
During the past few decades, the gradual merger of Discrete Geometry and the

newer discipline of Computational Geometry has provided enormous impetus

to mathematicians and computer scientists interested in geometric problems.

This volume, which contains 32 papers on a broad range of topics of current

interest in the field, is an outgrowth of that synergism. It includes surveys and

research articles exploring geometric arrangements, polytopes, packing, cov-

ering, discrete convexity, geometric algorithms and their complexity, and the

combinatorial complexity of geometric objects, particularly in low dimension.

There are points of contact with many applied areas such as mathematical

programming, visibility problems, kinetic data structures, and biochemistry,

as well as with algebraic topology, geometric probability, real algebraic geom-

etry, and combinatorics.
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Preface

The Great Bear is looking so geometrical,
One would think that something or other could be proved.

— Christopher Fry, “The Lady’s Not for Burning”

During the past several decades, the gradual merger of the field of discrete
geometry and the newer discipline of computational geometry has provided a
significant impetus to mathematicians and computer scientists interested in geo-
metric problems. The resulting field of discrete and computational geometry has
now grown to the point where not even a semester program, such as the one
held at the Mathematical Sciences Research Institute in the fall of 2003, with
its three workshops and nearly 200 participants, could include everyone involved
in making important contributions to the area. The same holds true for the
present volume, which presents just a sampling of the work generated during the
MSRI program; we have tried to assemble a sample that is representative of the
program.

The volume includes 32 papers on topics ranging from polytopes to complexity
questions on geometric arrangements, from geometric algorithms to packing and
covering, from visibility problems to geometric graph theory. There are points
of contact with both mathematical and applied areas such as algebraic topology,
geometric probability, algebraic geometry, combinatorics, differential geometry,
mathematical programming, data structures, and biochemistry.

We hope the articles in this volume—surveys as well as research papers—
will serve to give the interested reader a glimpse of the current state of discrete,
combinatorial and computational geometry as we stand poised at the beginning
of a new century.

Jacob E. Goodman
János Pach
Emo Welzl

xi
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Geometric Approximation via Coresets

PANKAJ K. AGARWAL, SARIEL HAR-PELED,

AND KASTURI R. VARADARAJAN

Abstract. The paradigm of coresets has recently emerged as a powerful
tool for efficiently approximating various extent measures of a point set P .
Using this paradigm, one quickly computes a small subset Q of P , called
a coreset, that approximates the original set P and and then solves the
problem on Q using a relatively inefficient algorithm. The solution for Q
is then translated to an approximate solution to the original point set P .
This paper describes the ways in which this paradigm has been successfully
applied to various optimization and extent measure problems.

1. Introduction

One of the classical techniques in developing approximation algorithms is the

extraction of “small” amount of “most relevant” information from the given data,

and performing the computation on this extracted data. Examples of the use of

this technique in a geometric context include random sampling [Chazelle 2000;

Mulmuley 1993], convex approximation [Dudley 1974; Bronshteyn and Ivanov

1976], surface simplification [Heckbert and Garland 1997], feature extraction

and shape descriptors [Dryden and Mardia 1998; Costa and César 2001]. For

geometric problems where the input is a set of points, the question reduces to

finding a small subset (a coreset) of the points, such that one can perform the

desired computation on the coreset.

As a concrete example, consider the problem of computing the diameter of a

point set. Here it is clear that, in the worst case, classical sampling techniques like

ε-approximation and ε-net would fail to compute a subset of points that contain

a good approximation to the diameter [Vapnik and Chervonenkis 1971; Haussler

and Welzl 1987]. While in this problem it is clear that convex approximation

Research by the first author is supported by NSF under grants CCR-00-86013, EIA-98-70724,
EIA-01-31905, and CCR-02-04118, and by a grant from the U.S.-Israel Binational Science
Foundation. Research by the second author is supported by NSF CAREER award CCR-
0132901. Research by the third author is supported by NSF CAREER award CCR-0237431.
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2 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

(i.e., an approximation of the convex hull of the point set) is helpful and provides

us with the desired coreset, convex approximation of the point set is not useful

for computing the narrowest annulus containing a point set in the plane.

In this paper, we describe several recent results which employ the idea of

coresets to develop efficient approximation algorithms for various geometric prob-

lems. In particular, motivated by a variety of applications, considerable work

has been done on measuring various descriptors of the extent of a set P of n

points in Rd. We refer to such measures as extent measures of P . Roughly

speaking, an extent measure of P either computes certain statistics of P itself

or of a (possibly nonconvex) geometric shape (e.g. sphere, box, cylinder, etc.)

enclosing P . Examples of the former include computing the k-th largest distance

between pairs of points in P , and the examples of the latter include computing

the smallest radius of a sphere (or cylinder), the minimum volume (or surface

area) of a box, and the smallest width of a slab (or a spherical or cylindrical

shell) that contain P . There has also been some recent work on maintaining

extent measures of a set of moving points [Agarwal et al. 2001b].

Shape fitting, a fundamental problem in computational geometry, computer

vision, machine learning, data mining, and many other areas, is closely related to

computing extent measures. The shape fitting problem asks for finding a shape

that best fits P under some “fitting” criterion. A typical criterion for measuring

how well a shape γ fits P , denoted as µ(P, γ), is the maximum distance between

a point of P and its nearest point on γ, i.e., µ(P, γ) = maxp∈P minq∈γ ‖p− q‖.
Then one can define the extent measure of P to be µ(P ) = minγ µ(P, γ), where

the minimum is taken over a family of shapes (such as points, lines, hyperplanes,

spheres, etc.). For example, the problem of finding the minimum radius sphere

(resp. cylinder) enclosing P is the same as finding the point (resp. line) that fits

P best, and the problem of finding the smallest width slab (resp. spherical shell,

cylindrical shell)1 is the same as finding the hyperplane (resp. sphere, cylinder)

that fits P best.

The exact algorithms for computing extent measures are generally expensive,

e.g., the best known algorithms for computing the smallest volume bounding box

containing P in R3 run in O(n3) time. Consequently, attention has shifted to

developing approximation algorithms [Barequet and Har-Peled 2001]. The goal

is to compute an (1+ε)-approximation, for some 0 < ε < 1, of the extent measure

in roughly O(nf(ε)) or even O(n+f(ε)) time, that is, in time near-linear or linear

in n. The framework of coresets has recently emerged as a general approach to

achieve this goal. For any extent measure µ and an input point set P for which

we wish to compute the extent measure, the general idea is to argue that there

exists an easily computable subset Q ⊆ P , called a coreset, of size 1/εO(1), so

1A slab is a region lying between two parallel hyperplanes; a spherical shell is the region
lying between two concentric spheres; a cylindrical shell is the region lying between two coaxial
cylinders.
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that solving the underlying problem on Q gives an approximate solution to the

original problem. For example, if µ(Q) ≥ (1 − ε)µ(P ), then this approach gives

an approximation to the extent measure of P . In the context of shape fitting, an

appropriate property for Q is that for any shape γ from the underlying family,

µ(Q, γ) ≥ (1 − ε)µ(P, γ). With this property, the approach returns a shape γ∗

that is an approximate best fit to P .

Following earlier work [Barequet and Har-Peled 2001; Chan 2002; Zhou and

Suri 2002] that hinted at the generality of this approach, [Agarwal et al. 2004]

provided a formal framework by introducing the notion of ε-kernel and showing

that it yields a coreset for many optimization problems. They also showed that

this technique yields approximation algorithms for a wide range of problems.

Since the appearance of preliminary versions of their work, many subsequent

papers have used a coreset based approach for other geometric optimization

problems, including clustering and other extent-measure problems [Agarwal et al.

2002; Bădoiu and Clarkson 2003b; Bădoiu et al. 2002; Har-Peled and Wang 2004;

Kumar et al. 2003; Kumar and Yildirim ≥ 2005].

In this paper, we have attempted to review coreset based algorithms for ap-

proximating extent measure and other optimization problems. Our aim is to

communicate the flavor of the techniques involved and a sense of the power of

this paradigm by discussing a number of its applications. We begin in Section 2

by describing ε-kernels of point sets and algorithms for constructing them. Sec-

tion 3 defines the notion of ε-kernel for functions and describes a few of its

applications. We then describe in Section 4 a simple incremental algorithm for

shape fitting. Section 5 discusses the computation of ε-kernels in the streaming

model. Although ε-kernels provide coresets for a variety of extent measures,

they do not give coresets for many other problems, including clustering. Sec-

tion 6 surveys the known results on coresets for clustering. The size of the

coresets discussed in these sections increases exponentially with the dimension,

so we conclude in Section 7 by discussing coresets for points in very high dimen-

sions whose size depends polynomially on the dimension, or is independent of

the dimension altogether.

2. Kernels for Point Sets

Let µ be a measure function (e.g., the width of a point set) from subsets

of Rd to the nonnegative reals R+ ∪ {0} that is monotone, i.e., for P1 ⊆ P2,

µ(P1) ≤ µ(P2). Given a parameter ε > 0, we call a subset Q ⊆ P an ε-coreset

of P (with respect to µ) if

(1 − ε)µ(P ) ≤ µ(Q).

Agarwal et al. [2004] introduced the notion of ε-kernels and showed that it

is an f(ε)-coreset for numerous minimization problems. We begin by defining

ε-kernels and related concepts.
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ω(u, P )

ω(u, Q)

u

Figure 1. Directional width and ε-kernel.

ε-kernel. Let Sd−1 denote the unit sphere centered at the origin in Rd. For any

set P of points in Rd and any direction u ∈ Sd−1, we define the directional width

of P in direction u, denoted by ω(u, P ), to be

ω(u, P ) = max
p∈P

〈u, p〉 − min
p∈P

〈u, p〉 ,

where 〈·, ·〉 is the standard inner product. Let ε > 0 be a parameter. A subset

Q ⊆ P is called an ε-kernel of P if for each u ∈ Sd−1,

(1 − ε)ω(u, P ) ≤ ω(u,Q).

Clearly, ω(u,Q) ≤ ω(u, P ). Agarwal et al. [2004] call a measure function µ

faithful if there exists a constant c, depending on µ, so that for any P ⊆ Rd and

for any ε, an ε-kernel of P is a cε-coreset for P with respect to µ. Examples

of faithful measures considered in that reference include diameter, width, radius

of the smallest enclosing ball, and volume of the smallest enclosing box. A

common property of these measures is that µ(P ) = µ(conv(P )). We can thus

compute an ε-coreset of P with respect to several measures by simply computing

an (ε/c)-kernel of P .

Algorithms for computing kernels. An ε-kernel of P is a subset whose con-

vex hull approximates, in a certain sense, the convex hull of P . Other notions of

convex hull approximation have been studied and methods have been developed

to compute them; see [Bentley et al. 1982; Bronshteyn and Ivanov 1976; Dudley

1974] for a sample. For example, in the first of these articles Bentley, Faust, and

Preparata show that for any point set P ⊆ R2 and ε > 0, a subset Q of P whose

size is O(1/ε) can be computed in O(|P | + 1/ε) time such that for any p ∈ P ,

the distance of p to conv(Q) is at most εdiam(Q). Note however that such a

guarantee is not enough if we want Q to be a coreset of P with respect to faithful

measures. For instance, the width of Q could be arbitrarily small compared to

the width of P . The width of an ε-kernel of P , on the other hand, is easily seen

to be a good approximation to the width of P . To the best of our knowledge,

the first efficient method for computing a small ε-kernel of an arbitrary point set

is implicit in [Barequet and Har-Peled 2001].
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We call P α-fat, for α ≤ 1, if there exists a point p ∈ Rd and a hypercube C

centered at the origin so that

p+ αC ⊂ conv(P ) ⊂ p+ C.

A stronger version of the following lemma, which is very useful for constructing

an ε-kernel, was proved in [Agarwal et al. 2004] by adapting a scheme from

[Barequet and Har-Peled 2001]. Their scheme can be thought of as one that

quickly computes an approximation to the Löwner–John Ellipsoid [John 1948].

Lemma 2.1. Let P be a set of n points in Rd such that the volume of conv(P )

is nonzero, and let C = [−1, 1]d. One can compute in O(n) time an affine

transform τ so that τ(P ) is an α-fat point set satisfying αC ⊂ conv(τ(P )) ⊂ C,

where α is a positive constant depending on d, and so that a subset Q ⊆ P is an

ε-kernel of P if and only if τ(Q) is an ε-kernel of τ(P ).

The importance of Lemma 2.1 is that it allows us to adapt some classical ap-

proaches for convex hull approximation [Bentley et al. 1982; Bronshteyn and

Ivanov 1976; Dudley 1974] which in fact do compute an ε-kernel when applied

to fat point sets.

We now describe algorithms for computing ε-kernels. By Lemma 2.1, we can

assume that P ⊆ [−1,+1]d is α-fat. We begin with a very simple algorithm.

Let δ be the largest value such that δ ≤ (ε/
√
d)α and 1/δ is an integer. We

consider the d-dimensional grid ZZ of size δ. That is,

ZZ = {(δi1, . . . , δid) | i1, . . . , id ∈ Z} .

For each column along the xd-axis in ZZ, we choose one point from the highest

nonempty cell of the column and one point from the lowest nonempty cell of the

column; see Figure 2, top left. Let Q be the set of chosen points. Since P ⊆
[−1,+1]d, |Q| = O(1/(αε)d−1). Moreover Q can be constructed in time O(n +

1/(αε)d−1) provided that the ceiling operation can be performed in constant

time. Agarwal et al. [2004] showed that Q is an ε-kernel of P . Hence, we can

compute an ε-kernel of P of size O(1/εd−1) in time O(n+1/εd−1). This approach

resembles the algorithm of [Bentley et al. 1982].

Next we describe an improved construction, observed independently in [Chan

2004] and [Yu et al. 2004], which is a simplification of an algorithm of [Agarwal

et al. 2004], which in turn is an adaptation of a method of Dudley [1974]. Let S

be the sphere of radius
√
d+ 1 centered at the origin. Set δ =

√
εα ≤ 1/2. One

can construct a set I of O(1/δd−1) = O(1/ε(d−1)/2) points on the sphere S so

that for any point x on S, there exists a point y ∈ I such that ‖x− y‖ ≤ δ. We

process P into a data structure that can answer ε-approximate nearest-neighbor

queries [Arya et al. 1998]. For a query point q, let ϕ(q) be the point of P returned

by this data structure. For each point y ∈ I, we compute ϕ(y) using this data

structure. We return the set Q = {ϕ(y) | y ∈ I}; see Figure 2, top right.
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We now briefly sketch, following the argument in [Yu et al. 2004], why Q is is

an ε-kernel of P . For simplicity, we prove the claim under the assumption that

ϕ(y) is the exact nearest-neighbor of y in P . Fix a direction u ∈ Sd−1. Let σ ∈ P

be the point that maximizes 〈u, p〉 over all p ∈ P . Suppose the ray emanating

from σ in direction u hits S at a point x. We know that there exists a point

y ∈ I such that ‖x− y‖ ≤ δ. If ϕ(y) = σ, then σ ∈ Q and

max
p∈P

〈u, p〉 − max
q∈Q

〈u, q〉 = 0.

Now suppose ϕ(y) 6= σ. Let B be the d-dimensional ball of radius ||y − σ||
centered at y. Since ‖y − ϕ(y)‖ ≤ ‖y − σ‖, ϕ(y) ∈ B. Let us denote by z the

point on the sphere ∂B that is hit by the ray emanating from y in direction −u.
Let w be the point on zy such that zy⊥σw and h the point on σx such that

yh⊥σx; see Figure 2, bottom.

δ

S

C

y

ϕ(y)

conv(P )

B

x

h

w

u

S

y

z

σ

Figure 2. Top left: A grid based algorithm for constructing an ε-kernel. Top

right: An improved algorithm. Bottom: Correctness of the improved algorithm.

The hyperplane normal to u and passing through z is tangent to B. Since

ϕ(y) lies inside B, 〈u, ϕ(y)〉 ≥ 〈u, z〉. Moreover, it can be shown that 〈u, σ〉 −
〈u, ϕ(y)〉 ≤ αε. Thus, we can write

max
p∈P

〈u, p〉 − max
q∈Q

〈u, q〉 ≤ 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε.
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Similarly, we have minp∈P 〈u, p〉 − minq∈Q 〈u, q〉 ≥ −αε.
The above two inequalities together imply that ω(u,Q) ≥ ω(u, P )−2αε. Since

αC ⊂ conv(P ), ω(u, P ) ≥ 2α. Hence ω(u,Q) ≥ (1−ε)ω(u, P ), for any u ∈ Sd−1,

thereby implying that Q is an ε-kernel of P .

A straightforward implementation of the above algorithm, i.e., the one that

answers a nearest-neighbor query by comparing the distances to all the points,

runs in O(n/ε(d−1)/2) time. However, we can first compute an (ε/2)-kernel Q′ of

P of size O(1/εd−1) using the simple algorithm and then compute an (ε/4)-kernel

using the improved algorithm. Chan [2004] introduced the notion of discrete

Voronoi diagrams, which can be used for computing the nearest neighbors of a

set of grid points among the sites that are also a subset of a grid. Using this

structure Chan showed that ϕ(y), for all y ∈ I, can be computed in a total time

of O(n + 1/εd−1) time. Putting everything together, one obtains an algorithm

that runs in O(n+ 1/εd−1) time. Chan in fact gives a slightly improved result:

Theorem 2.2 [Chan 2004]. Given a set P of n points in Rd and a parameter

ε > 0, one can compute an ε-kernel of P of size O(1/ε(d−1)/2) in time O(n +

1/εd−(3/2)).

Experimental results. Yu et al. [2004] implemented their ε-kernel algorithm

and tested its performance on a variety of inputs. They measure the quality of

an ε-kernel Q of P as the maximum relative error in the directional width of P

and Q. Since it is hard to compute the maximum error over all directions, they

sampled a set ∆ of 1000 directions in Sd−1 and computed the maximum relative

error with respect to these directions, i.e.,

err(Q,P ) = max
u∈∆

ω(u, P ) − ω(u,Q)

ω(u, P )
. (2–1)

They implemented the constant-factor approximation algorithm of [Barequet

and Har-Peled 2001] for computing the minimum-volume bounding box to con-

vert P into an α-fat set, and they used the ANN library [Arya and Mount 1998]

for answering approximate nearest-neighbor queries. Table 1 shows the running

time of their algorithm for a variety of synthetic inputs: (i) points uniformly

distributed on a sphere, (ii) points distributed on a cylinder, and (iii) clustered

point sets, consisting of 20 equal sized clusters. The running time is decomposed

into two components: (i) preprocessing time that includes the time spent in con-

verting P into a fat set and in preprocessing P for approximate nearest-neighbor

queries, and (ii) query time that includes the time spent in computing ϕ(x) for

x ∈ I. Figure 3 shows how the error err(Q,P ) changes as the function of ker-

nel. These experiments show that their algorithm works extremely well in low

dimensions (≤ 4) both in terms of size and running time. See [Yu et al. 2004]

for more detailed experiments.
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Input Input d = 2 d = 4 d = 6 d = 8
Type Size Pre Que Pre Que Pre Que Pre Que

104 0.03 0.01 0.06 0.05 0.10 9.40 0.15 52.80
sphere 105 0.54 0.01 0.90 0.50 1.38 67.22 1.97 1393.88

106 9.25 0.01 13.08 1.35 19.26 227.20 26.77 5944.89

104 0.03 0.01 0.06 0.03 0.10 2.46 0.16 17.29
cylinder 105 0.60 0.01 0.91 0.34 1.39 30.03 1.94 1383.27

106 9.93 0.01 13.09 0.31 18.94 87.29 26.12 5221.13

104 0.03 0.01 0.06 0.01 0.10 0.08 0.15 2.99
clustered 105 0.31 0.01 0.63 0.02 1.07 1.34 1.64 18.39

106 5.41 0.01 8.76 0.02 14.75 1.08 22.51 54.12

Table 1. Running time for computing ε-kernels of various synthetic data sets,

ε < 0.05. Prepr denotes the preprocessing time, including converting P into a

fat set and building ANN data structures. Query denotes the time for performing

approximate nearest-neighbor queries. Running time is measured in seconds. The

experiments were conducted on a Dell PowerEdge 650 server with a 3.06GHz

Pentium IV processor and 3GB memory, running Linux 2.4.20.
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Figure 3. Approximation errors under different sizes of computed ε-kernels.

Left: sphere. Right: various geometric models. All synthetic inputs had 100,000

points.

Applications. Theorem 2.2 can be used to compute coresets for faithful mea-

sures, defined in Section 2. In particular, if we have a faithful measure µ that can

be computed in O(nα) time, then by Theorem 2.2, we can compute a value µ,

(1−ε)µ(P ) ≤ µ ≤ µ(P ) by first computing an (ε/c)-kernel Q of P and then using

an exact algorithm for computing µ(Q). The total running time of the algorithm

is O(n+ 1/εd−(3/2) + 1/εα(d−1)/2). For example, a (1 + ε)-approximation of the

diameter of a point set can be computed in time O(n+ 1/εd−1) since the exact

diameter can be computed in quadratic time. By being a little more careful, the

running time of the diameter algorithm can be improved to O(n + 1/εd−(3/2))

[Chan 2004]. Table 2 gives running times for computing an (1+ε)-approximation

of a few faithful measures.

We note that ε-kernels in fact guarantee a stronger property for several faithful

measures. For instance, ifQ is an ε-kernel of P , and C is some cylinder containing
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Extent Time complexity

Diameter n + 1/εd−(3/2)

Width (n + 1/εd−2) log(1/ε)

Minimum enclosing cylinder n + 1/εd−1

Minimum enclosing box(3D) n + 1/ε3

Table 2. Time complexity of computing (1 + ε)-approximations for certain

faithful measures.

Q, then a “concentric” scaling of C by a factor of (1 + cε), for some constant c,

contains P . Thus we can compute not only an approximation to the minimum

radius r∗ of a cylinder containing P , but also a cylinder of radius at most (1+ε)r∗

that contains P .

The approach described in this section for approximating faithful measures

had been used for geometric approximation algorithms before the framework of

ε-kernels was introduced; see [Agarwal and Procopiuc 2002; Barequet and Har-

Peled 2001; Chan 2002; Zhou and Suri 2002], for example. The framework of

ε-kernels, however, provides a unified approach and turns out to be crucial for

the approach developed in the next section for approximating measures that are

not faithful.

3. Kernels for Sets of Functions

The crucial notion used to derive coresets and efficient approximation algo-

rithms for measures that are not faithful is that of a kernel of a set of functions.

x x

EF(x)

EG(x)

UF(x)

LF(x)

EF(x)

Figure 4. Envelopes, extent, and ε-kernel.

Envelopes and extent. Let F = {f1, . . . , fn} be a set of n d-variate real-

valued functions defined over x = (x1, . . . , xd−1, xd) ∈ Rd. The lower envelope

of F is the graph of the function LF : Rd → R defined as LF(x) = minf∈F f(x).

Similarly, the upper envelope of F is the graph of the function UF : Rd → R

defined as UF(x) = maxf∈F f(x). The extent EF : Rd → R of F is defined as

EF(x) = UF(x) − LF(x).
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Let ε > 0 be a parameter. We say that a subset G ⊆ F is an ε-kernel of F if

(1 − ε)EF(x) ≤ EG(x) ∀x ∈ Rd.

Obviously, EG(x) ≤ EF(x), as G ⊆ F.

Let H = {h1, . . . , hn} be a family of d-variate linear functions and ε > 0 a

parameter. We define a duality transformation that maps the d-variate function

(or a hyperplane in Rd+1) h : xd+1 = a1x1 + a2x2 + · · · + adxd + ad+1 to the

point h? = (a1, a2, . . . , ad, ad+1) in Rd+1. Let H? = {h? | h ∈ H}. It can be

proved [Agarwal et al. 2004] that K ⊆ H is an ε-kernel of H if and only if K∗ is

an ε-kernel of H∗. Hence, by computing an ε-kernel of H∗ we can also compute

an ε-kernel of H. The following is therefore a corollary of Theorem 2.2.

Corollary 3.1 [Agarwal et al. 2004; Chan 2004]. Given a set F of n d-variate

linear functions and a parameter ε > 0, one can compute an ε-kernel of F of size

O(1/εd/2) in time O(n+ 1/εd−(1/2)).

We can compute ε-kernels of a set of polynomial functions by using the notion

of linearization.

Linearization. Let f(x, a) be a (d+p)-variate polynomial, x ∈ Rd and a ∈ Rp.

Let a1, . . . , an ∈ Rp, and set F =
{

fi(x) ≡ f(x, ai) | 1 ≤ i ≤ n
}

. Suppose we can

express f(x, a) in the form

f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · · + ψk(a)ϕk(x), (3–1)

where ψ0, . . . , ψk are p-variate polynomials and ϕ1, . . . , ϕk are d-variate polyno-

mials. We define the map ϕ : Rd → Rk

ϕ(x) = (ϕ1(x), . . . , ϕk(x)).

Then the image Γ =
{

ϕ(x) | x ∈ Rd
}

of Rd is a d-dimensional surface in Rk (if

k ≥ d), and for any a ∈ Rp, f(x, a) maps to a k-variate linear function

ha(y1, . . . , yk) = ψ0(a) + ψ1(a)y1 + · · · + ψk(a)yk

in the sense that for any x ∈ Rd, f(x, a) = ha(ϕ(x)). We refer to k as the

dimension of the linearization ϕ, and say that F admits a linearization of di-

mension k. The most popular example of linearization is perhaps the so-called

lifting transform that maps Rd to a unit paraboloid in Rd+1. For example, let

f(x1, x2, a1, a2, a3) be the function whose absolute value is some measure of the

“distance” between a point (x1, x2) ∈ R2 and a circle with center (a1, a2) and

radius a3, which is the 5-variate polynomial

f(x1, x2, a1, a2, a3) = a2
3 − (x1 − a1)

2 − (x2 − a2)
2 .

We can rewrite f in the form

f(x1, x2, a1, a2, a3) = [a2
3 − a2

1 − a2
2] + [2a1x1] + [2a2x2] − [x2

1 + x2
2] , (3–2)
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thus, setting

ψ0(a) = a2
3 − a2

1 − a2
2,ψ1(a) = 2a1,ψ2(a) = 2a2,ψ3(a) = −1,

ϕ1(x) = x1, ϕ2(x) = x2, ϕ3(x) = x2
1 + x2

2,

we get a linearization of dimension 3. Agarwal and Matoušek [1994] describe an

algorithm that computes a linearization of the smallest dimension under certain

mild assumptions.

Returning to the set F, let H = {hai | 1 ≤ i ≤ n}. It can be verified [Agarwal

et al. 2004] that a subset K ⊆ H is an ε-kernel if and only if the set G =

{fi | hai ∈ K} is an ε-kernel of F.

Combining the linearization technique with Corollary 3.1, one obtains:

Theorem 3.2 [Agarwal et al. 2004]. Let F = {f1(x), . . . , fn(x)} be a family of

d-variate polynomials, where fi(x) ≡ f(x, ai) and ai ∈ Rp for each 1 ≤ i ≤ n,

and f(x, a) is a (d+p)-variate polynomial . Suppose that F admits a linearization

of dimension k, and let ε > 0 be a parameter . We can compute an ε-kernel of F

of size O(1/εσ) in time O(n+ 1/εk−1/2), where σ = min {d, k/2}.

Let F =
{

(f1)
1/r, . . . , (fn)1/r

}

, where r ≥ 1 is an integer and each fi is a

polynomial of some bounded degree. Agarwal et al. [2004] showed that if G is

an (ε/2(r − 1))r-kernel of {f1, . . . , fn}, then
{

(fi)
1/r | fi ∈ G

}

is an ε-kernel of

F. Hence, we obtain the following.

Theorem 3.3. Let F =
{

(f1)
1/r, . . . , (fn)1/r

}

be a family of d-variate functions

as in Theorem 3.2, each fi is a polynomial that is nonnegative for every x ∈ Rd,

and r ≥ 2 is an integer constant . Let ε > 0 be a parameter . Suppose that F

admits a linearization of dimension k. We can compute in O(n + 1/εr(k−1/2))

time an ε-kernel of size O(1/εrσ) where σ = min {d, k/2}.

Applications to shape fitting problems. Agarwal et al. [2004] showed that

Theorem 3.3 can be used to compute coresets for a number of unfaithful measures

as well. We illustrate the idea by sketching their (1+ε)-approximation algorithm

for computing a minimum-width spherical shell that contains P = {p1, . . . , pn}.
A spherical shell is (the closure of) the region bounded by two concentric spheres:

the width of the shell is the difference of their radii. Let fi(x) = ‖x− pi‖. Set

F = {f1, . . . , fn}. Let w(x, S) denote the width of the thinnest spherical shell

centered at x that contains a point set S, and let w∗ = w∗(S) = minx∈Rd w(x, S)

be the width of the thinnest spherical shell containing S. Then

w(x, P ) = max
p∈P

‖x− p‖ − min
p∈P

‖x− p‖ = max
fp∈F

fp(x) − min
fp∈F

fp(x) = EF(x).

Let G be an ε-kernel of F, and supposeQ ⊆ P is the set of points corresponding to

G. Then for any x ∈ Rd, we have w(x,Q) ≥ (1−ε)w(x, P ). So if we first compute

G (and therefore Q) using Theorem 3.3, compute the minimum-width spherical

shell A∗ containing Q, and take the smallest spherical shell containing P centered

at the center of A∗, we get a (1 + O(ε))-approximation to the minimum-width
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spherical shell containing P . The running time of such an approach isO(n+f(ε)).

It is a simple and instructive exercise to translate this approach to the problem

of computing a (1 + ε)-approximation of the minimum-width cylindrical shell

enclosing a set of points.

Using the kernel framework, Har-Peled and Wang [2004] have shown that

shape fitting problems can be approximated efficiently even in the presence of a

few outliers. Let us consider the following problem: Given a set P of n points in

Rd, and an integer 1 ≤ k ≤ n, find the minimum-width slab that contains n− k

points from P . They present an ε-approximation algorithm for this problem

whose running time is near-linear in n. They obtain similar results for problems

like minimum-width spherical/cylindrical shell and indeed all the shape fitting

problems to which the kernel framework applies. Their algorithm works well

if the number of outliers k is small. Erickson et al. [2004] show that for large

values of k, say roughly n/2, the problem is as hard as the (d − 1)-dimensional

affine degeneracy problem: Given a set of n points (with integer co-ordinates) in

Rd−1, do any d of them lie on a common hyperplane? It is widely believed that

the affine degeneracy problem requires Ω(nd−1) time.

Points in motion. Theorems 3.2 and 3.3 can be used to maintain various

extent measures of a set of moving points. Let P = {p1, . . . , pn} be a set of n

points in Rd, each moving independently. Let pi(t) = (pi1(t), . . . , pid(t)) denote

the position of point pi at time t. Set P (t) = {pi(t) | 1 ≤ i ≤ n}. If each pij is a

polynomial of degree at most r, we say that the motion of P has degree r. We

call the motion of P linear if r = 1 and algebraic if r is bounded by a constant.

Given a parameter ε > 0, we call a subset Q ⊆ P an ε-kernel of P if for any

direction u ∈ Sd−1 and for all t ∈ R,

(1 − ε)ω(u, P (t)) ≤ ω(u,Q(t)),

where ω() is the directional width. Assume that the motion of P is linear,

i.e., pi(t) = ai + bit, for 1 ≤ i ≤ n, where ai, bi ∈ Rd. For a direction u =

(u1, . . . , ud) ∈ Sd−1, we define a polynomial

fi(u, t) = 〈pi(t), u〉 = 〈ai + bit, u〉 =

d
∑

j=1

aijuj +

d
∑

j=1

bij · (tuj).

Set F = {f1, . . . , fn}. Then

ω(u, P (t)) = max
i

〈pi(t), u〉−min
i

〈pi(t), u〉 = max
i
fi(u, t)−min

i
fi(u, t) = EF(u, t).

Evidently, F is a family of (d+1)-variate polynomials that admits a linearization

of dimension 2d (there are 2d monomials). Exploiting the fact that u ∈ Sd−1,

Agarwal et al. [2004] show that F is actually a family of d-variate polynomials

that admits a linearization of dimension 2d−1. Using Theorem 3.2, we can there-

fore compute an ε-kernel of P of size O(1/εd−(1/2)) in time O(n+ 1/ε2d−(3/2)).
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The above argument can be extended to higher degree motions in a straightfor-

ward manner. The following theorem summarizes the main result.

Theorem 3.4. Given a set P of n moving points in Rd whose motion has degree

r > 1 and a parameter ε > 0, we can compute an ε-kernel Q of P of size O(1/εd)

in O(n+ 1/ε(r+1)d−(3/2)) time.

The theorem implies that at any time t, Q(t) is a coreset for P (t) with respect to

all faithful measures. Using the same technique, a similar result can be obtained

for unfaithful measures such as the minimum-width spherical shell.

Yu et al. [2004] have performed experiments with kinetic data structures that

maintain the axes-parallel bounding box and convex hull of a set of points P with

algebraic motion. They compare the performance of the kinetic data structure

for the entire point set P with that of the data structure for a kernel Q computed

by methods similar to Theorem 3.4. The experiments indicate that the number

of events that the data structure for Q needs to process is significantly lower

than for P even when Q is a very good approximation to P .

4. An Incremental Algorithm for Shape Fitting

Let P be a set of n points in Rd. In [Bădoiu et al. 2002] a simple incremental

algorithm is given for computing an ε-approximation to the minimum-enclosing

ball of P . They showed, rather surprisingly, that the number of iterations of their

algorithm depends only on ε and is independent of both d and n. The bound was

improved by Bădoiu and Clarkson [2003b; 2003a] and by Kumar et al. [2003].

Kumar and Yıldırım [≥ 2005] analyzed a similar algorithm for the minimum-

volume enclosing ellipsoid and gave a bound on the number of iterations that is

independent of d. The minimum-enclosing ball and minimum-enclosing ellipsoid

are convex optimization problems, and it is somewhat surprising that a variant

of this iterative algorithm works for nonconvex optimization problems, e.g., the

minimum-width cylinder, slab, spherical shell, and cylindrical shell containing

P . As shown in [Yu et al. 2004], the number of iterations of the incremental

algorithm is independent of the number n of points in P for all of these problems.

We describe here the version of the algorithm for computing the minimum-

width slab containing P . The algorithm and its proof of convergence are readily

translated to the other problems mentioned. Let Q be any affinely independent

subset of d+ 1 points in P .

(i) Let S be the minimum-width slab containing Q, computed by some brute-

force method. If a (1 + ε)-expansion of S contains P , we return this (1 + ε)-

expansion.

(ii) Otherwise, let p ∈ P be the point farthest from S.

(iii) Set Q = Q ∪ {p} and go to Step 1.

It is clear that when the algorithm terminates, it does so with an ε-approximation

to the minimum-width slab containing P . Also, the running time of the algorithm
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is O(k(n+ f(O(k)))), where k is the number of iterations of the algorithm, and

f(t) is the running time of the brute-force algorithm for computing a minimum-

enclosing slab of t points. Following an argument similar to the one used for

proving the correctness of the algorithm for constructing ε-kernels, Yu et al.

[2004] proved that the above algorithm converges within O(1/ε(d−1)/2) iterations.

They also do an experimental analysis of this algorithm and conclude that its

typical performance is quite good in comparison with even the coreset based

algorithms. This is because the number of iterations for typical point sets is

quite small, as might be expected. See the original paper for details.

We conclude this section with an interesting open problem: Does the in-

cremental algorithm for the minimum-enclosing cylinder problem terminate in

O(f(d) · g(d, ε)) iterations, where f(d) is a function of d only, and g(d, ε) is a

function that depends only polynomially on d? Note that the algorithm for the

minimum-enclosing ball terminates in O(1/ε) iterations, while the algorithm for

the minimum-enclosing slab can be shown to require Ω(1/ε(d−1)/2) iterations.

5. Coresets in a Streaming Setting

Algorithms for computing an ε-kernel for a given set of points in Rd can be

adapted for efficiently maintaining an ε-kernel of a set of points under insertions

and deletions. Here we describe the algorithm from [Agarwal et al. 2004] for

maintaining ε-kernels in the streaming setting. Suppose we are receiving a stream

of points p1, p2, . . . in Rd. Given a parameter ε > 0, we wish to maintain an ε-

kernel of the n points received so far. The resource that we are interested in

minimizing is the space used by the data structure. Note that our analysis is

in terms of n, the number of points inserted into the data structure. However,

n does not need to be specified in advance. We assume the existence of an

algorithm A that can compute a δ-kernel of a subset S ⊆ P of size O(1/δk) in

time O(|S| + TA(δ)); obviously TA(δ) = Ω(1/δk). We will use A to maintain an

ε-kernel dynamically. Besides such an algorithm, our scheme only uses abstract

properties of kernels such as the following:

(1) If P2 is an ε-kernel of P1, and P3 is a δ-kernel of P2, then P3 is a (δ+ε)-kernel

of P1;

(2) If P2 is an ε-kernel of P1, and Q2 is an ε-kernel of Q1, then P2 ∪ Q2 is an

ε-kernel of P1 ∪Q1.
2

Thus the scheme applies more generally, for instance, to some notions of coresets

defined in the clustering context.

2This property is, strictly speaking, not true for kernels. However, if we slightly modify the
definition to say that Q ⊆ P is an ε-kernel of P if the 1/(1 − ε)-expansion of any slab that
contains Q also contains P , both properties are seen to hold. Since the modified definition is
intimately connected with the definition we use, we feel justified in pretending that the second
property also holds for kernels.
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We assume without loss of generality that 1/ε is an integer. We use the dy-

namization technique of [Bentley and Saxe 1980], as follows: Let P = 〈p1, . . . , pn〉
be the sequence of points that we have received so far. For integers i ≥ 1, let

ρi = ε/ci2, where c > 0 is a constant, and set δi =
∏i

l=1(1 + ρl) − 1. We

partition P into subsets P0, P1, . . . , Pu, where u =
⌊

log2 ε
kn
⌋

+ 1, as follows.

|P0| = n mod 1/εk, and for 1 ≤ i ≤ u, |Pi| = 2i−1/εk if the i-th rightmost

bit in the binary expansion of
⌊

εkn
⌋

is 1, otherwise |Pi| = 0. Furthermore, if

0 ≤ i < j ≤ u, the points in Pj arrived before any point in Pi. These conditions

uniquely specify P0, . . . , Pu. We refer to i as the rank of Pi. Note that for i ≥ 1,

there is at most one nonempty subset of rank i.

Unlike the standard Bentley–Saxe technique, we do not maintain each Pi

explicitly. Instead, for each nonempty subset Pi, we maintain a δi-kernel Qi of

Pi; if Pi = ?, we set Qi = ? as well. We also let Q0 = P0. Since

1 + δi =

i
∏

l=1

(

1 +
ε

cl2

)

≤ exp

( i
∑

l=1

ε

cl2

)

= exp

(

ε

c

i
∑

l=1

1

l2

)

≤ exp

(

π2ε

6c

)

≤ 1 +
ε

3
, (5–1)

provided c is chosen sufficiently large, Qi is an (ε/3)-kernel of Pi. Therefore,
⋃u

i=0Qi is an (ε/3)-kernel of P . We define the rank of a set Qi to be i. For

i ≥ 1, if Pi is nonempty, |Qi| will be O(1/ρk
i ) because ρi ≤ δi; note that |Q0| =

|P0| < 1/εk.

For each i ≥ 0, we also maintain an ε/3-kernel Ki of
⋃

j≥iQj , as follows.

Let u =
⌊

log2(ε
kn)
⌋

+ 1 be the largest value of i for which Pi is nonempty. We

have Ku = Qu, and for 1 ≤ i < u, Ki is a ρi-kernel of Ki+1 ∪ Qi. Finally,

K0 = Q0 ∪ K1. The argument in (5–1), by the coreset properties (1) and (2),

implies thatKi is an (ε/3)-kernel of
⋃

j≥iQj , and thusK0 is the required ε-kernel

of P . The size of the entire data structure is
u
∑

i=0

(|Qi| + |Ki|) ≤ |Q0| + |K0| +
u
∑

i=1

O(1/ρk
i )

= O(1/εk) +

blog2 εknc+1
∑

i=1

O

(

i2k

εk

)

= O

(

log2k+1 n

εk

)

.

At the arrival of the next point pn+1, the data structure is updated as follows.

We add pn+1 to Q0 (and conceptually to P0). If |Q0| < 1/εk then we are done.

Otherwise, we promote Q0 to have rank 1. Next, if there are two δj-kernels

Qx, Qy of rank j, for some j ≤
⌊

log2 ε
k(n+ 1)

⌋

+ 1, we compute a ρj+1-kernel

Qz of Qx ∪ Qy using algorithm A, set the rank of Qz to j + 1, and discard the

sets Qx and Qy. By construction, Qz is a δj+1-kernel of Pz = Px ∪ Py of size

O(1/ρk
j+1) and |Pz| = 2j/εk. We repeat this step until the ranks of all Qi’s are

distinct. Suppose ξ is the maximum rank of a Qi that was reconstructed, then
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we recompute Kξ, . . . ,K0 in that order. That is, for ξ ≥ i ≥ 1, we compute a

ρi-kernel of Ki+1 ∪Qi and set this to be Ki; finally, we set K0 = K1 ∪Q0.

For any fixed i ≥ 1, Qi and Ki are constructed after every 2i−1/εk insertions,

therefore the amortized time spent in updating Q after inserting a point is

blog2 εknc+1
∑

i=1

εk

2i−1
O

(

i2k

εk
+ TA

( ε

ci2

)

)

= O

(blog2 εknc+1
∑

i=1

εk

2i−1
TA

( ε

ci2

)

)

.

If TA(x) is bounded by a polynomial in 1/x, then the above expression is bounded

by O(εkTA(ε)).

Theorem 5.1 [Agarwal et al. 2004]. Let P be a stream of points in Rd, and

let ε > 0 be a parameter . Suppose that for any subset S ⊆ P , we can compute

an ε-kernel of S of size O(1/εk) in O(|S| + TA(ε)) time, where TA(ε) ≥ 1/εk

is bounded by a polynomial in 1/ε. Then we can maintain an ε-kernel of P of

size O(1/εk) using a data structure of size O(log2k+1(n)/εk). The amortized

time to insert a point is O(εkTA(ε)), and the running time in the worst case is

O
(

(log2k+1 n)/εk + TA(ε/ log2 n) log n
)

.

Combined with Theorem 2.2, we get a data-structure using (logn/ε)O(d) space

to maintain an ε-kernel of size O(1/ε(d−1)/2) using (1/ε)O(d) amortized time for

each insertion.

Improvements. The previous scheme raises the question of whether there is a

data structure that uses space independent of the size of the point set to maintain

an ε-kernel. Chan [2004] shows that the answer is “yes” by presenting a scheme

that uses only (1/ε)O(d) storage. This result implies a similar result for maintain-

ing coresets for all the extent measures that can be handled by the framework

of kernels. His scheme is somewhat involved, but the main ideas and difficulties

are illustrated by a simple scheme, reproduced below, that he describes that uses

constant storage for maintaining a constant-factor approximation to the radius

of the smallest enclosing cylinder containing the point set. We emphasize that

the question is that of maintaining an approximation to the radius: it is not

hard to maintain the axis of an approximately optimal cylinder.

A simple constant-factor offline algorithm for approximating the minimum-

width cylinder enclosing a set P of points was proposed in [Agarwal et al. 2001a].

The algorithm picks an arbitrary input point, say o, finds the farthest point v

from o, and returns the farthest point from the line ov.

Let rad(P ) denote the minimum radius of all cylinders enclosing P , and let

d(p, `) denote the distance between point p and line `. The following observation

immediately implies an upper bound of 4 on the approximation factor of the

above algorithm.

Observation 5.2. d(p, ov) ≤ 2

(‖o− p‖
‖o− v‖ + 1

)

rad({o, v, p}).
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Unfortunately, the above algorithm requires two passes, one to find v and one to

find the radius, and thus does not fit in the streaming framework. Nevertheless,

a simple variant of the algorithm, which maintains an approximate candidate

for v on-line, works, albeit with a larger constant:

Theorem 5.3 [Chan 2004]. Given a stream of points in Rd (where d is not nec-

essarily constant), we can maintain a factor-18 approximation of the minimum

radius over all enclosing cylinders with O(d) space and update time.

Proof. Initially, say o and v are the first two points, and set w = 0. We may

assume that o is the origin. A new point is inserted as follows:

insert(p):

1. w := max{w, rad({o, v, p})}.
2. if ‖p‖ > 2 ‖v‖ then v := p.

3. Return w.

After each point is inserted, the algorithm returns a quantity that is shown below

to be an approximation to the radius of the smallest enclosing cylinder of all the

points inserted thus far.

In the following analysis, wf and vf refer to the final values of w and v, and

vi refers to the value of v after its i-th change. Note that ‖vi‖ > 2 ‖vi−1‖ for

all i. Also, we have wf ≥ rad({o, vi−1, vi}) since rad({o, vi−1, vi}) was one of the

“candidates” for w. From Observation 5.2, it follows that

d(vi−1, ovi) ≤ 2

(‖vi−1‖
‖vi‖

+ 1

)

rad({o, vi−1, vi}) ≤ 3rad({o, vi−1, vi}) ≤ 3wf .

Fix a point q ∈ P , where P denotes the entire input point set. Suppose that

v = vj just after q is inserted. Since ‖q‖ ≤ 2 ‖vj‖, Observation 5.2 implies that

d(q, ovj) ≤ 6wf .

For i > j, we have d(q, ovi) ≤ d(q, ovi−1)+d(q̂, ovi), where q̂ is the orthogonal

projection of q to ovi−1. By similarity of triangles,

d(q̂, ovi) = (‖q̂‖ / ‖vi−1‖)d(vi−1, ovi) ≤ (‖q‖ / ‖vi−1‖)3wf .

Therefore,

d(q, ovi) ≤







6wf if i = j,

d(q, ovi−1) +
‖q‖

‖vi−1‖
3wf if i > j.

Expanding the recurrence, one can obtain that d(q, ovf ) ≤ 18wf . So, wf ≤
rad(P ) ≤ 18wf . ˜

6. Coresets for Clustering

Given a set P of n points in Rd and an integer k > 0, a typical clustering

problem asks for partitioning P into k subsets (called clusters), P1, . . . , Pk, so

that certain objective function is minimized. Given a function µ that measures
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the extent of a cluster, we consider two types of clustering objective functions:

centered clustering in which the objective function is max1≤i≤k µ(Pi), and the

summed clustering in which the objective function is
∑k

i=1 µ(Pi); k-center and

k-line-center are two examples of the first type, and k-median and k-means are

two examples of the second type.

It is natural to ask whether coresets can be used to compute clusterings effi-

ciently. In the previous sections we showed that an ε-kernel of a point set provides

a coreset for several extent measures of P . However, the notion of ε-kernel is

too weak to provide a coreset for a clustering problem because it approximates

the extent of the entire P while for clustering problems we need a subset that

approximates the extent of “relevant” subsets of P as well. Nevertheless, core-

sets exist for many clustering problems, though the precise definition of coreset

depends on the type of clustering problem we are considering. We review some

of these results in this section.

6.1. k-center and its variants. We begin by defining generalized k-clustering:

we define a cluster to be a pair (f, S), where f is a q-dimensional subspace for

some q ≤ d and S ⊆ P . Define µ(f, S) = maxp∈S d(p, f). We define B(f, r)

to be the Minkowski sum of f and the ball of radius r centered at the origin;

B(f, r) is a ball (resp. cylinder) of radius r if f is a point (resp. line), and a

slab of width 2r if f is a hyperplane. Obviously, S ⊆ B(f, µ(f, S)). We call

C = {(f1, P1), . . . , (fk, Pk)} a k-clustering (of dimension q) if each fi is a q-

dimensional subspace and P =
⋃k

i=1 Pi. We define µ(C) = max1≤i≤k µ(fi, Pi),

and set ropt(P, k, q) = minC µ(C), where the minimum is taken over all k-

clusterings (of dimension q) of P . We use Copt(P, k, q) to denote an optimal

k-clustering (of dimension q) of P . For q = 0, 1, d − 1, the above clustering

problems are called k-center, k-line-center, and k-hyperplane-center problems,

respectively; they are equivalent to covering P by k balls, cylinders, and slabs of

minimum radius, respectively.

We call Q ⊆ P an additive ε-coreset of P if for every k-clustering C =

{(f1, Q1), . . . , (fk, Qk)} of Q, with ri = µ(fi, Qi),

P ⊆
k
⋃

i=1

B(fi, ri + εµ(C)),

i.e., union of the expansion of each B(fi, ri) by εµ(C) covers P . If for every

k-clustering C of Q, with ri = µ(fi, Qi), we have the stronger property

P ⊆
k
⋃

i=1

B(fi, (1 + ε)ri),

then we call Q a multiplicative ε-coreset.

We review the known results on additive and multiplicative coreset for k-

center, k-line-center, and k-hyperplane-center.
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k-center. The existence of an additive coreset for k-center follows from the

following simple observation. Let r∗ = ropt(P, k, 0), and let B = {B1, . . . , Bk}
be a family of k balls of radius r∗ that cover P . Draw a d-dimensional Cartesian

grid of side length εr∗/2d; O(k/εd) of these grid cells intersect the balls in B.

For each such cell τ that also contains a point of P , we arbitrarily choose a point

from P ∩ τ . The resulting set S of O(k/εd) points is an additive ε-coreset of P ,

as proved by Agarwal and Procopiuc [2002]. In order to construct S efficiently,

we use Gonzalez’s greedy algorithm [1985] to compute a factor-2 approximation

of k-center, which returns a value r̃ ≤ 2r∗. We then draw the grid of side

length εr̃/4d and proceed as above. Using a fast implementation of Gonzalez’s

algorithm as proposed in [Feder and Greene 1988; Har-Peled 2004a], one can

compute an additive ε-coreset of size O(k/εd) in time O(n+ k/εd).

Agarwal et al. [2002] proved the existence of a small multiplicative ε-coreset

for k-center in R1. It was subsequently extended to higher dimensions by Har-

Peled [2004b]. We sketch their construction.

Theorem 6.1 [Agarwal et al. 2002; Har-Peled 2004b]. Let P be a set of n points

in Rd, and 0 < ε < 1/2 a parameter . There exists a multiplicative ε-coreset of

size O
(

k!/εdk
)

of P for k-center .

Proof. For k = 1, by definition, an additive ε-coreset of P is also a multiplica-

tive ε-coreset of P . For k > 1, let r∗ = ropt(P, k, 0) denote the smallest r for

which k balls of radius r cover P . We draw a d-dimensional grid of side length

εropt/(5d), and let C be the set of (hyper-)cubes of this grid that contain points

of P . Clearly, |C| = O(k/εd). Let Q′ be an additive (ε/2)-coreset of P . For

every cell ∆ in C, we inductively compute an ε-multiplicative coreset of P ∩ ∆

with respect to (k − 1)-center. Let Q∆ be this set, and let Q =
⋃

∆∈C
Q∆ ∪Q′.

We argue below that the set Q is the required multiplicative coreset. The bound

on its size follows by a simple calculation.

Let B be any family of k balls that covers Q. Consider any hypercube ∆ of C.

Suppose ∆ intersects all the k balls of B. Since Q′ is an additive (ε/2)-coreset

of P , one of the balls in B must be of radius at least r∗/(1 + ε/2) ≥ r∗(1− ε/2).

Clearly, if we expand such a ball by a factor of (1 + ε), it completely covers ∆,

and therefore also covers all the points of ∆ ∩ P .

We now consider the case when ∆ intersects at most k − 1 balls of B. By

induction, Q∆ ⊆ Q is an ε-multiplicative coreset of P ∩ ∆ for (k − 1)-center.

Therefore, if we expand each ball in B that intersects ∆ by a factor of (1 + ε),

the resulting set of balls will cover P ∩ ∆. ˜

Surprisingly, additive coresets for k-center exist even for a set of moving points

in Rd. More precisely, let P be a set of n points in Rd with algebraic motion of

degree at most ∆, and let 0 < ε ≤ 1/2 be a parameter. Har-Peled [2004a] showed

that there exists a subset Q ⊆ P of size O((k/εd)∆+1) so that for all t ∈ R, Q(t)

is an additive ε-coreset of P (t). For k = O(n1/4εd), Q can be computed in time

O(nk/εd).
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k-line-center. The existence of an additive coreset for k-line-center, i.e., for

the problem of covering P by k congruent cylinders of the minimum radius, was

first proved in [Agarwal et al. 2002].

Theorem 6.2 [Agarwal et al. 2002]. Given a set P of finite points in Rd and a

parameter 0 < ε < 1/2, there exists an additive ε-coreset of size

O((k + 1)!/εd−1+k)

of P for the k-line-center problem.

Proof. Let Copt = {(`1, P1), . . . , (`k, Pk)} be an optimal k-clustering (of di-

mension 1) of P , and let r∗ = µ(P, k, 1), i.e., the cylinders of radius r∗ with

axes `1, . . . , `k cover P and Pi ⊂ B(`i, r
∗). For each 1 ≤ i ≤ k, draw a family

Li of O(1/εd−1) lines parallel to `i so that for any point in Pi there is a line

in Li within distance εr∗/2. Set L =
⋃

i Li. We project each point p ∈ Pi to

the line in Li that is nearest to p. Let p̄ be the resulting projection of p, and

let P̄` be the set of points that project onto ` ∈ L. Set P̄ =
⋃

`∈L P̄`. It can

be argued that a multiplicative (ε/3)-coreset of P̄ is an additive ε-coreset of P .

Since the points in P̄` lie on a line, by Theorem 6.1, a multiplicative (ε/3)-coreset

Q̄` of P̄` of size O(k!/εk) exists. Observing that Q̄ =
⋃

`∈L Q̄` is a multiplicative

(ε/3)-coreset of P̄ , and thus Q = {p | p̄ ∈ Q̄} is an additive ε-coreset of P of size

O((k + 1)!/εd−1+k). ˜

Although Theorem 6.2 proves the existence of an additive coreset for k-line-

center, the proof is nonconstructive. However, Agarwal et al. [2002] have shown

that the iterated reweighting technique of Clarkson [1993] can be used in conjunc-

tion with Theorem 6.2 to compute an ε-approximate solution to the k-line-center

problem in O(n log n) expected time, with constants depending on k, ε, and d.

When coresets do not exist. We now present two negative results on core-

sets for centered clustering problems. Surprisingly, there are no multiplicative

coresets for k-line-center even in R2.

Theorem 6.3 [Har-Peled 2004b]. For any n ≥ 3, there exists a point set P =

{p1, . . . , pn} in R2, such that the size of any multiplicative (1/2)-coreset of P

with for 2-line-center is at least |P | − 2.

Proof. Let pi = (1/2i, 2i) and P (i) = {p1, . . . , pi}. Let Q be a (1/2)-coreset of

P = P (n). Let Q−
i = Q ∩ P (i) and Q+

i = Q \Q−
i .

If the set Q does not contain the point pi =
(

1/2i, 2i
)

, for some 2 ≤ i ≤ n− 1,

then Q−
i can be covered by a horizontal strip h− of width ≤ 2i−1 that has the

x-axis as its lower boundary. Clearly, if we expand h− by a factor of 3/2, it still

will not cover pi. Similarly, we can cover Q+
i by a vertical strip h+ of width

1/2i+1 that has the y-axis as its left boundary. Again, if we expand h+ by a

factor of 3/2, it will still not cover pi. We conclude, that any multiplicative

(1/2)-coreset for P must include all the points p2, p3, . . . , pn−1. ˜
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This construction can be embedded in R3, as described in [Har-Peled 2004b], to

show that even an additive coreset does not exist for 2-plane-clustering in R3,

i.e., the problem of covering the input point set of two slabs of the minimum

width.

For the special case of 2-plane-center in R3, a near-linear-time approximation

algorithm is known [Har-Peled 2004b]. The problem of approximating the best

k-hyperplane-clustering for k ≥ 3 in R3 and k ≥ 2 in higher dimensions in

near-linear time is still open.

6.2. k-median and k-means clustering. Next we focus our attention to

coresets for the summed clustering problem. For simplicity, we consider the

k-median clustering problem, which calls for computing k “facility” points so

that the average distance between the points of C and their nearest facility is

minimized. Since the objective function involves sum of distances, we need to

assign weights to points in coresets to approximate the objective function of the

clustering for the entire point set. We therefore define k-median clustering for a

weighted point set.

Let P be a set of n points in Rd, and let w : P → Z+ be a weight function.

For a point set C ⊆ Rd, let µ(P,w,C) =
∑

p∈P w(p)d(p, C), where d(p, C) =

minq∈C d(p, q). Given C, we partition P into k clusters by assigning each point

in P to its nearest neighbor in C. Define

µ(P,w, k) = min
C⊂R

d

|C|=k

µ(P,w,C).

For k = 1, this is the so-called Fermat–Weber problem [Wesolowsky 1993]. A

subset Q ⊆ P with a weight function χ : P → Z+ is called an ε-coreset for

k-median if for any set C of k points in Rd,

(1 − ε)µ(P,w,C) ≤ µ(Q,χ,C) ≤ (1 + ε)µ(P,w,C).

Here we sketch the proof from [Har-Peled and Mazumdar 2004] for the ex-

istence of a small coreset for the k-median problem. There are two main in-

gredients in their construction. First suppose we have at our disposal a set

A = {a1, . . . , am} of “support” points in Rd so that µ(P,w,A) ≤ cµ(P,w, k) for

a constant c ≥ 1, i.e., A is a good approximation of the “centers” of an optimal

k-median clustering. We construct an ε-coreset S of size O((|A| log n)/εd) using

A, as follows.

Let Pi ⊆ P , for 1 ≤ i ≤ m, be the set of points for which ai is the

nearest neighbor in A. We draw an exponential grid around ai and choose

a subset of O((log n)/εd) points of Pi, with appropriate weights, for S. Set

ρ = µ(P,w,A)/cn, which is a lower bound on the average radius µ(P,w, k)/n of

the optimal k-median clustering. Let Cj be the axis-parallel hypercube with side

length ρ2j centered at ai, for 0 ≤ i ≤ d2 log(cn)e. Set V0 = C0 and Vi = Ci\Ci−1

for i ≥ 1. We partition each Vi into a grid of side length ερ2j/α, where α ≥ 1 is
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a constant. For each grid cell τ in the resulting exponential grid that contains

at least one point of Pi, we choose an arbitrary point in Pi ∩ τ and set its weight

to
∑

p∈Pi∩τ w(p). Let Si be the resulting set of weighted points. We repeat this

step for all points in A, and set S =
⋃m

i=1 Si. Har-Peled and Mazumdar showed

that S is indeed an ε-coreset of P for the k-median problem, provided α is chosen

appropriately.

The second ingredient of their construction is the existence of a small “sup-

port” set A. Initially, a random sample of P of O(k logn) points is chosen and

the points of P that are “well-served” by this set of random centers are filtered

out. The process is repeated for the remaining points of P until we get a set

A′ of O(k log2 n) support points. Using the above procedure, we can construct

an (1/2)-coreset S of size O(k log3 n). Next, a simple polynomial-time local-

search algorithm, described in [Har-Peled and Mazumdar 2004], can be applied

to this coreset and a support set A of size k can be constructed, which is a

constant-factor approximation to the optimal k-median/means clustering. Plug-

ging this A back into the above coreset construction yields an ε-coreset of size

O((k/εd) log n).

Theorem 6.4 [Har-Peled and Mazumdar 2004]. Given a set P of n points in Rd,

and parameters ε > 0 and k, one can compute a coreset of P for k-means and

k-median clustering of size O((k/εd) log n). The running time of this algorithm

is O(n+ poly(k, log n, 1/ε)), where poly(·) is a polynomial .

Using a more involved construction, Har-Peled and Kushal [2004] showed that

for both k-median and k-means clustering, one can construct a coreset whose size

is independent of the size of the input point set. In particular, they show that

there is a coreset of size O(k2/εd) for k-median and O(k3/εd+1) for k-means.

Chen [2004] recently showed that for both k-median and k-means clustering,

there are coresets whose size is O(dkε−2 logn), which has linear dependence on

d. In particular, this implies a streaming algorithm for k-means and k-median

clustering using (roughly) O(dkε−2 log3 n) space. The question of whether the

dependence on n can be removed altogether is still open.

7. Coresets in High Dimensions

Most of the coreset constructions have exponential dependence on the dimen-

sions. In this section, we do not consider d to be a fixed constant but assume that

it can be as large as the number of input points. It is natural to ask whether

the dependence on the dimension can be reduced or removed altogether. For

example, consider a set P of n points in Rd. A 2-approximate coreset for the

minimum enclosing ball of P has size 2 (just pick a point in P , and its furthest

neighbor in P ). Thus, dimension-independent coresets do exist.

As another example, consider the question of whether a small coreset exists

for the width measure of P (i.e., the width of the thinnest slab containing P ). It
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is easy to verify that any ε-approximate coreset for the width needs to be of size

at least 1/εΩ((d−1)/2). Indeed, consider spherical cap on the unit hypersphere,

with angular radius c
√
ε, for appropriate constant c. The height of this cap

is 1 − cos(c
√
ε) ≤ 2ε. Thus, a coreset of the hypersphere, for the measure of

width, in high dimension, would require any such cap to contain at least one

point of the coreset. As such, its size must be exponential, and we conclude that

high-dimensional coresets (with size polynomial in the dimension) do not always

exist.

7.1. Minimum enclosing ball. Given a set of points P , an approximation

of the minimum radius ball enclosing P can be computed in polynomial time

using the ellipsoid method since this is a quadratic convex programming problem

[Gärtner 1995; Grötschel et al. 1988]. However, the natural question is whether

one can compute a small coreset, Q ⊆ P , such that the minimum enclosing ball

for Q is a good approximation to the real minimum enclosing ball.

Bădoiu et al. [2002] presented an algorithm, which we have already mentioned

in Section 4, that generates a coreset of size O(1/ε2). The algorithms starts with

a set C0 that contains a single (arbitrary) point of P . Next, in the i-th iteration,

the algorithm computes the smallest enclosing ball for Ci−1. If the (1 + ε)-

expansion of the ball contains P , then we are done, as we have computed the

required coreset. Otherwise, take the point from P furthest from the center

of the ball and add it to the coreset. The authors show that this algorithm

terminates within O(1/ε2) iterations. The bound was later improved to O(1/ε)

in [Kumar et al. 2003; Bădoiu and Clarkson 2003b]. Bădoiu and Clarkson showed

a matching lower bound and gave an elementary algorithm that uses the “hill

climbing” technique. Using this algorithm instead of the ellipsoid method, we

obtain a simple algorithm with running time O(dn/ε + 1/εO(1)) [Bădoiu and

Clarkson 2003a].

It is important to note that this coreset Q is weaker than its low dimensional

counterpart: it is not necessarily true that the (1 + ε)-expansion of any ball

containing Q contains P . What is true is that the smallest ball containing Q,

when (1 + ε)-expanded, contains P . In fact, it is easy to verify that the size of

a coreset guaranteeing the stronger property is exponential in the dimension in

the worst case.

Smallest enclosing ball with outliers. As an application of this coreset, one

can compute approximately the smallest ball containing all but k of the points.

Indeed, consider the smallest such ball bopt, and consider P ′ = P ∩ bopt. There

is a coreset Q ⊆ P ′ such that

(1) |Q| = O(1/ε), and

(2) the smallest enclosing ball for Q, if ε-expanded, contains at least n−k points

of P .
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Thus, one can just enumerate all possible subsets of size O(1/ε) as “candidates”

for Q, and for each such subset, compute its smallest enclosing ball, expand the

ball, and check how many points of P it contains. Finally, the smallest candidate

ball that contains at least n− k points of P is the required approximation. The

running time of this algorithm is dnO(1/ε).

k-center. We execute simultaneously k copies of the incremental algorithm for

the min-enclosing ball. Whenever getting a new point, we need to determine to

which of the k clusters it belongs to. To this end, we ask an oracle to identify

the cluster it belongs to. It is easy to verify that this algorithm generates an ε-

approximate k-center clustering in k/ε iterations. The running time is O(dkn/ε+

dk/εO(1)).

To remove the oracle, which generates O(k/ε) integer numbers between 1 and

k, we just generate all possible sequence answers that the oracle might give.

Since there are O(kO(k/ε)) sequences, we get that the running time of the new

algorithm (which is oracle free) is O(dnkO(k/ε)). One can even handle outliers;

see [Bădoiu et al. 2002] for details.

7.2. Minimum enclosing cylinder. One natural problem is the computation

of a cylinder of minimum radius containing the points of P . We saw in Section 5

that the line through any point in P and its furthest neighbor is the axis for a

constant-factor approximation. Har-Peled and Varadarajan [2002] showed that

there is a subset Q ⊆ P of (1/ε)O(1) points such that the axis of an ε-approximate

cylinder lies in the subspace spanned by Q. By enumerating all possible candi-

dates for Q, and solving a “low-dimensional” problem for each of the resulting

candidate subspaces, they obtain an algorithm that runs in dn(1/ε)O(1)

time. A

slightly faster, but more involved algorithm, was described earlier in [Bădoiu

et al. 2002].

The algorithm of Har-Peled and Varadarajan extends immediately to the

problem of computing a k-flat (i.e., an affine subspace of dimension k) that

minimizes the maximum distance to a point in P . The resulting running time

is dn(k/ε)O(1)

. The approach also handles outliers and multiple (but constant

number of) flats.

Linear-time algorithm. A natural approach for improving the running time

of the minimum enclosing cylinder, is to adapt the general approach underlying

the algorithm of [Bădoiu and Clarkson 2003a] to the cylinder case. Here, the

idea is that we start from a center line `0. At each iteration, we find the furthest

point pi ∈ P from `i−1. We then generate a line `i which is “closer” to the

optimal center line. This can be done by consulting with an oracle, that provides

us with information about how to move the line. By careful implementation,

and removing the oracle, the resulting algorithm takes O(ndCε) time, where

Cε = exp
(

1
ε3 log2 1

ε

)

. See [Har-Peled and Varadarajan 2004] for more details.
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This also implies a linear-time algorithm for computing the minimum radius

k-flat. The exact running time is

n · d · exp

(

eO(k2)

ε2k+1
log2 1

ε

)

.

The constants involved were recently improved by Panigrahy [2004], who also

simplified the analysis.

Handling multiple slabs in linear time is an open problem for further research.

Furthermore, computing the best k-flat in the presence of outliers in near-linear

time is also an open problem.

The L2 measure. A natural problem is to compute the k-flat minimizing not

the maximum distance, but rather the sum of squared distances; this is known

as the L2 measure, and it can be solved in O(min(dn2, nd2)) time, using singular

value decomposition [Golub and Van Loan 1996]. Recently, Rademacher et al.

[2004] showed that there exists a coreset for this problem. Namely, there are

O(k2/ε) points in P , such that their span contains a k-flat which is a (1+ε)-

approximation to the best k-flat approximating the point set under the L2 mea-

sure. Their proof also yields a polynomial time algorithm to construct such a

coreset. An interesting question is whether there is a significantly more efficient

algorithm for computing a coreset. Rademacher et al. also show that their

approach leads to a polynomial time approximation scheme for fitting multiple

k-flats, when k and the number of flats are constants.

7.3. k-means and k-median clustering. Bădoiu et al. [2002] consider the

problem of computing a k-median clustering of a set P of n points in Rd. They

show that for a random sample X from P of size O(1/ε3 log 1/ε), the following

two events happen with probability bounded below by a positive constant: (i)

The flat span(X) contains a (1 + ε)-approximate 1-median for P , and (ii) X

contains a point close to the center of a 1-median of P . Thus, one can generate

a small number of candidate points on span(X), such that one of those points is

a median which is an (1 + ε)-approximate 1-median for P .

To get k-median clustering, one needs to do this random sampling in each of

the k clusters. It is unclear how to do this if those clusters are of completely

different cardinality. Bădoiu et al. [2002] suggest an elaborate procedure to

do so, by guessing the average radius and cardinality of the heaviest cluster,

generating a candidate set for centers for this cluster using random sampling,

and then recursing on the remaining points. The resulting running time is

2(k/ε)O(1)

dO(1)n logO(k) n,

and the results are correct with high-probability.
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A similar procedure works for k-means; see [de la Vega et al. 2003]. Those

algorithms were recently improved to have running time with linear dependency

on n, both for the case of k-median and k-means [Kumar et al. 2004].

7.4. Maximum margin classifier. Let P+ and P− be two sets of points,

labeled as positive and negative, respectively. In support vector machines, one is

looking for a hyperplane h such that P+ and P− are on different sides of h, and

the minimum distance between h and the points of P = P+ ∪P− is maximized.

The distance between h and the closest point of P is known as the margin of h.

In particular, the larger the margin is, the better generalization bounds one can

prove on h. See [Cristianini and Shaw-Taylor 2000] for more information about

learning and support vector machines.

In the following, let ∆ = ∆(P ) denote the diameter of P , and let ρ denote the

width of the maximum width margin for P . Har-Peled and Zimak [2004] showed

an iterative algorithm for computing a coreset for this problem. Specifically, by

iteratively picking the point that has maximum violation of the current classifier

to be in the coreset, they show that the algorithm terminates after O((∆/ρ)2/ε)

iterations. Thus, there exist subsets Q− ⊆ P− and Q+ ⊆ P+, such that the

maximum margin linear classifier h for Q+ and Q− has a ≥ (1−ε)ρmargin for P .

As in the case of computing the minimum enclosing ball, one calls a procedure

for computing the best linear separator only on the growing coresets, which are

small. Kowalczyk [2000] presented a similar iterative algorithm, but the size of

the resulting coreset seems to be larger.

8. Conclusions

In this paper, we have surveyed several approximation algorithms for geomet-

ric problems that use the coreset paradigm. We have certainly not attempted

to be comprehensive and our paper does not reflect all the research work that

can be viewed as employing this paradigm. For example, we do not touch upon

the body of work on sublinear algorithms [Chazelle et al. 2003] or on property

testing in the geometric context [Czumaj and Sohler 2001]. Even among the re-

sults that we do cover, the choice of topics for detailed exposition is (necessarily)

somewhat subjective.
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[Bădoiu and Clarkson 2003b] M. Bădoiu and K. L. Clarkson, “Smaller core-sets for
balls”, pp. 801–802 in Proceedings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, ACM, New York, 2003.
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Abstract. The aim of this survey is to collect and explain some geomet-

ric results whose proof uses graph or hypergraph theory. No attempt has

been made to give a complete list of such results. We rather focus on typi-

cal and recent examples showing the power and limitations of the method.

The topics covered include forbidden configurations, geometric construc-

tions, saturated hypergraphs in geometry, independent sets in graphs, the

regularity lemma, and VC-dimension.

1. Introduction

Among n distinct points in the plane the unit distance occurs at most O(n3/2)

times. The proof of this fact uses two things. The first is a theorem from graph

theory saying that a graph on n vertices containing no K2,3 can have at most

O(n3/2) edges. The second is a simple fact from plane geometry: the unit

distance graph contains no K2,3.

This is the first application of graph theory in geometry, and is contained in a

short and extremely influential paper of Paul Erdős [1946]. The first application

of hypergraph theory in geometry is even earlier: it is the use of Ramsey’s

theorem in the famous Erdős and Szekeres result from 1935 (see below in the

next section). Actually, Erdős and Szekeres proved Ramsey’s theorem (without

knowing it had been proved earlier) since they needed it for the geometric result.

The aim of this survey is to collect and explain some geometric results whose

proof uses graph or hypergraph theory. Such applications vary in depth and

difficulty. Often a very simple geometric statement adds an extra condition to

the combinatorial structure at hand, which helps in the proof. At other times,

the geometry is not so simple but is dictated by the combinatorics of the objects

in question.

I do not attempt to give a complete list of such results, but rather concen-

trate on typical or recent examples showing the power and limitations of such

methods. Instead of presenting complete proofs I have tried to give a sketch

31
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emphasizing the interaction between geometry and (hyper)graph theory. To

fill in the details the reader is advised to consult the original papers and the

excellent books [Matoušek 2002] and [Pach and Agarwal 1995]. Although I’ve

tried to incorporate every important result, the choice of material, of course,

reflects my personal preferences. Also, several further examples could have been

included: the Lovász Local Lemma, discrepancy results, planar graphs and geo-

metric graphs, etc. But in these cases I felt that either the method is more

probabilistic than combinatorial, or the question is not so much geometric.

Some remarks on notation are in place here: b, c, ci, C denote different con-

stants. The O( ) and o( ) notation is often used. Kn,m denotes the complete

bipartite graph with classes of size n and m. Kk(t) stands for the complete k-

partite k-uniform hypergraph with t vertices in each class. The set {1, 2, . . . , n}
will be denoted simply by [n]. A graph is denoted by G = (V, E) where V is

the set of vertices, and E the set of edges. The independence number α(G) of

a graph G is the maximum size independent set in G, and a subset W ⊂ V

is independent if there are no edges between vertices of W . A hypergraph, or

set system, is usually denoted by H, its ground set (or vertex set) by V , its

(hyper)edges are e ∈ H, or sometimes E ∈ H. A transversal of H is a set T ⊂ V

intersecting every edge in H.

