(1,1,1,1,1,1,1,1). (These cases do not allow for a direct application of Rule 3.
They are treated individually in the following subsections.) In the other cases, at least
one 2 appears in the distribution sequence. We can argue as follows:

Whenever two consecutive vertices of conv(I ) lie within the same sector, apply
Rule 1. Note that two such vertices correspond to a 2 in the underlying distribution.
No vertices of the 9-gon can lie in the corresponding sectors.

Now take maximal series of consecutive sectors containing at most one vertex of
conv(I ) each and apply Rule 3 (respectively Rule 2 if none of them contains a vertex).
The number of vertices of the 9-gon that can lie in the union of all corresponding
sectors is equal to q + s · 2, where q is the total number of 1’s in the underlying
distribution and s is the number of distinct series. Note that s is equal to the number
of gaps between two occurrences of a 2 in the distribution sequence. As this number
is equal to the number of 2’s in the sequence, it follows that q + s · 2 is equal to the
sum of the elements of the distribution sequence. It can easily be verified that this
sum is always smaller than 9. Therefore, in all these cases an empty convex hexagon
occurs. (An example is given in Fig. 31.)

10.6 The Case (1,1,1,1,1,1,1)

This case can be dealt with by applying Rule 3 with n = 5 seven times with each
vertex of conv(I ) as a starting point. Each 3-sector (Ar−1arAr) is left out exactly
once. Therefore, in the union of all sectors at most (7 · (5+ 2))/6 < 9 vertices of the
9-gon can lie without the occurrence of an empty convex hexagon.

10.7 The Case (1,1,1,1,1,1,1,0)

For the case (1,1,1,1,1,1,1,0), label the vertices of the polygon conv(J ) in clock-
wise order al (1≤ l ≤ 8) and assume that the sector (a6Pa7) is the one that does not
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Fig. 31 The case (8,8,≥ 1) with (2,1,1,1,0,2,0,1)

Fig. 32 The case (7,8,≥ 1)
with (1,1,1,1,1,1,1,0)

contain a vertex of conv(I ). Applying Rule 3 with n = 5, we can conclude that at
most 5+ 2= 7 vertices of the 9-gon can lie in the union of sectors

⋃6
l=1(Al−1alAl);

see Fig. 32. Consider A6. Note that it is not possible that A6 lies below the line a1a8
and below the line a6a7 (where below refers to the halfplane that includes P ), as
otherwise a 9-gon H ′ := (a8a1a2 · · ·a7A6) with smaller |X ∩ conv(H ′)| is present.

If A6 lies above the line a1a8, only one vertex of the 9-gon can lie in the then ex-
isting 4-sector (A6a8a1A0) and therefore, without the occurrence of an empty convex
hexagon, at most eight vertices of the 9-gon can lie in the union of sectors

6⋃

l=1

(Al−1alAl)∪ (A6a8a1A0),

which by construction covers the complete region outside of conv(I ).
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Similarly, if A0 lies above the line a6a7 (and therefore also A6 by construction),
at most eight vertices of the 9-gon can lie in the union of sectors

6⋃

l=1

(Al−1alAl)∪ (A6a6a7A0)

(which by construction covers the complete region outside of conv(I )) without the
occurrence of an empty convex hexagon.

Finally, if A0 lies below the line a6a7 and A6 lies above it, we know that A5

must also lie above the line a6a7 as otherwise |Ta6a7 | < 2 and a 9-gon H ′ with
smaller |X ∩ conv(H ′)| could be constructed by Observation 1. Therefore, the 4-
sector (A5a6a7A6) exists, which can only hold one vertex of the 9-gon without the
occurrence of an empty convex hexagon. Now, applying Rule 3 with n= 5 yields that
at most seven vertices of the 9-gon can lie in the union of sectors

(A6a8A0)∪
5⋃

l=1

(Al−1alAl)

without the occurrence of an empty convex hexagon. Therefore, without the occur-
rence of an empty convex hexagon, at most eight vertices of the 9-gon can lie in the
union of sectors

(A6a8A0)∪
5⋃

l=1

(Al−1alAl)∪ (A5a6a7A6)

which by construction covers the complete region outside of conv(I ).

10.8 The Case (1,1,1,1,1,1,1,1)

Note that in the case (1,1,1,1,1,1,1,1), applying the induction argument with
n = 6 eight times with each vertex of conv(J ) as a starting point (in analogy to
our approach to the case (7,7,≥ 1) with distribution (1,1,1,1,1,1,1) in Sect. 10.6)
only gives us an estimate of a total of (8 · (6+ 2))/7 > 9 vertices of the 9-gon that
can lie in the union of all sectors. Therefore, a different approach for this subcase is
required.

Label the vertices of conv(J ) in clockwise order as ar (1≤ r ≤ 8). Consider four
consecutive vertices of the convex 8-gon conv(J ), as, at , au and av . Note that no
vertex of conv(I ) can lie below the line asat and below the line auav (where below
refers to the halfplane that includes P ) as otherwise we could use such a vertex to
construct a 9-gon H ′ with smaller |X ∩ conv(H ′)|. Denote by Rt the region above
both lines asat and atau; see Fig. 33. The union of all regions Rr (1≤ r ≤ 8) defines
the feasible region for vertices of conv(I ). Label the vertices of conv(I ) as Am (Am ∈
(amPam+1), 1≤m ≤ 8, a9 := a1). Note that Am lies in Rm or Rm+1 (or both) (1 ≤
m≤ 8, R9 :=R1). Consider the following three possibilities:
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Fig. 33 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): Definition Rt

10.8.1 There Exists a Region Rw with no Am Lying in It

There can be at most one such region as otherwise one could construct a 9-gon H ′
with smaller |X ∩ conv(H ′)|. To see this, eliminate successively the possibilities that
the next Rz with this property is Rw+1, Rw+2, Rw+3 or Rw+4. In the first case,
|Taw aw+1 | < 2 and in the other three cases one can replace one to three vertices of
the 8-gon a1a2 · · ·a8 by two to four points Am in such a way that a 9-gon H ′ with
smaller |X ∩ conv(H ′)| appears.

Let a1 be the vertex associated with the region that does not contain any Am. Since
the existence of such a region is independent of the choice of P , we may assume that
P lies in the pentagon a6a2a3a4a5. Such a P must exist for otherwise an empty
convex hexagon appears; see also Fig. 34. (A different choice of P might result in
a different distribution sequence. If this is the case, we arrive at a subcase that has
already been settled.) As a consequence, at most three vertices of the 9-gon can lie in
the sector (A6a6Pa2A1) as otherwise a 9-gon H ′ with smaller |X ∩ conv(H ′)| could
be constructed (as 5+ 4= 9).

We claim that Am ∈ Rm ∩ Rm+1 for 2 ≤m ≤ 7; that is, each Am lies above both
lines am−1am and am+1am+2 (2 ≤ m ≤ 7, a9 := a1). To see this, start from the line
a1a2 and work clockwise to prove that Am is above the line am−1am (2 ≤ m ≤ 7).
Note that configurations, where |⋃l−1

n=1 Tan an+1 | < l (2 ≤ l ≤ 8) yield a 9-gon H ′
with smaller |X∩ conv(H ′)| by Observation 1 (Sect. 8). Now start from the line a1a8

and work counter clockwise to prove that Am is above the line am+1am+2 (7≥m≥ 2,
a9 := a1).

Finally, as we are assuming that no Ar lies in R1, it follows that A1 ∈ R2 and
A8 ∈R8. Therefore, this case can be settled as indicated in Fig. 34.



252 Empty Convex Hexagons in Planar Point Sets

Fig. 34 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): R1 contains no Am

10.8.2 (At Least) One Am Lies in Each Region Rr (1≤ r ≤ 8) and, Say,
A1 ∈R1 \R2

We claim that this implies that Au ∈ Ru (3 ≤ u ≤ 8) as otherwise a 9-gon H ′ with
smaller |X ∩ conv(H ′)| appears. To see this, first consider the point A8. If A8 ∈
R1 \R8, the 9-gon H ′ :=A1a2a3 · · ·a8A8 with smaller |X∩conv(H ′)| occurs. There-
fore, A8 ∈R8. Next, consider A7, then A6 and so on. Finally, as we are assuming that
at least one Am lies in each region Rr (1≤ r ≤ 8) it follows that A2 ∈R2; see Fig. 35.
In this case, the region outside of conv(I ) can be partitioned into eight 4-sectors
(Alalal+1Al+1) (1 ≤ l ≤ 8, a9 := a1, A9 := A1) that together allow at most eight
vertices of the 9-gon without the occurrence of an empty convex hexagon.

10.8.3 Each Am Lies in Both Rm and Rm+1

Again, the region outside of conv(I ) can be partitioned into eight 4-sectors
(Alalal+1Al+1) (1 ≤ l ≤ 8, a9 := a1, A9 := A1) that together allow at most eight
vertices of the 9-gon without the occurrence of an empty convex hexagon. �
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Fig. 35 The case (8,8,≥ 1) with (1,1,1,1,1,1,1,1): A1 ∈R1 \R2
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Affinely Regular Polygons as Extremals of Area
Functionals

Paolo Gronchi · Marco Longinetti

Abstract For any convex n-gon P we consider the polygons obtained by dropping a
vertex or an edge of P . The area distance of P to such (n− 1)-gons, divided by the
area of P , is an affinely invariant functional on n-gons whose maximizers coincide
with the affinely regular polygons. We provide a complete proof of this result.

We extend these area functionals to planar convex bodies and we present connec-
tions with the affine isoperimetric inequality and parallel X-ray tomography.

Keywords Affinely regular polygons · Geometric tomography · Affine length

1 Introduction

Given a convex polygon P with n vertices zj ordered counterclockwise, we define
Wj(P ) to be the triangle zj−1zj zj+1 and Tj (P ) to be the (possibly unbounded) trian-
gle outside P bounded by the side zj zj+1 and the continuations of the two adjacent
sides (see Fig. 1). Henceforth, the index j is taken modulo n, and |C| denotes the
area of C.

In this paper we consider the following affinely invariant functionals defined on
the class Pn of planar convex n-gons, i.e., polygons with exactly n vertices:
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Fig. 1 Triangles Wj and Tj
of P

F(P )= min
j=1,...,n

|Wj(P )|
|P | , (1)

G(P )= min
j=1,...,n

|Tj (P )|
|P | , (2)

and we are interested in the maximizers of these functionals.
In Theorem 1.8 it is shown that the maximizers of the above functionals are affinely

regular n-gons, i.e., affine images of regular n-gons. This class, denoted by Rn, often
appears in geometric problems with affine invariance [1, 3, 5, 17, 20].

A characterization of Rn as extremals of area functionals was obtained by Renyi
and Sulanke [20]. They proved in Satz 2 that

∏n
i=1 |Wi(P )|/|P |n attains its maximum

on Rn.
The functional F was first introduced by Lopez and Reisner [17] in connection

with algorithms for the approximation of a convex set by polygons. They showed
that Theorem 1.8 for the functional F is a consequence of the result by Renyi and
Sulanke.

The functional G was first introduced by Longinetti [15], where Theorem 1.8 is
proved for n = 5,6, via elementary geometric arguments. The functional G and a
similar functional (not affinely invariant) considered in [14] are related to Hammer’s
X-ray problem for planar convex bodies proposed in [10]: How many X-ray pictures
of a convex body must be taken in order to permit its reconstruction? The solution
of this problem is given by Gardner and McMullen [6]. We refer to [7, Chap. 1]
for an overview of this topic. In Sect. 6 we present in detail the connection between
the functional G and the stability of the reconstruction in the Hammer’s problem. In
Sect. 5, we discuss some extensions of functionals F and G to the class of planar
convex bodies related to the affine length of a convex body and to the affine isoperi-
metric inequality. These functionals are also related to the approximation of planar
convex bodies by polygons [9, 17]. In particular, F is related to the approximation of
an n-gon P by (n− 1)-gons contained in P . Similarly, G is related with the approxi-
mation of P by (n− 1)-gons containing P . Because of this we use the word inner or
outer in connection with F or G, respectively. In higher dimension, similar function-
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als involving polytopes obtained by dropping a vertex or a facet were investigated by
Reisner et al. [19].

As a first remark we deal with the trivial cases n = 3,4. For n = 3, we have
F(P ) = 1 and G(P ) =∞, for every P . For n = 4, by elementary arguments, one
can prove that the maximizers of F have diagonals which divide them into triangles
of equal area, and G(P ) =∞ only for parallelograms. Hence, all maximizers of F

and G are parallelograms, and vice versa. As mentioned, some instances of The-
orem 1.8 were already proved. In this paper we complete this result in a common
framework to all n, for both the inner and outer functional.

We now provide a guide to the proof of Theorem 1.8. The functionals F and G are
continuous with respect to the Hausdorff metric in Pn, which is not compact, since
n-gons can converge to polygons with fewer vertices. Hence, we have first to prove
the existence of the maximizers in Lemma 2.1.

A first step towards the characterization of these maximizers is to show that they
satisfy an inner (or outer) equal-area property which has some interest by itself.
Consider the following classes:

#n =
{
P ∈Pn : |W1(P )| = |W2(P )| = · · · = |Wn(P )|}, (3)

�n =
{
P ∈Pn : |T1(P )| = |T2(P )| = · · · = |Tn(P )|}. (4)

Henceforth, we say that a polygon P has the inner (outer) equal-area property when
P belongs to #n (�n, respectively). Section 2.1 contains the proof of the following
proposition.

Proposition 1.1 F and G attain their maximum on #n and �n, respectively.

It can be proved that the classes #5 and �5 coincide with the class of affinely
regular pentagons. For n > 5, it is easy to see that the above class is larger than the
class Rn of affinely regular polygons. For example, hexagons in �6 are, up to an affine
transformation, the intersection of two concentric equilateral triangles (see the shaded
polygon in Fig. 2). A proof can be found in [15]. Similarly, hexagons in #6 are, up
to an affine transformation, equiangular (see the larger polygon in Fig. 2). In [11] the
polygons of #n are considered and a larger class of #n containing not necessarily

Fig. 2 Polygons from #6
and �6
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convex n-gons is explicitly parametrized by n− 5 real parameters modulo the action
of the affine group.

Roughly speaking, (3) or (4) involve n− 1 independent constraints. Since n-gons
depend on the 2n coordinates of its vertices, it follows that #n and �n depend on
n + 1 parameters, and therefore, modulo the action of the affine group, depend on
n − 5 parameters. So, in order to show that all maximizers of F and G are in Rn

other significant properties must be proved. A subclass of #2m was characterized by
Bianchi and Longinetti [2, Lemma 1].

Let lj be the length of the side zj zj+1 of P , i.e. lj = ‖zj −zj+1‖ and dj the length
of the diagonal zj−1zj+2.

Definition 1.2 We define Fn as the class of convex n-gons such that

(
dj+1 − lj+1

dj+1

)(
dj − lj

lj

)

=
(
dj−2 − lj−2

dj−2

)(
dj−1 − lj−1

lj−1

)

for j = 1, . . . , n.

(5)

We say that P has the inner-ratio property when P ∈ Fn. Assuming that all tri-
angles Tj of P are bounded, we define vj as the vertex of Tj not in P . Also, set
sj = ‖vj − zj‖ and pj = ‖zj+1 − vj‖. Let ej be the length of the segment joining
the outer points vj+1, vj−1. Notice that ej = pj−1 + lj + sj+1.

Definition 1.3 We define Gn as the class of convex n-gons such that

sj ej−1

lj−1(pj−2 + lj−1)
= pjej+1

lj+1(sj+2 + lj+1)
for j = 1, . . . , n. (6)

We call this the outer-ratio property. Notice that the outer-ratio property is an
equality between ratios of lengths of segments on the two lines through vj in Fig. 1.

The following theorems, proved in Sects. 2.1, 2.2, are important steps toward the
goal.

Theorem 1.4 If P 0 is a maximizer of F in Pn, then P 0 ∈Fn.

Theorem 1.5 If P 0 is a maximizer of G in Pn, then P 0 ∈ Gn.

In Sect. 3, through an algebraic manipulation, we will prove that in (5) the ratios
λj = dj / lj are independent of j . Analogously, for the outer problem, we will prove
that in (6) the ratios ζj = sj / lj−1 = pj−1/lj are independent of j . In Sect. 4 we go
back to planar geometry and prove the following theorems.

Theorem 1.6

#n ∩Fn =Rn.

Theorem 1.7

�n ∩ Gn =Rn.
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These results permit us to obtain the goal of the paper.

Theorem 1.8 All maximizers of F or G on Pn are affinely regular polygons.

2 First Variations at Extremal Polygons

Observe that for each P ∈ Pn the triangles Wj(P ) have positive area, hence
F(P ) > 0, but if P is close to a polygon with n − 1 vertices, then F(P ) is close
to zero. Therefore infP∈Pn

F (P ) = 0 and F has no minimum in Pn. Similarly,
infP∈Pn

G(P )= 0 and G has no minimum in Pn. Then all the extremals of the func-
tionals F and G in Pn are maximizers. In this section we obtain the more significant
properties of these polygons. We use only elementary arguments of Euclidean geom-
etry in the proof of Proposition 1.1. The idea of the proof is to consider a maximizer
P 0 of each functional and a suitable local variation P 0

ε of one or two vertices. An
analysis of the sign of the area difference �ε yields the results.

To prove directly Theorems 1.4 and 1.5, which are the principal goal of this sec-
tion, a more complicated perturbation P 0

ε of P 0 involving five consecutive vertices
of P 0 can be carried out. In this case one has to take into account only the first order
terms of �ε . This computation, using Proposition 1.1, can be explicitly obtained in
terms of the sides and angles of P 0.

Here, we prefer to give a different proof, less geometric, via partial differentia-
tion of area functionals (Lemmas 2.2 and 2.3) with respect to the vertices zj . This
yields the Lagrange multiplier systems (21) and (28) for the area |P | under the corre-
sponding equal-area property constraints. At the end of each subsection, an algebraic
manipulation of such systems will give the proof of Theorem 1.4 for the inner prob-
lem and the proof of Theorem 1.5 for the outer one.

We begin with the following result.

Lemma 2.1 The functionals F and G have maxima in Pn.

Proof From the well-known John theorem about the maximal ellipse contained in P ,
see [12], we can restrict to n-gons with fixed area 1, whose boundaries are contained
in a circular annulus A of radii r and 2r . Clearly r ≥ 1/

√
4π and the diameter of

P is less or equal to D = 4/
√
π . Represent each polygon in Pn as a point in R

2n

with coordinates the coordinates of its vertices. With respect to the standard metric
on R

2n, F is continuous and the class of k-gons, k ≤ n, with vertices contained in A

is compact. Since F > 0, it is trivial to show that a convergent maximizing sequence
on Pn has vertices which converge to n distinct points, no three collinear.

Turning to G, some difficulties arise since |Tj | may be infinite. Let αj be the
exterior angle of P at the vertex zj . If Tj (P ) is bounded then

|Tj (P )| = 1

2
l2j (cotαj+1 + cotαj )

−1. (7)
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The function cotx is convex in (0,π/2) and symmetric with respect to the
point π/2. Thus

cot

(
x1 + x2

2

)

≤ cotx1 + cotx2

2
if x1, x2 > 0 and x1 + x2 < π. (8)

Since αj > 0 and
∑n

j=1 αj = 2π , there exists j such that

αj+i + αj

2
≤ 2π

n
.

Therefore, by (7) and (8) it follows that

min
j=1,...,n

|Tj (P )|< 1

4
D2 tan

2π

n
.

Hence, G is bounded from above on Pn, for n≥ 5.
Now consider a maximizing sequence {Pm} of n-gons with vertices in the circular

annulus A, which converges to P 0. It remains to show that P 0 has exactly n vertices.
We can suppose

min
j=1,...,n

|Tj (Pm)|> 1

2
sup
P∈Pn

G(P )= μ> 0, for all m. (9)

For each P with vertices in A, consider a triangle similar to Tj (P ) bounded by
the continuations of its sides not in P and a line parallel to the side zj+1zj through
the center of A. If hj denotes the altitude of Tj (P ) to the side zj+1zj , then this larger
triangle has an altitude smaller than hj + 2r and a base larger than 2r . Hence

lj

hj

≥ 2r

hj + 2r
,

i.e., lj ≥ (2r − lj )hj /2r . Since lj hj = 2|Tj (P )| ≥ 2μ, we deduce l2j ≥ (2r − lj )μ/r

and consequently that the sides of the polygons Pm are uniformly larger than a posi-
tive constant. This implies that n distinct points z0j of P 0 are limits of the sequences
of the vertices of Pm. Moreover, from (9), the limit of the area |Tj (Pm)| is positive.
Hence, no three consecutive points z0j are collinear and they are all distinct vertices
of P 0. �

Proof of Proposition 1.1 The claim that G attains its maximum on �n was already
proved in [15, Theorem 1].

For the inner case, assume that P 0 is a maximizer of F . Let Wr be a triangle of
maximal area among the n triangles Wj . Moving the vertex zr towards the interior
of P 0 reduces the area of P 0. Since F cannot increase, the value min |Wj | has to
decrease. Hence, either Wr−1 or Wr+1 is of minimal area. The freedom we have in
choosing the direction along which zr moves easily implies that they are both of
minimal area. Therefore,

|zr−1zr−2zr−3| = |Wr−2| ≥ |Wr−1| = |zrzr−1zr−2|,
|zr+1zr+2zr+3| = |Wr+2| ≥ |Wr+1| = |zrzr+1zr+2|.
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Then, the distance of zr−3 from the line containing the edge zr−2zr−1 is larger
or equal to that of zr . Analogously, the distance of zr+3 from the line containing
zr+2zr+1 is larger or equal to that of zr . From the convexity of P 0, the triangle
U = zr−3zrzr+3 is ordered counterclockwise and contained in P 0. Therefore, any
movement of zr inside U increases the area of both Wr−1 and Wr+1 and decreases the
area of P . The maximality of P 0 implies that |Wr | cannot be larger than min |Wj |. �

We represent with complex variable xj + iyj the vertices zj , i.e. zj represents both
a point in the plane and a complex number; so the area functionals |Tj |, |Wj | and |P |
are real functions of complex variables zj . We use partial derivatives of functions
with respect to complex variables with the notation

fz = ∂f

∂z
= 1

2

(
∂f

∂x
+ i

∂f

∂y

)

.

Lemma 2.2 If T is the triangle with vertices a, b, c ordered counterclockwise, then

4

i

∂|T |
∂a

= c− b. (10)

Proof If a = xa + iya , b = xb + iyb , and c = xc + iyc the result is obtained by an
elementary computation starting from the formula

4

i
|T | = 2

i

(
(xc − xb)(ya − yb)− (xa − xb)(yc − yb)

)

= (c− b)(a − b)− (c− b)(a − b). (11)

�

Lemma 2.3 Let b, c, d and e be the vertices of a convex quadrilateral ordered clock-
wise. Let abc be the triangle T outside the quadrilateral bounded by bc and the
continuations of the two sides eb and dc. The area of |T | depending on b, c, d, e,
satisfies:

−4i|T |b = (a − c)+ (a − b)|ae|/|be|, (12)

−4i|T |c = (b− a)+ (c− a)|ad|/|cd|, (13)

−4i|T |d = (a − c)|ac|/|cd|, (14)

−4i|T |e = (b− a)|ab|/|be|. (15)

Proof Observe that the vertex a is a function of b, c, d, e and each proof starts by
differentiating (11) with respect to these variables. For example, in order to get (13)
we have

4i|T |c =−(c− b)ac + (c− b)ac + (a − b). (16)

To compute the partial derivatives of a and a with respect to c we consider the
collinear conditions of a with b and e and with c and d , i.e.
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(a − b)(e− b)− (e− b)(a − b) = 0, (17)

(a − c)(c− d)− (c− d)(a − c) = 0, (18)

and, by differentiating, we obtain

(e− b)ac − (e− b)ac = 0,

(c− d)ac − (c− d)ac = d − a.

Solving for ac, ac in the previous equations we obtain

ac = (e− b)(d − a)
/(

(e− b)(c− d)− (e− b)(c− d)
)
,

ac = (e− b)(d − a)
/(

(e− b)(c− d)− (e− b)(c− d)
)
.

By substituting in (16) we get

4

i

∂|T |
∂c

= (b− a)+ (d − a)
(c− b)(e− b)− (c− b)(e− b)

(e− b)(c− d)− (e− e)(c− d)
.

The proof of (13) is obtained via the formula

(c− b)(e− b)− (c− b)(e− b)= |ac||cd|
(
(e− b)(c− d)− (e− b)(c− d)

)
. (19)

Indeed, by subtracting the left-hand side of (17) from the left hand side of (19) we
deduce

(c− b)(e− b)− (c− b)(e− b)= (c− a)(e− b)− (c− a)(e− b).

Since a, c, d are collinear the vector (c− a) is proportional to the vector (d − c) by
the factor |ac|/|cd|. This proves (19).

The proof of (12) can be obtained in a similar way or simply interchanging b and
c, e and d , by a reflection. We remark that such a reflection changes the sign as in
formula (11).

The proof of (14) follows from similar computations. More explicitly, by differ-
entiating (11) with respect to d we obtain

4i|T |d =−(c− b)ad + (c− b)ad . (20)

By differentiating with respect to d the constraints (17) and (18), we get

(e− b)ad − (e− b)ad = 0,

(c− d)ad − (c− d)ad = a − c.

This implies

ad = (e− b)(a − c)
/(

(e− b)(c− d)− (e− b)(c− d)
)
,

ad = (e− b)(a − c)
/(

(e− b)(c− d)− (e− b)(c− d)
)
.
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By substituting in (20) we get

4

i

∂|T |
∂d

= (a − c)
(c− b)(e− b)− (c− b)(e− b)

(e− b)(c− d)− (e− b)(c− d)
,

and from (19) we prove (14). A similar argument proves (15). �

2.1 Inner Case

Proposition 2.4 Let P 0 be a maximizer of F on Pn. Then there exist real numbers
μ1, . . . ,μn such that the following equations hold for the vertices of P 0:

(zj−1−zj+1)= μj−1(zj−1−zj−2)+μj (zj−1−zj+1)+μj+1(zj+2−zj+1), (21)

for j = 1, . . . , n.

Proof By Proposition 1.1, each maximizer P 0 satisfies the inner equal-area property.
Choosing a suitable affine transformation we can assume that |Wk(P )| = 1 for k =
1, . . . , n. By the Lagrange multipliers argument we have that at P 0 the gradient of
the area functional |P | is a linear combination of the gradients of the constraints
|Wk(P )| = 1, i.e. there exist real multipliers μk such that at P 0,

∂|P |
∂zj

=
∑

k

μk

∂|Wk|
∂zj

for j = 1, . . . , n.

Since Wk depends only on zk−1, zk, zk+1 we have that

∂|Wk|
∂zj

= 0 for j /∈ {k− 1, k, k+ 1}.

Now we apply Lemma 2.2 to the triangles Wj−1,Wj ,Wj+1 with respect to the
vertex zj and find that

4

i

∂|Wj−1|
∂zj

= zj−1 − zj−2,
4

i

∂|Wj |
∂zj

= zj−1 − zj+1,

4

i

∂|Wj+1|
∂zj

= zj+2 − zj+1.

Since P can be decomposed in the disjoint subsets Wj,P \Wj and the latter does
not depend on the vertex zj , we have also

4

i

∂|P |
∂zj

= 4

i

∂|Wj |
∂zj

= zj−1 − zj+1. (22)

The six previous equations prove (21). �
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The system (21) is a system of 2n real equations in the 3n real unknowns zj , μj ,
and so it cannot determine the maximizers. The inner equal-area property adds more
information. In particular, we have that for each j the vector (zj+2− zj−1) is parallel
to (zj+1 − zj ). So any maximizer P 0 also satisfies the following system for suitable
positive λj :

(zj+2 − zj−1)= λj (zj+1 − zj ) for j = 1, . . . , n. (23)

We notice that the λj ’s are well defined and positive because all vertices of P 0 are
distinct and P 0 is convex. Moreover, we can prove that

λj > 1 for j = 1, . . . , n. (24)

Indeed, suppose that there exists a λj ≤ 1. Up to an affine transformation we can as-
sume that zj−1, zj , zj+1 are three consecutive vertices of a square Q. Since λj ≤ 1,
by (23), zj+2 belongs to Q. Using (23) again, we obtain that zj+3− zj has the direc-
tion of zj+2 − zj+1. This means that zj+3 belongs to a line supporting Q at zj . Any
choice of zj+3 on such a line gives a contradiction, since either zj−1 belongs to the
convex hull of the other vertices, or the side zj+2zj+3 intersects the boundary of Q.

By the definition (23) of λj , we have λj = dj / lj and then the inner-ratio property
(5) can be rewritten as

(λj−2 − 1)(λj−1 − 1)

λj−2
= (λj+1 − 1)(λj − 1)

λj+1
for j = 1, . . . , n. (25)

This is the form we get in the following proof.

Proof of Theorem 1.4 From (23) we get

zj+2 = zj−1 + λj (zj+1 − zj ) and

zj−2 = zj+1 − λj−1(zj − zj−1).

By substituting in (21) and rearranging the terms we obtain

(zj+1 − zj )(μj−1 +μj +μj+1 − 1− λjμj+1)

+ (zj − zj−1)(μj−1 +μj +μj+1 − 1− λj−1μj−1)= 0.

Since P 0 ∈ Pn the vertices zj are distinct and no three collinear. This implies that the
vectors (zj+1− zj ), (zj − zj−1) are linearly independent and their coefficients in the
previous equation must be zero. Hence, we get for j = 1, . . . , n,

{
μj−1 +μj +μj+1 − 1= λjμj+1,

μj−1 +μj +μj+1 − 1= λj−1μj−1.
(26)

We infer that the λj ’s are such that the linear system (26) has a solution μ1,μ2,

. . . ,μn. Taking into account the six equations involving only the five unknowns
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μj−2,μj−1,μj ,μj+1, and μj+2, we deduce that the determinant of the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1− λj−1 0 0 1
0 1 1 1− λj 0 1
0 0 1 1 1− λj+1 1

1− λj−2 1 1 0 0 1
0 1− λj−1 1 1 0 1
0 0 1− λj 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

has to be zero. After some manipulations, we get the following equation

λjλj−2(1− λj+1)λj−1(1− λj )− λj−1λj+1(1− λj−2)λj (1− λj−1)= 0. (27)

Since all λj > 0, the previous equation can be simplified as in (25). �

2.2 Outer Case

In order to get the Lagrange multipliers system for the outer case in a simple way
we recall that vj is the intersection of the two lines through the consecutive vertices
zj−1, zj and the vertices zj+1, zj+2, (see Fig. 1), lj = ‖zj+1− zj‖, i.e., the length of
the j th side, and sj = ‖vj − zj‖, pj = ‖zj+1 − vj‖.

Proposition 2.5 Let P 0 be a maximizer of the functional G on Pn, n≥ 5. Then there
exist real numbers η1, . . . , ηn such that the following equations hold for the vertices
of P 0, for j = 1, . . . , n:

(zj−1 − zj+1) = ηj−2(zj−1 − vj−2)
pj−2

lj−1

+ ηj−1

(

(vj−1 − zj−1)+ (vj−1 − zj+1)
pj−1

lj

)

+ ηj

(

(zj+1 − vj )+ (zj−1 − vj )
sj

lj−1

)

+ ηj+1(vj+1 − zj+1)
sj+1

lj
. (28)

Proof By Proposition 1.1 each maximizer P 0 satisfies the outer equivalent triangle
property. Choosing a suitable affine transformation we can assume that |Tj (P )| = 1,
for j = 1, . . . , n. By the Lagrange multipliers argument, at P 0 the gradient of the area
functional |P | is a linear combination of the gradients of the constraints |Tk(P )| = 1,
i.e. there exist real multipliers ηj such that, at P 0,

∂|P |
∂zj

=
∑

k

ηk
∂|Tk|
∂zj

for j = 1, . . . , n.

Since |Tk| depends only on zk−1, zk, zk+1, zk+2 we get

4

i

∂|Tk|
∂zj

= 0 for k /∈ {j − 2, j − 1, j, j + 1}.
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By Lemma 2.3, we obtain

4

i
|Tj−2|zj = (zj−1 − vj−2)

pj−2

lj−1
,

4

i
|Tj−1|zj = (vj−1 − zj−1)+ (vj−1 − zj+1)

pj−1

lj
,

4

i
|Tj |zj = (zj+1 − vj )+ (zj−1 − vj )

sj

lj−1
,

4

i
|Tj+1|zj = (vj+1 − zj+1)

sj+1

lj
.

The six previous equations and (22) yield (28). �

Since the lengths pj , lj , sj are functions of the vertices zj , (28) is a system of 2n
real equations in the unknowns zj , ηj , i.e. 3n real unknowns, and so it cannot deter-
mine the maximizers. From the outer equivalent triangle property of any maximizer
P 0 we have that, for each j , the vector (vj −vj−1) is parallel to (zj+1−zj−1). Hence
P 0 satisfies also the following system for suitable positive ζj :

(vj − vj−1)= ζj (zj+1 − zj−1) for j = 1, . . . , n. (29)

We notice that the triangles vj , zj , vj−1 and zj+1, zj , zj−1 are similar and then

ζj = |vj − vj−1|
|zj+1 − zj−1| =

sj

lj−1
= pj−1

lj
. (30)

Thus, the outer-ratio property (6) can be rewritten as

(1+ ζj+2)

ζj+1(1+ ζj+1 + ζj+2)
= (1+ ζj−1)

ζj (1+ ζj + ζj−1)
for j = 1, . . . , n. (31)

Proof of Theorem 1.5 Since vj , zj , and zj−1 are collinear, (30) implies that we can
express vj in terms of zj , zj−1 and positive ζj

vj = zj + ζj (zj − zj−1).

Similarly, (30) also implies that

vj+1 = zj+1 + ζj+1(zj+1 − zj ),

vj−1 = zj + ζj−1(zj − zj+1),

vj−2 = zj−1 + ζj−1(zj−1 − zj ).

This permits us to eliminate in (28) all the vectors vj , i.e.,

(zj−1 − zj+1) = ηj−2ζ
2
j−1(zj − zj−1)

+ ηj−1[(zj − zj−1)+ ζj (zj − zj+1)+ (zj − zj+1)(1+ ζj )ζj ]
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+ ηj [(zj+1 − zj )− ζj (zj − zj−1)+ (zj−1 − zj )(1+ ζj )ζj ]
+ ηj+1(zj+1 − zj )ζ

2
j+1. (32)

Rearranging the terms we obtain

(zj−1 − zj )
(
1+ ηj−2ζ

2
j−1 + ηj−1 − ηj (2ζj + ζ 2

j )
)

+ (zj − zj+1)
(
1− ηj−1(2ζj + ζ 2

j )+ ηj + ηj+1ζ
2
j+1

)= 0.

Since P 0 ∈ Pn, the vertices zj are distinct and not collinear. This implies that the
vectors (zj+1− zj ), (zj − zj−1) are linearly independent and their coefficients in the
previous equation must be zero, i.e.,

{
ηj−2ζ

2
j−1 + ηj−1 − ηj (2ζj + ζ 2

j )=−1,

−ηj−1(2ζj + ζ 2
j )+ ηj + ηj+1ζ

2
j+1 =−1

(33)

for j = 1, . . . , n. We shift by one the index in the first equation and adding to and
subtracting from the second one, we obtain

{
ηj−1ζj − ηj + ηj+1ζj+1 = 1,

ηj−1ζj (1+ ζj )− ηj+1ζj+1(1+ ζj+1)= 0
(34)

for j = 1, . . . , n.
We infer that the ζj ’s are such that the linear system (34) has a solution

η1, η2, . . . , ηn. Taking into account the six equations involving only the five un-
knowns ηj−2, . . . , ηj+2, we deduce that the determinant of the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζj−1 −1 ζj 0 0 1
0 ζj −1 ζj+1 0 1
0 0 ζj+1 −1 ζj+2 1

ζj−1 + ζ 2
j−1 0 −ζj − ζ 2

j 0 0 0

0 ζj + ζ 2
j 0 −ζj+1 − ζ 2

j+1 0 0

0 0 ζj+1 + ζ 2
j+1 0 −ζj+2 − ζ 2

j+2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

has to be zero. After some manipulations we obtain

ζj−1(1+ ζj )(1+ ζj+1)ζj+2[ζj (1+ ζj+2)(1+ ζj + ζj−1)

− ζj+1(1+ ζj−1)(1+ ζj+1 + ζj+2)] = 0.

Since ζj > 0, the previous equation can be simplified as in the statement (31) and
we conclude the proof. �

3 Circulant Systems

In this section we have collected the steps of the proofs which are not strictly related
to the geometry of the problem. We focus on the systems (25), (31) and we prove that
the only suitable solutions are those independent of j .

First we deal with the inner problem.
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Proposition 3.1 Any solution of the system of equations

(λj−2 − 1)(λj−1 − 1)

λj−2
= (λj+1 − 1)(λj − 1)

λj+1
,

for j = 1,2, . . . , n, with λj > 1 for all j , satisfies λi = λj for all i and j .

Proof Set γj = 1/(λj − 1), for all j . Notice that λj > 1 implies γj > 0. Then (25)
reduce to

γj−1(1+ γj−2)= γj (1+ γj+1). (35)

Consider the maximum number among the expressions γj (1+ γj−1), for all j . As-
sume this maximum is attained by γM(1+ γM−1). From (35) we obtain

γM(1+ γM−1)≥ γj (1+ γj+1),

for every j = 1,2, . . . , n. Now, from γM(1+ γM−1)≥ γM−1(1+ γM) we have

γM ≥ γM−1. (36)

From γM(1+ γM−1)≥ γM(1+ γM+1) we find

γM−1 ≥ γM+1. (37)

From (35) we deduce that γM(1 + γM−1) = γM+1(1 + γM+2) and so we can also
write γM+1(1+ γM+2)≥ γM+1(1+ γM), which implies that

γM+2 ≥ γM, (38)

and γM+1(1+ γM+2)≥ γM+2(1+ γM+1), which yields

γM+1 ≥ γM+2. (39)

By combining inequalities (36–39) we discover γM+1 ≥ γM+2 ≥ γM ≥ γM−1 ≥
γM+1 and so γM−1 = γM = γM+1 = γM+2. Taking into account (35) again yields
γi = γj , for all i and j . �

We now turn to the outer problem.

Proposition 3.2 Any solution of the system of equations

1+ ζj+2

ζj+1(1+ ζj+1 + ζj+2)
= 1+ ζj−1

ζj (1+ ζj + ζj−1)

for j = 1,2, . . . , n, with ζj > 0 for all j , satisfies ζi = ζj for all i and j .

Proof Set

aj = ζj

1+ ζj + ζj+1
, bj = ζj+1

1+ ζj + ζj+1
. (40)
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Notice that ζj > 0, for all j , implies that all aj and bj are positive and that

aj + bj < 1. (41)

The system (31) can be rewritten in terms of aj , bj as

1− aj+1

bj
= 1− bj−1

aj
. (42)

Furthermore, it is easy to check that the relation

1− aj

bj
= 1− bj+1

aj+1
(43)

also holds for every j = 1,2, . . . , n.
Now consider the maximum number among the expressions (1 − aj+1)/bj or

(1 − aj )/bj involved in (42) and (43) and call it C. Assume first that C appears

in (42), i.e., C = 1−aM+1
bM

, for some M . From 1−aM+1
bM

≥ 1−aM
bM

we infer

aM ≥ aM+1. (44)

From
1− bM−1

aM
= 1− aM+1

bM
≥ 1− bM

aM

we deduce

bM ≥ bM−1. (45)

From
1− aM+1

bM
= 1− bM−1

aM
≥ 1− aM

bM−1

we deduce bM−1 − b2
M−1 ≥ aM − a2

M and then

(bM−1 − aM)(1− bM−1 − aM)≥ 0.

Since bM−1 ≤ bM by (45), inequality (41) implies that (1− bM−1− aM) > 0. There-
fore

bM−1 ≥ aM. (46)

Analogously, from

1− aM+1

bM
≥ 1− aM+2

bM+1
= 1− bM

aM+1

we infer

(aM+1 − bM)(1− aM+1 − bM)≥ 0.

Inequalities (41), (44) ensure that (1− aM+1 − bM) > 0 and so

aM+1 ≥ bM. (47)
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Combining inequalities (44–47) we obtain

bM−1 ≥ aM ≥ aM+1 ≥ bM ≥ bM−1

and so

bM−1 = aM = aM+1 = bM.

Now it is easy to use (42) and (43) to deduce that all aj and bj have to be equal, and
from this fact and (40) that all the ζj ’s are equal.

Assume now that C appears in (43), i.e., C = (1− aM)/bM , for some M . From
(1− aM)/bM ≥ (1− bM)/aM and (41) we deduce

aM ≥ bM. (48)

From 1−bM+1
aM+1

= 1−aM
bM

≥ 1−aM+1
bM+1

and (41) we deduce

bM+1 ≥ aM+1. (49)

From 1−bM+1
aM+1

= 1−aM
bM

≥ 1−bM
aM+1

we infer

bM ≥ bM+1. (50)

From 1−aM
bM

≥ 1−aM+1
bM

we obtain

aM+1 ≥ aM. (51)

Once again we have obtained a sequence of inequalities that can be satisfied only if
aM = aM+1 = bM = bM+1. As in the previous case, it is now easy to conclude that
all ζj have to be equal. �

G. Ottaviani has analyzed the case n = 7 for the inner and outer problem. By
using the computer algebra system Macaulay, he found that in the complex variables
γ1, . . . , γ7, the system (35) has a solution set which consists of the trivial line γ1 =
· · · = γ7 and of an algebraic surface of degree 14. It is interesting that the line and the
surface are disjoint components. Similarly, he found that for the outer problem the
solution set of the system (31) contains the trivial line and a surface of degree 71.

4 Proofs of Theorems 1.6 and 1.7

In this section we complete the characterization of the maximizers of F and G, thus
proving Theorems 1.6, 1.7. To do this we turn back to geometry.

Proof of Theorem 1.6 As noted in Sect. 2.1, each polygon P contained in #n ∩ Fn

satisfies (23–25). By Proposition 3.1 we deduce that there exists a λ > 1 such that

zj+2 − zj−1 = λ(zj+1 − zj ), for all j . (52)
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Such a condition is satisfied only by affinely regular n-gons. This is proved in [5,
Statement 3, Theorem 1], where the result is attributed to Coxeter [3]. We provide a
proof for completeness and for the convenience of the reader.

Up to an affine transformation, we can assume that three consecutive edges of P ,
z1z2, z2z3 and z3z4, say, all have length one. By (52), the quadrilateral z1z2z3z4 is
an isosceles trapezium, and so the angles of P at z2 and z3 are also equal. Denote
by r2 the bisector of the angle at z2. By assumption, r2 is an axis of symmetry of the
segment z1z3. Since the vertex zn, consecutive to z1, is determined by the relation
zn− z3 = λ(z1− z2) and z4 by z4− z1 = λ(z3− z2), it is easily seen that r2 is an axis
of symmetry of the segment z4zn. Similarly, zn−1 and z5 are uniquely determined by
the previous vertices (and λ) and then r2 is also an axis of symmetry of the segment
z5zn−1. This argument shows that r2 is a symmetry axis of P . Analogously, consid-
ering the vertex z3 of the trapezium z1z2z3z4, the bisector r3 of the angle at z3 is a
symmetry axis of P . This clearly implies that P is a regular polygon. �

Proof of Theorem 1.7 As noted in Sect. 2.2, each polygon P contained in �n ∩ Gn

satisfies systems (29), (31). By Proposition 3.2 we deduce that there exists a ζ > 0
such that

vj − vj−1 = ζ(zj+1 − zj−1), for all j . (53)

This means that the pairs of triangles vj−1vj zj , zj+1zj−1zj are all similar with the
same ratio of similarity. Hence,

vj − zj = ζ(zj − zj−1), vj − zj+1 = ζ(zj+1 − zj+2).

Therefore the triangles vj zj+1zj , vj zj+2zj−1 are also similar and

zj+2 − zj−1 = (1+ ζ )(zj+1 − zj ), for all j . (54)

Such a condition is just like (52) and the argument of the previous proof implies that
P is an affinely regular polygon. �

Theorems 1.6 and 1.7 were the last ingredients in the proof of Theorem 1.8, whose
quantitative form is the following.

Theorem 4.1 Let P ∈ Pn, n≥ 5, then

min
j=1,...,n

|Tj (P )| ≤ |P | 2 sin2(π/n)

n cos(2π/n)
, (55)

min
j=1,...,n

|Wj(P )| ≤ |P |4 sin2(π/n)

n
, (56)

and equality holds if and only if P is an affinely regular n-gon.

Notice that (55) implies the inequality in [17, Lemma 3].
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5 Extensions and Affine Length

Let C be a planar convex body, and let γ be a connected closed proper subset of ∂C,
i.e., a closed arc with endpoints a and b. Define C(γ ) as the intersection of all half-
planes supporting C at boundary points in ∂C \ γ . The boundary of C(γ ) is obtained
by extending ∂C \ γ with the continuations of the half-lines tangent to ∂C \ γ at a
and b. Consider the region I (C,γ )= C(γ )\C and the area ratio |I (C,γ )|/|C|. Now
let �n be a finite family of connected closed subsets γi of ∂C with disjoint interiors:

�n =
{
γ1, . . . , γn: γi ⊂ ∂C, int(γi)∩ int(γj )= ∅ for i 
= j , i, j = 1, . . . , n

}
.

Define

G(C,�n)= min
j=1,...,n

|I (C,γj )|
|C| , (57)

and

Gn(C)=max
�n

G(C,�n). (58)

Theorem 5.1 For n > 4 and for any planar convex body C we have

Gn(C)≤ max
P∈Pn

G(P ). (59)

Equality holds if and only if C is an affinely regular n-gon.

Proof Let C be a planar convex body and let � be a finite family of arcs γi on ∂C

with endpoints ai , bi . We can consider families of arcs which partition ∂C, i.e., such
that ai+1 = bi for all i. This can be proved by taking a partition �0 with arcs γ 0

i so
that γi ⊂ γ 0

i . Since I (C,γi)⊂ I (C,γ 0
i ) we have G(C,�)≤G(C,�0).

Let P be the convex polygon whose vertices are the endpoints ai , bi of the arcs
γi of �. Clearly, P ⊂ C and P has exactly n edges. Moreover, if Ti(P ) is the outer
triangle defined in the introduction corresponding to the edge with vertices ai , bi ,
then I (C,γi)⊂ Ti(P ), and

G(C,�)≤G(P ).

This immediately yields (59) and the equality conditions. �

Corollary 5.2 Let K and K ′ be two planar convex bodies such that their symmetric
difference has n > 4 connected components C1, . . . ,Cn. Then

min
i=1,...,n

|Ci | ≤ |K ∩K ′| max
P∈Pn

G(P ). (60)

Equality holds if and only if K ∩K ′ is an affinely regular polygon with n= 2m edges
and, up to an affine transformation, K and K ′ are two congruent regular m-gons,
and K ′ is K rotated by π/m about its center.
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Proof We consider the family � of the closed arcs

γi = ∂Ci ∩ ∂(K ∩K ′).

Since

|Ci | ≤ |I (K ∩K ′, γi)|,
we can apply the previous theorem to C =K ∩K ′. Equality holds if and only if C is
an affinely regular 2m-gon and so K and K ′ have to be affinely regular m-gons. �

We present another possible extension of the previous area functionals. Let C be
a convex body. Let D be a convex body containing C and such that D \C consists of
at least m connected components D1, . . . ,Dm. Let

Hm(C,D)= min
i=1,...,m

|Di |.

Arguing as above, when we look for the maximizers of Hm(C,D)|C|−1 it is easy
to see that one can assume that C and D are m-gons. The number #(D \ C) of the
connected components of D \ C is m, and hence the edges of D support C at its
vertices. We get the following result.

Theorem 5.3 For m ≥ 3 and for any two planar convex bodies C, D with C ⊂ D,
#(D \C)=m, we have

Hm(C,D)

|C| ≤ 1

m
tan2 π

m
. (61)

Equality holds if and only if C, D are affinely regular m-gons and the vertices of C
are the midpoints of the edges of D.

Proof Standard compactness arguments show that Hm(C,D)|C|−1 has a maximum.
As already stated in advance, we can assume that such a maximum is attained when
C and D are two m-gons P and S, P ⊂ S. Let zj be the vertices of P and vj the
vertices of S labeled so that zj belongs to the segment vjvj−1.

First we prove that all triangles Sj with vertices zj , vj , zj+1 have equal area.
Indeed, if |Sk|> minj=1,...,m |Sj |, then a small counterclockwise rotation of the side
of S through zk around zk decreases the area of Sk and increases the area of Sk−1.
Possible iterations of this procedure to different edges of S would permit to increase
the value of our functional. The assumption about the maximality of the pair (P,S)

implies

|Sk| = |Sk−1| for k = 1, . . . , n. (62)

Arguing as in the proof of Proposition 2.4, we consider the Lagrange multipliers
system relative to |P | as a function of zj , vj , under the constraints |Sj | ≥ const,
zj ∈ vj−1vj . Denote by μj the parameters corresponding to the constraints |Sj | ≥
const, and by νj that corresponding to 0= det(zj − vj−1, zj − vj )≡Aj . Hence, we
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obtain the system

∂|P |
∂zj

=
m∑

k=1

μk

∂|Sk|
∂zj

+
m∑

k=1

νk
∂Ak

∂zj
for j = 1, . . . , n,

0= ∂|P |
∂vj

=
m∑

k=1

μk

∂|Sk|
∂vj

+
m∑

k=1

νk
∂Ak

∂vj
for j = 1, . . . , n.

Since we are looking for minimizers of |P | with constraints |Sj | ≥ const , we have

μj ≥ 0 for j = 1, . . . , n. (63)

Taking into account the results in Sect. 2 we get:

(zj−1 − zj+1)= μj−1(vj−1 − zj−1)+μj (zj+1 − vj )+ νj (vj−1 − vj ), (64)

0= μj (zj − zj+1)+ νj (zj − vj−1)+ νj+1(vj+1 − zj+1). (65)

The constraint Aj = 0 can be written as zj = vj−1 + ρj (vj − vj−1), where the
variables ρj satisfy 0 < ρj < 1. Consequently,

|Sj | =
∣
∣(zj+1 − vj )× (zj − vj )

∣
∣= ρj+1(1− ρj )|Uj |,

where Uj denotes the triangle vj−1vjvj+1. Identity (62) yields

ρj+1(1− ρj )|Uj | = ρj (1− ρj−1)|Uj−1|. (66)

Equations (64) and (65) become

(1+μj−1)(1− ρj−1)(vj−2 − vj−1)+ (1+μj )ρj+1(vj − vj+1)

+ (vj−1 − vj )(1− νj )= 0, (67)

0 = (vj − vj−1)(ρj (μj + νj )−μj )

+ (vj+1 − vj )(−ρj+1(μj + νj+1)+ νj+1). (68)

Since (vj − vj−1) and (vj+1 − vj ) are linearly independent, we obtain

μj (1− ρj )= ρjνj , (69)

μjρj+1 = (1− ρj+1)νj+1. (70)

Taking the cross product of (67) with the vector (vj − vj−1) yields

(1+μj−1)(1− ρj−1)Uj−1 − (1+μj )ρj+1Uj = 0.

By means of (66) the latter reduces to

(1+μj )ρj = (1+μj−1)(1− ρj ). (71)
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The systems (69), (70), (71) are 3n real equations in 3n real unknowns μj ,ρj , νj .
From the first two equations we get

μj (1− ρj )
2 = μj−1ρ

2
j . (72)

A comparison with (71) implies

(1+μj )
2μj = (1+μj−1)

2μj−1. (73)

Since the function y = (1 + x)2x is injective for y > 0, inequality (63) implies
that μj = μ, for all j .

From (71) we deduce ρj = 1/2 and then, from (69), that νj = μ, for all j . Hence,
(67) gives

(1+μ)vj−2 − 2μvj−1 + 2μvj − (1+μ)vj+1 = 0,

which implies that vj−2vj+1 is parallel to vj−1vj and their ratio is independent of j .
As in the proof of Theorem 1.6 (see (52)), we deduce that S is affinely regular. �

Given a planar convex body K and a natural number n ≥ 3, we denote by
P i
n(K) and Pc

n(K) the class of n-gons inscribed in K or with K inscribed in
them, respectively. For any n distinct points zi ∈ ∂K we consider the polygon
P = conv{z1, . . . , zn} ∈ P i

n(K) and lines si supporting K at the vertices zi of P .
Let Si(K) be the triangle bounded by the lines si−1, si and the side at zi−1zi , and
S be the polygon bounded by the lines si . Hence, S is an n-gon in Pc

n(K). This is
equivalent to choosing two n-gons P , S, with P ∈ P i

n(K), S ∈ Pc
n(K) ∩ Pc

n(P ). In
this case, for brevity, we say that the pair (P,S) belongs to P i,c

n (K). Define

ALn(K)= 2nmax
{

min
j=1,...,n

|Sj (K)| 1
3 : (P,S) ∈P i,c

n (K)
}
.

Since n≥ 3, ALn(K) is finite for every K . The symbol we chose to denote these func-
tionals is justified by some properties listed below, which present ALn as a discretiza-
tion of the affine length of the boundary of K . Recalling the functional Hn(P,S)

introduced above, we have

ALn(K)= 2nmax
{
Hn(P,S)

1
3 : (P,S) ∈P i,c

n (K)
}
.

As in the proof of Theorem 5.3 it turns out that the previous maximum is attained
when all the Si(K) have the same area. In the sequel we denote by En the class of
pairs of n-gons with the property that all the Si(K) have equal area.

Proposition 5.4 For every planar convex body K and n≥ 3,

ALn(K)= 2nmax
{
Hn(P,S)

1
3 : (P,S) ∈P i,c

n (K)∩ En
}
.

Proof Clearly, |Sj (K)| is a continuous function of zi and si for all i and j . If zi moves
towards zi+1, then |Si+1(P )| decreases and |Si(P )| increases, unless one or both of
them remain equal to zero. Furthermore, if si rotates around zi counterclockwise, then
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|Si+1(P )| decreases and |Si(P )| increases. These facts easily imply that, if (P,S)

does not belong to En, then we can move the supporting lines si together with the
points zi increasing all |Sj (K)|. �

By Proposition 5.4 the functional ALn is then related to the arithmetic average of
the cube root of |Sj (K)|, i.e.,

ALn(K)= 2 max
(P,S)∈P i,c

n (K)∩En

n∑

j=1

|Sj (K)| 1
3 .

This further clarifies the connection with the affine length of K , �1(K), as defined,
for example, by Ludwig [18, Sect. 3]. There Ludwig proved that all upper (or lower)
semicontinuous and equi-affine invariant valuations on the space of planar compact
convex sets (endowed with the Hausdorff metric) are linear combinations of three
basic valuations: the Euler characteristic, the area, and the affine length.

Such a characterization is the main ingredient in the following proof.

Proposition 5.5 If K is a planar convex body, then

inf
n∈N

ALn(K)=�1(K).

Proof We first notice that ALn(K)= 0 when K is a polygon with less than n vertices.
Moreover, these are the only convex sets where ALn vanishes.

Set AL(K) = infn ALn(K). Since the functionals ALn are continuous and equi-
affine invariant, it is easy to verify that AL is equi-affine invariant and upper semicon-
tinuous. Following the arguments used by Ludwig [18, Theorem 2], it can be proved
that AL is a valuation, i.e.,

AL(H ∪K)+ AL(H ∩K)= AL(H)+ AL(K),

for every pair of convex bodies such that H ∪K is convex. By [18, Theorem 1], it
follows that AL is a linear combination of the affine length, the area, and the Euler
characteristic. Since ALn(P ) vanishes when P is a polygon with less than n vertices,
AL has to be a multiple of the affine length. A simple calculation of AL at the unit
disc yields the result. �

We now present some straightforward consequences of Theorem 5.3.

Theorem 5.6 If K is a planar convex body and n≥ 3, then

ALn(K)≤ 2

(

n tan
π

n

) 2
3

max
P∈P i

n(K)
|P | 1

3 ,

and equality holds if and only if exists an affinely regular n-gon of maximal area in
P i
n(K).
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Corollary 5.7 If K is a planar convex body and n≥ 3, then

ALn(K)≤ 2

(

n tan
π

n

) 2
3 |K| 1

3 ,

and equality holds if and only if K is an affinely regular n-gon.

Corollary 5.7 and Proposition 5.5 yield the affine isoperimetric inequality

�1(K)≤ 2π
2
3 |K| 1

3 ,

without the equality conditions, which are known to characterize ellipses. Notice
that equality in the formula of Theorem 5.6 implies that K has at least n points of
intersection with a suitable ellipse, and so its Hausdorff distance from that ellipse
decreases as n increases.

It is well known that the affine length of a planar convex body K is closely related
to the approximation of K by polygons. We refer the interested reader to [9] for an
extensive review. Theorem 5.6 implies that, for any planar convex body K and n≥ 3,
there exists a polygon P ∈ P i

n(K) such that

|P | ≥ ALn(K)3

8n2 tan2(π
n
)
.

Proposition 5.5 allows ALn(K) to be replaced with �1(K) in the previous inequality.
This yields a sharp lower bound for the approximation of K with polygons from
P i
n(K), which also follows from the affine isoperimetric inequality and a result of

Blaschke (see [9, Sect. 4]).

6 Applications to Tomography

The word tomography reminds people of the medical CAT scanner, where images
are reconstructed from X-rays. Despite the common use of CAT scanners, the math-
ematical subject related to this reconstruction still deserves interesting and unsolved
problems. One of them is stated in the question asked by P.C. Hammer in 1963: How
many parallel X-ray pictures of a convex body must be taken in order to permit its
exact reconstruction? The parallel X-ray of a planar convex body K in a direction θ

provides the length of each chord of K parallel to θ .
The existence of finite sets of directions, with arbitrary large cardinality, such that

the corresponding X-rays cannot determine a convex body among the others is shown
with the following well-known example (see [8]).

Consider a regular n-gon Q centered at a fixed point o, and its rotation Q′ by
π/n about o. Let θ be a direction parallel to one of the edges of the convex hull
of Q and Q′. It is easy to see that Q and Q′ have the same parallel X-rays in the
direction θ . This example arises in many papers, mainly related to Geometric and
Discrete Tomography. We refer the interested reader to [7, 13].

Gardner and McMullen proved in [6] that convex bodies are determined by X-rays
taken in any set of directions that is not a subset of the directions of the edges of an
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affinely regular polygon. Since the cross ratio of any four directions of the edges of
a regular polygon is an algebraic number, any set of four directions with a transcen-
dental cross ratio uniquely determines a convex body by means of the corresponding
X-rays.

Volčič [21] and Longinetti [16] show that the reconstruction of H is well posed
when the set of directions guarantees uniqueness. Roughly speaking, if we know all
the X-rays of H in such directions, and these X-rays contain errors ε as small as we
want, then the corresponding reconstructions Hε converge to H when ε goes to zero.

Now, consider the case when a finite number n of X-rays of H are exactly known,
but the directions are determined up to an error δ. The error δ has to be small enough
to distinguish the given n directions among them. For any positive δ, we cannot distin-
guish the set S of the given directions from the sets of non-uniqueness in the Gardner–
McMullen theorem. Therefore, the results of well-posedness proved by Volčič cannot
be used here. In [14] the following result is proved:

|K �K ′| ≤ l2(8n)−1 tan
π

n
, (74)

where l is the length of the boundary of K ∩K ′ and K �K ′ is the symmetric dif-
ference. Inequality (74) can be seen as a stability result and is optimal not only in
the order but also in the constant, since equality holds if and only if the n directions,
K and K ′ are chosen as in the above example. Inequality (74) is not affine invariant,
while Hammer’s problem is. An affine-invariant inequality in which l2 is replaced by
|K ∩K ′| is proved in [15] for sets of three directions. We show here that (55) can be
used to generalize this result.

Let R be a connected component of K�K ′. For every direction θ ∈ S, let θR be
the connected component of K�K ′ different from R with the same X-ray of R in the
direction θ . Let

W(R)=
⋃

h∈N, θij ∈S
θih · · · θi1R.

In [14, Proposition 2] (see also [7, Lemma 1.2.6]) it is proved that W(R) consists of
a finite number h of components and they are at least 2n.

Suppose that K�K ′ =W(R). Since all components in W(R) have the same area,
Corollary 5.2 yields

|W(R)|
|K ∩K ′| ≤ h · max

P∈Ph

G(P ).

From (55) we obtain the explicit bound 2 sin2(π/h)/ cos(2π/h), a decreasing func-
tion of h. Since h≥ 2n, we get the following result.

Theorem 6.1 If K and K ′ are two planar convex bodies with the same X-rays in
n different directions (n ≥ 3), and such that K�K ′ consists of a finite number of
connected components of equal area, then

|K �K ′| ≤ |K ∩K ′|1− cos(π/n)

cos(π/n)
. (75)
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Equality holds if and only if, up to an affine transformation, the directions are equally
spaced, K and K ′ are congruent regular n-gons, and K ′ is K rotated by π/n about
its center.

We remark that (75) is stronger than (74), via the classical isoperimetric inequality
for n-gons.

In a forthcoming paper by Dulio, Longinetti, Peri and Venturi [4], Theorem 6.1
will be presented without the assumption on the connected components of K�K ′.
There, also an improvement of (75) is given by using more information about the set
of directions, as, for example, the cross ratio of four directions.
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Improved Output-Sensitive Snap Rounding

John Hershberger

Abstract This paper presents new algorithms for snap rounding an arrangement A
of line segments in the plane. Snap rounding defines a set of hot pixels, which are
unit squares centered on the integer grid points closest to the vertices of A. Snap
rounding simplifies A by replacing every input segment by a piecewise linear curve
connecting the centers of the hot pixels the segment intersects. Let H be the set of all
hot pixels, and for each h ∈H let is(h) be the number of segments with an intersection
or endpoint inside h. If A contains n input segments, the running time of the first
new algorithm is O(

∑
h∈H is(h) logn). This improves previous input- and output-

sensitive algorithms by a factor of *(n) in the worst case. The second algorithm has
an even better running time of O(

∑
h∈H ed(h) logn); here ed(h) is the description

complexity of the crossing pattern in h, which may be substantially less than is(h)
and is never greater.

Keywords Snap rounding · Robust geometric computation

1 Introduction

Arrangements of line segments in the plane are a central tool in computational geom-
etry [6, 19]. They are often used as building blocks in more complex algorithms, and
so the arrangement vertices induced by intersections of the line segments may be
used as the basis of further computation. This may lead to robustness difficulties. If
two segments are represented with a certain finite precision, approximately double
that precision (twice as many bits) will be required to represent the intersection of
the segments accurately. If this precision-doubling cascades through several levels
of algorithmic building blocks, accurately representing the results of a computation
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may require more precision than the machine arithmetic provides, forcing the use of
a much slower software arithmetic implementation.

One approach to avoiding high-precision geometric computation is to round the
vertices of the arrangement to some grid, which by suitable scaling one may take to be
the integer grid. If this is done naïvely, it may lead to topological inconsistencies be-
tween the rounded and unrounded arrangements. A particularly successful approach
to rounding an arrangement is the snap rounding scheme introduced by Greene [10]
and Hobby [15], which is defined as follows: The plane is divided into unit square pix-
els centered on the integer grid points. Every pixel that contains a segment endpoint
or an intersection of two segments is declared to be hot. Each segment is replaced
by a polygonal path joining the centers of the hot pixels it intersects, in the order of
intersection. The union of all the rounded segments defines the rounded arrangement.
The rounded arrangement can be regarded as a graph G = (H,E), where the nodes
are identified with the set of hot pixels H, and the arcs of the graph link nodes whose
hot pixels are joined by rounded segments.

Each arc of G may correspond to multiple unrounded segments that in the orig-
inal arrangement pass in parallel from one hot pixel to the next. Depending on the
application of the snap rounded arrangement, it may be important to know the set of
original segments associated with each arc of the rounded arrangement.

Guibas and Marimont [11] have shown that snap rounding has many desirable
properties: every arc of the rounded arrangement has integer grid points as endpoints,
every rounded segment is within half a pixel distance of the corresponding unrounded
segment, and the rounded and unrounded arrangements are “topologically equivalent
up to the collapsing of features.” (As noted by Halperin and Packer [14], rounded
arcs may still pass very near hot pixel centers; recent work by Packer [18] shows how
to avoid this near-degeneracy while preserving the approximation guarantees of snap
rounding.)

This paper focuses on methods to compute a snap rounded arrangement efficiently.
The running times of these algorithms depend on several parameters: I is the number
of pairwise intersections among all the input segments, H is the set of hot pixels, |H|
is its size, and for any h ∈H, the number of original segments that intersect h is |h|.
The size of G, not counting edge multiplicities, is O(|H|), because it is a planar graph.
The algorithm of Hobby [15] runs in time O((n+ I ) logn+∑h∈H |h|). The algo-
rithm of Guibas and Marimont [11] runs in time O(n logn+ I +∑h∈H |h| log |h|),
plus another term of usually-smaller magnitude that is specific to their approach.
Goodrich et al. [9] avoid the dependence on the input size I with an algorithm that
runs in time O((n+∑h∈H |h|) logn); they claim optimality to within a logarithmic
factor for their algorithm. However, as Halperin and co-authors have noted [5, 13, 14],
the definition of

∑
h∈H |h| as the output size is misleading, because it can be as large

as *(n3), even though the size of the snap rounded arrangement, *(|H|), can never
be larger than O(n2). See Fig. 1. The discrepancy arises because

∑
h∈H |h| counts

each arc of G with its multiplicity (the number of original segments that round to it).
An algorithm of de Berg, Halperin, and Overmars [5] runs in time O((n+ I ) logn)

and produces G without representing the segments associated with each arc explic-
itly. Unfortunately, that algorithm performs poorly on the star arrangement shown in
Fig. 2; it runs in O(n2 logn) time, whereas the algorithm of Goodrich et al. [9] needs
only O(n logn) time.
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Fig. 1 The algorithm of [9] runs in *(n3 logn) on this arrangement because
∑

h∈H |h| =*(n3), even
though |G| is only O(n2). (The arrangement is stretched vertically for clarity)

Fig. 2 The algorithm of [5]
runs in *(n2 logn) on this
arrangement, even though |G| is
only O(n), because I =*(n2)

The output an algorithm is required to produce strongly affects its minimum run-
ning time. If an algorithm is required to report every segment’s intersections with
all hot pixels, then the algorithm of [9] is within a logarithmic factor of optimal. In-
deed, this is the measure used in that paper’s claim of optimality. However, if only
the embedded planar graph G is required, then [9] is far from optimal, as is [5]. See
Figs. 1 and 2. Intermediate between these is the goal of producing G in a data struc-
ture that allows a client to report the set of segments associated with any arc of G
efficiently. A further possible requirement on an algorithm is that the set should be
spatially ordered and support spatial searches within the set (since no segments in the
set intersect between the two hot pixel endpoints of the arc, this is possible).

This paper improves the running time of all previous algorithms. It presents two
algorithms, whose running times depend on two new characterizations of the seg-
ments incident to a hot pixel. The intersecting segment count is(h) is the number of
segments that have an endpoint or an intersection inside h. The algorithm of Sect. 3
is very simple to describe and runs in time O(

∑
h∈H is(h) logn). In particular, it runs

in time O(n2 logn) and O(n logn), resp., on the examples of Figs. 1 and 2. The algo-
rithm of Sect. 4 depends on the edit distance ed(h), which represents the complexity
of the crossover between the segments passing through a hot pixel h. It is always
less than O(is(h)), and sometimes significantly so. The algorithm of Sect. 4 is more
complex than that of Sect. 3, but it runs in O(

∑
h∈H ed(h) logn) time. Figure 5 in

Sect. 4 shows an example for which the two algorithms differ in running time by a
factor of *(

√
n ).

Both of the algorithms produce the snap rounded arrangement in a form that al-
lows reporting of the original segments associated with each rounded arc. Each arc
points to a data structure that records the full set of original segments that round to it,
correctly ordered according to the original segment positions; the data structure sup-
ports point location among the segments corresponding to each arc. The segment sets
are represented using persistent data structures [7], which allow different sets to share
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portions of their representations. Although the total size of the sets is *(
∑

h∈H |h|)—
as large as *(n3) in some cases—the space needed to represent them is no greater
than the algorithm’s running time, which is at most O(n2 logn).

For convenience the algorithms are described assuming exact arithmetic. The
necessary primitives can be implemented using fixed precision as in Hobby’s algo-
rithm [15].

2 Preliminaries

The input to a snap rounding algorithm is a collection S of n ursegments (“ur” can be
taken to refer either to “unrounded” or to the German for “original”). The arrange-
ment of the ursegments, denoted A, has complexity |A| proportional to n plus the
number of intersections between ursegments of S.

A snap rounded arrangement is an embedded planar graph G = (H,E), where the
nodes are identified with the hot pixels, a set of unit squares centered on integer grid
points. Each pixel is closed at the left and bottom, and open at the top and right.
The hot pixels are exactly those pixels that contain a vertex of A. Each ursegment
s ∈ S is snap rounded to a polygonal path that connects the centers of the hot pixels
s intersects, in the order of intersection. There is an arc in G between two hot pixels
h1, h2 ∈H if and only if there is an ursegment s ∈ S whose snap rounded polygonal
path visits h1 and h2 consecutively.

Note that many ursegments of S may map to the same arc of G. The set of urseg-
ments associated with an arc e is denoted by segs(e). No ursegment crossings or
endpoints occur outside hot pixels, so the members of segs(e) can be ordered, which
may be important for some applications.

A sweepline is a data structure that maintains the intersections of an arrangement
of segments with a vertical line as the line sweeps over the arrangement from left
to right [1, 2, 6]. The sweepline stores a collection of active segments in their order
of intersection with the vertical line. Each active segment has a next event, which is
either its right endpoint or its intersection with the segment below it in the sweepline,
if that intersection exists to the right of the sweepline. The segments of a sweepline
are stored at the leaves of a balanced binary tree, such as a red-black tree [3]. Internal
nodes of the tree implement a min-queue on the x-coordinates of the next events in
their subtrees: if a node v has children u and w, the value v stores is the minimum of
the values stored at u and w. The sweepline tree supports insert, delete, search, split,
and concatenate operations in O(logn) time.

3 Crossing-Segment Sensitivity

This section presents a simple sweepline algorithm for computing G that is an order of
magnitude faster than all previous algorithms, at least on worst-case inputs. The new
algorithm can be viewed as a modification of the sweepline algorithm of Goodrich et
al. [9]. That earlier algorithm sweeps a vertical line over A, looking for ursegment
endpoints or intersections. Whenever it detects one of these critical points, it creates
a new hot pixel h and performs surgery on the ursegments of S. Every ursegment s
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that intersects h is cut into fragments at its crossings with the boundary of h, and the
fragment of s inside h is deleted. Four new unit-length segments are inserted on the
boundary of h. The fragments of ursegments outside hot pixels terminate on these
newly added boundary segments, and all the vertices of A (all the critical points) are
removed by the surgery. The complexity of the modified arrangement is proportional
to the number of intersections of ursegments of S with hot pixels in H, and it can be
computed using time only a logarithmic factor greater. It is straightforward to extract
G from the modified arrangement in linear time.

Although the algorithm of Goodrich et al. avoids processing potentially costly
ursegment intersections by erasing the part of the arrangement inside the hot pixels
of H, it also erases parts of ursegments that are intersection-free, leading to the prob-
lem illustrated in Fig. 1. A simple remedy suggests itself: Why not erase only the
ursegments that are known to have intersections? The new algorithm develops that
simple idea. The algorithm computes G in two phases: it first computes the set of hot
pixels H, then computes the arcs that join the hot pixels.

3.1 Computing the Hot Pixels

As in the algorithm of Goodrich et al., the basis of the crossing-sensitive computa-
tion of H is a Bentley-Ottmann sweep [1, 2, 6] over A. The algorithm assumes no
ursegment is vertical, although this can be enforced if necessary by an infinitesimal
symbolic rotation of vertical ursegments. A vertical sweepline passes over the urseg-
ments of S, and the algorithm maintains a sorted list of the ursegments intersecting
the sweepline in vertical order. A priority queue maintains the next event to the right
of the sweepline—as noted in Sect. 2, the sweepline data structure itself (a balanced
binary tree) serves as a priority queue for the next event involving an ursegment in the
current active set. Events have four types: ursegment left and right endpoints, urseg-
ment intersections, and ursegment re-insertions. The first three are standard, but the
fourth is a feature of the algorithm: an ursegment that has an intersection inside a
hot pixel h is removed from the sweepline and scheduled for re-insertion at the point
where it crosses out of h. In essence, this modifies the set of segments swept over
by the sweepline so that the fragments derived from any ursegment have at most one
intersection per hot pixel.

The algorithm uses a subroutine trim(s, h) that operates on an ursegment s and
a hot pixel h it intersects. On entry to trim(s, h), ursegment s is present in the
sweepline. The subroutine removes s from the sweepline, then computes the inter-
sections of s with the boundary of h. If s has a fragment that lies to the right of its
intersection with the interior of h, then trim(s, h) schedules s for re-insertion into the
sweepline at the left endpoint of that fragment. Recall that the bottom boundary of h
is contained in h (because h is closed on its left and bottom sides). Thus if s exits h

through the bottom, the re-insertion happens infinitesimally after the crossing, so that
s is re-inserted after it leaves h.

Here is the algorithm to compute the hot pixel set H. For purposes of this al-
gorithm, a hot pixel is represented as an (x, y) pair of integers denoting the center
of the pixel, and the algorithm stores pixels in a set HPSet. The algorithm obtains
integers from the real coordinates of intersections and endpoints using a function
round(r)≡ �r + 1

2�. Thus if r̄ = round(r), r ∈ [r̄ − 1
2 , r̄ + 1

2 ).
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Algorithm FINDHOTPIXELS:
HPSet←∅;
Initialize the event queue for the Bentley-Ottmann sweep.
while the event queue is nonempty do

Remove the next event e from the queue.
Let (xe, ye) be the coordinates of e.
Advance the sweepline to xe.
If e is not a re-insertion then

HPSet←HPSet ∪ (round(xe), round(ye))
If e is a right endpoint of ursegment s then

Remove s from the sweepline.
Else if e is a left endpoint or a re-insertion of ursegment s then

Insert s into the sweepline.
Else {e is an intersection of ursegments s1 and s2}

h= (round(xe), round(ye));
trim(s1, h); trim(s2, h);

As in a standard Bentley-Ottmann sweep, any modification of the sweepline con-
tents (insertion or deletion of a segment) causes the next events for those segments
and their neighbors to change, and the modified x-coordinates of those events are
propagated up the tree, so that each node records the x-value of the current leftmost
event in its subtree. The following lemmas establish the correctness and runtime per-
formance of FINDHOTPIXELS:

Lemma 3.1 Algorithm FINDHOTPIXELS correctly computes all hot pixels in G.

Proof Because the algorithm recognizes a hot pixel only for ursegment endpoints or
intersections, the set HPSet it computes is a subset of the hot pixels in G. To argue
that every hot pixel is added to HPSet, note that subsegments of an ursegment s are
removed by trim(s, h) only inside a known hot pixel h. The Bentley-Ottmann sweep
algorithm detects all intersections between untrimmed ursegments. If a hot pixel con-
tains no ursegment endpoints (i.e., it is made hot only by ursegment intersections),
then at least one of the ursegment intersections it contains will be detected, because
the participating ursegments will not be trimmed before the pixel is known to be
hot. �

Define the intersecting segment count is(h) to be the number of ursegments of
S that have an endpoint or an intersection inside a pixel h. Note that is(h) is not the
number of intersections inside h. In fact, the number of ursegment intersections inside
h may be as large as

(|h|
2

)=*(|h|2), while is(h) is never larger than |h|. Furthermore,
is(h) may be much less than |h|, which lends significance to the following result:

Lemma 3.2 The running time of FINDHOTPIXELS is O(
∑

h∈H is(h) logn).

Proof An ursegment s is trimmed by trim(s, h) after the first intersection that FIND-
HOTPIXELS detects for s inside h. Therefore the algorithm processes at most one
intersection for each ursegment/pixel pair. The subsequent re-insertion event can be
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charged to the trim(s, h) operation that scheduled it. The algorithm performs work
for an ursegment s only if it has an intersection or an endpoint inside h, and the
number of operations for each ursegment is O(1) per pixel. Each operation involves
O(1) standard binary tree operations on the sweepline and the event queue, which
take O(logn) time apiece. �

3.2 Computing the Arcs of G

This section presents an algorithm for computing the arcs of G. The algorithm runs
in the same time as FINDHOTPIXELS, and represents segs(e) for each arc e using
a persistent data structure. The core of the algorithm is a slight modification of the
method of de Berg, Halperin, and Overmars [5]; a clean-up phase takes care of one
special case that algorithm does not fully handle.

The algorithm of [5] assumes that the hot pixels have already been identified and
computes the arcs between them using two Bentley-Ottmann sweeps. The first sweep
processes ursegments with nonnegative slopes, and the second (symmetric) sweep
processes those with negative slopes. The algorithm assumes that no ursegment is
vertical, though this restriction is easy to enforce using a symbolic perturbation, if
necessary.

This section presents the algorithm of [5] in some detail, because variations on
this algorithm are important both here and in Sect. 4.3. The algorithm is based on a
Bentley-Ottmann sweep over the ursegments of S with nonnegative slopes. The se-
quence of ursegments intersecting the sweepline is divided into subsequences (bun-
dles) defined by the hot pixels that the ursegments intersect immediately to the left
of the sweepline. A bundle is a maximal subsequence of ursegments with a single
hot pixel predecessor. Bundles are recorded compactly in the tree representing the
sweepline as follows (this detail differs from the algorithm in [5]): Call a node in
the tree pure if all of its leaf descendants have the same predecessor hot pixel. Each
maximal pure node (the node is pure, but its parent is not) is labelled with the iden-
tity of the hot pixel predecessor. Thus only O(logn) nodes in the tree are involved in
labelling each bundle, and all these nodes are children of a path of length O(logn) in
the tree.

The algorithm processes the hot pixels left-to-right, grouped in vertically aligned
columns, from bottom-to-top within each column. The sweepline, instead of being
a single vertical line, is a staircase consisting of at most five segments: below the
current hot pixel h it coincides with the right side of the column, above h it coincides
with the left side of the column, and within h a vertical segment sweeps from left
to right. See Fig. 3. For each hot pixel h the algorithm FINDARCS performs the
following steps:

1. Find the subsequence of ursegments in the sweepline that intersect h. The seg-
ments of the sweepline are properly ordered along the staircase profile, so this is
a simple tree search.

2. For every bundle that hits h, create an arc e of G joining h to the bundle’s pre-
decessor hot pixel, and use persistence [7] to record the subset of the bundle that
hits h (a subsequence in the current sweepline) as segs(e). This can be done in
O(logn) time per arc created.
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Fig. 3 The sweepline in the
algorithm of [5] is a staircase
with five segments

Fig. 4 The positive- and
negative-slope ursegments for
the arc joining these two hot
pixels are stored in two separate
sequences, one shown as dashed
segments and one shown solid.
Their interleaving is
undetermined

3. Of the bundles that hit h, at most two may hit it with only a fraction of the bundle
segments. One of these two partially passes below h, and the other above; the two
rôles may even be filled by the same bundle. Split these (up to) two bundles and
label the portion of each that misses h with the same label (the same predecessor)
that it had originally.

4. Propagate the ursegments that hit h through the hot pixel, and insert or delete
any ursegments with endpoints inside h. In the original paper [5] this propaga-
tion is done using a standard Bentley-Ottmann sweep in O(int(h) logn) time,
where int(h) is the number of ursegment intersections and endpoints inside h.
It is straightforward to replace this step by a sweep that calls trim(s, h) at the first
intersection of an ursegment s, thereby reducing the time to O(is(h) logn). Note
that no effort is needed to propagate the ursegments that do not hit the hot pixels.
Their order is the same on both sides of the column.

5. Label all the ursegments that exit h on its top and right sides as a single bundle.

This algorithm finds all the arcs of G in O(
∑

h∈H is(h) logn) time, and for every
arc produces at most two sequences of ursegments (one for each sweep) that contain
all the ursegments that belong to the arc. If the arc is not horizontal or vertical, it is
discovered by only one of the two sweeps, and its sequence contains the ursegments
in the order they appear in A. If the arc is horizontal or vertical, the nonnegative-slope
and negative-slope ursegments that define it are discovered in two separate sweeps,
and recorded in two separate sequences. Each sequence is correctly ordered, but their
possible interleaving is undetermined. See Fig. 4.

If it is important to represent every arc by a single properly ordered sequence of
ursegments, this can be accomplished using two more sweeps, one horizontal and one
vertical. Each sweep is responsible for creating bundles for the arcs perpendicular to
the sweepline. The horizontal sweep, for example, passes a vertical sweepline over
the arrangement as in algorithm FINDHOTPIXELS. When the sweep reaches the right
side of a hot pixel h, it labels the bundle of ursegments that emerge from the right
side of h with its predecessor h, as in algorithm FINDARCS. Because the algorithm is
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not interested in ursegments that emerge from the tops or bottoms of h—they cannot
contribute to a horizontal arc of G—it is able to perform the labelling in a single
logarithmic-time operation per hot pixel. When the sweep reaches the left side of a
hot pixel h, it checks whether any of the ursegments that hit the left side of h emanate
from a hot pixel h′ straight left of h. If so (a logarithmic-time test), the subsequence
that originates at h′ and hits h can be identified and recorded using persistence as
segs(e), for e= (h′, h), in O(logn) time.

This completes the proof of the following theorem:

Theorem 3.3 Given a set S of n ursegments, its snap-rounded arrangement G =
(H,E) can be computed in time O(

∑
h∈H is(h) logn), where is(h) is the number

of ursegments of S that have endpoints or intersections inside a hot pixel h. The
ursegment sequences associated with the arcs of E can be computed and recorded
within a matching time and space bound.

4 Edit Distance Sensitivity

Although the algorithm of the preceding section is a substantial improvement over
both [5] and [9], it still seems suboptimal for some inputs. Consider the example
shown in Fig. 5. In the figure, there are

√
2n bundles containing

√
n/2 parallel urseg-

ments apiece, with the bundles arranged in a grid. The total number of hot pixels is
2
√

2n+ n/2, and the total number of ursegment intersections is n2/4. For each hot
pixel h determined by ursegment intersections, is(h) = √2n and int(h) = n/2. For
this input, the algorithm of [5] runs in O(n2 logn) time, and both [9] and the algo-
rithm of Sect. 3 run in O(n

√
n logn) time. Nevertheless, it seems that the algorithms

are missing an opportunity for efficiency, because the intersection pattern in each hot
pixel is particularly simple. If one could take advantage of this simplicity, one could
reduce the processing time further. The improved algorithm presented in this section
achieves a running time of O(n logn) for the example in Fig. 5.

4.1 Edit Distance

Our intuition tells us that the crossover inside each hot pixel of Fig. 5 is simple.
This section formalizes that intuition using the notion of edit distance, in particular

Fig. 5 In this grid of bundles,∑
h∈H is(h)=*(n

√
n),

although the crossover in each
hot pixel is very simple
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Fig. 6 A is transformed into B

by three editing operations

edit distance with moves [4, 20]. Consider two sequences of symbols A and B , such
that each symbol appears at most once in each of A and B . (That is, the sequences
are nonrepeating.) The sequence A can be transformed into B by a series of editing
operations of the following three types: insert a symbol at any position, delete a
symbol at any position, and move a subsequence of symbols from any position in the
sequence to some other position. See Fig. 6 for an example.

If the sequence is stored in a doubly linked list and pointers to the locations of
operations are provided, each of these operations takes O(1) time; if it is stored in a
balanced binary tree, each takes O(log(|A| + |B|)); if it is stored in a finger search
tree [12, 16], then insert/delete take O(1) amortized time and the move operation
takes O(log(�+ d)), where � is the length of the subsequence and d is the distance
it moves.

The number of editing operations needed to transform one sequence into another
is the edit distance between the sequences. However, this quantity may be difficult
to calculate; an equivalent but easier-to-compute metric is the neighbor difference
distance, defined to be the number of symbols in A and B whose neighbors are not
identical in the two sequences. In Fig. 6 the neighbor difference distance is 8, because
only f has its neighbors unchanged.

Lemma 4.1 The edit distance and the neighbor difference distance between two non-
repeating sequences are equal to within a constant factor.

Proof Each editing operation affects O(1) neighbors. Thus there is a constant c such
that the neighbor difference distance is at most c times the edit distance. On the
other hand, if the neighbor difference distance between two sequences is d , then the
sequences can be partitioned into O(d) subsequences and singleton elements that
can be rearranged with O(d) editing operations to transform one sequence into the
other. �

Because the edit distance and the neighbor difference distance are constant-factor
equivalent, this paper uses the more euphonious name edit distance to refer to the
easier-to-compute neighbor difference distance. That is, the edit distance ed(A,B)

between sequences A and B is actually computed as the neighbor difference distance.
The concept of edit distance for sequences carries over easily to the setting of a

sweepline. Two different positions x1 and x2 of the sweepline induce two different
sequences of ursegment intersections. Each ursegment is viewed as a symbol in the
sequences, and the edit distance between sweepline positions x1 and x2, denoted
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Fig. 7 The edit distances of these pixels in left-to-right order are 0, 4, 3, and 4(!)

ed(x1, x2), is the number of ursegments whose neighbors along the sweepline differ
at the two positions. If x1 and x2 are the left and right sides of a column of pixels C,
then ed(C)≡ ed(x1, x2).

Extending the concept of edit distance to the sequence of ursegments crossing the
boundary of a pixel is trickier, but possible. The complication arises because the se-
quence of ursegment intersections with the boundary is circular, and there is only
one sequence, not two. Each ursegment that intersects a pixel h without having an
endpoint inside it crosses the boundary of h twice. (An ursegment that is tangent to
the boundary of h is defined to have zero or two intersections, depending on whether
the boundary is open or closed at the point(s) of tangency.) The two intersections
of such a pass-through ursegment s with the boundary of h are labelled s and s′.
Intuitively, the edit distance of a pixel with no intersections or endpoints inside it
should be zero. If a group of parallel ursegments passes through a pixel h without
intersecting, then for every triple abc of ursegment boundary crossings that appears
in counterclockwise order, the sequence must also contain the triple c′b′a′. There-
fore the edit distance of a pixel h, ed(h), is defined to be the number of ursegments
that intersect h and either (a) have an endpoint inside, or (b) have neighbor pairs at
the two boundary crossings that are not mirror reflections of each other. See Fig. 7.
Ursegments with exactly one endpoint inside h cause a contribution of type (b) to
ed(h), so ed(h) could also be defined in terms of the sequence at the boundary of h
plus a term for the trivial ursegments fully contained in h.

Note that in the last example of Fig. 7, the edit distance is 4 even though there are
no intersections or endpoints inside the pixel. This is somewhat of an anomaly, but it
can be justified because such a configuration arises only if there are intersections or
endpoints of the implicated ursegments in an adjacent pixel. The following lemmas
characterize the pixel edit distance:

Lemma 4.2 If a pixel h has no ursegment endpoints or intersections inside it, then
ed(h)=O(1).

Proof The ursegments crossing h partition the interior of h into faces. Each face is a
convex polygon, and all its vertices are either corners of h or intersections between
ursegments and the boundary of h. The boundary of a face consists of an alternating
sequence of ursegments and portions of the boundary of h. Each side of h appears at
most once on the boundary of each face. An ursegment s contributes to ed(h) if and
only if at least one of the two faces it bounds has more than two ursegments on its
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Fig. 8 A pixel containing no
ursegment endpoints or
intersections has edit distance at
most 6

boundary. If a face has more than two ursegments on its boundary, it must also have
portions of at least as many sides of h. Because the faces are interior-disjoint there
can be at most two faces with three ursegments on their boundaries, or at most one
face with four ursegments on its boundary. This proves the lemma. See Fig. 8. �

Lemma 4.3 For any hot pixel h, ed(h)=O(is(h)).

Proof Let T be the set of ursegments counted in is(h). Estimate ed(h) by removing
all ursegments in T , then adding them back one by one. After all ursegments in T are
removed from h, ed(h)=O(1), by Lemma 4.2. Adding the ursegments back one by
one increases ed(h) by at most O(1) per addition, because each new ursegment has
at most four neighbors on the boundary of h. After all ursegments have been added,
ed(h)=O(1+ |T |)=O(is(h)). �

Lemma 4.4 For any hot pixel h, ed(h) > 0.

Proof If any ursegment has an endpoint inside, the ursegment contributes to ed(h),
by definition. Otherwise, if there is an intersection inside h, then either the inter-
secting ursegments are neighbors on the boundary, or by induction on the number of
ursegments separating them along the boundary there exists some pair of intersecting
ursegments that are neighbors on the boundary. These two ursegments clearly have
different neighbors on the opposite sides of h, and therefore contribute to ed(h). �

The concept of edit distance for pixels can be generalized to convex regions,
though the generalization of Lemma 4.2 holds only for constant-complexity convex
polygons. The edit distance of a convex region R, ed(R), is the number of ursegments
that intersect R and either (a) have an endpoint inside, or (b) have neighbor pairs at
the two boundary crossings that are not mirror reflections of each other. If there are no
ursegments fully contained in a column C, then the convex region definition of edit
distance is equivalent to ed(C). The following lemma helps relate ed(C) to ed(h) for
the hot pixels h ∈ C:

Lemma 4.5 Let R be a convex region that is partitioned by a line � into two convex
fragments R′ and R′′. By convention assume that �∩R is included in at least one of
R′ and R′′. Then

ed(R)≤ ed(R′)+ ed(R′′)+O(1).
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Fig. 9 Ursegment a is counted in the edit distance for at least one of the fragments R′ and R′′ created by
the partitioning line

Proof It suffices to show that all but O(1) segments that are counted in ed(R) are
counted in at least one of ed(R′) and ed(R′′). This is clear for segments with an
endpoint in R, because the endpoint lies in R′ or R′′.

Consider a pass-through segment a, and without loss of generality suppose that the
counterclockwise neighbor of crossing a is b and the clockwise neighbor of crossing
a′ is c 
= b′. Further assume that � does not separate either of the pairs (a, b) or (c, a′).
See Fig. 9. Without loss of generality suppose that R′ contains (a, b). If R′ also
contains (c, a′), then a is counted in ed(R′). If (c, a′) belongs to R′′, then consider
the intersections of ursegments a and b with �. If crossings with b and a do not occur
along � in counterclockwise order in R′, then a is counted in ed(R′); if they do, then
the configuration of a in R is replicated in R′′, and a is counted in ed(R′′). Because at
most four ursegment crossings are separated from their neighbors along the boundary
of R by �, the lemma holds. �

The sequence edit distance for columns is related to the pixel edit distance as
follows:

Lemma 4.6 Let C be a column of pixels containing at least one hot pixel, and let
H ∩C denote the set of hot pixels in C. Then

ed(C)=O

( ∑

h∈(H∩C)

ed(h)

)

.

Proof The proof of Lemma 4.2 extends trivially to show that if a rectangle R has
no ursegment endpoints or intersections inside it, then ed(R) = O(1). Let RC be
the convex hull of all the pixels in C that are crossed by ursegments. As observed
earlier, ed(C) = O(ed(RC)). Now partition RC at the boundaries of the hot pixels
into |H ∩C| hot pixels and at most |H ∩ C| + 1 rectangles containing no urseg-
ment endpoints or intersections. By Lemma 4.5 and the extension of Lemma 4.2
to rectangles, ed(RC) =O(

∑
h∈(H∩C) ed(h))+O(|H ∩ C|). By Lemma 4.4 this is

O(
∑

h∈(H∩C) ed(h)). �

4.2 Edit-Distance-Sensitive Sequence Transformation

This section tells how to transform one sequence into another in time proportional to
the edit distance times a logarithmic factor, given the availability of certain primitive
operations that are easy to implement in the sweepline setting.
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Consider the problem of transforming a sequence A into a second sequence B ,
assuming that A is stored at the leaves of a balanced binary tree, and that the transfor-
mation is implemented by destructive surgery on the tree. Define n=max(|A|, |B|),
and assume the existence of a comparison operator <B , which when applied to two
elements a, b ∈ B returns true if and only if a appears to the left of b in B . Fur-
ther suppose that the input to the problem identifies all elements that appear in only
one of A and B , and all consecutive pairs a, b ∈ A such that b <B a. The following
algorithm dismantles A and constructs B from the resulting fragments:

Algorithm EDITDISTTRANSFORM:
Delete from A all elements in A \B .
Break A into subsequences A1,A2, . . . ,Ak by splitting at all the deletion

sites and between every neighbor pair a, b such that b <B a.
{Each subsequence is correctly ordered in both A and B , and the ends
of each subsequence are counted in the edit distance ed(A,B).}

Set T ←∅, an empty sequence.
for i← 1 to k do

T ←merge(T ,Ai); {Now ∀a, b ∈ T , a <B b}
Insert into T all elements in B \A.
return T ;

The subroutine merge(T ,Ai) merges two sorted sequences into one in time
O(logn) times the number of fragments into which Ai is subdivided. It is an un-
sophisticated variant on an algorithm of Hwang and Lin [17] and can be expressed
recursively as follows:

merge(U,V )

if empty(U) then return V ;
else if empty(V ) then return U ;
else if head(V ) <B head(U) then

return merge(V ,U);
{Now head(U) <B head(V )}
Split U into U ′ and U ′′ at head(V ).
return concat(U ′,merge(V ,U ′′));

The split and concatenate operations take O(logn) time apiece and all other opera-
tions take constant time. The total number of operations is proportional to the number
of contiguous fragments into which the input sequences U and V are decomposed.

Lemma 4.7 Algorithm EDITDISTTRANSFORM runs in time O(ed(A,B) logn).

Proof The number of operations the algorithm performs outside the merge( ) calls is
proportional to ed(A,B). Each operation is a standard binary search tree operation
and takes O(logn) time. Each call to merge(T ,Ai) takes time O(t logn), where t

is the number of fragments into which Ai is split by the merge( ) subroutine. If Ai

is split into t fragments, that means that t − 1 pairs of adjacent symbols in Ai are
separated in B , and therefore the total time spent in merge( ) is O(ed(A,B) logn). �
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Note that EDITDISTTRANSFORM is essentially an adaptive algorithm for sorting
a partially pre-sorted sequence, where the measure of disorder is the edit distance.
Other such adaptive sorting algorithms are described in [8].

4.3 Computing the Hot Pixels

This section shows how to provide the input data and comparison operator required
by the algorithm EDITDISTTRANSFORM for the ursegment sequences determined by
two positions of the sweepline. It follows that it is possible to advance the sweepline
from position x to another position x′ in time O(ed(x, x′) logn). It seems more diffi-
cult to perform a similar operation for the ursegments incident to a hot pixel, largely
because it is hard to determine which ursegments are entering and which are exiting;
indeed, ursegments may both enter and exit (during a left-to-right sweep) through
the top and bottom of a hot pixel. Therefore the algorithm presented here finesses
the issue, reducing the problem to a series of cases in which algorithm EDITDIST-
TRANSFORM is applicable.

Hot pixels determined by ursegment endpoints are easy to detect; the algorithm
focuses on finding hot pixels determined only by intersections. These fall into two
classes: (a) same-side pixels in which two ursegments cross the same side of the pixel
and intersect inside and (b) cruciform pixels in which every intersecting pair consists
of one ursegment crossing the top and bottom of the pixel and another crossing the
left and right sides. The two classes of hot pixels are detected separately.

Lemma 4.8 If a hot pixel h contains no ursegment endpoints and there exist two
ursegments that cross the same edge of h and intersect inside h, then there are two
ursegments that intersect inside h and are adjacent along the specified edge.

Proof The proof is by induction on the number of ursegments that separate the two
chosen ursegments along the boundary of h. Suppose that ursegments a and b cross
an edge e of h and intersect inside h. Ursegments a, b, and the edge e bound a triangle
inside h. If a and b are not adjacent along e, then there exists some ursegment s that
crosses e between them and intersects either a or b (say a) on the triangle boundary.
Then a and s both cross e, intersect inside h, and are closer along e than a and b. By
induction the lemma follows. �

As noted in Sect. 2, the binary tree implementing the sweepline stores a next-event
x-value for each ursegment crossing the sweepline, and the nodes of the tree imple-
ment a tournament on these x-values. Thus it is possible to find in O(t logn) time
all t active segments whose next scheduled event occurs left of any desired x-value.
(Note that if an ursegment s has event x-value x̄, that does not necessarily imply that
the first event involving s occurs at x̄; that claim is true only for the ursegment with
the leftmost event x-value. What is true is that an ursegment with x-value x̄ will have
an event at or before x̄, assuming the neighbor defining the event is not deleted first.)
The t ursegments with events left of a given x-value x̄ partition the sweepline into
at most t + 1 subsequences with the property that each subsequence, considered in
isolation, has no events left of x̄. That is, the vertical order of each subsequence is the
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same at x̄ as at the current sweepline position. This partition into event-free subse-
quences is part of the input needed by algorithm EDITDISTTRANSFORM; the other
part, the comparison operator, simply checks the intersection order of two ursegments
with the vertical line x = x̄.

The following algorithm finds all same-side pixels whose defining pair of urseg-
ments crosses the left pixel boundary:

Algorithm EDITDISTSAMESIDE:
HPSet←∅;
Initialize the endpoint queue and the sweepline.
while the endpoint queue is nonempty do

Let x̄ be the x-coordinate of the next event (either an endpoint or
an intersection).

Let xh = round(x̄).
{The sweepline currently holds ursegments in proper order for xh − 1

2 .}
Find all ursegments in the sweepline with a scheduled event before xh + 1

2 .
For each scheduled event e with xe < xh + 1

2 do
HPSet←HPSet ∪ (xh, round(ye));

Apply EDITDISTTRANSFORM to advance the sweepline from xh− 1
2 to xh+ 1

2 ,
updating the endpoint queue as necessary.

It follows from Lemmas 4.6, 4.7, and 4.8 that EDITDISTSAMESIDE finds all hot
pixels determined by intersecting ursegments that enter through the left side in time
O(
∑

h∈H ed(h) logn). Applying the algorithm four times, once for each cardinal di-
rection, finds all hot pixels except the cruciform pixels. In fact, it is enough to ap-
ply the algorithm twice: algorithm EDITDISTTRANSFORM detects every ursegment
whose sweepline neighbors at xh − 1

2 differ from its neighbors at xh + 1
2 , and this

means that one invocation of EDITDISTSAMESIDE can detect all same-side hot pix-
els determined by ursegments crossing either their left or right sides.

The algorithm for detecting cruciform pixels is loosely based on the algorithm
of [5] for arc computation described in Sect. 3.2. If the arc computation is omit-
ted, that algorithm can be used to find intersections between pairs of positive-slope
ursegments and pairs of negative-slope ursegments, but not between pairs with one
positive and one negative slope. The extension described here depends on the obser-
vation that it is not the slope of the ursegments that is important for the algorithm,
but how the ursegments cross the boundary of a hot pixel. In particular, ursegments
are allowed to enter a hot pixel only through its left and bottom sides, and allowed to
exit only through its right and top sides. This is automatically true for positive-slope
ursegments, but it can be enforced for ursegments of all slopes by modifying the al-
gorithm. In brief, the algorithm EDITDISTCRUCIFORM described below processes
all the ursegments together, but gives special treatment to ursegments that enter a hot
pixel h through its top boundary. Such ursegments are not processed inside h, but are
instead merged directly into the sequence at the right boundary of the current column.

The algorithm EDITDISTCRUCIFORM processes hot pixels column-by-column
from left to right. A hot column is identified by an ursegment endpoint or by an
ursegment intersection event detected by the sweepline. Within each column C of
hot pixels, the algorithm repeatedly identifies and processes the lowest unprocessed
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Fig. 10 a Configuration at the start of each step of EDITDISTCRUCIFORM. b Let Ū be the portion of U
below the next hot pixel h. Separate the non-crossing ursegments in Ū ∪H into those that hit h and those
that do not (those that cross the thin dashed segment in the figure). c Configuration before processing hot
pixel h. d Split the sequence of ursegments entering h through its bottom and left sides into subsequences
with no intersections inside or below h. Further split each subsequence into ursegments that cross the top
of H and those that do not. Note that some ursegments from U may cross through the bottom of h. e Merge
the subsequences at the top of h to create H ′; merge the other subsequences into L

hot pixel. At the beginning of each step the sweepline profile is a stairstep, with one
horizontal segment at the top of the previously processed hot pixel in C. See Fig. 10a.
The sweepline is partitioned into three portions U , H , and L. U and L are the upper
and lower vertical portions, with U at the left side of C and L at the right; H is the
horizontal segment joining U and L. All ursegments associated with H have positive
slope (they pass from below H to above it). As the algorithm runs, ursegments are
removed from U and added to L; ursegments are both added to and removed from H ,
and the y-coordinate associated with H increases.

The ursegments crossing H (the top of the previous hot pixel) and U below the
next hot pixel h form a contiguous subsequence on the sweepline. These ursegments
have no events scheduled in the region between H and h (else h would be lower).
Thus they are intersection-free in that region, and a single tree search separates the
subsequence that hits the bottom of h from the one that reaches the right edge of C.
(See Fig. 10b.) The portion that reaches the right edge of C is merged into L, and the
portion that reaches h becomes the new contents of H ; H moves up to the bottom
of h (Fig. 10c). To process h, the algorithm examines the subsequence of U ∪ H

that crosses the left and bottom sides of h, and splits it into subsequences with no
scheduled events in or below h. Each of these subsequences consists of ursegments
that pass through h without any neighbor intersections, starting from the bottom and
left sides of h. Each subsequence is further split into one piece that hits the top of h
and one that does not (Fig. 10d). The portions that hit the top are merged to create a
new sequence H ′ to replace H ; the portions that do not hit the top are merged into L.
In the process, H is emptied and the part of U that crosses the left edge of h is deleted
(Fig. 10e). Note that ursegments from U that hit the bottom of h receive no further
processing in C below h. Any intersections those segments have in C below h are not
detected. The propagation of U and H through h is very similar to the processing of
Algorithm EDITDISTTRANSFORM, except applied on a pixel-by-pixel basis. The key
to applying that algorithm is the separation between the source sequences (U and H )
and the destination sequences (H ′ and L).

To find the lowest pixel above H containing a scheduled event, and to support
the splitting of H and U into subsequences with no scheduled event inside or below
a pixel h, the algorithm uses a quantized and enhanced version of the sweepline
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described in Sect. 2. Each leaf node (representing an ursegment) has an associated
event location (xe, ye), as before, but internal nodes store both coordinates of an
event. Among the events in its subtree with minimal round(xe) values, each node
stores the one with minimum ye. That is, the events are grouped into columns of
pixels, and a node selects the lowest event in the leftmost event-containing column.
This value can be computed in constant time at each node based on the values stored
at the node’s children.

Observation 4.9 The quantized sweepline data structure described above stores at
its root the lowest scheduled event in the leftmost column of pixels containing an
event.

Lemma 4.10 If all the ursegment events stored in a quantized sweepline lie in or to
the right of a column of pixels C, then the sweepline can be used to find all scheduled
events lying in or below a pixel h ∈ C in O(logn) time apiece.

Proof The search rule is simple: if and only if an internal node being visited stores
an event in the query region, visit the node’s children. Because each node stores an
event belonging to one of its leaves, it is clear that if the children are visited, then the
subtree contains an event of interest. But conversely, if the children are not visited,
then the subtree contains no event of interest: if a node v’s event location is (xv, yv)

and the center of h is (xh, yh), then if round(xv) > xh all descendants of v are right
of C, and if yv ≥ yh + 1

2 then all descendants of v in C are above h. For each event
found, the algorithm visits all the ancestors of the leaf containing the event and all
the ancestors’ siblings, for a total cost of O(logn) per event reported. �

Lemma 4.11 If a cruciform pixel h contains a nonnegative-slope ursegment that
passes through h from bottom to top, the algorithm EDITDISTCRUCIFORM detects
an event inside h.

Proof By a slight modification of the proof of Lemma 4.8 one can show that there
exists a pair of ursegments that are adjacent along U and H (one on U and one on
H ) that intersect inside h. This pair defines an intersection event inside h that will be
detected no later than the processing of the hot pixel below h. �

Note that EDITDISTCRUCIFORM does not detect all hot pixels. In particular, all
ursegments that enter a pixel from the top are merged directly into the sweepline L,
and so any cruciform pixels determined only by such ursegments will not be detected.
See Fig. 11.

Lemma 4.12 The total running time of algorithm EDITDISTCRUCIFORM is
O(
∑

h∈H ed(h) logn).

Proof The algorithm spends O(logn) time to detect each hot pixel that it finds and
to process the part of C between successive hot pixels. Within each hot pixel h the
algorithm spends O(ed(h) logn) time to propagate H and the relevant part of U

across h and into H ′ and L, as in Lemma 4.7. A further term of O(ed(C) logn)
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Fig. 11 Each of the shaded
pixels is hot, but only the top
one will be found by the
positive-slope instance of
EDITDISTCRUCIFORM. The
others are found by the
negative-slope instance

covers the cost of merging into L the portions of U that exit through the bottom of h
for all hot pixels h ∈ C. Because ed(C)=O(

∑
h∈(H∩C) ed(h)) by Lemma 4.6, this

term is dominated by the sum of the per-pixel costs. �

By Lemma 4.11, two applications of Algorithm EDITDISTCRUCIFORM, one each
for positive and negative slopes, suffice to find all cruciform hot pixels. Combining
this with two applications of EDITDISTSAMESIDE finds all hot pixels in a total of
O(
∑

h∈H ed(h) logn) time.

4.4 Computing the Arcs of G

A relatively straightforward extension of the algorithms of Sect. 3.2 computes the
arcs of G and their associated ursegment sets in O(

∑
h∈H ed(h) logn) time. The step

in the algorithm of de Berg, Halperin, and Overmars that processes a hot pixel h

is modified, as in the previous subsection, to advance a quantized sweepline over h

in time O(ed(h) logn). The algorithm is somewhat simpler than that in Sect. 4.3,
however, because it does not need to handle negative-slope ursegments. Likewise, if
the clean-up phase needs to perform additional sweeps to compute the ursegment sets
of horizontal and vertical arcs, it uses the method of algorithm EDITDISTSAMESIDE

to sweep over each column C of hot pixels in time O(ed(C) logn).
These observations, plus the algorithms of Sect. 4.3, establish the following theo-

rem:

Theorem 4.13 Given a set S of n ursegments, its snap-rounded arrangement G =
(H,E) can be computed in time O(

∑
h∈H ed(h) logn), where ed(h) is the edit dis-

tance of a pixel h. The ursegment sequences associated with the arcs of E can be
computed and recorded within a matching time and space bound.

The edit distance of every hot pixel where bundles cross in Fig. 5 is O(1), and so
the running time of this algorithm applied to that set of ursegments is O(

√
n logn)

per endpoint-containing pixel and O(logn) per intersection-containing pixel, for a
total time of O(n logn).
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Fig. 12
∑

h∈H ed(h) =*(n2), although G has linear size. (The arrangement is stretched vertically for
clarity)

5 Conclusion

The algorithm of Sect. 3 is a practical addition to the available algorithms for com-
puting snap rounded arrangements of line segments. It avoids the excessive running
times of previous algorithms by a simple idea that leads to a simple algorithm.

The algorithm of Sect. 4 is primarily of theoretical interest because it requires sev-
eral independent sweeps over the ursegments. Nevertheless, it points the way toward
a new class of snap rounding algorithms that depend on the edit distance of the hot
pixels. If an algorithm is required to produce output that represents the ursegments
associated with each arc of G in a sorted sequence, bounds depending on the pixel edit
distance are arguably the best possible. Reordering the sequence of ursegments en-
tering a pixel to obtain the sequence of ursegments exiting seems to require a number
of operations proportional to the edit distance.

If the order of ursegments associated with arcs of G is unimportant, some im-
provement may still be possible. Consider the arrangement of ursegments shown in
Fig. 12, in which most of the hot pixels have edit distance *(n), and

∑
h∈H ed(h)=

*(
∑

h∈H is(h)) = *(
∑

h∈H |h|) = *(I) = *(n2). For this arrangement all the
known algorithms run in time �(n2 logn), even though G has size O(n) and the
unordered value of segs(e) is the same for every arc in G.
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Generating All Vertices of a Polyhedron Is Hard
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Abstract We show that generating all negative cycles of a weighted graph is a hard
enumeration problem, in both the directed and undirected cases. More precisely,
given a family of negative (directed) cycles, it is an NP-complete problem to de-
cide whether this family can be extended or there are no other negative (directed)
cycles in the graph, implying that (directed) negative cycles cannot be generated in
polynomial output time, unless P = NP. As a corollary, we solve in the negative
two well-known generating problems from linear programming: (i) Given an infea-
sible system of linear inequalities, generating all minimal infeasible subsystems is
hard. Yet, for generating maximal feasible subsystems the complexity remains open.
(ii) Given a feasible system of linear inequalities, generating all vertices of the corre-
sponding polyhedron is hard. Yet, in the case of bounded polyhedra the complexity
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remains open. Equiva lently, the complexity of generating vertices and extreme rays
of polyhedra remains open.

1 Introduction and Main Results

Let G = (V ,E) be a directed graph (digraph) and let w: E→ R be a real-valued
weight function defined on its arcs. We call such a pair a weighted digraph and
denote it by (G,w). For every subset of arcs F ⊆ E its weight is defined as the
total weight of all its arcs, w(F) =∑e∈F w(e). We call a simple directed cycle a
circuit. A circuit is called negative if its weight is negative. Finally, we denote by
C− = C−(G,w) the family of negative circuits of (G,w), i.e., C− = {C ⊆ E | C is a
circuit with w(C) < 0}.

First we consider the problem of generating exhaustively all negative circuits of
a given weighted directed graph (G,w), in other words the problem of enumerating
the family C−(G,w). Since the number of negative circuits may be exponential in the
size of the input description, i.e., the size of G and w, the efficiency of such enumer-
ation algorithms is measured customarily in both the input and output sizes (see, e.g.,
[28, 32, 43]). More precisely, such an enumeration problem is said to be solvable in
polynomial total time if the output can be generated in time polynomial in the input
and output sizes. It is easy to see that for self-reducible (see, e.g., [29]) problems a
family C is enumerable in polynomial total time if and only if for each subfamily
X ⊆ C, the problem of deciding X 
= C; if yes, finding C ∈ C\X , is solvable in time
polynomial in size(G,w) and |X |. On the other hand, when this decision problem is
NP-hard, the enumeration problem is called NP-hard, too (see [32]). Thus, NP-hard
enumeration problems are unlikely to have total polynomial time enumeration algo-
rithms, unless P =NP.

Our main result claims that enumerating negative circuits of a weighted directed
graph is a hard enumeration problem.

Theorem 1 Given a weighted digraph G = (V ,E), w: E → R, and a family
X ⊆ C− of its negative circuits, it is an NP-complete problem to decide whether
X 
= C−, even if w takes only two different values.

We add that the analogous hardness result can be shown for undirected graphs,
as well. In this case we also call a simple cycle a circuit and we denote by C− =
C−(G,w) the family of all negative circuits of an undirected graph G= (V ,E).

Theorem 2 Given a weighted undirected graph G= (V ,E), w: E→R, and a fam-
ily X ⊆ C−(G,w) of its negative circuits, it is an NP-complete problem to decide
whether X 
= C−, even if w takes only two different values.

We remark that all circuits of a directed or undirected graph can be enumerated
efficiently, e.g., by a simple backtracking algorithm [37].

Note that if w takes the same value for all edges (arcs), then negative circuits
either do not exist or all circuits are negative. Thus, the enumeration problems for
both directed and undirected graphs can be solved efficiently, as we noted earlier.
Furthermore, when w takes only two different values, those can be assumed to be
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integers, and hence by edge (arc) splitting the input can be transformed to one in
which all edges (arcs) have weight ±1. Though this transformation may increase the
size of the input in a nonpolynomial way, in the case of the specific constructions we
provide in the proofs of the above two theorems, it is a polynomial transformation,
implying that generating all negative circuits is NP-hard even if all edges (arcs) have
weights ±1.