2. Forbidden Configurations

This method is typically used for counting geometric objects. It is usually

based on a simple geometric fact (showing that some configuration cannot oc-

cur) combined with a graph or hypergraph theorem saying that, if certain con-

figuration is forbidden, then the number of edges is bounded. The case of the

unit distance graph in the introduction illustrates the method quite clearly; this

section gives a few more examples. We mention in passing that the unit distance

problem is still wide open: the maximal number of unit distances among n points

is somewhere between n1+(c/ ln ln n) and cn4/3.

The first example is counting point-line incidences: Given a set of lines, L,

and a set of points, P , both of them finite, how many incidences can there

be? We only assume that two lines have at most one point in common and

there is at most one line passing through two points. (So we are not working

in the Euclidean plane.) The setting immediately defines a bipartite graph with

bipartition classes L and P , with (`, p) ∈ L × P forming an edge if they are

incident. This is a bipartite graph containing no K2,2. Then a theorem of

Kővári, T. Sós, and Turán [Kővári et al. 1954] applies. We state the result for

the case when |L| = |P | = n: such a graph has at most

n

2
(1 +

√
4n − 3)

edges. This bound is asymptotically tight: the example of the projective plane

of order q (where q is a prime power) shows n = q2 + q + 1 points and the same
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number of lines while the number of incidences is exactly

(q2 + q + 1)(q + 1) =
n

2
(1 +

√
4n − 3).

A miracle has happened: of the whole point-line structure, only the bipartiteness

and the forbidden subgraph K2,2 are needed to obtain the exact bound. It

is worth mentioning that while this exact bound follows from the forbidden

subgraph theorem [Kővári et al. 1954], the sharpness of the forbidden subgraph

theorem is implied by the example of the projective plane. So geometry pays

back its due to combinatorics.

Remark. The situation is different when the points and lines belong to the

Euclidean plane (cf. the Szemerédi–Trotter theorem [1983]) but there, the struc-

ture is richer. The actual bound is O(|P |2/3|L|2/3+|P |+|L|) which is tight apart

from the implied constant. There are several proofs available now: the simplest

is by L. Székely [1997] based on the crossing lemma. The above forbidden sub-

graph argument, combined with the so-called cutting lemma, also provides a nice

proof, for details see [Matoušek 2002].

Remark. The original motivation for bounding the number of edges in a

(bipartite) graph with no K2,2 comes from number theory, see [Erdős 1938].

Erdős proves the weaker bound 3n3/2 on the number of edges but gives the

example of the finite projective plane (in disguise) to show that the bound is

quite good.

Examples of this type abound. Here is a less well known one due to Turán

[1970].

Theorem 1. If X ⊂ R
2 has n elements and is of diameter one, then there are

at least n2/6 − O(n) pairs x, y ∈ X whose distance is at most 1/
√

2.

The proof is simple. First a little geometry: Among any four points of X there

are two that are at distance 1/
√

2 or closer. (One cannot give a bound smaller

than 1/
√

2: see the square of diameter one.) So the graph G(X, E), whose

edges are the pairs with distance larger than 1/
√

2, contains no K4. By Turán’s

theorem [1941] the complementary graph has at least n2/6 − O(n) edges. This

proof also indicates which set of n points shows that the bound n2/6 − O(n) is

tight.

The classical Erdős–Szekeres theorem [1935] uses, in its proof, a certain for-

bidden configuration. We say that n points in the plane are in convex position

if they form the vertices of a convex n-gon. We now state the Erdős–Szekeres

theorem:

Theorem 2. For every n ≥ 3 there is N = N(n) such that every point set

X ⊂ R2 in general position with |X| ≥ N contains a subset of size n that is in

convex position.

For the proof one checks that N(4) = 5, that is, among 5 points in the plane

there are 4 in convex position. Now set N(n) = R4(5, n), the Ramsey number,
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which means that in every red-blue colouring of all quadruples of an R4(5, n)-set

either there are 5 points whose all quadruples are red or there are n points whose

all quadruples are blue. This number is finite (by the Ramsey theorem, [Ramsey

1930]). Now let X ⊂ R2 contain N or more elements. Colour its quadruples in

convex position Blue, and colour the rest Red. There are no 5 points whose all

quadruples are Red (since N(4) = 5), so there are n points in X with all of their

quadruples in convex position. It is very simple to see now that these n points

are also in convex position. Here the forbidden configuration was 5 points with

all of its quadruples nonconvex.

Our examples so far have shown forbidden subgraphs. Often other structures

are forbidden. Here comes the beautiful case of lower envelope of segments in

R2. The setting is this: given n line segments in the plane, none of them vertical,

what is the complexity of their lower envelope? That is, consider the segments

as linear functions, each defined on some interval, take the pointwise minimum,

f , of these functions. How many segments make up the graph of this minimum?

The answer is cnα(n), where α(n) is a very slowly increasing function, the inverse

of the Ackerman function. Without going into the details (which can be found

in [Hart and Sharir 1986] and [Matoušek 2002]), I explain what kind of forbidden

structure appears here.

Index the segments by 1, . . . , n. The function f(x) is piecewise linear. Assume

I1, I2, . . . , It are the intervals (in this order on the horizontal axis) where f is

linear. (So we want to estimate t, the number segments on the graph of f .)

Attach index i to the interval Ik if the graph of f coincides with the ith segment

on Ik. Writing the various indexes, as they appear on the horizontal axis from

left to right, we get a sequence a1, a2, . . . , at of numbers from [n] that has the

following properties:

• ai 6= ai+1,

• there are no indices i1 < i2 < i3 < i4 < i5 such that ai1 = ai3 = ai5 6= ai2 =

ai4 .

Only the second property (saying that a, b, a, b, a cannot be a subsequence of our

sequence) needs a proof, and we leave it to the reader. This is a forbidden subse-

quence condition. Sequences with these properties are called Davenport–Schinzel

sequences of order 3. Determining the maximal length of such a sequence on [n]

had been an open problem from 1965 until Hart and Sharir [1986] proved, by

combinatorial methods, that the maximal length is O(nα(n)). That this bound

is sharp was shown later (by Peter Shor; see [Matoušek 2002]). The ingenious

construction gives n segments whose lower envelope has cnα(n) segments. Once

again, combinatorics gives the upper bound in a geometric problem, and a geo-

metric construction shows that this bound is precise.

Further examples of forbidden configurations can be found in the books [Pach

and Agarwal 1995] and [Matoušek 2002].
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3. Constructions

Any hypergraph H on n vertices gives rise, in a natural way, to a point set

X(H) in Rn. Simply represent each S ∈ H by its characteristic vector x(S)

whose ith component is one if the ith element of the ground set is in S and

is zero otherwise. This set X(H) is, in fact, a subset of the vertices of the

unit cube. The properties of the hypergraph are reflected in the properties of

X(H) and vice versa. This simple connection, combined with powerful results

from extremal set theory, can have amazing results, like the counterexample to

Borsuk’s conjecture.

In 1933 Borsuk asked whether every set of diameter one in Rd can be parti-

tioned into d+1 sets of diameter smaller than one. One may immediately assume

that the sets in question are convex since taking convex hull does not increase

the diameter. Among convex sets, the regular simplex and the unit ball can in-

deed be partitioned into d + 1 sets of smaller diameter (but not into fewer sets).

This had been known for smooth convex bodies as well (with a fairly simple

proof), but for polytopes, despite many efforts, there had been no proof in sight.

Then, in 1992, an ingenious construction was found by Kahn and Kalai [1993]

showing that the conjecture is far from being true: the smallest number of sets

in a suitable partition must be at least 2c
√

d for some small positive c. Their

construction is based on the following, equally beautiful, result of Frankl and

Wilson [1981]:

Theorem 3. Let q be a prime power . Let F be a family of 2q-subsets of [4q] so

that no two sets in F have intersection of size q. Then

|F | ≤ 2

(

4q − 1

q − 1

)

.

How does one use this result to produce a counterexample? Consider the edges

of the complete graph K(V, E) whose vertex set is V = [4q]. For every partition

P = {A, B} of V let S(A, B) be the set of edges connecting a vertex in A to one

in B. Now define H to be the family of sets S(A, B) where |A| = |B| = 2q. So

H is a 4q2-uniform hypergraph on the set E, |E| = 2q(4q − 1), which gives rise

to a point set X(H) in R|E|. As is easy to see, the smallest intersection between

S1 = S(A1, B1) ∈ H and S2 = S(A2, B2) ∈ H occurs when |A1 ∩ A2| = q. It

follows that the Euclidean distance between x(S1) and x(S2) is the largest when

|A1 ∩ A2| = q. By the Frankl–Wilson theorem every subfamily of H with more

than 2
(

4q−1
q−1

)

sets contains two sets, S1 and S2 with |A1∩A2| = q. That is, when

partitioning H into fewer than

h(q) =

1
2

(

4q
2q

)

2
(

4q−1
q−1

)

subfamilies, one of them contains a pair S1 and S2 with |A1 ∩ A2| = q. The

same applies to X(H) which sits in d = 2q(4q − 1)-dimensional space: in any
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partition of X(H) into fewer than h(q) sets one of the sets has the same diameter

as X(H). It is easy to see that h(q) grows faster than 1.2
√

d > d + 1 if d is large

enough. This is the first counterexample to Borsuk’s conjecture. Several others

with direct proofs and better estimates are available now. For a comprehensive

survey, see [Răıgorodskĭı 2001].

The morale is that geometric intuition can be misleading in higher dimension.

Taking convex hulls may not help at all and the discrete structure of the point

set can be more important.

The Frankl–Wilson theorem has further geometric applications, many of them

given in the original paper [Frankl and Wilson 1981]. They show for instance

that the chromatic number, g(d), of Rd is exponential: g(d) > (1 + o(1))1.2d.

Here g(d) is defined as the smallest number n such that Rd can be coloured by

n colours so that no two points of the same colour are distance one apart. The

question of estimating g(2) and more generally g(d) goes back to E. Nelson, J.

Isbell, and P. Erdős; see [Hadwiger 1961]. Determining g(d) has turned out to

be hard. For instance, the value of g(2) is known to be either 4,5,6, or 7, but

which of these numbers it is remains a mystery, after 60 years. Larman and

Rogers [1972] proved that g(d) ≤ 3d. This, together with the Frankl–Wilson

theorem shows that the chromatic number of Rd is exponential in d.

Geometric intuition did not help in the following construction, which is based

on extremal hypergraph theory. Danzer and Grünbaum [1962] showed that

among 2d + 1 points in Rd there are three that form an acute triangle. (The

proof is beautiful!) This raised the question to determine the smallest N such

that among any set of N points in Rd, there are three that form an angle ≥ π/2.

It was conjectured that the smallest such N is 2d − 1. But this was soundly

refuted by Erdős and Füredi [1983] with the following example, which is quite

natural once you have seen it. Consider the vertices of the unit cube. Clearly,

no angle is larger than π/2. Three vertices a, b, c give angle π/2 at b if and only

if the vectors a − b and c − b are orthogonal. As a, b, c are 0-1 vectors, they are

characteristic vectors of sets A, B, C ⊂ [d]. The condition (a − b)(c − b) = 0

translates directly to A∩C ⊂ B ⊂ A∪C. Thus the target is to construct a large

family H of sets on the ground set [d] with no three sets A, B, C ∈ H satisfying

B ⊂ A ∪ C (a slightly weaker yet sufficient condition). A quite natural random

hypergraph with 1.13d edges has this property. In the corresponding set in Rd,

with 1.13d points, all angles are smaller than π/2. For details see [Erdős and

Füredi 1983], where the authors also prove, with similar methods, the existence

of a set in Rd of size exponential in d such that all distances between two points

of the set are between .99 and 1.01.

4. Saturated Hypergraphs

The saturated hypergraph theorem of Erdős and Simonovits [1983] says the

following:
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Theorem 4. For every positive integer k and t and every p > 0 there exists

δ > 0 with the following property . Let H be a k-uniform hypergraph on n vertices

and with at least p
(

n
k

)

edges. Then H contains at least

bδnktc

copies (not necessarily induced) of Kk(t).

One way to remember the statement is to assume that H is a random k-uniform

hypergraph with edge-probability p. Then the expected number of copies of

Kk(t) is ptk(

n
t,...,t

)

≥ const nkt. The saturated hypergraph theorem says that a

hypergraph with positive edge density behaves like a ”random hypergraph” of

the same edge density. It is not surprising then that the proof of Theorem 4 goes

by averaging.

This theorem is very useful when one has a family F of geometric objects and

happens to know that a positive fraction of the k element subfamilies of F have

a certain property, and one wants to show that, say, F has a large subfamily

with some other property. Our example is the following point-selection theorem

of Alon et al. [1992], a similar and earlier example is in [Bárány et al. 1990].

Theorem 5. Let X ⊂ R
d be an n-point set and let F be a family of some

(d + 1)-tuples of X with |F | = α
(

n
d+1

)

, where α ∈ (0, 1]. Then F contains a

subfamily F ′ of size

cdα
sd

(

n

d + 1

)

(where cd > 0 and sd are constants) such that
⋂

S∈F ′ conv S is nonempty .

In this theorem α may even depend on n, a case which is needed when bounding

the number of halving hyperplanes of a given n-set in Rd (see [Bárány et al.

1990] and [Alon et al. 1992]).

What is the way of proving such a result? The first (geometric) idea is to

use the fractional Helly theorem of [Katchalski and Liu 1979]. It says that if in

a family of N convex sets (in Rd) a positive fraction of the (d + 1)-tuples are

intersecting, then the family has a large, cN size intersecting subfamily. So we

call the convex hull of an edge in F a simplex of F , and try to show that a positive

fraction of the (d + 1)-tuples of the simplices of F are intersecting. Then comes

the second (combinatorial) idea: F is a (d+1)-uniform hypergraph with positive

edge density, thus the saturated hypergraph theorem stated above ensures that

there are many copies of Kd+1(t) for any fixed number t. So the next target

is to prove that such a Kd+1(t) contains (d + 1) vertex-disjoint simplices that

intersect, provided t is large enough. Actually one has the freedom of choosing t

as large as needed provided it depends only on d. Once this is proved, a routine

double-counting argument shows that a positive fraction of the (d + 1)-tuples

of simplices of F are intersecting. So what remains to be shown is a geometric

statement, called the Coloured Tverberg Theorem:
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Theorem 6. Given pairwise disjoint sets C1, . . . , Cd+1 ⊂ Rd each with |Ci| =

4d+3, there are pairwise disjoint sets S1, . . . , Sd+1 ⊂ Rd, each with |Sj | = d+1,

such that |Ci ∩ Sj | = 1 for all i, j and

d+1
⋂

i

conv Sj 6= ?.

Here the Ci are the classes (called colours) of Kd+1(t), the convex hull of each

edge of Kd+1(t) is a simplex of F , and the Sj are what we are after: an inter-

secting (d + 1)-tuple of pairwise vertex-disjoint simplices of F . The proof of this

theorem, which is due to Živaljević and Vrećica [1992], is difficult and unusual

since it is based on equivariant algebraic topology, although the statement is

from convex geometry, or linear algebra, if you wish. In fact, all proofs for d > 2

use algebraic topology.

Another example of this kind is a lattice-point version of the fractional Helly

theorem, due to Bárány and Matoušek [2003]. Assume that in a finite family

F of convex sets in Rd the intersection of every (d + 1) sets contains a lattice

point, i.e., a point all of whose coordinates are integral. Helly’s theorem says

that all the sets have a common point. But this may not be a lattice point: take,

for instance, the convex hull of all but one vertices of the unit cube in Rd, this

is one convex set for each (missing) vertex of the cube. They form a family F

where every 2d − 1 sets share a lattice point, but
⋂

F contains no lattice point

whatsoever. However, it is known (see [Doignon 1973] or [Scarf 1977]) that the

Helly number of lattice convex sets in Rd is 2d, that is, if in a finite family F of

convex sets in Rd every 2d or fewer sets have a lattice point in common, then
⋂

F contains a lattice point. In the given case this implies that the fractional

Helly number of lattice convex sets in Rd is (at most) 2d. (This fact is proved

in [Alon et al. 2002].) So what is the precise value of this number? The answer

is d + 1:

Theorem 7. For every d ≥ 1 and every α ∈ (0, 1] there is a β > 0 with

the following property . Let K1, . . . , KN be convex sets in Rd such that
⋂

i∈I Ki

contains a lattice point for at least α
(

N
d+1

)

index sets I ⊂ [N ] of size (d + 1).

Then there is a lattice point common to at least βN sets among the Ki.

In the proof the application of the saturated hypergraph theorem leads to what

we call the coloured Helly theorem for convex lattice sets:

Theorem 8. For every integer d and r, there is an integer t such that the

following holds. Assume that for each vertex v of Kd+1(t) there is a convex set

Kv ∈ Rd, such that for each edge e of Kd+1(t), the intersection
⋂

v∈e Kv contains

a lattice point . Then there is a set R, of size r, in one of the classes of Kd+1(t)

such that the intersection
⋂

v∈R Kv contains a lattice point .

This is only needed for r = 2d, but that does not seem to make any difference

in the proof, which, besides using two distinct pieces of geometry, is technical,
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difficult, and combinatorial in nature. The method can be developed further

and, when combined with the Alon–Kleitman technique [1992], it shows what

can be saved from Helly’s theorem when every (d + 1) of the sets have a lattice

point in common:

Theorem 9. For every integer d ≥ 2 there is an integer H(d) such that the

following holds. Let F be a finite family of convex sets in Rd. Assume that the

intersection of every (d + 1) sets from F contains a lattice point . Then there is

a set S of lattice points with |S| ≤ H(d) such that S intersects every set in F .

For d = 2 this was proved by T. Hausel [1995] with H(2) = 2.

The applications of the saturated hypergraph theorem always lead to new, and

often difficult, problems in geometry. In such problems the vertices of a Kd+1(t)

are some geometric objects, the objects in each edge satisfy a certain property,

and one wants to find a special subfamily of these objects, like in Theorem 9 or

in the Coloured Tverberg Theorem.

5. Independent Sets in Graphs

Given a graph G(V, E) on n vertices and maximum degree d, the simplest

possible greedy algorithm produces an independent set W of size n/(d+1). (An

equally simple random choice gives an independent set of size n/4d.) In a seminal

paper [Ajtai et al. 1981], Ajtai, Komlós, and Szemerédi showed that this can be

improved for triangle-free graphs: if G is triangle free, then

α(G) ≥ cn log d

d

with some universal constant c > 0. Subsequently c = 1 + o(1) was shown

by Shearer [1983]. Here d is fixed and n goes to infinity. The original proof

goes via sequential random choices, and the difficulty is to ensure that after each

iteration, the remaining structure is still random, or behaves as if it were random.

According to his coauthors, Szemerédi’s philosophy, that random subgraphs of

a graph behave very regularly, and his vision that such a proof should work,

proved decisive. Since then, the method has been applied several times and with

great success.

This lower bound on α(G) has the immediate corollary (see [Ajtai et al. 1980])

that the Ramsey number R2(n, 3) is O(n2/ ln n) which turned out to be the right

order of magnitude (see [Kim 1995]). The result on α(G) has been generalized

from triangle-free graphs to “locally sparse” graphs and hypergraphs in various

ways. Locally sparse here means, for instance, that there are few edges connect-

ing the neighbours of every vertex, or that two vertices don’t have too many

common neighbours. We are going to explain two such cases: the problems

come from geometry and the solution, or the crucial step of the solution, from

hypergraph theory.
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The first concerns Heilbronn’s conjecture which says that every set of N points

in the unit disk B contains three points such that the triangle spanned by them

has area less then const/N2. In 1982 Komlós, Pintz, and Szemerédi [Komlós

et al. 1982] constructed a counterexample to this conjecture. In the next few

paragraphs I describe their construction, starting with the geometric part which

is simpler and perhaps more probabilistic than geometric.

Choose first n points randomly, independently, and uniformly from B, set

t = n0.1 and 4 = t2

100n2 . (N is going to be smaller than n.) Write V for the set

of these points and call a triangle with vertices from V small if its area less than

4. The small triangles define a hypergraph H on V . The target is to show that

H contains a large independent set W ⊂ V . The probability that three random

points span a small triangle is less than

∫ 2

0

84
r

2rπdr = 32π4 <
t2

n2
.

This can be seen by fixing two points at distance r, and then averaging over r.

The expected size of H is less than nt2/6. Hence by Markov’s inequality,

|H| < nt2/3

with probability at least 1/2.

A 2-cycle in H is e1, e2 ∈ H with |e1 ∩ e2| = 2, a 3-cycle is e1, e2, e3 ∈ H with

|ei∩ej | = 1 for all distinct i, j, and a 4-cycle is e1, e2, e3, e4 ∈ H with |ei∩ej | = 1

if j = i + 1 mod 4 and 0 if j = i + 2 mod 4. The following facts are checked

easily: with high probability

• the number of 2-cycles is less than n0.1,

• the number of 3-cycles is less than n0.7,

• the number of 4-cycles is less than n0.7.

Thus deleting all vertices in 2-,3-, or 4-cycles you get, with positive probability,

a new 3-uniform hypergraph H∗ on ground set V ∗ where |V ∗| = n(1 − o(1)).

The next, and crucial, step is plain hypergraph theory.

Lemma 10. Assume H is a 3-uniform hypergraph on [n] with at most nt2/3

edges, without cycles of length 2, 3, 4, and let t ≤ n0.1. Then H contains an

independent set W with

|W | > const
n

t

√
ln t.

Setting N = constn
t

√
ln t we have a point set W in the unit disk, of N points,

without small triangles; moreover 4 = ct2/n2 = c(ln N)/N2. This is the coun-

terexample to Heilbronn’s conjecture.

The crucial Lemma 10 is an improvement over the simple estimate α(H) >

n/(3t) which is true even if short cycles are not excluded. The proof is by

sequential random choices, validating, once more, Szemerédi’s philosophy. The
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short cycle condition guarantees that the hypergraph is locally sparse, in the

sense that the neighbourhoods of two distinct vertices are “independent”.

Although Lemma 10 is often very useful, it typically improves an existing

estimate by a log-factor. In the Heilbronn case, for instance, it is not at all

clear where the truth lies. To decide where it lies, most probably, quite different

methods will be needed.

In contrast with Heilbronn’s problem, the next application of the improved

independence number method gives an almost precise answer to a geometric

problem. It is a recent result of Kim and Vu [2004]. We need to introduce some

terminology.

A graph G(V, E) is (d, ε)-regular if its degrees are between d(1 − ε) and d.

The codegree of a the graph, D = D(G) is the maximum number of common

neighbours of x, y ∈ V , x 6= y. An independent set W ⊂ V is called maximal if

it is not contained in a larger independent set. In the following theorem, which

is from [Kim and Vu 2004], the asymptotics is understood with d → ∞ and ω(d)

denotes a function that tends to infinity as d → ∞.

Theorem 11. Let G be a (d, ε)-regular graph on n vertices, where

ε = (ω(d) ln d)−1.

If

D(G) ≤ d

ω(d) ln2 d
,

then G contains a maximal independent set W with

(1 + o(1))
n

d
ln

d

D
≤ |W | ≤ (1 + o(1))

n

d
ln

d

D
+ ω(d)

n

d
D ln2 D.

The error term ω(d)n
d D ln2 D is dominating if ω(d)D ln2 D is larger than ln d

D .

Otherwise, that is, when ω(d)D ln2 D = o(ln d
D ), G contains a maximal inde-

pendent set of size (1 + o(1))n
d ln d

D . The method is, again, a sequential random

choice of vertices but the remainder term has to be estimated precisely which

makes the proof hard.

This result is used in [Kim and Vu 2004] to answer a question of Segre from

1959 (see [Szőnyi 1997]) on arcs in projective planes. An arc in a projective

plane P of order q is a set A ⊂ P containing no three points on a line. An

arc is complete if it is not contained in a larger arc. Segre’s question is this:

What are the possible sizes of complete arcs in P? Simple counting arguments,

using properties of the projective plane, show that the size of a complete arc

is always between
√

2q and q + 2. Szőnyi [1997] showed that almost all values

in the interval [cq3/4, q] can be the size of a complete arc. Kim and Vu [2003]

showed the existence of complete arcs whose size is
√

q(ln q)b with some universal

constant b. This is close to the lower bound
√

2q. Further, it is proved in [Kim

and Vu 2004] that sizes of complete arcs in P are almost dense in the interval

[
√

2q, q].
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Theorem 12. There are positive constants b, c and Q such that the following

holds. For every plane P of order q ≥ Q and every q∗ ∈ [
√

q ln4 q, q], P contains

a complete arc A with

cq∗ ≤ |A| ≤ q∗ lnb q.

The proof uses the fact that the conic C = {(x, x2) : x ∈ GF (q)} is an arc in P

whose secants cover every point of P \C (except the one at infinity) q/2−O(1)

times. Set D = P \ C and ε = (
√

q ln q)/q∗, so ε is small when q is large. Given

an arc A ⊂ D one defines a graph GA(V, E) as follows: V is the set of points

v ∈ C not covered by secants from A, and u, v ∈ V form an edge in E if there

is a ∈ A with a, u, v collinear. One has to show next (the proof is hard and

probabilistic) that there is an arc A ⊂ D, of size at most 2ε
√

q, such that GA

satisfies the conditions of Theorem 11. Then one applies Theorem 11 and an

additional argument to show that GA contains a maximal independent set of the

desired size such that its secants cover D \ A. Further details of the proof (that

are even less geometric) can be found in the forthcoming [Kim and Vu 2004].

Results like Lemma 10 and Theorem 11 have been used to find a large match-

ing in a hypergraph: Given a hypergraph H, a matching M is a collection of

pairwise disjoint edges. Define the intersection graph, G(H) of H as follows: its

vertex set is H, and two vertices, e, f ∈ H form an edge in G(H) if e ∩ f = ?.

So a matching in H corresponds to an independent set in G(H), and a large in-

dependent set corresponds to many pairwise disjoint edges. Further, using such

a matching one can find an economic cover of the ground set by edges. This

happens if the set of vertices left uncovered by the matching is small. In other

words, if the estimate of error term is precise. This is a very promising area with

plenty of results and conjectures. Their geometric applications are waiting to be

discovered.

6. The Regularity Lemma

Szemerédi’s famous regularity lemma is one of the most important and useful

results in combinatorics, it has millions of applications in discrete mathematics,

but surprisingly few in geometry. Here is a remarkably elegant one, due to János

Pach [1998].

Theorem 13. For every d ≥ 2 there is a positive constant cd with the following

property . Given sets X1, . . . , Xd+1 ⊂ Rd, each of size n, there are subsets Zi ⊂
Xi, (i ∈ [d + 1]), each of size at least cdn such that

⋂

conv{z1, . . . , zd+1} 6= ?,

where the intersection is taken over all transversals zi ∈ Zi, i ∈ [d + 1].

The proof uses several ingredients: the point selection theorem (Theorem 5),

a weak form of the regularity lemma for hypergraphs, and the so-called same-

type lemma from [Bárány and Valtr 1998]. To state the last one we say that
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the sets Z1, . . . , Zk in Rd have same type transversals if there is no hyper-

plane intersecting the convex hull of any d + 1 of them. (For various equiv-

alent definitions see [Bárány and Valtr 1998] or [Matoušek 2002].) What we

will need is the following fact. If Z1, . . . , Zd+2 have same type transversals,

and if some z1 ∈ Z1, . . . , zd+2 ∈ Zd+2 satisfies zd+2 ∈ conv{z1, . . . , zd+1}, then

wd+2 ∈ conv{w1, . . . , wd+1} holds for all w1 ∈ Z1, . . . , wd+2 ∈ Zd+2. (Hopefully,

this also explains the meaning of “same type”.)

Lemma 14. For every d ≥ 2 and every k ≥ d + 1 there is a positive constant

b(d, k) with the following property . Given nonempty sets X1, . . . , Xk ⊂ Rd in

general position, there are subsets Zi ⊂ Xi, (i ∈ [k]), each with |Zi| ≥ b(d, k)|Xi|
such that Z1, . . . , Zk have the same type transversals.

Remark. Ramsey’s theorem guarantees the existence of sets Zi with this property

but their size is much smaller than cn. Here geometry is needed to guarantee

linear size.

The proof of Theorem 13 begins by forming the (d + 1)-uniform hypergraph H

whose edges are the sets {x1, . . . , xd+1} with xi ∈ Xi. H has (d+1)n vertices and

nd+1 edges, so Theorem 5 gives a subhypergraph H∗ ⊂ H and a point z ∈ Rd

such that |H∗| ≥ βnd+1 and z ∈ conv e for each edge e ∈ H∗, where β > 0

depends only on d.

Next, a weak form of the regularity lemma for hypergraph (see [Pach 1998])

is needed. Without stating it we just claim that it ensures the existence of

Yi ⊂ Xi, |Yi| ≥ γ|Xi| such that for every subset Z1 ⊂ Y1, . . . , Zd+1 ⊂ Yd+1 with

|Zi| ≥ b(d, d+2)|Yi| there are vertices zi ∈ Zi i ∈ [d+1] such that {z1, . . . , zd+1}
is an edge of H∗. Here γ > 0 depends only on d.

Finally, one applies the same type lemma for the sets Y1, . . . , Yd+1 and Yd+2 =

{z}. This gives sets Zi ⊂ Yi (i ∈ [d+ 1]), each of size at least b(d, d+ 2)|YI |, and

Zd+2 = {z} with same type transversals. By the weak regularity lemma, there

is at least one simplex with vertices zi ∈ Zi, i ∈ [d + 1] that contains z. Then,

by the same type lemma, all such simplices contain z. This finishes the proof.

It is high time to state the original regularity lemma now. We need some

terminology: Given a graph G(V, E), and disjoint sets X, Y ⊂ V , their density

is defined as

d(X, Y ) =
|E(X, Y )|
|X| · |Y | ,

where E(X, Y ) is the set of edges between X and Y . Given some δ > 0, and

disjoint A, B ⊂ V , the pair (A, B) is called δ-regular if, for every X ⊂ A and

Y ⊂ B satisfying |X| > δ|A| and |Y | > δ|B| we have

|d(X, Y ) − d(A, B)| < δ.

Now we state the regularity lemma of Szemerédi [1978] in the hope that it will

find further geometric applications.
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Theorem 15. Given δ > 0 and an integer m, there is an M = M(δ, m) such

that the vertex set of every graph G(V, E) with |V | > m can be partitioned into

classes V0, V1, . . . , Vk, where m ≤ k ≤ M , such that |V0| ≤ |V1| = . . . = |Vk| and

all but at most δk2 of the pairs (Vi, Vj), i, j ∈ [k] are δ-regular .

A proper illustration of the use of this lemma is a very recent result of Pach,

Pinchasi, and Vondrák (manuscript, 2004). This result answers a question of

Erdős in the following form: Assume ε > 0, X is a set of n points in R3, and

every two points in X are at distance one at least. If there are εn2 pairs in X

whose distance is between t and t + 1 for some t > 0, then the diameter of X is

at least cn where c only depends on ε.

The conditions immediately cry out for the regularity lemma. In the graph

G(X, E), x, y ∈ X form an edge if ‖x − y‖ ∈ [t, t + 1]. One obtains two disjoint

sets A, B ⊂ X of size c1n with (A, B) ε-regular. This is a very strong condition

on the point sets A, B. Using geometry one can find subsets X ⊂ A and Y ⊂ B,

each of size c2n and such that ‖x − y‖ ∈ [t, t+1] for every x ∈ X, y ∈ Y . Here

c2 > 0 depends on ε only. The rest of the proof is 3-dimensional geometry.

Szemerédi’s regularity lemma has recently been generalized for hypergraphs

by Gowers and by Rödl et al. (unpublished yet) with the potential of having

further geometric applications. The regularity lemma is extremely useful in

discrete mathematics, but, so far, it has not been applied in geometry very

often.

7. VC-Dimension and ε-Nets

Given a hypergraph H with vertex set V , and ε-net (where ε ∈ (0, 1]) is a

subset N ⊂ V that intersects each edge E ∈ H with |E| ≥ ε|V |. In other words,

N is an ε-net for H if it is a transversal for the edges with at least ε|V | elements.

This definition can be extended to “infinite hypergraphs”: Assume V is a set, µ

is a probability measure on V , and H is a system of µ-measurable sets. Then

N ⊂ V is called an ε-net for H with respect to µ if it intersects every set E ∈ H

whose measure is at least ε.

There is a special condition, of combinatorial nature, that ensures the exis-

tence of “very finite” ε-nets. Given a set system H on a finite or infinite ground

set V , a set A ⊂ V is shattered by H if each subset of A can be produced as A∩E

for a suitable E ∈ H. The VC-dimension of the set system H, denoted by dimH,

is the maximum of the sizes of all finite shattered subsets of V , or ∞ if there

are arbitrarily large shattered subsets. The VC-dimension, introduced by Vapnik

and Chervonenkis in [1971] has turned out to be a very powerful tool everywhere:

in statistics (the original motivation for the VC-dimension), discrete geometry,

computational geometry, combinatorics of hypergraphs, and discrepancy theory.

The terminology is sometimes different, for instance in computational geometry,

the set system H is called range space and its edges ranges.
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A simple example is a set of points V in Rd for which H is formed by the sets

of type V ∩h where h is a half-space. The VC-dimension of H is then d+1 since,

by Radon’s theorem, no (d + 2)-set is shattered by half-spaces in Rd. Another

example with finite VC-dimension, on the same ground set V , is the collection

of all Euclidean balls.

The reason for the wide range of applications of VC-dimension lies in the very

general setting and in the so called ε-net theorem (see [Haussler and Welzl 1987])

and the ε-approximation theorem (introduced in to [Vapnik and Chervonenkis

1971]).

Theorem 16. Let V be a set , and µ be a probability measure on V , H a system

of µ-measurable subsets of V , and ε ∈ (0, 1]. If dimH ≤ d where d ≥ 2, then

there exists an ε-net for H of size at most 4d
ε ln 1

ε .

While an ε-net intersects each (large enough) set in H in at least one point, an

ε-approximation M ⊂ V provides a “proportional representation” of each set in

H: for each E ∈ H
∣

∣

∣

∣

µ(E) − |M ∩ E|
|M |

∣

∣

∣

∣

< ε.

Theorem 17. Let V be a set , and µ be a probability measure on V , H a system

of µ-measurable subsets of V , and ε ∈ (0, 1]. If dimH ≤ d where d ≥ 2, then

there exists an ε-approximation for H, of size at most

Cd

ε2
ln

1

ε
.

The ε-net theorem is more often used in geometry. The following application to

an art gallery problem is due to Kalai and Matoušek [1997]. An art gallery is a

simply connected compact set T in the plane, and the set of points visible from

x ∈ T is, by definition,

V (x) = {y ∈ T : [x, y] ⊂ T}.

In other words, x sees or guards the points in V (x).

Theorem 18. Let T ⊂ R2 be a simply connected art gallery of Lebesgue measure

one. Assume that for some r ≥ 2 the Lebesgue measure of each V (x) is at least

1/r. Then T can be guarded by at most Cr ln r points, that is, there is a set

N ⊂ T , having at most Cr ln r points, with T = ∪x∈NV (x).

The proof begins by introducing the set system H = {V (x) : x ∈ T} and noting

that a set N ⊂ T guards T iff it intersects each set in H. So we are done if H

admits an (1/r)-net of the required size. This is guaranteed by the ε-net theorem

provided the VC-dimension of H is bounded by some constant independent of

T . This can be shown by a geometric argument using the fact that T is simply

connected. The details can be found in [Kalai and Matoušek 1997], or in [Valtr

1998] where dimH ≤ 23 is shown.
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There are several geometric applications of VC-dimension and the ε-net theo-

rem, see for instance the books [Chazelle 2000], [Matoušek 2002], and [Pach and

Agarwal 1995]. Since most of them require new concepts and further prepara-

tions that go beyond the limits of this survey, I only explain one more case, that

of a spanning tree with low crossing number. The setting is this. Given a set

X of n points in R2 in general position, we want to build a spanning tree (with

vertex set X and edge set segments connecting certain pairs of X) such that

no line meets too many of the edges. The following beautiful theorem is due to

Welzl [1988] (the ln n factor has been since then removed).

Theorem 19. Given a set X of n points in R2 in general position, there is a

spanning tree with vertex set X such that no line meets more than O(
√

n lnn)

edges of the tree.

For the proof one checks first that the following set system H has finite VC-

dimension: The ground set is the collection of all lines in R2 and H consists

of sets of lines Ls that intersect a fixed segment s. To see that dimH is finite

assume an n element set of lines A is shattered by H. These lines divide the

plane into m ≤
(

n
2

)

+n+1 cells, and if s and t are two segments whose endpoints

(in pairs) belong to the same cell, then Ls and Lt have the same intersection

with A. Consequently there are at most
(

m
2

)

segments s for which Ls ∩ A are

pairwise distinct, so 2n ≤
(

m
2

)

implying that dimH ≤ n ≤ 12.

Lemma 20. Given a set S of k points in general position, and a set L of m lines

in R2 with no point incident to any of the lines, there exist x, y ∈ S such that

the line segment [x, y] intersects at most (cm ln k)/
√

k lines from L.

For the proof one notes that the set system H has finite VC-dimension, so the

ε-net theorem applies: with ε = c1(ln k)/k we get a collection of lines L′ ⊂ L of

size c2ε
−1 ln ε−1 <

√
k/2 such that every open segment crossing

εm = c
m ln k√

k

elements of L crosses some line in L′. The lines in L′ divide the plane into less

than k cells. Thus one cell contains two points of S; the segment connecting

them satisfies the requirements of the lemma.

To finish the proof of the spanning tree theorem one starts with constructing

a set, L, of
(

n
2

)

lines that represent all possible partitions of X by lines. Setting

S0 = X and L0 = L one applies the lemma to Si, Li (i = 0, 1, . . . , n − 2) to

obtain a segment [xi, yi] intersecting at most cmi ln ni√
n

i

from Li. For the next

iteration Si+1 = Si \ {xi} and Li+1 is the set of lines consisting of Li plus one

more, slightly perturbed, copy of each line in Li intersecting [xi, yi]. The analysis

of this algorithm finishes the proof; the details can be found in [Welzl 1988] or

[Pach and Agarwal 1995].
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8. Epilogue

László Fejes Tóth asked in 1976 whether the densest packing of congruent

circles in the plane is unique or not in the following sense: Assume that in a

circle packing, C, in the plane, every circle is touched by at least six others. Is

it true then, that arbitrarily large or arbitrarily small circles occur in C unless it

is the densest packing of congruent circles. The answer is yes and is the content

of [Bárány et al. 1984]:

Theorem 21. Under the conditions above arbitrarily small circles occur in C

unless C is the densest packing of congruent circles.

For the proof one defines the graph G(V, E) whose vertices are the circles with

two of them forming an edge if the corresponding circles are touching each other.

G is a planar graph. Define the function f : V → R by f(v) = 1/r when r is

the radius of the circle corresponding to v ∈ V . Surprisingly, this function is

subharmonic on G, that is, f(v) is less than or equal to the average of f on the

neighbours of v. This is the first geometric component in the proof. Then one

uses, or rather proves a theorem saying that, under suitable conditions on the

underlying graph, if a subharmonic function is bounded from above, then it is

necessarily constant. Finally, the “suitable” condition follows from the planarity

of G. I’m sure that, in the world of geometry, there are hundreds of similar

proofs waiting to be discovered.
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Convex Geometry of Orbits

ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

Abstract. We study metric properties of convex bodies B and their polars
B◦, where B is the convex hull of an orbit under the action of a compact
group G. Examples include the Traveling Salesman Polytope in polyhe-
dral combinatorics (G = Sn, the symmetric group), the set of nonnegative
polynomials in real algebraic geometry (G = SO(n), the special orthogonal
group), and the convex hull of the Grassmannian and the unit comass ball
in the theory of calibrated geometries (G = SO(n), but with a different
action). We compute the radius of the largest ball contained in the sym-
metric Traveling Salesman Polytope, give a reasonably tight estimate for
the radius of the Euclidean ball containing the unit comass ball and review
(sometimes with simpler and unified proofs) recent results on the structure
of the set of nonnegative polynomials (the radius of the inscribed ball, vol-
ume estimates, and relations to the sums of squares). Our main tool is
a new simple description of the ellipsoid of the largest volume contained
in B◦.

1. Introduction and Examples

Let G be a compact group acting in a finite-dimensional real vector space V

and let v ∈ V be a point. The main object of this paper is the convex hull

B = B(v) = conv
(
gv : g ∈ G

)

of the orbit as well as its polar

B◦ = B◦(v) =
{
` ∈ V ∗ : `(gv) ≤ 1 for all g ∈ G

}
.

Objects such as B and B◦ appear in many different contexts. We give three

examples below.

Example 1.1 (Combinatorial optimization polytopes). Let G = Sn be

the symmetric group, that is, the group of permutations of {1, . . . , n}. Then
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B(v) is a polytope and varying V and v, one can obtain various polytopes of

interest in combinatorial optimization. This idea is due to A.M. Vershik (see

[Barvinok and Vershik 1988]) and some polytopes of this kind were studied in

[Barvinok 1992].

Here we describe perhaps the most famous polytope in this family, the Travel-

ing Salesman Polytope (see, for example, Chapter 58 of [Schrijver 2003]), which

exists in two major versions, symmetric and asymmetric. Let V be the space of

n×n real matrices A = (aij) and let Sn act in V by simultaneous permutations of

rows and columns: (ga)ij = ag−1(i)g−1(j) (we assume that n ≥ 4). Let us choose

v such that vij = 1 provided |i − j| = 1 mod n and vij = 0 otherwise. Then,

as g ranges over the symmetric group Sn, matrix gv ranges over the adjacency

matrices of Hamiltonian cycles in a complete undirected graph with n vertices.

The convex hull B(v) is called the symmetric Traveling Salesman Polytope (we

denote it by STn). It has (n− 1)!/2 vertices and its dimension is (n2 − 3n)/2.

Let us choose v ∈ V such that vij = 1 provided i− j = 1 mod n and vij = 0

otherwise. Then, as g ranges over the symmetric group Sn, matrix gv ranges over

the adjacency matrices of Hamiltonian circuits in a complete directed graph with

n vertices. The convex hull B(v) is called the asymmetric Traveling Salesman

Polytope (we denote it by ATn). It has (n − 1)! vertices and its dimension is

n2 − 3n + 1.

A lot of effort has been put into understanding of the facial structure of the

symmetric and asymmetric Traveling Salesman Polytopes, in particular, what

are the linear inequalities that define the facets of ATn and STn, see Chapter

58 of [Schrijver 2003]. It follows from the computational complexity theory

that in some sense one cannot describe efficiently the facets of the Traveling

Salesman Polytope. More precisely, if NP 6= co-NP (as is widely believed), then

there is no polynomial time algorithm, which, given an inequality, decides if it

determines a facet of the Traveling Salesman Polytope, symmetric or asymmetric,

see, for example, Section 5.12 of [Schrijver 2003]. In a similar spirit, Billera and

Sarangarajan proved that any 0-1 polytope (that is, a polytope whose vertices

are 0-1 vectors), appears as a face of some ATn (up to an affine equivalence)

[Billera and Sarangarajan 1996].

Example 1.2 (Nonnegative polynomials). Let us fix integers n ≥ 2 and

k ≥ 1. We are interested in homogeneous polynomials p : Rn → R of degree 2k

that are nonnegative for all x = (x1, . . . , xn). Such polynomials form a convex

cone and we consider its compact base:

Pos2k,n =
{

p : p(x) ≥ 0 for all x ∈ R
n and

∫

Sn−1

p(x) dx = 1
}

, (1.2.1)

where dx is the rotation-invariant probability measure on the unit sphere Sn−1.

It is not hard to see that dimPos2k,n =
(
n+2k−1

2k

)
− 1.
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It is convenient to consider a translation Pos′2k,n, p 7→ p− (x2
1 + · · ·+ x2

n)k of

Pos2k,n:

Pos′2k,n =
{

p : p(x) ≥ −1 for all x ∈ R
n and

∫

Sn−1

p(x) dx = 0
}

. (1.2.2)

Let Um,n be the real vector space of all homogeneous polynomials p : Rn → R

of degree m such that the average value of p on Sn−1 is 0. Then, for m = 2k,

the set Pos′2k,n is a full-dimensional convex body in U2k,n.

One can view Pos′2k,n as the negative polar −B◦(v) of some orbit.

We consider the m-th tensor power (Rn)
⊗m

of Rn, which we view as the vector

space of all m-dimensional arrays
(
xi1,...,im

: 1 ≤ i1, . . . , im ≤ n
)
. For x ∈ Rn,

let y = x⊗m be the tensor with the coordinates yi1,...,im
= xi1 · · ·xim

. The group

G = SO(n) of orientation preserving orthogonal transformations of Rn acts in

(Rn)
⊗m

by the m-th tensor power of its natural action in Rn. In particular,

gy = (gx)⊗m for y = x⊗m.

Let us choose e ∈ Sn−1 and let w = e⊗m. Then the orbit {gw : g ∈ G}
consists of the tensors x⊗m, where x ranges over the unit sphere in Rn. The

orbit {gw : g ∈ G} lies in the symmetric part of (Rn)
⊗m

. Let q =
∫

Sn−1 gw dg

be the center of the orbit (we have q = 0 if m is odd). We translate the orbit by

shifting q to the origin, so in the end we consider the convex hull B of the orbit

of v = w − q:

B = conv
(
gv : g ∈ G

)
.

A homogeneous polynomial

p(x1, . . . , xn) =
∑

1≤i1,...,im≤n

ci1,...,im
xi1 · · ·xim

of degree m, viewed as a function on the unit sphere in Rn, is identified with the

restriction onto the orbit {gw : g ∈ G
}

of the linear functional ` : (Rn)
⊗m → R

defined by the coefficients ci1,...,im
. Consequently, the linear functionals ` on B

are in one-to-one correspondence with the polynomials p ∈ Um,n. Moreover, for

m = 2k, the negative polar −B◦ is identified with Pos′2k,n. If m is odd, then

B◦ = −B◦ is the set of polynomials p such that |p(x)| ≤ 1 for all x ∈ Sn−1.

The facial structure of Pos2k,n is well-understood if k = 1 or if n = 2, see, for

example, Section II.11 (for n = 2) and Section II.12 (for k = 1) of [Barvinok

2002b]. In particular, for k = 1, the set Pos2,n is the convex body of positive

semidefinite n-variate quadratic forms of trace n. The faces of Pos2,n are param-

eterized by the subspaces of Rn: if L ⊂ Rn is a subspace then the corresponding

face is

FL =
{
p ∈ Pos2,n : p(x) = 0 for all x ∈ L

}

and dimFL = r(r + 1)/2− 1, where r = codimL. Interestingly, for large n, the

set Pos2,n is a counterexample to famous Borsuk’s conjecture [Kalai 1995].
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For any k ≥ 2, the situation is much more complicated: the membership

problem for Pos2k,n:

given a polynomial, decide whether it belongs to Pos2k,n,

is NP-hard, which indicates that the facial structure of Pos2k,n is probably hard

to describe.

Example 1.3 (Convex hulls of Grassmannians and calibrations). Let

Gm(Rn) be the Grassmannian of all oriented m-dimensional subspaces of Rn,

n > 1. Let us consider Gm(Rn) as a subset of Vm,n =
∧m

Rn via the Plücker

embedding. Namely, let e1, . . . , en be the standard basis of Rn. We make Vm,n

a Euclidean space by choosing an orthonormal basis ei1 ∧ · · · ∧ eim
for 1 ≤ i1 <

· · · < im ≤ n. Thus the coordinates of a subspace x ∈ Gm(Rn) are indexed by

m-subsets 1 ≤ i1 < i2 < · · · < im ≤ n of {1, . . . , n} and the coordinate xi1,...,im

is equal to the oriented volume of the parallelepiped spanned by the orthogonal

projection of e11
, . . . , eim

onto x. This identifies Gm(Rn) with a subset of the

unit sphere in Vm,n. The convex hull B = conv (Gm(Rn)), called the unit mass

ball, turns out to be of interest in the theory of calibrations and area-minimizing

surfaces: a face of B gives rise to a family of m-dimensional area-minimizing

surfaces whose tangent planes belong to the face, see [Harvey and Lawson 1982]

and [Morgan 1988]. The comass of a linear functional ` : Vm,n → R is the

maximum value of ` on Gm(Rn). A calibration is a linear functional ` : Vm,n → R

of comass 1. The polar B◦ is called the unit comass ball.

One can easily view Gm(Rn) as an orbit. We let G = SO(n), the group

of orientation-preserving orthogonal transformations of Rn, and consider the

action of SO(n) in Vm,n by the m-th exterior power of its defining action in Rn.

Choosing v = e1 ∧ · · · ∧ em, we observe that Gm(Rn) is the orbit {gv : g ∈ G}.
It is easy to see that dim conv

(
Gm(Rn)

)
=
(

n
m

)
.

This example was suggested to the authors by B. Sturmfels and J. Sullivan.

The facial structure of the convex hull of Gm(Rn) is understood for m ≤ 2, for

m ≥ n − 2 and for some special values of m and n, see [Harvey and Lawson

1982], [Harvey and Morgan 1986] and [Morgan 1988]. If m = 2, then the faces

of the unit mass ball are as follows: let us choose an even-dimensional subspace

U ⊂ Rm and an orthogonal complex structure on U , thus identifying U = C2k

for some k. Then the corresponding face of conv (Gm(Rn)) is the convex hull of

all oriented planes in U identified with complex lines in C2k.

In general, it appears to be difficult to describe the facial structure of the unit

mass ball. The authors do not know the complexity status of the membership

problem for the unit mass ball:

given a point x ∈
∧m

Rn, decide if it lies in conv (Gm(Rn)),

but suspect that the problem is NP-hard if m ≥ 3 is fixed and n is allowed to

grow.
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The examples above suggest that the boundary of B and B◦ can get very

complicated, so there is little hope in understanding the combinatorics (the facial

structure) of general convex hulls of orbits and their polars. Instead, we study

metric properties of convex hulls. Our approach is through approximation of a

complicated convex body by a simpler one.

As is known, every convex body contains a unique ellipsoid Emax of the maxi-

mum volume and is contained in a unique ellipsoid Emin of the minimum volume,

see [Ball 1997]. Thus ellipsoids Emax and Emin provide reasonable “first approx-

imations” to a convex body.

The main result of Section 2 is Theorem 2.4 which states that the maximum

volume ellipsoid of B◦ consists of the linear functionals ` : V → R such that the

average value of `2 on the orbit does not exceed (dimV )−1. We compute the

minimum- and maximum- volume ellipsoids of the symmetric Traveling Salesman

Polytope, which both turn out to be balls under the “natural” Euclidean metric

and ellipsoid Emin of the asymmetric Traveling Salesman Polytope, which turns

out to be slightly stretched in the direction of the skew-symmetric matrices.

As an immediate corollary of Theorem 2.4, we obtain the description of the

maximum volume ellipsoid of the set of nonnegative polynomials (Example 1.2),

as a ball of radius
((

n + 2k − 1

2k

)

− 1

)−1/2

in the L2-metric. We also compute the minimum volume ellipsoid of the convex

hull of the Grassmannian and hence the maximum volume ellipsoid of the unit

comass ball (Example 1.3).

In Section 3, we obtain some inequalities which allow us to approximate the

maximum value of a linear functional ` on the orbit by an Lp-norm of `. We

apply those inequalities in Section 4. We obtain a reasonably tight estimate

of the radius of the Euclidean ball containing the unit comass ball and show

that the classical Kähler and special Lagrangian faces of the Grassmannian, are,

in fact, rather “shallow” (Example 1.3). Also, we review (with some proofs and

some sketches) the recent results of [Blekherman 2003], which show that for most

values of n and k the set of nonnegative n-variate polynomials of degree 2k is

much larger than its subset consisting of the sums of squares of polynomials of

degree k.

2. Approximation by Ellipsoids

Let B ⊂ V be a convex body in a finite-dimensional real vector space. We

assume that dim B = dimV . Among all ellipsoids contained in B there is a

unique ellipsoid Emax of the maximum volume, which we call the maximum

volume ellipsoid of B and which is also called the John ellipsoid of B or the

Löwner-John ellipsoid of B. Similarly, among all ellipsoids containing B there

is a unique ellipsoid Emin of the minimum volume, which we call the minimum
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volume ellipsoid of B and which is also called the Löwner or the Löwner-John

ellipsoid. The maximum and minimum volume ellipsoids of B do not depend on

the volume form chosen in V , they are intrinsic to B.

Assuming that the center of Emax is the origin, we have

Emax ⊂ B ⊂ (dimB) Emax.

If B is symmetric about the origin, that is, if B = −B then the bound can be

strengthened:

Emax ⊂ B ⊂
(√

dimB
)

Emax.

More generally, let us suppose that Emax is centered at the origin. The symmetry

coefficient of B with respect to the origin is the largest α > 0 such that −αB ⊂
B. Then

Emax ⊂ B ⊂
(√

dim B

α

)

Emax,

where α is the symmetry coefficient of B with respect to the origin.

Similarly, assuming that Emin is centered at the origin, we have

(dimB)
−1

Emin ⊂ B ⊂ Emin.

If, additionally, α is the symmetry coefficient of B with respect to the origin,

then
(√

α

dimB

)

Emin ⊂ B ⊂ Emin.

In particular, if B is symmetric about the origin, then

(dimB)
−1/2

Emin ⊂ B ⊂ Emin.

These, and other interesting properties of the minimum- and maximum- volume

ellipsoids can be found in [Ball 1997], see also the original paper [John 1948],

[Blekherman 2003], and Chapter V of [Barvinok 2002a]. There are many others

interesting ellipsoids associated with a convex body, such as the minimum width

and minimum surface area ellipsoids [Giannopoulos and Milman 2000]. The

advantage of using Emax and Emin is that these ellipsoids do not depend on the

Euclidean structure of the ambient space and even on the volume form in the

space, which often makes calculations particularly easy.

Suppose that a compact group G acts in V by linear transformations and that

B is invariant under the action: gB = B for all g ∈ G. Let 〈·, ·〉 be a G-invariant

scalar product in V , so G acts in V by isometries. Since the ellipsoids Emax

and Emin associated with B are unique, they also have to be invariant under the

action of G. If the group of symmetries of B is sufficiently rich, we may be able

to describe Emax or Emin precisely.

The following simple observation will be used throughout this section. Let

us suppose that the action of G in V is irreducible: if W ⊂ V is a G-invariant



CONVEX GEOMETRY OF ORBITS 57

subspace, then either W = {0} or W = V . Then, the ellipsoids Emax and Emin

of a G-invariant convex body B are necessarily balls centered at the origin:

Emax =
{
x ∈ V : 〈x, x〉 ≤ r2

}
and Emin =

{
x ∈ V : 〈x, x〉 ≤ R2

}

for some r,R > 0.

Indeed, since the action of G is irreducible, the origin is the only G-invariant

point and hence both Emax and Emin must be centered at the origin. Further-

more, an ellipsoid E ⊂ V centered at the origin is defined by the inequality

E =
{
x : q(x) ≤ 1

}
, where q : V → R is a positive definite quadratic form. If

E is G-invariant, then q(gx) = q(x) for all g ∈ G and hence the eigenspaces of

q must be G-invariant. Since the action of G is irreducible, there is only one

eigenspace which coincides with V , from which q(x) = λ〈x, x〉 for some λ > 0

and all x ∈ V and E is a ball.

This simple observation allows us to compute ellipsoids Emax and Emin of the

Symmetric Traveling Salesman Polytope (Example 1.1).

Example 2.1 (The minimum and maximum volume ellipsoids of the

symmetric Traveling Salesman Polytope). In this case, V is the space

of n × n real matrices, on which the symmetric group Sn acts by simultaneous

permutations of rows and columns, see Example 1.1. Introduce an Sn-invariant

scalar product by

〈
a, b
〉

=

n∑

i,j=1

aijbij for a = (aij) and b = (bij)

and the corresponding Euclidean norm ‖a‖ =
√

〈a, a〉. It is not hard to see that

the affine hull of the symmetric Traveling Salesman Polytope STn consists of the

symmetric matrices with 0 diagonal and row and column sums equal to 2, from

which one can deduce the formula dimSTn = (n2−3n)/2. Let us make the affine

hull of STn a vector space by choosing the origin at c = (cij) with cij = 2/(n−1)

for i 6= j and cii = 0, the only fixed point of the action. One can see that the

action of Sn on the affine hull of STn is irreducible and corresponds to the Young

diagram (n− 2, 2), see, for example, Chapter 4 of [Fulton and Harris 1991].

Hence the maximum- and minimum- volume ellipsoids of STn must be balls

in the affine hull of STn centered at c. Moreover, since the boundary of the

minimum volume ellipsoid Emin must contain the vertices of STn, we conclude

that the radius of the ball representing Emin is equal to
√

2n(n− 3)/(n− 1).

One can compute the symmetry coefficient of STn with respect to the center

c. Suppose that n ≥ 5. Let us choose a vertex v of STn and let us consider the

functional `(x) = 〈v−c, x−c〉 on STn. The maximum value of 2n(n−3)/(n−1)

is attained at x = v while the minimum value of −4n/(n − 1) is attained at

the face Fv of STn with the vertices h such that 〈v, h〉 = 0 (combinatorially,

h correspond to Hamiltonian cycles in the graph obtained from the complete

graph on n vertices by deleting the edges of the Hamiltonian cycle encoded by
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v). Moreover, one can show that for λ = 2/(n− 3), we have −λ(v− c) + c ∈ Fv.

This implies that the coefficient of symmetry of STn with respect to c is equal

to 2/(n − 3). Therefore STn contains the ball centered at c and of the radius
√

8/
(
(n− 1)(n− 3)

)
(for n ≥ 5).

The ball centered at c and of the radius
√

8/
(
(n− 1)(n− 3)

)
touches the

boundary of STn. Indeed, let b = (bij) be the centroid of the set of vertices x of

STn with x12 = x21 = 0. Then

bij =







0 if 1 ≤ i, j ≤ 2,

2

n− 2
if i = 1, 2 and j > 2 or j = 1, 2 and i > 2,

2(n− 4)

(n− 2)(n− 3)
if i, j ≥ 3,

and the distance from c to b is precisely
√

8/
(
(n− 1)(n− 3)

)
.

Hence for n ≥ 5 the maximum volume ellipsoid Emax is the ball centered at c

of the radius
√

8/
(
(n− 1)(n− 3)

)
.

Some bounds on the radius of the largest inscribed ball for a polytope from a

particular family of combinatorially defined polytopes are computed in [Vyaly̆ı

1995]. The family of polytopes includes the symmetric Traveling Salesman Poly-

tope, although in its case the bound from [Vyaly̆ı 1995] is not optimal.

If the action of G in the ambient space V is not irreducible, the situation is

more complicated. For one thing, there is more than one (up to a scaling factor)

G-invariant scalar product, hence the notion of a “ball” is not really defined.

However, we are still able to describe the minimum volume ellipsoid of the convex

hull of an orbit.

Without loss of generality, we assume that the orbit
{
gv : g ∈ G

}
spans V

affinely. Let 〈·, ·〉 be a G-invariant scalar product in V . As is known, V can

be decomposed into the direct sum of pairwise orthogonal invariant subspaces

Vi, such that the action of G in each Vi is irreducible. It is important to note

that the decomposition is not unique: nonuniqueness appears when some of

Vi are isomorphic, that, is, when there exists an isomorphism Vi → Vj which

commutes with G. If the decomposition is unique, we say that the action of G

is multiplicity-free.

Since the orbit spans V affinely, the orthogonal projection vi of v onto each Vi

must be nonzero (if vi = 0 then the orbit lies in V ⊥
i ). Also, the origin in V must

be the only invariant point of the action of G (otherwise, the orbit is contained

in the hyperplane 〈x, u〉 = 〈v, u〉, where u ∈ V is a nonzero vector fixed by the

action of G).

Theorem 2.2. Let B be the convex hull of the orbit of a vector v ∈ V :

B = conv
(
gv : g ∈ G

)
.
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Suppose that the affine hull of B is V .

Then there exists a decomposition

V =
⊕

i

Vi

of V into the direct sum of pairwise orthogonal irreducible components such that

the following holds.

The minimum volume ellipsoid Emin of B is defined by the inequality

Emin =
{

x :
∑

i

dim Vi

dimV
· 〈xi, xi〉
〈vi, vi〉

≤ 1
}

, 2.2.1

where xi (resp. vi) is the orthogonal projection of x (resp. v) onto Vi.

We have
∫

G

〈x, gv〉2 dg =
∑

i

〈xi, xi〉〈vi, vi〉
dimVi

for all x ∈ V, 2.2.2

where dg is the Haar probability measure on G.

Proof. Let us consider the quadratic form q : V → R defined by

q(x) =

∫

G

〈x, gv〉2 dg.

We observe that q is G-invariant, that is, q(gx) = q(x) for all x ∈ V and all

g ∈ G. Therefore, the eigenspaces of q are G-invariant. Writing the eigenspaces

as direct sums of pairwise orthogonal invariant subspaces where the action of G

is irreducible, we obtain a decomposition V =
⊕

i Vi such that

q(x) =
∑

i

λi〈xi, xi〉 for all x ∈ V

and some λi ≥ 0. Recall that vi 6= 0 for all i since the orbit {gv : g ∈ G} spans

V affinely.

To compute λi, we substitute x ∈ Vi and observe that the trace of

qi(x) =

∫

G

〈x, gvi〉2 dg

as a quadratic form qi : Vi → R is equal to 〈vi, vi〉. Hence we must have

λi = 〈vi, vi〉/dim Vi, which proves (2.2.2) [Barvinok 2002b].

We will also use the polarized form of (2.2.2):
∫

G

〈x, gv〉〈y, gv〉 dg =
∑

i

〈xi, yi〉〈vi, vi〉
dim Vi

, 2.2.3

obtained by applying (2.2.2) to q(x + y)− q(x)− q(y).

Next, we observe that the ellipsoid E defined by the inequality (2.2.1) contains

the orbit
{
gv : g ∈ G

}
on its boundary and hence contains B.
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Our goal is to show that E is the minimum volume ellipsoid. It is convenient

to introduce a new scalar product:

(a, b) =
∑

i

dimVi

dimV
· 〈ai, bi〉
〈vi, vi〉

for all a, b ∈ V.

Obviously (·, ·) is a G-invariant scalar product. Furthermore, the ellipsoid E

defined by (2.2.1) is the unit ball in the scalar product (·, ·).
Now,

(c, gv) =
∑

i

dimVi

dimV
· 〈ci, gv〉
〈vi, vi〉

and hence

(c, gv)2 =
∑

i,j

(dimVi)(dim Vj)

(dimV )2
· 〈ci, gv〉〈cj , gv〉

〈vi, vi〉2
.

Integrating and using (2.2.3), we get
∫

G

(c, gv)2 dg =
1

dimV

∑

i

dimVi

dimV
· 〈ci, ci〉
〈vi, vi〉

=
(c, c)

dimV
. 2.2.4

Since the origin is the only fixed point of the action of G, the minimum volume

ellipsoid should be centered at the origin.

Let e1, . . . , ek for k = dim V be an orthonormal basis with respect to the

scalar product (·, ·). Suppose that E′ ⊂ V is an ellipsoid defined by

E′ =
{

x ∈ V :
k∑

j=1

(x, ej)
2

α2
j

≤ 1
}

for some α1, . . . , αk > 0. To show that E is the minimum volume ellipsoid, it

suffices to show that as long as E′ contains the orbit
{
gv : g ∈ G

}
, we must have

volE′ ≥ volE, which is equivalent to α1 · · ·αk ≥ 1.

Indeed, since gv ∈ E′, we must have

k∑

j=1

(ej , gv)2

α2
j

≤ 1 for all g ∈ G.

Integrating, we obtain
k∑

j=1

1

α2
j

∫

G

(ej , gv)2 dg ≤ 1.

Applying (2.2.4), we get

1

dimV

k∑

j=1

1

α2
j

≤ 1.

Since k = dimV , from the inequality between the arithmetic and geometric

means, we get α1 . . . αk ≥ 1, which completes the proof. ˜
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Remark. In the part of the proof where we compare the volumes of E′ and E,

we reproduce the “sufficiency” (that is, “the easy”) part of John’s criterion for

optimality of an ellipsoid; see, for example, [Ball 1997].

Theorem 2.2 allows us to compute the minimum volume ellipsoid of the asym-

metric Traveling Salesman Polytope, see Example 1.1.

Example 2.3 (The minimum volume ellipsoid of the asymmetric Trav-

eling Salesman Polytope). In this case (compare Examples 1.1 and 2.1),

V is the space of n × n matrices with the scalar product and the action of the

symmetric group Sn defined as in Example 2.1. On can observe that the affine

hull of ATn consists of the matrices with zero diagonal and row and column sums

equal to 1, from which one can deduce the formula dimATn = n2 − 3n + 1.

The affine hull of ATn is Sn-invariant. We make the affine hull of ATn a

vector space by choosing the origin at c = (cij) with cij = 1/(n − 1) for i 6= j

and cii = 0, the only fixed point of the action. The action of Sn on the affine hull

of ATn is reducible and multiplicity-free, so there is no ambiguity in choosing the

irreducible components. The affine hull is the sum of two irreducible invariant

subspaces Vs and Va.

Subspace Vs consists of the matrices x+c, where x is a symmetric matrix with

zero diagonal and zero row and column sums. One can see that the action of

Sn in Vs is irreducible and corresponds to the Young diagram (n− 2, 2), see, for

example, Chapter 4 of [Fulton and Harris 1991]. We have dimVs = (n2− 3n)/2.

Subspace Va consists of the matrices x + c, where x is a skew-symmetric

matrix with zero row and column sums. One can see that the action of Sn in Va

is irreducible and corresponds to the Young diagram (n−2, 1, 1), see, for example,

Chapter 4 of [Fulton and Harris 1991]. We have dimVa = (n− 1)(n− 2)/2.

The orthogonal projection onto Vs is defined by x 7→ (x + xt)/2, while the

orthogonal projection onto Va is defined by x 7→ (x− xt)/2 + c.

Applying Theorem 2.2, we conclude that the minimum volume ellipsoid of

ATn is defined in the affine hull of ATn by the inequality:

(n− 1)
∑

1≤i 6=j≤n

(
xij + xji

2
− 1

n− 1

)2

+
(n− 1)(n− 2)

n

∑

1≤i 6=j≤n

(
xij − xji

2

)2

≤ n2 − 3n + 1.

Thus one can say that the minimum volume ellipsoid of the asymmetric Trav-

eling Salesman Polytope is slightly stretched in the direction of skew-symmetric

matrices.

The dual version of Theorem 2.2 is especially simple.
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Theorem 2.4. Let G be a compact group acting in a finite-dimensional real

vector space V . Let B be the convex hull of the orbit of a vector v ∈ V :

B = conv
(

gv : g ∈ G
)

.

Suppose that the affine hull of B is V .

Let V ∗ be the dual to V and let

B◦ =
{

` ∈ V ∗ : `(x) ≤ 1 for all x ∈ B
}

be the polar of B. Then the maximum volume ellipsoid of B◦ is defined by the

inequality

Emax =
{

` ∈ V ∗ :

∫

G

`2(gv) dg ≤ 1

dimV

}

.

Proof. Let us introduce a G-invariant scalar product 〈·, ·〉 in V , thus identifying

V and V ∗. Then

B◦ =
{

c ∈ V : 〈c, gv〉 ≤ 1 for all g ∈ G
}

.

Since the origin is the only point fixed by the action of G, the maximum volume

ellipsoid Emax of B◦ is centered at the origin. Therefore, Emax must be the polar

of the minimum volume ellipsoid of B.

Let V =
⊕

i

Vi be the decomposition of Theorem 2.2. Since Emax is the polar

of the ellipsoid Emin associated with B, from (2.2.1), we get

Emax =
{

c : dim V
∑

i

〈ci, ci〉〈vi, vi〉
dim Vi

≤ 1
}

.

Applying (2.2.2), we get

Emax =
{

c :

∫

G

〈c, gv〉2 dg ≤ 1

dimV

}

,

which completes the proof. ˜

Remark. Let G be a compact group acting in a finite-dimensional real vector

space V and let v ∈ V be a point such that the orbit
{
gv : g ∈ V

}
spans V

affinely. Then the dual space V ∗ acquires a natural scalar product

〈`1, `2〉 =

∫

G

`1(gv)`2(gv) dg

induced by the scalar product in L2(G). Theorem 2.4 states that the maximum

volume ellipsoid of the polar of the orbit is the ball of radius (dimV )−1/2 in this

scalar product.

By duality, V acquires the dual scalar product (which we denote below by

〈·, ·〉 as well). It is a constant multiple of the product (·, ·) introduced in the

proof of Theorem 2.2: 〈u1, u2〉 = (dim V )(u1, u2). We have 〈v, v〉 = dimV and
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the minimum volume ellipsoid of the convex hull of the orbit of v is the ball of

radius
√

dimV .

As an immediate application of Theorem 2.4, we compute the maximum volume

ellipsoid of the set of nonnegative polynomials, see Example 1.2.

Example 2.5 (The maximum volume ellipsoid of the set of nonnega-

tive polynomials). In this case, U∗
2k,n is the space of all homogeneous poly-

nomials p : Rn → R of degree 2k with the zero average on the unit sphere Sn−1,

so dimU∗
2k,n =

(
n+2k−1

2k

)
−1. We view such a polynomial p as a linear functional

` on an orbit
{
gv : g ∈ G

}
in the action of the orthogonal group G = SO(n) in

(Rn)
⊗2k

and the shifted set Pos′2k,n of nonnegative polynomials as the negative

polar −B◦ of the orbit, see Example 1.2. In particular, under this identification

p←→ `, we have
∫

Sn−1

p2(x) dx =

∫

G

`2(gv) dg,

where dx and dg are the Haar probability measures on Sn−1 and SO(n) respec-

tively.

Applying Theorem 2.4 to −B◦, we conclude that the maximum volume ellip-

soid of −B◦ = Pos′2k,n consists of the polynomials p such that

∫

Sn−1

p(x) dx = 0 and

∫

Sn−1

p2(x) dx ≤
((

n + 2k − 1

2k

)

− 1

)−1

.

Consequently, the maximum volume ellipsoid of Pos2k,n consists of the polyno-

mials p such that

∫

Sn−1

p(x) dx = 1 and

∫

Sn−1

(p(x)− 1)
2

dx ≤
((

n + 2k − 1

2k

)

− 1

)−1

.

Geometrically, the maximum volume ellipsoid of Pos2k,n can be described as

follows. Let us introduce a scalar product in the space of polynomials by

〈f, g〉 =

∫

Sn−1

f(x)g(x) dx,

where dx is the rotation-invariant probability measure, as above. Then the

maximum volume ellipsoid of Pos2k,n is the ball centered at r(x) = (x2
1+· · ·+x2

n)k

and having radius
((

n + 2k − 1

2k

)

− 1

)−1/2

(note that multiples of r(x) are the only SO(n)-invariant polynomials, see for

example, p. 13 of [Barvinok 2002a]). This result was first obtained by more

direct and complicated computations in [Blekherman 2004]. In the same paper,
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G. Blekherman also determined the coefficient of symmetry of Pos2k,n (with

respect to the center r), it turns out to be equal to

((
n + k − 1

k

)

− 1

)−1

.

It follows then that Pos2k,n is contained in the ball centered at r and of the

radius
((

n + k − 1

k

)

− 1

)1/2

.

This estimate is poor if k is fixed and n is allowed to grow: as follows from results

of Duoandikoetxea [1987], for any fixed k, the set Pos2k,n is contained in a ball

of a fixed radius, as n grows. However, the estimate gives the right logarithmic

order if k � n, which one can observe by inspecting a polynomial p ∈ Pos2k,n

that is the 2k-th power of a linear function.

We conclude this section by computing the minimum volume ellipsoid of the con-

vex hull of the Grassmannian and, consequently, the maximum volume ellipsoid

of the unit comass ball, see Example 1.3.

Example 2.6 (The minimum volume ellipsoid of the convex hull of

the Grassmannian). In this case, Vm,n =
∧m

Rn with the orthonormal basis

eI = ei1 ∧ · · · ∧ eim
, where I is an m-subset 1 ≤ i1 < i2 < · · · < im ≤ n of the

set {1, . . . , n} and e1, . . . , en is the standard orthonormal basis of Rn.

Let 〈·, ·〉 be the corresponding scalar product in Vm,n, so that

〈a, b〉 =
∑

I

aIbI ,

where I ranges over all m-subsets of {1, . . . , n}. The scalar product allows us

to identify V ∗
m,n with Vm,n. First, we find the maximum volume ellipsoid of the

unit comass ball B◦, that is the polar of the convex hull B = conv (Gm(Rn)) of

the Grassmannian.

A linear functional a ∈ V ∗
m,n = Vm,n is defined by its coefficients aI . To apply

Theorem 2.4, we have to compute

∫

SO(n)

〈a, gv〉2 dg =

∫

Gm(Rn)

〈a, x〉2 dx,

where dx is the Haar probability measure on the Grassmannian Gm(Rn). We

note that
∫

Gm(Rn)

〈eI , x〉〈eJ , x〉 dx = 0

for I 6= J , since for i ∈ I \ J , the reflection ei 7→ −ei of Rn induces an isometry

of Vm,n, which maps Gm(Rn) onto itself, reverses the sign of 〈eI , x〉 and does
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not change 〈eJ , x〉. Also,

∫

Gm(Rn)

〈eI , x〉2 dx =

(
n

m

)−1

,

since the integral does not depend on I and
∑

I〈eI , x〉2 = 1 for all x ∈ Gm(Rn).

By Theorem 2.4, we conclude that the maximum volume ellipsoid of the unit

comass ball B◦ is defined by the inequality

Emax =
{

a ∈ Vm,n :
∑

I

a2
I ≤ 1

}

,

that is, the unit ball in the Euclidean metric of Vm,n. Since B◦ is centrally sym-

metric, we conclude that B◦ is contained in the ball of radius
(

n
m

)1/2
. As follows

from Theorem 4.1, this estimate is optimal up to a factor of
√

m(n−1)(1+ lnm).

Consequently, the convex hull B of the Grassmannian is contained in the unit

ball of Vm,n, which is the minimum volume ellipsoid of B, and contains a ball of

radius
(

n
m

)−1/2
. Again, the estimate of the radius of the inner ball is optimal up

to a factor of
√

m(n− 1)(1 + lnm).

3. Higher Order Estimates

The following construction can be used to get a better understanding of metric

properties of an orbit
{
gv : g ∈ G

}
. Let us choose a positive integer k and let

us consider the k-th tensor power

V ⊗k = V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

.

The group G acts in V ⊗k by the k-th tensor power of its action in V : on

decomposable tensors we have

g(v1 ⊗ · · · ⊗ vk) = g(v1)⊗ · · · ⊗ g(vk).

Let us consider the orbit
{
gv⊗k : g ∈ G

}
for

v⊗k = v ⊗ · · · ⊗ v
︸ ︷︷ ︸

k times

.

Then, a linear functional on the orbit of v⊗k is a polynomial of degree k on the

orbit of v and hence we can extract some new “higher order” information about

the orbit of v by applying already developed methods to the orbit of v⊗k. An

important observation is that the orbit
{
gv⊗k : g ∈ G

}
lies in the symmetric

part of V ⊗k, so the dimension of the affine hull of the orbit of v⊗k does not

exceed
(
dim V +k−1

k

)
.
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Theorem 3.1. Let G be a compact group acting in a finite-dimensional real

vector space V , let v ∈ V be a point , and let ` : V → R be a linear functional .

Let us define

f : G→ R by f(g) = `(gv).

For an integer k > 0, let dk be the dimension of the subspace spanned by the

orbit
{
gv⊗k : g ∈ G

}
in V ⊗k. In particular , dk ≤

(
dim V +k−1

k

)
. Let

‖f‖2k =

(∫

G

f2k(g) dg

)1/2k

.

(i) Suppose that k is odd and that
∫

G

fk(g) dg = 0.

Then

d
−1/2k
k ‖f‖2k ≤ max

g∈G
f(g) ≤ d

1/2k
k ‖f‖2k.

(ii) We have

‖f‖2k ≤ max
g∈G
|f(g)| ≤ d

1/2k
k ‖f‖2k.

Proof. Without loss of generality, we assume that f 6≡ 0.

Let

Bk(v) = conv
(
gv⊗k : g ∈ G

)

be the convex hull of the orbit of v⊗k. We have dimBk(v) ≤ dk.

Let `⊗k ∈ (V ∗)
⊗k

be the k-th tensor power of the linear functional ` ∈ V ∗.

Thus fk(g) = `⊗k
(
gv⊗k

)
.

To prove Part (1), we note that since k is odd,

max
g∈G

fk(g) =
(
max
g∈G

f(g)
)k

.

Let

u =

∫

G

g
(
v⊗k

)
dg

be the center of Bk(v). Since the average value of fk(g) is equal to 0, we have

`⊗k(u) = 0 and hence `⊗k(x) = `⊗k(x − u) for all x ∈ V ⊗k. Let us translate

Bk(v)′ = Bk(v) − u to the origin and let us consider the maximum volume

ellipsoid E of the polar of Bk(v)′ in its affine hull. By Theorem 2.4, we have

E =
{

L ∈
(
V ⊗k

)∗
:

∫

G

L2
(
gv⊗k − u

)
dg ≤ 1

dimBk(v)

}

.

Since the ellipsoid E is contained in the polar of Bk(v)′, for any linear func-

tional L : V ⊗k → R, the inequality
∫

G

L2
(
gv⊗k − u

)
dg ≤ 1

dk
≤ 1

dimBk(v)
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implies the inequality

max
g∈G
L
(
gv⊗k − u

)
≤ 1.

Choosing L = λ`⊗k with λ = d
−1/2
k ‖f‖−k

2k , we then obtain the upper bound for

maxg∈G f(g).

Since the ellipsoid (dim E)E contains the polar of Bk(v)′, for any linear func-

tional L : V ⊗k → R, the inequality

max
g∈G
L
(
gv⊗k − u

)
≤ 1

implies the inequality
∫

G

L2
(
gv⊗k − u

)
dg ≤ dimBk(v) ≤ dk.

Choosing L = λ`⊗k with any λ > ‖f‖−k
2k d

1/2
k , we obtain the lower bound for

maxg∈G f(g).

The proof of Part (2) is similar. We modify the definition of Bk(v) by letting

Bk(v) = conv
(
gv⊗k,−gv⊗k : g ∈ G

)
.

The set Bk(v) so defined can be considered as the convex hull of an orbit of

G × Z2 and is centrally symmetric, so the ellipsoid (
√

dim E)E contains the

polar of Bk(v).

Part (2) is also proven by a different method in [Barvinok 2002b]. ˜

Remark. Since dk ≤
(
dim V +k−1

k

)
, the upper and lower bounds in Theorem 3.1

are asymptotically equivalent as long as k−1 dimV → 0. In many interesting

cases we have dk �
(
dim V +k−1

k

)
, which results in stronger inequalities.

Polynomials on the unit sphere. As is discussed in Examples 1.2 and 2.5,

the restriction of a homogeneous polynomial f : Rn → R of degree m onto the

unit sphere Sn−1 ⊂ Rn can be viewed as the restriction of a linear functional

` : (Rn)
⊗m → R onto the orbit of a vector v = e⊗m for some e ∈ Sn−1 in

the action of the special orthogonal group SO(n). In this case, the orbit of

v⊗k = e⊗mk spans the symmetric part of (Rn)
mk

, so we have dk =
(
n+mk−1

mk

)
in

Theorem 3.1.

Hence Part (1) of Theorem 3.1 implies that if f is an n-variate homogeneous

polynomial of degree m such that
∫

Sn−1

fk(x) dx = 0,

where dx is the rotation-invariant probability measure on Sn−1, then

(
n + mk − 1

mk

)−1/2k

‖f‖2k ≤ max
x∈Sn−1

f(x) ≤
(

n + mk − 1

mk

)1/2k

‖f‖2k,



68 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

where

‖f‖2k =

(∫

Sn−1

f2k(x) dx

)1/2k

.

We obtain the following corollary.

Corollary 3.2. Suppose that k ≥ (n− 1)max
{
ln(m + 1), 1

}
. Then

‖f‖2k ≤ max
x∈Sn−1

|f(x)| ≤ α‖f‖2k,

for some absolute constant α > 0 and all homogeneous polynomials f : Rn → R

of degree m. One can take α = exp
(
1 + 0.5e−1

)
≈ 3.27.

Proof. Applying Part(2) of Theorem 3.1 as above, we conclude that for any

homogeneous polynomial f : Rn → R of degree m,

‖f‖2k ≤ max
x∈Sn−1

|f(x)| ≤
(

n + mk − 1

mk

)1/2k

‖f‖2k.

This inequality is also proved in [Barvinok 2002b]. Besides, it can be deduced

from some classical estimates for spherical harmonics; see p. 14 of [Müller 1966].

We use the estimate

ln

(
a

b

)

≤ b ln
a

b
+ (a− b) ln

a

a− b
;

see, for example, Theorem 1.4.5 of [van Lint 1999]. Applying the inequality with

b = mk and a = n + mk − 1, we get

b ln
a

b
= mk ln

(

1 +
n− 1

mk

)

≤ n− 1

and

(a− b) ln
a

a− b
= (n− 1) ln

n + mk − 1

n− 1
≤ (n− 1)

(

ln(m + 1) + ln
k

n− 1

)

.

Summarizing,

1

2k
ln

(
n + mk − 1

mk

)

≤ 1

2
+

1

2
+

1

2ρ
ln ρ for ρ =

k

n− 1
.

Since ρ−1 ln ρ ≤ e−1 for all ρ ≥ 1, the proof follows. ˜

Our next application concerns calibrations; compare Examples 1.3 and 2.6.

Theorem 3.3. Let Gm(Rn) ⊂
∧m

Rn be the Plücker embedding of the Grass-

mannian of oriented m-subspaces of Rn. Let ` :
∧m

Rn → R be a linear func-

tional . Let

‖`‖2k =

(∫

Gm(Rn)

`2k(x) dx

)1/2k

,
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where dx is the Haar probability measure on Gm(Rn). Then, for any positive

integer k,

‖`‖2k ≤ max
x∈Gm(Rn)

|`(x)| ≤ (dk)1/2k‖`‖2k,

where dk =
∏m

i=1

∏k
j=1

n+j−i
m+k−i−j+1 .

Proof. As we discussed in Example 1.3, the Grassmannian Gm(Rn) can be

viewed as the orbit of v = e1 ∧ · · · ∧ em, where e1, . . . , en is the standard basis of

Rn, under the action of the special orthogonal group SO(n) by the m-th exterior

power of its defining representation in Rn. We are going to apply Part (2) of

Theorem 3.1 and for that we need to estimate the dimension of the subspace

spanned by the orbit of v⊗k. First, we identify
∧m

Rn with the subspace of

skew-symmetric tensors in (Rn)
⊗m

and v with the point

∑

σ∈Sm

(sgn σ)eσ(1) ⊗ · · · ⊗ eσ(m),

where Sm is the symmetric group of all permutations of {1, . . . ,m}.
Let us consider W = (Rn)⊗mk. We introduce the right action of the symmetric

group Smk on W by permutations of the factors in the tensor product:

(
u1 ⊗ · · · ⊗ umk

)
σ = uσ(1) ⊗ · · · ⊗ uσ(mk).

For i = 1, . . . ,m, let Ri ⊂ Smk be the subgroup permuting the numbers 1 ≤
a ≤ mk such that a ≡ i mod m and leaving all other numbers intact and for

j = 1, . . . , k, let Ci ⊂ Smk be the subgroup permuting the numbers m(i−1)+1 ≤
a ≤ mi and leaving all other numbers intact.

Let w = e1 ⊗ · · · ⊗ em. Then

v⊗k = (k!)−mw⊗k

(
∑

σ∈R1×···×Rm

σ

)(
∑

σ∈C1×···×Ck

(sgn σ)σ

)

.

It follows then that v⊗k generates the GLn-module indexed by the rectangular

m×k Young diagram, so its dimension dk is given by the formula of the Theorem,

see Chapter 6 of [Fulton and Harris 1991]. ˜

Corollary 3.4. Under the conditions of Theorem 3.3, let

k ≥ m(n− 1)max{lnm, 1
}
.

Then

‖`‖2k ≤ comass of ` ≤ α‖`‖2k

for some absolute constant α > 0.

One can choose α = exp
(
0.5 + 0.5e−1 + 1/ ln 3

)
≈ 4.93.
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Proof. We have

dk ≤
m∏

i=1

k∏

j=1

n + j − i

k − j + 1
≤
( k∏

j=1

n + j − 1

k − j + 1

)m

=

(
n + k − 1

n− 1

)m

.

Hence

ln dk ≤ m ln

(
n + k − 1

n− 1

)

≤ m(n− 1) ln
n + k − 1

n− 1
+ mk ln

n + k − 1

k

≤ m(n− 1)
(

ln
n + k − 1

n− 1
+ 1
)

= m(n− 1)
(

ln
k

n− 1
+ 2
)

;

compare the proof of Corollary 3.2.

If m ≥ 3 then lnm ≥ 1 and k/(n − 1) ≥ m ln m. Since the function ρ−1 ln ρ

is decreasing for ρ ≥ e, substituting ρ = k/(n− 1), we get

ρ−1 ln ρ =
n− 1

k
ln

k

n− 1
≤ lnm + ln lnm

m ln m
.

Therefore, for m ≥ 3, we have

1

2k
ln dk ≤

lnm + ln lnm

2 ln m
+

1

ln m
≤ 1

2
+

1

2e
+

1

ln 3
.

If m ≤ 2 then
n− 1

k
ln

k

n− 1
≤ e−1,

since the maximum of ρ−1 ln ρ for is attained at ρ = e. Therefore,

1

2k
ln dk ≤ e−1 + 1 <

1

2
+

1

2e
+

1

ln 3

The proof now follows. ˜

To understand the convex geometry of an orbit, we would like to compute the

maximum value of a “typical” linear functional on the orbit. Theorem 3.1 allows

us to replace the maximum value by an Lp norm. To estimate the average value

of an Lp norm, we use the following simple computation.

Lemma 3.5. Let G be a compact group acting in a d-dimensional real vector space

V endowed with a G-invariant scalar product 〈 · , · 〉 and let v ∈ V be a point .

Let Sd−1 ⊂ V be the unit sphere endowed with the Haar probability measure dc.

Then, for every positive integer k, we have

∫

Sd−1

(∫

G

〈c, gv〉2k dg

)1/2k

dc ≤
√

2k〈v, v〉
d

.

Proof. Applying Hölder’s inequality, we get

∫

Sd−1

(∫

G

〈c, gv〉2k dg

)1/2k

dc ≤
(∫

Sd−1

∫

G

〈c, gv〉2k dg dc

)1/2k

.
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Interchanging the integrals, we get
∫

Sd−1

∫

G

〈c, gv〉2k dg dc =

∫

G

(∫

Sd−1

〈c, gv〉2k dc

)

dg. 3.5.1

Now we observe that the integral inside has the same value for all g ∈ G. There-

fore, (3.5.1) is equal to
∫

Sd−1

〈c, v〉2k dc = 〈v, v〉k Γ(d/2)Γ(k + 1/2)√
πΓ(k + d/2)

,

see, for example, [Barvinok 2002b].

Now we use that Γ(k + 1/2) ≤ Γ(k + 1) ≤ kk and

Γ(d/2)

Γ(k + d/2)
=

1

(d/2)(d/2 + 1) · · · (d/2 + k − 1)
≤ (d/2)−k. ˜

4. Some Geometric Corollaries

The metric structure of the unit comass ball. Let Vm,n =
∧m

Rn with

the orthonormal basis eI = ei1 ∧ · · · ∧ eim
, where I is an m-subset 1 ≤ i1 <

i2 < · · · < im ≤ n of the set {1, . . . , n}, and the corresponding scalar product

〈·, ·〉. Let Gm(Rn) ⊂ Vm,n be the Plücker embedding of the Grassmannian of

oriented m-subspaces of Rn, let B = conv (Gm(Rn)) be the unit mass ball, and

let B◦ ⊂ V ∗
m,n = Vm,n be the unit comass ball, consisting of the linear functionals

with the maximum value on Gm(Rn) not exceeding 1, see Examples 1.3 and 2.6.

The most well-known example of a linear functional ` : Vm,n → R of comass

1 is given by an exterior power of the Kähler form. Let us suppose that m and

n are even, so m = 2p and n = 2q. Let

ω = e1 ∧ e2 + e3 ∧ e4 + · · ·+ eq−1 ∧ eq

and

f =
1

p!
ω ∧ · · · ∧ ω
︸ ︷︷ ︸

p times

∈ Vm,n.

Then

max
x∈Gm(Rn)

〈f, x〉 = 1,

and, moreover, the subspaces x ∈ Gm(Rn) where the maximum value 1 is at-

tained look as follows. We identify Rn with Cq by identifying

Re1 ⊕ Re2 = Re3 ⊕ Re4 = · · · = Req−1 ⊕ Req = C.

Then the subspaces x ∈ Gm(Rn) with 〈f, x〉 = 1 are exactly those identified with

the complex p-dimensional subspaces of Cq, see [Harvey and Lawson 1982].

We note that the Euclidean length 〈f, f〉1/2 of f is equal to

(
q

p

)1/2

. In

particular, if m = 2p is fixed and n = 2q grows, the length of f grows as

qp/2 = (n/2)m/4.
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Another example is provided by the special Lagrangian calibration a. In this

case, n = 2m and

a = Re (e1 + ie2) ∧ · · · ∧ (e2m−1 + ie2m).

The length 〈a, a〉1/2 of a is 2(m−1)/2. The maximum value of 〈a, x〉 for x ∈
Gm(Rn) is 1 and it is attained on the “special Lagrangian subspaces”, see [Harvey

and Lawson 1982].

The following result shows that there exist calibrations with a much larger

Euclidean length than that of the power f of the Kähler form or the special

Lagrangian calibration a.

Theorem 4.1. (i) Let c ∈ Vm,n be a vector such that

max
x∈Gm(Rn)

〈c, x〉 = 1.

Then

〈c, c〉1/2 ≤
(

n

m

)1/2

.

(ii) There exists c ∈ Vm,n such that

max
x∈Gm(Rn)

〈c, x〉 = 1

and

〈c, c〉1/2 ≥ β
√

m(n− 1)(1 + lnm)

(
n

m

)1/2

,

where β > 0 is an absolute constant .

One can choose β = exp
(
−0.5− 0.5e−1 − 1/ ln 3

)
/
√

2 ≈ 0.14.

Proof. Part (1) follows since the convex hull of the Grassmannian contains a

ball of radius

(
n

m

)−1/2

; see Example 2.6.

To prove Part (2), let us choose k = bm(n − 1)(1 + lnm)c in Lemma 3.5.

Then, by Corollary 3.4,

α−1 max
x∈Gm(Rn)

〈c, x〉 ≤
(
∫

Gm(Rn)

〈c, x〉2k dx

)1/2k

,

for some absolute constant α > 1. We apply Lemma 3.5 with V = Vm,n, d =
(

n
m

)
,

G = SO(n), and v = e1 ∧ · · · ∧ em. Hence 〈v, v〉 = 1 and there exists c ∈ Vm,n

with 〈c, c〉 = 1 and such that

(∫

Gm(Rn)

〈c, x〉2k dx

)1/2k

≤
√

2k

(
n

m

)−1/2

.

Rescaling c to a comass 1 functional, we complete the proof of Part (2). ˜
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For m = 2 the estimate of Part (2) is exact up to an absolute constant, as wit-

nessed by the Kähler calibration. However, for m ≥ 3, the calibration c of Part

(2) has a larger length than the Kähler or special Lagrangian calibrations. The

gap only increases when m and n grow. The distance to the origin of the sup-

porting hyperplane 〈c, x〉 = 1 of the face of the convex hull of the Grassmannian

is equal to 〈c, c〉−1/2 so the faces defined by longer calibrations c are closer to

the origin. Thus, the faces spanned by complex subspaces or the faces spanned

by special Lagrangian subspaces are much more “shallow” than the faces defined

by calibrations c in Part (2) of the Theorem. We do not know if those “deep”

faces are related to any interesting geometry. Intuitively, the closer the face to

the origin, the larger piece of the Grassmannian it contains, so it is quite pos-

sible that some interesting classes of manifolds are associated with the “long”

calibrations c [Morgan 1992].

The volume of the set of nonnegative polynomials. Let Um,n be the

space of real homogeneous polynomials p of degree m in n variables such that the

average value of p on the unit sphere Sn−1 ⊂ Rn is 0, so dimUm,n =
(
n+m−1

m

)
−1

for m even and dimUm,n =
(
n+m−1

m

)
for m odd. As before, we make Um,n a

Euclidean space with the L2 inner product

〈f, g〉 =

∫

Sn−1

f(x)g(x) dx.

We obtain the following corollary.

Corollary 4.2. Let Σm,n ⊂ Um,n be the unit sphere, consisting of the polyno-

mials with L2-norm equal to 1. For a polynomial p ∈ Um,n, let

‖p‖∞ = max
x∈Sn−1

|p(x)|.

Then ∫

Σm,n

‖p‖∞ dp ≤ β
√

(n− 1) ln(m + 1) + 1

for some absolute constant β > 0. One can take β =
√

2 exp
(
1+ 0.5e−1

)
≈ 4.63.

Proof. Let us choose k = b(n− 1) ln(m + 1) + 1c. Then, by Corollary 3.2,

‖p‖∞ ≤ α

(∫

Sn−1

p2k dx

)1/2k

,

where we can take α = exp
(
1+0.5e−1

)
. Now we use Lemma 3.5. As in Examples

1.2 and 2.5, we identify the space Um,n with the space of linear functionals 〈c, gv〉
on the orbit

{
gv : g ∈ SO(n)

}
of v. By the remark after the proof of Theorem

2.4, we have 〈v, v〉 = dimUm,n. The proof now follows. ˜

Thus the L∞-norm of a typical n-variate polynomial of degree m of the unit

L2-norm in Um,n is O
(√

(n− 1) ln(m + 1) + 1
)
. In contrast, the L∞ norm of a

particular polynomial can be of the order of nm/2, that is, substantially bigger.
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Corollary 4.2 was used by the second author to obtain a bound on the volume

of the set of nonnegative polynomials.

Let us consider the shifted set Pos′2k,n ⊂ U2k,n of nonnegative polynomials

defined by (1.2.2). We measure the size of a set X ⊂ U2k,n by the quantity

(
volX

volK

)1/d

,

where d = dim U2k,n and K is the unit ball in U2k,n, which is more “robust” than

just the volume volX, as it takes into account the effect of a high dimension;

see Chapter 6 of [Pisier 1989].

The following result is from [Blekherman 2003], we made some trivial im-

provement in the dependence on the degree 2k.

Theorem 4.3. Let Pos′2k,n ⊂ U2k,n be the shifted set of nonnegative polynomials,

let K ⊂ U2k,n be the unit ball and let d = dimU2k,n =
(
n+2k−1

2k

)
− 1. Then

(
vol Pos2k,n

volK

)1/d

≥ γ
√

(n− 1) ln(2k + 1) + 1

for some absolute constant γ > 0. One can take γ = exp
(
−1 − 0.5e−1

)
/
√

2 ≈
0.21.

Proof. Let Σ2k,n ⊂ U2k,n be the unit sphere. Let p ∈ Σ2k,n be a point.

The ray λp : λ ≥ 0 intersects the boundary of Pos′2k,n at a point p1 such that

minx∈Sn−1 p1(x) = −1, so the length of the interval [0, p1] is |minx∈Sn−1 p(x)| ≤
‖p‖∞.

Hence
(

vol Pos′2k,n

volK

)1/d

=

(∫

Σ2k,n

∣
∣ min
x∈Sn−1

p(x)
∣
∣
−d

dp

)1/d

≥
(∫

Σ2k,n

‖p‖−d
∞ dp

)1/d

≥
∫

Σ2k,n

‖p‖−1
∞ dp ≥

(∫

Σ2k,n

‖p‖∞ dp

)−1

,

by the consecutive application of Hölder’s and Jensen’s inequalities, so the proof

follows by Corollary 4.2. ˜

We defined Pos2k,n as the set of nonnegative polynomials with the average value

1 on the unit sphere, see (1.2.1). There is an important subset Sq2k,n ⊂ Pos2k,n,

consisting of the polynomials that are sums of squares of homogeneous poly-

nomials of degree k. It is known that Pos2k,n = Sq2k,n if k = 1, n = 2, or

k = 2 and n = 3, see Chapter 6 of [Bochnak et al. 1998]. The following result

from [Blekherman 2003] shows that, in general, Sq2k,n is a rather small subset

of Pos2k,n.

Translating p 7→ p− (x2
1 + · · ·+ x2

n)k, we identify Sq2k,n with a subset Sq′2k,n

of U2k,n.
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Theorem 4.4. Let Sq′2k,n ⊂ U2k,n be the shifted set of sums of squares, let

K ⊂ U2k,n be the unit ball and let d = dimU2k,n =
(
n+2k−1

2k

)
− 1. Then

(
volSq2k,n

volK

)1/d

≤ γ24k

(
n + k − 1

k

)1/2(
n + 2k − 1

2k

)−1/2

for some absolute constant γ > 0. One can choose γ = exp
(
1 + 0.5e−1

)
≈ 3.27.

In particular, if k is fixed and n grows, the upper bound has the form c(k)n−k/2

for some c(k) > 0.

The proof is based on bounding the right hand side of the inequality of Theo-

rem 4.4 by the average width of Sq2k,n; see Section 6.2 of [Schneider 1993]. The

average width is represented by the integral
∫

Σ2k,n

max
f∈Σk,n

〈g, f2〉 dg.

By Corollary 3.2, we can bound the integrand by

α

(∫

Σk,n

〈g, f2〉2q df

)1/2q

for some absolute constant α and q =
(
n+k−1

k

)
and proceed as in the proof of

Lemma 3.5. The factor 24k comes from an inequality of [Duoandikoetxea 1987],

which allows us to bound the L2-norm f2 by 24k for every polynomial f ∈ Σk,n.
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The Hadwiger Transversal Theorem for

Pseudolines

SAUGATA BASU, JACOB E. GOODMAN, ANDREAS HOLMSEN,

AND RICHARD POLLACK

Abstract. We generalize the Hadwiger theorem on line transversals to

collections of compact convex sets in the plane to the case where the sets

are connected and the transversals form an arrangement of pseudolines.

The proof uses the embeddability of pseudoline arrangements in topological

affine planes.

Santaló [1940] showed, by an example, that Vincensini’s proof [1935] of an

extension of Helly’s theorem was incorrect. Vincensini claimed to have proved

that for any finite collection S of at least three compact convex sets in the plane,

any three of which are met by a line, there must exist a line meeting all the sets.

This would have constituted an extension of the planar Helly theorem [Helly

1923] to the effect that the same assertion holds if “line” is replaced by “point.”

The Santaló example was later extended by Hadwiger and Debrunner [1964] to

show that even if the convex sets are disjoint the conclusion still may not hold.

In 1957, however, Hadwiger showed that the conclusion of the theorem is

valid if the hypothesis is strengthened by imposing a consistency condition on

the order in which the triples of sets are met by transversals:

Theorem [Hadwiger 1957]. If B1, . . . , Bn is a family of disjoint compact convex

sets in the plane with the property that for any 1 ≤ i < j < k ≤ n there is a

line meeting each of Bi, Bj , Bk in that order , then there is a line meeting all the

sets Bi.

In [Goodman and Pollack 1988] two of us gave a generalization of Hadwiger’s

theorem to the case of hyperplane transversals, and this in turn was extended in

[Pollack and Wenger 1990; Wenger 1990], culminating in the following result:
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Theorem [Anderson and Wenger 1996]. Let A be a finite collection of connected

sets in R
d. A has a hyperplane transversal if and only if for some k with 0 ≤

k < d there exists a rank k +1 acyclic oriented matroid structure on A such that

every k + 2 members of A are met by an oriented k-flat consistently with that

oriented matroid structure.

Our purpose in this paper is to extend the original Hadwiger theorem in a dif-

ferent direction— replacing “lines” by “pseudolines.” A pseudoline in the affine

plane is simply the homeomorphic image of a line. If that were all, the theorem

would be true trivially: for any finite collection of sets there is a pseudoline meet-

ing them in any prescribed order! (Of course this needs a suitable interpretation

in the case where the sets are not mutually disjoint; see below.) But to reflect

more accurately the properties of sets of lines in the plane, one insists that all the

pseudolines under consideration form an arrangement , which means that they

are finite in number, that any two meet exactly once, where they cross, and (for

technical reasons) that they do not all pass through the same point.1 (For exam-

ples of pseudoline arrangements that are not isomorphic, in a natural sense, to

arrangements of straight lines, see, e.g., [Goodman 2004].) Furthermore, given

a pseudoline arrangement A we say that a pseudoline l extends A if A ∪ {l} is

also an arrangement of pseudolines. Thus the theorem we are going to prove is

the following:

Theorem 1. Suppose B1, . . . , Bn is a family of connected compact sets in the

plane such that for each 1 ≤ i < j < k ≤ n there is a pseudoline lijk meeting each

of Bi, Bj , Bk at points pi, pj , pk, not necessarily distinct , contained in Bi, Bj , Bk,

respectively , with pj lying between pi and pk on lijk. Suppose further that the

pseudolines lijk constitute an arrangement A. Then there exists a pseudoline l

that extends the arrangement A and meets each set Bi.

As in Wenger’s generalization [1990], we do not assume the sets to be disjoint

or even convex, merely connected. And in fact we will prove Theorem 1 by

generalizing Wenger’s proof, and by using the following result on topological

planes:

Theorem [Goodman et al. 1994]. Any arrangement of pseudolines in the pro-

jective plane can be extended to a topological projective plane.

Here a topological projective plane means P2, together with a distinguished col-

lection L of pseudolines, one for each pair of points, varying continuously with

the points, any two meeting (and crossing) exactly once. If we call a topological

projective plane with one of its distinguished pseudolines removed a topological

affine plane (TAP), the theorem above can trivially be modified to read: Any

1This is actually the definition of a “pseudoline arrangement” in the projective plane, while

in the affine plane one allows pseudolines also to be “parallel”; in a finite arrangement, however,

pseudolines can always be perturbed slightly to meet “at finite distance,” and we will assume

this whenever convenient.
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arrangement of pseudolines in the affine plane can be extended to a TAP . We

will use it in this form.

For background on pseudoline arrangements and on geometric transversal

theory, the reader may consult the following surveys: [Eckhoff 1993; Goodman

2004; Goodman et al. 1993; Grünbaum 1972; Wenger 1999; Wenger 2004].

We now introduce some notions that will be used in the proof of the theorem.

Since P2 can be modeled by a closed circular disk ∆ with antipodal points on

the boundary ∂∆ identified, we will model our TAP by using int ∆, the interior

of ∆, and call two pseudolines parallel if they meet on ∂∆. (From now on,

whenever we speak of “pseudolines” in the TAP, we will mean members of the

distinguished family of pseudolines constituting its “lines.”) An arrangement of

pseudolines is thus a finite set of Jordan arcs, each joining a pair of antipodal

points of ∂∆, any two meeting (and crossing) exactly once, or possibly at their

endpoints (the parallel case).

We will also speak of directed pseudolines, which corresponds to specifying

one of the antipodal points where the pseudoline meets ∂∆. Thus it will make

sense to say: let p be a point on ∂∆ and let lp be a pseudoline in the direction p.

Further, when we direct a pseudoline, we specify a positive and a negative open

half-space bounded by that line, determined with respect to a fixed orientation

of ∆. We denote these half-spaces by H+(lp) and H−(lp); see Figure 1.

Now let A and B be two connected compact sets in our TAP and let p ∈ ∂∆.

If there is a pseudoline in the direction of p that contains points a ∈ A and

b ∈ B, with either a = b or a preceding b on the pseudoline, we say that p is an

(AB)-transversal direction. If there is a pseudoline lp that strictly separates A

and B such that A ⊂ H+(lp) and B ⊂ H−(lp), we say that p is a (AB)-separating

direction.

Notice that a given direction can be both an (AB)-transversal direction and a

(BA)-transversal direction; even the same pseudoline, in fact, can meet A before

B and B before A in this sense.

H+(lp)

lp

H
−

(lp)

∂∆

p

Figure 1.
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Notice also that given a pair A, B, each direction p is either a transversal

direction or a separating direction for A, B, but not both; this follows by a simple

continuity argument, sweeping a pseudoline in direction p across the TAP.

Finally, notice that if there is an (AB)-separating direction p, no direction

q can be both an (AB)-transversal direction and a (BA)-transversal direction.

This follows from the fact that if two pseudolines have the same direction q, they

must cross a given pseudoline l in direction p the same way: both from H+(l) to

H−(l), or both from H−(l) to H+(l).

It then follows from the definition of a TAP and the compactness of our sets

that the set TAB of (AB)-transversal directions is a closed arc of ∂∆: If A and

B have a point in common then clearly TAB = ∂∆. If not, consider any two

distinct directions p1, p2 ∈ TAB. For i = 1, 2 choose points ai ∈ A, bi ∈ B along

a pseudoline li in direction pi, with ai preceding bi, as well as a parametrized

arc a(t) ⊂ A from a1 to a2 and a parametrized arc b(t) ⊂ B from b1 to b2. By

continuity, the set of directions
−−−−−→
a(t)b(t) must contain one of the two arcs on ∂∆

joining p1 and p2. It follows that the set TAB is itself an arc (possibly all of ∂∆),

and this must be closed by the compactness of the sets A and B.

We have thus proved the following:

Lemma 2. Let A and B be connected compact sets in the plane. Then

∂∆ = TAB ∪ SAB ∪ TBA ∪ SBA,

where TAB = −TBA is the closed arc corresponding to the (AB)-transversal di-

rections, and SAB = −SBA is the open arc corresponding to the (AB)-separating

directions. (Note that SAB can be empty .)

To complete the proof of Theorem 1, we extend the arrangement A to a topo-

logical affine plane. We want to show first that there is a direction p ∈ ∂∆ that

is a transversal direction for every pair Bi, Bj . For each pair Bi, Bj , let Sij be

the open arc of (BiBj)-separating directions. Now define the following antipodal

sets:

S+ =
⋃

i<j

Sij , S− =
⋃

i<j

Sji .

If there is no point p ∈ ∂∆ that is a transversal direction for every pair Bi, Bj

then we must have ∂∆ = S+ ∪S−. But since S+ and S− are open sets that cover

∂∆ there must be a point p ∈ S+ ∩ S−. But then we would have pseudolines l1
and l2, both directed toward p, and sets Bi, Bj , Bk, Bl with i < j and k < l, such

that Bi ⊂ h+(l1), Bj ⊂ h−(l1), Bk ⊂ h−(l2), and Bl ⊂ h+(l2). It is then easy

to check that there would always be some triple that violates the transversal

assumption; see Figure 2 for a typical case.

This means that there is a direction q ∈ ∂∆ that is a transversal direction

for every pair Bi, Bj . It follows that q is not a separating direction for any pair

Bi, Bj , so that a pseudoline in direction q sweeping through the TAP must pass

simultaneously through all the sets Bi at some point. This completes the proof.
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Figure 2. If i < k, there is no likl; if k < i, there is no lkij .

Remarks. 1. It is not hard to see that Theorem 1 is equivalent to the following.

Theorem 3. Suppose L is an arrangement of pseudolines in the affine plane.

For each triple i < j < k in [1, n], select three (not necessarily distinct) points

belonging to the same pseudoline of L, and label them i, j, k, with the point labeled

j between the other two (or possibly equal to one or both). Then there is a

pseudoline l extending the arrangement L such that for each i ∈ [1, n] there are

points labeled i in both (closed) half-spaces bounded by l.

2. As in the original Hadwiger theorem, one cannot strengthen the conclusion

of Theorem 1 to include the assertion that the common transversal meets the

sets in the order 1, 2, . . . , n (see [Wenger 1990] for an example). But it is easily

seen that, as in [Wenger 1990], that stronger assertion follows if we are willing

to assume that every six of the sets are met in a consistent order; the argument

is the same, mutatis mutandis.

Theorem 4. Suppose B1, . . . , Bn is a family of at least six connected com-

pact sets in the plane such that for each 1 ≤ f < g < h < i < j < k ≤ n

there is a pseudoline lfghijk meeting each of Bf , Bg, Bh, Bi, Bj , Bk at points

pf , pg, ph, pi, pj , pk, not necessarily distinct , contained in Bf , Bg, Bh, Bi, Bj , Bk,

respectively , and occurring in that order on lfghijk. Suppose further that the

pseudolines lfghijk constitute an arrangement A. Then there exists a pseudoline

l that extends the arrangement A and meets all of the sets B1, . . . , Bn in that

order .

The example in [Wenger 1990] showing that the number 6 in the corresponding

result for straight lines and convex sets is tight does not seem correct. Here is an

example, however, showing that the result would fail for a collection B1, . . . , B6

of convex sets if we assumed only that every five were met in a consistent order;

here every five sets have a transversal meeting them in numerical order, but all
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six do not:

1

2

3

4

6

5

3. In the process of proving Theorem 1, we have actually proven the following

(stronger) theorem about TAPs:

Theorem 5. If B1, . . . , Bn is a family of connected compact sets in a topological

affine plane P with the property that for any 1 ≤ i < j < k ≤ n there is a pseudo-

line of P meeting each of Bi, Bj , Bk in that order , then there is a pseudolineline

of P meeting all the sets Bi.

This raises the question: What other transversal theorems extend to TAPs?

4. Finally, what about higher dimensions? The notion of ‘topological plane’

extends only trivially to dimension ≥ 3, since, as is well-known, Desargues’s the-

orem holds automatically in higher dimensions and any d-dimensional “topologi-

cal projective space” is consequently isomorphic to the usual projective space Pd.

Nevertheless, one may ask: Does Theorem 1 extend in some way, in dimension

> 2, to a result about (finite) arrangements of pseudohyperplane transversals?
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Betti Number Bounds, Applications and

Algorithms

SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANÇOISE ROY

Abstract. Topological complexity of semialgebraic sets in R
k has been

studied by many researchers over the past fifty years. An important mea-
sure of the topological complexity are the Betti numbers. Quantitative
bounds on the Betti numbers of a semialgebraic set in terms of various pa-
rameters (such as the number and the degrees of the polynomials defining
it, the dimension of the set etc.) have proved useful in several applications
in theoretical computer science and discrete geometry. The main goal of
this survey paper is to provide an up to date account of the known bounds
on the Betti numbers of semialgebraic sets in terms of various parameters,
sketch briefly some of the applications, and also survey what is known about
the complexity of algorithms for computing them.

1. Introduction

Let R be a real closed field and S a semialgebraic subset of Rk, defined by

a Boolean formula, whose atoms are of the form P = 0, P > 0, P < 0, where

P ∈ P for some finite family of polynomials P ⊂ R[X1, . . . , Xk]. It is well known

[Bochnak et al. 1987] that such sets are finitely triangulable. Moreover, if the

cardinality of P and the degrees of the polynomials in P are bounded, then

the number of topological types possible for S is finite [Bochnak et al. 1987].

(Here, two sets have the same topological type if they are semialgebraically

homeomorphic). A natural problem then is to bound the topological complexity

of S in terms of the various parameters of the formula defining S.

One measure of topological complexity are the various Betti numbers of S.

The i-th Betti number of S (which we will denote by bi(S)) is the rank of

Hi(S, Z). In case, R happens to be R then Hi(S, Z) denotes the i-th singular

homology group of S with integer coefficients. For semialgebraic sets defined
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over general real closed fields the definition of homology groups requires more

care and several possibilities exists. For instance, if S is closed and bounded,

then using the fact that S is finitely triangulable, Hi(S, Z) can be taken to be the

i-th simplicial homology group of S, and this definition agrees with the previous

definition in case R = R. For a general locally closed semialgebraic set, one

can take for Hi(S, Z) the i-th Borel–Moore homology groups, which are defined

in terms of the simplicial homology groups of the one-point compactification of

S, and which are known to be invariants under semialgebraic homeomorphisms

[Bochnak et al. 1987]. Note that, even though some of the early results on

bounding the Betti numbers of semialgebraic sets were stated only over R, the

bounds can be shown to hold over any real closed field by judicious applications

of the Tarski–Seidenberg transfer principle. We refer the reader to [Basu et al.

2003] (Chapter 7) for more details.

2. Early Bounds

For a polynomial P ∈ R[X1, . . . , Xk], we denote by Z(P,Rk) the set of zeros

of P in Rk. The first results on bounding the Betti numbers of algebraic sets are

due to Oleinik and Petrovsky [1949; 1951; 1949a; 1949b]. They considered the

problem of bounding the Betti numbers of a nonsingular real algebraic hypersur-

face in R
k defined by a single polynomial equation of degree d. More precisely,

they prove that the sum of the even Betti numbers, as well as the sum of the odd

Betti numbers, of a nonsingular real algebraic hypersurface in Rk defined by a

polynomial of degree d are each bounded by 1
2dk + lower order terms. Indepen-

dently, Thom [1965] proved a similar bound of 1
2d(2d − 1)k−1 on the sum of all

the Betti numbers of Z(P, R
k), where P is only assumed to be nonnegative over

R
k without the assumption that Z(P, R

k) is a nonsingular hypersurface. Milnor

[1964] also proved the same bound in the case Z(P, R
k) is an arbitrary real alge-

braic subset. Moreover, he proved a bound of (sd)(2sd−1)k−1 on the sum of the

Betti numbers of a basic semialgebraic set defined by the conjunction of s weak

inequalities P1 ≥ 0, . . . , Ps ≥ 0, with Pi ∈ R[X1, . . . , Xk],deg(Pi) ≤ d. Note

that there is a cost for generality: the bounds of Thom and Milnor are slightly

weaker (in the leading constant) than those proved by Oleinik and Petrovsky.

Note also that these bounds on the sum of the Betti numbers of an algebraic set

are tight, since the solutions to the system of equations,

(X1 − 1)(X1 − 2) · · · (X1 − d) = · · · = (Xk − 1)(Xk − 2) · · · (Xk − d) = 0,

or equivalently of the single equation

(

(X1 − 1)(X1 − 2) · · · (X1 − d)
)2

+ · · · +
(

(Xk − 1)(Xk − 2) · · · (Xk − d)
)2

= 0,

consist of dk isolated points and the only nonzero Betti number of this set is

b0 = dk.
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The method used to obtain these bounds is based on a basic fact from Morse

theory – that the sum of the Betti numbers of a compact, nonsingular, hyper-

surface in R
k is at most the number of critical points of a well chosen projection.

In case of a nonsingular real algebraic variety, the critical points of a projection

map satisfy a simple system of algebraic equations obtaining by setting the poly-

nomial defining the hypersurface, as well as k − 1 different partial derivatives to

zero. The number of solutions to such a system can be bounded from above by

Bezout’s theorem. The case of an arbitrary real algebraic variety (not neces-

sarily compact and nonsingular) is reduced to the compact, nonsingular case by

carefully using perturbation arguments.

Even though the bounds mentioned above are bounds on the sum of all the

Betti numbers, in different combinatorial applications it suffices to have bounds

only on the zero-th Betti number (that is the number of connected components).

For instance, given a finite set of polynomials P ⊂ R[X1, . . . , Xk], a natural

question is how many of the 3s sign conditions in {0, 1,−1}P are actually realized

at points in Rk. We define






sign x = 0 if and only if x = 0,

sign x = 1 if and only if x > 0,

sign x = −1 if and only if x < 0.

Let P ⊂ R[X1, . . . , Xk]. A sign condition on P is an element of {0, 1,−1}P. A

strict sign condition on P is an element of {1,−1}P. We say that P realizes the

sign condition σ at x ∈ Rk if

∧

P∈P

sign P (x) = σ(P ).

The realization of the sign condition σ is

R(σ) =
{

x ∈ Rk
∣

∣

∣

∧

P∈P

sign P (x) = σ(P )
}

.

The sign condition σ is realizable if R(σ) is nonempty.

Warren [1968] proved a bound of (4esd/k)k on the number of strict sign

conditions realized by a set of s polynomials in R
k whose degrees are bounded

by d. Alon [1995] extended this result to all sign conditions by proving a bound

of (8esd/k)k. The fact that these bounds are polynomial in s (for fixed values

of k) is important in many applications. Note that this bound is tight since it is

an easy exercise to prove that the number of sign conditions realized by a family

of linear polynomials in general position is

k
∑

i=0

k−i
∑

j=0

(

s

i

)(

s − i

j

)

; (2–1)

see for example [Basu et al. 2003].
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3. Early Applications

One of the first applications of the bounds of Oleinik–Petrovsky, Thom and

Milnor, was in proving lower bounds in theoretical computer science. The model

for computation was taken to be algebraic decision trees. Given an input x ∈ R
k,

an algebraic decision tree decides membership of x in a certain fixed semialgebraic

set S ⊂ R
k. Starting from the root of the tree, at each internal node, v, of the

tree, it evaluates a polynomial fv ∈ R[X1, . . . , Xk] (where deg(fv) ≤ d, for some

fixed constant d), at the point (x1, . . . , xk) and branches according to the sign of

the result. The leaf nodes of the tree are labelled as accepting or rejecting. On an

input x ∈ R
k, the algebraic decision tree accepts x if and only if the computation

terminates at an accepting leaf node. Moreover, an algebraic decision tree tests

membership in S, if it accepts x if and only if x ∈ S. The main idea behind

using the Oleinik–Petrovsky, Thom and Milnor bounds in proving lower bounds

for the problem of testing membership in a certain semialgebraic set S ⊂ R
k

is that if the set S is topologically complicated, then an algebraic decision tree

testing membership in it has to have large depth.

Ben-Or [1983] proved that the depth of an algebraic computation tree testing

membership in S must be Ω(log b0(S)). Several extensions of this result were

proved by Yao [1995; 1997]. He proved that instead of b0(S) one could use

in fact the Euler characteristic of S (which is the alternating sum of the Betti

numbers), as well as the sum of the Betti numbers of S. This made the theorem

useful for proving lower bounds for a wider class of problems by including sets

with a single connected component but complicated topology [Montaña et al.

1991]. Another early application of the Oleinik–Petrovsky, Thom and Milnor

bounds was in proving upper bounds on the number of order types of simple

configurations of points in R
k. Given an ordered set, S, of s points in R

k, the

order type of S is determined by the
(

s
k+1

)

orientations of the
(

s
k+1

)

oriented

simplices spanned by (k + 1)-tuples of points. A point configuration is simple

if no k + 1 of them are affinely dependent. Using Milnor’s bound on the Betti

numbers of basic semialgebraic sets Goodman and Pollack [1986b] proved an

upper bound of sk2

on the number of realizable simple order types of s points in

R
k [Goodman and Pollack 1986a] rather than the trivial bound of 2s. as well as

on the number of combinatorial types of simple polytopes with s vertices in R
k

[Goodman and Pollack 1986a]. In fact, Milnor’s bound actually yields a bound

on the number of isotopy classes of simple configurations of s points in R
k. The

isotopy class of a point configuration in R
k consists of all point configurations

in R
k having the same order type which are reachable by continuous order type

preserving deformations of the original point configuration. Alon [1995] extended

these bounds to all configurations – not necessarily simple ones.

All of these applications are based on the simple observation that different

strict sign conditions must belong to different connected components. Any sit-

uation where geometric types can be characterized by a sign condition gives an
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application of this type. Two other application in this spirit are bounds on the

number of weaving patterns of lines [Pach et al. 1993] and the size of a grid which

will support all order types of s points in the plane [Goodman et al. 1989; 1990].

4. Modern Bounds

Pollack and Roy [1993] proved a bound of
(

s
k

)

O(d)k on the number of con-

nected components of the realizations of all realizable sign conditions of a family

of s polynomials of degrees bounded by d. The proof was based on Oleinik–

Petrovsky, Thom and Milnor’s results for algebraic sets, as well as with defor-

mation techniques and general position arguments.

From this bound one can deduce a tight bound on the number of isotopy

classes of all point configurations in R
k (not just the simple ones). Note that

Warren’s bound mentioned before is a bound on the number of realizable strict

sign conditions (extended by Alon to all sign conditions) but not on the number of

connected components of their realizations. Thus, Warren’s (or Alon’s) bounds

cannot be used to bound the number of isotopy classes (of simple or nonsimple

configurations).

In some applications, notably in geometric transversal theory as well in bound-

ing the complexity of the configuration space in robotics, it is useful to study

the realizations of sign conditions of a family of s polynomials in R[X1, . . . , Xk]

restricted to a real variety Z(Q,Rk) where the real dimension of the variety

Z(Q,Rk) can be much smaller than k. In [Basu et al. 1996] it was shown that

the number of connected components of the realizations of all realizable sign

condition of a family, P ⊂ R[X1, . . . , Xk] of s polynomials, restricted to a real

variety of dimension k′, where the degrees of the polynomials in P ∪ {Q} are all

bounded by d, is bounded by
(

s
k′

)

O(d)k.

There are also results bounding the sum of the Betti numbers of semialgebraic

sets defined by a conjunction of weak inequalities. Milnor [1964] proved a bound

of (sd)(2sd − 1)k−1 on the sum of the Betti numbers of a basic semialgebraic

set defined by the conjunction of s weak inequalities P1 ≥ 0, . . . , Ps ≥ 0,

with Pi ∈ R[X1, . . . , Xk] such that deg(Pi) ≤ d. In another direction, Barvinok

[1997] proved a bound of kO(s) on the sum of the Betti numbers of a basic, closed

semialgebraic set defined by polynomials of degree at most 2. Unlike all previous

bounds, this bound is polynomial in k for fixed values of s.

Extending such bounds to arbitrary semialgebraic sets is not trivial, because

Betti numbers are not additive and the union of two topologically trivial semial-

gebraic sets can clearly have arbitrarily large higher Betti numbers. Basu [1999]

proved a bound on the sum of the Betti numbers of a P-closed semialgebraic set

on a variety. A P-closed semialgebraic set is one defined by a Boolean formula

without negations whose atoms are of the form P ≥ 0 or P ≤ 0 with P ∈ P. The

bound is sk′

O(d)k. Very recently Gabrielov and Vorobjov [≥ 2005], succeeded

in removing even the P-closed assumption at the cost of a slightly worse bound.
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They showed that the sum of the Betti numbers of an arbitrary semialgebraic

set defined by a Boolean formula whose atoms are of the form P = 0, P > 0 or

P < 0 with P ∈ P, is bounded by O(s2d)k.

There have been recent refinements of the bounds on the Betti numbers of

semialgebraic sets in another direction. All the bounds mentioned above are

either bounds on the number of connected components or on the sums of all (or

even or odd) Betti numbers. Basu [2003] proved different bounds (for each i)

on the i-th Betti number of a basic, closed semialgebraic set on a variety. If S

is a basic closed semialgebraic set defined by s polynomials in R[X1, . . . , Xk] of

degree d, restricted to a real variety of dimension k′ and defined by a polynomial

of degree bounded by d, then bi(S) is bounded by
(

s
k′−i

)

O(d)k. In the same

paper, a bound of s`kO(`) on the (k − `)-th Betti number of a basic, closed

semialgebraic set defined by polynomials of degree at most 2 is proved. For

fixed ` this bound is polynomial in both s and k. More recently, in [Basu et al.

2005] the authors bound (for each i) the sum of the i-th Betti number over all

realizations of realizable sign conditions of a family of polynomials restricted to

a variety of dimension k′ by

∑

1≤j≤k′−i

(

s

j

)

4jd(2d − 1)k−1.

This generalizes and makes more precise the bound in [Basu et al. 1996] which

is the special case with i = 0. The technique of the proof uses a generalization

of the Mayer–Vietoris exact sequence.

All the bounds on the Betti numbers of semialgebraic sets described above,

depend on the degrees of the polynomials used in describing the semialgebraic

set. However, it is well known that in the case of real polynomials of one variable,

the number of real zeros can be bounded in terms of the number of monomials

appearing in the polynomial (independent of the degree). This is an easy con-

sequence of Descartes’ law of signs [Basu et al. 2003]. Hence, it is natural to

hope for a similar result in higher dimensions. Khovansky [1991] proved a bound

of 2m2

(mk)k on the number of isolated real solutions of a system of k polyno-

mial equations in k variables in which the number of monomials appearing with

nonzero coefficients is bounded by m. Using this, one can obtain similar bounds

on the sum of the Betti numbers of an algebraic set defined by a polynomial

with at most m monomials in its support. The semialgebraic case requires some

additional technique and it was shown in [Basu 1999] that the sum of the Betti

numbers of a P-closed semialgebraic set on a variety, is bounded by sk′

2O(km2),

where m is a bound on the number of monomials.

5. Modern Applications

Using [Pollack and Roy 1993] one immediately obtains reasonably tight bounds

on the number of isotopy classes of not necessarily simple geometric objects such
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as the number of isotopy classes (with respect to order type) of configurations of

n points in Rk or the number of isotopy classes (with respect to combinatorial

type) of k−polytopes with n vertices.

Using [Basu et al. 1996], Goodman, Pollack, and Wenger [Goodman et al.

1996] were able to extend the known bounds on the number of geometric per-

mutations (1-order types) induced by line transversals (` = 1) to the number of

`-order types induced by `-flat transversals to n convex sets in R3. As is the case

for line transversals in R
3, the lower bounds are about the square root of the

upper bounds (in the plane, the corresponding result is tight [Edelsbrunner and

Sharir 1990]). A much fuller discussion of Geometric Transversal Theory can be

found in [Goodman et al. 1993].

6. Algorithms

A natural algorithmic problem is to design efficient algorithms for computing

the Betti numbers of a given semialgebraic set. Clearly the problem of deciding

whether a given semialgebraic set is empty is NP-hard, and counting its number

of connected component is #P-hard. However, in view of the bounds described

above we could hope for an algorithm having complexity polynomial in the num-

ber of polynomials and their degrees and singly exponential in the number of

variables. This seems to be a very difficult problem in general and only partial

results exist in this direction.

The cylindrical algebraic decomposition [Collins 1975] makes it possible to

compute triangulations, and thus the number of connected components [Schwartz

and Sharir 1983] as well as the higher Betti numbers in time polynomial in the

number of polynomials and their degrees and doubly exponential in the number

of variables (see [Basu et al. 2003]).

Various singly exponential time algorithms have been obtained for finding a

point in every connected component of an algebraic set [Canny 1988b; Renegar

1992], of a semialgebraic set [Grigor’ev and Vorobjov 1988; Canny 1988b; Heintz

et al. 1989; Renegar 1992], in every connected component of the sign conditions

defined by a family of polynomials on a variety [Basu et al. 1997].

Computing the exact number of connected components in singly exponential

time is a more difficult problem. The notion of a roadmap introduced by Canny

[1988a] is the key to the solution. The basic algorithm has since been generalized

and refined in several papers [Canny 1988a; 1993; Grigor’ev and Vorobjov 1992;

Heintz et al. 1994; Gournay and Risler 1993; Basu et al. 2000] (see [Basu et al.

2003] for more details). Single exponential algorithms for computing the Euler–

Poincaré characteristic (which is the alternating sum of the Betti numbers) of

algebraic (as well as P-closed semialgebraic) sets are described in [Basu 1999].

However, the problem of computing all the Betti numbers in single exponential

time remains open.
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Shelling and the h-Vector of
the (Extra)ordinary Polytope

MARGARET M. BAYER

Abstract. Ordinary polytopes were introduced by Bisztriczky as a (non-
simplicial) generalization of cyclic polytopes. We show that the colex order
of facets of the ordinary polytope is a shelling order. This shelling shares
many nice properties with the shellings of simplicial polytopes. We also
give a shallow triangulation of the ordinary polytope, and show how the
shelling and the triangulation are used to compute the toric h-vector of
the ordinary polytope. As one consequence, we get that the contribution
from each shelling component to the h-vector is nonnegative. Another con-
sequence is a combinatorial proof that the entries of the h-vector of any
ordinary polytope are simple sums of binomial coefficients.

1. Introduction

This paper has a couple of main motivations. The first comes from the study

of toric h-vectors of convex polytopes. The h-vector played a crucial role in

the characterization of face vectors of simplicial polytopes [Billera and Lee 1981;

McMullen and Shephard 1971; Stanley 1980]. In the simplicial case, the h-vector

is linearly equivalent to the face vector, and has a combinatorial interpretation

in a shelling of the polytope. The h-vector of a simplicial polytope is also the

sequence of Betti numbers of an associated toric variety. In this context it

generalizes to nonsimplicial polytopes. However, for nonsimplicial polytopes, we

do not have a good combinatorial understanding of the entries of the h-vector.

(Chan [1991] gives a combinatorial interpretation for the h-vector of cubical

polytopes.)

This research was supported by the sabbatical leave program of the University of Kansas, and
was conducted while the author was at the Mathematical Sciences Research Institute, sup-
ported in part by NSF grant DMS-9810361, and at Technische Universität Berlin, supported in
part by Deutsche Forschungs-Gemeinschaft, through the DFG Research Center “Mathematics
for Key Technologies” (FZT86) and the Research Group “Algorithms, Structure, Randomness”
(FOR 13/1-1).
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The definition of the (toric) h-vector for general polytopes (and even more

generally, for Eulerian posets) first appeared in [Stanley 1987]. Already there

Stanley raised the issue of computing the h-vector from a shelling of the polytope.

Associated with any shelling, F1, F2, . . . , Fn, of a polytope P is a partition of

the faces of P into the sets Gj of faces of Fj not in
⋃

i<j Fi. The h-vector can

be decomposed into contributions from each set Gj . When P is simplicial, the

set Gj is a single interval [Gj , Fj ] in the face lattice of P , and the contribution

to the h-vector is a single 1 in position |Gj |. For nonsimplicial polytopes, the

set Gj is not so simple. It is not clear whether the contribution to the h-vector

from Gj must be nonnegative, and, if it is, whether it counts something natural.

(Tom Braden [2003] has announced a positive answer to this question, based on

[Barthel et al. 2002; Karu 2002].) Another issue is the relation of the h-vector of

a polytope P to the h-vector of a triangulation of P . This is addressed in [Bayer

1993; Stanley 1992].

A problem in studying nonsimplicial polytopes is the difficulty of generating

examples with a broad range of combinatorial types. Bisztriczky [1997] dis-

covered the fascinating “ordinary” polytopes, a class of generally nonsimplicial

polytopes, which includes as its simplicial members the cyclic polytopes. These

polytopes have been studied further in [Dinh 1999; Bayer et al. 2002; Bayer 2004].

The last of these articles showed that ordinary polytopes have surprisingly nice

h-vectors, namely, the h-vector is the sum of the h-vector of a cyclic polytope

and the shifted h-vector of a lower-dimensional cyclic polytope. These h-vectors

were calculated from the flag vectors, and the calculation did not give a com-

binatorial explanation for the nice form that came out. So we were motivated

to find a combinatorial interpretation for these h-vectors, most likely through

shellings or triangulations of the polytopes.

This paper is organized as follows. In the second part of this introduction

we give the main definitions. The brief Section 2 warms up with the natural

triangulation of the multiplex. Section 3 is devoted to showing that the colex

order of facets is a shelling of the ordinary polytope. The proof, while laborious,

is constructive, explicitly describing the minimal new faces of the polytope as

each facet is shelled on. We then turn in Section 4 to h-vectors of multiplicial

polytopes in general, and of the ordinary polytope in particular. Here a “fake

simplicial h-vector” arises in the shelling of the ordinary polytope. In Section 5,

the triangulation of the multiplex is used to triangulate the boundary of the

ordinary polytope. This triangulation is shown to have a shelling compatible

with the shelling of Section 3. The shelling and triangulation together explain

combinatorially the h-vector of the ordinary polytope.
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About the title. Bisztriczky chose the name “ordinary polytope” to invoke

the idea of ordinary curves. The name is, of course, a bit misleading, since it

applies to a truly extraordinary class of polytopes. We feel that these polytopes

are extraordinary because of their special structure, but we hope that they will

also turn out to be extraordinary for their usefulness in understanding general

convex polytopes.

Definitions. For common polytope terminology, refer to [Ziegler 1995].

The toric h-vector was defined by Stanley for Eulerian posets, including the

face lattices of convex polytopes.

Definition 1 [Stanley 1987]. Let P be a (d−1)-dimensional polytopal sphere.

The h-vector and g-vector of P are encoded as polynomials:

h(P, x) =

d
∑

i=0

hix
d−i and g(P, x) =

bd/2c
∑

i=0

gix
i,

with the relations g0 = h0 and gi = hi −hi−1 for 1 ≤ i ≤ d/2. Then the

h-polynomial and g-polynomial are defined by the recursion

(i) g(?, x) = h(?, x) = 1, and

(ii) h(P, x) =
∑

G face of P
G6=P

g(G, x)(x−1)d−1−dim G.

It is easy to see that the h-vector depends linearly on the flag vector. In the case

of simplicial polytopes, the formulas reduce to the well-known transformation

between f -vector and h-vector.

Definition 2 [Ziegler 1995]. Let C be a pure d-dimensional polytopal complex.

If d = 0, a shelling of C is any ordering of the points of C. If d > 0, a shelling of

C is a linear ordering F1, F2, . . . , Fs of the facets of C such that for 2 ≤ j ≤ s,

the intersection Fj ∩
(
⋃

i<j Fi

)

is nonempty and is the union of ridges (that is,

(d−1)-dimensional faces) of C that form the initial segment of a shelling of Fj .

Definition 3 [Bayer 1993]. A triangulation ∆ of a polytopal complex C is

shallow if and only if every face σ of ∆ is contained in a face of C of dimension

at most 2 dimσ.

Theorem 1.1 [Bayer 1993]. If ∆ is a simplicial sphere forming a shallow tri-

angulation of the boundary of the convex d-polytope P , then h(∆, x) = h(P, x).

Note: Theorem 4 in [Bayer 1993] gives h(P, x) = h(∆, x) for a shallow subdivision

∆ of the solid polytope P . The proof goes through for shallow subdivisions of

the boundary, because it is based on the uniqueness of low-degree acceptable

functions [Stanley 1987], which holds for lower Eulerian posets.
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Definition 4 [Bisztriczky 1996]. A d-dimensional multiplex is a polytope with

an ordered list of vertices, x0, x1, . . . , xn, with facets F0, F1, . . . , Fn given by

Fi = conv{xi−d+1, xi−d+2, . . . , xi−1, xi+1, xi+2, . . . , xi+d−1},

with the conventions that xi = x0 if i < 0, and xi = xn if i > n.

Given an ordered set V = {x0, x1, . . . , xn}, a subset Y ⊆ V is called a Gale

subset if between any two elements of V \Y there is an even number of elements

of Y . A polytope P with ordered vertex set V is a Gale polytope if the set of

vertices of each facet is a Gale subset.

Definition 5 [Bisztriczky 1997]. An ordinary polytope is a Gale polytope such

that each facet is a multiplex with the induced order on the vertices.

Cyclic polytopes can be characterized as the simplicial Gale polytopes. Thus the

only simplicial ordinary polytopes are cyclics. In fact, these are the only ordi-

nary polytopes in even dimensions. However, the odd-dimensional, nonsimplicial

ordinary polytopes are quite interesting.

We use the following notational conventions. Vertices are generally denoted

by integers i rather than by xi. Where it does not cause confusion, a face of a

polytope or a triangulation is identified with its vertex set, and max F denotes

the vertex of maximum index of the face F . Interval notation is used to denote

sets of consecutive integers, so [a, b] = {a, a+1, . . . , b−1, b}. If X is a set of

integers and c is an integer, write X +c = {x+c : x ∈ X}.

2. Triangulating the Multiplex

Multiplexes have minimal triangulations that are particularly easy to describe.

Theorem 2.1. Let Md,n be a multiplex with ordered vertices 0, 1, . . . , n. For

0 ≤ i ≤ n−d, let Ti be the convex hull of [i, i+d]. Then Md,n has a shallow

triangulation as the union of the n−d+1 d-simplices Ti.

Proof. The proof is by induction on n. For n = d, the multiplex Md,d is

the simplex T0 itself. Assume Md,n has a triangulation into simplices Ti, for

0 ≤ i ≤ n−d. Consider the multiplex Md,n+1 with ordered vertices 0, 1, . . . ,

n+1. Then Md,n+1 = conv(Md,n ∪ {n+1}), where n+1 is a point beyond facet

Fn of Md,n, beneath the facets Fi for 0 ≤ i ≤ n−d+1, and in the affine hulls of

the facets Fi for n−d+2 ≤ i ≤ n−1. (See [Bisztriczky 1996].) Thus, Md,n+1 is

the union of Md,n and conv(Fn ∪ {n+1}) = Tn+1−d, and Md,n∩Tn+1−d = Fn.

By the induction assumption, the simplices Ti, with 0 ≤ i ≤ n+1−d, form a

triangulation of Md,n+1.

The dual graph of the triangulation is simply a path. (The dual graph is the

graph having a vertex for each d-simplex, and an edge between two vertices if

the corresponding d-simplices share a (d−1)-face.) The ordering T0, T1, T2, . . . ,
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Tn−d is a shelling of the simplicial complex that triangulates Md,n. So the h-

vector of the triangulation is (1, n−d, 0, 0, . . .). This is the same as the g-vector

of the boundary of the multiplex, which is the h-vector of the solid multiplex.

So by [Bayer 1993], the triangulation is shallow. ˜

Note, however, that Md,n is not weakly neighborly for n ≥ d+2 (as observed in

[Bayer et al. 2002]). This means that it has nonshallow triangulations. This is

easy to see because the vertices 0 and n are not contained in a common proper

face of Md,n.

Consider the induced triangulation of the boundary of Md,n. For notational

purposes we consider T0 and Tn separately. All facets of T0 except [1, d] are

boundary facets of Md,n. Write T0\0 = [0, d−1] = F0, and T0\j = [0, d]\{j} for

1 ≤ j ≤ d−1. Write Tn−d\n = [n−d+1, n] = Fn, and Tn\j = [n−d, n]\{j} for

n−d+1 ≤ j ≤ n−1. For 1 ≤ i ≤ n−d−1, the facets of Ti are Ti\j = [i, i+d]\{j}.

Two of these facets (j = i and j = i+d) intersect the interior of Md,n. For

1 ≤ j ≤ n−1, the facet Fj is triangulated by Ti\j for j−d+1 ≤ i ≤ j−1 (and

0 ≤ i ≤ n−d). The facet order F0, F1, . . . , Fn, is a shelling of the multiplex Md,n.

The (d−1)-simplices Ti\j in the order T0\0, T0\1, T0\2, T1\2, . . . , Tn−d−1\n−2,

Tn−d\n−2, Tn−d\n−1, Tn−d+1\n (increasing order of j and, for each j, increasing

order of i), form a shelling of the triangulated boundary of Md,n.

3. Shelling the Ordinary Polytope

Shelling is used to calculate the h-vector, and hence the f -vector of simplicial

complexes (in particular, the boundaries of simplicial polytopes). This is possible

because (1) the h-vector has a simple expression in terms of the f -vector and

vice versa; (2) in a shelling of a simplicial complex, among the faces added to the

subcomplex as a new facet is shelled on, there is a unique minimal face; (3) the

interval from this minimal new face to the facet is a Boolean algebra; and (4) the

numbers of new faces given by (3) match the coefficients in the f -vector/h-vector

formula. These conditions all fail for shellings of arbitrary polytopes. However,

some hold for certain shellings of ordinary polytopes.

As mentioned earlier, noncyclic ordinary polytopes exist only in odd dimen-

sions. Furthermore, three-dimensional ordinary polytopes are quite different

combinatorially from those in higher dimensions. We thus restrict our attention

to ordinary polytopes of odd dimension at least five. It turns out that these are

classified by the vertex figure of the first vertex.

Theorem 3.1 [Bisztriczky 1997; Dinh 1999]. For each choice of integers n ≥

k ≥ d = 2m+1 ≥ 5, there is a unique combinatorial type of ordinary polytope

P = P d,k,n such that the dimension of P is d, P has n+1 vertices, and the first

vertex of P is on exactly k edges. The vertex figure of the first vertex of P d,k,n

is the cyclic (d−1)-polytope with k vertices.
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We use the following description of the facets of P d,k,n by Dinh. For any subset

X ⊆ Z, let retn(X) (the retraction of X) be the set obtained from X by replacing

every negative element by 0 and replacing every element greater than n by n.

Theorem 3.2 [Dinh 1999]. Let Xn be the collection of sets

X = [i, i+2r−1] ∪ Y ∪ [i+k, i+k+2r−1], (3–1)

where i ∈ Z, 1 ≤ r ≤ m, Y is a paired (d−2r−1)-element subset of [i+2r+1,

i+k−2], and |retn(X)| ≥ d. The set of facets of P d,k,n is

F(P d,k,n) = {retn(X) : X ∈ Xn}.

It is easy to check that when n = k, |retn(X)| = d for all X ∈ Xn, and that

retn(Xn) is the set of d-element Gale subsets of [0, k], that is, the facets of the

cyclic polytope P d,k,k.

Note that Xn−1 ⊆ Xn. We wish to describe F(P d,k,n) in terms of F(P d,k,n−1);

for this we need the following shift operations. If F = retn−1(X) ∈ F(P d,k,n−1),

let the right-shift of F be rsh(F ) = retn(X +1). Note that rsh(F ) may or may

not contain 0. In either case, rsh(F )∩ [1, n] = F +1, so |rsh(F )| ≥ |F | ≥ d, If

F = retn(X) ∈ F(P d,k,n), let the left-shift of F be lsh(F ) = retn−1(X−1). Note

that lsh(F )\{0} = (F −1)∩ [1, n]; lsh(F ) contains 0 if 0 ∈ F or 1 ∈ F .

Lemma 3.3. If n ≥ k +1 and F ∈ F(P d,k,n) with max F ≥ k, then lsh(F) ∈

F(Pd,k,n−1).

Proof. Let F = retn(X), with X = [i, i+2r−1] ∪ Y ∪ [i+k, i+k+2r−1].

Then X−1 also has the form of equation (3–1) (for i−1). The set lsh(F ) is the

vertex set of a facet of P d,k,n−1 as long as |lsh(F )| ≥ d. We check this in three

cases.

Case 1. If k ≤ i+ k +2r− 1 ≤ n, then i+2r− 1 ≥ 0, so Y ⊆ [i+2r +1,

i+k−2] ⊆ [2, i+k−2]. Then

lsh(F ) ⊇ max{i+2r−2, 0} ∪ (Y −1) ∪ [i+k−1, i+k+2r−2],

so |lsh(F )| ≥ 1+(d−2r−1)+2r = d.

Case 2. If i+k ≥ n, then i ≥ n−k ≥ 1. Also, |F | ≥ d implies max Y ≤ n−1. So

lsh(F ) = [i−1, i+2r−2] ∪ (Y −1) ∪ {n−1},

so |lsh(F )| = 2r+(d−2r−1)+1 = d.

Case 3. If i+k < n < i+k+2r−1, then i+2r−1 ≥ n−k ≥ 1, and

F = [max{0, i}, i+2r−1] ∪ Y ∪ [i+k, n],

so
|F | = (i+2r−max{0, i})+(d−2r−1)+(n− i−k+1)

= d+n−k−max{i, 0} ≥ d+1.

Then |lsh(F )| ≥ |F |−1 ≥ d.
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Thus, lsh(F ) is a facet of P d,k,n−1. ˜

Identify each facet of the ordinary polytope P d,k,n with its ordered list of vertices.

Then order the facets of P d,k,n in colex order. This means, if F = i1i2 . . . ip and

G = j1j2 . . . jq, then F ≺c G if and only if for some t ≥ 0, ip−t < jq−t while for

0 ≤ s < t, ip−s = jq−s.

Lemma 3.4. If n ≥ k+1 and F1 and F2 are facets of P d,k,n with max Fi ≥ k,

then F1 ≺c F2 implies lsh(F1) ≺c lsh(F2).

Proof. Suppose F1 ≺c F2, and let q be the maximum vertex in F2 not in F1.

Then lsh(F1) ≺c lsh(F2) as long as q ≥ 2, for in that case q−1 ∈ lsh(F2)\lsh(F1),

while [q, n−1]∩lsh(F1) = [q, n−1]∩lsh(F2). (If q = 1, then q shifts to 0 in lsh(F2),

but 0 may be in lsh(F1) as a shift of a smaller element.) So we prove q ≥ 2.

Write

F2 = retn([i, i+2r−1] ∪ Y ∪ [i+k, i+k+2r−1])

and

F1 = retn([i′, i′+2r′−1] ∪ Y ′ ∪ [i′+k, i′+k+2r′−1]).

Since maxF2 ≥ k, i+2r−1 ≥ 0, so Y ∪ [i+k, i+k+2r−1] ⊆ [2, n], Thus, if

q ∈ Y ∪ [i+k, i+k+2r−1], then q ≥ 2. Otherwise

Y ∪ [i+k, i+k+2r−1]) = Y ′ ∪ [i′+k, i′+k+2r′−1]),

but Y 6= Y ′. This can only happen when Y ∪ [i+k, i+k+2r−1]) is an interval;

in this case i+k+2r−1 ≥ n+1. Then q = i+2r−1 = (i+k+2r−1)−k ≥

n+1−k ≥ 2. ˜

Proposition 3.5. Let n ≥ k+1. The facets of P d,k,n are

{F : F ∈ F(P d,k,n−1) and max F ≤ n−2}

∪ {rsh(F ) : F ∈ F(P d,k,n−1) and max F ≥ n−2}.

Proof. If max X ≤ n− 2, then retn(X) = retn−1(X); in this case, letting

F = retn(X), F ∈ F(P d,k,n−1) if and only if F ∈ F(P d,k,n). If F ∈ F(P d,k,n−1)

with maxF ≥ n−2, then rsh(F ) ∈ F(P d,k,n) with max rsh(F ) ≥ n−1. Now

suppose that G = retn(X) ∈ F(P d,k,n) with maxG ≥ n−1. Let F = lsh(G) =

retn−1(X − 1) ∈ F(P d,k,n−1); then maxF ≥ n− 2. By definition, rsh(F ) =

retn((X−1)+1) = retn(X) = G. ˜

Theorem 3.6. Let F1, F2, . . . , Fv be the facets of P d,k,n in colex order .

(i) F1, F2, . . . , Fv is a shelling of P d,k,n.

(ii) For each j there is a unique minimal face Gj of Fj not contained in
⋃j−1

i=1 Fi.

(iii) For each j, 2 ≤ j ≤ v−1, Gj contains the vertex of Fj of maximum index ,

and is contained in the d−1 highest vertices of Fj .