We derive several consequences of the above results, including the hardness of
generating all vertices of a (possibly unbounded) polyhedron, generating all minimal
infeasible subsystems of a system of linear inequalities, etc. We prove Theorems 1
and 2 in Sects. 2 and 3, respectively.

1.1 Negative Circuits and Minimal Infeasible Subsystems

We first note that deciding the existence and finding a negative circuit in a weighted
directed graph are polynomially solvable tasks. Gallai [25] proved that (G,w) has
no negative circuit if and only if by a potential transformation all edge weights can
be changed to nonnegative values. Furthermore, a negative circuit can be found in
O(|V |3) time, if the graph has negative circuits [23, 44]. We use Gallai’s approach to
reformulate the problem and derive some interesting consequences.

To a weighted digraph (G,w), where G= (V ,E) and w: E→R, we associate a
polyhedron P(E,w) defined by

P(E,w)= {x ∈R
V
∣
∣ xv − xu ≤w(u,v) for all arcs (u, v) ∈E

}
. (1)

Note that every vector x ∈ P(E,w) is a potential in the sense Gallai [25] defined
it, proving that G is negative circuit free. Namely, defining w′(u, v) = w(u,v) +
xu − xv for all arcs (u, v) ∈ E we get another weighting of the arcs of G, such that
w′(C)=w(C) for all directed circuits C ⊆E, and for which w′(u, v)≥ 0 for all arcs
(u, v) ∈E, according to the definition of P(E,w). This latter shows that G is indeed
negative cycle free.

Thus applying Gallai’s result to subgraphs of G we obtain that P(E′,w)= ∅ for
some E′ ⊆E if and only if the subgraph G′ = (V ,E′) contains a negative cycle with
respect to the weight function w. Therefore, the minimal infeasible subsystems of
the system of linear inequalities (1) correspond in a one-to-one way to the negative
circuits of (G,w). Hence, Theorem 1 implies the following result.

Corollary 1 Enumerating all minimal infeasible subsystems of a system of linear
inequalities is an NP-hard enumeration problem, even if we restrict the input to linear
systems involving at most two variables in each inequality.

The problems of finding minimal infeasible subsystems of a system of linear
inequalities, sometimes called Irreducible Inconsistent Subsystems (IIS) or Helly
systems, and its natural dual of finding maximal feasible subsystems received am-
ple attention in the literature, see, e.g., [5, 35, 38]. The optimization versions of
these problems, i.e., finding a maximum cardinality feasible subsystem, and find-
ing a minimum cardinality infeasible subsystem are known to be NP-hard, see, e.g.,
[14, 27, 35].
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1.2 Minimal Infeasible Subsystems and Vertex Enumeration

Recall that the infeasibility of a system of linear inequalities is well characterized
by the Farkas Lemma: either the system Ax ≥ b has a solution, or there exists a
nonnegative vector y ≥ 0 such that yT A = 0 and yT b > 0, but not both (see [21]).
Using this claim, Gleeson and Ryan [26] associated to a system of linear inequali-
ties Ax ≥ b, A ∈ R

m×n and b ∈ R
m, a so-called alternative polyhedron defined as

Q = {y ∈ R
m+ | yT A = 0, yT b = 1}, and observed that minimal infeasible subsys-

tems of Ax ≥ b are in a one-to-one correspondence with vertices of Q. Indeed, for
every vector y ∈Q we consider the subsystem of Ax ≥ b corresponding to the sup-
port set S(y)= {i | yi 
= 0}. By the Farkas Lemma, we have that these corresponding
subsystems are indeed infeasible. Conversely, if S is the index set of an infeasible
subsystem of Ax ≥ b, then again by Farkas’s lemma we have a vector y ∈ Q for
which S(y) ⊆ S. Thus, minimal infeasible subsystems correspond to vectors y ∈Q

with minimal support sets, and hence those are indeed vertices of Q.
This observation, coupled with Corollary 1, implies the hardness of enumerating

the vertices of polyhedra.

Corollary 2 Enumerating all vertices of a rational polyhedron, given as the inter-
section of finitely many closed half-spaces, is an NP-hard enumeration problem.

Proof We consider an infeasible system of rational linear inequalities Ax ≥ b, and
its alternative polyhedron Q. We can write Q equivalently as Q = {y ∈ R

m | y ≥
0, AT y ≥ 0, −AT y ≥ 0, bT y ≥ 1, − bT y ≥−1}, i.e., as the intersection of m+
2n+ 2 closed half-spaces. Thus, by the above observation, enumerating the vertices
of this rational polyhedron would also enumerate all minimal infeasible subsystems
of Ax ≥ b, which is an NP-hard enumeration problem according to Corollary 1. �

Vertex enumeration is a fundamental problem in computational geometry and
polyhedral combinatorics (see, e.g., [19] for a list of applications), and has many
equivalent formulations. Most notably for bounded polyhedra, vertex enumeration is
equivalent with facet generation, i.e., enumerating the facets of a polytope given by
an explicit list of its vertices (see, e.g., the so-called polytope–polyhedron problem
in [31]).

We add that in this paper we consider polyhedra which have vertices. This con-
dition is easy to check in polynomial time and does not restrict generality. We em-
phasize that whenever the system of equations AT y = 0, bT y = 0 has a nontrivial
solution for which y ≥ 0, then Q in Corollary 2 is an unbounded polyhedron. Thus,
our reduction through Theorem 1 yields in general unbounded polyhedra, and hence
does not imply the hardness of vertex generation for bounded polyhedra, which re-
mains an open problem. Furthermore, and equivalently, the complexity of enumer-
ating together vertices and extreme rays of polyhedra is also an open problem (any
unbounded polyhedron P can be projectively transformed into a bounded polyhe-
dron, by adding one “far face,” whose vertices correspond to the extreme rays of P ,
see, e.g., [35]).

Numerous algorithmic ideas have been introduced in the literature (either for ver-
tex or for facet enumeration, see e.g., [1, 3, 4, 6, 9, 10, 12, 15, 16, 18, 19, 33, 34,
36, 41, 42]). Efficient algorithms (typically linear in the number of vertices) were
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proposed for several special cases, including simple polyhedra, i.e., in which every
vertex is incident with exactly n facets [3], simplicial polyhedra, which are the dual of
simple polyhedra [9], network polytopes [36], polytopes with zero–one vertices [10],
and polyhedra in which every facet defining inequality involves at most two nonzero
coefficients [1]. Furthermore, for fixed dimension both vertices and rays of a polyhe-
dron can be enumerated efficiently [13]. However, no method proved to be efficient
(yet) for the general case. In fact, several publications [2, 11, 24] analyzed the pro-
posed general-purpose methods for vertex/facet enumeration, and showed that all of
the known algorithms may require in the worst case superpolynomial time in the out-
put size. Along the same lines, Corollary 2 shows that vertex enumeration is indeed
a hard enumeration problem for unbounded polyhedra (unless of course P =NP).

In analyzing the reasons why backtracking methods are not efficient for vertex
enumeration, in general, Fukuda et al. [24] noted that such methods require re-
peatedly solving decision problems, which turn out to be NP-hard. In particular,
they showed that for a given rational polyhedron P and an open rational half-space
H = {x ∈ R

n | αT x > β}, it is NP-hard to decide if P has a vertex in H . We note
that the same decision problem for bounded polyhedra is much easier, since it can be
decided by maximizing αT x over P , which is a linear programming problem, known
to be polynomially solvable, see Khachiyan [30]. We can show, as a next corollary of
Theorem 1, that the enumerative version of this decision problem is hard for bounded
polyhedra.

To arrive at this claim, we recall that the vertices of the circulation polytope

P(G)=

⎧
⎪⎨

⎪⎩
y ∈R

E

∣
∣
∣
∣
∣
∣
∣

∑
v: (u,v)∈E yuv −∑w: (w,u)∈E ywu = 0, ∀u ∈ V,

∑
(u,v)∈E yuv = 1,

0≤ yuv, ∀(u, v) ∈E

⎫
⎪⎬

⎪⎭

of a directed graph G= (V ,E) correspond to circuits of G, namely for every vertex
y of P(G) its support set S(y)= {(u, v) ∈E | yuv 
= 0} is a circuit in G.

We remark that P(G) frequently occurs in the optimization literature under var-
ious names, e.g., as the trans-shipment or flow polyhedron, or simply as the set of
feasible circulations, or feasible solutions to a trans-shipment problem, etc. (see, e.g.,
Chaps. 11–13 in [40]). The vertices and facial structure of P(G) are well studied and
understood. In particular, the vertices of P(G) can be generated in linear (output)
time by cycle enumeration [37].

Associating further to a rational weight function w: E→R an open rational half-
space defined by

H =
{

y ∈R
E

∣
∣
∣
∣

∑

(u,v)∈E
w(u, v)yuv < 0

}

,

we get that the support sets of vertices of P(G) belonging to H are exactly the nega-
tive circuits of the weighted directed graph (G,w). Thus, Theorem 1 readily implies
the following claim.

Corollary 3 Given a rational polyhedron P and an open rational half-space H , it is
NP-hard to enumerate all vertices of P which belong to H , even if P is bounded.
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Many applications (see, e.g., [19]) call for the enumeration of all those basic fea-
sible solutions to a linear programming problem (i.e., vertices of the corresponding
polyhedron), the corresponding objective function value of which is above a given
threshold. Corollary 3 indicates that unfortunately such enumeration problems are
difficult in general, unless P =NP.

A further consequence of Theorem 1 is that enumerating all vertices of a bounded
polyhedron P which do not belong to a given face of P is also hard, in general.

Corollary 4 Given a bounded polyhedron P and a proper face F of it, it is NP-hard
to enumerate the vertices of P which do not belong to F .

Proof Let H̄ = {y ∈ R
E |∑(u,v)∈E w(u, v)yuv ≤ 0}. Note that P ′ = P(G) ∩ H̄ is a

bounded polyhedron, for which H̄ is facet defining. Denoting this facet by F , the
vertices of P ′ outside F correspond in a one-to-one way to the negative circuits of
the weighted graph (G,w) to which we associated H and P(G). Thus, the claim
follows from Theorem 1. �

By Corollary 2 unless P = NP there exists no algorithm that outputs in incre-
mental (or total) polynomial time, the vertices and then the extreme directions of a
polyhedron, in that order. In contrast we have the following statement.

Proposition 1 If there exists an algorithm which enumerates all vertices of a
bounded polyhedron in incremental polynomial time, then we can enumerate all ex-
treme rays and then all vertices (in this order) of a polyhedron in incremental poly-
nomial time.

Proof Let P = {x ∈ R
n: aTi x ≤ bi, i = 1, . . . ,m} be an unbounded polyhedron and

let V and R denote the set of vertices and the set of extreme rays of P , respectively.
As before, we can assume that V contains at least one vertex v. Let a =∑i: aTi v=bi

ai .

Then P ′ = {x: aTi x ≤ bi , i = 1, . . . ,m,aT x =−M} is a bounded polyhedron whose
vertices correspond to R, where M is an appropriately large constant. Furthermore,
P ′′ = {x: aTi x ≤ bi , i = 1, . . . ,m, aT x ≥−M} is a bounded polyhedron whose ver-
tices correspond to V ∪R.

Assuming the existence of an algorithm A that can enumerate all vertices of a
bounded polyhedron in incremental polynomial time, it follows that for any given
subset W of the vertices of that bounded polyhedron, we can decide if this subset
contains all vertices or, if not, can generate a vertex not belonging to W , in time,
polynomial in the size of the input description of the polyhedron and the set W of
given vertices. This can be accomplished simply by running A until it stops, or it
outputs |W | + 1 vertices, whichever happens earlier.

Thus, by first applying A to P ′ we can generate the set R incrementally efficiently.
Furthermore, since R is a subset of the vertices of P ′′, we can continue by applying
A to P ′′ and extend in this way the set R incrementally efficiently to V ∪ R, as we
described earlier. Hence, we can enumerate the set V ∪R in the stated order, first R
and then V , incrementally efficiently. �
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1.3 Four Geometric Enumeration Problems

We finally recall four strongly related geometric enumeration problems. Let A⊆R
n

be a given subset of vectors in R
n, fix a point z ∈ R

n called the center, and consider
the following four definitions:

• A simplex is a minimal subset X ⊆A containing the center in its convex hull, i.e.,
z ∈ conv(X).

• An anti-simplex is a maximal subset X ⊆A not containing the center in its convex
hull, i.e., z 
∈ conv(X).

• A body is a minimal (full-dimensional) subset X ⊆A containing the center in the
interior of its convex hull, i.e., z ∈ int(conv(X)).

• An anti-body is a maximal subset X ⊆A not containing the center in the interior
of its convex hull, i.e., z 
∈ int(conv(X)).

Equivalently, a simplex (body) is a minimal collection of the given vectors not con-
tained in an open (closed) half-space through the center, while an anti-simplex (anti-
body) is a maximal collection of vectors contained in an open (closed) half-space
through the center. It can be seen easily that |X| ≤ n + 1 for a simplex, and that
n+ 1≤ |X| ≤ 2n for a body.

In what follows we assume that the center is at the origin, i.e., z= 0. For a given
point set A ⊆ R

n we denote, respectively, by S and B the hypergraphs on the base
set A, consisting of all simplices, and all bodies of A. The corresponding families
of maximal independent sets of these two hypergraphs are, respectively, all anti-
simplices and anti-bodies of A, denoted respectively by S∗ and B∗, i.e.,

S∗ = {X ⊆A |X is maximal such that X � S, ∀S ∈ S},
B∗ = {Y ⊆A | Y is maximal such that Y � B, ∀B ∈ B}.

Simplices, anti-simplices, bodies, and anti-bodies can naturally be related to min-
imal infeasible or maximal feasible subsystems of certain linear systems of inequali-
ties. Namely, we denote by A ∈R

m×n, where m= |A|, the matrix whose row vectors
are the vectors of A, and we let e ∈R

m denote the m-dimensional vector of all ones.
It follows from the above definitions that simplices and anti-simplices are in a

one-to-one correspondence, respectively, with the minimal infeasible and maximal
feasible subsystems of the linear system of inequalities:

Ax ≥ e, x ∈R
n. (2)

Similarly, it follows that bodies and anti-bodies correspond in a one-to-one way,
respectively, to the minimal infeasible and maximal feasible subsystems of the sys-
tem:

Ax ≥ 0, x 
= 0. (3)

As for the complexity of these enumeration problems, it is known that the genera-
tion of anti-bodies is a hard problem:

Proposition 2 [7] Given a set of vectors A ⊆ R
n, and a partial list X ⊆ B∗ of

the anti-bodies of A, it is NP-hard to determine if the given list is incomplete, i.e.,
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X 
= B∗, or not. Equivalently, given an infeasible system (3), and a partial list of its
maximal feasible subsystems, it is NP-hard to determine if the given partial list is
incomplete or not.

Enumeration of bodies turns out to be at least as hard as the well-known hyper-
graph transversal problem [8] whose exact complexity is still an outstanding open
problem [20]. The best currently known algorithm for the hypergraph transversal
problem runs in incremental quasi-polynomial time [22].

Proposition 3 [7] The problem of incrementally enumerating bodies, for a given set
of m+ n points A⊆ R

n, includes as a special case the problem of enumerating all
minimal transversals for a given hypergraph H with n hyperedges on m vertices.
Equivalently, generating minimal infeasible subsystems of (3) is at least as hard as
hypergraph transversal generation.

The problem of generating simplices turns out to be equivalent, in general, to
the problem of enumerating the vertices of bounded polyhedra, or enumerating the
vertices and extreme rays of possibly unbounded polyhedra. To see this, we consider
a vector set A= {a1, . . . , an, b} ⊆R

d and associate to it a polyhedron P = {x ∈R
n |

Ax =−b, x ≥ 0}, where A= [a1, . . . , an] is the matrix with columns a1, . . . , an.
Recall that for a vector y ∈R

n we called the set S(y)= {i | yi 
= 0} its support set.

Proposition 4 If y ∈ P is a vertex of P , then the set {ai | i ∈ S(y)} ∪ {b} is a simplex
of A, while if y ∈ P is an extreme ray of P , then the set {ai | i ∈ S(y)} is a simplex
of A. Furthermore, every simplex of A corresponds in this way either to a vertex or
to an extreme ray of P .

Proof It is well known that the vertices of P are the solutions which have minimal
support sets, and the extreme rays are those solutions of the homogenized system (re-
place b by 0) which have minimal support sets (see, e.g., Chap. 8 in [39]). Clearly, the
minimality of support sets in both cases implies the first two claims, by the definition
of a simplex of A.

For the last claim, let S ⊆ A be a simplex, i.e., a minimal subset for which 0 ∈
conv(S). If b ∈ S, then we have for some λa ≥ 0, a ∈ S\{b}, and λb ≥ 0, with λb +∑

a∈S\{b} λa = 1, that

−λbb=
∑

a∈S\{b}
λaa.

Since S is minimal, we must have all these coefficients positive, and thus

−b=
∑

a∈S\{b}

λa

λb
a.

Thus, the vector x ∈R
n, defined by

xi =
{
λai /λb if ai ∈ S\{b},
0 otherwise
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for i = 1, . . . , n, is a vertex of P , again by the minimality of S. While if b 
∈ S, then
we have

0=
∑

a∈S
λaa

for some positive coefficients λa > 0, a ∈ S, for which
∑

a∈S λa = 1, and thus the
vector x ∈R

n, defined by

xi =
{
λai if ai ∈ S,

0 otherwise

for i = 1, . . . , n, is an extreme ray of P , once more by the minimality of S. �

In particular, if P = {x ∈ R
n | Ax = b, x ≥ 0} is a bounded polyhedron, i.e., if

Ax = 0 has no nontrivial nonnegative solutions, then the vertices of P correspond in
a one-to-one way to the simplices of the set A formed by the column vectors of A

and b.
For the special case of vectors A ⊆ R

n in general position, we have B = S , and
consequently the problem of enumerating bodies of A turns into the problem of enu-
merating vertices of the bounded polyhedron {x ∈ R

n | Ax = 0, eT x = 1, x ≥ 0},
each vertex of which is nondegenerate and has exactly n + 1 positive components.
For such kinds of simple bounded polyhedra there exist algorithms that generate all
vertices with polynomial delay (see e.g., [15] and [3]).

We finally mention that, although the status of the problem of enumerating all
maximal feasible subsystems of (2) is not known in general, the situation changes
if we fix a consistent subfamily of inequalities, and ask for enumerating all its ex-
tensions to a maximal feasible subsystem. In fact, such a problem turns out to be
NP-hard, even if we fix only nonnegativity constraints.

Proposition 5 [7] Let A ∈ R
m×n be an m× n matrix, let b ∈ R

m be an m-dimen-
sional vector, and assume that the system

Ax ≥ b, x ∈R
n, (4)

has no solution x ≥ 0. Let F be the family of all maximal subsystems of (4) which
can be satisfied by a nonnegative solution x. Then, given a partial list X ⊆ F , it is
an NP-complete problem to determine if the list is incomplete, i.e., if X 
=F , even if
b is a unit vector, and entries in A are either, −1, 1, or 0.

We conclude with the observation that the problem of finding, for an infeasible
system

A′x ≥ b′, A′′x ≥ b′′, (5)

all maximal feasible subsystems extending the feasible subsystem A′′x ≥ b′′, natu-
rally includes both problems of generating anti-simplices and simplices. Clearly, the
former problem can be written in the form (5) by considering (2) and all maximal
extensions of an empty subsystem. For the latter problem, note that the vertices of a
bounded polyhedron {x ∈ R

n | Ax = b, x ≥ 0}, where b 
= 0, are in one-to-one cor-
respondence with the maximal feasible extensions of the subsystem Ax = b, x ≥ 0
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in the infeasible system Ax = b, x ≥ 0, x ≤ 0. Although the general problem of gen-
erating maximal feasible extensions is NP-hard as stated above, the special cases of
generating simplices and anti-simplices remain open.

2 Proof of Theorem 1

In this section we prove Theorem 1 by a reduction from satisfiability, a well-known
NP-complete problem (see [17]).

We consider n propositional Boolean variables Xj , j = 1, . . . , n, we denote by
X = 1 − X the negation of X, we call variables and their negations literals, and
elementary disjunctions of literals clauses. We next consider an arbitrary conjunctive
normal form (CNF) φ = C1∧C2∧· · ·∧Cm, i.e., where Ci , i = 1, . . . ,m, are clauses.
A truth assignment to the variables is called satisfying for the CNF φ, if φ evaluates
to true, i.e., if at least one literal evaluates to true in each of the clauses of φ.

In what follows we associate to φ a weighted directed graph (G,w) and a set X
of negative circuits of G such that (G,w) has a negative circuit not belonging to X
if and only if φ has a satisfying assignment. Because (G,w) and X are constructed
from φ in O(mn) time, and the weight function w uses only two different values
(1 and −1), Theorem 1 follows readily from this construction. This is because the
decision problem “Is there a negative circuit in (G,w) which does not belong to X ?”
is in NP. To complete the proof of Theorem 1, we provide in the following a construc-
tion with these properties, such that every satisfying assignment to φ corresponds to
a negative circuit of (G,w) not belonging to X and, vice versa, every negative circuit
of (G,w) which does not belong to X corresponds to a satisfying assignment of φ

(though the correspondence is not necessarily one-to-one).
To describe our construction, we denote for j = 1, . . . , n, respectively by oj

and ōj , the number of occurrences of literal Xj and its negation Xj ; we denote by
xk
j the kth occurrence of Xj , k = 1, . . . , oj , and by x̄k

j the kth occurrence of Xj ,
k = 1, . . . , ōj , and let L denote the set of all literal occurrences, i.e.,

|L| =
m∑

i=1

|Ci | =
n∑

j=1

(oj + ōj ).

Since monotone variables, i.e., ones for which oj = 0 or ōj = 0, can be easily elimi-
nated from a satisfiability problem, we can assume without any loss of generality that
oj > 0 and ōj > 0 hold for all variables j = 1, . . . , n.

For instance, if n= 3 and

φ = (X1 ∨X2 ∨X3
)∧ (X1 ∨X2 ∨X3

)∧ (X1 ∨X2 ∨X3
)
, (6)

then we have o1 = 2, ō1 = 1, o2 = 2, ō2 = 1, o3 = 1, ō3 = 2, and

L= {x1
1 , x

1
2 , x̄

1
3 , x

2
1 , x̄

1
2 , x

1
3 , x̄

1
1 , x

2
2 , x̄

2
3

}
.

We define the vertex set of the graph G= (V ,E) associated to φ as

V =U ∪Q∪
n⋃

j=1

(Yj ∪Zj ),



310 Generating All Vertices of a Polyhedron Is Hard

where U , Q, and Yj and Zj for j = 1, . . . , n are pairwise disjoint, defined as

U = {uk | k = 0,1, . . . ,m+ n},
Q = {a(�), b(�) ∣∣ � ∈L

}
,

Yj = {yjk | k = 1, . . . , oj − 1} for j = 1, . . . , n, and

Zj = {zjk | k = 1, . . . , ōj − 1} for j = 1, . . . , n.

The graph itself has a ring structure, the skeleton of which is the set U . For every
variable Xj of φ we have two parallel directed paths from uj−1 to uj . The first
path corresponding to Xj contains vertices Yj (and some other vertices), while the
second path, corresponding to Xj , passes through vertices of Zj (j = 1, . . . , n). For
convenience, we also introduce the notation

yj0 = zj0 = uj−1 and yj,oj = zj,ōj = uj (7)

for j = 1, . . . , n. To every clause Ci of φ we associate |Ci | parallel directed paths
from un+i−1 to un+i , one for each of the literals in Ci (i = 1, . . . ,m). Finally vertices
a(�) and b(�) correspond exclusively to literal occurrence � ∈L.

We consider next the weighted graph H(a,b,p, q, r, s) (see Fig. 1) on six nodes
a, b, p, q , r , and s, having six arcs, the weights of which are as follows:

w(a,b)=w(b,a)=−2 and

w(p,a)=w(b,q)=w(r, b)=w(a, s)= 1.
(8)

To every literal occurrence � ∈ L we associate a disjoint copy of H(a,b,p, q, r, s),
and denote by a(�), b(�), etc., its nodes, and by E� its arc set. Note that each of these
small subgraphs can be decomposed into two directed paths, each consisting of three
arcs, E� =Ev

� ∪Ec
� , where

Ev
� =

{(
p(�), a(�)

)
,
(
a(�), b(�)

)
,
(
b(�), q(�)

)}
, and

Ec
� =

{(
r(�), b(�)

)
,
(
b(�), a(�)

)
,
(
a(�), s(�)

)}
.

Finally we set

E =E0 ∪
⋃

�∈L
E�,

where E0 = {(um+n,u0)} with weight w(um+n,u0)=−1.

Fig. 1 The directed graph
H(a,b,p, q, r, s) associated
with literal occurrences
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In each of the subgraphs corresponding to the literal occurrences � ∈ L, we have
the nodes a(�) and b(�) already introduced in Q ⊆ V , while the nodes p(�), q(�),
r(�), and s(�) for � ∈ L are corresponding to some other vertices of G, according to
the following definitions:

p(�) = yj,k−1 and q(�)= yjk if �= xk
j ,

p(�) = zj,k−1 and q(�)= zjk if �= x̄k
j , and

r(�) = un+i−1 and s(�)= un+i if � ∈ Ci.

In other words, for every literal occurrence � of clause Ci the set Ec
� forms a three-arc

directed path from un+i−1 to un+i . Furthermore, by (7) and by the above definitions,
the sets Ev

� for �= x1
j , x

2
j , . . . , x

oj
j form a directed path from uj−1 to uj through the

vertices of Yj , consisting of 3oj arcs, for every variable Xj . Similarly, the sets Ev
� for

�= x̄1
j , x̄

2
j , . . . , x̄

ōj
j form another directed path from uj−1 to uj through the vertices

of Zj , consisting of 3ōj arcs.
In summary, G= (V ,E) consists of |V | = 3|L| +m− n+ 1 vertices and |E| =

6|L| + 1 arcs, and the weight function w takes only values in {−2,−1,1}. Note that
we can split arcs of weight −2 to obtain a graph whose arcs all have weight ±1.

Returning to the example CNF φ given in (6), the corresponding graph G= (V ,E)

is shown in Fig. 2. To make the drawing of such a graph visually more clear, for every
literal occurrence � nodes a(�) and b(�) of G are represented by two separate points
of the picture each, labeled as a(�) and a′(�), and as b(�) and b′(�), respectively.
Similarly, node un is represented by two points in the figure, labeled un and u′n. Arcs

Fig. 2 G is obtained by identifying vertices a(l), a′(l), and b(l), b′(l), for each literal occurrence l, and
u3, u′3 in the graph above. The lower part of the graph corresponds to the literals and the upper part
corresponds to the clauses
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in the sets Ec
� for � ∈ L are drawn as dashed lines, while those belonging to Ev

� for
� ∈ L are drawn as solid lines.

Observe first that the arcs (a(�), b(�)) and (b(�), a(�)) form a circuit of total
weight−4 for every literal occurrence � ∈ L. We denote by X the set of these circuits,
i.e., |X | = |L|, and we denote by F the set of all directed negative circuits of G.

We claim that from every satisfying assignment X of φ we can construct a directed
negative circuit DX ∈F\X and, conversely, from every directed negative circuit D ∈
F\X we can construct a satisfying assignment XD of φ. As we noted at the beginning
of this section, this claim implies Theorem 1.

To see this claim, we first consider a satisfying assignment X = (X1, . . . , Xn) ∈
{0,1}n of φ. Since X satisfies φ, we have a literal occurrence �i in every clause Ci ,
i = 1, . . . ,m, such that �i evaluates to true at X (i.e., �i(X)= 1). We also denote by
W the set of all those literal occurrences which evaluate to false at X, i.e., W = {� ∈
L | �(X)= 0}. Clearly, �i 
∈W for i = 1, . . . ,m by the above definitions. Then the set
of arcs

DX =
( m⋃

i=1

Ec
�i

)

∪
( ⋃

�∈W
Ev

�

)

∪ {(um+n,u0)
}

forms a circuit in G not belonging to X . Since we have w(Ec
�) = w(Ev

� ) = 0 for
all literal occurrences � ∈ L, it follows by the above definitions that w(DX) =
w(um+n,u0)=−1, i.e., DX ∈F\X as claimed.

We again return to the CNF φ given in (6). We consider the satisfying assignment
X = (1,0,0) of φ. We choose literal occurrences x̄1

3 ∈C1, x̄2
1 ∈C2, and x̄2

3 ∈ C3 that
evaluate to true at X. Figure 3 depicts the negative circuit DX = Ec

x̄1
3
∪Ec

x̄1
2
∪Ec

x̄2
3
∪

Ev

x̄1
1
∪Ev

x̄1
2
∪Ev

x̄2
2
∪Ev

x̄1
3
∪ (u6, u0).

Before proving the reverse direction of our main claim, we first observe some
simple properties of our construction. To simplify notation, recall that E� =Ec

� ∪Ev
�

for � ∈ L, and that the six-vertex subgraphs induced by the arc set E� have the same
structure and weights, as in Fig. 1, for all � ∈ L. The following property of these
subgraphs are instrumental in our proof.

Lemma 1 Given a circuit D ⊆ E of G, not belonging to X , and given a literal
occurrence � ∈ L, we have

w(D ∩E�) ∈ {0,2,4}.

Moreover, w(D ∩E�)= 0 only if the set D ∩E� is one of the following three subsets
of E�: Ec

� , Ev
� , or ∅.

Proof Since D is a circuit not belonging to X , D cannot contain both arcs
(a(�), b(�)) and (b(�), a(�)). Thus, denoting A� = {(p(�), a(�)), (a(�), s(�))} and
B� = {(r(�), b(�)), (b(�), q(�))} we have that D ∩ E� is one of the following six
sets: ∅, A�, B�, A� ∪ B�, Ec

� , and Ev
� . Since we have w(∅)= w(Ec

�)= w(Ev
� )= 0,

w(A�)=w(B�)= 2, and hence w(A� ∪B�)= 4, the statement follows. �
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Fig. 3 Thick lines are edges of the negative circuit DX corresponding to the satisfying assignment
X = (1,0,0). The vertices u3, u′3 are identified. Since DX contains arcs (b′(x̄1

3 )a
′(x̄1

3 )), (b
′(x̄1

2 )a
′(x̄1

2 )),

and (b′(x̄2
3 )a

′(x̄2
3 )) but it does not contain arcs (a(x̄1

3 )b(x̄
1
3 )), (a(x̄

1
2 )b(x̄

1
2 )), and (a(x̄2

3 )b(x̄
2
3 )), no circuit

of X is contained in DX

Returning to the reverse direction of our main claim, we consider a negative circuit
D ∈F\X of G. Since

w(D)=
∑

�∈L
w(D ∩E�)+w

(
D ∩ {(um+n,u0)

})

we must have by Lemma 1 that (um+n,u0) ∈D and

w(D ∩E�)= 0 for all � ∈L. (9)

We show first that D passes through all vertices in U , includes exactly one of
the two parallel paths between uj−1 and uj for j = 1, . . . , n, and exactly one of the
parallel paths between un+i−1 and un+i for all i = 1, . . . ,m.

As we observed above, we have u0 as a vertex of D. Thus D must contain an
arc leaving u0, say it contains (u0, ax1

1
). Then, by (9) and by Lemma 1, we must have

Ev

x1
1
⊆D, i.e., D must pass through vertex y11. Since only (y11, a(x

2
1)) is leaving y11,

by repeating the above argument we can conclude that we must also have Ev

x2
1
⊆D,

etc., finally arriving at Ev

x
o1
1
⊆ D, i.e., that D includes u1 as a vertex. Repeating

the same argument, we can prove by induction that for all indices j = 1, . . . , n, if
Ev

x1
j

⊆D, then we must have Ev

xkj
⊆D for all k = 1, . . . , oj , and that if Ev

x̄1
j

⊆D, then

we must also have Ev

x̄kj
⊆D for all k = 1, . . . , ōj . We then define a truth assignment
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XD by

XD
j =

⎧
⎨

⎩

1 if Ev

x̄1
j

⊆D,

0 if Ev

x1
j

⊆D.

Furthermore, repeating a similar argument for vertices un, un+1, . . . , un+m−1, un+m

we can also conclude that D must contain the set Ec
�i

for exactly one of the literals
�i ∈ Ci , for each clause Ci of φ. Since D is a circuit in which no vertex a(�) or b(�)
is repeated, we must have that �i(XD)= 1 for all i = 1, . . . ,m, i.e., that XD is indeed
a satisfying assignment of φ.

These observations prove the reverse direction of our main claim, and hence con-
clude the proof of Theorem 1. �

3 Proof of Theorem 2

We can repeat essentially the same proof as for the directed case, with the excep-
tion that we associate with every literal occurrence � ∈ L a different subgraph de-
noted by E�: We now associate with � ∈ L six nodes, a = a(�), b = b(�), c = c(�),

d = d(�), e= e(�), and f = f (�), and the following ten edges:

E� =
{
(a, b), (b, c), (c, d), (d, e), (e, f ), (a, f ), (a,p), (b, q), (d, r), (e, s)

}
,

where nodes p = p(�), q = q(�), r = r(�), and s = s(�) are identified with the other
nodes of G, in the same way as in the previous proof. To simplify notation, we omit
the reference to � whenever it is clear from the context which literal occurrence we
are talking about. The weights of the edges of E� are defined as

w(a,p)=w(b,q)=w(d, r)=w(e, s)= 5

2
, and

w(a,b)=w(b, c)=w(c, d)=w(d, e)=w(e,f )=w(a,f )=−1.

Note that in each of these subgraphs there is a negative circuit (see Fig. 4), formed
by the six edges D� = {(a, b), (b, c), (c, d), (d, e), (e, f ), (a, f )}. We denote by X =
{D� | � ∈ L} the collection of these negative circuits, and let F denote the family of
all negative circuits in G.

Fig. 4 The undirected graph
associated with literal
occurrences
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By an analogous proof as in the previous section, we can show that there exists a
negative circuit belonging to F\X if and only if φ has a satisfying assignment. The
key observation in this case, the analogue of Lemma 1, is the following claim, which
can easily be verified, e.g., by looking at Fig. 4.

Lemma 2 For a circuit D of G not belonging to X and literal occurrence � ∈ L we
have

w(D ∩E�) ∈ {0,1,2,3,4}
and it is equal to 0 only if D ∩E� is one of the following three sets: ∅,

Ev
� =

{
(b, c), (c, d), (d, e), (e, f ), (a, f ), (a,p), (b, q)

}
, or

Ec
� =

{
(a, b), (b, c), (c, d), (e, f ), (a, f ), (d, r), (e, s)

}
.

Remark The construction in Theorem 1 can be slightly modified to show that
the NP-hardness result of Corollary 2 applies to polyhedra with 0/1-vertices (see
arXiv:0801.3790v1 for more details).

Acknowledgements We thank the anonymous referees for their helpful remarks.
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Pure Point Diffractive Substitution Delone Sets Have
the Meyer Property

Jeong-Yup Lee · Boris Solomyak

Abstract We prove that a primitive substitution Delone set, which is pure point dif-
fractive, is a Meyer set. This answers a question of J.C. Lagarias. We also show that
for primitive substitution Delone sets, being a Meyer set is equivalent to having a
relatively dense set of Bragg peaks. The proof is based on tiling dynamical systems
and the connection between the diffraction and dynamical spectra.

1 Introduction

The discovery of quasicrystals in the 1980s inspired a lot of research in the area
of “aperiodic order” and “mathematical quasicrystals.” Roughly speaking, physical
quasicrystals are aperiodic structures which exhibit sharp bright spots (called Bragg
peaks) in their X-ray diffraction pattern. The presence of Bragg peaks indicates the
presence of “long-range order” in the structure. A mathematical idealization of a
large set of atoms is a discrete set in R

d . The most general class of sets modeling
solids is the class of Delone sets, that is, subsets of R

d which are relatively dense and
uniformly discrete. Usually some additional assumptions are made. A Delone set �
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is of finite local complexity (or “finite type”) if �−� is closed and discrete, which is
equivalent to having finitely many local patterns, up to translations, see [12]. Another
common assumption is repetitivity, which means that every pattern of a Delone set
(and not just individual points) occurs relatively densely in space. This is still not
enough for long-range order, since a repetitive Delone set of finite local complexity
may fail to have any Bragg peaks. The Delone set � is said to be a Meyer set if �−�

is uniformly discrete. Meyer sets were introduced (under the name of “harmonious
sets”) in 1969–1970 by Meyer [19] in the context of harmonic analysis. In the last 10
years their importance in the theory of long-range aperiodic order has been revealed
in many investigations, see, e.g., [20], [17], [15], and [2].

The mathematical concept of diffraction spectrum is based on the Fourier trans-
form of the autocorrelation measure, see [7] and [8]. Under certain conditions, this
Fourier transform is a measure (called diffraction measure) on R

d , whose discrete
component corresponds to the Bragg peaks. A Delone set � is said to be pure point
diffractive (or “perfectly diffractive,” or a “Patterson set” [13]) if the diffraction mea-
sure is pure point (pure discrete). There is another notion of spectrum, which comes
from Ergodic Theory via a dynamical system associated with the Delone set. As
shown by Dworkin [4] (see also [16], [6], and [1]), there is a close connection be-
tween the two notions of spectra.

In his survey on mathematical quasicrystals, Lagarias raised the following problem
[13, Problem 4.10]. Let � be a Delone set of finite type which is repetitive. If � is
pure point diffractive, must it be a Meyer set? We do not have an answer for this
question, but we solve the following special case:

[13, Problem 4.11]. Suppose that � is a primitive self-replicating Delone set of finite
type. If � is pure point diffractive, must � be a Meyer set?

At this point, we just mention that a primitive self-replicating Delone set, roughly
speaking, corresponds to the set of “control points” of a self-affine tiling. In this paper
we refer to it as a representable primitive substitution Delone set. Precise definitions
on representable primitive substitution Delone sets are given in the next section.

Our main result, Theorem 4.11, answers this question affirmatively. This result is
applicable to [17] and [15] in which the Meyer condition is additionally assumed to
understand the structure of pure point diffractive point sets.

In fact, the condition of being pure point diffractive may be weakened. We only
need the fact that the set of Bragg peaks is relatively dense in the entire space (this
holds in the case of a pure point diffractive set). This condition turns out to be nec-
essary and sufficient for the Meyer property on the class of substitution Delone sets
(see Theorem 4.14).

The proof of the implication (for substitution Delone sets)

relatively dense set of Bragg peaks ⇒ Meyer set

relies on the theory of tiling dynamical systems developed in [23] and the connection
between substitution Delone sets, substitution Delone set families, and self-affine
tilings, studied in [14] and [17]. The second key ingredient is a generalization of
classical results by Pisot in Diophantine approximation, due to Környei [11] and
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Mauduit [18]. The relevance of PV-numbers (Pisot–Vijayaraghavan numbers) for the
Meyer set property was already pointed out by Meyer [19]. We show that the expand-
ing linear map associated with our substitution Delone set satisfies the “Pisot family”
condition (this is essentially proved in [22] based on [23]), and we obtain some extra
information about the set of translation vectors between tiles of the same type. The
last ingredient is a generalization of the well-known “Garsia Lemma” [5, Lemma
1.51] (obtained independently by other authors as well), which implies that the set
of polynomials of arbitrary degree with integer coefficients bounded by a uniform
constant, evaluated at a PV-number, yields a uniformly discrete set.

Now we can state our main result.

Theorem 1.1 If � is a representable primitive substitution Delone set of finite local
complexity (FLC) such that the Bragg peaks are relatively dense in R

d , then � is a
Meyer set.

We note that the converse is also true by a theorem of Strungaru [24]: if � is a
Meyer set, then the Bragg peaks are relatively dense.

Corollary 1.2 If � is a representable primitive substitution Delone set of FLC which
is pure point diffractive, then � is a Meyer set.

This resolves Problem 4.11 of [13] (it follows from the context of [13] that FLC is
implicitly assumed).

2 Preliminaries

2.1 Substitution Delone Multisets and Tilings

A multiset1 or m-multiset in R
d is a subset � = �1 × · · · ×�m ⊂ R

d × · · · × R
d

(m copies) where �i ⊂ R
d . We also write � = (�1, . . . ,�m) = (�i)i≤m. Recall

that a Delone set is a relatively dense and uniformly discrete subset of R
d . We say

that � = (�i)i≤m is a Delone multiset in R
d if each �i is Delone and supp(�) :=⋃m

i=1 �i ⊂R
d is Delone.

Although � is a product of sets, it is convenient to think of it as a set with types
or colors, i being the color of points in �i . A cluster of � is, by definition, a family
P = (Pi)i≤m where Pi ⊂ �i is finite for all i ≤ m. For a bounded set A ⊂ R

d , let
A∩� := (A∩�i)i≤m. There is a natural translation R

d -action on the set of Delone
multisets and their clusters in R

d . The translate of a cluster P by x ∈ R
d is x +

P= (x + Pi)i≤m. We say that two clusters P and P′ are translationally equivalent if
P= x + P′, i.e., Pi = x + P ′i for all i ≤m, for some x ∈R

d . We write BR(y) for the
closed ball of radius R centered at y.

1Caution: In [14] the word multiset refers to a set with multiplicities.
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Definition 2.1 A Delone multiset � has finite local complexity (FLC) if for every
R > 0 there exists a finite set Y ⊂ supp(�)=⋃m

i=1 �i such that

∀x ∈ supp(�), ∃y ∈ Y, BR(x)∩�= (BR(y)∩�)+ (x − y).

In plain language, for each radius R > 0 there are only finitely many translational
classes of clusters whose support lies in some ball of radius R.

Definition 2.2 A Delone set � is called a Meyer set if �−� is uniformly discrete.

For a cluster P and a bounded set A⊂R
d denote

LP(A)= 1{x ∈R
d : x + P⊂A∩�},

where 1 means the cardinality. In plain language, LP(A) is the number of translates
of P contained in A, which is clearly finite. For a bounded set F ⊂ R

d and r > 0,
let (F )+r := {x ∈ R

d : dist(x,F )≤ r} denote the r-neighborhood of F . A van Hove
sequence for R

d is a sequence F = {Fn}n≥1 of bounded measurable subsets of R
d

satisfying

lim
n→∞0((∂Fn)

+r )/0(Fn)= 0, for all r > 0. (2.1)

Definition 2.3 Let {Fn}n≥1 be a van Hove sequence. The Delone multiset � has
uniform cluster frequencies (UCF) (relative to {Fn}n≥1) if for any nonempty cluster P,
the limit

freq(P,�)= lim
n→∞

LP(x + Fn)

0(Fn)
≥ 0

exists uniformly in x ∈R
d .

A linear map Q: R
d →R

d is expansive if its every eigenvalue lies outside the unit
circle.

Definition 2.4 � = (�i)i≤m is called a substitution Delone multiset if � is a De-
lone multiset and there exist an expansive map Q: R

d → R
d and finite sets Dij for

i, j ≤m such that

�i =
m⋃

j=1

(Q�j +Dij ), i ≤m, (2.2)

where the unions on the right-hand side are disjoint.

For any given substitution Delone multiset � = (�i)i≤m, we define #ij =
{f : x �→ Qx + a: a ∈ Dij }. Then #ij (�j ) = Q�j + Dij , where i ≤ m. We de-
fine # as an m×m array for which each entry is #ij , and call # a matrix function
system (MFS) for the substitution. For any k ∈ Z+ and x ∈ �j with j ≤ m, we let
#k(x)=#k−1((#ij (x))i≤m).
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We say that the substitution Delone multiset � is primitive if the corresponding
substitution matrix S, with Sij = 1(Dij ), is primitive, i.e., there is an l > 0 for which
Sl has no zero entries.

We say that a Delone set � is a substitution Delone set if there is a substitution
Delone multiset � = (�i)i≤m such that � =⋃m

i=1 �i . The Delone set � is said to
be primitive if the substitution Delone multiset � can be chosen primitive.

Next we briefly review the basic definitions of tilings and substitution tilings. We
begin with a set of types (or colors) {1, . . . ,m}, which we fix once and for all. A
tile in R

d is defined as a pair T = (A, i) where A = supp(T ) (the support of T ) is
a compact set in R

d which is the closure of its interior, and i = l(T ) ∈ {1, . . . ,m}
is the type of T . We let g + T = (g + A, i) for g ∈ R

d . We say that a set P of
tiles is a patch if the number of tiles in P is finite and the tiles of P have mutually
disjoint interiors (strictly speaking, we have to say “supports of tiles,” but this abuse
of language should not lead to confusion). A tiling of R

d is a set T of tiles such that
R

d =⋃{supp(T ): T ∈ T } and distinct tiles have disjoint interiors. Given a tiling T ,
finite sets of tiles of T are called T -patches.

We define FLC and UCF for tilings in the same way as the corresponding proper-
ties for Delone multisets.

We always assume that any two T -tiles with the same color are translationally
equivalent. (Hence there are finitely many T -tiles up to translation.)

Definition 2.5 Let A = {T1, . . . , Tm} be a finite set of tiles in R
d such that Ti =

(Ai, i); we call them prototiles. Denote by PA the set of patches made of tiles each
of which is a translate of one of Ti ’s. We say that ω: A→ PA is a tile-substitution
(or simply substitution) with expansive map Q if there exist finite sets Dij ⊂ R

d for
i, j ≤m, such that

ω(Tj )= {u+ Ti : u ∈Dij , i = 1, . . . ,m} for j ≤m, (2.3)

with

QAj =
m⋃

i=1

(Dij +Ai).

Here all sets in the right-hand side must have disjoint interiors; it is possible for some
of the Dij to be empty.

The substitution (2.3) is extended to all translates of prototiles by ω(x + Tj ) =
Qx + ω(Tj ), and to patches and tilings by ω(P )=⋃{ω(T ): T ∈ P }. The substitu-
tion ω can be iterated, producing larger and larger patches ωk(Tj ). To the substitution
ω we associate its m×m substitution matrix S, with Sij := 1(Dij ). The substitution
ω is called primitive if the substitution matrix S is primitive. We say that T is a fixed
point of a substitution if ω(T )= T .

For each primitive substitution Delone multiset � (2.2) one can set up an adjoint
system of equations

QAj =
m⋃

i=1

(Dij +Ai), j ≤m. (2.4)
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From Hutchinson’s Theory (or rather, its generalization to the “graph-directed” set-
ting), it follows that (2.4) always has a unique solution for which A= {A1, . . . ,Am}
is a family of nonempty compact sets of R

d (see for example Proposition 1.3 of [3]).
It is proved in Theorems 2.4 and 5.5 of [14] that if � is a primitive substitution De-
lone multiset, then all the sets Ai from (2.4) have nonempty interiors and, moreover,
each Ai is the closure of its interior.

Definition 2.6 A Delone multiset �= (�i)i≤m is called representable (by tiles) for
a tiling if there exists a set of prototiles A= {Ti : i ≤m} so that

�+A := {x + Ti : x ∈�i, i ≤m} is a tiling of R
d, (2.5)

that is, R
d =⋃i≤m

⋃
x∈�i

(x +Ai) where Ti = (Ai, i) for i ≤m, and the sets in this
union have disjoint interiors. In the case that � is a primitive substitution Delone mul-
tiset we understand the term representable to mean relative to the tiles Ti = (Ai, i),
for i ≤ m, arising from the solution to the adjoint system (2.4). We call �+A the
associated tiling of �.

Definition 2.7 Let � be a primitive substitution Delone multiset and let P be a cluster
of �. The cluster P is called legal if it is a translate of a subcluster of #k(xj ) for some
xj ∈�j , j ≤m, and k ∈ Z+.

Lemma 2.8 [17] Let � be a primitive substitution Delone multiset such that every
�-cluster is legal. Then � is repetitive.

Not every substitution Delone multiset is representable (see Exercise 3.12 of [17]),
but the following theorem provides the sufficient condition for it.

Theorem 2.9 [17] Let � be a repetitive primitive substitution Delone multiset. Then
every �-cluster is legal if and only if � is representable.

Remark 2.10 In Lemma 3.2 of [14] it is shown that if � is a substitution Delone
multiset, then there is a finite multiset (cluster) P⊂� for which #n−1(P)⊂#n(P)
for n ≥ 1 and �= limn→∞#n(P). We call such a multiset P a generating multiset.
Note that, in order to check that every �-cluster is legal, we only need to see if some
cluster that contains a finite generating multiset for � is legal.

Let 2(T ) be the set of translation vectors between T -tiles of the same type:

2(T ) := {x ∈R
d : ∃T ,T ′ ∈ T , T ′ = x + T }. (2.6)

Since T has the inflation symmetry with the expansive map Q, we have that
Q2(T )⊂2(T ).

Remark 2.11 We should be careful to distinguish between substitution Delone mul-
tisets and substitution Delone sets. Lagarias [13] considers the latter under the name
of self-replicating sets. Note that a substitution Delone set may arise from different
substitution Delone multisets.
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2.2 Diffraction and Dynamical Spectra on Delone Sets

We use the mathematical concept of diffraction measure developed by Hof [7], [8].
Given a translation-bounded measure ν on R

d , let γ (ν) denote its autocorrelation
(assuming it is unique), that is, the vague limit

γ (ν)= lim
n→∞

1

0(Fn)

(
ν|Fn ∗ ν̃|Fn

)
, (2.7)

where {Fn}n≥1 is a van Hove sequence.2 The measure γ (ν) is positive definite, so
by Bochner’s theorem the Fourier transform γ̂ (ν) is a positive measure on R

d , called
the diffraction measure for ν. We say that the measure ν has a pure point diffrac-
tion spectrum, if γ̂ (ν) is a pure point or discrete measure. The point masses of the
diffraction measure are called Bragg peaks. For a Delone set � let

δ� :=
∑

x∈�
δx.

It is known that if � is a primitive substitution Delone set of finite local complexity,
then δ� has a unique autocorrelation measure γ (δ�) (see [17]). We say that � is pure
point diffractive if the diffraction measure γ̂ (δ�) is pure discrete.

Let � be a Delone multiset and let X� be the collection of all Delone multisets
each of whose clusters is a translate of a �-cluster. We introduce a metric on De-
lone multisets in a simple variation of the standard way: for Delone multisets �1,
�2 ∈X�,

d(�1,�2) :=min{d̃(�1,�2),2−1/2}, (2.8)

where

d̃(�1,�2) = inf{ε > 0: ∃x, y ∈ Bε(0),

B1/ε(0)∩ (−x +�1) = B1/ε(0)∩ (−y +�2)}.

For the proof that d is a metric, see [16].
Observe that X� = {−h+�: h ∈Rd} where the closure is taken in the topology

induced by the metric d . The group R
d acts on X� by translations which are obvi-

ously homeomorphisms, and we get a topological dynamical system (X�,Rd).
Let μ be an ergodic invariant Borel probability measure for the dynamical sys-

tem (X�,Rd). We consider the associated group of unitary operators {Ug}g∈Rd on
L2(X�,μ):

Ugf (S)= f (−g + S).

2Recall that if f is a function in R
d , then f̃ is defined by f̃ (x)= f (−x). If μ is a measure, μ̃ is defined

by μ̃(f )= μ(f̃ ) for all f ∈ C0(R
d ).
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A vector α = (α1, . . . , αd) ∈ R
d is said to be an eigenvalue for the R

d -action if
there exists an eigenfunction f ∈ L2(X�,μ), that is, f 
≡ 0 and

Ugf = e2πig·αf, for all g ∈R
d .

The dynamical system (X�,μ,Rd) is said to have a pure discrete (or pure point)
spectrum if the linear span of the eigenfunctions is dense in L2(X�,μ).

Let XT = {−g + T : g ∈Rd}, where XT carries a well-known topology, given
analogously to (2.8) for X�, relative to which it is compact (equivalent to FLC). We
have a natural action of R

d on XT which makes it a topological dynamical system.
The set {−g+ T : g ∈R

d} is the orbit of T .
Recall that a topological dynamical system is uniquely ergodic if there is a unique

invariant probability measure (which is then automatically ergodic). It is known (see,
e.g., Theorem 2.7 of [16]) that for a Delone multiset � with FLC, the dynamical
system (X�,Rd) is uniquely ergodic if and only if � has UCF.

Theorem 2.12 [16, Theorem 3.2] Suppose that a Delone multiset � has FLC and
UCF. Then the following are equivalent:

(i) � has a pure point dynamical spectrum.
(ii) The measure ν =∑i≤m aiδ�i

has a pure point diffraction spectrum, for any
choice of complex numbers (ai)i≤m.

(iii) The measures δ�i
have pure point diffraction spectra, for i ≤m.

3 Jordan Canonical Form

Let Q be a linear map from R
d to R

d . We can consider Q as a (d × d) matrix.
We discuss the matrix analysis on Q that we use in this paper (see [9]). The ma-
trix Q is similar to a matrix in the Jordan canonical form J , so that Q= SJS−1 for
some invertible matrix S over C. Suppose that Q has r distinct eigenvalues λ1, . . . ,

λr ∈ C. For each eigenvalue λi,1 ≤ i ≤ r , there are Jordan blocks Ji1(λi), . . . ,

Jimi
(λi) corresponding to λi . We simply write Jij for Jij (λi). We can decompose

Jij = λiI +N with a matrix λiI of diagonal entries and a matrix N of off-diagonal
entries. For each Jordan block Jij ,1≤ j ≤mi , we have vectors eij1, . . . , eijkij ∈ C

d

such that

Qeij1 = λieij1 and Qeijl = eij (l−1) + λieij l for 2≤ l ≤ kij .

For each Jordan block Jij and any n ∈ Z+, there is a simple general formula for
(Jij )

n:

(Jij )
n = (λiI +N)n =

n∑

k=0

(
n

k

)

λn−k
i Nk.
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We define
(
n
k

)= 0 for n < k. Then for any n ∈ Z+,

(Jij )
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λni

(
n
1

)
λn−1
i

(
n
2

)
λn−2
i · · · (

n
kij−1

)
λ
n−kij+1
i

0 λni

(
n
1

)
λn−1
i · · · ...

...
...

...
...

...
. . .

(
n
2

)
λn−2
i

0 0
. . .

(
n
1

)
λn−1
i

0 0 . . . . . . λni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that E := {eij l ∈C
d : 1≤ i ≤ r,1≤ j ≤mi,1≤ l ≤ kij } is a basis of C

d . So
for any y ∈R

d , we can write

y =
r∑

i=1

mi∑

j=1

kij∑

l=1

aijl(y)eij l, (3.1)

where aijl(y) ∈C.
Let 〈x, y〉 be the standard inner product of x, y in C

d and let K := max{kij −
1: 1≤ i ≤ r,1≤ j ≤mi}.

Lemma 3.1 Let α ∈ R
d and Q: R

d → R
d be a linear map. For any n ∈ Z+ and

w ∈R
d for which w =∑r

i=1
∑mi

j=1

∑kij
l=1 aijl(w)eij l with aijl(w) ∈C,

〈
mi∑

j=1

kij∑

l=1

aijl(w)Qneij l, α

〉

= (Pα,w)i(n)λ
n
i for 1≤ i ≤ r

and so

〈Qnw,α〉 =
r∑

i=1

(Pα,w)i(n)λ
n
i ,

where (Pα,w)i is a polynomial over C of degree less than or equal to K .

Proof This is standard; we provide a proof for completeness.
We extend the linear map Q from R

d to C
d , i.e., Q: C

d →C
d (just use the same

matrix). First note that for any 1≤ i ≤ r and 1≤ j ≤mi ,

〈 kij∑

l=1

aijl(w)Qneij l, α

〉

= 〈aij1(w)λni eij1, α〉

+
〈

aij2(w)

((
n

1

)

λn−1
i eij1 + λni eij2

)

, α

〉
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...

+
〈

aijkij (w)

((
n

kij − 1

)

λ
n−kij+1
i eij1 + · · · + λni eijkij

)

, α

〉

.

Rearranging the above equation,

〈 kij∑

l=1

aijl(w)Qneij l, α

〉

=
(

aij1(w)λ0
i + · · · + aijkij (w)

(
n

kij − 1

)

λ
−kij+1
i

)

〈eij1, α〉λni

+
(

aij2(w)λ0
i + · · · + aijkij (w)

(
n

kij − 2

)

λ
−kij+2
i

)

〈eij2, α〉λni
...

+
(
aijkij (w)λ0

i

)
〈eijkij , α〉λni .

Thus we get
〈 kij∑

l=1

aijl(w)Qneij l, α

〉

= (Pα,w)ij (n)λ
n
i ,

where (Pα,w)ij is a polynomial over C of degree at most kij − 1. Then for each
1≤ i ≤ r , we can write

〈
mi∑

j=1

kij∑

l=1

aijl(w)Qneij l, α

〉

= (Pα,w)i(n)λ
n
i , (3.2)

where (Pα,w)i =∑mi

j=1(Pα,w)ij is a polynomial over C of degree ≤K . Furthermore,

〈Qnw,α〉 =
〈

Qn

⎛

⎝
r∑

i=1

mi∑

j=1

kij∑

l=1

aijl(w)eij l

⎞

⎠ , α

〉

=
r∑

i=1

(Pα,w)i(n)λ
n
i .

�

4 Proof of the Meyer Property

The result of the following lemma is taken from [10].

Lemma 4.1 Suppose that L is a finitely generated free Abelian group in R
d such

that L spans R
d and QL ⊂ L with a linear map Q. Then all eigenvalues of Q are

algebraic integers.

Proof Let {v1, . . . , vn} be a set of generators for L. Consider the (d × n) matrix
N = [v1, . . . , vn]. Since L spans R

d , the rank of N is d . Thus NT x = 0 has a unique
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trivial solution. From the assumption of QL⊂ L, for each 1≤ i ≤ n, we can write

Qvi =
n∑

j=1

aij vj for some aij ∈ Z.

Let M = (aij )n×n. Then QN =NMT and so MNT =NTQT . For any eigenvalue λ

of QT and the corresponding eigenvector x,

M(NT x)=NT (QT x)=NT λx = λ(NT x).

Since x is nonzero, NT x is nonzero and so λ is an eigenvalue of M . Since M is an
integer matrix, λ is an algebraic integer. Since QT and Q have the same eigenvalues,
all eigenvalues of Q are algebraic integers. �

Corollary 4.2 Suppose that T is a fixed point of a primitive substitution with expan-
sive map Q which has FLC. Then all eigenvalues of Q are algebraic integers.

Proof Let L be an Abelian group generated by 2(T ). Since T has FLC, L is a
finitely generated free Abelian group. From Q2(T )⊂ 2(T ) we have QL⊂ L. By
Lemma 4.1, all eigenvalues of Q are algebraic integers. �

The following is a generalization of Pisot’s theorem, due to Környei [11]. A similar
result was obtained by Mauduit [18]. The theorem is about two equivalent conditions,
but we state only one direction which we use later, in the special case we need. For
x ∈R, let ‖x‖ denote the distance from x to the nearest integer.

Theorem 4.3 [11, Theorem 1] Let λ1, . . . , λr be distinct algebraic numbers such
that |λi | ≥ 1, i = 1, . . . , r , and let P1, . . . ,Pr be nonzero polynomials with complex
coefficients. If

∑r
i=1 Pi(n)λ

n
i is real for all n and

lim
n→∞

∥
∥
∥
∥
∥

r∑

i=1

Pi(n)λ
n
i

∥
∥
∥
∥
∥
= 0,

then the following assertions are true:

(a) The coefficients of Pi are elements of the algebraic extension Q(λi).
(b) If λs and λt are conjugate elements over Q, and the corresponding polynomials

have the form

Ps(x)=
Ks∑

k=0

cs,kx
k, Pt (x)=

Kt∑

k=0

ct,kx
k,

then Ps and Pt have the same degree, cs,k and ct,k are conjugate elements over
Q, and for any isomorphism τ which is the identical mapping on Q and for which
τ(λs)= λt , we have

τ(cs,k)= ct,k, for any 0≤ k ≤Ks =Kt .
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(c) All the conjugates of the λi ’s not occurring in the sum
∑r

i=1 Pi(n)λ
n
i have ab-

solute value less than one. In other words, if λ′ is a conjugate of λi for some i ≤ r

and |λ′| ≥ 1, then λ′ = λj for some j ≤ r .

Definition 4.4 [21] Let T be a fixed point of a primitive substitution with expansive
map Q. For each T -tile T , fix a tile γ T in the patch ω(T ); choose γ T with the same
relative position for all tiles of the same type. This defines a map γ : T → T called
the tile map. Then define the control point for a tile T ∈ T by

{c(T )} =
∞⋂

n=0

Q−n(γ nT ).

The control points have the following properties:

(a) T ′ = T + c(T ′)− c(T ), for any tiles T ,T ′ of the same type.
(b) Q(c(T ))= c(γ T ), for T ∈ T .

Control points are also fixed for tiles of any tiling S ∈XT : they have the same relative
position as in T -tiles.

For n ≥ 1 let T n := {QnT : T ∈ T }. By definition, if T = (A, i), then QnT =
(QnA, i). Thus we consider QnT as a tile and T n as a tiling. The tiles of T n

are called supertiles of level n and T n is called a supertiling. Since T is a fixed
point of the substitution ω with expansion Q, we recover T by subdividing the tiles
of T n n times. The control points are determined for the tiles of supertilings by
c(QT )=Qc(T ). For each T ∈ T let T (n) be the unique supertile of level n such that
supp(T )⊂ supp(T (n)).

Recall that our tile-substitution ω is primitive, that is, for some k ∈ N, the kth
power of the substitution matrix has strictly positive entries. Then we can replace ω

by ωk and assume that the substitution matrix itself is strictly positive (this does not
lead to loss of generality since a fixed point of ω is also a fixed point of ωk). This
means that the patch ω(T ) contains tiles of all types for every T ∈ T . We can then
define control points for T -tiles choosing the tile map γ : T → T so that for any
T ∈ T , the tile γ T has the same tile type in T . Then for any T ,S ∈ T ,

c(γ T )− c(γ S) ∈2(T ).

Since Qc(T )= c(γ T ) for any T ∈ T ,

Q(c(T )− c(S)) ∈2(T ) for any T ,S ∈ T . (4.1)

The next lemma is very close to Theorem 1.5 of [21] and Lemma 6.5 of [23]
(however, in [23] FLC was assumed); we provide a direct proof for completeness.

Lemma 4.5 Let T be a fixed point of a substitution with expansive map Q and a
strictly positive substitution matrix, and suppose that the control points satisfy (4.1).
Then there exists a finite set U in R

d for which QU ⊂ 2(T ) and 0 ∈ U so that for
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any T ,S ∈ T there exist N ∈N and u(n),w(n) ∈U, 0≤ n≤N , such that

c(T )− c(S)=
N∑

n=0

Qn(u(n)+w(n)).

Proof Fix any T ,S ∈ T and consider the sequences of supertiles T = T (0) ⊂ T (1) ⊂
· · · and S = S(0) ⊂ S(1) ⊂ · · · defined above (to be more precise, we should write
inclusions for supports). Fix any patch P with the origin in the interior of its support.
Then there exists N ∈N such that T ,S ∈ ωN(P ). Fix such an N . Observe that T (N) =
QNT

′
and S(N) =QNS

′
for some T

′
, S

′ ∈ P . We have

c(T )− c(S) =
N−1∑

n=0

{c(T (n))− c(T (n+1))} + c(T (N))− c(S(N))

−
N−1∑

n=0

{c(S(n))− c(S(n+1))}.

Note that c(T (N))− c(S(N))=QN(c(T
′
)− c(S

′
)) and

c(T (n))− c(T (n+1)) =Qnc(T
′′
n )−Qnc(γ T

′′′
n )

=Qn(c(T
′′
n )− c(γ T

′′′
n ))

for some T -tiles T
′′
n , T

′′′
n such that T

′′
n ∈ ω(T

′′′
n ). Similarly,

c(S(n))− c(S(n+1))=Qn(c(S
′′
n)− c(γ S

′′′
n ))

for some T -tiles S
′′
n, S

′′′
n such that S

′′
n ∈ ω(S

′′′
n ). Thus,

c(T )− c(S)=
N−1∑

n=0

Qn{c(T ′′
n )− c(γ T

′′′
n )− (c(S

′′
n)− c(γ S

′′′
n ))}+QN(c(T

′
)− c(S

′
)).

Observe that there are finitely many possibilities for c(T
′′
n ) − c(γ T

′′′
n ), c(S

′′
n) −

c(γ S
′′′
n ), and c(T

′
) − c(S

′
) (for the first two differences it suffices to consider all

the cases for which T
′′′
n and S

′′′
n are prototiles, T

′′
n ∈ ω(T

′′′
n ) and S

′′
n ∈ ω(S

′′′
n )). Thus,

we obtained the desired representation, in view of (4.1). �

Theorem 4.6 [23, Theorem 4.3] Let T be a repetitive fixed point of a primitive
substitution with expansive map Q which has FLC. If α ∈ R

d is an eigenvalue for

(XT ,Rd,μ), then for any x ∈2(T ) we have ‖〈Qnx,α〉‖ n→∞−−→ 0.

In [23] it was assumed that the expansive map Q is diagonalizable over C, but the
proof works in full generality.

Let M= {(c(T )− c(S))− (c(T ′)− c(S′)): T ,S,T ′, S′ ∈ T } ⊂ R
d . Combining

Lemma 4.5 and Theorem 4.6, we obtain the following corollary.
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Corollary 4.7 Let T be a fixed point of a substitution with expansive map Q and a
strictly positive substitution matrix which has FLC. Suppose that the control points
satisfy (4.1). Let α ∈ R

d be an eigenvalue for (XT ,Rd,μ). Then there exists a finite
subset W in R

d independent of the choice of α for which

‖〈Qnw,α〉‖ n→∞−−→ 0 for any w ∈W,

and for any y ∈M, there exist N ∈N and w(n) ∈W , 0≤ n≤N , such that

y =
N∑

n=0

Qnw(n).

Proposition 4.8 Let T be a fixed point of a substitution with expansive map Q and
a strictly positive substitution matrix which has FLC. Suppose that the control points
satisfy (4.1) and the set of eigenvalues for (XT ,Rd,μ) is relatively dense. Then
{c(T ) − c(S): T ,S ∈ T } is uniformly discrete, that is, {c(T ): T ∈ T } is a Meyer
set.

Proof Since the set of eigenvalues is relatively dense, there exist eigenvalues
α1, . . . , αd for (XT ,Rd,μ) such that for any 0 
= y ∈R

d ,

〈y,αt 〉 
= 0 for some 1≤ t ≤ d.

We define a norm ||| · ||| on R
d in terms of the expansion (3.1):

|||y||| =
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

r∑

i=1

mi∑

j=1

kij∑

l=1

aijl(y)eij l

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
=

d∑

t=1

⎛

⎝
r∑

i=1

mi∑

j=1

kij∑

l=1

|aijl(y)〈eij l, αt 〉|
⎞

⎠ .

For any α ∈ {α1, . . . , αd} we have

〈y,α〉 =
r∑

i=1

Ty,α,i , where Ty,α,i =
mi∑

j=1

kij∑

l=1

aijl(y)〈eij l, α〉. (4.2)

Clearly,

|||y||| ≥
r∑

i=1

|Ty,α,i |. (4.3)

From Corollary 4.7 we know that any y ∈M can be represented in terms of ele-
ments of W so that y =∑N

n=0 Q
nw(n) for some positive integer N , where w(n) ∈W

for any 0 ≤ n ≤ N . Let w1, . . . ,wR be all the elements of W . We can rearrange the
sum to write

y =
R∑

p=1

∑

n∈Np

Qnwp, (4.4)
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where {N1, . . . ,NR} is a partition of {0,1, . . . ,N} such that w(n) = wp if
and only if n ∈ Np for 0 ≤ n ≤ N . For any α ∈ {α1, . . . , αd} and w =
∑r

i=1
∑mi

j=1

∑kij
l=1 aijl(w)eij l ∈W , by Lemma 3.1 we have

〈
mi∑

j=1

kij∑

l=1

aijl(w)Qneij l, α

〉

= (Pα,w)i(n)λ
n
i for 1≤ i ≤ r (4.5)

and

〈Qnw,α〉 =
r∑

i=1

(Pα,w)i(n)λ
n
i , (4.6)

where (Pα,w)i is a polynomial over C of degree less than or equal to K . Com-
paring (4.2) and (4.4) and noting that Qneijl is in the subspace of C

d spanned by
eij1, . . . , eijkij , we obtain

Ty,α,i =
R∑

p=1

∑

n∈Np

〈
mi∑

j=1

kij∑

l=1

aijl(wp)Q
neij l, α

〉

for 1≤ i ≤ r.

From (4.5), we get

Ty,α,i =
R∑

p=1

∑

n∈Np

(Pα,wp )i(n)λ
n
i for 1≤ i ≤ r. (4.7)

Note that ‖〈Qnw,α〉‖ n→∞−−→ 0 by Corollary 4.7, and for any 1≤ i ≤ r , λi is an alge-
braic integer by Corollary 4.2, with |λi | > 1 by the expansiveness of Q. Therefore,
by Theorem 4.3, for any w ∈W and 1≤ i ≤ r we have

(Pα,w)i(n)=
K∑

k=0

(cα,w,i,k)n
k, (4.8)

where cα,w,i,k ∈Q(λi), and every conjugate λ of λi , with |λ| ≥ 1, occurs in the right-
hand side of (4.6), that is, λ= λj for some j ≤ r . Moreover, in this case

cα,w,j,k = τij (cα,w,i,k) for any 0≤ k ≤K ,

where τij : Q(λi)→ Q(λj ) is an isomorphism which is identical on Q such that
τij (λi)= λj . Since all λi are algebraic integers, we have

Q(λi)=Q[λi] = {a0 + a1λi + · · · + asi−1λ
si−1
i : an ∈Q, 0≤ n≤ si − 1},

where si is the degree of the minimal polynomial of λi over Q. There are finitely
many numbers cα,w,i,k , so we can find a positive integer b such that

bcα,w,i,k ∈ Z[λi], ∀α ∈ {α1, . . . , αd}, ∀w ∈W, ∀ i ≤ r, ∀ k ≤K.
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That is, there exist polynomials gα,w,i,k(x) with integer coefficients such that

bcα,w,i,k = gα,w,i,k(λi) (4.9)

and

λi, λj are conjugates ⇒ gα,w,i,k(x)= gα,w,j,k(x).

Let

C1 :=max{|gα,w,i,k(x)|: |x| ≤ 1, α ∈ {α1, . . . , αd}, w ∈W, i ≤ r, k ≤K}. (4.10)

Note that C1 <∞.
Now fix 0 
= y ∈M and choose α ∈ {α1, . . . , αd} such that 〈y,α〉 
= 0. Then fix

1 ≤ i ≤ r such that Ty,α,i 
= 0, see (4.2). Consider a polynomial S(x) = Sy,α,i (x) ∈
Z[x] given by

S(x)=
R∑

p=1

∑

n∈Np

K∑

k=0

gα,w,i,k(x)n
kxn. (4.11)

In view of (4.7), (4.8), (4.9), and (4.11),

S(λi)= bTy,α,i . (4.12)

Let Hi = {all conjugates λ of λi : |λ| ≥ 1} and Gi = {all conjugates λ of λi}. By The-
orem 4.3(c) we have Hi ⊂ {λ1, . . . , λr} and

λj ∈Hi ⇒ S(λj )= τij (S(λi)).

On the other hand, for any λ ∈ Gi\Hi ,

|S(λ)| ≤ C1

K∑

k=0

∞∑

n=0

|nkλn|,

where C1 was defined in (4.10). Since
∑∞

n=0 n
kλn converges absolutely for any |λ|<

1 and 0≤ k ≤K , there exists a constant C2 > 0, independent of y, α, i, such that

|S(λ)|<C2 for any λ ∈ Gi\Hi .

Now observe that

# :=
∏

λ∈Gi

S(λ) ∈ Z,

since S is a polynomial over Z and the product is symmetric under permutations of the
conjugates of λi . On the other hand, # 
= 0, since S(λi)= bTy,α,i 
= 0 and therefore,
S(λ)= τ(S(λi)) 
= 0 where τ : Q(λi)→Q(λ) is an isomorphism satisfying τ(λi)=
λ, for λ ∈ Gi . Therefore, |#| ≥ 1, hence

∏

λ∈Hi

|S(λ)| ≥ 1
∏

λ∈Gi\Hi
|S(λ)| . (4.13)



Pure Point Diffractive Substitution Delone Sets Have the Meyer Property 333

Note that
∏

λ∈Gi\Hi

|S(λ)| ≤ (C2)
L where L= #(Gi\Hi ).

Let H = #Hi . We obtain

⎛

⎝
∑

λ∈Hi

|S(λ)|
⎞

⎠

H

≥
∏

λ∈Hi

|S(λ)| ≥ (C2)
−L,

and, in view of (4.3) and (4.12),

|||y||| ≥
∑

λ∈Hi

|Ty,α,i | = 1

b

∑

λ∈Hi

|S(λ)| ≥ 1

b
(C2)

−L/H . (4.14)

Thus, {|||y|||: y ∈M, y 
= 0} has a uniform positive lower bound. Since all norms
in R

d are equivalent, the set {c(T ) − c(S): T ,S ∈ T } is uniformly discrete in the
Euclidean norm. This completes the proof of the proposition. �

Corollary 4.9 Let � be a primitive substitution Delone multiset with expansion Q

for which every �-cluster is legal and � has FLC. If the set of eigenvalues for
(X�,Rd,μ) is relatively dense, then �=⋃i≤m�i is a Meyer set.

Proof Since � is representable by Theorem 2.9, we have that T :=�+A is a repet-
itive tiling which has FLC and is a fixed point of a primitive substitution ω with
expansion Q. Since (X�,Rd,μ) and (XT ,Rd ,μ) are topologically conjugate (see
Lemma 3.10 of [17]), the set of eigenvalues for (XT ,Rd,μ) is relatively dense. The
substitution ω is primitive, so we can find k ∈ N such that ωk has a strictly positive
substitution matrix. Then we can consider T as a fixed point of ωk with expansive
map Qk . We can choose control points for T to satisfy (4.1), with Q replaced by Qk .
Then Proposition 4.8 applies, and we obtain that L−L is uniformly discrete, where
L := {c(T ): T ∈�+A}.

Then for each i ≤m, �i ⊂ ai +L for some ai ∈ R
d and �=⋃i≤m�i ⊂ F +L

for some finite set F of R
d . So �−�⊂ (F −F)+L−L. Since (F −F)+L−L

is uniformly discrete, � is a Meyer set. �

Lemma 4.10 Let � be a Delone multiset in R
d . Suppose that (X�,Rd,μ) has

a pure point dynamical spectrum. Then the eigenvalues for the dynamical system
(X�,Rd,μ) span R

d .

Proof Suppose that there is a nonzero x ∈R
d such that 〈x,α〉 = 0 for any eigenvalue

α for (X�,Rd,μ). We take x ∈ R
d with small norm so that a + x /∈ � for all a ∈

�=⋃i≤m�i . For an eigenfunction fα corresponding to the eigenvalue α,

fα(�
′ − x)= e2πi〈x,α〉fα(�′)= fα(�

′), for μ-a.e. �′ ∈X�.
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For any f ∈ L2(X�,μ), f =∑∞
n=1 fαn , where fαn ’s are eigenfunctions. We denote

the norm in L2(X�,μ) by ‖ · ‖2. For any ε > 0, there is N ∈N such that

‖f (· − x)− f ‖2 ≤
∥
∥
∥
∥
∥
f (· − x)−

N∑

n=1

fαn(· − x)

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

N∑

n=1

fαn(· − x)− f

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
f (· − x)−

N∑

n=1

fαn(· − x)

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

N∑

n=1

fαn − f

∥
∥
∥
∥
∥

2

≤ 2ε.

So f (�′ − x)= f (�′) for μ-a.e. �′ ∈X�. Note that � 
=�− x by the choice of x.
Therefore, we can choose ε > 0 such that the ε-neighborhood of � and its translation
by x are disjoint, by the continuity of the action. Consider f to be the characteristic
function of the ε-neighborhood of �. We have f (�′)= 1 but f (�′ − x) = 0 for all
�′ in this neighborhood, which is a contradiction. �

Noticing that every integral linear combination of the eigenvalues for (X�,Rd,μ)

is also an eigenvalue for the dynamical system, from Corollary 4.9 and Lemma 4.10
we get the following theorem.

Theorem 4.11 Let � be a primitive substitution Delone multiset with expansion Q

for which every �-cluster is legal and � has FLC. Suppose that (X�,Rd ,μ) has a
pure point dynamical spectrum. Then �=⋃i≤m�i is a Meyer set.

Theorem 4.12 [24] If � is a Meyer set and its autocorrelation exists with respect to
a van Hove sequence, then the set of Bragg peaks is relatively dense.

Lemma 4.13 Let � be a Delone multiset for which � has FLC and UCF. If the
union of the Bragg peaks of the sets �j , 1 ≤ j ≤m, is relatively dense, then the set
of eigenvalues for (X�,Rd ,μ) is relatively dense.

Proof This follows from Lemma 3.4 of [16], which was essentially taken from
[4], [8]. We refer to [16] for more details.

It is enough to show that every Bragg peak of any set �j is an eigenvalue for
(X�,Rd,μ). Let γ = γ (δ�j

) denote the autocorrelation of δ�j
given by (2.7). Let

ω ∈ C0(R
d), that is, ω is continuous and has compact support. We define

fj,ω(�
′) := (ω ∗ δ�′j )(0) for �′ = (�′i )i≤m ∈X�.

Denote by γω,�j
the autocorrelation of ω ∗ δ�j

. Then γω,�j
= (ω ∗ ω̃) ∗ γ and, there-

fore, γ̂ω,�j
= |ω̂|2γ̂ . By Lemma 3.4 in [16] we note that

σfj,ω = γ̂ω,�j
,

where σfj,ω is the spectral measure corresponding to fj,ω . (In Lemma 3.4 of [16] we
considered the measure ν =∑i≤m aiδ�i

; here we take ai = δij .) If α is a Bragg peak
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of �j , then γ̂ (α) > 0. We can certainly find ω ∈ C0(R
d) such that ω̂(α) 
= 0, and

then σfj,ω (α) > 0. Thus, the spectral measure corresponding to some L2 function has
a point mass at α, and this implies that α is an eigenvalue for the group of unitary
operators (see, e.g., [25]); we conclude that α is an eigenvalue for (X�,Rd,μ). �

Combining the results above we obtain the following equivalences.

Theorem 4.14 Let � be a primitive substitution Delone multiset with expansion Q

for which every �-cluster is legal and � has FLC. Then the following are equivalent:

(i) The set of Bragg peaks for each �j is relatively dense.
(ii) The union of Bragg peaks of �j , 1≤ j ≤m, is relatively dense.

(iii) The set of eigenvalues for (X�,Rd,μ) is relatively dense.
(iv) �=⋃j≤m�j is a Meyer set.

Proof (i) ⇒ (ii) is trivial; (ii) ⇒ (iii) is Lemma 4.13, (iii) ⇒ (iv) is Corollary 4.9.
Finally, (iv) ⇒ (i) follows by Strungaru’s Theorem 4.12. Note that each �j is a
Meyer set, since �j −�j is uniformly discrete and �j is a Delone set. We apply
Theorem 4.12 to each �j . (It is known that a primitive substitution Delone multiset
for which every �-cluster is legal has UCF, see, e.g., [17], hence for every �j there
exists unique autocorrelation.) �

This theorem readily shows Theorem 1.1 and Corollary 1.2 in the Introduction.

Acknowledgement We are grateful to the referees for many helpful comments.
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Abstract Let S be the boundary of a convex polytope of dimension d + 1, or more
generally let S be a convex polyhedral pseudomanifold. We prove that S has a poly-
hedral nonoverlapping unfolding into R

d , so the metric space S is obtained from a
closed (usually nonconvex) polyhedral ball in R

d by identifying pairs of boundary
faces isometrically. Our existence proof exploits geodesic flow away from a source
point v ∈ S, which is the exponential map to S from the tangent space at v. We char-
acterize the cut locus (the closure of the set of points in S with more than one shortest
path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Ana-
lyzing infinitesimal expansion of the wavefront consisting of points at constant dis-
tance from v on S produces an algorithmic method for constructing Voronoi diagrams
in each facet, and hence the unfolding of S. The algorithm, for which we provide
pseudocode, solves the discrete geodesic problem. Its main construction generalizes
the source unfolding for boundaries of three-polytopes into R
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Introduction

The past several decades have seen intense development in the combinatorics and
geometry of convex polytopes [39]. Besides their intrinsic interest, the advances have
been driven by applications to areas ranging as widely as combinatorial optimiza-
tion, commutative algebra, symplectic geometry, theoretical physics, representation
theory, statistics, and enumerative combinatorics. As a result, there is currently avail-
able a wealth of insight into (for example) algebraic invariants of the face posets of
polytopes; arithmetic information connected to sets of lattice points inside polytopes;
and geometric constructions associated with linear functionals, such as Morse-like
decompositions and methods for locating extrema.

On the topological side, there are metric theories for polyhedral spaces, primarily
motivated by differential geometry. In addition, there is a vast literature on general
convexity. Nonetheless, there seems to be lacking a study of the interaction between
the combinatorics of the boundaries of convex polytopes and their metric geometry in
arbitrary dimension. This remains the case despite relations to a number of classical
algorithmic problems in discrete and computational geometry.

The realization here is that convexity and polyhedrality together impose rich com-
binatorial structures on the collection of shortest paths in a metrized sphere. We ini-
tiate a systematic investigation of this metric combinatorics of convex polyhedra by
proving the existence of polyhedral nonoverlapping unfoldings and analyzing the
structure of the cut locus. The algorithmic aspect, which we include together with its
complexity analysis, was for us a motivating feature of these results. That being said,
we also show that our general methods are robust enough so that—with a few minor
modifications—they extend to the abstract spaces we call ‘convex polyhedral pseudo-
manifolds’, whose sectional curvatures along low-dimensional faces are all positive.
To conclude, we propose some directions for future research, including a series of
precise conjectures on the number of combinatorial types of shortest paths, and on
the geometry of unfolding boundaries of polyhedra.

Overview

Broadly speaking, the metric geometry of boundaries of three-dimensional polytopes
is quite well understood, due in large part to the work of Aleksandrov [3, 4] and his
school. For higher dimensions, however, less theory appears in the literature, partly
because Aleksandrov’s strongest methods do not extend to higher dimension. Al-
though there do exist general frameworks for dealing with metric geometry in spaces
general enough to include boundaries of convex polyhedra, such as [10], the special
nature of polyhedral spaces usually plays no role.

The existing theory that does appear for polyhedral spaces is motivated from the
perspective of Riemannian geometry, via metric geometry on simplicial complexes,
and seems mainly due to Stone; see [34], for example. In contrast, our original mo-
tivation comes from two classical problems in discrete and computational geome-
try: the “discrete geodesic problem” [24] of finding shortest paths between points on
polyhedral surfaces, and the problem of constructing nonoverlapping unfoldings of
convex polytopes [28]. Both problems are well understood for the two-dimensional
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boundaries of 3-polytopes, but have not been attempted in higher dimensions. We
resolve them here in arbitrary dimension by a unified construction generalizing the
“source unfolding” of three-dimensional convex polyhedra [33, 37].

Previous methods for source unfoldings have been specific to low dimension, rely-
ing for example on the fact that arcs of circles in the plane intersect polygons in finite
sets of points. We instead use techniques based on differential geometry to obtain
general results concerning cut loci on boundaries of polytopes in arbitrary dimen-
sion, namely Theorem 2.9 and Corollary 2.11, thereby producing polyhedral foldouts
in Theorem 3.5. In more precise terms, our two main goals in this paper are to:

1. describe how the set of points on the boundary S of a convex polyhedron at given
radius from a fixed source point changes as the radius increases continuously;

2. use this description of “wavefront expansion” to construct a polyhedral nonover-
lapping unfolding of the d-dimensional polyhedral complex S into R

d .

By “describe” and “construct” we mean to achieve these goals not just abstractly and
combinatorially, but effectively, in a manner amenable to algorithmic computation.
References such as [1, 5, 13, 20, 26, 27, 32], and [33], which have their roots and
applications in computational geometry, carry this out in the d = 2 case of boundaries
of 3-polytopes (and for the first goal, on any polyhedral surface of dimension d = 2).
Here, in arbitrary dimension d , our Theorem 5.2 says precisely how past wavefront
evolution determines the location in time and space of its next qualitative change.
The combinatorial nature of Theorem 5.2 leads immediately to Algorithm 6.1 for
effectively unfolding boundaries of polyhedra.

The results and proofs in Sections 1–6 for boundaries of convex polyhedra almost
all hold verbatim in the more abstract setting of what we call d-dimensional convex
polyhedral pseudomanifolds. The study of such spaces is suggested both by Stone’s
point of view in [34] and by the more general methods in [10]. Our Corollary 7.12
says that all convex polyhedral pseudomanifolds can be represented as quotients of
Euclidean (usually nonconvex) polyhedral balls by identifying pairs of boundary
components isometrically. The reader interested solely in this level of generality is
urged to begin with Section 7, which gives a guide to Sections 1–6 from that per-
spective, and provides the slight requisite modifications where necessary. Hence the
reader can avoid checking the proofs in the earlier sections twice.

The results in Section 7 on convex polyhedral pseudomanifolds are in many senses
sharp, in that considering more general spaces would falsify certain conclusions. We
substantiate this claim in Section 8, where we also discuss extensions of our meth-
ods that are nonetheless possible. For example, we present an algorithm to construct
geodesic Voronoi diagrams on boundaries of convex polyhedra in Section 8.9.

The methods of this paper suggest a number of fundamental open questions about
the metric combinatorics of convex polyhedra in arbitrary dimension, and we present
these in Section 9. Most of them concern the notion of vistal tree in Definition 9.1,
which encodes all of the combinatorial types of shortest paths (or equivalently, all
bifurcations of the wavefront) emanating from a source point. The first two questions,
Conjectures 9.2 and 9.4, concern the complexity of our unfolding algorithm and the
behavior of geodesics in boundaries of polyhedra. Along these lines, we remark also
on the complexity of nonconvex polyhedral manifolds, in Proposition 9.8. Our third
question is about the canonical subdivision of the boundary of any convex polyhedron
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determined by the sets of source points having isomorphic vistal trees (Definition 9.5
and Conjecture 9.6); it asks whether this vistal subdivision is polyhedral, and how
many faces it has. Our final question asks how to realize unfoldings of polyhedral
boundaries by embedded homotopies (Conjecture 9.12).

As a guide for the reader navigating this paper, the list of sections is as follows:

0. Methods.
1. Geodesics in Polyhedral Boundaries.
2. Cut Loci.
3. Polyhedral Nonoverlapping Unfolding.
4. The Source Poset.
5. Constructing Source Images.
6. Algorithm for Source Unfolding.
7. Convex Polyhedral Pseudomanifolds.
8. Limitations, Generalizations, and History.
9. Open Problems and Complexity Issues.

0 Methods

This section contains an extended overview of the paper, including background and
somewhat informal descriptions of the geometric concepts involved.

Unfolding Polyhedra

While unfolding convex polytopes is easy [3], constructing a nonoverlapping unfold-
ing is in fact a difficult task with a long history going back to Dürer in 1528 [31].
When cuts are restricted to ridges (faces of dimension d − 1 in a polyhedron of
dimension d + 1), the existence of such unfoldings is open even for polytopes
in R

3 [28, 31]. It is known that nonconvex polyhedral surfaces need not admit such
nonoverlapping unfoldings [7, 36].

In this paper we consider unfoldings of a more general nature: cuts are allowed to
slice the interiors of facets. Nonoverlapping such unfoldings are known, but only for
three-dimensional polytopes [1, 5, 13, 33]. In fact, two different (although strongly
related) unfoldings appear in these and other references in the literature: the Alek-
sandrov unfolding (also known as the star unfolding) [3, 5], and the source unfolding
[33, 37]. Unfortunately, the construction of Aleksandrov unfoldings fails in principle
in higher dimension (Section 8.4). As we mentioned earlier, we generalize the source
unfolding construction to prove that the boundary S of any convex polyhedron of di-
mension d + 1, and more abstractly any convex polyhedral pseudomanifold S, has a
nonoverlapping polyhedral unfolding U in R

d . The second of the two foldouts of the
cube in Fig. 1 is a d = 2 example of a source unfolding. For clarity, we present the
discussion below in the context of boundaries of polyhedra.

Cut Loci

The idea of the source unfolding in arbitrary dimension d is unchanged from the case
d = 2 of convex polyhedral surfaces. Pick a source point v interior to some facet
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Fig. 1 An edge-unfolding and a source unfolding of a cube into R
2.

(d-dimensional face) of S, so the tangent space Tv is well-defined. Then, treating S

like a Riemannian manifold, define the exponential map from Tv to S by flowing
along geodesics emanating from v. Our main unfolding result, Theorem 3.5, says
that exponentiation takes a certain open polyhedral ball Uv ⊂ Tv isometrically to a
dense open subset of S consisting of points possessing a unique shortest path (length-
minimizing geodesic) to v. The image of the closure Uv of the open ball Uv is all of S.
The boundary Uv\Uv maps onto the cut locus Kv , which by definition is the closure
of the set of points in S with more than one shortest path to the source point v. These
properties characterize Uv .

In Riemannian geometry, when the manifold and the metric are both smooth, de-
scribing the cut locus for a source point is already an important and interesting prob-
lem (see [21] for an excellent introduction and numerous references), although of
course the exponential map can only be an isometry, even locally, if the metric is
flat. Extending the notion of cut locus from Riemannian geometry to the polyhedral
context is just as easy as extending it to arbitrary metric spaces. However, showing
that the open ball Uv is a polyhedral foldout requires strong conditions on the com-
plement of the cut locus, such as metric flatness and polyhedrality. We prove these
results in Sections 1 and 2 using methods based on the foundations of polyhedral
geometry, and on Voronoi diagrams, culminating in Theorem 2.9 and Corollary 2.11.
These conclusions depend crucially on convexity and do not hold in the nonconvex
case.

Geometry of Wavefront Expansion

Our existence proof for polyhedral nonoverlapping source foldouts, even given their
Voronoi characterization in Theorem 2.9, does not by itself provide a satisfactory
combinatorial picture of the dynamics of wavefront expansion on polyhedra. For
this, we must gain control over how the exponential map behaves as it interacts with
warped points in S, namely those of nontrivial curvature,1 or equivalently points on
faces of dimension d − 2 or less.

Imagine the picture kinetically: the source point v emits a signal, whose wave-
front proceeds as a (d − 1)-sphere of increasing radius—at least until the sphere

1In differential geometry, when polyhedra are expressed as limits of (sequences of) smooth Riemannian
manifolds, all of the curvature is forced into decreasing neighborhoods of the (d − 2)-skeleton. Conse-
quently, the curvature actually tends to infinity near faces of dimension d − 2 or less, even though in a
polyhedral sense the curvature is finite.
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hits the boundary of the facet containing v. At that stage, the wavefront folds over
a ridge, or face of dimension d − 1. Metrically, nothing has happened: points inte-
rior to ridges look to the wavefront just as flat as points interior to facets. However,
later, as the wavefront encounters faces of lower dimension, it is forced to bifurcate
around warped points and interfere with itself, as signals emitted originally in differ-
ent directions from v curl around the nontrivial curvature and converge toward the
cut locus.

The question becomes: What discrete structure governs evolution of the wavefront
on polyhedra? The most obvious first step is to define a finite collection of “events,”
representing the points in time and space where the wavefront changes in some non-
trivial way. If this is done properly, then it remains only to order the events according
to the times at which they occur. However, in reality, the definition of an event is
rather simple, while the geometry dictating time order of events is more complex.

Starting from scratch, one might be tempted (and we were) to mark an event every
time the wavefront encounters a new warped face. Indeed, this works in dimension
d = 2 [26]: since the wavefront is a curve, its intersection with the set of edges is a
finite set, and it is easy to detect when one of these points hits a vertex of S before
another. However, because the geometry is substantially more complicated in higher
dimensions, in the end we found it more natural to say an event has occurred every
time the wavefront encounters a new facet through the relative interior of a ridge
(see Definitions 2.3 and 4.14). This may seem counterintuitive, since the wavefront
only interacts with and curls around faces of smaller dimension. However, wavefront
collisions with warped points lead to intersections with ridge interiors infinitesimally
afterward. In other words, the closest point (event point) on a facet to the source
point v need not lie interior to a ridge, but can just as easily be warped.

Again think kinetically: once the wavefront has hit a new face (of small dimen-
sion, say), it begins to creep up each of the ridges containing that face. Although in
a macroscopic sense the wavefront hits all of these ridges simultaneously, it creeps
up their interiors at varying rates. Therefore the wavefront hits some of these ridges
before others in an infinitesimal sense. The moral is that if one wants to detect curl-
ing of the wavefront around warped faces, it is simpler to detect the wake of this
interaction infinitesimally on the interiors of neighboring ridges. Sufficiently refined
tangent data along ridges then discretizes the finite set of events, thereby producing
the desired “metric combinatorics” of wavefront expansion.

Source Poset

Making the above moral precise occupies Section 4. To single out a ridge whose
interior is engulfed by the wavefront at a maximal rate (thereby making it closer to
the source point) essentially is to find a ridge whose angle with the corresponding
signal ray emitted from the source is minimal. When d = 2, this means that we do
not simply observe two signals hitting vertices simultaneously, but we notice also the
angles at which they hit the edges containing those vertices. The edge forming the
smallest angle with its signal ray is the earlier event, infinitesimally beating out other
potential events. (That each angle must be measured inside some ambient facet is just
one of the subtleties that we gloss over for now.)
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To distinguish events in time macroscopically, only radii (distances from the
source) are required. When d = 2, as we have just seen, a first derivative is
enough to distinguish events infinitesimally. Generally, in dimension d ≥ 2, one
needs derivatives of order less than d or, more precisely, a directional derivative
successively along each of d − 1 orthogonal directions inside a ridge. In Section 4
these derivatives are encoded not in single angles, but in angle sequences (Defini-
tion 4.2), which provide quantitative information about the goniometry of intersec-
tions between signal rays and the faces of varying dimension they encounter. More
qualitative—and much more refined—data is carried by minimal jet frames (Def-
inition 4.1), which record not just the sizes of the angles, but their directions as
well.

The totality of the (finite amount of) radius and angle sequence data induces a
partial order on events. The resulting source poset (Definition 4.14), which owes
its existence to the finiteness result in Theorem 4.11, describes precisely which
events occur before others—both macroscopically and infinitesimally. Since wave-
front bifurcation is a local phenomenon at an event point, incomparable events can
occur simultaneously, or can be viewed as occurring in any desired order. Thus as
time progresses, wavefront expansion builds the source poset by adding one event
at a time.

The Algorithm

It is one thing to order the set of events after having been given all of them, but it is
quite another to predict the “next” event having been given only past events. That the
appropriate event to add can be detected locally, and without knowing future events,
is the content of Theorem 5.2. Its importance is augmented by it being the essen-
tial tool in making our algorithm for constructing the source poset, and hence also
the source unfolding (Algorithm 6.1) Surprisingly, our geometric analysis of infin-
itesimal wavefront expansion in Sections 4 and 5 allows us to remove all calculus
from Theorem 5.2 and hence Algorithm 6.1: detecting the next event requires only
standard tools from linear algebra.

As we mentioned earlier, our original motivation for this paper was its algorith-
mic applications. Using the theoretical definitions and results in earlier sections,
we present pseudocode for our procedure constructing source unfoldings in Algo-
rithm 6.1. That our algorithm provides an efficient method to compute source unfold-
ings is formalized in Theorem 6.5.

There are several arguments in favor of presenting pseudocode. First, it under-
scores the explicit effective nature of our combinatorial description of the source
poset in Theorem 5.2. Second, it emphasizes the simplicity of the algorithm that
results from the apparently complicated analysis in Sections 1–5; in particular, the
reader interested only in the computational aspects of this paper can start with Sec-
tion 6 and proceed backwards to read only those earlier parts of the paper addressed
in the algorithm. Finally, the pseudocode makes Algorithm 6.1 amenable to actual
implementation, which would be of interest but lies outside the scope of this work.2

2We refer the reader to a recent efficient implementation [35] of the classical d = 2 algorithm in [26].
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A Note on the Exposition

Proofs of statements that may seem obvious based on intuition drawn from polyhedral
surfaces, or even solids of dimension 3, demand surprising precision in the general
case. Occasionally, the required adjustments in definitions and lemmas, and even in
statements of theorems, were borne out only after considering configurations in di-
mension 5 or more. The definition of source image is an example, about which we
remark in Section 8, in the course of analyzing where various hypotheses (convexity,
pseudomanifold, and so on) become essential. Fortunately, once the appropriate no-
tions have been properly identified, the definitions become transparent, and the proofs
remain intuitive in low dimension.

1 Geodesics in Polyhedral Boundaries

In this paper a convex polyhedron F of dimension d is a finite intersection of closed
half-spaces in some Euclidean space R

d , such that F that does not lie in a proper
affine subspace of R

d . The polyhedron F need not be bounded, and comes with
an induced Euclidean metric. Gluing a finite collection of convex polyhedra by given
isometries on pairs of codimension 1 faces yields a (finite) polyhedral cell complex S.
More precisely, S is a regular cell complex endowed with a metric that is piecewise
Euclidean, in which every face (closed cell) is isometric to a convex polyhedron.

The case of primary interest is when the polyhedral cell complex S equals the
boundary ∂P of a convex polyhedron P of dimension d + 1 in R

d+1.

Convention 1.1 We assume that S = ∂P is a polyhedral boundary in all theorems,
proofs, and algorithms from here through Section 6.

We do not require P to be bounded, though the reader interested in polytopes will
lose very little of the flavor by restricting to that case. Moreover, with the exception of
Lemma 1.3, Proposition 2.10, Corollary 2.11, and Theorem 3.5, the statements of all
results from here through Section 6 are worded to hold verbatim for the more abstract
class of convex polyhedral pseudomanifolds, as we shall see in Section 7.

Denote by μ the metric on S, so μ(a, b) denotes the distance between points
a, b ∈ S. A path γ ⊂ S with endpoints a and b is a shortest path if its length equals
μ(a, b). Since we assume S has finitely many facets (maximal faces), such length-
minimizing paths exist, and are piecewise linear. A path η ⊂ S is a geodesic if η is
locally a shortest path; i.e., for every z ∈ η that is not an endpoint of η, there exist
points a, b ∈ η\{z} such that z ∈ γ ⊂ η for some shortest path γ connecting a to b.

Henceforth, as S has dimension d , a face of dimension d − 1 will be called a ridge.
For convenience, we say that a point x is warped if x lies in the union Sd−2 of all
faces in S of dimension at most d − 2, and call x flat otherwise. Every flat point has
a neighborhood isometric to an open subset of R

d .

Proposition 1.2 If γ is a shortest path in S between its endpoints, then γ has no
warped points in its relative interior.
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Proof For any point w lying in the relative interior of γ , the intersection of γ with
some neighborhood of w consists of two line segments η and η′ that are each straight
with one endpoint at w, when viewed as paths in R

d+1. This is a consequence of
local length-minimization and the fact that each facet of P is isometric to a polytope
in R

d . Moreover, if w happens to lie on a ridge while η intersects the relative interior
of some facet containing w, then local length-minimization implies that η′ is not
contained in the facet containing η. Lemma 1.3 shows that w does not lie in Sd−2, so
the point w is not warped. �

Lemma 1.3 Let η,η′ ⊂ S be two paths that (i) are straight in R
d+1, (ii) share a

common warped endpoint w ∈ Sd−2, and (iii) do not both lie in a single facet. There
exists a neighborhood O of w in S such that for every a ∈ η ∩O and b ∈ η′ ∩O, the
path ηab from a to w to b along η and η′ is not a shortest path in S between a and b.

Proof Translate P so that w equals the origin 0 ∈ R
d+1, and let Q be the unique

minimal face of P that contains w. Since η and η′ do not lie in a single facet, the 2-
plane E spanned by η and η′ meets Q at exactly one point, namely 0. Since dim(Q)≤
d−2, the span of Q and E has dimension at most d . Choose a line L whose direction
is linearly independent from the span of Q and E. Then the 3-plane H = L + E

intersects Q only at 0. Replacing P by P ∩H , we can assume that dim(P )= 3, so
that d = 2; note that 0 is a vertex of H ∩ P by construction.

Although the case d = 2 was proved in Theorem 4.3.5 of [3] (see also Lemma 4.1
of [33]), we provide a simple argument here, for completeness. Let O ⊂ S be the
neighborhood of w consisting of all points at some fixed small distance from the
vertex w. Then O can be laid flat on the plane R

2 by slicing along η. One of the
two points in this unfolding that glue to a ∈O connects by a straight segment in the
unfolding to the unique point corresponding to b. This straight segment shortcuts ηab
after gluing back to S. �

An illustration of Lemma 1.3 and its proof is given in Fig. 2.

Corollary 1.4 Let η be a bounded geodesic in S starting at a point z not on any
ridge. Then η intersects each ridge in a discrete set, so η traverses (in order) the
interiors of a well-defined sequence Lη of facets (the facet sequence of η).

Proof Since η is locally length minimizing, Proposition 1.2 implies that every inter-
section of η with a ridge takes place at a flat point. Such points have neighborhoods
isometric to open subsets of R

d , and these intersect η in paths isometric to straight
segments. It follows that η intersects every ridge transversely. �

For each facet F of S = ∂P , let TF be the affine span of F in R
d+1.

Definition 1.5 Suppose two facets F and F ′ share a ridge R = F ∩ F ′. The folding
map #F,F ′ : TF → TF ′ is the isometry that identifies the copy of R in TF with the one
in TF ′ in such a way that the image of F does not intersect the interior of F ′.
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Fig. 2 Neighborhood of a vertex and its foldout after slicing along the segment η. The points a and b are
connected by a shortest path.

In other words, the folding map #F,F ′ is the rotation of TF with (d − 1)-
dimensional axis R = F ∩ F ′ so that F becomes coplanar with F ′ and lies on the
other side of R from F ′. It can be convenient to view #F,F ′ as rotating all of R

d+1

instead of only rotating TF onto TF ′ . Informally, we say #F,F ′ folds TF along R to
lie in the same affine hyperplane as F ′.

Definition 1.6 Given an ordered list L = (F1,F2, . . . ,F�) of facets such that Fi

shares a (unique) ridge with Fi+1 whenever 1≤ i < �, we write

#−1
L = #−1

F1,F2
◦#−1

F2,F3
◦ · · · ◦#−1

F�−1,F�

for the unfolding of TF�
onto TF1 , noting that indeed #−1

L (TF�
) = TF1 . Setting Li =

(F1, . . . ,Fi), the sequential unfolding of a subset � ⊆ F1 ∪ · · · ∪ F� along L is the
set

(� ∩ F1)∪#−1
L2

(� ∩ F2)∪ · · · ∪#−1
L�

(� ∩ F�) ⊂ TF1 .

By Corollary 1.4, we can sequentially unfold any geodesic. Next, we use this
unfolding to show uniqueness of shortest paths traversing given facet sequences.

Lemma 1.7 Let v and w be flat points in S. Given a sequence L of facets, there can
be at most one shortest path γ connecting v to w such that γ traverses Lγ = L.

Proof Let γ be a shortest path from v to w traversing L. Inside the union of facets
appearing in L, the relative interior of γ has a neighborhood isometric to an open
subset of R

d by Proposition 1.2 and the fact that the set of warped points is closed.
Sequential unfolding of γ into TF for the first facet F in L thus yields a straight
segment in TF . This identifies γ uniquely as the path in S whose sequential folding
along L is the straight segment in TF connecting v to #−1

L (w) ∈ TF . �
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Fig. 3 An unfolding of a 1× 1× 3 box.

In the proof of Lemma 1.7, we do not claim that the union of facets in the list L un-
folds sequentially without overlapping, even though some shortest path γ traverses L.
However, some neighborhood of γ in this union of facets unfolds without overlap-
ping.

Example 1.8 Consider the unfolding of a 1 × 1 × 3 rectangular box as in Fig. 3.
Denote by Fbot,Ftop,Ffront,Fback,Fleft,Fright the bottom, top, front, back, left, and
right facets, respectively. Denote by Li the list of facets along which the points in the
region marked by i have been sequentially unfolded to create the foldout U ⊂ TFbot

in Fig. 3. Then:

L1= (Fbot), L2= (Fbot,Fback), L3= (Fbot,Ffront),

L4= (Fbot,Fback,Ftop), L5= (Fbot,Ffront,Ftop), L6= (Fbot,Fback,Fleft),

L7= (Fbot,Ffront,Fleft), L8= (Fbot,Fback,Fright), L9= (Fbot,Ffront,Fright).

2 Cut Loci

Most of this paper concerns the set of shortest paths with one endpoint fixed.

Definition 2.1 Fix a source point v ∈ S lying interior to some facet. A point x ∈ S

is a cut point3 if x has more than one shortest path to v. Denote the set of cut points
by Kv , and call its closure the cut locus Kv ⊂ S.

Here is a consequence of Proposition 1.2.

Corollary 2.2 No shortest path in S to the source point v has a cut point in its relative
interior.

Proof Suppose c is a cut point in the relative interior of a shortest path from v to w.
Replacing the path from v to c with another shortest path from v to c yields a new
shortest path from v to w. These two paths to w meet at the flat point c ∈ S by

3Our usage of the term “cut locus” is standard in differential geometry, just as our usage of “ridge” is stan-
dard in polyhedral geometry. However, these usages do not agree with terminology in computer science,
such as in [33] and [5]: their “ridge points” are what we call “cut points.” Furthermore, “cut points” in [5]
are what we would call “points on shortest paths to warped points” (when d = 2).
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Fig. 4 An intersection that is Y-shaped cannot locally minimize length in R
d (segment γ is a shortcut).

Proposition 1.2. The resulting Y-shaped intersection at c can be improved upon in a
neighborhood of c isometric to an open set in R

d (Fig. 4), a contradiction. �

Our study of polyhedrality of cut loci will use Voronoi diagrams applied to sets of
points from the forthcoming definition, around which the rest of the paper revolves.

Definition 2.3 Suppose that the source point v connects by a shortest path γ to a
point x that lies on a facet F or on one of its ridges R ⊂ F , but not on any face of S of
dimension d−2 or less. If the sequential unfolding of γ into TF is the segment [ν, x],
then ν ∈ TF is called a source image for F . Let srcF be the set of source images for F .

Lemma 2.4 The set srcF of source images for any facet F of S is finite.

Proof The shortest path in R
d+1 between any pair of distinct points x and y in a

facet F is the straight segment [x, y]. Since this segment is actually contained in S,
any shortest path γ in S must contain [x, y]whenever it contains both x and y. Taking
x and y to be the first and last points of intersection between γ and the facet F , we
find that F can appear at most once in the facet sequence of a shortest path starting
at the source point v. Hence there are only finitely many possible facet sequences of
shortest paths in S. Now apply Lemma 1.7. �

Example 2.5 Consider a unit cube with a source point in its bottom face, as in Fig. 5.
Then the top face has 12 source images, shown in Fig. 5. The four stars “0” are
sequential unfoldings of the source point (along three ridges each) that are not source
images: each point in the top face is closer to some source image than to any of these
stars.

Making Lemma 2.4 quantitative is one of our main open problems; see Section 9.
The next result on the way to Theorem 2.9 generalizes Lemma 3.1 of [27] to

arbitrary dimension. Its proof is complicated somewhat by the fact (overlooked in the
proof of Lemma 3.1 of [27]4) that straight segments can lie inside the cut locus, and
our lack of a priori knowledge that the cut locus is polyhedral.

4Much of [27], but not Lemma 3.1 there, was later incorporated and published in [26].



Metric Combinatorics of Convex Polyhedra: Cut Loci and Nonoverlapping Unfoldings 349

Fig. 5 Source point v on the “bottom” face, 12 source images for the “top” face of a cube and 4 “false”
source images (view from the top).

Fig. 6 Generalized Mount’s lemma (fails for the shaded region).

Proposition 2.6 (Generalized Mount’s lemma) Let F be a facet of S, and suppose
that ν ∈ srcF is a source image. If w ∈ F , then the straight segment [ν,w] ⊂ TF has
length at least μ(v,w).

Example 2.7 In Fig. 6 the left figure is a typical illustration of Proposition 2.6 in
dimension d = 2: any segment from a source image to w ∈ F is weakly longer than
the one contained in the region with w, and that one sequentially folds to a path in S

of length μ(v,w). In contrast, the right figure will never occur: any point w interior to
the shaded region is closest to the source image ν, but the straight segment connecting
w to ν has not been sequentially unfolded along the correct facet sequence.

Proof of Proposition 2.6 Since the two functions F →R mapping w to μ(v,w) and
to the length of [ν,w] are continuous, we can restrict our attention to those points w

lying in any dense subset of F . In particular, the cut locus has dense complement
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in F (Corollary 2.2) as does the boundary of F , so we assume throughout that w lies
in neither the cut locus nor the boundary of F .

Having fixed ν ∈ srcF , choose a point x ∈ F as in Definition 2.3, so v connects
to x by a shortest path γ that sequentially unfolds to yield the segment [ν, x] in TF .
The set srcF ([x,w]) of source images sequentially unfolded from shortest paths that
end inside the segment [x,w] is finite by Lemma 2.4. Hence we may furthermore
assume that w does not lie on any hyperplane H that is equidistant from ν and a
source image ν′ ∈ srcF ([x,w]). In other words, we assume w does not lie inside the
hyperplane perpendicularly bisecting any segment [ν, ν′].

Claim 2.8 With these hypotheses, if ν ∈ srcF but no shortest path unfolds sequen-
tially to the segment [ν,w], then w is closer to some point ν′ ∈ srcF ([x,w]) than to ν.

Assuming this claim for the moment, we may replace ν with ν′ and x with an-
other point x′ on [x,w]. Repeating this process and again using that the set of source
images sequentially unfolded from shortest paths ending in [x,w] is finite, we even-
tually find that the unique source image ω ∈ srcF ([x,w]) closest to w is closer to w

than ν is. Since [ω,w] has length μ(ω,w), it suffices to prove Claim 2.8.
Consider the straight segment [x,w], which is contained in F by convexity. Let Y

be the set of points y ∈ [x,w] having a shortest path γy from v that sequentially
unfolds to a segment in TF with endpoint ν. Then Y is closed because any limit
of shortest paths from v traversing a fixed facet sequence L is a shortest path that
sequentially unfolds along L to a straight segment from the corresponding source
image. Thus, going from x to w, there is a last point x′ ∈ Y . This point x′ is by
assumption not equal to w, so x′ must be a cut point (possibly x = x′).

There is a facet sequence L and a neighborhood O of x′ in [x′,w] such that every
point in O connects to v by a shortest path traversing L, and such that unfolding the
source along L yields a source image ν′ 
= ν in TF . This point ν′ connects to x′ by
a segment of length μ(v, x′), so the hyperplane H perpendicularly bisecting [ν, ν′]
intersects [x,w] at x′. By hypothesis w 
∈ H , and it remains to show that w lies on
the side of H closer to ν′.

The shortest path from v to x′ has a neighborhood in S disjoint from the set
of warped points and hence isometric to an open subset of R

d by Proposition 1.2,
because x′ is itself not a warped point (we assumed x lies interior to F or to a
ridge R ⊂ F ). After shrinking O if necessary, we can therefore ensure that each seg-
ment [ν, y] for y ∈O is the sequential unfolding of a geodesic ηy in S. The geodesic
ηy for y ∈ O\x′ cannot be a shortest path by definition of x′, so [ν, y] has length
strictly greater than μ(v, y). We conclude that O\x′, and hence also w, lies strictly
closer to ν′ than to ν. This finishes the proof of Claim 2.8 and with it Proposition 2.6.

Before stating the first main result of the paper, we recall the standard notion of
Voronoi diagram V(ϒ) for a closed discrete set ϒ = {ν, ν′, . . .} of points in R

d . This
is the subdivision of R

d whose closed cells are the sets

V (ϒ,ν) = {ζ ∈R
d
∣
∣ every point ν′ ∈ϒ satisfies |ζ − ν| ≤ |ζ − ν′|}.