(iv) For each j, the interval [Gj , Fj ] is a Boolean lattice.
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Note that this theorem is not saying that the faces of P d,k,n in the interval

[Gj , Fj ] are all simplices.

Proof. We construct explicitly the faces Gj in terms of Fj . The reader may

wish to refer to the example that follows the proof.

Cyclic polytopes. We start with the cyclic polytopes. (For the cyclics, the

theorem is generally known, or at least a shorter proof based on [Billera and Lee

1981] is possible, but we will need the description of the faces Gj later.)

Let F1, F2, . . . , Fv be the facets, in colex order, of P d,k,k, the cyclic d-polytope

with vertex set [0, k]. Each facet Fj can be written as

Fj = I0
j ∪ I1

j ∪ I2
j ∪ · · · ∪ Ip

j ∪ Ik
j ,

where I0
j is the interval of Fj containing 0, if 0 ∈ Fj , and I0

j = ? otherwise; Ik
j is

the interval of Fj containing k, if k ∈ Fj , and Ik
j = ? otherwise; and the I`

j are

the other (even) intervals of Fj with the elements of I`
j preceding the elements of

I`+1
j . (For example, in P 7,9,9, F6 = {0, 1, 2, 4, 5, 7, 8}, I0

6 = {0, 1, 2}, I1
6 = {4, 5},

I2
6 = {7, 8}, and I9

6 = ?.) For the interval [a, b], write E([a, b]) for the integers in

the even positions in the interval, that is, E([a, b]) = [a, b]∩{a+2i+1 : i ∈ N}.

Let Gj =
⋃p

`=1 E(I`
j ) ∪ Ik

j . Since I0
j = Fj if and only if j = 1, G1 = ?, and for

all j > 1, Gj contains the maximum vertex of Fj . Since Fj is a simplex, [Gj , Fj ]

is a Boolean lattice.

To show that F1, F2, . . . , Fv is a shelling of P d,k,k we show that Gj is not

in a facet before Fj and that every ridge of P d,k,k in Fj that does not contain

Gj is contained in a previous facet. For j > 0 the face Gj consists of the right

end-set Ik
j (if nonempty) and the set

⋃p
j=1 E(I`

j ) of singletons. Note that Gj

satisfies condition (c) of the theorem (which here just says that the lowest vertex

of Fj is not in Gj), unless j = v, in which case Gv = Fv. Any facet F of P d,k,k

containing Gj must satisfy Gale’s evenness condition and therefore must contain

an integer adjacent to each element of
⋃p

j=1 E(I`
j ). If any element of the form

max I`
j +1 is in F , then F occurs after Fj in colex order. This implies that any

Fi previous to Fj and containing Gj also contains
⋃p

`=1 I`
j ∪ Ik

j . But Fj is the

first facet in colex order that contains
⋃p

`=1 I`
j ∪ Ik

j . So Gj is not in a facet before

Fj .

Now let g ∈ Gj ; we wish to show that Fj \ {g} is in a previous facet. If

g ∈ E(I`
j ) for ` > 0, let F = Fj \{g} ∪ {min I`

j −1}. Then F satisfies Gale’s

evenness condition and is a facet before Fj . Otherwise g ∈ Ik
j \E(Ik

j ); in this

case let F = Fj \{g} ∪ {max I0
j +1} (where we let max I0

j +1 = 0 if I0
j = ?).

Again F satisfies Gale’s evenness condition and is a facet before Fj .

Thus the colex order of facets is a shelling order for the cyclic polytope

P d,k,k, and we have an explicit description for the minimal new face Gj as Fj is

shelled on.
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General ordinary. Now we prove the theorem for general P d,k,n by induction

on n ≥ k, for fixed k. Among the facets of P d,k,n, first in colex order are those

with maximum vertex at most n−2. These are also the first facets in colex order

of P d,k,n−1. Thus the induction hypothesis gives us that this initial segment is

a partial shelling of P d,k,n, and that assertions 2–4 hold for these facets.

Later facets. It remains to consider the facets of P d,k,n ending in n−1 or n.

These facets come from shifting facets of P d,k,n−1 ending in n−2 or n−1. Our

strategy here will be to prove statement (b) of the theorem for these facets. The

intersection of Fj with
⋃j−1

i=1 Fi is then the antistar of Gj in Fj , and so it is the

union of (d−2)-faces that form an initial segment of a shelling of Fj . This will

prove that the colex order F1, F2, . . . , Fv is a shelling of P d,k,n.

Note that there is nothing to show for the last facet of P d,k,n in colex order.

It is Fv = [n−d+1, n], and is the only facet (other than the first) whose vertex

set forms a single interval. Assume from now on that j is fixed, with j ≤ v−1.

Later we will describe recursively the minimal new face Gj as Fj is shelled on. It

will always be the case that max Fj ∈ Gj . We will prove that Gj is truly a new

face (is not contained in a previous facet), and that every ridge not containing

all of Gj is contained in a previous facet.

Ridges not containing the last vertex. It is convenient to start by showing

that every ridge of P d,k,n contained in Fj and not containing maxFj is contained

in an earlier facet. This case does not use the recursion needed for the other parts

of the proof. Write

X = [i, i+2r−1] ∪ Y ∪ [i+k, i+k+2r−1]

and Fj = retn(X) = {z1, z2, . . . , zp} with 0 ≤ z1 < z2 < · · · < zp ≤ n. The facet

Fj is a (d−1)-multiplex, so its facets are of the form

Fj(ẑt) = {z` : 1 ≤ ` ≤ p, 0 < |`− t| ≤ d−2}

for 2≤ t≤ p−1, Fj(ẑ1) = {z1, z2, . . . , zd−1}, and Fj(ẑp) = {zp−d+2, . . . , zp−1, zp}.

If Fj(ẑt) does not contain max Fj = zp, then t ≤ p− d+1 and this implies

i ≤ zt ≤ i+2r−1. Consider such a zt.

The first ridge. For t = 1, there are three cases to consider.

Case 1. Suppose z1 ≥ 1. Then Fj(ẑ1) = [i, i+2r−1]∪ Y . Let I be the right-most

interval of Fj(ẑ1). Let Z = (I−k) ∪ Fj(ẑ1), and F = retn(Z). Since i ≥ 1 and

max Fj(ẑ1) ≤ i+k−2, the interval I−k contributes at least one new element to

F , so |F | ≥ d.

Case 2. Suppose z1 = 0 and the right-most interval of Fj(ẑ1) is odd. In this

case the left-most interval of Fj must also be odd, so i < 0, and Fj(ẑ1) contains

i+k but not i+k−1. Let F = Fj(ẑ1) ∪ {i+k−1}.
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Case 3. Suppose z1 = 0 and the right-most interval of Fj(ẑ1) is even (and then

so is the left-most interval). Then Fj(ẑ1) = [0, i+2r−1]∪ Y ∪ [i+k, k−1] (where

the last interval is empty if i = 0). Let

F = Fj(ẑ1) ∪ {i+2r} = {0} ∪ [1, i+2r] ∪ Y ∪ [i+k, k−1].

(When i = 0 and r = (d−1)/2, this gives F = [0, d−1].) In all cases F is a facet

of P d,k,n containing Fj(ẑ1). It does not contain max Fj , so F ≺c Fj .

Deleting a later vertex. Now assume 2 ≤ t ≤ p−d+1; then zt ≥ max{i+1, 1}.

Here

Fj(ẑt) = [max{i, 0}, zt−1] ∪ [zt+1, i+2r−1] ∪ Y ∪ [i+k, zt−1+k],

and |Fj(ẑt)| = zt−max{i, 0}+d−2 ≥ d−1. Also note that zt−1+k is the (d−2)nd

element of {z1, z2, . . . , zp} after zt, so zt−1+k = zt+d−2 < zp = maxFj .

Case 1. If zt− i is even, let F = Fj(ẑt) ∪ {i+2r}. Then F = retn(Z), where

Z = [i, zt−1] ∪ [zt +1, i+2r] ∪ Y ∪ [i+k, zt−1+k],

and |F | ≥ d.

Case 2. If zt− i is odd and max([i, i+2r−1] ∪ Y ) < i+k−2, let F = retn(Z),

where

Z = [i−1, zt−1] ∪ [zt +1, i+2r−1] ∪ Y ∪ [i+k−1, zt−1+k].

Then F ⊇ Fj(ẑt) ∪ {i+k−1}, so |F | ≥ d.

Case 3. Finally, suppose zt− i is odd and maxY = i+k−2. Let [q, i+k−2] be

the right-most interval of Y , and let F = retn(Z), where

Z = [q−k, zt−1] ∪ [zt +1, i+2r−1] ∪ (Y \ [q, i+k−2]) ∪ [q, zt−1+k].

Then F ⊇ Fj(ẑt) ∪ {i+k−1}, so |F | ≥ d.

In all cases, F is a facet of P d,k,n containing Fj(ẑt) and maxFj 6∈ F , so F

occurs before Fj in colex order.

Determining the minimal new face. We now describe the faces Gj recur-

sively. (We are still assuming that maxFj ≥ n−1.) Let G be the face of lsh(Fj)

that is the minimal new face when lsh(Fj) is shelled on, in the colex shelling of

the polytope P d,k,n−1. Let Gj = G+1; this is a subset of the last d−1 vertices

of Fj and contains maxFj . By [Bayer et al. 2002, Theorem 2.6] and [Bisztriczky

1996], Gj is a face of Fj . For any facet Fi of P d,k,n, Gj ⊆ Fi if and only if

G ⊆ lsh(Fi). So by the induction hypothesis, Gj is not contained in a facet

occurring before Fj in colex order.
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Ridges in previous facets. It remains to show that any ridge of P d,k,n con-

tained in Fj but not containing all of Gj is contained in a facet prior to Fj .

Note that we have already dealt with those ridges not containing maxFj . Now

let g ∈ G, gj = g+1 ∈ Gj , and assume gj 6= max Fj . The only ridge of P d,k,n

contained in Fj , containing max Fj , and not containing gj is Fj(ĝj).

Let H be the unique ridge of P d,k,n−1 in lsh(Fj) containing max(lsh(Fj)), but

not containing g. By the induction hypothesis, H is contained in a facet F of

P d,k,n−1 occurring before lsh(Fj) in colex order. Suppose Fj(ĝj) is contained in

a facet F` of P d,k,n occurring after Fj in colex order. Then H is contained in

lsh(F`). Thus the ridge H of P d,k,n−1 is contained in three different facets: F

(occurring before lsh(Fj) in colex order), lsh(Fj), and lsh(F`) (occurring after

lsh(Fj) in colex order). This contradiction shows that the ridge Fj(ĝj) can only

be contained in a facet of P d,k,n occurring before Fj in colex order.

Boolean intervals. Finally to verify assertion 4 of the theorem, observe that

every facet Fj is a (d−1)-dimensional multiplex. The face Gj of Fj contains

the maximum vertex u of Fj . The vertex figure of the maximum vertex in any

multiplex is a simplex [Bisztriczky 1996]. The interval [Gj , Fj ] is an interval in

[u, Fj ], which is the face lattice of a simplex, so [Gj , Fj ] is a Boolean lattice. ˜

A nonrecursive description of the faces Gj , generalizing that for the cyclic case

in the proof, is as follows. Write the facet Fj as a disjoint union, Fj = A0
j ∪

I1
j ∪ I2

j ∪ · · · ∪ Ip
j ∪ In

j , where In
j is the interval of Fj containing n if n ∈ Fj ,

and In
j = ? otherwise; the I`

j (1 ≤ ` ≤ p) are even intervals of Fj written in

increasing order; and A0
j is

• the interval containing 0, if maxFj ≤ k−1;

• the union of the interval containing max Fj −k and the interval containing

max Fj −k+2 (if the latter exists), if k ≤ max Fj ≤ n−1;

• the interval containing n−k, if max Fj = n and n−k ∈ Fj ;

• ?, if maxFj = n and n−k 6∈ Fj .

Then Gj =
⋃p

`=1 E(I`
j ) ∪ In

j . The vertices of Gj are among the last d vertices of

Fj and so are affinely independent [Bisztriczky 1996]; thus Gj is a simplex.

Example. Table 1 gives the faces Fj and Gj for the colex shelling of the ordinary

polytope P 5,6,8.

Let us look at what happens when facet F13 is shelled on. The ridges of P 5,6,8

contained in F13 are 0123, 0236, 01367, 012678, 12378, 2368, and 3678. The first

ridge, 0123, is contained in F1 = 01234. The ridge 0236 is F13(ẑ2) = F13(1̂), and

max([i, i+2r−1] ∪ Y ) = 3 < 4 = i+k−2, so we find that 0236 is contained

in F4 = 02356. The ridge 01367 is F13(ẑ3) = F13(2̂), so we find that 01367 is

contained in F6 = 013467. This facet F13 = 0123678 is shifted from the facet

012567 of P 5,6,7, which in turn is shifted from the facet 01456 of the cyclic
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j Fj Gj j Fj Gj

1 01234 ? 9 23 56 8 68

2 012 45 5 10 3456 8 468

3 0 2345 35 11 1234 78 78

4 0 23 56 6 12 12 45 78 578

5 0 3456 46 13 0123 678 678

6 01 34 67 7 14 34 678 4678

7 01 4567 57 15 012 5678 5678

8 2345 8 8 16 45678 45678

Table 1. Shelling of P 5,6,8

polytope P 5,6,6. When 01456 occurs in the shelling of the cyclic polytope, its

minimal new face is its right interval, 456. In P 5,6,8, then, the minimal new face

when F13 is shelled on is 678. The other ridges of F13 not containing 678 are

12378 and 2368. The interval [G13, F13] contains the triangle 678, the 3-simplex

3678, the 3-multiplex 012678, and F13 itself (which is a pyramid over 012678).

Note that for the multiplex, Md,n = P d,d,n, this theorem gives a shelling

different from the one mentioned in Section 2. In the standard notation for the

facets of the multiplex (see Definition 4), the colex shelling order is F0, F1, . . . ,

Fn−d, Fn−1, Fn−2, . . . , Fn−d+1, Fn. The statements of this section hold also for

even-dimensional multiplexes.

4. The h-Vector from the Shelling

The h-vector of a simplicial polytope can be obtained easily from any shelling

of the polytope. For P a simplicial polytope, and ∪ [Gj , Fj ] the partition of

a face lattice of P arising from a shelling, h(P, x) =
∑

j xd−|Gj |. For gen-

eral polytopes, the (toric) h-vector can also be decomposed according to the

shelling partition. For a shelling, F1, F2, . . . , Fn, of a polytope P , write Gj

for the set of faces of Fj not in
⋃

i<j Fi. Then h(P, x) =
∑n

j=1 h(Gj , x), where

h(Gj , x) =
∑

G∈Gj
g(G, x)(x−1)d−1−dim G. However, in general we do not know

that the coefficients of h(Gj , x) count anything natural, nor even that they are

nonnegative. Stanley raised this issue in [Stanley 1987, Section 6]. It has appar-

ently been settled in [Braden 2003].

We turn now to h-vectors of ordinary polytopes. In [Bayer 2004] we used the

flag vector of the ordinary polytope to compute its toric h-vector.

Theorem 4.1 [Bayer 2004]. For n ≥ k ≥ d = 2m+1 ≥ 5 and 1 ≤ i ≤ m,

hi(P
d,k,n) =

(

k−d+ i

i

)

+(n−k)

(

k−d+ i−1

i−1

)

.
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We did not understand why the h-vector turned out to have such a nice form.

Here we show how the h-vector can be computed from the colex shelling. Prop-

erties 2 and 4 of Theorem 3.6 are critical.

In [Bayer 2004] we showed that the flag vector of a multiplicial polytope

depends only on the f -vector. However, for our purposes here it is more useful

to write the h-vector in terms of the f -vector and the flag vector entries of the

form f0i. We introduce a modified f -vector. Let f̄−1 = f−1 = 1, f̄0 = f0, and

f̄d−1 = fd−1 +(f0,d−1−dfd−1); and for 1 ≤ j ≤ d−2, let

f̄j = fj +(f0,j+1−(j+2)fj+1)+(f0,j −(j+1)fj).

(Thus, f̄1 = f1 +(f02−3f2)+(f01−2f1) = f1 +(f02−3f2).)

Theorem 4.2. If P is a multiplicial d-polytope, then

h(P, x) =

d
∑

i=0

hi(P )xd−i =

d
∑

i=0

f̄i−1(P )(x−1)d−i.

Proof. As observed in the proof of Theorem 2.1, the g-polynomial of an e-

dimensional multiplex M with n+1 vertices is g(M,x) = 1+(n−e)x. So for a

multiplicial d-polytope P ,

h(P, x) =
∑

G face of P
G6=P

g(G, x)(x−1)d−1−dim G

=
∑

G face of P
G6=P

(1+(f0(G)−1−dimG)x)(x−1)d−1−dim G

=
d

∑

i=0

fi−1(x−1)d−i +
d−1
∑

i=1

(f0i−(i+1)fi)x(x−1)d−1−i

=
d

∑

i=0

fi−1(x−1)d−i +
d−1
∑

i=1

(f0i−(i+1)fi)[(x−1)d−i +(x−1)d−1−i]

= (x−1)d +f0(x−1)d−1

+

d−1
∑

i=2

(fi−1 +(f0i−(i+1)fi)+(f0,i−1− ifi−1))(x−1)d−i

+(fd−1 +(f0,d−1−dfd−1))

=

d
∑

i=0

f̄i−1(P )(x−1)d−i. ˜

Simplicial polytopes are a special case of multiplicial polytopes. Clearly, when P

is simplicial, f̄(P ) = f(P ), and we recover the definition of the simplicial h-vector

in terms of the f -vector. The multiplicial h-vector formula can be thought of as

breaking into two parts: one involving the f -vector, and matching the simplicial

h-vector formula; the other involving the “excess vertex counts,” f0,j−(j+1)fj .
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In the simplicial case the sum of the entries in the h-vector is the number of facets.

For multiplicial polytopes
∑d

i=0 hi(P ) = f̄d−1(P ) = fd−1 +(f0,d−1−dfd−1).

In general, applying the simplicial h-formula to a nonsimplicial f -vector pro-

duces a vector with no (known) combinatorial interpretation. This vector is

neither symmetric nor nonnegative in general. We will see that in the case of or-

dinary polytopes something special happens. Write h′(P, x) for the h-polynomial

that P would have if it were simplicial.

Definition 6. The h′-polynomial of a multiplicial d-polytope P is given by

h′(P, x) =

d
∑

i=0

h′
i(P )xd−i =

d
∑

i=0

fi−1(P )(x−1)d−i.

(The h′-vector is then the vector of coefficients of the h′-polynomial.)

Theorem 4.3. Let P d,k,n be an ordinary polytope. Let
⋃v

j=1[Gj , Fj ] be the

partition of the face lattice of P d,k,n associated with the colex shelling of P d,k,n.

Then for all i, 0 ≤ i ≤ d, h′(P d,k,n, x) =
∑v

j=1 xd−|Gj |.

Furthermore, if Cd,k is the cyclic d-polytope with k+1 vertices, then for all

i, 0 ≤ i ≤ d, h′
i(P

d,k,n) ≥ hi(C
d,k), with equality for i > d/2.

Proof. Direct evaluation gives h′
0(P ) = h′

d(P ) = 1. Let F1, F2, . . . , Fv be the

colex shelling of P d,k,n. By Theorem 3.6, part 2, the set of faces of P d,k,n has

a partition as
⋃v

j=1[Gj , Fj ]. By Theorem 3.6, part 4, the interval [Gj , Fj ] has

exactly
(

d−1−dimGj

`−dimGj

)

faces of dimension ` for dimGj ≤ ` ≤ d−1. Let ki = |
{

j : dimGj = i−1}
∣

∣.

Then f` =
∑l+1

i=0

(

d−i
`−i+1

)

ki. These are the (invertible) equations that give f` in

terms of h′
i, so for all i, h′

i = ki =
∣

∣{j : dimGj = i−1}
∣

∣.

The second part we prove by induction on n ≥ k. We will also need the

following statement, which we prove in the course of the induction as well. If Fj

is a facet of P d,k,n with max Fj = n−2, then |Gj | ≤ (d−1)/2. The base case

of the induction is the cyclic polytope, Cd,k = P d,k,k. We need to show that if

Fj is a facet of Cd,k with maxFj = k−2, then |Gj | ≤ (d−1)/2. This follows

from the description of Gj in the proof of Theorem 3.6, because in this case, in

Fj = I0
j ∪ I1

j ∪ I2
j ∪ · · · ∪ Ip

j ∪ Ik
j , the set Ik

j is empty and |Gj | = 1
2

∣

∣

⋃p
`=1 I`

j

∣

∣ ≤
1
2 (d−1) (since d is odd).

Recall from the proof of Theorem 3.6 that for each facet Fj of P d,k,n, Gj is

the same size as the minimum new face G of the corresponding facet of P d,k,n−1;

that facet is the same (as vertex set) as Fj , if maxFj ≤ n−2, and is lsh(Fj), if

max Fj ≥ n−1. From Proposition 3.5 we see that each facet of P d,k,n−1 with

maximum vertex n−2 gives rise to two facets of P d,k,n, while all others give rise
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to exactly one facet each. Thus, for all i,

h′
i(P

d,k,n) = h′
i(P

d,k,n−1)

+
∣

∣{j : Fj is a facet of P d,k,n with max Fj = n−1 and |Gj | = i}
∣

∣.

Thus, for all i, h′
i(P

d,k,n) ≥ h′
i(P

d,k,n−1), so by induction, h′
i(P

d,k,n) ≥ h′
i(C

d,k).

Furthermore, if max Fj = n−1, then max(lsh(Fj)) = (n−1)−1, so by the induc-

tion hypothesis, |Gj | ≤ (d−1)/2. So for i > d/2, h′
i(P

d,k,n) = h′
i(P

d,k,n−1) =

hi(C
d,k). ˜

Note that for the multiplex Md,n (d odd or even), h′(Md,n) = (1, n− d +

1, 1, 1, . . . , 1, 1), while h(Md,n) = (1, n−d+1, n−d+1, . . . , n−d+1, 1).

Now for multiplicial polytopes, we consider the remaining part of the h-vector,

coming from the parameters f0,j −(j +1)fj . This is

h(P, x)−h′(P, x)

= (f0,d−1−dfd−1)+

d−1
∑

i=2

((f0,i−(i+1)fi)+(f0,i−1− ifi−1)) (x−1)d−i.

So

h(P, x+1)−h′(P, x+1)

= (f0,d−1−dfd−1)+
d−1
∑

i=2

((f0,i−(i+1)fi)+(f0,i−1− ifi−1)) xd−i

=

d−1
∑

i=2

(f0,i−(i+1)fi)(x+1)xd−1−i.

So
d−1
∑

i=2

(hi(P )−h′
i(P ))(x+1)d−1−i =

d−1
∑

i=2

(f0,i−(i+1)fi)x
d−1−i.

For the ordinary polytope, this equation can be applied locally to give the con-

tribution to h(P d,k,n, x)−h′(P d,k,n, x) from each interval [Gj , Fj ] of the shelling

partition. For each j, and each i ≥ dim Gj , let bj,i =
∑

(f0(H)−(i+1)), where

the sum is over all i-faces H in [Gj , Fj ]. Let bj(x) =
∑d−1

i=dim Gj
bj,ix

d−1−i.

Write bj(x) in the basis of powers of (x+1): bj(x) =
∑

aj,i(x+1)d−1−i. Then

aj,i = hi(Gj)−h′
i(Gj), the contribution to hi(P

d,k,n)−h′
i(P

d,k,n) from faces in

the interval [Gj , Fj ]. Note that for fixed j,
∑

i aj,i = bj(0) = f0(Fj)−d. We will

return to the coefficients aj,i after triangulating the ordinary polytope.

Example. The h-vector of P 5,6,8 is h(P 5,6,8) = (1, 4, 7, 7, 4, 1). The sum of the

hi is 24, which counts the 16 facets plus one for each of the four 6-vertex facets,

plus two for each of the two 7-vertex facets. Referring to Table 1, we see that

h′(P 5,6,8) = (1, 4, 5, 3, 2, 1); from this we compute f(P 5,6,8) = (9, 31, 52, 44, 16).

The nonzero aj,i here are a6,2 = a7,3 = a11,2 = a12,3 = 1 and a13,3 = a15,4 = 2.
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In this case each interval [Gj , Fj ] contributes to hi(P
d,k,n)−h′

i(P
d,k,n) for at

most one i, but this is not true in general.

5. Triangulating the Ordinary Polytope

Triangulations of polytopes or of their boundaries can be used to calculate

the h-vector of the polytope if the triangulation is shallow [Bayer 1993]. The

solid ordinary polytope need not have a shallow triangulation, but its bound-

ary does have a shallow triangulation. The triangulation is obtained simply by

triangulating each multiplex as in Section 2. This triangulation is obtained by

“pushing” the vertices in the order 0, 1, . . . , n. (See [Lee 1991] for pushing

(placing) triangulations.)

Theorem 5.1. The boundary of the ordinary polytope P d,k,n has a shallow tri-

angulation. The facets of one such triangulation are the Gale subsets of [i, i+k]

(where 0 ≤ i ≤ n−k) of size d containing either 0 or n or the set {i, i+k}.

Proof. First we show that each such set is a consecutive subset of some facet

of P d,k,n. Suppose Z is a Gale subset of [i, i+k] of size d containing {i, i+k}.

Write Z = [i, i+a−1] ∪ Y ∪ [i+k−b+1, i+k], where a ≥ 1, b ≥ 1, and

Y ∩{i+a, i+k−b} = ?.

Since Z is a Gale subset, |Y | is even; let r = (d−1−|Y |)/2. Since |Z| = d,

a+b = 2r+1, so a and b are each at most 2r. Define X = [i+a−2r, i+a−1] ∪

Y ∪ [i+k−b+1, i+k−b+2r]. Note that i+k−b+1 = (i+a−2r)+k. Then

retn(X) is the vertex set of a facet of P d,k,n, and Z is a consecutive subset of

retn(X).

Now suppose that Z is a Gale subset of [0, k] of size d containing 0, but not k.

Write Z = {0}∪Y ∪ [j−2r+1, j], where j < k, r ≥ 1, and j−2r 6∈ Y . Then |Y | =

d−2r−1, and Z = retn(X), where X = [j−2r+1−k, j−k] ∪ Y ∪ [j−2r+1, j].

So Z itself is the vertex set of a facet of P d,k,n. The case of sets containing n

but not n−k works the same way.

Next we show that all consecutive d-subsets of facets F of P d,k,n are of one

of these types. Let F = retn(X), where

X = [i, i+2r−1] ∪ Y ∪ [i+k, i+k+2r−1],

with Y a paired subset of size d−2r−1 of [i+2r+1, i+k−2]. Suppose first

that i+2r−1 ≥ 0 and i+k ≤ n. Let Z be a consecutive d-subset of F . Since

|Y | = d−2r−1, |[i, i+2r−1]∩F | ≤ 2r, and |[i+k, i+k+2r−1]∩F | ≤ 2r, it

follows that i+2r−1 and i+k must both be in Z. Thus we can write Z =

[i+2r−a, i+2r−1] ∪ Y ∪ [i+k, i+k+b−1], with a+b = 2r+1, i+2r−a ≥ 0,

and i+k+b−1 ≤ n. Let ` = i+2r−a. Then i+k+b−1 = `+k, so 0 ≤ ` ≤ n−k,

and Z is a Gale subset of [`, `+k] containing {`, `+k}.
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If i+2r−1 < 0, then i+k+2r−1 < k ≤ n, and

F = {0} ∪ Y ∪ [i+k, i+k+2r−1].

Then |F | = d and F itself is a Gale subset of [0, k] of size d containing 0. Similarly

for the case i+k > n.

The sets described are exactly the (d−1)-simplices obtained by triangulating

each facet of P d,k,n according to Theorem 2.1. The fact that this triangulation is

shallow follows from the corresponding fact for this triangulation of a multiplex.

˜

Let T = T(P d,k,n) be this triangulation of ∂P d,k,n. Since T is shallow, we have

h(P d,k,n, x) = h(T, x). We calculate h(T, x) by shelling T.

Theorem 5.2. Let F1, F2, . . . , Fv be the colex order of the facets of P d,k,n.

For each j, if Fj = {z1, z2, . . . , zpj
} (z1 < z2 < · · · < zpj

), and 1 ≤ ` ≤

pj −d+1, let Tj,` = {z`, z`+1, . . . , z`+d−1}. Then T1,1, T1,2, . . . , T1,p1−d+1, T2,1,

. . . , T2,p2−d+1, . . . , Tv,1, . . . , Tv,pv−d+1 is a shelling of T(P d,k,n).

Let Uj,` be the minimal new face when Tj,` is shelled on. As vertex sets,

Uj,pj−d+1 = Gj .

Proof. Throughout the proof, write Fj = {z1, z2, . . . , zpj
} (z1 < z2 < · · · <

zpj
). We first show that Gj is the unique minimal face of Tj,pj−d+1 not contained

in
⋃j−1

i=1

⋃pi−d+1
`=1 Ti,`) ∪

(
⋃pj−d

`=1 Tj,`

)

. The set Gj is not contained in a facet of

P d,k,n earlier than Fj . So Gj does not occur in a facet of T of the form Ti,` for

i < j. Also, maxFj ∈ Gj , so Gj does not occur in a facet of T of the form Tj,`

for ` ≤ pj −d. Thus Gj does not occur in a facet of T before Tj,pj−d+1.

We show that for zq ∈ Gj , Tj,pj−d+1\{zq} is contained in a facet of T occurring

before Tj,pj−d+1. There is nothing to check for j = v, because pv −d+1 = 1

and so Tv,1 = Fv is the last simplex in the purported shelling order. So we may

assume that j < v and thus Gj is contained in the last d−1 vertices of Fj .

Case 1. If pj > d and q = pj (giving the maximal element of Fj), then Tj,pj−d+1\

{zpj
} ⊂ Tj,pj−d.

Case 2. Suppose pj −d+2 ≤ q ≤ pj −1. Then

Tj,pj−d+1 \{zq} ⊆ {zq−d+2, . . . , zq−1, zq+1 . . . , zpj
} = H.

This is a ridge of P d,k,n in Fj not containing Gj , and hence H is contained

in a previous facet F` of P d,k,n. Since H is a ridge in both Fj and F`, H is

obtained from each facet by deleting a single element from a consecutive string

of vertices in the facet. So |H| ≤ |F`∩ [zq−d+2, zpj
]| ≤ |H|+1, and so d−1 ≤

|F`∩ [zpj−d+1, zpj
]| ≤ d. So Tj,pj−d+1\{zq} is contained in a consecutive set of d

elements of F`, and hence in a (d−1)-simplex of T(P d,k,n) belonging to F`. This

simplex occurs before Tj,pj−d+1 in the specified shelling order.

Case 3. Otherwise pj = d (so pj −d+1 = 1) and q = d. Then Tj,1 = Fj and

H = Tj,1\{zd} is a ridge of P d,k,n in Fj not containing maxFj , so H is contained
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in a previous facet F` of P d,k,n. As in Case 2, d−1 ≤ |F`∩ [z1, zd−1]| ≤ d. So

Tj,1 \{zd} is contained in a consecutive set of d elements of F`, and hence in a

(d−1)-simplex of T(P d,k,n) belonging to F`. This simplex occurs before Tj,pj−d+1

in the specified shelling order.

So in the potential shelling of T, Gj is the unique minimal new face as

Tj,pj−d+1 is shelled on. Write Uj,pj−d+1 = Gj . At this point we need a clearer

view of the simplex Tj,`. Recall that Fj is of the form retn(X), where X = [i, i+

2r−1] ∪ Y ∪ [i+k, i+k+2r−1], with Y a subset of size d−2r−1. If i+2r−1 < 0

or i+k > n, then pj = |Fj | = d, and Tj,1 = Tj,pj−d+1 = Fj ; we have already com-

pleted this case. So assume i+2r−1 ≥ 0 and i+k ≤ n. A consecutive string of

length d in retn(X) must then be of the form [i+s, i+2r−1] ∪ Y ∪ [i+k, i+k+s]

for some s, 0 ≤ s ≤ 2r− 1. (All such strings—with appropriate Y —having

i+ s ≥ 0 and i+k + s ≤ n occur as Tj,`.) In particular, for ` < pj −d+1,

Tj,` = Tj,`+1 \{max Tj,`+1} ∪ {min Tj,`+1−1} and max Tj,` = min Tj,` +k.

Now define Uj,` for ` ≤ pj−d recursively by Uj,` = Uj,`+1\{z} ∪ {z−k, z−1},

where z = maxTj,`+1. By the observations above, Uj,` ⊆ Tj,`. We prove by

downward induction that Uj,` is not contained in a facet Fi of P d,k,n before Fj ,

that Uj,` is not contained in a facet of T occurring before Tj,`, and that any ridge

of T in Tj,` not containing all of Uj,` is in an earlier facet of T. The base case of

the induction is ` = pj −d+1, and this case has been handled above.

Note that {z−k, z−1} is a diagonal of the 2-face {z−k−1, z−k, z−1, z}

of P d,k,n [Dinh 1999]. So if Fi is a facet of P d,k,n containing Uj,`, then Fi

contains {z−k−1, z−k, z−1, z}. Thus Fi contains Uj,`+1, so, by the induction

assumption, i ≥ j. Therefore, for i < j, and any r, Ti,r does not contain Uj,`.

For r < `, Tj,r does not contain z−1 = maxTj,`, so Tj,r does not contain Uj,`.

Now we will show that for any g ∈ Uj,`, Tj,` \{g} is in a previous facet of T.

Case 1. If g = z−1 = max Tj,` and ` ≥ 2, then Tj,` \{g} ⊂ Tj,`−1.

Case 2. If g = z−1 = max Tj,` and ` = 1, then Tj,` \{g} is the leftmost ridge

of P d,k,n in Fj and, in particular, does not contain maxFj . So H = Tj,` \{g}

is contained in a previous facet Fe of P d,k,n. As in the ` = pj −d+1 case,

Fe∩ [min Tj,`,max Tj,`] is contained in a consecutive set of d elements of Fe, and

hence in a (d−1)-simplex of T(P d,k,n) belonging to Fe. So Tj,`\{g} is contained

in a previous facet of T.

Case 3. Suppose g < z−1 and g ∈ Uj,` ∩Uj,`+1. Since {z−1, z} ⊂ Tj,`+1,

Tj,`+1 contains at most d−3 elements less than g. The ridge H of P d,k,n in Fj

containing Tj,`+1\{g} consists of the d−2 elements of Fj below g and the (up to)

d−2 elements of Fj above g. In particular, H contains minTj,`+1−1 = min Tj,`.

So Tj,` \ {g} ⊂ H. Since dimTj,` \ {g} = d− 2, H is the (unique) smallest

face of P d,k,n containing Tj,`+1 \{g}. By the induction hypothesis Tj,`+1 \{g}

is contained in a previous facet Ti,r of T; here i < j because max Tj,`+1 ∈

Tj,`+1 \ {g}. The (d− 2)-simplex Tj,`+1 \ {g} is then contained in a ridge of

P d,k,n contained in Fi, but this ridge must be H, by the uniqueness of H. So
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Tj,`\{g} ⊂ H = Fi∩Fj . As in earlier cases, Fi∩[min Tj,`,max Tj,`] is contained in

a consecutive set of d elements of Fi, and hence in a (d−1)-simplex of T(P d,k,n)

belonging to Fi. So Tj,` \{g} is contained in a previous facet of T.

Case 4. Finally, let g = z−k, which is minTj,` +1. Then Tj,` contains d−2

elements above g. Let H be the ridge of P d,k,n in Fj containing Tj,`\{g}. Then

max H = maxTj,` < max Fj , so H does not contain Gj . So H is in a previous

facet Fi of P d,k,n. As in earlier cases, Fi∩ [min Tj,`,max Tj,`] is contained in a

consecutive set of d elements of Fi, and hence in a (d−1)-simplex of T(P d,k,n)

belonging to Fi. So Tj,` \{g} is contained in a previous facet of T.

Thus T1,1, T1,2, . . . , T1,p1−d+1, T2,1, . . . , T2,p2−d+1, . . . , Tv,1, . . . , Tv,pv−d+1

is a shelling of T(P d,k,n). ˜

Corollary 5.3. Let n ≥ k ≥ d = 2m+1 ≥ 5. Let ∪ [Gj , Fj ] be the partition

of the face lattice of P d,k,n from the colex shelling , and let ∪ [Uj,`, Tj,`] be the

partition of the face lattice of T(P d,k,n) from the shelling of Theorem 5.2. Then

(i) For each i, hi(P
d,k,n) ≥ h′

i(P
d,k,n).

(ii) The contribution to hi(P
d,k,n)−h′

i(P
d,k,n) from the interval [Gj , Fj ] is

aj,i =
∣

∣{` : |Uj,`| = i, 1 ≤ ` ≤ p`−d}
∣

∣ ≥ 0.

Proof. The h-vector of T counts the sets Uj,` of each size. Among these are all

the sets Gj counted by the h′-vector of P d,k,n. Thus

hi(T(P d,k,n)) =
∣

∣{(j, `) : |Uj,`| = i}
∣

∣

≥
∣

∣{(j, `) : |Uj,`| = i and ` = pj −d+1}
∣

∣ = h′
i(P

d,k,n).

Recall that we write Gj for the set of faces of Fj not in
⋃

i<j Fi; here Gj is

the set of faces in [Gj , Fj ]. Write also TGj for the set of faces of T that are

contained in Fj but not in
⋃

i<j Fi. By [Bayer 1993, Corollary 7], since T is a

shallow triangulation of ∂P d,k,n, g(G, x) =
∑

(x−1)d−1−dim σ, where the sum is

over all faces σ of T that are contained in G but not in any proper subface of G.

Thus

h(Gj , x) =
∑

G∈[Gj ,Fj ]

g(G, x)(x−1)d−1−dim G

=
∑

σ∈TGj

(x−1)d−1−dim σ =

p`−d+1
∑

`=1

xd−|Uj,`|

Since h′(Gj , x) = xd−|Gj | = xd−|Uj,pj−d+1|,

∑

i

aj,ix
i = h(Gj , x)−h′(Gj , x) =

p`−d
∑

`=1

xd−|Uj,`|,

or

aj,i =
∣

∣{` : |Uj,`| = i, 1 ≤ ` ≤ p`−d}
∣

∣ ≥ 0. ˜
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(j, `) Tj,` Uj,` (j, `) Tj,` Uj,`

1, 1 01234 ? 11, 1 1234 7 27

2, 1 012 45 5 11, 2 234 78 78

3, 1 0 2345 35 12, 1 12 45 7 257

4, 1 0 23 56 6 12, 2 2 45 78 578

5, 1 0 3456 46 13, 1 0123 6 126

6, 1 01 34 6 16 13, 2 123 67 267

6, 2 1 34 67 7 13, 3 23 678 678

7, 1 01 456 156 14, 1 34 678 4678

7, 2 1 4567 57 15, 1 012 56 1256

8, 1 2345 8 8 15, 2 12 567 2567

9, 1 23 56 8 68 15, 3 2 5678 5678

10, 1 3456 8 468 16, 1 45678 45678

Table 2. Shelling of triangulation of P 5,6,8

Example. Table 2 gives the shelling of the triangulation of P 5,6,8. (Refer back

to Table 1 for the shelling of P 5,6,8 itself.) Among the rows (6, 1), (7, 1), (11, 1),

(12, 1), (13, 1), (13, 2), (15, 1), (15, 2) (rows (j, `) that are not the last row for

that j), count the Uj,` of cardinality i to get hi(P
5,6,8)−h′

i(P
5,6,8). Note that

U13,3 = G13 (from Table 1), and that U13,2 = U13,3 \{8} ∪ {2, 7}. The ridges

in T13,2 are 1236, 1237, 1267, 1367, and 2367. The first ridge, 1236, falls under

Case 1 of the proof of Theorem 5.2; it is contained in the previous facet, T13,1.

The next ridge, 1237, falls under Case 3; it is contained in the ridge 12378 of

P 5,6,8 in F13 = 0123678, and 12378 also contains the ridge 2378 in T13,3. The

induction assumption says that 2378 is contained in an earlier facet, in this case

T11,2, and 12378 is contained in F11. Finally, the ridge 1237 is contained in

the simplex T11,1, part of the triangulation of F11. The last ridge of T13,2 not

containing 267 is 1367. It falls under Case 4. The set 1367 is contained in the

ridge 01367 of P 5,6,8, contained in F13. This ridge is also contained in the earlier

facet F6. The ridge 1367 of the triangulation is contained in the simplex T6,2.

Theorem 5.4. Let n ≥ d+k−1. For 1 ≤ i ≤ d−1, hi(P
d,k,n)−hi(P

d,k,n−1) is

the number of facets Tj,` of T(P d,k,n) such that max Fj = n−1 and |Uj,`| = i.

For 1 ≤ i ≤ m, this is
(

k−d+i−1
i−1

)

.

Proof. Refer to Proposition 3.5 for a description of the facets of P d,k,n in terms

of those of P d,k,n−1. For n ≥ d+k−1, for every facet P d,k,n ending in n, the

translation F −1 is a facet of P d,k,n−1. (For smaller n, a facet of P d,k,n may end

in 0, in which case lsh(F) is a proper subset of F −1.) The same holds for the

simplices Tj,` triangulating these facets, and for the sets Uj,`. The facets of P d,k,n

ending in n−2 are facets of P d,k,n−1, and the same holds for the corresponding

Tj,` and Uj,`. The contributions to h(P d,k,n) from facets ending in any element
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but n−1 thus total h(P d,k,n−1). So for 1 ≤ i ≤ d−1, hi(P
d,k,n)−hi(P

d,k,n−1)

is the number of facets Tj,` of T(P d,k,n) such that maxFj = n−1 and |Uj,`| = i.

Now consider the set S of facets Tj,` of T(P d,k,n) with maxFj = n−1. For

each T ∈ S, T is a set of d elements occurring consecutively in some Fj with

maximum element n−1. So T can be written as

T = [b, n−k−1] ∪ [n−k+1, c] ∪ Y ∪ [e, b+k], (5–1)

where

(i) n−k−d+1 ≤ b ≤ n−k−1;

(ii) n−k ≤ c ≤ b+d−1 and c−n+k is even (here c = n−k means [n−k+1, c] =

?);

(iii) Y is a paired subset of [c+2, e−1];

(iv) e = b+k−1 if n−k−b is odd, and e = b+k if n−k−b is even; and

(v) |T | = d.

In these terms, the minimum new face U when T is shelled on is U = [b+1, n−

k−1] ∪ E(Y ) ∪ {b+k}.

We give a bijection between the facets T in S with |U | = i (where 1 ≤ i ≤ m)

and the (k−d)-element subsets of [1, k−d+ i−1]. Let T be as in Equation 5–1.

Then i = |U | = n−k− b+ |Y |/2. For each x ≥ c+1, let y(x) be the number

of pairs in Y with both elements less than x. Let a1 = n−k− b = i−|Y |/2.

Write [c+1, e−1]\Y = {x1, x2, . . . , xk−d}, with the x`s increasing. (This set has

k−d elements because d = (c− b)+ |Y |+(b+k−e+1), so |[c+1, e−1]\Y | =

e−c−1−|Y | = k−d.) Set

A(T ) = {a1 +y(x`)+`−1 : 1 ≤ ` ≤ k−d}.

To see that this is a subset of [1, k−d+ i−1], note that the elements of A(T )

form an increasing sequence with minimum element a1 and maximum element

a1 +y(xk−d)+(k−d−1) ≤ a1 + |Y |/2+(k−d−1) = k−d+ i−1.

For the inverse of this map, write a (k−d)-element subset of [1, k−d+ i−1]

as A = {a1, a2, . . . , ak−d}, with the a`s increasing. Then 1 ≤ a1 ≤ i. Let

x1 = n−k+d−2i+a1−χ(a1 odd).

Set

T (A) = [n−k−a1, n−k−1] ∪ [n−k+1, x1−1] ∪ Y ∪ [n−a1−χ(a1 odd), n−a1],

where

Y = ([x1, n−a1−1−χ(a1 odd)]\{x1 +2(a`−a1)−(`−1) : 1 ≤ ` ≤ k−d}).

We check that this gives a set of the required form.

(1) Since 1 ≤ a1 ≤ i ≤ d−1 n−k−d+1 ≤ n−k−a1 ≤ n−k−1.

(2) x1−1−n+k = d−2i−1+(a1−χ(a1 odd)), which is nonnegative and even;

x1−1 = (n−k−a1 +d−1)−(2i−2a1+χ(a1 odd)) ≤ n−k−a1 +d−1.
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(3) Y is clearly a subset of [x1+1, n−a1−χ(a1 odd)−1]. To see that Y is paired

note that the difference between two consecutive elements in the removed set is

(x1 +2(a`+1−a1)−`)−(x1 +2(a`−a1)−(`−1)) = 2(a`+1−a`)−1.

(4) This condition holds by definition.

(5) To check the cardinality of T (A), observe that

x1+2(ak−d−a1)−(k−d−1) ≤ x1+2(k−d+i−1)−2a1−(k−d−1)

= x1+k−d+2i−2a1−1 = n−a1−χ(a1 odd)−1.

So

{x1 +2(a`−a1)−(`−1) : 1 ≤ ` ≤ k−d} ⊆ [x1 +1, n−a1−1−χ(a1 odd)],

and

|Y | = (n−a1−χ(a1 odd)−x1)−(k−d) = 2i−2a1.

So |T (A)| = x1−(n−k−a1)+ |Y |+χ(a1 odd) = d.

Also, in this case U = [n−k−a1 +1, n−k−1] ∪ E(Y ) ∪ {n−a1}, so |U | = i.

It is straightforward to check that these maps are inverses. The main point is

that, if a` = a1 +y(x`)+`−1, then

x1 +2(a`−a1)−(`−1) = x1 +2(y(x`)+`−1)−(`−1)

= x1 +2y(x`)+`−1 = x`. ˜

Example. Consider the ordinary polytope P 7,9,15. There are six facets with

maximum vertex 14; they are (with sets Gj underlined) {4, 5, 7, 8, 9, 10, 13, 14},

{4, 5, 7, 8, 10, 11, 13, 14}, {4, 5, 8, 9, 10, 11, 13, 14}, {2, 3, 4, 5, 7, 8, 11, 12, 13, 14},

{2, 3, 4, 5, 8, 9, 11, 12, 13, 14}, and {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14}. Among

the 6-simplices occurring in the triangulation of these facets, six have |Uj,`| = 3.

Table 3 gives the bijection from this set of simplices to the 2-element subsets of

[1, 4].

Tj,` b c e Y a1 x1, x2 y(xi) A(Tj,`)

4, 5, 7, 8, 10, 11, 13 4 8 13 10, 11 2 9, 12 0, 1 {2, 4}

5, 8, 9, 10, 11, 13, 14 5 6 13 8, 9, 10, 11 1 7, 12 0, 2 {1, 4}

3, 4, 5, 7, 8, 11, 12 3 8 11 ? 3 9, 10 0, 0 {3, 4}

4, 5, 7, 8, 11, 12, 13 4 8 13 11, 12 2 9, 10 0, 0 {2, 3}

5, 8, 9, 11, 12, 13, 14 5 6 13 8, 9, 11, 12 1 7, 10 0, 1 {1, 3}

5, 9, 10, 11, 12, 13, 14 5 6 13 9, 10, 11, 12 1 7, 8 0, 0 {1, 2}

Table 3. Bijection with 2-element subsets of {1, 2, 3, 4}

Again, the results of this section hold for even-dimensional multiplexes as well.
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6. Afterword

The story of the combinatorics of simplicial polytopes is a beautiful one. There

one finds an intricate interplay among the face lattice of the polytope, shellings,

the Stanley–Reisner ring and the toric variety, tied together with the h-vector.

The cyclic polytopes play a special role, serving as the extreme examples, and

providing the environment in which to build representative polytopes for each h-

vector (the Billera–Lee construction [Billera and Lee 1981]). In the general case

of arbitrary convex polytopes, the various puzzle pieces have not interlocked

as well. In this paper we made progress on putting the puzzle together for

the special class of ordinary polytopes. Since the ordinary polytopes generalize

the cyclic polytopes, a natural next step would be to mimic the Billera–Lee

construction, or Kalai’s extension of it [1988], on the ordinary polytopes, as a

way of generating multiplicial flag vectors. It would also be interesting to see if

there is a ring associated with these polytopes, particularly one having a quotient

with Hilbert function equal to the h′-polynomial. Another open problem is to

determine the best even-dimensional analogues of the ordinary polytopes. They

may come from taking vertex figures of odd-dimensional ordinary polytopes,

or from generalizing Dinh’s combinatorial description of the facets of ordinary

polytopes. Looking beyond ordinary and multiplicial polytopes, we should ask

what other classes of polytopes have shellings with special properties that relate

to the h-vector?
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On the Number of Mutually Touching Cylinders

ANDRÁS BEZDEK

Abstract. In a three-dimensional arrangement of 25 congruent nonover-

lapping infinite circular cylinders there are always two that do not touch

each other.

1. Introduction

The following problem was posed by Littlewood [1968]:

What is the maximum number of congruent infinite circular cylinders that can

be arranged in R
3 so that any two of them are touching? Is it 7?

This problem is still open. The analogous problem concerning circular cylin-

ders of finite length became known as a mathematical puzzle due to a the popular

book [Gardner 1959]: Find an arrangement of 7 cigarettes so that any two touch

each other. The question whether 7 is the largest such number is open. For

constructions and for a more detailed account on both of these problems see the

research problem collection [Moser and Pach ≥ 2005].

A very large bound for the maximal number of cylinders in Littlewood’s orig-

inal problem was found by the author in 1981 (an outline proof was presented

at the Discrete Geometry meeting in Oberwolfach in that year). The bound

was expressed in terms of various Ramsey constants, and so large that it merely

showed the existence of a finite bound. In this paper we use a different approach

to show that at most 24 cylinders can be arranged so that any two of them are

touching:

Theorem 1. In an arrangement of 25 congruent nonoverlaping infinite circular

cylinders there are always two that do not touch each other .
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Keywords: packing, cylinders.
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In Section 2, we introduce the necessary terminology to talk about relative po-

sitions of the cylinders. In Section 3 we prove Theorem 1. We will describe a

four-cylinder arrangement in which the cylinders cannot be mutually touching

and show that in a family of 25 mutually touching cylinders there are always

four cylinders of this type.

One of the needed lemmas can be stated and proved independently from the

cylinder problem. To ease the description of the proof of Theorem 1 we place

this lemma separately, in Section 4.

2. Terminology

The term cylinder will always refer to a circular cylinder infinite at both ends.

More precisely, the cylinder of radius r and axis l is the set of those points in

R
3 that are at a distance of at most r from a given line l. If r = 1, we speak of

unit cylinders. Two cylinders are nonoverlapping if they do not have common

interior points. Two cylinders are touching if they do not overlap, but have at

least one common boundary point.

Consider a family of mutually touching cylinders. For reference choose one

of the cylinders, say c, and assign a positive direction to its axis l. We say that

a cylinder lies in front of another cylinder with respect to the directed axis l if

the first cylinder can be shifted parallel to l in the positive direction to infinity

without crossing the other cylinder. This relation is not transitive, so it does not

give rise to an ordering among the cylinders.

There is another natural way of describing a relative position among mutually

touching cylinders. We say that a cylinder is (clockwise) to the right of another

if a clockwise rotation by α (with 0 < α ≤ π) around l takes the plane separating

the second cylinder from c to the plane separating the first cylinder from c. To

avoid ambiguity, we say that counterclockwise rotation around the axis l is the

one which matches the right-hand rule with the thumb pointing in the positive

direction of the axis l. The relation of “being to the right” clearly defines an

order among cylinders that are touching c, in such a way that their contact

points, if looked at from the direction of the axis of c, belong to a circular arc

less than π. We will refer to this order as the clockwise order with respect to l.

3. Proof of Theorem 1

Assume we have an arrangement of 25 mutually touching cylinders so that

one of the cylinders is c with directed axis l. Most likely the first thing one

notices while studying cylinder arrangements is that no two of the cylinders are

parallel. Otherwise the number of cylinders is at most four.

Most of our conclusions will come from studying the front view, which is what

we see by looking at the cylinder packing from the positive direction of l. We

intentionally use the term “front view” instead of “projection”, since we would
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like to keep track of the relation of “being in front”. Let the unit disc d be the

image of cylinder c. The images of the other cylinders are strips of width 2, all

touching disc d at different points. A simple integral averaging argument shows

that among these 24 contact points in the front view one can choose 5 along an

arc on the boundary of d with central angle at most π/3.

Label the corresponding cylinders c1, c2, c3, c4, c5 in clockwise order, so that

cylinder c5 is rightmost.

Lemma 1. In any oriented complete graph with vertices labelled 1, 2, 3, 4, 5 one

can choose three vertices i < j < k so that either i→ j → k or i← j ← k holds.

Proof. If the conclusion is not true, we may assume that 2 → 3 ← 4 or

2 ← 3 → 4 holds. Consider the first case: If 2 ← 4, then either 1 ← 2 ← 4 or

1→ 2→ 3 holds, a contradiction. If 2→ 4 then either 3← 4← 5 or 2→ 4→ 5

holds, a contradiction. The second case is handled in the same way. ˜

Consider the abstract complete graph whose vertices are the cylinders c1, c2, c3,

c4, c5. Orient the edges according to the “being in front” relation. According to

Lemma 1 three of the cylinders, say c1, c2, c3, are such that (i) c1 is in front of

c2 which is in front of c3, or (ii) c1 is behind c2 which is behind c3.

We will show that cylinders c, c1, c2 and c3 cannot be mutually touching. In

this respect case (ii) can be reduced to case (i) by reflecting the cylinders along

a plane passing through the axis of the cylinder c. Indeed such plane reflection

preserves the relation of “being in front”, but reverses the clockwise order. The

impossibility of case (i) is stated as a separate lemma below. Its proof completes

the proof of Theorem 1.

Lemma 2 (A forbidden arrangement of four cylinders). If a packing of

four cylinders c, c1, c2, c3 satisfies the conditions listed below , two of them must

be disjoint .

Contact condition : Cylinders c1, c2, c3 are touching c so that their contact

points if looked at from the direction of the axis of c belong to a circular arc of

length at most π/3.

Clockwise order condition : Cylinders c1, c2, c3 are labelled according to their

clockwise order with respect to the directed axis l of c so that c3 is the rightmost

one.

“Being in front” condition : Cylinder c1 is in front of cylinder c2 which is

in front of cylinder c3 with respect to the directed axis l of c.

Proof. Assume to the contrary that cylinders c, c1, c2, c3 are mutually touching

and satisfy all three conditions. Let strips s1, s2 and s3 be the images of cylinders

c1, c2 and c3 in front view. Assume that strip s3 is horizontal. Let the unit disc d

with center O be the image of cylinder c. According to the contact condition and

the clockwise order condition, the elevation angle of s2 is positive and smaller

than π/3. See Figure 1, left.
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Denote by P the contact point of cylinders c1 and c3, and by P ∗ the image

of P in front view. P ∗ certainly belongs to both s1 and s3, but not to strip s2,

since c2 is in front of c3. Since strip s1 is obtained from s2 by a counterclockwise

rotation around O, P ∗ lies to the left of strip s2.

Let the unit discs d∗ and d∗∗ with centers O∗ and O∗∗ be the images in front

view of the unit spheres inscribed in c1 and c3 respectively and containing P.

Strip s1 contains d∗, and is tangent to d. There are two such strips, but since P ∗

does not belong to s2, the strip that is clockwise to the right of the other must

be also to the right of s2, thus it cannot be the same as s1. Thus the position of

d∗ determines s1.

Discs d∗ and d∗∗ are symmetrical with respect to point P ∗. First fix P ∗ and

move d∗ horizontally to the right so that it has P ∗ on its boundary. Simulta-

neously move d∗∗ so that P ∗ remains the symmetry center of d∗ and d∗∗. Then

move P ∗, along with d∗ and d∗∗ horizontally to the right until P ∗ gets onto the

circle centered at O of radius 3 (see Figure 1, right).

Notice that in the new position, (i) distance O∗O∗∗ is 2 and the distance P ∗O

is 3, (ii) P ∗ is the midpoint of O∗O∗∗ and (iii) O∗∗ is on the left of the vertical

line through O. Let e be the support line of d whose slope is
√

3. Lemma 3 of

Section 4 states that in this new position, d∗ lies to the left of line e, without

touching e (except when O∗∗O = 4). This means that d∗, before it was moved,

was to the left of line e, without touching e. Thus strip s1 is obtained from s3 by

a counterclockwise rotation by an angle greater than π/3, contradicting Contact

condition of Lemma 3. ˜
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4. T-linkages

By a T-linkage we will mean a mobile structure consisting of a bar of length 3

connected at its endpoint to the midpoint of a bar of length 2, so they can rotate

about the contact point.

Lemma 3. Let AOB be an equilateral triangle of side length 4. Assume that

a T -linkage is attached to O by the free endpoint of its longer bar (see Figure

2, left). As one endpoint of the shorter bar moves along the interior of median

AA′, the other endpoint of the shorter bar and A stay in the same open halfplane

bounded by the line of median BB′.

Proof. Denote by H the open halfplane bounded by line BB′ and containing

A. Denote by M the intersection of AA′ and BB′. A simple computation shows

that when one endpoint of the shorter bar of the T -linkage coincides with M then

the other one belongs to H. Thus, if Lemma 3 were not true then by a continuity

argument the T -linkage would have a position with endpoints of the shorter bar

on lines AA′ and BB′ respectively. We will prove that such a position does not

exists. In fact we show more:

Claim. If X is a point on line AA′ different from both A and A′ and if Y is

a point on line BB′ such that XY = 2, the distance from O to the midpoint of

XY is smaller than 3.

We distinguish four cases depending on which of the angles determined by lines

of AA′ and BB′ contains the segment XY . Figure 2, right, shows how the

angles are labelled I, II, III, IV. It suffices to check the cases when XY belongs

to angles I or II. Indeed the cases of angles II and IV are the same by symmetry.

Furthermore, if segment XY belongs to the angle III then reflecting XY around

M we get a segment whose midpoint is farther from O than the midpoint of XY .

Case 1: XY lies in angle I. Let k be the circumcircle of the triangle XMY (see

Figure 3, left). Since MO is the angle bisector of \B′MA′ the line of MO and



126 ANDRÁS BEZDEK

E

P

O
G

M
F

X

Y

A

B

M

O

A
A

B

GE

L

k

k

X

Y

P

A

B B

Figure 3.

the perpendicular bisector of XY intersect each other on k, say at E. Denote

by F the diagonally opposite point of E on k.

Let G be the perpendicular projection of O onto line EF . Denote by P the

midpoint of XY. We will express PO2 in terms of the angle α = \PEM (with

−π/6 ≤ α ≤ π/6) and show that PO2 is smaller than 9. Since \XMY = 2π/3

we have EF = 4/
√

3. Since EP =
√

3 and MO = 4/
√

3 we get

OE = EF cosα + MO =
4
√

3
(cos α + 1).

Computing the parallel and perpendicular components of PO with respect to

line EF we get

PO2 = OE2 sin2 α + (OE2 cosα− EP )2 = OE2 − 2OE cos α
√

3 + 3

= 16

3
(cos α + 1)2 − 8(cosα + 1) cos α + 3 = 1

3
(−8 cos2 α + 8 cos α + 25)

= − 1

24

(

cos α− 1

2

)2
+ 9 < 9,

as claimed.

Case 2: XY lies in angle II. Let k be the circumcircle of triangle XMY (see

Figure 3, right). The line perpendicular to MO and the perpendicular bisector

of XY intersect each other on k, say at E. Let L be the perpendicular projection

of M onto line XY . Let G be the perpendicular projection of O onto line LM .

Denote by P the midpoint of XY. We will express PO2 in terms of the directed

angle α = \PEM = \EML = \GOM (with −π/3 ≤ α ≤ π/3) and show that

PO2 is smaller than 9. It is easy to see that MO = 4/
√

3, EM = 4/
√

3 cosα

and EP = 1/
√

3 . Computing the parallel and perpendicular components of PO

with respect to line XY we get
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PO2 = (EM cos α−EP + MO sin α)2 + (−EM sin α + MO cosα)2

= 1

3

(

(4 cos2 α− 1 + 4 sin α)2 + (−4 cos α sin α + 4 cos α)2
)

= 1

3
(17 + 8 cos2 α− 8 sin α) = 1

3
(25− 8 sin2 α− 8 sin α)

= − 2

3
(1 + 2 sin α)2 + 9 ≤ 9.

Equality holds only if α = −π/6, that is, when X coincides with A. Thus the

Claim holds. ˜
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Edge-Antipodal 3-Polytopes

KÁROLY BEZDEK, TIBOR BISZTRICZKY, AND KÁROLY BÖRÖCZKY

Abstract. A convex 3-polytope in E
3 is called edge-antipodal if any two

vertices, that determine an edge of the polytope, lie on distinct parallel

supporting planes of the polytope. We prove that the number of vertices

of an edge-antipodal 3-polytope is at most eight, and that the maximum is

attained only for affine cubes.

1. Introduction

Let X be a set of points in Euclidean d-space Ed. Then conv X and aff X

denote, respectively, the convex hull and the affine hull of X.

Two points x and y are called antipodal points of X if there are distinct parallel

supporting hyperplanes of conv X, one of which contains x and the other contains

y. We say that X is an antipodal set if any two points of X are antipodal points

of X. In the case that X is a convex d-polytope P , a related notion was recently

introduced in [Talata 1999]. P is an edge-antipodal d-polytope if any two vertices

of P , that lie on an edge of P , are antipodal points of P .

According to a well-known result of Danzer and Grünbaum [1962], conjectured

independently by Erdős [1957] and Klee [1960], the cardinality of any antipodal

set in Ed is at most 2d. Talata [1999] conjectured that there exists a smallest pos-

itive integer m such that the cardinality of the vertex set of any edge-antipodal

3-polytope is at most m. In an elegant paper, Csikós [2003] showed that m ≤ 12.

In this paper, we prove that m = 8.

Theorem. The number of vertices of an edge-antipodal 3-polytope P is at most

eight , with equality only if P is an affine cube.
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We remark that with some additional case analysis, it can be deduced from

the proof of the Theorem that the vertex set of P is in fact antipodal. This is

not the case for edge-antipodal d-polytopes Pd when d ≥ 4 (see [Talata 1999] for

d = 4), and thus, it seems highly challenging to determine the higher dimensional

analogue of the Theorem. We note that Pór [2005] has shown that for each d ≥ 4,

there exists an integer m(d), formula unknown, such that Pd has at most m(d)

vertices.

2. Proof of the Theorem

For sets X1, X2, . . . , Xn in E3, let [X1, X2, . . . , Xn] be the convex hull of

X1 ∪ X2 ∪ · · · ∪ Xn, and 〈X1, X2, . . . , Xn〉 the affine hull of X1 ∪ X2 ∪ · · · ∪ Xn.

For a point x, set [x] = [{x}] and 〈x〉 = 〈{x}〉.

For a point x and a line L in E3, let `(x, L) denote the line through x that

is parallel to L. Likewise, if H is a plane in E3, let h(x,H) denote the plane

through x that is parallel to L.

Let P ⊂ E3 denote a (convex) 3-polytope with the set V(P ) of vertices, the

set E(P ) of edges and the set F(P ) of facets. We recall that by Euler’s Theorem,

|V(P )| − |E(P )| + [F(P )] = 2.

Let v ∈ V(P ). Then v has degree k (deg v = k) if v is incident with exactly k

edges of P . It is a consequence of Euler’s Theorem (cf. [Fejes Tóth 1953]) that

the average degree of a vertex of P is less than six, and thus,

Remark 1. Any 3-polytope contains a vertex of degree k with k ≤ 5.

Next, let

S = {v1, v2, . . . , vn, vn+1 = v1} ⊂ V(P ),

where n ≥ 3. We say that [S] is a contour section of P if dim〈S〉 = 2, [S] is not

a facet of P and [vi, vi+1] ∈ E(P ) for i = 1, . . . , n.

Finally, let v and w be antipodal vertices of P . When there is no danger of

confusion, we denote by Hw
v and Hv

w, the distinct parallel supporting planes of

P such that v ∈ Hw
v and w ∈ Hv

w.

Henceforth, we assume that P is edge-antipodal. Thus, if [v, w] ∈ E(P ) then

v and w are antipodal.

We begin our arguments with some simple observations concerning a paral-

lelogram Q = [w, x, y, z] with sides [w, x] and [x, y] :

Remark 2. If {[w, x] , [x, y]} ⊂ E(P ) then 〈w, z〉 and 〈y, z〉 are supporting lines

of P , and 〈Q〉 ∩ P ⊂ Q.

Remark 3. If [x,w, y, v] ⊆ Q ∩ P and [w, v] ∈ E(P ) then v ∈ [y, z].

From these two remarks, we deduce:
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Remark 4. Any facet or any contour section of P is a triangle or a parallelo-

gram.

We examine now P when it is nonsimplicial or simplicial, and determine when

a subpolytope of P is necessarily edge-antipodal.

Lemma 1. Let F = [w, x, y, z] ∈ F(P ) be a parallelogram with sides [w, x] and

[x, y], and let H be a plane such that H ∩F = [x, y] and v ∈ (H ∩V(P )) \ {x, y}.

1.1 If H ∩ P is a contour section of P then H ∩ P is a parallelogram.

1.2 If H ∩ P is a facet of P then h(v, 〈F 〉) is a supporting plane of P .

Proof. We suppose that H ∩ P = [x, y, v] is a contour section, and seek a

contradiction.

Let L = 〈y, z〉 and R = [F, v, p] where p is the point on `(v, L) such that

Q = [v, y, z, p] and Q′ = [v, x, w, p] are parallelograms. Next, H ∩ P /∈ F(P )

implies that there is a u ∈ V(P ) such that H separates u and R, and [u, y] ∈ E(P ).

We have now a contradiction by Remark 2. On the one hand; 〈Q〉 ∩ P ⊆ Q and

〈Q′〉 ∩P ⊆ Q′, and so `(u, L) meets the relative interior of H ∩P . On the other

hand; `(u, L) is a supporting line of P .

Let H ∩ P ∈ F(P ). By Remark 4, H ∩ P is a parallelogram or a triangle.

If H ∩ P = [v, x, y, u] is a parallelogram with sides, say, [v, x] and [x, y] then

Hv
x ∩ [v, x, y, u] = [x, y] and Hx

v ∩ [v, x, y, u] = [v, u]

by Remark 2, and from this it follows that h(v, 〈F 〉) supports P . If H ∩ P =

[v, x, y] then the assertion is immediate in the case that Hv
x = 〈F 〉, and it is easy

to check that Hv
x 6= 〈F 〉 6= Hv

y yields h (v, 〈F 〉) ∩ P ⊆ `(v, L). ˜

Lemma 2. Let P be simplicial and v ∈ V(P ). Then deg v 6= 5.

Proof. We suppose that [v, vi, vi+1] ∈ F(P ) for i = 1, . . . , 5 with v6 = v1, and

seek a contradiction.

Let P̃ = [v, v1, . . . , v5]. If v1, v2, . . . , v5 are coplanar then [v1, . . . , v5] ∈ F(P̃ ),

E(P̃ ) ⊂ E(P ) and P is edge-antipodal; a contradiction by Remark 4.

Let, say, [v1, v2, v3, v4] ∈ F(P̃ ). Then H = 〈v1, v2, v5〉 strictly separates v

and [v3, v4], and with H ∩ 〈v, vj〉 = {uj} for j ∈ {3, 4}, H ∩ P is a pentagon

with cyclically labelled vertices v1, v2, u3, u4, v5. By Remark 2, `(v5, 〈v1, v2〉) is

a supporting line of H ∩ P . Since v1, v2, v3 and v4 are coplanar, we obtain also

from Remark 2 that L′ = `(v3, 〈v1, v2〉) is a supporting line of P . Then

{[v, v2, v3] , [v, v3, v4]} ⊂ F(P )

yields that H ′ = 〈v, L′〉 is a supporting plane of P , and H ∩ H ′ is a supporting

line of H ∩ P . Since u3 ∈ H ∩ H ′ and the lines H ∩ H ′ and `(v5, 〈v1, v2〉) are

parallel, we obtain that {u3, u4, v5} ⊂ H ′ and v, v3, v4 and v5 are coplanar; a

contradiction.
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Since P̃ is simplicial, there is an edge among the [vi, vi+1]’s such that neither

[vi−1, vi, vi+1] nor [vi, vi+1, vi+2] is a face of P̃ . Let, say,

[v2, v3, v5] ∈ F(P̃ ).

Then each of 〈v1, v2, v3〉 and 〈v2, v3, v4〉 strictly separates v and v5, and we may

assume that H = 〈v1, v2, v3〉 separates v and v4. Hence, with H ∩ 〈v, vj〉 = {uj}

for j ∈ {4, 5}, the intersection H∩P̃ is a pentagon with cyclically labelled vertices

v1, v2, v3, u4, u5. We apply now Remark 2 with 〈v1, v2, v3〉 and 〈v2, v3, v4〉, and

obtain that `(v1, 〈v2, v3〉) and `(v4, 〈v2, v3〉) are supporting lines of P̃ . This yields

directly that `(v1, 〈v2, v3〉) and `(u4, 〈v2, v3〉) are parallel supporting lines of the

pentagon H ∩ P̃ . Then v1, u4 and u5 are collinear, and v, v1, v4 and v5 are

coplanar; a contradiction. ˜

Lemma 3. Let {w, v1, v2, v3, v4, v5 = v1} ⊂ V(P ) such that [w, vi, vi+1] ∈ F(P )

for i = 1, 2, 3, 4. Then Pw = [V(P ) \ {w}] is edge-antipodal .

Proof. Since the assertion is immediate in the case that E(Pw) ⊂ E(P ), we

may assume that the vi’s are not coplanar and that, say,

E(Pw) \ E(P ) = {[v1, v3]} .

Let H = 〈w, v1, v3〉, U = 〈v2, v4〉, Q = [w, v1, v3, p] be the parallelogram with

sides [w, v1] and [w, v3], and Hw and H1 be distinct parallel supporting planes

of P such that w ∈ Hw and v1 ∈ H1. We assume that v3 /∈ Hw and observe that

with (v2, v4) = [v2, v4] \ {v2, v4}:

(i) H ∩ U ∈ H ∩ P ⊆ Q by Remark 2;

(ii) Hw ∩ Q = {w} and H1 strictly separates v3 and p;

(iii) 〈w, v1, u〉 and 〈w, v3, u〉 are supporting planes of P for each u ∈ U \ (v2, v4);

(iv) H ∩ Hw and H ∩ H1 are supporting lines of the projection of P upon H

along the direction of any line contained in Hw or H1.

Let Hw ∩ U be the point ū, Ū = 〈w, ū〉 and P̄ be the projection of P upon H

along Ū .

Since ū ∈ U \ (v2, v4), it follows from (iii) that 〈w, v1〉 and 〈w, v3〉 are sup-

porting lines of P̄ . Since Ū ⊂ Hw, it follows from (iv) that H ∩ H1 supports P̄ .

But then 〈v1, p〉 supports P̄ by (ii), and consequently, 〈w, v3, ū〉 and 〈`(v1, Ū), p〉

are parallel supporting planes of P, and hence of Pw.

In the case that Hw ∩U = ?, letting figuratively ū ∈ U tend to infinity yields

that 〈`(w,U), v3〉 and 〈`(v1, U), p〉 are parallel supporting planes of P , and hence

of Pw. ˜

Corollary. Let P be simplicial and w ∈ V(P ) be such that deg w ≤ 4. Then

Pw = [V(P ) \ {w}] is edge-antipodal .

We are now ready to proceed with the proof of the Theorem.
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If P is not simplicial then by Remark 4, there is a parallelogram F ∈ F(P ).

By 1.2, there is a plane H, parallel to 〈F 〉 and supporting P , that contains any

vertex of P \ F that is in an F ′ ∈ F(P ) such that F ′ ∩ F ∈ E(P ). From this

and Remark 2, it readily follows that H contains any vertex v of P \F such that

[v, x] ∈ E(P ) for some vertex x of F . Hence, V(P ) ⊂ H ∪ 〈F 〉 and |V(P )| ≤ 8 by

Remark 4. We note that in this case, the degree of any vertex of P is at most

four.

Let P be simplicial. If the degree of any vertex of P is at most four, we have

3 |F(P )| = 2 |E(P )| ≤ 4 |V(P )| ,

and it follows from Euler’s Theorem that |V(P )| ≤ 6.

We suppose that there is a w ∈ V(P ) such that deg w > 4. Then deg w ≥ 6

by Lemma 2. From Remark 1, there is a v0 ∈ V(P ) such that deg v0 ≤ 4. By the

Corollary, P0 = [V(P ) \ {v0}] is edge-antipodal. We note that w ∈ V(P0) and

deg w ≥ 5. Thus, P0 is simplicial by the preceding, and deg w ≥ 6 by Lemma 2.

Since each iteration of the above yields a simplicial edge-antipodal subpoly-

tope of P with w as a vertex, we have a contradiction.