Thus ζ lies in the interior of V (ϒ,ν) if ζ is closer to ν than to any other point in ϒ .
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Fig. 7 Cut locus of the “top” face of the cube.

Theorem 2.9 Fix a facet F of S, and let Vd−1 ⊆ TF be the union of the closed cells
of dimension d − 1 in the Voronoi diagram V(srcF) for the set of source images in TF .
If F ◦ is the relative interior of F , then the set F ◦ ∩Kv of cut points in F ◦ coincides
with the intersection F ◦ ∩ Vd−1. Moreover, if R◦ is the relative interior of a ridge
R ⊂ F , then the set R◦ ∩Kv of cut points in R◦ coincides with R◦ ∩ Vd−1.

Proof Every shortest path from the source v to a point w in F ◦ or R◦ unfolds to
a straight segment in TF of length μ(v,w) ending at a source image for F . Propo-
sition 2.6 therefore says that w lies in the Voronoi cell V (ϒ,ν) if and only if the
segment [ν,w] has length exactly μ(v,w). In particular, v has at least two shortest
paths to w if and only if w lies in two such Voronoi cells—that is, w ∈ Vd−1. �

To illustrate Theorem 2.9 consider Example 2.5. The Voronoi diagram of source
images gives the cut locus in the top face of the cube (see Fig. 7).

Theorem 2.9 characterizes the intersection of the cut locus with faces of dimension
d or d − 1 in S. For faces of smaller dimension, we can make a blanket statement.

Proposition 2.10 Every warped point lies in the cut locus Kv ; that is, Sd−2 ⊆Kv .

Proof It is enough to show that every point w in the relative interior of a warped
face of dimension d − 2 is either a cut point or a limit of cut points, because the cut
locus Kv is closed by definition. Let γ be a shortest path from w to v.

First assume that every neighborhood of w contains a point having no shortest
path to v that is a deformation of γ . Suppose that (yi)i∈N is a sequence of such points
approaching w, with shortest paths (γi)i∈N connecting the points yi to v. Since there
are only finitely many facets containing w and finitely many source images for each
facet, we may assume (by choosing a subsequence if necessary) that for all i, the
sequential unfolding of γi connects to the same source image for the same facet. The
paths (γi)i∈N then converge to a shortest path γ ′ 
= γ to w from v, so w ∈Kv .

Now assume that every point in some neighborhood of w has a shortest path to v

that is a deformation of γ . Every point on γ other than w itself is flat in S by Propo-
sition 1.2. Therefore some neighborhood of γ in S is isometric to an open subset of a
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product R
d−2 ×C, where C is a two-dimensional surface that is flat everywhere ex-

cept at one point c ∈ C (so C is the boundary of a right circular cone with apex c). The
set of points in R

d−2 × C having multiple geodesics to the image of v in R
d−2 ×C

is a relatively open half-space of dimension d − 1 whose boundary is R
d−2 × {c}.

Some sequence in this open half-space converges to the image of w. �

Theorem 2.9 and Proposition 2.10 imply the following description of cut loci.
For terminology, a subset K of a polyhedral cell complex is called polyhedral if its
intersection with every facet is a union of convex polyhedra. Note that K need not
be a polyhedral cell complex (as defined before Convention 1.1) because it might not
come with a cell decomposition. Nonetheless, K can be made into a polyhedral cell
complex by suitably subdividing. We call K pure of dimension k if it is the closure
of a set whose dimension locally near every point is k.

Corollary 2.11 If v is a source point in S, then

1 the cut locus Kv is polyhedral and pure of dimension d − 1, and
2 the cut locus Kv is the union Kv ∪ Sd−2 of the cut points and warped points.

Proof Part 2 is a consequence of Theorem 2.9 and Proposition 2.10, the latter taking
care of Sd−2, and the former showing that points in the cut locus but outside of Sd−2
are in fact cut points. Since Voronoi diagrams in Euclidean spaces are polyhedral,
Theorem 2.9 also implies the polyhedrality in part 1. For the purity, note that if P is
any cut point, then the cut set divides a small neighborhood of P into finitely many
regions (the regions being determined by the combinatorial types of shortest paths
ending therein), with P lying in the closures of at least two of these regions. �

3 Polyhedral Nonoverlapping Unfolding

In this section we again abide by Convention 1.1, so S is the boundary of convex
polyhedron P of dimension d + 1 in R

d+1.

Definition 3.1 A polyhedral subset K ⊂ S of dimension d − 1 is a cut set if K

contains the union Sd−2 of all closed faces of dimension d − 2, and S\K is open and
contractible. A polyhedral unfolding of S into R

d is a choice of cut set K and a map
S\K → R

d that is an isometry locally on S\K . A nonoverlapping foldout of S is a
surjective piecewise linear map ϕ: U → S such that

1. U is the closure of its interior U , which is an open topological ball in R
d , and

2. the restriction of ϕ to U is an isometry onto its image.

Note that K is not required to be a polyhedral subcomplex of S, but only a subset
that happens to be a union of polyhedra; thus K can “slice through interiors of facets.”
The open ball U in item 1 of the definition is usually nonconvex. The polyhedron P

is a polytope if and only if U is a closed ball—that is, bounded.
When the domain U of a nonoverlapping unfolding happens to be polyhedral,

so its boundary U\U is also polyhedral, the image K = ϕ(U\U) is automatically a
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cut set in S. Indeed, piecewise linearity of ϕ implies that K is polyhedral of dimen-
sion d − 1; while the isometry implies that K contains Sd−2, and that the open ball
U ∼= S\K is contractible. Therefore:

Lemma 3.2 If U is polyhedral, then a nonoverlapping foldout ϕ: U → S yields an
ordinary polyhedral unfolding by taking the inverse of the restriction of ϕ to U .

This renders unambiguous the term polyhedral nonoverlapping unfolding.
The points in S outside of the (d − 2)-skeleton Sd−2 constitute a noncompact

flat Riemannian manifold S◦. When a point w lies relative interior to a facet F , the
tangent space Tw is identified with the tangent hyperplane TF of F , but when w lies
on a ridge, there is no canonical model for Tw .

Most tangent vectors ζ ∈ Tw can be exponentiated to get a point exp(ζ ) ∈ S◦ by
the usual exponential map from the tangent space Tw to the Riemannian manifold S◦.
(One can show that the set of tangent vectors that cannot be exponentiated has mea-
sure zero in Tw; we shall not use this fact.) In the present case we have a partial
compactification S of S◦, which allows us to extend this exponential map slightly.

Definition 3.3 Fix a point w ∈ S◦ = S\Sd−2. A tangent vector ζ ∈ Tw can be expo-
nentiated if the usual exponential of tζ exists in S◦ for all real numbers t satisfying
0≤ t < 1. In this case, set exp(ζ )= limt→1 exp(tζ ).

The exponential map fζ : t→ exp(tζ ) takes the interval [0,1] to a geodesic η⊂ S,
and should be thought of as “geodesic flow” away from w with tangent ζ .

Henceforth fix a source point v ∈ S not lying on any face of dimension less than d .

Definition 3.4 The source interior Uv consists of the tangent vectors ζ ∈ Tv at the
source point v that can be exponentiated, and such that the exponentials exp(tζ ) for
0≤ t ≤ 1 do not lie in the cut locus Kv . The closure of Uv is the source foldout Uv .

Our next main result justifies the terminology for Uv and its closure Uv .

Theorem 3.5 Fix a source point v in S. The exponential map exp: Uv → S from
the source foldout to S is a polyhedral nonoverlapping foldout, and the boundary
Uv\Uv maps onto the cut locus Kv . Hence Kv is a cut set inducing a polyhedral
nonoverlapping unfolding S\Kv →Uv to the source interior.

Proof It suffices to show the following, in view of parts 1 and 2 from Corollary 2.11:

3. The metric space S\Kv is homeomorphic to an open ball.
4. The exponential map exp: Uv → S is piecewise linear and surjective.
5. The exponential map exp: Uv → S\Kv is an isometry.

Every shortest path is the exponential image of some ray in Uv by Proposition 1.2,
and the set of vectors ζ ∈ Uv mapping to S\Kv is star-shaped by part 2 along with
Proposition 1.2 and Corollary 2.2. This implies part 3 and surjectivity in part 4. The
space S◦ = S\Sd−2 is isometric to a flat Riemannian manifold. Hence the exponential
map is a local isometry on any open set of tangent vectors where it is defined. The
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Fig. 8 Cut locus Kv and source foldout Uv of the cube.

Fig. 9 Shaded region lies outside of exp(Tv).

definition of Uv implies that exp is injective on the interior Uv , so the surjectivity
in part 4 shows that exp: Uv → S\Kv is an isomorphism of Riemannian manifolds,
proving part 5. Every isometry between two open subsets of affine spaces is linear,
so the piecewise linearity in part 4 is a consequence of part 5. �

Example 3.6 Consider a cube P and a source point v located off-center on the bottom
face of P , as in Example 2.5 and Fig. 7. The cut locus Kv and the corresponding
source foldout Uv are shown in Fig. 8. See Fig. 1 for the case when v is in the center
of the bottom face.

Remark 3.7 Surjectivity of the exponential map does not follow from S◦ being a Rie-
mannian manifold: convexity plays a crucial role (see Fig. 9 for the case of a noncon-
vex surface). In fact, surjectivity of exp on a polyhedral manifold is equivalent—in
any dimension—to the manifold having positive curvature [34, Lemma 5.1]. The-
orem 3.5 extends to the class of convex polyhedral pseudomanifolds, but not quite
verbatim; see Theorem 7.11 for the few requisite modifications.

4 The Source Poset

In this section we define the source poset (Definition 4.14), and in the next we show
how to build it step by step (Theorem 5.2). The reader should consider Definition 4.14
as the main result in this section, although it is the existence and finiteness properties
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for minimal jet frames5 in Theorem 4.11 that endow the source poset with its power
to make continuous wavefront expansion combinatorially tractable.

Definition 4.1 Fix a polyhedron V in R
d . Given a list ζ̄ = (ζ1, . . . , ζr ) of mutually

orthogonal unit vectors in R
d , define for ε ∈R the unit vector

Jζ̄ (ε) =
εζ1 + · · · + εrζr√
ε2 + ε4 + · · · + ε2r

.

If x ∈ V and x + εJζ̄ (ε) lies in V for all small ε > 0, then the vector-valued func-

tion Jζ̄ is a unit jet of order r at x in V , and ζ̄ is a partial jet frame at x along V .

If, in addition, x + εJζ̄ (ε) lies relative interior to V for all small ε > 0, then ζ̄ is a jet
frame.

The definition will be used later in the case where the convex polyhedron V is a
closed Voronoi cell R ∩ V (srcF ,ω) for some ridge R of a facet F , and ω ∈ srcF is
a source image. Think of the point x ∈ V as the closest point in V to ω. It will be
important later (but for now may help in understanding the next definition) to note
that the relative interior of a polyhedron V = R ∩ V (srcF ,ω) is contained in the
relative interior of the ridge R by Definition 2.3 and Theorem 2.9.

We do not assume the polyhedron V has dimension d . However, the order r of a
unit jet in V , or equivalently the order of a jet frame along V , is bounded above by
the dimension of V . In particular, we allow dim(V ) = 0, in which case the only jet
frame is empty—that is, a list ∅ of length zero—and J∅ ≡ 0.

The lexicographic order on real vectors ā and b̄ of varying lengths is defined by

(a1, . . . , ar ) < (b1, . . . , bs)

if the first nonzero coordinate of ā− b̄ is negative, where by convention we set ai = 0
for i ≥ r + 1 and bj = 0 for j ≥ s + 1.

Definition 4.2 Fix a convex polyhedron V in R
d , a point x ∈ V , and an outer support

vector ν ∈R
d for V at x, meaning that ν ·y ≤ ν ·x for all points y ∈ V . A jet frame ζ̄

at x along V is minimal if the angle sequence−(ν · ζ1, . . . , ν · ζr ) is lexicographically
smaller than −(ν · ζ ′1, . . . , ν · ζ ′r ′) for any jet frame ζ̄ ′ at x along V .

Again think of V =R∩V (srcF ,ω), with ν = ω−x being the outer support vector.
In general, that ν is an outer support vector at x means equivalently that x is

the closest point in V to x + ν. Minimal jet frames ζ̄ can also be described more
geometrically: the angle formed by ν and ζ1 must be as small as possible, and then
the angle formed by ν and ζ2 must be as small as possible given the angle formed
by ν and ζ1, and so on. It is worth bearing in mind that because ν is an outer support
vector, the angle formed by ν and ζ1 is at least π/2 (that is, obtuse or right).

5The notion of jet frame is new; it is motivated by constructions from differential and algebraic geometry,
where a jet is to a higher-order derivative as a tangent vector is to a first derivative. Our goal is to measure
infinitesimal expansion of the wavefront in the directions recorded by jet frames.
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Fig. 10 Dot product vs. length.

Lemma 4.3 If ζ and ζ ′ are vectors of equal length in R
d , and ν ∈ R

d is a vector
satisfying ν · ζ ≤ 0 and ν · ζ ′ ≤ 0, then |ν − ζ |< |ν − ζ ′| if and only if ν · ζ > ν · ζ ′.
Proof Draw ν pointing away from the center of the circle containing ζ and ζ ′, with
these vectors on the other side of the diameter perpendicular to ν. Then use the law of
cosines: the radii ζ and ζ ′ have equal length, and ν has fixed length; only the distances
from ν to ζ and ζ ′ change with the angles of ζ and ζ ′ with ν (see Fig. 10). �

Minimal jet frames admit a useful metric characterization as follows.

Proposition 4.4 Fix two polyhedra V and V ′ with outer support vectors ν and ν′,
of equal length, at points x ∈ V and x′ ∈ V ′, respectively. Let ζ̄ and ζ̄ ′ be partial
jet frames at x along V and x′ along V ′, respectively. The angle sequence −ν · ζ̄ is
smaller than−ν′ · ζ̄ ′ in lexicographic order if and only if there exists ε0 > 0 such that
x + ν is closer to x + εJζ̄ (ε) than x + ν′ is to x′ + εJζ̄ ′(ε) for all positive ε < ε0.

Proof Since the dot product of ν with each vector Jζ̄ (ε) or Jζ̄ ′(ε) is negative, and
these are unit vectors, it is enough by Lemma 4.3 to show that minimality is equiva-
lent to

ν · Jζ̄ (ε) ≥ ν · Jζ̄ ′(ε) for all nonnegative values of ε < ε0.

If the first nonzero entry of ν · ζ̄ − ν · ζ̄ ′ is c = ν · (ζi − ζ ′i ), then for nonnegative
values of ε approaching zero, the difference ν · Jζ̄ (ε)− ν · Jζ̄ ′(ε) equals cεi−1 times
a positive function approaching one. The desired result follows easily. �

Corollary 4.5 Fix an outer support vector ν at a point x in a polyhedron V . A jet
frame ζ̄ at x along V is minimal if and only if, for every jet frame ζ̄ ′ at x along V ,
x + ν is weakly closer to x + εJζ̄ (ε) than to x + εJζ̄ ′(ε) for all small nonnegative ε.

It is not immediately clear from the definition that minimal jet frames always
exist: a priori there could be a continuum of choices for ζ1, and then a continuum of
choices for ζ2 in such a way that no minimum is attained. Although such continua of
choices can indeed occur, we shall see by constructing minimal jet frames explicitly
in Theorem 4.11 that a minimum is always attained.

First we need to know more about how (partial) jet frames at x reflect the local
geometry of V near x. The tangent cone to a polyhedron V ⊆R

d at x ∈ V is the cone

TxV = R≥0{ζ ∈R
d | x + ζ ∈ V }

generated by vectors that land inside V when added to x.
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Definition 4.6 Fix a partial jet frame ζ̄ at x along a polyhedron V in R
d . Let ζ̄⊥ be

the linear subspace of R
d orthogonal to the vectors in ζ̄ , and fix a sufficiently small

positive real number ε. Then define the iterated tangent cone

T ζ̄
x V = Tξ

((
ξ + ζ̄⊥

)∩ TxV
)

as the tangent cone at ξ = Jζ̄ (ε) to the intersection of TxV with the affine

space ξ + ζ̄⊥.

Just as the partial jet frames of order 1 generate the tangent cone TxV , we have
the following characterization of iterated tangent cones. We omit the easy proof.

Lemma 4.7 The iterated tangent cone T
ζ̄
x V is generated by all unit vectors

ζr+1 in R
d extending the partial jet frame ζ̄ = (ζ1, . . . , ζr ) to a partial jet frame

(ζ1, . . . , ζr , ζr+1) of order r + 1. In particular, iterated tangent cones do not depend
on the small ε > 0.

Now we set out to construct minimal jet frames inductively.

Lemma 4.8 Fix a polyhedron V and an outer support vector ν at x ∈ V . If ζ ∈ TxV

is a unit vector with ν · ζ maximal, then ν is an outer support vector at 0 ∈ T
ζ
x V .

Proof If ζ ′ ∈ T
ζ
x V is a unit vector satisfying ν · ζ ′ > 0, then ξ = (ζ + εζ ′)/

√
1+ ε2

for small ε > 0 is a unit vector in TxV satisfying ν · ξ > ν · ζ , contradicting maximal-
ity. �

In “generic” cases the functional ζ �→ ν · ζ for an outer support vector ν on a cone
will take on the maximum value zero uniquely at the origin. In this case, as we now
show, there can be only finitely many unit vectors ζ in the cone having ν · ζ maximal,
and these lie along the rays, meaning one-dimensional faces of the cone. Note that
genericity forces the cone to be sharp, meaning that it contains no linear subspaces.

Proposition 4.9 Let ν be an outer support vector for a sharp polyhedral cone C, and
assume ν is maximized uniquely at the origin 0. The minimum angle between ν and
a unit vector ζ ∈ C occurs when ζ lies on a ray of C.

Proof Let Z be the set of unit vectors in C. Suppose that L is a two-dimensional
subspace inside the span of C, and let ν̄ be the orthogonal projection of ν onto L.
View ν and ν̄ as functionals on L via ζ �→ ν · ζ , and observe that ν · ζ = ν̄ · ζ for all
ζ ∈ L. The circular arc Z ∩L lies inside the unit circle in L, and ν̄ takes nonpositive
values on Z ∩ L because ν is an outer support vector. Elementary geometry shows
that ν̄ is therefore maximized on Z ∩ L only at one or both of the endpoints of the
arc Z ∩ L. This argument proves that ν cannot be maximized on Z at a point ζ ∈
Z unless ζ lies in the boundary of Z. The result now follows by induction on the
dimension of the cone C. �
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In “nongeneric” cases, including when the polyhedral cone C has nonzero lineal-
ity, which is by definition the largest vector space contained in C, the functional ν
is maximized along a face of positive dimension. In this case there is always a con-
tinuum of choices for unit vectors ζ ∈ C having ν · ζ = 0. However, the sequences
of iterated tangent cones to appear in Theorem 4.11 will not in any noticeable way
depend on the continuum of choices, because of the next result.

Lemma 4.10 Fix a polyhedron V , a point x ∈ V , and a face F of V containing x.

The iterated tangent cone T
ζ̄
x V is independent of the jet frame ζ̄ for F at x.

Proof Translate V so x+ εJζ̄ (ε) lies at the origin 0 ∈R
d . Then F spans a dimension

dim(F ) linear subspace 〈F 〉 ⊆ R
d , and the iterated tangent cone is T

ζ̄
x V = 〈F 〉⊥ ∩

T0V . Now use the fact that T0V = TξV for all vectors ξ relative interior to F . �

The main theorem in this section says that given an outer support vector ν, there
is a finite procedure using elementary linear algebra for producing a single jet frame
that is, in a precise sense, tilted as much toward ν as possible.

Theorem 4.11 Fix a polyhedron V and an outer support vector ν at x ∈ V . In-
ductively construct a finite set of jet frames for V at x by iterating the following
procedure. For each of the finitely many partial jet frames ζ̄ already constructed:

• If ν is orthogonal to a nonzero vector in T
ζ̄
x V , then add any such vector to ζ̄ .

• If ν · ζ < 0 for all nonzero vectors ζ in T
ζ̄
x V , then create one new partial jet

frame for each of the (finitely many) rays of T ζ̄
x V minimizing the angle with ν, by

appending to ζ̄ the unit vector along that ray.

At least one of the finitely many jet frames constructed in this way is minimal.

Proof The sequences of vectors constructed by the iterated procedure are jet frames
by Lemma 4.8. Given an arbitrary jet frame ξ̄ for V at x, it is enough to show that
the angle sequence of ξ̄ satisfies ν · ζ̄ ≥ ν · ξ̄ in lexicographic order for some con-
structed jet frame ζ̄ . Indeed, then a jet frame whose angle sequence is lexicograph-
ically minimal among the constructed ones is minimal. Suppose that the first i − 1
entries (ξ1, . . . , ξi−1) agree with a constructed jet frame, but that (ξ1, . . . , ξi) do not.

If ν · ξi < 0 then ν · ξi is less than ν · ζi for some constructed jet frame ζ̄ agreeing
with ξ̄ through the (i − 1)st entry, by Proposition 4.9.

If, on the other hand, ν · ξi = 0, then pick the index j maximal among those
satisfying ξj 
= 0 and also ν · ξi = · · · = ν · ξj = 0. If there is a constructed jet frame ζ̄

that agrees with ξ̄ through the j th entry, but has ν · ξj+1 < ν · ζj+1 = 0, then we are
done already. Therefore we can assume that the constructed jet frame ζ̄ agrees with ξ̄

through index (i − 1), that ζ̄ has ν ·ζi = · · · = ν ·ζj = 0, and that either ν ·ζj+1 < 0 or
else ζ̄ has order j . Replacing the vectors ξi, . . . , ξj in ξ̄ with ζi, . . . , ζj yields a new

jet frame ξ̄ ′, by Lemma 4.10 applied to the face F of the iterated tangent cone T
ζ̄ ′
x V

orthogonal to ν, where ζ̄ ′ = (ζ1, . . . , ζi−1). Downward induction on the number of
entries of ξ̄ ′ shared with a constructed jet frame completes the proof. �
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Fig. 11 Illustrations for Definition 4.12.

Our goal is to apply jets to define a poset structure on the set of source images.
First, we need some terminology and preliminary concepts. The next definition is
made in slightly more generality than required for dealing only with complete sets of
source images because we shall need it for Theorem 5.2.

Resume the notation from previous sections regarding the polyhedral complex S.
Recall that TF ∼= R

d is the tangent hyperplane to the facet F . Removing from TF
the affine span TR of any ridge R ⊂ F leaves two connected components (open half-
spaces). Thus it makes sense to say that a point ν ∈ TF \TR lies either on the same
side or on the opposite side of R as does F .

Definition 4.12 Fix a facet F , a ridge R ⊂ F , and a finite set ϒ ⊂ TF .

1. A point ω ∈ ϒ can see F through R in V(ϒ) if ω lies on the opposite side of R
as F does, and the closed Voronoi cell V (ϒ,ω) contains a point interior to R.

2. A point ω ∈ ϒ can see R through F in V(ϒ) if ω lies on the same side of R as
F does, and the closed Voronoi cell V (ϒ,ω) contains a point interior to R.

3. In either of the above two cases, the ridge R lies at radius r = r(R,ω) from ω if
r equals the smallest distance in TF from ω to a point of R ∩ V (ϒ,ω).

4. The unique closest point ρ(R,ω) to ω in R ∩ V (ϒ,ω) has distance r from ω.
5. The outer support vector of the pair (R,ω) is ω− ρ(R,ω).
6. The angle sequence ∠(R,ω) is the angle sequence −(ω − ρ(R,ω)) · ζ̄ for any

minimal jet frame ζ̄ at ρ(R,ω) along R ∩ V (ϒ,ω).

Example 4.13 Figure 11 depicts examples of the notions from Definition 4.12. The
solid pentagon is the face F , while the set ϒ contains four points. The point ω can see
F through the ridge R, and can see the ridges R′ as well as R′′ through F . The three
closest points for these are indicated, as is the outer support vector for (R,ω). The
point ω′ can see the ridge R′ through F , but ω′ cannot see R′′ through F , because ω

is closer to every point of R′′.

In our applications the finite set ϒ will always be a subset of source images
in srcF , often a proper subset. Now we are ready for the main definition of this
section. It may help to recall that each source image ν ∈ srcF can see F through a
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unique ridge R by Theorem 2.9, when R
d = TF and the finite set ϒ in Definition 4.12

equals srcF .

Definition 4.14 Fix a source point v in S. An event is a pair (ν,F ) with ν ∈ srcF a
source image for the facet F . The event (ν,F ) has

1. radius r(ν,F ) equal to the radius r(R, ν) from ν to the ridge R through which ν

can see F in the Voronoi subdivision V(srcF) of TF ;
2. event point ρ(ν,F ) equal to the closest point ρ(R,ν) in R ∩ V (srcF , ν) to ν; and
3. angle sequence ∠(ν,F ) equal to the angle sequence ∠(R, ν).

(The trivial event (v, facet(v)) has radius 0, event point v, and empty angle sequence.)
The source poset src(v, S) is the set of events, partially ordered with (ν,F )≺ (ν′,F ′)
if

• r(ν,F ) < r(ν′,F ′), or if
• r(ν,F )= r(ν′,F ′) and ∠(ν,F ) is lexicographically smaller than ∠(ν′,F ′).

Remark 4.15 Corollary 4.5 says that breaking ties by lexicographically comparing
angle sequences at event points is the same as breaking ties by comparing distances
from each source image with a minimal jet at its event point. This is the precise sense
in which the source poset orders events by comparing infinitesimal expansion of the
wavefront along the interiors of ridges containing event points.

5 Constructing Source Images

Aside from its abstract dynamical interpretation, the importance of the source poset
here stems from its ability to be computed algorithmically, as we shall see here and in
Section 6. Source images are built one by one, using only previously built source im-
ages as stepping stones. These stepping stones form an order ideal in src(v, S), mean-
ing a subset I ⊂ src(v, S) closed under going down: E ∈ I and E′ ≺E ⇒ E′ ∈ I .

To make a precise statement in the main result, Theorem 5.2, we need one more
dose of terminology, describing constructions in S determined by a choice of or-
der ideal.

Definition 5.1 Fix an order ideal I in the source poset src(v, S). For each facet F ,
let ϒF ⊂ TF be the set of source images ω ∈ srcF with (ω,F ) ∈ I . The set EI of
potential events consists of triples (ω,F,R′) such that

• ω can see the ridge R′ through F in the Voronoi diagram V(ϒF ), but
• a second facet F ′ contains R′, and the unfolding ω′ = #F,F ′(ω) of ω onto the

tangent space TF ′ results in a pair (ω′,F ′) that does not lie in I .

If (ω′,F ′) is an event in src(v, S)\I , then we say it is obtained by processing
(ω,F,R′). A potential event E ∈ EI is minimal if it has minimal radius r among po-
tential events, and lexicographically minimal angle sequence among potential events
with radius r .
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Tracing back through notation, if E = (ν,F,R′) is a minimal potential event, then
the minimal radius is r = r(R′, ν), and the minimal angle sequence is ∠(R′, ν).

Theorem 5.2 Given a nonempty order ideal I in the source poset src(v, S), pick a
minimal potential event (ν,F,R′) in EI . If ν′ =#F,F ′(ν) is the unfolding of ν to the
other facet F ′ containing R′, then I ′ = I ∪ {(ν′,F ′)} is an order ideal in src(v, S).

The statement has two parts, really: first, ν′ ∈ TF ′ is indeed a source image; and
second, I ′ is an order ideal in the poset src(v, S). To prove the theorem we need a
number of preliminaries. We state results requiring an order ideal inside the source
poset src(v, S) using language that assumes an order ideal I has been fixed.

Recall from Section 1 the notion of facet sequence Lγ for a shortest path γ . If, on
the way to a facet F ′, a shortest path γ from the source point v traverses a facet F ,
then the corresponding source images in F and F ′ have a special relationship. Pre-
cisely:

Definition 5.3 Let (ν,F ) ≺ (ν′,F ′) be events in the source poset. Suppose some
shortest path γ has facet sequence Lγ = (F1, . . . ,F�′) with a consecutive subse-
quence

L= (F�, . . . ,F�′) in which F = F� and F ′ = F�′ .

If ν′ = #L(ν) = #Lγ
(v) is the sequential unfolding of the source along γ , and

also the sequential unfolding of ν ∈ TF into TF ′ , then (ν,F ) geodesically precedes
(ν′,F ′). We also say that the shortest path γ described above is geodesically preceded
by (ν,F ).

Since the Voronoi cells in Theorem 2.9 come up so often, it will be convenient to
have easy terminology and notation for them.

Definition 5.4 Given a source image ω ∈ srcF , the cut cell of ω is Vω = V (srcF ,ω).

Roughly speaking, our next result says that angle sequences increase at successive
events along shortest paths, when the event point is pinned at a fixed point x.

Proposition 5.5 If (ν,F ) geodesically precedes (ν′,F ′) then (ν,F )≺ (ν′,F ′).

Proof Because of the way partial order on src(v, S) is defined, we may as well as-
sume that F and F ′ share a ridge R′, and that ν′ =#F,F ′(ν) is obtained by folding
along this ridge. In addition, we may as well assume that both event points ρ(ν,F )

and ρ(ν′,F ′) equal the same point x ∈ S, since otherwise r(ν,F ) < r(ν′,F ′). Trans-
late to assume this point x equals the origin 0, to simplify notation. Let R be the ridge
through which ν can see F , and set V =R ∩ Vν and V ′ =R′ ∩ Vν′ ; these are the cut
cells through which the source images ν and ν′ see their corresponding facets.

The angle geometry of ν′ relative to V ′ in TF ′ is exactly the same as the geometry
of ν relative to V ′ in TF , because ν′ is obtained by rotation around an axis in R

d+1

containing V ′. In other words, ν − ν′ is orthogonal to V ′. Therefore we need only
compare the angles with ν of jets along V and V ′. All jet frames will be at x.
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Fig. 12 Geodesic precedence implies a smaller angle sequence.

Suppose the finite sequence (ξ1, ξ2, . . .) is a jet frame along V ′. Noting that V

and V ′ have disjoint interiors, choose the index r so that ξ̄ = (ξ1, . . . , ξr−1) is a
partial jet frame along V , but ξ̄ ′ = (ξ1, . . . , ξr ) is not. It is enough to demonstrate
that some partial jet frame (ξ1, . . . , ξr−1, ζr ) along V has a lexicographically smaller
angle sequence than ξ̄ ′. Equivalently, it is enough to produce a unit vector ζr in the

iterated tangent cone T
ξ̄
x V satisfying ν · ζr > ν · ξr .

Since R′ ∩ Vν′ = R′ ∩ Vν by Theorem 2.9, every line segment from ν to a point
in V ′ passes through V . Therefore, since we have translated to make x = 0, every seg-
ment connecting ν to TxV

′ passes through TxV . This observation will become crucial
below; for now, note the resulting inequality dim(V )≥ dim(V ′), which implies that

the iterated tangent cone T
ξ̄
x V contains nonzero vectors. All such vectors by def-

inition lie in the subspace ξ̄⊥ orthogonal to the space 〈ξ̄ 〉 with basis ξ1, . . . , ξr−1.
The same holds for ξr , so we may replace ν with a vector ω ∈ ξ̄⊥ by adding a
vector in 〈ξ̄ 〉, since then

ω · ζ = ν · ζ for all vectors ζ ∈ ξ̄⊥.

Fix a small positive real number ε. The line segment [ν, Jξ̄ ′(ε)] intersects TxV

at a point near Jξ̄ (ε). The image segment in ξ̄⊥ by orthogonal projection modulo

〈ξ̄ 〉 is [ω,λξr ], for λ= εr/
√
ε2 + · · · + ε2r . This image segment passes through the

cone T
ξ̄
x V at some point ζ on its way from ω to λξr . Elementary geometry of the

triangle with vertices 0, ω, and λξr (see Fig. 12) shows that the angle between ω

and ζ is smaller than the angle between ω and λξr . Taking ζr = ζ/|ζ | completes the
proof. �

After choosing a minimal potential event E, we must make sure that when all is
said and done, none of the other potential events end up below E in the source poset.

Lemma 5.6 Suppose (ω,F,R′) ∈ EI is a potential event with angle sequence ∠
and radius r . Let F ′ be the other facet containing R′ and let ω′ =#F,F ′(ω) be the
unfolding of ω ∈ TF onto TF ′ . If (ω′,F ′) is an actual event, then it either has radius
strictly bigger than r , or else its angle sequence ∠(ω′,F ′) is lexicographically larger
than ∠.

Proof Assume that (ω′,F ′) is an event. Quite simply, the result is a consequence of
the fact that the cut cell R′ ∩Vω′ =R′ ∩Vω must be contained inside R′ ∩V (ϒF ,ω),
which follows because ϒF ⊆ srcF . �
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In comparing a newly processed event (in source poset order) to other as yet un-
processed events, we need to know approximately how those other events will even-
tually arise. This requires the forthcoming lemma, in which a flat triangle inside S is
any subset of S isometric to a triangle in the Euclidean plane R

2.

Lemma 5.7 Fix a point x ∈ S. There is an open neighborhood Ox of x in S such
that, given y ∈Ox and a shortest path γ from the source point v to y, some shortest
path γ ′ from v to x has the following property: the loop formed by traversing γ ′ and
then the segment [x, y] and finally the reverse of γ bounds a flat triangle in S.

Proof Choose Ox so small that the only closed faces of the cut locus Kv intersect-
ing Ox are those containing x. Every cut cell containing y ∈Ox also contains x by
construction. Convexity of cut cells (Theorem 2.9) implies that the segment [x, y]
lies inside every cut cell containing y (there may be more than one if y is itself a cut
point). The source image obtained by sequentially unfolding γ therefore connects to
every point of [x, y] by a straight segment that sequentially folds to a shortest path.
The union of these shortest paths is the flat triangle in question. �

Conveniently, all of the shortest paths to x already yield events in I:

Lemma 5.8 Suppose some minimal potential event E ∈ EI has closest point x. Let G
be the last facet whose interior is traversed by a shortest path γ from the source point
to x. If ω ∈ srcG is the source image sequentially unfolded along γ , then (ω,G) ∈ I .

Proof As γ enters G, it crosses the relative interior of some ridge of G at a point w.
The event point ρ(ω,G) can be no farther than w from ω. On the other hand,
μ(v,w) < μ(v, x), because γ traverses the interior of G. Therefore (ω,G) has radius
less than r(E)= μ(v, x). �

Proof of Theorem 5.2 Suppose the minimal potential event (ν,F,R′) has closest
point x = ρ(R′, ν) to R′ ∩V (ϒF , ν), of radius r , and a minimal jet frame ζ̄ at x with
angle sequence ∠.

Let γ be a shortest path from the source that ends at a point in the neighbor-
hood Ox from Lemma 5.7. By that lemma and Lemma 5.8, γ unfolds to produce
a source image whose event either lies in I , or is obtained by processing a poten-
tial event in EI , or is geodesically preceded by such a processed event. Applying
Lemma 5.8 and then Proposition 5.5, we find that all events with event point x that
are not in I have angle sequences lexicographically larger than ∠.

For positive ε, set y(ε)= x + εJζ̄ (ε). When ε is small enough, y(ε) lies interior
to R′, and close to x, in the neighborhood Ox from Lemma 5.7. By the previous
paragraph, every source image containing y in its cut cell is either in I or has an
angle sequence lexicographically larger than ∠.

Let us now compare, for all small positive ε, the distance to y(ε) from ν with the
distance to y(ε) from any source image in srcF or srcF ′ . Clearly the distance from a
source image ω is minimized when y(ε) lies in the cut cell Vω. Moreover, we may
restrict our attention to those source images ω whose cut cells Vω contain y(ε) for all
sufficiently small positive ε. Definition 4.1 says that ζ̄ is a jet frame at x along Vω.
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Therefore, by Proposition 4.4, we conclude using the last sentence of the previous
paragraph that y(ε) is weakly closer to ν than to ω for all small positive ε. This
argument shows that ν′ is a source image, so (ν′,F ′) is an event. Moreover, it shows:

Claim 5.9 Any minimal jet frame ζ̄ at the event point x = ρ(R′, ν) along the poly-
hedron R′ ∩ V (ϒF , ν) is a minimal jet frame at x along R′ ∩ Vν′ .

Every event in src(v, S)\I is either obtained by processing a potential event in EI ,
or is geodesically preceded by such a processed potential event. Using Claim 5.9, we
conclude by Lemma 5.6 and Proposition 5.5 that I ′ is an order ideal.

6 Algorithm for Source Unfolding

The primary application of the analysis up to this point is an algorithmic construction
of nonoverlapping unfoldings of convex polyhedra, which we present in pseudocode
followed by bounds on its running time. In particular, we show that the algorithm is
polynomial in the number of source images, when the dimension d is fixed. (Later we
state Conjecture 9.2, which posits that the number of source images is polynomial in
the number of facets.) Other applications, some of which are further discussed in Sec-
tion 8, include the discrete geodesic problem (Corollary 6.6) and geodesic Voronoi
diagrams (Algorithm 8.1 in Section 8.9).

Roughly, Algorithm 6.1 consists of a single loop that with every iteration con-
structs one new event. Each event is a pair consisting of a facet and a point that we
have called a source image in the affine span of that facet. The loop is repeated ex-
haustively until all of the events are computed, so the affine span of every facet has
its full complement of source images. The Voronoi diagram for the set of source im-
ages in each affine span induces a subdivision of the corresponding facet. For each
maximal cell in this subdivision, the algorithm computes a Euclidean motion (com-
position of rotation and parallel translation) that moves it into the affine span of the
facet containing the source point. The union of these moved images of Voronoi cells
is the output foldout Uv in the tangent space Tv to the source point v.

At each iteration of the loop, the algorithm must choose from a number of potential
events that it could process into an actual event. Each potential event E consists of an
already-computed event (ν,F ) plus a ridge R in the facet F . Processing the event E
applies a rotation to move the source image ν into the affine span of the other facet
containing R. The potential event that gets chosen must lie as close to the source point
as possible; this distance is the radius r = r(R, ν) at the beginning of the loop. The
loop then calls Routine 6.2 to choose which event to process; although this routine is
quite simple in structure, it is the part of the algorithm that most directly encounters
the subtlety of working in higher dimensions. The end of the loop consists of updating
the sets of source images and potential events; the latter requires Routine 6.3, which
we have isolated because it is the only time-consuming part of the algorithm, due to
its Voronoi computation.

We emphasize that once a source point ν is computed, it is never removed. This
claim is part of Theorem 5.2, in which the correctness of Algorithm 6.1—and indeed
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the procedure of the algorithm itself—is more or less already implicit, as we shall see
in the proof of Theorem 6.4.

We assume that the convex polyhedron P is presented in the input of the algorithm
as an intersection of closed half-spaces. Within the algorithm, we omit the descrip-
tions of standard geometric and linear algebraic operations, for which we refer to
[18] and [30]. These operations include the determination of lower-dimensional faces
(such as ridges) given the facets of P , and the computation of Voronoi diagrams.

Some additional notation will simplify our presentation of the algorithm. Denote
by F and R the sets of facets and ridges of P , respectively. If a ridge R ∈R lies in a
facet F ∈F , denote by φ(F,R) the other facet containing R, so F ∩ φ(F,R)= R.
Finally, for each facet F ∈ F , denote by ÊF the set of all triples (ν,F,R) such that
source point ν ∈ ϒF lies in the affine span TF of F , and R ∈ R is a ridge con-
tained in F .

Algorithm 6.1 (Computing Source Unfolding)
INPUT convex polyhedron P ⊂R

d+1 of dimension d + 1
point v lying in the relative interior of a facet F of P

OUTPUT source foldout of the boundary S = ∂P into Tv ∼=R
d (see Section 3)

DEFINE for each F ∈F : a finite set ϒF ⊂ TF of points
for each pair (ν,F ) satisfying ν ∈ϒF : an ordered list Lν,F of facets
for each F ∈F : a set EF ⊂ ÊF of potential events
E =⋃F∈F EF , the set of all potential events

INITIALIZE for F ∈F : if v 
∈ F , then ϒF :=∅ and EF =∅;
otherwise ϒF := {v}, Lv,F := (F ), EF := {(v,F,R) | R ∈ R and R ⊂

F }
COMPUTE #F,F ′ for all F,F ′ ∈ F such that F ∩ F ′ ∈ R is a ridge (see Defini-

tion 1.5)
WHILE E 
=∅

DO r :=min{r(R, ν) | (ν,F,R) ∈ E} (see Definition 4.12)
CHOOSE A POTENTIAL EVENT E = (ν,F,R) ∈ E TO PROCESS

set F ′ := φ(F,R), ν′ :=#F,F ′(ν), Lν′,F ′ := (Lν,F F ′)
update ϒF ′ ←ϒF ′ ∪ {ν′}

EF ′ ← {(ω,F ′,R′) ∈ ÊF ′ such that ω ∈ϒF ′ , and
POINT ω ∈ϒF ′ CAN SEE R′ THROUGH F ′, and
ω′ /∈ϒG, where G= φ(F ′,R′), ω′ =#F ′,G(ω)}

EF ← EF \{E}, E←⋃
G∈F EG

END WHILE-DO

COMPUTE for all facets F ∈F and points ν ∈ϒF :
#L for L= Lν,F (see Definition 1.6), and then

Uv(ν,F ) :=#−1
L (F ∩ V (ϒF , ν))⊂ Tv (see Theorem 2.9)

RETURN the foldout Uv =⋃(ν,F ) Uv(ν,F ), the union being over all F ∈ F and
ν ∈ϒF

Routine 6.2 (Choose a Potential Event to Process)
INPUT the set E =⋃F∈F EF of potential events, and the radius r > 0

OUTPUT an event E ∈ E (see Definition 5.1)
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COMPUTE the closest potential events E◦ := {(ω,F,R) ∈ E | r(ω,F )= r}
angle sequence ∠(R,ω) for all (ω,F,R) ∈ E◦ (see Definition 4.12)

FIND a potential event E = (ω,F,R) ∈ E◦ with lexicographically
minimal angle sequence ∠(R,ω) (see Section 4)

RETURN the event E = (ω,F,R)

Routine 6.3 (Point ω ∈ϒ Can See R Through F )
INPUT facet F ∈F , ridge R ∈R, finite set of points ϒ ⊂ TF , and ω ∈ϒ

OUTPUT boolean variable � ∈ {True,False} (see Definition 4.12)
COMPUTE Voronoi diagram V(ϒ) (see Section 2)

IF Voronoi cell V (ϒ,ω)⊂ V(ϒ) contains a point interior to R

and ω lies on the same side of R as F does in TF
then � := True;
otherwise � := False

RETURN the variable �

In the pseudocode we have used the two different symbols “←” and “:=” to dis-
tinguish between those variables that are being updated and those that are being com-
pletely redefined at each iteration of the WHILE-DO loop. We hope this clarifies the
structure of Algorithm 6.1.

Theorem 6.4 For every convex polyhedron P ⊂ R
d+1 with boundary S = ∂P , and

any source point v in a facet of S, Algorithm 6.1 computes the source foldout Uv ⊆ Tv .

Proof First, we claim by induction that after each iteration of the WHILE-DO loop, the
set {(ν,F ) | F ∈ F and ν ∈ ϒF } is an order ideal in the source poset src(v, S) from
Definition 4.14. The claim is clear at the beginning of the algorithm. By construction,
Routine 6.2 picks a minimal potential event E to process. The loop then adds an
event by processing E, with the aid of Routine 6.3. Theorem 5.2 implies that what
results after processing E is still an order ideal of events, proving our claim. Since
the poset src(v, S) is finite by Lemma 2.4, the algorithm halts after a finite number of
loop iterations. Finally, by Theorem 2.9 the Voronoi cells in each facet coincide with
the polyhedral subdivision of each facet by the cut locus Kv , so Theorem 3.5 shows
that the foldout in the output is the desired (nonoverlapping) source foldout Uv . �

For purposes of complexity, we assume throughout this paper that the dimension d

is fixed. Thus, if the convex polyhedron P ⊂ R
d+1 of dimension d has n facets, so

P is presented as an intersection of n closed half-spaces, we can compute all of the
vertices and ridges of P in polynomial time [18, 39]. For simplicity, we assume these
are precomputed and appended to the input.

The timing of Algorithm 6.1 crucially depends on the number of source im-
ages. Let

srcv :=max
F∈F

|srcF
∣
∣

be the largest number of source images in a tangent plane TF for a facet F . (This
number can change if the source point v is moved. For example, srcv = 4 if v is in
the center of a face, while srcv = 12 if v is off-center as in Figs. 7 and 8.) Note that
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computing Voronoi diagrams for N points in R
d can be done in NO(d) time [18,

p. 381]. See [6, 12], and [17] for details and further references on Voronoi diagrams,
and [18] and [30] for other geometric and linear algebraic computations we use.

Theorem 6.5 When the dimension d is fixed, the cost of Algorithm 6.1 is polynomial
in the number n of facets and the maximal number srcv of source images for a facet.

Proof From the analysis in the proof of Theorem 6.4, the number of loop iterations
is at most |src(v, S)| ≤ |F | srcv ≤ n srcv . Within the main body of the algorithm,
only standard geometric and linear algebraic operations are used, and these are all
polynomial in n. Similarly, Routine 6.2 uses only linear algebraic operations for every
potential event E ∈ E . Note that the cardinality of the set of potential events E during
any iteration of the loop is bounded by |src(v, S)| · |F |2 ≤ (n srcv) · n2 = n3 srcv .

Routine 6.3 constructs Voronoi diagrams V(ϒ) for finite sets ϒ ⊂ R
d . This

computation requires |ϒ |O(d) ≤ ( srcv)O(d) time, which is polynomial for our fixed
dimension d . Therefore the total cost of the algorithm is also polynomial in n

and srcv . �

Corollary 6.6 Let v and w be two points on the boundary S of the convex (d +
1)-dimensional polyhedron P ⊂ R

d+1, and suppose that v lies interior to a facet.
Then the geodesic distance μ(v,w) on S can be computed in time polynomial in n

and srcv .

The restriction that v lie interior to a facet is unnecessary, and in fact Algorithm 6.1
can be made to work for arbitrary points v; see Sections 8.8 and 8.9.

Proof Use Algorithm 6.1 to compute the foldout map ϕ: Uv → S. Find w′ ∈ Tv
mapping to w = ϕ(w′) ∈ S, and compute the distance |v−w′|. By the isometry of
the exponential map in Theorem 3.5, we conclude that μ(v,w)= |v−w′|. �

Remark 6.7 The complexity of Algorithm 6.1 is exponential in d if the dimen-
sion is allowed to grow. For example, the number of vertices of P can be as large
as n�(d) [39]. Similarly, the number of cells in Voronoi diagrams of N points in R

d

can be as large as N�(d) [6, 17].
On the other hand, for fixed dimension d Algorithm 6.1 cannot be substantially im-

proved, because the input and the output have costs bounded from below by (a poly-
nomial in) n and srcv , respectively. This is immediate for the input since P is defined
by n hyperplanes. For the output, we claim that the foldout Uv in the output of Al-
gorithm 6.1 cannot be presented at a smaller cost because it is a (usually nonconvex)
polyhedron that has at least srcv boundary ridges, meaning faces of dimension d − 1
in the boundary of Uv . To see why, let F be a facet with srcv source images, and for
each ν ∈ srcF consider a shortest path γν whose sequential unfolding into TF has end-
point ν. If instead we sequentially unfold the paths γν into Tv , we get |srcF | = srcv
segments emanating from v. Extend each of these segments to an infinite ray. Some
of these infinite rays might pierce the boundary of Uv through faces of dimension
less than d − 1, but adjusting their directions slightly ensures that each ray pierces
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the boundary of Uv through a boundary ridge. These ridges are all distinct because
their corresponding rays traverse different facet sequences.

Of course, the efficiency of Algorithm 6.1 does not necessarily imply that it yields
an optimal solution to the discrete geodesic problem—or the unfolding problem, for
that matter. (The problem of computing any nonoverlapping unfolding, not necessar-
ily the source unfolding, is of independent interest in computational geometry [28].)
However, although srcv is not known to be polynomial in n, we conjecture in Sec-
tion 9 that it is. See Section 8.10 for more history of the discrete geodesic problem.

Remark 6.8 Following traditions in computational geometry, we have not specified
our model of computation. In most computational geometry problems the model is
actually irrelevant, since the algorithms are oblivious to it. In our case, however, the
situation is more delicate, due to the fact that during each iteration of the loop we
make a number of arithmetic operations that increase the error. More importantly,
we make comparisons, which potentially require sharp precision.

Theorem 6.5 and its proof hold as stated for the complexity over R model [9],
where there are no errors, and where all arithmetic operations and comparisons have
unit cost. While it would be more natural to consider the (usual) complexity over Z2
model [9], arithmetic over R is unfortunately inherent in the problem: the cut locus,
the source unfolding, and geodesic distances can all be irrational.

7 Convex Polyhedral Pseudomanifolds

Recall the notion of polyhedral complex from Section 1. The results in Sections 1–6
hold with relatively little extra work for polyhedral complexes S that are substantially
more general than boundaries of polytopes. Since the generality is desirable from the
point of view of topology, we complete this extra work here.

Suppose that x is a point in a polyhedral complex S. Denote by

Sx(ε)=
{
y ∈ S | μ(x, y)= ε

}

the geodesic sphere in S at radius ε from x. If 〈x〉 is the smallest face of S contain-
ing x, then for sufficiently small positive real numbers ε, the intersection 〈x〉 ∩ Sx(ε)

is an honest (Euclidean) sphere 〈x〉ε of radius ε around x. The set of points Nx in S

near x and equidistant from all points on 〈x〉ε is the normal space at x orthogonal
to 〈x〉 in every face containing x. The spherical link of x at radius ε is the set

Nx(ε)=
{
y ∈Nx | μ(x, y)= ε

}

of points in the normal space at distance ε from x. When ε is sufficiently small, the
intersection of Nx(ε) with any k-dimensional face containing x is a sector inside a
sphere of dimension k − 1− dim〈x〉. The metric μ on S induces a subspace metric
on the spherical link Nx(ε). Always assume ε is sufficiently small when Nx(ε) is
written.

Definition 7.1 Let S be a connected finite polyhedral cell complex of dimension d

whose facets all have dimension d . Given a point x inside the union Sd−2 of all
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faces in S of dimension at most d − 2, we say that S is positively curved at x if the
spherical link Nx(ε) is connected and has diameter less than πε. The space S is a
convex6 polyhedral complex if S is positively curved at every point x ∈ Sd−2.

This definition of positive curvature is derived from the one appearing in [34]. It
includes as special cases all boundaries of convex polyhedra; this is essentially the
content of Proposition 1.2.

Spherical links give local information about geodesics, as noticed by Stone (but
see also Section 4.2.2 of [10]).

Lemma 7.2 [34, Lemma 2.2] Suppose S is a convex polyhedral complex. Then γ̃ is
a shortest path of length αε in the spherical link Nx(ε) of a point x ∈ S if and only
if the union of all segments connecting points of γ̃ to x is isometric (with distances
given by the metric on S) to a sector of angle α inside a disk in R

2 of radius ε.

Although Stone only uses simplicial complexes, we omit the straightforward gen-
eralization to polyhedral complexes. Stone’s lemma forces shortest paths to avoid
low-dimensional faces in the presence of positive curvature.

Proposition 7.3 Proposition 1.2 holds for convex polyhedral complexes S.

Proof Using notation from Lemma 7.2, suppose that α < π , and let γ be the segment
connecting the endpoints of γ̃ through the sector of angle α. Then γ misses x. �

The rest of Section 1 goes through without change for convex polyhedral com-
plexes after we fix, once and for all, a tangent hyperplane TF ∼=R

d for each facet F .
The choice of a tangent hyperplane is unique up to isometry. For convenience, we
identify F with an isometric copy in TF , so that (for instance) we may speak as if F
is contained inside TF . This makes Definition 1.5, in particular, work verbatim here.

The main difficulty to overcome in the remainder of Sections 1–6 is the finiteness
in Lemma 2.4. In the context of convex polyhedral complexes, this finiteness is fun-
damental. It comes down to the fact that shortest paths never wind arbitrarily many
times around a single face inside of a fixed small neighborhood of a point. The state-
ment of the upcoming Proposition 7.4 would be false if we allowed infinitely many
facets, though it could still be made to hold in that case if the sizes of the facets and
their dihedral angles were forced to be uniformly bounded away from zero.

Proposition 7.4 Fix a real number r ≥ 0 and a convex polyhedral complex S. There
is a fixed positive integer N =N(r,S) such that the facet sequence Lγ of each short-
est path γ of length r in S has size at most N .

6Using “convex” instead of “positively curved’ allows usage of the term “nonconvex polyhedral com-
plex” without ambiguity: “nonpositively curved” is already established in the context of CAT(0) spaces to
mean (for polyhedral manifolds, at least) that no point has positive sectional curvature in any direction. In
contrast, “nonconvex” means that some point has a negative sectional curvature.
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Proof Pick a real number ε > 0 small enough so that the following holds. First, the
sphere Sx(ε) of radius ε centered at each vertex x only intersects faces containing x.
Then, for every point x on an edge but outside the union of the radius ε balls around
vertices, the sphere Sx(ε/2) only intersects faces containing x. Iterating, for every
point x on a face of dimension i but outside the union of all the previously con-
structed neighborhoods of smaller-dimensional faces, the sphere Sx(ε/2i ) only inter-
sects faces containing x. The existence of such a number ε follows from the fact that
every facet of S is convex, and that S has finitely many facets (Definition 7.1).

It suffices to prove the lemma with r = ε/2d . Let y be the midpoint of γ . The
closed ball By(ε/2d+1) of radius ε/2d+1 centered at y intersects some collection of
faces, and among these there is a face of minimal dimension k. Fix a point xk lying in
the intersection of this face with the ball By(ε/2d+1). The ball Bxk (ε/2k) contains γ

by the triangle inequality. However, Bxk (ε/2k) might also contain a point xj on a
face of dimension j < k. If so, then choose j to be minimal. Iterating this procedure
(at most d times) eventually results in a point x on a face of dimension i such that
Bx(ε/2i ) contains γ and only intersects faces containing x.

The metric geometry of S inside the ball Bx(ε/2i ) is the same as in Bx′(ε/2i ) for
every point x′ on the smallest face containing x, as long as Bx′(ε/2i ) only intersects
faces containing x′. Since S has finitely many faces by Definition 7.1, we reduce to
proving the lemma for shortest paths γ after replacing S by the ball B = Bx(ε/2i ).
In fact, we uniformly bound the number of facets traversed by any shortest path in B .
For simplicity, inflate the metric by a constant factor so that B has radius 2. By a face
of B we mean the intersection of B with a face of S.

Note that B is isometric to a neighborhood of the apex on the boundary of a right
circular cone when the dimension is d = 2. In this case shortest paths in B can pass
at most once through each ray emanating from x. We conclude that the lemma holds
in full (not just for B) when d = 2. Using induction on d , we assume that the lemma
holds in full for convex polyhedral complexes of dimension at most d − 1.

First suppose that x is not a vertex of S, so the smallest face 〈x〉 containing x

has positive dimension. Then B is isometric to a neighborhood of x in the product
〈x〉 × Nx of the face 〈x〉 with the normal space Nx . Projecting γ onto Nx yields a
shortest path γ̄ whose facet sequence in the convex polyhedral complex Nx has the
same size as Lγ . Induction on d completes the proof in this case.

Now assume that x is a vertex of S. If one of the endpoints of γ is x itself, then γ

is contained in some face of B . Hence we may assume from now on that x does not
lie on γ . Consider the radial projection from B\{x} to the unit sphere Sx(1) centered
at x in B . If the image of γ is a point, then again γ lies in a single face; hence we may
assume that radial projection induces a bijection from γ to its image curve γ̃ . Since
the geometry of B is scale invariant, every path γ ′ in B\{x} mapping bijectively to γ̃

under radial projection has a well-defined facet sequence equal to Lγ .
Choose another small real number ε as in the first paragraph of the proof, but with

B in place of S. Assume in addition that ε < 1/2π . Subdivide γ̃ into at least 2d/ε

equal arcs, and use Lemma 7.2 to connect the endpoints of each arc by straight seg-
ments in (the cone over γ̃ in) B . Lemma 7.2 implies that γ̃ has length at most π ,
because γ is a shortest path. Therefore each of the at least 2d+1π chords of γ̃ has
length at most 2d . The argument in the second paragraph of the proof now produces
a new center x′ for each chord, and we are assured that x′ 
= x because the ε-ball
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around x does not contain any of the chords. Hence the smallest face 〈x′〉 contain-
ing x′ has positive dimension, and we are done by induction on d as before. �

We shall see in Corollary 7.7 that Proposition 7.4 implies finiteness of the set of
source images. However, first we need to introduce the class of polyhedral complexes
for which the notion of source image—and hence the rest of Sections 1–6—makes
sense.

Definition 7.5 A convex polyhedral complex S of dimension d is a convex polyhe-
dral pseudomanifold if S satisfies two additional pseudomanifold conditions: (i) each
facet is a bounded polytope of dimension d , and (ii) each ridge lies in at most two
facets.

Remark 7.6 The “A.D. Aleksandrov spaces with curvature bounded below by 0”
of [10] include convex polyhedral pseudomanifolds; see Example 2.9(6) there.
Some of our results here, such as surjectivity of exponential maps and nonbranch-
ing of geodesics, are general—and essentially local—properties of spaces with
curvature bounded below by zero. However, our focus is on decidedly global
issues pertaining to the combinatorial and polyhedral nature of convex polyhe-
dral pseudomanifolds, rather than on a local analogy with Riemannian geome-
try. That being said, many of our results here can be extended to convex “poly-
hedral” pseudomanifolds with facets of constant positive curvature instead of
curvature zero. We leave this extension to the reader.

A flat point in an arbitrary convex polyhedral complex need not have a neighbor-
hood isometric to an open subset of R

d , because more than two facets could meet
there. In a convex polyhedral pseudomanifold, on the other hand, every flat point not
lying on the topological boundary has a neighborhood isometric to an open subset
of R

d . This condition is necessary for even the most basic of our results to hold,
including Corollary 2.2 (whose proof works verbatim for convex polyhedral pseudo-
manifolds), and the definition of source image (which would require modification
without it; see Section 8.3).

We would have preferred to avoid the boundedness condition on facets, but the
finiteness of the set of source images in Lemma 2.4 can fail without it; see Section 8.6.

Corollary 7.7 Lemma 2.4 holds for convex polyhedral pseudomanifolds S.

Proof Since every facet is bounded, the lengths of all shortest paths in S are uni-
formly bounded. Proposition 7.4 therefore implies that there are only finitely many
possible facet sequences among all shortest paths in S from the source. �

Corollary 7.7 yields the following consequences, with the same proofs.

Theorem 7.8 Proposition 2.6 on the generalization of Mount’s lemma and The-
orem 2.9 on Voronoi diagrams hold verbatim for convex polyhedral pseudomani-
folds S.
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The rest of Section 2 requires slight modification due to the fact that a convex
polyhedral pseudomanifold S can have a nonempty topological boundary ∂S.

Proposition 7.9 Fix a source point v in a convex polyhedral pseudomanifold S.
Every warped point lies either in the topological boundary of S or in the cut lo-
cus Kv .

Proof The same as Proposition 2.10, assuming w is not in the boundary of S. �

In view of Proposition 7.9, the statement of Corollary 2.11 fails for convex polyhe-
dral pseudomanifolds. Instead we get the following, with essentially the same proof.

Corollary 7.10 If v is a source point in a convex polyhedral pseudomanifold S, then

1. Kv ∪ ∂S is polyhedral and pure of dimension d − 1, and
2. Kv ∪ ∂S is the union Kv ∪ Sd−2 ∪ ∂S of the cut, warped, and boundary points.

The considerations in Section 3 go through with one small modification: the non-
compact flat Riemannian manifold S◦ is the complement in S of not just the (d − 2)-
skeleton Sd−2, but also the topological boundary ∂S of S. The notion of what it
means that a tangent vector at w ∈ S can be exponentiated (Definition 3.3) remains
unchanged, as long as w lies neither in Sd−2 nor the boundary of S. Similarly, the
notion of source interior (Definition 3.4) remains unchanged except that the exponen-
tials exp(tζ ) for 0≤ t ≤ 1 must lie in neither the cut locus Kv nor the boundary ∂S.

Theorem 7.11 Fix a source point v in the convex polyhedral pseudomanifold S. The
exponential map exp: Uv → S on the source foldout is a polyhedral nonoverlapping
foldout, and the boundary Uv\Uv maps onto Kv ∪ ∂S. Hence Kv ∪ ∂S is a cut set
inducing a polyhedral nonoverlapping unfolding S\(Kv ∪ ∂S)→ Uv to the source
interior.

Proof Using Corollary 7.10 in place of Corollary 2.11, the proof is the same as that of
Theorem 3.5, except that every occurrence of S\Kv must be replaced by S\(Kv∪∂S),
and the open subspace S◦ must be defined as S\(Sd−2 ∪ ∂S) instead of S\Sd−2. �

Corollary 7.12 Every convex polyhedral pseudomanifold of dimension d is, as a met-
ric space, obtained from a closed, star-shaped, polyhedral ball in R

d by identifying
pairs of isometric boundary components.

Section 4 concerns local geometry in the context of convex polyhedra, and there-
fore requires no modification for convex pseudomanifolds, given that all of the earlier
results in the paper hold in this more general context.

In Section 5 the only passage that does not seem to work verbatim for convex
polyhedral pseudomanifolds is the proof of Proposition 5.5. That proof is presented
using language as if F and F ′ were embedded in the same Euclidean space R

d+1,
as they are in the case S = ∂P . This embedding can be arranged in the general case
here by choosing identifications of TF and TF ′ as subspaces of R

d+1 in such a way
that the copies of F and F ′ intersect as they do in S.
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Finally, the algorithm in Section 6 works just as well for convex polyhedral
pseudomanifolds, as long as these spaces are presented in a manner that includes
the structure of each facet as a polytope and the adjacency relations among facets.
For example, folding maps along ridges shared by adjacent facets can be represented
as linear transformations after assigning a vector space basis to each tangent hyper-
plane.

For the record, let us summarize the previous three paragraphs.

Theorem 7.13 The results in Sections 4–6 hold verbatim for convex polyhedral
pseudomanifolds S in place of boundaries of convex polyhedra.

8 Limitations, Generalizations, and History

The main results in this paper are more or less sharp, in the sense that further exten-
sion would make certain aspects of them false. In this section we make this sharpness
precise, and also point out some alternative generalizations of our results that might
hold with requisite modifications. Along the way, we provide more history.

8.1 Polyhedral versus Riemannian

The study of geodesics on convex surfaces, where d = 2, goes back to ancient times
and has been revived by Newton and the Bernoulli brothers in modern times. The
study of explicit constructions of geodesics on two-dimensional polyhedral surfaces
was initiated in [23], and is perhaps much older.

The idea of studying the exponential map on polyhedral surfaces goes back to
Aleksandrov [3, Section 9.5], who introduced it locally when d = 2. He referred to
images of lines in the tangent space TF to a facet F as quasi-geodesic lines on the
surface, and proved some results on them specific to the dimension d = 2. Among
his other results was the d = 2 case of Proposition 1.2.

A detailed analysis of the cut locus of two-dimensional convex polyhedral surfaces
was presented in [37]. This paper, seemingly overlooked in the West, gives a complete
description of certain convex regions called “peels” in [5], which can be used to
construct source unfoldings. The approach in [37] is inherently two-dimensional and
nonalgorithmic.

The study of exponential maps on Riemannian manifolds is classical [21]. Wolter
[38] proved properties of cut loci in the Riemannian context that are quite similar to
our results describing the cut locus as the closure of the set of cut points. In fact, we
could deduce part 2 of our Corollary 2.11 from Lemma 2 of [38]—in the manifold
case, at least—using Proposition 1.2 (which has no analogue in Riemannian geom-
etry). The method would be to “smooth out” the warped locus to make a sequence
of complete Riemannian manifolds converging (as metric spaces) to the polyhedral
complex S, such that the complement of an ever decreasing neighborhood of the
warped locus in S is isometric to the corresponding subset in the approximating man-
ifold. Every shortest path to v in S is eventually contained in the bulk complement of
the smoothed neighborhood.
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Fig. 13 Points in the shaded region have exactly two shortest paths to v; all of these paths go through the
warped point w.

This method does not extend to the polyhedral case where S is allowed to be
nonconvex, because Proposition 1.2 fails: shortest paths (between flat points) can
pass through warped points (Fig. 13). Moreover, the polyhedrality in the first part of
Corollary 2.11 fails systematically when S is allowed to be nonconvex (see [26]).

8.2 Low-Dimensional Flat Faces

We assumed in Definition 7.1 that faces of dimension d − 2 or less in convex polyhe-
dral complexes must be nontrivially curved. Allowing convex polyhedral complexes
where low-dimensional faces can be flat would break the notion of a facet sequence in
Corollary 1.4, and would cause the set of warped points to differ from the union of all
closed faces of dimension d − 2, in general. The resulting definitions of folding map
and sequential unfolding would be cumbersome if not completely opaque. Nonethe-
less, the resulting definitions would be possible, because shortest paths would still
enter facets (and, in fact, all faces whose interiors are flat) at well-defined angles. The
notion of an exponential map would remain unchanged.

Definition 2.3 and Theorem 2.9 should hold verbatim for the modified notion of
convex polyhedral pseudomanifold in which low-dimensional flat faces are allowed,
because the generalized Mount Lemma (Proposition 2.6) should remain true. Note
that Mount’s lemma relies mainly on Proposition 1.2 and Corollary 2.2. The latter
might be more difficult to verify in the presence of low-dimensional flat faces, be-
cause it needs every flat point to have a neighborhood isometric to an open subset
of R

d . Thus one might have to assume S is a manifold, and not just a pseudomani-
fold.

Observe that Fig. 6 depends on not having low-dimensional flat faces: it uses the
fact that the vertex bordering the shaded region must lie in the cut locus.

8.3 Why the Pseudomanifold Conditions?

Theorem 2.9 fails for convex polyhedral complexes that are not pseudomanifolds,
even when there are no flat faces of small dimension. Indeed, with the notion of
cut point set forth in Definition 2.1, entire facets could consist of cut points. To see
why, suppose there is a cut point interior to a ridge lying on the boundary of three
or more facets, and note that the argument using Fig. 4 in the proof of Corollary 2.2
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Fig. 14 Aleksandrov unfolding of the cube (the source point v is on the front face, while the left and back
faces have no cuts).

fails. For a more concrete construction in dimension d = 2, find a convex polyhedral
pseudomanifold with a source point so that some edge in the cut locus connects two
vertices (for example, take a unit cube with a source point in the center of a facet;
see Fig. 1), and then attach a triangle along that edge of the cut locus. The attached
triangle (“dorsal fin”) consists of cut points.

The proof of Theorem 2.9 fails for nonpseudomanifolds S when we use the thin-
ness of the cut set in the proof of Proposition 2.6. The appropriate definition of cut
point x for convex polyhedral complexes more general than pseudomanifolds should
say that two shortest paths from x to the source leave x in different directions—that
is, they pierce the geodesic sphere Sx(ε) at different points. However, Corollary 2.2
would still fail for shortest paths entering the “dorsal fin” constructed above.

8.4 Aleksandrov Unfoldings

The dimension d = 2 foldouts called “star unfoldings” in [5, 13], and [1] were con-
ceived of by Aleksandrov in Section 6.1 of [3]. Thus we propose here to use the term
“Aleksandrov unfolding” instead of “star unfolding,” since in any case these fold-
outs need not be star-shaped polygons. We remark that a footnote in the same section
in [3] indicates that Aleksandrov did not realize the nonoverlapping property, which
was only established four decades later [5].

Aleksandrov unfoldings are defined for three-dimensional polytopes P similarly
to source unfoldings. The idea is again to fix a source point v, but then slice the
boundary S of P open along each shortest path connecting v in S to a vertex. An
example of the Aleksandrov unfolding of the cube is given in Fig. 14 (see also Fig. 5).
Note that when the source point is in the center of the face, the resulting Aleksandrov
unfolding agrees with the source unfolding in Fig. 1.

There is a formal connection between source and Aleksandrov unfoldings. Starting
from the source unfolding, cut the star-shaped polygon Uv into sectors—these are
“peels” as in Section 8.1—by slicing along the shortest paths to images of vertices.
Rearranging the peels so that the various copies of v lie on the exterior cycle yields a
nonoverlapping foldout [5] containing an isometric copy of the bulk of the cut locus.
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Fig. 15 Source and Aleksandrov unfoldings of the cube, where the corresponding peels in both unfoldings
are numbered from 1 to 8.

Fig. 16 Shortest paths to warped points making edges look disconnected.

This rearrangement is illustrated in Fig. 15, which continues Example 3.6 (see [1] for
further references).

No obvious higher-dimensional analogue of the Aleksandrov unfolding exists, be-
cause although the union of all shortest paths connecting the source point to warped
points is polyhedral, this complex is not a cut set as per Definition 3.1. Indeed, think-
ing in terms of source foldouts again, the union of all rays passing from the origin
through the images of warped points does not form the (d − 1)-skeleton of a fan of
polyhedral cones. Even when d = 3, edges of S closer to the source point can make
edges farther away look disconnected, as seen from the source point. An example
of how this phenomenon looks from v is illustrated in Fig. 16, where the picture is
meant to look like the roof of a building as seen from above.

Circumventing the above failure of Aleksandrov unfoldings in high dimension
would necessarily involve dealing with the fact that the set Sd−2 of warped points
generically intersects the cut locus Kv in a polyhedral set of dimension d − 3. This
“warped cut locus” usually contains points interior to maximal faces of Kv , making
it impossible for these interiors of maximal cut faces to have neighborhoods in S

isometric to open sets in R
d , even locally. Thus the picture in Fig. 15, where most

of the cut locus can lie intact in R
2, is impossible in dimension d ≥ 3. The only
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remedy would be to make further slices across the interiors of the maximal faces of
the cut locus Kv before attempting to lay it flat in R

d . Making these extra slices in a
canonical way, to generalize Aleksandrov unfoldings to arbitrary dimension, remains
an open problem.

8.5 Definition of Source Image

Some subtle geometry dictated our choice of definition of “source image” (Defi-
nition 2.3). With no extra information available, we might alternatively have tried
defining srcF as the (finite) set of endpoints of sequentially unfolded shortest paths

• ending at a point interior to F ; or
• ending anywhere on F , including at a warped point.

Both look reasonable enough; but the first fails to detect faces of dimension d − 1 in
the cut locus that lie entirely within ridges of S, while the second causes problems
with verifying the generalized Mount Lemma (Proposition 2.6) as well as Proposi-
tion 5.5 and Lemma 5.8. It is not that the generalized Mount Lemma would be false
with these “bonus” source images included, but the already delicate proof would fail.
In addition, having these extra source images would add unnecessary bulk to the
source poset.

8.6 Finiteness of Source Images

As we saw in Lemma 2.4 for boundaries of polyhedra, or Proposition 7.4 and Corol-
lary 7.7 for convex polyhedral pseudomanifolds, the number of source images is fi-
nite. The argument we gave in Lemma 2.4 relies on the embedding of S as a polyhe-
dral complex inside R

d+1 in such a way that each face is part of an affine subspace
(i.e. not bent or folded). This embedding can be substituted by the more general con-
dition that the polyhedral metric on each facet is induced by the metric on S (so pairs
of points on a single facet are the same distance apart in S as in the metric space con-
sisting of the isolated facet). With this extra hypothesis, we would get finiteness of the
set of source images even for convex polyhedral pseudomanifolds whose facets were
allowed to be unbounded. However, allowing unbounded facets in arbitrary convex
polyhedral pseudomanifolds can result in facets with infinitely many source images.

For example, consider an infinite strip in the plane, subdivided into three substrips
(one wide and two narrow, to make the picture clearer). Fix a distance � > 0, and
glue each point on one (infinite) boundary edge of the strip to the point � units away
from its closest neighbor on the opposite (infinite) edge of the strip. What results
is the cylinder S in Fig. 17. This cylinder would be a convex polyhedral manifold
if its facets were bounded. The source foldout Uv determined by a source point v

in the middle of the wide substrip is depicted beneath S, shrunken vertically by a
factor of about 2. The cut locus Kv , which is a straight line along the spine of S,
divides each substrip into infinitely many regions, so each substrip has infinitely
many source images.
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Fig. 17 A source foldout with infinitely many source images.

8.7 Generic Source Points

For generic choices of source point v, the source poset will be a chain—that is, a
total order on events. The reason is that moving v infinitesimally changes differently
the angles from different source images to ridges containing the same event point,
precisely because these source images are sequentially unfolded along shortest paths
leaving v in different directions. Note, however, that the distances from these various
source images to the same event point always remain equal.

8.8 Warped Source Points

We assumed that the source point v ∈ S lies in the relative interior of some facet;
however, nothing really changes when v lies in the relative interior of some ridge.
This can be seen by viewing the exponential map as living on the interior flat points
S◦ ⊆ S, as in Section 3.

Moreover, simple modifications can generalize the exponential map to the case
where v is warped. However, exponentiation on the complement of the cut locus
cannot produce a nonoverlapping foldout in R

d if v ∈ Sd−2, because the resulting cut
locus would not be a cut set. Indeed, the cut locus would fail to contain all of Sd−2, so
its complement could not possibly be isometric to an open subset of R

d . On the other
hand, exponentiation would instead produce a foldout of S onto the tangent cone to S

at v. The main point is that the source point still connects to a dense set of points in S

via shortest paths not passing through warped points, by Proposition 1.2.

8.9 Multiple Source Points

Let ϒ = {v1, . . . , vk} ⊂ S be a finite set of points on the boundary S = ∂P of a convex
polyhedron P . Define the geodesic Voronoi diagram VS(ϒ) to be the subdivision of S
whose closed cells are the sets

VS(ϒ,vi)=
{
w ∈ S | μ(vi,w)≤ μ(vj ,w) for all 1≤ j ≤ k

}
.

Just like the (usual) Voronoi diagrams, computing geodesic Voronoi diagrams is an
important problem in computational geometry, with both theoretical and practical
applications [2, 22, 29] (see [24] and [18] for additional references).
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Below we modify Algorithm 6.1 to compute the geodesic Voronoi diagrams in S

when multiple source points are input. The modified algorithm outputs subdivisions
of the facets of S that indicate which source point is closest. More importantly, it also
computes which combinatorial type of geodesic gives a shortest path. In the code
below, the WHILE-DO loop and the routines remain completely unchanged. The only
differences are in the initial and final stages of the pseudocode.

Algorithm 8.1 (Computing the Geodesic Voronoi Diagram)
INPUT convex polyhedron P ⊂R

d+1 of dimension d + 1, and
flat points v1, . . . , vk in the boundary S = ∂P

OUTPUT geodesic Voronoi diagram VS(ϒ) in S

INITIALIZE ϒF := {vi | vi ∈ F }, Lvi ,F := (F ) for vi ∈ϒF , and
EF := {(vi,F,R) ∈ ÊF | POINT vi ∈ϒF CAN SEE R THROUGH F }
[ . . . ]

COMPUTE for each i: srci := {(ν,F ) | F ∈F , ν∈ϒF , and Lν,F begins with Fi}, and
for each i: the subset VS(ϒ,vi) :=⋃(ν,F )∈srci V (ϒF , ν)∩ F of S

RETURN geodesic Voronoi diagram VS(ϒ)= (VS(ϒ,v1), . . . , VS(ϒ,vk))

That some of the source points v1, . . . , vk might lie in the same facet necessitates
the call to Routine 6.3 in the initialization of EF . As we did before Theorem 6.5,
define src to be the maximal number of source images for a single facet.

Theorem 8.2 Let P ⊂ R
d+1 be a convex polyhedron and let S = ∂P , with source

points v1, . . . , vk in S\Sd−2. For fixed dimension d , Algorithm 8.1 computes the
geodesic Voronoi diagram VS(ϒ) in time polynomial in k, the number n of facets,
and src.

The proof is a straightforward extension of the proof of Theorems 6.4 and 6.5; it
is omitted. Using observations in Section 8.8, it is possible to modify Algorithm 8.1
to work for a set of arbitrary (that is, possibly warped) source points.

8.10 The Discrete Geodesic Problem

One of our motivating applications for this paper was to the discrete geodesic prob-
lem of computing geodesic distances and the shortest paths between points v and w

in S. The reduction of this problem to computing source unfoldings is easy: construct
the source foldout Uv in the tangent cone at v, and compute the Euclidian distance
between the images.

We should mention here that for d = 2 essentially two methods are used in the lit-
erature to resolve the discrete geodesic problem: the construction of nonoverlapping
unfoldings as above (see [1, 13], and [33]), and the so-called “continuous Dijkstra”
method, generalizing Dijkstra’s classical algorithm [15] for finding shortest paths
in graphs. The second method originated in [26] and is applicable to nonconvex sur-
faces (see also [20] and [32], where the appendix to the latter paper contains a critique
of the former). Interestingly, this method constructs an explicit geodesic wavefront,
and then selects and performs “events” one at a time. However, the time-ordering of
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events is based on the d = 2 fact that the wavefront intersects the union of ridges
(edges, in this case) in a finite set of points. Our approach is a combination of these
two algorithmic methods, which have previously been separated in the literature. We
refer the reader to [24] for more references and results on the complexity of discrete
geodesic problems. In general, computing geodesic distances on arbitrary polyhedral
complexes remains a challenging problem of both theoretical and practical interest.

9 Open Problems and Complexity Issues

The source poset succeeds at time-ordering the events during wavefront expansion,
but it fails to describe accurately how the wavefront bifurcates during expansion,
because every event of radius less than r occurs before the first event of radius r

in the source poset. On the other hand, the notion of “geodesic precedence” from
Definition 5.3 implies a combinatorial structure recording bifurcation exactly.

Definition 9.1 Given a source point v on a convex polyhedral pseudomanifold S,
the vistal tree T (v, S) is the set of events, partially ordered by geodesic precedence.

The definition of geodesic precedence immediately implies that T (v, S) is indeed
a rooted tree. It records the facet adjacency graph of the polyhedral decomposition of
the source foldout Uv into cut cells of dimension d . Equivalently, this data describes
the “vista” seen by an observer located at the source point—that is, how the visual
field of the observer is locally subdivided by pieces of warped faces. Proposition 5.5
says precisely that the identity map on the set of events induces a poset map from
the vistal tree to the source poset. In particular, when the source point is generic as in
Section 8.7, the source poset is a linear extension of the vistal tree.

There are numerous interesting questions to ask about the vistal tree, owing to its
geometric bearing on the nature of wavefront expansion on convex polyhedra. For
example, its size, which is controlled by the extent of branching at each node, is
important for reasons of computational complexity (Theorem 6.5).

Conjecture 9.2 The cardinality |src(v, S)| of the set of source images for a polyhe-
dral boundary S is polynomial in the number of facets when the dimension d is fixed.

Hence we conjecture that there is a fixed polynomial fd , independent of both S

and v, such that |src(v, S)|< fd(n) for all boundaries S = ∂P of convex polyhedra P

of dimension d + 1 with n facets, and all source points v ∈ S. Note that the cardinality
in question is at most factorial in the number of facets: |src(v, S)|< n · (n− 1)! = n!.
Indeed, each source image yields a facet sequence, and each of these has length at
most n, starts at with facet F containing v, and does not repeat any facet.

To demonstrate the strength of Conjecture 9.2, the following weaker (but perhaps
more natural) claim is an immediate consequence.

Conjecture 9.3 The number of shortest paths joining any pair of points in a polyhe-
dral boundary is polynomial in the number of facets when the dimension is fixed.
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Conjecture 9.3 says that only polynomially many cut cells can meet at a single
point, whereas Conjecture 9.2 says there are only polynomially many cut cells in to-
tal.

In contrast, we also believe a stronger statement than Conjecture 9.2 holds
for boundaries of convex polyhedra. Given a shortest path γ , both of whose
endpoints lie interior to facets, call the facet sequence Lγ traversed by γ , the
combinatorial type of γ (this is called the edge sequence in [27] for the d = 2 case).

Conjecture 9.4 The cardinality of the set of combinatorial types of shortest paths in
the boundary S of a convex polyhedron is polynomial in the number of facets of S,
when the dimension is fixed.

That is, we do not require one endpoint to be fixed at the source point. The state-
ment is stronger than Conjecture 9.2 because source images are in bijection with
combinatorial types of shortest paths in S with endpoint v. In all three of the previous
conjectures, the degree of the polynomial will increase with d , even perhaps linearly.
When d = 2 all three conjectures have been proved (see [1] and [13]).

The intuition for Conjecture 9.2 is that, as seen from the source point in a con-
vex polyhedral boundary S, the faces of dimension d − 2 more or less subdivide the
horizon into regions. (The horizon is simply the boundary of the source foldout Uv ,
as seen from v.) The phrase “more or less” must be made precise, of course; and our
inability to delete it altogether is a result of exactly the same phenomenon in Fig. 16
that breaks the notion of Aleksandrov unfoldings in higher dimension.

The reason we believe Conjecture 9.4 is that we believe Conjecture 9.2, and there
should not be too many combinatorial types of vistal trees. More precisely, moving
the source point a little bit should not alter the combinatorics of the vistal tree, and
there should not be more than polynomially many possible vistal trees. In fact, we
believe a stronger, more geometric statement. It requires a new notion.

Definition 9.5 Two source points are equivistal if their vistal trees are isomorphic,
and corresponding nodes represent the same facet sequences.

Again, the facet sequence corresponding to a node of the vistal tree is the list of
facets traversed by any shortest path whose sequential unfolding yields the corre-
sponding source image. Hence two source points are equivistal when their views of
the horizon look combinatorially the same.

Conjecture 9.6 The equivalence relation induced by equivistality constitutes a con-
vex polyhedral subdivision of the boundary S of any convex polyhedron. Moreover,
the number of open regions in this subdivision is polynomial in the number of facets
of S.

Independent from the conjecture’s validity, the vistal subdivision it speaks of—
whether convex polyhedral or not—is completely canonical: it relies only on the
metric structure of S. In addition, lower-dimensional strata of the vistal subdivision
should reflect combinatorial transitions between neighboring isomorphism classes of
vistal trees. Thus Conjecture 9.6 gets at the heart of a number of issues surrounding
the interaction of the metric and combinatorial structures of convex polyhedra.
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Remark 9.7 An important motivation behind the above ideas lies in the computation
of the geodesic diameter of the boundary of a convex polytope. This is a classical
problem in computational geometry, not unlike computing diameters of finite graphs
(for the d = 2 case see [5] and [1]). One possibility, for example, would be to compute
the vistal subdivision in Conjecture 9.6, and use this data to list the combinatorial
types of shortest paths. Each combinatorial type could then be checked to determine
how long its corresponding shortest paths can be. Conjectures 9.4 and 9.6 give hope
that the geodesic diameter problem can be solved in polynomial time.

We remark here that the polynomial complexity conjectures fail for nonconvex
polyhedral manifolds of dimension d ≥ 2. Note that this does not contradict the fact
that when d = 2 there exists a polynomial time algorithm to solve the discrete geo-
desic problem (see Section 8.10 above). Indeed, the number of source images gives
only a lower bound for our algorithm, while the problem is resolved by a different
kind of algorithm. On the other hand, we show below that for d ≥ 3 the discrete geo-
desic problem is NP-hard. The following result further underscores the difference
between the convex and nonconvex case.

Proposition 9.8 On (nonconvex) polyhedral manifolds, the number of distinct com-
binatorial types of shortest paths can be exponential in the number of facets. In ad-
dition, finding a shortest path on a (nonconvex) polyhedral manifold is NP-hard.

We present two proofs of the first part: one that is more explicit and works for
all d ≥ 2, and the other that is easy to modify to prove the second part. For the proof
of the second part we construct a three-dimensional polyhedral manifold, which is
essentially due to Canny and Reif [11]. See Remark 9.9 for comments on how to
doctor these manifolds to make them compact and without boundary.

Proof To obtain a polyhedral domain with exponentially many shortest paths be-
tween two points x and y, we consider a dimension d = 2 example. Simply take a
pyramid shape polyhedral surface as shown in Fig. 18 and observe that there exist 2k

shortest paths between top point v and bottom vertex w, where k is the number of
terraces in the pyramid. The omitted details are straightforward.

Now consider a dimension d = 3 example of a different type. Polyhedrally sub-
divide R

3 by taking the product of a line �=R with the subdivision of R
2 in

Fig. 19. Observe that there are only finitely many cells. Now add 4n hyperplanes
H0, . . . ,H4n−1 orthogonal to �, and equally spaced along �. This still leaves finitely
many convex cells. Between hyperplanes H4k and H4k+1, for all k = 0 · · ·n− 1, re-
move all cells except the prisms whose bases are the top and bottom triangles in
Fig. 19. Similarly, between hyperplanes H4k+2 and H4k+3, remove all cells except
the prisms whose bases are the left and right triangles in Fig. 19.

Now choose x and y to be points on �, with x being on one side of all the hyper-
planes, and y being on the other side. Any shortest path connecting x to y must pass
alternately through vertical and horizontal pairs of triangular prisms, and there is no
preference for which of the two prisms in each pair the shortest path chooses. Thus
the number of shortest paths is at least 4n, while the number of cells is linear in n.
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Fig. 18 Nonconvex polyhedral surface in R
3 and shortest paths between points v and w.

Fig. 19 Polyhedral subdivision of a planar slice in R
3.

For the second part, a construction in [11] presents a polyhedral domain B where
the shortest path solution is NP-hard. This domain B is obtained by removing a set
of parallel equilateral triangles from R

3. To produce a manifold one has to thicken
the triangles into nearly flat triangular prisms. We omit the details. �

Remark 9.9 The polyhedral manifold S in the above proof is noncompact and has
nonempty boundary; but with a little extra work, we could accomplish the same ef-
fect using a compact polyhedral manifold without boundary. The idea is to draw a
large cube C around S in R

3, and place copies Ctop and Cbot of C as the top and bot-
tom facets of a hollow hypercube inside R

4. The remaining six facets of the hollow
hypercube are to remain solid. The result is compact, but still has nonempty boundary
in Ctop and Cbot. This we fix by building tall three-dimensional prisms in R

4 on the
boundary faces, orthogonal to Ctop and Cbot, pointing away from the hypercube. Then
we can cap off the prisms with copies of the cells originally excised from C ⊂R

3 to
get a nonconvex polyhedral 3-sphere in R

4.
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Remark 9.10 The reader should not be surprised by the fact that computing the geo-
desic distance is NP-hard for nonconvex manifolds. On the contrary, in most situa-
tions the problem of computing the shortest distance is intractable, and in general is
not in NP. We refer to [25] for further hardness results in the geometric context. In a
different, more traditional, context, finding the shortest distance in a Cayley graph be-
tween two elements in a permutation group (presented by a list of generators in SN ) is
known to be NP-hard even for abelian groups [16]. Furthermore, for directed Cayley
graphs the problem is PSPACE-complete [19].

Our final conjecture concerns the process of unfolding boundaries of convex poly-
hedra: if someone provides a polyhedral nonoverlapping foldout made of hinged
wood, is it always possible to glue its corresponding edges together? Because wood
is rigid, we need not only a nonoverlapping property on the foldout as it lies flat on
the ground, but also a nonintersecting property as we continuously fold it up to be
glued.

Viewing this process in reverse, can we continuously unfold the polyhedral bound-
ary so that all dihedral angles monotonically increase, until the whole polyhedral
boundary lies flat on a hyperplane? This idea was inspired by recent works [8, 14]
and was suggested by Connelly.7 While the monotone increase of the dihedral angles
may seem an unnecessary condition justified only by the aesthetics of the blooming,
it is in fact crucial in the references above.

As we have phrased things above, we asked for continuous unfolding of an arbi-
trary nonoverlapping foldout. However, in fact, we only want to ask that there exist
a foldout that can be continuously glued without self-intersection. Let us be more
precise.

Definition 9.11 Let S be the boundary of a convex polyhedron of dimension d + 1
in R

d+1. A continuous blooming of S is a choice of nonoverlapping foldout U → S,
and a homotopy {φt : U →R

d+1 | 0≤ t ≤ 1} such that

1. φ0 is the foldout map U → S;
2. φ1 is the identity map on U ;
3. φt is an isometry from the interior U of U to its image, and φt is linear on each

component of the complement of the cut set in each facet, for 0 < t < 1; and
4. the dihedral angles between corresponding facets of φt (U) increase as t increases.

An example of a continuous blooming is given in Fig. 20.

Fig. 20 An example of a continuous blooming of the surface of the cube.

7Private communication.
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Conjecture 9.12 Every convex polyhedral boundary has a continuous blooming.

Even though we ask only for existence, we believe that in fact the source unfold-
ing can be continuously bloomed. As far as we know, this is open even for d = 2.
Interestingly, we know of no nonoverlapping unfolding that cannot be continuously
bloomed, and remain in disagreement on their potential existence.
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Empty Simplices of Polytopes and Graded Betti
Numbers

Uwe Nagel

Abstract The conjecture of Kalai, Kleinschmidt, and Lee on the number of empty
simplices of a simplicial polytope is established by relating it to the first graded Betti
numbers of the polytope and applying a result of Migliore and the author. This ap-
proach allows us to derive explicit optimal bounds on the number of empty simplices
of any given dimension. As a key result, we prove optimal bounds for the graded
Betti numbers of any standard graded K-algebra in terms of its Hilbert function.

1 Introduction

Let P ⊂R
d be a simplicial d-polytope, i.e., the d-dimensional convex hull of finitely

many points in R
d such that all its faces are simplices. The simplest combinatorial

invariant of P is its f -vector f = (f−1, f0, . . . , fd−1) where f−1 := 1 and fi is
the number of i-dimensional faces of P if i ≥ 0. In [14] McMullen conjectured a
characterization of the possible f -vectors. In order to state his conjecture we use
an equivalent set of invariants, the h-vector h := (h0, . . . , hs). It is defined as the
sequence of coefficients of the polynomial

s∑

j=0

hj z
j :=

d∑

j=0

fj−1 · zj (1− z)d−j .

The f -vector can be recovered from the h-vector because
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fj−1 =
j∑

i=0

(
d − i

j − i

)

hi.

Using h-vectors we can state McMullen’s conjecture which has become a proven
statement by combining the results of Billera and Lee [2] and Stanley [20] (see
also [15]).

Theorem 1.1 (g-Theorem) A sequence h = (h0, . . . , hs) of positive integers is the
h-vector of a simplicial d-polytope if and only if s = d and h is an SI-sequence, i.e.,
h satisfies:

(i) (Dehn–Sommerville equations) hi = hd−i for i = 0, . . . , d .
(ii) g := (h0, h1 − h0, . . . , h�d/2� − h�d/2�−1) is an O-sequence.

Being an O-sequence is a purely numerical condition (see Sect. 3). Note that
O-sequences are precisely the Hilbert functions of Artinian standard graded
K-algebras.

In order to prove sufficiency of these conditions, in [2] Billera and Lee con-
struct, for each SI-sequence h := (h0, . . . , hd), a certain simplicial d-polytope
PBL(h) whose h-vector is the given SI-sequence h. The Billera–Lee polytopes
are rather particular which has led to expectations that they have some extremal
properties. In order to state one such instance recall (see [11]) that an empty
simplex of the polytope P is a smallest subset S of the vertex set of P such
that S is not a face of P , but each proper subset of S is a face of P . Some-
times, empty simplices are called missing faces. They are just minimal non-faces
of the vertex set of P . Empty simplices play an important role in the classifica-
tion of polytopes (see, e.g., [9] and Remark 4.19). In [10] Kalai states as Conjec-
ture 2:

Conjecture 1.2 (Kalai, Kleinschmidt, Lee) For all simplicial d-polytopes with pre-
scribed h-vector h, the number of j -dimensional empty simplices is maximized by the
Billera–Lee polytope PBL(h).

Kalai has pointed out in Theorem 19.5.35 of [11] that this conjecture is a con-
sequence of results by Migliore and the author [16], but his argument needs some
adjustment. The starting point of this note is to point out in detail the connection to
the results in [16] that leads to a proof of the conjecture in Theorem 2.3.

The construction of the Billera–Lee polytopes is rather involved. In general, the
number of empty j -simplices of a given Billera–Lee polytope PBL(h) has not been
known. Hence, the proof of Conjecture 1.2 leaves open the problem of giving an ex-
plicit bound in terms of the h-vector. The bulk of this paper is devoted to solving this
problem. The key is given by our proof of Conjecture 1.2. It identifies the number
of missing j -simplices of the polytope P with a certain graded Betti number of its
Stanley–Reisner ring K[P ]. Since the h-vector of P is determined by the Hilbert
function of K[P ], we are led to consider the problem of finding sharp upper bounds
for the graded Betti numbers of the Stanley–Reisner ring K[P ] in terms of its Hilbert
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function. We solve this problem in Sect. 3 in greater generality, namely for Goren-
stein algebras with the Weak Lefschetz property (Theorem 3.17). Its proof requires
explicit bounds for all graded Betti numbers of any standard graded K-algebra A in
terms of its Hilbert function. These are established in Theorem 3.12. They are opti-
mal. Because of the importance of graded Betti numbers, it seems fair to expect that
Theorem 3.12 will find applications in other contexts as well.

In Sect. 4 we apply the results of Sect. 3 to derive explicit optimal bounds for the
number of missing j -simplices of a simplicial polytope in terms of its g-vector (see
Corollary 4.6). Note that the g-vector is easily obtained from the h-vector (Defini-
tion 4.2). We conclude with some applications. Let N(k) be the number of empty
j -simplices of a simplicial polytope P such that j ≤ k. In Theorem 4.15 we establish
an upper bound for N(k) that depends on k, the dimension d , and the number of ver-
tices f0 of the polytope. For each given triple (k, d, f0), this bound is attained when
P is a certain Billera–Lee polytope. For example, the bound for the number of empty
edges reads as

N(1)≤
{
f0(f0 − 3)/2 if d = 2,
(
f0−d

2

)
if d ≥ 3.

It is always sharp if the polytope is stacked (see Example 4.18(ii)). McMullen’s fa-
mous Upper Bound Theorem [13] states that the cyclic polytope C(f0, d) has the
maximal f -vector among all simplicial d-polytopes with f0 vertices. Our Theorem
4.15 shows that it also has the maximal total number of empty simplices among these
polytopes (Example 4.18(i)).

As a consequence of Theorem 4.15, for a simplicial d-polytope we obtain a bound
for the number N(k) that depends only on k and f0 − d (Corollary 4.16). Following
Kalai [10], such a bound is the key to a central result of Perles [18] in the theory
of arbitrary polytopes with “few vertices” (see Remark 4.19). Finally, we show that
very little information on the g-vector is sufficient to bound the number of empty
j -simplices of a simplicial d-polytope if d is large enough (Corollary 4.22). This
result slightly corrects and improves Theorem 3.8 of [10].

2 The Conjecture of Kalai, Kleinschmidt, and Lee

The goal of this section is to prove Conjecture 1.2. To this end we need some more
notation. Let P be a simplicial d-polytope. Denote its vertex set by {v1, . . . , vf0}
and let R := K[x1, . . . , xf0] be the polynomial ring in f0 variables over an arbi-
trary field K . Then the Stanley–Reisner ring of P is K[P ] := R/IP where the
Stanley–Reisner ideal is generated by all square-free monomials xi1xi2 · · ·xit such
that {vi1, vi2, . . . , vit } is not a face of P . It is well-known (see Corollary 5.6.5 of
[3]) that K[P ] is a Gorenstein ring of dimension d = dimP . Since h1 = f0 − d , its
minimal graded free resolution is of the form

0→
⊕

j∈Z

R(−j)
βK
h1,j

(P )→ ·· ·→
⊕

j∈Z

R(−j)
βK

1,j (P )→R→R/IP → 0.

The non-negative integers βK
i,j (P )= dimK [TorRi (K[P ],K)]j , i, j ∈ Z, are called the

graded Betti numbers of P .
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The following result is shown in [16]:

Theorem 2.1 Let K be a field of characteristic zero and let P be a simplicial d-
polytope with h-vector h. Then we have for all integers i, j ,

βK
i,j (P )≤ βK

i,j

(
PBL(h)

)
.

Proof The claim is a consequence of Theorem 9.6 of [16], because its proof shows
(see page 57) that the extremal polytope that is not specified in part (b) of this theorem
is indeed the Billera–Lee polytope PBL(h). �

Remark 2.2 The assumption on the characteristic of the field K is needed to ensure
that the Stanley–Reisner ring K[P ] has the so-called Weak Lefschetz property (see
Sect. 3). This property also plays a crucial role in Stanley’s necessity part of the
g-Theorem in [20].

The conjecture of Kalai, Kleinschmidt, and Lee now follows easily.

Theorem 2.3 For all simplicial polytopes with prescribed h-vector h, the number of
j -dimensional empty simplices is maximized by the Billera–Lee polytope PBL(h).

Proof It follows from its definition that βK
1,j (P ) is the number of minimal generators

of degree j of the Stanley–Reisner ideal IP . A j -dimensional empty simplex S of P
corresponds to a monomial mS of degree j + 1 in IP . Since each proper subset of S
is a face of P , the monomial mS is not a proper multiple of any monomial in IP , i.e.,
mS is a minimal generator of IP . Therefore, the conjecture of Kalai, Kleinschmidt,
and Lee is a consequence of Theorem 2.1 applied with i = 1. �

The combinatorial interpretation of the first Betti numbers allows us to drop the
assumption on the characteristic in Theorem 2.1 for certain Betti numbers.

Corollary 2.4 Let P be a simplicial d-polytope with h-vector h. Then we have for
all integers j ,

βK
1,j (P )≤ βK

1,j

(
PBL(h)

)
, βK

h1−1,j (P )≤ βK
h1−1,j

(
PBL(h)

)
,

and

βK
h1,j

(P )=
{

0 if j 
= h1 + d ,
1 if j = h1 + d .

Proof Denote by nj (P ) the number of empty j -simplices of P . We have seen that,
for every field K ,

nj−1(P )= βK
1,j (P ).

Let K be a field of characteristic zero. Then Theorem 2.3 provides

nj−1(P )≤ nj−1
(
PBL(h)

)
.
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Let now K be an arbitrary field. Then, applying the above equality again, the claim
for the first Betti numbers follows.

Since K[P ] is a Gorenstein ring, its minimal free resolution is self-dual. In partic-
ular, for all integers i, j , we have

βK
i,j (P )= βK

h1−i,h1+d−j (P ).

This implies the remaining assertions. �

Remark 2.5 Note that the conjecture of Kalai, Kleinschmidt, and Lee has been shown
by giving a combinatorial interpretation of the first graded Betti numbers of a simpli-
cial polytope. By duality, it follows that the second last non-trivial graded Betti num-
bers have a combinatorial interpretation, too. However, it is not possible to find com-
binatorial interpretations of all graded Betti numbers because, in general, the Betti
numbers depend on the characteristic of the ground field (see Example 3.3 of [23]).

3 Upper Bounds for Betti Numbers

The key to proving the conjecture of Kalai, Kleinschmidt, and Lee has been to iden-
tify the number of missing i-simplices as a certain first graded Betti number. The
results in [16] show that in order to compute an upper bound for this number in
terms of the h-vector of the polytope, we need to know an upper bound for the Betti
numbers of Cohen–Macaulay algebras. The goal of this section is to establish such
bounds. Since the general case does not take more work than the special case of a
Cohen–Macaulay algebra, we derive upper bounds for the graded Betti numbers of
any arbitrary standard graded K-algebra in terms of its Hilbert function.

The applications in Sect. 4 rely on the results about the first graded Betti numbers
of certain Gorenstein algebras. However, we cannot restrict ourselves to considering
first Betti numbers in this section. In order to apply Theorem 8.13 in [16], we also
need optimal bounds for the last non-trivial Betti numbers of a Cohen–Macaulay
algebra. This forces us to discuss simultaneously all graded Betti numbers here.

Throughout this section we denote by R the polynomial ring K[x1, . . . , xn] over
an arbitrary field K with its standard grading where every variable has degree one.
A 
= 0 will be a standard graded K-algebra R/I where I ⊂ R is a proper homoge-
neous ideal. For a finitely generated graded R-module M =⊕j∈Z

[M]j , we denote
its graded Betti numbers by

βR
ij (M) := dimK

[
TorRi (M,K)

]
j
.

Since the graded Betti numbers of M do not change under field extensions of K , we
may and will assume that the field K is infinite.

The Hilbert function of M is the numerical function hM : Z→Z, hM(j) :=
dimK [M]j . The Hilbert functions of graded K-algebras have been completely clas-
sified by Macaulay. In order to state his result we need some notation.
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Notation 3.1 (i) We always use the following convention for binomial coefficients:
If a ∈R and j ∈ Z, then

(
a

j

)

:=
{
a(a − 1) · · · (a − j + 1)/j ! if j > 0,
1 if j = 0,
0 if j < 0.

(ii) Let b, d be positive integers. Then there are uniquely determined integers md >

md−1 >ms ≥ s ≥ 1 such that

b=
(
md

d

)

+
(
md−1

d − 1

)

+ · · · +
(
ms

s

)

.

This is called the d-binomial expansion of b. For any integer j we set

b〈d,j〉 :=
(
md + j

d + j

)

+
(
md−1 + j

d − 1+ j

)

+ · · · +
(
ms + j

s + j

)

.

Of particular importance are the cases where j = 1 or j =−1. To simplify nota-
tion, we further define

b〈d〉 := b〈d,1〉 =
(
md + 1

d + 1

)

+
(
md−1 + 1

d

)

+ · · · +
(
ms + 1

s + 1

)

and

b[d] := b〈d,−1〉 =
(
md − 1

d − 1

)

+
(
md−1 − 1

d − 2

)

+ · · · +
(
ms − 1

s − 1

)

.

(iii) If b= 0, then we put b〈d〉 = b[d] = b〈d,j〉 := 0 for all j, d ∈ Z.

Recall that a sequence of non-negative integers (hj )j≥0 is called an O-sequence if

h0 = 1 and hj+1 ≤ h
〈j〉
j for all j ≥ 1. Now we can state Macaulay’s characterization

of Hilbert functions [12] (see also [19]).

Theorem 3.2 (Macaulay) For a numerical function h: Z→ Z, the following condi-
tions are equivalent:

(a) h is the Hilbert function of a standard graded K-algebra.
(b) h(j)= 0 if j < 0 and {h(j)}j≥0 is an O-sequence.

For later use we record some formulas for sums involving binomial coefficients.

Lemma 3.3 For any positive real numbers a, b and every integer j ≥ 0, there are the
following identities:

(i)
j∑

k=0

(−1)k
(
a + k− 1

k

)(
b

j − k

)

=
(
b− a

j

)

;
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(ii)
j∑

k=0

(
a + k − 1

k

)(
b+ j − k− 1

j − k

)

=
(
a + b+ j − 1

j

)

;

(iii)
j∑

k=0

(−1)k
(
a + k

m

)(
b

j − k

)

=
m∑

k=0

(
a − k− 1

m− k

)(
b− k − 1

j

)
if 0≤m≤ a

are integers.

Proof (i) and (ii) are probably standard. In any case they follow immediately by
comparing coefficients of power series using the identities (1+ x)b−a = (1+ x)−a ·
(1+ x)b and (1− x)−a−b = (1− x)−a · (1− x)−b .

To see part (iii), we first use (ii) and finally (i); we get

j∑

k=0

(−1)k
(
a + k

m

)(
b

j − k

)

=
j∑

k=0

(−1)k
(

b

j − k

){ m∑

i=0

(
k + i

i

)(
a − 1− i

m− i

)}

=
m∑

i=0

(
a − 1− i

m− i

){ j∑

k=0

(−1)k
(
k+ i

k

)(
b

j − k

)}

=
m∑

k=0

(
a − 1− i

m− i

)(
b− i − 1

j

)

,

as claimed. �

After these preliminaries we are ready to derive bounds for Betti numbers. We
begin with the special case of modules having a d-linear resolution. Recall that the
graded module M is said to have a d-linear resolution if it has a graded minimal free
resolution of the form

· · ·→Rβi (−d − i)→ ·· ·→Rβ1(−d − 1)→Rβ0(−d)→M→ 0.

Here βR
i (M)=∑j∈Z

βR
i,j (M) := βi is the ith total Betti number of M .

Proposition 3.4 Let M 
= 0 be a graded R-module with a d-linear resolution. Then,
for every i ≥ 0, its ith total graded Betti number is

βR
i (M)=

i∑

j=0

(−1)j · hM(d + j) ·
(

n

i − j

)

.

Proof We argue by induction on i. The claim is clear if i = 0. Let i > 0. Using
the additivity of vector space dimensions along exact sequences and the induction
hypothesis we get

βR
i (M) = (−1)ihM(d + i)+

i−1∑

j=0

(−1)i−1−j · βR
j (M)

(
n− 1+ i − j

i − j

)

= (−1)ihM(d + i)
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+
i−1∑

j=0

(−1)i−1−j ·
(
n− 1+ i − j

i − j

)
⎧
⎨

⎩

j∑

k=0

(−1)j · hM(d + k)

(
n

j − k

)
⎫
⎬

⎭

= (−1)ihM(d + i)

+
i−1∑

k=0

(−1)k · hM(d + k)

{
i−1∑

j=k

(−1)i−1−j

(
n− 1− i − j

i − j

)(
n

j − k

)}

= (−1)ihM(d + i)

+
i−1∑

k=0

(−1)k · hM(d + k)

{
i−k∑

j=1

(−1)j−1
(
n+ j − 1

j

)(
n

i − k − j

)}

= (−1)ihM(d + i)+
i−1∑

k=0

(−1)k · hM(d + k)

(
n

i − k

)

according to Lemma 3.3(i). Now the claim follows. �

It is amusing and useful to apply this result to a case where we know the graded
Betti numbers.

Example 3.5 Consider the ideal I = (x1, . . . , xn)
d , where d > 0. Its minimal free

resolution is given by an Eagon–Northcott complex. It has a d-linear resolution and
its Betti numbers are (see, e.g., the proof of Corollary 8.14 of [16])

βR
i (I )=

(
d + i − 1

i

)(
n+ d − 1

d + i

)

.

Since the Hilbert function of I is, for all j ≥ 0,

hI (d + j)= hR(d + j)=
(
n+ d + j − 1

d + j

)

,

a comparison with Proposition 3.4 yields

(
d + i − 1

i

)(
n+ d − 1

d + i

)

=
i∑

j=0

(−1)j ·
(
n+ d + j − 1

d + j

)(
n

i − j

)

. (3.1)

Now we compute the graded Betti numbers of lex-segment ideals. Recall that an
ideal I ⊂R is called a lex-segment ideal if, for every d , the ideal I〈d〉 is generated by
the first dimk[I ]d monomials in the lexicographic order of the monomials in R. Here
I〈d〉 is the ideal that is generated by all the polynomials of degree d in I . For every
graded K-algebra A= R/I there is a unique lex-segment ideal I lex ⊂R such that A
and R/I lex have the same Hilbert function. For further information on lex-segment
ideals we refer to [3].
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Lemma 3.6 Let I ⊂ R be a proper lex-segment ideal whose generators all have
degree d . Consider the d-binomial expansion of b := hR/I (d):

b=
(
md

d

)

+
(
md−1

d − 1

)

+ · · · +
(
ms

s

)

.

Then the Betti numbers of A :=R/I are for all i ≥ 0,

βR
i+1(A) = βR

i+1,i+d(A)

=
(
n+ d − 1

d + i

)(
d + i − 1

d − 1

)

−
d∑

k=s

mk−k∑

j=0

(
mk − j − 1

k − 1

)(
n− 1− j

i

)

.

(Note that according to Notation 3.1, the sum on the right-hand side is zero if b= 0.)

Proof Gotzmann’s Persistence Theorem [4] implies that the Hilbert function of A is,
for j ≥ 0, hA(d + j) = b〈d,j〉 and that I has a d-linear resolution. Hence Proposi-
tion 3.4 in conjunction with formula (3.1) and Lemma 3.3(iii) provides

βR
i+1(A) = βR

i (I )=
i∑

j=0

(−1)j · hI (d + j)

(
n

i − j

)

=
i∑

j=0

(−1)j
[(

n+ d + j − 1

d + j

)

− b〈d,j〉
](

n

i − j

)

=
(
n+ d − 1

d + i

)(
d + i − 1

i

)

−
i∑

j=0

(−1)j ·
[

d∑

k=s

(
mk + j

k+ j

)](
n

i − j

)

=
(
n+ d − 1

d + i

)(
d + i − 1

i

)

−
d∑

k=s

[
i∑

j=0

(−1)j ·
(
mk + j

mk − k

)(
n

i − j

)]

=
(
n+ d − 1

d + i

)(
d + i − 1

i

)

−
d∑

k=s

mk−k∑

j=0

(
mk − j − 1

k− 1

)(
n− 1− j

i

)

,

as claimed. �

The above formulas simplify in the extremal cases.

Corollary 3.7 Adopt the notation and assumptions of Lemma 3.6. Then

(a) βR
1 (A)=

(
n+ d − 1

d

)

− b;

(b) βR
n (A)=

(
n+ d − 2

d − 1

)

− b[d].
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Proof Part (a) being clear, we restrict ourselves to showing (b). Since
(
n−1−j
n−1

) = 0

for j > 0, Lemma 3.6 immediately gives βR
n (A) = (n+d−2

d−1

) − ∑d
k=s

(
mk−1
k−1

) =
(
n+d−2
d−1

)− b[d]. �

Now, we can compute the non-trivial graded Betti numbers of an arbitrary lex-
segment ideal. The basic idea is to reduce the computation to the special case treated
in Lemma 3.6 by exploiting algebraic properties of lex-segment ideals.

Proposition 3.8 Let I ⊂ R be an arbitrary proper lex-segment ideal and let d ≥ 2
be an integer. Set A :=R/I and consider the d-binomial expansion

hA(d)=:
(
md

d

)

+
(
md−1

d − 1

)

+ · · · +
(
ms

s

)

and the (d − 1)-binomial expansion

hA(d − 1)=:
(
nd−1

d − 1

)

+
(
nd−2

d − 2

)

+ · · · +
(
nt

t

)

.

Then we have for all i ≥ 0

βR
i+1,i+d(A)= βi+1,i+d(hA,n),

where

βi+1,i+d(hA,n) :=
d−1∑

k=t

nk−k∑

j=0

(
nk − j

k

)(
n− 1− j

i

)

−
d∑

k=s

mk−k∑

j=0

(
mk − 1− j

k− 1

)(
n− 1− j

i

)

.

Proof As noted above, since I is a lex-segment ideal, for every j ∈ Z, the ideal I〈j〉
has a j -linear resolution, i.e., the ideal I is componentwise linear. Hence, Proposi-
tion 1.3 of [7] gives for all i ≥ 0,

βR
i+1,i+d(A)= βR

i+1(R/I〈d〉)− βR
i+1(R/mI〈d−1〉), (3.2)

where m= (x1, . . . , xn) is the homogeneous maximal ideal of R.
Since I〈d−1〉 is generated in degree d − 1, the ideals I〈d−1〉 and mI〈d−1〉 have

the same Hilbert function in all degrees j ≥ d . Thus, using the assumption d ≥ 2,
Gotzmann’s Persistence Theorem [4] provides

hR/mI〈d−1〉(d − 1+ j)= hR/I〈d−1〉(d − 1+ j)= hA(d − 1)〈d−1,j〉 for all j ≥ 1.

It is easy to see that mI〈d−1〉 has a d-linear resolution because I〈d−1〉 has a (d − 1)-
linear resolution. Hence, as in the proof of Lemma 3.6, Proposition 3.4 provides

βR
i+1(R/mI〈d−1〉)=

(
n+ d − 1

d + i

)(
d + i − 1

d − 1

)

−
d−1∑

k=t

nk−k∑

j=0

(
nk − j

k

)(
n− 1− j

i

)

.
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Plugging this and the result of Lemma 3.6 into the formula (3.2), we get our claim. �

Again, the formula simplifies in the extremal cases. We use the result in the fol-
lowing section.