Finally, we remark that if P is strictly edge-antipodal (meaning that whenever

[v, w] ∈ E(P ), there exist Hw
v and Hv

w such that Hw
v ∩ P = {v} and Hv

w ∩ P =

{w}), then |V(P )| ≤ 5. This follows from the Theorem (P is necessarily simpli-

cial, V(P ) is antipodal and |V(P )| ≤ 6) and the result of Grünbaum [1963] that

there is no strictly antipodal set of six points in E3.
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A Conformal Energy for Simplicial Surfaces

ALEXANDER I. BOBENKO

Abstract. A new functional for simplicial surfaces is suggested. It is in-
variant with respect to Möbius transformations and is a discrete analogue
of the Willmore functional. Minima of this functional are investigated. As
an application a bending energy for discrete thin-shells is derived.

1. Introduction

In the variational description of surfaces, several functionals are of primary

importance:

• The area A =
∫

dA, where dA is the area element, is preserved by isometries.

• The total Gaussian curvature G =
∫

K dA, where K is the Gaussian curvature,

is a topological invariant.

• The total mean curvature M =
∫

H dA, where H is the mean curvature,

depends on the external geometry of the surface.

• The Willmore energy W =
∫

H2 dA is invariant with respect to Möbius trans-

formations.

Geometric discretizations of the first three functionals for simplicial surfaces are

well known. For the area functional the discretization is obvious. For the local

Gaussian curvature the discrete analog at a vertex v is defined as the angle defect

G(v) = 2π −
∑

i

αi,

where the αi are the angles of all triangles (see Figure 2) at vertex v. The total

Gaussian curvature is the sum over all vertices G =
∑

v G(v). The local mean

Keywords: Conformal energy, Willmore functional, simplicial surfaces, discrete differential
geometry.
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curvature at an edge e is defined as

M(e) = lθ,

where l is the length of the edge and θ is the angle between the normals to

the adjacent faces at e (see Figure 6). The total mean curvature is the sum

over all edges M =
∑

e M(e). These discrete functionals possess the geometric

symmetries of the smooth functionals mentioned above.

Until recently a geometric discretization of the Willmore functional was miss-

ing. In this paper we introduce a Möbius invariant energy for simplicial surfaces

and show that it should be treated as a discrete Willmore energy.

2. Conformal Energy

Let S be a simplicial surface in 3-dimensional Euclidean space with set of

vertices V , edges E and (triangular) faces F . We define a conformal energy for

simplicial surfaces using the circumcircles of their faces. Each (internal) edge

e ∈ E is incident to two triangles. A consistent orientation of the triangles

naturally induces an orientation of the corresponding circumcircles. Let β(e)

be the external intersection angle of the circumcircles of the triangles sharing e,

which is the angle between the tangent vectors of the oriented circumcircles.

Definition 1. The local conformal (discrete Willmore) energy at a vertex v is

the sum

W (v) =
∑

e3v

β(e) − 2π

over all edges incident on v. The conformal (discrete Willmore) energy of a

simplicial surface S without boundary is the sum

W (S) =
1

2

∑

v∈V

W (v) =
∑

e∈E

β(e) − π |V |,

over all vertices; here |V | is the number of vertices of S.

βi

βi

αi

v

β1

β2

βn

Figure 1. Definition of the conformal (discrete Willmore) energy.
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Figure 1 presents two neighboring circles with their external intersection angle βi

as well as a view “from the top” at a vertex v showing all n circumcircles passing

through v with the corresponding intersection angles β1, . . . , βn. For simplicity

we will consider only simplicial surfaces without boundary.

The energy W (S) is obviously invariant with respect to Möbius transforma-

tions. This invariance is an important property of the classical Willmore energy

defined for smooth surfaces (see below).

Also, W (S) is well defined even for nonoriented simplicial surfaces, because

changing the orientation of both circles preserves the angle β(e).

The star S(v) of the vertex v is the subcomplex of S comprised by the triangles

incident with v. The vertices of S(v) are v and all its neighbors. We call S(v)

convex if for any its face f ∈ F (S(v)) the star S(v) lies to one side of the plane

of F , and strictly convex if the intersection of S(v) with the plane of f is f itself.

Proposition 2. The conformal energy is nonnegative:

W (v) ≥ 0.

It vanishes if and only if the star S(v) is convex and all its vertices lie on a

common sphere.

The proof is based on an elementary lemma:

Lemma 3. Let P be a (not necessarily planar) n-gon with external angles βi.

Choose a point P and connect it to all vertices of P. Let αi be the angles of the

triangles at the tip P of the pyramid thus obtained (see Figure 2). Then

n∑

i=1

βi ≥

n∑

i=1

αi,

and equality holds if and only if P is planar and convex and the vertex P lies

inside P.

The pyramid obtained is convex in this case; note that we distinguish between

convex and strictly convex polygons (and pyramids). Some of the external angles

βi of a convex polygon may vanish. The corresponding side-triangles of the

pyramid lie in one plane.

γi

βi

P

βi+1

δi

αi
αi+1

γi+1

Figure 2. Toward the proof of Lemma 3.
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Proof. Denote by γi and δi the angles of the side-triangles at the vertices of P

(see Figure 2). The claim of Lemma 3 follows from adding over all i = 1, . . . , n

the two obvious relations

βi+1 ≥ π − (γi+1 + δi), π − (γi + δi) = αi.

All inequalities become equalities only in the case when P is planar, convex and

contains P . ˜

As a corollary we obtain a polygonal version of Fenchel’s theorem [1929].

Corollary 4.
n∑

i=1

βi ≥ 2π.

Proof. For a given P choose the point P varying on a straight line encircled

by P. There always exist points P such that the star at P is not strictly convex,

and thus
∑

αi ≥ 2π. ˜

Proof of Proposition 2. The claim of Proposition 2 is invariant with respect

to Möbius transformations. Applying a Möbius transformation M that maps the

vertex v to infinity, we make all circles passing through v into straight lines and

arrive at the geometry shown in Figure 2, with P = M(∞). Now the result

follows immediately from Corollary 4. ˜

Theorem 5. Let S be a simplicial surface without boundary . Then

W (S) ≥ 0,

and equality holds if and only if S is a convex polyhedron inscribed in a sphere.

Proof. Only the second statement needs to be proved. By, Proposition 2, the

equality W (S) = 0 implies that all vertices and edges of S are convex (but not

necessarily strictly convex). Deleting the edges that separate triangles lying in

one plane one obtains a polyhedral surface SP with circular faces and all strictly

convex vertices and edges. Proposition 2 implies that for every vertex v there

exists a sphere Sv with all vertices of the star S(v) lying on it. For any edge

(v1, v2) of SP two neighboring spheres Sv1
and Sv2

share two different circles of

their common faces. This implies Sv1
= Sv2

and finally the coincidence of all the

spheres Sv. ˜

The discrete conformal energy W defined above is a discrete analogue of the

Willmore energy [1993] for smooth surfaces, which is given by

W(S) =
1

4

∫

S

(k1 − k2)
2 dA =

∫

S

H2 dA −

∫

S

K dA.

Here dA is the area element, k1, k2 the principal curvatures, H = 1

2
(k1 + k2)

the mean curvature, K = k1k2 the Gaussian curvature of the surface. Here we
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prefer a definition for W with a Möbius-invariant integrand. It differs from the

one in the introduction by a topological invariant.

We mention two important properties of the Willmore energy:

• W(S) ≥ 0, and W(S) = 0 if and only if S is the round sphere.

• W(S) (together with the integrand (k1−k2)
2 dA) is Möbius-invariant [Blaschke

1929; Willmore 1993].

Whereas the first statement follows almost immediately from the definition, the

second is a nontrivial property. We have shown that the same properties hold

for the discrete energy W ; in the discrete case Möbius invariance is built into

the definition, and the nonnegativity of the energy is nontrivial.

In the same way one can define conformal (Willmore) energy for simplicial

surfaces in Euclidean spaces of higher dimensions and space forms.

The discrete conformal energy is well defined for polyhedral surfaces with

circular faces (not necessarily simplicial).

3. Computation of the Energy

Consider two triangles with a common edge. Let a, b, c, d ∈ R
3 be their

other edges, oriented as in Figure 3. Identifying vectors in R
3 with imaginary

quaternions Im H one obtaines for the quaternionic product

ab = −〈a, b〉 + a × b, (3–1)

where 〈a, b〉 and a × b are the scalar and vector products in R
3.

b

d

a

c
β

Figure 3. Formula for the angle between circumcircles.

Proposition 6. The external angle β ∈ [0, π] between the circumcircles of the

triangles in Figure 3 is given by one of the equivalent formulas:

cos(β) = −
Re q

|q|
= −

Re abcd

|abcd|
=

〈a, c〉〈b, d〉 − 〈a, b〉〈c, d〉 − 〈b, c〉〈d, a〉

|a| |b| |c| |d|
,

where q = ab−1cd−1 is the cross-ratio of the quadrilateral .

Proof. Since Re q, |q| and β are Möbius-invariant it is enough to prove the first

formula for the planar case a, b, c, d ∈ C, mapping all four vertices to a plane

by a Möbius transformation. In this case q becomes the classical complex cross-

ratio. Considering the arguments a, b, c, d ∈ C one easily arrives at β = π−arg q.



140 ALEXANDER I. BOBENKO

The second representation follows from the identity b−1 = −b/|b| for imaginary

quaternions. Finally, applying (3–1) we obtain

Re abcd = 〈a, b〉〈c, d〉 − 〈a×b, c×d〉 = 〈a, b〉〈c, d〉 + 〈b, c〉〈d, a〉 − 〈a, c〉〈b, d〉. ˜

4. Minimizing Discrete Conformal Energy

Similarly to the smooth Willmore functional W, minimizing the discrete con-

formal energy W makes the surface as round as possible.

Let S denote the combinatorial data of S. The simplicial surface S is called

a geometric realization of the abstract simplicial surface S.

Definition 7. Critical points of W (S) are called simplicial Willmore surfaces.

The conformal (Willmore) energy of an abstract simplicial surface is the infimum

over all geometric realizations

W (S) = inf
S∈S

W (S).

Figure 4. Discrete Willmore spheres of inscribable (W = 0) and noninscribable

(W > 0) type, and discrete Boy surface.

Kevin Bauer implemented the proposed conformal functional with the Brakke’s

evolver [1992] and ran some numerical minimization experiments, whose results

are exemplified in Figure 4. Corresponding entries in each row show initial con-

figurations and the corresponding Willmore surfaces that minimize the conformal

energy.
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Figure 5. A discrete Willmore sphere of noninscribable type with 11 vertices and

W = 2π.

Define the discrete Willmore flow as the gradient flow of the energy W . Under

this flow the energy of the first simplicial sphere decreases to zero and the surface

evolves into a convex polyhedron with all vertices lying on a sphere. The abstract

simplicial surface of the central example is different and we obtain a simplicial

Willmore sphere with positive conformal energy.

The rightmost example in the figure is a simplicial projective plane. The

initial configuration is made from squares divided into triangles; see [Petit 1995].

We see that the minimum is close to the smooth Boy surface known (by [Karcher

and Pinkall 1997]) to minimize the Willmore energy for projective planes.

The minimization of the conformal energy for simplicial spheres is related

to a classical result of Steinitz [1928], who showed that there exist abstract

simplicial 3-polytopes without geometric realizations all of whose vertices belong

to a sphere. We call these combinatorial types noninscribable.

The noninscribable examples of Steinitz are constructed as follows [Grünbaum

2003]. Let S be an abstract simplicial sphere with vertices colored black and

white. Denote the sets of white and black vertices by Vw and Vb respectively, so

V = Vw∪Vb. Assume that |Vw| > |Vb| and that there are no edges connecting two

white vertices. It is easy to see that S with these properties cannot be inscribed

in a sphere. Indeed, assume that we have constructed such an inscribed convex

polyhedron. Then the equality of the intersection angles at both ends of an edge

(see left Figure 1) implies that

2π |Vb| ≥
∑

e∈E

β(e) ≥ 2π |Vw|.

This contradiction of the assumed inequality implies the claim.

To construct abstract polyhedra with |Vw| > |Vb|, take a polyhedron P whose

number of vertices does not exceed the number of faces, |F̂ | > |V̂ |. Color all

the vertices black, add white vertices at the faces and connect them to all black

vertices of a face. This yields a polyhedron with black (original) edges and

|Vw| = |F̂ | > |Vb| = |V̂ |. The example with minimal possible number of vertices

|V | = 11 is shown in Figure 5. The starting polyhedron P here consists of two

tetrahedra identified along a common face: F̂ = 6, V̂ = 5.
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Hodgson, Rivin and Smith [Hodgson et al. 1992] have found a characterization

of inscribable combinatorial types, based on a transfer to the Klein model of

hyperbolic 3-space. It is not clear whether there exist noninscribable examples

of non-Steinitz type.

Numerical experiments lead us to:

Conjecture 8. The conformal energy of simplicial Willmore spheres is quan-

tized :

W = 2πN, for N ∈ N.

This statement belongs to differential geometry of discrete surfaces. It would be

interesting to find a (combinatorial) meaning of the integer N . Compare also

with the famous classification of smooth Willmore spheres by Bryant [1984], who

showed that the energy of Willmore spheres is quantized by W = 4πN , N ∈ N.

The discrete Willmore energy is defined for ambient spaces (Rn or Sn) of any

dimension. This leads to combinatorial Willmore energies

Wn(S) = inf
S∈S

W (S), S ⊂ Sn,

where the infimum is taken over all realizations in the n-dimensional sphere.

Obviously these numbers build a nonincreasing sequence Wn(S) ≥ Wn+1(S)

that becomes constant for sufficiently large n.

Complete understanding of noninscribable simplicial spheres is an interesting

mathematical problem. However the phenomenon of existence of such spheres

might be seen as a problem in using of the conformal functional for applications

in computer graphics, such as the fairing of surfaces. Fortunately the problem

disappears after just one refinement step: all simplicial spheres become inscrib-

able. Let S be an abstract simplicial sphere. Define its refinement SR as follows:

split every edge of S into two by putting additional vertices and connect these

new vertices sharing a face of S by additional edges.

Proposition 9. The refined simplicial sphere SR is inscribable, and thus

W (SR) = 0.

Proof. Koebe’s theorem (see [Ziegler 1995; Bobenko and Springborn 2004],

for example) states that every abstract simplicial sphere S can be realized as a

convex polyhedron S all of whose edges touch a common sphere S2. Starting

with this realization S it is easy to construct a geometric realization SR of the

refinement SR inscribed in S2. Indeed, choose the touching points of the edges

of S with S2 as additional vertices of SR and project the original vertices of

S (which lie outside of the sphere S2) to S2. One obtains a convex simplicial

polyhedron SR inscribed in S2. ˜

Another interesting variational problem involving the conformal energy is the

optimization of triangulations of a given simplicial surface. Here one fixes the
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vertices and chooses an equivalent triangulation (abstract simplicial surface S)

minimizing the conformal functional. The minimum

W (V ) = min
S

W (S)

yields an “optimal” triangulation for a given vertex data. In the case of S2 this

optimal triangulation is well known.

Proposition 10. Let S be a simplicial surface with all vertices V on a two-

dimensional sphere S2. Then W (S) = 0 if and only if it is the Delaunay trian-

gulation on the sphere, i .e., S is the boundary of the convex hull of V .

In differential geometric applications such as the numerical minimization of the

Willmore energy of smooth surfaces (see [Hsu et al. 1992]) it is not natural to

preserve the triangulation by minimizing the energy, and one should also change

the combinatorial type decreasing the energy.

The discrete conformal energy W is not just a discrete analogue of the Will-

more energy. One can show that it approximates the smooth Willmore energy,

although the smooth limit is very sensitive to the refinement method and must

be chosen in a special way. A computation (to be published elsewhere) shows

that if one chooses the vertices of a curvature line net of a smooth surface S for

the vertices of S and triangularizes it, W (S) converges to W(S) by natural re-

finement. On the other hand, the infinitesimal equilateral triangular lattice gives

in the limit and energy half again higher. Possibly the minimization of the dis-

crete Willmore energy with vertices on the smooth surface could be used for the

computation of the curvature line net. We will be investigating this interesting

and complicated phenomenon.

5. Bending of Simplicial Surfaces

An accurate model for the bending of discrete surfaces is important for mod-

eling in virtual reality.

Let S0 be a thin shell and S its deformation. The bending energy of smooth

thin shells is given by the integral [Grinspun et al. 2003]

E =

∫

(H − H0)
2 dA,

where H0 and H are the mean curvatures of the original and deformed surface

respectively. For H0 = 0 it reduces to the Willmore energy.

To derive the bending energy for simplicial surfaces let us consider the limit

of fine triangulation, i.e. of small angles between the normals of neighboring

triangles. Consider an isometric deformation of two adjacent triangles. Let

θ be the complement of the dihedral angle of the edge e, or, equivalently, the

angle between the normals of these triangles (see Figure 6) and β(θ) the external
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intersection angle between the circumcircles of the triangles (see Figure 1) as a

function of θ.

Proposition 11. Assume that the circumcenters of the circumcircles of two

adjacent triangles do not coincide. In the limit of small angles θ → 0, the angle

β between the circles behaves as

β(θ) = β(0) +
l

L
θ2 + o(θ3),

where l is the length of the edge and L 6= 0 is the distance between the centers of

the circles.

This proposition and our definition of conformal energy for simplicial surfaces

motivate to suggest

E =
∑

e∈E

l

L
θ2

for the bending energy of discrete thin-shells.

l

θ

L

Figure 6. Toward the definition of the bending energy for simplicial surfaces.

In [Bridson et al. 2003; Grinspun et al. 2003] similar representations for the

bending energy of simplicial surfaces were found empirically. They were demon-

strated to give convincing simulations and good comparison with real processes.

In [Grinspun et al. 2003] the distance between the barycenters is used for L in

the energy expression but possible numerical advantages in using circumcenters

are indicated.

Using the Willmore energy and Willmore flow is a hot topic in computer

graphics. Applications include fairing of surfaces and surface restoration. We

hope that our conformal energy will be useful for these applications and plan to

work on them.
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[Fenchel 1929] W. Fenchel, “Über Krümmung und Windung geschlossener Raumkur-
ven”, Math. Ann. 101 (1929), 238–252.

[Grinspun et al. 2003] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder,
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On the Size of Higher-Dimensional

Triangulations

PETER BRASS

Abstract. I show that there are sets of n points in three dimensions,

in general position, such that any triangulation of these points has only

O(n5/3) simplices. This is the first nontrivial upper bound on the MinMax

triangulation problem posed by Edelsbrunner, Preparata and West in 1990:

What is the minimum over all general-position point sets of the maximum

size of any triangulation of that set? Similar bounds in higher dimensions

are also given.

1. Introduction

In the plane, all triangulations of a set of points use the same number of

triangles. This is a simple consequence of each triangle having an interior angle

sum of π, and each interior point of the convex hull contributing an angle sum

of 2π, which must be used up by the triangles.

Neither the constant size of triangulations nor the constant angle sum of sim-

plices holds in higher dimensions. A classic example is the cube, which can be

decomposed in two ways: into five simplices (cutting off alternate vertices) or into

six simplices (which are even congruent; it is a well-known simple geometric puz-

zle to assemble six congruent simplices, copies of conv
(

(000), (100), (010), (011)
)

,

into a cube).

For higher-dimensional cubes, the same problem was studied in a number

of papers [Böhm 1989; Broadie and Cottle 1984; Haiman 1991; Hughes 1993;

Hughes 1994; Lee 1985; Marshall 1998; Orden and Santos 2003; Sallee 1984;

Smith 2000]. This suggest that one should be interested in the possible values

of the numbers of simplices for arbitrary point sets.

It is well known that a triangulation of n points in d-dimensional space has

size Ω(n) and O(ndd/2e). The lower bound is obvious (each point must go some-

where); and, at least in three-dimensional space, as upper bound one can use that

147
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Figure 1. A cube can be triangulated with five or six simplices.

from each point the outer facets of the incident simplices can be viewed as faces

of a starshaped polytope with at most n−1 vertices, which is combinatorially

isomorphic to a convex polytope.

In more detail this problem was solved by Rothschild and Straus [1985], who

showed that the minimum number of simplices in any triangulation of any full-

dimensional set of n points in d-dimensional space is n−d. This is reached by

gluing simplices together along faces, such that each additional simplex generates

a new vertex, and all vertices are in convex position. Another method, without

the general position, would be to place n−d+1 points on a line, and d−1 points

off that line. They also showed that the maximum number of simplices in any

triangulation of any full-dimensional set of n points in d-dimensional space is

cyc poly(n+1, d, d+1)−(d+1) = Θ(ndd/2e), where cyc poly(n+1, d, d+1) is the

number of d-faces of the d+1-dimensional cyclic polytope on n+1 vertices. This

is a consequence of the upper bound theorem for simplicial d-spheres [Stanley

1983].

These were the maximum and minimum triangulation size, taken over all

sets of n points in d-dimensional space. As a next step, it would be interesting

to give bounds on the maximum and minimum triangulation size of a fixed

set [Rothschild and Straus 1985, Problem 6.2]. For that we have to make some

general-position assumption, no d+1 points collinear, otherwise there are always

point sets for which there is only a unique triangulation. The questions are:

MaxMin Problem. What is the smallest number fMaxMin

d (n), such that each

set of n points in d-dimensional space, no d+ 1 collinear , has a triangulation

with at most fMaxMin

d (n) simplices?

MinMax Problem. What is the largest number fMinMax

d (n), such that each set

of n points in d-dimensional space, no d+1 collinear , has a triangulation with

at least fMinMax

d (n) simplices?

This problem was considered in three-dimensional space by Edelsbrunner, Prepa-

rata and West [Edelsbrunner et al. 1990], who showed that fMaxMin

3
(n) ≤ 3n−11,

so every set of n point in general position in three-dimensional space has a
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small triangulation. They also gave some bounds, if additionally the number of

points of the convex hull is given. Together with the lower bound of Sleator,

Tarjan and Thurston [Sleator et al. 1988], who constructed a convex polyhedron

which requires 2n−10 simplices in any triangulation, this determines the exact

minimum for point sets in convex position, and leaves only a linear-sized gap in

general.

For higher dimensions, the vertices of a cyclic polytope give a lower bound for

fMaxMin

d (n), since in any triangulation of the cyclic polytope, each facet must be

facet of some simplex, and each simplex has only d+1 facets. Together with the

above-mentioned general upper bound of [Rothschild and Straus 1985] on any

triangulation this shows

Ω
(

cyc poly(n, d−1, d)
)

≤ fMaxMin

d (n) ≤ O
(

cyc poly(n+1, d, d+1)
)

,

so

Ω
(

nbd/2c
)

≤ fMaxMin

d (n) ≤ O
(

ndd/2e
)

.

For the MinMax-Problem, the situation is much worse, only constant-factor

improvements for the trivial lower and upper bounds are known [Edelsbrunner

et al. 1990; Urrutia 2003], so Ω(n) ≤ fMinMax

3
(n) ≤ O(n2); and although some

other problems raised in [Edelsbrunner et al. 1990] were solved [Bern 1993], no

progress on the growth rate of fMinMax

3
(n) was made since then. It is the aim of

this paper to prove the first nontrivial upper bound.

Theorem 1. fMinMax

3
(n) = O(n5/3).

This follows from

Lemma 2. Any triangulation of a point set in three-dimensional space that arises

by a small perturbation from the n1/3×n1/3×n1/3 lattice cube contains at most

O(n5/3) simplices.

This upper bound is probably not sharp even in that class of perturbed lattice

cubes. It is easy to construct a perturbed lattice cube that allows a triangulation

of size Ω(n4/3), and that is probably the true maximum in that class.

The same argument works also in higher dimensions, unfortunately the im-

provement over the general upper bound of O(ndd/2e) on the number of simplices

in any d-dimensional triangulation is very small, especially if compared with the

only known (trivial) lower bound fMinMax

d (n) = Ω(n).

Theorem 3. fMinMax

d (n) = O
(

n(1/d)+(d−1)dd/2e/d
)

for fixed dimension d.

The improvement in the exponent is thus

1

d

(⌈

d

2

⌉

−1
)

≈ 1

2
.
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2. The Proof

Let Xn be a set of n points, which is obtained from the lattice cube

X∗
n =

{

(x1, x2, x3) | xi ∈ {1, . . . , n1/3}
}

by a small perturbation. Any point p ∈ X has a unique preimage p∗ ∈ X∗

before the perturbation was applied, and any simplex {p1, p2, p3, p4} ⊂ X has a

preimage {p∗
1
, p∗

2
, p∗

3
, p∗

4
} ⊂ X∗, which is a possibly degenerate simplex (points

coplanar or even collinear). Let T be the triangulation of X, then we partition

T = T3∪T≤2 by classifying the simplices T ∈ T according to the affine dimension

of their preimage T ∗; a simplex T ∈ T3 has a nondegenerate simplex T ∗ as

preimage, a simplex T ∈ T≤2 has a coplanar, or even collinear, fourtuple T ∗

(degenerate simplex) as preimage.

We have less than 6n simplices in T3, since any nondegenerate simplex in X∗

is a nondegenerate simplex with integer coordinates, so it has volume at least 1

6
;

and the volume of conv(X∗) is less than n.

The preimages T ∗ of simplices T ∈ T3 together partition the cube conv(X∗)

into nondegenerate simplices, and the vertices of these simplices are points of

X∗ so we can refine this partition to a triangulation S∗ of X∗. Each face of a

simplex T ∗, T ∈ T3 of the partition is a union of faces of simplices from the

triangulation S∗. The triangulation S∗ still contains at most 6n simplices.

The main problem is to bound |T≤2|, the number of almost-degenerate sim-

plices in T. Consider a simplex T ∈ T≤2, its preimage T ∗ is some coplanar

fourtuple of points in X∗. Now T ∗ cannot intersect the interior of the preimage

S∗ of any of the full-dimensional simplices S ∈ T3. So each T ∈ T≤2 has a

preimage T ∗ that is contained in the union of the faces of the S∗, S ∈ T3, so

also in the union of faces of the S∗, S∗ ∈ S∗. Therefore each T ∈ T≤2 has a

preimage T ∗ that is contained in a lattice plane of X∗ spanned by a face of some

S∗ of the triangulation S∗. Let {Ei}i∈I be the set of planes spanned by faces

of simplices of the triangulation S∗ ∈ S∗, and let ai be the number of simplices

S∗ ∈ S∗ which have a face contained in the plane Ei. Since each of the S∗ ∈ S∗

contributes four faces, we have
∑

i∈I

ai < 24n.

Since T ∗ is contained in the union of faces of simplices S∗ ∈ S∗, this holds also

for the vertices of T ∗; so they are either vertices of faces of the triangulation

S∗, or contained in the sides or relative interior of faces, which is not possible

in a triangulation S∗ of X∗. So each vertex of T ∗ is a vertex of some simplex

S∗, and therefore the numbers bi of points from X∗∩Ei that are vertices of T ∗

contained in Ei satisfies
∑

i∈I bi < 72n. But also each bi is at most |X∗∩Ei|, so

we have bi ≤ n2/3 for each i. But these bi points contained in Ei can generate

only less than O(b2

i ) simplices, since any set of bi points can span at most O(b2

i )
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nonoverlapping simplices. So the total number of simplices in T≤2 is less than
∑

i∈I Cb2

i for some C. Thus

|T≤2| ≤ max

{

∑

i∈I

Cb2

i

∣

∣

∣

∣

∑

i∈I

bi < 72n, 0 < bi ≤ n2/3

}

= O(n5/3).

The d-dimensional version is proved in exactly the same way: the point set

Xn,d is any perturbation of the n1/d×· · ·×n1/d-lattice cube. Any triangulation

Tn,d of such a set will contain at most O(n) simplices with a full-dimensional

preimage in the unperturbed lattice X∗
n,d, since any nondegenerate simplex with

integer vertices has a volume at least 1

d!
. All the remaining simplices of the tri-

angulation are near-degenerate, they have preimages which are contained in the

union of faces of the full-dimensional simplices. The full-dimensional preimages

of simplices partition the cube into nondegenerate simplices with vertices from

X∗
n,d, and we can refine this to a triangulation S∗

n,d of X∗
n,d with O(n) simplices.

The faces of this triangulation span a set of affine lattice subspaces. Each near-

degenerate simplex has a preimage in one of these subspaces, and each vertex of

that near-degenerate simplex has a preimage that is in S∗
n,d vertex of a simplex

with a face that spans that affine subspace. The total number of pairs of vertices

and incident faces in S∗
n,d is O(n) and each of these pairs belongs to an affine

lattice subspace, and can belong to the preimages of near-degenerate simplices

only in that subspace. We sum now over all such subspaces, and count each

point only for those subspaces where it is vertex with an incident face that spans

the subspace. A subspace s that contains bs points can contain only O(b
dd/2e
s )

preimages of near-degenerate simplices, since that is the maximum number of

simplices that these bs points can span. And each subspace contains at most

n(d−1)/d points, since that is the maximum intersection of a proper affine sub-

space with the lattice cube. We now consider this just as an abstract optimization

problem for the variables bs, and get an upper bound of

max

{

∑

s

O(bdd/2e
s )

∣

∣

∣

∣

∑

s

bs = O(n), 0 < bs ≤ n(d−1)/d

}

.

This maximum is again reached if each nonvanishing bs is as large as possible,

so bs = n(d−1)/d for O(n1/d) variables bs, which is the claimed bound.

3. Related Problems

The most important problem would be to get a nontrivial lower bound for

fMinMax

d (n). It is still possible that there are point sets which allow only linear-

sized triangulations. Perhaps it might help to compute some exact values and

extremal configurations for small n; the first nontrivial values seem to be

fMinMax

3
(5) = 3 and fMinMax

3
(6) = 5,
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both realized by points in convex position.

A good lower bound on fMinMax

d (n) would also be interesting since it would

imply an upper bound for the d-dimensional Heilbronn triangle problem. Let

gMinVol

d (n) be the maximum over all choices of n points from the unit cube of

the minimum volume of a simplex spanned by this set, then

gMinVol

d (n) ≤ 1

fMinMax

d (n)
.

For d ≥ 3, the best upper bound we have on gMinVol

d (n) is only slightly better than

the trivial bound [Brass 2005]; for lower bounds see [Barequet 2001; Lefmann

2000].

It should be possible to determine the exact function for fMaxMin

3
(n), or at

least the right multiplicative constant.

The problem of triangulating the d-cube with minimal number of simplices

was already mentioned in the beginning. It does not quite fall in the model here,

since the vertices of the cube are not in general position. The maximum number

of simplices in any triangulation of the d-cube are d!, by the volume argument

used above, and this number can be reached easily. The minimum number of

simplices is known to be between

1

2
√

d+1

(

6

d+1

)d/2

d! and (0.816)dd!

(see [Smith 2000] and [Orden and Santos 2003], respectively); so the gap between

upper an lower bound is still enormous, of order 2Θ(d log d).
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The Carpenter’s Ruler Folding Problem

GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

Abstract. A carpenter’s ruler is a ruler divided into pieces of different
lengths which are hinged where the pieces meet, which makes it possi-
ble to fold the ruler. The carpenter’s ruler folding problem, originally
posed by Hopcroft, Joseph and Whitesides, is to determine the smallest
case (or interval on the line) into which the ruler fits when folded. The
problem is known to be NP-complete. The best previous approximation
ratio achieved, dating from 1985, is 2. We improve this result and pro-
vide a fully polynomial-time approximation scheme for this problem. In
contrast, in the plane, there exists a simple linear-time algorithm which
computes an exact (optimal) folding of the ruler in some convex case of
minimum diameter. This brings up the interesting problem of finding the
minimum area of a convex universal case (of unit diameter) for all rulers
whose maximum link length is one.

1. Introduction

The carpenter’s ruler folding problem is: Given a sequence of rigid rods (links)

of various integral lengths connected end-to-end by hinges, to fold it so that its

overall folded length is minimum. It was first posed in [Hopcroft et al. 1985],

where the authors proved that the problem is NP-complete using a reduction

from the NP-complete problem PARTITION (see [Garey and Johnson 1979;

Cormen et al. 1990]). A simple linear-time factor 2 approximation algorithm,

as well as a pseudo-polynomial O(L2n) time dynamic programming algorithm,

where L is the maximum link length, where presented in [Hopcroft et al. 1985]

(see also [Kozen 1992]). A physical ruler is idealized in the problem, so that the

ruler is allowed to fold onto itself and lie along a line segment whose length is

the size of the case, and thus no thickness results from the segments which lie

on top of each other.

The decision problem can be stated as follows. Given a ruler whose links have

lengths l1, l2, . . . , ln, can it be folded so that its overall folded length is at most

k? Note that different orderings of the links can result in different minimum case

Keywords: approximation scheme, carpenter’s ruler, folding problems, universal case.
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lengths. For example if the ruler has links of lengths 6, 6 and 3 in this order,

the ruler can be folded into a case of length 6, but if the links occur in the order

6, 3 and 6, the optimal case-length is 9.

Our first result (Section 2) improves the 19-year old factor 2 approximation:

Theorem 1. There exists a fully polynomial-time approximation scheme for the

carpenter’s ruler folding problem.

A fully polynomial-time approximation scheme (FPTAS) for a minimization

problem is a family of algorithms Aε, for all ε > 0, such that Aε has run-

ning time polynomial in the size of the instance and 1/ε, and the output of Aε

is at most (1 + ε) times the optimum [Garey and Johnson 1979].

In Section 3, we study a natural, related question: the condition that the

folding must lie on a line is relaxed, by considering foldings in the plane with

the objective of minimizing the diameter of a convex case containing the folded

ruler. Here foldings allow for a free reconfiguration of the joint angles, with the

proviso that each link of the ruler maintains its length (the shape of the case is

unconstrained). In contrast with the problem on the line, this variant admits an

easy exact (optimal) solution which can be computed in linear time, using exact

arithmetic.

This brings up the interesting problem of finding the minimum area of a

convex case (of unit diameter) for all rulers whose maximum link length is one.

A closed curve of unit diameter in the plane is said to be a universal case for

all rulers whose maximum link length is one if each such ruler admits a planar

folding inside the curve. Our results are summarized in:

Theorem 2. There exists an O(n) algorithm for the carpenter’s ruler folding

problem in the plane with lengths l1, l2, . . . , ln, which computes a folding in a

convex case of minimum diameter L = max(l1, . . . , ln). The minimum area A

of a convex universal case (of unit diameter) for all rulers whose maximum link

length is one satisfies

3

8
≤ A ≤

π

3
−

√
3

4
.

The lower bound is 3

8
= 0.375 and the upper bound is ≈ 0.614. We believe the

latter is closer to the truth.

Other folding problems with links allowed to cross have been studied, for ex-

ample in [Hopcroft et al. 1984; Kantabutra 1992; Kantabutra 1997; Kantabutra

and Kosaraju 1986; van Kreveld et al. 1996], while linkage folding problems for

noncrossing links have been investigated for example in [Connelly et al. 2003;

Streinu 2000]. For other universal cover problems, such as the worm problem,

see [Croft et al. 1991; Klee and Wagon 1991] and the references therein.
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2. Proof of Theorem 1

We present two approximation schemes: one based on trimming the solution

space and one based on rounding and scaling. We start with notation and

observations which apply to both algorithms.

A folding F of the ruler can be specified by the position on the line of the

first (free) endpoint of the ruler (i.e., the free endpoint of the first link) and a

binary string of length n in which the i-th bit is −1 or 1 depending on whether

the i-th segment is folded to the left or right of its fixed endpoint (view this as

a sequential process). We call this binary string the folding vector.

For a given folding F , let the interval IF = [aF , bF ] be the smallest closed

interval which contains it (i.e., it contains all the segments of the ruler). We

refer to it as the folding interval. See also Figure 1.

Figure 1. A carpenter’s ruler with segments of length 1, 3, 2 and 4 folded so that

it fits into a case of length 5 (left). Its folding vector is (−1, 1, 1 − 1). Another

folding into a case of same length (right). Its folding vector is (1,−1, 1 − 1).

Denote by OPT the minimum folded length for a ruler whose lengths are

l1, l2, . . . , ln. A trivial lower bound— on which the 2-approximation algorithm is

based — is OPT ≥ L, where L = max(l1, l2, . . . , ln) is the maximum rod length.

We further exploit this observation and the 2-approximation algorithm given in

[Hopcroft et al. 1985].

Observation 1. An optimal solution can be computed by fixing the first segment

at [0, l1] (with the free endpoint of the first link at 0), and then computing all

foldings that extend it , whose intervals have length at most 2L (thus are included

in the interval [−2L + l1, 2L]).

Proof. Consider an optimal solution. Clearly the first segment can be fixed at

any given position of its free endpoint and at any of the two possible orientations.

Since there exist approximate solutions whose folding intervals have length at

most 2L, foldings with larger intervals do not need to be considered (are not

optimal). ˜

One can also see that the observation can be somewhat strengthened, since in

fact, any of the links can be fixed at a given position and orientation.

Observation 2. An optimal solution can be computed by first fixing one segment

of length L (if more exist , select one arbitrarily) at [0, L] and then computing all

foldings that extend it , whose intervals have length at most 2L (thus are included

in the interval [−L, 2L]).
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Consider a folding F , whose vector is (ε1, . . . , εn), for a given ruler l1, l2, . . . , ln.

For i = 1, . . . , n, let the partial folding Fi of the ruler l1, l2, . . . , li be that whose

folding vector is (ε1, . . . , εi).

For a folding F whose interval is [a, b], clearly the endpoint x of the last seg-

ment also lies in the same interval, i.e., x ∈ [a, b]. We say that F has parameters

a, b and x, or that F is given by a, b and x.

A FPTAS based on trimming the solution space. We now describe

the first algorithm which we note, has some similarity features with the fully

polynomial-time approximation scheme for the subset-sum problem [Ibarra and

Kim 1975] (see also [Cormen et al. 1990] for a more accessible presentation).

Let ε be the approximation parameter, where 0 < ε < 1. For simplicity as-

sume that m = 8n/ε is an integer. Set δ = Lε/(2n). Consider the parti-

tion of the interval [−2L, 2L] into m elementary intervals of length δ, given by

[−2L + jδ, −2L + (j + 1)δ), for j = 0, . . . , m− 1, except that the last interval in

this sequence, for j = m−1, is closed at both ends. For simplicity of exposition,

we consider the interval [−2L, 2L] instead of the interval [−2L+l1, 2L] mentioned

in Observation 1 (and then the expression of m above is an overestimate). An

interval triplet denoted (Ia, Ib, Ix), is any of the m3 ordered triples of elementary

intervals.

The algorithm iteratively computes a set of partial foldings Fi of the ruler

l1, l2, . . . , li, for i = 1, . . . , n, so that at most one partial folding per interval

triplet is maintained at the end of the i-th iteration. A partial folding whose

folding interval is [a, b], and the endpoint of the last segment at x is associated

with the interval triplet (Ia, Ib, Ix), where a ∈ Ia, b ∈ Ib and x ∈ Ix. If at step

i more partial foldings per interval triplet are computed, all but one of them

are discarded; the one selected for the next step is chosen arbitrarily from those

computed.

F1 consists of one (partial) folding, given by a′

1 = 0, b′1 = l1, x′

1 = l1. Let

i ≥ 2. In the i-th iteration, the algorithm computes from the set Fi−1 of partial

foldings of the first i − 1 links, all the partial foldings of the first i links that

extend foldings in Fi−1, and whose intervals are included in the interval [−2L, 2L]

(there are at most 2|Fi−1| of these). It then ”trims” this set to obtain Fi, so

that if an interval triplet has more partial foldings associated with it, exactly

one is maintained for the next iteration. Clearly, |Fi| ≤ m3 at the end of the i-th

iteration, for any i = 1, . . . , n. Note that this bound holds during the execution

of each iteration as well. After the last iteration n, the algorithm outputs a

folding of the ruler (one in Fn) whose interval has minimum length.

Let now F be an optimal folding as specified in Observation 1, whose vector

is (ε1, . . . , εn). We have ε1 = 1. For i = 1, . . . , n, let the partial folding Fi have

the (folding) interval [ai, bi] and the endpoint of the last segment at xi ∈ [ai, bi].

We have a1 = 0, b1 = l1 and x1 = l1, and also xi =
∑i

j=1
εj lj , for i = 1, . . . , n.
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Lemma 1. For i = 1, . . . , n, the algorithm computes a partial folding F ′

i ∈ Fi

of the ruler l1, l2, . . . , li, whose interval is [a′

i, b
′

i] and the endpoint of the last

segment is at x′

i, so that

(A)

(B)

(X)

|ai − a′

i| ≤ iδ,

|bi − b′i| ≤ iδ,

|xi − x′

i| ≤ iδ.

Proof. We proceed by induction. The basis i = 1 is clear. Let i ≥ 2, and

assume that a partial folding F ′

i−1 of the ruler l1, l2, . . . , li−1, is computed by the

algorithm after i − 1 iterations, as specified. We thus have

|ai−1 − a′

i−1| ≤ (i − 1)δ,

|bi−1 − b′i−1| ≤ (i − 1)δ,

|xi−1 − x′

i−1| ≤ (i − 1)δ.

The partial folding Fi (corresponding to F ) has parameters

ai = min(ai−1, xi−1 + εili),

bi = max(bi−1, xi−1 + εili),

xi = xi−1 + εili.

Consider the partial folding F ′′

i obtained from F ′

i−1 (i.e., which extends F ′

i−1)

so that its i-th bit in the folding vector is εi (the same as in Fi). Note that

the algorithm computes F ′′

i in the first part of iteration i (before trimming). Its

parameters are

a′′

i = min(a′

i−1, x
′

i−1 + εili),

b′′i = max(b′i−1, x
′

i−1 + εili),

x′′

i = x′

i−1 + εili.

Let the interval triplet which contains F ′′

i be (Ia, Ib, Ix). The algorithm dis-

cards all but one partial folding in this interval triplet, say F ′

i , with parameters

a′

i, b
′

i, x
′

i. This implies that

|a′

i − a′′

i | ≤ δ,

|b′i − b′′i | ≤ δ,

|x′

i − x′′

i | ≤ δ.

The lemma follows once we show that

(A′)

(B′)

(X′)

|ai − a′′

i | ≤ (i − 1)δ,

|bi − b′′i | ≤ (i − 1)δ,

|xi − x′′

i | ≤ (i − 1)δ,
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since then, the partial folding F ′

i which is computed by the algorithm, satisfies

the imposed conditions after step i, e.g. for (A),

|ai − a′

i| ≤ |ai − a′′

i | + |a′′

i − a′

i| ≤ (i − 1)δ + δ = iδ.

(B) and (X) follow in a similar way.

We will show that (A′) holds by examining four cases, depending on how the

minimums for ai and for a′′

i are achieved. The proof of (B’) is very similar (with

max taking the place of min) and will be omitted.

To prove (A′), recall that

|a′′

i − ai| = |min(a′

i−1, x
′

i−1 + εili) − min(ai−1, xi−1 + εili)|.

Put ∆ = |a′′

i − ai|. We distinguish four cases.

Case 1: min(a′

i−1, x
′

i−1 +εili) = a′

i−1 and min(ai−1, xi−1 +εili) = ai−1. Then

using the induction hypothesis,

∆ = |a′

i−1 − ai−1| ≤ (i − 1)δ.

Case 2: min(a′

i−1, x
′

i−1 + εili) = x′

i−1 + εili and min(ai−1, xi−1 + εili) =

xi−1 + εili. Similarly, the induction hypothesis yields

∆ = |x′

i−1 − xi−1| ≤ (i − 1)δ.

Case 3: min(a′

i−1, x
′

i−1 + εili) = a′

i−1 and min(ai−1, xi−1 + εili) = xi−1 + εili.

Note that in this case εi = −1. We have two subcases.

Case 3.1: xi−1 − li ≤ a′

i−1. Recall that a′

i−1 ≤ x′

i−1 − li. We have

xi−1 − li ≤ a′

i−1 ≤ x′

i−1 − li.

Then

∆ = |a′

i−1 − (xi−1 − li)| ≤ |x′

i−1 − li − (xi−1 − li)| ≤ (i − 1)δ,

where the last in the chain of inequalities above is implied by the induction

hypothesis.

Case 3.2: a′

i−1 ≤ xi−1 − li. Recall that xi−1 − li ≤ ai−1. We have

a′

i−1 ≤ xi−1 − li ≤ ai−1.

Then

∆ = |a′

i−1 − (xi−1 − li)| ≤ |a′

i−1 − ai−1| ≤ (i − 1)δ,

again by the induction hypothesis.

Case 4: min(a′

i−1, x
′

i−1 + εili) = x′

i−1 + εili and min(ai−1, xi−1 + εili) = ai−1.

Note that in this case εi = −1. Thus x′

i−1 − li ≤ a′

i−1 and ai−1 ≤ xi−1 − li. We

have two subcases.
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Case 4.1: x′

i−1 − li ≤ ai−1. Then

∆ = |ai−1 − (x′

i−1 − li)| ≤ |xi−1 − li − (x′

i−1 − li)| ≤ (i − 1)δ.

Case 4.2: ai−1 ≤ x′

i−1 − li. Then

∆ = |(x′

i−1 − li) − ai−1| ≤ |a′

i−1 − ai−1| ≤ (i − 1)δ.

This concludes the proof of (A′).

We also clearly have

|xi − x′′

i | = |(xi−1 + εili) − (x′

i−1 + εili)| = |xi−1 − x′

i−1| ≤ (i − 1)δ,

which proves (X’) and concludes the proof of the lemma. ˜

Lemma 1 for i = n implies that the algorithm computes a folding F ′ of the ruler

whose interval is [a′, b′], so that if F is an optimal folding whose interval is [a, b],

|a − a′| ≤ nδ = Lε/2,

|b − b′| ≤ nδ = Lε/2.

Since the algorithm selects in the end a folding whose interval length is minimum,

it outputs one whose interval length is not more than

|b′ − a′| ≤ |b − a| + εL ≤ (1 + ε)OPT.

The last in the chain of inequalities above follows from the lower bound b− a =

OPT ≥ L.

It takes O(log L) time to compute the three parameters for each partial fold-

ing, and O(log L) space to store this information. Since there are n iterations,

and each takes O(m3 log L) time, the total running time is O(nm3 log L)) =

O(n4(1/ε)3 log L). As each (partial) folding can be stored in O(n log L) space,

the total space is also O(n4(1/ε)3 log L).

Remark 1. Using Observation 2, one can modify the algorithm so that m =

6n/ε (versus m = 8n/ε), which leads to maintaining a somewhat smaller number

of interval triplets.

A FPTAS based on rounding and scaling. We apply the rounding and scal-

ing technique, inspired by the method used to obtain an approximation scheme

for Knapsack (from [Ibarra and Kim 1975]; see also [Garey and Johnson 1979,

pages 135–137]). The algorithm is:

(i) Set

l̄i =
⌊

li
L

4n
1

ε

⌋

.

Call the new instance of the carpenter’s ruler folding problem with lengths l̄i
the reduced instance.

(ii) Use the pseudo-polynomial algorithm in [Hopcroft et al. 1985] to solve ex-

actly the reduced instance. Output the same folding vector.
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Note that the maximum length of the reduced instance is L̄ = b4n1

ε
c and there-

fore the running time of the algorithm is

O(n log L + L̄2n) = O(n log L + n3(1/ε)2).

We refine the notation as follows: given folding F whose vector is (εF
1 , . . . , εF

n ),

set xF
0 = 0 and for i = 1, . . . , n, set xF

i =
∑i

j=1
εF

j lj . As before aF = minn
i=0 xF

i

and bF = maxn
i=0 xF

i , and note that the length of F is bF − aF . Define x̄F
i , āF

and b̄F in the same way using the length function l̄ instead of l. Let

qi :=
li
L

4n
1

ε
−

⌊

li
L

4n
1

ε

⌋

.

Note that 0 ≤ qi < 1 and li = (l̄i + qi)Lε/(4n).

Let A be any folding for the original instance and B be an optimum folding

for the reduced instance. We have:

xB
i =

i
∑

j=1

εB
i li =

i
∑

j=1

εB
i (l̄i + qi)

Lε

4n
=

Lε

4n

(

x̄B
i +

i
∑

j=1

εB
i qi

)

.

Using 0 ≤ qi < 1, we obtain

xB
i ≤

Lε

4n
(x̄B

i + n) ≤
Lε

4n
x̄B

i +
Lε

4
,

and therefore

bB ≤
Lε

4n
b̄B +

Lε

4
.

Similarly we have:

xB
i ≥

Lε

4n
x̄B

i −
Lε

4
,

and consequently

aB ≥
Lε

4n
āB −

Lε

4
.

Using the fact that B has optimum length for l̄, and the inequality bA−aA ≥ L,

we get:

bB − aB ≤
Lε

4n
(b̄B − āB) +

Lε

2
≤

Lε

4n
(b̄A − āA) +

ε

2
(bA − aA). (2–1)

Further:

x̄A
i =

i
∑

j=1

εA
i l̄i =

i
∑

j=1

εA
i

(

li
L

4n
1

ε
− qi

)

=
4n

Lε
xA

i −
i

∑

j=1

εA
i qi ≤

4n

Lε
xA

i + n,

and therefore

b̄A ≤
4n

Lε
bA + n. (2–2)

Similarly we have:

x̄A
i =

4n

Lε
xA

i −

i
∑

j=1

εA
i qi ≥

4n

Lε
xA

i − n,
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and consequently

āA ≥
4n

Lε
aA − n. (2–3)

Plugging Equations (2–2) and (2–3) into (2–1) and using again the inequality

bA − aA ≥ L, we obtain

bB − aB ≤
Lε

4n

(

4n

Lε
bA + n −

(

4n

Lε
aA − n

)

)

+
ε

2
(bA − aA) ≤ (bA − aA)(1 + ε).

If we now let A be an optimal folding for the original instance, we find that

bB − aB ≤ (1 + ε)OPT; this completes the second proof of Theorem 1.

3. Folding in the Plane: Proof of Theorem 2

For the purposes of this section, a folding of the ruler is a polygonal chain

of n segments (links), numbered from 1 to n, lying in the plane. Let q0 be the

free endpoint of the first link, and q1 be its other endpoint. Call v1 = q0q1 the

vector of link 1. Inductively define (q2, . . . , qn and) v2, . . . , vn, the vectors of

links 2, . . . , n. The joint angle between links i and i + 1 is the angle ∈ [0, π]

between vi and vi+1. The angle is counterclockwise if it describes a left turn,

and clockwise if it describes a right turn. Angles of 0 and π are considered both

left and right turns.

It is obvious that the diameter of any convex case in which the ruler is folded is

at least L, where L is the maximum link length. The following simple linear-time

algorithm computes a folding of the ruler, so that all joint angles in (0, π] are

clockwise (or counterclockwise). The algorithm is certainly implicit in [Hopcroft

et al. 1985], where an extensive analysis of reconfiguration problems for rulers

confined in discs is made.

Fix arbitrarily a disk D of diameter L, whose boundary is the circle C. Fix

the first free endpoint of the ruler (i.e., the free endpoint of the first link) at

some point p0 of C. For i = 1, . . . , n, iteratively fix the next point of the ruler

(i.e., the next endpoint of its i-th link) at one of the at most two intersection

points of C with the circle with center at pi−1 and radius li. One can also

select the appropriate intersection point at each step, so that all joint angles in

(0, π] are clockwise (or counterclockwise). An illustration appears in Figure 2.

Consider now the closed convex curve R, of unit diameter, obtained from a

Reuleaux triangle, by replacing one of the circular arcs with a straight segment,

as in Figure 3. (A Reuleaux triangle can be obtained from an equilateral triangle

ABC by joining each pair of its vertices by a circular arc whose center is at the

third vertex; see [Yaglom and Boltyanskĭı 1961].) The above algorithm can be

modified to compute a folding of a ruler with maximum link length 1 inside R:

Fix the first free endpoint of the ruler at some point p0 of the circular arc AB.

Iteratively fix the next point of the ruler at some intersection point (it exists!)

with the open curve BAC. The area of R is 1

3
π − 1

4

√
3 ≈ 0.614, as claimed.
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p0

l1

l2

l3

l4

l5

Figure 2. A carpenter’s ruler with five links folded so that it fits in a circular

case of diameter L, where L = l3 is the maximum link-length. All joint angles

in this folding are counterclockwise (i.e., left turns).

B C

A

l1

l3

l4

l2

Figure 3. The closed curve R obtained from a Reuleaux triangle, and a ruler

with four links folded inside; the length of l3 is 1.

It remains to prove the lower bound in Theorem 2. Consider a 3-link ruler

ABCD with lengths AB = 1, BC = x < 1 and CD = 1, where the choice of

the length x = 1

2
(
√

7 − 1) ≈ 0.8229 of the middle link is explained below. We

will show that the area of any convex case for it is at least 3

8
. In any folding

in which the unit length links do not intersect, the diameter of the case exceeds

one. Assume therefore that they intersect (see Figure 4). The area of BCAD

(i.e., the convex hull of the four endpoints of the links) is

ab sin α

2
+

(1 − a)(1 − b) sin α

2
+

a(1 − b) sin α

2
+

(1 − a)b sin α

2
=

sin α

2
,

where α = \BOD.

For a given x, the area is minimized when either A = D so that the folding

forms an isosceles triangle (small x), or when AD is parallel to BC and AD = 1
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A

B C

D

Oa b

1 − a1 − b

x

Figure 4. A ruler with link-lengths 1, x and 1.

(large x). The area of the isosceles triangle is
√

(

1 +
x

2

)(x

2

) (x

2

)(

1 −
x

2

)

.

The area of the trapezoid BCAD is

1 + x

2

√

1 −
(

1 + x

2

)2

.

Now choose x to balance the two areas. A routine calculation gives

x =

√
7 − 1

2
,

and the corresponding area is 3/8. This completes the proof of Theorem 2.

We conclude with these questions: Is the curve R a convex universal case of

minimum area? If not, what is the minimum area of such a universal case? Does

convexity of the case make any difference?
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1. Introduction

Folding and unfolding problems have been implicit since Albrecht Dürer [1525],

but have not been studied extensively in the mathematical literature until re-

cently. Over the past few years, there has been a surge of interest in these

problems in discrete and computational geometry. This paper gives a brief sur-

vey of most of the work in this area. Related, shorter surveys are [Connelly and

Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000].

We are currently preparing a monograph on the topic [Demaine and O’Rourke

≥ 2005].

In general, we are interested in how objects (such as linkages, pieces of paper,

and polyhedra) can be moved or reconfigured (folded) subject to certain con-

straints depending on the type of object and the problem of interest. Typically

the process of unfolding approaches a more basic shape, whereas folding compli-

cates the shape. We define the configuration space as the set of all configurations

or states of the object permitted by the folding constraints, with paths in the

space corresponding to motions (foldings) of the object.

This survey is divided into three sections corresponding to the type of object

being folded: linkages, paper, or polyhedra. Unavoidably, areas with which we

are more familiar or for which there is a more extensive literature are covered

in more detail. For example, more problems have been explored in linkage and

paper folding than in polyhedron folding, and our corresponding sections reflect

this imbalance. On the other hand, this survey cannot do justice to the wealth

of research on protein folding, so only a partial survey appears in Section 2.5.

2. Linkages

2.1. Definitions and fundamental questions. A linkage or framework con-

sists of a collection of rigid line segments (bars or links) joined at their endpoints

(vertices or joints) to form a particular graph. A linkage can be folded by mov-

ing the vertices in R
d in any way that preserves the length of every bar. Unless

otherwise specified, we assume the vertices to be universal joints, permitting the

full angular range of motions. Restricted angular motions will be discussed in

Section 2.5.2.

Linkages have been studied extensively in the case that bars are permitted to

cross; see, for example, [Hopcroft et al. 1984; Jordan and Steiner 1999; Kapovich

and Millson 1995; Kempe 1876; Lenhart and Whitesides 1995; Sallee 1973;

Whitesides 1992]. Such linkages can be very complex, even in the plane. Kempe

[1876] suggested an incomplete argument to show that a planar linkage can be

built so that a vertex traces an arbitrary polynomial curve—there is a linkage

that can “sign your name.” It was not until recently that Kempe’s claim was

established rigorously by Kapovich and Millson [2002]. Hopcroft, Joseph, and

Whitesides [Hopcroft et al. 1984] showed that deciding whether a planar linkage
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can reach a particular configuration is PSPACE-complete. Jordan and Steiner

[1999] proved that there is a linkage whose configuration space is homeomorphic

to an arbitrary compact real algebraic variety with Euclidean topology, and thus

planar linkages are equivalent to the theory of the reals (solving systems of poly-

nomial inequalities over reals). On the other hand, for a linkage whose graph is

just a cycle, all configurations can be reached in Euclidean space of any dimen-

sion greater than 2 by a sequence of simple motions [Lenhart and Whitesides

1995; Sallee 1973], and in the plane there is a simple restriction characterizing

which polygons can be inverted in orientation [Lenhart and Whitesides 1995].

Recently there has been much work on the case that the linkage must remain

simple, that is, never have two bars cross.1 The remainder of this survey assumes

this noncrossing constraint. Such linkage folding has applications in hydraulic

tube bending [O’Rourke 2000] and motion planning of robot arms. There are

also connections to protein folding in molecular biology, which we touch upon in

Section 2.5. See also [Connelly et al. 2003; O’Rourke 2000; Toussaint 1999a] for

other surveys on linkage folding without crossings.

Perhaps the most fundamental question one can ask about folding linkages

is whether it is possible to fold between any two configurations. That is, is

there a folding between any two simple configurations of the same linkage (with

matching graphs, combinatorial embeddings, and bar lengths) while preserving

the bar lengths and not crossing any bars during the folding? Because folding

motions can be reversed and concatenated, this fundamental question is equiv-

alent to whether every simple configuration can be folded into some canonical

configuration, a configuration whose definition depends on the type of linkage

under consideration.

We concentrate here on allowing all continuous motions that maintain sim-

plicity, but we should mention that different applications often further constrain

the permissible motions in various ways. For example, hydraulic tube bending

allows only one joint to bend at any one time, and moreover the joint angle can

never reverse direction. Such constraints often drastically alter what is possible.

See, for example, [Arkin et al. 2003].

In the context of linkages whose edges cannot cross, three general types of

linkages are commonly studied, characterized by the structure of their associ-

ated graphs (see Figure 1): a polygonal arc or open polygonal chain (a single

path); a polygonal cycle, polygon, or closed polygonal chain (a single cycle); and

a polygonal tree (a single tree).2 The canonical configuration of an arc is the

straight configuration, all vertex angles equal to 180◦. A canonical configuration

1Typically, bars are allowed to touch, provided they do not properly cross. However, in-
sisting that bars only touch at common endpoints does not change the results.

2More general graphs have been studied largely in the context of allowing bars to cross,
exploring either aspects of the configurations space (e.g., the Kempe work mentioned earlier),
or the conditions which render the graph rigid. Graph rigidity is a rich topic, not detailed
here, which also plays a role in the noncrossing-bar scenario in Section 2.2.1.



170 ERIK D. DEMAINE AND JOSEPH O’ROURKE

?

?

?

Figure 1. The three common types of linkages and their associated canonical

configurations. From top to bottom, a polygonal arc
?
→ the straight configu-

ration, a polygonal cycle
?
→ a convex configuration, and a polygonal tree

?
→ a

(nearly) flat configuration.

of a cycle is a convex configuration, planar and having all interior vertex angles

less than or equal to 180◦. It is relatively easy to show that convex configura-

tions are indeed “canonical” in the sense that any one can be folded into any

other, a result that first appeared in [Aichholzer et al. 2001]. Finally, a canonical

configuration of a tree is a flat configuration: all vertices lie on a horizontal line,

and all bars point “rightward” from a common root. Again it is easy to fold any

flat configuration into any other [Biedl et al. 2002b].

The fundamental questions thus become whether every arc can be straight-

ened, every cycle can be convexified, and every tree can be flattened. The answers

to these questions depend on the dimension of the space in which the linkage

starts, and the dimension of the space in which the linkage may be folded. Over

the past few years, this collection of questions has been completely resolved:

Can all arcs be straightened?

2D: Yes [Connelly et al. 2003]

3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]

4D+: Yes [Cocan and O’Rourke 2001]

Can all cycles be convexified?

2D: Yes [Connelly et al. 2003]

3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]

4D+: Yes [Cocan and O’Rourke 2001]

Can all trees be flattened?

2D: No [Biedl et al. 2002b]

3D: No (from arcs)

4D+: Yes [Cocan and O’Rourke 2001]
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The answers for arcs and cycles are analogous to the existence of knots tied

from one-dimensional string: nontrivial knots exist only in 3D. In contrast, the

situation for trees presents an interesting difference in 2D: while trees in the plane

are topologically unknotted, they can be geometrically locked. This observation

is some evidence for the belief that the fundamental problems are most difficult

in 2D.

The next three subsections describe the historical progress of these results

and other results closely related to the fundamental questions. Along the way,

Sections 2.3.1–2.3.4 describe several special forms of linkage folding arising out of

a problem posed by Erdős in 1935; and Section 2.3.8 considers the generalization

of multiple chains. Finally, Section 2.5 discusses the connections between linkage

folding and protein folding, and describes the most closely related results and

open problems.

2.2. Fundamental questions in 2D. Section 2.2.1 describes the development

of the theorems for straightening arcs and convexifying cycles in 2D. Section 2.2.2

discusses the contrary result that not all trees can be flattened.

2.2.1. The carpenter’s rule problem: polygonal chains in 2D. The questions of

whether every polygonal arc can be straightened and every polygonal cycle can

be convexified in the plane have arisen in many contexts over the last quarter

of a century.3 In the discrete and computational geometry community, the arc-

straightening problem has become known as the carpenter’s rule problem because

a carpenter’s rule folds like a polygonal arc.

Most people’s initial intuition is that the answers to these problems are yes,

but describing a precise general motion proved difficult. It was not until 2000

that the problems were solved by Connelly, Demaine, and Rote [Connelly et al.

2003], with an affirmative answer. Figure 2 shows an example of the motion

resulting from this theorem.

More generally, the result in [Connelly et al. 2003] shows that a collection of

nonintersecting polygonal arcs and cycles in the plane may be simultaneously

folded so that the outermost arcs are straightened and the outermost cycles are

convexified. The “outermost” proviso is necessary because arcs and cycles can-

not always be straightened and convexified when they are contained in other

cycles. The key idea for the solution, introduced by Günter Rote, is to look for

expansive motions in which no vertex-to-vertex distance decreases. Bars can-

not cross before getting closer, so expansiveness allows us to ignore the difficult

nonlocal constraint that bars must not cross. Expansiveness brings the problem

into the areas of rigidity theory and tensegrity theory, which study frameworks

of rigid bars, unshrinkable struts, and unexpandable cables. Tools from these

3Posed independently by Stephen Schanuel and George Bergman in the early 1970’s, Ulf
Grenander in 1987, William Lenhart and Sue Whitesides in 1991, and Joseph Mitchell in 1992;
see [Connelly et al. 2003].
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Figure 2. Two views of convexifying a “doubled tree” linkage. The top snap-

shots are all scaled the same, and the bottom snapshots are rescaled to improve

visibility.

areas helped show that, infinitesimally, arcs and cycles can be unfolded ex-

pansively. These infinitesimal motions are combined by flowing along a vector

field defined implicitly by an optimization problem. As a result, the motion is

piecewise-differentiable (C1). In addition, any symmetries present in the initial

configuration of the linkage are preserved throughout the motion. Similar tech-

niques show that the area of each cycle increases by this motion and furthermore

by any expansive motion [Connelly et al. 2003].

Since the original theorem, two additional algorithms have been developed for

unfolding polygonal chains. Figure 3 provides a visual comparison of all three

algorithms.

Ileana Streinu [2000] demonstrated another expansive motion for straight-

ening arcs and convexifying polygons that is piecewise-algebraic, composed of a

polynomial-length sequence of mechanisms, each with a single degree of freedom.

In this sense the motion is easier to implement “mechanically.” It is also possible

to compute the algebraic curves involved, though the running time is exponen-

tial in n. This method also elucidates an interesting combinatorial structure to

2D linkage unfolding through “pseudotriangulations,” which have subsequently

received much attention in computational geometry (see [O’Rourke 2002; Rote

2003], for example).

Cantarella, Demaine, Iben, and O’Brien [Cantarella et al. 2004] gave an

energy-based algorithm for straightening arcs and convexifying polygons. This

algorithm follows the downhill gradient of an appropriate energy function, cor-

responding roughly to the intuition of filling the polygon with air. The resulting

motion is not expansive, essentially averaging out the strut constraints. On the

other hand, the existence of the downhill gradient relies on the existence of ex-

pansive motions from [Connelly et al. 2003], by showing that the latter decrease

energy. The motion avoids self-intersection not through expansiveness but by

designing the energy function to approach +∞ near an intersecting configura-
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(a) Via convex programming [Connelly et al. 2003]

(b) Via pseudotriangulations [Streinu 2000]. Pinned vertices are circled.

(c) Via energy minimization [Cantarella et al. 2004].

Figure 3. Convexifying a common polygon via all three convexification methods.

tion; any downhill flow avoids such spikes. The result is a C∞ motion, easily

computed as a piecewise-linear motion in angle space. The number of steps in

the piecewise-linear motion is polynomial in two quantities: in the number of

vertices n, and in the ratio between the maximum edge length and the initial

minimum distance between a vertex and an edge.

2.2.2. Trees in 2D. It was shown in [Biedl et al. 2002b] that not all trees can be

flattened in the plane. The example there consists of at least 5 petals connected

at a central high-degree vertex. The version shown in Figure 4 uses 8 petals.

Each petal is an arc of three bars, the last of which is “wedged” into the center

vertex.

Intuitively, the argument that the tree is locked is as follows. No petal can be

straightened unless enough angular room has been made. But no petal can be

reduced to occupy less angular space by more than a small positive number unless

the petal has already been straightened. This circular dependence implies that

no petal can be straightened, so the tree is locked. The details of this argument,

in particular obtaining suitable tolerances for closeness, are somewhat intricate

[Biedl et al. 2002b]. The key is that each petal occupies a wedge of space whose

angle is less than 90◦, which is why at least 5 petals are required.
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6→

Figure 4. The locked tree on the left, from [Biedl et al. 2002b], cannot be

reconfigured into the nearly flat configuration on the right. (Figure 1 of [Biedl

et al. 2002b].)

Figure 5. The locked tree from [Connelly et al. 2002]. Based on Figure 1(c) of

[Connelly et al. 2002].

This tree remains locked if we replace the central degree-5 (or higher) vertex

with multiple degree-3 vertices connected by very short bars [Biedl et al. 2002b,

full version]. Connelly, Demaine, and Rote [Connelly et al. 2002] showed that

the tree in Figure 5, with a single degree-3 vertex and the remaining vertices

having degrees 1 and 2, is locked, proving tightness of the arc-and-cycle result in

[Connelly et al. 2003]. In [Connelly et al. 2002] an extension to rigidity/tensegrity

theory is given that permits establishing via linear programming that many

classes of planar linkages (e.g., trees) are locked. In particular, this method is

used to give short proofs that the tree in Figure 4 and the tree with one degree-3

vertex are strongly locked, in the sense that sufficiently small perturbations of

the vertex positions and bar lengths result in a tree that cannot be moved more

than ε in the configuration space for any ε > 0.
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(a)

(b)

Figure 6. (a) Flipping a polygon until it is convex. Pockets are shaded. (b) The

first flip shown in three dimensions.

2.3. Fundamental questions in 3D. Linkage folding in 3D was initiated ear-

lier, by Paul Erdős [1935]. His problem and its solution are described in Section

2.3.1. Sections 2.3.2–2.3.4 consider various extensions of this problem. All of

this work deals with linkages that start in the plane, but fold through 3D. The

more general situation, an arbitrary linkage starting in 3D, is addressed in Sec-

tion 2.3.6. As this problem proves unsolvable in general, additional special cases

are addressed in Section 2.3.7. Finally, Section 2.3.8 considers the generalized

problem of multiple interlocking chains.

2.3.1. Flips for planar polygons in 3D. The roots of linkage folding go back to

[Erdős 1935], a problem posed in the American Mathematics Monthly. Define

a pocket of a polygon to be a region bounded by a subchain of the polygon

edges, and define the lid of the pocket to be the edge of the convex hull con-

necting the endpoints of that subchain. Every nonconvex polygon has at least

one pocket. Erdős defined a flip as a rotation of a pocket’s chain of edges into

3D about the pocket lid by 180◦, landing the subchain back in the plane of the

polygon, such that the polygon remains simple (i.e., non-self-intersecting); see

Figure 6. He asked whether every polygon may be convexified by a finite number

of simultaneous pocket flips.

The answer was provided in a later issue of the Monthly [Nagy 1939]. First,

Nagy observed that flipping several pockets at once could lead to self-crossing;

see Figure 7b. However, restricting to one flip at a time, Nagy proved that a

finite number of flips suffice to convexify any polygon; see Figure 6 for a three-

step example. This beautiful result has been rediscovered and reproved several
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Figure 7. Flipping multiple pockets simultaneously can lead to crossings [Nagy

1939].

Figure 8. Quadrangles can require arbitrarily many flips to convexify [Grünbaum

1995; Toussaint 1999b; Biedl et al. 2001].

times, as uncovered by Grünbaum and Toussaint and detailed in their histories

of the problem [Grünbaum 1995; Toussaint 1999b]; only recently has a subtle

oversight in Nagy’s proof been corrected.

Unfortunately, the number of required flips can be arbitrarily large in terms

of the number of vertices, even for a quadrangle. This fact was originally proved

by Joss and Shannon (1973); see [Grünbaum 1995; Toussaint 1999b; Biedl et al.

2001]. Figure 8 shows the construction. By making the vertical edge of the

quadrangle very short and even closer to the horizontal edge, the angles after

the first flip approach the mirror image of the original quadrangle, and hence

the number of required flips approaches infinity.

Mark Overmars4 posed the still-open problem of bounding the number of flips

in terms of natural measures of geometric closeness such as the diameter (max-

imum distance between two vertices), sharpest angle, or the minimum feature

size (minimum distance between two nonincident edges).

Another open problem is to determine the complexity of finding the shortest

or longest sequence of flips to convexify a given polygon. Weak NP-hardness

has been established for the related problem of finding the longest sequence of

flipturns [Aichholzer et al. 2002].

4Personal communication, February 1998.
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2.3.2. Flips in nonsimple polygons. Flips can be generalized to apply to nonsim-

ple polygons: consider two vertices adjacent along the convex hull of the polygon,

splitting the polygon into two chains, and rotate one (either) chain by 180◦ with

respect to the other chain about the axis through the two vertices. Simplicity

may not be preserved throughout the motion, just as it may not hold in the initial

or final configuration. The obvious question is whether every nonsimple polygon

can be convexified by a finite sequence of such flips. Grünbaum and Zaks [1998]

proved that if at each step we choose the flip that maximizes the resulting sum

of distances between all pairs of vertices, then this metric increases at each flip,

and the polygon becomes convex after finitely many flips. Without sophisticated

data structures, computing these flips requires Ω(n2) time per flip. Toussaint

[1999b] proved that a different sequence of flips convexifies a nonsimple polygon,

and this sequence can be computed in O(n) time per flip. More recently, it has

been established5 that every sequence of flips eventually convexifies a nonsimple

polygon. We expect that each flip can be executed in polylogarithmic amortized

time using dynamic convex-hull data structures as in [Aichholzer et al. 2002].6

2.3.3. Deflations. A deflation [Fevens et al. 2001; Wegner 1993; Toussaint 1999b]

is the reverse of a flip, in the sense that a deflation of a polygon should result in

a simple polygon that can be flipped into the original polygon. More precisely, a

deflation is a rotation by 180◦ about a line meeting the polygon at two vertices

and nowhere else, thus separating the chain into two subchains, such that the

rotation does not cause any intersections. Hence, after the deflation, this line

becomes a line of support (a line extending a convex-hull edge). Wegner [1993]

proposed the notion of deflations, and their striking similarity to flips led him

to conjecture that every polygon can be deflated only a finite number of times.

Surprisingly, this is not true: Fevens, Hernandez, Mesa, Soss, and Toussaint

[Fevens et al. 2001] characterized a class of quadrangles whose unique deflation

leads to another quadrangle in the class, thus repeating ad infinitum.

2.3.4. Other variations. Erdős flips have inspired several directions of research

on related notions, including pivots, pops, and flipturns. See [Toussaint 1999b]

for a survey of this area, with more recent work on flipturns in [Ahn et al. 2000;

Aichholzer et al. 2002; Biedl 2005].

2.3.5. Efficient algorithms for planar linkages in 3D. Motivated by the in-

efficiency of the flip algorithm, Biedl et al. [2001] developed an algorithm to

convexify planar polygons by motions in 3D using a linear number of simple

moves. The essence of this algorithm is to lift the polygon, bar by bar, at all

times maintaining a convex chain (or arch) lying in a plane orthogonal to the

plane containing the polygon; see Figure 9. The details of the algorithm are

significantly more involved than the overarching idea.

5Personal communication with Therese Biedl, May 2001.
6Personal communication with Jeff Erickson.
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Figure 9. A planar polygon partially lifted into a convex arch lying in a vertical

plane (shaded). (Based on Figure 6 of [Biedl et al. 2001].)

A second linear-time algorithm, which is in some ways conceptually simpler,

was developed by Aronov, Goodman, and Pollack [Aronov et al. 2002]. Their

algorithm at all times maintains the arch as a convex quadrilateral. At each

step, the algorithm lifts two edges, forming a “twisted trapezoid,” incorporates

the trapezoid into the arch, makes the arch planar, and reduces it back to a

quadrilateral. Avoiding intersections during the lifting phase requires a delicate

argument.