Corollary 3.9 Adopt the notation and assumptions of Proposition 3.8. Then:

(a) βR
1,d (A)= β1,d (hA,n)= hA(d − 1)〈d−1〉 − hA(d).

(b) βR
n,n−1+d(A)= βn,n−1+d(hA,n)= hA(d − 1)− (hA(d))[d].

Proof This follows from the formula given in Proposition 3.8. �

In Proposition 3.8 we left out the case d ≤ 1 which is easy to deal with. We need:

Definition 3.10 Let h be the Hilbert function of a graded K-algebra such that
h(1)≤ n. Then we define, for all integers i ≥ 0 and d , the numbers βi+1,i+d(h,n)

as in Proposition 3.8 if d ≥ 2 and otherwise:

βi+1,i+d(h,n) :=
{(

n−h(1)
i+1

)
if d = 1,

0 if d ≤ 0.

Moreover, if i ≤ 0 we set

βi,j (h,n) :=
{

1 if (i, j)= (0,0),

0 otherwise.

Lemma 3.11 Let A = R/I 
= 0 be any graded K-algebra. Then we have for all
integers i, d with d ≤ 1,

βR
i+1,i+d(A)= βi+1,i+d(hA,n).

Proof Since A has as an R-module just one generator in degree zero, this is clear if
d ≤ 0. Furthermore, I〈1〉 is generated by a regular sequence of length n− hA(1). Its
minimal free resolution is given by the Koszul complex. Hence, the claim follows for
d = 1 because βR

i+1,i+1(A)= βR
i,i+1(I〈1〉). �

Combined with results of Bigatti, Hullet, and Pardue, we get the main result of
this section: bounds for the graded Betti numbers of a K-algebra as an R-module in
terms of its Hilbert function and the dimension of R.

Theorem 3.12 Let A=R/I 
= 0 be a graded K-algebra. Then its graded Betti num-
bers are bounded by

βR
i+1,i+j (A)≤ βi+1,i+j (hA,n) (i, j ∈ Z).

Furthermore, equality is attained for all integers i, j if I is a lex-segment ideal.
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Proof Let I lex ⊂ R be the lex-segment ideal such that A and R/I lex have the same
Hilbert function. Then we have for all integers i, j that

βR
i+1,i+j (A)≤ βR

i+1,i+j

(
R/I lex)

according to Bigatti [1] and Hulett [8] if charK = 0 and to Pardue [17] if K has
positive characteristic. Since Proposition 3.8 and Lemma 3.11 yield

βR
i+1,i+j

(
R/I lex)= βi+1,i+j (hA,n) (i, j ∈ Z),

our claims follow. �

Remark 3.13 Note that Theorem 3.12 gives in particular that βR
i+1,i+d(A) = 0 if

i ≥ n, in accordance with Hilbert’s Syzygy Theorem.

We conclude this section by discussing the graded Betti numbers of Cohen–
Macaulay algebras with the so-called Weak Lefschetz property. The special case of
a Gorenstein algebra is crucial for the applications to polytopes in the following sec-
tion.

Let A= R/I be a graded Cohen–Macaulay K-algebra of Krull dimension d and
let l1, . . . , ld ∈ [R]1 be sufficiently general linear forms. Then A := A/(l1, . . . , ld )A

is called the Artinian reduction of A. Its Hilbert function and graded Betti num-
bers as a module over R := R/(l1, . . . , ld)R do not depend on the choice of the
forms l1, . . . , ld . The Hilbert function of A takes positive values in only finitely many
degrees. The sequence of these positive integers h = (h0, h1, . . . , hr ) is called the
h-vector of A. We set βi+1,i+d(h,n− d) := βi+1,i+d(hA,n− d). Using this notation
we get:

Corollary 3.14 Let A=R/I be a Cohen–Macaulay graded K-algebra of dimension
d with h-vector h. Then its graded Betti numbers satisfy

βR
i+1,i+j (A)≤ βi+1,i+j (h,n− d) (i, j ∈ Z).

Proof If l ∈ [R]1 is a not a zero-divisor of A, then the graded Betti numbers of A

as an R-module agree with the graded Betti numbers of A/lA as an R/lR module
(see, e.g., Corollary 8.5 of [16]). Hence, by passing to the Artinian reduction of A,
Theorem 3.12 provides the claim. �

Remark 3.15 Note that, for any O-sequence h= (1, h1, . . . , hr ) with hr > 0, Defini-
tion 3.10 provides βi+1,i+j (h,m)= 0 for all i,m≥ 0 if j ≤ 1 or j ≥ r + 2.

Recall that an Artinian graded K-algebra A has the so-called Weak Lefschetz
property if there is an element l ∈A of degree one such that, for each j ∈ Z, the mul-
tiplication ×l: [A]j−1 → [A]j has maximal rank. The Cohen–Macaulay K-algebra
A is said to have the Weak Lefschetz property if its Artinian reduction has the Weak
Lefschetz property.
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Remark 3.16 The Hilbert functions of Cohen–Macaulay algebras with the Weak Lef-
schetz property have been completely classified in Proposition 3.5 of [6]. Moreover,
Theorem 3.20 in [6] gives optimal upper bounds on their graded Betti numbers in
terms of the Betti numbers of certain lex-segment ideals. Thus, combining this result
with Theorem 3.12, one gets upper bounds for the Betti numbers of these algebras in
terms of their Hilbert functions. In general, these bounds are strictly smaller than the
bounds of Corollary 3.14 for Cohen–Macaulay algebras that do not necessarily have
the Weak Lefschetz property.

The h-vectors of graded Gorenstein algebras with the Weak Lefschetz property
are precisely the SI-sequences (see Theorem 6.3 of [16] or Theorem 1.2 of [5]). For
their Betti numbers we obtain:

Theorem 3.17 Let h = (1, h1, . . . , hu, . . . , hr ) be an SI-sequence where hu−1 <

hu = · · · = hr−u > hr−u+1. Put g = (1, h1− 1, h2− h1, . . . , hu− hu−1). If A=R/I

is a Gorenstein graded K-algebra of dimension d with the Weak Lefschetz property
and h-vector h, then its graded Betti numbers satisfy

βR
i+1,i+j (A)≤

⎧
⎪⎨

⎪⎩

βi+1,i+j (g,m) if j ≤ r − u,

βi+1,i+j (g,m)+ βg1−i,r+h1−i−j (g,m) if r − u+ 1≤ j ≤ u+ 1,

βg1−i,r+h1−i−j (g,m) if j ≥ u+ 2,

where m := n− d − 1= dimR− d − 1.

Proof This follows immediately by combining Theorem 8.13 of [16] and Theo-
rem 3.12. �

4 Explicit Bounds for the Number of Missing Simplices

We now return to the consideration of simplicial polytopes. To this end we specialize
the results of Sect. 3 and then discuss some applications.

We begin by simplifying our notation somewhat. Let P be a simplicial d-polytope
with f -vector f . It is well known that the h-vector of the Stanley–Reisner ring K[P ]
agrees with the h-vector of P as defined in the Introduction. Furthermore, in Sect. 2
we defined the graded Betti numbers of K[P ] = R/IP by resolving K[P ] as an R-
module where R is a polynomial ring of dimension f0 over K , i.e.,

βK
i,j (P )= βR

i,j

(
K[P ]).

Note that the Stanley–Reisner ideal IP does not contain any linear forms. The graded
Betti numbers of P agree with the graded Betti numbers of the Artinian reduction of
K[P ] as a module over a polynomial ring of dimension f0 − d = h1. Thus, we can
simplify the statements of the bounds of βK

i,j (P ) by setting:

Notation 4.1 Using the notation introduced above Corollary 3.14 we define for every
O-sequence h,

βi+1,i+j (h) := βi+1,i+j (h,h1).
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Notice that βi+1,i+j (h)= 0 if i ≥ 0 and j ≤ 1.
In this section we primarily use the g-vector of a polytope which is defined as

follows:

Definition 4.2 Let P be a simplicial polytope with h-vector h := (h0, . . . , hd).
Then the g-Theorem (Theorem 1.1) shows that there is a unique integer u such that
hu−1 < hu = · · · = hd−u > hd−u+1. The vector g = (g0, . . . , gu) := (1, h1 − 1, h2 −
h1, . . . , hu − hu−1) is called the g-vector of P . All its entries are positive.

Some observations are in order.

Remark 4.3 (i) By its definition, the g-vector of the polytope P is uniquely deter-
mined by the h-vector of P . The g-Theorem shows that the h-vector of P (thus also
its f -vector) can be recovered from its g-vector, provided the dimension of P is
given.

(ii) The g-Theorem also gives an estimate of the length of the g-vector because it
implies 2u≤ d = dimP .

Now we can state our explicit bounds for the Betti numbers of a polytope.

Theorem 4.4 Let K be a field of characteristic zero and let g = (g0, . . . , gu) be an
O-sequence with gu > 0. Then we have:

(a) If P is a simplicial d-polytope with g-vector g, then

βK
i+1,i+j (P )≤

⎧
⎪⎨

⎪⎩

βi+1,i+j (g) if j ≤ d − u,

βi+1,i+j (g)+ βg1−i,d+h1−i−j (g) if d − u+ 1≤ j ≤ u+ 1,

βg1−i,d+g1+1−i−j (g) if j ≥ u+ 2.

(b) In (a) equality is attained for all integers i, j if P is the d-dimensional Billera–
Lee polytope with g-vector g.

Proof It is well known that the Stanley–Reisner ring of every simplicial polytope is a
Gorenstein algebra. Furthermore, according to Stanley [20] (see also [15]), it has the
Weak Lefschetz property. Hence part (a) is a consequence of Theorem 3.17. Part (b)
follows from Theorem 9.6 of [16] and Theorem 3.12, as pointed out in the proof of
Theorem 2.1. �

We have seen in Sect. 2 that the number of empty j -simplices of the simplicial
polytope P is equal to the Betti number βK

1,j+1(P ). Thus, we want to make the pre-
ceding bounds more explicit if i = 0. At first, we treat a trivial case.

Remark 4.5 Notice that the g-vector has length one, i.e., u = 0 if and only if the
polytope P is a simplex. In this case, its Stanley–Reisner ideal is a principal ideal
generated by a monomial of degree d = dimP .

In the following result we stress when the Betti numbers vanish. Because of Re-
mark 4.5, it is harmless to assume that u≥ 1. We use Notation 3.1.
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Corollary 4.6 Let g = (g0, . . . , gu) be an O-sequence with gu > 0 and u ≥ 1. Set
gu+1 := 0. Then we have:

(a) If P is a simplicial d-polytope with g-vector g, then there are the following
bounds:
(i) If d ≥ 2u+ 1, then

βK
1,j (P )≤

⎧
⎪⎨

⎪⎩

g
〈j−1〉
j−1 − gj if 2≤ j ≤ u+ 1,

gd+1−j − (gd+2−j )[d+2−j ] if d − u+ 1≤ j ≤ d ,

0 otherwise.

(ii) If d = 2u, then

βK
1,j (P )≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g
〈j−1〉
j−1 − gj if 2≤ j ≤ u,

g
〈u〉
u + gu if j = u+ 1,

gd+1−j − (gd+2−j )[d+2−j ] if u+ 2≤ j ≤ d ,
0 otherwise.

(b) In (a) equality is attained for all integers j if P is the d-dimensional Billera–Lee
polytope with g-vector g.

Proof Since the first Betti numbers of any polytope do not depend on the character-
istic of the field, the claims follow from Theorem 4.4 by taking into account Corol-
lary 2.4, Corollary 3.9, and the fact that βi+1,i+j (g)= 0 if i ≥ 0 and either j ≤ 1 or
j ≥ u+ 2 due to Remark 3.15. �

To illustrate the last result, we consider an easy case.

Example 4.7 Let P be a simplicial d-polytope with g1 = 1. Then its Stanley–Reisner
ideal IP is a Gorenstein ideal of height two, thus a complete intersection. Indeed,
since the g-vector of P is an O-sequence, it must be g = (g0, . . . , gu) = (1, . . . ,1).
Hence Corollary 4.6 provides that IP has exactly two minimal generators, one of
degree u+ 1 and one of degree d − u+ 1. Equivalently, P has exactly two empty
simplices, one of dimension u and one of dimension d − u.

As an immediate consequence of Corollary 4.6 we partially recover Proposi-
tion 3.6 of [10].

Corollary 4.8 Every simplicial d-polytope has no empty faces of dimension j if
u+ 1≤ j ≤ d − u− 1.

Remark 4.9 Kalai’s Conjecture 8 in [10] states that the following converse of Corol-
lary 4.8 should be true: If there is an integer k such that d ≥ 2k and the simplicial
d-polytope has no empty simplices of dimension j whenever k ≤ j ≤ d − k, then
u < k. Kalai has proved this if k = 2 in [9]. Our results provide the following weaker
version of Kalai’s conjecture:
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If there is an integer k such that d ≥ 2k and every simplicial d-polytope
with g-vector (g0, . . . , gu) has no empty simplices of dimension j whenever
k ≤ j ≤ d − k, then u < k.

Indeed, this follows by the sharpness of the bounds in Corollary 4.6.

Now we want to make some existence results of Kalai and Perles effective. As
preparation, we state:

Corollary 4.10 Let P be a simplicial d-polytope with g-vector g = (g0, . . . , gu)

where u ≥ 1. Set gu+1 = 0. Then the number N(k) of empty simplices of P whose
dimension is at most k is bounded above as follows:

N(k)≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1 +∑k
j=1{g〈j〉j − gj } − gk+1 if 1≤ k ≤min{u,d − u− 1},

N(u) if u < k < d − u,

g1 + g
〈d−k〉
d−k +∑d−k−1

j=1 {g〈j〉j − gj }
+∑u

j=d−k+1{g〈j〉j − (gj )[j ]} if d − u≤ k < d .

Furthermore, for each k, the bound is attained if P is the Billera–Lee d-polytope
with g-vector g.

Proof By Corollary 4.8, this is clear if u < k < d − u. In any case, we know that
N(k)=∑k+1

j=2 β
K
1,j (P ). Thus, using Corollary 4.6 carefully, elementary calculations

provide the claim. We omit the details. �

The last result immediately gives:

Corollary 4.11 If P is a simplicial polytope with g-vector g = (g0, . . . , gu), where
u≥ 1, then its total number of empty simplices is at most

(
g1 + 2

2

)

− 1+
u∑

j=2

{
g
〈j〉
j − (gj )[j ]

}
.

Furthermore, this bound is attained if P is any Billera–Lee polytope with g-vector g.

Proof Use Corollary 4.10 with k = d − 1 and recall that g〈1〉1 = (g1+1
2

)
. �

Remark 4.12 It is somewhat surprising that the bound in Corollary 4.11 does not
depend on the dimension of the polytope. In contrast, the other bounds (see, e.g.,
Corollary 4.10) do depend on the dimension d of the polytope.

In view of Corollary 4.10, the following elementary facts will be useful.
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Lemma 4.13 Let k be a positive integer. If a ≥ b are non-negative integers, then

(a) a〈k〉 − a[k] ≥ b〈k〉 − b[k];
(b) a〈k〉 − a ≥ b〈k〉 − b;
(c) a[k] ≥ b[k].

Proof We show only (a). The proofs of the other claims are similar and easier.
To see (a), we begin by noting, for integers m≥ j > 0, the identity

(
m+ 1

j + 1

)

−
(
m− 1

j − 1

)

=
(

m

j + 1

)

+
(
m− 1

j

)

. (4.1)

Now we use induction on k ≥ 1. Since a〈1〉 − a[1] =
(
a+1

2

)− 1, the claim is clear if
k = 1. Let k ≥ 2. Consider the k-binomial expansions

a =:
(
mk

k

)

+
(
mk−1

k− 1

)

+ · · · +
(
ms

s

)

and

b=:
(
nk

k

)

+
(
nk−1

k− 1

)

+ · · · +
(
nt

t

)

.

Since a ≥ b, we get mk ≥ nk . We distinguish two cases.

Case 1. Let mk = nk . Then the claim follows by applying the induction hypothesis to

a −
(
mk

k

)

≥ b−
(
mk

k

)

.

Case 2. Let mk > nk . Using ni ≤ nk − k+ i and formula (4.1), we get

b〈k〉 − b[k] =
k∑

i=t

{(
ni

i + 1

)

+
(
ni − 1

i

)}

≤
k∑

i=1

{(
nk − k + i

i + 1

)

+
(
nk − k − 1+ i

i

)}

=
(
nk + 1

k+ 1

)

+
(
nk

k

)

− (nk − k + 2)

<

(
mk

k+ 1

)

+
(
mk − 1

k

)

because nk < mk . The claim follows since formula (4.1) gives
(
mk

k+1

) + (mk−1
k

) ≤
a〈k〉 − a[k]. �

Remark 4.14 In general, it is not true that a > b implies a〈k〉 − a[k] > b〈k〉 − b[k]. For
example, if k ≥ 2 and a − 1= b= (m

k

)
> 0, then a〈k〉 − a[k] = b〈k〉 − b[k].



404 Empty Simplices of Polytopes and Graded Betti Numbers

We are ready to establish optimal bounds that depend only on the dimension and
the number of vertices.

Theorem 4.15 Let P be a simplicial d-polytope with d+g1+1 vertices which is not
a simplex. Then there is the following bound on the number N(k) of empty simplices
of P whose dimension is ≤ k:

N(k)≤
⎧
⎨

⎩

(
g1+k
g1−1

)
if 1≤ k < d/2;

(
g1+�d/2�

g1−1

)+ (g1+�d/2�−1
g1−1

)
if d/2≤ k < d .

Furthermore, for each k, the bound is attained if P is the Billera–Lee d-polytope
with g-vector (g0, . . . , gu) where gj =

(
g1+j−1

j

)
, 0≤ j ≤ u, and u=min{k, �d/2�}.

Proof Let g = (g0, . . . , gu) be the g-vector of P . Since P is not a simplex, we have
u≥ 1. We have to distinguish two cases.

Case 1. Let k < d/2. If k > u, then we formally set gu+1 = · · · = g�d/2� = 0. Since
k < d/2≤ d − u, Corollary 4.10 provides

N(k)≤ g1 +
k∑

j=1

{
g
〈j〉
j − gj

}− gk+1.

According to Lemma 4.13, the sum on the right-hand side becomes maximal if
g2, . . . , gk are as large as possible and gk+1 = 0. The latter means u= k. Macaulay’s
Theorem 3.2 implies gj ≤

(
g1+j−1

j

)
. Now an easy computation provides the bound

in this case. It is sharp because (g0, . . . , gk), where gj =
(
g1+j−1

j

)
, is a g-vector of a

simplicial d-polytope by the g-Theorem, thus Corollary 4.10 applies.

Case 2. Let d/2≤ k < d . First, we also assume that k ≥ d − u. Then Corollary 4.10
gives

N(k)≤ g1 + g
〈d−k〉
d−k +

d−k−1∑

j=1

{
g
〈j〉
j − gj

}+
u∑

j=d−k+1

{
g
〈j〉
j − (gj )[j ]

}
.

Again, Lemma 4.13 shows that, for fixed u, the bound is maximized if gj =
(
g1+j−1

j

)
,

0≤ j ≤ u. This provides

N(k)≤
(
g1 + u

g1 − 1

)

+
(
g1 + u− 1

g1 − 1

)

.

Since u≤ d/2, our bound follows in this case.
Second, assume k < d − u. Then u ≤ d/2 ≤ k < d − u yields u < d/2. Thus

Corollary 4.10 provides N(k)=N(u), but N(u)≤ (g1+u
g1−1

)
by Case 1. This concludes

the proof of the bound in Case 2. Its sharpness is shown as in Case 1. �

As an immediate consequence we obtain:
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Corollary 4.16 Every simplicial polytope, which is not a simplex, has at most(
g1+k
g1−1

)+ (g1+k−1
g1−1

)
empty simplices of dimension ≤ k.

Remark 4.17 Kalai [10, Theorem 2.7] has first given an estimate as in Corollary 4.16.
His bound is

N(k)≤ (g1 + 1)k+1 · (k + 1)!.
Comparing with our bound, we see that Kalai’s bound is asymptotically not optimal
for g1 / 0.

Notice that the bound on N(k) in Theorem 4.15 does not depend on k if k ≥ d/2.
This becomes plausible by considering cyclic polytopes.

Example 4.18 (i) Recall that a cyclic polytope C(f0, d) is a d-dimensional simplicial
polytope which is the convex hull of f0 distinct points on the moment curve

{(
t, t2, . . . , td

) | t ∈R
}
.

Its combinatorial type depends only on f0 and d .
According to McMullen’s Upper Bound Theorem [13], the cyclic polytope

C(f0, d) has the maximal f -vector among all simplicial d-polytopes with f0 ver-
tices. Theorem 4.15 shows that it also has the maximal total number of empty sim-
plices among these polytopes. Indeed, this follows by comparing with the main result
in [22] (see also Corollary 9.10 of [16]) which provides that C(f0, d) has

(
g1+�d/2�

g1−1

)+
(
g1+�d/2�−1

g1−1

)
empty simplices. Moreover, the empty simplices of C(f0, d) have either

dimension d/2 if d is even or dimensions (d − 1)/2 and (d + 1)/2 if d is odd. This
explains why the bound on N(k) in Theorem 4.15 does not change if k ≥ d/2.

(ii) If P is a simplicial d-polytope with f0 ≥ d + 2 vertices, then Theorem 4.15
gives for its number of empty edges

N(1)≤
{
f0(f0 − 3)/2 if d = 2,
(
f0−d

2

)
if d ≥ 3.

If d = 2, the bound is always attained because f0(f0 − 3)/2 is the number of “miss-
ing diagonals” of a convex f0-gon. The results in [24] (see also Remark 9.9 of [16])
provide that the bound is sharp for stacked d-polytopes for all d ≥ 2.

Remark 4.19 Recall that the k-skeleton of an arbitrary d-polytope P is the set of all
faces of P whose dimension is at most k. Perles [18] has shown:

The number of combinatorial types of k-skeleta of d-polytopes with d + g1 + 1
vertices is bounded by a function in k and g1.

In [10] Kalai gave a new proof of this result that relies on the concept of missing
faces. Indeed, in the simplicial case one concludes by using a bound on N(k) because
the k-skeleton of a simplicial polytope is determined by its set of empty simplices of
dimension ≤ k.
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In [10] Kalai sketches an argument showing that the number of empty simplices
can be bounded with very little information on the g-vector. Below, we slightly cor-
rect Theorem 3.8 of [10] and give explicit bounds. We use Notation 3.1.

Theorem 4.20 Fix integers j ≥ k ≥ 1 and b ≥ 0. Let P be a simplicial d-polytope P

with gk ≤ b where we define gi = 0 if i > u. If d ≥ j + k, then the number of empty
j -simplices of P is bounded by

⎧
⎪⎨

⎪⎩

b〈k,j−k+1〉 if j < d/2,

b〈k,j−k+1〉 + b〈k,j−k〉 if j = d/2,

b〈k,d−j−k〉 if j > d/2.

Proof We have to bound βK
1,j+1(K[P ]). By Corollary 4.8, P has no empty

j -simplices if u + 1 ≤ j ≤ d − u − 1. Thus, we may assume that 1 ≤ j ≤ u or
d − u≤ j ≤ d − 1.

Case 1. Assume 1≤ j ≤ u≤ d/2. Then Corollary 4.6 provides if j < d/2,

βK
1,j+1

(
K[P ])≤ g

〈j〉
j − gj+1.

Using Lemma 4.13, we see that the bound is maximized if gj+1 = 0 and gj is as large

as possible. Since the g-vector is an O-sequence, we get gj ≤ g
〈k,j−k〉
k ≤ b〈k,j−k〉. Our

claimed bound follows.
If j = d/2, then we get j = u= d/2. Hence Corollary 4.6 gives

βK
1,j+1

(
K[P ])≤ g

〈j〉
j + gj .

Now the bound is shown as above.

Case 2. Assume d/2≤ d−u≤ j ≤ d− 1. By the above considerations, we may also
assume that j 
= d/2. Thus, Corollary 4.6 provides

βK
1,j+1

(
K[P ])≤ gd−j − (gd+1−j )[d+1−j ].

Using our assumption d − j ≥ k, we conclude as above. �

Remark 4.21 (i) Theorem 3.8 of [10] the existence of bounds as in the above result
is claimed without assuming d ≥ j + k. However, this is impossible, as Case 2 in
the above proof shows. Indeed, if d − j < k and d > j > d/2, then knowledge of
gk does not give any information on gd−j . In particular, gd−j can be arbitrarily large
preventing the existence of a bound on βK

1,j+1(K[P ]) in terms of gk, j, k in this case.
For a somewhat specific example, fix k = j = 2 and d = 3. Then the Billera–Lee

3-polytope with g-vector (1, g1) has g1 empty 2-simplices.
(ii) Note that the bounds in Theorem 4.20 are sharp if gk = b. This follows from

the proof.

If we only know that d is large enough compared with j and k, then we have the
following weaker bound.
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Corollary 4.22 Fix integers j ≥ k ≥ 1, b ≥ 0, and d ≥ j + k. Then the number of
empty j -simplices of every simplicial d-polytope with gk ≤ b is at most b〈k,j−k+1〉 +
b〈k,j−k〉.

Proof By Theorem 4.20, it remains to consider the case where j > d/2. However,
then d − j < j , thus b〈k,d−j−k〉 ≤ b〈k,j−k〉, and we conclude again by using Theo-
rem 4.20. �

Remark 4.23 Notice that the bound in Corollary 4.22 is independent of the number
of vertices of the polytope and its dimension, provided the latter is large enough.

In essence, all the bounds on the number of empty simplices are bounds on certain
first graded Betti numbers of the Stanley–Reisner ring of a simplicial polytope. As
such, using Theorem 3.17, they can be extended to bounds for the first graded Betti
numbers of any graded Gorenstein algebra with the Weak Lefschetz property. We
leave this and analogous considerations for higher Betti numbers to the interested
reader.

We conclude this note by pointing out some directions for future research:

Remark 4.24 (i) It is an open problem whether the upper bounds on the number of
empty simplices of simplicial polytopes obtained in this paper extend to the case of
empty pyramids of arbitrary polytopes. Recall that an empty pyramid of a polytope
P is a subcomplex of the face complex of P that consists of all the proper faces of a
pyramid over a face of P .

More generally, it would be very interesting to investigate whether prescribing the
(toric) g-vector (see Sect. 3.14 of [21]) bounds the number of empty simplices (or
possibly even empty pyramids) of non-simplicial polytopes.

(ii) It is natural to wonder also about good lower bounds on the number of empty
simplices for polytopes with a given f -vector. This problem seems difficult. For sim-
plicial d-polytopes with f0 vertices, Krull’s Principal Ideal Theorem implies that the
total number of empty simplices is at least f0 − d . Equality is true if f0 − d ≤ 2, but
in most other cases this bound seems far from being optimal.

Acknowledgements The author thanks Gil Kalai, Carl Lee, and Juan Migliore for motivating discus-
sions, encouragement, and helpful comments. He also thanks the referees whose suggestions helped to
improve the presentation.
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Rigidity and the Lower Bound Theorem for Doubly
Cohen–Macaulay Complexes

Eran Nevo

Abstract We prove that for d ≥ 3, the 1-skeleton of any (d − 1)-dimensional dou-
bly Cohen–Macaulay (abbreviated 2-CM) complex is generically d-rigid. This im-
plies that Barnette’s lower bound inequalities for boundary complexes of simplicial
polytopes (Barnette, D. Isr. J. Math. 10:121–125, 1971; Barnette, D. Pac. J. Math.
46:349–354, 1973) hold for every 2-CM complex of dimension≥ 2 (see Kalai, G. In-
vent. Math. 88:125–151, 1987). Moreover, the initial part (g0, g1, g2) of the g-vector
of a 2-CM complex (of dimension ≥ 3) is an M-sequence. It was conjectured by
Björner and Swartz (J. Comb. Theory Ser. A 113:1305–1320, 2006) that the entire
g-vector of a 2-CM complex is an M-sequence.

1 Introduction

The g-theorem gives a complete characterization of the f -vectors of boundary com-
plexes of simplicial polytopes. It was conjectured by McMullen in 1970 and proved
by Billera and Lee [5] (sufficiency) and by Stanley [13] (necessity) in 1980. A major
open problem in f -vector theory is the g-conjecture, which asserts that this charac-
terization holds for all homology spheres. The open part of this conjecture is to show
that the g-vector of every homology sphere is an M-sequence, i.e. it is the f -vector of
some order ideal of monomials. Based on the fact that homology spheres are doubly
Cohen–Macaulay (abbreviated 2-CM) and that the g-vector of some other classes of
2-CM complexes is known to be an M-sequence (e.g. [14]), Björner and Swartz [14]
recently suspected that

Conjecture 1.1 ([14], a weakening of Problem 4.2.) The g-vector of any 2-CM com-
plex is an M-sequence.

E. Nevo (�)
Institute of Mathematics, The Hebrew University, Jerusalem, Israel
e-mail: eranevo@math.huji.ac.il
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We prove a first step in this direction, namely:

Theorem 1.2 Let K be a (d − 1)-dimensional 2-CM simplicial complex (over some
field) where d ≥ 4. Then (g0(K), g1(K), g2(K)) is an M-sequence.

This theorem follows from the following theorem, combined with an interpretation
of rigidity in terms of the face ring (Stanley–Reisner ring), due (implicitly) to Lee
[10].

Theorem 1.3 Let K be a (d − 1)-dimensional 2-CM simplicial complex (over some
field) where d ≥ 3. Then K has a generically d-rigid 1-skeleton.

Kalai [8] showed that if a simplicial complex K of dimension ≥ 2 satisfies the fol-
lowing conditions then it satisfies Barnette’s lower bound inequalities:

(a) K has a generically (dim(K)+ 1)-rigid 1-skeleton.
(b) For each face F of K of codimension > 2, its link lkK(F ) has a generically

(dim(lkK(F ))+ 1)-rigid 1-skeleton.
(c) For each face F of K of codimension 2, its link lkK(F ) (which is a graph) has at

least as many edges as vertices.

Kalai used this observation to prove that Barnette’s inequalities hold for a large class
of simplicial complexes.

Observe that the link of a vertex in a 2-CM simplicial complex is 2-CM, and that
a 2-CM graph is 2-connected. Combining it with Theorem 1.3 and the above result
of Kalai we conclude:

Corollary 1.4 Let K be a (d − 1)-dimensional 2-CM simplicial complex where d ≥
3. For all 0 ≤ i ≤ d − 1 fi(K) ≥ fi(n, d) where fi(n, d) is the number of i-faces
in a (equivalently every) stacked d-polytope on n vertices. (Explicitly, fd−1(n, d)=
(d − 1)n− (d + 1)(d − 2) and fi(n, d)=

(
d
i

)
n− (d+1

i+1

)
i for 1≤ i ≤ d − 2.)

Theorem 1.3 is proved by decomposing K into a union of minimal (d − 1)-cycle
complexes (Fogelsanger’s notion [6]). Each of these pieces has a generically d-rigid
1-skeleton ([6]), and the decomposition is such that gluing the pieces together results
in a complex with a generically d-rigid 1-skeleton. The decomposition is detailed in
Theorem 3.4.

This paper is organized as follows: In Sect. 2 we give the necessary background
from rigidity theory, explain the connection between rigidity and the face ring, and
reduce the results mentioned in the Introduction to Theorem 3.4. In Sect. 3 we give the
necessary background on 2-CM complexes, prove Theorem 3.4 and discuss related
problems and results.

2 Rigidity

The presentation of rigidity here is based mainly on the one in Kalai [8].
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Let G = (V ,E) be a graph. A map f : V → R
d is called a d − embedding. It is

rigid if any small enough perturbation of it which preserves the lengths of the edges is
induced by an isometry of R

d . Formally, f is called rigid if there exists an ε > 0 such
that if g : V → R

d satisfies d(f (v), g(v)) < ε for every v ∈ V and d(g(u), g(w))=
d(f (u), f (w)) for every {u,w} ∈E, then d(g(u), g(w))= d(f (u), f (w)) for every
u,w ∈ V (where d(a, b) denotes the Euclidean distance between the points a and b).

G is called generically d-rigid if the set of its rigid d-embeddings is open and
dense in the topological vector space of all of its d-embeddings.

Let V = [n], and let Rig(G,f ) be the dn×|E|matrix which is defined as follows:
for its column corresponding to {v < u} ∈E put the vector f (v)−f (u) (resp. f (u)−
f (v)) at the entries of the d rows corresponding to v (resp. u) and zero otherwise.
G is generically d-rigid iff Im(Rig(G,f ))= Im(Rig(KV ,f ) for a generic f , where
KV is the complete graph on V . Rig(G,f ) is called the rigidity matrix of G (its rank
is independent of the generic f that we choose).

Let G be the 1-skeleton of a (d−1)-dimensional simplicial complex K . We define
d generic degree-one elements in the polynomial ring A=R[x1, . . . , xn] as follows:
Θi =∑v∈[n] f (v)ixv where f (v)i is the projection of f (v) on the i-th coordinate,
1≤ i ≤ d . Then the sequence Θ = (Θ1, . . . ,Θd) is a linear system of parameters for
the face ring R[K] =A/IK (IK is the ideal in A generated by the monomials whose
support is not an element of K). Let H(K)= R[K]/(Θ)=H(K)0 ⊕H(K)1 ⊕ · · ·
where (Θ) is the ideal in A generated by the elements of Θ and the grading is induced
by the degree grading in A. Consider the multiplication map ω :H(K)1 −→H(K)2,
m→ ωm where ω=∑v∈[n] xv . Lee [10] proved that

dimR Ker(Rig(G,f ))= dimR H(K)2 − dimR ω(H(K)1). (1)

Assume that G is generically d-rigid. Then dimR Ker(Rig(G,f )) = f1(K) −
rank(Rig(KV ,f )) = g2(K) = dimR H(K)2 − dimR H(K)1. Combining with (1),
the map ω is injective, and hence dimR(H(K)/(ω))i = gi(K) for i = 2; clearly this
holds for i = 0,1 as well. Hence (go(K), g1(K), g2(K)) is an M-sequence. We con-
clude that Theorem 1.3 implies Theorem 1.2, via the following algebraic result:

Theorem 2.1 Let K be a (d − 1)-dimensional 2-CM simplicial complex (over some
field) where d ≥ 3. Then the multiplication map ω :H(K)1 −→H(K)2 is injective.

In order to prove Theorem 1.3, we need the concept of minimal cycle complexes,
introduced by Fogelsanger [6]. We summarize his theory below.

Fix a field k (or more generally, any Abelian group) and consider the formal
chain complex on a ground set [n], C = (

⊕{kT : T ⊆ [n]}, ∂), where ∂(1T ) =∑
t∈T sign(t, T )T \{t} and sign(t, T )= (−1)|{s∈T :s<t}|. Define subchain, minimal d-

cycle and minimal d-cycle complex as follows: c′ =∑{bT T : T ⊆ [n], |T | = d + 1}
is a subchain of a d-chain c =∑{aT T : T ⊆ [n], |T | = d + 1} iff for every such T ,
bT = aT or bT = 0. A d-chain c is a d-cycle if ∂(c) = 0, and is a minimal d-cycle
if its only subchains which are cycles are c and 0. A simplicial complex K which
is spanned by the support of a minimal d-cycle is called a minimal d-cycle complex
(over k), i.e. K = {S : ∃T S ⊆ T ,aT 
= 0} for some minimal d-cycle c as above. For
example, triangulations of connected manifolds without boundary are minimal cycle
complexes—fix k = Z2 and let the cycle be the sum of all facets.
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The following is the main result in Fogelsanger’s thesis.

Theorem 2.2 (Fogelsanger [6]) For d ≥ 3, every minimal (d − 1)-cycle complex has
a generically d-rigid 1-skeleton.

We will need the following gluing lemma, due of Asimov and Roth, who intro-
duced the concept of generic rigidity of graphs [1].

Theorem 2.3 (Asimov and Roth [2]) Let G1 and G2 be generically d-rigid graphs.
If G1 ∩G2 contains at least d vertices, then G1 ∪G2 is generically d-rigid.

Now we are ready to conclude Theorem 1.3 from the decomposition theorem, Theo-
rem 3.4.

Proof of Theorem 1.3 Consider a decomposition sequence of K as guaranteed by
Theorem 3.4, K =⋃m

i=1 Si . By Theorem 2.2 each Si has a generically d-rigid 1-
skeleton. By Theorem 2.3 for all 2 ≤ i ≤ m

⋃i
j=1 Sj has a generically d-rigid 1-

skeleton, in particular K has a generically d-rigid 1-skeleton (i =m). �

Remark One can verify that Theorems 2.2 and 2.3, and hence also Theorem 1.3, con-
tinue to hold when replacing “generically d-rigid” by the notion “d-hypperconnec-
ted”, introduced by Kalai [7]. Both of these assertions have an interpretation in
terms of algebraic shifting, introduced by Kalai (see e.g. his survey [9]), namely:
for both the exterior and symmetric shifting operators over the field R, denoted by
�, {d,n} ∈�(K). The existence of this edge in the shifted complex implies the non-
negativity of g2(K).

3 Decomposing a 2-CM Complex

Definition 3.1 A simplicial complex K is 2−CM (over a fixed field k) if it is Cohen–
Macaulay and for every vertex v ∈K , K− v is Cohen–Macaulay of the same dimen-
sion as K .

Here K − v is the simplicial complex {T ∈ K : v /∈ T }. By a theorem of Reisner
[11], a simplicial complex L is Cohen–Macaulay iff it is pure and for every face

T ∈ L (including the empty set) and every i < dim(lkL(T ), H̃i(lkL(T ); k)= 0 where
lkL(T )= {S ∈ L : T ∩S = ∅, T ∪S ∈ L} and H̃i(M; k) is the reduced i-th homology
of M over k. The proof of Theorem 3.4 is by induction on dim(K). Let us first
consider the case where K is 1-dimensional.

A (simple finite) graph is 2-connected if after a deletion of any vertex from it, the
remaining graph is connected and nontrivial (i.e. is not a single vertex nor empty).
Note that a graph is 2-CM iff it is 2-connected.

Lemma 3.2 A graph G is 2-connected iff there exists a decomposition G=⋃m
i=1 Ci

such that each Ci is a simple cycle and for every 1 < i ≤m, Ci ∩ (
⋃

j<i Cj ) contains
an edge.
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Moreover, for each i0 ∈ [m] the Ci ’s can be reordered by a permutation σ : [m]→
[m] such that σ−1(1)= i0 and for every i > 1, Cσ−1(i) ∩ (

⋃
j<i Cσ−1(j)) contains an

edge.

Proof Whitney [15] showed that a graph G is 2-connected iff it has an open ear
decomposition, i.e. there exists a decomposition G=⋃m

i=0 Pi such that each Pi is a
simple open path, P0 is an edge, P0 ∪ P1 is a simple cycle and for every 1 < i ≤m

Pi ∩ (
⋃

j<i Pj ) equals the 2 end vertices of Pi .
Assume that G is 2-connected and consider an open ear decomposition as above.

Let C1 = P0 ∪ P1. For i > 1 choose a simple path P̃i in
⋃

j<i Pj that connects the 2

end vertices of Pi , and let Ci = Pi ∪ P̃i . (C1, . . . ,Cm) is the desired decomposition
sequence of G.

Let C be the graph whose vertices are the Ci ’s and two of them are neighbors iff
they have an edge in common. Thus, C is connected, and hence the ‘Moreover’ part
of the Lemma is proved.

The other implication, that such a decomposition implies 2-connectivity, will not
be used in the sequel, and its proof is omitted. �

For the induction step we need the following cone lemma. For v a vertex not in the
support of a (d − 1)-chain c, let v ∗ c denote the following d-chain: if c =∑{aT T :
v /∈ T ⊆ [n], |T | = d} where aT ∈ k for all T , then v ∗ c=∑{sign(v, T )aT T ∪ {v} :
v /∈ T ⊆ [n], |T | = d} where sign(v, T )= (−1)|{t∈T :t<v}|.

Lemma 3.3 Let s be a minimal (d − 1)-cycle and let c be a minimal d-chain such
that ∂(c) = s, i.e. c has no proper subchain c′ such that ∂(c′) = s. For v a vertex
not in any face in supp(c),the support of c, define s̃ = c− v ∗ s. Then s̃ is a minimal
d-cycle.

Proof ∂(s̃)= ∂(c)− ∂(v ∗ s)= s − (s − v ∗ ∂(s))= 0 hence s̃ is a d-cycle. To show
that it is minimal, let ŝ be a subchain of s̃ such that ∂(ŝ) = 0. Note that supp(c) ∩
supp(v ∗ s)= ∅.
Case 1: v is contained in a face in supp(ŝ). By the minimality of s, supp(v ∗ s) ⊆
supp(ŝ). Thus, by the minimality of c also supp(c)⊆ supp(ŝ) and hence ŝ = s̃.
Case 2: v is not contained in any face in supp(ŝ). Thus, supp(ŝ)⊆ supp(c). As ∂(ŝ)=
0 then ∂(c− ŝ)= s. The minimality of c implies ŝ = 0. �

Theorem 3.4 Let K be a d-dimensional 2-CM simplicial complex over a field k

(d ≥ 1). Then there exists a decomposition K =⋃m
i=1 Si such that each Si is a mini-

mal d-cycle complex over k and for every i > 1, Si ∩ (
⋃

j<i Sj ) contains a d-face.
Moreover, for each i0 ∈ [m] the Si ’s can be reordered by a permutation σ : [m]→

[m] such that σ−1(1) = i0 and for every i > 1, Sσ−1(i) ∩ (
⋃

j<i Sσ−1(j)) contains a
d-face.

Proof The proof is by induction on d . For d = 1, by Lemma 3.2 K =⋃m(K)
i=1 Ci such

that each Ci is a simple cycle and for every i > 1 Ci ∩ (
⋃

j<i Cj ) contains an edge.
Define si =∑{signe(i)e : e ∈ (Ci)1}, then si is a minimal 1-cycle (orient the edges
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properly: signe(i) equals 1 or −1 accordingly) whose support spans the simplicial
complex Ci . Moreover, by Lemma 3.2 each Ci0 , i0 ∈ [m(K)], can be chosen to be
the first in such a decomposition sequence.

For d > 1, note that the link of every vertex in a 2-CM simplicial complex is 2-CM.
For a vertex v ∈ K , as lkK(v) is 2-CM then by the induction hypothesis lkK(v) =
⋃m(v)

i=1 Ci such that each Ci is a minimal (d − 1)-cycle complex and for every i > 1
Ci ∩ (

⋃
j<i Cj ) contains a (d − 1)-face. Let si be a minimal (d − 1)-cycle whose

support spans Ci . As K−v is CM of dimension d , H̃d−1(K−v; k)= 0. Hence there
exists a d-chain c such that ∂(c)= si and supp(c)⊆K − v.

Take ci to be such a chain with a support of minimal cardinality. By Lemma 3.3,
s̃i = ci − v ∗ si is a minimal d-cycle. Let Si(v) by the simplicial complex spanned by
supp(s̃i ); it is a minimal d-cycle complex. By the induction hypothesis, for every i >

1 Si(v)∩ (
⋃

j<i Sj (v)) contains a d-face (containing v). Thus, K(v) :=⋃m(v)
j=1 Sj (v)

has the desired decomposition for every v ∈ K . K =⋃v∈Ver(K) K(v) as stK(v) ⊆
K(v) for every v, where stK(v)= {T ∈K : T ∪ {v} ∈K}.

Let v be any vertex of K . Since the 1-skeleton of K is connected, we can order
the vertices of K such that v1 = v and for every i > 1 vi is a neighbor of some vj
where 1 ≤ j < i. Let vl(i) be such a neighbor of vi . By the induction hypothesis we
can order the Sj (vi)’s such that S1(vi) will contain vl(i), and hence, as K is pure, will
contain a d-face which appears in K(vl(i)) (this face contains the edge {vi, vl(i)}). The
resulting decomposition sequence (S1(v1), . . . , Sm(v1)(v1), S1(v2), . . . , Sm(vn)(vn)) is
as desired.

Moreover, every Sj (vi0) where i0 ∈ [n] and j ∈ [m(vi0)] can be chosen to be
the first in such a decomposition sequence. Indeed, by the induction hypothesis
Sj (vi0) can be the first in the decomposition sequence of K(vi0), and as mentioned
before, the connectivity of the 1-skeleton of K guarantees that each such prefix
(S1(vi0), . . . , Sm(vi0 )

(vi0)) can be completed to a decomposition sequence of K on
the same Sj (vi)’s. �

Theorem 1.3 follows also from the following corollary combined with Theo-
rem 2.2.

Corollary 3.5 Let K be a d-dimensional 2-CM simplicial complex over a field k

(d ≥ 1). Then K is a minimal cycle complex over the Abelian group k̃ = k(x1, x2, . . .)

whose elements are finite linear combinations of the (variables) xi ’s with coefficients
in k.

Proof Consider a decomposition K =⋃m
i=1 Si as guaranteed by Theorem 3.4, where

Si = supp(ci) (the closure w.r.t. inclusion of supp(ci)) for some minimal d-cycle
ci over k. Define c̃i = xici , thus c̃i is a minimal cycle over k̃. Define c̃ =∑m

i=1 c̃i .
Clearly c̃ is a cycle over k̃ whose support spans K . It remains to show that c̃ is
minimal. Let c̃′ be a subchain of c̃ which is a cycle, c̃′ 
= c̃. We need to show that
c̃′ = 0. Denote by α̃T (α̃′T ) the coefficient of the set T in c̃ (c̃′) and by α̃T (i) the
coefficient of the set T in c̃i . If α̃′T = 0 then for every i such that α̃T (i) 
= 0, the
minimality of c̃i implies that α̃′F = 0 whenever α̃F (i) 
= 0. By assumption, there
exists a set T0 such that α̃′T0

= 0 
= α̃T0 . In particular, there exists an index i0 such



Rigidity and the Lower Bound Theorem for Doubly Cohen–Macaulay Complexes 415

that α̃T0(i0) 
= 0, hence α̃′F = 0 whenever α̃F (i0) 
= 0. As Si0 ∩ (
⋃

j<i0
Sj ) contains

a d-face in case i0 > 1, repeated application of the above argument implies α̃′F = 0
whenever α̃F (1) 
= 0. Repeated application of the fact that Si ∩ (

⋃
j<i Sj ) contains

a d-face for i = 2,3, . . . and of the above argument shows that α̃′F = 0 whenever
α̃F (i) 
= 0 for some 1≤ i ≤m, i.e. c̃′ = 0. �

A pure simplicial complex has a nowhere zero flow if there is an assignment of
integer non-zero wights to all of its facets which forms a Z-cycle. This generalizes
the definition of a nowhere zero flow for graphs (e.g. [12] for a survey).

Corollary 3.6 Let K be a d-dimensional 2-CM simplicial complex over Q (d ≥ 1).
Then K has a nowhere zero flow.

Proof Consider a decomposition K =⋃m
i=1 Si as guaranteed by Theorem 3.4. Mul-

tiplying by a common denominator, we may assume that each Si = supp(ci) for some
minimal d-cycle ci over Z (instead of just over Q). Let N be the maximal |α| over all
nonzero coefficients α of the ci ’s, 1≤ i ≤m. Let c̃ =∑m

i=1(N
m)ici . c̃ is a nowhere

zero flow for K ; we omit the details. �

Problem 3.7 Can the Si ’s in Theorem 3.4 be taken to be homology spheres?

Yhonatan Iron and I proved (unpublished) the following lemma:

Lemma 3.8 Let K , L and K ∩ L be simplicial complexes of the same dimension
d − 1. Assume that K and L are weak-Lefschetz, i.e. that multiplication by a generic
degree-one element g in H = H(K),H(L), g : Hi−1 → Hi , is injective for all i ≤
�d/2�. If K ∩L is CM then K ∪L is weak-Lefschetz.

In view of this lemma, if the intersections Si ∩(
⋃

j<i Sj ) in Theorem 3.4 can be taken
to be CM, and the Si ’s can be taken to be homology spheres, then Conjecture 1.1
would be reduced to the long standing g-conjecture for homology spheres. Can the
intersections be guaranteed to be CM?
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Finding the Homology of Submanifolds with High
Confidence from Random Samples

Partha Niyogi · Stephen Smale ·
Shmuel Weinberger

Abstract Recently there has been a lot of interest in geometrically motivated ap-
proaches to data analysis in high-dimensional spaces. We consider the case where
data are drawn from sampling a probability distribution that has support on or near
a submanifold of Euclidean space. We show how to “learn” the homology of the
submanifold with high confidence. We discuss an algorithm to do this and provide
learning-theoretic complexity bounds. Our bounds are obtained in terms of a condi-
tion number that limits the curvature and nearness to self-intersection of the subman-
ifold. We are also able to treat the situation where the data are “noisy” and lie near
rather than on the submanifold in question.

1 Introduction

In recent years there has been considerable interest in the possibility of analyzing and
processing data in high-dimensional spaces. Following the intuition that naturally
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occurring data may be generated by structured systems with possibly much fewer
degrees of freedom than the ambient dimension would suggest, various researchers
(see [3, 10, 16, 17, 20]) have considered the case when the data live on or close
to a submanifold of the ambient space. One hopes then to estimate geometrical and
topological properties of the submanifold from random points (“scattered data”) lying
on this unknown submanifold. These questions belong to a class of problems that
have come to be known as manifold learning.

In this paper we consider the particular question of identifying the homology of
the submanifold from random samples. The homology of the submanifold (see [15]
for definitions) are natural topological invariants that provide a good characterization
of many aspects of it. For example, the dimensions of the homology groups, the Betti
numbers (b0, b1, . . .), have natural interpretations. b0, the dimension of the zeroth
homology group is the number of connected components of the submanifold. In data
analysis situations, the number of clusters of the data may sometimes be understood
in terms of the number of components of an underlying manifold (or other geometric
object). If the dimension of the submanifold is d , then one sees that bj = 0 for all
j > d . Thus the largest non-trivial homology gives us the dimension of the submani-
fold. If the submanifold is two-dimensional, then b0 and b1 are related to the number
of connected components and number of holes, respectively, of the submanifold.

We show that it is possible to identify the homology from random samples and
discuss an algorithm to do this. There are a few aspects of the developments in this
paper that are worth emphasizing. First, we provide sample complexity estimates on
the number of examples that are needed to identify the homology with high confi-
dence. Our results are in the style of learning–theoretic treatments (for example, the
Probably Approximately Correct framework [18]) where unknown objects (typically
functions in learning theory) are “learned” from random samples and confidence esti-
mates are provided. Second, we treat the situation where data might be drawn from a
distribution that is concentrated around the manifold rather than precisely on it. Un-
der specific models of noise, we show that our algorithm can work even with noisy
data. In all cases, estimates are provided in terms of a condition number that limits
the curvature and nearness to self-intersection of the submanifold.

Our results may also be of interest to researchers in computational geometry and
topology who have considered the question of computing homology from simplicial
complexes in the past (see [8, 14] for details and further references). A number of
researchers in these computational geometry and topology fields have considered the
problem of manifold reconstruction from point cloud data. Such work has typically
focused on the case of surfaces in R

3 and examples include algorithms associated
with the frameworks of alpha shapes [11], CRUST [1] and its variants, and CO-
CONE [2] and its generalizations. CRUST and COCONE provably recover a simpli-
cial 2-manifold that is homeomorphic to the surface. In [6] (written after the results
of our current paper were declared), it was shown how to extend these ideas to the
general setting of a k-manifold embedded in R

N . In much of this work the medial
axis plays a central role in characterizing the conditioning of the manifold (see our
later remarks in Sect. 2). It is also worth noting that none of the works mentioned
above considers the probabilistic setting where examples are drawn at random—so
no high confidence guarantees are provided. The theorems in [1, 2, 6] are analogous
to our Proposition 3.1. No version of our main theorem (Theorem 3.1) exists in the
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literature. Finally, it is also worth noting that there is a body of work on persistence
homology [7, 20] that seeks alternative topological characterizations of the manifold
and its homology. See the discussion after Proposition 3.1.

In conclusion, we hope that researchers in graphics, pattern recognition, solid
modeling, molecular biology, finance, and other areas where large amounts of high-
dimensional data are available may find some use for the topological perspective on
data analysis embodied in the algorithms and analyses of this paper.

2 Preliminaries

Consider a compact Riemannian submanifold M of a Euclidean space R
N . Sam-

ple the manifold according to a uniform probability measure on it. Thus points
x1, . . . , xn ∈M are generated. This set of points x̄ = {x1, . . . , xn} is the data set on
the basis of which homology groups will be calculated. In later sections we consider
the case when the data are drawn from a probability measure with support close to
the manifold.

Throughout our discussion, we associate to M a condition number (1/τ ) where τ

is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in R

N for every r < τ . Its image Tubτ is a tubular
neighborhood of M with its canonical projection map

π0 : Tubτ →M.

Note that τ encodes both local curvature considerations as well as global ones: If M
is a union of several components, then τ bounds their separation. For example, if M
is a sphere, then τ is equal to its radius. If M is an annulus, then τ is the separation
of its components. In Sect. 6 we relate the condition number 1/τ to classical notions
of curvature in differential geometry via the second fundamental form.

Finally, it is also useful to relate τ to the notions of medial axis and local feature
size that have been developed in the computational geometry community. Given M,
one may define the set

G= {x ∈R
N such that ∃ distinct p,q ∈M where d(x,M)= ‖x − p‖ = ‖x − q‖},

where d(x,M) = infy∈M‖x − y‖ is the distance of x to M. The closure of G is
called the medial axis and for any point p ∈M the local feature size σ(p) is the
distance of p to the medial axis. Then it is easy to check that

τ = inf
p∈M

σ(p).

3 An Outline of Our Main Results

Ultimately we wish to compute the homology of the manifold M ⊂ R
N from the

randomly sampled datapoints x̄ = {x1, . . . , xn} ⊂M. We first begin by considering
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Euclidean balls (in the ambient space R
N ) of radius ε and center xi . We denote these

balls as Bε(xi). We can now define the open set U ⊂R
N given by

U =
⋃

x∈x̄
Bε(x).

Our first proposition states that if x̄ = {x1, . . . , xn} is ε/2 dense in M, then M is a
deformation retract of U .

Proposition 3.1 Let x̄ be any finite collection of points x1, . . . , xn ∈R
N such that it is

(ε/2) dense in M, i.e., for every p ∈M, there exists an x ∈ x̄ such that ‖p−x‖RN <

ε/2. Then for any ε <

√
3
5τ , we have that U deformation retracts to M. Therefore

the homology of U equals the homology of M.

We prove this proposition in Sect. 4. Subsequent to our work, the authors of [7]
presented a different type of calculation of the homology of M based on their homol-
ogy approximation theorem together with the method of computing persistent homol-
ogy (e.g., [20]). Their method does not give the homotopy type of M. On the other
hand, it does apply to a class of metric spaces more general than well-conditioned
manifolds. A related approach appears in [5].

In the case under consideration here, the points x1, . . . , xn are sampled in i.i.d.
fashion from the uniform probability distribution on M. By probabilistic considera-
tions, we will then prove (in Sect. 5) the following proposition.

Proposition 3.2 Let x̄ be drawn by sampling M in i.i.d. fashion according to the
uniform probability measure on M. Then with probability greater than 1 − δ, we
have that x̄ is (ε/2)-dense (ε < τ/2) in M provided

|x̄|> β1

(

log(β2)+ log

(
1

δ

))

,

where

β1 = vol(M)

(cosk(θ1))vol(Bk
ε/4)

and β2 = vol(M)

(cosk(θ2))vol(Bk
ε/8)

.

Here k is the dimension of the manifold M and vol(Bk
ε ) denotes the k-dimensional

volume of the standard k-dimensional ball of radius ε. Finally, θ1 = arcsin(ε/8τ) and
θ2 = arcsin(ε/16τ ).

Putting these two propositions together, we see that we are able to provide a finite
sample estimate for how many times we need to sample M so that we are guaranteed
with high confidence that the homology of the random set U equals the homology
of M. Thus our main theorem is

Theorem 3.1 Let M be a compact submanifold of R
N with condition number τ .

Let x̄ = {x1, . . . , xn} be a set of n points drawn in i.i.d. fashion according to the
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uniform probability measure on M. Let 0 < ε < τ/2. Let U = ⋃x∈x̄ Bε(x) be a
correspondingly random open subset of R

N . Then for all

n > β1

(

log(β2)+ log

(
1

δ

))

,

the homology of U equals the homology of M with high confidence (probability
>1− δ).

Remark Note that no version of our main theorem exists in the literature so far. How-
ever, versions of our Proposition 3.1 do exist. We have characterized Proposition 3.1
in terms of τ but one may obtain an alternate characterization in terms of the medial
axis and the local feature size. In fact, if one considers the union of balls centered
at the data points given by U =⋃x∈x̄ Bεx (x) where εx = rσ (x), then it is possible
to show that the homology of U coincides with that of M if x̄ is (εx/2)-dense in
M and for all r < 0.21. For the case of surfaces in R

3, a similar result is obtained
by Amenta et al. [2] for r < 0.06. The set x̄ is said to be (εx/2)-dense if for every
p ∈M there exists some x ∈ x̄ such that ‖p − x‖ < εx/2. We will prove this in a
later paper. It is not obvious, however, how to obtain a version of our main theorem
in terms of the local feature size. Finally, we recall the recent results of [7] that we
have already alluded to.

3.1 Computing the Homology of U

One now needs to consider algorithms to compute the homology of U . Noting that
the Bε(xi)’s form a cover of U , one can construct the nerve of the cover. The nerve
is an abstract simplicial complex constructed as follows: One puts in a k-simplex for
every (k+ 1)-tuple of intersecting elements of the cover. The Nerve Lemma (see [4])
applies in our case, as balls are convex, to show that the homology of U is the same as
the homology of this complex. The algorithm consists of the following components:

1. Given an ε, and a set of points x̄ = {x1, . . . , xn} in R
N , each j -simplex is given by

a subset of the n points that have non-zero intersection. Thus we may define Lj to
be the collection of all j -simplices. Each simplex σ ∈ Lj is associated with a set
of j + 1 points (p0(σ ), . . . , pj (σ ) ∈ x̄) such that

j⋂

i=0

Bε(pi(σ )) 
= ∅.

An orientation for the simplex is chosen by picking an ordering and we denote the
oriented simplex by |p0(σ ), . . . , pj (σ )|.

2. A very crude upper bound on the size of Lj (denoted by |Lj |) is given by
(

n
j+1

)
.

However, it is clear that if two points xm and xl are more than 2ε apart, they cannot
be associated to a simplex. Therefore, there is a locality condition that the pi(σ )’s
must obey, which results in |Lj | being much smaller than this crude number. The

simplicial complex Kj = ⋃j

i=0 Lj together with face relations. The simplicial
complex corresponding to the nerve of U is K =KN .
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3. A basic subroutine for computing the simplicial complex (steps 1 and 2 above)
involves the decision problem: for any set of j points, determine whether balls of
radius ε around each of these points have non-empty intersection. This problem
is related to the smallest ball problem defined as follows: Given a set of j points,
find the ball with the smallest radius enclosing all these points. One can check
that

⋂j

i=1 Bε(pi) 
= ∅ if and only if this smallest radius < ε. Fast algorithms for
the smallest ball problem exist. See [12] for theoretical discussion and [14] for
downloadable algorithms from the web.

4. We work in the field of coefficients R. Then a j -chain is a function c: Lj → R

and can be written as a formal sum

c=
∑

σ∈Lj

c(σ )σ.

By adding j -chains componentwise, one gets the vector space of j -chains denoted
by Cj .

5. The boundary operator ∂j is a linear operator from Cj to Cj−1 defined as follows.
For each (oriented) simplex σ ∈Lj ,

∂jσ =
j∑

i=0

(−1)iσi,

where σi is a j −1 face of σ (facing point pi(σ )) and the orientation of σi is given
by |p0, . . . , pi−1,pi+1, . . . , pj |. Now ∂j is defined on j chains by additivity as

∂j

(∑

σ∈Lj

c(σ )σ

)

=
∑

σ∈Lj

c(σ )∂jσ.

Thus, ∂j can be represented as an nj−1 × nj matrix where nj−1 = |Lj−1| and
nj = |Lj |, respectively. The matrix is usually sparse in our setting.

6. This defines the chain complex

· · · Cj+1
∂j+1−→ Cj

∂j−→ Cj−1 · · · .
One can finally define the image and kernel of the boundary operator given by

Im ∂j = {c ∈ Cj−1 | ∃c′ ∈Cj where ∂j c
′ = c}

and

Ker ∂j = {c ∈ Cj | ∂j c= 0}.
Now Im ∂j+1 is the vector space of j -boundaries and Ker∂j is the vector space
of j cycles. Then the j th homology group is the quotient of Ker∂j over Im ∂j+1,
i.e.,

Hj =Ker∂j / Im ∂j+1.
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The calculation of Hj is seen to be an exercise in linear algebra given the matrix
representation of the boundary operators. In our exposition here, we have been
working over a field resulting in vector spaces which are characterized purely by
their ranks (the Betti numbers). One approach to this is also via the combinatorial
Laplacian as outlined in [13]. More generally, one can work over a ring and Hj

would then be an Abelian group.

4 The Deformation Retract Argument

In this section we prove Proposition 3.1. Recall that ε <
√

3/5τ . Consider the canon-
ical map π : U →M given by (π is the restriction of π0 to U )

π(x)= arg min
p∈M

‖x − p‖.

Then we see that the fibers π−1(p) are given by T ⊥p ∩U ∩ Bτ (p). The intersection
with Bτ (p) is necessary to eliminate distant regions of U that may intersect with Tp
(because the manifold may curve around over great distances) but do not belong to
the fiber. For example, for the standard circle in R

2, at any point p on the circle,
T ⊥p intersects the circle at two points. One of these is in Bτ (p) and the other is not.
Therefore,

π−1(p)=
⋃

x∈x̄
Bε(x)∩ T ⊥p ∩Bτ (p),

where T ⊥p is the normal subspace at p ∈M orthogonal to the tangent space Tp . Let
us also define st(p) as

st (p)=
⋃

{x∈x̄;x∈Bε(p)}
Bε(x)∩ T ⊥p ∩Bτ (p).

It is immediately clear that

st (p)⊆ π−1(p).

Then the following simple proposition is true.

Proposition 4.1 st(p) is star shaped relative to p and therefore contracts to p.

Proof Consider arbitrary v ∈ st (p). Then v ∈ Bε(x) ∩ T ⊥p for some x ∈ x̄ such that
x ∈ Bε(p). Since x ∈ Bε(p), we immediately have p ∈ Bε(x). Since v,p are both in
Bε(x), by convexity of Euclidean balls, we have that the line segment v̄p joining v

to p is entirely contained in Bε(x). At the same time, v̄p is entirely contained in T ⊥p
and it follows therefore that v̄p is contained in st(p). �

We next show that the inclusion of st(p) in π−1(p) is an equality proving that
π−1(p) contracts to p.
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Fig. 1 A picture showing the
worst case. The picture shows
the plane passing through points
v,p, and q . Tp and T⊥p are
shown intersecting with this
plane and are represented by the
dotted horizontal line and the
solid vertical line, respectively.
On the plane of interest, one
may then draw two circles (of
radius τ each) that are tangent to
Tp and are on either side of Tp
as shown. Clearly, v lies on T⊥p
and is marked in the figure. On
the other hand, q could potenti-
ally lie anywhere outside the two
circles. A moment’s reflection
shows that ‖v− p‖ is greatest
when q lies on one of the two
circles. Without loss of generali-
ty one may consider it to lie on
the top circle as shown. Over all
choices of such q , the worst
case is derived in Lemma 4.1

Proposition 4.2

st(p)= π−1(p).

Proof We need to show that π−1(p) ⊆ st (p). Consider an arbitrary v ∈ Bε(q) ∩
T ⊥p ∩ Bτ (p) where q ∈ x̄ and q /∈ Bε(p). For such v the picture of Fig. 1 can be

drawn. Following Lemma 4.1, we see that the distance of v to p is at most ε2/τ .
Now by the fact that x̄ is (ε/2)-dense, we have that there is some point x ∈ x̄ which
is within ε/2 of p. The worst-case picture of this is shown in Fig. 2. From Lemma 4.2,
we see that v ∈ Bε(x) for this x. The proposition is proved. �

These two propositions taken together show that M is a deformation retract of U .
We see that M ⊂ U . Further let F(x, t) : U × [0,1] → U be given by F(x, t) =
tx + (1 − t)π(x). Then F is continuous, F(x,0) = π , and F(x,1) is the identity
map.

Lemma 4.1 Consider any q /∈ Bε(p). Let v ∈ Bε(q)∩T ⊥p ∩Bτ (p). Then the Euclid-

ean distance from v to p is less than ε2/τ .

Proof We need to consider which configuration of v, q, and p makes the distance
‖v − p‖ as large as possible. It is easiest to reason about this in the plane passing
through these points. It suffices to consider q on the curve as shown in Fig. 1. See the
caption for further explanation. Following the symbols on the figure, we have

A= b sin(θ)+
√
ε2 − b2 cos2(θ),
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Fig. 2 A picture showing the
worst case. The picture is of the
plane containing the points p, v,
and x. The two circles are each
of radius τ and tangent to Tp .
Tp and T⊥p are represented by
their intersection with the plane
of interest as dotted horizontal
and solid vertical lines,
respectively

where b= 2τ sin(θ). Therefore, we have

A= 2τ sin2(θ)+
√

ε2 − 4τ 2 sin2(θ) cos2(θ).

From this we see that

dA

dθ
= 2τ sin(2θ)− 4τ 2 sin(2θ) cos(2θ)

2
√
ε2 − τ 2 sin2(2θ)

= 2τ sin(2θ)

(

1− τ cos(2θ)
√
ε2 − τ 2 sin2(2θ)

)

.

It is easy to check that if ε < τ , then dA/dθ < 0, i.e., A is monotonically decreasing
with θ . Therefore the worst-case situation is when b = 2τ sin(θ)= ε. For this value
of θ , we see that A= ε2/τ . �

The following lemma ensures that there is an x ∈ x̄ ∩ Bε(p) such that v ∈
Bε(x)∩ T ⊥p .

Lemma 4.2 Let x̄ be (ε/2)-dense in M. For any p ∈M, let v ∈ π−1(p). Then for
0 < ε <

√
3/5τ, we have that v ∈ Bε(x)∩ T ⊥p for some x ∈ Bε(p)∩ x̄.
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Proof By the (ε/2)-dense property, we know that there is an x ∈ x̄ such that x ∈
Bε/2(p). Consider the picture in Fig. 2. This represents the most unfavorable position
that such an x might have for the current context. The picture shows the plane passing
through the points x, v, and p. By the same argument of Lemma 4.1 we see that

A=
√
ε2 − b2 cos2(θ)− b sin(θ),

where b= 2τ sin(θ)= ε/2. Putting this value in, we have

A=
√

ε2 − ε2

4

(

1− ε2

16τ 2

)

− 2τ
ε2

16τ 2
.

Simplifying, we see that A> ε2/τ (needed by Lemma 4.1) if

√

ε2 − ε2

4

(

1− ε2

16τ 2

)

>
9

8

ε2

τ
.

Squaring both sides, we have

3

4
ε2 + ε4

64τ 2
>

81ε4

64τ 2
.

This simplifies to

ε2

τ 2
<

3

5
.

Therefore, as long as ε <

√
3
5τ , we will have that v ∈ Bε(x) for a suitable x. �

5 Probability Bounds

Following our assumption, that the points xi are drawn at random, we now provide a
bound on how many examples need to be drawn so that the empirically constructed
complex has the same homology as the manifold. We begin with a basic probability
lemma.

Lemma 5.1 Let {Ai} for i = 1, . . . , l be a finite collection of measurable sets and
let μ be a probability measure on

⋃l
i=1 Ai such that for all 1 ≤ i ≤ l, we have

μ(Ai) > α. Let x̄ = {x1, . . . , xn} be a set of n i.i.d. draws according to μ. Then if

n≥ 1

α

(

log l + log

(
1

δ

))

we are guaranteed that with probability > 1− δ, the following is true:

∀i, x̄ ∩Ai 
= ∅.
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Proof This follows from a simple application of the union bound. Let Ei be the event
that x̄ ∩Ai is empty. The probability with which this happens is given by

PEi =
(
1−μ(Ai)

)n ≤ (1− α)n.

Therefore, by the union bound, we have

P

⋃

i
Ei ≤

l∑

i=1

PEi ≤ l(1− α)n.

It remains to show that for n≥ (1/α)(log l + log(1/δ)), we have

l(1− α)n ≤ δ.

To see this, simply note that f (x)= xex − ex + 1≥ 0 for all x ≥ 0. This is seen by
noting that f (0)= 0 and f ′(x)= xex ≥ 0 for all x ≥ 0. Putting x = α in the above
function, we have

(1− α)≤ e−α

and therefore it is easily seen that

l(1− α)n ≤ le−nα ≤ δ

for the appropriate choice of n. �

Applying this to our setting, we consider a cover of the manifold M by balls of
radius ε/4. Let {yi; 1≤ i ≤ l} be the centers of such balls that constitute a minimal
cover. Therefore, we can choose Ai = Bε/4(yi) ∩M. Applying the above lemma,
we immediately have an estimate on the number of examples we need to collect. This
is given by

1

α

(

log l + log

(
1

δ

))

,

where

α =min
i

vol(Ai)

vol(M)

and l is the ε/4 covering number. These may be expressed entirely in terms of natural
invariants of the manifold and we derive these quantities below.

First, we note that the covering number may be bounded in terms of the packing
number, i.e., the maximum number of sets of the form Ni = Br ∩M (at scale r)
that may be packed into M without overlap. In particular, if C(ε) is the ε-covering
number of M and P(ε) is the ε-packing number, then the following simple lemma
is true.

Lemma 5.2

P(2ε)≤ C(2ε)≤ P(ε).
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Proof The fact that P(2ε)≤ C(2ε) follows from the definition. To see that C(2ε)≤
P(ε), begin by letting Bε(x1), . . . ,Bε(xN) be a realization of an optimal ε-packing
so that N = P(ε). We claim that B2ε(x1), . . . ,B2ε(xN) form a 2ε-cover. If not, there
exists an x ∈M such that Bε(x)∩Bε(xi) is empty for all i. In that case, one can add
Bε(x) to the collection to increase the packing number by 1 leading to a contradiction.
Since B2ε(x1), . . . ,B2ε(xN) is a valid 2ε-cover, we have C(2ε)≤N = P(ε). �

Since l is the ε/4 covering number, we see that l ≤ P(ε/8) from Lemma 5.2. Now
we need to bound the packing number. To do so, we need the following result.

Lemma 5.3 Let p ∈M. Now consider A =M ∩ Bε(p). Then vol(A) ≥ (cos(θ))k

vol(Bk
ε (p)) where Bk

ε (p) is the k-dimensional ball in Tp centered at p, θ =
arcsin(ε/2τ ). All volumes are k-dimensional volumes where k is the dimension of M.

Proof Consider the tangent space at p given by Tp and let f be the projection of
R

N to Tp . Let Bk
r (p) be the k-dimensional ball of radius r = ε cos(θ) (where θ =

arcsin(ε/2τ )) centered at p lying in Tp . Let fA = {f (q) | q ∈ A} be the image of A
under f . We will show that Bk

r (p)⊂ fA. Since f is a projection we have

vol(A)≥ vol(fA)≥ vol
(
Bk
r (p)

)= (cosk(θ)
)
vol
(
Bk
ε (p)

)
.

To see that Bk
r (p)⊂ fA, notice that f is an open map whose derivative is non-singular

for all q ∈A (by Lemma 5.4). Therefore f is locally invertible and there exists a ball
Bk
s (p) of radius s such that f−1(Bk

s (p))⊂A. One can keep increasing s until it hap-
pens for the first time (say at s = s′) that f−1(Bk

s (p)) 
⊂A. At this stage, there exists
a point q in the closure of A such that either (i) f is singular at q or (ii) q /∈ A. By
Lemma 5.4, we see that (i) is impossible. Therefore, q /∈A but q is in the closure of
A implying that ‖q−p‖ = ε. We see that s′ = ε cos(φ) where φ is the angle between
the line q̄p (the line joining q to p) and the line ¯f (q)p (the line joining f (q) to p). By
the curvature bound implied by τ , we see that |φ| ≤ |θ | and therefore s′ = ε cos(φ)≥
ε cos(θ)= r . �

Lemma 5.4 Let p ∈M, let A =M ∩ Bε(p), and let f be the projection to the
tangent space at p (Tp). Then for all ε < τ/2, the derivative df is non-singular at all
points q ∈A.

Proof Suppose d f was singular for some q ∈ A. That means that the tangent space
at q(Tq) is oriented so that the vector with origin q and endpoint f (q) lies in Tq .
Since q ∈ Bε(p), we have that d = ‖q − p‖< τ/2. Putting Propositions 6.2 and 6.3
together, we get that

cos(φ)≥
√

1− 2d

τ
> 0,

where φ is the angle between Tp and Tq . From this we see that φ < π/2 leading to a
contradiction. �
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Using Lemma 5.3, we see that a simple bound on the packing number is obtained.
We obtain immediately that

P(ε)≤ vol(M)

(cosk(θ))vol(Bk
ε (p))

.

Therefore, we have

l ≤ P

(
ε

8

)

≤ vol(M)

(cosk(θ2))vol(Bk
ε
8
(p))

,

where θ2 = arcsin(ε/16τ ). Similarly, we have that

1

α
≤ vol(M)

(cosk(θ1))vol(Bk
ε
4
(p))

,

where θ1 = arcsin(ε/8τ ).

6 Curvature and the Condition Number 1/τ

In this section1 we examine the consequences of the condition number 1/τ for the
submanifold M. As we have mentioned before, τ controls the curvature of the man-
ifold at every point. This fact has been exploited in our earlier proofs. For submani-
folds, one may formally study curvature through the second fundamental form (see,
e.g., [9]). Here we show formally that the norm of the second fundamental form is
bounded by 1/τ . Thus a large τ corresponds to a well-conditioned submanifold that
has low curvature.

Proposition 6.1 states the bound on the norm of the second fundamental form.
Proposition 6.2 states a bound on the maximum angle between tangent spaces at
different points in M. Proposition 6.3 states a bound on the maximum difference
between the geodesic distance and the ambient distance for neighboring points in M.

We begin by recalling the second fundamental form. Fix a point p ∈M. Following
standard accounts (see, e.g., [9]), there exists a symmetric bilinear form B : Tp ×
Tp → T ⊥p that maps any two vectors in the tangent space (u,v ∈ Tp) into a vector
B(u, v) in the normal space. Thus for any normal vector (unit norm) η ∈ T ⊥p , one can
define the following:

Bη(u, v)=
〈
η,B(u, v)

〉= 〈u,Lηv〉,
where the inner product 〈·, ·〉 is the usual inner product in the tangent space of the
ambient manifold (in our case R

N ). Since Bη: Tp × Tp → R is symmetric and bi-
linear, we see that Lη : Tp → Tp is a linear self-adjoint operator. The norm of the
second fundamental form in direction η is now given by

λη = sup
u∈Tp

〈u,Lηu〉
〈u,u〉 .

1Thanks to Nat Smale for discussions leading to the writing of this section.
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It is seen that λη is the largest eigenvalue of Lη. (In general, the eigenvalues are
also known as the principal curvatures in the normal direction η.) Given this, we can
prove the following proposition that characterizes the relation between the curvature
through the second fundamental form and the condition number of the submanifold.

Proposition 6.1 If M is a submanifold of R
N with condition number 1/τ , then the

norm of the second fundamental form is bounded by 1/τ in all directions. In other
words, for all points p ∈M and for all (unit norm) η ∈ T ⊥p , we have

λη = sup
u∈Tp

〈u,Lηu〉
〈u,u〉 ≤ 1

τ
.

Proof We prove by contradiction. Suppose the proposition is false. Then there exists
a point p ∈M, a tangent vector (unit norm) u ∈ Tp , and a normal vector (unit norm)
η such that

〈
η,B(u,u)

〉
>

1

τ
.

Consider a geodesic curve c(t) ∈M parametrized by arc length such that c(0)= p

and ċ(0)= (dc/dt)(0)= u. For convenience, we place the origin at p so that c(0)=
0 = p. With this (ambient) coordinate system, consider the point given by τη, i.e.,
the point a distance τ from p in the direction η. By our hypothesis on the condition
number of the submanifold, we see that p ∈M is the closest point on the manifold
to the center of the τ -ball given by τη:

for all t,
∥
∥c(t)− τη

∥
∥2 ≥ τ 2

from which we get

for all t,
〈
c(t), c(t)

〉− 2τ
〈
c(t), η

〉≥ 0.

Consider the function g(t) = 〈c(t), c(t)〉 − 2τ 〈c(t), η〉. Since c(0) = 0, we see that
g(0) = 0. Further, we have g′(t) = 2〈c(t), ċ(t)〉 − 2τ 〈ċ(t), η〉. Since c(0) = 0 and
〈ċ(0), η〉 = 0, we see that g′(0) = 0. Finally, g′′(t) = 2〈ċ(t), ċ(t)〉 + 2〈c(t), c̈(t)〉 −
2τ 〈c̈(t), η〉. Since c is parametrized by arc length, we have 〈ċ(t), ċ(t)〉 = 1 and
g′′(0)= 2− 2τ 〈c̈(0), η〉.

Noting that the tangent vector field dc/dt is parallel (see the proof of Proposi-
tion 6.2), we see that B(dc/dt, dc/dt) = c̈(t). Therefore, by assumption, we have
that

〈
η,B(u,u)

〉=
〈

η,B

(
dc

dt
,
dc

dt

)〉

= 〈η, c̈(0)〉> 1

τ
.

Therefore, g′′(0) < 2 − 2τ(1/τ) = 0. By continuity, there exists a t∗ such that
g(t∗) < 0. However, this leads to a contradiction since g(t)≥ 0 for all t . �

Since the norm of the second fundamental form is bounded, we see that the man-
ifold cannot curve too much locally. As a result, the angle between tangent spaces at
nearby points cannot be too large. Let p and q be two points in the submanifold M
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with associated tangent spaces Tp and Tq . Since Tp and Tq are affine subspaces of
R

N , one can compare them in the ambient space in a standard way.
Formally, one may transport the tangent spaces to the origin (according to the

standard connection defined in the ambient space R
N ) and then compare vectors in

each of these tangent spaces with each other. Thus for any (unit norm) vectors u ∈ Tp
and v ∈ Tq , we may define the angle θ between them by

cos(θ)= ∣∣〈u′, v′〉∣∣,
where 〈·, ·〉 is the usual inner product in R

N , and u′, v′ are the vectors obtained by
parallel transport (in R

N ) of u and v, respectively, to the origin. Hereafter, we always
take this construction as standard. We drop the prime notation and use 〈u,v〉 to denote
〈u′, v′〉 in what follows.

We can now state the following proposition.

Proposition 6.2 Let M be a submanifold of R
N with condition number 1/τ . Let

p,q ∈M be two points with geodesic distance given by dM(p, q). Let φ be the angle
between the tangent spaces Tp and Tq defined by cos(φ)=minu∈Tp maxv∈Tq |〈u,v〉|.
Then cos(φ) is greater than 1− (1/τ)dM(p, q).

Consider two points p,q ∈M connected by a geodesic curve c(t) ∈M. Let c(t)
be parametrized (proportional to arc length) so that c(0)= p, and c(1)= q .

Now let vp ∈ Tp be a tangent vector (unit norm) and let v(t) be the parallel trans-
port of this vector along the curve c(t). Thus we have v(0) = vp , v(1) = vq ∈ Tq .
Clearly, 〈v(t), v(t)〉 = 1 for all t since v is parallel.

Notice that
〈
v(0), v(1)

〉= 〈v(0), v(0)+w
〉= 1+ 〈v(0),w〉, (1)

where

w =
∫ 1

0

(
dv

dt

)

dt. (2)

Combining (1) and (2), we see

cos(θ)= ∣∣〈v(0), v(1)〉∣∣≥ 1− ∣∣〈v(0),w〉∣∣≥ 1− ‖w‖, (3)

where θ is the angle between the vectors v(0) and v(1). Since vp = v(0) was arbi-
trary, it is easy to check that cos(φ)≥ cos(θ).

Now
dv

dt
= ∇̄dc/dt v(t),

where ∇̄ denotes the connection in Euclidean space. At the same time

∇dc/dt v(t)=
(∇̄dc/dt v(t)

)T
,

where for any r ∈M and v ∈ T̄r (here T̄r is the tangent space of R
N at r) we de-

note by (v)T the projection of v onto Tr (here Tr is the tangent space to M at r
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viewed as an affine space with origin r). However, since v(t) is parallel, we have
that ∇dc/dt v(t)= 0. Therefore, ∇̄dc/dt v(t) is entirely in the space normal to Tc(t), but
the component of ∇̄dc/dt v(t) in the normal direction is precisely given by the second
fundamental form. Hence, we have that

dv

dt
= B

(
dc

dt
, v(t)

)

,

where B is a symmetric, bilinear form (the second fundamental form). Letting η be a
unit norm vector in the direction dv/dt , i.e., η= (1/‖dv/dt‖)(dv/dt), we see that

∥
∥
∥
∥
dv

dt

∥
∥
∥
∥=

〈

η,
dv

dt

〉=
〈

η,B

(
dc

dt
, v(t)

)〉

=
〈
dc

dt
,Lnv(t)

〉

,

where Ln is a self-adjoint linear operator. By Proposition 6.1, the norm of Lη is
bounded by 1/τ . Therefore, we have

∥
∥
∥
∥
dv

dt

∥
∥
∥
∥≤

∥
∥
∥
∥
dc

dt

∥
∥
∥
∥‖Lnv‖ ≤

∥
∥
∥
∥
dc

dt

∥
∥
∥
∥‖Lη‖,

and

‖w‖ =
∥
∥
∥
∥

∫ 1

0

dv

dt

∥
∥
∥
∥≤

∫ 1

0

∥
∥
∥
∥
dv

dt

∥
∥
∥
∥≤ ‖Ln‖

∫ 1

0

∥
∥
∥
∥
dc

dt

∥
∥
∥
∥dt ≤

1

τ
dM(p, q). (4)

Combining (3) and (4), we get cos(φ)≥ 1− 1
τ
dM(p, q).

We next show a relationship between the geodesic distance dM(p, q) and the
ambient distance ‖p− q‖RN for any two points p and q on the submanifold M.

Proposition 6.3 Let M be a submanifold of R
N with condition number 1/τ . Let

p and q be two points in M such that ‖p − q‖RN = d . Then for all d ≤ τ/2, the
geodesic distance dM(p, q) is bounded by

dM(p, q)≤ τ − τ

√

1− 2d

τ
.

Consider two points p,q ∈M and let c(t) be a geodesic curve joining them such
that c(0) = p and c(s) = q . Let c be parametrized by arc length so that ‖ċ(t)‖ = 1
for all t and dM(p, q)= s.

Noting that the tangent vector field ċ along the curve is parallel, we have c̈ =
B(ċ, ċ) and from Proposition 6.1 we see that for all t ,

‖c̈‖ = ∥∥B(ċ, ċ)
∥
∥≤ 1

τ
.

The chord length between p and q is given by ‖c(s)− c(0)‖ and we now relate this
to the geodesic distance dM(p, q). Observe that

c(s)− c(0)=
∫ s

0
ċ(t) dt.
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Now

ċ(t)= ċ(0)+
∫ t

0
c̈(r) dr.

Thus ċ(t)= ċ(0)+ u(t) where u(t)= ∫ t

0 c̈(r) dr . We see that

‖u(t)‖ ≤
∫ t

0

∥
∥c̈(r) dr

∥
∥≤ t

τ
.

Therefore,

∥
∥c(s)−c(0)

∥
∥=

∥
∥
∥
∥

∫ s

0
ċ(0) dt+

∫ s

0
u(t) dt

∥
∥
∥
∥≥ s

∥
∥ċ(0)

∥
∥−
∫ s

0

∥
∥u(t)

∥
∥dt ≥ s−

∫ s

0

t

τ
dt.

Therefore we get

∥
∥c(s)− c(0)

∥
∥= d ≥ s − s2

2τ
, (5)

where d is the ambient distance between the points p and q while s is the geodesic
distance between these same points. The inequality in (5) is satisfied only if s ≤
τ − τ

√
1− 2d/τ or s ≥ τ + τ

√
1− 2d/τ . Since s = 0 when d = 0, we know that

the second inequality does not apply. Therefore, from the first inequality, we have

s ≤ τ − τ

√
1− 2d

τ
.

7 Handling Noisy Data

In this section we show that if our data are noisy in the sense that they are drawn from
a probability distribution that is concentrated around (rather than on) the manifold,
the homology of the manifold can still be computed from noisy data.

7.1 The Model of Noise

Consider a probability measure μ concentrated around the manifold. We assume that
μ satisfies the following two regularity conditions:

1. The support of μ (suppμ) is contained in the tubular neighborhood of radius r

around M. Thus suppμ⊂ Tubr (M).
2. For every 0 < s < r , we have that

inf
p∈M

μ(Bs(p)) > ks,

where ks is a constant depending on s and independent of p.

In what follows we assume the data are drawn in an i.i.d. fashion according to a P

that satisfies the above properties.
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7.2 Main Topological Lemma: Sufficient Conditions

We proceed by constructing ε-balls centered on our data points. If these data are
s-dense on the manifold, then the homology of the union of these balls will equal that
of the manifold M even if the data are drawn from a noisy distribution. In order to
see that this might be the case, we provide a simple argument. This argument works
with non-optimal choices of ε and s and later sections enter into the considerations
of choosing better values for these parameters and therefore providing more natural
complexity estimates.

Let x̄ = {x1, . . . , xn} be a set of n points in the tubular neighborhood of radius r

around M. Let U be given by

U =
⋃

x∈x̄
Bε(x).

Proposition 7.1 If x̄ is r-dense in M, then M is a deformation retract of U for all
r < (

√
9−√8)τ and

ε ∈
(
(r + τ)−√r2 + τ 2 − 6τr

2
,
(r + τ)+√r2 + τ 2 − 6τr

2

)

.

Proof We show that for each p ∈M, it is the case that π−1(p) contracts to p. Con-
sider a v ∈ π−1(p). Consider the line segment, v̄p, joining v to p. We claim that
this line segment is entirely contained in π−1(p). Clearly, if v ∈ Bε(x) for some
x ∈ x̄ ∩Bε(p), this is immediate by the convexity of balls in Euclidean space. So we
only need to consider the situation where v ∈ Bε(x) for some x /∈ x̄ ∩ Bε(p). So let
v ∈ Bε(q)∩ T ⊥p . Let

u= arg min
x∈v̄p∩ ¯Bε(q)

‖x − p‖.

As long as u ∈ Bε(x) for some x ∈ x̄ ∩ Bε(p), we see that the line segment ūp is
contained in π−1(p) and therefore v contracts to p.

Since we choose r < ε, we are guaranteed that there is an x ∈ x̄ ∩Br(p)⊂ Bε(p).
The worst-case picture is shown in Fig. 3. Following the symbols of the figure, as
long as

τ −A< ε − r,

we have that v contracts to p. Thus we need

(
τ − (ε − r)

)2
<A2 = (τ − r)2 − ε2. (6)

Expanding the squares, this reduces to

ε2 − ε(τ + r)+ 2τr < 0.

This is a quadratic in ε and is satisfied for

ε ∈
(
(r + τ)−√r2 + τ 2 − 6τr

2
,
(r + τ)+√r2 + τ 2 − 6τr

2

)

(7)
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Fig. 3 A picture showing the
worst case. As before, we draw
the picture in the plane
connecting points v, p, and q .
Tp and T⊥p are intersected with
this plane in the picture and
shown by the dotted horizontal
line and solid vertical line,
respectively. The concentric
circles have the same center and
are of radius τ and τ − r ,
respectively, and follow our
usual construction in earlier
figures and arguments. All
lengths are marked by arrows

provided

r2 − 6τr + τ 2 > 0.

This, in turn, is a quadratic in r and it is easy to check that it is satisfied as long as

r <
(
3− 2

√
2
)
τ = (√9−√8

)
τ. (8)

Thus we see that for r, ε satisfying (7) and (8), we have that v contracts to p. �

We now need to compute the probability of drawing a random x̄ that is guaranteed
to be r-dense. The following proposition is true.

Proposition 7.2 Let Nr/2 be the (r/2)-covering number of the manifold. Let
p1, . . . , pNr/2 ∈M be points on the manifold such that Br/2(pi) realize an (r/2)-
cover of the manifold. Let x̄ be generated by i.i.d. draws according to a proba-
bility measure μ that satisfies the regularity properties described earlier. Then if
|x̄|> (1/kr/2)(log(Nr/2)+ log(1/δ)), with probability greater than 1− δ, x̄ will be
r-dense in M.

Proof Take Ai = Br/2(pi) and apply Lemma 5.1. By the conclusion of that lemma,
we have that with high probability each of the Ai ’s is occupied by at least one
x ∈ x̄. Therefore it follows that for any p ∈M, there is at least one x ∈ x̄ such
that ‖p− x‖< r . Thus with high probability x̄ is r-dense on the manifold. �

Putting these together, our main conclusion is:
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Theorem 7.1 Let Nr/2 be the (r/2)-covering number of the submanifold M of R
N .

Let x̄ be generated by i.i.d. draws according to a probability measure μ that satis-
fies the regularity properties described earlier. Let U =⋃x∈x̄ Bε(x). Then if |x̄| >
(1/kr/2)(log(Nr/2)+ log(1/δ)), with probability greater than 1− δ, M is a defor-
mation retract of U as long as (i) r < (

√
9−√8)τ and (ii)

ε ∈
(
(r + τ)−√r2 + τ 2 − 6τr

2
,
(r + τ)+√r2 + τ 2 − 6τr

2

)

.

7.3 Main Topological Lemma—General Considerations

In general, we may demand points that are s-dense. Putting ε-balls around these
points we construct U in the usual way. The condition number τ and the noise
bound r are additional parameters that are outside our control and determined ex-
ternally. We now ask what is the feasible space (s, ε, r, τ ) that will guarantee that U
is homotopy equivalent to M?

Following our usual logic, we see that the worst-case situation is given by Fig. 4.
An arbitrary v ∈ Bε(q)∩ T ⊥p ∩Bτ (p) will contract to p if

Bε(q)∩Bε(x)∩ v̄p 
= φ.

This is the same as requiring

(τ −w)2 < (τ − r)2 − ε2. (9)

Fig. 4 A picture showing the
worst case. As before, we draw
the picture in the plane
connecting points v, p, and q .
Tp and T⊥p are intersected with
this plane in the picture and
shown by the dotted horizontal
line and solid vertical line,
respectively. The concentric
circles have the same center and
are of radius τ and τ − r ,
respectively, and follow our
usual construction in earlier
figures and arguments. All
lengths are marked by arrows
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Additionally, we have the following equations that need to be satisfied (following
Fig. 4):

(τ − r)2 − (τ − β)2 = s2 − β2, (10)

s2 − β2 + (β +w)2 = ε2. (11)

If one eliminates w and β from the above equations, one will get a single inequality
relating s, ε, τ, r that describes for each τ, r the feasible set of possible choices of
s, ε that are sufficient to guarantee homotopy equivalence. Let us see how our earlier
theorems follow from particular choices of this general set of equations.

7.3.1 The Case when s = r

We have already examined the case when the points x̄ are chosen to be r-dense in M.
Putting s = r in (9)–(11), we see the following:

From (10), we have (for s = r)

(τ − r)2 − (τ − β)2 = r2 − β2.

This simplifies to give β = r .
Putting β = r and s = r in (11), we get

r2 − r2 + (r +w)2 = ε2,

giving us w = ε − r .
Finally, putting w = ε − r in inequality (9), we get

(
τ − (ε − r)

)2
< (τ − r)2 − ε2,

which is the same as inequality (6) whose solution was examined in the previous
section.

7.3.2 The Case when r = 0

We can recover our main theorem for the noise-free case by considering the case
r = 0. We proceed to do this now.

The fundamental inequality of (9) gives us (for r = 0)

(τ −w)2 < τ 2 − ε2.

This is the same as requiring

w2 − 2τ + ε2 < 0.

Using standard analysis for quadratic functions, we see that the following condition
is required:

w > τ −
√
τ 2 − ε2. (12)
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We can eliminate w using (10) and (11). Thus, from (10), we get β = s2/2τ and
substituting in (11), we get a quadratic equation in w whose positive solution is given
by w =−s2/2τ +√s4/4τ 2 + (ε2 − s2). This gives rise to the following condition:

− s2

2τ
+
√

s4

4τ 2
+ (ε2 − s2

)
> τ −

√
τ 2 − ε2. (13)

Inequality (13) gives the feasible region for s and ε for the homotopy equivalence
of U and M. Let us consider the special case when s = ε/2—a choice we made in
Sect. 3 without any attention to optimality. Putting in this value, after several simpli-
fying steps, one obtains that

ε4 + 51ε2τ 2 − 48τ 4 < 0. (14)

This is satisfied for all 0 < ε2 < 0.9244τ 2 or 0 < ε < 0.96τ .

Remark 1 Note that in our original proof of our main noise free theorem (Theo-
rem 3.1), the deformation retract argument of Sect. 3 passes through the construction
of st(p) and shows contraction of π−1(p) by equating it with st(p). This condition
is stronger than we require. Here we see that the condition Bε(q) ∩ Bε(x) ∩ v̄p 
= φ

is sufficient. This latter condition is weaker and therefore gives us a slightly stronger
version of Theorem 3.1 in the sense that it holds for a larger range of ε.

Remark 2 If we assume that τ, r are beyond our control, the sample complexity de-
pends entirely upon s. Therefore if we wish to proceed by drawing the fewest number
of examples, then it is necessary to maximize s subject to the condition of (13).

Remark 3 The total complexity of finding the homology depends both upon s and
ε in a more complicated way. The size of x̄ depends entirely upon s and nothing
else. However, the number of k-tuples to consider in the simplicial complex depends
both upon the size of x̄ as well as ε because ε determines how many balls will have
non-empty intersections. We leave this more nuanced complexity analysis for future
consideration.
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Odd Crossing Number and Crossing Number Are Not
the Same

Michael J. Pelsmajer · Marcus Schaefer ·
Daniel Štefankovič

Abstract The crossing number of a graph is the minimum number of edge intersec-
tions in a plane drawing of a graph, where each intersection is counted separately. If
instead we count the number of pairs of edges that intersect an odd number of times,
we obtain the odd crossing number. We show that there is a graph for which these
two concepts differ, answering a well-known open question on crossing numbers. To
derive the result we study drawings of maps (graphs with rotation systems).

1 A Confusion of Crossing Numbers

Intuitively, the crossing number of a graph is the smallest number of edge crossings
in any plane drawing of the graph. As it turns out, this definition leaves room for
interpretation, depending on how we answer the questions: what is a drawing, what
is a crossing, and how do we count crossings? The papers by Pach and Tóth [7]
and Székely [9] discuss the historical development of various interpretations and
definitions—often implicit—of the crossing number concept.

A drawing D of a graph G is a mapping of the vertices and edges of G to the
Euclidean plane, associating a distinct point with each vertex, and a simple plane
curve with each edge so that the ends of an edge map to the endpoints of the corre-
sponding curve. For simplicity, we also require that
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• A curve does not contain any endpoints of other curves in its interior
• Two curves do not touch (that is, intersect without crossing), and
• No more than two curves intersect in a point (other than at a shared endpoint)

In such a drawing the intersection of the interiors of two curves is called a crossing.
Note that by the restrictions we placed on a drawing, crossings do not involve end-
points, and at most two curves can intersect in a crossing. We often identify a drawing
with the graph it represents. For a drawing D of a graph G in the plane we define

• cr(D) - the total number of crossings in D

• pcr(D) - the number of pairs of edges which cross at least once; and
• ocr(D) - the number of pairs of edges which cross an odd number of times

Remark 1 For any drawing D, we have ocr(D)≤ pcr(D)≤ cr(D).

We let cr(G)=min cr(D), where the minimum is taken over all drawings D of G
in the plane. We define ocr(G) and pcr(G) analogously.

Remark 2 For any graph G, we have ocr(G)≤ pcr(G)≤ cr(G).

The question (first asked by Pach and Tóth [7]) is whether the inequalities are
actually equalities.1 Pach [6] called this “perhaps the most exciting open problem in
the area.” The only evidence for equality is an old theorem by Chojnacki, which was
later rediscovered by Tutte—and the absence of any counterexamples.

Theorem 1.1 (Chojnacki [4], Tutte [10]) If ocr(G)= 0, then cr(G)= 0.2

In this paper we will construct a simple example of a graph with ocr(G) <

pcr(G)= cr(G). We derive this example from studying what we call weighted maps
on the annulus. Section 2 introduces the notion of weighted maps on arbitrary sur-
faces and gives a counterexample to ocr(M) = pcr(M) for maps on the annulus. In
Section 3 we continue the study of crossing numbers for weighted maps, proving in
particular that cr(M)≤ cn ·ocr(M) for maps on a plane with n holes. One of the diffi-
culties in dealing with the crossing number is that it is NP-complete [2]. In Section 4
we show that the crossing number can be computed in polynomial time for maps on
the annulus. Finally, in Section 5 we show how to translate the map counterexample
from Section 2 into an infinite family of simple graphs for which ocr(G) < pcr(G).

2 Map Crossing Numbers

A weighted map M is a surface S and a set P = {(a1, b1), . . . , (am, bm)} of pairs of
distinct points on ∂S with positive weights w1, . . . ,wm. A realization R of the map

1Doug West lists the problem on his page of open problems in graph theory [12]. Dan Archdeacon even
conjectured that equality holds [1].
2In fact they proved something stronger, namely that in any drawing of a non-planar graph there are two
non-adjacent edges that cross an odd number of times. Also see [8].



442 Odd Crossing Number and Crossing Number Are Not the Same

Fig. 1 Optimal drawings: pcr
and cr (above left), ocr (above
right)

M = (S,P ) is a set of m properly embedded arcs γ1, . . . , γm in S where γi connects
ai and bi .3

Let

cr(R) =
∑

1≤k<�≤m
ι(γk, γ�)wkw�,

pcr(R) =
∑

1≤k<�≤m
[ι(γk, γ�) > 0]wkw�,

ocr(R) =
∑

1≤k<�≤m
[ι(γk, γ�)≡ 1 (mod 2)]wkw�,

where ι(γ, γ ′) is the geometric intersection number of γ and γ ′ and [x] is 1 if the con-
dition x is true, and 0 otherwise. We define cr(M)=min cr(R), where the minimum
is taken over all realizations R of M . We define pcr(M) and ocr(M) analogously.

Remark 3 For every map M , ocr(M)≤ pcr(M)≤ cr(M).

Conjecture 1 For every map M , cr(M)= pcr(M).

Lemma 2.1 If Conjecture 1 is true, then cr(G)= pcr(G) for every graph G.

Proof Let D be a drawing of G with minimal pair crossing number. Drill small holes
at the vertices. We obtain a drawing R of a weighted map M . If Conjecture 1 is true,
there exists a drawing of M with the same crossing number. Collapse the holes to
vertices to obtain a drawing D′ of G with cr(D′)≤ pcr(G). �

However, we show below that we can separate the odd crossing number from the
crossing number for weighted maps, even in the annulus (a disk with a hole).

When analyzing crossing numbers of drawings on the annulus, we describe curves
with respect to an initial drawing of the curve and a number of Dehn twists. Consider,
for example, the four curves in the left part of Figure 1. Comparing them to the

3If we take a realization R of a map M , and contract each boundary component to a vertex, we obtain a
drawing of a graph with a given rotation system [3]. For our purposes, maps are a more visual way to look
at graphs with a rotation system.
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corresponding curves in the right part, we see that the curves labeled c and d have
not changed, but the curves labeled a and b have each undergone a single clockwise
twist.

Two curves are isotopic rel boundary if they can be obtained from each other
by a continuous deformation which does not move the boundary ∂M . Isotopy rel
boundary is an equivalence relation, its equivalence classes are called isotopy classes.
An isotopy class on the annulus is determined by a properly embedded arc connecting
the endpoints, together with the number of twists performed.

Lemma 2.2 Let a ≤ b ≤ c ≤ d be such that a + c ≥ d . For the weighted map M in
Figure 1 we have cr(M)= pcr(M)= ac+ bd and ocr(M)= bc+ ad .

Proof The upper bounds follow from the drawings in Figure 1, the left drawing for
crossing and pair crossing number, the right drawing for odd crossing number.

Claim pcr(M)≥ ac+ bd .

Proof of the Claim Let R be a drawing of M minimizing pcr(R). We can apply
twists so that the thick edge d is drawn as in the left part of Figure 1. Let α,β, γ
be the number of clockwise twists applied to the ends of arcs a, b, c on the inner
boundary to obtain the drawing R, where α = β = γ = 0 corresponds to the drawing
shown in the left part of Figure 1. Then,

pcr(R) = cd[γ 
= 0] + bd[β 
= −1] + ad[α 
= 0] + bc[β 
= γ ]
+ ab[α 
= β] + ac[α 
= γ + 1]. (1)

If γ 
= 0, then pcr(R) ≥ cd + ab because at least one of the last five conditions in
(1) must be true; the last five terms contribute at least ab (since d ≥ c ≥ b ≥ a), and
the first term contributes cd . Since d(c− b)≥ a(c− b), cd + ab ≥ ac+ bd , and the
claim is proved in the case that γ 
= 0.

Now assume that γ = 0. Equation (1) becomes

pcr(R)= bd[β 
= −1] + bc[β 
= 0] + ad[α 
= 0] + ac[α 
= 1] + ab[α 
= β]. (2)

If β 
= −1, then pcr(R) ≥ bd + ac because either α 
= 0 or α 
= 1. Since bd + ac ≥
bc+ ad , the claim is proved in the case that β 
= −1.

This leaves us with the case that β =−1. Equation (2) becomes

pcr(R)= bc+ ad[α 
= 0] + ac[α 
= 1] + ab[α 
= −1]. (3)

The right-hand side of Equation (3) is minimized for α = 0. In this case pcr(R) =
bc+ ac+ ab ≥ ac+ bd because we assume that a + c ≥ d . �

Claim ocr(M)≥ bc+ ad .

Proof of the Claim Let R be a drawing of M minimizing ocr(R). Let α,β, γ be as in
the previous claim. We have
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ocr(R)= cd[γ ]2+bd[β+1]2+ad[α]2+bc[β+γ ]2+ab[α+β]2+ac[α+γ +1]2,
(4)

where [x]2 is 0 if x ≡ 0 (mod 2), and 1 otherwise.
If β 
≡ γ (mod 2), then the claim clearly follows unless γ = 0, β = 1, and α = 0

(all modulo 2). In that case ocr(R) ≥ bc + ab + ac ≥ bc + ad . Hence, the claim is
proved if β 
≡ γ (mod 2).

Assume then that β ≡ γ (mod 2). Equation (4) becomes

ocr(R)= cd[β]2 + bd[β + 1]2 + ad[α]2 + ab[α+ β]2 + ac[α+ β + 1]2. (5)

If α ≡ 1 (mod 2), then the claim clearly follows because either cd or bd contributes
to the ocr. Thus we can assume α ≡ 0 (mod 2). Equation (5) becomes

ocr(R)= (cd + ab)[β]2 + (bd + ac)[β + 1]2. (6)

For both β ≡ 0 (mod 2) and β ≡ 1 (mod 2) we get ocr(R)≥ bc+ ad . �

We get a separation of pcr and ocr for maps with small integral weights.

Corollary 2.3 There is a weighted map M on the annulus with edges of weight a = 1,
b= c= 3, and d = 4 for which cr(M)= pcr(M)= 15 and ocr(M)= 13.

Optimizing the gap over the reals yields b= c= 1, a = (
√

3−1)/2, and d = 1+a,
giving us the following separation of pcr(M) and ocr(M).

Corollary 2.4 There exists a weighted map M on the annulus with ocr(M) ≤√
3/2 pcr(M).

Conjecture 2 For every weighted map M on the annulus, ocr(M)≥
√

3
2 pcr(M).

3 Upper Bounds on Crossing Numbers

In Section 5 we will transform the separation of ocr and pcr on maps into a separation
on graphs. In particular, we will show that for every ε > 0 there is a graph G so that

ocr(G) <
(√

3/2+ ε
)

cr(G).

The gap cannot be arbitrarily large, as Pach and Tóth showed.

Theorem 3.1 (Pach and Tóth [7]) Let G be a graph. Then cr(G)≤ 2(ocr(G))2.4

This result suggests the question whether the linear separation can be improved.
We do not believe this to be possible:

4Better upper bounds on cr(G) in terms of pcr(G) are known [5, 11].
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Fig. 2 Pulling an endpoint (left) and contracting the edge (right)

Conjecture 3 There is a c > 0 so that cr(G) < c · ocr(G).

In this section, we will show that our approach of comparing the different cross-
ing numbers for maps with a fixed number of holes will not lead to a super-linear
separation. Namely, for a (weighted) map M on a plane with n holes, we always have

cr(M)≤ ocr(M)

(
n+ 4

4

)

/5, (7)

with strict inequality if n > 1. It follows that for fixed n, there is only a constant factor
separating cr(M) and ocr(M). And only fixed, small n are computationally feasible
in analyzing potential counterexamples.

Observe that as a special case of Equation (7), if M is a (weighted) map on the
annulus (n= 2) we get that cr(M) < 3 ocr(M), which comes reasonably close to the√

3/2 lower bound from the previous section.
Before proving Equation (7) in full generality, we first consider the case of unit

weights.
For this section only, we will switch our point of view from maps as curves be-

tween holes on a plane to maps as graphs with a rotation system; that is, we contract
each hole to a vertex, and record the order, in which the curves (edges) leave the
vertex. Our basic operation will be the contraction of an edge by pulling one of its
endpoints along the edge, until it coincides with the other endpoint (the rotations of
the vertices merge). Figure 2 illustrates pulling v towards u along uv.5

Consider a drawing of G with the minimum number of odd pairs (edge pairs that
cross an odd number of times), ocr(G). We want to contract edges without creating
too many new odd pairs. For each edge e, let oe be the number of edges that cross e an
odd number of times. Then

∑
e∈E(G) oe = 2 ocr(G), and since each edge is incident

to exactly two vertices,
∑

v∈V (G)

∑

e1v
oe = 4 ocr(G).

Applying the pigeonhole principle twice, there must be a vertex v ∈ V (G) with∑
e1v oe ≤ 4 ocr(G)/n, and there is a non-loop edge e incident to v with oe ≤

4 ocr(G)/(n · d∗(v)) (where d∗(v) counts the number of non-loop edges incident
to v). Contracting v to its neighbor along e creates at most oe(d

∗(v) − 1) <

5The illustration is taken from [8], where we investigate some other uses of this operation for graph draw-
ings.
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4 ocr(G)/n odd pairs (only edges intersecting e oddly will lead to odd intersections,
and the parity of intersection along loops with endpoint v does not change; self-
intersections can be removed). Repeating this operation n− 1 times, we transform G

into a bouquet of loops at a single vertex with at most ocr(G)
∏n−2

i=0 (1+ 4/(n− i))

odd pairs (strictly less if n > 1). Without changing the rotation of the vertex, we
can redraw all loops so that each odd pair intersects exactly once, and other pairs
do not cross at all. We can then undo the contractions of the edges in reverse order
without creating any new crossings. This yields a drawing of G with the original ver-
tex rotations with at most ocr(G)

∏n−2
i=0 (1+ 4/(n− i)) crossings. Since the product

term equals
(
n+4

4

)
/5, we have shown that cr(G) ≤ ocr(G)

(
n+4

4

)
/5 (strict inequality

for n > 1), as desired.
This argument proves Equation (7) for maps with unit weights. The next step is to

extend this lemma to maps with arbitrary weights.
Consider two curves γ1, γ2 whose endpoints are adjacent and in the same order.

In a drawing minimizing one of the crossing numbers we can always assume that the
two curves are routed in parallel, following the curve that minimizes the total number
of intersections with all curves other than γ1 and γ2. The same argument holds for
a block of curves with adjacent endpoints in the same order. This allows us to claim
Equation (7) for maps with integer weights: a curve with integral weight w is replaced
by w parallel duplicates of unit weight.

If we scale all the weights in a map M by a factor α, all the crossing numbers
will change by a factor of α2. Hence, the case of rational weights can be reduced to
integer weights. Finally, we observe that if we consider any of the crossing numbers
as a function of the weights of M , this function is continuous: This is obvious for a
fixed drawing of M , so it remains true if we minimize over a finite set of drawings
of M . The maximum difference in the number of twists in an optimal drawing is
bounded by a function of the crossing number; and thus it suffices to consider a finite
set of drawings of M . We have shown:

Theorem 3.2 cr(M) ≤ ocr(M)
(
n+4

4

)
/5 for weighted maps M on the plane with n

holes.

4 Computing Crossing Numbers on the Annulus

Let M be a map on the annulus. We explained earlier that as far as crossing numbers
are concerned, we can describe a curve in the realization of M by a properly em-
bedded arc γab connecting endpoints a and b on the inner and outer boundary of the
annulus, and an integer k ∈ Z, counting the number of twists applied to the curve γab .
Our goal is to compute the number of intersections between two arcs after applying
a number of twists to each one of them. Since twists can be positive and negative and
cancel each other out, we need to count crossings more carefully. Let us orient all arcs
from the inner boundary to the outer boundary. Traveling along an arc α, a crossing
with β counts as +1 if β crosses from right to left, and as −1 if it crosses from left
to right. Summing up these numbers over all crossings for two arcs α and β yields
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ι̂(α,β), the algebraic crossing number of α and β . Tutte [10] introduced the notion

acr(G)=min
D

∑

{e,f }∈(E2)
|ι̂(γe, γf )|,

the algebraic crossing number of a graph, a notion that apparently has not drawn any
attention since.

Let Dk(γ ) denote the result of adding k twists to the curve γ . For two curves α

and β connecting the inner and outer boundary we have:

ι̂
(
Dk(α),D�(β)

)= k − �+ ι̂(α,β). (8)

Note that ι(α,β)= |ι̂(α,β)| for any two curves α,β on the annulus.
Let π be a permutation of [n]. A map Mπ corresponding to π is constructed as fol-

lows. Choose n+1 points on each of the two boundaries and number them 0,1, . . . , n
in the clockwise order. Let ai be the vertex numbered i on the outer boundary and
bi be the vertex numbered πi on the inner boundary, i = 1, . . . , n. We ask ai to be
connected to bi in Mπ .

We will encode a drawing R of Mπ by a sequence of n integers x1, . . . , xn as
follows. Fix a curve β connecting the a0 and b0 and choose γi so that ι(β, γi) = 0
(for all i). We will connect ai, bi with the arc Dxi (γi) in R. Note that for i < j ,
ι̂(γi , γj )= [πi > πj ] and hence

ι̂(Dxi (γi),D
xj (γj ))= xi − xj + [πi > πj ].

We have

acr(Mπ)= cr(Mπ)=min

{∑

i<j

|xi − xj + [πi > πj ]|wiwj : xi ∈ Z, i ∈ [n]
}

, (9)

pcr(Mπ)=min

{∑

i<j

[xi − xj + [πi > πj ] 
= 0]wiwj : xi ∈ Z, i ∈ [n]
}

, (10)

and

ocr(Mπ)=min

{∑

i<j

[xi − xj + [πi > πj ] 
≡ 0 (mod 2)]wiwj : xi ∈ Z, i ∈ [n]
}

.