In contrast to convexifying a cycle, it is relatively easy to straighten a polyg-

onal arc lying in a plane, or on the surface of a convex polyhedron, by motions

in 3D [Biedl et al. 2001]. For an arc in a plane, the basic idea is to pull the

arc up into a vertical line. For a convex surface, the same idea is followed, but

with the orientation of the line changing to remain normal to the surface. The

algorithm lifts each bar in turn, from one end of the arc to the other, at all

times maintaining a prefix of the arc in a line normal to the current facet of the

polyhedron. Each lifting motion causes two joint angles to rotate, so that the

lifted prefix remains normal to the facet at all times, while the remainder of the

chain remains in its original position. Whenever the algorithm reaches a vertex

that bridges between two adjacent facets, it rotates the prefix to bring it normal

to the next facet. This algorithm also generalizes to flattening planar trees and

trees on the surface of a convex polyhedron, via motions in 3D.

2.3.6. Almost knots. What if the linkage starts in an arbitrary position in 3D

instead of in a plane? In general, a polygonal arc or an unknotted polygonal cycle

in 3D cannot always be straightened or convexified [Cantarella and Johnston

1998; Toussaint 2001; Biedl et al. 2001] (page 170). Figure 10 shows an example

of a locked arc in 3D. Provided that each of the two end bars is longer than the

sum s of the middle three bar lengths, the ends of the chain cannot get close

enough to the middle bars to untangle the chain (sometimes called the “knitting
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Figure 10. A locked polygonal arc in 3D with 5 bars [Cantarella and Johnston

1998; Biedl et al. 2001].

needles” example). More precisely, because the ends of the chain remain outside

a sphere with radius s and centered at one of the middle vertices, we can connect

the ends of the chain with an unknotted flexible cord outside the sphere, and

any straightening motion unties the resulting knot, which is impossible without

crossings [Biedl et al. 2001].

Alt, Knauer, Rote, and Whitesides [Alt et al. 2004] proved that it is PSPACE-

hard to decide whether a 3D polygonal arc (or a 2D polygonal tree) can be

reconfigured between two specified configurations. On the other hand, it remains

open to determine the complexity of deciding whether a polygonal arc can be

straightened. The next two sections describe special cases of 3D chains, more

general than planar chains, that can be straightened and convexified.

2.3.7. Simple projection. The “almost knottedness” of the example in Sec-

tion 2.3.6 suggests that polygonal chains having simple orthogonal projections

can always be straightened or convexified. This fact is established by two papers

[Biedl et al. 2001; Calvo et al. 2001]. In addition, there is a polynomial-time

algorithm to decide whether a polygonal chain has a simple projection, and if so

find a suitable plane for projection [Bose et al. 1999].

For a polygonal arc with a simple orthogonal projection, the straightening

method is relatively straightforward [Biedl et al. 2001]. The basic idea is to

process the arc from one end to the other, accumulating bars into a compact

“accordion” (x-monotone chain) lying in a plane orthogonal to the projection

plane, in which each bar is nearly vertical. Once this accumulation is complete,

the planar accordion is unfolded joint-by-joint into a straight arc. We observe

that a similar algorithm can be used to fold a polygonal tree with a simple

orthogonal projection into a generalized accordion, which can then be folded

into a flat configuration.

For a polygonal cycle with a simple orthogonal projection, the convexification

method is based on two steps [Calvo et al. 2001]. First, the projection of the

polygon is convexified via the results described in Section 2.2.1, by folding the

3D polygon to track the shadow, keeping constant the ascent of each bar. Sec-

ond, Calvo, Krizanc, Morin, Soss, and Toussaint [Calvo et al. 2001] develop an

algorithm for convexifying a polygon with convex projection. The basic idea is

to reconfigure the convex projection into a triangle, and stretch each accordion

formed by an edge in the projection. In linear time they show how to compute
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a motion for the second step that consists of O(n) simple moves, each changing

at most seven vertex angles.

2.3.8. Interlocked chains in 3D. Although we have settled on page 170 the

question of when one chain can lock (only in 3D), the conditions that permit

pairs of chains to “interlock” are largely unknown. This line of investigation was

prompted by a question posed by Anna Lubiw [Demaine and O’Rourke 2001]:

into how many pieces must an n-bar 3D chain be cut (at vertices) so that the

pieces can be separated and straightened? It is now known that the chain need

be fractured into no more than dn/2e − 1 pieces [Demaine et al. 2002b] but this

upper bound is likely not tight: the only lower bound known is b(n − 1)/4c.

A collection of disjoint, noncrossing chains can be separated if, for any dis-

tance d, there is a non-self-crossing motion that results in every pair of points

on different chains being separated by at least d. If a collection cannot be sep-

arated, its chains are interlocked. Which collections of relatively short chains

can interlock was investigated in several papers [Demaine et al. 2003c; Demaine

et al. 2002b]. Three typical results (all for chains with universal joints) are as

follows:

(i) No pair of 3-bar open chains can interlock, even with an arbitrary number

of additional 2-bar open chains.

(ii) A 3-bar open chain can interlock with a 4-bar closed chain. (See Figure 11.)

(iii) A 3-bar open chain can interlock with a 4-bar open chain.

The proof of the first result (for just a pair of 3-bar chains) identifies a plane

parallel to and separating the middle bars of each chain, and then nonuniformly

scales the coordinate system to straighten the other links while avoiding in-

tersections. The second result uses a topological argument based on “links”

(multicomponent knots), in a manner similar to the use of knots in the proof

that the chain in Figure 10 is locked. The proof of the third listed result is quite

intricate, relying on ad hoc geometric arguments [Demaine et al. 2002b]. There

are many open problems here, one of the most intriguing being this: what is the

smallest k that permits a k-bar open chain to interlock with a 2-bar open chain?

(See [Glass et al. 2004].)

Figure 11. A 3-bar open chain (grey) interlocked with a 4-bar closed chain

(black).
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2.4. Fundamental questions in 4D and higher dimensions. In all di-

mensions higher than 3, it is known that all knots are trivial; analogously, all

polygonal arcs can be straightened, all polygonal cycles can be convexified, and

all polygonal trees can be flattened [Cocan and O’Rourke 2001] (page 170). Intu-

itively, this result holds because the number of degrees of freedom of any vertex is

at least two higher than the dimensionality of the obstacles imposed by any bar.

This property allows Cocan and O’Rourke [2001] to establish, for example, that

the last bar of a polygonal arc can be unfolded by itself to any target position

that is simple.

Cocan and O’Rourke [2001] show how to straighten an arc using O(n) simple

moves that can be computed in O(n2) time and O(n) space. On the other

hand, their method for convexifying a polygon requires O(n6) simple moves and

O(n6 log n) time to compute.

2.5. Protein folding. Protein folding [Chan and Dill 1993; Hayes 1998; Merz

and Le Grand 1994] is an important problem in molecular biology because it

is generally believed that the folded structure of a protein (the fundamental

building block of life) determines its function and behavior.

2.5.1. Connection to linkages. A protein can be modeled by a linkage in which the

vertices represent amino acids and the bars represent bonds connecting them.

The bars representing bonds are typically close in length, within a factor less

than two. Depending on the level of detail, the protein can be modeled as a tree

(more precise) or as a chain (less precise).

An amazing property of proteins is that they fold quickly and consistently

to a minimum-energy configuration. Understanding this motion has immediate

connections to linkage folding in 3D. A central unsolved theoretical question

[Biedl et al. 2001] arising in this context is whether every equilateral polygonal

arc in 3D can be straightened. Cantarella and Johnston [Cantarella and Johnston

1998] proved that this is true for arcs of at most 5 bars. More generally, can

every equilateral polygonal tree in 3D be flattened?

2.5.2. Fixed-angle linkages. A more accurate mathematical model of foldings

of proteins is not by linkages whose vertices are universal joints, but rather by

fixed-angle linkages in which each vertex forms a fixed angle between its incident

bars. This angular constraint roughly halves the number of degrees of freedom

in the linkage; the basic motion is rotating a portion of the linkage around a

bar of the linkage. Foldings of such linkages have been explored extensively by

Soss and Toussaint [Soss and Toussaint 2000; Soss 2001]. For example, they

prove in [Soss and Toussaint 2000] that it is NP-complete to decide whether a

fixed-angle polygonal arc can be flattened (reconfigured to lie a plane), and in

[Soss 2001] that it is NP-complete to decide whether a fixed-angle polygonal arc

can be folded into its mirror image.
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More positive results analyze the polynomial complexity of determining the

maximum extent of a rotation around a bar: Soss and Toussaint [Soss and Tou-

ssaint 2000; Soss 2001] prove an O(n2) upper bound, and Soss, Erickson, and

Overmars [Soss 2001; Soss et al. 2003] give a 3SUM-hardness reduction, suggest-

ing an Ω(n2) lower bound.

Another line of investigation on fixed-angle chains was opened in [Aloupis

et al. 2002a; Aloupis et al. 2002b]. Define a linkage X to be flat-state connected

if, for each pair of its flat realizations x1 and x2, there is a reconfiguration from

x1 to x2 that avoids self-intersection throughout. In general this motion alters

the linkage to nonflat configurations in R
3 intermediate between the two flat

states. The main question is to determine whether every fixed-angle open chain

is flat-state connected. It has been established that the answer is yes for chains

all of whose fixed angles between consecutive bars are nonacute [Aloupis et al.

2002a], and although other special cases have been settled [Aloupis et al. 2002b],

the main question remains open.

2.5.3. Producible chains. A connection between fixed-angle nonacute chains

and a model of protein production was recently established in [Demaine et al.

2003b]. Here the ribosome— the “machine” that creates protein chains in biolog-

ical cells— is modeled as a cone, with the fixed-angled chain produced bar-by-bar

inside and emerging through the cone’s apex. A configuration of a chain is said

to be α-producible if there exists a continuous motion of the chain as it is created

by the above model from within a cone of half-angle α ≤ π/2. The main result

of [Demaine et al. 2003b] is a theorem that identifies producible with flattenable

chains, in this sense: a configuration of a chain whose fixed angles are ≥ π − α,

for α ≤ π/2, is α-producible if and only if it is flattenable. For example, for

α = 45◦, this theorem says that a fixed-135◦-angle chain (which is nonacute) is

producible within a 90◦ cone if and only if that configuration is flattenable.

The proof uses a coiled cannonical configuration of the chain, which can be

obtained by time-reversal of the production steps, winding the chain inside the

cone. This canonical form establishes that all α-producible chains can be recon-

figured to one another. Then it is shown how to produce any flat configuration

by rolling the cone around on the plane into which the flat chain is produced.

Because locked chains are not flattenable, the equivalence of producible and

flattenable configurations shows that cone production cannot lead to locked con-

figurations. This result in turn leads to the conclusion that the producible chains

are rare, in a technical sense, suggesting that the entire configuration space for

folding proteins might not need to be searched.

2.5.4. The H-P model. So far in this section we have not considered the forces

involved in protein folding in nature. There are several models of these forces.

One of the most popular models of protein folding is the hydrophobic-hydro-

philic (H-P) model [Chan and Dill 1993; Dill 1990; Hayes 1998], which defines

both a geometry and a quality metric of foldings. This model represents a protein
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as a chain of amino acids, distinguished into two categories, hydrophobic (H) and

hydrophilic (P). A folding of such a protein chain in this model is an embedding

along edges of the square lattice in 2D or the cubic lattice in 3D without self-

intersection. The optimum or minimum-energy folding maximizes the number of

hydrophobic (H) nodes that are adjacent in the lattice. Intuitively, this metric

causes hydrophobic amino acids to avoid the surrounding water.

This combinatorial model is attractive in its simplicity, and already seems to

capture several essential features of protein folding such as the tendency for the

hydrophobic components to fold to the center of a globular protein [Chan and

Dill 1993]. While a 3D H-P model most naturally matches the physical world,

in fact it is more realistic as a 2D model for computationally feasible problem

sizes. The reason for this is that the perimeter-to-area ratio of a short 2D chain

is a close approximation to the surface-to-volume ratio of a long 3D chain [Chan

and Dill 1993; Hayes 1998].

Much work has been done on the H-P model [Berger and Leighton 1998;

Chan and Dill 1991; Chan and Dill 1990; Crescenzi et al. 1998; Hart and Istrail

1996; Lau and Dill 1989; Lau and Dill 1990; Lipman and Wilber 1991; Unger and

Moult 1993a; Unger and Moult 1993b; Unger and Moult 1993c]. Recently, on the

computational side, Berger and Leighton [Berger and Leighton 1998] proved NP-

completeness of finding the optimal folding in 3D, and Crescenzi et al. [Crescenzi

et al. 1998] proved NP-completeness in 2D. Hart and Istrail [Hart and Istrail

1996] have developed a 3/8-approximation in 3D and a 1/4-approximation in 2D

for maximizing the number of hydrophobic-hydrophobic adjacencies.

Aichholzer, Bremner, Demaine, Meijer, Sacristan, and Soss [Aichholzer et al.

2003] have begun exploring an important yet potentially more tractable aspect of

protein folding: can we design a protein that folds stably into a desired shape?

In the H-P model, a protein folds stably if it has a unique minimum-energy

configuration. So far, Aichholzer et al. [Aichholzer et al. 2003] have proved the

existence of stably folding proteins of all lengths divisible by 4, and for closed

chains of all possible (even) lengths. It remains open to characterize the possible

shapes (connected subsets of the square grid) attained by stable protein foldings.

3. Paper

Paper folding (origami) has led to several interesting mathematical and com-

putational questions over the past fifteen years or so. A piece of paper, normally

a (solid) polygon such as a square or rectangle, can be folded by a continuous

motion that preserves the distances on the surface and does not cause the paper

to properly self-intersect. Informally, paper cannot tear, stretch, or cross itself,

but may otherwise bend freely. (There is a contrast here to folding other ma-

terials, such as sheet metal, that must remain piecewise planar throughout the

folding process.) Formally, a folding is a continuum of isometric embeddings of

the piece of paper in R
3. However, the use of the term “embedding” is weak:
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paper is permitted to touch itself provided it does not properly cross itself. In

particular, a flat folding folds the piece of paper back into the plane, and so the

paper must necessarily touch itself. We frequently ignore the continuous motion

of a folding and instead concentrate on the final folded state of the paper; in

the case of a flat folding, the flat folded state is called a flat origami. This con-

centration on the final folded state was recently justified by a proof that there

always exists a continuous motion from a planar polygonal piece of paper to any

“legal” folded state [Demaine et al. 2004].

Some of the pioneering work in origami mathematics (see Section 3.3.1) studies

the crease pattern that results from unfolding a flat origami, that is, the graph

of edges on the paper that fold to edges of a flat origami. Stated in reverse,

what crease patterns have flat foldings? Various necessary conditions are known

[Hull 1994; Justin 1994; Kawasaki 1989], but there is little hope for a polynomial

characterization: Bern and Hayes [Bern and Hayes 1996] have shown that this

decision problem is NP-hard.

A more recent trend, as in [Bern and Hayes 1996], is to explore computational

origami, the algorithmic aspects of paper folding. This field essentially began

with Robert Lang’s work on algorithmic origami design [Lang 1996], starting

around 1993. Since then, the field of computational origami has grown signifi-

cantly, in particular in the past two years by applying computational geometry

techniques. This section surveys this work. See also [Demaine and Demaine

2002].

3.1. Categorization. Most results in computational origami fall under one or

more of three categories: universality results, efficient decision algorithms, and

computational intractability results. This categorization applies more generally

to folding and unfolding, but is particularly useful for results in computational

origami.

A universality result shows that, subject to a certain model of folding, every-

thing is possible. For example, any tree-shaped origami base (Section 3.2.2), any

polygonal silhouette (Section 3.2.1), and any polyhedral surface (Section 3.2.1)

can be folded out of a sufficiently large piece of paper. Universality results often

come with efficient algorithms for finding the foldings; pure existence results are

rare.

When universality results are impossible (some objects cannot be folded), the

next-best result is an efficient decision algorithm to determine whether a given

object is foldable. Here “efficient” normally means “polynomial time.” For

example, there is a polynomial-time algorithm to decide whether a “map” (grid

of creases marked mountain and valley) can be folded by a sequence of “simple

folds” (Section 3.3.4).

Not all paper-folding problems have efficient algorithms, and this can be

proved by a computational intractability result. For example, it is NP-hard to

tell whether a given crease pattern folds into some flat origami (Section 3.3.2),
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even when folds are restricted to simple folds (Section 3.3.4). These results imply

that there are no polynomial-time algorithms for these problems, unless some

of the hardest computational problems known can also be solved in polynomial

time, which is generally deemed unlikely.

We further distinguish computational origami results as addressing either

origami design or origami foldability. In origami design, some aspects of the

target configuration are specified, and the goal is to design a suitable detailed

folded state that can be folded out of paper. In origami foldability, the tar-

get configuration is unspecified and arbitrary; rather, the initial configuration

is specified, in particular the crease pattern, possibly marked with mountains

and valleys, and the goal is to fold something (anything) using precisely those

creases. While at first it may seem that understanding origami foldability is a

necessary component for origami design, the results indicate that in fact origami

design is easier to solve than origami foldability, which is usually intractable.

Our survey of computational origami is divided accordingly into Section 3.2

(origami design) and Section 3.3 (origami foldability).

3.2. Origami design. We define origami design loosely as, given a piece of

paper, fold it into an object with certain desired properties, e.g., a particular

shape. The natural theoretical version of this problem is to ask for an origami

with a specific silhouette or three-dimensional shape; this problem can be solved

in general (Section 3.2.1), although the algorithms developed so far do not lead

to practical foldings. A specific form of this problem has been solved for practi-

cal purposes by Lang’s tree method (Section 3.2.2), which has brought modern

origami design to a new level of complexity. Related to this work is the problem

of folding a piece of paper to align a prescribed graph (Section 3.2.3), which can

be used for a magic trick involving folding and one complete straight cut.

3.2.1. Silhouettes and polyhedra. A direct approach to origami design is to

specify the exact final shape that the paper should take. More precisely, suppose

we specify a particular flat silhouette, or a three-dimensional polyhedral surface,

and desire a folding of a sufficiently large square of paper into precisely this

object, allowing coverage by multiple layers of paper. For what polyhedral shapes

is this possible? This problem is implicit throughout origami design, and was

first formally posed in [Bern and Hayes 1996]. The surprising answer is “always,”

as established by Demaine, Demaine, and Mitchell in 1999 [Demaine et al. 1999c;

2000d].

The basic idea of the approach is to fold the piece of paper into a thin strip,

and then wrap this strip around the desired shape. This wrapping can be done

particularly efficiently using methods in computational geometry. Specifically,

three algorithms are described in [Demaine et al. 2000d] for this process. One

algorithm optimizes paper usage: the amount of paper required can be made

arbitrarily close to the surface area of the shape, but only at the expense of in-

creasing the aspect ratio of the rectangular paper. Another algorithm maximizes
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Figure 12. A flat folding of a square of paper, black on one side and white on the

other side, designed by John Montroll [Montroll 1991, pp. 94–103]. (Figure 1(b)

of [Demaine et al. 2000d].)

the width of the strip subject to some constraints. A third algorithm places the

visible seams of the paper in any desired pattern forming a decomposition of the

sides into convex polygons. In particular, the number and total length of seams

can be optimized in polynomial time in most cases [Demaine et al. 2000d].

All of these algorithms allow an additional twist: the paper may be colored

differently on both sides, and the shape may be two-colored according to which

side should be showing. In principle, this allows the design of two-color models

similar to the models in Montroll’s Origami Inside-Out [Montroll 1993]. An

example is shown in Figure 12.

Because of the use of thin strips, none of these methods lead to practical

foldings, except for small examples or when the initial piece of paper is a thin

strip. Nonetheless, the universality results of [Demaine et al. 2000d] open the

door to many new problems. For example, how small a square can be folded into

a desired object, e.g., a k × k chessboard? This optimization problem remains

open even in this special case, as do many other problems about finding efficient,

practical foldings of silhouettes, two-color patterns, and polyhedra.

3.2.2. Tree method. The tree method of origami design is a general approach

for “true” origami design (in contrast to the other topics that we discuss, which

involve less usual forms of origami). In short, the tree method enables design

of efficient and practical origami within a particular class of three-dimensional

shapes, most useful for origami design. Some components of this method, such

as special cases of the constituent molecules and the idea of disk packing, as

well as other methods for origami design, have been explored in the Japanese

technical origami community, in particular by Jun Maekawa, Fumiaki Kawahata,

and Toshiyuki Meguro. This work has led to several successful designs, but a full

survey is beyond the scope of this paper; see [Lang 2003; Lang 1998]. It suffices

to say that the explosion in origami design over the last 30 years, during which

the majority of origami models have been designed, may largely be due to an

understanding of these general techniques.
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Figure 13. Lang’s TreeMaker applied to an 8-vertex tree to produce a lizard

base. (Figure 2.1.11 of [Lang 1998].)

Here we concentrate on Robert Lang’s work [1994a; 1994b; 1996; 1998; 2003],

which is the most extensive. Over the past decade, starting around 1993, Lang

has developed the tree method to the point where an algorithm and computer

program have been explicitly defined and implemented. Anyone with a Mac-

intosh computer can experiment with the tree method using Lang’s program

TreeMaker [Lang 1998].

The tree method allows one to design an origami base in the shape of a

specified tree with desired edge lengths, which can then be folded and shaped

into an origami model. See Figure 13 for an example. More precisely, the

tree method designs a uniaxial base [Lang 1996], which must have the following

properties: the base lies above and on the xy-plane, all facets of the base are

perpendicular to the xy-plane, the projection of the base to the xy plane is

precisely where the base comes in contact with the xy-plane, and this projection

is a one-dimensional tree.

It is known that every metric tree (unrooted tree with prescribed edge lengths)

is the projection of a uniaxial base that can be folded from, e.g., a square. The

tree method gives an algorithm to find the folding that is optimal in the sense

that it folds the uniaxial base with the specified projection using the smallest

possible square piece of paper (or more generally, using the smallest possible

scaling of a given convex polygon). These foldings have led to many impressive

origami designs; see [Lang 2003] in particular.

There are two catches to this result. First, it is currently unknown whether

the prescribed folding self-intersects, though it is conjectured that self-intersec-

tion does not arise, and this conjecture has been verified on extensive examples.

Second, the optimization problem is difficult, a fairly general form of nonlinear

constrained optimization. So while optimization is possible in principle in finite
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Figure 14. Crease patterns for folding a rectangle of paper flat so that one com-

plete straight cut makes a butterfly (left) or a swan (right), based on [Demaine

et al. 2000c; Demaine et al. 1999b].

time, in practice heuristics must be applied; fortunately, such heuristics fre-

quently yield good, practical solutions. Indeed, additional practical constraints

can be imposed, such as symmetry in the crease pattern, or the constraint that

angles of creases are integer multiples of some value (e.g., 22.5◦) subject to some

flexibility in the metric tree.

3.2.3. One complete straight cut. Take a piece of paper, fold it flat, make one

complete straight cut, and unfold the pieces. What shapes can result? This

fold-and-cut problem was first formally stated by Martin Gardner [1960], but

goes back much further, to a Japanese puzzle book [Sen 1721] and perhaps to

Betsy Ross in 1777 [Harper’s 1873]; see also [Houdini 1922, pp. 176–177]. A

more detailed history can be found in [Demaine et al. 2000c].

More formally, given a planar graph drawn with straight edges on a piece of

paper, can the paper be folded flat so as to map the entire graph to a common

line, and map nothing else to that line? The surprising answer is that this is

always possible, for any collection of line segments in the plane, forming noncon-

vex polygons, adjoining polygons, nested polygons, etc. There are two solutions

to the problem. The first (partial) solution [Demaine et al. 2000c; Demaine et al.

1999b] is based on a structure called the straight skeleton, which captures the

symmetries of the graph, thereby exploiting a more global structure of the prob-

lem. This solution applies to a large class of instances, which we do not describe

in detail here. See Figure 14 for two examples. The second (complete) solution

[Bern et al. 2002] is based on disk packing to make the problem more local, and

achieves efficient bounds on the number of creases.

While this problem may not seem directly connected to pure paper folding

because of the one cut, the equivalent problem of folding a piece of paper to

line up a given collection of edges is in fact closely connected to origami design.

Specifically, one subproblem that arises in TreeMaker (Section 3.2.2) is that the

piece of paper is decomposed into convex polygons, and the paper must be folded

flat so as to line up all the edges of the convex polygons, and place the interior
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Figure 15. A locally flat-foldable vertex: θ1 + θ3 + · · · = θ2 + θ4 + · · · = 180◦.

of these polygons above this line. The fold-and-cut problem is a generalization

of this situation to arbitrary graphs: nonconvex polygons, nested polygons, etc.

In TreeMaker, there are important additional constraints in how the edges can

be lined up, called path constraints, which are necessary to enforce the desired

geometric tree. These constraints lead to additional components in the solution

called gussets.

3.3. Origami foldability. We distinguish origami design from origami fold-

ability in which the starting point is a given crease pattern and the goal is to fold

an origami that uses precisely these creases. (Arguably, this is a special case of

our generic definition of origami design, but we find it a useful distinction.) The

most common case studied is when the resulting origami should be flat, i.e., lie

in a plane.

3.3.1. Local foldability. For crease patterns with a single vertex, it is relatively

easy to characterize flat foldability. Without specified crease directions, a single-

vertex crease pattern is flat-foldable precisely if the alternate angles around the

vertex sum to 180◦; see Figure 15. This is known as Kawasaki’s theorem [Bern

and Hayes 1996; Hull 1994; Justin 1994; Kawasaki 1989]. When the angle condi-

tion is satisfied, a characterization of valid mountain-valley assignments and flat

foldings can be found in linear time [Bern and Hayes 1996; Justin 1994], using

Maekawa’s theorem [Bern and Hayes 1996; Hull 1994; Justin 1994] and another

theorem of Kawasaki [Bern and Hayes 1996; Hull 1994; Kawasaki 1989] about

constraints on mountains and valleys. In particular, Hull has shown that the

number of distinct mountain-valley assignments of a vertex can be computed in

linear time [Hull 2003].

A crease pattern is called locally foldable if there is a mountain-valley assign-

ment so that each vertex locally folds flat, i.e., a small disk around each vertex

folds flat. Testing local foldability is nontrivial because each vertex has flexi-

bility in its assignment, and these assignments must be chosen consistently: no

crease should be assigned both mountain and valley by the two incident vertices.
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Bern and Hayes [Bern and Hayes 1996] proved that consistency can be resolved

efficiently when it is possible: local foldability can be tested in linear time.

3.3.2. Existence of folded states. Given a crease pattern, does it have a flat

folded state? Bern and Hayes [Bern and Hayes 1996] have proved that this

decision problem is NP-hard, and thus computationally intractable. Because

local foldability is easy to test, the only difficult part is global foldability, or

more precisely, computing a valid overlap order of the crease faces that fold

to a common portion of the plane. Indeed, Bern and Hayes [Bern and Hayes

1996] prove that, given a crease pattern and a mountain-valley assignment that

definitely folds flat, finding the overlap order of a flat folded state is NP-hard.

3.3.3. Equivalence to continuous folding process. In the previous section we

have alluded to the difference between two models of folding: the final folded

state (specified by a crease pattern, mountain-valley or angle assignment, and

overlap order) and a continuous motion to bring the paper to that folded state.

Basically all results, in particular those described so far, have focused on the

former model: proving that a folded state exists with the desired properties.

Intuitively, by appropriately flexing the paper, any folded state can be reached by

a continuous motion, so the two models should be equivalent. Only recently has

this been proved, initially for rectangular pieces of paper [Demaine and Mitchell

2001], and recently for general polygonal pieces of paper [Demaine et al. 2004]

but overall the number of creases is uncountably infinite. An interesting open

problem is whether a finite crease pattern suffices.

The only other paper of which we are aware that explicitly constructs contin-

uous folding processes is [Demaine and Demaine 1997]. This paper proves that

every convex polygon can be folded into a uniaxial base via Lang’s universal mol-

ecule [Lang 1998] without gussets. Furthermore, unlike [Demaine and Mitchell

2001], no additional creases are introduced during the motion, and each crease

face remains flat. This result can be used to animate the folding process.

3.3.4. Map folding: sequence of simple folds. In contrast to the complex origami

folds arising from reaching folded states [Demaine and Demaine 1997; Demaine

and Mitchell 2001], we can consider the less complex model of simple folds. A

simple fold (or book fold) is a fold by ±180◦ along a single line. Examples

are shown in Figure 16. This model is closely related to “pureland origami”,

introduced by Smith [1976; 1980; 1988; 1993].

We can ask the same foldability questions for a sequence of simple folds. Given

a crease pattern, can it be folded flat via a sequence of simple folds? What if a

particular mountain-valley assignment is imposed?

An interesting special case of these problems is map folding (see Figure 16):

given a rectangle of paper with horizontal and vertical creases, each marked

mountain or valley, can it be folded flat via a sequence of simple folds? Tradi-

tionally, map folding has been studied from a combinatorial point of view; see,
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Figure 16. Folding a 2 × 4 map via a sequence of 3 simple folds.

3

4

2 1 7

65

9 8 9 8

5 4 6

2 3 7

1

Figure 17. Two maps that cannot be folded by simple folds, but can be folded

flat. (These are challenging puzzles.) The numbering indicates the overlap order

of faces. (Figure 12 of [Arkin et al. 2004].)

e.g., [Lunnon 1968; Lunnon 1971]. Arkin, Bender, Demaine, Demaine, Mitchell,

Sethia, and Skiena [Arkin et al. 2004] have shown that deciding foldability of a

map by simple folds can be solved in polynomial time. If the simple folds are

required to fold all layers at once, the running time is at most O(n log n), and

otherwise the running time is linear.

Surprisingly, slight generalizations of map folding are (weakly) NP-complete

[Arkin et al. 2004]. Deciding whether a rectangle with horizontal, vertical, and

diagonal (±45◦) creases can be folded via a sequence of simple folds is NP-

complete. Alternatively, if the piece of paper is more general, a polygon with

horizontal and vertical sides, and the creases are only horizontal and vertical,

the same problem is NP-complete.

These hardness results are weak in the sense that they leave open the exis-

tence of a pseudopolynomial-time algorithm, whose running time is polynomial

in the total length of creases. Another intriguing open problem, posed by Jack

Edmonds, is the complexity of deciding whether a map has some flat folded

state, as opposed to a folding by a sequence of simple folds. Examples of maps

in which these two notions of foldability differ are shown in Figure 17.

3.4. Flattening polyhedra. When one flattens a cardboard box for recycling,

generally the surface is cut open. Suppose instead of allowing cuts to a polyhedral

surface in order to flatten it, we treat it as a piece of paper and fold as in origami.

We run into the same dichotomy as in Section 3.3.2: do we want a continuous

motion of the polyhedron, or does a description of the final folded state suffice?

If we start with a convex polyhedron, and each face of the crease pattern must

remain rigid during the folding, then Connelly’s extension [Connelly 1980] of
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Figure 18. Inverting a tetrahedral cone by a continuous isometric motion. Based

on Figure 2.5 of [Connelly 1993].

Figure 19. Flattening a tetrahedron, from left to right. Note that the faces are

not flat in the middle picture.

Cauchy’s rigidity theorem [1813] (see also [Cromwell 1997, pp. 219–247]) says

that the polyhedron cannot fold at all. Even if we start with a nonconvex

polyhedron and keep each face of the crease pattern rigid, the Bellows Theorem

[Connelly et al. 1997] says that the volume of the polyhedron cannot change,

so foldings are limited. However, if we allow the paper to curve (e.g., introduce

new creases) during the motion, as in origami, then folding becomes surprisingly

flexible. For example, a cone can be inverted [Connelly 1993]; see Figure 18.

A natural question is whether every polyhedron can be flattened : folded into a

flat origami. Intuitively, this can be achieved by applying force to the polyhedral

model, but in practice this can easily lead to tearing. There is an interesting

connection of this problem to a higher-dimensional version of the fold-and-cut

problem from Section 3.2.3. Given any polyhedral complex, can R
3 be folded

(through R
4) “flat” into R

3 so that the surface of the polyhedral complex maps to

a common plane, and nothing else maps to that plane? While the applicability of

four dimensions is difficult to imagine, the problem’s restriction to the surface of

the complex is quite practical, e.g., in packaging: flatten the polyhedral complex

into a flat folded state, without cutting or stretching the paper.

The flattening problem remains open if we desire a continuous folding process

into the flat state. If we instead focus on the existence of a flat folded state of

a polyhedron, then much more is known. Demaine, Demaine, and Lubiw7 have

shown how to flatten several classes of polyhedra, including convex polyhedra

and orthogonal polyhedra. See Figure 19 for an example. Recently, Demaine,
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Demaine, Hayes, and Lubiw8 have shown that all polyhedra have flat folded

states. They conjecture further that every polyhedral complex can be flattened.

A natural question is whether the methods of Demaine and Mitchell [Demaine

and Mitchell 2001] and [Demaine et al. 2004] described in Section 3.3.3 can be

generalized to show that these folded states induce continuous folding motions

as in Figure 18.

4. Polyhedra

A standard method for building a model of a polyhedron is to cut out a flat

net or unfolding, fold it up, and glue the edges together so as to make precisely

the desired surface. Given the polyhedron of interest, a natural problem is to

find a suitable unfolding. On the other hand, given a polygonal piece of paper,

we might ask whether it can be folded and its edges can be glued together so as

to form a convex polyhedron. These two questions are addressed in Sections 4.1

and 4.2, respectively. Section 4.3 extends different forms of the latter question to

nonconvex polyhedra. Section 4.4 connects these problems to linkage and paper

folding.

4.1. Unfolding polyhedra. A classic open problem is whether (the surface

of) every convex polyhedron can be cut along some of its edges and unfolded

into one flat piece without overlap [Shephard 1975; O’Rourke 2000]. Such edge-

unfoldings go back to Dürer [1525], and have important practical applications

in manufacturing, such as sheet-metal bending [O’Rourke 2000; Wang 1997]. It

seems folklore that the answer to this question should be yes, but the evidence

for a positive answer is actually slim. Only very simple classes of polyhedra are

known to be edge-unfoldable; for example, pyramids, prisms, “prismoids,”9 and

other more specialized classes [Demaine and O’Rourke ≥ 2005]. In contrast,

experiments by Schevon [Schevon 1989; O’Rourke 2000] suggest that a random

edge-unfolding of a random polytope overlaps with probability 1. Of course,

such a result would not preclude, for every polytope, the existence of at least

one nonoverlapping edge-unfolding, or even that a large but subconstant fraction

of the polytope’s edge-unfoldings do not overlap. However, the unlikeliness of

finding an unfolding by chance makes the search more difficult.

An easier version of this edge-unfolding problem is the fewest-nets problem:

prove an upper bound on the number of pieces required by a multipiece non-

overlapping edge unfolding of a convex polyhedron. The obvious upper bound is

the number F of faces in the polyhedron; the original problem asks whether an

upper bound of 1 is possible. The first bound of cF for c < 1 was obtained by

7Manuscript, March 2001.
8Manuscript in preparation.
9The convex hull of two equiangular convex polygons, oriented so that corresponding edges

are parallel.
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Michael Spriggs,10 who established c = 2/3. The smallest value of c obtained so

far11 is 1/2. Proving an upper bound that is sublinear in F would be a significant

advancement.

We can also examine to what extent edge unfoldings can be generalized to

nonconvex polyhedra. In particular, define a polyhedron to be topologically con-

vex if its 1-skeleton (graph) is the 1-skeleton of a convex polyhedron. Does every

topologically convex polyhedron have an edge-unfolding? In particular, every

polyhedron composed of convex faces and homeomorphic to a sphere is topologi-

cally convex; can they all be edge-unfolded? This problem was posed by Schevon

[Schevon 1987].

Bern, Demaine, Eppstein, Kuo, Mantler, and Snoeyink [Bern et al. 2003] have

shown that the answer to both of these questions is no: there is a polyhedron

composed of triangles and homeomorphic to a sphere that has no (one-piece,

nonoverlapping) edge-unfolding. The polyhedron is shown in Figure 20. It con-

sists of four “hats” glued to the faces of a regular tetrahedron, such that only the

peaks of the hats have positive curvature, that is, have less than 360◦ of incident

material. This property limits the unfoldings significantly, because (1) any set of

cuts must avoid cycles in order to create a one-piece unfolding, and (2) a leaf in

a forest of cuts can only lie at a positive-curvature vertex of the polyhedron: a

leaf at a negative-curvature vertex (more than 360◦ of incident material) would

cause local overlap.

The complexity of deciding whether a given topologically convex polyhedron

can be edge-unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron

homeomorphic to a sphere has some one-piece unfolding, not necessarily using

cuts along edges. It is known that every convex polyhedron has an unfolding

in this model, allowing cuts across the faces of the polytope. Specifically, the

star unfolding [Agarwal et al. 1997; Aronov and O’Rourke 1992] cuts the shortest

paths from a common source point to each vertex of the polytope, and the source

unfolding [Mitchell et al. 1987] cuts the points with more than one shortest path

to a common source. Both of these unfoldings avoid overlap, the star unfolding

being the more difficult case to establish [Aronov and O’Rourke 1992]. The

source unfolding (but not the star unfolding) also generalizes to unfold convex

polyhedra in higher dimensions [Miller and Pak 2003].

But many nonconvex polyhedra also have such unfoldings. For example, Fig-

ure 20 illustrates one for the polyhedron described above. Biedl, Demaine, De-

maine, Lubiw, Overmars, O’Rourke, Robbins, and Whitesides [Biedl et al. 1998]

have shown how to unfold many orthogonal polyhedra, even with holes and

knotted topology, although it remains open whether all orthogonal polyhedra

10Personal communication, August 2003.
11Personal communication from Vida Dujmović, Pat Morin, and David Wood, Febru-

ary 2004.
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Figure 20. (Left) Simplicial polyhedron with no edge-unfolding. (Right) An

unfolding when cuts are allowed across faces.

can be unfolded. The only known scenario that prevents unfolding altogether

[Bern et al. 2003] is a polyhedron with a single vertex of negative curvature (see

Figure 21), but this requires the polyhedron to have boundary (edges incident

to only one face).

v

Figure 21. A polyhedron with boundary that has no one-piece unfolding even

when cuts are allowed across faces. Vertex v has negative curvature, that is,

more than 360◦ of incident material. (Based on Figure 9 of [Bern et al. 2003].)

A recent approach to unfolding both convex and nonconvex polyhedra in any

dimension is the notion of “vertex-unfolding” [Demaine et al. 2003a]; see Fig-

ure 22. Specifically, a vertex-unfolding may cut only along edges of the polyhe-

dron (like an edge-unfolding) but permits the facets to remain connected only at

vertices (instead of along edges as in edge-unfolding). Thus, a vertex-unfolding

is connected, but its interior may be disconnected, “pinching” at a vertex. This

notion also generalizes to polyhedra in any dimension. Demaine, Eppstein, Er-

ickson, Hart, and O’Rourke [Demaine et al. 2003a] proved that every simplicial
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Figure 22. Vertex-unfolding of a triangulated cube with hinge points aligned.

(Based on Figure 2 of [Demaine et al. 2003a].)

manifold in any dimension has a nonoverlapping vertex-unfolding. In partic-

ular, this result covers triangulated polyhedra in 3D, possibly with boundary,

but it remains open to what extent vertex-unfoldings exist for polyhedra with

nontriangular faces. For example, does every convex polyhedron in 3D have a

vertex-unfolding?

4.2. Folding polygons into convex polyhedra. In addition to unfolding

polyhedra into simple planar polygons, we can consider the reverse problem

of folding polygons into polyhedra. More precisely, when can a polygon have

its boundary glued together, with each portion gluing to portions of matching

length, and the resulting topological object be folded into a convex polyhedron?

(There is almost too much flexibility with nonconvex polyhedra for this problem,

but see Section 4.3 for related problems of interest in this context.) A particular

kind of gluing is an edge-to-edge gluing, in which each entire edge of the polygon

is glued to precisely one other edge of the polygon. The existence of such a

gluing requires a perfect pairing of edges with matching lengths.

4.2.1. Edge-to-edge gluings. Introducing this area, Lubiw and O’Rourke [Lubiw

and O’Rourke 1996] showed how to test in polynomial time whether a polygon

has an edge-to-edge gluing that can be folded into a convex polyhedron, and

how to list all such edge-to-edge gluings in exponential time. A key tool in their

work is a theorem of A. D. Aleksandrov [Alexandrov 1950]. The theorem states

that a topological gluing can be realized geometrically by a convex polyhedron

precisely if the gluing is topologically a sphere, and at most 360◦ of material is

glued to any one point— that is, every point should have nonnegative curvature.

Based on this tool, Lubiw and O’Rourke use dynamic programming to de-

velop their algorithms. There are Ω(n2) subproblems corresponding to gluing

subchains of the polygon, assuming that the two ends of the subchain have al-

ready been glued together. These subproblems are additionally parameterized

by how much angle of material remains at the point to which the two ends of

the chain glue in order to maintain positive curvature. It is this parameteriza-

tion that forces enumeration of all gluings to take exponential time. But for the

decision problem of the existence of any gluing, the remaining angle at the ends

only needs to be bounded, and only polynomially many subproblems need to be

considered, resulting in an O(n3) algorithm.
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Figure 23. The five edge-to-edge gluings of the Latin cross [Lubiw and O’Rourke

1996].

A particularly surprising discovery from this work [Lubiw and O’Rourke 1996]

is that the well-known “Latin cross” unfolding of the cube can be folded into

exactly five convex polyhedra by edge-to-edge gluing: a doubly covered (flat)

quadrangle, an (irregular) tetrahedron, a pentahedron, the cube, and an (irregu-

lar) octahedron. See Figure 23 for crease patterns and gluing instructions. These

foldings are the subject of a video [Demaine et al. 1999a].

4.2.2. Non-edge-to-edge gluings. More recently, Demaine, Demaine, Lubiw, and

O’Rourke [Demaine et al. 2000b; Demaine et al. 2002a] have extended this work

in various directions, in particular to non-edge-to-edge gluings.

In contrast to edge-to-edge gluings, any convex polygon can be glued into a

continuum of distinct convex polyhedra, making it more difficult for an algorithm

to enumerate all gluings of a given polygon. Fortunately, there are only finitely

many combinatorially distinct gluings of any polygon. For convex polygons,

there are only polynomially many combinatorially distinct gluings, and they

can be enumerated for a given convex polygon in polynomial time. This result

generalizes to any polygon in which there is a constant bound on the sharpest

angle. For general nonconvex polygons, there can be exponentially many (2Θ(n))

combinatorially distinct gluings, but only that many. Again this corresponds

to an algorithm running in 2O(n) time. Because of the exponential worst-case

lower bound on the number of combinatorially distinct gluings, we are justified

both here and in the enumeration algorithm of [Lubiw and O’Rourke 1996] to

spend exponential time. It remains open whether there is an output-sensitive

algorithm, whose running time is polynomial in the number of resulting gluings,

or in the number of gluings desired by the user. For non-edge-to-edge gluings,

it even remains open whether there is a polynomial-time algorithm to decide

whether a gluing exists.

The algorithms for enumerating all non-edge-to-edge gluings have been imple-

mented independently by Anna Lubiw (July 2000) and by Koichi Hirata [Hirata

2000] (June 2000). These programs have been applied to the example of the



198 ERIK D. DEMAINE AND JOSEPH O’ROURKE

Latin cross. There are surprisingly many more, but still finitely many, non-edge-

to-edge gluings: a total of 85 distinct gluings (43 modulo symmetry). A manual

reconstruction of the polyhedra resulting from these gluings reveals 23 distinct

shapes: the cube, seven different tetrahedra, three different pentahedra, four

different hexahedra, six different octahedra, and two flat quadrangles [Demaine

et al. 2000a; Demaine and O’Rourke ≥ 2005].

Alexander, Dyson, and O’Rourke [Alexander et al. 2002] performed a case

study of all the gluings of the square, reconstructing all the incongruent polyhe-

dra that result. This situation is complicated by the existence of entire continua

of gluings and polyhedra. Nonetheless, the entire configuration space of the poly-

hedra can be characterized, as shown in Figure 24. Although in this case it is

connected, there are convex polygons of n vertices whose space of all gluings into

polyhedra has Ω(n2) connected components [Demaine and O’Rourke ≥ 2005].

Although it is almost certain that all of these gluings lead to distinct polyhedra,

it seems difficult to establish this property without a method for reconstructing

the three-dimensional structure, the topic of the next section.

4.2.3. Constructing polyhedra. Another intriguing open problem in this area

[Demaine et al. 2002a] remains relatively unexplored: Aleksandrov’s theorem

implies that any valid gluing (homeomorphic to a sphere and having nonnegative

curvature everywhere) can be folded into a unique convex polyhedron, but how

efficiently can this polyhedron be constructed? The key difficulty here is to

determine the dihedral angles of the polyhedron, that is, by how much each

crease is folded. Finding a (superset of) the creases is straightforward:12 every

edge of the polyhedron is a shortest path between two positive-curvature vertices,

so compute all-pairs shortest paths in the polyhedral metric defined by the gluing

[Chen and Han 1996; Kaneva and O’Rourke 2000; Kapoor 1999].

Sabitov [Sabitov 1996] recently presented a finite algorithm for this recon-

struction problem, reducing the problem to finding roots of a collection of poly-

nomials of exponentially high degree. The algorithm is based on another his

results [Sabitov 1998; Sabitov 1996] that expresses the volume of a triangulated

polyhedron as the root of a polynomial in the edge lengths, independent of how

the polyhedron is geometrically embedded in 3-space. (This result was also

used to settle the famous Bellows Conjecture [Connelly et al. 1997].) Sabitov’s

algorithm was recently extended and its bounds improved by Fedorchuk and

Pak [Fedorchuk and Pak 2004] to express the internal vertex-to-vertex diagonal

lengths as roots of a polynomial of degree 4m for a polyhedron of m edges. The

polyhedron can easily be reconstructed from these diagonal lengths.

12Personal communication with Boris Aronov, June 1998. The essence of the argument is
also present in [Alexandrov 1941].
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Figure 24. The continua of polyhedra foldable from a square. (Figure 2 of

[Alexander et al. 2002].)

4.3. Folding nets into nonconvex polyhedra. Define a net to be a con-

nected edge-to-edge gluing of polygons to form a tree structure, the edges shared

by polygons denoting creases. An open problem mentioned in Section 4.2.3 is

deciding whether a given net can be folded into a convex polyhedron using only

the given creases. More generally, we can ask whether a given net folds into a

nonconvex polyhedron. Now Aleksandrov’s theorem and Cauchy’s rigidity the-
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orem do not apply, so for a given gluing we are no longer easily guaranteed

existence or uniqueness.

Given the dihedral angles associated with creases in the net, it is easy to

decide foldability in polynomial time [Biedl et al. 1999b; Sun 1999]: we only

need to check that edges match up and no two faces cross. Without the di-

hedral angles, when does a given net fold into any polyhedron? Biedl, Lubiw,

and Sun [Biedl et al. 1999b; Sun 1999] proved a closely related problem to be

weakly NP-complete: does a given orthogonal net (each face is an orthogonal

polygon) fold into an orthogonal polyhedron? The difference with this problem

is that it constrains each dihedral angle to be ±90◦. It remained open whether

this constraint actually restricted what polyhedra could be folded, even for this

particular reduction. More generally, is there a nonorthogonal polyhedron (i.e.,

one that has at least one dihedral angle not a multiple of 90◦) having orthogonal

faces and that is homeomorphic to a sphere? The answer to this question (posed

in [Biedl et al. 1999b]) turns out to be no, as proved by Donoso and O’Rourke

[Donoso and O’Rourke 2002]. The answer is yes, however, if the polyhedron is

allowed to have genus 6 or larger; on the other hand, the answer remains no for

genus up to 2 [Biedl et al. 2002a]. It remains open whether such nonorthogonal

polyhedra with orthogonal faces exist with genus 3, 4, or 5.

4.4. Continuously folding polyhedra. The results described so far for

polyhedron folding and unfolding are essentially about folded or unfolded states,

and not about the continuous process of reaching such states. In the context

of paper folding, we saw in Section 3.3.3 that these two notions are largely

equivalent. In the context of linkages, we saw that the two notions can differ,

particularly in 3D. Relatively little has been studied in the context of polyhedron

folding.

One special case that has been explored is orthogonal polyhedra. Specifically,

Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] have proved that there is

an edge-unfolding of an orthogonal polyhedron (which is an orthogonal net) that

cannot be folded into the orthogonal polyhedron by a continuous motion that

keeps the faces rigid and avoids self-intersection. The basis for their example is

the locked polygonal arc in 3D (Figure 10), converted into an orthogonal locked

polygonal arc in 3D, and then “thickened” into an orthogonal tube. A single

chain of faces in the unfolding is what prevents the continuous foldability.

One would expect, analogous to the results described in Section 3.3.3 [Demaine

and Mitchell 2001], that collections of polygons hinged together into a tree can

be folded into all possible configurations if we allow additional creases during

the motion. However, this extension (equivalent to a polygonal piece of paper)

remains open. A particularly interesting version of this question, posed in [Biedl

et al. 1999b], is whether a finite number of additional creases suffice.

An interesting collection of open questions arise when we consider polyhedron

foldings with creases only at polyhedron edges. For example, do all convex
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Figure 25. Folding the Latin cross into an octahedron, according to the crease

pattern in Figure 23(e), by affinely interpolating all dihedral angles. (Figure 2 of

[Demaine et al. 1999a].)

polyhedra have continuous edge-unfoldings? (This question may be easier to

answer negatively than the classic edge-unfolding problem.) Figure 25 shows

a simple example of such a folding, taken from a longer video [Demaine et al.

1999a], based on the simple rule of affinely interpolating each dihedral angle from

start to finish. Connelly, as reported in [Miller and Pak 2003], asked whether the

source unfolding can be continuously bloomed, i.e., unfolded so that all dihedral

angles increase monotonically. Although an affirmative answer to this question

has just been obtained,13 it remains open whether every general unfolding can

be executed continuously.

5. Conclusion and Higher Dimensions

Our goal has been to survey the results in the newly developing area of fold-

ing and unfolding, which offers many beautiful mathematical and computational

problems. Much progress has been made recently in this area, but many impor-

tant problems remain open. For example, most aspects of unfolding polyhedra

remain unsolved, and we highlight two key problems in this context: can all con-

vex polyhedra be edge-unfolded, and can all polyhedra be generally unfolded?

Another exciting new direction is the developing connection between linkage

folding and protein folding.

Finally, higher dimensions are just beginning to be explored. We mentioned

in Section 2.4 that 1D (one-dimensional) linkages in higher dimensions have

been explored. But 2D “linkages” in 4D — and higher-dimensional analogs—

have received less attention. One model is 2D polygons hinged together at their

edges to form a chain. Such a hinged chain has fewer degrees of freedom than

a 1D linkage in 3D; for example, a hinged chain can be forced to fold like a

planar linkage by extruding the linkage orthogonal to the plane. See Figure 26.

Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] showed that even hinged

chains of rectangles do not have connected configuration spaces, by considering

an orthogonal version of Figure 10. It would be interesting to explore these

chains of rectangles in 4D.

Turning to the origami context, one natural open problem is a generaliza-

tion of the fold-and-cut problem: given a polyhedral complex drawn on a d-

13Personal communication with Stefan Langerman et al., February 2004.
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Figure 26. Extruding a linkage into an equivalent collection of polygons (rect-

angles) hinged together at their edges.

dimensional piece of paper, is it always possible to fold the paper flat (into d-

space) while mapping the (d−1)-dimensional facets of the complex to a common

(d−1)-dimensional hyperplane? What if our goal is to map all k-dimensional

faces to a common k-dimensional flat, for all k = 0, 1, . . . , d?

Salvador Dali’s famous painting (“Christ”) of Christ on an unfolded 4D hy-

percube suggests the possibilities for unfolding higher-dimensional polyhedra.

All of the unsolved problems related to unfolding 3D to 2D are equally unsolved

in their higher-dimensional analogs. We mentioned in Section 4.1 a rare excep-

tion: the vertex-unfolding algorithm generalizes to unfold simplicial manifolds

without overlap in arbitrary dimensions. Miller and Pak [2003] have established

that the source unfolding generalizes to higher dimensions to yield nonoverlap-

ping unfoldings, but that the most natural generalization of the star unfolding

does not even suffice to unfold, let alone without overlap. Nevertheless, with

one general unfolding available, the natural analog of the edge-unfolding ques-

tion remains: Does every convex d-polytope have a ridge unfolding, a cutting of

(d−2)-dimensional faces that unfolds the polytope into R
d−1 without overlap?
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On the Rank of a Tropical Matrix

MIKE DEVELIN, FRANCISCO SANTOS, AND BERND STURMFELS

Abstract. This is a foundational paper in tropical linear algebra, which is
linear algebra over the min-plus semiring. We introduce and compare three
natural definitions of the rank of a matrix, called the Barvinok rank, the
Kapranov rank and the tropical rank. We demonstrate how these notions
arise naturally in polyhedral and algebraic geometry, and we show that
they differ in general. Realizability of matroids plays a crucial role here.
Connections to optimization are also discussed.

1. Introduction

The rank of a matrix M is one of the most important notions in linear algebra.

This number can be defined in many different ways. In particular, the following

three definitions are equivalent:

• The rank of M is the smallest integer r for which M can be written as the

sum of r rank one matrices. A matrix has rank 1 if it is the product of a

column vector and a row vector.

• The rank of M is the smallest dimension of any linear space containing the

columns of M .

• The rank of M is the largest integer r such that M has a nonsingular r × r

minor.

Our objective is to examine these familiar definitions over an algebraic struc-

ture which has no additive inverses. We work over the tropical semiring (R,⊕,�),

whose arithmetic operations are

a ⊕ b := min(a, b) and a � b := a + b.
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The set Rd of real d-vectors and the set Rd×n of real d × n-matrices are semi-

modules over the semiring (R,⊕,�). The operations of matrix addition and

matrix multiplication are well defined. All our definitions of rank make sense

over the tropical semiring (R,⊕,�):

Definition 1.1. The Barvinok rank of a matrix M ∈ Rd×n is the smallest

integer r for which M can be written as the tropical sum of r matrices, each of

which is the tropical product of a d × 1-matrix and a 1 × n-matrix.

Definition 1.2. The Kapranov rank of a matrix M ∈ Rd×n is the smallest

dimension of any tropical linear space (to be defined in Definition 3.2) containing

the columns of M .

Definition 1.3. A square matrix M = (mij) ∈ Rr×r is tropically singular if

the minimum in

detM :=
⊕

σ∈Sr

m1σ1
� m2σ2

� · · · � mrσr

= min
{

m1σ1
+ m2σ2

+ · · · + mrσr
: σ ∈ Sr

}

is attained at least twice. Here Sr denotes the symmetric group on {1, 2, . . . , r}.

The tropical rank of a matrix M ∈ Rd×n is the largest integer r such that M

has a nonsingular r × r minor.

These three definitions are easily seen to agree for r = 1, but in general they are

not equivalent:

Theorem 1.4. If M is a matrix with entries in the tropical semiring (R,⊕,�),

tropical rank (M) ≤ Kapranov rank (M) ≤ Barvinok rank (M). (1–1)

Both of these inequalities can be strict .

The proof of Theorem 1.4 consists of Propositions 3.6, 4.1, 7.2 and Theorem 7.3 in

this paper. As we go along, several alternative characterizations of the Barvinok,

Kapranov and tropical ranks will be offered. One of them arises from the fact

that every d×n-matrix M defines a tropically linear map Rn → Rd. The image

of M is a polyhedral complex in Rd. Following [Develin and Sturmfels 2004],

we identify this polyhedral complex with its image in the tropical projective

space TPd−1 = Rd/R(1, 1, . . . , 1). This image is the tropical convex hull of (the

columns of) M as in [Develin and Sturmfels 2004]. Equivalently, this tropical

polytope is the set of all tropical linear combinations of the columns of M . We

show in Section 4 that the tropical rank of M equals the dimension of this

tropical polytope plus one, thus justifying the definition of the vanishing of the

determinant given in Definition 1.3.

The discrepancy between Definition 1.3 and Definition 1.2 comes from the

crucial distinction between tropical polytopes and tropical linear spaces, as ex-

plained in [Richter-Gebert et al. 2005, § 1]. The latter are described in [Speyer
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and Sturmfels 2004] where it is shown that they are parametrized by the tropical

Grassmannian. That the two inequalities in Theorem 1.4 can be strict corre-

sponds to two facts about tropical geometry which are unfamiliar from classical

geometry. Strictness of the first inequality corresponds to the fact that a point

configuration in tropical space can have a d-dimensional convex hull but not lie

in any d-dimensional affine subspace. Strictness of the second inequality corre-

sponds to the fact that a point configuration in a d-dimensional subspace need

not lie in the convex hull of d + 1 points.

We start out in Section 2 by studying the Barvinok rank (Definition 1.1). This

notion of rank arises in the context of combinatorial optimization [Barvinok et al.

1998; Butkovič 2003; Çela et al. 1998]. In Section 3 we study the Kapranov rank

(Definition 1.2). This notion is the most natural one from the point of view of

algebraic geometry, where tropical arithmetic arises as the “tropicalization” of

arithmetic in a power series ring. It has good algebraic and geometric properties

but is difficult to characterize combinatorially; for instance, it depends on the

base field of the power series ring, which here we take to be the complex numbers

C, unless otherwise stated.

In Section 4 we study the tropical rank (Definition 1.3). This is the best notion

of rank from a geometric and combinatorial perspective. For instance, it can be

expressed in terms of regular subdivisions of products of simplices [Develin and

Sturmfels 2004]. In Section 5, we use this characterization to show that the

tropical and Kapranov ranks agree when either of them is equal to min(d, n).

Section 6 is devoted to another case where the Kapranov and tropical ranks

agree, namely when either of them equals two. The set of d×n-matrices enjoying

this property is the space of trees with d leaves and n marked points. This space

is studied in the companion paper [Develin 2004].

The second inequality of Theorem 1.4 is strict for many matrices (see Propo-

sition 2.2 for examples), but it requires more effort to find matrices for which the

first inequality is strict. Such matrices are constructed in Section 7 by relating

Kapranov rank to realizability of matroids.

Our definition of “tropically nonsingular” is equivalent to what is called

“strongly regular” in the literature on the min-plus algebra [Butkovič and Hevery

1985; Cuninghame-Green 1979]. The resulting notion of tropical rank, as well

as the notion of Barvinok rank, have previously appeared in this literature. In

fact, linear algebra in the tropical semiring has been called “the linear algebra of

combinatorics” [Butkovič 2003]. In the final section of the paper we revisit some

of that literature, which is concerned mainly with algorithmic issues, and relate

it to our results. We also point out several (mostly algorithmic) open questions.

Summing up, the three definitions of rank studied in this paper generally

disagree, and they have different flavors (combinatorial, algebraic, geometric).

But they all share some of the familiar properties of matrix rank over a field.

The following properties are easily checked for each of the three definitions of

rank: the rank of a matrix and its transpose are the same; the rank of a minor
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(2,0,3)

(4,1,4)

(0,2,2)

Figure 1. A tropical line in TP
2, and a one-dimensional tropical polytope.

cannot exceed that of the whole matrix; the rank is invariant under (tropical)

multiplication of rows or columns by constants, and under insertion of a row or

column obtained as a combination of others; the rank of M ⊕ N is at most the

sum of the ranks of M and N ; the rank of (M |N) is at least the ranks of M

and of N and at most the sum of their ranks; and the rank of M �N is at most

the minimum of the ranks of M and N .

2. The Barvinok Rank

The Traveling Salesman Problem can be solved in polynomial time if the

distance matrix is the tropical sum of r matrices of tropical rank one (with ⊕

as “max” instead of “min”). This result was proved by Barvinok, Johnson and

Woeginger [Barvinok et al. 1998], building on earlier work of Barvinok. This

motivates our definition of Barvinok rank as the smallest r for which M ∈ Rd×n

is expressible in this fashion. Since matrices of tropical rank one are of the form

X�Y T , for two column vectors X ∈ Rd and Y ∈ Rn, this is equivalent to saying

that M has a representation

M = X1 � Y T
1 ⊕ X2 � Y T

2 ⊕ · · · ⊕ Xr � Y T
r . (2–1)

For example, the following equation shows a 3×3-matrix which has Barvinok

rank two:




0 4 2

2 1 0

2 4 3



 =





0

2

2



 � (0, 4, 2) ⊕





3

0

3



 � (2, 1, 0).

This matrix also has tropical rank 2 and Kapranov rank 2 because the matrix

is tropically singular. The column vectors lie on the tropical line in TP2 =

R3/R(1, 1, 1) defined by 2 � x1 ⊕ 3 � x2 ⊕ 0 � x3, depicted in Figure 1. Their

convex hull, darkened, is a subset of the line and thus one-dimensional.

We next present two reformulations of the definition of Barvinok rank: in

terms of tropical convex hulls as introduced in [Develin and Sturmfels 2004], and

via a “tropical morphism” between matrix spaces.
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Proposition 2.1. Let M be a real d × n-matrix . The following properties are

equivalent :

(a) M has Barvinok rank at most r.

(b) The columns of M lie in the tropical convex hull of r points in TPd−1.

(c) There are matrices X ∈ Rd×r and Y ∈ Rr×n such that M = X�Y . Equiva-

lently , M lies in the image of the following tropical morphism, which is defined

by matrix multiplication:

φr : Rd×r × Rr×n → Rd×n, (X, Y ) 7→ X � Y. (2–2)

Proof. Let M1, . . . , Mn ∈ Rd be the column vectors of M . Let X1, . . . , Xr ∈ Rd

and Y1, . . . , Yr ∈ Rn be the columns of two unspecified matrices X ∈ Rd×r and

Y ∈ Rn×r. Let Yij denote the jth coordinate of Yi. The following three algebraic

identities are easily seen to be equivalent:

(a) M = X1 � Y T
1 ⊕ X2 � Y T

2 ⊕ · · · ⊕ Xr � Y T
r ,

(b) Mj = Y1j � X1 ⊕ Y2j � X2 ⊕ · · · ⊕ Yrj � Xr for all j = 1, . . . , n, and

(c) M = X � Y T .

Statement (b) says that each column vector of M lies in the tropical convex hull

of X1, . . . , Xr. The entries of the matrix Y are the multipliers in that tropical

linear combination. This shows that the three conditions (a), (b) and (c) in the

statement of the proposition are equivalent. ˜

Part (b) of Proposition 2.1 suggests that the Barvinok rank of a tropical matrix

is more an analogue of the nonnegative rank of a matrix than of the usual rank.

Recall (from [Cohen and Rothblum 1993], for instance) that the nonnegative

rank of a real nonnegative matrix M ∈ Rd×n is the smallest r for which M

can be written as a product of nonnegative matrices of format d × r and r × n.

Equivalently, it is the smallest r for which the columns (or rows) of M lie in

the positive hull of r nonnegative vectors. Compare this with the formulation

of Barvinok rank given in Proposition 2.1 (b); this closer connection comes from

the fact that tropical linear combinations yield an object more analogous to a

“positive span” or “convex hull” [Develin and Sturmfels 2004; Richter-Gebert

et al. 2005] than a linear span. For more information on nonnegative rank see

[Cohen and Rothblum 1993], and for the connection to rank over other semigroup

rings see [Gregory and Pullman 1983].

By Proposition 2.1, the set of all Barvinok matrices of rank ≤ r is the image

of the tropical morphism φr. In particular, this set is a polyhedral fan in Rd×n.

This fan has interesting combinatorial structure, even for r = 2. These fans are

discussed in more detail in [Ardila 2004] and [Develin 2004].

We next present an example of a matrix which shows that the Barvinok rank

can be much larger than the other two notions of rank. The matrix to be
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considered is the classical identity matrix

Cn =















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















. (2–3)

This looks like the unit matrix (in classical arithmetic) but it is far from being

a unit matrix in tropical arithmetic, where 0 is the neutral element for � and

∞ is the neutral element for ⊕. After obtaining the following result, we learned

that the same calculation had already been done in [Çela et al. 1998].

Proposition 2.2. The Barvinok rank of the matrix Cn is the smallest integer

r such that

n ≤

(

r
⌊

r
2

⌋

)

.

Proof. Let r be an integer and assume that n ≤
(

r
br/2c

)

. We first show that

Barvinok rank(Cn) ≤ r. Let S1, . . . , Sn be distinct subsets of {1, . . . , r} each

having cardinality br/2c. For each k ∈ 1, . . . , r, we define an n × n-matrix

Xk = (xk
ij) with entries in {0, 1, 2} as follows:

xk
ij =







0 if k ∈ Si\Sj ,

2 if k ∈ Sj\Si,

1 otherwise.

The matrix Xk has tropical rank one. To see this, let Vk ∈ {0, 1}n denote the

vector with ith coordinate equal to one or zero depending on whether k is an

element of Si or not. Then

Xk = V T
k � ( 1 � (−Vk) ).

To prove Barvinok rank(Cn) ≤ r, it now suffices to establish the identity

Cn = X1 ⊕ X2 ⊕ · · · ⊕ Xr.

Indeed, all diagonal entries of the matrices on the right hand side are 1, and the

off-diagonal entries (for i 6= j) of the right hand side are min(x1
ij , x

2
ij , . . . , x

r
ij) = 0,

because Si\Sj is nonempty.

To prove the converse direction, we consider an arbitrary representation

Cn = Y1 ⊕ Y2 ⊕ · · · ⊕ Yr

where the matrices Yk = (yk
ij) have tropical rank one. For each k we set Tk :=

{(i, j) : yk
ij = 0}. Since the matrices Yk are nonnegative and have tropical rank

one, it follows that each Tk is a product Ik × Jk, where Ik and Jk are subsets of
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{1, . . . , n}. Moreover, we have Ik ∩ Jk = ? because the diagonal entries of Yk

are not zero. For each i = 1, . . . , n we set

Si := {k : i ∈ Ik} ⊆ {1, . . . , r}.

We claim that no two of the sets S1, . . . , Sn are contained in one another.

Sperner’s Theorem [Aigner and Ziegler 1998] then proves that n ≤
(

r
br/2c

)

. To

prove the claim, observe that if Si ⊂ Sj then the entry yk
i,j cannot be zero for

any k. Indeed, if k ∈ Si ⊆ Sj then j ∈ Ik implies j 6∈ Jk. And if k 6∈ Si then

i 6∈ Ik. ˜

For example, C6 has Barvinok rank 4, as the following decomposition shows:

C6 =

















1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

















⊕

















1 1 0 0 0 1

1 1 0 0 0 1

2 2 1 1 1 2

2 2 1 1 1 2

2 2 1 1 1 2

1 1 0 0 0 1

















⊕

















1 0 1 0 1 0

2 1 2 1 2 1

1 0 1 0 1 0

2 1 2 1 2 1

1 0 1 0 1 0

2 1 2 1 2 1

















⊕

















1 2 2 2 1 1

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 2 2 2 1 1

1 2 2 2 1 1

















.

Similarly, C36 has Barvinok rank 8, even though all its 35 × 35 minors have

Barvinok rank 7 (and its 8 × 8 minors have Barvinok rank at most 5). Asymp-

totically,

Barvinok rank(Cn) ∼ log2 n.

We will see in Examples 3.5 and 4.4 that the Kapranov rank and tropical rank

of Cn are both two.

3. The Kapranov Rank

The tropical semiring has a strong connection to power series rings and their

algebraic geometry. We review the basic setup from [Speyer and Sturmfels 2004;

Sturmfels 2002]. Let K = C{{t}} be the field of Puiseux series with complex

coefficients. The elements in K are formal power series f = c1t
a1 + c2t

a2 + · · · ,

where a1 < a2 < · · · are rational numbers that have a common denominator.

Let deg : K∗ → Q be the natural valuation sending a nonzero Puiseux series

f to its degree a1. For any two elements f, g ∈ K, we have deg(fg) = deg f +

deg g = deg f � deg g. In general we also have deg(f + g) = min(deg f,deg g) =

deg f ⊕ deg g, unless there is a cancellation of leading terms. Thus the tropical

arithmetic is naturally induced from ordinary arithmetic in power series fields.

The field K = C{{t}} is algebraically closed of characteristic zero. If I is any

ideal in K[x1, . . . , xd] then we write V (I) for its variety in the d-dimensional alge-

braic torus (K∗)d. Thus the elements of V (I) are vectors x(t) = (x1(t), . . . , xd(t))

where each xi(t) is a Puiseux series and f(x(t)) = 0 for each polynomial f ∈ I.

Let us now enlarge the field K and allow all formal power series f = c1t
a1 +

c2t
a2 + · · · where the ai can be real numbers, not just rationals. We denote

this larger field by K̃ and we write Ṽ (I) for the variety in (K̃∗)d defined by I.
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The degree map can be applied coordinatewise, giving rise to a map which takes

vectors of nonzero power series into Rd:

deg : (K̃∗)d → Rd, (f1(t), . . . , fd(t)) 7→
(

deg f1, . . . ,deg fd

)

.

We define the tropical variety of I, denoted T (I) ⊂ Rd, to be the image of

Ṽ (I) under the map deg. In [Speyer and Sturmfels 2004; Sturmfels 2002], the

following alternative description of the tropical variety is given:

Theorem 3.1. The tropical variety T (I) is the set of vectors w ∈ Rn such that

the initial ideal inw(I) = 〈inw(f) : f ∈ I〉 contains no monomial . The dimension

of T (I) is the (topological) dimension of V (I).

The first statement in Theorem 3.1 is due to Misha Kapranov (in the special

case when I is a principal ideal) and the third author (for arbitrary ideals I,

in [Sturmfels 2002]). A complete proof can be found in [Speyer and Sturmfels

2004]. The second statement in Theorem 3.1 is due to Bieri and Groves [1984].

An elementary proof of this result, and the fact that T (I) is a polyhedral fan,

appears in [Sturmfels 2002, § 9].

We defined Kapranov rank to be the smallest dimension of any tropical linear

space containing the columns of M ; now, we can make this precise by defining

tropical linear spaces.

Definition 3.2. A tropical linear space in Rd is any subset T (I) where I is an

ideal generated by affine-linear forms a1x1+· · ·+adxd+b in K̃[x] = K̃[x1, . . . , xd].

Its dimension is its topological dimension, which is equal to d minus the number

of minimal generators of I.

Note that here the scalars a1, . . . , an, b are power series in t with complex coeffi-

cients, the choice of the complex numbers being crucial. If I is the principal ideal

generated by one affine-linear form a1x1 + · · ·+ anxn + b, then T (I) is a tropical

hypersurface. Tropical linear spaces were studied in [Speyer and Sturmfels 2004],

where it was shown that they are parametrized by the tropical Grassmannian.

Every tropical linear space L is a finite intersection of tropical hyperplanes, but

not conversely, and the number of tropical hyperplanes needed is generally larger

than the codimension of L.

Recall from Definition 1.2 that the Kapranov rank of a matrix M ⊂ Rd×n

is the smallest dimension of any tropical linear space containing the columns of

M . It is not completely apparent in this definition that the Kapranov rank of

a matrix and its transpose are the same, but this follows from our next result.

Let Jr denote the ideal generated by all the (r + 1) × (r + 1)-subdeterminants

of a d × n-matrix of indeterminates (xij). This is a prime ideal of dimension

rd+rn−r2, and the generating determinants form a Gröbner basis. The variety

V (Jr) consists of all d × n-matrices with entries in K∗ whose (classical) rank is

at most r.
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Theorem 3.3. For a real matrix M = (mij) ∈ Rd×n the following statements

are equivalent :

(a) The Kapranov rank of M is at most r.

(b) The matrix M lies in the tropical determinantal variety T (Jr).

(c) There exists a d×n-matrix F =
(

fij(t)
)

with nonzero entries in the field K̃

such that the rank of F is less than or equal to r and deg(fij) = mij for all i

and j.

The power series matrix F in part (c) is called a lift of M . We abbreviate this

as deg F = M .

Proof. The equivalence of (b) and (c) is simply our definition of tropical

variety applied to the ideal Jr since, over the field K̃, lying in the variety of the

determinantal ideal Jr is equivalent to having rank at most r. To see that (c)

implies (a), consider the linear subspace of K̃d spanned by the columns of F .

This is an r-dimensional linear space over a field, so it is defined by an ideal

I generated by d − r linearly independent linear forms in K̃[x1, . . . , xd]. The

tropical linear space T (I) contains all the column vectors of M = deg F .

Conversely, suppose that (a) holds, and let L be a tropical linear space of

dimension r containing the columns of M . Pick a linear ideal I in K̃[x1, . . . , xd]

such that L = T (I). By applying the definition of tropical variety to the ideal

I, we see that each column vector of M has a preimage in Ṽ (I) ⊂ (K̃∗)d under

the degree map. Let F be the d × n-matrix over K̃ whose columns are these

preimages. Then the column space of F is contained in the variety defined by I,

so we have rank(F ) ≤ r, and deg F = M as desired. ˜

Corollary 3.4. The Kapranov rank of a matrix M ∈ Rd×n is the smallest

rank of any lift of M .