(11)
Consider the relaxation of the integer program for cr(Mπ):

cr′(Mπ)=min

{∑

i<j

|xi − xj + [πi > πj ]|wiwj : xi ∈R, i ∈ [n]
}

. (12)

Since (12) is a relaxation of (9), we have cr′(Mπ) ≤ cr(Mπ). The following lemma
shows that cr′(Mπ)= cr(Mπ).
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Lemma 4.1 Let n be a positive integer. Let bij ∈ Z and let aij ∈ R be non-negative,
1≤ i < j ≤ n. Then

min

{∑

i<j

aij |xi − xj + bij | : xi ∈R, i ∈ [n]
}

has an optimal solution with xi ∈ Z, i ∈ [n].
Proof Let x∗ be an optimal solution which satisfies the maximum number of xi −
xj + bij = 0, 1 ≤ i < j ≤ n. Without loss of generality, we can assume x∗1 = 0.
Let G be a graph on the vertex set {1, . . . , n} with an edge between vertices i, j if
x∗i − x∗j + bij = 0. Note that if i, j are connected by an edge and one of x∗i , x∗j is
an integer, then both x∗i and x∗j are integers. It is then enough to show that G is
connected.

Suppose that G is not connected. There exists a non-empty A � V (G) so that there
are no edges between A and V (G) − A. Let χA be the characteristic vector of the
set A, that is, (χA)i = [i ∈A]. Let f (λ) be the value of the objective function on x =
x∗+λ ·χA. Let I be the interval on which the signs of the xi−xj+bij , 1≤ i < j ≤ n

are the same as for x∗. Then I is not the entire line (otherwise G would be connected).
Since f is linear on I , f is optimal at λ = 0, and I contains a neighborhood of
0, it must be that f is constant on I . Choosing x = x∗ + λχA for λ an endpoint
of I gives an optimal solution satisfying more xi − xj + bij = 0, 1 ≤ i < j ≤ n,
a contradiction. �

Theorem 4.2 The crossing number of maps on the annulus can be computed in poly-
nomial time.

Proof Note that cr′(Mπ) is computed by the following linear program Lπ :

min
∑

i<j

yijwiwj ,

yij ≥ xi − xj + [πi > πj ], 1≤ i < j ≤ n,

yij ≥−xi + xj − [πi > πj ], 1≤ i < j ≤ n.

�

Question 1 Let M be a map on the annulus. Can ocr(M) be computed in polynomial
time?

We conjectured earlier that crossing number and odd crossing number agree on
maps. A more moderate goal would be to establish the following conjecture.

Conjecture 4 For any map M on the annulus cr(M)= pcr(M).

5 Separating Crossing Numbers of Graphs

We modify the map from Lemma 2.2 to obtain a graph G separating ocr(G) and
pcr(G). The graph G will have integral weights on edges. From G we can get an
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Fig. 3 The inside flipped

unweighted graph G′ with ocr(G′)= ocr(G) and pcr(G′)= pcr(G) by replacing an
edge of weight w by w parallel edges of weight 1 (this does not change any of the
crossing numbers). If needed we can get rid of parallel edges by subdividing edges,
which does not change any of the crossing numbers.

We start with the map M from Lemma 2.2 with the following integral weights:

a =
⌊√

3− 1

2
m

⌋

, b= c=m, d =
⌊√

3+ 1

2
m

⌋

,

where m ∈N will be chosen later.
We replace each pair (ai, bi) of M by wi pairs (ai,1, bi,1), . . . , (ai,wi

, bi,wi
) where

the ai,j (bi,j ) occur on ∂S in clockwise order in a small interval around of ai (bi ).
As before, we can argue that all the curves corresponding to (ai, bi) can be routed in
parallel in an optimal drawing and, therefore, the resulting map N with unit weights
will have the same crossing numbers as M .

We then replace the boundaries of the annulus by cycles (using one vertex for each
ai,j and bi,j ), obtaining a graph G. We assign weight W = 1+ pcr(N) to the edges
in the cycles. This ensures that in a drawing of G minimizing any of the crossing
numbers the boundary cycles are embedded without any intersections. Consequently,
a drawing of G on the sphere that minimizes any one of the crossing numbers looks
very much like the drawing of a map on the annulus. With one subtle difference: one
of the boundaries may flip.

Given the map N on the annulus, the flipped map N ′ is obtained by flipping the
order of the points on one of the boundaries. In other words, there are essentially two
different ways of embedding the two boundary cycles of G on the sphere without
intersections depending on the relative orientation of the boundaries. In one of the
cases the drawing D of G gives a drawing of N , in the other case it gives a drawing of
the flipped map N ′. Fortunately, in the flipped case the group of edges corresponding
to the weighted edge from ai to bi must intersect often with each other (as illustrated
in Figure 3).

Now we know that

ocr(G) ≤ ocr(N) (since every drawing of N is a drawing of G)

≤ w1w3 +w2w4 (by Lemma 2.2)

≤ 3

2
m2 (by the choice of weights).
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We will presently prove the following estimate on the flipped map.

Lemma 5.1 ocr(N ′)≥ 2m2 − 4m.

With that estimate and our discussion of flipped maps, we have

pcr(G) = min{pcr(N),pcr(N ′)}
≥ min{pcr(N),ocr(N ′)} (since ocr≤ cr)

≥ min{√3m2 − 2m,2m2 − 4m} (choice of w, and Lemma 5.1).

By making m sufficiently large, we can make the ratio of ocr(G) and pcr(G) arbitrar-
ily close to

√
3/2.

Theorem 5.2 For any ε > 0 there is a graph G such that

ocr(G) < (
√

3/2+ ε)pcr(G).

The proof of Lemma 5.1 will require the following estimate.

Lemma 5.3 Let 0≤ a1 ≤ a2 ≤ · · · ≤ an be such that an ≤ a1 + · · · + an−1. Then

max|yi |≤ai

⎛

⎝

(
n∑

i=1

yi

)2

− 2
n∑

i=1

y2
i

⎞

⎠=
(

n∑

i=1

ai

)2

− 2
n∑

i=1

a2
i .

Proof of Lemma 5.1 Let w1 = a,w2 = b,w3 = d,w4 = c (with a, b, c, d as in the
definition of N ). In any drawing of N ′ each group of the edges split into two classes,
those with an even number of twists and those with an odd number of twists (two
twists make the same contribution to ocr(M ′) as no twists). Consequently, we can
estimate ocr(N ′) as follows.

ocr(N ′) = min
ki∈{0,1,...,wi }

⎛

⎝
4∑

i=1

(
ki

2

)

+
4∑

i=1

(
wi − ki

2

)

+
∑

i 
=j

ki(wj − kj )

⎞

⎠

≥ −1

2

4∑

i=1

wi + min
0≤xi≤wi

⎛

⎝
4∑

i=1

x2
i

2
+

4∑

i=1

(wi − xi)
2

2
+
∑

i 
=j

xi(wj − xj )

⎞

⎠

= −1

2

4∑

i=1

wi + 1

4

(
4∑

i=1

wi

)2

+ min|yi |≤wi/2

⎛

⎝2
4∑

i=1

y2
i −

(
4∑

i=1

yi

)2⎞

⎠

≥ 1

2

4∑

i=1

w2
i −

1

2

4∑

i=1

wi (using Lemma 5.3)

≥ 1

2

⎛

⎝

(√
3+ 1

2
m− 1

)2

+ 2m2 +
(√

3− 1

2
m− 1

)2

− 4m

⎞

⎠

≥ 2m2 − 4m. (13)
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The equality between the second and third line can be verified by substituting yi =
xi −wi/2. �

Proof of Lemma 5.3 Let y1, . . . , yn achieve the maximum value. Replacing the yi by
|yi | does not decrease the objective function. Without loss of generality, we can as-
sume 0≤ y1 ≤ y2 ≤ · · · ≤ yn. Note that if yi < yj , then yi = ai (otherwise increasing
yi by ε and decreasing yj by ε increases the objective function for small ε).

Let k be the largest i such that yi = ai . Let k = 0 if no such i exists. We have
yi = ai for i ≤ k and yk+1 = · · · = yn. If k = n we are done.

We conclude the proof by showing that k < n is not possible. Let t be the common
value of yk+1 = · · · = yn. Note that we have t = yk+1 ≤ ak+1.

Let

f (t)=
((

k∑

i=1

ai

)

+ (n− k)t

)2

− 2

((
k∑

i=1

a2
i

)

+ (n− k)t2

)

.

We have

f ′(t)= 2(n− k)

((
k∑

i=1

ai

)

+ (n− k − 2)t

)

.

Note that f ′(t) > 0 for t < ak+1. (This is easy to see when k < n−1; for k = n−1 we
make use of the assumption that an ≤∑n−1

i=1 ai .) Therefore, f (t) will be maximized
by t = ak+1 over values t ≤ ak+1. Hence, yk+1 = ak+1, contradicting our choice
of k. �

6 Conclusion

The relationship between the different crossing numbers remains mysterious, and we
have already mentioned several open questions and conjectures. Here we want to
revive a question first asked by Tutte (in slightly different form). Recall the definition
of the algebraic crossing number from Section 4:

acr(G)=min
D

∑

{e,f }∈(E2)
|ι̂(γe, γf )|,

where γe is a curve representing edge e in a drawing D of G. It is clear that

acr(G)≤ cr(G).

Does equality hold?

Acknowledgement Thanks to the anonymous referee for helpful comments.
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Visibility Graphs of Point Sets in the Plane

Florian Pfender

Abstract The visibility graph V(X) of a discrete point set X ⊂ R
2 has vertex set X

and an edge xy for every two points x, y ∈X whenever there is no other point in X

on the line segment between x and y. We show that for every graph G, there is a
point set X ∈ R

2, such that the subgraph of V(X ∪ Z
2) induced by X is isomorphic

to G. As a consequence, we show that there are visibility graphs of arbitrary high
chromatic number with clique number 6 settling a question by Kára, Pór and Wood.

1 Introduction

The concept of a visibility graph is widely studied in discrete geometry. You start with
a set of objects in some metric space, and the visibility graph of this configuration
contains the objects as vertices, and two vertices are connected by an edge if the
corresponding objects can “see” each other, i.e., there is a straight line not intersecting
any other part of the configuration from one object to the other. Often, there are extra
restrictions on the objects and on the direction of the lines of visibility.

Specific classes of visibility graphs which are well studied include bar visibility
graphs (see [3]), rectangle visibility graphs (see [6]) and visibility graphs of polygons
(see [1]). In this paper we consider visibility graphs of point sets.

Let X ⊂ R
2 be a discrete point set in the plane. The visibility graph of X is the

graph V(X) with vertex set X and edges xy for every two points x, y ∈X whenever
there is no other point in X on the line segment between x and y, i.e., when the point
x is visible from the point y and vice versa.
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Kára et al. discuss these graphs [4], and make some observations regarding the
chromatic number χ(V(X)) and the clique number ω(V(X)), the order of the largest
clique. In particular, they characterize all visibility graphs with χ(V(X)) = 2 and
χ(V(X))= 3, and in both cases, ω(V(X))= χ(V(X)). Similarly, they show the fol-
lowing proposition.

Proposition 1 Let Z
2 be the integer lattice in the plane, then ω(V(Z2)) =

χ(V(Z2))= 4.

Note that V(Z2) is not perfect as it contains induced 5-cycles. Further, it is not true
in general that ω(V(X))= χ(V(X))—there are point sets with as few as nine points
with ω(V(X))= 4 and χ(V(X))= 5.

For general graphs, there are examples with χ(G) = k and ω(G) = 2 for any k,
one famous example is the sequence of graphs Mk−2 by Mycielski [5]. No simi-
lar construction is known for visibility graphs with a bounded clique number. As
their main result, Kára et al. construct a family of point sets with χ(V(X)) ≥
(c1 log ω(V(Xi)))

c2 log ω(V(Xi)) for some constants c1 and c2 and with ω(V(Xi))

getting arbitrarily large. Our main result is the following theorem.

Theorem 2 For every graph G, there is a set of points X ⊂R
2 such that the subgraph

of V(X ∪Z
2) induced by X is isomorphic to G.

Let Gk be a graph with χ(Gk) = k and ω(Gk) = 2, and let Xk be the corre-
sponding set given by Theorem 2. Let Yk ⊂ Xk ∪ Z

2 be the subset of points con-
tained in the convex hull of Xk . Then χ(V(Yk)) ≥ χ(Gk) = k and ω(V(Yk)) ≤
ω(Gk)+ω(V(Z2))= 6, so we get the following corollary settling the question from
above raised by Kára et al.

Corollary 3 For every k, there is a finite point set Y ⊂ R
2, such that χ(V(Y )) ≥ k

and ω(V(Y ))= 6.

2 Proof of Theorem 2

Let G be a graph with vertex set V (G)= {1,2, . . . , n} and edge set E(G). We prove
the following lemma in Sect. 3.

Lemma 4 For M large enough, there is a set of prime numbers {pij : 1≤ i < j ≤ n}
with the following properties:

1. 2M < pij < 2M+1.
2. For 1 ≤ k ≤ n, let Pk = 2nk

∏k−1
i=1 pik

∏n
j=k+1 pkj , and choose nk ∈ Z such that

�log2 Pk� = nM+2k. Then pk� is the only number in {pij : 1≤ i < j ≤ n} which
divides P� − Pk for 1≤ k < �≤ n.
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Note that
∏k−1

i=1 pik

∏n
j=k+1 pkj < 2(n−1)(M+1) < 2nM , and thus nk > 0 and

Pk ∈ Z for all k. From this, we can construct the set of points X in Theorem 2:

X = {xi : 1≤ i ≤ n} ⊂R
2, with xi =

(

2−nMPi, i

∏
k<j (Pj − Pk)
∏

kj∈E(G) pkj

)

.

Before we prove the lemma, we show that this point set has the properties stated in
the theorem. For 1 ≤ i < � ≤ n, let mi� be the slope of the line through xi and x�.
Then

mi� = �− i

P� − Pi

· 2nM
∏

k<j (Pj − Pk)
∏

kj∈E(G) pkj

.

There are no three collinear points in X, as

2nM+2i+1 ≤ Pi+1 − Pi < 2nM+2i+3,

thus mi(i+1) > m(i+1)(i+2), and therefore mi� > mik for i < � < k. Thus, V(X) is
complete, and it remains to show that there is an integer point on the line segment
between xi and x� if and only if i� /∈E(G). To establish this goal, we look at the in-
tersections of the line segment from xi to x� (i < �) with the integer gridlines parallel
to the y-axis.

Let s ∈ Z, with 2−nMPi < s < 2−nMP� < 22n+1. As 22j ≤ 2−nMPj < 22j+1 for
every j , such an s exists. Let zsi� = (s, ys

i�) be a point on the line segment from xi
to x�. Then

ys
i� = i

∏
k<j (Pj − Pk)
∏

kj∈E(G) pkj

+ (s − 2−nMPi)mi�

= i

∏
k<j (Pj − Pk)
∏

kj∈E(G) pkj
︸ ︷︷ ︸

(1)

+ s
�− i

P� − Pi

· 2nM
∏

k<j (Pj − Pk)
∏

kj∈E(G) pkj
︸ ︷︷ ︸

(2)

+ Pi

�− i

P� − Pi

·
∏

k<j (Pj − Pk)
∏

kj∈E(G) pkj
︸ ︷︷ ︸

(3)

.

Expression (1) is an integer since pkj divides Pj − Pk . By the same argument, (3) is
an integer—just note further that pi� divides Pi . It remains the analysis of (2).

If i� /∈E(G), then (2) is an integer. Therefore, zsi� ∈ Z
2, and xix� /∈E(V(X∪Z

2)).
If i� ∈E(G), observe that pi� > 2M > max{�− i, s}, so pi� does not divide s or �− i.
Clearly, pi� does not divide 2nM , and, by Lemma 4, it does not divide any of the
Pj − Pk other than P� − Pi . Thus, (2) is not an integer, zsi� /∈ Z

2 for all s considered,
and xix� ∈E(V(X ∪Z

2)), proving Theorem 2.
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3 Proof of Lemma 4

By an inequality of Finsler [2], there are more than 2M/(3(M + 1) ln 2) > 2n3 prime
numbers in the interval from 2M to 2M+1.

We pick the pij sequentially in the order p12,p13, . . . , p1n,p23, . . . , p(n−1)n, with
the following conditions given by the lemma:

(a) pij is a prime number with 2M < pij < 2M+1.
(b) pij is different from all the primes picked before.
(c) pij does not divide Pk − P� for all 1≤ � < k < i.
(d) If j = n, no pk� divides Pi − Pr for {k, �} 
= {i, r}.
Assume that we have picked numbers up to but not including pij according to (a)–(d),
and we want to pick pij . Consider first the case that j < n. There were less than(
n
2

)
primes selected before, and each Pk − P� has at most n prime divisors greater

than 2M , thus at most
(
n

2

)

+ n

(
n

2

)

< n3

of the choices are blocked, and we can find pij according to (a)–(c).
If j = n, pick pij according to (a)–(c), and assume that pk� divides Pi − Pr for

some {k, �} 
= {i, r} (i.e., condition (d) is violated). We have k 
= i as all pi� divide Pi ,
otherwise pi� also divides Pr and thus r = �, a contradiction. Similarly, � 
= i.

Pick another number p′ij according to (a)–(c). If pk� divides P ′i − Pr , then pk�

divides P ′i − Pi = (p′ij − pij )Pi/pij , and thus pk� divides p′ij − pij . However, this

is impossible since |p′ij − pij | < 2M < pk�. Therefore, each pk� can block at most

one choice for pij this way, so in total at most
(
n
2

)
further choices are blocked by

condition (d), and we can always find a number pij with (a)–(d). This concludes the
proof of the lemma.

4 Further Questions

We have shown that there are visibility graphs with χ(V(X)) ≥ k and ω(V(X))= 6
for every k. For all visibility graphs with ω(V(X)) ≤ 3, we know that χ(V(X)) =
ω(V(X)). The only cases left to consider are ω(V(X))= 4 and ω(V(X))= 5. A sim-
ilar technique of combining a visibility graph with ω(V(X))= 3 with a graph G with
ω(G) = 2 and a large chromatic number will not work, since the visibility graphs
with ω(V(X)) = 3 are too simple (all but at most two of their vertices are collinear
unless V(X) is a special graph on six vertices). It would be no surprise to us if the
chromatic number of visibility graphs with ω(V(X))= 5 is bounded.

Finally, one could look for smaller point sets with χ(V(X))≥ k and ω(V(X))= 6,
as our sets tend to be very large.
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Decomposability of Polytopes

Krzysztof Przesławski · David Yost

Abstract A known characterization of the decomposability of polytopes is reformu-
lated in a way which may be more computationally convenient, and a more transpar-
ent proof is given. New sufficient conditions for indecomposability are then deduced,
and illustrated with some examples.

1 Introduction

This paper is concerned with criteria for the indecomposability of polytopes. We
recall that a polytope P is decomposable if it is equal to a Minkowski sum Q+R of
two polytopes Q and R which are not homothetic to P . Naturally, all other polytopes
are described as indecomposable. The concept of decomposability is due to Gale [1]
although he used a different name. The concept is also interesting for more general
convex bodies, but we do not consider them here. It is not surprising to learn [1]
that triangles are indecomposable, and, conversely, that any two-dimensional polygon
is the sum of triangles and segments. Gale also announced that any pyramid, i.e.
the convex hull of a facet and a single point, is indecomposable. Shephard made
perhaps the next serious study of it, showing amongst other things that a polytope is
indecomposable if all of its 2-faces are triangles [5, (13)]. A number of papers have
subsequently found progressively weaker sufficient conditions for indecomposability
and we are continuing this tradition.
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The latter result is a special case of (12) of [5], which asserts that a polytope is
indecomposable if there is an edge to which all vertices are connected by a strong
chain of indecomposable faces. A simple reformulation of this statement is that a
polytope is indecomposable if there is a strong chain of indecomposable faces which
contains all the vertices.

By a strong chain of faces is meant a finite sequence of faces in which each suc-
cessive pair shares an edge. McMullen [3] showed that the hypothesis of Shephard’s
result could be relaxed in the following way: the union of this chain need contain only
one vertex from each facet, not all of them. His proof, like Shephard’s, was geometric
in character, although the statement of the hypothesis is graph theoretic. By that, we
mean that the 1-skeleton of a polytope is clearly a graph, and the hypothesis is just a
statement about this graph.

Earlier Kallay [2] had weakened the hypothesis in several other ways. One was to
consider collections of vertices which did not necessarily form a face. For example,
three vertices can be pairwise adjacent, whilst their centroid is an interior point of the
polytope. (Blissfully unaware of [2], the second author used a similar approach in [7]
for examining irreducibility of centrally symmetric polytopes.) Another weakening
was to show that each successive pair of the chain could share just two vertices,
not necessarily an edge. He adopted a strictly graph theoretic approach, defining the
concept of indecomposability for geometric graphs, and showing that a polytope is
indecomposable if and only if its 1-skeleton is indecomposable in this sense.

Our aim is to extend some of the results obtained in these works. Although similar
to [2], our approach is simpler and more general; in particular, we require no knowl-
edge of spherical complexes. Implicit in [2] is the use of a mapping from the vertices
of the polytope into the ambient space. This was explicit in [7] and we carry on with
it here.

2 Basic Notions

All graphs considered here are assumed to have a finite number of vertices. Let G=
(V ,E) be a graph with set of vertices V and set of edges E ⊂ (V2

)
. Mostly we are

interested in the 1-skeleton of a polytope, but it is practical to consider this more
abstract situation. Let f,g ∈ (Rd)V . Let I be a non-empty subset of R. We say that
g is edgewise I -dominated by f if for any pair u,v ∈ V of adjacent vertices there
exists α ∈ I such that

g(u)− g(v)= α
(
f (u)− f (v)

)
.

In the case I = R, we say simply that g is edgewise dominated by f , and write
g ' f . (In case f is the identity mapping, g is an isomorphism and I = (0,∞),
this coincides with the concept of local similarity defined in [2].) If I is a non-zero
singleton, then we also say that g is similar to f .

Observe that the sets E(f ) := {g: g ' f } and S(f ) := {g: g is similar tof } are
vector spaces. Clearly, S(f ) is the direct sum of the d-dimensional subspace of
translations and the one-dimensional subspace of multiples of the identity. If these
spaces are equal, then f is said to be indecomposable. Thus the quotient space
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D(f ) := E(f )/S(f ) relates to “decomposability” of f . The dimension of D(f ) is
called the index of decomposability of f . We denote this index by decf . Hence f is
indecomposable if and only if decf = 0. These notions find a natural interpretation
when we discuss decomposability of polytopes.

Suppose that a function ϕ: V →R is given. We say that ϕ attains a (local!) max-
imum at v ∈ V if for any u adjacent to v we have ϕ(v) ≥ ϕ(u). The set of all maxi-
mizers of ϕ is denoted throughout by argmaxϕ.

We begin with an auxiliary result. For ease of notation, we prefer to talk about
linear functionals on Rd , rather than the scalar product in Rd .

Lemma 1 Let V be the set of vertices of a graph G. Let f,g ∈ (Rd)V , and let g be
edgewise (0,+∞)-dominated by f . Then for any y ∈ (Rd)∗

argmaxy ◦ g = argmaxy ◦ f.

Proof If v 
∈ argmaxy ◦ f , then there exists a vertex w adjacent to v such that y ◦
f (v) < y ◦f (w). By our assumptions, there exists α > 0 such that α(f (w)−f (v))=
g(w)− g(v). Applying y to this equation, we get readily from the linearity of y that
y ◦g(w)−y ◦g(v) > 0. Thus v 
∈ argmaxy ◦g. The symmetrical relationship between
f and g completes the proof. �

Recall that a graph G is called a cycle if |V | = k ≥ 3 and V can be ordered as
{x1, . . . , xk}, so that E = {{x1, x2}, . . . , {xk−1, xk}, {xk, x1}}. The number k is said to
be the length of the cycle. The following result is simple, but it does lead us to new
examples of indecomposable polytopes.

Proposition 2 Let Ck be a cycle of length k. Let f : Ck → Rd be an injection for
which f (Ck) is an affinely independent set, that is, elements of f (Ck) are vertices of
a simplex. Then decf = 0.

Proof Let g ' f . For each i ≤ k, let ui = g(xi+1)− g(xi) and vi = f (xi+1)− f (xi)

(we let here xk+1 = x1). By definition, for each i there exists αi such that ui = αivi .
From

∑
ui = 0, we obtain

∑
αivi = 0. This equation and the fact that elements xi

are affinely independent readily imply that all numbers αi are equal. �

We do not make any use of the next result. However, we include it, as it helps to
understand the situation.

Proposition 3 Let G = (V ,E) be a graph. If |V | > 2 and there exists an injection
f : V →Rd such that decf = 0, then G is 2-connected.

Proof It is clear that G is connected. If G were not 2-connected, then there would
exist an edge {u,v} whose removal would disconnect the graph. Let A and B be
the components of u and v, respectively. Defining the function g by g|A = f|A and
g|B = f|B+f (v)−f (u), it is clear that g ∈E(f )\S(f ). Consequently, decf 
= 0. �
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3 Decomposability and Indecomposability

We use standard notation which will not surprise anyone [8]. By |P we mean the
set of vertices of P . A set F ⊂ P is a face of P if there exists y ∈ (Rd)∗ such
that F = {v ∈ P : y(v) = h(P,y)}, where h(P,y) = maxy(P ). The mapping y �→
h(P,y) is called the support function of P . We mean by the 1-skeleton of P the graph
GP = (V ,E) such that V = |P and E consists of all these pairs {u,v} for which the
line segment [u,v] is a one-dimensional face of P .

As an immediate consequence of Lemma 1 we have

Lemma 4 Let GP be the 1-skeleton of a polytope P . For y ∈ (Rd)∗, let C = {v ∈
|P : y(v) = h(P,y)}. If g: |P → Rd is edgewise (0,∞)-dominated by id|P , then
g(C) is equal to

{
w ∈ g(|P): y(w)=maxy ◦ g(|P)

}
.

Proof It suffices to observe that C = argmaxy ◦ id|P . �

Let convA denote the convex hull of A⊂Rd . Let Q= conv g(|P), where g is as
in the lemma. It follows that g is a one-to-one correspondence between |P and |Q and
that g−1 is edgewise (0,∞)-dominated by id|Q (g−1 relates here to the 1-skeleton of
Q). Moreover, the induced mapping g̃ defined on faces of P by the formula

g̃(F )= conv g(F )

is an isomorphism of the facial structures of P and Q.

Corollary 5 Suppose that the mapping g is edgewise [0,∞)-dominated by id|P , and
denote again Q= conv g(|P). Let F be a face of P and let y ∈ (Rd)∗ be such that
y(v)= h(P,y), whenever v ∈ F . Then

g(|F)⊂ {w ∈ g(|P): y(w)= h(Q,y)
}
.

Proposition 6 If g is edgewise [0,1]-dominated by id|P , then Q, defined as before,
is a summand of P , that is, there exists a polytope R such that P =Q+R.

Proof Let k(u)= u−g(u). The function k is also edgewise [0,1]-dominated by id|P .
Let R = conv k(|P). For y ∈ (Rd)∗, choose v ∈ |P such that y(v)= h(P,y).

By the preceding corollary, y ◦g(v)= h(Q,y) and y ◦ k(v)= h(R,y). Moreover,
by the definition of k, y(v)= y ◦g(v)+y ◦k(v). Thus, h(P,y)= h(Q,y)+h(R,y),
which implies P =Q+R. �

The next theorem is essentially Corollary 5 of [2]. It is formulated there in a dif-
ferent but equivalent form.

Theorem 7 P is decomposable if and only if dec id|P 
= 0. Moreover, any non-similar
function g that is edgewise [0,1]-dominated by id|P defines a non-homothetic sum-
mand of P .
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Proof If P is decomposable, there exist polytopes Q and R, which are non-homothe-
tic to P , such that P =Q+ R. Thus, for any v ∈ |P there exists a unique element
g(v) ∈ |Q for which we have v ∈ g(v) + R. It is easy to see that g is edgewise
[0,1]-dominated by id|P . Since g is onto |Q and Q = conv g(|P), g cannot belong
to S(id|P ), for otherwise Q would be a homothetic copy of P .

Conversely, suppose that dec id|P 
= 0. Then there exists some f ∈ E(id|P ) \
S(id|P ). If α > 0 is sufficiently small, αf will be edgewise (0,1)-dominated by id|P .
Put g = id|P −αf . Then g is edgewise (0,1)-dominated by but not similar to id|P . By
Proposition 6, Q= conv g(P ) is a summand of P . The fact that it is not a homothetic
copy of P is clear.

The second part of the theorem is rather obvious. �

For further use we need a graph theoretic consequence of the above result, es-
sentially Proposition 8 of [2]. We note that the subgraph G here need not be the
1-skeleton of any polytope.

Theorem 8 Let P be a d-dimensional polytope in Rd . Then P is indecomposable if
and only if there exists a subgraph G= (V ,E) of the 1-skeleton of P such that idV

is indecomposable (as a mapping related to G), and V meets every facet of P .

Proof We have to show the “if” part only, as the “only if” part is a consequence of
the preceding theorem. (It suffices to let G be the 1-skeleton of P .)

Suppose that Q is a non-trivial summand of P , that is, Q contains more than one
element. Take the function g: |P → |Q defined as in the preceding proof. Since idV

is indecomposable, there is a number α and a vector x ∈Rd such that

g|V = α idV + x. (1)

It is clear that shifting Q if necessary we may assume x = 0. We may also assume
that 0 belongs to the interior of P .

Let y ∈ (Rd)∗ be any outer normal of a facet F of P and let v ∈ V ∩ F . By (1)
and Corollary 5

h(Q,y)= y ◦ g(v)= αy(v)= αh(P,y).

Obviously, for at least one of the normals we have h(Q,y) > 0. Hence α > 0 and
h(Q,y)= h(αP,y) for each normal y. Since Q is a summand of P , we deduce that
Q= αP , which implies the indecomposability of P . �

Our next notion relates to the notion of strongly connected family of polytopes
which is useful in formulating sufficient conditions for indecomposability (see [3, 6],
and [7]).

Let G be a family of subgraphs of a graph G. We say that G is strongly connected
if, for any pair of graphs G,K ∈ G, there exists a sequence G1, . . . ,Gk of graphs
in G with sets of vertices V1, . . . , Vk , respectively, such that G1 = G, Gk = K and
|Vi ∩ Vi+1| ≥ 2 for i = 1, . . . , k − 1. Such a sequence is called a strong chain of
graphs.

Now, as a simple consequence of the previous result we obtain
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Theorem 9 Let P be a polytope in Rd . Let G be a strongly connected family of
subgraphs of the 1-skeleton GP . If for each (V ,E) ∈ G the identity map idV is in-
decomposable and W :=⋃{V : (V ,E) ∈ G} meets every facet of P , then P is inde-
composable.

Proof Let D =⋃{E: (V ,E) ∈ G}. It suffices to show that idW , as a mapping related
to G := (W,D), is indecomposable. Let g: W → Rd be similar to idW . Fix u ∈W .
For any w ∈W there exists a strong chain G1, . . . ,Gk of graphs in G such that u ∈ V1
and w ∈ Vk . Let gi be the restriction of g to Vi . By our assumptions, for each i there
exist αi ∈ R and zi ∈ Rd such that gi(x) = αix + zi . By the definition of a strong
chain, there exist two different elements s and t which belong to Vi∩Vi+1. Therefore,

g(s)− g(t)= αi(s − t)= αi+1(s − t),

which implies that αi = αi+1 and also zi = zi+1. In consequence, g is similar
to idW . �

Previous workers [3–6] have usually assumed that each graph (V ,E) belonging
to G has its vertices V contained in a proper face of the polytope P . We emphasize
that this assumption is not necessary. This point is implicit in [2] and explicit in [7, p.
137], although the latter deals only with triangles.

Applicability of Theorem 9 depends on the existence of a reasonable class of
graphs embedded into Rd for which the identity is indecomposable. As is shown
by Proposition 2, the simplest graphs that conform to these demands are cycles. We
make use of the following:

Corollary 10 Let P be a polytope in Rd . Let G be a strongly connected family of
subgraphs of the 1-skeleton GP . If each (V ,E) ∈ G is a cycle with an affinely in-
dependent set of vertices and each facet of P has a vertex that belongs to a certain
graph from G, then P is indecomposable.

4 Some Applications

Meyer [4] and Kallay [2] gave examples of decomposable three-dimensional poly-
topes possessing combinatorially equivalent copies which are indecomposable. It is
known [6, p. 47] that any such polytope must have at least eight vertices. Kallay’s
polytope has ten vertices while Meyer’s has even more. Smilansky [6, Theorem
6.11(b)] announced the existence of a three-dimensional polytope of this kind with
exactly eight vertices, and referred the reader to his thesis for the details. As an appli-
cation, we now give an example of this kind. We have not had access to Smilanky’s
thesis but we would not be surprised if his example is equivalent to ours.

Example 11 A conditionally decomposable polyhedron with eight vertices.

Let P be the convex hull of the following points: A1 = (2,1,0), A2 = (1,2,0),
A3 = (−2,−1,0), A4 = (−1,−2,0), B1 = (−1,−1,1), B2 = (1,1,1), C1 =
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(1,1,−1) and C2 = (−1,−1,−1). One may visualize P as the union of two roves,
one in the half-space z ≥ 0, the other in the half-space z ≤ 0, with a common base
A1A2A3A4. It can then be seen that P is the Minkowski sum of the standard octahe-
dron and a segment parallel to (1,1,0), i.e. the line segment [C1,C2] is a summand
of P . Next we define another polytope Q, whose vertices are labeled in the same way
as for P . The idea is to tilt the face A1B2B1A4 a little about the edge B1A4. To do so,
we replace A1 by (2+ 3ε,1,3ε) and replace B2 by (1+ 2ε,1,1+ 2ε) (where ε need
not be too small), and let the other vertices be the same as in P . Thus Q is obtained
simply by perturbing two vertices of P . We must verify that the labeling induces a
one-to-one correspondence between the facial structures of P and Q. In detail, A1 is
still in the plane x − y − z = 1, B2 is still in the plane x − y − z =−1 and both of
them are in the plane

(ε− 1)x + (ε+ 1)y − (ε+ 1)z=−1− 3ε,

as are the original points A4 and B1. So these three planes contain the faces
A1A4C1C2, A2A3B1B2 and A1B2B1A4, respectively, and Q is combinatorially
equivalent to P . If ε 
= 0, A1 is taken out of the xy-plane. Then for Q, the cycle
A1A2A3A4 is a subgraph of the 1-skeleton of Q which satisfies the assumptions of
Corollary 10; in particular, the vertices Ai are affinely independent. Consequently, Q
is indecomposable.

The point of this note is that there are other polytopes which can be shown to be
indecomposable by Corollary 10 but not by earlier results. We present some now.

Example 12 There is a combinatorially indecomposable polyhedron with eleven ver-
tices and six triangular faces, no two of which have a common edge. Thus traditional
methods of proving indecomposability are not available. However, in any geometric
realization, it has two affinely independent 4-cycles, with two vertices in common,
whose union touches every face (Fig. 1).

Let h= 1
2 , or any other suitable number. Put A= (1,0,−1), B = (0,−1,1), C =

(−1,1,0), D = (1,−1, h), E = (1,−1,−h), F = (−1, h,1), G= (−1,−h,1), H =
(h,1,−1), J = (−h,1,−1), N = (1,1, 1) and S = (−1,−1,−1).

Clearly no two triangular faces have a common edge. Still, indecomposability can
be proved easily by noting that the connected 4-cycles NASB and NBSC are affinely
independent and their union touches every face.

There exist polytopes combinatorially equivalent to this one, in which the cor-
responding 4-cycle NASB is affinely dependent. (A concrete example is given after
Example 13.) Nevertheless, this polytope is combinatorially indecomposable. It suf-
fices to observe that of the three connected 4-cycles NASB, NASC and NBSC, at least
two must be affinely independent (in any given geometric realization), otherwise the
vertices A, B , C, N and S would be co-planar.

Note that any indecomposable polyhedron must have at least four triangular faces
[6, Corollary 6.8].

Example 13 There is a combinatorially indecomposable polytope with nine vertices
and only four triangular faces, of which no two have a common edge (Fig. 2).



Decomposability of Polytopes 465

Fig. 1 Example 12.

Fig. 2 Example 13.
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The same argument using Corollary 10 works but this time it is simpler; we
need consider only one 4-cycle, not two. Let A= (−1,1,−1), B = (1,1,−1), C =
(1,−1,−1), D = (−1,−1,−1), E = (−1,1,0), F = (−1, 1

2 ,
3
4 ), G = (1,− 1

2 ,
3
4 ),

H = (1,−1,0) and J = (0,0,1), and let P be their convex hull. We now list the
faces of P , together with the equations of the planes containing them:

ABCD : z=−1, ADEF : x =−1, BCGH : x = 1,

BEFJ : x + 3y + 2z= 2, DGHJ : −x − 3y + 2z= 2,

ABE: y = 1, CDH : y =−1,

BGJ : 5x + 7y + 6z= 6, DFJ : −5x − 7y + 6z= 6.

In any polyhedron equivalent to P , the 4-cycle BCDJ must be affinely indepen-
dent. It clearly touches every face, so P is indecomposable. Again, arguments with
triangles will not work.

Let us remark that if we add two extra vertices to this polyhedron, K =
(− 1

2 ,0,−2) and L = ( 1
2 ,0,−2), then the resulting polyhedron is combinatorially

equivalent to Example 12.
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An Inscribing Model for Random Polytopes

Ross M. Richardson · Van H. Vu · Lei Wu

Abstract For convex bodies K with C2 boundary in R
d , we explore random poly-

topes with vertices chosen along the boundary of K . In particular, we determine as-
ymptotic properties of the volume of these random polytopes. We provide results
concerning the variance and higher moments of this functional, as well as an analo-
gous central limit theorem.

1 Introduction

Let X be a set in R
d and let t1, . . . , tn be independent random points chosen according

to some distribution μ on X. The convex hull of the ti ’s is called a random polytope
and its study is an active area of research which links together combinatorics, geom-
etry and probability. This study traces its root to the middle of the nineteenth cen-
tury with Sylvester’s famous question about the probability of four random points in
the plane forming a convex quadrangle [17], and has become a mainstream research
area since the mid 1960s, following the investigation of Rényi and Sulanke [13] and
Efron [8].
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Throughout this paper, if not otherwise mentioned, we fix a convex body K ∈K2+,
where K2+ is the set of compact, convex bodies in R

d which have non-empty interior
and whose boundaries are C2 and have everywhere positive Gauß–Kronecker curva-
ture. The reader who is interested in the case of general K , e.g. when K is a polytope,
is referred to [7, 18, 19]. Without loss of generality, we also assume K has volume 1.
For a set X ⊂R

d we define [X] to be the convex hull of X.
A standard definition for the notion of a random polytope is as follows. Let

t1, . . . , tn be independent random points chosen according to the uniform distribution
on K . We let Kn = [{t1, . . . , tn}]. Here and later we write Kn = {t1, . . . , tn} instead
to simplify notations without causing much confusion. Another one, which we call
the “inscribing polytope” model, also begins with a convex body K , but the points
are chosen from the surface of K with respect to a properly defined measure. The
main goal of the theory of random polytopes is to understand the asymptotic behav-
ior (n→∞) of certain key functionals on Kn, such as the volume or the number of
faces.

For most of these functionals, the expectations have been estimated (either ap-
proximately or up to a constant factor) for a long time, due to collective results of
many researchers (we refer the interested reader to [5, 20] and [15] for surveys). The
main open question is thus to understand the distributions of these functionals around
their means, as coined by Weil and Wieacker’s survey from the Handbook of Convex
Geometry (see the concluding paragraph of [20])

We finally emphasize that the results described so far give mean values hence
first-order information on random sets and point processes. This is due to the
geometric nature of the underlying integral geometric results. There are also
some less geometric methods to obtain higher-order informations or distribu-
tions, but generally the determination of variance, e.g., is a major open problem.

The last few years have seen several developments in this direction, thanks to new
methods and tools from modern probability. Let us first discuss the model Kn where
the points are chosen inside K . Reitzner [11], using the Efron–Stein inequality, shows
that

Var Vold(Kn)=O(n−
d+3
d+1 ),

Varfi(Kn)=O(n
d−1
d+1 ),

where Vold is the standard volume measure on R
d , fi denotes the number of i-

dimensional faces. For convenience, we let Z = Vold(Kn). Using martingale tech-
niques, Vu [18] proves the following tail estimate

P

(
|Z −EZ| ≥

√

λn−
d+3
d+1

)
≤ exp(−cλ)+ exp(−c′n)

for any 0 < λ < nα , where c, c′ and α are positive constants. A similar bound also
holds for fi with the same proof. From this tail estimate, one can deduce the above
variance bound and also bounds for any fixed moments. These moment bounds are
sharp, up to a constant, as shown by Reitzner in [10]. Thus, the order of magnitudes
of all fixed moments are determined.
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Another topic where a significant development has been made is central limit theo-
rems. It has been conjectured that the key functionals such as the volume and number
of faces satisfy a central limit theorem.

Conjecture (CLT conjecture) Let Kn be the random polytope determined by n ran-
dom points chosen in K . Then there is a function ε(n) tending to zero with n such
that for every x

∣
∣
∣
∣P

(
Z −EZ√

VarZ
≤ x

)

−Φ(x)

∣
∣
∣
∣≤ ε(n),

where Φ denotes the distribution function of the standard normal distribution.

Reitzner [10], using an inequality due to Rinott [14] (which proved a central limit
theorem for a sum of weakly dependent random variables), showed that a central limit
theorem really holds for the volume and number of faces of the so-called Poisson
random polytope. This is a variant of Kn, where the number of random points is
not n, but a Poisson random variable with mean n. This model has the advantage that
the numbers of points found in disjoint regions of K are independent, a fact which is
technically useful. Combining the above tail estimate and Reitzner’s result, Vu [19]
proved the CLT conjecture.

The above results together provide a fairly comprehensive picture about Kn when
the points are chosen inside K . We refer the reader to the last section of [19] for a
detailed summary. The main goal of this paper is to provide such a picture for the
inscribing model, where points are chosen on the surface of K .

Before we may speak about selecting points on the boundary ∂K , we need to spec-
ify the probability measure on ∂K . One wants the random polytope to approximate
the original convex body K in the sense that the symmetric difference of the volume
of K and Kn is as small as possible. Hence, intuitively, a measure that puts more
weight on regions of higher curvature is desired. A good discussion on this can be
found in [16]. Let μd−1 be the (d − 1)-dimensional Hausdorff measure restricted to
∂K . We let μ be a probability measure on ∂K such that

dμ= ρdμd−1, (1)

where ρ : ∂K→R+ is a positive, continuous function with
∫
∂K

ρdμd−1 = 1.
Note that the assumption ρ > 0 is essential, as otherwise we might have a measure

that causes Kn to always lie in at most half (or any portion) of K with probability 1.
With the boundary measure properly defined, we can choose n random points on

the boundary of K independently according to μρ on ∂K . Denote the convex hull
of these n points by Kn and we call it random inscribed polytope. For this model,
the volume is perhaps the most interesting functional (as the number of vertices is
always n), and it will be the focus of the present work. For notational convenience,
we denote Z for Vold(Kn) throughout this paper.

The inscribing model is somewhat more difficult to analyze than the model where
points are chosen inside K . Indeed, sharp estimates on the volume were obtained
only recently, thanks to the tremendous effort of Schütt and Werner, in a long and
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highly technical paper [16]. We have

EZ = 1− (cK + o(1))n−
2

d−1 (2)

where cK is a constant depending on K (the 1 here represents the volume of K).
It is worth recalling that in the model where points are chosen uniformly inside K

it is known that EVold(K −Kn)=O(n−
2

d+1 ). Observe that by inserting n
d+1
d−1 for n

in this result we obtain a function O(n−
2

d−1 ), which is the correct growth rate found
in (2). We can explain this (at least intuitively) by noting that in the uniform model,

the expected number of vertices is Θ(n
d−1
d+1 ). However, in the inscribing model all

points are vertices. Thus we may view the uniform model on n points as yielding the

same type of behavior as the inscribing model on n
d−1
d+1 points. Further evidence for

this behavior is given by Reitzner in [12] where he obtains estimates (which are sharp
up to a constant factor) for all intrinsic volumes.

Reitzner gives an upper bound on the variance [11]:

VarZ =O(n−
d+3
d−1 ).

The first result we show in this paper is that the variance estimate is sharp, up to a
constant factor.

Theorem 1.1 (Variance) Given K ∈K2+,

VarZ =Ω(n−
d+3
d−1 ),

where the implicit constant depends on dimension d and the convex body K only.

The next result in this paper shows that the volume has exponential tail.

Theorem 1.2 (Concentration) For a given convex body K ∈ K2+, there are positive
constants α and c such that the following holds. For any constant 0 < η < d−1

3d+1 and

0 < λ≤ α
4 n

d−1
3d+1+ 2(d+1)η

d−1 < α
4 n, we have

P(|Z −EZ| ≥√λV0)≤ 2 exp(−λ/4)+ exp(−cn
d−1
3d+1−η), (3)

where V0 = αn−
d+3
d−1 .

It is easy to deduce from this theorem the following:

Corollary 1.3 (Moments) For any given convex body K and k ≥ 2, the kth moments
of Z satisfies

Mk =O((n−
d+3
d−1 )k/2).

To emphasize the dependence of Z = VoldKn on n, we write Zn instead of Z in
the following result:
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Corollary 1.4 (Rate of convergence)

lim
n→∞

∣
∣
∣
∣

(
Zn

EZn

− 1

)

f (n)

∣
∣
∣
∣= 0

almost surely, for

f (n)= δ(n)(n−
d+3
d−1 lnn)−1/2

where δ(n) is a function tending to zero arbitrarily slowly as n→∞.

Finally, we obtain the central limit theorem for the Poisson model. Let K ∈ K2+,
and let Pois(n) be a Poisson point process with intensity n. Then the intersection of
Pois(n) and ∂K consists of random points {t1, . . . , tN } where the number of points N
is Poisson distributed with mean nμ(∂K)= n. We write Πn = [x1, . . . , xN ].

Theorem 1.5 Given K ∈K2+, we have

∣
∣
∣
∣P

(
Vold(Πn)−EVold(Πn)√

Var Vold(Πn)
≤ x

)

−Φ(x)

∣
∣
∣
∣= o(1),

where the o(1) term is of order O(n− 1
4 ln

d+2
d−1 n) as n→∞.

We hope this result will infer a central limit theorem for Kn, which indeed is the
case for random polytopes where the points are chosen inside K , as mentioned earlier
(see [10, 19]). However, for random inscribing polytopes, some difficulties remain.
We are, however, able to prove that the two models are very close in the sense that
the expectations of volume for the two models are asymptotically equivalent, and the
variances are only off by constant multiplicative factor (see Theorem 5.5).

In the rest of the paper, we present the proof of the above theorems in Sects. 3, 4,
and 5, respectively; Sect. 2 is devoted to notations; we also present proofs of some
crucial technical lemmas in the appendix, along with statements of many other lem-
mas whose proofs can either be found or deduced relatively easily from the literature
(see, e.g., [5, 10–12, 18]).

2 Notations

2.1 Geometry

The vectors e1, . . . , ed always represent a fixed orthonormal basis of R
d . The dis-

cussions in this paper, unless otherwise specified, are all based on this basis. For a
vector x, we denote its coordinate by x1, . . . , xd , i.e. x = (x1, . . . , xd). By Bi(x, r)

we indicate the i-dimensional Euclidean closed ball of radius r centered at x, i.e.

Bi(x, r)= {y ∈R
i | ‖x − y‖ ≤ r}.

The norm ‖·‖ is the Euclidean norm. When the dimension is d , we sometimes simply
write B(x, r).
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For points t1, . . . , tn ∈R
d , the convex hull of them is defined by

[t1, . . . , tn] =
{

λ1t1 + · · · + λntn

∣
∣
∣0≤ λi ≤ 1, 1≤ i ≤ n,

n∑

i=1

λi = 1

}

.

In particular, the closed line segment between two points x and y is

[x, y] = {λx + (1− λ)y | 0≤ λ≤ 1}.
To analyze the geometry, it is necessary to introduce the following. For any y ∈R

d

write y = (y1, . . . , yd) for the coordinates with respect to some fixed basis e1, . . . , ed .
For unit vector u ∈ R

d , let H(u,h)= {x ∈ R
d | 〈x,u〉 = h}, where here 〈, 〉 denotes

the standard inner product on R
d . Further, the halfspace associated to this hyperplane

we denote by H+(u,h) = {x ∈ R
d | 〈x,u〉 ≥ h}. Since K is smooth, for each point

y ∈ ∂K , there is some unique outward normal uy . We thus may define the cap C =
C(y,h) of K to be H+(uy,hK(y)−h)∩K , where hK(y) is the support function such
that H+(uy,hK(y)) intersects K in the point y only. In general, one should think of a
cap as K ∩H+ where H+ is some closed half space. Throughout this paper, we also
use the notion of ε-cap to emphasize that Vold(C)= Vold(K ∩H+)= ε. Similarly,
we call C =K ∩H+ an ε-boundary cap to emphasize that μ(∂K ∩H+)= ε.

We define the ε-wet part of K to be the union of all caps that are ε-boundary caps
of K and we denote it by Fc

ε . The complement of the ε-wet part in K is said to be
the ε-floating body of K , which we denote by Fε . This notion comes from the mental
picture that when K is a three dimensional convex body containing ε units of water,
the floating body is the part that floats above water (see [6]). Finally, consider the
floating body Fε and a point x ∈ Fc

ε . We say that x sees y if the chord [x, y] does not
intersect Fε . Set Sx,ε to be the set of those y ∈K seen by x. We then define

g(ε)= sup
x∈Fc

ε

Vold(Sx,ε).

In particular, we note that Sx,ε is the union of all ε-boundary caps containing x.
Since K is smooth, it is well known that g(ε) = Θ(Vold(ε-boundary cap))

(see [6]).

2.2 Asymptotic Notation

We shall always assume n is sufficiently large, without comment. We use the notation
Ω,O,Θ etc. with respect to n→∞, unless otherwise indicated. All constants are
assumed to depend on at most the dimension d , the body K , and ρ.

3 Variance

In this section, we provide a proof of Theorem 1.1. It follows an argument first used
by Reitzner in [10], which has also been utilized by Bárány and Reitzner [4] to prove
a lower bound of the variance in the case where the convex body is a polytope. Es-
sentially, we condition on arrangements of our vertices where they can be perturbed
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in such a way that the resulting change in volume is independent for each vertex in
question.

Choosing the vertices along the boundary according to a given distribution, as
opposed to uniformly in the body, adds technical complication and requires greater
use of the boundary structure. The key to the study is the boundary approximation
mentioned both in this section and in Appendix 1.

3.1 Small Local Perturbations

We begin by establishing some notation. Define the standard paraboloid E to be

E = {z ∈R
d | zd ≥ (z1)2 + · · · + (zd−1)2}.

Hence we have 2E = {z ∈ R
d | zd ≥ 1

2 ((z
1)2 + · · · + (zd−1)2)} and observe that we

have the inclusion

E ⊂ 2E.

We now choose a simplex S in the cap C(0,1) of E. Choose the base of the
simplex to be a regular simplex with vertices in ∂E ∩H(ed,hd) and the origin (hd to
be determined later). We shall denote by v0, v1, . . . , vd the vertices of this simplex,
singling out v0 to be the apex of S (i.e. the origin). The important point here is that
for sufficiently small hd , the cone {λx ∈ R

d | λ≥ 0, x ∈ S} contains 2E ∩H(ed,1).
Indeed, as the radius of E ∩H(ed,hd) is

√
hd , the inradius of base of the simplex is√

hd/d2, hence for hd < 1/2d2 our above inclusion holds.
Now, look at the orthogonal projection of the vertices of the simplex to the plane

spanned by {e1, . . . , ed−1}, which we think of as R
d−1 and denote the relevant oper-

ator as

proj :Rd →R
d−1.

Around the origin we center a ball B0 of radius r , and around each projected point
(except the origin) we can center a ball in R

d−1 of radius r ′, both to be chosen later.
We label these balls B1, . . . ,Bd , where Bi is the ball about proj(vi). We can form the
corresponding sets B ′i to be the inverse image of these sets on ∂E under the projection
operator. In other words, if b :Rd−1 →R is the quadratic form whose graph defines
E, b̃ :Rd−1 → ∂E the map induced by b, then

B ′i = b̃(Bi), i = 0, . . . , d.

We note that if we choose r sufficiently small, then for any choice of random points
Y ∈ B ′0 and xi ∈ B ′i , i = 1, . . . , d the cone on these points is close to the cone on the
simplex in the sense that

{λx | x ∈ [Y,x1, . . . , xd ], λ≥ 0} ⊃ 2E ∩H(ed,1).

We may also think of Y being chosen randomly, according to the distribution in-
duced from the (d − 1)-dimensional Hausdorff measure on E, say. Then, passing to
a smaller r if necessary, we see that for any choice of xi ∈ B ′i , i = 1, . . . , d, we have

VarY (Vold([Y,x1, . . . , xd ]))≥ c0 > 0.
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All the above follows from continuity. We hope results of this type to be true for
arbitrary caps of ∂K , and indeed our current construction will serve both model and
computational tool for similar constructions on arbitrary caps.

We now consider the general paraboloid

Q=
{

z ∈R
d
∣
∣
∣ zd ≥ 1

2
(k1(z

1)2 + · · · + kd−1(z
d−1)2)

}

,

where here ki > 0 for all i and let the curvature be κ =∏ki . We now transform
the cap C(0,1) of E to the cap C(0, h) of Q by the (unique) linear map A which
preserves the coordinate axes. Let Di be the image of Bi under this affinity. We find
that the volume of the Di scales to give

μ(Di)= c1h
d−1

2 , i = 1, . . . , d, (4)

where here c1 is some positive constant only depending on the curvature κ =∏ki
and our choice of r and r ′.

Next, for each point x ∈ ∂K we identify our general paraboloid Q with the ap-
proximating paraboloid Qx of K at x (in particular, we identify R

d−1 with the tan-
gent hyperplane at x and the origin with x). We thus write Di(x) to indicate the set
Di, i = 1, . . . , d, corresponding to Qx . Analogously to the construction of the {B ′i}
we can construct the {D′i (x)} as follows. Let f x : Rd−1 → R be the function whose
graph locally defines ∂K at x (this exists for h sufficiently small, see Lemma 6.1),
f̃ :Rd−1 → ∂K the induced function. Let

D′i (x)= f̃ (Di(x)).

We note here that in general the sets D′i (x) are not the images of B ′i under A as A(B ′i )
may not lie on the boundary ∂K in general.

Because the curvature is bounded above and below by positive constants, as is ρ,
we see that the volume of Di(x) is given by

c3h
d−1

2 ≤ μ(Di(x))≤ c4h
d−1

2 , (5)

where c3, c4 are constants depending only on K .
We now wish to get bounds for VarY (Vold([Y,x1, . . . , xd ])) where xi ∈D′i (x), i =

1, . . . , d , and we choose Y randomly in D′0(x) according to the distribution on the
boundary. To begin with, we’ll need the following technical lemma.

Lemma 3.1 There exists a r0 > 0 and r ′0 such that for all r0 > r > 0 and r ′0 >

r ′ > 0 we have an hr > 0 such that for any choice of xi ∈D′i (x), i = 1, . . . , d, and
hr > h > 0:

c5h
d+1 ≤VarY ([Y,x1, . . . , xd ])≤ c6h

d+1, (6)

where c5, c6 are positive constants depending only on K and r .

The proof of this lemma is given in Appendix 1. Assuming this lemma is true, we
proceed with our analysis as follows.
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Fix some choice for hd < 1/2d2. Let v0, . . . , vd denote the vertices of the sim-
plex S. Then by continuity we know that there is some η > 0 such that choosing xi
in η-balls B(vi, η) centered at the vertices preserves our desired inclusion, namely

{λx | x ∈ [x0, x1, . . . , xd ], λ≥ 0} ⊃ 2E ∩H(ed,1). (7)

We now desire to set r ′ > 0 such that D′i (x) ⊂ A(B(vi, η)) for all x ∈ ∂K . As a
consequence, we will obtain the inclusion, for xi ∈D′i (x),

{λx | x ∈ [x0, x1, . . . , xd ], λ≥ 0} ⊃ 2Qx ∩H(ux,h)⊃K ∩H(ux,h).

Choose ε > 0 such that

Ui = {(x, y) ∈R
d | x ∈ B(projvi, η/2)⊂R

d−1 and

(1+ ε)−1bE(x)≤ y ≤ (1+ ε)bE(x)} ⊂ B(vi, η) (8)

for each i, where bE is the quadratic form defining our standard paraboloid E. Ap-
pealing to Lemma 6.1 we take h sufficiently small such that for all x ∈ ∂K ,

(1+ ε)−1bx(y)≤ fx(y)≤ (1+ ε)bx(y).

Choosing r ′ < η/2 forces the Bi to be balls of radius r ′ about projvi , which by the
above causes D′i (x)⊂A(Ui)⊂A(B(vi, η)).

With these choices for r, r ′ and some constant h0 > 0 to enforce the condition that
h is sufficiently small above, we now proceed to the body of our argument.

3.2 Proof of Lower Bound on Variance

Choose n points t1, . . . , tn randomly in ∂K according to the probability induced by
the distribution. Choose n points y1, . . . , yn ∈ ∂K and corresponding disjoint caps
according to Lemma 6.6. In each cap C(yj ,hn) (of K) establish sets {Di(yj )} and
{D′i (yj )} for i = 0, . . . , d and j = 1, . . . , n as in the above discussion.

We let Aj , j = 1, . . . , n be the event that exactly one random point is contained in
each of the Di(yj ), i = 0, . . . , d and every other point is outside C(yj ,hn)∩ ∂K . We
calculate the probability as

P(Aj ) = n(n− 1) · · · (n− d)P(ti ∈D′i (yj ), i = 0, . . . , d)

× P(ti /∈C(yj ,hn)∩ ∂K, i ≥ d + 1)

= n(n− 1) · · · (n− d)

d∏

i=0

μ(D′i (yj ))
n∏

k=d+1

(1−μ(C(yj ,hn)∩ ∂K)).

We can give a lower bound for this quantity with (5) and Lemma 6.6 , and noting
specifically that hn =Θ(n−2/(d−1)):

P(Aj )≥ c7n
d+1n−d−1(1− c8n

−1)n−d−1 ≥ c9 > 0, (9)
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where c7, c8, c9 are positive constants. In particular, denoting by 1A the indicator
function of event A. We obtain that

E

(
n∑

j=1

1Aj

)

=
n∑

j=1

P(Aj )≥ c9n. (10)

Now we denote by F the position of all points of {t1, . . . , tn} except those which are
contained in D′0(yj ) with 1Aj

= 1. We then use the conditional variance formula to
obtain a lower bound:

VarZ = E Var(Z |F)+VarE(Z |F)≥ E Var(Z |F).

Now we look at the case where 1Aj
and 1Ak

are both 1 for some j, k ∈ {1, . . . , n}.
Assume without loss of generality that tj and tk are the points in D′0(yj ) and D′0(yk),
respectively. We note that by construction there can be no edge between tj and tk ,
so the volume change affected by moving tj within D′0(yj ) is independent of the
volume change of moving tk within D′0(yk). This independence allows us to write
the conditional variance as the sum

Var(Z|F)=
n∑

j=1

Vartj (Z)1Aj
,

where here each variance is taken over tj ∈ D′0(yj ). We now invoke Lemma 3.1,
equation (10), and the bound hn ≈ n−2/(d−1) to compute

E Var(Z |F) = E

(
n∑

j=1

Vartj (Z)1Aj

)

≥ c5h
d+1

E

(
n∑

j=1

1Aj

)

≥ c10(n
−2/(d−1))d+1c6n= c11n

−(d+3)/(d−1).

Thus, the above provides the promised lower bound on VarZ.

4 Concentration

Our concentration result shows that Vold(Kn) is highly concentrated about its mean.
Namely, we obtain a bound of the form

P(|Z −EZ| ≥ √λVarZ )≤ c1 exp(−c2λ) (11)

for positive constants c1, c2. Such an inequality indicates that Z has an exponential
tail, which proves sufficient to provide information about the higher moments of Z

and the rate of convergence of Z to its mean.
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4.1 Discrete Geometry

We now set up some basic geometry which will be the subject of our analysis. Let L
be a finite collection of points. For a point x ∈K , define

�x,L =Vold([L∪ x])−Vold([L]).
A key property is the following observation.

Lemma 4.1 Let L be a set whose convex hull contains the floating body Fε . Then for
any x ∈K ,

�x,L ≤ g(ε).

The major geometry result which allows for our analysis is the following lemma
quantifying the fact that Kn contains the floating body Fε with high probability.

Lemma 4.2 There are positive constants c and c′ such that the following holds for
every sufficiently large n. For any ε ≥ c′ lnn/n, the probability that Kn does not
contain Fε is at most exp(−cεn).

The proof of this result can be done using the notion of VC-dimension, similar
details of which can be found in [18].

4.2 A Slightly Weaker Result

The proof of Theorem 1.2 is rather technical. So we will first attempt a simpler one
of a slightly weaker result, which represents one of the main methodology used in
this paper.

Put G0 = 3g(ε) and V0 = 36ng(ε)2, where g(ε) is as defined in the previous
subsection. We show:

Theorem 4.3 For a given K ∈K2+ there are positive constants α, c, and ε0 such that
the following holds: for any α lnn/n < ε ≤ ε0 and 0 < λ≤ V0/4G2

0, we have

P(|Z −EZ| ≥√λV0 )≤ 2 exp(−λ/4)+ exp(−cεn).

We note that the constants used in the definition of G0 and V0 are chosen for conve-
nience and can be optimized, though we make no effort to do so.

To compare Theorem 4.3 with Theorem 1.2, we first compute V0.
V0 = 36ng(ε)2 = Θ(ε(d+1)/(d−1)), from definition of g(ε) and by Lemma 6.2. So,
setting ε = α lnn/n for some positive constant c satisfying Lemma 6.2 and greater
than a given α gives

V0 = 36ng(ε)2 = 36nΘ(ε(d+1)/(d−1))2 =Θ(nn−2(d+1)/(d−1)(lnn)2(d+1)/(d−1))

= Θ(n−(d+3)/(d−1)(lnn)2(d+1)/(d−1)). (12)

So, up to a logarithmic factor V0 is comparable to VarZ.
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To obtain Theorem 1.2 we utilize a martingale inequality (Lemma 4.4). This in-
equality, which is a generalization of an earlier result of Kim and Vu [9], appears to
be a new and powerful tool in the study of random polytopes. It was first used by Vu
in [18], and seems to provide a very general framework for the study of key function-
als. The reader who is familiar with other martingale inequalities, most notably that
of Azuma [2], will be familiar with the general technique (see also [1]).

Recall Kn = [t1, . . . , tn], where ti , i = 1, . . . , n, are independent random points
in ∂K . Let the sample space be Ω = {t | t = (t1, . . . , tn), ti ∈ ∂K} and let Z =
Z(t1, . . . , tn) = Vold(Kn) a function of these points, we may define the (absolute)
martingale difference sequence

Gi(t)= |E(Z | t1, . . . , ti−1, ti)−E(Z | t1, . . . , ti−1)|.
Thus, Gi(t) is a function of t = (t1, . . . , tn) that only depends on the first i points. We
then set

Vi(t)=
∫

G2
i (t)∂ti , V (t)=

n∑

i=1

Vi(t),

G′i (t)= sup
ti

Gi(t) and G(t)=max
i

G′i (t).

Note also that |Z − EZ| ≤∑i Gi . The key to our proof is the following concentra-
tion lemma, which was derived using the so-called divide-and-conquer martingale
technique (see [18]).

Lemma 4.4 For any positive λ,G0 and V0 satisfying λ≤ V0/4G2
0, we have

P(|Z −EZ| ≥√λV0 )≤ 2 exp(−λ/4)+ P(V (t)≥ V0 or G(t)≥G0). (13)

The proof of this lemma can be found in [18].
Comparing Lemma 4.4 to Theorem 4.3 we find that the technical difficulty comes

in bounding the term P(V (t) ≥ V0 or G(t) ≥ G0), which corresponds to the error
term pNT .

Set V ′ = n−1V0 = 36g(ε)2. We find that we can replace exp(−cεn) with
n exp(−c′εn) by adjusting the relevant constant c′ so that n exp(−c′εn)< exp(−cεn).
Thus, we’re going to prove that

P(G(t)≥G0 or V (t)≥ V0)≤ n exp(−cεn)

for some positive constant c.
To do this, we’ll prove the following claim.

Claim 4.5 There is a positive constant c such that for any 1≤ i ≤ n,

P(G′i (t)≥G0 or Vi(t)≥ V ′)≤ exp(−cεn).

From this claim the trivial union bound gives

P(G(t)≥G0 or V (t)≥ V0)≤ n exp(−cεn),

hence quoting Lemma 4.4 finishes our proof of Theorem 4.3.
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4.3 Proof of Claim 4.5

Recall that Z =Z(t1, . . . , tn)=Vold(Kn) for points ti ∈ ∂K .
The triangle inequality gives us

Gi(t) = |E(Z | t1, . . . , ti−1, ti )−E(Z | t1, . . . , ti−1)|
≤ Ex

∣
∣E(Z | t1, . . . , ti−1, ti )−E(Z | t1, . . . , ti−1, x)

∣
∣,

where Ex denotes the expectation over a random point x. The analysis for the two
terms in the last inequality is similar, so we will estimate the first one. Let us fix
(arbitrarily) t1, . . . , ti−1. Let L be the union of {t1, . . . , ti−1} and the random set of
points {ti+1, . . . , tn}. Since

Vold([L∪ ti])=Vold([L])+�ti,L,

we have

E(Z | t1, . . . , ti−1, ti )= E(Vold([L]) | t1, . . . , ti−1)+E(�ti ,L | t1, . . . , ti−1).

The key inequality of the analysis is the following:

E(�ti ,L | t1, . . . , ti−1)≤ P(Fε � [L] | t1, . . . , ti−1)+ g(ε). (14)

The inequality (14) follows from two observations:

• If Fε � [L], �ti,L is at most 1.
• If [L] contains Fε , �ti,L ≤ g(ε) by Lemma 4.1.

We denote by Ω(j) and Ω<j> the spaces spanned by {t1, . . . , tj } and {tj , . . . , tn},
respectively.

Set δ = n−4. We say that the set {t1, . . . , ti−1} is typical if

PΩ〈i+1〉(Fε ⊆ [L] | t1, . . . , ti−1)≥ 1− δ.

The rest of the proof has two steps. In the first step, we show that if {t1, . . . , ti−1} is
typical then G′i (t)≤G0 and Vi(t)≤ V ′. In the second step, we bound the probability
that {t1, . . . , ti−1} is not typical.

First step. Assume that {t1, . . . , ti−1} is typical, so PΩ<i+1>(Fε � [L] |
t1, . . . , ti−1)≤ δ = n−4. We first bound G′i (t). Observe that

Gi(t) ≤ Ex |E(Z | t1, . . . , ti−1, ti)−E(Z | t1, . . . , ti−1, x)|
≤ Ex |E(�ti ,L | t1, . . . , ti−1)−E(�x,L | t1, . . . , ti−1)|
≤ E(�ti ,L | t1, . . . , ti−1)+ExE(�x,L | t1, . . . , ti−1)

≤ 2g(ε)+ 2n−4 ≤ 3g(ε)=G0 (by (14)).

In the last inequality we use the fact that ε =Ω(lnn/n), g(ε)=Ω(ε(d+1)/(d−1))/
n−4. Thus it follows that

G′i (t)=max
ti

Gi(t)≤G0.
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Calculating Vi(t) using the above bound on Gi(t) it follows that

Vi(t)=
∫

Gi(t)
2dμ(ti)≤

∫

9g(ε)2dμ(ti)= 9g(ε)2 <V ′.

Second step. In this step, we bound the probability that {t1, . . . , ti−1} is not typical.
First of all, we will need a technical lemma as follows. Let Ω ′ and Ω ′′ be probability
spaces and set Ω ′′′ to be their product. Let A be an event in Ω ′′′ which occurs with
probability at least 1− δ′, for some 0 < δ′ < 1.

Lemma 4.6 For any 1 > δ > δ′

PΩ ′(PΩ ′′(A | x)≤ 1− δ)≤ δ′/δ,

where x is a random point in Ω ′ and PΩ ′ and PΩ ′′ are the probabilities over Ω ′ and
Ω ′′, respectively.

Proof Recall that PΩ ′′′(A)≥ 1− δ′. However,

PΩ ′′′(A)=
∫

Ω ′
PΩ ′′(A | x)∂x ≤ 1− δPΩ ′(PΩ ′′(A | x)≤ 1− δ).

The claim follows. �

Recall that L= {t1, . . . , ti−1, ti+1, . . . , tn}. Lemma 4.2 yields

P(Fε � [L])≤ exp(−c0εn),

for some positive constant c0 depending only on K . Applying Lemma 4.6 with Ω ′ =
Ω(i−1), Ω ′′ =Ω〈i+1〉, δ′ = exp(−cεn) and δ = n−4, we have

PΩ(i−1) ({t1, . . . , ti−1} is not typical)

= PΩ(i−1) (PΩ〈i+1〉(Fε � [L] | t1, . . . , ti−1)≤ 1− δ)

≤ δ′/δ = n4 exp(−c0εn)≤ exp(−cεn)

for c = c0/2, given c0εn ≥ 8 lnn. This final condition can be satisfied by setting
the α involved in the lower bound of ε to be sufficiently large. Thus, our proof is
complete.

4.4 A Better Bound on Deviation

By using more of the smooth boundary structure, we can obtain a better result. As we
shall see at the end of the proof, this result implies Theorem 1.2.

Theorem 4.7 For any smooth convex body K with distribution μ along the bound-
ary, there are constants c, c′, α, ε0 such that the following holds. For any V0 ≥
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αn−(d+3)/(d−1), ε0 ≥ ε > α lnn/n, G0 ≥ 3ε(d+1)/(d−1), and 0 < λ ≤ V0/4G2
0, we

have

P(|Z −EZ| ≥√λV0 )≤ 2 exp(−λ/4)+ pNT ,

where

pNT = exp(−cεn)+ exp(−c′n
d−1
3d+1−η),

and η is any small positive constant less than d−1
3d+1 .

The proof of Theorem 4.7 follows from more careful estimates concerning �x,L.
An analogous result for random polytopes can be found in Sect. 2.5 of [18].

The key difference between this result and Theorem 4.3 is that here V0 is in-
dependent of ε, so we can set V0 = αn−(d+3)/(d−1) without affecting the tail es-

timate. If we also set ε = n−
2d+2
3d+1−η , then the two error terms in pNT are the

same (up to a constant factor). Since G0 = 3g(ε) = 3Θ(ε(d+1)/(d−1)), we have

λ < V0/4G2
0 ≤ c′′n

d−1
3d+1+ 2(d+1)η

d−1 for some constant c′′. Hence Theorem 1.2.

5 Central Limit Theorem

5.1 Poisson Central Limit Theorem

Before we prove the theorem, we should give a brief review of the Poisson point
process. Let K ∈ K2+, and let Pois(n) be a Poisson point process with intensity n

concentrated on K . Then applying Pois(n) on K gives us random points {x1, . . . , xN }
where the number of points N is Poisson distributed with intensity nμ(∂K) = n.
We write Πn = [x1, . . . , xN ]. Conditioning on N , the points x1, . . . , xN are inde-
pendently uniformly distributed in ∂K . For two disjoint subsets A and B of ∂K ,
their intersections with Pois(n), i.e. the point sets A ∩ Pois(n) = {x1, . . . , xN } and
B ∩ Pois(n) = {y1, . . . , yM}, are independent. This means N and M are indepen-
dently Poisson distributed with intensity nμ(A) and nμ(B) respectively, and xi and
yj are chosen independently.

The following standard estimates of the tail of Poisson distribution will be used
repeatedly throughout this section. Let X be a Poisson random variable with mean λ.
Then

P

(

X ≤ λ

2

)

=
λ/2∑

k=0

e−λ λ
k

k! ≤ e−λ +
λ/2∑

k=1

e−λ

(
eλ

k

)k

≤ λ+ 1

2
e−λ(2e)λ/2 ≤ λ+ 1

2

(
e

2

)−λ/2

=Θ

((
e

2

)−λ/2)

, (15)

where the last equality holds when λ is large. Similarly,

P(X ≥ 3λ)≤
∞∑

k=3λ

e−λ

(
eλ

k

)k

≤
∞∑

k=0

e−λ

(
e

3

)k

= ce−λ, (16)

where c is a small constant.
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The key ingredient of the proof is the following theorem:

Theorem 5.1 (Baldi and Rinott [3]) Let G be the dependency graph of random vari-
ables Yi ’s, i = 1, . . . ,m, and let Y =∑i Yi . Suppose the maximal degree of G is D

and |Yi | ≤ B a.s., then
∣
∣
∣
∣P

(
Y −EY√

VarY
≤ x

)

−Φ(x)

∣
∣
∣
∣=O(

√
S),

where Φ(x) is the standard normal distribution and S = mD2B3

(
√

VarY)3 .

Here the dependency graph of random variables Yi ’s is a graph on m vertices such
that there is no edge between any two disjoint subsets, A1 and A2, of {Yi}mi=1 if these
two sets of random variables are independent.

Because we can divide the convex body K into Voronoi cells according to the cap
covering Lemma 6.6, we will study Vold(Πn) as a sum of random variables which
are volumes of the intersection of Πn with each of the Voronoi cell. And the theorem
above allows us to prove central limit theorem for sums of random variables that may
have small dependency on each other.

First we let

m=
⌊

n

4d lnn

⌋

.

By Lemma 6.6, given K ∈K2+, we can choose m points, namely y1, . . . , ym, on ∂K .
And the Voronoi cells Vor(yi) of these points dissect K into m parts. Let

Yi =Vold(Vor(yi)∩K)−Vold(Vor(yi)∩Πn),

i = 1, . . . ,m. So

Y =
∑

i

Yi =Vold(K)−Vold(Πn). (17)

Moreover, these Voronoi cells also dissect the boundary of K into m parts, and each
contains a cap Ci with d-dimensional volume

Vold(Ci)=Θ(m−
d+1
d−1 ),

by Lemma 6.6. Now by Lemma 6.2 it is a boundary cap with (d − 1)-dimensional
volume

μ(Ci ∩ ∂K)=Θ(m−1)=Θ

(
4d lnn

n

)

.

Denote by Ai (i = 1, . . . ,m) the number of points generated by the Poisson point
process of intensity n contained in Ci ∩ ∂K , hence Ai is Poisson distributed with
mean λ= nμ(Ci ∩ ∂K)=Θ(4d lnn). Then

P(Ai = 0)= e−λ =O(n−4d).
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And by (15),

P(Ai ≥ 3λ)= P(Ai ≥ 12d lnn)=O(n−4d).

Now let Am be the event that there is at least one point and at most 12d lnn points in
every Ai for i = 1, . . . ,m. Then

1≥ P(Am)= P(∩i{1≤Ai ≤ 12d lnn})≥ 1−Ω(n−4d+1). (18)

The rest of the proof is organized as follows. We first prove the central limit theo-
rem for Vold(Πn) when we condition on Am, then we show removing the condition
doesn’t affect the estimate much, as Am holds almost surely. Let P̃ denote the condi-
tional probability measure induced by the Poisson point process X(n) on ∂K given
Am, i.e.

P̃(Vold(Πn)≤ x)= P(Vold(Πn)≤ x|Am).

Similarly, we define the corresponding conditional expectation and variance to be Ẽ

and Ṽar, then

Lemma 5.2
∣
∣
∣
∣P̃

(
Vold(Πn)− ẼVold(Πn)

√

ṼarVold(Πn)

≤ x

)

−Φ(x)

∣
∣
∣
∣=O(n

− d+1
4(d−1) ln

d+2
d−1 n). (19)

Proof Note that by (17), Vold(Πn) − ẼVold(Πn) = ẼY − Y , and ṼarY =
ṼarVold(Πn) = Θ(n−

d+3
d−1 ), by Theorem 5.5. Hence it suffices to show Y satisfies

the Central Limit Theorem under P̃.
Given Am, we define the dependency graph on random variables Yi, i = 1, . . . ,m

as follows: we connect Yi and Yj if Vor(yi) ∩ C(yj , c,m
− 2

d−1 ) 
= ∅ for some con-
stant c which satisfies Lemma 6.8. To check dependency, we see that if Yi 	 Yj ,

then Vor(yi) ∩ C(yj , c,m
− 2

d−1 ) = ∅. Thus, for any point P1 ∈ Vor(yi) ∩ ∂K , P2 ∈
Vor(yj )∩ ∂K , the line segment [P1,P2] cannot be contained in the boundary of Πn.
Otherwise, it would be a contradiction to Lemma 6.8. Therefore, there is no edge
of Πn between vertices in Vor(yi) and Vor(yj ), hence Yi and Yj are independent
given Am.

To apply Theorem 5.1 to Y , we are left to estimate parameters D and B .

By Lemma 6.7, C(yi, c,m
− 2

d−1 ) (i = 1, . . . ,m) can intersect at most O(1) many
Vor(yi)’s. Hence D =O(1).

By Lemma 6.8, for any point xi in Ci , i = 1, . . . ,m,

δH (K,Πn)≤ δH (K, [x1, . . . , xm])=O(m−
2

d−1 ).

So

Vor(yi)\Πn ⊆ C(yi, h
′), (20)
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where h′ =O(m−
2

d−1 ). By Lemma 6.5 and (20),

Yi ≤Vold(C(yi, h
′))=O(m−

d+1
d−1 )=O

((
4d lnn

n

) d+1
d−1
)

:= B.

Hence by the Baldi–Rinott Theorem, the rate of convergence in (19) is n
− d+1

4(d−1) ×
(lnn)

d+2
d−1 , and we finish the proof. �

Now, we will remove the condition Am. First observe an easy fact.

Proposition 5.3 For any events A and B ,

|P(B |A)− P(B)| ≤ P(Ac).

Hence we can deduce:

Lemma 5.4

|̃P(Vold(Πn)≤ x)− P(Vold(Πn)≤ x)| =O(n−4d+1), (21)

|ẼVolkd(Πn)−EVolkd(Πn)| =O(n−4d+1), (22)

|ṼarVold(Πn))−Var Vold(Πn)| =O(n−4d+1). (23)

The proofs of these three equations follow more or less from Proposition 5.3 with
P((Am)c)=O(n−4d+1), and can be found in [10]. As a result of Lemma 5.4, we can
remove the condition Am and obtain Theorem 1.5 as follows. For notational conve-
nience, we denote Vold(Πn) by X temporarily. For each x, let x̃ be such that

EX+ x
√

VarX = ẼX+ x̃
√

ṼarX,

then

|x − x̃| =O(n
−4d+1+ d+3

2(d−1) )+ |x|O(n−4d+1+ d+3
d−1 ), (24)

by (21) and Lemma 5.2. We have

FX(x) = P(X ≤ EX+ x
√

VarX)= P̃(X ≤ ẼX+ x̃
√

Ṽar )+O(n−4d+1)

= Φ(x̃)+O(n
− d+1

4(d−1) ln
d+2
d−1 n)+O(n−4d+1).

But |Φ(x) − Φ(x̃)| = O(n−1), since |Φ(x) − Φ(x̃)| ≤ |x − x̃| ≤ O(n−1) when
|x| ≤ n and by (24) |x̃| ≥ cn when |x| ≥ n which implies |Φ(x) − Φ(x̃)| ≤
Φ(n) + Φ(cn). So |FX(x) − Φ(x)| = |P(X ≤ EX + x

√
VarX) − Φ(x)| =

O(n
− d+1

4(d−1) ln
d+2
d−1 n). Hence finishes the proof of Theorem 1.5.
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5.2 Approximating Kn by Πn

As is pointed out in the introduction, Πn approximates Kn quite well, as one might
expect.

Theorem 5.5 Let Πn be the convex hull of points chosen on ∂K according to the
Poisson point process Pois(n). Then,

EVold(Πn)≈ EVold(Kn)≈ 1− c(K,d)n−
2

d−1 ,

as n→∞, and

Var Vold(Πn)=Θ(Var Vold(Kn))=Θ(n−
d+3
d−1 ).

Proof Due to the conditioning property of Poisson point process, we have

EVold(Πn)=
∑

|k−n|≤n7/8

EVold(Kk)e
−n n

k

k! +
∑

|k−n|≥n7/8

EVold(Kk)e
−n n

k

k! .

For Poisson distribution, the Chebyschev’s inequality gives P(|k − n| ≥ n7/8) ≤
n−3/4. Hence the second summand is bounded above by n−3/4 since EVold(Kk) is at

most 1. By 2, EVold(Kk)= 1− k−
2

d−1 = 1− (1+ o(1))n−
2

d−1 , when |k− n| ≤ n7/8.
For the variance, we can rewrite Var Vold(Πn) as follows:

Var Vold(Πn)= EN Var(Vold(Πn) |N)+VarN E(Vold(Πn) |N).

By (15), the second term in the above equation becomes:

VarE(Vold(Πn) |N)

= ENE
2Vold(KN)− (ENEVold(KN))2

=
∞∑

j= n
2

∞∑

k= n
2

(E2Vold(Kk)−EVold(Kk)EVold(Kj ))e
−2n n

k+j

k!j ! +O

((
e

2

)−n/2)

=
∞∑

j= n
2

∞∑

k=j

(EVold(Kk)−EVold(Kj ))
2e−2n n

k+j

k!j ! +O

((
e

2

)−n/2)

,

where the third equality is due to (15). By Lemma 6.9, EVold(Kj+1)−EVold(Kj )=
c(K,d)j−

d+1
d−1 when j →∞, hence

EVold(Kk)−EVold(Kj )=
k−1∑

i=j

EVold(Ki+1)−EVold(Ki)≤ c(K,d)(k − j)j−
d+1
d−1 ,
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and

VarE(Vold(Πn) |N) ≤ c(K,d)

∞∑

j= n
2

∞∑

k=j

(k − j)2j−
2d+2
d−1 e−2n n

k+j

k!j ! +O

((
e

2

)−n/2)

≤ cn−
2d+2
d−1 VarN +O

((
e

2

)−n/2)

=O(n−
d+3
d−1 ).

Now, Var Vold(Kn)=Θ(n−
d+3
d−1 ), so by (15) and (16), we have

E Var Vold(Πn|N) = E(Θ(N−
d+3
d−1 ))

= O

(

P

(

N ≤ n

2

))

+E(N−
d+3
d−1 χ{ n2 <N≤3n})+O(P(3n <N))

= Θ(n−
d+3
d−1 ). �
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Appendix 1 Geometric Toolkit

6.1 Boundary Approximation

We begin with some basic notions and notation. For K ∈ K2+,at each point x ∈ ∂K

there is a unique paraboloid Qx , given by a quadratic form bx , osculating ∂K at x.
We may describe Qx and bx by identifying the tangent hyperplane of ∂K at x with
R

d−1 and x with the origin. This is a well known fact, see e.g. [10]. In a neighborhood
of x, we can represent ∂K as the graph of a C2, convex function f : Rd−1 → R, i.e.
each point in ∂K near x can be written in the form (y, fx(y)), where y ∈ Rd−1 the
form (y1, . . . , yd−1). Thus, we may write

bx(y)= 1

2

∑

1≤i,j≤d−1

∂fx

∂yi∂yj
(0)yiyj and

Qx = {(y, z) | z≥ bx(y), y ∈R
d−1, z ∈R},

here ∂fx
∂yi∂yj

(0) denote the second partial derivative of fx at the origin with respect

to yi and yj . The main thrust of the above is that these paraboloids approximate the
boundary structure. The formulation given here is due to Reitzner, who provides a
proof in [12].

Lemma 6.1 Let K ∈ K2+ and choose δ > 0 sufficiently small. Then there exists a
λ > 0, depending only on δ and K , such that for each point x ∈ ∂K the following
holds: If we identify the tangent hyperplane to ∂K at x with R

d−1 and x with the ori-
gin, then we may define the λ−neighborhood Uλ of x ∈ ∂K by projUλ = Bd−1(0, λ).
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Uλ can be represented by a convex function fx(y) ∈ C2, for y ∈ Bd−1(0, λ). Further-
more,

(1+ δ)−1bx(y)≤ fx(y)≤ (1+ δ)bx(y) and (25)
√

1+ |∇fx(y)|2 ≤ (1+ δ), (26)

for y ∈ Bd−1(0, λ), where bx is defined as above and ∇fx(y) stands for the gradient
of fx(y).

This lemma proves that at each point x ∈ ∂K , the deviation of the boundary of the
approximating paraboloid ∂Qx from ∂K is uniformly bounded in a small neighbor-
hood of x.

We use this lemma to show how one can relate ε-caps to ε-boundary caps. This
relationship is used repeatedly throughout the paper as it allows us to work with
volumes of different dimensions.

Lemma 6.2 For a given K ∈K2+, there exists constants ε0, c, c
′ > 0 such that for all

0 < ε < ε0 we have that for any ε-cap C of K ,

c−1ε(d−1)/(d+1) ≤ μ(C ∩ ∂K)≤ cε(d−1)/(d+1)

and for any ε-boundary cap C′ of K ,

c′−1ε(d+1)/(d−1) ≤Vold(C
′)≤ c′ε(d+1)/(d−1).

Proof We shall prove the first statement. Fix some δ > 0 for Lemma 6.1.
Consider in R

d the paraboloid given by the equation

zd ≥ (z1)2 + (z2)2 + · · · + (zd−1)2.

Intersecting this paraboloid with the halfspace defined by the equation zd ≤ 1
gives an object which we shall call the standard cap, E. We form (1 + δ)−1E and
(1+ δ)E similarly by the equations zd ≥ (1+ δ)−1((z1)2+ (z2)2+· · · , (zd−1)2) and
zd ≥ (1+ δ)((z1)2 + (z2)2 + · · · , (zd−1)2), using the same halfspace as before. We
note the inclusions

(1+ δ)−1E ⊃E ⊃ (1+ δ)E.

Let c1 = Vold((1 + δ)−1E) and c2 = Vold((1 + δ)E), and further set c3 =
μ(proj((1 + δ)−1E)) and c4 = μ(proj((1 + δ)E)) where here proj is the orthogo-
nal projection onto the hyperplane spanned by the first (d − 1) coordinates.

Now, let C be our ε-cap. Let x be the unique point in ∂K whose tangent hyper-
plane is parallel to the hyperplane defining C. Assuming that Lemma 6.1 applies,
we may equate the tangent hyperplane of ∂K at x with R

d−1, and view C ∩ ∂K as
being given by some convex function f : Rd−1 → R. Further, let Qx be the unique
paraboloid osculating ∂K at x. Let A be a linear transform that takes E to Qx . We
observe that Qx is the paraboloid defined by the set zd ≥ bx(z

1, . . . , zd−1) inter-
sected with the halfspace zd ≤ h, for some h > 0. We can define (1+ δ)−1Qx (resp.
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(1+ δ)Qx ) to be the set defined by the intersection of this same half space and the
points given by zd ≥ (1+ δ)−1bx(z

1, . . . , zd−1) (resp. zd ≥ (1+ δ)bx(z
1, . . . , zd−1)).

Observe that A((1+ δ)−1E)= (1+ δ)−1Qx and A((1+ δ)E)= (1+ δ)Qx .
Appealing to Lemma 6.1, we see that

(1+ δ)−1Qx ⊃ C ⊃ (1+ δ)Qx.

This gives

c1|detA| ≥ ε ≥ c2|detA|. (27)

Let f̃ : Rd−1 → ∂K be the function induced by f , i.e. f̃ (y)= (y, fx(y)). Using
the inclusion

f̃ (proj((1+ δ)−1Qx))⊃ C ∩ ∂K ⊃ f̃ (proj((1+ δ)Qx))

and the bound

(1+ δ)≥
√

1+ |∇f |2 ≥ 1

furnished by Lemma 6.1, if A′ represents the restriction of A to the first (d − 1)
coordinates, we obtain

c3|detA′|(1+ δ)≥ μ(C ∩ ∂K)≥ c4|detA′|. (28)

A simple computation shows |detA| = 2(d−1)/2κ−1/2h(d+1)/2 and |detA′| =
2(d−1)/2κ−1/2h(d−1)/2, where κ is the Gauß–Kronecker curvature of ∂K at x. Us-
ing this and (27) gives upper and lower bounds on h, and this bound with (28) gives

c5ε
(d−1)/(d+1) ≥ μ(C ∩ ∂K)≥ c6ε

(d−1)/(d+1),

where here c5, c6 are constants depending only on κ . As K is compact and κ is always
positive we can assume we can change c5 and c6 to be independent of κ , and hence x.

Finally, we return to the issue of values of ε (hence h) for which Lemma 6.1
applies. We note that in general every quadratic form bx can be given by

bx(y)= 1

2

∑

i

ki(y
i)2,

where ki are the principal curvatures. We observe that as the Gauß–Kronecker curva-
ture is positive then there are positive constants k′ and k′′ depending only on K such
that 0 < k′ < ki < k′′. This bounds the possible geometry of Qx , and implies the ex-
istence of an ε0 such that for 0 < ε < ε0, such that proj((1+ δ)−1Qx)⊂ B(0, λ) (λ
as given in Lemma 6.1), allowing us to apply Lemma 6.1. This completes the proof
of the first statement. The second statement is similar. Relaxing constants allows the
statement as given. �

Remark 6.3 It is important to note that the above is not true for general convex bodies.
In particular, any polytope P provides an example of a convex body with caps C such
that the quantities Vold(C) and μ(C ∩ ∂P ) are unrelated.
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6.2 Caps and Cap Covers

Lemma 6.4 through 6.8 and their proofs below can be found in [10].

Lemma 6.4 Given K ∈ K2+, there exist constants d1, d2 such that for each cap
C(x,h) with h≤ h0, we have

∂K ∩B(x, d1h
1
2 )⊂ C(x,h)⊂ B(x, d2h

1
2 ).

Lemma 6.5 Given K ∈K2+, there exists a constant d3 such that for each cap C(x,h)

with h≤ h0, we have

Vold(C(x,h))≤ d3h
d+1

2 .

Lemma 6.6 (Cap covering) Given m ≥ m0 and K ∈ K2+, there are points y1, . . . ,

ym ∈ ∂K , and caps Ci = C(yi, hm) and Ci = C(yi, (2d2/d1)
2hm) with

Ci ⊂ B(yi, d2h
1/2
m )⊂Vor(yi),

Vor(yi)∩ ∂K ⊂ B(yi,2d2h
1/2
m )∩ ∂K ⊂ Ci and

hm =Θ(m−
2

d−1 ).

Here Vor(yi) is the Voronoi cell of yi in K defined by:

Vor(yi)= {x ∈K :‖ x − yi ‖≤‖ x − yk ‖ for all k 
= i},
and we have

Vold(Ci)=Θ(m−
d+1
d−1 ),

for all i = 1, . . . ,m.

Proof The proof follows from the fact that given m, for a suitable rm, we can find
balls B(yi, rm), i = 1, . . . ,m such that they form a maximal packing of ∂K , hence
B(yi,2rm) form a covering of ∂K . Use Lemma 6.4, one can convert between the
height of cap hm and radius of the ball rm. �

Lemma 6.7 Let K,m be given, and yi, i = 1, . . . ,m be chosen as in Lemma 6.6. The

number of Voronoi cells Vor(yj ) intersecting a cap C(yi, h) is O((h
1
2 m

1
d−1 +1)d+1),

i = 1, . . . ,m.

Lemma 6.8 Let m,K and yi,Ci, i = 1, . . . ,m be chosen as in Lemma 6.6. Choose
on the boundary within each cap Ci an arbitrary point xi (i.e. xi ∈Ci ∩ ∂K), then

δH (K, [x1, . . . , xm])=O(m−
2

d−1 ),

and there is a constant c such that for any y ∈ ∂K with y /∈ C(yi, cm
− 2

d−1 ), the line
segment [y, xi] intersects the interior of the convex hull [x1, . . . , xm].
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Lemma 6.9 For large n,

EVold(Kn+1)−EVold(Kn)=O(n−(d+1)/(d−1)).

This lemma can be proved using techniques from integral geometry similar to that
found in [11]. Alternatively, one case use the notion of ε-floating bodies to give an
appropriate bound. We give a proof sketch below of a slightly weaker version below,
and note that through techniques similar to that used to prove Theorem 1.2 and in
[18], we can remove the logarithmic factor.

Sketch of the Proof Following the notation found in the concentration proof, let Ω ′ =
{t = (t1, . . . , tn) | ti ∈ ∂K}, and put L= {t1, . . . , tn}.

Observe that we can write

EVold(Kn+1)−EVold(Kn)

=
∫

Ω ′

∫

∂K

Vold([t1, . . . , tn, tn+1])−Vold([t1, . . . , tn])dtn+1dt

=
∫

Ω ′

∫

∂K

�tn+1,Ldtn+1dt.

Let A be the event that Fε ⊆ [L]. The integrand can be estimated by

�tn+1,L ≤ g(ε)χA + χĀ.

Here, we use g(ε) as an upperbound for �tn+1,L when Fε ⊆ [L] and 1 otherwise.
This bound is independent of tn+1, so our integral is upper bounded by

∫

Ω ′
g(ε)χA + χĀdt ≤ g(ε)+ P(Fε � [L]).

Setting ε = c lnn/n so that it satisfies Lemma 4.2 we find that g(ε) =
Θ(ε(d+1)/(d−1)) = Θ(n−(d+1)/(d−1)poly(lnn)) and P(Fε � [L]) = exp(−c′εn) =
n−cc′ . Choosing c to be sufficiently large we find that

EVold(Kn+1)−EVold(Kn)=O(n−(d+1)/(d−1)poly(lnn)). �

Appendix 2 Proof of Corollaries 1.3 and 1.4

Proof of Corollary 1.3 Let λ0 = α
4 n

d−1
3d+1+ 2(d+1)η

d−1 be the upper bound for λ given in
Theorem 1.2. So for λ > λ0, by (1.2)

P(|Z −EZ| ≥√λV0 ) ≤ P(|Z −EZ| ≥√λ0V0)

≤ 2 exp(−λ0/4)+ exp(−cn
d−1
3d+1−η).

Combining (1.2) and the above, we get for any λ > 0,

P(|Z −EZ| ≥√λV0 )≤ 2 exp(−λ/4)+ 2 exp(−λ0/4)+ exp(−cn
d−1
3d+1−η). (29)



An Inscribing Model for Random Polytopes 491

We then compute the kth moment Mk of Z, beginning with the definition:

Mk =
∫ ∞

0
tkdP(|Z −EZ|< t).

If we set γ (t)= P(|Z −EZ| ≥ t) then we can write

Mk =
∫ ∞

0
tkdP(|Z −EZ|< t)=−

∫ ∞

0
tkdγ (t)

= (−tkγ (t))|∞0 +
∫ ∞

0
ktk−1γ (t)dt =

∫ 1

0
ktk−1γ (t)dt.

Note that the limits of integration can be limited to [0,1] because we’ve assumed the
volume of K is normalized to 1.

Setting t =√λV0 we get
∫ 1

0
ktk−1γ (t)dt

=
∫ 1/V0

0
k(
√
λV0 )

k−1
P(|Z −EZ| ≥√λV0 )

√
V0

2
√
λ
dλ

≤ k

2
V

k/2
0

∫ 1/V0

0
λ

k
2−12 exp(−λ/4)+ 2 exp(−λ0/4)+ exp(−cn

d−1
3d+1−η)dλ

by (29).

We may now evaluate each term separately.
For the first term we observe that

∫ 1/V0

0
2λ

k
2−1 exp(−λ/4)dλ≤

∫ ∞

0
2λ

k
2−1 exp(−λ/4)dλ= ck,

where ck is a constant depending only on k.
Since

V0 = αn−
d+3
d−1 / n−5,

we can compute the second term:
∫ 1/V0

0
λ

k
2−12 exp(−λ0/4)dλ ≤ 2

k
2 exp(−λ0/4)V

− k
2

0

≤ 2

k
2 exp

(

− α

16
n

d−1
3d+1+ 2(d+1)η

d−1

)

n
5k
2 = o(1).

The last term can be computed similarly and gives o(1) again. Hence,

Mk ≤ (ck + o(1))kV k/2
0 =O(V

k/2
0 ). �

Proof of Corollary 1.4

P

(∣
∣
∣
∣
Zn

EZn

− 1

∣
∣
∣
∣f (n)≥ δ(n)

)

≤ P

(
|Zn −EZn| ≥ EZn

√

32n−
d+3
d−1 lnn

)
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≤ P(|Zn −EZn| ≥
√

8 lnnV0 )

≤ 2 exp(−8 lnn/4)+ exp(−cn
d−1
3d+1−η)

≤ 3 exp(−2 lnn)≤ 3n−2,

by Theorem 1.2. The second inequality above is due to the fact that EZn = 1 −
cKn−

2
d−1 > 1/2 when n is large. Since

∑
n−2 is convergent, by Borel–Cantelli,

| Zn

EZn
− 1|f (n) converges to 0 almost surely, hence the corollary. �

Appendix 3 Proof of Lemma 3.1

We first prove the following claim. The notation follows that found in Section 3.1

Claim 8.1 Let x ∈ ∂K . There is some h(K) > 0 such that for h(K) > h > 0 there
exists a constant c(r) > 0 depending only on r and K such that

1

2
|detA|2c(r)≤VarY (Vold([Y,Av1, . . . ,Avd ]))≤ 2|detA|2c(r),

and Y is a random point chosen in D′0(x) according to the distribution on ∂K .

Proof To prove this claim, we compute. Recall that A is the linear map which takes E
to the paraboloid Qx . We shall denote by A′ the map A restricted to R

d−1. We shall
denote by f : Tx(∂K) ≈ R

d−1 → R the function whose graph defines ∂K locally,
and f̃ :Rd−1 → ∂K the function induced by f . Thus, we have:

EY (Vold([Y,Av1, . . . ,Avd ]))

=
∫
D0

Vold([f̃ (Y ),Av1, . . . ,Avd ])ρ(f̃ (Y ))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1dY

∫
A′(C0)

ρ(f ′(Y ))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1 dY

=
(

|detA′|
∫

C0

Vold([f̃ (AX),Av1, . . . ,Avd ])ρ(f̃ (AX))

×
√

1+ f 2
Y 1 + · · · + f 2

Yd−1(AX)dX

)/(

|detA′|
∫

C0

ρ(f ′(AX))

×
√

1+ f 2
Y 1 + · · · + f 2

Yd−1(AX)dY

)

. (30)

Observe that if we set A−1 ◦ f̃ (AX) = f ∗ to be the pullback of f̃ under A

then Vold([f̃ (AX),Av1, . . . ,Avd ])= |detA| ·Vold([f ∗(X), v1, . . . , vd ]). Letting b :
R

d−1 → R denote the quadratic form defining E, b̃ : Rd−1 → ∂E the induced func-
tion, we then use Lemma 6.1 to get the bound

2−1b ≤ f ◦A′ ≤ 2b, (31)
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when h is sufficiently small. Thus, we get the bound

Vold([2−1b(X), v1, . . . , vd ]) ≥ Vold([f ∗(X), v1, . . . , vd ])
≥ Vold([2b(X), v1, . . . , vd ]),

which follows from the geometry. Now, since v1, . . . , vd form a (d − 1) simplex
parallel to the plane R

d−1 we can write Vold([b(X), v1, . . . , vd ]) = cd(1 − b(X)),
where cd is some positive constant depending only on dimension. We may write
b(X)= |X|2, and this allows us to see that

Vold([2−1b̃(X), v1, . . . , vd ])
=Vold([b̃(X), v1, . . . , vd ])(1− 2−1|X|2)/(1− |X|2)
=Vold([b̃(X), v1, . . . , vd ])(1− 2−1|X|2)(1+ |X|2 + |X|4 + · · ·)
=Vold([b̃(X), v1, . . . , vd ])(1+ or(1)).

Here, or(1) indicates a function which goes to 0 as r goes to 0. Similarly, we have

Vold([2b̃(X), v1, . . . , vd ])=Vold([b̃(X), v1, . . . , vd ])(1+ or(1)).

Thus, we may write

∫
C0

Vold([f ∗(X), v1, . . . , vd ])ρ(f̃ (AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX)dX

∫
C0

ρ(f̃ (AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX)dY

≥ (1+ or(1))

×
∫
C0

Vold([b̃(X), v1, . . . , vd ])ρ(f̃ (AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX)dX

∫
C0

ρ(f̃ (AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX)dY

.

(32)

Setting F(X)= ρ(f̃ (AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX) the above is thus

≥ (1+ or(1)) · minC0 F(X)

maxC0 F(X)
·
∫
C0

Vold([b(X), v1, . . . , vd ])dX
∫
C0

dX
.

Now, if we can show that the term
minC0 F(X)

maxC0 F(X)
≥ (1+ or,h(1)), only depending on r

and h, then from our earlier observation we can conclude that (30) is bounded below
by

|detA| · (1+ or,h(1)) ·
∫
C0

Vold([b(X), v1, . . . , vd ])dX
∫
C0

dX
.

Note or,h(1) denotes a function which goes to 0 as both r and h go to 0.
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Invoking Lemma 6.1, we observe that we may make the term
√

1+ f 2
Y 1 + · · · + f 2

Yd−1(AX)

sufficiently less than (1 + δ), for any δ > 0, by choosing r, h both sufficiently

small (independent of f ). Thus, we may write
√

1+ f 2
Y 1 + · · · + f 2

Yd−1(AX) =
(1+ or,h(1)).

Next, we note that ρ is a uniformly continuous function on K . It is not too hard
to see that the function minC0 ρ(f

′(AX))/maxC0 ρ(f
′(AX))= (1+ or,h(1)), where

again the o(1) function is independent of the basepoint. Using the fact that

minρ(f ′(AX))

√
1+ f 2

Y 1 + · · · + f 2
Yd−1(AX)

≥ (minρ(f ′(AX)))(min
√

1+ f 2
Y 1 + · · · + f 2

Yd−1(AX))

(similarly for max) we thus find that

(1+ or,h(1))≥ minC0 F(X)

maxC0 F(X)
≥ (1+ or,h(1)),

where the functions in question are independent of basepoint.
If we let

φ1(r)=
∫
C0

Vold([b̃(X), v1, . . . , vd ])dX
∫
C0

dX

then we can summarize our findings as, independent of basepoint,

lim
h→0

EY (Vold([Y,Av1, . . . ,Avd ]))
|detA|φ1(r)

= (1+ or(1)). (33)

By an identical argument, if we set φ2(r)=
∫
C0

Vol2d([b̃(X),v1,...,vd ])dX
∫
C0

dX
then we have

lim
h→0

EY (Vol2d([Y,Av1, . . . ,Avd ]))
|detA|2φ2(r)

= (1+ or(1)). (34)

Using (33) and (34) we can compute:

lim
h→0

VarY ([Y,Av1, . . . ,Avd ])/|detA|2

= lim
h→0

EY (Vol2d([Y,Av1, . . . ,Avd ]))/|detA|2

− lim
h→0

E
2
Y (Vold([Y,Av1, . . . ,Avd ]))/|detA|2

= φ2(r)(1+ or(1))− φ2
1(r)(1+ or(1))

2 = (φ2(r)− φ2
1(r))(1+ or(1)). (35)

Thus, by letting r become sufficiently small so that the final (1 + or(1)) > 0 we
note that (35) is positive, since this quantity φ2(r) − φ2

1(r) is just the variance of
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Vold([b(X), v1, . . . , vd ]) where X is taken over C0, thus always positive. This proves
there exists c1 > 0 such that for h sufficiently small,

VarY ([Y,Av1, . . . ,Avd ]) ≥ c1|detA|2.
By the same arguments we also get

VarY ([Y,Av1, . . . ,Avd ]) ≤ c2|detA|2.
So the claim is proved. �

With the preceding claim, we now prove Lemma 3.1. Instead of the convex hull
of [Y,Av1, . . . ,Avd ] we shall study the convex hull [Y,x1, . . . , xd ], where xi ∈D′i ,
using the fact that the xi are close to the Avi when h is small. To do this, we’ll need
a second claim.

Claim 8.2 There exists a δ > 0 such that If for each i, xi ∈ B(vi, d), then

Vold([2−1b(X), x1, . . . , xd ]) =Vold([b(X), x1, . . . , xd ])(1+ or(1))

and

Vold([2b(X), x1, . . . , xd ]) =Vold([b(X), x1, . . . , xd ])(1+ or(1)),

where the hidden functions depend only on r (i.e. they are not functions of the xi ).

Proof We simply note that there exists a δ > 0 such that for any fixed choice of xi ,

Vold([2−1b(X), x1, . . . , xd ])
Vold([b(X), x1, . . . , xd ]) → 1 as X→ 0.

We also note that X,x1, . . . , xd lie in C0 × B(v1, δ) × · · · × B(vd, δ), a compact
set. These two conditions guarantee that the maximum of the ratio, taken over all
x1, . . . , xd , converges to 1 as X→ 0. Thus, the ratio converges to 1 independently of
the choice of x1, . . . , xd , and hence the claimed result.

The statement for Vold([2b(X), x1, . . . , xd ]) is analogous. �

With this claim, we can adapt Claim 8.1 to work for any xi ∈ B(vi, δ), by using
the above claim in place of (32). With this we can show that for h sufficiently small
we can choose r sufficiently small such that

1

2
|detA|2 VarX(Vold([b(X), x1, . . . , xd ]))
≤VarY (Vold([Y,Ax1, . . . ,Axd ]))
≤ 2|detA|2 VarX(Vold([b(X), x1, . . . , xd ])), (36)

where here the quantity VarX(Vold([b(X), x1, . . . , xd ])) is the variance taken over
C0. But as VarX(Vold([b(X), v1, . . . , vd ])) is positive, continuity guarantees that

c′ > VarX(Vold([b(X), x1, . . . , xd ])) > c > 0
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if the xi are sufficiently close to the vi , say xi ∈ B(vi, η) for all i, for some η > 0.
Then,

1

2
|detA|2c′ ≤VarY (Vold([Y,Ax1, . . . ,Axd ]))≤ 2|detA|2c, (37)

if xi ∈ B(vi, η) for all i.
Now, we need to verify that we can choose Ci sufficiently small such that points

in D′i always map into B(vi, η), which will complete the lemma. To do this, note that
if we set r ′ < η/2, then we can choose ε > 0 such that

Ui = {(x, y) ∈R
d | x ∈ B(projvi, η/2)⊂R

d−1 and

(1+ ε)−1b(x)≤ y ≤ (1+ ε)b(x)} ⊂ B(vi, η) (38)

for each i. By Lemma 6.1 we can take h to be sufficiently small such that for all
x ∈ ∂K

(1+ ε)−1bx(y)≤ fx(y)≤ (1+ ε)bx(y)

in all caps of height h. So if we thus choose Ci to be the η/2 ball about projvi ,
then we note that D′i ⊂ A(Ui). Thus, any yi ∈ D′i can be written as Axi for some
xi ∈Ui ⊂ B(vi, η), and thus (37) holds. Hence, the lemma.
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An Optimal-Time Algorithm for Shortest Paths
on a Convex Polytope in Three Dimensions

Yevgeny Schreiber · Micha Sharir

Abstract We present an optimal-time algorithm for computing (an implicit repre-
sentation of) the shortest-path map from a fixed source s on the surface of a convex
polytope P in three dimensions. Our algorithm runs in O(n logn) time and requires
O(n logn) space, where n is the number of edges of P . The algorithm is based on the
O(n logn) algorithm of Hershberger and Suri for shortest paths in the plane (Hersh-
berger, J., Suri, S. in SIAM J. Comput. 28(6):2215–2256, 1999), and similarly follows
the continuous Dijkstra paradigm, which propagates a “wavefront” from s along ∂P .
This is effected by generalizing the concept of conforming subdivision of the free
space introduced by Hershberger and Suri and by adapting it for the case of a con-
vex polytope in R

3, allowing the algorithm to accomplish the propagation in discrete
steps, between the “transparent” edges of the subdivision. The algorithm constructs a
dynamic version of Mount’s data structure (Mount, D.M. in Discrete Comput. Geom.
2:153–174, 1987) that implicitly encodes the shortest paths from s to all other points
of the surface. This structure allows us to answer single-source shortest-path queries,
where the length of the path, as well as its combinatorial type, can be reported in
O(logn) time; the actual path can be reported in additional O(k) time, where k is the
number of polytope edges crossed by the path.
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The algorithm generalizes to the case of m source points to yield an implicit
representation of the geodesic Voronoi diagram of m sites on the surface of P , in
time O((n+m) log(n+m)), so that the site closest to a query point can be reported
in time O(log(n+m)).

Keywords Continuous Dijkstra · Geodesics · Polytope surface · Shortest path ·
Shortest path map · Unfolding ·Wavefront

1 Introduction

1.1 Background

The problem of determining the Euclidean shortest path on the surface of a convex
polytope in R

3 between two points, or, more generally, computing a compact rep-
resentation of all such paths that emanate from a fixed source point s, is a classical
problem in geometric optimization, first studied by Sharir and Schorr [36]. Their al-
gorithm, whose running time is O(n3 logn), constructs a planar layout of the shortest
path map, and then the length and combinatorial type of the shortest path from s to
any given query point q can be found in O(logn) time; the path itself can be reported
in O(k) additional time, where k is the number of edges of P that are traversed by the
shortest path from s to q . Soon afterwards, Mount [27] gave an improved algorithm
for convex polytopes with running time O(n2 logn). Moreover, in [28], Mount has
shown that the problem of storing shortest path information can be treated separately
from the problem of computing it, presenting a data structure of O(n logn) space
that supports O(logn)-time shortest-path queries. However, the question whether this
data structure can be constructed in subquadratic time, has been left open.

For a general, possibly nonconvex polyhedron P , O’Rourke et al. [31] gave an
O(n5)-time algorithm for the single source shortest path problem. Subsequently,
Mitchell et al. [26] presented an O(n2 logn) algorithm, extending the technique
of [27]. All algorithms in [26, 27, 36] use the same general approach, called “con-
tinuous Dijkstra”, first formalized in [26]. The technique keeps track of all the points
on the surface whose shortest path distance to the source s has the same value t ,
and maintains this “wavefront” as t increases. The approach treats certain elements
of ∂P (vertices, edges, or other elements) as nodes in a graph, and follows Dijkstra’s
algorithm to extract the unprocessed element currently closest to s and to propagate
from it, in a continuous manner, shortest paths to other elements. The same general
approach is also used in our algorithm.

Chen and Han [8] use a rather different approach (for a not necessarily convex
polyhedral surface). Their algorithm builds a shortest path sequence tree, using an
observation that they call “one angle one split” to bound the number of branches,
maintaining only O(n) nodes in the tree in O(n2) total running time. The algorithm
of [8] also constructs a planar layout of the shortest path map (which is “dual” to the
layout of [36]), which can be used similarly for answering shortest path queries in
O(logn) time (or O(k+ logn) time for path reporting). (Their algorithm is somewhat
simpler for the case of a convex polytope P , relying on the property, established by
Aronov and O’Rourke [6], that this layout of P does not overlap itself.) In [9], Chen
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and Han follow the general idea of Mount [28] to solve the problem of storing short-
est path information separately, for a general, possibly nonconvex polyhedral surface.
They obtain a tradeoff between query time O(d logn/ logd) and space complex-
ity O(n logn/ logd), where d is an adjustable parameter. Again, the question whether
this data structure can be constructed in subquadratic time, has been left open.

The problem has been more or less “stuck” after Chen and Han’s paper, and the
quadratic-time barrier seemed very difficult to break. For this and other reasons, sev-
eral works [2–4, 16, 17, 19, 24, 25, 38] presented approximate algorithms for the
3-dimensional shortest path problem. Nevertheless, the major problem of obtain-
ing a subquadratic, or even near-linear, exact algorithm remained open. In 1999,
Kapoor [21] announced such an algorithm for the shortest path problem on an ar-
bitrary polyhedral surface P (see also a review of the algorithm in O’Rourke’s col-
umn [29]). The algorithm follows the continuous Dijkstra paradigm, and claims to be
able to compute a shortest path between two given points in O(n log2 n) time (so it
does not preprocess the surface for answering shortest path queries). However, as far
as we know, the details of Kapoor’s algorithm have not yet been published.

The Algorithm of Hershberger and Suri for Polygonal Domains A dramatic break-
through on a loosely related problem took place in 1995,1 when Hershberger and
Suri [18] obtained an O(n logn)-time algorithm for computing shortest paths in the
plane in the presence of polygonal obstacles (where n is the number of obstacle ver-
tices). The algorithm actually computes a shortest path map from a fixed source point
to all other (non-obstacle) points of the plane, which can be used to answer single-
source shortest path queries in O(logn) time.

Our algorithm uses (adapted variants of) many of the ingredients of [18], includ-
ing the continuous Dijkstra method—in [18], the wavefront is propagated amid the
obstacles, where each wave emanates from some obstacle vertex already covered by
the wavefront; see Fig. 1(a).

The key new ingredient in [18] is a quad-tree-style subdivision of the plane, of
size O(n), on the vertices of the obstacles (temporarily ignoring the obstacle edges).

Fig. 1 The planar case: (a) The wavefront propagated from s, at some fixed time t . (b) The conforming
subdivision of the free space

1A preliminary (symposium) version has appeared in 1993; the last version was published in 1999.
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See Fig. 1(b) for an illustration. Each cell of this conforming subdivision is bounded
by O(1) axis-parallel straight line edges (called transparent edges), contains at most
one obstacle vertex, and satisfies the following crucial “conforming” property: For
any transparent edge e of the subdivision, there are only O(1) cells within distance
2|e| of e. Then the obstacle edges are inserted into the subdivision, while maintain-
ing both the linear size of the subdivision and its conforming property—except that
now a transparent edge e has the property that there are O(1) cells within short-
est path distance 2|e| of e. These transparent edges form the elements on which the
Dijkstra-style propagation is performed—at each step, the wavefront is ascertained
to (completely) cover some transparent edge, and is then advanced into O(1) nearby
cells and edges. Since each cell is “simple,” the wavefront propagation inside a cell
can be implemented efficiently. The conforming nature of the subdivision guarantees
the crucial property that each transparent edge e needs to be processed only once, in
the sense that no path that reaches e after the simulation time at which it is processed
can be a shortest path, so the Dijkstra style of propagation works correctly for the
transparent edges.

1.2 An Overview of Our Algorithm

As in [18], we construct a conforming subdivision of ∂P to control the wavefront
propagation. We first construct an oct-tree-like 3-dimensional axis-parallel subdivi-
sion S3D, only on the vertices of ∂P . Then we intersect S3D with ∂P , to obtain a
conforming surface subdivision S. (We use the term “facet” when referring to a tri-
angle of ∂P , and we use the term “face” when referring to the square faces of the
3-dimensional cells of S3D. Furthermore, each such face is subdivided into square
“subfaces”.) In our case, a transparent edge e may traverse many facets of P , but
we still want to treat it as a single simple entity. To this end, we first replace each
actual intersection ξ of a subface of S3D with ∂P by the shortest path on ∂P that
connects the endpoints of ξ and traverses the same facet sequence of ∂P as ξ , and
make those paths our transparent edges. We associate with each such transparent
edge e the polytope edge sequence that it crosses, which is stored in compact form
and is used to unfold e to a straight segment. To compute the unfolding efficiently, we
preprocess ∂P into a surface unfolding data structure that allows us to process any
such unfolding query in O(logn) time. This is a nontrivial addition to the machinery
of [18] (where the transparent edges are simply straight segments, which are trivial
to represent and to manipulate).

However, in order to propagate the wavefront along the surface of P , we have
to overcome another difficulty. On top of the main problem that a surface cell may
intersect many (up to Θ(n)) facets of P , it can in general be unfolded in more than
one way, and such an unfolding may overlap itself (see [11]). To overcome this, we
introduce a Riemann structure that efficiently represents the unfolded regions of the
polytope surface that the algorithm processes. This representation subdivides each
surface cell into O(1) simple building blocks that have the property that a planar un-
folding of such a block (a) is unique, and (b) is a simply connected polygon bounded
by O(1) straight line segments (and does not overlap itself). A global unfolding is a
concatenation of unfolded images of a sequence, or more generally a tree, of certain
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blocks. It may overlap itself, but we ignore these overlaps, treating them as different
layers of a Riemann surface.

We maintain two one-sided wavefronts instead of one exact wavefront at each
transparent edge e, so that, for any point p ∈ e, the true shortest path distance from s

to p is the smaller of the two distances to p encoded in the two one-sided wavefronts.
At each step of the wavefront propagation phase, the algorithm picks up a transpar-
ent edge e, constructs each of the one-sided wavefronts at e by merging the wave-
fronts that have already reached e from a fixed side, and propagates from e each of its
two one-sided wavefronts to O(1) nearby transparent edges f , following the general
scheme of [18]. Each propagation that reaches f from e proceeds along a fixed se-
quence of building blocks that connect e to f . For a fixed edge e, there are only O(1)
successor transparent edges f and only O(1) block sequences for any of those f ’s.

A key difference from [18] is that in our case shortest paths “fold” over ∂P , and
need to be unfolded onto some plane (on which they look like straight segments). We
cannot afford to perform all these unfoldings explicitly—this would by itself degrade
the storage and running time to quadratic in the worst case. Instead we maintain par-
tial unfolding transformations at the nodes of our structure, composing them on the
fly (as rigid transformations of 3-space) to perform the actual unfoldings whenever
needed.

During each propagation, we keep track of combinatorial changes that occur
within the wavefront: At each of these events, we either split a wave into two waves
when it hits a vertex, or eliminate a wave when it is “overtaken” by its two neigh-
bors. Following a modified variant of the analysis of [18], we show that the algorithm
encounters a total of only O(n) “events,” and processes each event in O(logn) time.

After the wavefront propagation phase, we perform further preprocessing to facil-
itate efficient processing of shortest path queries. This phase is rather different from
the shortest path map construction in [18], since we do not provide, nor know how
to construct, an explicit representation of the shortest path map on P in o(n2) time.2

However, our implicit representation of all the shortest paths from the source suffices
for answering any shortest path query in O(logn) time. The query “identifies” the
path combinatorially. It can immediately produce the length of the path (assuming
the real RAM model of computation), and the direction at which it leaves s to reach
the query point. An explicit representation of the path takes O(k) additional time to
compute, where k is the number of polytope edges crossed by the path.

To aid readers familiar with [18], the structure of our paper closely follows that
of [18], although each part that corresponds to a part of [18] is quite different in
technical details. Section 2 provides some preliminary definitions and describes the
construction of the conforming surface subdivision using an already constructed con-
forming 3D-subdivision S3D, while the construction of S3D, which is slightly more
involved, is deferred to Sect. 6 (it is nevertheless very similar to its counterpart in [18],
and we only describe the differences between the two procedures). The construction
in Sect. 2 is new and involves many ingredients that cater to the spatial structure of
convex polytopes. Section 3 also has no parallel in [18]—it presents the Riemann
structure, which represents the unfolding of the polytope surface, as needed for the

2An explicit representation is tricky in any case, because the map, in its folded form, has quadratic com-
plexity in the worst case.
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implementation of the wavefront propagation phase. Section 4 describes the wave-
front propagation phase itself. The data structures and the implementation details of
the algorithm, as well as the final phase of the preprocessing for shortest path queries,
are presented in Sect. 5. We close in Sect. 7 with a discussion, which includes the ex-
tension to the construction of geodesic Voronoi diagrams on ∂P , and with several
open problems.

The full version of the paper [34] is even longer than this journal version—it builds
upon the already long paper [18], and adds many new technical steps in full detail.
This shorter journal version contains most of its ingredients, but omits certain steps,
such as those sufficiently similar to their counterparts in [18].

2 A Conforming Surface Subdivision

A key ingredient of the algorithm is a special subdivision S of ∂P , which we con-
struct in two steps. The first step, sketched in Sect. 6, builds a rectilinear oct-tree-like
subdivision S3D of R

3 by taking into account only the vertices of P (see [34, Sect. 6]
for details). In the present section, we only state the properties that S3D should satisfy,
assume that it is already available, and describe the second step, which constructs S

from S3D. We start with some preliminary definitions.

2.1 Preliminaries

Without loss of generality, we assume that s is a vertex of P , that all facets of P are
triangles, and that no edge of P is axis-parallel. Our model of computation is the real
RAM.

We borrow some definitions from [26, 35, 36]. A geodesic path π is a simple path
along ∂P so that, for any two sufficiently close points p,q ∈ π , the portion of π be-
tween p and q is the unique shortest path that connects them on ∂P . Such a path π

is always piecewise linear; its length is denoted as |π |. For any two points a, b ∈ ∂P ,
a shortest geodesic path between them is denoted by π(a, b). Generally, π(a, b) is
unique, but there are degenerate placements of a and b for which there exist several
geodesic shortest paths that connect them. For convenience, the word “geodesic” is
omitted in the rest of the paper. For any two points a, b ∈ ∂P , at least one shortest path
π(a, b) exists [26]. We use the notation Π(a,b) to denote the set of all shortest paths
connecting a and b. The length of any path in Π(a,b) is the shortest path distance
between a and b, and is denoted as dS(a, b). We occasionally use dS(X,Y ) to denote
the shortest path distance between two compact sets of points X,Y ⊆ ∂P , which is
the minimum dS(x, y), over all x ∈X and y ∈ Y . We use d3D(x, y) (resp., d∞(x, y))
to denote the Euclidean (resp., the L∞) distance in R

3 between x, y; when consider-
ing points x, y on a plane, we sometimes denote d3D(x, y) by d(x, y).

If facets f and f ′ share a common edge χ , the unfolding of f ′ onto (the plane
containing) f is the rigid transformation that maps f ′ into the plane containing f ,
effected by an appropriate rotation about the line through χ , so that f and the image
of f ′ lie on opposite sides of that line. Let F = (f0, f1, . . . , fk) be a sequence of
distinct facets such that fi−1 and fi have a common edge χi , for i = 1, . . . , k. We say
that F is the corresponding facet sequence of the edge sequence E = (χ1, χ2, . . . , χk)
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(and that E is the corresponding edge sequence of F ). The unfolding transformation
UE is the transformation of 3-space that represents the rigid motion that maps f0 to
the plane of fk , through a sequence of unfoldings at the edges χ1, χ2, . . . , χk . That
is, for i = 1, . . . , k, let ϕi be the rigid transformation of 3-space that unfolds fi−1
to the plane of fi about χi . The unfolding UE is then the composed transformation
ΦE = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1. (The unfolding of an empty edge sequence is the identity
transformation.) However, in what follows, we will also use UE to denote the collec-
tion of all partial unfoldings Φ(i)

E = ϕk ◦ϕk−1 ◦ . . .◦ϕi , for i = 1, . . . , k. Thus Φ(i)

E is
the unfolding of fi−1 onto the plane of fk . The domain of UE is then defined as the
union of all points in f0, f1, . . . , fk , and the plane of the last facet fk is denoted as the
destination plane of UE . Since each rigid transformation in R

3 can be represented as a
4×4 matrix [32] (see [34] for details), the entire sequence ΦE =Φ

(1)
E ,Φ

(2)
E , . . . ,Φ

(k)

E
can be computed in O(k) time.

The unfolding UE (F) of the facet sequence F is the union
⋃k

i=0 Φ
(i+1)
E (fi) of

the unfoldings of each of the facets fi ∈ F , in the destination plane of UE (here
the unfolding transformation for fk is the identity).3 The unfolding UE (π) of a path
π ⊂ ∂P that traverses the edge sequence E , is the path consisting of the unfolded
images of all the points of π in the destination plane of UE .

The following properties of shortest paths are proved in [8, 26, 35, 36]: (i) The
intersection of a shortest path π with any facet f of ∂P is a (possibly empty) line
segment. (ii) If π traverses the edge sequence E , then the unfolded image UE (π) is a
straight line segment. (iii) A shortest path π never crosses a vertex of P (but it may
start or end at a vertex). (iv) Two shortest paths from the same source point s, so that
none of them is an extension of the other, cannot intersect each other except at s and,
if they have the same destination point, possibly at that point too.

The Elements of the Shortest Path Map We consider the problem of computing
shortest paths from a fixed source point s ∈ ∂P to all points of ∂P . A point z ∈ ∂P is
called a ridge point if there exist at least two distinct shortest paths from s to z. The
shortest path map with respect to s, denoted SPM(s), is a subdivision of ∂P into at
most n connected regions, called peels, whose interiors are vertex-free and contain
neither ridge points nor points belonging to shortest paths from s to vertices of P ,
and such that for each such peel Φ , there is only one shortest path π(s,p) ∈Π(s,p)

to any p ∈Φ , which also satisfies π(s,p)⊂Φ .
There are two types of intrinsic vertices of SPM(s) (excluding intersections of peel

boundaries with edges of P ): ridge points that are incident to three or more peels, and
vertices of P (including s). The boundaries of the peels form the edges of SPM(s).
There are two types of edges (see Fig. 2): (i) shortest paths from s to a vertex of P ,
and (ii) bisectors, each being a maximal connected polygonal path of ridge points
between two vertices of SPM(s) that does not contain any vertex of SPM(s).

It is proved in [36] that: (1) A shortest path from s to any point in ∂P cannot cross
a bisector. (2) SPM(s) has only O(n) vertices and (folded) edges, each of which is a
union of O(n) straight segments.

3Our definition of unfolding is asymmetric, in the sense that we could equally unfold into the plane of
any of the other facets of F . We sometimes ignore the exact choice of the destination plane, since the
appropriate rigid transformation that moves between these planes is easy to compute.
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Denote by Ei the maximal polytope edge sequence crossed by a shortest path
from s to a vertex of a peel Φi inside Φi (Ei is unique, since Φi does not contain
polytope vertices in its interior). Denote by si the unfolded source image UEi

(s); for
the sake of simplicity, we also denote by si the unfolded source image UE ′i (s), where
E ′i is some prefix of Ei . A bisector between two adjacent peels Φi,Φj is denoted
by b(si, sj ). It is the locus of points q equidistant from si and sj (on some com-
mon plane), so that there are at least two shortest paths in Π(s, q)—one, completely
contained in Φi , traverses a prefix of the polytope edge sequence Ei , and the other,
completely contained in Φj , traverses a prefix of the polytope edge sequence Ej . Note
that for two maximal polytope edge sequences Ei ,Ej , the bisector b(si, sj ) between
the source images si = UEi

(s) and sj = UEj
(s) satisfies both the following proper-

ties: UEi
(b(si , sj )) ⊂ UEi

(Fi ), and UEj
(b(si , sj )) ⊂ UEj

(Fj ), where Fi ,Fj are the
respective corresponding facet sequences of Ei ,Ej .

2.2 The 3-Dimensional Subdivision and Its Properties

We begin by introducing the subdivision S3D of R
3, whose construction is sketched

in Sect. 6. The subdivision is composed of 3D-cells, each of which is an axis-parallel
cube, either whole, or perforated by a single axis-parallel cube-shaped hole;4 see
Fig. 3. The boundary face of each 3D-cell is divided into either 16× 16 or 64× 64
square subfaces with axis-parallel sides.

Let l(h) denote the edge length of a square subface h.
The crucial property of S3D is the well-covering of its subfaces. Specifically, a

subface h of S3D is said to be well-covered if the following three conditions hold:

Fig. 2 Peels are bounded by
thick lines (dashed and solid).
The bisectors (the set of all the
ridge points) are the thick solid
lines, while the dashed solid
lines are the shortest paths
from s to the vertices of P

Fig. 3 Two types of a 3D-cell:
a whole cube (where the
subdivision of three of its faces
is shown), and a perforated cube
(it is not shown here that each of
its inner and outer faces is
subdivided into subfaces)

4The 3D-subdivision S3D is similar to a (compressed) oct-tree in that all its faces are axis-parallel and
their sizes grow by factors of 4. However, the cells of S3D may be nonconvex and the union of the surfaces
of the 3D-subdivision itself may be disconnected.
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Fig. 4 The well-covering region of the darkly shaded face h contains, in this example, a total of 39
3D-cells (nine transparent large cells on the back, five lightly shaded large cells on the front, and 25 small
cells, also on the front). Each face of the boundary of each 3D-cell in this figure is further subdivided into
subfaces (not shown). The well-covering region of each of the subfaces of h coincides with R(h)

(W1) There exists a set of O(1) cells C(h) ⊆ S3D such that h lies in the interior
of their union R(h)=⋃c∈C(h) c. The region R(h) is called the well-covering
region of h (see Fig. 4).

(W2) The total complexity of the subdivisions of the boundaries of all the cells
in C(h) is O(1).

(W3) If g is a subface on ∂R(h), then d3D(h, g)≥ 16 max{l(h), l(g)}.
A subface h is strongly well-covered if the stronger condition (W3′) holds:5

(W3′) For any subface g so that h and g are portions of nonadjacent (undivided)
faces of the subdivision, d3D(h, g)≥ 16 max{l(h), l(g)}.

Let V denote the set of vertices of the polytope (including the source vertex s).
A 3D-subdivision S3D is called a (strongly) conforming 3D-subdivision for V if the
following three conditions hold.

(C1) Each cell of S3D contains at most one point of V in its closure.
(C2) Each subface of S3D is (strongly) well-covered.
(C3) The well-covering region of every subface of S3D contains at most one vertex

of V .

S3D also has the following minimum vertex clearance property:

(MVC) For any point v ∈ V and for any subface h, d3D(v,h)≥ 4l(h).

As mentioned, the algorithm for computing a strongly conforming 3D-subdivision
of V is sketched in Sect. 6. We state the main result shown there.6

Theorem 2.1 (Conforming 3D-subdivision Theorem) Every set of n points in R
3

admits a strongly conforming 3D-subdivision S3D of O(n) size that also satisfies the

5The wavefront propagation algorithm described in Sects. 4 and 5 requires the subfaces of S3D only to be
well-covered, but not necessarily strongly well-covered. The stronger condition (W3′) of subfaces of S3D
is needed only in the construction of the surface subdivision S.
6Note that we do not assume that the points of V are in convex position.
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minimum vertex clearance property. In addition, each input point is contained in the
interior of a distinct whole cube cell. Such a 3D-subdivision can be constructed in
O(n logn) time.

2.3 Computing the Surface Subdivision

Transparent Edges We intersect the subfaces of S3D with ∂P . Each maximal con-
nected portion ξ of the intersection of a subface h of S3D with ∂P induces a surface-
subdivision (transparent) edge e of S with the same pair of endpoints. (We textitasize
here that e 
= ξ . The precise construction of e is detailed below.) A single subface h

can therefore induce up to four transparent edges (since P is convex and h is a square,
and the construction of S3D ensures that none of its edges is incident to a polytope
edge; see Fig. 5). If ξ is a closed cycle fully contained in the interior of h, we break
it at its x-rightmost and x-leftmost points (or y-rightmost and y-leftmost points, if h
is perpendicular to the x-axis). These two points are regarded as two new endpoints
of transparent edges. These endpoints, as well as the endpoints of the open connected
intersection portions ξ , are referred to as transparent endpoints.

Let ξ(a, b) be a maximal connected portion of the intersection of a subface h of
S3D with ∂P , bounded by two transparent endpoints a, b. Let E = Ea,b denote the
sequence of polytope edges that ξ(a, b) crosses from a to b, and let F =Fa,b denote
the facet sequence corresponding to E . We define the transparent edge ea,b as the
shortest path from a to b within the union of F (a priori, UE (ea,b) is not necessarily
a straight segment, but we will shortly show that it is); see Fig. 6. We say that ea,b
originates from the cut ξ(a, b). Obviously, its length |ea,b| is equal to |UE (ea,b)| ≤
|ξ(a, b)|. (This initial collection of transparent edges may contain crossing pairs, and

Fig. 5 A subface h and three
maximal connected portions
ξ1, ξ2, ξ3 that constitute the
intersection h∩ ∂P

Fig. 6 The cuts of the boundaries of the 3D-cells c1, c2 with ∂P are denoted by thin solid lines, and the
dashed lines denote polytope edges. The transparent edge ea,b that originates from the cut ξ(a, b) is bold.
(To simplify the illustration, this figure ignores the fact that the faces of S3D are actually subdivided into
smaller subfaces)
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each initial transparent edge will be split into sub-edges at the points where other
edges cross it—see below.)

Lemma 2.2 No polytope vertex can be incident to transparent edges. That is, for
each transparent edge ea,b , the unfolded path UE (ea,b) is a straight segment.

Proof By (MVC), for any subface h of S3D and for any v ∈ V , we have d3D(h, v)≥
4l(h). Let ea,b be a transparent edge originating from ξ(a, b)⊂ h∩∂P . Then |ea,b| ≤
|ξ(a, b)|, by definition of transparent edges, and |ξ(a, b)| ≤ 4l(h), since ξ(a, b)⊆ h

is convex, and h is a square of side length l(h). Therefore d3D(a, v) ≥ |ea,b|, which
shows that ea,b cannot reach any vertex v of P . �

Lemma 2.3 A transparent endpoint is incident to at least two and at most O(1)
transparent edges.

Proof Easy, and omitted; it follows from the structure of S3D. �

Lemma 2.4 Each transparent edge that originates from some face φ of S3D, meets
at most O(1) other transparent edges that originate from faces of S3D adjacent to φ

(or from φ itself), and does not cross any other transparent edges (which originate
from faces of S3D not adjacent to φ).

Proof Let ea,b be a transparent edge originating from the cut ξ(a, b), and let ec,d be
a transparent edge originating from the cut ξ(c, d). Let h,g be the subfaces of S3D

that contain ξ(a, b) and ξ(c, d), respectively. Since a, b ∈ h, we have d3D(ea,b, h) <
1
2 |ea,b| ≤ 1

2 |ξ(a, b)| ≤ 2l(h). Similarly, d3D(ec,d , g) ≤ 2l(g). Recall that S3D is a
strongly conforming 3D-subdivision. Therefore, if h,g are incident to non-adjacent
faces of S3D, then, by (W3′), d3D(h, g)≥ 16 max{l(h), l(g)}, hence ea,b does not in-
tersect ec,d . Since are only O(1) faces of S3D that are adjacent to the face of h, and
each of them contains O(1) subfaces g, there are at most O(1) possible choices of g
for each h. �

Splitting Intersecting Transparent Edges Crossing transparent edges are illustrated
in Fig. 7. We first show how to compute the intersection points; then, each intersection
point is regarded as a new transparent endpoint, splitting each of the two intersecting
edges into sub-edges.

Lemma 2.5 A maximal contiguous facet subsequence that is traversed by a pair
of intersecting transparent edges e, e′ contains either none or only one intersection
point of e ∩ e′. In the latter case, it contains an endpoint of e or e′ (see Fig. 8).

Proof Consider some maximal common facet subsequence F̃ = (f0, . . . , fk) that is
traversed by e and e′, so that the union R of the facets in F̃ contains an intersection
point of e ∩ e′. Since F̃ is maximal, no edge of ∂R is crossed by both e and e′; in
particular, F̃ cannot be a single triangle, so k ≥ 1. Since e and e′ are shortest paths
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Fig. 7 Subfaces are bounded by
dotted lines, polytope edges are
dashed, the cuts of ∂P ∩ S3D
are thin solid lines, and the two
transparent edges ea,b, ec,d are
drawn as thick solid lines. The
edges ea,b, ec,d intersect each
other at the point x ∈ ∂P ; the
shaded region of ∂P (including
the point x on its boundary) lies
in this illustration beyond the
plane that contains the
cut ξ(c, d)

Fig. 8 Two examples of intersecting transparent edges e, e′ (thin solid lines); the corresponding original
cuts (thick solid lines) never intersect each other. The maximal contiguous facet subsequences that are
traversed by both e, e′ and contain an intersection point of e ∩ e′ are shaded. In the second example, the
“hole” of ∂P between the facet sequence traversed by e and the facet sequence traversed by e′ is hatched

Fig. 9 (a) e′ divides R into two regions, one of which, R′ (shaded), contains neither u nor v. (b) If R′
contains v but not u, ξ ′ (crossing the same edge sequence as e′) intersects ξ (which must cross the bold
dashed edges, since R is maximal)

within R, they cannot cross each other (within R) more than once, which proves the
first part of the lemma.

To prove the second claim, assume the contrary — that is, R does not contain any
endpoint of e and of e′. Denote by u (resp., v) the vertex of f0 (resp., fk) that is not
incident to f1 (resp., fk−1). We claim that e′ divides R into two regions, one of which
contains both u and v, and the other, which we denote by R′, contains neither u nor v.
Indeed, if each of the two subregions contained exactly one point from {u,v} then, by
maximality of F̃ , e and e′ would have to traverse facet sequences that “cross” each
other, which would have forced the corresponding original cuts ξ, ξ ′ also to cross
each other, contrary to the construction; see Fig. 9. The transparent edge e intersects
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∂R in exactly two points that are not incident to R′. Since e intersects e′ in R, e must
intersect ∂R′ ∩ e′ in two points—a contradiction. �

By Lemma 2.4, each transparent edge e has at most O(1) candidate edges that can
intersect it (at most four times, as follows from Lemma 2.5). For each such candidate
edge e′, we can find each of the four possible intersection points, using Lemma 2.5, as
follows. First, we check for each of the extreme facets in the facet sequence traversed
by e, whether it is also traversed by e′, and vice versa (if all the four tests are negative,
then e and e′ do not intersect each other). We describe in the proof of Lemma 2.11
below how to perform these tests efficiently. For each positive test—when a facet f
that is extreme in the facet sequence traversed by one of e, e′, is present in the facet
sequence traversed by the other—we unfold both e, e′ to the plane of f , and find the
(image in the plane of f of the) intersection point of e∩ e′ that is closest to f (among
the two possible intersection points).

Surface Cells After splitting the intersecting transparent edges, the resulting trans-
parent edges are pairwise openly disjoint and subdivide ∂P into connected (albeit
not necessarily simply connected) regions bounded by cycles of transparent edges, as
follows from Lemma 2.3. These regions, which we call surface cells, form a planar
(or, rather, spherical) map S on ∂P , which is referred to as the surface subdivision
of P . Each surface cell is bounded by a set of cycles of transparent edges that are
induced by some 3D-cell c3D, and possibly also by a set of other 3D-cells adjacent
to c3D whose originally induced transparent edges split the edges originally induced
by c3D.

Corollary 2.6 Each 3D-cell induces at most O(1) (split) transparent edges.

Proof Follows immediately from the property that the boundary of each 3D-cell con-
sists of only O(1) subfaces, from the fact that each subface induces up to four trans-
parent edges, and from Lemmas 2.4 and 2.5. �

Corollary 2.7 For each surface cell c, all transparent edges on ∂c are induced by
O(1) 3D-cells.

Proof Follows immediately from Lemma 2.4. �

Corollary 2.8 Each surface cell is bounded by O(1) transparent edges.

Proof Follows immediately from Corollaries 2.6 and 2.7. �

Well-Covering We require that all transparent edges be well-covered in the surface
subdivision S (compare to the well-covering property of the subfaces of S3D), in the
following modified sense.

(W1S ) For each transparent edge e of S, there exists a set C(e) of O(1) cells of S

such that e lies in the interior of their union R(e)=⋃c∈C(e) c, which is called
the well-covering region of e.
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(W2S ) The total number of transparent edges in all the cells in C(e) is O(1).
(W3S ) Let e1 and e2 be two transparent edges of S such that e2 lies on the boundary

of the well-covering region R(e1). Then dS(e1, e2)≥ 2 max{|e1|, |e2|}.
As the next theorem shows, our surface subdivision S is a conforming surface

subdivision for P , in the sense that the following three properties hold.

(C1S ) Each cell of S is a region on ∂P that contains at most one vertex of P in its
closure.

(C2S ) Each edge of S is well-covered.
(C3S ) The well-covering region of every edge of S contains at most one vertex of P .

Theorem 2.9 (Conforming Surface-Subdivision Theorem) Each convex polytope P

with n vertices admits a conforming surface subdivision S into O(n) transparent
edges and surface cells, constructed as described above.

Proof The properties (C1S ), (C3S ) follow from the properties (C1), (C3) of S3D,
respectively, and from the fact that each cycle C of transparent edges that forms a
connected component of the boundary of some cell of S traverses the same polytope
edge sequence as the original intersections of S3D with ∂P that induce C.

To show well-covering of edges of S (property (C2S )), consider an original trans-
parent edge ea,b (before the splitting of intersecting edges). The endpoints a, b are
incident to some subface h that is well-covered in S3D, by a region R(h) con-
sisting of O(1) 3D-cells. We define the well-covering region R(e) of every edge
e, obtained from ea,b by splitting, as the connected component containing e, of
the union of the surface cells that originate from the 3D-cells of R(h). There are
clearly O(1) surface cells in R(e), since each 3D-cell of S3D induces at most O(1)
(transparent edges that bound at most O(1)) surface cells. R(e) is not empty and
it contains e in its interior, since all the surface cells that are incident to e orig-
inate from 3D-cells that are incident to h and therefore are in R(h). For each
transparent edge e′ originating from a subface g that lies on the boundary of (or
outside) R(h), dS(h,g) ≥ d3D(h, g) ≥ 16 max{l(h), l(g)}. The length of e satisfies
|e| ≤ |ea,b| ≤ |ξ(a, b)| ≤ 4l(h), and, similarly, |e′| ≤ 4l(g). Therefore, for each p ∈ e

we have d3D(p,h) ≤ 2l(h), and for each q ∈ e′ we have d3D(q, g) ≤ 2l(g). Hence,
for each p ∈ e, q ∈ e′, we have dS(p, q)≥ d3D(p, q)≥ (16− 4)max{l(h), l(g)}, and
therefore dS(e, e

′)≥ 2 max{|e|, |e′|}. �

We next simplify S by deleting (all the transparent edges of) each group of surface
cells whose union completely covers exactly one hole of a single surface cell c and
contains no vertices of P , thereby eliminating the hole and making it part of c; see
Fig. 10. (This optimization clearly does not violate any of the properties of S proved
above.) After the optimization, each hole of a surface cell of S must contain a vertex.

The following lemma sharpens a simple property of S that is used later in Sect. 3.

Lemma 2.10 A transparent edge e intersects any polytope edge in at most one point.

Proof A polytope edge χ can intersect e at most once, since e is a shortest path
(within the union of a facet sequence); since we assume that no edge of P is axis-
parallel, e ∩ χ cannot be a nontrivial segment. �
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Fig. 10 Simplifying the subdivision (dashed edges denote polytope edges, and solid edges denote trans-
parent edges). (a) None of the cells is discarded, since, although the shaded cells are completely contained
inside a single hole of another cell, one of them contains a vertex of P . (b) All the shaded cells are dis-
carded, and become part of the containing cell

2.4 The Surface Unfolding Data Structure

In this subsection we present the surface unfolding data structure, which we define
and use to efficiently construct the surface subdivision. This data structure is also
used in Sect. 3 to construct more complex data structures for wavefront propagation
and in Sect. 5 by the wavefront propagation algorithm.

Sort the vertices of P in ascending z-order, and sweep a horizontal plane ζ up-
wards through P . At each height z of ζ , the cross section P(z)= ζ ∩ P is a convex
polygon, whose vertices are intersections of some polytope edges with ζ . The cross-
section remains combinatorially unchanged, and each of its edges retains a fixed ori-
entation, as long as ζ does not pass through a vertex of P . When ζ crosses a vertex
v, the polytope edges incident to v and pointing downwards are deleted (as vertices)
from P(z), and those that leave v upwards are added to P(z).

We can represent P(z) by the circular sequence of its vertices, namely the circular
sequence of the corresponding polytope edges. We use a linear, rather than a circular,
sequence, starting with the x-rightmost vertex of P(z) and proceeding counterclock-
wise (when viewed from above) along ∂P (z). (It is easy to see that the rightmost
vertex of P(z) does not change as long as we do not sweep through a vertex of P .)
We use a persistent search tree Tz (with path-copying, as in [20], for reasons de-
tailed below) to represent the cross section. Since the total number of combinatorial
changes in P(z) is O(n), the total storage required by Tz is O(n logn), and it can be
constructed in O(n logn) time.

We can use Tz to perform the following type of query: Given a horizontal subface
h= [a, b] × [c, d] × {z1} of S3D, compute efficiently the convex polygon P ∩ h, and
represent its boundary in compact form (without computing P ∩ h explicitly). We
access the value Tz(z1) of Tz at z = z1 (which represents P(z1)), and compute the
intersection points of each of the four edges of h with P . It is easily seen that this can
be done in a total of O(logn) time. We obtain at most eight intersection points, which
partition ∂P (z1) into at most eight portions, and every other portion in the resulting
sequence is contained in h. Since these are contiguous portions of ∂P (z1), each of
them can be represented as the disjoint union of O(logn) subtrees of Tz(z1), where
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the endpoints of the portions (the intersection points of ∂h with ∂P (z1)) do not appear
in the subtrees, but can be computed explicitly in additional O(1) time. Hence, we
can compute, in O(logn) time, the polytope edge sequence of the intersection P ∩h,
and represent it as the disjoint concatenation of O(logn) canonical sequences, each
formed by the edges stored in some subtree of Tz.

We can also use Tz for another (simpler) type of query: Given a facet f of ∂P and
some z= z1, locate the endpoints of f ∩P(z1) (which must be stored at two consec-
utive leaves in the cyclic order of leaves of the corresponding version of Tz), or report
that f ∩ P(z1)= ∅. As noted above, the slopes of the edges of P(z) do not change
when z varies, as long as P(z) does not change combinatorially. Moreover, these
slopes increase monotonically, as we traverse P(z1) in counterclockwise direction
from its x-leftmost vertex vL to its x-rightmost vertex vR , and then again from vR
to vL. This allows us to locate f in the sequence of edges of P(z1), in O(logn) time,
by a binary search in the sequence of their slopes. To make binary search possible
in O(logn) time (as well as to enable a somewhat more involved search over Tz that
we use in the proof of Lemma 3.12), we store at each node of Tz a pair of pointers
to the rightmost and leftmost leaves of its subtree. These extra pointers can be easily
maintained during the insertions to and deletions from Tz; it is also easy to see that
updating these pointers is coherent with the path-copying method.

However, the most important part of the structure is as follows. With each node ν

of Tz, we precompute and store the unfolding Uν of the sequence Eν of polytope edges
stored at the leaves of the subtree of ν, exploiting the following obvious observation.
Denote by Fν the corresponding facet sequence of Eν . If ν1, ν2 are the left and the
right children of ν, respectively, then the last facet in Fν1 coincides with the first
facet of Fν2 . Hence Uν =Uν2 ◦Uν1 , from which the bottom-up construction of all the
unfoldings Uν is straightforward. Each node stores exactly one rigid transformation,
and each combinatorial change in P(z) requires O(logn) transformation updates,
along the path from the new leaf (or from the deleted leaf) to the root. (The rotations
that keep the tree balanced do not affect the asymptotic time complexity; maintaining
the unfolding information while rebalancing the tree can be performed in a manner
similar to that used in another related data structure, described in Sect. 5.1, with full,
and fairly routine, details given in [34].) Hence the total number of transformations
stored in Tz is O(n logn) (for all z, including the nodes added to the persistent tree
with each path-copying), and they can all be constructed in O(n logn) time.

Let F = (f0, f1, . . . , fk) denote the corresponding facet sequence of the sequence
of edges stored at the leaves of Tz at some fixed z. We next show how to use the
tree Tz to perform another type of query: Compute the unfolded image U(q) of some
point q ∈ fi ∈ F in the (destination) plane of some other facet fj ∈ F (which is not
necessarily the last facet of F ), and return the (implicit representation of) the corre-
sponding edge sequence Eij between fi and fj . If i = j , then Eij = ∅ and U(q)= q .
Otherwise, we search for fi and fj in Tz (in O(logn) time, as described above).
Denote by Ui (resp., Uj ) the unfolding transformation that maps the points of fi

(resp., fj ) into the plane of fk . Then U(q)=U−1
j Ui(q).

We describe next the computation of Ui , and Uj is computed analogously. If fi
equals fk , then Ui is the identity transformation. Otherwise, denote by νi the leaf
of Tz that stores the polytope edge fi ∩ fi+1, and denote by r the root of Tz. We
traverse, bottom up, the path P from νi to r , and compose the transformations stored
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Fig. 11 Constructing Ui by traversing the path from the polytope edge succeeding the facet fi to the
root r of Tz . (a) The nodes ν1, ν3 are the left turns, and the nodes ν2, ν4 are the right turns in this example.
(b) Composing the corresponding transformations stored at ν1, . . . , ν4 and at r

at the nodes of P , initializing Ui as the identity transformation and proceeding as
follows. We define a node ν of P to be a left turn (resp., right turn) if we reach ν

from its left (resp., right) child and proceed to its parent ν′ so that ν is the right (resp.,
left) child of ν′. When we reach a left (resp., right) turn ν that stores Uν , we update
Ui := UνUi (resp., Ui := U−1

ν Ui ). If we reach r from its right child, we do nothing;
otherwise we update Ui := UrUi , where Ur is the transformation stored at r . See
Fig. 11 for an illustration. Thus, Ui (and Uj ) can be computed in O(logn) time, and
so U(q)=U−1

j Ui(q) can be computed in O(logn) time.
We construct, in a completely symmetric fashion, two additional persistent search

trees Tx and Ty , by sweeping P with planes orthogonal to the x-axis and to the y-axis,
respectively.

Hence we can compute, in O(logn) time, the image of any point q ∈ ∂P in any
unfolding formed by a contiguous sequence of polytope edges crossed by an axis-
parallel plane that intersects the facet of q . The surface unfolding data structure that
answers these queries requires O(n logn) space and O(n logn) preprocessing time.

Lemma 2.11 Given the 3D-subdivision S3D, the conforming surface subdivision S

can be constructed in O(n logn) time and space.

Proof First, we construct the surface unfolding data structure (the enhanced persis-
tent trees Tx,Ty , and Tz) in O(n logn) time, as described above. Then, for each sub-
face h of S3D, we use the data structure to find P ∩ h in O(logn) time. If P ∩ h is
a single component, we split it at its rightmost and leftmost points into two portions
as described in the beginning of Sect. 2.3—it takes O(logn) time to locate the split
points using a binary search.

To split the intersecting transparent edges, we check each pair of edges (e, e′) that
might intersect, as follows. First, we find, in the surface unfolding data structure, the
edge sequences E and E ′ traversed by e and e′, respectively (by locating the cross
sections P ∩ h,P ∩ h′, where h,h′ are the respective subfaces of S3D that induce
e, e′). Denote by F = (f0, . . . , fk) (resp., F ′ = (f ′0, . . . , f ′k′)) the corresponding facet
sequence of E (resp., E ′). We search for f0 in F ′, using the unfolding data structure.
If it is found, that is, both e and e′ intersect f0, we unfold both edges to the plane of f0
and check whether they intersect each other within f0. We search in the same manner
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for fk in F ′, and for f ′0 and f ′
k′ in F . This yields up to four possible intersections

between e and e′ (if all searches fail, e does not cross e′), by Lemma 2.5. Each of
these steps takes O(logn) time. As follows from Lemma 2.4, there are only O(n)

candidate pairs of transparent edges, which can be found in a total of O(n) time;
hence the whole process of splitting transparent edges takes O(n logn) time.

Once the transparent edges are split, we combine their pieces to form the boundary
cycles of the cells of the surface subdivision. This can easily be done in time O(n).
The optimization that deletes each group of surface cells whose union completely
covers exactly one hole of a single surface cell and contains no vertices of P also
takes O(n) time (using, e.g., DFS on the adjacency graph of the surface cells), since,
during the computation of the cell boundaries, we have all the needed information to
find the transparent edges to be deleted. �

3 Surface Unfoldings and Shortest Paths

In this section we show how to unfold the surface cells of S and how to represent these
unfoldings for the wavefront propagation algorithm (described in Sects. 4 and 5)
as Riemann structures. Informally, this representation consists of unfolded “flaps,”
which we call building blocks, all lying in a common plane of unfolding. We glue
them together locally without overlapping, but they may globally have some over-
laps, which however are ignored, since we consider the corresponding flaps to lie at
different “layers” of the unfolding.

3.1 Building Blocks and Contact Intervals

Maximal Connecting Common Subsequences Let e and e′ be two transparent edges,
and let E = (χ1, χ2, . . . , χk) and E ′ = (χ ′1, χ ′2, . . . , χ ′k′) be the respective polytope

edge sequences that they cross. We say that a common (contiguous) subsequence Ẽ
of E and E ′ is connecting if none of its edges χ̃ is intersected by a transparent edge
between χ̃ ∩ e and χ̃ ∩ e′; see Fig. 12(a). We define G(e, e′) to be the collection of
all maximal connecting common subsequences of E and E ′.

Let e and E be as above, and let v be a vertex of P . Denote by E ′ =
(χ ′1, χ ′2, . . . , χ ′k′) the cyclic sequence of polytope edges that are incident to v, in their
counterclockwise order about v. We regard E ′ as an infinite cyclic sequence, and we
define G(e, v) to be the collection of maximal connecting common subsequences
of E and E ′, similarly to the definition of G(e, e′). See Fig. 12(b).

In either case, the elements of such a collection G(x,y) do not share any polytope
edge. We say that a subsequence in G(x,y) connects x and y.

The Building Blocks Let c be a cell of the surface subdivision S. Denote by E(c)

the set of all the transparent edges on ∂c. Denote by V (c) the set of (zero or one)
vertices of P inside c (recall the properties of S). Define G(c) to be the union of
all collections G(x,y) so that x, y are distinct elements of E(c) ∪ V (c). Fix such
a pair of distinct elements x, y ∈ E(c) ∪ V (c). Let Ex,y = (e0, e1, . . . , ek) ∈G(x,y)

be a maximal subsequence that connects x and y, and let F = (f0, f1, . . . , fk) be
its corresponding facet sequence. Define the shortened facet sequence of Ex,y to be
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Fig. 12 Maximal connecting common subsequences of polytope edges (drawn as thin solid lines)
in (a) G(e, e′), and (b) G(e, v). The transparent edges are drawn thick, and the interiors of the transparent
boundary edge cycles that separate Ẽ1 and Ẽ2 are shaded

Fig. 13 Building blocks (shaded): (a), (b), (c) of types I, II and III, respectively, and (d), (e) of type IV

F \ {f0, fk} (so that the extreme edges e0, ek of Ex,y are on the boundary of its
union), and note that the shortened sequence can be empty (when k = 1). We define
the following four types of building blocks of c.

Type I: Let f be a facet of ∂P . Any connected component of the intersection region
c∩ f that meets the interior of f and has an endpoint of some transparent edge of ∂c
in its closure is a building block of type I of c. See Fig. 13(a) for an illustration.

Type II: Let v be the unique vertex in V (c) (assuming it exists), e a transparent edge
in ∂c, and Ee,v ∈G(e, v) a maximal subsequence connecting e and v. Then the region
B , between e and v in the shortened facet sequence of Ee,v , if nonempty, is a building
block of type II of c; see Fig. 13(b).

Type III: Let e, e′ be two distinct transparent edges in ∂c, and let Ee,e′ ∈G(c) be a
maximal connecting subsequence between e and e′. The region B between e and e′
in the shortened facet sequence of Ee,e′ , if nonempty, is a building block of type III
of c; see Fig. 13(c).

Type IV: Let f be a facet of ∂P . Any connected component of the region c ∩ f

that meets the interior of f , does not contain endpoints of any transparent edge, and
whose boundary contains a portion of each of the three edges of f , is a building block
of type IV of c. See Fig. 13(d), (e).

We associate with each building block one or two edge sequences along which it
can be unfolded. For blocks B contained in a single facet, we associate with B the
empty sequence. For other blocks B (which must be of type II or III), the maximal
connecting edge sequence E = (χ1, . . . , χk) that defines B contains at least two poly-
tope edges. Then we associate with B the two shortened (possibly empty) sequences
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E1 = (χ2, . . . , χk−1),E2 = (χk−1, . . . , χ2). Note that neither E1 nor E2 is cyclic, and
that the unfolded images UE1(B),UE2(B) are congruent.

We say that two distinct points p,q ∈ ∂P overlap in the unfolding UE of some
edge sequence E , if UE (p)= UE (q). We say that two sets of surface points X,Y ⊂
∂P overlap in UE , if there are at least two points x ∈X and y ∈ Y so that UE (x)=
UE (y). The following lemma states an important property of building blocks (which
easily follows from their definition).

Lemma 3.1 Let c be a surface cell of S, and let B be a building block of c. Let E be
an edge sequence associated with B . Then no two points p,q ∈ B overlap in UE .

Proof Easy, and omitted. �

Lemma 3.2 Let B be a building block of type IV of a surface cell c, and let f be
the facet that contains B . Then either (a) B is a convex pentagon, bounded by por-
tions of the three edges of f , a vertex of f , and portions of two transparent edges
(see Fig. 13(d)), or (b) B is a convex hexagon, whose boundary alternates between
portions of the edges of f and portions of transparent edges (see Fig. 13(e)). In the
latter case, B contains no vertices of P (i.e., of f ).

Proof Easy, and omitted. �

Corollary 3.3 Let B be a building block of type II, III, or IV, and let E be an edge
sequence associated with B . Then UE (B) is convex.

Proof If B is of type II, then UE (B) is a triangle, by construction. If B is of type IV,
then by Lemma 3.2, UE (B)= B is a convex pentagon or hexagon. If B is of type III,
then UE (B) is a convex quadrilateral, by construction. �

Corollary 3.4 There are no holes in building blocks.

Proof Immediate for blocks of type II, III, IV, and follows for blocks of type I from
the optimization procedure described after the proof of Theorem 2.9. �

Lemma 3.5 Any surface cell c has only O(1) building blocks.

Proof There are O(1) transparent edges in c (by construction of S), and therefore
O(1) transparent endpoints, and each endpoint x can be incident to at most one build-
ing block of c of type I (or to at most two such blocks, if our general position as-
sumption is not strong enough—in that case x may be incident to an edge, but not to
a vertex, of P ).

There are O(1) transparent edges and at most one vertex of P in c, by construction
of S. Therefore there are at most O(1) pairs (e′, v) in c so that e′ is a transparent edge
and v is a vertex of P . Since there are at most O(1) transparent edge cycles in ∂c

that intersect polytope edges delimited by v and crossed by e′, and since each such
cycle can split the connecting sequence of polytope edges between e′ and v at most
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Fig. 14 The triple, of (a) two transparent edges and a vertex of P , or (b) three transparent edges, con-
tributes to two building blocks B1,B2. The corresponding graphs K3,2 are illustrated by dotted lines. If the
triple contributed to three building blocks, we would have obtained an impossible plane drawing of K3,3

once, there are at most O(1) maximal connecting common subsequences in G(e′, v).
Hence, there are O(1) building blocks of type II of c.

Similarly, there are O(1) pairs of transparent edges (e′, e′′) in c. There are at
most O(1) other transparent edges and at most one vertex of P in c that can lie
between e′ and e′′, resulting in at most O(1) maximal connecting common subse-
quences in G(e′, e′′). Hence, there are O(1) building blocks of type III of c.

By Lemma 3.2, the boundary of a building block B of type IV contains either two
transparent edge segments and a polytope vertex or three transparent edge segments.
In either case, we say that this triple of elements (either two transparent edges and a
vertex of P , or three transparent edges) contributes to B . We claim that one triple can
contribute to at most two building blocks of type IV (see Fig. 14). Indeed, if a triple,
say, (e1, e2, e3), contributed to three type IV blocks B1,B2,B3, we could construct
from this configuration a plane drawing of the graph K3,3 (as is implied in Fig. 14),
which is impossible. There are O(1) transparent edges and at most one vertex of P
in c, by construction of S; therefore there are at most O(1) triples that contribute to
at most O(1) building blocks of type IV of c. �

Lemma 3.6 The interiors of the building blocks of a surface cell c are pairwise
disjoint.

Proof The polytope edges subdivide c into pairwise disjoint components (each con-
tained in a single facet of P ). Each building block of type I or IV contains (and
coincides with) exactly one such component, by definition. Each building block of
type II or III contains one or more such components, and each component is fully
contained in the block. Hence it suffices to show that no two distinct blocks can share
a component; the proof of this claim is easy, and omitted. �

Let B be a building block of a surface cell c. A contact interval of B is a maximal
straight segment of ∂B that is incident to one polytope edge χ ⊂ ∂B and is not in-
tersected by transparent edges, except at its endpoints. See Fig. 13 for an illustration
(contact intervals are drawn as dashed segments on the boundary of the respective
building blocks). Our propagation algorithm considers portions of shortest paths that
traverse a surface cell c from one transparent edge bounding c to another such edge.
Such a path, if not contained in a single building block, traverses a sequence of such
blocks, and crosses from one such block to the next through a common contact inter-
val.



An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions 519

Lemma 3.7 Let c be a surface cell, and let B be one of its building blocks. Then B

has at most O(1) contact intervals. If B is of type II or III, then it has exactly two
contact intervals, and if B is of type IV, it has exactly three contact intervals.

Proof If B is of type I, then B is a (simply connected) polygon contained in a single
facet f , so that every segment of ∂B is either a transparent edge segment or a segment
of a polytope edge bounding f (transparent edges cannot overlap polytope edges,
by Lemma 2.10). Every transparent edge of c can generate at most one boundary
segment of B , since it intersects ∂f at most twice. There are O(1) transparent edges,
and at most one vertex of P in c, by construction of S. Since each contact interval of
B is bounded either by two transparent edges or by a transparent edge and a vertex
of P , it follows that B has at most O(1) contact intervals.

If B is of type II, III, or IV, the claim is immediate. �

Corollary 3.8 Let I1 
= I2 be two contact intervals of any pair of building blocks.
Then either I1 and I2 are disjoint, or their intersection is a common endpoint.

Proof By definition. �

Lemma 3.9 Let c be a surface cell. Then each point of c that is not incident to a
contact interval of any building block of c, is contained in (exactly) one building
block of c.

Proof Fix a point p ∈ c, and denote by f the facet that contains p. Denote by Q the
connected component of c ∩ f that contains p. If Q contains in its closure at least
one endpoint of some transparent edge of ∂c, then p is in a building block of type I,
by definition.

Otherwise, Q must be a convex polygon, bounded by portions of transparent edges
and by portions of edges of f ; the boundary edges alternate between transparent
edges and polytope edges, with the possible exception of a single pair of consecutive
polytope edges that meet at the unique vertex v of f that lies in c. Thus only the
following cases are possible: (1) Q is a triangle bounded by the two edges χ1, χ2 of f
that meet at v and by a transparent edge e. See Fig. 15(a). The subsequence (χ1, χ2)

connects e and v, hence p is in a building block of type II (f clearly lies in the
shortened facet sequence). (2) Q is a quadrilateral bounded by the two edges χ1, χ2
of f and by two transparent edges e1, e2. See Fig. 15(b). Then (χ1, χ2) connects

Fig. 15 If Q (shaded) does not contain a transparent endpoint, it must be either a portion of a building
block of (a) type II or (b) type III, or (c), (d) a building block of type IV
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e1 and e2, hence p is in a building block of type III (again, f lies in the shortened
facet sequence). (3) Q is a pentagon bounded by the two edges χ1, χ2 of f incident
to v, by two transparent edges, and by the third edge χ3 of f . See Fig. 15(c). Then
p lies in a building block of type IV. (4) Q is a hexagon bounded by all three edges
of f and by three transparent edges. See Fig. 15(d). Again, by definition, p lies in a
building block of type IV. This (and the disjointness of building blocks established in
Lemma 3.6) completes the proof of the lemma. �

The following two auxiliary lemmas are used in the proof of Lemma 3.12, which
gives an efficient algorithm for computing (the boundaries of) all the building blocks
of a single surface cell.

Lemma 3.10 Let c be a surface cell. We can compute the boundaries of all the build-
ing blocks of c of type I in O(logn) total time.

Proof We compute the boundary of each such block by a straightforward iterative
process that starts at a transparent endpoint a lying in some facet f of P , and traces
the block boundary from a along an alternating sequence of transparent edges and
edges of f (with the possible exception of traversing, once, two consecutive edges of
f through a common vertex), until we get back to a.

Since, by Corollary 3.4, there are no holes inside building blocks, after each
boundary tracing step we compute one building block of type I of c. Hence, by
Lemma 3.5, there are O(1) iterations. In each iteration we process O(1) segments of
the current building block boundary. Processing each segment takes O(logn) time,
since it involves unfolding O(1) transparent edges in O(logn) time, using the sur-
face unfolding data structure. (Although we work in a single facet f , each transpar-
ent edge that we process is represented relative to its destination plane, which might
be incident to another facet of P . Thus we need to unfold it to obtain its portion
within f .) �

Lemma 3.11 We can compute the boundaries of all the building blocks that are
incident to vertices of P in total O(n logn) time.

Proof Let c be a surface cell that contains some (unique) vertex v of P in its in-
terior. Denote by Fv the cyclic sequence of facets that are incident to v. Compute
all the building blocks of type I of c in O(logn) time, applying the algorithm of
Lemma 3.10. Denote by H the set of facets in Fv that contain building blocks of
c of type I that are incident to v. Denote by Y the set of maximal contiguous sub-
sequences that constitute Fv \H. To compute Y , we locate each facet of H in Fv ,
and then extract the contiguous portions of Fv between those facets. To traverse Fv

around each vertex v of P takes a total of O(n) time (since we traverse each facet of
P exactly three times).

We process Y iteratively. Each step picks a nonempty sequence F ∈ Y and tra-
verses it, until a building block of type II or IV is found and extracted from F .

Let F be a sequence in Y . Since there are no cyclic transparent edges, by con-
struction, it easily follows that H∩Fv 
= ∅, and therefore F is not cyclic. Denote the
facets of F by f1, . . . , fk , with k ≥ 1. Denote by (χ1, . . . , χk−1) the corresponding
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Fig. 16 Extracting from F building blocks (drawn shaded) of type II (cases (a), (b)) or IV (case (c))

polytope edge sequence of F (if k = 1, it is an empty sequence). If k > 1, denote by
χ0 the edge of f1 that is incident to v and does not bound f2, and denote by χk the
edge of fk that is incident to v and does not bound fk−1. Otherwise (k = 1), denote by
χ0, χ1 the polytope edges of f1 that are incident to v. Among all the O(1) transparent
edges of ∂c, find the transparent edge e that intersects χ0 closest to v (by unfolding
all these edges and finding their intersections with χ0). We traverse F either until it
ends, or until we find a facet fi ∈F so that e intersects χi−1 but does not intersect χi

(that is, e intersects the polytope edge χ ⊂ ∂fi that is opposite to v). Note that F
cannot be interrupted by a hole in c, since the endpoints of the transparent edges of
such a hole lie in blocks of type I, which belong to H.

In the former case (see Fig. 16(a)), mark the region of ∂P between e, χ0, and χk as
a building block of type II, delete F from Y , and terminate this iteration of the loop. In
the latter case, there are two possible cases. If i > 1 (see Fig. 16(b)), mark the region
of ∂P between e, χ0, and χi−1 as a building block of type II, delete f1, f2, . . . , fi−1
from F , and terminate this iteration of the loop. Otherwise (fi = f1), denote by x the
intersection point e∩χ , and denote by χ ′ the portion of χ whose endpoint is incident
to χ1. Among all transparent edges of ∂c, find the transparent edge e′ that intersects
χ ′ closest to x (such an edge must exist, or else c would contain two vertices of P ).
The edge e′ must intersect χ1, since otherwise fi would contain a building block of
type I incident to v, and thus would belong to H. See Fig. 16(c) for an illustration.
Mark the region bounded by χ0, χ1, χ, e, e

′ as a building block of type IV, and delete
f1 from F .

At each iteration we compute a single building block of c, hence there are only
O(1) iterations. We traverse the facet sequence around v twice (once to compute Y ,
and once during the extraction of building blocks), which takes O(n) total time for
all vertices of P . At each iteration we perform O(1) unfoldings (as well as other
constant-time operations), hence the total time of the procedure for all the cells of S
is O(n logn). �

Lemma 3.12 We can compute (the boundaries of) all the building blocks of all the
surface cells of S in total O(n logn) time.

Proof Let c be a surface cell. Compute the boundaries of all the (unfoldings of the)
building blocks of c of types I and II, and the building blocks of type IV that contain
the single vertex v of P in c, applying the algorithms of Lemmas 3.10 and 3.11.
Denote the set of all these building blocks by H. (Note that H cannot be empty,
because ∂c contains at least two transparent edges, which have at least two endpoints
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that are contained in at least one building block of type I.) Construct the list L of
the contact intervals of all the building blocks in H. For each contact interval I that
appears in L twice, remove both instances of I from L. If L becomes (or was initially)
empty, then H contains all the building blocks of c. Otherwise, each interval in L is
delimited by two transparent edges, since all building blocks that contain v are in H.
Each contact interval in L bounds two building blocks of c, one of which is in H (it is
either of type I or contains a vertex of P in its closure), and the other is not in H and
is either of type III or a convex hexagon of type IV. The union of all building blocks
of c that are not in H consists of several connected components. Since there are no
blocks of H among the blocks in a component, neither transparent edges nor polytope
edges terminate inside it; therefore such a component is not punctured (by boundary
cycles of transparent edges or by a vertex of P ), and its boundary alternates between
contact intervals in L and portions of transparent edges. For each contact interval I
in L, denote by limits(I ) the pair of transparent edges that delimit it.

Denote by Y the partition of contact intervals in L into cyclic sequences, so
that each sequence bounds a different component, and so that each pair of consec-
utive intervals in the same sequence are separated by a single transparent edge. By
construction, each contact interval in Y appears in a unique cycle. Since there are
only O(1) building blocks of c, we can compute the sequences of Y in constant
time. Let Y = (I1, I2, . . . , Ik) be a cyclic sequence in Y (with Izk+l = Il , for any
l = 1, . . . , k and any z ∈ Z). Then, for every pair of consecutive intervals Ij , Ij+1 ∈ Y ,
limits(Ij ) ∩ limits(Ij+1) is nonempty, and consists of one or two transparent edges
(two if the cyclic sequence at hand is a doubleton). Obviously, any cyclic sequence
in Y contains two or more contact intervals. As argued above, the portion of ∂P

bounded by these contact intervals and by their connecting transparent edges is a
portion of c which consists of only building blocks of types III and IV. In particular,
it does not contain in its interior any vertex of P , nor any transparent edge.

We process Y iteratively. Each step picks a sequence Y ∈ Y , and, if necessary,
splits it into subsequences, each time extracting a single building block of type III
or IV, as follows.

If Y contains exactly two contact intervals, they must bound a single build-
ing block of type III, which we can easily compute, and then discard Y . Other-
wise, let Ij−1, Ij , Ij+1 be three consecutive contact intervals in Y , and denote by
χj−1, χj ,χj+1 the (distinct) polytope edges that contain Ij−1, Ij and Ij+1, respec-
tively. Define the common bounding edge ej = limits(Ij )∩ limits(Ij+1) (there is only
one such edge, since |Y | > 2), and denote by Ej the polytope edge sequence inter-
sected by ej . Similarly, define Ej−1 as the polytope edge sequence traversed by the
transparent edge ej−1 = limits(Ij−1)∩ limits(Ij ). Without loss of generality, assume
that both Ej−1 and Ej are directed from χj , to χj−1 and to χj+1, respectively. See
Fig. 17.

We claim that Ē = Ej−1 ∩ Ej is a contiguous subsequence of both sequences.
Indeed, assume to the contrary that Ē contains at least two subsequences Ē1, Ē2, and
there is an edge χ̄ between them that belongs to only one of the sequences Ej−1,Ej .
Then the region R of ∂P between the last edge of Ē1, the first edge of Ē2, ej−1
and ej is contained in the region bounded by the contact intervals of Y and by their
connecting transparent edges, and χ̄ must have an endpoint in R, contradicting the
fact that this region does not contain any vertex of P . We can therefore use a binary
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Fig. 17 There are two possible cases: (a) There is more than one edge in Ē , hence a building block of
type III (whose unfolded image is shown shaded) can be extracted. (b) |Ē| = 1 (that is, χj = χ ), therefore
there must be a building block of type IV (whose image is shown shaded) that can be extracted

search to find the last polytope edge χ in Ē , by traversing the unfolding data structure
tree T that contains Ej−1 from the root r to the leaf that stores χ . To facilitate this
search, we first search for ξj , which is the first edge of Ē . We then trace the search
path P bottom-up. For each node μ on the path for which the path continues via its
left child, we go to the right child ν, and test whether the edges stored at its leftmost
leaf and rightmost leaf belong to the portion of Ej between χj and χj+1; for the sake
of simplicity, we refer to this portion as Ej . (As we will shortly argue, each of these
tests can be performed in O(1) time.) If both edges belong to Ej , we continue up P .
If neither of them is in Ej , then χ is stored at the rightmost leaf of the left child of μ.
If only one of them (namely, the one at the leftmost leaf) is in Ej , we go to ν, and start
tracing a path from ν to the leaf that stores χ . At each step, we go to the left (resp.,
right) child if its rightmost leaf stores an edge that belongs (resp., does not belong)
to Ej .

To test, in O(1) time, whether an edge χ0 of P belongs to Ej , we first recall that,
by construction, all the edges of Ej intersect the original subface hj of S3D from
which ej originates, and so they appear as a contiguous subsequence of the sequence
of edges of P stored at the surface unfolding data structure at the appropriate x-,
y-, or z-coordinate of hj . Moreover, the slopes of the segments that connect them in
the corresponding cross-section of P (which are the cross-sections of the connecting
facets) are sorted in increasing order.

We thus test whether χ0 intersects hj . We then test whether the slope of the cross-
section of the facet that precedes χ0 lies within the range of slopes of the facets
between the edges χj and χj+1. Clearly, χ0 belongs to Ej if and only if both tests are
positive. Since each of these tests takes O(1) time, the claim follows. Hence, we can
construct Ē in O(logn) time.

If χ 
= χj , then we find the unfoldings UĒ (ej ) and UĒ (ej−1) and compute a new
contact interval I ′j that is the portion of χ bounded by ej and ej−1. See Fig. 17(a).
The quadrilateral bounded by UĒ (ej ),UĒ (ej−1),UĒ (I

′
j ) and UĒ (Ij ) is the unfolded

image of a building block of type III. Delete Ij from Y and replace it by I ′j .
Otherwise, χ = χj . See Fig. 17(b). Denote by χ ′ (resp., χ ′′) the second edge in

Ej−1 (resp., Ej ); clearly, χ ′ 
= χ ′′. Since all blocks that contain either a vertex of P
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Fig. 18 (a) Before the extraction of B , Y contains five (bold dashed) contact intervals. (b) After the
extraction of B , Y has been split into two new (cyclic) sequences Y ′, Y ′′ containing the respective contact
intervals I ′, I ′′. Ij is no longer contained in any sequence in Y

or a transparent edge endpoint are in H, the edges χj ,χ
′, χ ′′ bound a single facet,

and there is a transparent edge that intersects both χ ′, χ ′′ (otherwise the block of
type IV that we are extracting would be bounded by at least four polytope edges—
a contradiction). Denote by e the transparent edge that intersects both χ ′, χ ′′ nearest
to χj or, rather, nearest to ej−1 and to ej , respectively (in Fig. 17(b) we have e =
ej−2). The region bounded by χj ,χ

′, χ ′′ and ej−1, ej , e is a hexagonal building block
of type IV. Compute its two contact intervals that are contained in χ ′ and χ ′′, and
insert them into Y instead of Ij . If χ ′ contains Ij−1 and χ ′′ contains Ij+1, Y is
exhausted, and we terminate its processing. If χ ′ contains Ij−1 and χ ′′ does not
contain Ij+1, we remove Ij and Ij−1 from Y and replace them by the portion of χ ′′
between e and ej . Symmetric actions are taken when χ ′′ contains Ij+1 and χ ′ does
not contain Ij−1. Finally, if χ ′ does not contain Ij−1, nor does χ ′′ contain Ij+1, we
split Y into two new cyclic subsequences, as shown in Fig. 18, and insert them into
Y instead of Y .

In each iteration we compute the boundary of a single building block of type III
or IV, hence there are O(1) iterations; each performs O(1) unfoldings, O(1) binary
searches, and O(1) operations on constant-length lists, hence the time bound fol-
lows. �

3.2 Block Trees and Riemann Structures

In this section we combine the building blocks of a single surface cell into more
complex structures.

Let e be a transparent edge on the boundary of some surface cell c, and let B be a
building block of c so that e appears on its boundary. The block tree TB(e) is a rooted
tree whose nodes are building blocks of c that is defined recursively as follows. The
root of TB(e) is B . Let B ′ be a node in TB(e). Then its children are the blocks B ′′
that satisfy the three following conditions.

(1) B ′ and B ′′ are adjacent through a common contact interval;
(2) B ′′ does not appear as a node on the path in TB(e) from the root to B ′, except

possibly as the root itself (that is, we allow B ′′ = B if the rest of the conditions
are satisfied);
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Fig. 19 (a) A surface cell c containing a single vertex of P and bounded by four transparent edges (solid
lines) is partitioned in this example into ten building blocks (whose shadings alternate): B1,B3,B7,B9
are of type I, B,B2,B4,B6 are of type II, B8 of type III and B5 of type IV. Adjacent building blocks are
separated by contact intervals (dashed lines; other polytope edges are also drawn dashed). (b) The tree
TB(e) of building blocks of c, where e is the (thick) transparent edge that bounds the building block B

(3) if B ′′ = B , then (a) it is of type II or III (that is, if a root is a building block of
type I or IV, it cannot appear as another node of the tree), and (b) it is a leaf of
the tree.

Note that a block may appear more than once in TB(e), but no more than once
on each path from the root to a leaf, except possibly for the root B , which may also
appear at leaves of TB(e) if it is of type II or III. However, B cannot appear in any
other internal node of TB(e)—see Fig. 19.

Remark Here is a motivation for the somewhat peculiar way of defining TB(e) (re-
flected in properties (2) and (3)). Since each building block is either contained in a
single facet (and a single facet is never traversed by a shortest path in more than one
connected segment), or has exactly two contact intervals (and a single contact inter-
val is never crossed by a shortest path more than once), a shortest path π(s, q) to a
point q in a building block B may traverse B through its contact intervals in no more
than two connected segments. Moreover, B may be traversed (through its contact in-
tervals) in two such segments only if the following conditions hold: (i) π(s, q) must
enter B through a point p on a transparent edge on ∂c, (ii) B consists of components
of at least two facets, and p and q are contained in two distinct facets, relatively “far"
from each other in B , and (iii) π(p,q) exits B through one contact interval and then
re-enters B through another (before reaching q). See Fig. 20 for an illustration. This
shows that the initial block B through which a shortest path from s enters a cell c
may be traversed a second time, but only if it is of type II or III. After the second
time, the path must exit c right away, or end inside B .
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Fig. 20 The shortest path
π(s, q) enters the (shaded)
building block B through the
transparent edge e at the point p,
leaves B through the contact
interval I1, and then reenters B

through the contact interval I2

We denote by T (e) the set of all block trees TB(e) of e (constructed from the
building blocks of both cells containing e on their boundaries). Note that each block
tree in T (e) contains only building blocks of one cell. We call T (e) the Riemann sur-
face structure of e; it will be used in Sect. 5 for wavefront propagation block-by-block
from e in all directions (this is why we include in it block trees of both surface cells
that share e on their boundaries). This structure is indeed similar to standard Riemann
surfaces (see, e.g., [39]); its main purpose is to handle effectively (i) the possibility of
overlap between distinct portions of ∂P when unfolded onto some plane, and (ii) the
possibility that shortest paths may traverse a cell c in “homotopically inequivalent”
ways (e.g., by going around a vertex or a hole of c in two different ways—see below).

Remark Concerning (i), note that without the Riemann structure, unfolding an arbi-
trary portion of ∂P may result in a self-overlapping planar region (making it difficult
to apply the propagation algorithm)—see [11] for a discussion of this topic. However,
there exist schemes of cutting a polytope along lines other than its edges that produce
a non-overlapping unfolding—see [1, 6, 8, 36]. It is plausible to conjecture that in the
special case of surface cells of S, the unfolding of such a cell does not overlap itself,
since S is induced by intersecting ∂P with S3D (which is contained in an arrangement
of three sets of parallel planes); however, related results [5, 30] do not suffice in our
case, and we have not succeeded to prove this conjecture, which we leave for further
research.

A block sequence B = (B1,B2, . . . ,Bk) is a sequence of building blocks of
a surface cell c, so that for every pair of consecutive blocks Bi,Bi+1 ∈ B,
we have Bi 
= Bi+1, and their boundaries share a common contact interval.
We define EB , the edge sequence associated with B, to be the concatenation
E1||(χ1)||E2||(χ2)|| · · · ||(χk−1)||Ek , where, for each i, χi is the polytope edge con-
taining the contact interval that connects Bi with Bi+1, and Ei is the edge sequence
associated with Bi that can be extended into (χi−1)||Ei ||(χi) (recall that there may
be two oppositely oriented edge sequences associated with each Bi ). Note that, given
a sequence B of at least two blocks, EB is unique.

For each block tree TB(e) in T (e), each path in TB(e) defines a block sequence
consisting of the blocks stored at its nodes. Conversely, every block sequence of c

that consists of distinct blocks, with the possible exception of coincidence between
its first and last blocks (where this block is of type II or III), appears as the sequence of
blocks stored along some path of some block tree in T (e). We extend these important
properties further in the following lemmas.
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Lemma 3.13 Let e, c and B be as above; then TB(e) has at most O(1) nodes.

Proof The construction of TB(e) is completed, when no path in TB(e) can be ex-
tended without violating conditions (1–3). In particular, each path of TB(e) consists
of distinct blocks (except possibly for its leaf). Each building block of c contains
at most O(1) contact intervals and O(1) transparent edge segments in its boundary,
hence the degree of every node in TB(e) is O(1). There are O(1) building blocks
of c, by Lemma 3.5, and this completes the proof of the lemma. �

Note that Lemma 3.13 implies that each building block is stored in at most O(1)
nodes of TB(e).

Lemma 3.14 Let e, c and B be as above. Then each building block of c is stored in
at least one node of TB(e).

Proof Easy, and omitted. �

The following two lemmas summarize the discussion and justify the use of block
trees. (Lemma 3.15 establishes rigorously the informal argument given right after the
block tree definition.)

Lemma 3.15 Let B be a building block of a surface cell c, and let E be an edge
sequence associated with B . Let p,q be two points in c, so that there exists a shortest
path π(p,q) that is contained in c and crosses ∂B in at least two different points.
Then UE (π(p, q) ∩ B) consists of either one or two disjoint straight segments, and
the latter case is only possible if p,q lie in B .

Proof Since π(p,q) is a shortest path, every connected portion of UE (π(p, q)∩B)

is a straight segment.
Suppose first that p,q ∈ B , and assume to the contrary that UE (π(p, q)∩B) con-

sists of three or more distinct segments (the assumption in the lemma excludes the
case of a single segment). Then at least one of these segments is bounded by two
points x, y ∈ ∂B and is incident to neither p nor q . Neither x nor y is incident to a
transparent edge, since π(p,q)⊂ c. Hence x, y are incident to two different respec-
tive contact intervals Ix, Iy on ∂B . The segment of UE (π(p, q) ∩B) that is incident
to p is also delimited by a point of intersection with a contact interval, by similar
arguments. Denote this contact interval by Ip , and define Iq similarly. Obviously, the
contact intervals Ix, Iy, Ip, Iq are all distinct. Since only building blocks of type I
might have four contact intervals on their boundary (by Lemma 3.7), B must be of
type I. But then B is contained in a single facet f , and π(p,q) must be a straight
segment contained in f , and thus cannot cross ∂f at all.

Suppose next that at least one of the points p,q , say p, is outside B . Assume
that UE (π(p, q)∩B) consists of two or more distinct segments. Then at least one of
these segments is bounded by two points x, y of ∂B (and is not incident to p). By
the same arguments as above, x and y are incident to two different respective contact
intervals Ix and Iy . The other segment of UE (π(p, q)∩B) is delimited by at least one
point of intersection with some contact interval Iz, by similar arguments. Obviously,
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the three contact intervals Ix, Iy, Iz are all distinct. In this case, B is either of type I
or of type IV. In the former case, arguing as above, π(p,q) ∩ B is a single straight
segment. In the latter case, B may have three contact intervals, but no straight line
can meet all of them. Once again we reach a contradiction, which completes the proof
of the lemma. �

Lemma 3.16 Let e be a transparent edge bounding a surface cell c, and let B be a
building block of c so that e appears on its boundary. Then, for each pair of points
p,q , so that p ∈ e∩ ∂B and q ∈ c, if the shortest path π(p,q) is contained in c, then
π(p,q) is contained in the union of building blocks that form a single path in TB(e)

(which starts from the root).

Proof Let p ∈ e∩∂B and q ∈ c be two points as above, and denote by B ′ the building
block that contains q . Denote by B the building block sequence crossed by π(p,q).
No building block appears in B more than once, except possibly B if B = B ′ (by
Lemma 3.15). Hence, the elements of B form a path in TB(e) from the root node
(which stores B) to a node that stores B ′, as asserted. �

Corollary 3.17 Let e be a transparent edge bounding a surface cell c, and let q be a
point in c, such that the shortest path π(s, q) intersects e, and the portion π̃(s, q) of
π(s, q) between e and q is contained in c. Then π̃(s, q) is contained in the union of
building blocks that define a single path in some tree of T (e).

Proof Follows from Lemma 3.16. �

Lemma 3.18 (a) Let e be a transparent edge; then there are only O(1) different
paths from a root to a leaf in all trees in T (e). (b) It takes O(n logn) total time to
construct the Riemann structures T (e) of all transparent edges e.

Proof Let TB(e) be a block tree in T (e). There are O(1) different paths from the root
node to a leaf of TB(e) (see the proof of Lemma 3.13). There are two surface cells that
bound e, and there are O(1) building blocks of each surface cell, by Lemma 3.5. By
Lemma 3.12, we can compute all the boundaries of all the building blocks in overall
O(n logn) time. Hence the claim follows. �

For the surface cell c that contains s, we similarly define the set of block
trees T (s), so that the root B of each block tree TB(s) ∈ T (s) contains s on its
boundary (recall that s is also regarded as a vertex of P ). It is easy to see that Corol-
lary 3.17 applies also to the Riemann structure T (s), in the sense that if q is a point
in c, such that the shortest path π(s, q) is contained in c, then π(s, q) is contained in
the union of building blocks that define a single path in some tree of T (s). It is also
easy to see that Lemma 3.18 applies to T (s) as well.

3.3 Homotopy Classes

In this subsection we introduce certain topological constructs that will be used in the
analysis of the shortest path algorithm in Sects. 4 and 5.
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Let R be a region of ∂P . We say that R is punctured if either R is not simply
connected, so its boundary consists of more than one cycle, or R contains a vertex of
P in its interior; in the latter case, we remove any such vertex from R, and regard it
as a new artificial singleton hole of R. We call these vertices of P and/or the holes
of R the islands of R. Let X,Y be two disjoint connected sets of points in such a
punctured region R, let x1, x2 ∈ X and y1, y2 ∈ Y , and let π(x1, y1),π(x2, y2) be
two geodesic paths that connect x1 to y1 and x2 to y2, respectively, inside R. We
say that π(x1, y1) and π(x2, y2) are homotopic in R with respect to X and Y , if one
path can be continuously deformed into the other within R, while their corresponding
endpoints remain in X and Y , respectively. (In particular, none of the deformed paths
pass through a vertex of P .) When R is punctured, the geodesic paths that connect,
within R, points in X to points in Y , may fall into several different homotopy classes,
depending on the way in which these paths navigate around the islands of R. If R

is not punctured, all the geodesic paths that connect, within R, points in X to points
in Y , fall into a single homotopy class. In the analysis of the algorithm in Sects. 4
and 5, we only encounter homotopy classes of simple geodesic subpaths from one
transparent edge e to another transparent edge f , inside a region R that is either a
well-covering region of one of these edges or a single surface cell that contains both
edges on its boundary. (We call these paths subpaths, since the full paths to f start
from s.)

Since the algorithm only considers shortest paths, we can make the following
useful observation. Consider the latter case (where the region R is a single surface
cell c), and let B be a path in some block tree TB(e) within c that connects e to f .
Then all the shortest paths that reach f from e via the building blocks in B belong to
the same homotopy class. Similarly, in the former case (where R is a well-covering
region consisting of O(1) surface cells), all the shortest paths that connect e to f via
a fixed sequence of building blocks, which itself is necessarily the concatenation of
O(1) sequences along paths in separate block trees (joined at points where the paths
cross transparent edges between cells), belong to the same homotopy class.

4 The Shortest Path Algorithm

This section describes the wavefront propagation phase of the shortest path algorithm.
Since this is the core of the algorithm, we present it here in detail, although its high-
level description is very similar to the algorithm of [18]. Most of the problem-specific
implementation details of the algorithm (which are quite different from those in [18]),
as well as the final phase of the preprocessing for shortest path queries, are presented
in Sect. 5.

The algorithm simulates a unit-speed (true) wavefront W expanding from s, and
spreading along the surface of P . At simulation time t , W consists of points whose
shortest path distance to s along ∂P is t . The true wavefront is a set of closed cycles;
each cycle is a sequence of (folded) circular arcs (of equal radii), called waves. Each
wave wi of W at time t (denoted also as wi(t)) is the locus of endpoints of a collection
Πi(t) of shortest paths of length t from s that satisfy the following condition: There
is a fixed polytope edge sequence Ei crossed by some path π ∈ Πi(t), so that the
polytope edge sequence crossed by any other π ′ ∈Πi(t) is a prefix of Ei . The wave
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Fig. 21 The true wavefront W at some fixed time t , generated by eight source images s1, . . . , s8. The
surface of the box P (see the 3D illustration in Fig. 22) is unfolded in this illustration onto the plane of the
last facet that W reaches; note that some facets of P are unfolded in more than one way (in particular, the
facet that contains s is unfolded into eight distinct locations). The dashed lines are the bisectors between
the current waves of W , and the dotted lines are the shortest paths to the vertices of P that are already
reached by W

wi is centered, in the destination plane of UEi
, at the source image si =UEi

(s), called
the generator of wi . When wi reaches, at some time t during the simulation, a point
p ∈ ∂P , so that no other wave has reached p prior to time t , we say that si claims p,
and put claimer(p) := si . We say that Ei is the maximal polytope edge sequence of si
at time t . For each p ∈wi(t) there exists a unique shortest path π(s,p) ∈Πi(t) that
intersects all the edges in the corresponding prefix of Ei , and we denote it as π(si,p).
See Fig. 21.

The wave wi has at most two neighbors wi−1,wi+1 in W , each of which shares a
single common point with wi (if wi−1 =wi+1, it shares two common points with wi ).
As t increases and W expands accordingly (as well as the edge sequences Ei of its
waves), each of the meeting points of wi with its adjacent waves traces a bisector,
which is the locus of points equidistant from the generators of the two corresponding
waves; see Fig. 22. The bisector of the two consecutive generators si , si+1 in W is
denoted by b(si, si+1), and its unfolded image is a straight line.

During the simulation, the combinatorial structure of W changes at certain critical
events, which may also change the topology of W . There are two kinds of critical
events:
(i) Vertex event, where W reaches either a vertex of P or some other boundary vertex
(an endpoint of a transparent edge) of the Riemann structure through which W is
propagated. As will be described in Sect. 5, the wave in W that reaches a vertex event
splits into two new waves after the event—see Fig. 23. These are the only events when
a new wave is added to W . Our algorithm detects and processes all vertex events.7

(ii) Bisector event, when an existing wave is eliminated by other waves—the bisectors
of all the involved generators meet at the event point. Our algorithm detects and

7A split at a vertex of P is a “real” split, because the two new waves continue past v along two different
edge sequences. A split at a transparent endpoint is an artificial split, used to facilitate the propagation
procedure; see Sect. 5 for details.
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Fig. 22 W at different times t :
(a) Before any critical event, it
consists of a single wave. (b),
(c) After the first four (resp.,
eight) vertex events W consists
of four (resp., eight) (folded)
waves. (d) After two additional
critical events, which are
bisector events, two waves are
eliminated. Before the rest of the
waves are eliminated, and
immediately after (d),
W disconnects into two distinct
cycles

Fig. 23 Splitting the wavefront W at v (the triangles incident to v are unfoldings of its adjacent facets;
note that the sum of all the facet angles at v is less than 2π ). The thick dashed line coincides with the
ray from si through v; it replaces the true bisector between the two new wavefronts W1,W2, which will
later be calculated by the merging process. Each of W1,W2 is propagated separately after the event at v
(through a different unfolding of the facet sequence around v—see, e.g., the shaded facets, each of which
has a different image in (a) and (b))

processes only some of the bisector events, while others are not explicitly detected
(recall that we only compute an implicit representation of SPM(s)). See Sect. 4.3 for
further details.

4.1 The Propagation Algorithm

One-Sided Wavefronts The wavefront propagates between transparent edges across
the cells of the conforming surface subdivision S. Propagating the exact wavefront
explicitly appears to be inefficient (for reasons explained below), so at each transpar-
ent edge e we content ourselves with computing two one-sided wavefronts, passing
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Fig. 24 (a) Two wavefronts W,W ′ are approaching e from two opposite directions, within R(e) (shaded).
(b) Two one-sided wavefronts W(e),W ′(e), computed at the simulation time when e is completely covered
by W,W ′ , are propagated further within R(e). However, some of the waves in W(e),W ′(e) obviously do
not belong to the true wavefront, since there is another wave in the opposite one-sided wavefront that
claims the same points of e (before they do)

through e in opposite directions; together, these one-sided wavefronts carry all the
information needed to compute the exact wavefront at e (but they also carry some
superfluous information). Each spurious wave is the locus of endpoints of geodesic
paths that traverse the same maximal edge sequence, but they need not be shortest
paths. Still, our description of bisectors, maximal polytope edge sequences, and crit-
ical events that were defined for the true wavefront, also applies to the wavefront
propagated by our algorithm.

In more detail, a one-sided wavefront W(e) associated with a transparent edge e

(and a specific side of e, which we ignore in this notation), is a sequence of waves
(w1, . . . ,wk) generated by the respective source images s1, . . . , sk (all unfolded to
a common plane that is the same plane in which we compute the unfolded image
of e), so that: (1) There exists a pairwise openly disjoint decomposition of e into k

nonempty intervals e1, . . . , ek , appearing in this order along e, and (2) For each i =
1, . . . , k, for any point p ∈ ei , the source image that claims p, among the generators
of waves that reach p from the fixed side of e, is si . The algorithm maintains the
following crucial true distance invariant (see Fig. 24 for an illustration):

(TD) For any transparent edge e and any point p ∈ e, the true distance dS(s,p) is
the minimum of the two distances to p from the two source images that claim
it in the two respective one-sided wavefronts for the opposite sides of e.

Remark For a fixed side of e, the corresponding one-sided wavefront W(e) (implic-
itly) records the times at which the wavefront reaches the points of e from that side;
note that W(e) does not represent a fixed time t—each point on e is reached by the
corresponding wave at a different time.

The Propagation Step The core of the algorithm is a method for computing a one-
sided wavefront at an edge e based on the one-sided wavefronts of nearby edges. The
set of these edges, denoted input(e), is the set of transparent edges that bound R(e),
the well-covering region of e (cf. Sect. 2.3). To compute a one-sided wavefront at e,
we propagate the one-sided wavefronts from each f ∈ input(e) that has already been
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Fig. 25 The boundary of R(e) (shaded) consists of two separate cycles. The transparent edge e and all
the edges f in input(e) that have been covered by the wavefront before time covertime(e) are drawn as
thick lines. The wavefronts W(f, e) that contribute to the one-sided wavefronts at e have been propagated
to e before time covertime(e); wavefronts from other edges of input(e) do not reach e either because of
visibility constraints or because they are not ascertained to be completely covered at time covertime(e) (in
either case they do not include shortest paths from s to any point on e)

processed by the algorithm, to e inside R(e), and then merge the results, separately
on each side of e, to get the two one-sided wavefronts that reach e from each of its
sides. See Fig. 25 for an illustration. The algorithm propagates the wavefronts inside
O(1) unfolded images of (portions of) R(e), using the Riemann structure defined in
Sect. 3.2. The wavefronts are propagated only to points that can be connected to the
appropriate generator by straight lines inside the appropriate unfolded portion of R(e)

(these points are “visible” from the generator); that is, the shortest paths within this
unfolded image, traversed by the wavefront as it expands from the unfolded image of
f ∈ input(e) to the image of e, must not bend (cf. Sect. 2.1 and Sect. 3). Because the
image of the appropriate portion of R(e) is not necessarily convex, its reflex corners
may block portions of wavefronts from some edges of input(e) from reaching e. The
paths corresponding to blocked portions of wavefronts that exit R(e) may then re-
enter it through other edges of input(e). For any point p ∈ e, the shortest path from s

to p passes through some f ∈ input(e) (unless s ∈ R(e)), so constraining the source
wavefronts to reach e directly from an edge in input(e), without leaving R(e), does
not lose any essential information.

We denote by output(e) the set of direct “successor” edges to which the one-sided
wavefronts of e should be propagated; specifically, output(e)= {f | e ∈ input(f )}.

Lemma 4.1 For any transparent edge e, output(e) consists of a constant number of
edges.

Proof Since |R(f )| =O(1) for all f , and each R(f ) is a connected set of cells of S,
no edge e can belong to input (f ) for more than O(1) edges f (there are only O(1)
possible connected sets of O(1) cells that contain e on the boundary of their union),
and |input(f )| =O(1), by construction. �

Remark As a wavefront is propagated from an edge f ∈ input(e) to e, it may cross
other intermediate transparent edges g (see Fig. 26). Such an edge g will be processed
at an interleaving step, when wavefronts from edges h ∈ input(g) are propagated to g
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Fig. 26 Interleaving of the well-covering regions. The wavefront propagation from h⊂ ∂R(g) to g passes
through f , and the propagation from f ⊂ ∂R(e) to e passes through g

(and some of the propagated waves may reach g by crossing f first). This “leap-frog”
behavior of the algorithm causes some overlap between propagations, but it affects
neither the correctness nor the asymptotic efficiency of the algorithm.

The Simulation Clock The simulation of the wavefront propagation is loosely syn-
chronized with the real “propagation clock” (which measures the distance from s).
The main purpose of the synchronization is to ensure that the only waves that are
propagated from a transparent edge e to edges in output(e) are those that have reached
e no later than |e| simulation time units after e has been completely covered. This,
and the well-covering property of e (which guarantees that at this time none of these
waves has yet reached any f ∈ output(e)), allow us to propagate further all the short-
est paths that cross e by “processing” e only once, thereby making the algorithm
adhere to the continuous Dijkstra paradigm, and consequently be efficient.

For a transparent edge e, we define the control distance from s to e, denoted
by d̃S(s, e), as follows. If s ∈ R(e), and e contains at least one point p that
is visible from s within at least one unfolded image U(R(e)), for some unfold-
ing U , then e is called directly reachable (from s), and d̃S(s, e) is defined to be
the distance from U(s) to U(p) within U(R(e)). The point p ∈ e can be cho-
sen freely, unless U(s) and U(e) are collinear within U(R(e))—then p must be
taken as the endpoint of e whose unfolded image is closer to U(s). Otherwise
(s /∈ R(e) or e is completely hidden from s in every unfolded image of R(e)),
we define d̃S(s, e)=min{dS(s, a), dS(s, b)}, where a, b are the endpoints of e, and
dS(s, a), dS(s, b) refer to their exact values. Thus, d̃S(s, e) is a rough estimate of
the real distance dS(s, e), since dS(s, e)≤ d̃S(s, e) < dS(s, e)+ |e|. The distances
dS(s, a), dS(s, b) are computed exactly by the algorithm, by computing the distances
to a, b within each of the one-sided wavefronts from s to e, and by using the in-
variant (TD). We compute both one-sided wavefronts for e at the first time we can
ascertain that e has been completely covered by wavefronts from either the edges in
input(e), or directly from s if e is directly reachable. This time is d̃S(s, e) + |e|, a
conservative yet “safe” upper bound of the real time max{dS(s, q) | q ∈ e} at which e

is completely run over by the true (not one-sided) wavefront.
The continuous Dijkstra propagation mechanism computes d̃S(s, e)+|e| on the fly

for each edge e, using a variable covertime(e). Initially, for every directly reachable e,
we calculate d̃S(s, e), by propagating the wavefront from s within the surface cell
which contains s, as described in Sect. 5, and put covertime(e) := d̃S(s, e)+ |e|. For
all other edges e, we initialize covertime(e) := +∞.
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The simulation maintains a time parameter t , called the simulation clock, which
the algorithm strictly increases in discrete steps during execution, and processes each
edge e when t reaches the value covertime(e). A high-level description of the simu-
lation is as follows:

PROPAGATION ALGORITHM

Initialize covertime(e), for all transparent edges e, as described above. Store with
each directly reachable e the wavefronts that are propagated to e from s (without
crossing edges in input(e)).

while there are still unprocessed transparent edges do

1. Select the unprocessed edge e with minimum covertime(e), and set t :=
covertime(e).

2. Merge: Compute the one-sided wavefronts for both sides of e, by merging to-
gether, separately on each side of e, the wavefronts that reach e from that side,
either from all the already processed edges f ∈ input(e) (these wavefronts are
propagated to e in Step 3 below), or directly from s (those wavefronts are stored
at e in the initialization step). Compute dS(s, v) exactly for each endpoint v of
e (the minimum of at most two distances to v provided by the two one-sided
wavefronts at e).

3. Propagate: For each edge g ∈ output(e), compute the time te,g at
which one of the one-sided wavefronts from e first reaches an endpoint
of g, by propagating the relevant one-sided wavefront from e to g. Set
covertime(g) :=min{covertime(g), te,g + |g|}. Store with g the resulting wave-
front propagated from e, to prepare for the later merging step at g.

endwhile

The following lemma establishes the correctness of the algorithm. That is, it shows
that covertime() is correctly maintained and that the edges required for processing e

have already been processed by the time e is processed. The description of Step 2
appears in Sect. 4.2 as the wavefront merging procedure; the computation of te,g in
Step 3 is a byproduct of the propagation algorithm as described below and detailed
in Sect. 5. For the proof of the lemma we assume, for now, that the invariant (TD) is
correctly maintained—this crucial invariant will be proved later in Lemma 4.5.

Lemma 4.2 During the propagation, the following invariants hold for each trans-
parent edge e:

(a) The final value of covertime(e) (the time when e is processed) is d̃S(s, e)+|e|; for
directly reachable edges, it is at most d̃S(s, e)+ |e|. The variable covertime(e) is
set to this value by the algorithm before or at the time when the simulation clock
t reaches this value.

(b) The value of covertime(e) is updated only a constant number of times before it is
set to d̃S(s, e)+ |e|.
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(c) If there exists a path π from s that belongs to a one-sided wavefront at e, so
that a prefix of π belongs to a one-sided wavefront at an edge f ∈ input(e), then
d̃S(s, f )+ |f |< d̃S(s, e)+ |e|.

Proof (a) For directly reachable edges, this holds by definition of the control distance;
for other edges e, we prove by induction on the (discrete steps of the) simulation
clock, as follows. The shortest path π ′ to one of the endpoints of e (which reaches
e at the time |π ′| = te = d̃S(s, e)) crosses some f ∈ input(e) at an earlier time tf ,
where dS(s, f )≤ tf < d̃S(s, f )+ |f |; we may assume that f is the last such edge of
input(e). Note that we must have te ≥ tf + dS(e, f ). By (W3S ), dS(e, f )≥ 2|f |, and
so te ≥ dS(s, f )+ 2|f |. Since d̃S(s, f ) < dS(s, f )+ |f |, we have

|π ′| = te ≥ dS(s, f )+ 2|f |> d̃S(s, f )+ |f |. (1)

By induction and by this inequality, f has already been processed before the simula-
tion clock reaches te, and so covertime(e) is set, in Step 3, to tf,e + |e| = te + |e| =
d̃S(s, e)+|e| (unless it has already been set to this value earlier), at time no later than
te = d̃S(s, e) (and therefore no later than d̃S(s, e) + |e|, as claimed). By (TD), the
variable covertime(e) cannot be set later (or earlier) to any smaller value; it follows
that e is processed at simulation time d̃S(s, e)+ |e|.

(b) The value of covertime(e) is updated only when we process an edge f such
that e ∈ output(f ) (i.e., f ∈ input(e)), which consists of O(1) edges, by construction.

(c) Any path π that is part of a one-sided wavefront at e must satisfy dS(s, e) ≤
|π | < d̃S(s, e) + |e| (π cannot reach e earlier by definition, and if π reaches e

later, then, by (a), e would have been already processed and π would not have con-
tributed to any of the one-sided wavefronts at e). Since π passes through a trans-
parent edge f ∈ input(e), we can show that |π | > d̃S(s, f ) + |f |, by applying ar-
guments similar to those used to derive (1) in (a). Hence we can conclude that
d̃S(s, f )+ |f |< d̃S(s, e)+ |e|. �

Remark The synchronization mechanism above assures that if a wave w reaches a
transparent edge e later than the time at which e has been ascertained to be completely
covered by the wavefront, then w will not contribute to either of the two one-sided
wavefronts at e. In fact, this important property yields an implicit interaction between
all the wavefronts that reach e, allowing a wave to be propagated further only if it is
not too “late”; that is, only if it reaches points on e no later than 2|e| simulation time
units after a wave from another wavefront.8

Topologically Constrained Wavefronts Let f, e be two transparent edges so that
f ∈ input(e), and let H be a homotopy class of simple geodesic paths connecting
f to e within R(e) (recall that there might be multiple homotopy classes of that kind;
see Sect. 3.3). We denote by WH(f, e) the unique maximal (contiguous) portion of
the one-sided wavefront W(f ) that reaches e by traversing only the subpaths from f

8For a detailed discussion of why we use the bound 2|e| rather than just |e| see the description of the
simulation time maintenance in Sect. 5.3.1.
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to e that belong to H . In Sect. 5 we regard WH(f, e) as a “kinetic” structure, consist-
ing of a continuum of “snapshots,” each recording the wavefront at some time t . In
contrast, in the current section we only consider the (static) resulting wavefront that
reaches e, where each point q on (an appropriate portion of) e is claimed by some
wave of WH(f, e), at some time tq . (Note that this static version is not a snapshot at a
fixed time of the kinetic version.) We say that WH(f, e) is a topologically constrained
wavefront (by H ). To simplify notation, we omit H whenever possible, and simply
denote the wavefront, somewhat ambiguously, as W(f, e).

A topologically constrained wavefront WH(f, e) is bounded by a pair of extreme
bisectors of an “artificial” nature, defined in one of the two following ways. We say
that a vertex of P in R(e) or a transparent endpoint x ∈ ∂R(e) is a constraint of H if x
lies on the boundary of RH , which is the locus of all points traversed by all (geodesic)
paths in H (see Fig. 27). It is easy to see that RH is bounded by e, f , and by a pair of
“chains,” each of which connects f with e, and the unfolded image of which (along
the polytope edge sequence corresponding to H ) is a concave polygonal path that
bends only at the constraints of H (this structure is sometimes called an hourglass;
see [14] for a similar analysis).

Let s′ be an extreme generator in WH(f, e), and let π be a simple geodesic path (in
H ) from s′ that reaches f and touches ∂RH ; see the path π1 in Fig. 27. It is easy to see
that if such a path π exists, then it must be an extreme path among all paths encoded
in WH(f, e), since any other path in WH(f, e) cannot intersect π (see Lemma 4.3
below); we therefore regard π as an extreme artificial bisector of WH(f, e). Another
kind of an extreme artificial bisector arises when, during the propagation of (the ki-
netic version of) WH(f, e), an extreme generator s′ is eliminated in a bisector event x,
as described below, and the neighbor s′′ of s′ becomes extreme; then the path π from
s′′ through the location of x becomes extreme in WH(f, e)—see the path π2 in Fig. 27
for an example.9

Fig. 27 The “hourglass” region RH that is traversed by all paths in H is shaded. The extreme artificial bi-
sectors of the topologically constrained wavefront WH (f, e) are the paths π1 (from the extreme generator
s1 through the vertex v of P , which is one of the constraints of H ) and π2 (from the generator s2, which
became extreme when its neighbor s3 was eliminated at a bisector event x, through the location of x)

9Even though π is geodesic, it is not a shortest path to any point beyond x; it is only a convenient (though
conservative) way of bounding WH (f, e) without losing any essential information.



538 An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions

4.2 Merging Wavefronts

Consider the computation of the one-sided wavefront W(e) at a transparent edge e

that will be propagated further (through e) to, say, the left of e. The contributing
wavefronts to this computation are all wavefronts W(f, e), for f ∈ input(e), that
contain waves that reach e from the right (not later than at time covertime(e)). If e

is directly reachable from s, and a wavefront W(s, e) has been propagated from s to
the right side of e, then W(s, e) is also contributing to the computation of W(e). The
contributing wavefronts for the computation of the opposite one-sided wavefront at e
are defined symmetrically.

To simplify notation, in the rest of the paper we assume each transparent edge e to
be oriented, in an arbitrary direction (unless otherwise specified). For the special case
s ∈ R(e), we also treat the direct wavefront W(s, e) from s to e as if s were another
transparent edge f in input(e).

We call the set of all points of e claimed by a contributing wavefront W(f, e) the
claimed portion or the claim of W(f, e). The following lemma implies that this set
is a (possibly empty) connected subinterval of e.

Lemma 4.3 Let e be a transparent edge, and let W(f, e) and W(g, e) be two (topo-
logically constrained) contributors to the one-sided wavefront W(e) that reaches e

from the right, say. Let x and x′ be points on e claimed by W(f, e), and let y be a
point on e claimed by W(g, e). Then y cannot lie between x and x′.

Proof Suppose to the contrary that y does lie between x and x′. Consider a modified
environment in which the paths that reach e from the left are “blocked” at e by a thin
high obstacle, erected on ∂P at e. This modification does not influence the wavefronts
W(f, e) and W(g, e), since no wave reaches e more than once. The simple geodesic
paths π(s, x),π(s, x′), and π(s, y) in the modified environment connect x and x′
to f , and y to g, inside R(e), and lie on the right side of e locally near x, x′, and y;
see Fig. 28(a). By (TD), the paths π(s, x),π(s, x ′), and π(s, y) are shortest paths
from s to these points in the modified environment, and therefore do not cross each
other. Since W(f, e),W(g, e) are topologically constrained by different homotopies
(within R(e)), no path traversed by W(g, e) can reach e and be fully contained in the
portion Q of ∂P delimited by f, e, and by the portions of π(s, x),π(s, x ′) between f

Fig. 28 (a) W(g, e) cannot claim the point y, for otherwise the shortest path π(s, y) (which crosses the
transparent edge g) would have to cross one of the paths π(s, x),π(s, x′), which is impossible for shortest
paths. The region Q delimited by f, e, and the portions of π(s, x),π(s, x′) between f and e is shaded.
(b) If W(f, e) is not topologically constrained, W(g, e) may claim an in-between point y on e
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and e. Therefore, the portion of the shortest path π(s, y) between g and e must enter
the region Q through one of the paths π(s, x),π(s, x ′), which is a contradiction. �

Remark Lemma 4.3 may fail if W(f, e) is not a topologically constrained wavefront;
see Fig. 28(b) for an example. Moreover, if W(g, e) reaches e from the other side of
e then it is possible for W(g, e) to claim portions of xx′ without claiming x and x′.
It is this fact that makes the explicit merging of the two one-sided wavefronts expen-
sive.

We now proceed to describe the merging process, applied to the contributing wave-
fronts that reach a transparent edge e from a fixed side; the process results in the
construction of the corresponding one-sided wavefront at e. Most of the low-level
details of the process are embedded in the procedures supported by the data struc-
ture described in Sect. 5.1; for now, before proceeding with Lemma 4.4, we briefly
review the basic operations, and assert their time complexity bounds. Each contribut-
ing wavefront W is maintained as a list of generators in a balanced tree data structure;
we may therefore assume that each of the operations of constructing a single bisec-
tor, finding its intersection point with e, measuring the distance to a point on e from
a single generator, and concatenating the lists representing two wavefront portions
into a single list, takes O(logn) time. This will be further explained and verified in
Sect. 5.

Lemma 4.4 For each transparent edge e and for each f ∈ input(e), we can compute
the claim of each of the wavefront portions W(f, e) that contribute to the one-sided
wavefront W(e) that reaches e from the right, say, in O((1 + k) logn) total time,
where k is the total number of generators in all wavefronts W(f, e) that are absent
from W(e).

Proof For each contributing wavefront W(f, e), we show how to determine its claim
in the presence of only one other contributing wavefront W(g, e). The (connected)
intersection of these claimed portions, taken over all other O(1) contributors W(g, e),
is the part of e claimed by W(f, e) in W(e). This results in the algorithm asserted in
the lemma.

Orient e from one endpoint a to the other endpoint b. We refer to a (resp., b) as
the left (resp., right) endpoint of e. We determine whether the claim of W(f, e) is to
the left or to the right of that of W(g, e), as follows. If both W(f, e) and W(g, e)

claim a, then, in O(logn) time, we check which of them reaches it earlier (we only
need to check the distances from a to the first and the last generator in each of the two
wavefronts, since we assume that W(f, e),W(g, e) only contain waves that reach e).
Otherwise, one of W(f, e),W(g, e) reaches a point p ∈ e (not necessarily a) that is
left of any point reached by the other; by Lemma 4.3, the claim that contains p, by
“winning” wavefront, is to the left of the claim of the other wavefront. To find p, we
intersect the first and the last (artificial) bisectors of each of W(f, e),W(g, e) with e;
p is the intersection closest to a.

A basic operation performed here and later in the merging process is to determine
the order of two points x, y along e. Using the surface unfolding data structure of
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Fig. 29 The source image s2 is
eliminated from W(e), because
its contribution to W(e) must be
to the left of p2 and to the right
of x, and therefore does not
exist along e

Sect. 2.4, we can compute the polytope edge sequence Ee crossed by e, in O(logn)

time, and compare UEe
(x) with UEe

(y).
Without loss of generality, assume that the claim of W(f, e) is left of that of

W(g, e). Note that in this definition we also allow for the case where W(g, e) is
completely annihilated by W(f, e).

Let s1 denote the generator in W(f, e) that claims the rightmost point on e among
all points claimed by W(f, e); by assumption, s1 is an extreme generator of W(f, e).
Let p1 be the left endpoint of the claim of s1 on UEe

(e) (as determined by W(f, e)

alone; it is the intersection of UEe
(e) and the left bisector of s1). Similarly, let s2

denote the generator in W(g, e) claiming the leftmost point on e (among all points
claimed by W(g, e)), and let p2 be the right endpoint of the claim of s2 on UEe

(e)

(as determined by W(g, e) alone). We compute the (unfolded) bisector of s1 and s2,
and find its intersection point x with UEe

(e); see Fig. 29. If x is to the left of p1 or
x does not exist and the entire e is to the right of b(s1, s2), then we delete s1 from
W(f, e), reset s1 to be the next generator in W(f, e), and recompute p1. If x is to
the right of p2 or x does not exist and the entire e is to the left of b(s1, s2), then we
update W(g, e), s2 and p2 symmetrically. In either case, we recompute x and repeat
this test. If p1 is to the left of p2 and x lies between them, then x is the right endpoint
of the claim of W(f, e) in the presence of W(g, e) and the left endpoint of the claim
of W(g, e) in the presence of W(f, e).

Consider next the time complexity of this process. Merging each of the O(1) pairs
W(f, e), W(g, e) of wavefronts involves O(1+ k) operations, where k is the num-
ber of generators that are deleted from the wavefronts during that merge, and where
each operation either computes a single bisector, or finds its intersection point with e,
or measures the distance to a point on e from a single generator, or deletes an ex-
treme wave from a wavefront, or concatenates two wavefront portions into a single
list. As stated above, each of these operations can be implemented in O(logn) time.
Summing over all O(1) pairs W(f, e), W(g, e), the bound follows. �

The following lemma proves the correctness of the process, with the assumption
that the propagation procedure, whose details are not provided yet, is correct.

Lemma 4.5 (i) Any generator deleted during the construction of a one-sided wave-
front at the transparent edge e does not contribute to the true wavefront at e. (ii) As-
suming that the propagation algorithm deletes a wave from the wavefront not earlier
than the time when the wave becomes dominated by its neighbors, every generator
that contributes to the true wavefront at e belongs to one of the (merged) one-sided
wavefronts at e.
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Proof The first part is obvious—each point in the claim of each deleted generator si
along e is reached earlier either by its neighbor generator in the same contributing
wavefront or by a generator of a competing wavefront. It is possible that these gen-
erators are further dominated by other generators in the true wavefront, but in either
case si cannot claim any portion of e in the true wavefront. The second part follows
by induction on the order in which transparent edges are being processed, based on
the following two facts: (i) Any wave that contributes to the true wavefront at e must
arrive either directly from s inside R(e), or through some edge f ∈ input(e). (ii) The
one-sided wavefronts at each edge f ∈ input(e) that have been covered before e is
processed, have already been computed (by Lemma 4.2). Hence each generator si
that contributes to the true wavefront at e contributes to the true wavefront at some
such edge f , and the induction hypothesis implies that si belongs to the appropriate
one-sided wavefront at f . Since, by the assumption that is established in the next
section, the propagation algorithm from f to e deletes from the wavefront only the
waves that become dominated by other waves, si participates in the merging process
at e, and, by the first part of the lemma, cannot be fully eliminated in that process. �

4.3 The Bisector Events

When we propagate a one-sided wavefront W(e) to the edges of output(e), as will
be described in detail in Sect. 5.2, and when we merge the wavefronts that reach the
same transparent edge, as described in Sect. 4.2, bisector events may occur, as defined
above. We distinguish between the following two kinds of bisector events.

(i) Bisector events of the first kind are detected when we simulate the advance of
the wavefront W(e) from a transparent edge e to another edge g to compute the wave-
front W(e,g), where g ∈ output(e). In any such event, two non-adjacent generators
si−1, si+1 become adjacent due to the elimination of the intermediate wave generated
by si (as we show in Lemma 5.6, this is the only kind of events that occur when
waves from the same topologically constrained wavefront collide with each other);
see Fig. 30(a) for an illustration. This event is the starting point of b(si−1, si+1),
which reaches g in W(e,g) if both waves survive the trip.

A bisector event, at which the first generator s1 in the propagated wavefront is
eliminated, is treated somewhat differently; see Fig. 30(b), (c) for an illustration. In

Fig. 30 When a bisector event (of the first kind) takes place at x: (a) The wave of si is eliminated, and the
new bisector b(si−1, si+1) is computed. (b), (c) The wave of s1 is eliminated, and the ray from s2 through
x becomes the leftmost (artificial) bisector of W , instead of the former leftmost bisector, which is the ray
from s1 through either (b) a transparent edge endpoint v (a visibility constraint), or (c) the location w of
an earlier bisector event, where s0, the previous leftmost generator of W , has been eliminated
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Fig. 31 W(e), propagated from e, is split inside R(e) when it reaches the inner (top) boundary cycle.
Then the two new topologically constrained wavefronts partially collide into each other, creating a se-
quence of bisectors (dotted lines, bounded by thick points where bisector events of the second kind occur),
eliminating a sequence of waves in each wavefront

this case s1 is deleted from the wavefront W and the next generator s2 becomes the
first in W . The ray from s2 through the event location becomes the first (that is,
extreme), artificial bisector of W , meaning that W needs to be maintained only on
the s2-side of this bisector (which is a conservative bound). Indeed, any point p ∈ ∂P

for which the path π(s2,p) crosses b(s1, s2) into the region of ∂P that is claimed by
s1 (among all generators in W ), can be reached by a shorter path from s1. The case
when the last generator of W is eliminated is treated symmetrically.

(ii) Bisector events of the second kind occur when waves from different topolog-
ically constrained wavefronts collide with each other. Our algorithm does not ex-
plicitly detect these events; however, they are all (implicitly) considered at the query
processing time, as described in Sect. 5.4, and some of them undergo additional (al-
beit still implicit) processing, as briefly described next.

If a generator si contributes to one of the input wavefronts W(e,g) but not to the
merged one-sided wavefront W(g) at g, then si is involved in at least one bisector
event (of the second kind) on the way from e to g, and there must exist some gener-
ator sj in another (topologically constrained) wavefront W(f,g) that also reaches g,
which eliminates the wave of si . This event is implicitly recognized by the algorithm
when si is deleted from W(e,g) during the merging process at g.

Another kind of such an event occurs when a one-sided wavefront W(e) is split
during its propagation inside R(e) (either at of a vertex of P or at a hole of R(e) that
may contain one or more vertices of P ), and the two portions of the split wavefront
partially collide into each other during their further propagation inside R(e), as dis-
tinct topologically constrained wavefronts, before they reach ∂R(e)—see Fig. 31.
The algorithm implicitly processes some of these events, by realizing that these
waves attempt to exit the current block tree, by re-entering an already visited building
block. The algorithm then simply discards these waves from further processing; see
Sect. 5.3.1.

Tentatively False and True Bisector Events Consider the time t = covertime(e).
There may be waves that have reached e before time t (although not earlier than
time t − 2|e|), and some of these waves could have participated in bisector events of
the first kind “beyond” e that could have taken place before time t . As described in
Sect. 5, the algorithm detects these (currently considered as) “false” bisector events
when the wavefronts from the edges in input(e) are propagated to e, but the gen-
erators that are eliminated in these events are not deleted from their corresponding
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Fig. 32 The bisector event at x occurs at time t2. It is first detected when the wavefront is propagated
toward the transparent edge e, which has not been fully covered yet. Since x is beyond e, the event is
currently considered false (and the eliminated wave w is not deleted from the wavefront, so that it shows
up on W(e)). When e is ascertained (at time t3 = covertime(e)) to be fully covered, the one-sided wave-
front W(e) is computed, and then propagated toward the transparent edge f , starting from some time
t < covertime(e) (e.g., t2). Since w is part of W(e), the bisector event at x is detected again, and this time
it is considered to be true

contributing wavefronts before time t . This is done to ensure that the invariant (TD)
is satisfied. However, such a bisector event is detected again, and considered to be
true, when the wavefront is propagated further, after processing e. This latter propa-
gation from e can be considered to start at the time when the first among such events
occurs, which might happen earlier than covertime(e); see Fig. 32. Further details
are given in Sect. 5, where we also show that the number of all “true” and “false”
processed events is only O(n).

Remark Note that a detected “true” event does not necessarily appear as a vertex
of SPM(s), since it involves only waves from a single one-sided wavefront, and its
location x can actually be claimed by a wave from another wavefront. To find the true
claimer of x (or any other query point), we make use of the fact that x belongs to only
O(1) well-covering regions, each of which is traversed by only O(1) wavefronts;
knowing the claimer of x in each of these wavefronts gives us the “global” claimer
of x—see Sect. 5.4.

5 Implementation Details

5.1 The Data Structures

A one-sided wavefront is an ordered list of generators (source images). Our algorithm
performs the following three types of operations on these lists (the first two types are
similar to those in [18]):

1. List operations: CONCATENATE, SPLIT, and DELETE.10 Each operation is applied
to the list of generators that represents the wavefront at any particular simulation
time.

10Note that the algorithm does not use INSERT operations; a new wave is created only during a SPLIT

operation, and generating it is part of the SPLIT. Similarly, the omitted CREATE operation is performed
only once, when the first singleton wavefront at s is created.
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Fig. 33 The wavefront W at simulation times t1 and t2 consists of four source images s1, . . . , s4, all
unfolded to one plane at time t1 and to another plane at time t2 (for this illustration, both planes are the
same—this is the plane of the facet that contains the point p). In order to determine the generator of W

that claims p, the SEARCH operation can be applied to the version of W at time t2, when p is already
claimed by s3

2. Priority queue operations: We assign to each generator a priority (as defined below
in Sect. 5.3.1; it is essentially the time at which the generator is eliminated by
its two neighbors), and the data structure needs to update priorities and find the
minimum priority in the list.

3. Source unfolding operations: (a) To compute explicitly each source image si in
the wavefront at time t , we need to unfold the maximal polytope edge sequence
of si at t—this operation is referred to as an “unfolding query”; the unfolding
structure needs to be updated as the wavefront advances. (b) The bisectors between
consecutive generators in the list, as long as they do not meet one another, partition
a portion of the plane of unfolding into a linearly ordered sequence of regions, and
we want to locate the region containing a query point q . That is, we SEARCH in the
generator list for a claimer of q (without considering other wavefronts or possible
visibility constraints); see Fig. 33, and see later for more precise details.