The ideal J1 is generated by the 2× 2-minors xijxkl −xilxkj of the d×n-matrix

(xij). Therefore, a matrix of Kapranov rank one must certainly satisfy the linear

equations mij + mkl = mil + mkj . This happens if and only if there exist real

vectors X = (x1, . . . , xd) and Y = (y1, . . . , yn) with

mij = xi +yj for all i, j ⇐⇒ mij = xi�yj for all i, j ⇐⇒ M = XT �Y.

Conversely, if such X and Y exist, we can lift M to a matrix of rank one by

substituting tmij for mij . Therefore, a matrix M has Kapranov rank one if and

only if it has Barvinok rank one. In general, the Kapranov rank can be much

smaller than the Barvinok rank, as the following example shows.

Example 3.5. Let n ≥ 3 and consider the classical identity matrix Cn. It

does not have Kapranov rank one, so it has Kapranov rank at least two. Let
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a3, a4, . . . , an be distinct nonzero complex numbers. Consider the matrix

Fn =



















t 1 t+a3 t+a4 · · · t+an

1 t 1+a3t 1+a4t · · · 1+ant

t−a3 1 t t−a3+a4 · · · t−a3+an

t−a4 1 t−a4+a3 t · · · t−a4+an

...
...

...
...

. . .
...

t−an 1 t−an+a3 t−an+a4 · · · t



















.

The matrix Fn has rank 2 because the i-th column (for i ≥ 3) equals the first

column plus ai times the second column. Since deg Fn = Cn, we conclude that

Cn has Kapranov rank two.

The two-dimensional tropical plane containing the columns of Cn is the two-

dimensional fan L in Rn which consists of the n cones {xi ≥ x1 = · · · = xi−1 =

xi+1 = · · · = xn}; this is the tropical variety defined by the ideal in K[x1, . . . , xn]

generated by n−2 linear forms with generic coefficients in C. Its image in TPn−1

is the line all of whose tropical Plücker coordinates are zero [Speyer and Sturmfels

2004].

The following proposition establishes half of Theorem 1.4.

Proposition 3.6. Every matrix M ∈ Rd×n satisfies Kapranov rank (M) ≤

Barvinok rank (M), and this inequality can be strict .

Proof. Suppose that M has Barvinok rank r. Write M = M1 ⊕ · · · ⊕ Mr

where each Mi has Barvinok rank one. Then Mi has Kapranov rank one, so

there exists a rank one matrix Fi over K̃ such that deg Fi = Mi. Moreover,

by multiplying the matrices Fi by random complex numbers, we can choose Fi

such that there is no cancellation of leading terms in t when we form the matrix

F = F1 + · · · + Fr. This means deg F = M . Clearly, the matrix F has rank at

most r. Theorem 3.3 implies that M has Kapranov rank at most r. Example

3.5 shows that the inequality can be strict. ˜

A general algorithm for computing the Kapranov rank of a matrix M involves

computing a Gröbner basis of the determinantal ideal Jr. Suppose we wish to

decide whether a given real d×n-matrix M = (mij) has Kapranov rank > r. To

decide this question, we fix any term order ≺M on the polynomial ring C[xij ]

which refines the partial ordering on monomials given assigning weight mij to

the variable xij , and we compute the reduced Gröbner basis G of Jr in the term

order ≺M . For each polynomial g in G, we consider its leading form inM (g) with

respect to the partial ordering coming from M . As noted in [Sturmfels 1996,

§ 1], we have in≺M

(

inM (g)
)

= in≺M
(g) for all g ∈ G.

The ideal generated by the set of leading forms
{

inM (g) : g ∈ G
}

is the initial

ideal inM (Jr). Let xall denote the product of all dn unknowns xij . The second

step in our algorithm is to compute the saturation of the initial ideal with respect
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to the coordinate hyperplanes:
(

inM (Jr) : 〈xall〉∞
)

=
{

f ∈ C[xij ] : f · (xall)s ∈ Jr for some s ∈ N
}

. (3–1)

Computing such an ideal quotient, given the generators inM (g), is a standard

operation in computational commutative algebra. It is a built-in command in

software systems such as CoCoA [CoCoA 2000–], Macaulay 2 [Grayson and Still-

man 1993–] or Singular [Greuel et al. 2001]. Here is a direct consequence of

Theorems 3.1 and 3.3:

Corollary 3.7. The matrix M has Kapranov rank > r if and only if (3–1) is

the unit ideal 〈1〉.

In view of this, the (combinatorial) Theorem 5.5, Theorem 6.5 and Corollary

7.4 have the following commutative algebra implications. Recall from [Richter-

Gebert et al. 2005] that a finite generating set S of an ideal I is a tropical basis

if, for every weight vector w ∈ Rn for which the initial ideal inw(I) contains a

monomial, there is an f ∈ S such that inw(f) is a monomial. Every ideal I in

K[x1, . . . , xn] has a tropical basis but tropical bases are often much larger than

minimal generating sets.

Corollary 3.8. The 3×3-minors of a matrix of indeterminates form a tropical

basis. The same holds for the maximal minors of a matrix , but it does not hold

for the 4 × 4-minors of a 7 × 7-matrix .

We have defined Kapranov rank in terms of power series arithmetic over the com-

plex field C, which is a canonical choice for doing algebraic geometry. However,

the same definition works over any field k. One can consider the Puiseux series

field K = k{{t}} with either rational or real exponents. Note that the former is

not algebraically closed if k is algebraically closed of characteristic p, but this

need not concern us. We denote the latter by K̃ as before. All we need is the

degree map (K̃∗)d → Rd. We make the following analogous definitions.

Definition 3.9. Let K = k{{t}}. A tropical linear space over k is the image

under “deg” of any linear subspace of the K̃-vector space K̃d. Its dimension is

equal to the dimension of that linear subspace. The Kapranov rank over k of a

matrix M ∈ Rn×d is the smallest dimension of a tropical linear space containing

the columns of M .

Unless otherwise stated, we will concern ourselves only with Kapranov rank over

the complex numbers. In the general setting, Theorem 3.3 is true over all fields,

but Proposition 3.6 is true only over infinite fields because in its proof we needed

to take random coefficients. Indeed, Example 6.6 in Section 6 shows a matrix

whose Kapranov rank over the 2-element field F2 is greater than the Barvinok

rank. Even over algebraically closed fields, the Kapranov rank of a matrix may

depend on the characteristic of the field. We will discuss this further and give

examples in Section 7.
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4. The Tropical Rank

We begin by proving the first inequality in Theorem 1.4. To complete the

proof of Theorem 1.4, it remains to be seen that the inequality can be strict.

This will be done in Section 7.

Proposition 4.1. Every matrix M ∈ Rd×n satisfies

tropical rank (M) ≤ Kapranov rank (M).

Proof. If the matrix M has a tropically nonsingular r × r minor, then any

lift of M to the power series field K̃ must have the corresponding r × r-minor

nonsingular over K̃, since the leading exponent of its determinant occurs only

once in the sum. Consequently, no lift of M to K̃ can have rank less than r. By

Theorem 3.3, this means that the Kapranov rank of M must be at least r. ˜

The set of all tropical linear combinations of a set of n vectors in Rd is a poly-

hedral complex. It has a 1-dimensional lineality space, spanned by the vec-

tor (1, . . . , 1), but upon quotienting out by this 1-dimensional space, we get a

bounded subset in tropical projective space TPd−1 = Rd/R(1, . . . , 1). This set is

the tropical convex hull of the n given points in TPd−1, and it was investigated

in depth in [Develin and Sturmfels 2004]. We review some relevant definitions

and facts.

We fix a subset V = {v1, . . . , vn} ⊆ Rd. Given a point x ∈ Rd, its type is

the d-tuple of sets S = (S1, . . . , Sd), where each Sj ⊂ {1, . . . , n} and i ∈ Sj if

xj − vij ≥ xk − vik for all k ∈ {1, . . . , n}. Let XS be the region consisting of

points with type S; then according to [Develin and Sturmfels 2004, Theorem 15],

the tropical convex hull of V equals the union of the bounded regions XS, which

are precisely those regions for which each Sj is nonempty. (If x is a point in the

tropical convex hull with type S, then expressing x as a linear combination of the

vi’s, we have i ∈ Sj if the contribution of vi is responsible for the j-th coordinate

of x.) Indeed, (the topological closures of) these regions provide a polytopal

decomposition of the tropical convex hull of V . Note that by definition, any

type has the property that each i ∈ {1, . . . , n} is in some Sj .

The dimension of a particular cell XS of the tropical polytope can be easily

computed from the combinatorics of the d-tuple S: let GS be the graph which

has vertex set 1, . . . , d, with i and j connected by an edge if Si ∩Sj is nonempty.

The dimension of XS is one less than the number of connected components of

the graph GS .

Recall from Definition 1.3 that the tropical rank of a matrix is the size of the

largest nonsingular square minor, and that an r × r matrix M is nonsingular if
⊙r

i=1 Mσ(i),i =
∑r

i=1 Mσ(i),i achieves its minimum only once as σ ranges over

the symmetric group Sr. Here is another characterization.
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Theorem 4.2. Let M ⊂ Rd×n be a matrix . Then the tropical rank of M is

equal to one plus the dimension of the tropical convex hull of the columns of M ,

viewed as a tropical polytope in TPd−1.

Proof. Let V = {v1, . . . , vn} be the set of columns of M , and let P = tconv(V )

be their tropical convex hull in TPd−1. Suppose that r is the tropical rank of M ,

that is, there exists a tropically nonsingular r× r-submatrix of M , but all larger

square submatrices are tropically singular.

We first show that dimP ≥ r − 1. We fix a nonsingular r × r-submatrix

M ′ of M . Deleting the rows outside M ′ means projecting P into TPr−1, and

deleting the columns outside M ′ means passing to a tropical subpolytope P ′

of the image. Both operations can only decrease the dimension, so it suffices

to show dimP ′ ≥ r − 1. Hence, we can assume that M is itself a tropically

nonsingular r × r-matrix. Also, without loss of generality, we can assume that

the minimum over σ ∈ Sr of

f(σ) =

r
∑

i=1

vi,σ(i) (4–1)

is uniquely achieved when σ is the identity element e ∈ Sr. We now claim that

the cell X({1},...,{r}) exists; to do this, we need to demonstrate that there exists

a point with type ({1}, . . . , {r}).

The inequalities which must be valid on this cell are xk − xj ≤ vjk − vjj for

j 6= k. We claim that these inequalities define a full-dimensional region. Suppose

not; then, by Farkas’ Lemma, there exists a nonnegative linear combination of

the inequalities xk−xj ≤ vjk−vjj which equals 0 ≤ c for some nonpositive real c.

This linear combination would imply that some other σ ∈ Sr has f(σ) ≤ f(e), a

contradiction. So this cell is full-dimensional; it follows immediately that picking

a point in its interior yields a point with type ({1}, . . . , {r}), since because these

inequalities are all strict, no other type-inducing inequalities can hold.

For the converse, suppose that dimP ≥ r. Pick a region XS of dimension r,

and assume by translating the points (which adds a constant to each row of XS,

not changing the rank of the matrix) that (0, . . . , 0) is in XS, so that the only

inequalities valid on 0 are those given by S. The graph GS has r + 1 connected

components, so we can pick r + 1 elements of {1, . . . , n} of which no two appear

in a common Sj . Assume without loss of generality that this set is {1, . . . , r+1},

and again without loss of generality rearrange the labeling of the coordinates so

that i ∈ Sj if and only if i = j, for 1 ≤ i, j ≤ r + 1.

We now claim that the square submatrix consisting of the first r +1 rows and

columns of M is tropically nonsingular. Indeed, we have (using the definition of

f(σ) given in (4–1)):

f(σ) − f(e) =

r+1
∑

i=1

vi,σ(i) −

r+1
∑

i=1

vii =

r+1
∑

i=1

(

vi,σ(i) − vii

)

,
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but whenever σ(i) 6= i, vi,σ(i) − vii > 0 since i ∈ Si and i /∈ Sσ(i) for the point 0.

Therefore, if σ is not the identity, we have f(σ) − f(e) > 0, and e is the unique

permutation in Sr+1 minimizing the expression (4–1). So M has tropical rank

at least r + 1. This is a contradiction, and we conclude that dimP = r − 1. ˜

We next present a combinatorial formula for the tropical rank of a zero-one

matrix, or any matrix which has only two distinct entries. We define the support

of a vector in tropical space Rd as the set of its zero coordinates. We define the

support poset of a matrix M to be the set of all unions of supports of column

vectors of M . This set is partially ordered by inclusion.

Proposition 4.3. The tropical rank of a zero-one matrix with no column of all

ones equals the maximum length of a chain in its support poset .

The assumption that there is no column of all ones is needed for the statement

to hold because a column of zeroes and a column of ones represent the same

point in tropical projective space TPd−1.

Proof. There is no loss of generality in assuming that every union of supports

of columns of M is actually the support of a column. Indeed, the tropical sum

of a set of columns gives a column whose support is the union of supports, and

appending this column to M does not change the tropical rank since the tropical

convex hull of the columns remains the same. Therefore, if there is a chain with

r elements in the support poset we may assume that there is a set of r columns

with supports contained in one another. Since there is no column of ones, from

this we can easily extract an r × r minor with zeroes on and below the diagonal

and 1’s above the diagonal, which is tropically nonsingular.

Reciprocally, suppose there is a tropically nonsingular r × r minor N . We

claim that the support poset of N has a chain of length r, from which it follows

that the support poset of M also has a chain of length r. Assume without

loss of generality that the unique minimum permutation sum is obtained in the

diagonal. This minimum sum cannot be more than one, because if nii and njj

are both 1 then changing them for nij and nji does not increase the sum. If

the minimum is zero, orienting an edge from i to j if entry ij of N is zero

yields an acyclic digraph, which admits an ordering. Rearranging the rows and

columns according to this ordering yields a matrix with 1’s above the diagonal

and 0’s on and below the diagonal. The tropical sum of the last i columns (which

corresponds to union of the corresponding supports) then produces a vector with

0’s exactly in the last i positions. Hence, there is a proper chain of supports of

length r.

If the minimum permutation sum in N is 1, then let nii be the unique diagonal

entry equal to 1. The i-th row in N must consist of all 1’s: if nij is zero, then

changing nij and nji for nii and njj does not increase the sum. Changing this

row of ones to a row of zeroes does not affect the support poset of N (it just

adds an element to every support), and yields a nonsingular zero-one matrix



ON THE RANK OF A TROPICAL MATRIX 227

with minimum sum zero to which we can apply the argument in the previous

paragraph. ˜

Example 4.4. The tropical rank of the classical identity matrix Cn equals two

(for all n), since all of its 3×3 minors are tropically singular, while the principal

2 × 2 minors are not. The supports of its columns are all the sets of cardinality

n − 1 and the support poset consists of them and the whole set {1, . . . , n}. The

maximal chains in the poset have indeed length two.

As with the matrices of Barvinok rank r, the d × n matrices of tropical rank at

most r form a polyhedral fan given as the intersection of the tropical hypersur-

faces T (f) where f runs over the set of (r + 1) × (r + 1)-subdeterminants of a

d × n-matrix of unknowns (xij). Note that this is very similar to the Kapranov

rank; by Theorem 3.3, the set of d×n matrices of tropical rank is the intersection

of the tropical hypersurfaces T (f) where f runs over the ideal generated by

the (r + 1) × (r + 1)-subdeterminants of a d × n-matrix of unknowns (xij).

However, these are not equal; matrices can have Kapranov rank strictly bigger

than their tropical rank, as will be seen in Section 7. In this sense, the subde-

terminants of a given size r ≥ 4 do not form a tropical basis for the ideal they

generate.

5. Mixed Subdivisions and Corank One

A useful tool in tropical convexity is the computation of tropical convex hulls

by means of mixed subdivisions of the Minkowski sum of several copies of a

simplex. We recall the definition of mixed subdivisions, adapted to the case of

interest to us. See [Santos 2003] for more details.

Definition 5.1. Let ∆d−1 be the standard (d − 1)-simplex in Rd, with vertex

set A = {e1, . . . , ed}. Let n∆d−1 denote its dilation by a factor of n, which we

regard as the convex hull of the Minkowski sum A + A + · · · + A (n times). Let

M = (vij) ⊂ Rd×n be a matrix. Consider the lifted simplices

Pi := conv
{

(e1, v1i), . . . , (ed, vdi)
}

⊂ Rd+1 for i = 1, 2, . . . , n.

The regular mixed subdivision of n∆d−1 induced by M is the set of projections

of the lower faces of the Minkowski sum P1 + · · · + Pn. Here, a face is called

lower if its outer normal cone contains a vector with last coordinate negative.

It was shown in [Develin and Sturmfels 2004, § 4] that there is a bijection between

the cells XS in the convex hull of the columns of M and the interior cells in the

regular subdivision of a product of simplices induced by M . Via the Cayley trick

[Santos 2003], the latter biject to interior cells in the regular mixed subdivision

defined above. Here we provide a short direct proof of the composition of these

two bijections:
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Lemma 5.2. Let M ⊂ Rd×n and let S = (S1, . . . , Sd), where each Sj is a subset

of {1, . . . , n}. Then, the following properties are equivalent :

(1) There exists a point in Rd of type S relative to the n points given by the

columns of M .

(2) There is a nonnegative matrix M ′ such that M ′ is obtained from M by

adding constants to rows or columns of M , and such that M ′
ji = 0 precisely

when i ∈ Sj .

(3) The regular mixed subdivision of n∆d−1 induced by M has as a cell the

Minkowski sum τ1 + · · · + τn where τi = conv({ej : i ∈ Sj}).

Moreover , if this happens, the cells referred to in parts (1) and (3) have comple-

mentary dimensions.

Proof. Adding a constant to a row of M amounts to translating the set of

n points in TPn−1, while adding a constant to a column leaves the point set

unchanged. Consider a cell XS in the tropical convex hull, let x be any point

in the relative interior of XS and let M ′ be the (unique) matrix obtained by

translating the point set by a vector −x and normalizing every column by adding

a scalar so that its minimum coordinate equals 0. Conversely, for a matrix M ′

as in (2), consider the point x whose coordinates are the amounts added to the

columns of M to obtain M ′. The point x is in the tropical convex hull of the

columns of M . Let S be its type. Then the modified matrix M ′ has zeroes

precisely in entries (j, i) with i ∈ Sj , proving the equivalence of (1) and (2).

For the equivalence of (2) and (3), observe that adding a constant to a row or

column of M does not change the mixed subdivision of
∑

Pi. For a nonnegative

matrix M ′ with at least a zero in every column, the positions of the zero entries

define the face of
∑

Pi in the negative vertical direction. Conversely, for every cell

of the regular mixed subdivision, we can apply a linear transformation changing

only the last coordinate to give that cell height zero and all other vertices positive

height (this is what it means to be in the lower envelope.) The resulting height

function is precisely the matrix M ′ in (2), which proves the equivalence of (2)

and (3). The assertion on dimensions is easy to prove. ˜

This lemma implies that the tropical convex hull is dual to the regular mixed

subdivision.

Corollary 5.3. Given a matrix M , the poset of types in the tropical convex

hull of its columns and the poset of interior cells of the corresponding regular

mixed subdivision are antiisomorphic.

Proof. From the proof of Lemma 5.2, it is clear that the poset of types (un-

der S < T if Sj ⊂ Tj for each j) and the poset of cells in the regular mixed

subdivision are antiisomorphic. Meanwhile, a type S is in the tropical convex

hull of its columns if and only if each Sj is nonempty; this is the same condition

categorizing when the corresponding cell is contained in the boundary of the
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mixed subdivision (which occurs whenever there exists a vertex appearing in no

summand.) ˜

Corollary 5.4. Let M ⊂ Rd×n. The tropical rank of M equals d minus the

minimal dimension of an interior cell in the regular mixed subdivision of n∆d−1

induced by M .

We can use these tools to prove that the tropical and Kapranov ranks of a matrix

coincide if the latter is maximal.

Theorem 5.5. If a d × n matrix M has Kapranov rank equal to d, then it has

tropical rank equal to d as well .

Proof. By Corollary 5.4, M has tropical rank d if and only if the corresponding

regular mixed subdivision has an interior vertex. The theorem then follows from

the next two lemmas. ˜

Lemma 5.6. A d × n-matrix M has Kapranov rank less than d if and only if

the corresponding regular mixed subdivision has a cell that intersects all facets of

n∆d−1.

Proof. If M has Kapranov rank less than d, then its column vectors lie in a

tropical hyperplane. Since all tropical hyperplanes are translates of one another,

there is no loss of generality in assuming that it is the hyperplane defined by

x1 ⊕ · · · ⊕ xd. That is, after normalization, all columns of M are nonnegative

and have at least two zeroes. Then, by Lemma 5.2, the zero entries of M define

a cell B in the regular mixed subdivision none of whose Minkowski summands

are single vertices. In particular, for every facet F of ∆d−1 and for every i ∈

{1, . . . , n}, the i-th summand of B is at least an edge and hence it intersects F .

Hence, B intersects all facets of n∆d−1. For the converse suppose the regular

mixed subdivision has a cell B which intersects all facets of n∆d−1. We may

assume that M gives height zero to the points in that cell and positive height

to all the others. The intersection of B with the j-th facet is given by the zero

entries in M after deletion of the j-th row. In particular, B intersects the j-th

facet if and only if every column has a zero entry outside of the j-th row, and so

B intersects all facets if and only if all columns of M have at least two zeroes,

implying that these all lie in the hyperplane defined by x1 ⊕ · · · ⊕ xd. ˜

The cell in the preceding statement need not be unique. For example, if a

tetrahedron is sliced by planes parallel to two opposite edges, then each maximal

cell meets all the facets of the tetrahedron.

Lemma 5.7. In every polyhedral subdivision of a simplex which has no inte-

rior vertices, but arbitrarily many vertices on the boundary , there is a cell that

intersects all of the facets.

Proof. Observe that there is no loss of generality in assuming that the poly-

hedral subdivision S is a triangulation. For a triangulation, we use Sperner’s
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Lemma [Aigner and Ziegler 1998]: “if the vertices of a triangulation of ∆ are

labeled so that (1) the vertices of ∆ receive different labels and (2) the vertices

in any face F of ∆ receive labels among those of the vertices of F , then there is

a fully labeled simplex”.

Our task is to give our triangulation a Sperner labeling with the property that

every vertex labeled i lies in the i-th facet of the simplex. The way to obtain

this is: the vertex opposite to facet i is labeled i + 1. More generally, the label i

of a vertex v is taken so that v is contained in facet i but not on facet i− 1. All

labels are modulo d. ˜

6. Matrices of Rank Two

By Theorem 4.2, if a matrix has tropical rank two, then the tropical convex

hull of its columns is one-dimensional. Since it is contractible [Develin and

Sturmfels 2004], this tropical polytope is a tree. Another way of showing this

is via the corresponding regular mixed subdivision. Tropical rank 2 means that

all the interior cells have codimension zero or one. Hence, the subdivision is

constructed by slicing the simplex via a certain number of hyperplanes (which do

not meet inside the simplex) and its dual graph is a tree. The special case when

the matrix has Barvinok rank two is characterized by the following proposition.

Proposition 6.1. The following are equivalent for a matrix M :

(1) It has Barvinok rank 2.

(2) All its 3 × 3 minors have Barvinok rank 2.

(3) The tropical convex hull of its columns is a path.

Proof. (1)=⇒ (2) is trivial (the Barvinok rank of a minor cannot exceed that

of the whole matrix) and (3)=⇒ (1) is easy: if a tropical polytope is a path, then

it is the tropical convex hull of its two endpoints. Proposition 2.1 then implies

that the Barvinok rank is two.

For (2)=⇒ (3) first observe that the case where M is 3× 3 again follows from

Proposition 2.1. We next prove the case where M is d × 3 by contradiction:

since the tropical convex hulls of rows and of columns of a matrix are isomorphic

as cell complexes [Develin and Sturmfels 2004, Theorem 23], assume that the

tropical convex hull of the rows of M is not a path. Then, there are three rows

whose tropical convex hull is not a path, and their 3 × 3 minor has Barvinok

rank 3. Finally, if M is of arbitrary size d× n and the tropical convex hull of its

columns is not a path, consider three columns whose tropical convex hull is not

a path and apply the previous case to them. ˜

Our goal in this section is to show that if M has tropical rank 2 then it has

Kapranov rank 2. Following Theorem 3.3 (c), this is done by constructing an

explicit lift to a rank 2 matrix over K̃.
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Lemma 6.2. Let M be a matrix of tropical rank two. Let x be a point in the

tropical convex hull of the columns of M . Let M ′ be the matrix obtained by adding

−x to every column and then normalizing columns to have zero as their minimal

entry . After possibly reordering the rows and columns, M ′ has the following

block structure:

M ′ :=















0 0 0 · · · 0

0 A1 0 · · · 0

0 0 A2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak















,

where the matrices Ai have all entries positive and every 2 × 2 minor has the

property that the minimum of its four entries is achieved twice. Each 0 represents

a matrix of zeroes of the appropriate size, and the first row and column blocks

of M ′ may have size zero. Moreover , the tropical convex hull of the columns of

M ′ is the union of the tropical convex hulls of the column vectors of the blocks

augmented by the zero vector 0, and two of these k trees meet only at the point 0.

Proof. First, adjoin the column x to our matrix if it does not already exist;

since x is in the convex hull of M , this will not change the tropical convex hull

of the columns of M . We can then simply remove it at the end, when it is

transformed into a column of all zeroes. Thus, we can assume that one of the

columns of the matrix M ′ consists of all zeroes.

The asserted block decomposition means that any two given columns of M ′

have either equal or disjoint cosupports, where the cosupport of a column is

the set of positions where it does not have a zero. To prove that this holds,

just observe that if it didn’t then M ′ would have the following minor, where +

denotes a strictly positive entry. (Recall that each column has a zero in it.)




0 + +

0 0 +

0 ? 0





But this 3×3-matrix is tropically nonsingular. The assertion of the 2×2 minors

follows from the fact that the nonnegative matrix




0 a b

0 c d

0 0 0





is tropically singular if and only if the minimum of a, b, c and d is achieved twice.

Finally, the assertion about the convex hulls is trivial, since any linear combi-

nation of column vectors from a given block will have all zero entries except in

the coordinates corresponding to that block. Any path joining two such points

from different blocks will pass through the origin. ˜

We next introduce a technical lemma for making a power series lifting sufficiently

generic.
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Lemma 6.3. Let A be a nonnegative matrix with no zero column and suppose

that the smallest entry in A occurs most frequently in the first column. Let Ã be

the matrix
(

0 0

0 A

)

obtained by adjoining a row and a column of zeroes. If Ã has Kapranov rank

two, then Ã has a rank-2 lift F ∈ K̃d×n in which every 2×2 minor is nonsingular

and the i-th column can be written as a linear combination λiu1 + µiu2 of the

first two columns u1 and u2, with deg λi ≥ deg µi = 0.

Proof. Starting with an arbitrary rank-2 lift F̃ of Ã, let F be obtained by

adding to every column a K̃-linear combination of the first column of F̃ with

coefficients of sufficiently high degree (so as to not change the degrees of the

entries) but otherwise generic. This preserves the degree of every entry and thus

the rank of the lift, but makes every 2× 2 minor of F nonsingular; by “generic,”

all we require is that the ratio between the coefficients of two columns is not

equal to the ratio between those two columns if they are scalar multiples of each

other. No column of F̃ is a scalar multiple of its first column since no column of

Ã aside from the first is constant, so no column of F is a scalar multiple of the

first column either.

Since the lift has rank two and the first two columns are linearly independent,

the i-th column of F is now a K̃-linear combination λiu1 + µiu2 of the first two

columns. If the degrees of λi and µi are different, then their minimum must be

zero in order to get a degree zero element in the first entry of column i. But

then deg µi > deg λi = 0 is impossible, because it would make the i-th column

of A all zero. Hence deg λi > deg µi = 0.

If the degrees are equal, then they are nonpositive in order to get degree

zero for the first entry in λiu1 + µiu2. But they cannot be equal and negative,

or otherwise entries of positive degree in u2 would produce entries of negative

degree in ui. Hence, deg λi = deg µi = 0 in this case. ˜

Corollary 6.4. Let A and B be nonnegative matrices. Assume that the two

matrices

Ã :=

(

A 0

0 0

)

and B̃ :=

(

0 0

0 B

)

have Kapranov rank equal to 2. Then, the matrix

M :=





A 0 0

0 0 0

0 0 B





has Kapranov rank equal to 2 as well .

Proof. We may assume that neither A nor B has a zero column. Hence

Lemma 6.3 applies to both of them. We number the rows of M from −k to

k′ and its columns from −l to l′, where k × l and k′ × l′ are the dimensions of
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A and B respectively. In this way, A (respectively B) is the minor of negative

(respectively, positive) indices. The row and column indexed zero consist of all

zeroes. To further exhibit the symmetry between A and B the columns and rows

in Ã will be referred to “in reverse”. That is to say, the first and second columns

of it are the ones indexed 0 and −1 in M .

We now construct a lifting F = (ai,j) ∈ C{{t}}d×n of M . We assume that we

are given rank-2 lifts of Ã and B̃ which satisfy the conditions of the previous

lemma. Furthermore, we assume that the lift of the entry (0, 0) is the same in

both, which can be achieved by scaling the first row in one of them.

We use exactly those lifts of Ã and B̃ for the upper-left and bottom-right

corner minors of M . Our task is to complete that with an entry ai,j for every

i, j with ij < 0, such that deg(ai,j) = 0 and the whole matrix still has rank 2.

We claim that it suffices to choose the entry a−1,1 of degree zero and sufficiently

generic. That this choice fixes the rest of the matrix is easy to see: The entry

a1,−1 is fixed by the fact that the 3 × 3 minor




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1





needs to have rank 2. All other entries ai,−1 and ai,1 are fixed by the fact that

the entries ai,−1, ai,0 and ai,1 (two of which come from either Ã or B̃) must

satisfy the same dependence as the three columns of the minor above. For each

j = −l, . . . ,−2 (respectively j = 2, . . . , l′), let λj and µj be the coefficients in

the expression of the j-th column of Ã (respectively, of B̃) as λju0 + µju−1

(respectively, λju0 + µju1). Then, ai,j = λjai,0 + µjai,−1 (respectively, ai,j =

λjai,0 + µjai,1).

What remains to be shown is that if a−1,1 is of degree zero and sufficiently

generic, all the new entries are of degree zero too. For this, observe that if

j ∈ {−l′, . . . , 2} then ai,j is of degree zero as long as the coefficient of degree zero

in ai,−1 are different from the degree zero coefficients in the quotient −λjai,0/µj

(here we are using the assumption that deg λj ≥ deg µj ≥ 0). The same is true

for j ∈ {2, . . . , l}, with ai,1 instead of ai,−1. In terms of the choice of a−1,1, this

translates to the following determinant having nonzero coefficient in degree zero:




ai,−1 ai,0 −λjai,0/µj

a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1



 or





a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

−λjai,0/µj ai,0 ai,1



 ,

respectively for j ∈ {−l′, . . . , 2} or j ∈ {2, . . . , l}. That a−1,1 and a1,−1 suffi-

ciently generic imply nonsingularity of these matrices follows from the fact that

the following 2× 2 minors come from the given lifts of Ã and B̃, hence they are

nonsingular:
(

ai,−1 ai,0

a0,−1 a0,0

)

,

(

a0,0 a0,1

ai,0 ai,1

)

. ˜
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Theorem 6.5. Let M be a matrix of tropical rank 2. Then its Kapranov rank

equals 2 as well .

Proof. The Kapranov rank of M is always at least the tropical rank, so we

need only show that the Kapranov rank is less than or equal to 2. If the tropical

convex hull P of the columns of M is a path, then M has Barvinok rank 2

(by Proposition 6.1) and thus Kapranov rank 2. Otherwise, let x be a node of

degree at least three in the tree P . We apply the method of Lemma 6.2. Since

x has degree at least three, it follows that there are at least three blocks Ai. In

particular, M has at least three columns. We induct on the number of columns

of M . If M has exactly three columns, then each block Ai is a single column,

and every row of M has at most one positive entry. It is easy to construct an

explicit lift of rank 2: in each row, lift the positive entry α as −tα and the zero

entries as −1 and 1 + tα. If there are rows of zeroes, lift them as (−1,−1, 2), for

example.

Next, suppose that M has m ≥ 4 columns. The two blocks with the smallest

number of combined columns have at least 2 and at most m−2 rows all together.

Possibly after adding a row and column of zeroes, this provides a decomposition

of our matrix as

M =





0 0 0

0 A 0

0 0 B



 ,

where both A and B have at least two columns (A is the union of these two

blocks, B the union of all other blocks.) It then follows that the minors

(

0 0

0 A

)

and

(

0 0

0 B

)

both have fewer columns than the original matrix. By the inductive hypothesis

they have Kapranov rank 2. Applying Corollary 6.4 completes the inductive step

of the theorem. ˜

In the proof of Lemma 6.3 we again required the ability to pick generic field

elements. Thus, Theorem 6.5 holds over any infinite coefficient field, but it may

fail over finite fields. This is illustrated by the following example. Proposition 4.1

and Theorem 5.5 fail here too, as does the fact that Kapranov rank is invariant

under insertion of a tropical combination of existing columns.

Example 6.6. The matrix

M =





1 0 0

0 1 0

0 0 0



 =





1 0 0

2 1 1

1 0 0



 ⊕





1 2 1

0 1 0

0 1 0



 .

has Barvinok and tropical ranks equal to 2, but Kapranov rank 3 over the two-

element field F2.
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7. Matrices Constructed from Matroids

One of the important properties of rank in usual linear algebra is that it

produces a matroid. Unfortunately, the definitions of tropical rank, Kapranov

rank, and Barvinok rank all fail to do this. Consider the configuration of four

points in the tropical plane TP2 given by the columns of

M =





0 0 0 0

0 0 1 2

1 0 0 −1



 .

By any of our three definitions of rank, the maximal independent sets of columns

are {1, 2}, {1, 3, 4}, and {2, 3, 4}. These do not all have the same size, and so

they cannot be the bases of a matroid. The central obstruction here is that the

sets {1, 2, 3} and {1, 2, 4} are (tropically) collinear, but the set {1, 2, 3, 4} is not.

Despite this failure, there is a strong connection between tropical linear algebra

and matroids.

The results in Sections 5 and 6 imply that any matrix whose tropical and

Kapranov ranks disagree must be at least of size 5 × 5. The smallest example

we know is 7 × 7. It is based on the Fano matroid. To explain the example,

and to show how to construct many others, we prove a theorem about tropical

representations of matroids. The reader is referred to [Oxley 1992] for matroid

basics.

Definition 7.1. Let M be a matroid. The cocircuit matrix of M, denoted

C(M), has rows indexed by the elements of the ground set of M and columns

indexed by the cocircuits of M. It has a 0 in entry (i, j) if the i-th element is in

the j-th cocircuit and a 1 otherwise.

In other words, C(M) is the zero-one matrix whose columns have the cocircuits

of M as supports. (As before, the support of a column is its set of zeroes.) As

an example, the matrix Cn of Section 2 is the cocircuit matrix of the uniform

matroid of rank 2 with n elements. Similarly, the cocircuit matrix of the uniform

matroid Un,r has size n×
(

n
r−1

)

and its columns are all the zero-one vectors with

exactly r − 1 ones. The following results show that its tropical and Kapranov

ranks equal r. The tropical polytopes defined by these matrices are the tropical

hypersimplices studied in [Joswig 2005].

Proposition 7.2. The tropical rank of the cocircuit matrix C(M) is the rank

of the matroid M.

Proof. This is a special case of Proposition 4.3 because the rank of M is the

maximum length of a chain of nonzero covectors, and the supports of covectors

are precisely the unions of supports of cocircuits. Note that C(M) cannot have

a column of ones because every cocircuit is nonempty. ˜
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Theorem 7.3. If the Kapranov rank of C(M) over the ground field k is equal

to the rank of M, then M is representable over k. If k is an infinite field , then

the converse also holds.

Proof. Let M be a matroid of rank r on {1, . . . , d} which has n cocircuits and

suppose that F ∈ K̃d×n is a rank r lift of the cocircuit matrix C(M). For each

row fi of F , let vi ∈ kd be the vector of constant terms in fi ∈ K̃d. We claim that

V = {v1, . . . , vd} is a representation of M. First note that V has rank at most

r since every K̃-linear relation among the vectors fi translates into a k-linear

relation among the vi. Our claim says that {i1, . . . , ir} is a basis of M if and only

if {vi1 , . . . , vir
} is a basis of V . Suppose {i1, . . . , ir} is a basis of M. Then, as in

the proof of Proposition 4.3, we can find a square submatrix of C(M) using rows

i1, . . . , ir with 0’s on and below the diagonal and 1’s above it. This means that

the lifted submatrix of constant terms is lower-triangular with nonzero entries

along the diagonal. It implies that vi1 , . . . , vir
are linearly independent, and,

since rank(V ) ≤ r, they must be a basis. We also conclude rank(V ) = r. If

{i1, . . . , ir} is not a basis in M, there exists a cocircuit containing none of them;

this means that some column of C(M) has all 1’s in rows i1, . . . , ir. Therefore,

fi1 , . . . , fir
all have zero constant term in that coordinate, which means that

vi1 , . . . , vir
are all 0 in that coordinate. Since the cocircuit is not empty, not all

vectors vj have an entry of 0 in that coordinate, and so {vi1 , . . . , vir
} cannot be

a basis. This shows that V represents M over k, which completes the proof of

the first statement in Theorem 7.3.

For the second statement, let us assume that M has no loops. This is no loss

of generality because a loop corresponds to a row of 1’s in C(M), which does not

increase the Kapranov rank because every column has at least a zero. Assume

M is representable over k and fix a d × n-matrix A ∈ kd×n such that the rows

of A represent M and the sets of nonzero coordinates along the columns of A

are the cocircuits of M. Suppose {1, . . . , r} is a basis of M and let A′ be the

submatrix of A consisting of the first r rows. Write

A =

(

Ir

C

)

· A′

where Ir is the identity matrix and C ∈ k(d−r)×r. Observe that A, hence C,

cannot have a row of zeroes (because M has no loops). Since k is an infinite

field, there exists a matrix B′ ∈ kr×n such that all entries of the d × r-matrix
(

Ir

C

)

· B′ are nonzero. We now define

F =

(

Ir

C

)

· (A′ + tB′) ∈ K̃d×n.

This matrix has rank r and deg F = C(M). This completes the proof of Theorem

7.3. ˜
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If k is representable over a finite field, its Kapranov rank (with respect to that

field) may still exceed its tropical rank. It is easy to find examples; for instance,

the matroid represented by {(0, 1), (1, 0), (1, 1), (0, 0)} over F2 will work.

Corollary 7.4. Let M be a matroid which is not representable over a given

field k. Then the Kapranov rank with respect to k of the tropical matrix C(M)

exceeds its tropical rank .

This corollary furnishes many examples of matrices whose Kapranov rank ex-

ceeds their tropical rank. Consider, for example, the Fano and non-Fano ma-

troids, depicted in Figure 2. They both have rank three and seven elements. The

1

23

4

5

6

7

1

23

4

5

6

7

Figure 2. The Fano (left) and non-Fano (right) matroids.

first is only representable over fields of characteristic two, the second only over

fields of characteristic different from two. In particular, Corollary 7.4 applied to

these two matroids implies that over every field there are matrices with tropical

rank equal to three and Kapranov rank larger than that. Also, it shows that the

Kapranov rank of a matrix may be different over different fields k and k′, even

if k and k′ are assumed to be algebraically closed. This is a more significant

discrepancy than that of Example 6.6, which used a finite field.

More explicitly, the cocircuit matrix of the Fano matroid is

C(M) =





















1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1





















.

This matrix is the smallest known example of a matrix whose Kapranov rank

over C (four) is strictly larger than its tropical rank (three). Put differently,

the seven columns of this matrix (in TP6) have as their tropical convex hull a

two-dimensional cell complex which does not lie in any two-dimensional linear

subspace of TP6, a feature decidedly absent from ordinary geometry.
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Applied to nonrepresentable matroids, such as the Vamos matroid (rank 4,

8 elements, 41 cocircuits) or the non-Pappus matroid (rank 3, 9 elements, 20

cocircuits) [Oxley 1992], Corollary 7.4 yields matrices with different Kapranov

and tropical ranks over every field. One can also get examples in which the

difference of the two ranks is arbitrarily large. Indeed, given matrices A and B,

we can construct the matrix

M :=

(

A ∞

∞′ B

)

,

where ∞ and ∞′ denote matrices of the appropriate dimensions and whose en-

tries are sufficiently large. Appropriate choices of these large values (pick the

extra columns to be points in the tropical convex hull of the columns of A and B

and add large constants to each column) will ensure that the tropical and Kapra-

nov ranks of M are the sums of those of A and of B. The difference between

the Kapranov and tropical ranks of M is equal to the sum of this difference for

A and for B.

The construction in Theorem 7.3 is closely related to the Bergman complex of

the matroid M. Ardila and Klivans [≥ 2005] showed that this complex is trian-

gulated by the order complex of the lattice of flats of M. Since flats correspond

to unions of cocircuits, the following result is easily derived:

Proposition 7.5. The Bergman complex of the matroid M is equal to the

tropical convex hull of the rows of the modified cocircuit matrix C′(M), where

the 1’s in C(M) are replaced by ∞’s.

For the Fano matroid, the Bergman complex is the cone over the incidence graph

of points and lines in the matroid. It consists of 15 vertices, 35 edges and 21

triangles.

8. Related Work and Open Questions

As mentioned in the introduction, our definition of nonsingular square matrix

corresponds to the notion of “strongly regular” in the literature on the max-plus

(or min-plus) algebra. The definition of “regular matrix” in [Butkovič 1995;

Butkovič and Hevery 1985; Cuninghame-Green 1979] is the following one, for

which we prefer to use a different name:

Definition 8.1. A square matrix M is positively tropically regular if, in the

formula for its tropical determinant, the minimum over all even permutations

equals the minimum over odd permutations. The positive tropical rank of a

matrix is the maximum size of a positively tropically regular minor.

The reason for this terminology is that M is positively tropically regular if it

lies outside the positive tropical variety defined by the determinant. For ba-

sics on positive tropical varieties and a detailed study of the positive tropical

Grassmannian see [Speyer and Williams 2003]. The positive tropicalization of
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determinantal varieties leads also to a notion of positive Kapranov rank that

satisfies the inequalities

pos. tropical rank (M) ≤ pos. Kapranov rank (M) ≤ Barvinok rank (M).

Of course, the tropical and Kapranov ranks are less than or equal to their positive

counterparts.

Our notion of tropical rank, however, appears in [Butkovič and Hevery 1985;

Cuninghame-Green 1979] under a different name. Proposition 8.3 below was

previously proved in [Butkovič and Hevery 1985]:

Definition 8.2. The columns of a matrix M ∈ Rd×n are strongly linearly

independent if there is a column vector b ∈ Rd such that the tropical linear

system M � x = b has a unique solution x ∈ Rn. A square matrix is strongly

regular if its columns are strongly linearly independent.

Proposition 8.3. Strongly regular and tropically nonsingular are equivalent ,

for a square matrix .

Proof. Suppose an r×r matrix M is tropically nonsingular; then there is some

(r − 1)-dimensional cell XS in the tropical convex hull of its columns in TPr−1.

After relabeling we have Si = {i} for i = 1, 2, . . . , r. Then taking a point in the

relative interior of XS yields a vector b ∈ Rr for which M � x = b has a unique

solution, each xi being necessarily equal to bi − mii.

Conversely, suppose the columns of an r × r matrix M are strongly linearly

independent. Pick b ∈ Rr such that M � x = b has a unique solution. Then, for

each xj , there exists a bi for which the expression
∑

Mikxk is uniquely minimized

for k = j (otherwise we could increase xj and get the same value for M � x).

This is equivalent to b having type S, where Sj = {i}. ˜

Corollary 8.4. The tropical rank of a matrix equals the largest size of a

strongly linearly independent subset of its columns.

We now discuss some algorithmic issues. Apart from Corollary 8.4, the main

result in [Butkovič and Hevery 1985] is an O(n3) algorithm to check strong (i.e.,

tropical) regularity of an n × n matrix. The key step is to find a permuta-

tion that achieves the minimum in the determinantal tropical sum, which is the

assignment problem in combinatorial optimization [Papadimitriou and Steiglitz

1982]. Similarly, it is shown in [Butkovič 1995] that the problem of testing posi-

tive tropical regularity of square matrices is equivalent to the problem of testing

existence of even cycles in directed graphs.

For the Barvinok rank, we quote some results from [Çela et al. 1998]:

Proposition 8.5. The computation of the Barvinok rank of a matrix M ∈

{0, 1}d×n is an NP-complete problem. Deciding whether a matrix has Barvinok

rank 2 can be done in time O(dn).
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NP-completeness is proved by a reduction to the problem of covering a bipartite

graph by complete bipartite subgraphs. For the case of rank 2, an algorithm

is derived from the fact that matrices of Barvinok rank 2 are permuted Monge

matrices. Çela et al. also prove that a matrix has Barvinok rank 2 if and only

if all its 3 × 3 minors do (our Proposition 6.1) and that the Barvinok rank is

bounded below by the maximum size of a strongly regular minor (i.e., by the

tropical rank).

We finish by listing some open questions, most of them with an algorithmic

flavor:

(1) Singularity of a single minor can be tested in polynomial time. But a naive

algorithm to compute the tropical rank would need to check an exponential

number of them. Can the tropical rank of a matrix be computed in polynomial

time? In other words, is there a tropical analogue of Gauss elimination?

(2) Fix an integer k. The number of square minors of size at most k+1 of a d×n

matrix M is polynomial in dn. Hence, there is a polynomial time algorithm

for deciding whether M has tropical rank smaller or equal to k. Is the same

true for the Barvinok rank? It is even open whether Barvinok rank equal to

3 can be tested in polynomial time.

(3) For a fixed k, a positive answer to either of the following two questions would

imply a positive answer to the previous one:

(i) Is there a number N(k) such that if all minors of M of size at most N(k)

have Barvinok rank at most k then M itself has Barvinok rank at most k?

Proposition 2.2 shows that

N(k) ≥

(

k + 1
⌊

k+1
2

⌋

)

.

(ii) Is there a polynomial time algorithm for the Barvinok rank of matrices

with tropical rank bounded by k? (This is open even for k = 2).

(iii) Can we obtain a bound on the Kapranov rank given the tropical rank?

That is, given a positive integer r, can we find a bound N(r) so that all

matrices of tropical rank r have Kapranov rank at most N(r)? The example

of the classical identity matrix shows that the same cannot be done for

Barvinok rank.

(4) Can the Barvinok rank of a matrix M be defined in terms of the regular

mixed subdivision of n∆d−1 produced by M? Ideally, we would like a “nice

and simple” characterization such as the one given for the tropical rank in

Corollary 5.4. But the question we pose is whether matrices producing the

same mixed subdivision have necessarily the same Barvinok rank.

(5) All the questions above are open for the Kapranov rank, too.

(6) Is there a 5 × 5-matrix having tropical rank 3 but Kapranov rank 4?
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The Geometry of Biomolecular Solvation

HERBERT EDELSBRUNNER AND PATRICE KOEHL

Abstract. Years of research in biology have established that all cellular

functions are deeply connected to the shape and dynamics of their molec-

ular actors. As a response, structural molecular biology has emerged as

a new line of experimental research focused on revealing the structure of

biomolecules. The analysis of these structures has led to the development of

computational biology, whose aim is to predict from molecular simulation

properties inaccessible to experimental probes.

Here we focus on the representation of biomolecules used in these sim-

ulations, and in particular on the hard sphere models. We review how the

geometry of the union of such spheres is used to model their interactions

with their environment, and how it has been included in simulations of

molecular dynamics.

In parallel, we review our own developments in mathematics and com-

puter science on understanding the geometry of unions of balls, and their

applications in molecular simulation.

1. Introduction

The molecular basis of life rests on the activity of biological macro-molecules,

mostly nucleic acids and proteins. A perhaps surprising finding that crystallized

over the last handful of decades is that geometric reasoning plays a major role

in our attempt to understand these activities. In this paper, we address this

connection between biology and geometry, focusing on hard sphere models of

biomolecules.

The biomolecular revolution. Most living organisms are complex assemblies

of cells, the building blocks for life. Each cell can be seen as a small chemi-

cal factory, involving thousands of different players with a large range of size

and function. Among them, biological macro-molecules hold a special place.

These usually large molecules serve as storage for the genetic information (the

Keywords: Molecular simulations, implicit solvent models, space-filling diagrams, spheres,

balls, surface area, volume, derivatives.
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nucleic acids such as DNA and RNA), and as key actors of cellular functions (the

proteins). Biochemistry, the field that studies these biomolecules, is currently

experiencing a major revolution. In hope of deciphering the rules that define cel-

lular functions, large scale experimental projects are performed as collaborative

efforts involving many laboratories in many countries. The main aims of these

projects are to provide maps of the genetic information of different organisms

(the genome projects), to derive as much structural information as possible on

the products of the corresponding genes (the structural genomics projects), and

to relate these genes to the function of their products, usually deduced from

their structure (the functional genomics projects). The success of these projects

is completely changing the landscape of research in biology. As of February

2004, more than 170 whole genomes have been sequenced, corresponding to a

database of over a million gene sequences. The need to store this data efficiently

and to analyze its contents has led to the emergence of a collaborative effort be-

tween computer science and biology, referred to as bio-informatics. In parallel,

the repository of biomolecular structures [Bernstein et al. 1977; Berman et al.

2000] contains more than 24,000 structures of proteins and nucleic acids. The

similar need to organize and analyze the structural information contained in this

database is leading to the emergence of another partnership between computer

science and biology, namely biogeometry.

Significance of shape. Molecular structure or shape and chemical reactivity

are highly correlated as the latter depends on the positions of the nuclei and elec-

trons within the molecule. Indeed, chemists have long used three-dimensional

plastic and metal models to understand the many subtle effects of structure on

reactivity and have invested in experimentally determining the structure of im-

portant molecules. The same applies to biochemistry, where structural genomics

projects are based on the premise that the structure of biomolecules implies their

function. This premise rests on a number of specific and quantifiable correlations:

• enzymes fold into unique structures and the three-dimensional arrangement

of their side-chains determines their catalytic activity;

• there is theoretical evidence that the mechanisms underlying protein complex

formation depend on the shapes of the biomolecules involved [Levy et al.

2004];

• the folding rate of many small proteins correlates with a gross topological

parameter that quantifies the difference between distance in space and along

the main-chain [Plaxco et al. 1998; Alm and Baker 1999; Muñoz and Eaton

1999; Alm et al. 2002].

There is also evidence that the geometry of a protein plays a major role in

defining its tolerance to mutation [Koehl and Levitt 2002]. We note in passing

that structural biologists often refer to the ‘topology’ of a biomolecule when

they mean the ‘geometry’ or ‘shape’ of the same. A common concrete model
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representing this shape is a union of balls, in which each ball corresponds to an

atom. Properties of the biomolecule are then expressed in terms of properties of

the union. For example, the potential active sites are detected as cavities [Liang

et al. 1998c; Edelsbrunner et al. 1998; Liang et al. 1998b] and the interaction

with the environment is quantified through the surface area and/or volume of

the union of balls [Eisenberg and McLachlan 1986; Ooi et al. 1987; Liang et al.

1998a]. In what follows, we discuss in detail the geometric properties of union

of balls, and relate them to the physical properties of the biomolecules they

represent.

Outline. Section 2 describes biomolecules, and surveys their different levels of

representation, focusing on the hard sphere models used in nearly all molecu-

lar simulation. Section 3 describes the relationship between the geometry of a

biomolecule and its energetics. Section 4 surveys analytical and approximate

methods used in biomolecular simulations for computing the area and volume of

a molecule, and their derivatives with respect to the atomic coordinates. Sec-

tion 5 develops the mathematical background needed to give compact formulas

for geometric measurements. Section 6 discusses implementations of these for-

mulas and presents experimental results. Section 7 concludes the paper with a

discussion of future research directions.

2. Biomolecules

Following the Greek philosopher Democritus, who proclaimed that all matter

is an assemblage of atoms, we can build a hierarchy that relates life to atoms.

All living organisms can be described as arrangements of cells, the smallest units

capable of carrying functions important for life. Cells can be divided into or-

ganelles, which are themselves assemblies of biomolecules. These biomolecules

are usually polymers of smaller subunits, whose atomic structures are known

from standard chemistry. There are many remarkable aspects to this hierarchy,

one of them being that it is ubiquitous to all life forms, from unicellular or-

ganisms to complex multicellular species like us. Unraveling the secrets behind

this hierarchy has become one of the major challenges of the twentieth and now

twenty-first centuries. While physics and chemistry have provided significant

insight into the structure of the atoms and their arrangements in small chemi-

cal structures, the focus now is set on understanding the structure and function

of biomolecules, mainly nucleic acids and proteins. Our presentation of these

molecules follow the general dogma in biology that states that the genetic infor-

mation contained in DNA is first transcribed to RNA molecules which are then

translated into proteins.

DNA. Deoxyribonucleic acid is a long polymer built from four different building

blocks, the nucleotides. The sequence in which the nucleotides are arranged

contains the entire information required to describe cells and their functions.
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Figure 1. Visualizing protein-ligand interaction. Barnase is a small protein

of 110 residues which has an endonuclease activity— it is able to cleave DNA

fragments. Here we show the complex it forms with the small DNA fragment

d(CGAC) [Buckle and Fersht 1994], using three different types of visualization.

The coordinates are taken from the PDB file 1BRN. The protein is shown in

green, and the DNA fragment in red.

Top left: Cartoon. This representation provides a high level view of the local

organization of the protein in secondary structures, shown as idealized helices

and strands. The DNA is shown as a short rod. This view highlights the position

of the binding site where the DNA sits.

Top right: Skeletal model. This representation uses lines to represent bonds;

atoms are located at their endpoints where the lines meet. It emphasizes the

chemical nature of both molecules: for example, the four aromatic rings of the

nucleotides of the DNA molecule are clearly visible.

Bottom: Space-filling diagram. Atoms are represented as balls centered at the

atoms, with radii equal to the van der Waals radii of the atoms. This represen-

tation shows the tight binding between the protein and the ligand, that was not

obvious from the other diagrams. Each of the representations is complementary

to the others, and usually the biochemist uses all three when studying a pro-

tein, alone or, as illustrated here, in interaction with a ligand. The top panels

were drawn using MOLSCRIPT [Kraulis 1991] and the bottom one with Pymol

(http://www.pymol.org).
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Despite this essential role in cellular functions, DNA molecules adopt surprisingly

simple structures. Each nucleotide contains two parts, a backbone consisting of

a deoxyribose and a phosphate, and an aromatic base, of which there are four

types: adenine (A), thymine (T), guanine (G) and cytosine (C). The nucleotides

are capable of being linked together to form a long chain, called a strand. Cells

contain strands of DNA in pairs that are exact mirrors of each other. When

correctly aligned, A pairs with T, G pairs with C, and the two strands form a

double helix [Watson and Crick 1953]. The geometry of this helix is surprisingly

uniform, with only small, albeit important, structural differences between regions

of different sequences. The order in which the nucleotides appear in one DNA

strand defines its sequence. Some stretches of the sequence contain information

that can be translated first into an RNA molecule and then into a protein. These

stretches are called genes; the ensemble of all genes of an organism constitutes its

genome or genetic information. The remainder is junk DNA, which is assumed to

correspond to fragments of genes that have been lost over the course of evolution.

The DNA strands can stretch for millions of nucleotides. The size of the strands,

as well as the fraction of junk DNA vary greatly between organisms and do not

necessarily reflect differences in the complexity of the organisms. For example,

the wheat genome contains approximately 1.6 · 1010 bases, which is close to

five times the size of the human genome. For a complete list of the genomes,

see http://wit.integratedgenomics.com/GOLD/ [Bernal et al. 2001]. The whole

DNA molecules of more than 170 organisms have been sequenced in the existing

genome projects, and many others are underway. There are more than a million

genes that have been extracted from the DNA sequences and are collected in

databases; see http://www.ebi.ac.uk/embl.

RNA. Ribonucleic acid molecules are very similar to DNA, being formed as

sequences of four types of nucleotides, namely A, G, C, and uracil (U), which

is a derivative of thymine. The sugar in the nucleotides of RNA is a ribose,

which includes an extra oxygen compared to deoxyribose. The presence of this

bulky extra oxygen prevents the formation of long and stable double helices. The

single-stranded RNA can adopt a large variety of conformations, which remain

difficult to predict based on its sequence. Interestingly, RNA is considered an

essential molecule in the early steps of the origin of life. It is generally accepted

now that before the appearance of living cells, the assemblies of self-replicating

molecules were RNAs. In this early world, a single type of molecule performed

both the function of active agents and the repository of its own description

[Gilbert 1986; Gesteland and Atkins 1993; Cech 1993]. The activity of the

RNA was related to its three-dimensional shape, while the coding corresponded

to its linear sequence. This single molecule world had limitations since any

modification of the RNA meant to improve its catalytic function could lead to

a loss of its coding capabilities. Cellular life has evolved from this primary

world by separating the two functions. RNA molecules now mainly serve as
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templates that are used to synthesize the active molecules, namely the proteins.

The information needed to synthesize the RNA is read from the genes coded

by the DNA. It is assumed that DNA molecules evolved as a more stable, and

consequently more reliable form of RNAs for storage purpose.

Proteins. While all biomolecules play an important part in life, there is some-

thing special about proteins, which are the products of the information contained

in the genes. They are the active elements of life whose chemical activities regu-

late all cellular activities. According to Jacques Monod, it is in the protein that

lies the secret of life: “C’est à ce niveau d’organisation chimique que ĝıt, s’il y

en a un, le secret de la vie” [Monod 1973]. As a consequence, studies of their

sequence and structure occupy a central role in biology.

Proteins are heteropolymer chains of amino acids, often referred to as residues.

This term comes from chemistry and describes the material found at the bottom

of a reaction tube once a protein has been cut into pieces in order to determine

its composition. There are twenty types of amino acids, which share a common

backbone and are distinguished by their chemically diverse side-chains, which

range in size from a single hydrogen atom to large aromatic rings and can be

charged or include only nonpolar saturated hydrocarbons; see Table 1. The order

Type Amino acids

nonpolar glycine, alanine, valine, leucine, isoleucine,

proline, methionine, tryptophan, phenylalanine

polar (neutral) serine, threonine, asparagine, glutamine,

cysteine, tyrosine

polar (acidic) aspartic acid, glutamic acid

polar (basic) lysine, arginine, histidine

Table 1. Classification of the 20 amino acids according to the chemical proper-

ties of their side-chains [Timberlake 1992]. Nonpolar amino acids do not have

concentration of electric charges and are usually not soluble in water. Polar

amino acids carry local concentration of charges, and are either globally neu-

tral, negatively charged (acidic), or positively charged (basic). Acidic and basic

amino acids are classically referred to as electron acceptors and electron donors,

respectively, which can associate to form salt bridges in proteins.

in which amino acids appear defines the primary sequence of the protein. In its

native environment, the polypeptide chain adopts a unique three-dimensional

shape, referred to as the tertiary or native structure of the protein. In this

structure, nonpolar amino acids have a tendency to re-group and form the core,

while polar amino acids remain accessible to the solvent. The backbones are

connected in sequence forming the protein main-chain, which frequently adopts

canonical local shapes or secondary structures, such as α-helices and β-strands.
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The former is a right handed helix with 3.6 amino acids per turn, while the

latter is an approximately planar layout of the backbone. In the tertiary struc-

ture, β-strands are usually paired in parallel or anti-parallel arrangements, to

form β-sheets. On average, the protein main-chain consists of about 25% in α-

helix formation, 25% in β-strands, with the rest adopting less regular structural

arrangements [Brooks et al. 1988]. From the seminal work of Anfinsen [1973],

we know that the sequence fully determines the three-dimensional structure of

the protein, which itself defines its function. While the key to the decoding of

the information contained in genes was found more than fifty years ago (the

genetic code), we have not yet found the rules that relate a protein sequence

to its structure [Koehl and Levitt 1999; Baker and Sali 2001]. Our knowledge

of protein structure therefore comes from years of experimental studies, either

using X-ray crystallography or NMR spectroscopy. The first protein structures

to be solved were those of hemoglobin and myoglobin [Kendrew et al. 1960; Pe-

rutz et al. 1960]. Currently, there are more than 16,000 protein structures in the

database of biomolecular structures [Bernstein et al. 1977; Berman et al. 2000];

see http://www.rcsb.org.

Visualization. The need for visualizing biomolecules is based on the early

understanding that their shape determines their function. Early crystallogra-

phers who studied proteins and nucleic acids could not rely—as it is common

nowadays—on computers and computer graphics programs for representation

and analysis. They had developed a large array of finely crafted physical models

that allowed them to have a feeling for these molecules. These models, usually

made out of painted wood, plastic, rubber and/or metal were designed to high-

light different properties of the molecule under study. In the space-filling models,

such as CPK [Corey and Pauling 1953; Koltun 1965], atoms are represented as

spheres, whose radii are the atoms’ van der Waals radii. They provide a volu-

metric representation of the biomolecules, and are useful to detect cavities and

pockets that are potential active sites. In the skeletal models, chemical bonds

are represented by rods, whose junctions define the position of the atoms. These

models were used for example in [Kendrew et al. 1960], which studied myoglobin.

They are useful to the chemists by highlighting the chemical reactivity of the

biomolecules and, consequently, their potential activity. With the introduction of

computer graphics to structural biology, the principles of these models have been

translated into software such that molecules could be visualized on the computer

screen. Figure 1 shows examples of computer visualizations of a protein-DNA

interaction, including space-filling and skeletal representations.

3. Biomolecular Modeling

While the structural studies provide the necessary data on biomolecules, the

key to their success lies in unraveling the connection between structure and
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function. A survey of the many modeling initiatives motivated by this question is

beyond the scope of this paper; detailed descriptions of biomolecular simulation

techniques and their applications can be found in [Leach 2001; Becker et al.

2001]. We shall focus here on those in which geometry plays an essential role,

mainly in the definition and computation of the energy of the biomolecule.

The apparition of computers, and the rapid increase of their power has given

hope that theoretical methods can play a significant role in biochemistry. Com-

puter simulations are expected to predict molecular properties that are inacces-

sible to experimental probes, as well as how these properties are affected by a

change in the composition of a molecular system. For example, thermodynamics

and kinetics play an important role in most functions of proteins. Proteins have

to fold into a stable conformation in order to be active. Improper folding leads

to inactive proteins that can accumulate and lead to disease (such as the prion

proteins). Many proteins also adopt slightly different conformations in different

environments. The cooperative rearrangement of hemoglobin upon binding of

oxygen, for example, is essential for oxygen transport and release [Perutz 1990].

Predicting the equilibrium conformation of a protein in solution remains a ”holy

grail” in structural biology. In addition, while a few experimental probes ex-

ist to monitor protein dynamics events, such as hydrogen exchange experiments

in NMR and small angle scattering of x-rays or neutrons, they remain elusive

mainly because of the huge hierarchy of time-scale they involve. Biomolecular

simulations have been designed to solve some of these problems. In particu-

lar, their aims are to describe the thermodynamic equilibrium properties of the

system under study, through sampling of its free energy surface, as well as its

dynamical properties.

Energy function. The state of a biomolecule is usually described in terms of its

energy landscape. The native state corresponds to a large basin in this landscape,

and it is mostly the structure of this basin that is of interest. Theoretically,

the laws of quantum mechanics completely determine the wave function of any

given molecule, and, in principle, we can compute the energy eigenvalues by

solving Schrödinger’s equation. In practice, however, only the simplest systems

such as the hydrogen atom have an exact, explicit solution to this equation and

modelers of large molecular systems must rely on approximations. Simulations of

biomolecules are based on a space-filling representation of the molecule, in which

the atoms are modeled by hard spheres that interact through empirical forces.

A typical, semi-empirical energy function used in classical molecular simulation

has the form

U =
∑

b

kb (rb − r0
b )2 +

∑

b

ka (θa − θ0
a)2 +

∑

t

kt

(

1 + cos n(φt − φ0
t )

)

+
∑

i<j

(

Aij

r12
ij

−
Bij

r6
ij

+
qiqj

rij

)
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[Levitt et al. 1995; Liwo et al. 1997a; 1997b; MacKerell et al. 1998; Kaminski

et al. 2001; Price and Brooks 2002]. The terms in the first three sums repre-

sent bonded interactions: covalent bonds, valence angles, and torsions around

bonds. The two terms in the last sum represent nonbonded interactions: a

Lennard-Jones potential for van der Waals forces and the Coulomb potential for

electrostatics. This sum usually excludes pairs of atoms separated by one, or two

covalent bonds. The force constants, k, the minima, r0, θ0 and φ0, the Lennard

Jones parameters, A and B, and the atomic charges q define the force field. They

are derived from data on small organic molecules, from both experiments and ab

initio quantum calculations.

Note that U given above corresponds to the internal energy of the molecule,

while we really need its free energy to describe its thermodynamic state. In

thermodynamics, the term free energy denotes the total amount of energy in a

system which can be converted to work. For a molecule, ”work” is the transfer of

energy related to organized motion. The free energy F is the difference between

the internal energy of the molecule, and its entropy, where the entropy is a

measure of disorder:

F = U − TS,

where T is the temperature of the system. Ideally, F is minimum when U is

minimum and S is maximum. These two conditions however cannot be satisfied

simultaneously by a molecule: U is minimum when there are many favorable

contacts, leading to a single compact conformation for the molecule, while S is

maximum when there is no privileged conformation for the molecule. In general,

the termodynamic equilibrium is reached through a compromise between these

two terms. To get an estimate of the free energy of a molecule, we need to

compute its internal energy, and sample the conformational space it can access.

This sampling is performed through simulations, which are discussed below.

Simulation algorithms. There are three main types of algorithms used in this

field, which we now describe.

Molecular dynamics simulations proceed by solving the classical equations of

motions for the positions, velocities and accelerations of all atoms and molecules

of the system under study. A state of the system is either described in cartesian

or internal coordinates and the solution is computed numerically. In early work,

macromolecules were simulated in vacuo, and only heavy (no hydrogen) atoms

were included [McCammon et al. 1977]. This has changed as modern computers

are now sufficiently powerful to simulate biomolecules in atomic detail using

all-atom representations [Levitt and Sharon 1988]. The strengths of molecular

dynamics are that it efficiently samples the states accessible to a system around

its energy minimum, and that it provides kinetic data on the transitions between

these states [Cheatham and Kollman 2000; Karplus and McCammon 2002]. The

weakness of molecular dynamics is an inability to access long time-scales (on
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the order of one microsecond or more even for small biomolecules [Duan and

Kollman 1998].)

Monte Carlo techniques applied to biomolecular studies use stochastic moves,

corresponding to rotation, translation, insertion or deletion of whole molecules,

to sample the conformational space available to the molecule under study, and

to calculate ensemble averages of physical or geometric quantities of interest,

such as energy, or the fluctuation of some specific inter-atomic distances. In the

limit of long Monte Carlo simulations, these ensemble averages correspond to

thermodynamics equilibrium properties. A strength of Monte Carlo simulations

is that they can be adapted to explore unfavorable regions of the energy land-

scape. This has been used to sample conformations of small simplified models of

proteins, yielding a full characterization of the thermodynamics of their folding

process [Hao and Scheraga 1994a; Hao and Scheraga 1994b].

A molecular mechanics study is not really a simulation as such, rather a

mechanical investigation of the properties of one or more molecules. A good

example would be finding the minimum of the potential energy U of a molecule.

Note that U does not include entropic effects. Thus, the conformation of a

molecule obtained through minimization of U does not necessarily correspond

to the thermodynamic equilibrium state, which corresponds to the minimum of

the free energy.

Protein solvation. Soluble biomolecules adopt their stable conformation in

water, and are unfolded in the gas phase. It is therefore essential to account for

water in any modeling experiment. Molecular dynamics simulation that include

a large number of solvent molecules are the state of the art in this field, but they

are inefficient as most of the computing time is spent on updating the position

of the water molecule. It should further be noted that it is not always possible

to account for the interaction with the solvent explicitly. For example, energy

minimization of a system including both a protein and water molecules does not

account for the entropy of water, which would behave like ice with respect to

the protein. An alternative approach takes the effect of the solvent implicitly

into account. In such an implicit solvent model, the effects of water is included

in an effective solvation potential, W = Welec + Wnp, in which the first term

accounts for the molecule-solvent electrostatics polarization, and the second for

the molecule-solvent van der Waals interactions and for the formation of a cavity

in the solvent. There is a large body of work that focuses on computing Welec.

A survey of the corresponding models is beyond the scope of this paper and we

refer the reader to the excellent review [Simonson 2003] for more information.

Here we focus on computing Wnp, the nonpolar effect of water on the bio-

molecule, sometimes referred to as the hydrophobic effect. Biomolecules contain

both hydrophilic and hydrophobic parts. In their folded states, the hydrophilic

parts are usually at the surface, where they can interact with water, and the
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Figure 2. Different notions of protein surface. The van der Waals surface

of a molecule (shown in red) is the surface of the union of balls representing

all atoms, with radii set to the van der Waals radii. The accessible surface of

the same molecule (shown in green) is the surface generated by the center of

a solvent sphere (marked S) rolling on the van der Waals surface. The radius

of the solvent sphere is usually set to 1.4 Å, the approximate radius of a water

molecule. The accessible surface is also the obtained after expanding the radius

of the atomic spheres by the radius of the solvent sphere. The molecular surface

(shown in magenta) is the envelope generated by the rolling sphere. It differs

from the van der Waals surface by covering portions of the volume inaccessible

to the rolling sphere.

hydrophobic parts are buried in the interior, where they form an “oil drop with

a polar coat” [Kauzmann 1959].

Quantifying the hydrophobic effect. In order to quantify the hydrophobic

effect, Lee and Richards introduced the concept of the solvent-accessible surface

[Lee and Richards 1971], illustrated in Figure 2. They computed the accessi-

ble area of each atom in both the folded and extended state of a protein, and

found that the decrease in accessible area between the two states is greater for

hydrophobic than for hydrophilic atoms. These ideas were further refined by

Eisenberg and McLachlan [1986], who introduced the concept of a solvation free

energy, computed as a weighted sum of the accessible areas Ai of all atoms i of

the biomolecule:

Wnp =
∑

i

αiAi,

where αi is the atomic solvation parameter. It is not clear, however, which surface

area should be used to compute the solvation energy [Wood and Thompson

1990; Tunon et al. 1992; Simonson and Brünger 1994]. There is also some

evidence that for small solute, the hydrophobic term Wnp is not proportional to

the surface area [Simonson and Brünger 1994], but rather to the solvent excluded

volume of the molecule [Lum et al. 1999]. A volume-dependent solvation term

was originally introduced by Gibson and Scheraga [1967] as the hydration shell
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model. Note that the ambiguity in the choice of the definition of the surface

of a protein extends to the choice of its volume definition. Within this debate

on the exact form of the solvation energy, there is however a consensus that

it depends on the geometry of the biomolecule under study. Inclusion of Wnp

in a molecular simulation therefore requires the calculation of accurate surface

areas and volumes. If the simulations rely on minimization, or integrate the

equations of motion, the derivatives of the solvation energy are also needed. The

calculation of second derivatives is also of interest in studying the normal modes

of a biomolecule in a continuum solvent.

4. Computing Volumes and Areas

In this section, we review existing approaches to computing the surface area

and/or volume of a biomolecule represented as a union of balls. The origi-

nal approach of Lee and Richards [1971] computed the accessible surface area

by first cutting the molecule with a set of parallel planes. The intersection of

a plane with an atomic ball, if it exists, is a circle which can be partitioned

into accessible arcs on the boundary and occluded arcs in the interior of the

union. The accessible surface area of atom i is the sum of the contributions

of all its accessible arcs, computed approximately as the product of the arc

length and the spacing between the plane. This method was originally imple-

mented in the program ACCESS [Lee and Richards 1971] and later in NACCESS

(http://wolf.bms.umist.ac.uk/naccess/). Shrake and Rupley [1973] refined Lee

and Richards’ method and proposed a Monte Carlo numerical integration of the

accessible surface area. Their method placed 92 points on each atomic sphere,

and determined which points were accessible to solvent (not inside any other

sphere). Efficient implementations of this method include applications of look-

up tables [Legrand and Merz 1993], of vectorized algorithm [Wang and Levinthal

1991] and of parallel algorithms [Futamura et al. 2004]. Similar numerical meth-

ods have been developed for computing the volume of a union of balls [Rowlinson

1963; Pavani and Ranghino 1982; Gavezzotti 1983].

The surface area and/or volume computed by numerical integration over a set

of points, even if closely spaced, is not accurate and cannot be readily differenti-

ated. To improve upon the numerical methods, analytical approximations to the

accessible surface area have been developed, which either treat multiple overlap-

ping balls probabilistically [Wodak and Janin 1980; Hasel et al. 1988; Cavallo

et al. 2003] or ignore them altogether [Street and Mayo 1998; Weiser et al.