All these types of operations can be supported by a data structure based on bal-
anced binary search trees, with the generators stored at the leaves [15]. In particular,
the “bare" list operations (ignoring the maintenance of priorities and unfolding data)
take O(logn) time each, using standard machinery [15, 37]. Moreover, one can also
update the extra unfolding fields (described in the following paragraphs) as these list
operations are executed (so that the operations retain their O(logn) time). Although
not completely straightforward, the manipulation of the unfolding fields is still sim-
ple enough, so that we omit it here—we present the full details in [34]. The priority
queue operations are supported by adding a priority field to each node of the binary
tree, which records the minimum priority of the leaves in the subtree of that node
(and the leaf with that priority). Each priority queue operation takes O(logn) time;
the actual implementation details are fairly standard, and are therefore omitted.

Source Unfolding Operations The source unfolding queries are supported by
adding an unfolding transformation field U [v] to each node v of the binary tree,
in such a way that, for any queried generator si , the unfolding of si is equal to the
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product (composition) of the transformations stored at the nodes of the path from the
leaf storing si to the root. That is, if the nodes on the path are v1 = root, v2, . . . , vk =
leaf storing si , then the unfolding of si is given by U [v1]U [v2] · · ·U [vk]. We repre-
sent each unfolding transformation as a single 4× 4 matrix in homogeneous coordi-
nates (see [32, 34]), so composition of any pair of transformations takes O(1) time.
For each node v, and for any path v = v1, v2, . . . , vk that leads from v to a leaf, the
product U [v1]U [v2] · · ·U [vk] maps the generator stored at vk to a fixed destination
plane that depends only on v.

For each internal node v, let (v = v1, v2, . . . , vk = the rightmost leaf of the
left subtree of v) be the path from v to vk , and let (v = v′1, v′2, . . . , v′k′ = the
leftmost leaf of the right subtree of v) be the path from v to v′

k′ . To per-
form the SEARCH operation efficiently, we store at v the bisector image b[v] =
b(U [v1]U [v2] · · ·U [vk](s),U [v′1]U [v′2] · · ·U [v′k′ ](s)), which is the bisector between
the source image stored at vk and the source image stored at v′

k′ , unfolded into the des-
tination plane of U [v1]U [v2] · · ·U [vk] (or, equivalently, of U [v′1]U [v′2] · · ·U [v′k′ ]).
Note that, for any path π from v to a leaf in the subtree of v, the destination plane
Λ(v) of the resulting composition of the unfolding transformations stored at the
nodes of π , in their order along π , is the same, and depends only on v (and indepen-
dent of π ). During any operation that modifies the data structure, we always maintain
the invariant that b[v] is unfolded onto Λ(v). As already said, the updating of the
fields U [v], b[v], at nodes v affected by tree rebalancing rotations, is quite simple,
and described in [34].

The procedure SEARCH with a query point q in Λ(root) is performed as follows.
We determine on which side of b[root] q lies, in constant time, and proceed to the
left or to the right child of the root, accordingly. When we proceed from a node v to
its child, we maintain the composition U∗[v] of all unfolding transformations on the
path from the root to v (by initializing U∗[root] := U [root] and updating U∗[w] :=
U∗[u]U [w] when processing a child w of a node u on the path). Thus, denoting by
b the bisector whose corresponding image b[v] is stored at v, we can determine on
which side of b q lies, by computing the image U∗[v]b[v], in O(1) time. Since the
height of the tree is only O(logn), it takes O(logn) time to SEARCH for the claimer
of q .

Note that the result of the SEARCH operation is guaranteed to be correct only if
the query point q is already covered by the wavefront (that is, the bisectors between
consecutive generators in the list do not meet one another closer to s than the location
of q). It is the “responsibility” of the algorithm to provide valid query points (in that
sense).

Typical Manipulation of the Structure Initializing the unfolding fields is trivial
when the unique singleton wavefront is initialized at t = 0 at s. In a typical step of
updating some wavefront W , we have a contiguous subsequence W ′ of W , which we
want to advance through a new polytope edge sequence E (given that all the source
images in W are currently unfolded to the plane of the first facet of the correspond-
ing facet sequence of E ; see Sect. 5.3 for further details). We perform two SPLIT

operations that split T into three subtrees T −, T ′, T +, where T ′ stores W ′, and T −
(resp., T +) stores the portion of W that precedes (resp., succeeds) W ′ (either of these
two latter subtrees can be empty). Then we take the root r ′ of T ′, and replace U [r ′]
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Fig. 34 T is split into three subtrees T−, T ′, T+ , where T ′ stores the sub-wavefront W ′ of W . Then the
unfolding fields stored at the root r ′ of T ′ are updated

by UEU [r ′] and b[r ′] by UEb[r ′]; see Fig. 34. Finally, we concatenate T −, the new
T ′, and T +, into a common new tree T .

Remark The collection of the fields U [v] and b[v] in the resulting data structure
is actually a dynamic version of the incidence data structure of Mount [28], which
stores the incidence information between m nonintersecting geodesic paths and n

polytope edges; the main novelty is the dynamic nature of the structure and the opti-
mal construction time of O((n+m) log(n+m)). (Mount constructs his data structure
in time proportional to the number of intersections between the polytope edges and
the geodesic paths, which is Θ(nm) in the worst case.)

Maintaining all Versions We also require our data structure to be confluently persis-
tent [12]; that is, we need the ability to maintain, operate on, and modify past versions
of any list (wavefront), and we need the ability to merge (in the terminology of [12])
existing distinct versions into a new version. Consider, for example, a transparent
edge e and two transparent edges f,g in output(e). We propagate W(e) to compute
W(e,f ),W(e, g); the first propagation has modified W(e), and the second propa-
gation goes back to the old version of W(e) and modifies it in a different manner.
Moreover, later, when f , say, is ascertained to be covered, we merge W(e,f ) with
other wavefronts that have reached f , to compute W(f ), and then propagate W(f )

further. At some later time g is ascertained to be covered, and we merge W(e,g) with
other wavefronts at g into W(g). Thus, not only do we need to retrieve older versions
of the wavefront, but we also need to merge them with other versions.

We also use the persistence of the data structure to implement the wavefront prop-
agation through a block tree, as described in Sect. 5.3.1 below. Specifically, our prop-
agation simulation uses a “trial and error” method; when an “error” is discovered,
we restart the simulation from an earlier point in time, using an older version of the
wavefront.

Each of the three kinds of operations, CONCATENATE, SPLIT and DELETE, uses
O(1) storage for each node of the binary tree that it accesses, so we can make the
data structure confluently persistent by path-copying [20]. Each of our operations af-
fects O(logn) nodes of the tree, including all the ancestors of every affected node.
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Once we have determined which nodes an operation will affect, and before the oper-
ation modifies any node, we copy all the affected nodes, and then modify the copies
as needed. This creates a new version of the tree while leaving the old version un-
changed; to access the new version we can simply use a pointer to the new root, so
traversing it is done exactly as in the ephemeral case. In summary, we have:

Lemma 5.1 There exists a data structure that represents a one-sided wavefront and
supports all the list operations, priority queue operations, and unfolding operations,
as described above, in O(logn) worst-case time per operation. The size of the data
structure is linear in the number of generators; it can be made confluently persistent
at the cost of O(logn) additional storage per operation.

5.2 Overview of the Wavefront Propagation Stage

Recall from Sect. 4 that the two main subroutines of the algorithm are wavefront
propagation and wavefront merging. In this and the following subsection we describe
the implementation details of the first procedure; the merging is discussed in Sect. 4.2,
which, together with the data structure details presented in Sect. 5.1, implies that all
the merging procedures can be executed in O(n logn) time.

Let e be a transparent edge. We now show how to propagate a given one-sided
wavefront W(e) to another edge g ∈ output(e) (that is, e ∈ input(g)), denoting,
as above, the resulting propagated wavefronts by WH1(e, g), . . . ,WHk

(e, g), where
H1, . . . ,Hk are all the relevant homotopy classes that correspond to block sequences
from e to g within R(g) (see Sect. 3.3); note that a transparent endpoint “splits” a
homotopy class, similarly to a vertex of P . In the process, we also determine the time
of first contact between each such W(e,g) and the endpoints of g.

The high-level description of the algorithm is a sequence of steps, each of which
propagates a wavefront W(e) from one transparent edge e to another g ∈ output(e),
within a fixed homotopy class H , to form WH(e,g).11 Nevertheless, in the actual im-
plementation, when we start the propagation from e, all the topologically constrained
wavefronts WH(e,g), over all relevant g and H , are treated as a single wavefront W .
At the beginning of the propagation, W is split into k1 initial sub-wavefronts, where
k1 is the number of building blocks that e bounds (on the side into which we propa-
gate W ); during the propagation, these initial wavefronts are further split into a total
of k sub-wavefronts, one per homotopy class.

Let c be the surface cell for which e⊂ ∂c, and W(e) enters c after reaching e. We
describe in the next subsection a procedure for computing (all the relevant topologi-
cally constrained wavefronts) W(e,g) for any transparent edge g ⊂ ∂c. To compute
W(e,g) for all transparent edges g ∈ output(e), possibly not belonging to ∂c, we
proceed as follows. We propagate W(e) cell-by-cell inside R(g) from e to g, and ef-
fectively split the wavefront into multiple component wavefronts, each labeled by the
sequence of O(1) transparent edges it traverses from e to g. We propagate a wave-
front W from e to g inside a single surface cell, either when W is one of the two
one-sided wavefronts merged at e, or when W has reached e on its way to g from

11The initial singleton wavefront W(s) from s to a transparent edge g on the boundary of the cell that
contains s is propagated similarly.
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some other transparent edge f ∈ input(g) (without being merged with other compo-
nent wavefronts at e). In what follows, we treat W as in the former case; the latter
case is similar.

5.3 Wavefront Propagation in a Single Cell

So far we have considered a wavefront as a static structure, namely, as a sequence
of generators that reach a transparent edge. We now describe a “kinetic” form of the
wavefront, in which we track changes in the combinatorial structure of the wavefront
W(e) as it sweeps from its origin transparent edge e across a single cell c. Our simu-
lation detects and processes any bisector event in which a wave of W(e) is eliminated
by its two neighboring waves inside c; actually, the propagation may also detect some
events that occur in O(1) nearby cells, as described in detail below. Events are de-
tected and processed in order of increasing distance from s, that is, in simulation
time order. However, the simulation clock t is not updated during the propagation
inside c; that is, the propagation from an edge e to all the edges in output(e) is done
without “external interruptions” of propagating from other fully covered transpar-
ent edges that need processing. The effect of the propagated wavefront W(e,g), for
g ∈ output(e), on the simulation clock is in its updating of the values covertime(g);
the actual updating of t occurs only when we select a new transparent edge e′ with
minimum covertime(e′) for processing—see Sect. 4.1.

We propagate the wavefront separately in each of the O(1) block trees of the
Riemann structure T (e). Let W(e) be the one-sided wavefront that reaches e from
outside c; it is represented as an ordered list of source images, each claiming some
(contiguous and nonempty) portion of e. To prepare W(e) for propagation in c, we
first SPLIT W(e) into O(1) sub-wavefronts, according to the subdivision of e by
building blocks of c. A sub-wavefront that claims the segment of e that bounds a
building block B of c is going to be propagated in the block tree TB(e) ∈ T (e).

By propagating W(e) from e in all the trees of T (e) within c, we compute O(1)
new component wavefronts that reach other transparent edges of ∂c. If e is the initial
edge in this propagation step, then, by Corollary 3.17, these component wavefronts
collectively encode all the shortest paths from s to points p of c that enter c through e

and do not leave c before reaching p. In general, this property holds for all the cells c′
in R(e), as follows easily from the construction. Hence, these component wavefronts,
collected over all propagation steps that traverse c, contain all the needed information
to construct (an implicit representation of) SPM(s) within c.

5.3.1 Wavefront Propagation in a Single Block Tree

Let TB(e) be a block tree in T (e), and denote by eB the sub-edge ∂B ∩ e. Denote
by W(eB) the sub-list of generators of W(e) that claim points on eB (recall that
W(e) claims a single connected portion of e, which may or may not contain the
endpoints of e, or of eB ). Let W = W(t) denote the kinetic wavefront within the
blocks of TB(e) at any time t during the simulation; initially, W =W(t0)=W(eB).
Note that even though we need to start the propagation from e at simulation time
t0 = covertime(e), the actual starting time may be strictly smaller, since there may
have been bisector events beyond e that have occurred before time covertime(e). In
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Fig. 35 The block B is shaded; the edge sequence associated with B is EB = (χ1, . . . , χ6). W(eB) con-
sists of four source images s1, . . . , s4, all unfolded to the plane of the facet f before the simulation of the
propagation into TB(e) starts (that is, the last facet of the facet sequence corresponding to each Ei is f ).
Specifically, E1 = Ẽ1||(χ2, . . . , χ6), E2 = Ẽ2||(χ5, χ6), E3 = Ẽ3 \ (χ6, χ5) and E4 = Ẽ4 \ (χ6)

this case, these events need now to be processed (up to now, they have been detected
by the algorithm but not processed yet), and we set t0 to be the time when the earliest
among them takes place.

Denote by EB an edge sequence associated with B (any one of the two oppositely
ordered such sequences, for blocks of type II, III), and by FB its corresponding facet
sequence. We can then write W = (s1, s2, . . . , sk), so that, for each i, we have si =
UEi

(s), where Ei is defined as follows. Denote by Ẽi the maximal polytope edge
sequence traversed by the wave of si from si to the points that it claims on e; Ẽi must
overlap either with a portion of EB or with a portion of the reverse sequence E rev

B . In
the former case we extend Ẽi by the appropriate suffix of EB (which takes us to f in
Fig. 35). In the latter case we truncate Ẽi at the first polytope edge of E rev

B that it meets,
and then extend it by the appropriate suffix of EB . However, the algorithm does not
compute these sequences explicitly (and does not perform the “extend” or “truncate”
operations); it only stores and composes their unfolding transformations, as described
in Sect. 5.1. Denote by Λ(W) the (common) destination plane of all the UEi

. We do
not alter Λ(W) until the propagation of W in TB(e) is completed (and then Λ(W)

is updated, as described below). That is, as we traverse new blocks of TB(e), we
unfold them all to the plane Λ(W). When we propagate the initial singleton wavefront
directly from s in TB(s), we initialize W := (s), so that the maximal polytope edge
sequence E of s is empty, and UE is the identity transformation I . This setting is
appropriate since s is assumed to be a vertex of P , and therefore all the polytope
edges in EB emerge from s, so it lies on all the facets of FB , and, particularly, on the
last facet of FB .

The boundary chain C of TB(e) is recursively defined as follows. Initially, we
put in C all the boundary edges of ∂B , other than eB . We then proceed top-down
through TB(e). For each node B ′ of TB(e) and for each child B ′′ of B ′, we remove
from the current C the contact interval connecting B ′ and B ′′, and replace it by the
remaining boundary portion of B ′′. This results in a connected (unfolded) polygonal
boundary chain that shares endpoints with B ∩ e. Since TB(e) has O(1) nodes, and
each block has O(1) boundary elements, C contains only O(1) elements; see Fig. 36.
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Fig. 36 Bisector events (the thick square points), some of which are processed during the propagation
of the wavefront W from the transparent edge portion eB (the thickest segment in this figure) through
the building blocks (their shadings alternate) of the block tree TB(e). The unfolded transparent edges are
drawn as thick solid lines, while the unfolded contact intervals are thin solid lines. The bisectors of the
generators of W , as it sweeps through the unfolded blocks, are shown dashed. The union of all the blocks
in TB(e) is bounded by eB and the boundary chain C (which is non-overlapping in this example). The
dotted lines indicate the distance from the transparent edges in C within which we still process bisector
events of W . For each transparent edge f of C, we can stop propagating the wavefront portion W(eB,f )

that has reached f after it crosses the dotted line (which lies at distance 2|f | from f ), since f must have
already been fully swept at that time by the waves of W(eB,f )

When W is propagated towards C, the most important property is that each trans-
parent edge or contact interval of C can be reached only by a single topologically con-
strained sub-wavefront of W , since, if W splits on its way, the new sub-wavefronts
reach different elements of C. (The property does not hold for ∂c, since, when c con-
tains holes and/or a vertex of P , there is more than one way to reach a transparent
edge f ∈ ∂c—in such cases f appears more than once in C, each time as a distinct
element, as illustrated in Fig. 36.) In the rest of this section, whenever a resulting
wavefront W(e,f ) is mentioned for some f ∈ C, we interpret W(e,f ) as WH(e,f )

for the unique homotopy class H that constrains W on its way from e to this specific
incarnation of f along C.

We denote by range(W) the subset of segments of C that can potentially be
reached by W , initialized as range(W) := C. As W is propagated (and split),
range(W) is updated (that is, split and/or truncated) accordingly, as described below.

Critical Events and Simulation Restarts We simulate the continuous propagation of
W by updating it at the (discrete) critical events that change its topology during its
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propagation in TB(e). There are two types of these events—bisector events (of the
first kind), when a wave of W is eliminated by its two neighbors, and vertex events,
when W reaches a vertex of C (either transparent or a real vertex of P ) and has
to be split. Before we describe in detail the processing of these events, we provide
here the intuition behind the (somewhat unorthodox implementation of the) low-level
procedures.

The purpose of the propagation of W in TB(e) is to compute the wavefronts
W(eB,f ), for each transparent edge f in C that W reaches. To do so, we have to cor-
rectly update W at those critical events that are true with respect to the propagation
of W in TB(e); that is, events that take place in TB(e) that would have been vertices
of SPM(s) if there were no other wavefronts except W . For the sake of brevity, in the
rest of this section we refer to these events simply as true events. Unfortunately, it is
difficult to determine in “real time” the exact set of true events (mainly because of
vertex events—see below). Instead, we determine on the fly a larger set of candidates
for critical events, which is guaranteed to contain all the true events, but which might
also contain events that are false with respect to the propagation of W in TB(e); in the
rest of this section we refer to events of the latter kind as false events. The candidates
that turn out to be false events either are bisector events that involve at least one gen-
erator s′ of W so that the path from s′ to the event location intersects C, or take place
later than some earlier true event that has not yet been detected (and processed).

Let x be such a candidate bisector event that takes place at simulation time tx . If
all the true events of W that have taken place before tx were processed before tx , then
x can be foreseen at the last critical event at which one of the bisectors involved in x

was updated before time tx , using the priorities assigned to the source images in W .
The priority of a source image s′ is the distance from s′ to the point at which the two
(unfolded) bisectors of s′ intersect beyond eB , either in B or beyond it. The priority is
+∞ if the bisectors do not intersect beyond eB . (Initially, when W contains the single
wave from s, the priority of s is defined to be +∞.) Whenever a bisector of a source
image s′ is updated (as detailed below), the priority of s′ is updated accordingly.

A candidate vertex event cannot be foreseen so easily, since we do not know which
source image of W claims a vertex v (because of the critical events that might change
W before it reaches v), until v is actually reached by W . Even when v is reached
by W , we do not have in the data structure a “warning” that this vertex event is
about to take place. Instead, we detect the vertex event that occurs at v only later and
indirectly, either when processing some later candidate event (which is false as it was
computed without taking into account the event at v—see Fig. 37(a), (b)), or when
the propagation of W in TB(e) is stopped at a later simulation time, when a segment
f of C incident to v is ascertained to be fully covered, as illustrated in Fig. 37(c).

When we detect a vertex event at some vertex v which is reached by W at time tv ,
so that at least one candidate critical event of W that takes place later than tv has
already been processed, all the versions of the (persistent) data structure that encode
W after time tv become invalid, since they do not reflect the update that occurs at tv .
To correct this situation, we discard all the invalid versions of W , and restart the
simulation of the propagation of the last valid version of W from time tv . This time,
however, we SPLIT W at v (at simulation time tv) into two new sub-wavefronts, as
detailed below. Note that this step does not guarantee that the current event at v is a
true event, since there might still exist undetected earlier vertex events, which, when
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Fig. 37 An earlier vertex event at v ∈ C can be detected later: (a) while processing a false bisector event x;
(b) while processing a vertex event at an endpoint v′ of a segment f ⊂ C, when f is ascertained to be
covered by W ; (c) when the segment g ⊂ C, incident to v, is ascertained to be covered by W

eventually detected later, will cause the simulation to be restarted again, making the
current event at v invalid (and we will have to wait until the wavefront reaches v

again).

Path Tracing Let x ∈ Λ(W) be an (unfolded) image of some point of c, and let
s′ ∈W be a source image. To determine whether the path to x from s′ does or does
not meet C, and, in the former case, to also determine the first intersection point
(along the path π(s′, x)) with C, we trace π(s′, x) either up to x, or until it intersects
C—whichever occurs first—as follows.12

The tracing is done by following the sequence of blocks traversed by π(s′, x),
which forms a path in TB(e). At each block B ′ that we encounter, we test whether
π(s′, x) terminates within B ′, and, if not, we find the edge of ∂B ′ through which
π(s′, x) leaves B ′. If we reach x, or if the exit edge of ∂B ′ is a portion of C, we stop
the tracing. Otherwise we exit B ′ through a contact interval I , and proceed to the
next block beyond I . (It is also possible that we reach a contact interval I which is a
“dead-end” in TB(e), and is thus a portion of C.)

At each step we proceed in TB(e) from a node to its child; since the depth of TB(e)
is O(1), we are done after O(1) steps. Since at each step we compute O(1) unfold-
ings of paths and transparent edges, and each unfolding operation takes O(logn) time
to perform, using the data structures described in Sects. 2.4 and 5.1, the whole tracing
procedure takes O(logn) time.

Corollary 5.2 Tracing the path π(s ′,p) from a generator s′ ∈W to a point p without
intersecting C, correctly determines the distance d(s′,p).

Proof Follows from the description of the tracing procedure. �

Note that we can similarly trace any path π of W until it intersects C, without
specifying any terminal point on π , as long as the starting direction of π in Λ(W) is
well defined.

12Here and in the rest of this section, whenever we say that a path π from a generator s′ ∈W intersects
C, we actually mean that only the portion of π from s′ to the first intersection point x = π ∩ C is a valid
geodesic path; the portion of π beyond x is merely a straight segment along the direction of π on Λ(W).
Still, for the sake of simplicity, we call π (including possibly a portion beyond x) a path (from s′ to the
terminal point of π ).
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Fig. 38 (a) π(si ,pi ),π(sj ,pj ) leave B ′ through two different contact intervals of ∂B ′ . Here pi = pj ,
and τ is the triangle zipizj . (b) π(si ,pi ) reaches pi ∈ B ′ and π(sj ,pj ) leaves B ′ at the point xj . Here
pi 
= pj , and τ is the quadrilateral zipipj zj . The portion X of ∂B ′ is highlighted in both cases

The following technical lemma is needed later for the correctness analysis of the
simulation algorithm—in particular, for the analysis of critical event processing. See
Fig. 38.

Lemma 5.3 Let si , sj be a pair of generators in W , and let pi,pj be a pair of (pos-
sibly coinciding) points in Λ(W), so that π(si,pi) and π(sj ,pj ) do not intersect
each other (except possibly at their terminal point, if pi = pj ), and if pi 
= pj then
f = pipj is a straight segment of C. Denote by zi (resp., zj ) the intersection point
π(si,pi)∩eB (resp., π(sj ,pj )∩eB ), and denote by τ the unfolded convex quadrilat-
eral (or triangle) zipipj zj . Let B ′ be the last building block of the maximal common
prefix block sequence along which both π(si,pi) and π(sj ,pj ) are traced (before
possibly diverging into different blocks).

If only one of the two paths leaves B ′, or if π(si,pi) and π(sj ,pj ) leave B ′
through different contact intervals of ∂B ′, then the region B ′ ∩ τ contains at least
one vertex of C that is visible, within the unfolded blocks of TB(e), from every point
of z1z2 ⊆ eB .

Proof Assume for simplicity that B ′ 
= B . The paths π(si,pi),π(sj ,pj ) must
enter B ′ through a common contact interval I of ∂B ′. Consider first the case
where π(si,pi),π(sj ,pj ) leave B ′ through two respective different contact inter-
vals Ii, Ij of ∂B ′, and denote their first points of intersection with ∂B ′ by xi and xj ,
respectively—see Fig. 38(a). Denote by X the portion of ∂B ′ between xi and xj that
does not contain I ; X must contain at least one vertex of ∂B ′. By definition, each
vertex of a building block is a vertex of C; note that the extreme vertices of X are
xi and xj , which may or may not be vertices of C. Since the unfolded image of X is
a simple polygonal line that connects π(si, xi) and π(sj , xj ), and intersects neither
π(si, xi) nor π(sj , xj ), it is easily checked that we can sweep τ by a line parallel
to eB , starting from eB , until we encounter a vertex v of X within τ , which is also
a vertex of C: Either xi or xj is such a vertex, or else τ must contain an endpoint of
either Ii or Ij . Therefore v is visible from each point of z1z2.

Consider next the case in which only one of π(si,pi),π(sj ,pj ) leaves B ′, and
assume, without loss of generality, that π(si,pi) reaches pi ∈ B ′ and π(sj ,pj )

leaves B ′ at the point xj before reaching pj—see Fig. 38(b). Denote by π(pj , sj )

the path π(sj ,pj ) directed from pj to sj , and denote by π ′ the concatenation
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π(si,pi)||pipj ||π(pj , sj ). The path π(si,pi) does not leave B ′, and, by assump-
tion, the segment pipj is either an empty segment or a segment of ∂B ′, and therefore
the only portion of π ′ that leaves B ′ is π(pj , sj ). Denote by xi the first point along
π(pj , sj ) (beyond pj itself) that lies on ∂B ′; if π(pj , sj ) leaves B ′ immediately, we
do take xi = pj . Since (the unfolded) π(pj , sj ) is a straight segment, and since, for
each segment f ′ of ∂B ′, B ′ lies locally only on one side of f ′, it follows that xi and
xj lie on different segments of ∂B ′. Define X as above; here it connects the prefixes
of π ′ and π(sj ,pj ), up to xi and xj , respectively, and the proof continues as in the
previous case. �

Stopping Times and Their Maintenance The simulation of the propagation of W in
the blocks of TB(e) processes candidate bisector events in order of increasing pri-
ority, up to some time tstop(W), which is initialized to +∞, and is updated during
the propagation.13 When the time tstop(W) is reached, the following holds: Either
tstop(W)=+∞ (see Fig. 39(a)), all the known candidate critical events of W in the
blocks of TB(e) have been processed, and all the waves of W that were not elimi-
nated at these events have reached C; or tstop(W) < +∞ (see Fig. 39(b)), and there
exists some sub-wavefront W ′ ⊆W that claims some segment (a transparent edge or
a contact interval) f of range(W) (that is, f is ascertained to have been covered by
W ′ not later than at time tstop(W)), such that all the currently known candidate events
of W ′ have been processed before time tstop(W). In the former case we split W into
sub-wavefronts W(e,f ) for each segment f ∈ range(W); in the latter case, we ex-
tract from W (by splitting it) the sub-wavefront W(e,f ) =W ′ that has covered f .
When we split W into a pair of sub-wavefronts W1,W2, the time tstop(W1) (resp.,
tstop(W2)) replaces tstop(W) in the subsequent propagation of W1 (resp., W2), follow-
ing the same rule, while tstop(W) plays no further role in the propagation process.

For each segment f in C, we maintain an individual time tstop(f ), which is a
conservative upper estimate of the time when f is completely covered by W dur-
ing the propagation in TB(e). Initially, we set tstop(f ) := +∞ for each such f . As

Fig. 39 (a) The stopping time tstop(W) = +∞. (b) The stopping time tstop(W
′) = tstop(f ) < +∞; the

dotted line indicates the stopping time (or distance) at which we stop processing bisector events: the event
at x has been processed before tstop(W

′), while the event at y has been detected but not processed

13The present description also applies to appropriate sub-wavefronts that have already been split from W—
see below.
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detailed below, we update tstop(f ) whenever we trace a path from a generator in W

that reaches f (without reaching C beforehand); by Corollary 5.2, these updates are
always valid (i.e., do not depend on simulation restarts). The time tstop(W) is the
minimum of all such times tstop(f ), where f is a segment of range(W). Whenever
tstop(f ) is updated for such an f , we also update tstop(W) accordingly. When the
simulation clock reaches tstop(W), either some f of range(W) is completely covered
by the wavefront W , so that tstop(f ) = tstop(W), or the priority of the next event of
W in the priority queue is +∞, in which case tstop(W)=+∞.

As shown below, range(W) is maintained correctly, independently of simulation
restarts; therefore, when range(W) contains only one segment, no further vertex
events may cause a restart of the simulation of the propagation of W (since a simula-
tion restart of a wavefront that is separated from W does not affect W , and the vertex
events at the endpoints of f have already been processed, since W and range(W)

have already been split at them).
Note that there is a gap of at most |f | time between the time tf when the segment

f of C is first reached by W and the time when f is completely covered by W .
In particular, it is possible that both endpoints of f are reached by W before f is
completely covered by W—see Fig. 40(a). It is also possible, because of visibility
constraints, that W reaches only a portion of f in our propagation algorithm (and
then there must be other topologically constrained wavefronts that reach the portions
of f that are not reached by W ). Still we say that f is covered by W at time tf + |f |,
as if we were propagating also the non-geodesic paths that progress along f from the
first point of contact between W and f . See Fig. 40(b).

The algorithm does not necessarily detect the first time tf when f is reached
by W . Instead, we detect a time t ′f , when some path encoded in some wave of W

reaches f . However, in order to estimate the time when f is completely covered by W

correctly (although somewhat conservatively), the algorithm sets tstop(f ) := t ′f +|f |.
We show below that t ′f is greater than tf by at most |f |, hence the total gap between
the time when f is first reached by W , and the time when the algorithm ascertains
that f is completely covered, is at most 2|f |.

Consider W ′, the sub-wavefront of W that covers a segment f of C. If f is a
transparent edge, the well-covering property of f ensures that during these 2|f | sim-
ulation time units (since tf ) no wave of W ′ has reached “too far” beyond f . That is,
all the bisector events of W ′ beyond f that have been detected and processed before
tstop(f ) occur in O(1) cells near c (see Fig. 36). This invariant is crucial for the time
complexity of the algorithm, as it implies that no bisector event is detected more than
O(1) times—see below. If f is a contact interval, the paths encoded in W that reach
f in our propagation do not reach f in the real SPM(s), by Corollary 3.17; therefore

Fig. 40 (a) Both endpoints of f are reached by W before f is covered by W . (b) W actually reaches only
a portion of f (between the two dashed lines), because of visibility constraints
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these paths do not leave c (as shortest paths), and need not be encoded in the one-
sided wavefronts that leave c. This property is also used below in the time complexity
analysis of the algorithm.

Processing Candidate Bisector Events As long as the simulation clock has not yet
reached tstop(W), at each step of the simulation we extract from the priority queue
of W the candidate bisector event which involves the generator si with the mini-
mum priority in the queue, and process it according to the high-level description in
Sect. 4.3, the details of which are given next. Let x denote the unfolded image of
the location of the candidate event (the intersection point of the two bisectors of si ),
and denote by W ′ the constant-size sub-wavefront of W that encodes the paths in-
volved in the event. If si is neither the first nor the last source image in W , then
W ′ = (si−1, si , si+1). The generator si cannot be the only source image in W , since
in this case its two bisectors would be rays emanating from si , and two such rays
cannot intersect (beyond e). If si is either the first or the last source image in W , then
W ′ is either (si , si+1) or (si−1, si), respectively. Denote by π1 (resp., π2) the path
from the first (resp., last) source image of W ′ to x, or, more precisely, the respective
unfolded straight segments of (common) length priority(si).

We use the tracing procedure defined above for each of the paths π1,π2. For any
path π , denote by C(π) the first element of C (along π ) that π intersects, if such a
point exists. The following two cases can arise:

Case (i): The bisector event at x is true with respect to the propagation of W in TB(e)

(see Fig. 41(a)), which means that neither π1 nor π2 intersects C, and both paths are
traced along a common block sequence in TB(e). (Recall that the unfolded blocks
of TB(e) might overlap each other; see Fig. 41(b).) By definition of a block tree,
this is a necessary and sufficient condition for the event to be true (with respect to
the propagation of W in TB(e)); however, a following simulation restart might still
discard this candidate event, forcing the simulation to reach it again. If si is neither
the first nor the last source image in W , we DELETE si from W , and recompute the
priorities of its neighbors si−1, si+1, as follows. Since all the source images of W

are currently unfolded to the same plane Λ(W), we can compute, in constant time,
the intersection point p, if it exists, of the new bisector b(si−1, si+1) (stored in the
data structure during the DELETE operation) with the bisector of si−1 that is not in-
cident to x. If the two bisectors do not intersect each other (p does not exist), we
put priority(si−1) := +∞; otherwise priority(si−1) is the length of the straight line
from si−1 to p, ignoring any visibility constraints, or the possibility that the two bi-
sectors reach p through different block sequences. The priority of si+1 is recomputed
similarly.

If si = s1 is the first but not the last source image in W , we DELETE s1 from W

(that is, s2 becomes the first source image in W ), and define the first (unfolded) bi-
sector b of W as a ray from s2 through x; the priority of s2 is recomputed as above,
intersecting b with the other bisector of s2. If si is the last but not the first source
image in W , it is handled symmetrically.

Case (ii): The bisector event at x is false with respect to the propagation of W

in TB(e): Either at least one of the paths π1,π2 intersects C, or π1,π2 are traced to-
wards x along different block sequences in TB(e), reaching the location x in different
layers of the Riemann structure that overlap at x. See Fig. 41(b–d) for an illustration.
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Fig. 41 In (a) x is a true
bisector event; the new
bisector b between the
generators of π1,π2 is shown
dashed. In (b–d) x is a false
candidate. (b) π1,π2 do not
intersect C, but reach x through
different layers of the Riemann
structure that overlap each other.
At least one vertex of
V = {v1, v2, v3} is visible from
the portion of eB between π1
and π2; the same is true in (c),
where both π1,π2 intersect C
(before reaching x).
(d) C(π1)= C(π2)= f . No
vertex of V (here V = {v1}) is
visible from the portion of eB
between π1 and π2

If π1 intersects C, denote the first such intersection point (along π1) by z and
the segment C(π1), which contains z, by f . We compute z and update tstop(f ) :=
min{tstop(f ), dz + |f |}, where dz is the distance from s to z along π1. As de-
scribed above, and with the visibility caveats noted there, the expression dz + |f |
is a time at which W will certainly have swept over f . We also update tstop(W) :=
min{tstop(f ), tstop(W)}. If, as the result of this update, tstop(W) becomes less than
or equal to the current simulation time, we conclude that f is already fully covered.
We then stop the propagation of W and process f as a covered segment of C (as de-
scribed below), immediately after completing the processing of the current bisector
event. Note that in this case, that is, when tstop(f ) gets updated because of the detec-
tion of the crossing of the wavefront of f at z, which causes tstop(W) to go below the
current simulation clock t , we have tstop(W)= tstop(f )= dz+|f | ≤ t = dz+d(z, x),
where d(z, x) is the distance from z to x along π1; see Fig. 42. Hence d(z, x)≥ |f |.
This however violates the invariant that we want to maintain, namely, that we only
process bisector events that lie no farther than |f | from an edge f of C. Nevertheless,
this can happen at most once per edge f , because from now on tstop(W) will not
exceed tstop(f ). We will use this property in the time complexity analysis below.

If π2 intersects C, we treat it similarly.
Regardless of whether π1,π2, or neither of them, intersects C, we then proceed as

follows. Denote by τ the triangle bounded by the images of e, π1 and π2, unfolded
to Λ(W), and denote by V the set of the (at most O(1)) vertices of C that lie in
the interior of τ . Since it takes O(logn) time to unfold each segment of C, it takes
O(logn) time to compute V .
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Fig. 42 If dz + |f | ≤ t = dz + d(z, x), then d(z, x)≥ |f |

Assume first that π1,π2 satisfy the assumptions of Lemma 5.3; it follows that
V is not empty (see Fig. 41(b), (c)). We trace the path from each generator in W ′
to each vertex v of V , and compute claimer(v) (which satisfies d(claimer(v), v) =
min{{d(s′, v) | v is visible from s′ ∈W ′} ∪ {+∞}}). Denote by u the vertex of V so
that tu := d(claimer(u),u) = minv∈V d(claimer(v), v); by Lemma 5.3, at least one
vertex of V is visible from at least one generator in W ′, and therefore tu is finite. As
we will shortly show in Corollary 5.8, tu < tx (where tx = priority(si) is the current
simulation time). This implies that the propagation is invalid for t ≥ tu. We thus
restart the propagation at time tu, as follows.

Let Wu denote the last version of (the data structure of) W that has been com-
puted before time tu. We SPLIT Wu into sub-wavefronts W1,W2 at s′ := claimer(u)
at the simulation time tu, so that range(W1) is the prefix of range(Wu) up to u, and
range(W2) is the rest of range(Wu) (to retrieve the range that is consistent with the
version Wu we can simply store all the versions of range(W)—recall that each uses
only constant space, because we can keep it unfolded). Discard all the later versions
of W . We set tstop(W1) (resp., tstop(W2)) to be the minimal tstop(f ) value among
all segments f in range(W1) (resp., range(W2)). We replace the last (resp., first)
unfolded bisector image of W1 (resp., W2) by the ray from s′ through u, and corre-
spondingly update the priority of s′ in both new sub-wavefronts (recall from Sect. 5.1
that the SPLIT operation creates two distinct copies of s′).

Assume next that the assumptions of Lemma 5.3 do not hold, which means that
both π1 and π2 intersect C, and that C(π1) = C(π2), which is either a contact inter-
val I or a transparent edge f of C (see Fig. 41(d)). In the former case (a contact
interval), the wave of si is not part of any sub-wavefront of W that leaves c (as
shortest paths), and it should not be involved in any further critical event inside c,
as discussed above. To ignore si in the further simulation of the propagation of W

in TB(e), we reset priority(si) := +∞ (instead of deleting si from W , which would
involve an unnecessary recomputation of the bisectors involving the neighbors of si ).
In the latter case, the following similar technical operation must be performed. Since
si is a part of the resulting wavefront W(e,f ) (as will follow from the correctness of
the bisector event processing, proved in Lemma 5.9 below), we do not want to delete
si from W ; yet, since si is not involved in any further critical event inside c, we want
to ignore si in the further simulation of the propagation of W in TB(e) (that is, to ig-
nore its priority in the priority queue), and therefore we update priority(si) := +∞.
However, this artificial setting must be corrected later, when the propagation of W

in TB(e) is finished, to ensure that the priority of si in W(e,f ) is correctly set—we
must then reset priority(si) to its true (current) value. We mark si to remember that its
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priority must be reset later, and keep a list of pointers to all the currently marked gen-
erators; when their priorities must be reset, we go over the list, fixing each generator
and removing it from the list).

To summarize, in Case (i) we trace two paths and perform one DELETE opera-
tion and O(1) priority queue operations, hence it takes O(logn) time to process a
true bisector event. In Case (ii) we trace O(1) paths, compute at most O(1) unfolded
images, and perform at most one SPLIT operation and O(1) priority queue opera-
tions; hence it takes O(logn) time to process a false (candidate) bisector event. The
correctness of the above procedure is established in Lemma 5.9 below, but first we
describe the detection and the processing of the candidate vertex events that were not
detected and processed during the handling of false candidate bisector events. This
situation arises when the priority of the next event of W in the priority queue is at
least tstop(W), in which case we stop processing the bisector events of W in TB(e),
and proceed as described next.

Processing a Covered Segment of C Consider the situation in which the algorithm
stops propagating W in TB(e) at simulation time tstop(W) 
= +∞. We then must have
tstop(W)= tstop(f ), for some segment f in range(W), so that all the currently known
candidate events which occur in c and involve the sub-wavefront of W that claims f

have already been processed.
Another case in which the algorithm stops the propagation of W is when

tstop(W) = +∞. This means that all the currently known candidate events of W

have already been processed; that is, the former situation holds for each segment
f ′ in range(W). Therefore, to treat the latter case, we process each f ′ in range(W)

in the same manner as we process the (only relevant) segment f in the former case;
and so, we consider only the former situation.

Let f be such a segment of range(W). We compute the static wavefront W(e,f )

from the current dynamic wavefront W—if f is a transparent edge, then W(e,f ) is
needed for the propagation process in further cells; otherwise (f is a contact interval)
we do not need to compute W(e,f ) to propagate it further, but we need to know the
extreme generators of W(e,f ) to ensure correctness of the simulation process, a step
that will be explained in the proof of Lemma 5.9 below. Since the computation in
the latter case is almost identical to the former, we treat both cases similarly (up to a
single difference that is detailed below).

Since f ∈ C defines a unique homotopy class of paths from eB to f within TB(e),
the sub-wavefront of W that claims points of f is indeed a single contiguous sub-
wavefront W ′ ⊆W . We determine the candidate extreme claimers of f by perform-
ing a SEARCH in W for each of the endpoints a, b of f (note that the candidates are
not necessarily true, since SEARCH does not consider visibility constraints). If the
candidate claimer of a does not exist, we denote by a′ the point of f closest to a

which is intersected by an extreme bisector of W—see Fig. 43(a). (If there is no such
a′, we can already determine that W claims no points on f , and no further process-
ing of f is needed—see Fig. 43(c).) Symmetrically, we SEARCH for the claimer of b,
and, if it is not found, we define b′ similarly. If a (resp., b) is claimed by W , denote by
π1 (resp., π2) the path π(claimer(a), a) (resp., π(claimer(b), b)); otherwise denote
by π1 (resp., π2) the path π(claimer(a′), a′) (resp., π(claimer(b′), b′)). Denote by
W ′ the sub-wavefront of W between the generators of π1 and π2 (inclusive), and use
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Fig. 43 Processing a covered
segment f of range(W). (a) The
endpoint a of f is not claimed
by W , and π1 is the shortest
path to the point a′ closest to a

and claimed by W ; the generator
of π1 is extreme in W (which
has already been split at v).
(b) At least one vertex of
V = {v1, v2, v3} (namely, v2) is
visible from the entire portion
of eB between π1 and π2.
(c) f is not reached by W at all.
No vertex of V is visible from
the portion of eB between π1
and π2. (d) Since
df = |π1|< |π2|, W is first split
at the generator of π1

π1,π2 to define (and compute) V as in the processing of a candidate bisector event
(described above).

Assume first that π1,π2 satisfy the assumptions of Lemma 5.3. It follows that V
is not empty, and at least one vertex of V is visible from its claimer in W ′ (see, e.g.,
Fig. 43(b)). Then the case is processed as Case (ii) of a candidate bisector event, with
the following difference: Instead of tracing a path from each source image in W ′ to
each vertex v ∈ V (which is too expensive now, since W ′ may have non-constant
size), we first SEARCH in W ′ for the claimer of each such v and then trace only the
paths π(claimer(v), v). (Then we restart the simulation from the earliest time when
a vertex v of V is reached by W , splitting W at claimer(v).)

Assume next that the assumptions of Lemma 5.3 do not hold, which means that
both π1 and π2 intersect C, and that C(π1)= C(π2), which is either f or a segment
f ′ 
= f of C. In the latter case, since f is not reached by W at all, no further process-
ing of f is needed (see Fig. 43(c))—we ignore f in the rest of the present simula-
tion, and update tstop(W) :=min{tstop(f

′)|f ′ ∈ range(W) \ {f }}. In the former case,
if both π1,π2 are extreme in W , then we have W ′ =W ; the further processing of f
is described below. Otherwise (at least one of π1,π2 is not extreme in W ), we first
have to split W , as follows. If π1 and π2 are not extreme in W , denote by df the min-
imum of |π1|, |π2|; if only one path π ∈ {π1,π2} is non-extreme in W , let df := |π |.
Without loss of generality, assume that df = |π1| (see Fig. 43(d)). We restart the sim-
ulation from time |π1|, splitting W at the generator of π1, as described in Case (ii) of
the processing of a candidate bisector event.

It is only left to describe the case where W ′ =W and f is the only (not ignored)
segment of range(W). If f is a contact interval, no further processing of f is needed.
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Otherwise (f is a transparent edge), we have to make the following final updates (to
prepare W(e,f ) for the subsequent merging procedure at f and for further propaga-
tion into other cells). First, we recalculate the priority of each marked source image
(recall that it was temporarily set to +∞), and update the priority queue component
of the data structure accordingly. Next, we update the source unfolding data (and
Λ(W)), as follows. Let B be the block sequence traversed by W from e to f along
TB(e), including (resp., excluding) B if the first (resp., last) facet of B lies on Λ(W),
and let E be the edge sequence associated with B. We compute the unfolding trans-
formation UE , by composing the unfolding transformations of the O(1) blocks of B.
We update the data structure of W(e,f ) to add UE to the unfolding data of all the
source images in W(e,f ), as described in Sect. 5.1. As a result, for each generator si
of W(e,f ), the polytope edge sequence Ei is the concatenation of its previous value
with E , and all the generators in W(e,f ) are unfolded to the plane of an extreme
facet incident to f .

To summarize, we trace O(1) paths and perform at most O(1) SPLIT and SEARCH

operations, for each of O(1) segments of C. Then we perform at most one source
unfolding data update for each transparent edge in C. All these operations take a total
of O(logn) time. However, we also perform a single priority update operation for
each marked generator that has participated in a candidate bisector event beyond a
transparent edge of C. A linear upper bound on the total number of these generators,
as well as the number of the processed candidate events, is established next.

Correctness and Complexity Analysis We start by observing, in the following
lemma, a basic property of W that asserts that distances from generators increase
along their bisectors.

Lemma 5.4 Let si , sj ∈W be a pair of generators that become neighbors at a bisec-
tor event x during the propagation of W through TB(e), where an intermediate gen-
erator s′ gets eliminated. Then (i) the portion of the bisector b(si, sj ) that is closer to
s′ than x is claimed, among si, s

′ and sj , by s′, and (ii) the distances from si and sj
to points y on the portion of b(si, sj ) that is not claimed by s′, increase as y moves
away from x.

Proof In the plane Λ(W), consider the Voronoi diagram of the three sites si, s
′, sj ,

whose sole vertex is x. The line containing e intersects exactly two Voronoi edges,
because it meets the Voronoi cells V (si),V (s′),V (sj ) of all the three sites. Moreover,
by assumption, e ∩ V (s′) lies between e ∩ V (si) and e ∩ V (sj ). Hence, the Voronoi
edge that e misses is between V (si) and V (sj ), implying that b(si, sj ), between e

and x, is fully contained in V (s′), as asserted—see Fig. 44(a). The same argument
also implies (ii). �

Lemma 5.5 Assume that all bisector events of W that have occurred up to some
time t have been correctly processed, and that the data structure of W has been
correctly updated. Let p be a point tentatively claimed by a generator si ∈W at time
d(si,p) ≤ t , meaning that the claim is only with respect to the current generators
in W (at time t ), and that we ignore any visibility constraints of C. Denote by R(si)
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Fig. 44 (a) The bisector
b(si , sj ), between e and x, must
be fully contained in V (s′)
(shaded). (b) If the bisector
b(s′, sj ) is already computed in
the wavefront W , then the
path π(sj ,p), which
intersects b(s′, sj ), cannot be
encoded in W

the unfolded region that is enclosed between the bisectors of si currently stored in the
data structure. Then p ∈R(si), and p /∈R(sj ), for any other generator sj 
= si in W .

Proof The claim that p ∈ R(si) is trivial, since the bisectors of si that are currently
stored in the data structure have been computed before time t , and are therefore cor-
rect, by assumption; hence, p is enclosed between them.

For the second claim, assume to the contrary that there exists a generator sj 
= si
in W so that p ∈R(sj ) too. Denote by q the first point along π(sj ,p) that is equally
close to sj and to some other generator s′ ∈ W (such q and s′ must exist, since
d(si,p) < d(sj ,p)); that is, q = π(sj ,p) ∩ b(s′, sj ). The fact that in the data struc-
ture p lies in R(sj ) means that the bisector b(s′, sj ) is not correctly stored in the
data structure, and thus it cannot be part of W(eB); therefore b(s′, sj ) emanates
from a bisector event location x that lies within c—see Fig. 44(b). By Lemma 5.4,
d(s′, x) < d(s′, q) < d(s′,p) ≤ t ; hence, the bisector event when b(s′, sj ) is com-
puted occurs before time t , and therefore, by assumption, b(s′, sj ) is correctly stored
in the data structure—a contradiction. �

In particular, Lemma 5.5 shows that when a vertex event at v is discovered during
the processing of another event at simulation time t , or is processed when a segment
of C that is incident to v is covered at time t , the tentative claimer of v (among all
the current generators in W ) is correctly computed, assuming that all bisector events
of W that have occurred up to time t have been correctly processed. We will use this
argument in Lemma 5.9 below.

Lemma 5.6 Assume that all bisector events of W that have occurred up to some time
t have been correctly processed, and that the data structure of W has been correctly
updated at all these events. If two waves of a common topologically constrained por-
tion of W are adjacent at t , then their generators must be adjacent in the generator
list of W at simulation time t .

Proof Assume the contrary. Then there must be two source images si, sj in a com-
mon topologically constrained portion W ′ ⊆ W such that their respective waves
wi,wj are adjacent at some point x at time t (that is, d(si, x) = d(sj , x) = t ≤
d(sk, x) for all other generators sk in W ), but there is a positive number of source
images si+1, . . . , sj−1 in the generator list of W ′ at time t between si and sj , whose
distances to x are necessarily larger than d(si, x) (and their waves in W ′ at time t are
nontrivial arcs). See Fig. 45 for an illustration.
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Fig. 45 The waves from the source images si , sj collide at x. Each of the two following cases contradicts
the assumption in the proof of Lemma 5.6: (a) The portion β of b(si , sj ) intersects the transparent edge e;
(b) The generator sk is eliminated at time ty = d(si , y) < d(si , x)= t

Consider the situation at time t . Since wi,wj belong to a common topologically
constrained W ′, it follows that e, π(si, x) and π(sj , x) unfold to form a triangle τ in
an unfolded block sequence of TB(e) (so that τ is not intersected by C).

Consider the “unfolded” Voronoi diagram Vor({si , . . . , sj }) within τ . By assump-
tion, x lies in the Voronoi cells V (si),V (sj ) of si , sj , respectively, separated by a
Voronoi edge β , which is a portion of b(si, sj ). If β intersects e (see Fig. 45(a)),
then si and sj claim consecutive portions of e in W(e), so si and sj must be consec-
utive in W already at the beginning of its propagation within TB(e), a contradiction.

Otherwise, β ends at a Voronoi vertex y within τ—see Fig. 45(b). Clearly, y is
the location of a bisector event in which some generator sk ∈W is eliminated at time
ty = d(si, y)= d(sj , y). By Lemma 5.4, ty < t , and therefore, by our assumption, the
bisector event at y has been correctly processed, so si and sj must be consecutive in
W already before time t—a contradiction. �

Lemma 5.6 shows that if all the events considered by the algorithm are processed
correctly, then all the true bisector events of the first kind are processed by the algo-
rithm, since, as the lemma shows, such events occur only between generators of W

that are consecutive at the time the bisector event occurs. Let W ′ be a topologically
constrained portion of W , and denote by R(W ′, t) the region within TB(e) that is
covered by W ′ from the beginning of the simulation in TB(e) up to time t . By de-
finition of topologically constrained wavefronts, ∂R(W ′, t) consists only of eB and
of the unfolded images of the waves and of the extreme bisectors of W ′ at time t .
Another role of Lemma 5.6 is in the proof of the following observation.

Corollary 5.7 R(W ′, t) is not punctured (by points that are not covered by W ′ at
time t ).

Proof Consider the first time at which R(W ′, t) becomes punctured. When this hap-
pens, R(W ′, t) must contain a point q where a pair of waves, generated by the re-
spective generators si, sj , collide, and eB and the paths π(si, q),π(sj , q) enclose an
island within the (unfolded) triangle that they form. This however contradicts the
proof of Lemma 5.6. �
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Corollary 5.8 When a vertex event at v is discovered during the processing of a
candidate event at simulation time t (either a bisector event x or an event involving
a covered segment f of C), the vertex v is reached by W no later than time t .

Proof By the way vertex events are discovered, v must lie in an unfolded triangle τ

formed as in the proof of Lemma 5.6, where the waves of the respective generators
si , sj either collide at x, or are adjacent in the wavefront that covers the segment f .
Since the two sides of τ incident to x belong to R(W ′, t), for some topologically
constrained portion W ′ of W that contains si , sj , Corollary 5.7 implies that all of τ is
contained in R(W ′, t), which implies the claim. �

We are now ready to establish the correctness of the simulation algorithm. Since
this is the last remaining piece of the inductive proof of the whole Dijkstra-style prop-
agation (Lemmas 4.2 and 4.5), we may assume that all the wavefronts were correctly
propagated to some transparent edge e, and consider the step of propagating from e.
This implies that W(eB) encodes all the shortest paths from s to the points of eB from
one fixed side. Now, let x1, . . . , xm be all the true critical events (that is, both bisec-
tor and vertex events that are true with respect to the propagation of W in TB(e)),
ordered according to the times t1, . . . , tm at which the locations of these events are
first reached by W . Since we assume general position, t1 < · · ·< tm.

Before we show the correctness of the processing of the true critical events, let
us discuss the processing of the false candidates. First, note that the simulation can
be aborted at time t ′ (during the processing of a false candidate event) and restarted
from an earlier time t ′′ < t ′ only if there exists some true vertex event x that should
occur at time t ≤ t ′′ and has not been detected prior to time t ′ (in the aborted version
of the simulation). Note that whenever a false candidate event x′ /∈ {x1, . . . , xm} is
processed at time t ′, one of the three following situations must arise.

(i) It might be that x′ is not currently (at time t ′) determined to be false, since both
paths involved in x′ are traced along the same block sequence and do not intersect C;
x′ is false “just” because there is some earlier true vertex event x′′ that is still un-
detected. In this case, we create a new version of W at time t ′, but it will later be
declared invalid, when we finally detect x′′.

Otherwise, x′ is immediately determined to be false (since either one of the in-
volved paths intersects C or the paths are traced along different block sequences).
In this case either (ii) an earlier candidate vertex event x′′ (occurring at some time
t ′′ < t ′) is currently detected and the simulation is restarted from t ′′, or (iii) x′ is a
bisector event which occurs outside TB(e), so it involves only bisectors that do not
participate in any further critical event inside TB(e). In this case a new version of
W , corresponding to the time t ′, is created, the generator that is eliminated at x′ is
marked in it, and its priority is set to +∞.

In any of the above cases, none of the existing true (valid) versions of W is al-
tered (although some invalid versions may be discarded during a restart); moreover,
a new invalid version corresponding to time t ′ may be created (without restarting the
simulation yet) only if there is some true event that occurred at time t < t ′ but is still
undiscovered at time t ′.

Assume now that at the simulation time tk (for 1≤ k ≤m) all the true events that
occur before time tk have been correctly processed; that is, for each such bisector
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event xi , the corresponding generator has been eliminated from W at simulation time
ti , and for each such vertex event xj , W has been split at simulation time tj at the
generator that claims the corresponding vertex. Note that the assumption is true for
simulation time t1, since the processing of false candidate events does not alter W(eB)

(which does not encode events within TB(e); its validity follows from the inductive
correctness of the merging procedure and is not violated by the processing of false
events).

Lemma 5.9 Assuming the above inductive hypothesis, the next true critical event xk
is correctly processed at simulation time tk , possibly after a constant number of times
that the simulation clock has reached and passed tk (to process a later false candidate
event) without detecting xk , each time resulting in a simulation restart.

Proof There are two possible cases. In the first case, xk is a true bisector event, in
which the wave of a generator s′ in W is eliminated by its neighbors at propagation
time tk . Any possible false candidate event that is processed before xk and after the
processing of all true events that take place before time tk may only create new invalid
versions that correspond to times that are later than time tk (since a false candidate
event can arise only when an earlier true event is still undetected). This implies that
s′ has not been deleted from any valid version of W that corresponds to time tk or
earlier, and all such valid versions exist. By this fact and by the inductive hypothesis,
the bisectors of s′ have been computed correctly either already in W(eB), or during
the processing of critical events that took place before time tk .

In the second case, xk is a true vertex event that takes place at a vertex v ∈ C,
which is claimed by some generator sv in W . By the argument used in the first case,
sv has not been deleted from W at an earlier (than tk) simulation time, and each point
on the path π(sv, v) is claimed by sv at time tk or earlier. Therefore sv can only be
deleted from a version of W at time later than tk when a false bisector event involving
sv is processed. Moreover, a sub-wavefront including sv can be split from a version
of W at time later than tk (and v can be removed from range(W)) when a false vertex
event is processed. We show next that in both cases, xk is detected and the simulation
is restarted from time tk , causing xk to be processed correctly.

Consider first the case where sv is not deleted in any later false candidate event.
In that case, when we stop the propagation of W , v is in range(W), and therefore at
least one segment f of the segments of range(W) that is incident to v is ascertained
to be covered at that time. Since sv is in W , Lemma 5.5 implies that the SEARCH

procedure that the algorithm uses to compute the claimer of v outputs sv , and, by
Corollary 5.2, the tracing procedure correctly computes d(sv, v) to be tk . Since xk is
the next true vertex event, the distance from the other endpoint of f to its claimer is
larger than or equal to tk , and, since W has not yet been split at v, π(sv, v) is not an
extreme bisector of W . Hence the algorithm sets df := tk , and W is split at sv at time
tk , as required.

Consider next the case where sv is deleted (or split) from W at a false event x′
at time t ′ ≥ tk . Suppose first that x′ is a false bisector event. Then v must lie in the
interior of the region τ bounded by e and by the paths to the location of x′ from the
outermost generators of W involved in x′. The algorithm traces the paths to v and to
(some of) the other vertices of C in τ from all the generators of W that are involved
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in x′, including sv (see Fig. 41(b), (c)); then all such distances are compared. Only
distances from each such generator s′ to each vertex that is visible from s′ (within the
unfolded blocks of TB(e)) are taken into account, since, by Corollary 5.2, all visibility
constraints are detected by the tracing procedure. The vertex v must be visible from sv
and the distance d(sv, v) must be the shortest among all compared distances, since,
by the inductive hypothesis, all vertex events that are earlier than xk have already
been processed (and W has already been split at these events). By Lemma 5.5 and
by Corollary 5.2, the tentative claimer (among all current generators in W ) of each
vertex u is computed correctly. No generator s′ that has already been eliminated from
W can be closer to u than the computed claimer(u), since, by Corollary 5.8 and by the
inductive hypothesis, u would have been detected as a vertex event no later than the
bisector event of s′, which is assumed to have been correctly processed. Therefore the
distance d(claimer(u),u) is correctly computed for each such vertex u (including v),
and therefore the distance d(sv, v) = tk is determined to be the shortest among all
such distances. Hence the simulation is restarted from time tk , and W is split at sv at
simulation time tk , as asserted.

Otherwise, x′ is a false vertex event processed when a segment f of C is ascer-
tained to be fully covered by W , and v must lie in the interior of the region τ bounded
by e,f , and by the paths from the outermost generators of W claiming f to the ex-
treme points of f that are tentatively claimed by W (see Fig. 43(b)). The algorithm
performs the SEARCH operation in the sub-wavefront W ′ ⊆W that claims f for v and
for all the other vertices of C in τ , and then compares the distances d(claimer(u),u),
for each such vertex u that is visible from its claimer (including v). By the same
arguments as in the previous case, the distance d(sv, v)= tk is determined to be the
shortest among all such distances, the simulation is restarted from time tk , and W is
split at sv at simulation time tk , as asserted. �

The above lemma completes the proof of the correctness of our algorithm. Now
we show that the total number of the processed candidate events is only linear. Order
the O(1) vertices of C that are reached by W (that is, the locations of the true vertex
events) as v1, . . . , vm, where W reaches v1 first, then v2, and so on; denote by tj , for
1 ≤ j ≤ m, the time at which W reaches vj . Note that if the simulation is restarted
because of a vertex event at vj , then, by Lemma 5.9, the simulation is restarted ex-
actly from time tj—that is, tj depends only on W and on the previous true candidate
events. Note also that the simulation is only restarted from times t1, . . . , tm.

Lemma 5.10 When the vertex events at vertices v1, . . . , vk , for 1 ≤ k ≤ m, are al-
ready detected and processed by the algorithm, the simulation is never restarted from
time tk or earlier.

Proof Since the simulation restart from time t discards all existing versions of W

that correspond to times t ′ ≥ t , the claim of the lemma is equivalent to the claim that
all the versions of W that were created at time tk or earlier will never be discarded by
the algorithm if all the vertex events at vertices v1, . . . , vk have already been detected
and processed. We prove the latter claim by induction on k.

For k = 1, the version of W created at time t1 can only be discarded if a vertex
event that occurs earlier than t1 is discovered, which is impossible since v1 is the
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first vertex reached by W . Now assume that the claim is true for v1, . . . , vk−1, and
consider the version Wk of W that is created at time tk when the vertex events at
vertices v1, . . . , vk are already detected and processed. The algorithm may discard
Wk only when at some time t ′ > tk a vertex v is discovered, such that v is reached by
W at time tv < tk , and therefore v must be in {v1, . . . , vk−1}. But then, restarting the
propagation from time tv contradicts the induction hypothesis. �

Lemma 5.11 For each 1 ≤ j ≤ m, the simulation is restarted from time tj at most
2j−1 times.

Proof By induction on j . By Lemma 5.10, the simulation is restarted from time t1 at
most once. Now assume that j ≥ 2 and that the claim is true for times t1, . . . , tj−1.

By Lemma 5.9, the vertex event at vj is eventually processed at time tj ; by
Lemma 5.10, there are no further restarts from time tj after we get a version of W

that encodes all the events at v1, . . . , vj . Hence the simulation may be restarted from
time tj only once each time that W ceases to encode the vertex event at vj , and this
may only happen either at the beginning of the simulation, or when the simulation
is restarted from a time earlier than tj . Since, by the induction hypothesis, the simu-

lation is restarted from times t1, . . . , tj−1 at most
∑j−1

i=1 2i−1 = 2j−1 − 1 times, the

simulation may be restarted from time tj at most 2j−1 times. �

Remark From a practical point of view, the algorithm can be significantly optimized,
by using the information computed before the restart to speed up the simulation after
it is restarted. Moreover, we suspect that, in practice, the number of restarts that the
algorithm will perform will be very small, significantly smaller than the bounds in
the lemma.

By Lemma 5.11, the algorithm processes only O(1) candidate vertex events
(within a fixed TB(e)), and, since the simulation is restarted only at a vertex event, it
follows that each bisector event x has at most O(1) “identical copies,” which are the
same event, processed at the same location (and at the same simulation time tx ) after
different simulation restarts. At most one of these copies of x remains encoded in
valid versions of W , and the rest are discarded (that is, there is at most one valid ver-
sion of W that has been created at simulation time tx to reflect the correct processing
of x, and the following valid versions of W are coherent with this version). Hence for
the purpose of further asymptotic time complexity analysis, it suffices to bound the
number of the processed candidate bisector events that take place at distinct locations.

Note that each candidate bisector event x processed by the propagation algorithm
falls into one of the five following types:

(i) x is a true bisector event.
(ii) x is a false candidate bisector event, during the processing of which an earlier-

reached vertex of C has been discovered, and the simulation has been restarted.
(iii) x is a false candidate bisector event of a generator s′ ∈W , so that all paths in

the wave from s′ cross a common contact interval of C (a “dead-end”) before
the wave is eliminated at x.
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(iv) x is a false candidate bisector event of a generator s′ ∈W , so that all paths in
the wave from s′ cross a common transparent edge f of C before the wave is
eliminated at x, and the distance from f to x along d(s′, x) is greater than 2|f |.

(v) x is a false candidate bisector event, as in (iv), except that the distance from f

to x along d(s′, x) is at most 2|f |.

Lemma 5.12 The total number of processed true bisector events (events of type (i)),
during the whole wavefront propagation phase, is O(n).

Proof First we bound the total number of waves that are created by the algorithm.
The wavefront W is always propagated from some transparent edge e, within the
blocks of a tree TB(e), for some block B incident to e, in the Riemann structure T (e)

of e. A wave of W is split during the propagation only when W reaches a vertex of C,
the corresponding boundary chain of TB(e). Each such vertex is reached at most once
(ignoring restarts) by each topologically constrained wavefront that is propagated in
TB(e). There are only O(1) such wavefronts, since there are only O(1) paths in
TB(e) (and corresponding homotopy classes). Each (side of a) transparent edge e

is processed exactly once (as the starting edge of the propagation within R(e)), by
Lemma 4.2, and e may belong to at most O(1) well-covering regions of other trans-
parent edges that may use e at an intermediate step of their propagation procedures.
There are O(1) vertices in any boundary chain C, hence at most O(1) wavefront
splits can occur within TB(e) during the propagation of a single wavefront. Since
there are only O(n) transparent edges e in the surface subdivision, and there are only
O(1) trees TB(e) for each e, we process at most O(n) such split events. (Recall from
Lemma 5.11 that a split at a vertex is processed at most O(1) times.) Since a new
wave is added to the wavefront only when a split occurs, at most O(n) waves are
created and propagated by the algorithm.

In each true bisector event processed by our algorithm, an existing wave is elimi-
nated (by its two adjacent waves). Since a wave can be eliminated exactly once and
only after it was earlier added to the wavefront, we process at most O(n) true bisector
events. �

Lemma 5.13 The algorithm processes only O(n) candidate bisector events during
the whole wavefront propagation phase.

Proof There are at most O(n) events of type (i) during the whole algorithm, by
Lemma 5.12. By Lemma 5.11, there are only O(1) candidate events of type (ii) that
arise during the propagation of W in any single block tree TB(e). Since a candidate
event of type (iii), within a fixed surface cell c, involves at least one wave that en-
codes paths that enter c through eB but never leave c (that is, they traverse a facet
sequence that contains a loop, and are therefore known not to be shortest paths be-
yond some contact interval in the loop), the total number of these candidate events
during the whole propagation is bounded by the total number of generated waves,
which is O(n) by the proof of Lemma 5.12.

Consider a candidate event of type (iv) at a location x at time tx , in some fixed
TB(e), and let f denote the transparent edge of C that is crossed by the wave from the
generator s′ eliminated at x. Denote by d1 (resp., d2) the distance along π(s′, x) from
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s′ to f (resp., from f to x); that is, d2 > 2|f | and d1+ d2 = d(s′, x)= tx . Before the
update of tstop(f ), caused by the processing of this event, the value of tstop(f ) must
have been equal to or greater than tx > d1 + 2|f |, since otherwise f would have
been ascertained to be covered before time tx , and therefore the event at tx would
not have been processed; hence, after the update, we have tstop(f )= d1 + |f | < tx .
Therefore, immediately after the processing of the event at tx we detect that f has
been covered; by Lemma 5.11 each f is detected to be covered at most O(1) times,
and, since there are only O(1) transparent edges in C, there are at most O(1) events
of type (iv) during the propagation of W in TB(e).

Consider now a candidate event of type (v) that occurs at a location x at time tx
after crossing the transparent edge f of C. This event may also be detected during
the propagation of the wavefront through f into further cells, and therefore it must
be counted more than once during the whole wavefront propagation phase. However,
on Λ(W), x lies no further than 2|f | from the image of f , and therefore the shortest-
path distance from f to the location of x on ∂P cannot be greater than 2|f |; hence,
by the well-covering property of f , x lies within k =O(1) cells away from the cell c.
Therefore the event at x is detected during the simulation in the cell which contains
x, where the event at x is considered a true event, and during the simulation in at
most k other cells; hence, by Lemma 5.12, the total number of these candidate events
during the whole algorithm is bounded by O(kn)=O(n). �

We summarize the main result of the preceding discussion in the following lemma.

Lemma 5.14 The total number of candidate events processed during the wavefront
propagation is O(n). The wavefront propagation phase of the algorithm takes a total
of O(n logn) time and space.

5.4 Shortest Path Queries

Preprocessing Building Blocks Let B be a building block of a surface cell c. A gen-
erator of a wavefront W is called active in B if it was detected by the algorithm to
be involved in a bisector event inside B . The wavefront propagation algorithm lets us
compute the active generators for all pairs (W,B) in a total of O(n logn) time.

We next define the partition local(W,B) of the unfolded portion of B that was
covered by W (and the wavefronts that W has been split into during its propagation
within B), which will be further preprocessed for point location for shortest path
queries.14 The partition local(W,B) consists of active and inactive regions, defined
as follows. The active regions are those portions of B that are claimed by generators
of W that are active in B , and each inactive region is claimed by a contiguous band
of waves of W that cross B in an “uneventful” manner, delimited by a sequence of
pairwise disjoint bisectors. See Fig. 46 for an illustration.

14Note that if W has been split in another preceding building block of c into two sub-wavefronts W1,W2
that now traverse B as two distinct topologically constrained wavefronts, no interaction between W1 and
W2 in B is detected or processed (the two traversals are processed at two distinct nodes of a block tree, or
of different block trees of T (e), both representing B). Moreover, if W has been split in B (which might
happen if B is a nonconvex type I block—see Sect. 3.1), the split portions cannot collide with each other
inside B; see Fig. 46.



570 An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions

Fig. 46 The wavefront W enters the building block B (in this example, B is a nonconvex block of type I,
bounded by solid lines) from the left. The partition local(W,B) is drawn by thick dashed lines; thin
dashed lines denote bisectors of W that lie fully in the interior of the inactive regions. The regions of the
partition are numbered from 1 to 12; the active regions are lightly shaded, the inactive regions are white,
and the portions of B that were not traversed by W due to visibility constraints are darkly shaded. The
locations of the bisector events of W and the reflex vertices reached by W in B are marked. W is split at
v into W1 and W2, and local(W,B) includes these sub-wavefronts too

Here are several comments concerning this definition. The edges of local(W,B)

are those bisectors of pairs of generators of W , at least one of which is active in B .
The first and the last bisectors of W are also defined to be edges of local(W,B).
If, during the propagation in B , W has been split (into sub-wavefronts W1,W2) at a
reflex vertex v of B , then the ray from the generator of W , whose wave has been split
at v, through v (an artificial extreme bisector of both W1,W2) is also defined to be
an edge of local(W,B). If W has been split into sub-wavefronts W1,W2 in such a
way, we treat also the bisectors of W1,W2, within B , as if they belonged to W (that
is, embed local(W1,B), local(W2,B) as extensions of local(W,B), and preprocess
them together as a single partition of B).

Note that the complexity of local(W,B) is O(k + 1), where k is the number of
true critical (bisector and vertex) events of W in B . The partition can actually be
computed “on the fly" during the propagation of W in B , in additional O(k) time.

We preprocess each such partition local(W,B) for point location [13, 22], so that,
given a query point p ∈ B , we can determine which region r of local(W,B) contains
the unfolded image q of p (that is, if B is of type II or III and E is the edge sequence
associated with B , q = UE (p); if B is of type I or IV then q = p). If r is traversed
by a single wave of W (which is always the case when r is active, and can also occur
when r is inactive), it uniquely defines the generator of W that claims p (if we ignore
other wavefronts traversing B). This step of locating r takes O(log k) time. If q is
in an inactive region r of local(W,B) that was traversed by more than one wave of
W , then r is the union of several “strips” delimited by bisectors between waves that
were propagated through B without events. We can then SEARCH for the claimer of
q in the portion of W corresponding to the inactive region, in O(logn) time (see
Sect. 5.1).
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Preprocessing S3D In order to locate the cell of S that contains the query point,
we also preprocess the 3D-subdivision S3D for point location, as follows. First, we
subdivide each perforated cube cell into six rectilinear boxes, by extending its inner
horizontal faces until they reach its outer boundary, and then extending two parallel
vertical inner faces until they reach the outer boundary too, in the region between the
extended horizontal faces. Next, we preprocess the resulting 3-dimensional rectilinear
subdivision in O(n logn) time for 3-dimensional point location [10]. The resulting
data structure takes O(n logn) space, and a point location query takes O(logn) time.

Answering Shortest-Path Queries To answer a shortest-path query from s to a point
p ∈ ∂P , we perform the following steps.

1. Query the data structure of the preprocessed S3D to obtain the 3D-cell c3D that
contains p.

2. Query the surface unfolding data structure (defined in Sect. 2.4) to find the facet
f of ∂P that contains p in its closure.

3. Since the transparent edges are close to, but not necessarily equal to, the corre-
sponding intersections of subfaces of S3D with ∂P , p may lie either in a surface
cell induced by c3D or by an adjacent 3D-cell, or in a surface cell derived from
the intersection of transparent edges of O(1) such cells. To find the surface cell
containing p, let I (c3D) be the set of the O(1) surface cells induced by c3D and
by its O(1) neighboring 3D-cells in S3D (whose closures intersect that of c3D).
For each cell c ∈ I (c3D), check whether p ∈ c, as follows.
(a) Using the surface unfolding data structure, find the transparent edges of ∂c

that intersect f , by finding, for each transparent edge e of ∂c, the polytope
edge sequence E that e intersects, and searching for f in the corresponding
facet sequence of E (see Sect. 2.4).

(b) Calculate the portion c ∩ f and determine whether p lies in that portion.
If p is contained in more than one surface cell, assign it to an arbitrary cell among
them.

4. Among the O(1) building blocks of c, find a block B that contains p. For each
wavefront W that has traversed B , we find the generator si that claims p in W ,
using the point location structure of local(W,B) as described above, and compute
the distance d(si,p). We report the minimal distance from s to p among all such
claimers of p.

5. If the corresponding shortest path has to be reported too, we report all polytope
edges that are intersected by the path from the corresponding source image to p.
In case there are several such paths, each can be reported in the same manner.

Steps 1–3 take O(logn) time, using [10] and the data structure defined in Sect. 2.4.
As argued above, it takes O(logn) time to perform Step 4. This concludes the proof
of our main result (modulo the construction of the 3D-subdivision, given in the next
section):

Theorem 5.15 (Main Result) Let P be a convex polytope with n vertices. Given a
source point s ∈ ∂P , we can construct an implicit representation of the shortest path
map from s on ∂P in O(n logn) time and space. Using this structure, we can identify,
and compute the length of, the shortest path from s to any query point q ∈ ∂P in
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O(logn) time (in the real RAM model). A shortest path π(s, q) can be computed in
additional O(k) time, where k is the number of straight edges in the path.

6 Constructing the 3D-Subdivision

This section briefly sketches the proof of Theorem 2.1, by describing an algorithm
for constructing a conforming 3D-subdivision for a set V of n points in R

3. Since
this is a straightforward generalization of the construction of a similar conforming
subdivision in the plane [18], we only describe the details that are different from
those in [18], and provide a few necessary definitions.

The main part of the algorithm constructs a 1-conforming 3D-subdivision S1
3D

of size O(n) in O(n logn) time, which is then transformed into a conforming 3D-
subdivision S3D by subdividing each face of S1

3D into 16 × 16 square subfaces, in
O(n) additional time.

Constructing the 1-Conforming 3D-Subdivision We fix a Cartesian coordinate sys-
tem in R

3. For any whole number i, the ith-order grid Gi in this system is the arrange-
ment of all planes x = k2i , y = k2i and z= k2i , for k ∈ Z. Each cell of Gi is a cube
of size 2i × 2i × 2i , whose near-lower-left corner lies at a point (k2i , l2i ,m2i ), for
a triple of integers k, l,m. We call each such cell an i-box. Any 4× 4× 4 contigu-
ous array of i-boxes is called an i-quad. Although an i-quad has the same size as an
(i + 2)-box, it is not necessarily an (i + 2)-box because it need not be a cell in Gi+2.
The eight non-boundary i-boxes of an i-quad form its core, which is thus a 2× 2× 2
array of i-boxes; see Fig. 47. Observe that an i-box b has exactly eight i-quads that
contain b in their cores.

The algorithm constructs a conforming partition of the point set V in a bottom-up
fashion. It simulates a growth process of a cube box around each data point, until
their union becomes connected. The simulation works in discrete stages, numbered
−2,0,2,4, . . .. It produces a subdivision of space into axis-parallel cells. The key
object associated with a data point p at stage i is an i-quad containing p in its core.
In fact, the following stronger condition holds inductively: Each (i − 2)-quad con-
structed at stage (i − 2) lies in the core of some i-quad constructed at stage i.

In each stage i, only a minimal set Q(i) of quads is maintained. This set is par-
titioned into equivalence classes under the transitive closure of the overlap relation,
where two i-quads overlap if they have a common i-box (not necessarily in their
cores). The portion of space covered by quads in one class of this partition is called
a component. Each component at stage i is either an i-quad or a connected union
of (open) i-quads. We classify each component as being either simple or complex.

Fig. 47 The planar analog of an
i-quad (darkly shaded) and its
core (lightly shaded)
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A component at stage i is simple if (1) its outer boundary is an i-quad and (2) it con-
tains exactly one (i − 2)-quad of Q(i − 2) in its core. Otherwise, the component is
complex.

The algorithm consists of two main parts. The first part grows the (i − 2)-quads
of stage (i − 2) into i-quads of stage i, and the other part computes and updates the
equivalence classes, and constructs subdivision subfaces. These tasks are performed
by the procedures Growth and Build-subdivision, respectively. We omit the descrip-
tion of Growth (which is a duplicate three-dimensional version of the same procedure
in [18]), but briefly review some of its features, to facilitate the description of Build-
subdivision.

Given an i-quad q , Growth(q) is an (i + 2)-quad containing q in its core. For a
family S of i-quads, Growth(S) is a minimal (but not necessarily the minimum) set
of (i + 2)-quads such that each i-quad in S is contained in the core of a member
of Growth(S). Let Growth(q), or q̃ , denote the unique (i + 2)-quad returned by the
procedure Growth with input q (see [18, 34] for details concerning the choice of q̃

among eight possible (i + 2)-quads).

The Build-Subdivision Procedure By appropriate scaling and translation of 3-
space, we may assume that the L∞-distance between each pair of points in V is
at least 1, and that no point coordinate is a multiple of 1

16 . For each point p ∈ V , we
construct (to distinguish from other quads that we only compute during the process,
constructing a quad means actually adding it to the 3D-subdivision) a (−4)-quad with
p at the near-lower-left (−4)-box of its core; this choice ensures that the minimal dis-
tance from p to the boundary of its quad is at least 1

4 of the side length of the quad.
(This step is needed for the (MVC) property, and does not exist in [18].) Around each
of these quads q , we compute (but not construct yet) a (−2)-quad with q in its core,
so that when there is more than one choice to do that (there are one, two, four, or
eight possibilities to choose the (−2)-quad if ∂q is coplanar with none, two, four, or
six planes of G−2, respectively), we always choose the (−2)-quad whose position is
extreme in the near-lower-left direction. This ensures that the (−2)-quads associated
with distinct points are openly disjoint (because the points of V are at least 1 apart
from each other in the L∞-distance; without the last constraint, one could have cho-
sen two (−2)-quads whose interiors have nonempty intersection). These quads form
the set Q(−2), which is the initial set of quads in the Build-subdivision algorithm
described below. Each quad in Q(−2) forms its own singleton component under the
equivalence class in stage −2. As above, we regard all quads in Q(−2) as open,
and thus forming distinct simple components, even though some pairs might share
boundary points.

Let VS be the set of points of V in the cores of the i-quads of a component S ⊆
Q(i). The implementation of Build-subdivision is based on the observation that the
longest edge of the L∞-minimum spanning tree of VS has length less than 6 · 2i . To
make this observation more precise, we define G(i) to be the graph on V containing
exactly those edges whose L∞ length is at most 6 · 2i , and define MSF(i) to be the
minimum spanning forest of G(i).

The algorithm is based on an efficient construction of MSF(i) for all i such that
MSF(i) 
= MSF(i − 2). We first find all the O(n) edges of the final MSF of V (a
single tree), using the O(n logn) algorithm of Krznaric et al. [23] for computing an
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L∞-minimum spanning tree in three dimensions. (In the planar case of [18], the clas-
sical algorithm of Kruskal is used instead.) Then, for each edge e constructed by the
algorithm, we compute the stage k = 22 1

2 log2
1
6 |e|3, at which e is added to MSF(k).

By processing the edges in increasing length order, we obtain the entire sequence of
forests MSF(i), for those i for which MSF(i) 
=MSF(i − 2).

Only stages at which something happens are processed: MSF(i) changes, or
there are complex components of Q(i) whose Growth computation is nontrivial.
Growth(S) is only computed for complex components and for simple components
that are about to be merged with another component, and maintain the equivalence
classes of Q(i) only for this same subset of quads. Simple components that are well
separated from other components are not involved at stage i.

The equivalence classes of Q(i) are computed by finding k = 73−1 nearest neigh-
bors of each i-quad q , using the well-separated pair decomposition of [7], and by test-
ing which of them overlaps q .15 This is different from the planar case of [18], where
the nearest-neighbors algorithm is not needed (instead, the plane is simply swept).

To recap, at each “interesting” stage i, we construct Q(i) from Q(i−2), by invok-
ing the Growth procedure on the set of complex components and simple components
that are about to merge with other components. As argued in [18], repeated applica-
tions of Growth decrease the size of Q(i) (specifically, after each pair of consecutive
steps of Growth, |Q(i)| is at most 3

4 of its previous size), until we reach a single quad
containing all of V .

The running time of the L∞-minimum spanning tree algorithm in [23] is
O(n logn). The k-nearest-neighbors algorithm of [7] requires O(mi logmi + kmi)=
O(mi logmi) time to process mi = |Q(i)| quads, when computing the equivalence
classes of Q(i). As argued in [18],

∑
i mi = O(n); hence, it takes O(n logn) total

time to perform this step. The space requirements of the MST construction in [23],
and of the k-nearest-neighbors computation, are both O(n), as well as the space
requirements of the other stages of the algorithm. Other steps of the algorithm Build-
subdivision are similar to those in [18], and therefore, the algorithm Build-subdivision
can be implemented to run using O(n logn) standard operations on a real RAM, plus
O(n) floor and base-2 logarithm operations. As shown in [18], the total cost of all the
calls to Growth is O(n logn), and this procedure requires only linear space; hence,
S3D can be constructed in overall O(n logn) time, using O(n) space.

7 Extensions and Concluding Remarks

We have presented an optimal-time algorithm for computing an implicit representa-
tion of the shortest path map from a fixed source on the surface of a convex polytope
with n facets in three dimensions. The algorithm takes O(n logn) preprocessing time
and O(n logn) storage, and answers a shortest path query (which identifies the path
and computes its length) in O(logn) time. We have used and adapted the ideas of
Hershberger and Suri [18], solving Open Problem 2 of their paper, to construct “on
the fly" a dynamic version of the incidence data structure of Mount [28], answering
in the affirmative the question that was left open in [28].

15For each i-quad q , at most 73 − 1 different i-quads q ′ 
= q can be packed so that q ′ overlaps q .
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As in the planar case (see [18]), our algorithm can also easily be extended to a
more general instance of the shortest path problem that involves multiple sources on
the surface of P , which is equivalent to computing their (implicit) geodesic Voronoi
diagram. This is a partition of ∂P into regions, so that all points in a region have
the same nearest source and the same combinatorial structure (i.e., maximal edge se-
quence) of the shortest paths to that source. We only compute this diagram implicitly,
so that, given a query point q ∈ ∂P , we can identify the nearest source point s to q ,
and return the shortest path length and starting direction (and, if needed, the short-
est path itself) from s to q; this is an easy adaptation of the algorithm presented in
this paper, with minor (and obvious) modifications. One can show that, for m given
sources, the algorithm processes O(m + n) events in total O((m + n) log(m + n))

time, using O((m+ n) log(m+ n)) storage; afterwards, a nearest-source query can
be answered in O(log(m+ n)) time.

It is natural to extend the wavefront propagation method to the shortest path prob-
lem on the surface of a nonconvex polyhedral surface. As our more recent results [33]
show, such an extension, which still runs in optimal O(n logn) time, exists for sev-
eral restricted classes of “realistic” polyhedra, such as a polyhedral terrain whose
maximal facet slope is bounded, and a few other classes. However, the question of
whether a subquadratic-time algorithm exists for the most general case of nonconvex
polyhedra, remains open.

Finally, we conclude with two less prominent open problems.

1. Can the space complexity of the algorithm be reduced to linear? Note that our
O(n logn) storage bound is a consequence of only the need to perform path copy-
ing to ensure persistence of the surface unfolding data structure in Sect. 2.4 and the
source unfolding data structure in Sect. 5.1. Note also that the related algorithms
of [18] and [28] also use O(n logn) storage.

2. Can an unfolding of a surface cell of S overlap itself?
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General-Dimensional Constrained Delaunay and
Constrained Regular Triangulations, I: Combinatorial
Properties

Jonathan Richard Shewchuk

Abstract Two-dimensional constrained Delaunay triangulations are geometric struc-
tures that are popular for interpolation and mesh generation because they respect the
shapes of planar domains, they have “nicely shaped” triangles that optimize several
criteria, and they are easy to construct and update. The present work generalizes con-
strained Delaunay triangulations (CDTs) to higher dimensions and describes con-
strained variants of regular triangulations, here christened weighted CDTs and con-
strained regular triangulations. CDTs and weighted CDTs are powerful and practical
models of geometric domains, especially in two and three dimensions.

The main contributions are rigorous, theory-tested definitions of CDTs and piece-
wise linear complexes (geometric domains that incorporate nonconvex faces with “in-
ternal” boundaries), a characterization of the combinatorial properties of CDTs and
weighted CDTs (including a generalization of the Delaunay Lemma), the proof of
several optimality properties of CDTs when they are used for piecewise linear inter-
polation, and a simple and useful condition that guarantees that a domain has a CDT.
These results provide foundations for reasoning about CDTs and proving the correct-
ness of algorithms. Later articles in this series discuss algorithms for constructing and
updating CDTs.
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1 Introduction

Many geometric applications can benefit from triangulations that have properties
similar to Delaunay triangulations, but are constrained to contain specified edges or
faces. Delaunay triangulations have virtues when they are used to interpolate multi-
variate functions [13, 28, 37, 50], including a tendency to favor “round” simplices
over “skinny” ones. However, some applications rely on the presence of faces that
represent specified discontinuities, as illustrated in Fig. 1, and the Delaunay triangu-
lation might not respect these constraints. Triangulations also serve as meshes that
represent objects for rendering or for the numerical solution of partial differential
equations. For these purposes, Delaunay triangulations have many advantages, but
the triangulations are required to assume the shapes of the objects being modeled,
and perhaps to resolve interfaces where different materials meet or where boundary
conditions are applied.

In two dimensions there are two popular alternatives for creating a Delaunay-like
triangulation that respects constraints. In either case, the input is a planar straight
line graph (PSLG), such as the one illustrated in Fig. 2(a). A PSLG X is a set of ver-
tices and segments (constraining edges) that satisfy two restrictions: both endpoints
of every segment in X are members of X, and a segment in X may intersect other seg-
ments and vertices in X only at its endpoints. A triangulation is sought that contains
the vertices in X and respects the segments in X.

The first alternative is to form a conforming Delaunay triangulation (Fig. 2(c)).
The vertices of X are augmented by additional vertices (sometimes called Steiner
points) carefully chosen so that the Delaunay triangulation of the augmented vertex
set conforms to all the segments—in other words, so that each segment is repre-
sented by a contiguous linear sequence of edges of the triangulation. Edelsbrunner

Fig. 1 A triangulation that
respects a discontinuity in a
function (b) can be a better
interpolating surface than one
that does not (a)

Fig. 2 The Delaunay triangulation (b) of the vertices of a PSLG (a) might not respect the segments
of the PSLG. These segments can be incorporated by adding vertices to obtain a conforming Delaunay
triangulation (c), or by forgoing Delaunay triangles in favor of constrained Delaunay triangles (d)
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Fig. 3 The edge e and the
triangle t are both constrained
Delaunay. Bold lines represent
segments

and Tan [20] show that a PSLG X can be triangulated with the addition of O(m2n)

augmenting vertices, where m is the number of segments in X, and n is the number of
vertices in X. For many PSLGs, their algorithm uses far fewer augmenting vertices,
but the numbers required in practice are often undesirably large. PSLGs are known
that have no conforming Delaunay triangulation with fewer than *(mn) augmenting
vertices. Closing the gap between the O(m2n) and �(mn) bounds remains an open
problem.

The second alternative is to form a constrained Delaunay triangulation (CDT)
[9, 29, 43], illustrated in Fig. 2(d). A CDT of X has no vertices not in X, and every
segment in X is a single edge of the CDT. However, a CDT, despite its name, is
not a Delaunay triangulation. In an ordinary Delaunay triangulation, every simplex
(triangle, edge, or vertex) is Delaunay. A simplex is Delaunay if its vertices are in
X and there exists a circumcircle of the simplex—a circle that passes through all its
vertices—that encloses no vertex in X. (Any number of vertices is permitted on the
circle.) In a CDT this requirement is waived, and instead every simplex must either
be a segment specified in X or be constrained Delaunay. A simplex is constrained
Delaunay if it has a circumcircle that encloses no vertex in X that is visible from
any point in the relative interior of the simplex—here visibility is occluded only by
segments in X—and furthermore, the simplex does not “cross” any segment. (For a
formal definition, see Section 1.1.)

Figure 3 demonstrates examples of a constrained Delaunay edge e and a con-
strained Delaunay triangle t . Segments in X appear as bold lines. Although there is
no empty circle that encloses e, the depicted circumcircle of e encloses no vertex that
is visible from the relative interior of e. There are two vertices inside the circle, but
both are hidden behind segments. Hence, e is constrained Delaunay. Similarly, the
sole circumcircle of t encloses two vertices, but both are hidden from the interior of
t by segments, so t is constrained Delaunay.

The advantage of a CDT over a conforming Delaunay triangulation is that it has no
vertex other than those in X. The advantage of a conforming Delaunay triangulation
is that its triangles are Delaunay, whereas those of a CDT are not. Nevertheless, CDTs
retain many of the desirable properties of Delaunay triangulations. For instance, a
two-dimensional CDT maximizes the minimum angle in the triangulation, compared
with all other constrained triangulations of X [29].

We live in a three-dimensional world, and those who model it have a natural in-
terest in constructing constrained and conforming triangulations in three or more di-
mensions. Algorithms by Murphy et al. [33], Cohen-Steiner et al. [12], Cheng and
Poon [8], and Pav and Walkington [34] can construct a conforming Delaunay tetra-
hedralization of any three-dimensional polyhedron by inserting carefully chosen ver-
tices on the boundary of the polyhedron. (Their algorithms work not only on poly-
hedra, but also on a more general input called a piecewise linear complex, defined
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Fig. 4 Schönhardt’s untetrahedralizable polyhedron (b) is formed by rotating one end of a triangular
prism (a), thereby creating three diagonal reflex edges. Every tetrahedron defined on the vertices of Schön-
hardt’s polyhedron sticks out (c)

below.) These algorithms might introduce a huge number of new vertices. No known
algorithm for finding conforming Delaunay tetrahedralizations is guaranteed to intro-
duce only a polynomial number of new vertices, and no algorithm of any complexity
has been offered for four- or higher-dimensional conforming Delaunay triangulations.

Prior to the present work (in its first incarnation [45]), CDTs had not been gen-
eralized to dimensions higher than two. One reason is that in three or more dimen-
sions, there are polytopes that cannot be triangulated at all without additional vertices.
Schönhardt [41] furnishes a three-dimensional example depicted in Fig. 4(b). The
easiest way to envision this polyhedron is to begin with a triangular prism (Fig. 4(a)).
Imagine twisting the prism so that the top triangular face rotates slightly like the lid of
a jar, while the bottom triangular face is fixed in place. Each of the three square faces
is broken along a diagonal reflex edge (an edge at which the polyhedron is locally
nonconvex) into two triangular faces. After this transformation, the upper left corner
and lower right corner of each (formerly) square face are separated by a reflex edge,
and the line segment connecting them is outside the polyhedron. Any four vertices of
the polyhedron include two separated by a reflex edge; thus, any tetrahedron whose
vertices are vertices of the polyhedron does not lie entirely within the polyhedron, as
illustrated in Fig. 4(c). Schönhardt’s polyhedron cannot be tetrahedralized without an
additional vertex. (One extra vertex at its center will do.)

Ruppert and Seidel [40] add to the difficulty by proving that it is NP-hard to de-
termine whether a three-dimensional polyhedron is tetrahedralizable. Even among
polyhedra that can be triangulated without additional vertices, there is not always a
triangulation that is in any reasonable sense “constrained Delaunay.”

What features of polytopes make them amenable to being triangulated with
Delaunay-like simplices? This article offers a partial answer by proposing a conserv-
ative extension of the definition of CDT to higher dimensions, and by demonstrating
that there is an easily tested and enforced, sufficient (but not necessary) condition
that guarantees that a CDT exists. This article also shows that CDTs optimize several
criteria for the accuracy of piecewise linear interpolation of certain classes of func-
tions. These results extend to weighted CDTs (a constrained generalization of regular
triangulations), wherein each vertex is assigned a numerical weight that influences
the triangulation.
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Fig. 5 Each facade of a PLC (a) may have holes, slits, and interior vertices, which are used to constrain a
triangulation or to support intersections with other facades. (b) The constrained Delaunay triangulation of
the PLC in (a). It is a PLC, too

There is more than one way in which the notion of “constrained Delaunay” might
generalize to three or more dimensions. The choices made here yield useful CDTs
and efficient algorithms for their construction, though other generalizations of CDTs
might be discovered in the future.

This article is the first in a three-part series. The second article discusses sweep and
gift-wrapping algorithms for constructing the CDT of any piecewise linear complex
that has one, except for a class of difficult, “nongeneric” inputs. It also demonstrates
the NP-completeness of determining whether a nongeneric polyhedron has a CDT.
The third article discusses algorithms for updating a CDT to reflect the insertion or
deletion of a (d − 1)-facade, a vertex, or several vertices, as well as an incremen-
tal algorithm for constructing CDTs that have a property called “ridge protection”
(described in the next section).

1.1 Summary of Results

The input is a piecewise linear complex (PLC), following Miller et al. [32].1 A PLC is
a finite set of facades in an ambient space Ed . A facade is a polytope (roughly speak-
ing) of any dimension from zero to d , possibly with holes and lower-dimensional
facades inside it. Figure 5 illustrates a three-dimensional PLC. As the figure shows, a
facade may have any number of sides, may be nonconvex, and may have holes, slits,
or vertices inside it. A k-facade is a k-dimensional facade. 0-Facades are vertices,
and 1-facades are segments. Observe that a PSLG is a two-dimensional PLC without
2-facades.

PLCs have restrictions similar to those of PSLGs or any other type of complex.
For each facade f in a PLC X, the boundary of f must be composed of lower-
dimensional facades in X. Nonempty intersections of facades in X must be facades
in X. For details, see Section 2.1, where the terms facade and PLC are defined with
full mathematical rigor.

The purpose of most facades is to constrain a triangulation. A d-dimensional PLC
typically includes d-facades, whose purpose is to specify what region the triangula-
tion should fill. The union of all the facades in a PLC X is the triangulation domain

1Miller et al. call it a piecewise linear system, but their construction is so obviously a complex that a
change in name seems obligatory.
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Fig. 6 (a) Examples of triangles that respect a shaded facade. (b) Examples of triangles that do not respect
the facade. (c) Examples of triangles that respect the facade, but do not respect all its edges and vertices
(which are facades themselves)

|X|, the portion of space a user wishes to triangulate. The specification of a triangu-
lation domain is sometimes crucial, because there are PLCs for which a CDT of the
triangulation domain exists but a CDT of its convex hull does not. For example, it is
easy to tetrahedralize the region sandwiched between Schönhardt’s polyhedron and a
suitable bounding box, even though the interior of the polyhedron is not tetrahedral-
izable.

The complement of the triangulation domain, Ed\|X|, is called the exterior do-
main and includes any hollow cavities enclosed by the triangulation domain, as well
as outer space. Because X is a complex, some of its (d − 1)-facades separate the in-
terior of the triangulation domain from the exterior domain. However, not all (d−1)-
facades play this role. Figure 5 includes several dangling lower-dimensional facades
that are not part of any d-facade. Some facades are internal facades, which do not
lie on the boundary of the exterior domain. These facades allow PLCs to represent
multiple-component domains and domains with nonmanifold boundaries.

The goal of this work is to subdivide a domain into simplices. A k-simplex is
a k-dimensional simplex—the convex hull of k + 1 affinely independent points. A
triangulation or simplicial complex T is a finite set of simplices that intersect each
other “nicely”: T contains every face of every simplex in T , and the intersection of
any two simplices in T is either empty or a face of both simplices. A triangulation
T fills a PLC X if

⋃
t∈T t =⋃f∈X f ; that is, if the union of simplices in T is the

triangulation domain |X|.
Of course, not all triangulations that fill X are equally good. Facades constrain

what sort of simplex is acceptable. A simplex s respects a facade f if s ∩f is a union
of faces of s (possibly empty). As Fig. 6 illustrates, the intersection of a nonconvex
facade and a triangle that respects it might be the empty set, a vertex, an edge, the
entire triangle, the union of two or all three edges, the union of two or all three
vertices, or the union of an edge and opposite vertex of the triangle. Loosely speaking,
if s respects f , then s cannot “cross” f or f ’s boundary.

A simplex s respects X if s ⊆ |X| and s respects every facade in X, except perhaps
some of the vertices. (Weighted CDTs may omit some of the vertices in X, unlike
ordinary CDTs, but some designated vertices must be respected; see Section 2.3 for
details.)

A triangulation T is a triangulation of X if T fills X, every simplex in T respects
X, and every vertex in T is in X. This definition implies that every facade in X

(except perhaps the vertices) is a union of simplices in T . (See Section 2.3 for a
discussion of why the definition does not explicitly require every vertex in X to be
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Fig. 7 A constrained Delaunay
tetrahedron t

in T . This requirement arises implicitly if every vertex is designated as one that must
be respected.)

Sometimes it is desirable to permit a triangulation to have vertices not present in
X—and sometimes it is necessary, as Schönhardt demonstrates. A triangulation T is a
conforming triangulation or Steiner triangulation of X if T fills X and every simplex
in T respects X. This article is devoted to pure triangulations in which extra vertices
are not permitted, but Steiner triangulations are investigated elsewhere [47, 49].

Within a PLC X, the visibility between two points p and q is occluded if pq 
⊆ |X|
or there is a facade between p and q whose affine hull contains neither p nor q .
(Note, however, that some vertices do not obstruct visibility—namely those that the
triangulation is not required to respect. See Section 2.4.) The points p and q are
visible from each other if pq ⊆ |X| and X contains no occluding facade.

Let s be a k-simplex (for any k) whose vertices are in X (though s is not neces-
sarily a facade in X). Let S be a (full-dimensional) hypersphere in Ed . S is a circum-
sphere of s if S passes through all the vertices of s. If k = d , then s has a unique
circumsphere; otherwise, s has infinitely many circumspheres. The simplex s is De-
launay if there exists a circumsphere S of s that encloses no vertex in X. The simplex
s is strongly Delaunay if there exists a circumsphere S of s such that no vertex in
X lies inside or on S, except the vertices of s. Every 0-simplex (vertex) is trivially
strongly Delaunay.

A simplex s is constrained Delaunay if

• the vertices of s are in X,
• s respects X, and
• there is a circumsphere S of s such that no vertex of X inside S is visible from any

point in the relative interior of s.

Figure 7 depicts a constrained Delaunay tetrahedron t in E3. The intersection of t
with the facade f is a face of t , so t respects X. The circumsphere of t encloses one
vertex v, but v is not visible from any point in the interior of t , because f occludes
its visibility.

A constrained Delaunay triangulation T of X is a triangulation of X in which
every d-simplex is constrained Delaunay. If X has dangling facades, this charac-
terization is insufficient, and we must resort to the (less readable) true definition:
a CDT T of X is a triangulation of X in which each simplex is constrained De-
launay “within” the lowest-dimensional facade in X that includes it. For example,
a three-dimensional CDT fills each 2-facade (dangling or not) with triangles that
are constrained Delaunay “within” that 2-facade, and collectively comprise a two-
dimensional CDT of the 2-facade. However, those triangles might not be constrained
Delaunay within the three-dimensional PLC—they might have empty circumcircles,
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Fig. 8 (a) A PLC with no CDT.
(b) The sole tetrahedralization of
this PLC. Its three tetrahedra are
not constrained Delaunay.
(c) The two Delaunay tetrahedra
do not respect the central
segment

but not empty circumspheres. (That is why the 2-facade is there—to enforce the pres-
ence of triangles that might otherwise be absent.) The definition of “CDT” is therefore
recursive in the dimension. See Section 2.4 for details.

The first main result of this article is a characterization of many basic properties
of constrained Delaunay and weighted constrained Delaunay triangulations, analo-
gous to the well-known properties of Delaunay triangulations. (Weighted CDTs are
defined in Section 2.4.) For example, every face of a constrained Delaunay simplex is
itself constrained Delaunay within some facade. A CDT of a facade includes CDTs of
all the facade’s faces (Section 3.1). If a PLC has no d+2 vertices lying on a common
hypersphere, then its constrained Delaunay simplices have disjoint relative interiors
and form a simplicial complex, and it has at most one CDT (Section 3.3). The Delau-
nay Lemma, which guarantees that a triangulation of a vertex set is Delaunay if and
only if its facets are locally Delaunay [14], generalizes to CDTs (Section 3.2). The
Delaunay Lemma is a fundamental tool for verifying that a triangulation is a CDT,
and for dynamically maintaining the CDT of a PLC whose vertices are moving or
changing their weights.

The second main result is that CDTs are optimal by several criteria (described in
Section 4) when they are used for piecewise linear interpolation. This fact is among
the reasons why CDTs are so valuable.

The third main result is a condition that guarantees the existence of a CDT. The
main impediment to the existence of CDTs is the difficulty of respecting facades of
dimension d − 2 or less. Figure 8 offers an example of a three-dimensional PLC with
no CDT. There is one segment that runs through the interior of the PLC. There is only
one tetrahedralization of this PLC—composed of three tetrahedra encircling the cen-
tral segment—and its tetrahedra are not constrained Delaunay, because each of them
has a visible vertex inside its circumsphere. If the central segment were removed, the
PLC would have a CDT made up of two tetrahedra.

The condition that guarantees that a PLC has a CDT is easiest to describe, and eas-
iest to enforce, in three dimensions. A three-dimensional PLC X is ridge-protected if
every segment (1-facade) in X is strongly Delaunay. (See Section 2.4 for the general-
dimensional definition.) Every ridge-protected PLC has a CDT. This result, called the
CDT Theorem, makes three-dimensional CDTs useful in geometric modeling appli-
cations.

It is not sufficient for every segment to be Delaunay. If Schönhardt’s polyhedron
is embedded so that all six of its vertices lie on a common sphere, then all of its edges
(and its triangular faces as well) are Delaunay, but it still does not have a tetrahedral-
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ization. It is not possible to place the vertices of Schönhardt’s polyhedron so that all
three of its reflex edges are strongly Delaunay (though any two may be).

Here is a stronger and even more useful version of the CDT Theorem. In three
dimensions a segment may serve as a boundary to several 2-facades, which can be
sorted by their rotary order around the segment. A segment is grazeable if two con-
secutive 2-facades in the rotary order are separated by an interior angle of 180◦ or
more, or if the segment is included in fewer than two 2-facades and is internal, not
dangling. (An interior angle subtends the interior of the triangulation domain. Exte-
rior angles of 180◦ or more are irrelevant to the CDT Theorem.) Only the grazeable
segments need to be strongly Delaunay to guarantee a CDT. A three-dimensional PLC
X is weakly ridge-protected if every grazeable segment in X is strongly Delaunay.
Every weakly ridge-protected PLC has a CDT.

Segments that are not grazeable are common. For instance, in a complex of convex
polyhedra, no segment is grazeable. The stronger result exempts the segments of the
complex from the need to be strongly Delaunay.

Testing whether a PLC is ridge-protected, or weakly ridge-protected, is straight-
forward. See the comments following Definition 23.

This article’s results extend to weighted CDTs, which are described in Section 2.4.
Weighted CDTs are central in the design of flip algorithms for updating and con-
structing CDTs; see the third article in this series. Several researchers have shown
that weighted Delaunay triangulations are useful for three-dimensional mesh gener-
ation, because some undesirable tetrahedra can be removed by adjusting the vertex
weights [6, 7, 16]. Weighted CDTs share this virtue and are even more powerful,
because of the ease with which they respect the shape of a domain.

The definition of “ridge-protected” generalizes to weighted PLCs, and every
weakly ridge-protected, weighted PLC has a weighted CDT. Interestingly, even in
two dimensions there are weighted PLCs that do not have weighted CDTs.

1.2 Benefits of the CDT Theorem

Why is it useful to know that weakly ridge-protected PLCs have CDTs? Although a
given PLC X might not be weakly ridge-protected, the insertion of additional vertices
can transform it into a weakly (or fully) ridge-protected PLC Y , which has a CDT.
The CDT of Y is not a CDT of X, because it has vertices that X lacks, but it is a
conforming CDT or Steiner CDT of X: “conforming” or “Steiner” because boundary
conformity is obtained by inserting new vertices (Steiner points), and “CDT” because
the simplices of the Steiner CDT are constrained Delaunay (rather than Delaunay).

Compare this idea with the most common methods of recovering missing facades
in three-dimensional Delaunay-based mesh generation algorithms, which insert ad-
ditional vertices into all the missing facades. Some of these algorithms produce con-
forming Delaunay meshes [8, 34, 39], and some recover the missing facades by bi-
secting and flipping tetrahedra, yielding a mesh that is not necessarily Delaunay nor
constrained Delaunay, although you might say it is “almost” Delaunay [22, 27, 52,
53]. Figure 9 illustrates the advantage of a Steiner CDT. All the procedures use ver-
tex insertions to recover missing grazeable segments, but the customary approaches
require additional vertex insertions to recover missing 2-facades and non-grazeable
segments. A Steiner CDT does not need these extra vertices.
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Fig. 9 Two methods for
recovering a 2-facade in the
interior of a cubical
triangulation domain. The initial
Delaunay tetrahedralization
does not respect the facade. (For
clarity, the tetrahedra are not
shown.) Both methods insert
new vertices to recover missing
segments. Next, the customary
method is to insert more vertices
to recover missing 2-facades
(top), but no additional vertices
are needed if constrained
Delaunay tetrahedra are used
(bottom)

Fig. 10 (a) It is difficult to mesh the interior of this box with Delaunay tetrahedra that conform to all the
facades. (b) The box can be meshed with constrained Delaunay tetrahedra with the addition of just the
vertices shown

Figure 10(a) depicts an example of a PLC for which a Steiner CDT is much more
effective than a conforming Delaunay tetrahedralization. In the interior of the box,
many oddly shaped 2-facades adjoin a single shared segment. The triangulation do-
main is the entire box. Vertices inserted to recover one 2-facade—so that it is a union
of triangular faces of the Delaunay tetrahedralization—are likely to knock out trian-
gles from the adjacent 2-facades. The aforementioned algorithms of Murphy et al.
and others [8, 12, 33, 34] can construct conforming Delaunay tetrahedralizations of
this PLC, but they require many more vertices than are needed to form a Steiner CDT,
most of them in the 2-facade interiors. The PLC augmented with a modest number of
vertices (Fig. 10(b)) is weakly ridge-protected and has a CDT.

I conjecture that for the worst three-dimensional PLCs, conforming Delaunay tri-
angulations need asymptotically more vertices than Steiner CDTs. It is an open ques-
tion whether this is true, but based on the two-dimensional complexity results, it
seems like a safe gamble.
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An algorithm that decides how to choose new vertices so that there are provably
good bounds on the edge lengths of the Steiner CDT (i.e. edges are not made un-
necessarily short) is described elsewhere [47]. This algorithm does not guarantee a
polynomial bound on the number of new vertices, but its guarantees on edge lengths
are in some ways more useful, because the Steiner CDT is an excellent starting trian-
gulation for several algorithms for three-dimensional mesh generation. One algorithm
uses the constrained Delaunay property to guarantee its ability to tetrahedralize any
PLC [46], and another uses it to establish provable bounds on the quality of the tetra-
hedra it produces and on the edge lengths of the final mesh [44]. The results in this
article underpin those algorithms.

Why does this article take PLCs as the input rather than, for simplicity, boundary
triangulations? Consider finding a tetrahedralization of a cube. The edges of the cube
are strongly Delaunay, so the CDT Theorem guarantees that the cube has a CDT.
By contrast, consider a boundary triangulation of a cube. Any boundary triangula-
tion bisects each square face of the cube with a diagonal edge. These diagonals are
not strongly Delaunay, so the CDT Theorem does not apply. Moreover, a tetrahe-
dralization respecting the boundary triangulation might not exist (depending on the
choice of diagonals). Thus, the option to specify facades more general than simplices
is an advantage both for the theorem and for CDT construction algorithms, which can
choose a compatible set of diagonals.

If a PLC is ridge-protected, its CDT can be built by a simple incremental facade
insertion algorithm described in the third article in this series. PLCs that are not ridge-
protected (but have CDTs) currently require a more complicated sweep algorithm or
a slower gift-wrapping algorithm, described in the second article in this series.

2 Complexes

This section defines the geometric constructions and ideas at the center of this work.
The input structures—facades and PLCs—are formalized in Section 2.1. The output
structures, a generalization of CDTs called weighted CDTs, are described in Sec-
tions 2.2–2.4. Definitions are often a perfunctory part of a mathematics article, so it
is worth noting that 8 years of trial and error led to the definitions given here. “Con-
strained Delaunay” and the notion of visibility are defined differently here than in
the earlier incarnation of this work [45], and the present definitions are more sound.
These and other definitions in this article evolved with the proofs of the theorems
here and in the sequel articles.

Throughout this article, the terms “simplex,” “triangle,” “tetrahedron,” and “con-
vex hull” refer to closed, convex sets of points; for instance, a “triangle” is not just
three edges, but the points inside as well. The notation conv(S) represents the convex
hull of the point set S.

Some simplices of specific dimensions have their own names. Of course, a vertex
is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is a
3-simplex. In a d-dimensional ambient space, a (d−2)-dimensional convex polytope
or (d − 2)-simplex is called a ridge, and a (d − 1)-dimensional convex polytope or
(d − 1)-simplex is called a facet.
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The notation pq denotes a line segment with endpoints p and q . The notation
p · q denotes the Euclidean inner product, |p| = √p · p is the Euclidean norm, and
|pq| = |p − q| is the Euclidean length of pq . It might help the reader to know that
this article strictly distinguishes between the verbs contain for set membership (1)
and include for set inclusion (⊇).

2.1 Piecewise Linear Complexes

Consider points in an ambient space Ed . A k-flat (k-dimensional flat) is the affine hull
of k + 1 affinely independent points. (A flat is also known as an affine subspace—
unlike a true subspace it is not required to contain the origin. For readers familiar
with flats but not affine hulls, the affine hull of a point set is the lowest-dimensional
flat that includes it.) A set of points S ⊆ Ed is k-dimensional if the affine hull of S

is a k-flat. (In other words, S contains k + 1 affinely independent points, but does
not contain k + 2 affinely independent points.) A hyperplane is a (d − 1)-flat. The
set of points on one designated side of a hyperplane, excluding every point of the
hyperplane itself, is an open halfspace. By contrast, a closed halfspace includes the
hyperplane as well.

An open convex k-polyhedron is the nonempty intersection of a k-flat and a finite
number of open halfspaces. It is bounded if it does not include a ray (equivalently,
if its diameter is finite). A closed convex k-polyhedron is the closure of an open
convex k-polyhedron. The closure of a polyhedron has its usual meaning from real
analysis—the set of all the points and accumulation points of the polyhedron—and
more intuitively is a point set containing all the points of the polyhedron, plus all the
points on its boundary.

Definition 1 (Facade) An open k-facade is the union of a finite number of bounded,
open, convex k-polyhedra, all included in some common k-flat. A closed k-facade is
the closure of an open k-facade.

Observe that a facade is not required to be connected. A 0-facade (open or
closed—there is no difference) is a vertex, and a 1-facade is either a segment or a
sequence of collinear segments.

A closed facade is equivalent to Hadwiger’s classic polyhedron [26], which is de-
fined to be a union of closed convex polyhedra. It is the open facades that motivate
the new name. In geometric modeling, open facades are more versatile than closed
facades as abstractions of geometric domains and their boundaries, because an open
facade can have internal boundaries. Internal boundaries serve at least two purposes:
they support intersections between surfaces, as Fig. 11 illustrates, and they constrain
the permissible triangulations of the facade—for instance, to support the applica-
tion of boundary conditions to a finite-element mesh, or to model discontinuities in
the lighting of a surface for computer graphics. Internal boundaries are necessary to
model some domains with nonmanifold boundaries, like the domain in Fig. 5.

Definition 2 (External and Internal Boundaries) The external boundary of a facade
is the boundary of the closure of the facade. (Observe that the external boundary in-
cludes boundaries of holes.) The internal boundary of an open facade is the boundary
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Fig. 11 At left are two connected 2-facades and a 1-facade (composed of two segments). At center and
right appear one of the 2-facades, represented as both an open and a closed facade. Dashed lines and open
circles represent points that are not part of the open facade. The internal boundary includes a slit and an
isolated vertex, both of which are needed to support contacts with other facades. The internal boundary
cannot be inferred from the closed facade alone

of the open facade minus the external boundary. (Equivalently, it is the intersection
of the boundary with the relative interior of the closure of the facade.) See Fig. 11.

Throughout this article, relative interior has its usual meaning from real analysis,
but boundary is used as shorthand for relative boundary, and open for relatively open.

The faces of a facade are defined in a fundamentally different way than the faces
of a convex polyhedron. The faces of a convex polyhedron are an intrinsic property
of the polyhedron, whereas the faces of a facade are defined only in the context of a
PLC. Compare the following two definitions.

Definition 3 (Face of a Convex Polyhedron) The faces of a closed, convex k-poly-
hedron P are P and every polyhedron found by taking the intersection of P with a
hyperplane that does not intersect the relative interior of P . The proper faces of P

are the faces of dimensionalities zero through k − 1.

This standard construction also defines the faces of a simplex. For example, the
faces of a tetrahedron include its four vertices, its six edges, its four triangular faces,
and the tetrahedron itself. By convention, the empty set is considered to be a (−1)-
dimensional face of every polyhedron. This article makes no use of this convention,
but in some circumstances it is convenient to assume that ∅ is a member of every
nonempty PLC and triangulation.

PLCs and the faces of a facade are defined in a way that gives a geometric model
the power to constrain how the boundary of a facade can be triangulated.

Definition 4 (Piecewise Linear Complex; Face of a Facade) An open piecewise lin-
ear complex (PLC) X is a set containing a finite number of open facades that satisfy
the following two restrictions:

• For every facade f ∈ X, the boundary of f is a union of facades in X.2 For ex-
ample, X contains both endpoints of every segment in X, and every 2-facade’s
boundary is a union of segments and vertices in X.

2The boundary of a vertex is the empty set, which is a union of zero facades.



General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I 591

• For any two facades f,g ∈X, f ∩ g = ∅.

The faces of a facade f are {g ∈X : g ⊆ closure(f )}. They include f itself and
its vertices. The proper faces of f are all its faces except f and ∅.

For any open PLC X, {closure(f ) : f ∈X} is a closed piecewise linear complex.

It is possible to reverse the transformation and convert a closed PLC into an open
PLC by subtracting from each facade every facade of lower dimension. Hence, for a
closed facade in a closed PLC, define the internal boundary of the closed facade to be
the internal boundary of the corresponding open facade. The internal boundary of a
closed facade is not really part of the boundary of the closed facade, and it is defined
only in the context of a PLC.

Definition 5 (Triangulation Domain) Let |X| denote the union of facades
⋃

f∈X f .
|X| is called the triangulation domain, or simply the domain. (It is also known as the
underlying space of X.)

A corollary of the definition of PLC is that
⋃

f∈X f is the same for an open PLC
and the corresponding closed PLC. Another corollary is that a closed PLC Y satisfies
the restrictions that Miller et al. [32] specified when they introduced the notion of a
PLC.

• For every facade f ∈ Y , the boundary of f is a union of facades in Y .
• For any two facades f,g ∈ Y , f ∩ g is a union of facades in Y . (Usually f ∩ g is a

single facade or the empty set, but imagine two nonconvex 2-facades that intersect
each other at several isolated vertices and along several line segments. Each of
these vertices and line segments must be in Y .)

• For any two facades f,g ∈ Y , if f ∩ g has the same dimensionality as f , then
f ⊂ g, and f is of lower dimensionality than g.

Miller’s third restriction is somewhat cryptic; its main effect is to prevent two
facades of the same dimensionality from having overlapping relative interiors. The
formulation of PLCs in terms of open facades is more elegant, because no similarly
cryptic restriction is needed. However, closed PLCs offer a more elegant model for
the incremental update of a PLC (discussed in the third article of this series). The
insertion or deletion of a facade in a closed PLC can imply several modifications to
the corresponding open PLC. For instance, when a vertex is added to an open PLC,
if a facade contains the vertex, the facade must have that point removed.

This formal hair-splitting between open and closed facades is necessary because it
is the open facades that determine the facade boundaries, but it is the closed facades
that occlude visibility, and simplices must respect the closed facades. The rest of this
article maintains an uneasy duality, wherein every use of the word “facade” refers to
both the open and the closed versions of the facade. Fortunately, the bijective map
between open and closed PLCs usually makes it unnecessary to specify which type
of PLC is under discussion.

The reader should be aware that every reference to the “boundary of a facade”
or the “faces of a facade” regards the boundary of the open facade, including the
internal boundary. Similarly, the “relative interior of a facade” refers to the open
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facade. However, wherever this article states that a facade contains a point, a facade
obstructs visibility, or a simplex respects a facade, the closed facade is implied.

It makes no difference to most of this article’s results whether or not facades are
connected. An open facade made up of n connected components can be replaced
with n separate facades without changing any essential properties of the PLC. Some
components of a facade may be grazeable while others are not, so breaking up a
facade into its components may improve the prospects for having a weakly ridge-
protected PLC. However, there is an important convention for weighted CDTs. If
a vertex in a PLC is an endpoint of two collinear segments and is not needed to
support their intersection with some other facade, it is usually better to think of the
two segments as parts of a single 1-facade, because the vertex might be absent from
the weighted CDT. (See Definition 12 in Section 2.3 for details.)

There appear to be few publications exploring the properties of geometric par-
titions that permit the existence of faces with internal boundaries. An interesting
exception by Grünbaum and Shephard [25] shows how to reliably compute Euler
characteristics for a class of objects more general than PLCs. One can convert an
open PLC into a “relatively open convex dissection” by partitioning its open facades
into open convex facades (polyhedra), whereupon its Euler characteristic is easy to
calculate. This method is particularly interesting when applied to an open facade with
a complicated internal boundary, or to a subset of an open PLC that allows faces of
facades to be absent.

The notion of a PLC generalizes to complexes of curved manifolds. For example,
every semialgebraic or subanalytic set of points can be partitioned into a stratifica-
tion—a set of strata (which generalize open facades), each of which is a manifold.
See Gomes [23] for an excellent introduction to the topic.

How might a PLC be represented as a data structure? Here are a few suggestions.
A 0-facade (vertex) is represented by its d coordinates. For j ≥ 1, a j -facade f is
most easily represented by a list of its proper faces. To conserve space, f can be rep-
resented by a list of every proper face of f that is not a proper face of a proper face of
f ; the unlisted faces can be inferred by reading the listed faces’ lists. This represen-
tation differs in several ways from the usual face lattice representation of polyhedra
and polyhedral complexes. First, the faces in f ’s list are not necessarily all (j − 1)-
faces, because f ’s internal boundary may include lower-dimensional faces that are
not included in any (j −1)-face. For example, a 2-facade may have an isolated vertex
inside it. Second, this representation is technically not a lattice. For example, two 2-
facades might intersect at two separate vertices that are included in no other facades,
so a pair of facades do not necessarily have a unique meet and join, contrary to the
definition of “lattice.” See Ziegler [54] for a definition and discussion of face lattices.

Within the affine hull of a j -facade f , each (j − 1)-face of f has two sides. In
an implementation of the sweep algorithm or gift-wrapping algorithm for CDT con-
struction, the list of f ’s (j − 1)-faces should include annotations that indicate which
side (or sides) of each (j − 1)-face adjoins f . A (j − 1)-face on f ’s internal bound-
ary adjoins f on both sides. If an open (j −1)-face is composed of several connected
components, it needs one annotation for each side of each connected component.

For the algorithms described in the sequel articles, it is unnecessary to specify the
d-facades explicitly as part of the input. Instead, each side of each (d − 1)-facade
should bear an annotation that indicates whether it adjoins the exterior domain or the



General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I 593

interior of the triangulation domain. A (d− 1)-facade is part of the internal boundary
of a PLC if both sides adjoin the triangulation domain, part of the external boundary
if one side adjoins the exterior domain, and a dangling facade if both sides adjoin the
exterior domain.

Definition 6 (Dangling Facade) Let X be a d-dimensional PLC. A facade in X is a
dangling facade if it is not a face of any d-facade in X.

To a programmer, the distinction between open and closed facades is almost irrel-
evant. Any reasonable PLC data structure simultaneously represents both.

2.2 Weighted Delaunay Triangulations

This section reviews known facts about weighted Delaunay triangulations [2] and
introduces new terminology as a preliminary to introducing weighted CDTs in Sec-
tion 2.4. Consider the Euclidean space Ed+1, and let x1, x2, . . . , xd+1 be the coor-
dinate axes. Ed is the subspace of Ed+1 orthogonal to the xd+1-axis. In the space
Ed+1, a d-flat is vertical if it includes a line parallel to the xd+1-axis.

Definition 7 (Polyhedral Complex; Triangulation) A polyhedral complex T is a set
containing a finite number of closed, convex polyhedra that satisfy the following two
restrictions:

• For every polyhedron s ∈ T , every face (in the sense of Definition 3) of s is in T .
• For any two polyhedra s, t ∈ T , if s and t are not disjoint, then s ∩ t is a face of

both s and t .

A triangulation or simplicial complex is a polyhedral complex whose members
are all simplices.

Every polyhedral complex is a PLC. Observe that polyhedral complexes are less
general than PLCs whose facades are all convex, because they use a different defin-
ition of “face.” In a PLC, one side of a tetrahedron might be subdivided into several
triangular faces, and a (closed) tetrahedron might have an edge passing through its
interior. In a polyhedral or simplicial complex, both circumstances are forbidden: a
side of a tetrahedron is represented by exactly one triangular face, and a tetrahedron’s
interior intersects no other simplex of equal or lesser dimension.

A d-dimensional triangulation or polyhedral complex is regular if it is the vertical
projection of one “side” of some convex (d + 1)-polyhedron.

Definition 8 (Downward-Facing; Underside; Regular) Let P be a convex (d + 1)-
polyhedron in Ed+1. A face f of P is downward-facing if no point in P is directly
below any point in f (i.e. having the same x1- through xd -coordinates but a lesser
xd+1-coordinate). The underside of P is the set of all its downward-facing faces.

A d-dimensional triangulation or polyhedral complex is regular if it can be
formed by vertically projecting the underside of some convex (d + 1)-polyhedron
P into Ed (by dropping the xd+1-coordinate of each vertex).
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Fig. 12 The parabolic lifting
map. In this illustration a
two-dimensional vertex set V is
lifted to a paraboloid in E3. The
underside of the convex hull of
the lifted vertices is a lifted
Delaunay triangulation

The best-known regular triangulation is the Delaunay triangulation. The regularity
of most Delaunay triangulations is demonstrated by the well-known parabolic lifting
map of Seidel [18, 42] (inspired by a spherical lifting map suggested by Brown [5]).
Let V be a set of vertices in Ed for which a Delaunay triangulation is sought. The
lifting map maps each vertex in V to a vertex on a paraboloid in a space one dimen-
sion higher, as Fig. 12 illustrates. Specifically, each vertex v = (vx1 , vx2, . . . , vxd ) ∈ V

maps to a point v+ = (vx1 , vx2, . . . , vxd , v
2
x1
+ v2

x2
+ · · · + v2

xd
) in Ed+1.

Definition 9 (Companion) The pair of vertices v and v+ are called companions: v+
is the lifted companion of v, and v is the projected companion of v+.

If s is a k-simplex with vertices v0, v1, . . . , vk , then its lifted companion s+ is the
k-simplex embedded in Ed+1 whose vertices are v+0 , v+1 , . . . , v+k ; and s is the pro-
jected companion of s+. Note that s+ is flat, and does not curve to hug the paraboloid.

Let V + = {v+ : v ∈ V }. The Delaunay triangulation of V is regular because it has
the same combinatorial structure as the underside of the convex hull of V +, as the
forthcoming Theorem 2 shows. Each downward-facing simplex of conv(V +) projects
to a Delaunay simplex of V . This connection is routinely used to transform any (d +
1)-dimensional convex hull construction algorithm into a d-dimensional Delaunay
triangulation construction algorithm.

Lemma 1 Let S be a hypersphere in Ed . Let S+ = {p+ : p ∈ S} be the ellipsoid
found by lifting S to the paraboloid. Then the points of S+ lie on a non-vertical d-
flat h. (Recall that a d-flat is vertical if it is parallel to the xd+1-axis.) Furthermore, a
point p inside S lifts to a point p+ below h, and a point p outside S lifts to a point p+
above h. Therefore, testing whether a point p is inside, on, or outside S is equivalent
to testing whether the lifted point p+ is below, on, or above h.

Proof Let O and r be the center and radius of S, respectively. Let p be a point
in Ed . The xd+1-coordinate of p+ is |p|2. By expanding |O − p|2, we have that
|p|2 = 2O · p− |O|2 + |Op|2.
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With O and r fixed and x ∈ Ed varying, the equation xd+1 = 2O · x − |O|2 + r2

defines a non-vertical d-flat h in Ed+1. For every point p ∈ S, |Op| = r , so S+ ⊂ h.
For every point p 
∈ S, if |Op| < r , then the lifted point p+ lies below h, and if
|Op|> r , then p+ lies above h. �

Theorem 2 [42] Let s be a simplex whose vertices are in V , and let s+ be its lifted
companion. Then s is Delaunay if and only if s+ is included in some face of the
underside of conv(V +). The simplex s is strongly Delaunay if and only if s+ is a
face of the underside of conv(V +) and no vertex in V + lies on s+ except the vertices
of s+.

Proof If s is Delaunay, there is a circumsphere S of s such that no vertex of V lies
inside S. Let h be the unique d-flat in Ed+1 that includes S+. By Lemma 1, no vertex
in V + lies below h. The d-flat h includes s+ because the vertices of s+ are in S+.
Therefore, s+ is included in a downward-facing face of the convex hull of V +. If s

is strongly Delaunay, no vertex in V + lies below h, and no vertex in V + lies on h

except the vertices of s+. Therefore, s+ is a downward-facing face of the convex hull
of V +.

The converse implications follow by reversing the argument. �

A weighted Delaunay triangulation is like a Delaunay triangulation, but each
vertex v ∈ V is assigned a real-valued weight wv . A vertex v lifts to a companion
v+ = (vx1, vx2 , . . . , vxd , v

2
x1
+ v2

x2
+ · · · + v2

xd
−wv). The xd+1-coordinate |v|2 −wv

is called the height of v. The weighted Delaunay triangulation of V is the projection
to Ed of the underside of conv(V +). It follows that a weighted Delaunay triangula-
tion is regular.

Some faces of conv(V +) might not be simplices, because some selection of d + 2
or more of the lifted vertices might lie on a common non-vertical d-flat. (Observe that
vertices that lie on a common vertical d-flat do not cause trouble, because a vertical
face cannot be downward-facing. This is good news, because a typical real-world ver-
tex set V includes large groups of cohyperplanar vertices.) These non-simplicial faces
can be filled with any compatible triangulation, so V has more than one weighted
Delaunay triangulation. However, some faces can be triangulated with triangulations
that are not regular, so not all weighted (or unweighted) Delaunay triangulations are
regular! Section 6 describes a simple way to perturb the weights to simulate the cir-
cumstance that no d + 2 vertices in V + lie on a common non-vertical d-flat.

If its weight is sufficiently small, a lifted vertex v+ might not be downward-
facing—it might not lie on the underside of conv(V +)—in which case the vertex v

is absent from the weighted Delaunay triangulation of V , as illustrated in Fig. 13(a).
Then v is said to be submerged. If every vertex has a weight of zero, the weighted
Delaunay triangulation is the Delaunay triangulation, and no vertex is submerged,
because every point on the paraboloid is on the underside of the convex hull of the
paraboloid.

Weights necessitate a generalization of the notion of a “Delaunay simplex.”

Definition 10 (Semiregular; Witness; Weighted Delaunay Triangulation) A simplex
s whose vertices are in V is semiregular if s+ is included in a downward-facing face
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Fig. 13 (a) The triangles r , s, and t are all semiregular, but only t is regular. Triangles r and s have the
same witness d-flat hr = hs , and t has a different witness ht . The vertex v is submerged. (b) The bold edge
is a constraining segment. The triangles r , s, and t are all constrained semiregular, but only t is constrained
regular. No triangle is semiregular

of conv(V +). In other words, there exists a non-vertical d-flat hs ⊂ Ed+1 such that
hs includes s+, and no vertex in V + lies below hs . The d-flat hs is called a witness3

to the semiregularity of s.
A weighted Delaunay triangulation of V is a simplicial complex that fills conv(V )

wherein every simplex is semiregular.

Figure 13(a) illustrates three semiregular triangles and their witnesses. All their
edges and vertices are semiregular as well, but the submerged vertex v is not semi-
regular.

Definition 11 (Regular) A simplex s is regular if s+ is a downward-facing face of
conv(V +), and no vertex in V + lies on s+ except the vertices of s+. In other words,
there exists a non-vertical d-flat hs ⊂Ed+1 that is a witness to the regularity of s: hs

includes s+, and every vertex in V + lies above hs , except the vertices of s+.
A triangulation is regular if there exists an assignment of weights to its vertices

for which every simplex is regular.

Of the three triangles in Fig. 13(a), only t is regular. All the edges are regular
except the edge shared by r and s. All the vertices are regular except v.

In a weighted Delaunay triangulation, a witness serves the same purpose that a
circumsphere serves in an ordinary Delaunay triangulation. Theorem 2 shows that
if all the weights are zero, “semiregular” is equivalent to “Delaunay” and “regular”
is equivalent to “strongly Delaunay.” If a simplex s is semiregular, it appears in at
least one weighted Delaunay triangulation of V . If s is regular, it appears in every
weighted Delaunay triangulation of V (see Theorem 19).

2.3 Triangulations of PLCs

For some geometric applications, the notion of a “constrained triangulation” of a PLC
should permit some vertices to be left out, just as weighted Delaunay triangulations

3A witness for a semiregular or regular simplex is also known as a supporting hyperplane of conv(V+),
but a witness for a constrained semiregular simplex is not necessarily a supporting hyperplane.
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submerge vertices with insufficient weight. However, some vertices cannot be omit-
ted, because they support other facades. The following definition identifies vertices
that could conceivably be submerged.

Definition 12 (Submersible) A vertex v in a closed PLC X is submersible if v is a
proper face of some other facade (i.e. v is not isolated), and the removal of v from
X (and possibly the merging of two collinear 1-facades) yields a valid closed PLC.
Equivalently, either

• v lies on the internal boundary of a facade f ∈ X such that f is a face of every
facade (except v) that contains v, or

• v is an endpoint of two collinear 1-facades in X, and the condition above is satisfied
by merging them into a single 1-facade f . In this case, X should be modified to
reflect the merger. A row of collinear segments might comprise one 1-facade with
many submersible vertices in it.

The user of a PLC triangulation algorithm can arbitrarily designate vertices as
being non-submersible, but a vertex can be designated as submersible only if Defini-
tion 12 permits it.

Definition 13 (Fill; Respect; Triangulation of a PLC) Let T be a set of simplices. T
fills X if |T | = |X|, meaning that

⋃
s∈T s =⋃f∈X f .

Let f be a closed facade. Let s be a simplex or convex polyhedron. Then s respects
f if s ∩ f is a union of faces of s.

There is an equivalent definition that is less clear, but easier to use in proofs: s
respects f if, for every face t of s whose relative interior intersects f , t ⊆ f .

If f is an open facade, s is said to respect f if s respects the closure of f .
A simplex (or convex polyhedron) s respects a PLC X if s ⊆ |X| and s respects

every facade in X except perhaps the submersible vertices—after agglomerating the
segments of X into 1-facades as described in Definition 12.

A triangulation T respects a PLC X if every simplex in T respects X.
A triangulation T is a triangulation of a PLC X if T fills and respects X, and T

has no vertex not in X. A triangulation that fills and respects X, but may have vertices
not present in X, is a conforming triangulation or Steiner triangulation of X.

This definition allows a triangulation T of X to submerge vertices in X. However,
submersibility is a nuisance when it is not needed. For some applications, such as
unweighted PLCs and ordinary CDTs (in which vertices are never submerged), it
does no harm to designate every vertex in X as non-submersible. Then Definition 13
implicitly requires that if T is a triangulation of X, then T and X have exactly the
same vertices, because T must respect every vertex in X.

Why must adjoining collinear segments be agglomerated for Definition 13? If a
vertex is submerged, then a triangulation lacking that vertex cannot respect a segment
that terminates at that vertex, but it can respect a 1-facade that passes through the
vertex.
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Fig. 14 A lifted CDT. The
paraboloid is inverted to show
its topography more clearly. The
bold edges are constraining
edges that are not Delaunay.
They map to reflex edges of the
lifted surface

2.4 Weighted CDTs

Before considering the formal definition of CDT, let us try to see intuitively what a
CDT is, in terms of the parabolic lifting map. Suppose T is a CDT of a PLC X. Let
T + = {s+ : s ∈ T } be the simplicial complex, embedded in Ed+1, defined by lifting
T . As Fig. 14 illustrates, the lifted triangulation T + graphs a continuous piecewise
linear function but, in general, is not the underside of a convex polyhedron: each facet
of the CDT that is not constrained Delaunay is mapped to a reflex ridge in the lifted
surface. (A (d − 1)-simplex is called a facet if it exists in the ambient space Ed , and
a ridge if it exists in the ambient space Ed+1.)

However, from any point p in the interior of a d-facade, the portions of the CDT
visible from p appear convex on the lifting map. Only facets included in (d − 1)-
facades can lift to reflex ridges; every other facet is constrained Delaunay.

The next several definitions build toward the definition of a CDT or, more gener-
ally, a weighted CDT, which is a triangulation of a weighted PLC.

Definition 14 (Weighted PLC) A weighted PLC is a PLC in which each vertex is
assigned a real-valued weight.

Sections 3.1 and 3.3 study the relationship between the weighted CDT of a
weighted PLC and the weighted CDTs of its facades. Consider computing a trian-
gulation of a two-dimensional PLC. Some algorithms need to “triangulate” the 1-
facades of the PLC first—in other words, to decide which vertices on the 1-facades
are submerged. The 1-facades may have both submersible and non-submersible ver-
tices. A 1-facade in isolation does not reveal which of its vertices are submersible in
the two-dimensional PLC. Therefore, it is best to think of submersibility as a global
property of a vertex which remains fixed across all contexts, and is determined by the
highest-dimensional PLC that contains the vertex. These observations motivate the
following two policies. First, the internal boundary of a 1-facade may contain both
submersible and non-submersible vertices (whereas the external boundary is a set of



General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I 599

Fig. 15 In this three-dimensional example the 2-facade f occludes the visibility between p and q . The
point m can see both k and n, but the visibility between k and n is occluded—not by f , but by an edge
of f

non-submersible vertices). Second, non-submersible vertices occlude visibility and
submersible vertices do not. This policy ensures that the weighted CDT of a 1-facade
is consistent with the weighted CDT of any higher-dimensional facade that includes
the 1-facade.

Visibility is occluded by constraining facades.

Definition 15 (Constraining Facade) A constraining facade in a d-dimensional PLC
X is any facade in X that is not a submersible vertex or a d-facade.

Definition 15 omits submersible vertices because they do not occlude visibility or
constrain the triangulation. It omits d-facades because they do not occlude visibility,
and because a simplex or polyhedron that respects all the lower-dimensional facades
automatically respects the d-facades.

Definition 16 (Occlusion; Visibility) Within a PLC X, the visibility between two
points p and q is occluded if pq 
⊆ |X|; or if there is a (closed) constraining facade
f ∈X such that the line segment pq intersects f , and neither p nor q lie on the affine
hull of f . See Fig. 15. The points p and q are visible from each other (equivalently,
can see each other) if pq ⊆ |X| and X places no constraining facade between them.

If no vertex is submersible, a more elegant characterization is that p and q can see
each other if there is an open facade f ∈X that includes the open line segment pq .
Open facades thus act as conductors of visibility. In this interpretation the d-facades
play an essential role.4

There is a close relationship between visibility and the notion of respecting a PLC.

Theorem 3 If a (closed) simplex or convex polyhedron s respects X, every point in
s can see every other point in s.

Proof Suppose for the sake of contradiction that the visibility between two points
p,q ∈ s is occluded by some facade f . Then pq intersects f at a point m, but f

4An attractive alternative formulation of a weighted PLC extends this characterization to PLCs with sub-
mersible vertices. Express a weighted PLC as two separate sets: a PLC X with no submersible vertices,
and a set V of submersible vertices. In this formulation the open facades of X are both conductors and
occluders of visibility, and there is a more elegant definition of “respect”: a triangulation respects X if
every open simplex of the triangulation is included in an open facade of X.
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contains neither p nor q . Let t be the face of s whose relative interior contains m;
then pq ⊆ t . Because s respects f , and f intersects the relative interior of a face t of
s, it follows that t ⊆ f , contradicting the fact that f contains neither p nor q . �

Simplices in CDTs have the following property.

Definition 17 (Constrained Semiregular) A simplex s is constrained semiregular
within X if

• the vertices of s are in X,
• s respects X, and
• there exists a d-flat hs ⊂ Ed+1 that includes s+, such that no vertex v ∈X that is

visible from a point in the relative interior of s lifts to a point v+ below hs . The
d-flat hs is a witness to the constrained semiregularity of s.

The third condition is a bit difficult to visualize, because one must simultaneously
picture the vertices in the ambient space Ed where visibility is determined, and in
the ambient space Ed+1 where witness d-flats are defined, as Fig. 13(b) illustrates.
Think of it this way: if some lifted vertex v+ lies below the d-flat that includes a
lifted d-simplex s+, then s is not semiregular, because s+ is not on the underside of
the convex hull of the lifted vertices. However, if some facade occludes the view of v
from inside s, s may be constrained semiregular anyway and appear in the weighted
CDT. The triangle s in Fig. 13(b) is an example: although v+ lies below the witness
hs , v is not visible from the interior of s, so s is constrained semiregular. The shaded
triangle in Fig. 14 is an example in an unweighted CDT (but note that the paraboloid
in the figure is inverted for clarity, so “below” is “above”).

In Fig. 13(b) all three triangles are constrained semiregular, and all the edges are
constrained semiregular except the bold constraining segment.

Definition 18 (Constrained Regular) A simplex s is constrained regular within X if

• the vertices of s are in X,
• s respects X, and
• there exists a d-flat hs ⊂Ed+1 that includes s+, such that every vertex v ∈X that

is visible from a point in the relative interior of s, but is not a vertex of s, lifts to a
point v+ above hs .

Of the three triangles in Fig. 13(b), only t is constrained regular. Neither the edge
shared by r and s nor the constraining segment shared by s and t is constrained
regular, but the other edges are.

The following implications hold. Statements in brackets are equivalent to the
statements immediately above them in the unweighted case (i.e. when all the vertex
weights are zero). Locally semiregular and locally regular are defined in Section 3.2
and apply to (d − 1)-simplices only.
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s is regular and respects X −→ s is semiregular and respects X

[s is strongly Delaunay and respects X] [s is Delaunay and respects X]
↓ ↓

s is constrained regular −→ s is constrained semiregular
[s is constrained Delaunay]

↓ ↓
s is locally regular −→ s is locally semiregular

[s is locally Delaunay]
The statements in the right column become equivalent to the corresponding state-

ments in the left column when the following condition holds. (Section 6 discusses a
perturbation technique that enforces it.)

Definition 19 (Genericity) A d-dimensional PLC X is generic if no d + 2 vertices
in X lift to a common non-vertical d-flat (in the ambient space Ed+1).

If X is unweighted (or all the weights are equal), an equivalent statement is that
no d + 2 vertices in X lie on a common hypersphere (in the ambient space Ed ).

Notions like constrained regularity are defined in the context of a specific PLC.
The definition of “CDT” uses the notion that a simplex can be constrained semi-
regular within the context of some facade f of a PLC X, yet not be constrained
semiregular within the context of X itself.

Definition 20 (Facade PLC) Let f be a k-facade in a PLC X (for any value of k). The
facade PLC Yf is a k-dimensional PLC containing f and all the faces of f (taken
from X).

The vertices in a facade PLC often have coordinates from an ambient space Ed

whose dimensionality is higher than that of the facade PLC itself (i.e. d > k). How-
ever, it is the latter dimensionality that defines constraining facades (facades of di-
mension k − 1 or less that are not submersible vertices) and ridge protection (the
protection of facades of dimension k − 2 or less; see Definition 23) within Yf . A
simplex that is regular within Yf might not be regular within X, and a segment that is
grazeable within X might not be grazeable within Yf . Hence, the word within is used
wherever the context is not clear. Occasionally, this article will say that a simplex is
“semiregular within the facade f ” as shorthand for saying it is semiregular within the
facade PLC Yf . Likewise, a “triangulation of f ” is a triangulation of Yf .

At last, a definition of this article’s central object of study.

Definition 21 (Weighted CDT) A weighted constrained Delaunay triangulation of
a weighted PLC X is a simplicial complex that fills X wherein every simplex is
constrained semiregular within the lowest-dimensional facade of X that includes it.

A constrained Delaunay triangulation of an unweighted PLC is a weighted CDT
for which all the vertices in the PLC are implicitly assigned a weight of zero.

Figure 16 gives two examples of weighted CDTs, in one and two dimensions. In
both triangulations, some vertices are submerged, and some collinear segments of the
PLC are agglomerated into single edges of the triangulation. Observe that the lifted
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Fig. 16 T1 and T2 are weighted
CDTs of the one- and
two-dimensional weighted PLCs
X1 and X2. White vertices are
submersible; black vertices are
non-submersible. The number
by each vertex is the height
(xd+1-coordinate) to which it is
lifted

one-dimensional triangulation T +1 is a sequence of convex hull undersides separated
by non-submersible vertices. Note that d = 1 is the only dimensionality in which a
PLC might have a new CDT if a vertex changes from submersible to non-submersible.
For a higher-dimensional PLC with no dangling 1-facades, such a change might cause
the PLC to have fewer CDTs (if a submerged vertex is proclaimed non-submersible),
but it cannot cause the PLC to have a CDT it did not have before. (This claim is a
consequence of the Delaunay Lemma in Section 3.2.)

In an unweighted CDT X (equivalently, if all the weights are equal), every vertex
is regular and constrained regular, hence no vertex is submerged.

Definition 21 gives no reason to believe that the eligible simplices (those that are
constrained semiregular within the lowest-dimensional facades that include them)
can gel together to form a complex. Fortunately, if every facade can be filled with
constrained regular simplices, Corollary 18 in Section 3.3 establishes that the facade
CDTs match each other where they meet. Not every facade can be thus filled (recall
Schönhardt’s polyhedron). The next few definitions describe a class of PLCs that are
guaranteed to have CDTs.

Definition 22 (Grazeable; Grazing Triangle) A facade f is grazeable if there is an
open grazing triangle L=�pqr ⊂ |X| such that

• p can see every point in the open triangle L,
• pq intersects the open version of f (i.e. f with its external and internal boundaries

removed), and
• neither p nor q lie on the affine hull of f .

Every point in an open grazing triangle �pqr is visible from p, but q is not (its
visibility is occluded by f ); so, loosely speaking, there is a line of visibility that
grazes f . If f is a (d − 2)-facade, Definition 22 is equivalent to the 180◦ angle
condition described in Section 1.1, as Fig. 17 shows. Definition 22 extends the idea
to facades of dimension less than d − 2. Note that the proper faces of a grazeable
facade are not necessarily grazeable themselves.

Recall from Section 1.1 that a three-dimensional PLC X is ridge-protected if every
segment in X is strongly Delaunay. The extension of this definition to weighted PLCs
accounts for the possibility that vertices might be submerged: X is ridge-protected
if every 1-facade is a union of regular edges, and every non-submersible vertex is
regular. (Submersible vertices do not need to be regular, because it is okay to let them
be submerged.) The extension of this definition to higher dimensions requires that
all constraining facades of dimension d − 2 or less be “regular,” but the definition of
“regular” applies only to simplices. It suffices if the facades can be broken up into
regular simplices that respect X.
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Fig. 17 Example of a grazeable
segment f . Here p and q cannot
see each other, but p sees every
point in the open triangle L, so
there is a line of visibility that
grazes f

Definition 23 (Ridge Protection) A facade f ∈X is protected if there exists a trian-
gulation of f whose simplices are regular within X and respect X.

A simpler definition is that f is protected if f is a union of simplices that are
regular within X and respect X. (The equivalence of this definition with the first
follows from the upcoming Theorem 4′ and Corollary 18.)

A weighted PLC X is weakly ridge-protected if every grazeable constraining fa-
cade in X of dimension d − 2 or less is protected.

X is ridge-protected if every constraining facade in X of dimension d − 2 or less
is protected.

How can you tell if a facade f is protected? A weighted Delaunay triangulation
T (unconstrained) of the vertices in X contains every simplex that is regular within
X (by Theorem 19 in Section 3.3). So the answer is to construct T and search it for
a subset of faces that fill f . If T contains such faces, check whether they respect f ’s
faces and are regular. If X is not generic, the trickiest part is distinguishing the regular
simplices in T from the merely semiregular. Dafna Talmor (personal communication)
points out that simplices that are semiregular but not regular dualize to degenerate
faces of the power diagram [2] (the Voronoi diagram if all the weights are zero). This
observation does not offer the most numerically effective way to test them, though,
and this is not the place to describe a better way. However, the simplest approach is to
perturb the vertex weights as described in Section 6 before constructing T . Then all
the simplices in T are regular, and there is no need to test. Theorem 31 in Section 6
shows that the CDT of the perturbed PLC is a CDT of the unperturbed PLC.

Ridge protection implies that T respects all the constraining k-facades in X for k ≤
d−2, but might not respect the (d−1)-facades. Weak ridge protection implies that T
respects the grazeable constraining facades of dimension d−2 or less (and their faces,
whether grazeable or not), but perhaps not the other facades. One of the main results
of this article is that every weakly ridge-protected weighted PLC has a weighted CDT,
so the missing facades can be recovered without any need for additional vertices. See
Section 5 for a proof.

Ridge protection requires non-submersible vertices to be regular. For d = 2, this
is the sole requirement that defines ridge protection. In an unweighted PLC, every
vertex is regular, which is why every unweighted two-dimensional PLC has a CDT.
In the weighted PLC X2 in Fig. 16, the sole grazeable non-submersible vertex is
regular, so X2 is weakly ridge-protected and has a CDT. (The vertex at the center
of X2 is not regular, but it is not grazeable.) Figure 18 depicts two two-dimensional
weighted PLCs that are not weakly ridge-protected, and do not have weighted CDTs.
Both examples include a grazeable non-submersible vertex that is not regular.
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Fig. 18 Two weighted PLCs that do not have weighted CDTs. Imagine that you are viewing the lifted
vertices from directly underneath, and larger vertices are closer to you. The number by each vertex is the
height (xd+1-coordinate) to which it is lifted (i.e. its distance from you)

A recently proposed way to model domains like these ones and Schönhardt’s poly-
hedron is to generalize simplicial complexes to pseudosimplicial complexes com-
posed of nonconvex pseudosimplices. Aichholzer et al. [1] define constrained regular
pseudotriangulations that generalize the two-dimensional constrained regular trian-
gulations defined here, and are defined for every choice of vertex weights. Their
lifted surface is not necessarily continuous, and is not guaranteed to interpolate all
the vertex heights. Aurenhammer and Krasser [3] show that the approach generalizes
to higher-dimensional nonconvex polyhedra, but pseudosimplicial complexes repre-
senting polyhedra in three dimensions or more must sometimes introduce additional
vertices.

Throughout the rest of this article, the terms “PLC” and “CDT” refer to both un-
weighted and weighted PLCs and CDTs, except where otherwise noted.

3 Foundations

This section proves several fundamental properties of CDTs and weighted CDTs.
Among these are the fact that every face of a constrained semiregular simplex is
constrained semiregular within some facade (Section 3.1), the fact that constrained
regular simplices have disjoint relative interiors and form a complex, and the fact that
a generic PLC has at most one CDT (Section 3.3). The Delaunay Lemma offers a
powerful alternative characterization of what a CDT is (Section 3.2). Readers who
seek the minimum background for understanding the CDT construction algorithms
in the sequel articles may safely skip to Section 6.

3.1 Faces of Simplices Inherit Semiregularity and Constrained Semiregularity

CDTs (unweighted and weighted) have properties that allow proofs and algorithms to
work in a top-down fashion: if a domain can be filled with a complex of constrained
semiregular d-simplices, the lower-dimensional faces “work themselves out.”

Let s be a simplex that is constrained semiregular within some PLC X. Let t be a
face of s. If t is not included in a constraining facade in X, then t is also constrained
semiregular. What if t is included in a constraining facade? Then t might not be
constrained semiregular within X, but t is constrained semiregular within the lowest-
dimensional facade that includes t (and is not a submersible vertex). It follows that
the act of filling a d-facade with a complex of constrained semiregular d-simplices
automatically fills all of its proper faces with lower-dimensional CDTs.

First consider unconstrained semiregularity.
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Fig. 19 The simplex s is
regular because every lifted
vertex lies above some witness
d-flat hs for s+ , except the
vertices of s+. Let t be any face
of s. Tilting hs using t+ as a
hinge yields a witness d-flat ht
that shows that t is regular too

Theorem 4 Every face of a semiregular simplex is semiregular.

Theorem 4′ Every face of a regular simplex is regular.

Proof Let s be a semiregular simplex, and let t be a face of s as in Fig. 19. Let hs

be a witness to the semiregularity of s. That is, hs is a d-flat that includes s+, and no
vertex in X lifts to a point below hs . Clearly, hs is also a witness to the semiregularity
of t , so Theorem 4 holds.

Suppose s is regular. Then every vertex in X lifts above hs except the vertices
of s. Let ht be a d-flat found by tilting hs by a tiny amount (as illustrated), so that
ht includes t+ but lies below the vertices of s+ not shared by t+. If the tilt is small
enough, the other vertices in X still lift to points above ht . Hence, ht is a witness to
the regularity of t , and Theorem 4′ holds. �

Theorem 5 Let X be a PLC. Let s be a simplex, and let t be a face of s that is not
included in a (closed) constraining facade in X. If s is constrained semiregular, then
t is constrained semiregular.

Theorem 5′ Under the assumptions of Theorem 5, if s is constrained regular, then t

is constrained regular.

Proof Because s is constrained semiregular, s respects X. As t is a face of s, t also
respects X.

Observe that every vertex visible from the relative interior of t is visible from the
relative interior of s. Specifically, suppose a vertex v is visible from a point p in the
relative interior of t . Because p does not lie in a constraining facade in X, Lemma 6
below implies that some point p′ in the relative interior of s sees v.

The rest of the proof is identical to the proof of Theorems 4 and 4′, except that
only vertices visible from the relative interior of t are considered, and every occur-
rence of “semiregular” or “regular” is thus replaced with “constrained semiregular”
or “constrained regular.” �

The following lemma (which is used frequently in this article) tells us a way to
perturb a point p without occluding its visibility from another point q .
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Definition 24 (ε-Neighbor) A point p′ is an ε-neighbor5 of a point p, with respect to
a point q and a closed PLC X, if p′ ∈ |X|, |pp′| ≤ ε, and every (closed) constraining
facade in X that contains p contains either p′ or q .

Lemma 6 Let p and q be two points that can see each other within a PLC X. There
is a positive constant ε such that every ε-neighbor of p can see q .

Proof Any facade whose affine hull contains q cannot occlude the visibility between
p′ and q . Every facade that contains p contains either p′ or q , and thus cannot occlude
the visibility between p′ and q .

What about the other facades? The line segment pq does not intersect any of
them. There is a finite gap between pq and any facade that does not intersect pq , and
p must move some non-infinitesimal distance to close the gap. A sufficiently small
choice of ε ensures that every ε-neighbor of p is visible from q . �

Observe that if p lies in a constraining facade f , but p′ and q do not, then p′ is
not an ε-neighbor of p, and f might occlude the visibility between p′ and q .

Next, consider the circumstance where a face of a simplex is included in a
constraining facade. The case of a semiregular simplex is considered first (that’s
unconstrained semiregular, albeit in the context of a PLC), followed by the case of a
constrained semiregular simplex.

Theorem 7 Let s be a simplex, and let t be a face of s. Suppose a constraining
k-facade f ∈ X includes t . Let Yf be the k-dimensional facade PLC for f (recall
Definition 20).

If s is semiregular within X, then t is semiregular within Yf .

Theorem 7′ Under the assumptions of Theorem 7, if s is regular within X, then t is
regular within Yf .

Proof For intuition’s sake, consider first the special case where s is a Delaunay tetra-
hedron, illustrated in Fig. 20. No vertex lies inside the circumsphere of s. If a triangu-
lar face t of s lies within a 2-facade f , then t is Delaunay within the two-dimensional
PLC Yf . Why? Because the circumcircle of t is a cross section of the circumsphere
of s, and therefore it encloses no vertex. If s is strongly Delaunay, t is strongly De-
launay.

Figure 21 extends this reasoning to weighted CDTs. Let s be a semiregular sim-
plex. There is a witness d-flat hs that includes s+ such that no lifted vertex lies below
hs . Because the face t of s is included in a k-facade f , hs yields a witness to the fact
that t is semiregular within Yf as follows.

Let F be the affine hull of f . Think of F as the affine space in which Yf is defined.
Let F+ = {〈p,α〉 ∈ Ed+1 : p ∈ F,α ∈ R}. F+ is a vertical (k + 1)-flat in Ed+1, as
Fig. 21 shows. Think of F+ as the affine space in which witnesses for Yf are defined.
Then ht = hs ∩F+ is a witness k-flat within F+ that includes t+. Because no vertex

5It would be more apt to call this an (ε, q,X)-neighbor of p, but it would clutter the writing.
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Fig. 20 An unweighted
example where d = 3. If a
tetrahedron s is Delaunay, each
of its faces has an empty
circumcircle, because each
face’s circumcircle is a cross
section of the tetrahedron’s
circumsphere

Fig. 21 A weighted example where d = 2. If a simplex s is semiregular (no lifted vertex lies below hs ),
any face t of s that lies in a facade f is semiregular within f (no lifted vertex lies below ht )

in X lifts to a point below hs , no vertex in Yf lifts to a point below ht , so t is
semiregular within Yf and Theorem 7 holds.

If s is regular, the lifted companion of every vertex in X lies above hs , except the
vertices of s+ (which lie on hs ). Thus the lifted companion of every vertex in Yf lies
above ht , except the vertices of s+. If every vertex of s in Yf is also a vertex of t ,
then ht is a witness to the regularity of t within Yf . Otherwise, ht contains at least
one vertex of s+ that is not a vertex of t+, but that is no obstacle. By tilting slightly
as described in the proof of Theorem 4′, ht becomes a witness to the regularity of t
within Yf . Thus Theorem 7′ holds. �

The next theorem generalizes Theorem 5, and is the constrained analog of Theo-
rem 7.

Theorem 8 Let s be a simplex, and let t be a face of s. Let f be the lowest-
dimensional facade in X that includes t and is not a submersible vertex.
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Fig. 22 (a) Example in which f is a 2-facade inside a three-dimensional PLC. The tetrahedron s (which
is not a facade) intersects f at a triangular face of s. The point p lies in the relative interior of the triangular
face, and p′ lies in the interior of s. Both p and p′ can see v. (b) Here s intersects f at an edge t . Although
v is visible from every point on t , v is not visible from inside s

If s is constrained semiregular within X, then t is constrained semiregular within
Yf .

Theorem 8′ Under the assumptions of Theorem 8, if s is constrained regular within
X, then t is constrained regular within Yf .

Proof Because s is constrained semiregular, s respects X. As t is a face of s, t also
respects X. Moreover, t ⊆ f = |Yf |, so t respects Yf .

Let v be any vertex in Yf that is visible from some point p in the relative interior of
t . The following reasoning shows that v is also visible from some point in the relative
interior of s. See Fig. 22(a). As p can see v, Lemma 6 guarantees that there is an
ε > 0 such that every ε-neighbor of p can also see v. Because t respects f ’s faces
and f is the lowest-dimensional non-submersible facade that includes t , the relative
interior of t does not intersect any proper face of f , with the possible exception of
submersible vertices. Therefore, every constraining facade that contains p has f for
a face and contains v as well. It follows that every point in |X| within a distance of ε
from p is an ε-neighbor of p (with respect to v). Because p is on the boundary of s,
v is visible from some point in the relative interior of s.

The rest of the proof is identical to the proof of Theorems 7 and 7′, except that
only vertices that are in Yf and visible from the relative interior of t are considered,
and every occurrence of “semiregular” or “regular” is thus replaced with “constrained
semiregular” or “constrained regular.” �

Figure 22(b) demonstrates why Theorems 8 and 8′ do not apply if f is not the
lowest-dimensional facade (other than a submersible vertex) that includes t . In this
example, an edge t of a tetrahedron s is a constraining segment on the internal bound-
ary of a 2-facade f . Although s is constrained regular within X, t is not constrained
regular within Yf , because the vertex v is visible from every point on t . The 2-facade
g occludes the visibility of v from every point in the interior of s, allowing s to be
constrained regular.

The next two theorems simplify proving that a triangulation is a CDT, by putting
the burden on the highest-dimensional simplices.

Theorem 9 Let X be a d-dimensional PLC with no dangling facades (i.e. each fa-
cade in X is included in a d-facade in X). Let T be a simplicial complex that fills
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X. Suppose every d-simplex in T is constrained semiregular. Then T is a CDT of X.
Furthermore, for every facade f in X except submersible vertices, {t ∈ T : t ⊆ f } is
a CDT of Yf .

Proof By the definition of “constrained semiregular,” every d-simplex in T respects
X; and as T is a simplicial complex with no dangling simplices, every simplex in T

respects X.
Let t be any simplex in T . Let f be the lowest-dimensional facade in X that

includes t . If f is a vertex, then t = f and t is trivially constrained semiregular
within Yf . Otherwise, let s be a d-simplex in T having t for a face. (Some such d-
simplex must exist, because T is a simplicial complex filling a PLC with no dangling
facades.) By assumption, s is constrained semiregular, so t is constrained semiregular
within Yf by Theorem 8.

Therefore, every simplex in T is constrained semiregular within the lowest-dimen-
sional facade that includes it. By definition, T is a CDT of X. Because T fills and
respects X, for every non-submersible facade f ∈X, the subcomplex {t ∈ T : t ⊆ f }
fills and respects Yf , and thus is a CDT of Yf . �

The next theorem generalizes Theorem 9 to cover PLCs of mixed dimensionality.

Theorem 10 Let X be a PLC (possibly with dangling facades). Let T be a simplicial
complex that fills X. Suppose that for every k ≥ 1, for every k-facade f ∈ X that
is not a face of a higher-dimensional facade, every k-simplex of T included in f is
constrained semiregular within Yf . Then T is a CDT of X. Furthermore, for every
facade f in X except submersible vertices, {t ∈ T : t ⊆ f } is a CDT of Yf .

Proof Identical to the proof of Theorem 9, except that s is a k-simplex in T having
t for a face, where k is the dimensionality of the highest-dimensional facade that
includes t . (By assumption, s is constrained semiregular within the k-facade that
includes s.) �

This section concludes with two corollaries of Theorem 7′.

Corollary 11 If X is ridge-protected, every facade in X is ridge-protected. (That is,
if f ∈X, then its facade PLC Yf is ridge-protected.)

Proof Ridge protection holds trivially for a PLC of dimension less than two, so let
f be any facade in X of dimension k ≥ 2. Let Yf be f ’s facade PLC. Let d be the
dimensionality of X. Because X is ridge-protected and Yf ⊆ X, every constraining
facade in Yf of dimension d − 2 or less has a triangulation whose simplices respect
X and are regular within X. By Theorem 7′, these simplices are also regular within
Yf . Therefore, every constraining facade in Yf of dimension k − 2 or less has a
triangulation whose simplices respect Yf and are regular within Yf . �

Corollary 12 If X is weakly ridge-protected, every facade in X is weakly ridge-
protected.
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Proof Let f be a facade in X, and let Yf be f ’s facade PLC. It is apparent from
Definition 22 that if a face of f is grazeable within Yf , then the face is grazeable
within X too. The rest of the proof is identical to the proof of Corollary 11, except
that only every grazeable constraining facade in Yf of dimension d − 2 or less has a
triangulation whose simplices respect X (and therefore Yf ) and are regular within X

(and therefore within Yf ). �

3.2 The Delaunay Lemma

A well-known and important property of Delaunay triangulations is that “local opti-
mality” is equivalent to “global optimality,” in the following sense. A facet shared by
two d-simplices s and t is said to be locally Delaunay if the apex of s (not shared
by t ) is not inside the circumsphere of t (equivalently, the apex of t is not inside the
circumsphere of s). If a triangulation is Delaunay, every facet of the triangulation is
locally Delaunay. Conversely, if every facet of a triangulation of a point set is locally
Delaunay, then the triangulation is Delaunay (i.e. every simplex is Delaunay). Boris
Delaunay [14] himself was the first to make this observation.

This section shows that this equivalence generalizes to weighted CDTs, with the
change that facets included in constraining facades need not be locally Delaunay (or
locally semiregular). This result is valuable because it provides an inexpensive way
to test whether a triangulation is a weighted CDT: check that it fills and respects
the PLC, check every non-constraining facet for local semiregularity, and check each
submerged vertex to ensure it really should be submerged. (A non-constraining facet
is a facet that is not included in a constraining facade.) The Delaunay Lemma offers
an alternative answer to the question, “What does it mean for a PLC X to have no
CDT?” It means that no triangulation of X fulfills these requirements.

Definition 25 (Locally Regular; Locally Semiregular) Let T be a triangulation, and
let s and t be two d-simplices in T that share a facet f . The facet f is locally regular
within T if the lifted d-simplices s+ and t+ adjoin each other at a dihedral angle,
measured from above, of less than 180◦. In other words, the apex of t+ lies above the
witness d-flat of s, and vice versa, as illustrated in Fig. 13(a).

The facet f is locally semiregular within T if the upper dihedral angle where s+
meets t+ is less than or equal to 180◦. In other words, either f is locally regular, or s
and t have the same witness d-flat.

If a facet f is constrained regular, then f is locally regular, because the spices of
s+ and t+ lie above some witness d-flat of f . If f is constrained semiregular, f is
locally semiregular.

Theorem 13 (Delaunay Lemma) Let X be a (weighted) PLC with no dangling fa-
cades. A triangulation T is a (weighted) CDT of X if and only if T has the following
four properties:

A. T fills X.
B. T respects X.
C. Every facet in T is either locally semiregular or included in a constraining

(d − 1)-facade of X.
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Fig. 23 If s overlaps t from the
viewpoint z, then hs(z) > ht (z)

D. If a vertex v in X is missing from T (submerged), then v is in a d-simplex s of
T such that v+ lies on or above s+.

If X is unweighted, Property D reads, “No vertex is submerged.”
The proof of the Delaunay Lemma relies on a lemma that is worth stating sep-

arately because it is reused in Sections 3.3 and 5.1. The lemma uses the following
definitions.

Definition 26 (Overlaps) Let z be an arbitrary point in Ed . Let s and t be two sim-
plices (each of any dimensionality). Say that s overlaps t from the viewpoint z if some
point of s not shared by t lies between z and t , as Fig. 23 illustrates. In other words,
there exists a point ps ∈ s\t and a point pt ∈ t such that ps ∈ zpt .

Definition 27 (Witness Function) Let h ⊂ Ed+1 be a non-vertical d-flat. The wit-
ness function h(p) is the linear function that maps each point p ∈ Ed to the xd+1-
coordinate such that 〈p,h(p)〉 ∈ h. In other words, if � ⊂ Ed+1 is the vertical line
(parallel to the xd+1-axis) that contains 〈p,0〉, then h(p) is the xd+1-coordinate of
h∩ �, as Fig. 23 illustrates.

Lemma 14 Let s and t be two simplices, each of any dimensionality. Suppose there
is a non-vertical d-flat hs that includes s+ such that every vertex of t+ lies on or
above hs . Suppose there is a non-vertical d-flat ht that includes t+ such that every
vertex of s+ lies strictly above ht , except the vertices shared by t+. Then the following
statements hold:

• If s and t are not disjoint, then s ∩ t is a face of both s and t .
• Let z be an arbitrary point in Ed . If s overlaps t from the viewpoint z, then hs(z) >

ht (z).

Proof If s is a face of t , both results follow immediately. (In this case, s does not
overlap t from any viewpoint.) Otherwise, s+ has a vertex that t+ lacks. This vertex
lies on hs and above ht , so hs 
= ht . The d-flats hs and ht must intersect, because
some vertex of s+ lies above ht and some vertex of t+ lies on or above hs . Let i+ be
the (d − 1)-flat hs ∩ ht . Let i = {p ∈ Ed : hs(p)= ht (p)} be the vertical projection
of i+ into Ed , as illustrated in Fig. 23.
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The hyperplane i cuts Ed into two halfspaces. Every vertex of s lies in the closed
halfspace {p ∈ Ed : hs(p) ≥ ht (p)}. Therefore, so does every point in s. Likewise,
every point in t lies in the closed halfspace {p ∈ Ed : hs(p)≤ ht (p)}. Any vertex v

of s that lies on i has a lifted companion v+ that lies on ht , so by assumption, v must
be a vertex of t . Therefore, s ∩ t is the convex hull of the vertices of s that lie on i,
which is a face of both s and t . Furthermore, any point of s not shared by t cannot lie
on i.

If s overlaps t from the viewpoint z, then some point ps ∈ s\t lies between z and
t . The point ps lies in the open halfspace {p ∈ Ed : hs(p) > ht (p)}, so z must lie
there too. �

Lemma 14 is similar to theorems of Edelsbrunner [15] and Edelsbrunner and
Shah [19], which they use to prove the acyclicity of every regular triangulation T :
for any fixed viewpoint z, the overlap relation among regular simplices is a partial
order. The function hs(z) imposes a total order on the simplices in T such that no
simplex overlaps another simplex that appears later in the order. This acyclicity prop-
erty does not extend to CDTs, but it does apply to the regular simplices that comprise
the lower-dimensional facades in a ridge-protected PLC (see Section 5.1).

Proof of the Delaunay Lemma The “only if” implication is straightforward. If T is a
CDT of X, Properties A and B follow by the definition of CDT. Property D follows
because every d-simplex in a CDT is constrained semiregular. Property C follows
because each facet in a CDT is constrained semiregular—unless it is included in
a constraining (d − 1)-facade of X—and every constrained semiregular simplex is
locally semiregular.

Not surprisingly, the “if” implication takes more work to prove. Suppose T is a
triangulation with all four properties. Let s be any d-simplex in T . The following
argument establishes that s is constrained semiregular.

Let v be any vertex in X that is visible from some point p in the interior of s. It
is helpful if the line segment vp does not intersect any simplex in T of dimension
less than d − 1, except at the vertex v. If this is not true, then by Lemma 6 there is a
neighborhood of p from which every point can see v. Choose from this neighborhood
a point p′ such that p′ is in the interior of s and vp′ does not intersect any simplex in
T of dimension less than d − 1, except at v.

T is a simplicial complex that fills X by Property A, so the line segment vp′
intersects the interiors of a contiguous sequence of d-simplices s1, s2, . . . , sk = s,
with v ∈ s1. Let fi denote the facet shared by si and si+1. Because vp′ does not
intersect any lower-dimensional faces of T (except at v), it passes through the relative
interiors of the facets f1, f2, . . . , fk−1. Because v is visible from p′, none of these
facets is included in a constraining facade, so by Property C all of them are locally
semiregular.

Because f1 is locally semiregular, either hs1 = hs2 or f1 is locally regular. In the
latter case, hs1(v) > hs2(v) by Lemma 14; in either case, hs1(v)≥ hs2(v). The same
reasoning holds for f2, . . . , fk−1, so hs1(v) ≥ hs2(v) ≥ · · · ≥ hsk (v) = hs(v). If v

is a vertex of s1, then the height (xd+1-coordinate) of v+ is hs1(v); otherwise, v is
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submerged, and by Property D the height of v+ is at least hs1(v).
6 In either case,

vxd+1 ≥ hs1(v)≥ hs(v), so v+ cannot lie below the witness d-flat hs . Because this is
true of every vertex v that is visible from the interior of s, and because s respects X

by Property B, s is constrained semiregular.
By assumption, X has no dangling facades, so by Theorem 9, T is a CDT of X. �

If X has dangling facades, T may be cut into subcomplexes of different dimen-
sionalities so that each subcomplex has no dangling simplices. Then the Delaunay
Lemma can be applied to each piece separately, thereby showing the constrained
semiregularity of the whole. In a k-dimensional portion of the triangulation, only the
local semiregularity of the (k − 1)-faces needs to be checked.

To make good on the title of this article, the following definition offers the con-
strained analog of a regular triangulation. A constrained regular triangulation is a
projection of a polyhedron whose ridges are locally convex everywhere except where
the constraining facades permit them to be reflex.

Definition 28 (Constrained Regular Triangulation) A triangulation T is constrained
regular relative to an unweighted PLC X if T fills and respects X, and there exists
an assignment of weights to the vertices in X such that every non-constraining facet
in T is locally regular.7

Every generic CDT (recall Definition 19) is a constrained regular triangulation.
This fact is a consequence of the Delaunay Lemma and the fact that in a generic
CDT, constrained regularity and constrained semiregularity are the same. However,
not every CDT is a constrained regular triangulation. For example, let T be the trian-
gulation illustrated in Fig. 24, which is not regular. If all the vertex heights are zero,
T is a valid weighted Delaunay triangulation and (relative to a compatible PLC) a
valid weighted CDT. However, only the simplices on the boundary of T are regu-
lar; the rest are only semiregular. No assignment of weights can make every edge of
T regular. Nevertheless, if T is a triangulation of a PLC X, and X includes one of
the long internal edges as a constraining segment, then T is constrained regular with
respect to X.

The viewpoint at the center of the triangulation T in Fig. 24 demonstrates that
T does not have the acyclic property established by Edelsbrunner and Shah [19]
for regular triangulations. However, constrained regular triangulations have a limited
acyclicity property. Say that s visibly overlaps t from the viewpoint z if there exists
a point pt in t ’s relative interior that is visible from z, and a point ps ∈ s\t such
that ps ∈ zpt . For any viewpoint z, the visible overlap relation among simplices is a
partial order. This fact follows from Lemma 14 by the same inductive step used to
prove the Delaunay Lemma, with the inequalities replaced by the strict inequalities
hsi (z) > hsi+1(z).

6The vertex v might lie in several d-simplices of T (on a shared boundary), and Property D explicitly
applies to only one of them. However, the lifted surface T+ is continuous where simplices of T meet, so
Property D holds for all the simplices in T that contain v.
7Obviously, there is always an assignment of weights to the vertices of X missing from T that satisfies
Property D of the Delaunay Lemma. Just make their weights really small.
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Fig. 24 A triangulation that is
not regular. From the viewpoint
at the center, the three outer
triangles form a mutually
overlapping cycle

Linear programming can determine whether a triangulation T that fills and re-
spects X is constrained regular relative to X. The variables of the linear program are
the vertex weights and a variable δ. For each non-constraining facet f in T , write a
linear constraint enforcing the local regularity of f . Specifically, f is a facet of two
d-simplices s and t ; the linear constraint requires that the apex of s+ (not shared by
t+) be a distance of at least δ above t ’s witness d-flat. The objective is to maximize δ

subject to the facet constraints. If this linear program has a feasible point with δ > 0,
T is constrained regular relative to X.

3.3 The Omnipresent Complex of Constrained Regular Simplices

A property of every PLC X is that its constrained regular simplices (of all dimen-
sionalities, within all the facades in X) have disjoint relative interiors and form a
simplicial complex, even if X has no CDT. Another property is that if X does have
a CDT—perhaps several CDTs—then every constrained regular simplex appears in
every CDT of X. This property implies that if X is generic, it has at most one CDT.

These properties do not hold for semiregular simplices. If some selection of d + 2
or more vertices of a PLC lift to a common non-vertical d-flat, the PLC might have
more than one CDT, and its semiregular simplices might have intersecting interiors.

Because the CDT of a generic PLC contains every constrained regular simplex
and no other simplex, CDT construction algorithms can work in a bottom-up fashion,
from low dimensionalities to high: if an algorithm obtains the CDT of each constrain-
ing facade in a generic PLC X (perhaps by calling itself recursively), it can construct
the constrained regular d-simplices with confidence that they will match the facade
triangulations. For a nongeneric PLC, however, the CDTs of different constraining
facades might be incompatible with each other, causing a CDT construction algo-
rithm to fail to find a CDT of the whole PLC even when one exists. Section 6 offers
a perturbation method that enforces genericity, so that CDT construction algorithms
may avoid this fate.

The proofs rely on the following lemma, which is also used heavily in Section 5.

Lemma 15 Let P and C be closed, convex polyhedra (not necessarily of the same
dimensionality) with P ⊆ C. Let m be a point in the relative interior of P . Let Cm be
the face of C whose relative interior contains m. Then P ⊆ Cm.

Proof If Cm = C the result follows immediately. Otherwise, by Definition 3, there is
a hyperplane h such that Cm = C ∩ h and h does not intersect the relative interior of
C, which implies that C\Cm lies entirely on one side of h. Clearly, m ∈ h. Suppose
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Fig. 25 If P ⊆ C but P 
⊆ Cm,
then m is on the boundary of P

Fig. 26 A constrained
semiregular simplex s and a
constrained regular simplex t

can intersect only at a shared
face

for the sake of contradicting the lemma that P 
⊆ Cm, as illustrated in Fig. 25. Then
P contains a point q in C\Cm. Thus q is on the same side of h as C, and no point in
P is on the other side of h. Because P is convex, P includes the line segment qm,
but any extension of the line segment qm past m lies outside P . Therefore, m is on
the boundary of P . This contradicts the assumption that m is in the relative interior
of P , so P ⊆ Cm.

�

The following theorem, which generalizes half of Lemma 14, shows that a con-
strained semiregular simplex and a constrained regular simplex can intersect only at
a shared face.

Theorem 16 Let s and t be simplices. Suppose that s is constrained semiregular
within f and t is constrained regular within f ′, where f and f ′ are facades in a
PLC X (possibly with f = f ′), and neither f nor f ′ is a submersible vertex. If s and
t are not disjoint, then s ∩ t is a face of both s and t .

Proof Suppose s and t are not disjoint. Let p be a point in the relative interior of s∩ t ,
as illustrated in Fig. 26. Let g be the lowest-dimensional facade in X that contains p

and is not a submersible vertex. (Either p is in the relative interior of g, or p coincides
with an isolated submersible vertex of g’s internal boundary. Note that g might be of
any dimension from zero to d .) Because p ∈ f and p ∈ f ′, g is a face (not necessarily
a proper face) of both f and f ′.

Each of s and t has one face whose relative interior contains p. Call these faces
ŝ and t̂ , respectively. Because s and t respect X, so do ŝ and t̂ . It follows that every
facade that contains p (and is not a submersible vertex) includes ŝ and t̂ . Three such
facades are f , f ′, and g.

By Theorem 8, ŝ is constrained semiregular within g. By Theorem 8′, t̂ is con-
strained regular within g. By Lemma 14 (applied within the facade PLC Yg), ŝ ∩ t̂

is a face of both ŝ and t̂ . However, p is in the relative interiors of both ŝ and t̂ , and
p ∈ ŝ ∩ t̂ , so ŝ = ŝ ∩ t̂ = t̂ .
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Because ŝ = t̂ is a face of both s and t , t̂ ⊆ s ∩ t . By Lemma 15 (substituting p for
m, t for C, t̂ for Cm, and s ∩ t for P ), s ∩ t ⊆ t̂ . Therefore, ŝ = t̂ = s ∩ t , verifying
that s ∩ t is a face of both s and t . �

Corollary 17 The constrained regular simplices of a PLC have disjoint relative in-
teriors.

Corollary 18 Let X be a PLC. Let T be the set that contains every simplex that is
constrained regular within X or within a constraining facade in X. T is a simplicial
complex.

Proof By Theorem 8′, every face of every simplex in T is constrained regular within
some facade that is not a submersible vertex. Therefore, T contains every face of
every simplex in T . By Theorem 16, the intersection of any two simplices in T is
either empty or a shared face of the two simplices. Hence T is a simplicial complex. �

A consequence of Corollary 18 is that if a PLC does not have a CDT, one or more
of its facades has a gap that is not covered by constrained regular simplices. The
next theorem shows that if a PLC has several CDTs, they share the same constrained
regular simplices, and differ only by the simplices that are constrained semiregular
but not constrained regular.

Theorem 19 Every CDT of a PLC X contains every simplex that is constrained
regular within X or within a constraining facade in X.

Proof Let t be any simplex that is constrained regular within some facade f in X,
where f is not a submersible vertex. (If a simplex is constrained regular within X,
it is constrained regular within some d-facade in X.) Let p be a point in the relative
interior of t .

Let T be a CDT of X. Because T fills X, T contains a simplex s that contains p

and is not a submersible vertex. By the definition of CDT, s is constrained semiregular
within the lowest-dimensional facade that includes it.

By Theorem 16, s ∩ t is a face of both s and t . However, s ∩ t contains p, which
is in the relative interior of t , so s ∩ t = t . Therefore, t is a face of s, and t ∈ T . This
conclusion holds for every CDT T of X and every constrained regular simplex t . �

Corollary 20 A generic PLC has at most one CDT.

Proof By Theorem 19, every CDT of a PLC X contains every simplex that is con-
strained regular within a facade in X, except perhaps within a submersible vertex. By
the definition of CDT, no CDT of X contains a simplex that is not constrained semi-
regular within a facade in X. If X is generic, constrained regularity and constrained
semiregularity are equivalent. Therefore, two CDTs of X can differ from each other
only in the choice of submersible vertices. However, a CDT fills X, so the choice
of submersible vertices is uniquely determined by the higher-dimensional simplices.
Therefore, X has at most one CDT. �
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This corollary and Corollary 18 together imply that if a PLC is generic and has a
CDT, a CDT construction algorithm can triangulate each facade of the PLC, starting
with the 1-facades and working up to the d-facades, and rest assured that the facade
triangulations of different dimensions all match.

4 Interpolation Criteria Optimized by CDTs

Among all triangulations of a fixed two-dimensional vertex set, the Delaunay trian-
gulation is optimal by a variety of criteria—maximizing the smallest angle in the
triangulation [28], minimizing the largest circumcircle among the triangles [4], and
minimizing a property called the roughness of the triangulation [35, 37]. A two-
dimensional CDT shares these same optimality properties, if it is compared with
every other constrained triangulation of the same PSLG [4, 29].

Delaunay triangulations in higher dimensions also have optimality properties that
generalize to CDTs and offer some of the reasons why higher-dimensional CDTs
are such worthy objects of study. Rippa [38] investigates the use of two-dimensional
triangulations for piecewise linear interpolation of a bivariate function of the form
Ax2 + By2 + Cx + Dy + E, and concludes that if A = B , the Delaunay triangu-
lation minimizes the interpolation error measured in the Lq -norm for every q ≥ 1
(compared with all other triangulations of the same vertices). Melissaratos [31] gen-
eralizes Rippa’s result to higher dimensions. D’Azevedo and Simpson [13] show
that a two-dimensional Delaunay triangulation minimizes the radius of the largest
min-containment circle of its simplices, and Rajan [36] generalizes this result to
Delaunay triangulations and min-containment spheres of any dimensionality. The
min-containment sphere of a simplex is the smallest hypersphere that encloses the
simplex. If the center of the circumsphere of a simplex lies in the simplex, then the
min-containment sphere is the circumsphere. Otherwise, the min-containment sphere
is the min-containment sphere of some face of the simplex.

Rajan’s result and a theorem of Waldron [51] together imply a second optimality
result related to multivariate piecewise linear interpolation. Suppose you must choose
a triangulation to interpolate an unknown function (not necessarily convex), and you
wish to minimize the largest pointwise error in the domain. After you choose the
triangulation, an adversary will choose the worst possible smooth function for your
triangulation to interpolate, subject to a fixed upper bound on the absolute curva-
ture (i.e. second directional derivative) of the function anywhere in the domain. The
Delaunay triangulation is your optimal choice.

This section shows that Melissaratos’ and Rajan’s results generalize to CDTs
(when CDTs exist). Melissaratos’ result also generalizes to any monotonic norm and,
with help from weighted CDTs, to any convex function. Rajan’s result is particu-
lar to unweighted CDTs—the paraboloid is the right choice of heights to minimize
the largest min-containment sphere. The proofs given here are similar to Fortune’s
presentation for unconstrained Delaunay triangulations [21], and are substantially
simpler than Melissaratos’ and Rajan’s.

Consider multivariate piecewise linear interpolation on a weighted CDT. Let X be
a PLC, and let f (p) be a convex scalar function defined over the triangulation domain
|X|. Assign each vertex v ∈ X the weight |v|2 − f (v), so that the xd+1-coordinate
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of v+ is f (v). Let T be a weighted CDT of X, if one exists. The triangulation T

and the vertex heights f (v) define a piecewise linear surface T + = {s+ : s ∈ T }. By
analogy to witness functions (Definition 27), think of T + as a continuous piecewise
linear function T +(p), which maps each point p ∈ |X| to a real value. Because f is
convex, every vertex in X is semiregular, so T + interpolates the lifted companion of
every vertex in X, even if some vertices in X are missing from T .

Let e(p)= T +(p)− f (p) be the error in the interpolated function T + as an ap-
proximation of the true function f . At each vertex v in X, e(v) = 0. Because f is
convex, the error satisfies e(p)≥ 0 for all p ∈ |X|.

Consider the unconstrained case first. T is the weighted Delaunay triangulation
of the vertices in X, so T + is the underside of the convex hull of the lifted vertices.
The intuition (formalized in Theorem 21 below) is that for any point p ∈ |X|, there is
no way to triangulate the lifted vertices that yields a lesser value of T +(p) than the
underside of the convex hull. Melissaratos’ result follows immediately: T minimizes
‖e‖Lq for every Lebesgue norm Lq .

The constrained case is only a little more complicated.

Theorem 21 Let f (p) be a function defined over the domain |X| of a PLC X. Assign
each vertex v ∈X the height f (v)—i.e. the weight |v|2 − f (v). If X has a weighted
CDT, then at every point p ∈ |X|, every weighted CDT T of X minimizes T +(p)
among all triangulations of X.

Proof Let T be a weighted CDT of X. Suppose for the sake of contradiction that
there is a triangulation S of X and a point p such that S+(p) < T +(p). Let s be the
simplex in S whose relative interior contains p. Let t be a simplex in T that contains
p and is not a submersible vertex. Let f be the lowest-dimensional facade in X that
includes t . Because t is not a submersible vertex, f is not one either, so s respects
f . Because p is in both f and the relative interior of s, s ⊆ f . Because s respects X

and p ∈ s, the vertices of s are visible from p by Theorem 3.
Define the point ps = 〈p,S+(p)〉 ∈ Ed+1. Thus ps ∈ s+ ∈ S+, and p is the pro-

jected companion of ps . Because S+(p) < T +(p), ps lies below t+. For every wit-
ness d-flat ht that includes t+, at least one vertex of s+ lies below ht , because s+
is a simplex that contains ps . Therefore, t is not constrained semiregular within f .
However, by assumption, T is a weighted CDT of X, so t is constrained semiregu-
lar within f . By contradiction, there is not a triangulation S and a point p such that
S+(p) < T +(p). �

Corollary 22 Let f (p) be a convex function defined over the domain |X| of a PLC
X. Assign each vertex v ∈ X the height f (v). If X has a weighted CDT, then at
every point p ∈ |X|, every weighted CDT T of X minimizes the interpolation error
|T +(p)− f (p)| among all triangulations of X.

Because the weighted CDT minimizes the error e(p) at every point, the weighted
CDT minimizes e in every norm that is monotonic in e, including the Lebesgue
norms. With the right choice of weights, this result holds for any convex function.
Rippa also investigates the special case of interpolating f (p)=Ax2 +By2 +Cx +
Dy +E where A 
= B . For a function of this form, an anisotropic triangulation (with
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Fig. 27 (a) Within s, the error
e(p) is maximized at the point
nearest the circumcenter of s.
(b) Top view of s, its
circumcircle, and its
min-containment circle

long, thin triangles) is optimal. Rippa suggests handling such functions by affinely
mapping the vertices in Ed to a “stretched” space over which f (p) is isotropic, find-
ing the Delaunay triangulation of the mapped vertices, and mapping the triangula-
tion back to the original space. Corollary 22 suggests an alternative: use weights to
achieve the same effect as Rippa’s mapping. This approach obtains exactly the same
results when f (p) is parabolic, but it is more flexible as it can adapt to other convex
functions as well.

Corollary 22 plays a part in showing that Rajan’s result generalizes to CDTs.

Theorem 23 If X has an unweighted CDT, then every unweighted CDT of X min-
imizes the largest min-containment sphere, compared with all other triangulations
of X.

Proof Recall that e(p)= T +(p)− f (p). As X is unweighted, f (p)= |p|2.
Over any single d-simplex s, there is an explicit expression for e(p). Recall from

the proof of Lemma 1 that the witness d-flat hs that includes s+ has the witness func-
tion hs(p) = 2Ocirc · p − |Ocirc|2 + r2

circ, where Ocirc and rcirc are the circumcenter
and circumradius of s, and p ∈Ed varies freely. (The circumcenter and circumradius
of s are the center and radius of s’s circumsphere.) Hence, for all p ∈ s,

e(p) = hs(p)− f (p)

= 2Ocirc · p− |Ocirc|2 + r2
circ − |p|2

= r2
circ − |Ocircp|2.

Figure 27(a) illustrates the functions hs(p) and f (p) over a triangle s. The error
e(p) is the vertical distance between the two functions. At which point p in s is e(p)

largest? At the point nearest the circumcenter, because |Ocircp|2 is smallest there.
(The error is maximized at the circumcenter if the circumcenter is in s; Fig. 27 gives
an example where it is not.) Let Omc and rmc be the center and radius of the min-
containment sphere of s, respectively. Lemma 24 below shows that the point in s

nearest Ocirc is Omc, and r2
mc = e(Omc).

It follows that the square of the min-containment radius of s is maxp∈s e(p), and
thus the largest min-containment sphere of the entire triangulation has a squared ra-
dius of maxp∈|T | e(p). By Corollary 22, the unweighted CDT T minimizes this quan-
tity among all triangulations of X. �

Lemma 24 Let Ocirc and rcirc be the circumcenter and circumradius of a d-simplex
s. Let Omc and rmc be the center and radius of the min-containment sphere of s. For
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p ∈ s, define the function e(p) = r2
circ − |Ocircp|2. Let q be the point in s nearest

Ocirc. Then Omc = q and r2
mc = e(q).

Proof Let t be the face of s whose relative interior contains q . The face t is not a
vertex, because the vertices of s are s’s furthest points from Ocirc. Because q is the
point in t nearest Ocirc, and because q is in the relative interior of t , the line segment
Ocircq is orthogonal to t . (This is true even if t = s, in which case Ocirc−q = 0.) This
fact, plus the fact that Ocirc is equidistant from all the vertices of t , implies that q is
equidistant from all the vertices of t (as Fig. 27 demonstrates). Let r be the distance
between q and any vertex of t . Because q ∈ t , there is no containing sphere of t (or s)
with radius less than r , because there is no direction q can move without increasing
its distance from one of the vertices of t . Therefore, q and r are the center and radius
of the min-containment sphere of t .

By the following reasoning, s has the same min-containment sphere as t . If q =
Ocirc, this conclusion is immediate. Otherwise, let h be the hyperplane through q

orthogonal to Ocircq . Observe that h includes t . No point in s is on the same side of h
as Ocirc: if there were such a point w, there would be a point in s (between w and q)
closer to Ocirc than q , contradicting the fact that q is closest. Observe that h cuts the
circumsphere into two pieces, and that the smaller piece encloses s and is enclosed
by the min-containment sphere of t . Therefore, q and r are the center and radius of
the min-containment sphere of s.

Let v be any vertex of t . Pythagoras’ Law on �Ocircqv (see Fig. 27) yields r2
circ =

r2 + |Ocircq|2, and therefore r2 = e(q). �

For an algebraic proof of Lemma 24 (based on quadratic program duality), see
Lemma 3 of Rajan [36].

The optimality of the CDT for controlling the largest min-containment radius
dovetails nicely with an error bound for piecewise linear interpolation derived by
Waldron [51]. Let Cc be the space of scalar functions defined over |X| that have C1

continuity and whose absolute curvature nowhere exceeds c. In other words, for every
f ∈ Cc, every point p ∈ |X|, and every unit direction vector d, the magnitude of the
second directional derivative f ′′d (p) is at most c. This is a common starting point for
analyses of piecewise linear interpolation error. In contrast with Corollary 22, Cc is
not restricted to convex functions.

Let f be a function in Cc . Let s ⊆ |X| be a simplex (of any dimensionality) with
min-containment radius rmc. Let hs be a linear function that interpolates f at the
vertices of s. Waldron shows that for all p ∈ s, the absolute error |e(p)| = |hs(p)−
f (p)| is at most cr2

mc/2. Furthermore, this bound is sharp: for every simplex s with
min-containment radius rmc, there is a function f ∈ Cc and a point p ∈ s such that
|e(p)| = cr2

mc/2. (That function is f (p)= c|p|2/2, as illustrated in Fig. 27.)

Theorem 25 Every unweighted CDT T of X (if any exist) minimizes

max
f∈Cc

max
p∈|X| |T

+(p)− f (p)|,

the worst-case pointwise interpolation error, among all triangulations of X.
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Proof For any triangulation T , maxf∈Cc
maxp∈|X| |T +(p)−f (p)| = cr2

max/2, where
rmax is the largest min-containment radius among all simplices in T . The result fol-
lows immediately from Theorem 23. �

One of the reasons why CDTs are important is because, in the senses of Corol-
lary 22 and Theorem 25, the CDT is an optimal piecewise linear interpolating surface.
Of course, e(p) is not the only criterion for the merit of a triangulation used for inter-
polation. Many applications need the interpolant to approximate the gradient—that is,
not only must T +(p) approximate f (p), but ∇T +(p) must approximate ∇f (p) well
too. For the goal of approximating ∇f (p) in three or more dimensions, the weighted
CDT is sometimes far from optimal even for simple functions like the paraboloid
f (p) = |p|2. Still, the CDT is a good starting point for mesh improvement algo-
rithms [6, 7, 10, 11, 16, 30, 46, 48] that create a triangulation that is appropriate for
approximating both f (p) and ∇f (p).

5 Proof of the CDT Theorem for Generic PLCs

Theorem 26 Let X be a generic, weakly ridge-protected, d-dimensional PLC
(weighted or not). X has a CDT (a weighted CDT if X is weighted).

This section is devoted to the proof of Theorem 26, the generic version of the CDT
Theorem. A lot of ink must be split for it, and readers who are not feeling athletic
are invited to skip to Section 6, where the genericity requirement is removed from
Theorem 26.

Half the work is already done: Corollary 18 states that the constrained regular
simplices form a simplicial complex, and Theorem 10 states that if this complex fills
X, it is a CDT of X. The most difficult part of the proof is to show that if X is generic
and weakly ridge-protected, the complex fills X. The forthcoming Theorem 30 shows
that every point in a weakly ridge-protected PLC lies in some constrained semiregular
simplex. Unfortunately, several long proofs are needed to build up to that result.

5.1 Visibility Lemmata

One potential difficulty for the CDT Theorem is illustrated in Fig. 28. Imagine that
you are standing at a point p in the interior of a three-dimensional domain, scanning

Fig. 28 Spherical projection of
the halfspace above your
vantage point
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the halfspace “above” p for a visible vertex. Looking up into the sky, you see the
three illustrated 2-facades, each of which occludes the apical vertex of another. The
remaining vertices of these facades are below the horizon (in the halfspace below
you). No vertex in the halfspace is visible from your vantage point, so there is no
constrained semiregular simplex that contains p.

To prove the existence of a CDT, one must show that this possibility is precluded
if X is weakly ridge-protected. Fortunately, Lemma 14 does exactly that. By the
definition of “weakly ridge-protected,” every grazeable constraining facade in X of
dimension d − 2 or less is a union of regular simplices. In Fig. 28 observe that the
inner edges of the three facades form a cycle of overlapping edges. These edges are
grazeable. However, Lemma 14 implies that the overlap relation among regular sim-
plices (from a fixed viewpoint) constitutes a partial order. The regular edges bounding
the 2-facades cannot form a cycle. This fact is the key to proving two lemmata for
weakly ridge-protected PLCs.

For each regular simplex s, let hs be a witness to the regularity of s. Every lifted
vertex lies above hs , except the vertices of s+. Recall from Definition 27 the witness
function hs(p), a linear function that maps each point p ∈Ed to the xd+1-coordinate
such that 〈p,hs(p)〉 ∈ hs . If s is not d-dimensional, it has infinitely many witness
d-flats; choose one arbitrarily so that hs(p) is consistently defined.

Lemma 27 Let X be a weakly ridge-protected, d-dimensional PLC. Let p be a point
in the interior of |X|. Let H be an open d-dimensional halfspace whose closure
contains p. At least one vertex of X is in H and visible from p.

Proof Suppose for the sake of contradiction that no vertex of X is in H and visible
from p. Let A be the set containing every simplex e that has the following properties:

• e respects X and is regular within X, and
• there is a point m in e’s relative interior such that m ∈H and m is visible from p.

A is empty—suppose for the sake of contradiction that it is not. Because no vertex
of X is in H and visible from p, A contains no vertex. Let e be the simplex in A

that maximizes he(p). Let m be a point in e’s relative interior that is in H and visible
from p. Because e is a simplex that intersects H , at least one vertex v of e is in H ,
as Fig. 29(a) shows. (The other vertices of e might lie below the horizon, outside H .)

By assumption, v is not visible from p, although m is. Let n be the point nearest
m on the line segment mv that is not visible from p. In other words, n is the first
occluded point encountered on a “walk” from m to v.8 The line segment pn must
intersect some occluding facade of X at some point m′. If several facades occlude the

8How do we know that there is a first occluded point on the walk from m to v, rather than a last visible
point? On the walk, there is at least one transition from points p can see to points p cannot see. Let n be
the point where the first such transition occurs. Is n visible from p? There are two ways that a transition
might occur. One possibility is an interposing facade that occludes the visibility of n, as in Fig. 29(a). The
second possibility is that n lies on a facade f and is visible from p, but the points following n on the walk
are occluded by f . To exclude this possibility, observe that e is convex, m is in e’s relative interior, v ∈ e,
n ∈mv, and n 
= v. Therefore, n must lie in e’s relative interior. Because e respects X, every facade that
contains n includes e, and therefore f cannot occlude the visibility of any point in e from anywhere. These
details are dreary, but the proof depends on them.
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Fig. 29 The supposition that no vertex in H is visible from p leads to a contradiction

view of n from p, consider only the facade that intersects pn closest to p, so that m′
is visible from p.

Let f be the face of that facade whose relative interior contains m′. (In Fig. 29, f
is the edge e′.) Because n is the first occluded point on the walk from m to v, f must
have dimension d − 2 or less (i.e. m′ cannot lie in the relative interior of a (d − 1)-
facade). Because no vertex is in H and visible from p, f is not a vertex. The grazing
triangle �pnm demonstrates that f is grazeable. As X is weakly ridge-protected,
f has a triangulation whose simplices respect X and are regular within X. Let e′
be the simplex in that triangulation whose relative interior contains m′. Because n

lies in H and p lies in its closure, m′ lies in H , so e′ ∈ A (by the definition of A).
Because n ∈ e, e′ overlaps e from the viewpoint p, and therefore he′(p) > he(p) by
Lemma 14.

However, this contradicts the assumption that e maximizes he(p) among all mem-
bers of A. It follows that A is empty.

Because p is in the interior of |X|, at least one facade in X intersects H . Let g be
the lowest-dimensional facade in X whose relative interior contains a point y that is
in H and visible from p. By assumption, g is not a vertex.

Because g intersects H , at least one vertex of g is in H . Imagine shooting a ray
from y toward that vertex. Let z be the first point on the boundary of g struck by the
ray, as illustrated in Fig. 29(b). As g might not be convex, z might not be the vertex,
but z is in H . Because g is the lowest-dimensional facade whose relative interior
contains a point in H visible from p, and z lies in the relative interior of a proper
face of g, z is not visible from p. Let n be the first occluded point encountered on
a “walk” from y to z. By a repetition of the reasoning above, some simplex in A is
interposed between p and n, but A is empty, so this is a contradiction.

It follows that some vertex of X is in H and visible from p. �

A second lemma reveals a more subtle (and barely comprehensible) property of
visibility in PLCs.

Lemma 28 Let X be a weakly ridge-protected, d-dimensional PLC. Let h ⊂ Ed+1

be a non-vertical d-flat. Let Vh = {v ∈ X : v is a vertex and v+ is on or below h},
and let Ch = conv(Vh). (See Fig. 30. Note that Vh and Ch are sets of points in Ed ,
not Ed+1.)
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Fig. 30 Because m is between
q and r , h(m) > he(m)

Let p be a point in Ch. Suppose that no vertex in X visible from p lifts to a point
below h.

Let f ∈X be a grazeable constraining facade of dimension d−2 or less. Suppose
that some point mf ∈ f ∩Ch is visible from p.

Then f includes the face of Ch whose relative interior contains mf . (This face
may be Ch itself.)

Proof Because X is weakly ridge-protected, f has a triangulation whose simplices
respect X and are regular within X. Let t be the simplex in this triangulation whose
relative interior contains mf .

Let A be the set containing every simplex e that has the following properties:

• e respects X and is regular within X, and
• there is a point m in e’s relative interior such that

— m is visible from p,
— m ∈ Ch, and
— e does not include the face of Ch whose relative interior contains m.

If A is empty, then t 
∈A, so t includes the face of Ch whose relative interior contains
mf , and the lemma holds. Suppose for the sake of contradiction that A contains at
least one simplex.

Let e be the simplex in A that maximizes he(p). As e ∈A, there is a point m in the
relative interior of e such that m ∈ Ch and m is visible from p. Because e is regular,
there is a witness d-flat he ⊂ Ed+1 that includes e+, as illustrated in Fig. 30. Each
vertex of e lifts to a point on he. Every other vertex in X lifts to a point above he .

For each vertex v ∈ Vh, v+ lies on or below h, and on or above he , so h(v)≥ he(v).
If v is in Vh but not in e, then v+ lies strictly above he , so h(v) > he(v).

Because Ch is the convex hull of Vh, and h and he are linear functions, it follows
that for each point q ∈ Ch, h(q)≥ he(q), and if q is not in e, then h(q) > he(q).

Let Cm be the face of Ch whose relative interior contains m. By assumption, e
does not include Cm, so some point q ∈ Cm is not in e. Because m is in the relative
interior of Cm, there is a point r ∈ Cm such that m is between q and r . (See Fig. 30.)
Thus h(q) > he(q) and h(r)≥ he(r), so by the linearity of h and he , h(m) > he(m).

Because e is a simplex that contains m, there must be at least one vertex w of e

for which h(w) > he(w). Because w+ lies on he, w+ lies below h, so w ∈ Vh (by
the definition of Vh). By assumption, no vertex visible from p lifts to a point below
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Fig. 31 Because m is visible
from p and w is not, some
simplex e′ must overlap e

h, so w is not visible from p. However, recall that m ∈ e is visible from p. Can m be
visible from p if w is not?

Let n be the point nearest m on the line segment mw that cannot see p, as illus-
trated in Fig. 31. The line segment pn must intersect some facade in X at some point
m′. If there are several facades occluding the view of n from p, consider only the
facade that intersects pn closest to p, so that m′ is visible from p.

Let g be the face of that facade whose relative interior contains m′. (In Fig. 31,
g is the edge e′.) Because n is the first occluded point on the walk from m to w,
g must have dimension d − 2 or less (i.e. m′ cannot lie in the relative interior of a
(d − 1)-facade). The grazing triangle �pnm demonstrates that g is grazeable. As X

is weakly ridge-protected, g has a triangulation whose simplices respect X and are
regular within X. Let e′ be the simplex in that triangulation whose relative interior
contains m′. Observe that n ∈ Ch because n lies between m and w, which are both
in Ch. Moreover, m′ ∈ Ch because m′ lies between n and p. Let Cm′ be the face of
Ch whose relative interior contains m′. By Lemma 15 (substituting Ch for C, Cm′ for
Cm, and pn for P ), pn⊆ Cm′ . Because g occludes the visibility between p and n, e′
contains neither p nor n. It follows that Cm′ 
⊆ e′.

By the definition of A, e′ ∈ A. Because e′ overlaps e from the viewpoint p,
he′(p) > he(p) by Lemma 14. However, this contradicts the assumption that e max-
imizes he(p) among all members of A. It follows that A is empty, and the lemma
holds. �

5.2 Ridge-Protected PLCs Are Filled

This section completes the proof of Theorem 26. Most of the effort is spent proving
that if a PLC is weakly ridge-protected, every point in the triangulation domain lies
in some constrained semiregular simplex. The proof is made easier by considering
a subset of the triangulation domain first—a set of points from which visibility is
particularly well behaved.

For a d-dimensional PLC X, let N be the set containing every point in the interior
of |X| that is not cohyperplanar with any d affinely independent vertices in X. No
point in N lies on any constraining facade, nor on any k-simplex whose vertices are in
X for k < d , nor on their affine hulls. The closure of N is the union of the d-facades
in X.



626 General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I

Fig. 32 From left to right: a PLC X wherein the vertices visible from p (the set W ) are colored black,
and the vertices not visible from p are colored white. The weighted Delaunay triangulation of W , and the
simplex s therein that contains p. Ch is the convex hull of the vertices whose lifted companions lie on or
below the witness d-flat for s. Z is the closure of the set of points visible from p. Z ∩ Ch is convex and
respects X

Lemma 29 Let X be a weakly ridge-protected, d-dimensional PLC. Define N as
above, and let p be a point in N . Some constrained semiregular d-simplex contains p.

Proof Let W be the set of all vertices in X visible from p—the black vertices in
Fig. 32(a). The following reasoning establishes that p is in conv(W). Suppose for the
sake of contradiction that it is not. Then there is an open halfspace H such that p lies
on the boundary of H and W ∩H = ∅.9 However, by Lemma 27, some vertex of X
is in H and visible from p. This vertex is in W ∩H , a contradiction.

Let s be the d-simplex that contains p in a weighted Delaunay triangulation of W
(Fig. 32(b)). Because p ∈ conv(W), some such simplex must exist. The rest of this
proof shows that s is constrained semiregular within X, so the lemma holds.

Let hs be the unique witness to the semiregularity of s within W . No vertex in W

lifts to a point below hs , so no vertex in X visible from p lifts to a point below hs . Let
Vh = {v ∈X : v is a vertex and v+ lies on or below hs}. Let Ch be the convex hull of
Vh (Fig. 32(c)). Observe that the vertices of s are in Vh, so s ⊆ Ch and p ∈Ch.

Let Z be the closure of the set of all points that p can see in the triangulation
domain |X| (Fig. 32(d)). Because p ∈N , p lies in the interior of |X|, which implies
that Z is d-dimensional with p in its interior. The vertices of s are in Z.

Because Z is the closure of points visible from p, the shadows cast by constraining
facades of dimension d−2 or less have no effect on Z. Z is a star-shaped polyhedron
(not generally convex) with two types of facets: portions of (d − 1)-facades, and
shadow facets that are cohyperplanar with p because they are boundaries of shadows
cast by occluding (d − 1)-facades.

The rest of this proof is a sequence of claims and their justifications.

Claim No constraining (d − 1)-facade in X intersects the interior of Z. Because
p ∈N , p is not cohyperplanar with any (d− 1)-facade, so every (d−1)-facade casts

9This claim is intuitive, but its formal proof is tricky. It is the well-known Farkas Lemma; see Ziegler [54]
for a proof.
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a shadow (occludes visibility from p) and no (d − 1)-facade intersects the interior
of Z.

Claim Z ∩ Ch is a star-shaped d-polyhedron. Because p ∈ N ∩ Ch, p is in the
interior of Ch. Because Z and Ch are both closed star-shaped d-polyhedra with p in
their kernels and in their interiors, so is Z ∩Ch.

Claim No constraining facade in X intersects the interior of Z∩Ch. Suppose for the
sake of contradiction that a constraining facade f intersects the interior of Z ∩ Ch.
Let m be a point in the intersection of f ’s relative interior and the interior of Z ∩Ch.
Assume without loss of generality that m is visible from p—if it is not, then m’s
visibility is occluded by some other constraining facade that intersects the interior of
Z ∩Ch closer to p (because Z ∩Ch is star-shaped with p in its kernel), so f and m

can be replaced by the occluding facade and the closer intersection point.
Because no constraining (d − 1)-facade intersects the interior of Z, f must have

dimension d−2 or less. To show that f is grazeable, choose an open grazing triangle
L that does not intersect any constraining facade, such that one boundary edge of L
contains m. Does such a triangle always exist? If L has m on its boundary and is
sufficiently small, the only constraining facades that can intersect L are those that
contain m. These facades intersect the interior of Z, so they have dimension d − 2 or

m. (Here, “almost every” is used in the analytic sense: for any (d − 2)-facade g that
contains m, the set of planes through m that intersect g\{m} has measure zero in the
space of planes through m.) Therefore, almost every sufficiently small open triangle
with m on its boundary intersects no constraining facade, so f has a grazing triangle.

By Lemma 28, f ⊇ Ch. This contradicts the fact that Ch is d-dimensional and f

is at most (d − 2)-dimensional, so no constraining facade intersects the interior of
Z ∩Ch.

Claim Z ∩ Ch is convex. See Fig. 32(e). Suppose for the sake of contradiction that
Z∩Ch is not convex. Then there exist two points q and r in the interior of Z∩Ch such
that qr 
⊆Z∩Ch. Because Z∩Ch is star-shaped with p in its kernel, Z∩Ch includes
both pq and pr , so the three points p, q , and r cannot be collinear. Continuously
move q and r toward p until �pqr ⊂ Z ∩Ch, but qr still intersects the boundary of
Z ∩ Ch, as illustrated in Fig. 33. Let m be the point nearest q on qr that lies on the
boundary of Z∩Ch. (That point is neither q nor r , which are in the interior.) Loosely
speaking, Z ∩ Ch is locally reflex at m. Because Ch is convex with q and r in its
interior, m also lies in the interior of Ch, so m must lie on the boundary of Z.

Because the open triangle L=�pqr is included in the interior of Z ∩Ch, which
intersects no constraining facade, L is a grazing triangle for m, and m is visible
from p. Because m lies on the boundary of Z, but the open line segment pm does
not intersect Z’s boundary, m lies on at least one facet of Z that is not a shadow
facet. Therefore, m lies on some (d−1)-facade g, as illustrated. Because g intersects
neither the open triangle L nor the open line segment qm, m must lie on the boundary
of g.

Let ĝ be the face of g whose relative interior contains m. Because m is on g’s
boundary, ĝ has dimension d − 2 or less. L demonstrates that ĝ is grazeable. By

less. Almost every plane (2-flat) through m intersects these facades only at the point
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Fig. 33 If Z ∩Ch is not
convex, its boundary
incorporates a grazeable
facade ĝ

Fig. 34 The circumstance
depicted here, where a facade f

intersects the interior of a face P

of Z ∩Ch but does not include
P in its entirety, cannot happen
in a weakly ridge-protected PLC

Lemma 28, ĝ ⊇ Ch. This contradicts the fact that Ch is d-dimensional and ĝ is at
most (d − 2)-dimensional, so Z ∩Ch is convex.

Claim Z ∩Ch has no shadow facets. This claim follows because shadow facets are
cohyperplanar with p, but Z ∩Ch is a convex d-polyhedron with p in its interior.

Claim Z ∩ Ch respects X. Suppose for the sake of contradiction that some facade
f ∈X (that is not a submersible vertex) intersects the relative interior of a face P of
Z ∩ Ch, but f does not include P . Let y be a point in the intersection of f with the
relative interior of P , as illustrated in Fig. 34.

Because f is closed and does not include P , there is a point z in the relative
interior of P that is not in f . Let m be the point nearest z in f ∩ yz, as illustrated.
Because y and z are in the relative interior of P , so is m. Let y ′ be a point in P such
that m is between y′ and z. (The choice y′ = y will do if y 
=m; but if y =m, choose
y′ just past m on the ray 5zm.) Let f̂ be the face of f (possibly f itself) whose relative
interior contains m. This choice guarantees that y ′ and z do not lie on the affine hull
of f̂ , and f̂ cannot have dimension d .

The facade f̂ cannot have dimension d− 1, either. If it did, then it would intersect
the interior of Z ∩ Ch, because m is in the relative interiors of both f̂ and y′z, y′z
is on the boundary of Z ∩ Ch, and y′z does not lie on the same hyperplane as f̂ .
However, no (d − 1)-facade intersects the interior of Z. Therefore, f̂ has dimension
d − 2 or less. To show that f̂ is grazeable, choose an open grazing triangle L such
that L is included in the interior of Z ∩ Ch, and y′z is an edge of (the closure of)
L. No constraining facade intersects the interior of Z ∩Ch, so L is indeed a grazing
triangle.

Let Cm be the face of Ch whose relative interior contains m. By Lemma 28,
f̂ ⊇ Cm. Recall that m lies in the relative interior of P , which is a face of Z ∩ Ch,
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which implies that P ⊆ Ch. By Lemma 15, P ⊆ Cm. Thus z ∈ P ⊆ Cm ⊆ f̂ ⊆ f ,
contradicting the fact that z is not in f . The claim that Z ∩Ch respects X follows.

Claim s ⊆Z∩Ch. This claim follows because both Z and Ch contain all the vertices
of s, and Z ∩Ch is convex.

Claim s respects X. Let t be any face of s, and let m be any point in the relative
interior of t . Suppose some facade f ∈X (that is not a submersible vertex) contains
m. As m ∈ t ⊆ s ⊆ Z ∩ Ch, let Cm be the face of Z ∩ Ch whose relative interior
contains m. Because t and Z ∩ Ch are convex with t ⊆ Z ∩ Ch, it follows from
Lemma 15 (substituting t for P and Z ∩Ch for C) that t ⊆ Cm.

Recall that Z ∩ Ch respects f : if f intersects the relative interior of a face of
Z ∩ Ch, then f includes the whole face. Because f intersects the relative interior
of Cm (at m), f includes Cm, which implies that t ⊆ f . This relationship holds for
any face t of s, any point m, and any facade f ∈X that satisfy the assumptions, so s

respects X.

Claim Every point in Z ∩ Ch can see every other point in Z ∩ Ch, but no point in
the interior of Z ∩ Ch can see any vertex of Vh not in Z ∩ Ch. The first half of this
claim follows from Theorem 3 because Z∩Ch respects X. For the second half of the
claim, let q be a point in the interior of Z ∩Ch, and let v be a vertex in Vh that is not
in Z ∩Ch. Some facet F of Z ∩Ch lies between q and v. Because v is in Ch (which
is convex) and q is in its interior, F is not on the boundary of Ch. Thus F must lie
on the boundary of Z. Because Z ∩Ch has no shadow facets, F must be included in
some (d − 1)-facade in X, which occludes the visibility of v from q . Therefore, no
point in the interior of Z ∩Ch can see any vertex of Vh not in Z ∩Ch.

Claim s is constrained semiregular. Because p ∈ Z ∩ Ch, p sees every vertex in
Z ∩Ch. By construction, no vertex visible from p has a lifted companion below the
witness hs ; therefore, no vertex in Z ∩ Ch has one. By the definition of Vh, every
vertex in X whose lifted companion is below hs is in Vh. By the previous claim, no
point in the interior of s ⊆Z ∩Ch can see any vertex of Vh not in Z ∩Ch. Therefore,
no point in the interior of s can see any vertex whose lifted companion is below hs .
Moreover, s respects X, so s is constrained semiregular. �

Theorem 30 Let X be a weakly ridge-protected, d-dimensional PLC. Let p be a
point in a d-facade in X. Some constrained semiregular d-simplex contains p.

Proof If p ∈ N , the result follows from Lemma 29. What about points not in N?
Every point in N lies in some closed constrained semiregular d-simplex, and the
closure of N is the union of all the d-facades in X. It follows that every point in
every d-facade in X lies in some constrained semiregular d-simplex. �

Theorem 30 provides the machinery to prove Theorem 26: if X is a generic,
weakly ridge-protected, d-dimensional PLC, then X has a CDT.

Proof of Theorem 26 Let T be the set that contains every simplex that is constrained
semiregular within X or within a constraining facade in X. Because X is generic,
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every constrained semiregular simplex is constrained regular, and Corollary 18 guar-
antees that T is a simplicial complex.

Let p be any point in the triangulation domain |X|. Let f be the highest-
dimensional facade in X that contains p, and let k be the dimensionality of f . If
k = d , Theorem 30 states that there exists a constrained semiregular d-simplex that
contains p. By the definition of T , this d-simplex is in T .

If k < d , f is a dangling facade. Let Yf be the k-dimensional facade PLC for
f . By Corollary 12, Yf is weakly ridge-protected. Therefore Theorem 30 applies,
with Yf substituted for X and k substituted for d . In this case the theorem states that
some k-simplex exists that contains p and is constrained semiregular within Yf . This
k-simplex is in T .

Because such a simplex exists for every point p ∈ |X|, T fills X. By Theorem 10,
T is a CDT of X. �

Theorem 26 requires X to be generic only to ensure that Corollary 18 applies. If
X is nongeneric, T may contain constrained semiregular simplices whose interiors
overlap. Theorem 30, however, holds even for nongeneric X.

6 Nongeneric PLCs, Weight Perturbations, and the CDT Theorem

It is well known that the Delaunay triangulation is not unique when d + 2 or more
vertices lie on a common empty hypersphere. Every affinely independent subset of
these cospherical vertices yields a Delaunay simplex. Some of the Delaunay sim-
plices have mutually overlapping relative interiors, so some Delaunay simplices must
be omitted to form a proper triangulation. Different choices yield different Delaunay
triangulations. Likewise, a weighted Delaunay triangulation is not unique when the
underside of the convex hull of the lifted vertices has a facet that is not a simplex.

The story is a bit more complicated for CDTs and weighted CDTs. The triangula-
tion domain of a PLC might have a polyhedral gap (not necessarily convex) that is not
covered by constrained regular simplices. Sometimes this happens simply because
the PLC has no CDT, but sometimes the gap can be triangulated with constrained
semiregular simplices. A gap might have several such triangulations, yielding multi-
ple CDTs of one PLC. If a gap is shaped like Schönhardt’s polyhedron, it cannot be
triangulated at all.

A generic PLC has at most one weighted CDT (by Corollary 20), consisting of
every constrained regular simplex (by Theorem 19), so it is pleasingly unambiguous.
A nongeneric PLC raises the question of whether there exists a set of constrained
semiregular simplices that fill the gaps and complete the triangulation. Because there
may be several choices of constrained semiregular simplex to cover any point in a
gap, determining whether a CDT exists is like solving a jigsaw puzzle with extra,
useless pieces included.

Surprisingly, the problem of determining whether a three-dimensional nongeneric
PLC has a CDT is NP-complete [24], even for an unweighted PLC. By contrast, it
is always possible to determine whether a generic PLC has a CDT in polynomial
time—by attempting to construct it. (See the second article in this series for further
discussion.)
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This section removes the genericity requirement from the CDT Theorem by per-
turbing the vertex weights so that no d + 2 vertices lift to a common non-vertical
d-flat. The vertex coordinates are not perturbed. If the perturbed PLC has a CDT, the
latter is also a CDT of the original, unperturbed PLC. The method works even for
unweighted PLCs, by temporarily assigning each vertex a tiny weight. This idea first
appears in the work of Edelsbrunner and Mücke [17, Section 5.4].

The weight perturbation method serves a practical function as well as a theoretical
one. The third article in this series describes an easy way to implement the pertur-
bations to ensure the correctness of algorithms for constructing and updating CDTs.
There is a catch, though. Will a PLC that has a CDT still have a CDT after it is
perturbed? Not necessarily. Perturbations cannot circumvent the NP-hardness result.

The perturbations are symbolic—the magnitudes of the perturbations are not ex-
plicitly specified. Following Edelsbrunner and Mücke, the ith vertex weight could be
perturbed by ε2i for a sufficiently small ε, but the proofs are simpler if the perturba-
tions are implicitly chosen by the following procedure instead.

Let X be a d-dimensional PLC. Let V be the set of vertices in X. Consider all the
(d+1)-simplices, including degenerate ones, that can be defined by taking subsets of
d + 2 lifted vertices from V +. Call these the orientation simplices. Assume that the
vertices of each orientation simplex are listed in some canonical order. The signed
volume of an orientation simplex 〈v+0 , v+1 , . . . , v+d+1〉 is 1/(d + 1)! times the deter-
minant of the matrix with column vectors v+1 − v+0 , v+2 − v+0 , . . . , v+d+1 − v+0 . Each
signed volume varies linearly with the vertex weights. Every question about whether
a lifted vertex lies above a witness d-flat for a d-simplex is a question about the sign
of the volume of an orientation simplex. A volume of zero indicates cohyperplanarity.

Perturb the weights of the vertices in V one at a time, in some arbitrary order,
each by a tiny negative or positive amount (different for each vertex). To perturb
the weight of a vertex v, choose the magnitude of the perturbation to be sufficiently
small that no orientation simplex’s signed volume changes from positive to nonpos-
itive, or from negative to nonnegative. Some signed volumes may change from zero
to nonzero—that is the goal of the perturbations. Once a signed volume becomes
nonzero, subsequent perturbations are not permitted to change its sign. The idea is
to move vertices off of witnesses, but never to move a vertex from above a witness
to below, nor vice versa. For each vertex in turn, it is always possible to choose a
nonzero perturbation small enough to satisfy these restrictions. Perturb every vertex
once.

Theorem 31 Let X be a PLC. Let X′ be a weighted PLC defined by perturbing every
vertex weight in X as described above. (If X is unweighted, assign each vertex a
weight of zero before perturbing it.) The following statements hold:

A. If a simplex s is regular within X, it is regular within X′.
B. If a simplex s is constrained regular within a facade in X, it is constrained

regular within the same facade in X′.
C. If a simplex s is regular within X′, it is semiregular within X.
D. If a simplex s is constrained regular within a facade in X′, it is constrained

semiregular within the same facade in X.
E. X′ is generic and has at most one CDT.
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F. If X is ridge-protected, so is X′.
G. If X is weakly ridge-protected, so is X′.
H. If X′ has a CDT, the CDT of X′ is a CDT of X.
I. If X is generic, X and X′ have the same CDT (or lack thereof).

Proof A lifted vertex lies above, on, or below the witness for a d-simplex accord-
ing to whether the signed volume of some orientation simplex is positive, zero, or
negative. Similarly, the regularity of any lower-dimensional simplex depends on the
volumes of certain orientation simplices all having the right sign. Because a perturba-
tion never changes the volume of any orientation simplex from positive to nonpositive
or from negative to nonnegative, Statements A, B, C, and D hold by induction on the
sequence of perturbations.

Perturbing the height of a vertex v moves v+ off of any non-vertical d-flat that it
lay on before the perturbation. No perturbation, of v or any other vertex, can move
v+ onto a witness d-flat that v+ did not lie on before the perturbation, because that
would imply that the volume of some orientation simplex changes from nonzero to
zero. Therefore, v+ does not lie on any witness immediately after it is perturbed,
except the witnesses that by definition pass through v+; and subsequent perturbations
preserve this claim. By induction on the sequence of vertex perturbations, the claim
holds for every vertex in X′, and X′ is generic. By Corollary 20, X′ has at most one
CDT.

Statements F and G follow from Statement A. Statement H follows from State-
ment D and the genericity of X′.

If X is generic, then constrained regularity and constrained semiregularity are
equivalent. Thus, Statement B implies that any CDT of X is a CDT of X′, just as
Statement H says that any CDT of X′ is a CDT of X. Either X and X′ both have the
same CDT, or both have no CDT. �

A CDT of X′ is a CDT of X, but if X is nongeneric, different perturbations of X
(i.e. perturbing the vertices in a different order, or using different mixtures of positive
and negative perturbations) may yield different CDTs of X, or no CDT at all. Never-
theless, any choice of perturbation faithful to the procedure described above suffices
to excise the genericity requirement from Theorem 26.

Theorem 32 (CDT Theorem) Let X be a weakly ridge-protected, d-dimensional
PLC (weighted or not). X has a CDT (a weighted CDT if X is weighted).

Proof Let X′ be the perturbed weighted PLC defined in Theorem 31. By the theorem,
X′ is generic and weakly ridge-protected, so by Theorem 26, X′ has a CDT T . By
Theorem 31, T is a CDT of X. �

7 Conclusions

In their article on two-dimensional conforming Delaunay triangulations, Edelsbrun-
ner and Tan [20] write:
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A seemingly difficult open problem is the generalization of our polynomial
bound to three dimensions. The somewhat easier version of the generalized
problem considers a graph whose vertices are embedded as points in R

3, and
edges are represented by straight line segments connecting embedded vertices.
More relevant, however, is the problem for the crossing-free embedding of a
complex consisting of vertices, edges, and triangles.

Three-dimensional CDTs shift the emphasis back to the former of these two prob-
lems. An algorithm that could create a Steiner CDT by inserting only a polynomial
number of additional vertices would be an exciting development.

Some applications of finite element methods use meshes that have open slits,
which are infinitesimally thin fissures across which information does not flow. The
ideas in this article seem to extend in a straightforward way to topological PLCs
wherein open slits are modeled by topological holes in the domain. Unfortunately, it
is difficult to describe these PLCs in simple geometric terms, because of the need to
distinguish topologically distinct points that have the same coordinates. For example,
an internal (d − 1)-facade can be converted into an open slit by making a topolog-
ically distinct copy of the facade that coincides with the original. Both the original
and the copy adjoin the exterior domain (the infinitesimally thin hole), but they adjoin
each other only along their external boundaries. The internal vertices in the original
facade are topologically distinct from the internal vertices in the copy (and may or
may not coincide), thereby supporting the interpolation of discontinuous functions as
illustrated in Fig. 1(b). The open question is how to formulate these topological PLCs
rigorously, and how to extend the results in this article to them.

Several other questions deserve investigation. Is there a simply stated and tested
condition that is both sufficient and necessary for a generic PLC to have a CDT? The
NP-hardness result suggests that there is no such condition for nongeneric PLCs. Is
there a less conservative definition of “constrained Delaunay” (perhaps giving more
power to constraining facades of dimension less than d − 1) that admits useful, well-
defined triangulations over a larger class of PLCs? Is there a better approach to assur-
ing the existence of a CDT than to make a PLC weakly ridge-protected? Finally, when
do curved manifold complexes (e.g. the stratifications mentioned in Section 2.1) have
CDTs?

Acknowledgements I thank Dafna Talmor and Herbert Edelsbrunner for helpful discussions. In partic-
ular, Dafna pointed out the duality between degenerate faces of the Voronoi diagram and simplices that are
Delaunay but not strongly Delaunay.
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