1999a]. Better analytical methods describe the molecule as a union of pieces

of balls, each defined by their center, radius, and arcs forming their boundary,

and subsequently apply analytical geometry to compute the surface area and

volume [Richmond 1984; Connolly 1985; Dodd and Theodorou 1991; Petitjean

1994; Irisa 1996]. Pavani and Ranghino [1982] proposed a method for computing

the volume of a molecule by inclusion-exclusion. In their implementation, only
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intersections of up to three balls were considered. Petitjean however noticed

that practical situations for proteins frequently involve simultaneous overlaps of

up to six balls [Petitjean 1994]. Subsequently, Pavani and Ranghino’s idea was

generalized to any number of simultaneous overlaps by Gibson and Scheraga

[Gibson and Scheraga 1987] and by Petitjean [Petitjean 1994], applying a theo-

rem that states that higher-order overlaps can always be reduced to lower-order

overlaps [Kratky 1978]. Doing the reduction correctly remains however compu-

tationally difficult and expensive. The Alpha Shape Theory solves this problem

using Delaunay triangulations and their filtrations, as described by Edelsbrunner

[Edelsbrunner 1995]. It will be presented in greater detail in the next section.

The distinction between approximate and exact computation also applies to

existing methods for computing the derivatives of the volume and surface area of

a molecule with respect to its atomic coordinates [Kundrot et al. 1991; Gogonea

and Osawa 1994; Gogonea and Osawa 1995; Cossi et al. 1996]. In the case

of the derivatives of the surface area, computationally efficient methods were

implemented in the MSEED software by Perrot et al. [1992] and in the SASAD

software by Sridharan et al. [1994]. All these methods introduce approximations

to deal with singularities caused by numerical errors or by discontinuities in the

derivatives [Gogonea and Osawa 1995]. There is also an inherent difficulty in

using a potential based on surface area or volume in biomolecular simulations.

Although the area and volume are continuous in the position of the atoms, their

derivatives are not. This problem of discontinuities was studied in more details

for surface area calculation [Perrot et al. 1992; Wawak et al. 1994].

The complexity of the computation of the area and volume of a union of

balls, the problems of singularities encountered when computing their deriva-

tives, and the inherent existence of discontinuities have led to the development of

alternative geometric representations of molecules. Here we mention the Gauss-

ian description of molecular shape, that allows for easy analytical computation

of surface area, volume and derivatives [Grant and Pickup 1995; Weiser et al.

1999b], and the molecular skin, which will be described in the next section.

5. Alpha Shape Theory

In this section, we discuss in some detail the inclusion-exclusion approach

to computing area, volume, and their derivatives. It is based on the concept

of alpha complexes [Edelsbrunner et al. 1983; Edelsbrunner and Mücke 1994],

which are sub-complexes of the Delaunay triangulation [Delaunay 1934] of a set

of spheres.

Voronoi decomposition and dual complex. Consider a finite set of spheres

Si with centers zi ∈ R
3 and radii ri ∈ R and let Bi be the ball bounded by

Si. To allow for varying radii, we measure square distance of a point x from

Si using πi(x) = ‖x − zi‖
2
− r2

i . The Voronoi region of Si consists of all points
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x at least as close to Si as to any other sphere: Vi = {x ∈ R
3 | πi(x) ≤

πj(x)}. As illustrated in Figure 3, the Voronoi region of Si is a convex polyhedron

obtained as the common intersection of finitely many closed half-spaces, one per

sphere Sj 6= Si. If Si and Sj intersect in a circle then the plane bounding the

corresponding half-space passes through that circle. It follows that the Voronoi

regions decompose the union of balls Bi into convex regions of the form Bi ∩Vi.

The boundary of each such region consists of spherical patches on Si and planar

patches on the boundary of Vi. The spherical patches separate the inside from

the outside and the planar patches decompose the inside of the union. The

Figure 3. Voronoi decomposition and dual complex. Given a finite set of

disks, the Voronoi diagram decomposes the plane into regions in which one circle

minimizes the square distance measured as ‖x − zi‖
2 − r2

i . In the drawing,

we restrict the Voronoi diagram to within the portion of the plane covered by

the disks and get a decomposition of the union into convex regions. The dual

Delaunay triangulation is obtained by drawing edges between circle centers of

neighboring Voronoi regions. To draw the dual complex of the disks we limit

ourselves to edges and triangles between centers whose corresponding restricted

Voronoi regions have a nonempty common intersection.

Delaunay triangulation is the dual of the Voronoi diagram, obtained by drawing

an edge between the centers of Si and Sj if the two corresponding Voronoi

regions share a common face. Furthermore, we draw a triangle connecting zi,

zj and zk if Vi, Vj and Vk intersect in a common line segment, and we draw a

tetrahedron connecting zi, zj , zk and z` if Vi, Vj , Vk and V` meet at a common

point. Assuming general position of the spheres, there are no other cases to

be considered. We refer to this as the generic case but hasten to mention that

because of limited precision it is rare in practice. Nevertheless, we can simulate

a perturbation in our algorithm [Edelsbrunner and Mücke 1990], which is an

effective method to consistently unfold potentially complicated degenerate cases

to nondegenerate ones.
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Suppose we limit the construction of the dual triangulation to within the union

of balls, as illustrated in Figure 3. In other words, we draw a dual edge between zi

and zj only if Bi ∩Vi and Bj ∩Vj share a common face, and similarly for triangles

and tetrahedra. The result is a sub-complex of the Delaunay triangulation which

we refer to as the dual complex K = K0 of the set of spheres. For various

reasons, including the definition of pockets in biomolecules [Edelsbrunner et al.

1998], it is useful to alter the spheres by increasing or decreasing their radii. We

do this in a way that leaves the Voronoi diagram invariant. Modeling growth

with a positive real number and shrinkage with a positive real multiple of the

imaginary unit, both denoted as α, we obtain a real number α2 that may be

positive or negative. For each i let Si(α) be the sphere with center zi and radius
√

r2
i + α2. Interpreting spheres with imaginary radii as empty, the alpha complex

Kα of the spheres Si is the dual complex of the spheres Si(α). If we increase α2

continuously from −∞ to +∞ we get a continuous nested sequence of unions of

balls and a discrete nested sequence of alpha complexes.

Area and volume formulas. A simplex τ in the dual complex can be in-

terpreted abstractly as a collection of balls, one ball if it is a vertex, two if it

is an edge, etc. In this interpretation, the dual complex is a system of sets of

balls, and because every face of a simplex in K also belongs to K, this system

is closed under containment. It now makes sense to write vol
⋂

τ for the volume

of the intersection of the balls in τ . This is the kind of term we would see in

an inclusion-exclusion formula for the volume of the union of balls,
⋃

i Bi. As

proved in [Edelsbrunner 1995], the inclusion-exclusion formula that corresponds

to the dual complex gives indeed the correct volume.

Volume Theorem:

vol
⋃

i

Bi =
∑

τ∈K

(−1)dim τ vol
⋂

τ .

Here dim τ = card τ − 1 is the dimension of the simplex. This result overcomes

past difficulties by implicitly reducing higher-order to lower-order overlaps. An

added advantage of this formula is that the balls in each term form a unique geo-

metric configuration so that the analytic calculation of the volume can be done

without case analysis. Specifically, the balls in a simplex τ ∈ K are independent

in the sense that for every face υ ⊆ τ there exists a point that lies inside all balls

that belong to υ and outside all balls that belong to τ but not to υ.

A similar formula can be derived for the area of the boundary of the union of

balls. One way to arrive at this formula is to consider a sphere Si and to observe

that its contribution is the area of the entire sphere, 4πr2
i , minus the portion

covered by caps of the form Si ∩Bj , for j 6= i. The configuration of caps on Si

is but a spherical version of a configuration of disks, and computing its area is

the same problem as computing the volume of a set of balls, only one dimension

lower. To express that area as an alternating sum we need its dual complex,
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but this is nothing other than the link of Si in K, consisting of all simplices υ

that do not contain Bi but are faces of simplices that contain Bi: Bi 6∈ υ and

υ∪{Bi} ∈ K. Specifically, the area contribution of Si is the area of the sphere

minus the sum of (−1)dim υarea (Si ∩
⋂

υ). We collect all these contributions

and combine terms to get the final result.

Area Theorem:

area
⋃

i

Bi =
∑

τ∈K

(−1)dim τ area
⋂

τ .

We see that the principle of inclusion-exclusion is quite versatile, which is impor-

tant for applications in which we might want to measure aspects of the union of

balls that are similar to but different from its volume and surface area. Examples

are

• the total length of arcs in the boundary;

• voids of empty space surrounded by the union;

• weighted versions of the above.

Of the three extensions, the least obvious is how to measure voids. The other

two are needed to express the derivative of the weighted volume and area, which

are discussed next.

Area and volume derivatives. We are interested in the derivatives of the area

and the volume of a union of n balls with respect to their positions in space. Since

we keep the radii fixed, we may specify the configuration by the vector z ∈ R
3n of

center coordinates. The area thus becomes a function f : R
3n → R, and similar

for the volume. The derivative of f at z is the best linear approximation at that

configuration, Dfz : R
3n → R. This linear function is completely specified by

the gradient a = ∇f(z), namely

Dfz(t) = 〈a, t〉,

in which t ∈ R
3n is the motion vector. In [Edelsbrunner and Koehl 2003; Bryant

et al. 2004] we gave formulas for the derivatives by specifying the gradient in

terms of simple parameters readily computable from the input spheres. To state

the result for the area, let ζij = ‖zi − zj‖ be the distance between the two centers

and write uij = (zi−zj)/ζij for the unit vector in the direction of the connecting

line. For each k 6= i, j let

wijk = uik − 〈uik, uij〉 · uij

be the component of uik normal to uij , and let uijk = wijk/‖wijk‖ be the unit

vector in that normal direction. Finally, let rijk be half the distance between

the two points at which the spheres Si, Sj , and Sk meet. For completeness, we

state the result for the case in which the area contribution is weighted by the

constant αi, the corresponding atomic solvation parameter.
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Weighted Area Derivative Theorem: The gradient a∈R
3n of the weighted

area derivative at a configuration of balls z ∈ R
3n is





a3i+1

a3i+2

a3i+3



 =
∑

j

(

sij · aij +
∑

k

bijk · aijk

)

,

aij = π

(

(αiri + αjrj) − (αiri − αjrj)
r2
i − r2

j

ζ2
ij

)

· uij ,

aijk = 2rijk

αiri − αjrj

ζij

· uijk,

for 0 ≤ i < n. The sums are over all boundary edges zizj and their triangles

zizjzk in K.

The geometrically interesting terms in the formula are sij , the fraction of the

circle Si ∩Sj that belongs to the boundary of the union, and bijk, the fraction

of the line segment connecting the point pair Si ∩Sj ∩Sk that belongs to the

Voronoi segment Vi ∩Vj ∩Vk. A remarkable aspect of the formula is the existence

of terms that depend on three rather than just two spheres. These terms vanish

in the unweighted case if all radii are the same. We can reuse some of the

notation to state the result for the volume. We again state the result for the

case in which the volume of Bi ∩Vi is weighted by the constant αi.

Weighted Volume Derivative Theorem: The gradient v ∈ R
3n of the

weighted volume derivative of a configuration of balls z ∈ R
3n is





v3i+1

v3i+2

v3i+3



 =
∑

j

bijr
2
ijπ(yij · uij + xij · vij),

yij =
αi + αj

2
+

(αj − αi)(r
2
i − r2

j )

2ζ2
ij

,

xij =
2(αi − αj)

3ζij

,

for 0 ≤ i < n. The sum is over all edges zizj in K.

Here rij is the radius of the disk spanned by the circle Si ∩Sj and bij is the

fraction of this disk that belongs to the corresponding Voronoi polygon, Vi ∩Vj .

The most interesting term in this formula is the average vector vij from the

center of the disk to the boundary of its intersection with the Voronoi polygon.

In computing the average, we weight each point on this boundary by the area

of the infinitesimal triangle it defines with the center. This vector is used to

express the gain and loss of weighted volume as the disk rotates and trades off

contributions of the two balls it separates. In the unweighted case, we gain as

much as we lose which explains why xij vanishes and thus cancels any effect vij

would have.
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Continuity of the derivative. If considered over all configurations, the deriv-

ative of f is a function Df : R
3n ×R

3n → R. As described earlier, for each state

z ∈ R
3n, this is a linear function R

3n → R completely specified by the gradient

at z. It is convenient to introduce another function ∇f : R
3n → R

3n such that

Df(z, t) = 〈∇f(z), t〉. For the purpose of simulating molecular motion, it is im-

portant that ∇f be continuous, at least mostly, and if there are discontinuities,

that we are able to recognize and predict them. Unfortunately, the derivatives of

the weighted area and the weighted volume are both not everywhere continuous.

The good news is that the formulas in the two Derivative Theorems permit a

complete analysis.

Interestingly, a configuration at which ∇f is not continuous is necessarily a

configuration at which the dual complex is ambiguous, and this is true for the

area and the volume. For example, the area derivative has a discontinuity at

configurations that contain two spheres touching in a point that belongs to the

boundary of the union. The set of configurations z that contain such spheres is a

(3n−1)-dimensional subset of R
3n. In contrast, the volume derivative has discon-

tinuities only at configurations that contain two equal spheres or three spheres

that meet in a common circle, both in the weighted and the unweighted case.

The set of such configurations is a (3n− 3)-dimensional subset of R
3n. A molec-

ular dynamics simulation has to do extra work to compensate for the missing

information whenever it runs into a discontinuity of the derivative [Carver 1978;

Gear and Østerby 1984]. This occurs less often for the volume than for the area,

firstly because the dimension of such configurations is less and secondly because

the specific structure of these configurations makes them physically unlikely.

Voids and pockets. A void V is a maximal connected subset of space that

is disjoint from and completely surrounded by the union of balls. Its surface

area is easily computed by identifying the sphere patches on the boundary of the

union that also bound the void. It helps to know that there is a deformation

retraction from
⋃

i Bi to the dual complex [Edelsbrunner 1995]. Similarly, there

is a corresponding void in K represented by a connected set of simplices in the

Delaunay triangulation, that do not belong to K. This set U is open and its

boundary (the simplices added by closure) forms what one may call the dual

complex of the boundary of V . We use normalized angles to select the relevant

portions of the intersections of balls. To define this concept, let υ be a face of

a simplex τ and consider a sufficiently small sphere in the affine hull of τ whose

center is in the interior of υ. The normalized angle ϕυ,τ is the fraction of the

sphere contained in τ . For example, if τ is a tetrahedron then we get the solid

angle at a vertex, the dihedral angle at an edge, and 1
2

at a triangle.

Void Area Theorem:

areaV =
∑

υ⊆τ

(−1)dim υϕυ,τ area
⋂

υ.
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The sum is over all faces υ ∈ K of simplices τ ∈ U .

The correctness of the formula is not immediate and relies on an identity for

simplices proved in [Edelsbrunner 1995]. Similarly, we can use U to compute the

volume of V .

Void Volume Theorem:

volV = volU −
∑

υ⊆τ

(−1)dim υϕυ,τ vol
⋂

υ.

The sum is over all faces υ ∈ K of simplices τ ∈ U .

Here, vol U is simply the sum of volumes of the tetrahedra of U . There are similar

angle-weighted formulas for the entire union of balls. It would be interesting

to generalize the Void Area and Volume Theorems to pockets as defined in

[Edelsbrunner et al. 1998]. In contrast to a void, a pocket is not completely

surrounded but connected to the outside through narrow channels. Again we

have a corresponding set of simplices in the Delaunay triangulation that do not

belong to the dual complex, but this set is partially closed at the places the

pocket connects to the outside. The inclusion-exclusion formulas still apply, but

there are cases in which the cancellation of terms near the connecting channel is

not complete and leads to slightly incorrect measurements.

Alternative geometric representations. The sensitivity of simulation soft-

ware to discontinuities in the derivative suggests that we approximate the surface

area by another function. For example, we may use a shell representation and

approximate area by the volume in that shell. This can be done with uniform

thickness everywhere, or with variable thickness that depends on the radii, such

as
⋃

i Bi(ε)−
⋃

i Bi(−ε), where the small positive ε affects the radii as formulated

in the definition of the alpha complex. The latter lends itself to fast computa-

tion because both the outer and the inner union have their dual complex in the

same Delaunay triangulation and measuring both takes barely more time than

measuring one. Another alternative to the union of balls is the molecular surface

explained in Figure 2. Here we roll a sphere with fixed radius r about a union of

balls. The rolling motion is captured by the boundary of another union in which

all balls grow by r in radius. For each patch, arc, and vertex in this boundary

the molecular surface contains a (smaller) sphere patch, a torus patch, and a

(reversed) sphere patch. We can therefore collect all patches of the molecular

surface using the dual complex of the grown balls and get the surface area by

accumulation. At rare occasions, the patches form self-intersections which leads

to slightly incorrect measurements. Computing these self-intersections can be

rather involved analytically [Bajaj et al. 1997]. A similar alternative to unions

of balls is the molecular skin as defined in [Edelsbrunner 1999]. Instead of torus

patches, it uses hyperboloids of one and two sheets to blend between the spheres;

see Figure 4. The surface is decomposed into simple patches by a mix of the
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Figure 4. Molecular skin in cut-away view. Half the surface of a small molecule

of about forty atoms.

Voronoi diagram and the Delaunay triangulation. These patches are free of

self-intersections and the area can be computed by accumulation, as before but

without running the risk of making mistakes. At this time, there is no complete

analysis of the volume and area derivatives available, neither for the molecular

surface nor the molecular skin.

6. Algorithm and Implementation

We have written a new version of the Alpha Shape software [Edelsbrunner

and Mücke 1994], specific to molecular simulation applications, implementing

the weighted surface area, the weighted volume, and the derivatives of both. The

software is distributed as and Open Source program under the name AlphaVol

at http://biogeometry.duke.edu/software/proshape.

Overview. The software takes as input a set of spheres Si in R
3, each specified

by the coordinates of its center zi and its radius ri. Such a set representing a

protein can for example be extracted from the corresponding pdb file using one

of several standard sets of van der Waals radii. The computation is performed

through three successive tasks:

1. Construct the Delaunay triangulation.

2. Extract the dual complex.

3. Measure the union using inclusion-exclusion.

The main difference to the old Alpha Shapes software is the speed resulting from

an improvement of all steps by about two orders of magnitude. We achieve this
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through careful redesign of low-level computations (determinants in Task 1 and

term management in Task 3) and the limitation in scope (dual complex instead

of filtration of alpha complexes in Task 2). We review all three steps, focusing

on nonobvious implementation details that have an impact on the correctness

and running time of the software.

Delaunay triangulation. Our implementation of the Delaunay triangulation

is based on the randomized incremental algorithm described in [Edelsbrunner

and Shah 1996]. Following the paper’s recommendation, we use a minimalist

approach to storing the triangulation in a linear array of tetrahedra. For each

tetrahedron, we store the indices of its four vertices, the indices of the four

neighboring tetrahedra, a label, and the position of the opposite vertex in the

vertex list of each neighboring tetrahedron. For each vertex we use four double-

precision real numbers for the coordinates and the radius of the corresponding

sphere. The triangles and edges are implicit in this representation.

The triangulation is constructed incrementally, by adding one sphere at a

time. Before starting the construction, we re-index such that S1, S2, . . . , Sn is

a random permutation of the input spheres. To reduce the number of cases,

we choose four additional spheres with their centers at infinity so that all input

spheres are contained in the tetrahedron they define. Let Di be the Delaunay

triangulation of the four spheres at infinity together with S1, S2, . . . , Si. The

algorithm proceeds by iterating three steps:

For i = 1 to n,

1.1. find the tetrahedron τ ∈ Di−1 that contains zi;

1.2. add zi to decompose τ into four tetrahedra;

1.3. flip locally non-Delaunay triangles in the link of zi.

Step 1.1 is implemented using the jump-and-walk technique proposed by Mücke

et al. [1999]. Here we choose a small random sample of the vertices in the

current triangulation and walk from the vertex closest to zi to τ . In this walk, we

repeatedly test whether zi is inside a tetrahedron υ and whether υ remains in the

current Delaunay triangulation. These tests are decided by computing the signs

of the determinants of four 4-by-4 matrices, which place zi relative to the faces

of υ, and the sign of one 5-by-5 matrix. By noticing that any two of the 4-by-4

matrices share three rows (corresponding to zi and the vertices of a shared edge)

we find that 28 multiplications suffice to compute all five determinants. In Step

1.2, the sphere Si is sometimes discarded without decomposing τ , namely when

its Voronoi region is empty. This usually does not happen for molecular data.

A flip in Step 1.3 replaces two tetrahedra by three or three by two. We are also

prepared to remove a sphere by replacing four tetrahedra by one, but this again is

usually not necessary for molecular data. The fact that any arbitrary ordering of

the flips will successfully repair the Delaunay triangulation is nontrivial but has

been established in [Edelsbrunner and Shah 1996]. The numerical tests needed to
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decide which flips to make compute again signs of determinants of 4-by-4 and 5-

by-5 matrices. As before, we save time by recognizing common rows and reusing

partial results in the form of shared minors. An important ingredient in this

context is the treatment of singularities. Inexact versions of the numerical tests

are vulnerable to roundoff errors and can lead to wrong output. Following work in

computational geometry [Fortune and VanWyk 1996], we implemented both tests

using a so-called floating-point filter that first evaluates the tests approximately,

using floating-points arithmetic, and if the results cannot be trusted, switches to

exact arithmetic. As a side-benefit, we can now correctly recognize degenerate

cases and use a simulated perturbation to consistently reduce them to general

cases [Edelsbrunner and Mücke 1990].

Dual complex. Given the Delaunay triangulation D of the input spheres, we

construct the dual complex K ⊆ D by labeling the Delaunay simplices. Specifi-

cally, for each simplex τ ∈ D there is a threshold ατ such that τ ∈ Kα iff α2
τ ≤ α2.

Hence τ belongs to the dual complex iff α2
τ ≤ 0. We call τ a critical simplex if

ατ separates the case in which the balls Bi(α) defining τ have an empty common

intersection from the case in which they have a nonempty common intersection.

These simplices are characterized by the fact that all other balls are further than

orthogonal from the smallest sphere orthogonal to all balls Bi defining τ . (Two

balls Bi and Bj of centers zi and zj and radii ri and rj , respectively, are or-

thogonal iff ‖zi − zj‖
2

= r2
i + r2

j .) All other simplices are regular and need a

critical simplex they are face of to be included in the dual complex. To label the

Delaunay simplices, we therefore need to be able to recognize critical simplices

and to decide the signs of their square thresholds. Both tests can be expressed in

terms of the signs of the determinants of small matrices whose entries are center

coordinates and square radii of the input spheres. Detailed expressions for these

tests can be found in [Edelsbrunner 1992; Edelsbrunner and Mücke 1994].

We evaluate these tests with the same care for singularities and numerical

uncertainties as used in the construction of the Delaunay triangulation. Specifi-

cally, we apply filters and repeat the computation in exact arithmetic unless we

can be sure that the initial floating-point computation gives the correct sign.

Weighted surface area and volume. We compute the weighted volume of a

union of balls using the Volume Theorem in Section 4. The weights are worked

into the formula by decomposing each term, vol
⋂

τ , into dim τ + 1 terms using

the bisector planes also used in the Voronoi diagram. This decomposition is

natural since it is the easiest way to compute the volume of
⋂

τ in the first

place, even in the unweighted case.

We could do the same for the weighted area, effectively reducing the formula

in the Area Theorem further to an alternating sum in which every term is the

area of the intersection of a sphere with up to three half-spaces. Simple analytic

formulas for the area of such an intersection can be found in [Edelsbrunner and

Fu 1994]. We choose an alternative path deriving a similar formula (yielding the
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same result) from the angle-weighted formula given in the Void Area Theorem.

An adaptation of this formula to an entire union of balls gives

area
⋃

i

Bi =
∑

υ

(−1)dim υϕυ area
⋂

υ,

where the sum is over all simplices υ in the boundary of K and ϕυ is the nor-

malized angle around υ not covered by simplices that contain υ as a face. As

before, we further decompose each term into the intersection of a sphere and a

small number of half-spaces. The above sum is usually shorter than that in the

straight Area Theorem, which has a term for every simplex in the dual complex.

Another difference is that each term is the intersection of at most three balls

as opposed to at most four in the Area Theorem. The two differences compen-

sate for the extra effort of computing normalized angles and more, leading to

code that for proteins is about twice as fast as that based on the straight Area

Theorem.

Derivatives. We now explain how we compute the geometric ingredients in the

two Derivative Theorems stated in Section 5. For the area derivative, these are

the fractions sij and bijk. Both can be computed using inclusion-exclusion over

links inside the dual complex. Recall that sij is the fraction of the circle Si ∩Sj

that belongs to the boundary of the union of balls. Equivalently, it is the fraction

of the circle not covered by arcs of the form Si ∩Sj ∩Bk. We may interpret these

arcs as one-dimensional balls and measure their union using inclusion-exclusion,

not unlike the formula in the Volume Theorem. We find the same symmetry

in dimension in the corresponding combinatorial complexes. Specifically, the

(one-dimensional) dual complex of the arcs is isomorphic to the link of the edge

zizj in the dual complex of the balls. The link of this edge in the Delaunay

triangulation is a cycle and in K is a sub-complex consisting of vertices zk and

edges zkz`. Writing sk
ij and sk`

ij for the fractions of the circle inside Bk and inside

Bk ∩B`, we have

sij = 1 −
∑

k

sk
ij +

∑

k,`

sk`
ij ,

where the sums range over the link of the edge zizj in K. The computation of

bijk is similar but simpler because the dimension of the link of a triangle is only

zero, consisting of at most two vertices. Consider the line segment connecting

the two points at which Si, Sj and Sk meet and note that all points x on this line

segment have the same distance to the three spheres: πi(x) = πj(x) = πk(x).

Writing b`
ijk for the fraction of points x whose square distance from S` is less

than from the three defining spheres we get bijk = 1 −
∑

` b`
ijk, where the sum

is over the vertices z` in the link of the triangle. For further details refer to

[Bryant et al. 2004]. The same quantity but one dimension higher appears in

the volume derivative. Specifically, bij is the fraction of the disk Bij spanned by

the circle Si ∩Sj that belongs to the corresponding Voronoi polygon. Let Bk
ij
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be the subset of points x in this disk whose square distance to Sk is less than to

the two defining spheres: πk(x) < πi(x) = πj(x). Similarly, let Bk`
ij = Bk

ij ∩B`
ij

and write bk
ij and bk`

ij for the respective fractions of the disk they define. Then

bij = 1 −
∑

k bk
ij +

∑

k,` bk`
ij . Finally consider the average vector vij from the

center of the disk to the boundary of its intersection with the Voronoi polygon.

Its computation follows the same pattern of inclusion-exclusion over the link of

the edge, vij = 0 −
∑

k vk
ij +

∑

k,` vk`
ij , where vk

ij is the average vectors to the

arc minus the average vector to the line segment in the boundary of Bk
ij , and

similarly vk`
ij is the difference between the two average vectors of Bk`

ij . For further

details refer to [Edelsbrunner and Koehl 2003].

Performance. We discuss the actual performance of AlphaVol. We have com-

puted the weighted surface areas and volumes, as well as their derivatives with

respect to atomic coordinates, of 2,868 proteins varying in size from 17 to 500

residues. These proteins contain between 124 and 4,063 atoms. Computing times

for AlphaVol on an Intel 1600 MHz Pentium IV computer are shown in Figure 5.
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Figure 5. Performance of AlphaVol. The running time (in seconds) required

by AlphaVol to compute the weighted volume and weighted surface area of a

protein, with (x) and without (o) derivative is plotted against the number of

atoms of the protein. The running times are measured on an Intel 1600 MHz

Pentium IV computer, running Linux. AlphaVol is written in Fortran, and was

compiled using ifc, the Intel Fortran compiler for Linux.

As described above, AlphaVol first computes the Delaunay triangulation of

the n input spheres. Although in the worst case this takes quadratic time for

constructing a quadratic number of simplices, for protein data the running time

is typically O(n log n) for constructing O(n) simplices. The time for constructing

the dual complex and measuring the union of balls is linear in the number of

simplices in the Delaunay triangulation and therefore typically in O(n). The

experimentally observed total running time of AlphaVol is compatible with a
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complexity of O(n log n), both with and without derivatives, for up to 4,000

balls. Approximately 45% of the total running time is spent on the Delaunay

triangulation, 10% on the dual complex, and 45% on the weighted area and

volume. Computing the derivatives of both adds another 20%.

Applications. AlphaVol exists as a stand-alone program that can be used to

compute the solvation energy of a biomolecule. We have also inserted AlphaVol

into the molecular dynamics software encad [Levitt et al. 1995] and gromacs

[Lindahl et al. 2001], but it is too early to say anything about the corresponding

results. Recall from Section 3 that AlphaVol accounts for the nonpolar effect of

water on a biomolecule, Wnp, which is only one element of the effective solvation

potential W to be used in simulations with implicit solvent. While there is a

large body of work on computing the other part, Welec [Simonson 2003], there is

not yet any concensus on the model to be used for simulation. We have recently

started a project on this specific problem.

7. Discussion

The Alpha Shape Theory with the two Derivative Theorems provides a fast,

accurate and robust method for computing the interaction of water with a bio-

molecule in an implicit solvent model. To our knowledge, the corresponding

software, AlphaVol, is the only program that deals explicitly with the problem

of discontinuities of the derivatives, which are detected as singularities in the con-

struction of the dual complex [Edelsbrunner and Koehl 2003; Bryant et al. 2004].

We conclude this paper with a short discussion of two immediate applications of

this work.

Macro-molecular machinery. Recent advances in structural biology have

produced an abundance of data on large macro-molecular complexes; see for

example the myosin motors at http://www.proweb.org/myosin/index.html, the

RNA polymerase transcription complexes [Cramer et al. 2001; Bushnell and Ko-

rnberg 2003], and the ribosome complexes [Wimberly et al. 2000; Yusupov et al.

2001; Ban et al. 2002]. Modeling the dynamics of such large systems is as impor-

tant as modeling smaller proteins. It becomes impractical, however, to consider

all atoms of the molecular machinery, and we need to introduce approximations

that consider the system at coarser levels of detail. One possible approach is

to represent the macro-molecular complex with a small number of spheres, sup-

plemented with a model for their interactions that captures the physics of the

underlying atomic model. These interactions will include an internal potential,

and a potential to account for the solvent environment of the system. We expect

the latter to resemble the solvation potential described in Section 2, in which

the software AlphaVol will prove useful.
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Normal modes. Collective motions in which substantial parts move as units

relative to the rest play an important role in defining the function of a biomol-

ecule. Examples include domain motions during catalytic activities (e.g. citrate

synthase [Remington et al. 1982]), as well as the transition from one conforma-

tion to another for proteins that have more than one functionally distinct state.

These processes involve the correlated motion of many atoms and are slower than

local vibrations. They are difficult and costly to detect using classical molecular

dynamics simulations, which motivates the use of normal modes dynamics as an

alternative approach to detecting these collective motions [Go et al. 1983; Levitt

et al. 1983; Brooks and Karplus 1983]. The normal modes are found by assum-

ing that the potential energy can be approximated as a quadratic function of its

variables and solving an eigenvalue problem to give a closed analytical descrip-

tion of the motion. The eigenvalues give the frequencies of the modes and the

eigenvectors give the details of the corresponding motions. At a local minimum,

the quadratic approximation is obtained by a Taylor expansion to the second

order of the total potential energy. Computing normal modes therefore requires

computing the second derivatives of the energy function. However, it is difficult

to define a meaningful energy minimum for a system involving a large biomol-

ecule in the midst of small water molecules since their geometric and physical

properties are so different. We believe that this difficulty can be circumvented

by using an implicit solvent model. Computing the Taylor expansion of the en-

ergy function including an implicit solvent model would then require the second

derivatives of the weighted surface area and/or volume of the biomolecule. We

have recently applied the mathematical tools described in this paper to derive

formulas for both (manuscript in preparation).
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Abstract. We present two classes of linear inequalities that the flag f -

vectors of zonotopes satisfy. These inequalities strengthen inequalities for

polytopes obtained by the lifting technique of Ehrenborg.

1. Introduction

The systematic study of flag f -vectors of polytopes was initiated by Bayer and

Billera [1985]. Billera then suggested the study of flag f -vectors of zonotopes;

see the dissertation of his student Liu [1995]. The essential computational results

of the field appeared in two papers by Billera, Ehrenborg and Readdy [Billera

et al. 1997; 1998]. Here we present two classes of linear inequalities for the flag

f -vectors of zonotopes. These classes are motivated by our recent results for

polytopes [Ehrenborg 2005].

The flag f -vector of a convex polytope contains all the enumerative incidence

information between the faces of the polytope. For an n-dimensional polytope

the flag f -vector consists of 2n entries; in other words, the flag f -vector lies in

the vector space R
2n

. Bayer and Billera [1985] showed that the flag vectors of

n-dimensional polytopes span a subspace of R
2n

, called the generalized Dehn–

Sommerville subspace and denoted by GDSSn. Bayer and Klapper [1991] proved

that GDSSn is naturally isomorphic to the n-th homogeneous component of the

noncommutative ring R〈c,d〉, where the grading is given by deg c = 1 and

deg d = 2. Hence, the flag f -vector of a polytope P can be encoded by a

noncommutative polynomial Ψ(P ) in the variables c and d, called the cd-index.

The next essential step is to consider linear inequalities that the flag f -vector

of polytopes satisfy. The known linear inequalities are: the nonnegativity of the
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toric g-vector [Kalai 1987; Karu 2001; Stanley 1987], inequalities obtained by the

Kalai convolution [Kalai 1988], and that the cd-index is minimized coefficientwise

on the n-dimensional simplex Σn [Billera and Ehrenborg 2000]. Recently we

introduced in [Ehrenborg 2005] a lifting technique that allows one to use lower

dimensional inequalities to obtain higher-dimensional inequalities. Here is a

special case of this lifting technique:

Theorem 1.1. Let u, q and v be three cd-monomials such that the sum of the

degrees of u, q and v is n and the degree of q is k. Let ∆q denote the coefficient

of the cd-monomial q in the cd-index of a k-dimensional simplex Σk. Then for

all n-dimensional polytopes P we have
〈

u · (q − ∆q · ck) · v | Ψ(P )
〉

≥ 0,

where the bracket 〈 · | · 〉 is the standard inner product on R〈c,d〉.

The purpose of this paper is to improve Theorem 1.1 for zonotopes.

Recall that a zonotope is a polytope obtained as the Minkowski sum of line

segments. The flag f -vectors of n-dimensional zonotopes lie in the subspace

GDSSn. Billera, Ehrenborg and Readdy [Billera et al. 1998] proved that they

do not lie in any proper subspace of GDSSn. They also showed that among all

n-dimensional zonotopes (and more generally, the dual of the lattice of regions of

oriented matroids), the n-dimensional cube minimizes the cd-index coefficient-

wise [Billera et al. 1997]. This is the zonotopal analogue of Stanley’s Gorenstein∗

lattice conjecture [Stanley 1994b, Conjecture 2.7].

We continue this vein of research by introducing further classes of linear in-

equalities for flag f -vectors of zonotopes. We develop two sharper versions of

the inequality appearing in Theorem 1.1. For an n-dimensional zonotope we

show that the expression in Theorem 1.1 is at least the value obtained by the

n-dimensional cube Cn; see Theorem 3.1. The second improvement is the case

when u = 1. We can replace the factor ∆q by a larger factor, the coefficient of

q in the cd-index of the k-dimensional cube Ck; see Theorem 3.6.

2. Preliminaries

For standard terminology for posets, see [Stanley 1986]. A partially ordered

set (poset) P is ranked if there is a rank function ρ : P → Z such that when x

is covered by y then ρ(y) = ρ(x) + 1. The poset P is graded of rank n if it is

ranked and has a minimal element 0̂ and a maximal element 1̂ such that ρ(0̂) = 0

and ρ(1̂) = n. Define the interval [x, y] to be the subposet {z ∈ P : x ≤ z ≤ y}.
Observe that the interval [x, y] is also a graded poset of rank ρ(y) − ρ(x).

Let P be a graded poset of rank n+1. For S = {s1 < s2 < · · · < sk} a subset

of {1, . . . , n}, define fS to be the number of chains 0̂ = x0 < x1 < · · · < xk+1 = 1̂,

where the rank of the element xi is si for 1 ≤ i ≤ k. These 2n values constitute

the flag f -vector of the poset P . Define the flag h-vector of P by the two
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equivalent relations hS =
∑

T⊆S(−1)|S−T |fT and fS =
∑

T⊆S hT . There has

been a lot of recent work in understanding the flag f -vectors of graded posets

and Eulerian posets. For example, see [Bayer 2001; Bayer and Hetyei 2001;

Billera and Hetyei 2000].

For S a subset of {1, . . . , n} define the monomial uS = u1u2 · · ·un, where

ui = a if i 6∈ S and ui = b if i ∈ S. Define the ab-index of a graded poset P of

rank n + 1 to be the sum

Ψ(P ) =
∑

S

hS · uS.

A poset P is Eulerian if every interval [x, y], where x 6= y, has the same

number of elements of odd rank as the number of elements of even rank. This

condition states that every interval [x, y] satisfies the Euler–Poincaré relation.

The condition of being Eulerian is equivalent to the condition that the Möbius

function µ(x, y) is (−1)ρ(x,y). The two main examples of Eulerian posets are the

strong Bruhat order and face lattices of convex polytopes.

The following result was conjectured by Fine and proved by Bayer and Klapper

[1991]. It states that the generalized Dehn–Sommerville subspace GDSSn is

naturally isomorphic to the space of cd-polynomials of degree n.

Theorem 2.1. The ab-index of an Eulerian poset P , Ψ(P ), can be written in

terms of c = a + b and d = a · b + b · a.

When Ψ(P ) is expressed in terms of c and d it is called the cd-index of the

poset P . There exist several proofs of this result in the literature; see [Bayer

and Klapper 1991; Billera and Liu 2000; Ehrenborg 2001; Ehrenborg and Readdy

2002; Stanley 1994a]. The cd-index has been extraordinarily useful for flag vector

computations; see [Bayer and Ehrenborg 2000; Billera et al. 1997; Ehrenborg and

Readdy 1998]. Moreover, this basis is now emerging as a key tool for obtaining

linear inequalities for the entries of the flag f -vector; see [Billera and Ehrenborg

2000; Ehrenborg 2005; Ehrenborg and Fox 2003; Stanley 1994a].

Define an inner product 〈 · | · 〉 on R〈c,d〉 by 〈u | v〉 = δu,v for all cd-monomials

u and v, and extend this relation by linearity. Using this notation any linear

inequality on the flag f -vector of an n-dimensional polytope can be expressed as

〈H |Ψ(P )〉 ≥ 0, where H is homogeneous cd-polynomial of degree n.

In the remainder of this section we will focus upon the cd-index of zonotopes.

However, all the results carry over to oriented matroids. In order to keep the

statements of the results explicit, we will use the geometric language of zonotopes

and their hyperplane arrangements.

A zonotope Z is a polytope obtained by the Minkowski sum of line segments,

that is, Z = [0,v1] + · · · + [0,vm]. For each line segment [0,vi] let Hi be

the hyperplane through the origin that is orthogonal to vi. The collection of

these hyperplanes H = {H1, . . . ,Hm} is the central hyperplane arrangement

associated to the zonotope Z. The intersection lattice L of the arrangement H
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is the collection of all the intersections of the hyperplanes H1, . . . ,Hm ordered

by reverse inclusion.

Let ω be the linear map from R〈a, b〉 to R〈c,d〉 defined on an ab-monomial

by replacing each occurrence of ab with 2d and then replacing the remaining

variables by c. Here is the fundamental theorem for computing the cd-index of

a zonotope:

Theorem 2.2 [Billera et al. 1997]. Let Z be a zonotope (and more generally,

let Z be the dual of the lattice of regions of an oriented matroid). Let L be the

intersection lattice of the associated central hyperplane arrangement H and Ψ(L)

the ab-index of the lattice L. Then the cd-index of the zonotope and the sum of

the cd-indices of all the vertex figures of the zonotope are given by

Ψ(Z) = ω(a · Ψ(L)),
∑

v

Ψ(Z/v) = 2 · ω(Ψ(L)),

where v ranges over all vertices of the zonotope Z.

The first of these identities is [Billera et al. 1997, Theorem 3.1]. The second

follows from the first by using the linear map h defined in Section 8 of the same

reference.

It remains to compute the ab-index of the intersection lattice L. We do

this using R-labelings. For more details, see [Billera et al. 1997, Section 7]

and [Björner 1980; Stanley 1974; 1986]. Linearly order the hyperplanes in the

arrangement H as H = {H1, . . . ,Hm}. Mark each edge x ≺ y in the Hasse

diagram of the lattice L with the smallest (in the given linear order) hyperplane

H such that intersecting x with H gives y. That is,

λ(x, y) = min{i : x ∩ Hi = y}.

For a maximal chain c = {0̂ = x0 ≺ x1 ≺ · · · ≺ xn = 1̂} in the intersection

lattice L define its descent set D(c) by

D(c) = {i : λ(xi−1, xi) > λ(xi, xi+1)}.

Theorem 2.3 [Billera et al. 1997, Section 7]. The ab-index of intersection lattice

L is given by

Ψ(L) =
∑

c

uD(c),

where the sum ranges over all maximal chains c in the lattice L.

3. Inequalities for Zonotopes

In this section we will improve Theorem 1.1 for zonotopes. Let Cn denote the

n-dimensional cube.
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Theorem 3.1. Let Z be an n-dimensional zonotope (and more generally, let

Z be the dual of the lattice of regions of an oriented matroid). Let q be a cd-

monomial of degree k that contains at least one d. Then the cd-index Ψ(Z)

satisfies the inequality

〈

u ·
(

q − ∆q · ck
)

· v | Ψ(Z) − Ψ(Cn)
〉

≥ 0.

for any two cd-monomials u and v such that deg u + deg v = n − k.

Definition 3.2. Let q be a cd-monomial of degree k that contains at least

one d. For two cd-polynomials z and w define the order relation z �q w if the

inequality
〈

u · (q − ∆q · ck) · v |w − z
〉

≥ 0 holds for all cd-monomials u and v.

In this notation Theorem 3.1 becomes Ψ(Z) �q Ψ(Cn) and that of Theorem 1.1

becomes Ψ(P ) �q 0. Note that this order relation differs slightly from the order

relation used in [Ehrenborg 2005].

Lemma 3.3. Let z and w be nonnegative cd-polynomials such that z �q 0 and

w �q 0. Then we have z · d · w �q 0.

Proof. Without loss of generality, we may assume that z and w are homoge-

neous polynomials. We would like to prove that

〈

u · (q − ∆q · ck) · v | z · d · w
〉

≥ 0,

for all cd-monomials u and v such that deg u + deg v = deg(zdw) − k, where k

is the degree of q. We do this in three cases. The first case is deg(uc
k) ≤ deg z.

Try to factor v = v1 · v2 such that deg(uc
kv1) = deg z. If such factoring is not

possible, both sides of the inequality are equal to zero. If factoring is possible

then
〈

u(q − ∆qc
k)v | zdw

〉

=
〈

u(q − ∆qc
k)v1 | z

〉

· 〈v2 |dw〉 ≥ 0. The second case

is deg u ≥ deg(zd), which is symmetric to the first case.

The third is deg(uc
k) > deg z and deg u < deg(zd). Since z and w have

nonnegative coefficients we have 〈uqv | zdw〉 ≥ 0. Moreover,
〈

uc
kv | zdw

〉

= 0.

This completes the third case. ˜

Proposition 3.4. Let Z be an n-dimensional zonotope and let Z ′ be the zono-

tope obtained by taking the Minkowski sum of Z with a line segment in the affine

span of Z. Then we have Ψ(Z ′) �q Ψ(Z).

Proof. Let H and H′ be the associated hyperplane arrangements and let H

be the new hyperplane. Let H′ inherit the linear order of H with the new

hyperplane H inserted at the end of the linear order. Similarly, let L and L′ be

the corresponding intersection lattices. Observe that every maximal chain in L

is also a maximal chain in L′. Also observe that there is no maximal chain in

L′ whose last label is H. Hence the difference in the ab-indices between the two
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intersection lattices is

Ψ(L′) − Ψ(L) =
∑

c

uD(c)

=
∑

0̂<x≺y

Ψ([0̂, x]) · ab · Ψ([y, 1̂]) +
∑

0̂=x≺y

b · Ψ([y, 1̂]),

where the sum on the first line is over all maximal chains c containing the label

H and the sums on the second line are over edges x ≺ y in the Hasse diagram

of L′ having the label H. Applying the map w 7−→ ω(a · w) we obtain

Ψ(Z ′)−Ψ(Z) =
∑

0̂<x≺y

ω(a·Ψ([0̂, x]))·2d·ω(Ψ([y, 1̂]))+
∑

0̂≺y

2d·ω(Ψ([y, 1̂])). (3.1)

The term ω(a ·Ψ([0̂, x])) is the cd-index of a zonotope and hence is nonnegative

in the order �q by Theorem 1.1. Similarly, the term ω(Ψ([y, 1̂])) is one half

of the sum of cd-indices of the vertex figures of a zonotope and hence is also

�q-nonnegative. The result now follows by Lemma 3.3 and the property that

the order �q is preserved under addition. ˜

Proof of Theorem 3.1. Observe that any n-dimensional zonotope is obtained

from the n-dimensional cube Cn by Minkowski adding line segments. Thus the

result follows from Proposition 3.4. ˜

The second improvement of the zonotopal inequalities is when comparing the

coefficients of c
kv and qv, that is, when u is equal to 1. Let ˜q denote the

coefficient of the monomial q in the cd-index of the k-dimensional cube Ck, that

is, ˜q = 〈q |Ψ(Ck)〉. For ease in notation, we introduce a second order relation.

Definition 3.5. Let q be a cd-monomial of degree k that contains at least one d

and let z and w be two cd-polynomials. Define the order relation z �′

q w on the

cd-polynomials z and w by
〈

(q − ˜q · ck) · v |w − z
〉

≥ 0 for all cd-monomials v.

Theorem 3.6. Let Z be an n-dimensional zonotope (and more generally, let

Z be the dual of the lattice of regions of an oriented matroid). Let q be a cd-

monomial of degree k that contains at least one d. Then the cd-index Ψ(Z)

satisfies the inequality Ψ(Z) �′

q Ψ(Cn). That is, for all cd-monomials v of

degree n − k we have
〈

(q − ˜q · ck) · v | Ψ(Z) − Ψ(Cn)
〉

≥ 0.

The proof of Theorem 3.6 consists of the following lemma and two propositions.

Lemma 3.7. Let z and w be two nonnegative cd-polynomials such that z �′

q 0.

Then we have z ·d ·w �′

q 0. Furthermore if deg q ≤ deg z we have that z ·w �′

q 0.

Proof. We want to show that
〈

(q − ˜qc
k)v | zdw

〉

≥ 0 for all cd-monomials v,

where k = deg q. Consider first the case when k ≤ deg z. Try to write v = v1 · v2
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such that k+deg v1 = deg z. If this is not possible both sides are equal to zero. If

this is possible we have
〈

(q − ˜qc
k)v | zdw

〉

=
〈

(q − ˜qc
k)v1 | z

〉

· 〈v2 |dw〉 ≥ 0.

The second case is k > deg z. Then right away we have
〈

c
kv | zdw

〉

= 0. Also

〈qv | zdw〉 ≥ 0, since both z and w have nonnegative coefficients. The second

statement of the lemma is proved by similar reasoning, where there is only the

case
〈

(q − ˜qc
k)v | zw

〉

=
〈

(q − ˜qc
k)v1 | z

〉

· 〈v2 |w〉 ≥ 0. ˜

Proposition 3.8. The cd-index of the n-dimensional cube Cn satisfies

Ψ(Cn) �′

q 0.

Proof. The proof is by induction on n. Observe that when n < deg q there

is nothing to prove. When n = deg q the result is directly true. The induction

step is based on the Purtill recursion for the cd-index of the n-dimensional cube;

see [Ehrenborg and Readdy 1996; Purtill 1993] or [Ehrenborg and Readdy 1998,

Proposition 4.2]:

Ψ(Cn+1) = Ψ(Cn) · c +
n−1
∑

i=0

2n−i ·
(

n

i

)

· Ψ(Ci) · d · Ψ(Σn−i−1).

By Lemma 3.7 we observe that all the terms in this expression are greater than

0 in the order �′

q. ˜

Proposition 3.9. Let Z be an n-dimensional zonotope and let Z ′ be the zono-

tope obtained by taking the Minkowski sum of Z with a line segment in the affine

span of Z. Assume that all zonotopes W of dimension n− 1 and less satisfy the

relation 0 �′

q Ψ(W ). Then the order relation Ψ(Z) �′

q Ψ(Z ′) holds.

Proof. The proof follows the same outline as the proof of Proposition 3.4. By

Lemma 3.7 each term in equation (3.1) is nonnegative in the order �′

q. Since the

property of being nonnegative is preserved under addition, the result follows. ˜

Proof of Theorem 3.6. We work by induction. The case n = 0 is straight-

forward. For the induction step assume that every zonotope W of dimension k

less than n satisfies the inequality Ψ(Ck) �′

q Ψ(W ). Especially, we know that

the cd-index of a lower dimensional zonotope is nonnegative in the order �′

q.

Thus by Proposition 3.9 we know that Ψ(Z) �′

q Ψ(Z ′) holds for n-dimensional

zonotopes. Now the theorem follows from Propositions 3.8. ˜

4. Concluding Remarks

In the view of the lifting technique in [Ehrenborg 2005], it is natural to consider

the following conjecture.

Conjecture 4.1. Let H be a cd-polynomial homogeneous of degree k such that

〈H | Ψ(P )〉 ≥ 0 for all k-dimensional polytopes P . Then for all n-dimensional
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zonotopes (and more generally, the dual of the lattice of regions of an oriented

matroid) the inequality
〈

u · H · v | Ψ(Z) − Ψ(Cn)
〉

≥ 0

holds for all cd-monomials u and v such that the sum of their degrees is n − k,

u does not end with c and v does not begin with c.

Conjecture 4.1 is the zonotopal analogue of Conjecture 6.1 in [Ehrenborg 2005].

Theorem 3.1 is the verification of Conjecture 4.1 in the case when H = q−∆q ·ck.

Moreover, in the light of Theorem 3.6 we also suggest the next conjecture.

Conjecture 4.2. Let H be a cd-polynomial homogeneous of degree k such that

for all k-dimensional zonotopes Z (and more generally, the dual of the lattice

of regions of an oriented matroid) the inequality 〈H | Ψ(Z) − Ψ(Ck)〉 ≥ 0 holds.

Then for all n-dimensional zonotopes (oriented matroids) the inequality
〈

H · v | Ψ(Z) − Ψ(Cn)
〉

≥ 0

holds for all cd-monomials v of degree n − k.

There are other natural questions that arise. For instance, is there a way to

interpolate between Theorems 3.1 and 3.6? Such an interpolation would let

the factor vary between the constants ∆q and ˜q, depending on the degree of

the monomial u. Another inequality to consider is the following multiplicative

version of Theorem 3.1:

Conjecture 4.3. The cd-index of a zonotope Z (and more generally, the dual

of the lattice of regions of an oriented matroid) satisfies the inequality
〈

uqv |Ψ(Z)
〉

〈

uckv |Ψ(Z)
〉 ≥

〈

uqv |Ψ(Cn)
〉

〈

uckv |Ψ(Cn)
〉 .

More linear inequalities for the flag f -vector of zonotopes can be obtained by

the Kalai convolution [1988]. That is, if the two inequalities 〈H1 |Ψ(Z)〉 ≥ 0

and 〈H2 |Ψ(P )〉 ≥ 0 hold for all m-dimensional zonotopes, respectively all n-

dimensional polytopes, then the inequality 〈H1 ∗ H2 |Ψ(Z)〉 ≥ 0 holds for all

(m+n+1)-dimensional zonotopes. For an explicit description of the convolution

on cd-polynomials, see [Ehrenborg 2005, Proposition 2.2].

Finally, another class of linear inequalities for the flag f -vector of zonotopes

have been obtained by Varchenko and Liu; see [Fukuda et al. 1991; Liu 1995;

Varchenko 1988]. Recently, this class has been sharpened by Stenson [2003].
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Quasiconvex Programming

DAVID EPPSTEIN

Abstract. We define quasiconvex programming, a form of generalized lin-

ear programming in which one seeks the point minimizing the pointwise

maximum of a collection of quasiconvex functions. We survey algorithms

for solving quasiconvex programs either numerically or via generalizations

of the dual simplex method from linear programming, and describe varied

applications of this geometric optimization technique in meshing, scientific

computation, information visualization, automated algorithm analysis, and

robust statistics.

1. Introduction

Quasiconvex programming is a form of geometric optimization, introduced in

[Amenta et al. 1999] in the context of mesh improvement techniques and since

applied to other problems in meshing, scientific computation, information visual-

ization, automated algorithm analysis, and robust statistics [Bern and Eppstein

2001; 2003; Chan 2004; Eppstein 2004]. If a problem can be formulated as a

quasiconvex program of bounded dimension, it can be solved algorithmically

in a linear number of constant-complexity primitive operations by generalized

linear programming techniques, or numerically by generalized gradient descent

techniques. In this paper we survey quasiconvex programming algorithms and

applications.

1.1. Quasiconvex functions. Let Y be a totally ordered set, for instance the

real numbers R or integers Z ordered numerically. For any function f : X 7→ Y ,

and any value λ ∈ Y , we define the lower level set

f≤λ = {x ∈ X | f(x) ≤ λ} .

A function q : X 7→ Y , where X is a convex subset of Rd, is called quasiconvex

[Dharmadhikari and Joag-Dev 1988] when its lower level sets are all convex. A

one-dimensional quasiconvex function is more commonly called unimodal, and

This research was supported in part by NSF grant CCR-9912338.
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(−1, 0) (1, 0)

q(v) ≤ 90◦

q(v) ≤ 135◦

(includes darker area)

Figure 1. Level sets of the quasiconvex function q(v) = 180◦

− \uvw, for

u = (−1, 0) and w = (1, 0), restricted to the half-plane y ≥ 0.

another way to define a quasiconvex function is that it is unimodal along any

line through its domain.

As an example, let H = {(x, y) | y > 0} be the upper half-plane in R2, let

u = (−1, 0) and w = (1, 0), and let q measure the angle complementary to the

one subtended by segment uw from point v: thus q(v) = 180◦ − \uvw. Each

level set q≤λ consists of the intersection with H of a disk having u and w on its

boundary (Figure 1). Since these sets are all convex, q is quasiconvex.

Quasiconvex functions are a generalization of the well-known set of convex

functions, which are the functions Rd 7→ R satisfying the inequality

f
(

px̄ + (1 − p
)

ȳ) ≤ p f(x̄) + (1 − p)f(ȳ)

for all x̄, ȳ ∈ Rd and all 0 ≤ p ≤ 1: it is a simple consequence of this inequality

that any convex function has convex lower level sets. However, there are many

functions that are quasiconvex but not convex; for instance, the complementary

angle function q defined above is not convex, as can be seen from the fact that

its values are bounded above by 180◦. As another example, the function χK(x̄)

that takes the value 0 within a convex set K and 1 outside K has as its lower

level sets K and Rd, so it is quasiconvex, but not convex.

If r is convex or quasiconvex and f : Y 7→ Z is monotonically nondecreasing,

then q(x̄) = f(r(x̄)) is quasiconvex; for instance the function χK above can be

factored in this way into the composition of a convex function dK(x̄) measuring

the Euclidean distance from x̄ to K with a monotonic function f mapping 0

to itself and all larger values to 1. In the other direction, given a quasiconvex

function q : X 7→ Y , one can often find a monotonic function f : Y 7→ R

that, when composed with q, turns it into a convex function. However this sort

of convex composition is not always possible. For instance, in the case of the

step function χK described above, any nonconstant composition of χK remains

two-valued and hence cannot be convex.
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1.2. Nested convex families. Quasiconvex functions are closely related to

nested convex families. Following [Amenta et al. 1999], we define a nested convex

family to be a map κ : Y 7→ K(Rd), where Y is a totally ordered set and K(Rd)

denotes the family of compact convex subsets of Rd, and where κ is further

required to satisfy the following two axiomatic requirements (the second of which

is a slight generalization of the original definition that allows Y to be discrete):

(i) For every λ1, λ2 ∈ Y with λ1 < λ2 we have κ(λ1) ⊆ κ(λ2).

(ii) For all λ ∈ Y such that λ = inf {λ′ | λ′ > λ} we have κ(λ) =
⋂

λ′>λ κ(λ′).

If Y has the property that every subset of Y has an infimum (for instance,

Y = R ∪{∞,−∞}), then from any nested convex family κ : Y 7→ K(Rd) we can

define a function qκ : Rd 7→ Y by the formula

qκ(x̄) = inf {λ | x̄ ∈ κ(λ)} .

Lemma 1.1. For any nested convex family κ : Y 7→ K(Rd) and any λ ∈ Y ,

q≤λ
κ = κ(λ).

Proof. The lower level sets of qκ are

q≤λ
κ =

{

x̄ ∈ Rd | qκ(x̄) ≤ λ
}

=
{

x̄ ∈ Rd | inf {λ′ | x̄ ∈ κ(λ′) } ≤ λ
}

.

For any x̄ ∈ κ(λ) we have λ ∈ {λ′ | x̄ ∈ κ(λ′) } so the infimum of this set can

not be greater than λ and x̄ ∈ q≤λ
κ . For any x̄ /∈ κ(λ), inf {λ′ | x̄ ∈ κ(λ′) } ≥

λ+ > λ by the second property of nested convex families, so x̄ /∈ q≤λ
κ . Therefore,

q≤λ
κ = κ(λ). ˜

In particular, qκ has convex lower level sets and so is quasiconvex.

Conversely, suppose that q is quasiconvex and has bounded lower level sets.

Then we can define a nested convex family

κq(λ) =

{

⋂

λ′>λ cl(q≤λ′

) if λ = inf {λ′ | λ′ > λ},

cl(q≤λ) otherwise,

where cl denotes the topological closure operation.

If q does not have bounded lower level sets, we can still form a nested convex

family by restricting our attention to a compact convex subdomain K ⊂ Rd:

κq,K(λ) =

{

⋂

λ′>λ cl(K ∩ q≤λ′

) if λ = inf {λ′ | λ′ > λ},

cl(K ∩ q≤λ) otherwise.

This restriction to a compact subdomain is necessary to handle linear functions

and other functions without bounded level sets within our mathematical frame-

work.

The following two theorems allow us to use nested convex families and quasi-

convex functions interchangeably for each other for most purposes: more specif-

ically, a nested convex family conveys exactly the same information as a contin-

uous quasiconvex function with bounded lower level sets. Thus, later, we will
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use whichever of the two notions is more convenient for the purposes at hand,

using these theorems to replace an object of one type for an object of the other

in any algorithms or lemmas needed for our results.

Theorem 1.2. For any nested convex family κ, we have κ = κqκ
.

Proof. If λ is not an infimum of larger values, then qκ(x) ≤ λ if and only if

x ∈ κ(λ). So κqκ
(λ) = cl(qκ

≤λ) = {x | qκ(x) ≤ λ} = κ(λ).

Otherwise, by Lemma 1.1,

κqκ
(λ) =

⋂

λ′>λ

cl(κ(λ′)).

The closure operation does not modify the set κ(λ′), because it is already closed,

so we can replace cl(κ(λ′)) above by κ(λ′)), giving

κqκ
(λ) =

⋂

λ′>λ

κ(λ′).

The intersection on the right-hand side of the equation further simplifies to κ(λ)

by the second property of nested convex families. ˜

Theorem 1.3. If q : X 7→ R is a continuous quasiconvex function with bounded

lower level sets, then qκq
= q.

Proof. By Lemma 1.1, q≤λ
κq

= κq(λ). Assume first that λ = inf {λ′ | λ′ > λ}.

Expanding the definition of κq, we get

q≤λ
κq

=
⋂

λ′>λ

cl(q≤λ′

).

If q is continuous, its level sets are closed, so we can simplify this to

q≤λ
κq

=
⋂

λ′>λ

q≤λ′

.

Suppose the intersection on the right-hand side of the formula is nonempty, and

let x̄ be any point in it. We wish to show that q(x̄) ≤ λ, so suppose for a

contradiction that q(x̄) > λ. But then there is a value λ′ strictly between λ

and q(x̄) (else λ would not be the infimum of all greater values), and x̄ /∈ q≤λ′

,

contradicting the assumption that x̄ is in the intersection. Therefore, q(x̄) must

be at most equal to λ.

As we have now shown that q(x̄) ≤ λ for any x̄ in q≤λ
κq

, it follows that q≤λ
κq

cannot contain any points outside q≤λ. On the other hand, q≤λ
κq

is formed by

intersecting a collection of supersets of q≤λ, so it contains all points inside q≤λ.

Therefore, the two sets are equal.

If λ 6= inf {λ′ > λ}, the same equality can be seen even more simply to be

true, since we have no intersection operation to eliminate. Since qκq
and q have

the same level sets, they are the same function. ˜
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Thanks to these two theorems, we do not lose any information by using the

function qκ in place of the nested convex family κ, or by using the nested convex

family κqκ
= κ in place of a quasiconvex function that is of the form q = qκ or

in place of a continous quasiconvex function with bounded lower level sets. In

most situations quasiconvex functions and nested convex families can be treated

as equivalent and interchangeable: if we are given a quasiconvex function q and

need a nested convex family, we can use the family κq, and if we are given a nested

convex family κ and need a quasiconvex function, we can use the function qκ or

qκ,K . Our quasiconvex programs’ formal definition will involve inputs that are

nested convex families only, but in our applications of quasiconvex programming

we will describe inputs that are quasiconvex functions, and which will be assumed

to be converted to nested convex families as described above.

1.3. Quasiconvex programs. If a finite set of functions qi are all quasiconvex

and have the same domain and range, then the function Q(x̄) = maxi∈S qi(x̄) is

also quasiconvex, and it becomes of interest to find a point where Q achieves its

minimum value. For instance, in Section 2.2 below we discuss in more detail the

smallest enclosing ball problem, which can be defined by a finite set of functions

qi, each of which measures the distance to an input site; the minimum of Q

marks the center of the smallest enclosing ball of the sites. Informally, we use

quasiconvex programming to describe this search for the point minimizing the

pointwise maximum of a finite set of quasiconvex functions.

More formally, Amenta et al. [1999] originally defined a quasiconvex program

to be formed by a set of nested convex families S = {κ1, κ2, . . . κn}; the task to

be solved is finding the value

Λ(S) = inf
{

(λ, x̄)

∣

∣

∣ x̄ ∈
⋂

κi∈S

κi(λ)
}

where the infimum is taken in the lexicographic ordering, first by λ and then

by the coordinates of x̄. However, we can simplify the infimum operation in

this definition by replacing it with a minimum; that is, it is always true that

the set defined on the right-hand side of the definition has a least point Λ(S).

To prove this, suppose that (λ, x̄) is the infimum, that is, there is a sequence

of pairs (λj , x̄j) in the right-hand side intersection that converges to (λ, x̄), and

(λ, x̄) is the smallest pair with this property. Clearly, each λj ≥ λ (else (λj , x̄j)

would be a better solution) and it follows from the fact that the sets κi are closed

and nested that we can take each x̄j = x̄. But then, it follows from the second

property of nested convex families that x̄ ∈ κi(λ) for all κi ∈ S.

In terms of the quasiconvex functions defining a quasiconvex program, we

would like to say that the value of the program consists of a pair (λ, x̄) such

that, for each input function qi, qi(x̄) ≤ λ, and that no other pair with the

same property has a smaller value of λ. However, maxi qi(x̄) may not equal λ

if at least one of the input quasiconvex functions is discontinuous. For instance,
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consider a one-dimensional quasiconvex program with two functions q0(x) = |x|,

q1(x) = 1 for x ≥ 0, and q1(x) = 0 for x < 0. This program has value (0, 0),

but max{q0(0), q1(0)} = 1. The most we can say in general is that there exists

a sequence of points x̄j converging to x with limj→∞ maxi qi(x̄j) = λ. This

technicality is, however, not generally a problem in our applications.

In subsequent sections we explore various examples of quasiconvex programs,

algorithms for quasiconvex programming, and applications of those algorithms.

(The expression quasiconvex programming has also been applied to the prob-

lem of minimizing a single quasiconvex function over a convex domain; see [Kiwiel

2001; Xu 2001], for example. The two formulations are easily converted to each

other using the ideas described in Section 2.6. For the applications described

in this survey, we prefer the formulation involving minimizing the pointwise

maximum of multiple quasiconvex functions, as it places greater emphasis on

combinatorial algorithms and less on numerical optimization.)

2. Examples

We begin our study of quasiconvex programming by going through some sim-

ple examples of geometric optimization problems, and showing how they may be

formulated as low-dimensional quasiconvex programs.

2.1. Sighting point. When we introduced the definition of quasiconvex func-

tions, we used as an example the complementary angle subtended by a line

segment from a point: q(v) = 180◦ − \uvw. If we have a collection of line seg-

ments forming a star-shaped polygon, and form a quasiconvex program from the

functions corresponding to each line segment, then the point v that minimizes

the maximum function value must lie in the kernel of the polygon. If we define

the angular resolution of the polygon from v to be the minimum angle formed

by any two consecutive vertices as seen from v, then this choice of v makes the

angular resolution be as large as possible.

This problem of maximizing the angular resolution was used by Matoušek et

al. [1996] as an example of an LP-type problem that does not form a convex pro-

gram. It can also be viewed as a special case of the mesh smoothing application

described below in Section 4.1.

McKay [1989] had asked about a similar problem in which one wishes to choose

a viewpoint maximizing the angular resolution of an unordered set of points that

is not connected into a star-shaped polygon. However, it does not seem possible

to form a quasiconvex program from this version of the problem: for star-shaped

polygons, we know on which side of each line segment the optimal point must lie,

so we can use quasiconvex functions with level sets that are intersections of disks

and half-planes, but for point sets, without knowing where the viewpoint lies

with respect to the line through any pair of points, we need to use the absolute

value |q(v)| of the angle formed at v by each pair of points. This modification
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Figure 2. Smallest enclosing ball of a set of points (left), and the level sets of

maxi qi(x) for the distance functions qi defining the quasiconvex program for

the smallest enclosing ball (right).

leads to nonquasiconvex functions with level sets that are unions or intersections

of two disks. It remains open whether an efficient algorithm for McKay’s sighting

point problem exists.

2.2. Smallest enclosing ball. Consider the problem of finding the minimum

radius Euclidean sphere that encloses all of a set of points S = {p̄i} ⊂ Rd

(Figure 2, left). As we show below, this smallest enclosing ball problem can

easily be formulated as a quasiconvex program. The smallest enclosing ball

problem has been well studied and linear time algorithms are known in any fixed

dimension [Dyer 1984; Fischer et al. 2003; Gärtner 1999; Megiddo 1983; Welzl

1991], so the quasiconvex programming formulation does not lead to improved

solutions for this problem, but it provides an illuminating example of how to find

such a formulation more generally, and in later sections we will use the smallest

enclosing ball example to illustrate our quasiconvex programming algorithms.

Define the function qi(x̄) = d(x̄, p̄i) where d is the Euclidean distance. Then

the level set q≤λ
i is simply a Euclidean ball of radius λ centered at p̄i, so qi is

quasiconvex (in fact, it is convex). The function qS(x̄) = maxi qi(x̄) (the level

sets of which are depicted in Figure 2, right) measures the maximum distance

from x̄ to any of the input points, so a Euclidean ball of radius qS(x̄) centered at

x̄ will enclose all the points and is the smallest ball centered at x̄ that encloses

all the points.

If we form a quasiconvex program from the functions qi, the solution to the

program consists of a pair (λ, x̄) where λ = qS(x̄) and λ is as small as possible.

That is, the ball with radius λ centered at x̄ is the smallest enclosing ball of the

input points.

Any smallest enclosing ball problem has a basis of at most d + 1 points that

determine its value. More generally, it will turn out that any quasiconvex pro-

gram’s value is similarly determined by a small number of the input functions;
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this phenomenon will prove central in our ability to apply generalized linear

programming algorithms to solve quasiconvex programs.

If we generalize each qi to be the Euclidean distance to a convex set Ki, the

resulting quasiconvex program finds the smallest sphere that touches or encloses

each Ki. In a slightly different generalization, if we let qi(x̄) = d(x̄, p̄i) + ri, a

sphere centered at x̄ with radius qi(x̄) or larger will contain the sphere centered

at p̄i with radius ri. So, solving the quasiconvex program with this family of

functions qi will find the smallest enclosing ball of a family of balls [Megiddo

1989; Gärtner and Fischer 2003].

2.3. Hyperbolic smallest enclosing ball. Although we have defined qua-

siconvex programming in terms of Euclidean space Rn, the definition involves

only concepts such as convexity that apply equally well to other geometries such

as hyperbolic space Hn. Hyperbolic geometry (e.g. see [Iversen 1992]) may be

defined in various ways; for instance by letting Hn consist of the unit vectors of

Rn+1 according to the inner product 〈x̄, ȳ〉 =
∑

i<n(xiyi) − xnyn, and defining

the distance d(x̄, ȳ) = cosh−1 〈x̄, ȳ〉. Angles, congruence, lines, hyperplanes, and

other familiar Euclidean concepts can also be defined in a straightforward way

for hyperbolic space. Hyperbolic geometry satisfies many of the same axioms

as Euclidean geometry, but not the famous parallel postulate: in the hyperbolic

plane H2, given a line ` and a point p /∈ `, there will be infinitely many lines

through p that do not meet `. A hyperbolic convex set K is defined as in Eu-

clidean space to be one in which, for any two points {p, q} ⊂ K, all points on

the line segment connecting p to q also belong to K. Similarly, a quasiconvex

function Hn 7→ R is one for which all lower level sets are convex, or equivalently

one that is unimodal on any line in Hn. As in the Euclidean case we may define

a hyperbolic quasiconvex program to be the problem of searching for the point

minimizing the pointwise maximum of a collection of hyperbolic quasiconvex

functions.

There are several standard ways of representing the points and other geometric

objects of Hyperbolic space within a Euclidean space, of which the two best

known are the Poincaré and Klein models (Figure 3). In the Poincaré model,

the points of Hn are represented as Euclidean points interior to an n-dimensional

unit ball or half-space, and lines of Hn are represented as arcs of circles that meet

the boundary of this unit ball or half-space perpendicularly. In this model, the

hyperbolic angle between two objects in Hn is equal to the Euclidean angle

between the models of those objects, and hyperbolic circles and spheres are

modeled by Euclidean circles and spheres; however, hyperbolic distances do not

equal distances within the Poincaré model, and objects that are straight or flat

hyperbolically may have curved models. In the Klein model, again, points of Hn

are represented as Euclidean points interior to an n-dimensional unit ball, but

the hyperbolic line connecting two points is represented as the restriction to the

ball of the Euclidean line connecting the models of those points. In this model,
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Figure 3. Poincaré (left) and Klein (right) models of the hyperbolic plane.

Both models show the same hyperbolic arrangement of lines; analogous models

exist for any higher dimensional hyperbolic space. Figure taken from [Bern and

Eppstein 2001].

angles and distances may be distorted but straightness is preserved: a straight or

flat hyperbolic object will have a straight or flat model. In particular, since the

definition of convexity involves only straight line segments, a convex hyperbolic

object will have a convex Klein model and vice versa. The Poincaré and Klein

models for a hyperbolic space are not uniquely defined, as one may choose any

hyperbolic point to be modeled by the center of the Euclidean unit ball, and

that ball may rotate arbitrarily around its center.

If we let k be a function mapping Hn to a Klein model in Rn, and if each

qi(x̄) is a hyperbolic quasiconvex function, then q̂i(x̄) = qi(k
−1(x̄)) is a Euclidean

quasiconvex function. More, q̂i has bounded lower levels sets since they are all

subsets of the unit ball. Let (λ, x̄) be the solution to the Euclidean quasiconvex

program defined by the set of functions q̂i. Then, if x̄ is interior to the unit ball

defining the Klein model, (λ, k−1(x̄)) is the solution to the hyperbolic quasicon-

vex program defined by the original functions qi. On the other hand, x̄ may

be on the boundary of the Klein model; if so, x̄ may be viewed as an infinite

point of the hyperbolic space, and is the limit of sequence of points within the

space with monotonically decreasing values. The latter possibility, of an infinite

solution to the quasiconvex program, can only occur if some of the hyperbolic

quasiconvex functions have unbounded lower level sets. Therefore, as noted in

[Bern and Eppstein 2001], hyperbolic quasiconvex programs may in general be

solved as easily as their Euclidean counterparts.

As an example, consider the problem of finding the hyperbolic ball of minimum

radius containing all of a collection of hyperbolic points p̄i. As in the Euclidean

case, we can define qi(x̄) to be the (hyperbolic) distance from x̄ to p̄i; this

function has convex hyperbolic balls as its level sets, so it is quasiconvex. And,
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just as in the Euclidean case, the solution to the quasiconvex program defined by

the functions qi is the pair (λ, x̄) where the hyperbolic ball of radius λ centered

at x̄ is the minimum enclosing ball of the points p̄i.

2.4. Optimal illumination. Suppose that we have a room (modeled as a

possibly nonconvex three-dimensional polyhedron) and wish to place a point

source of light in order to light up the whole room as brightly as possible: that

is, we wish to maximize the minimum illumination received on any point of

the room’s surface. The quasiconvex programs we are studying solve min-max

rather than max-min problems, but that is easily handled by negating the input

functions.

So, let qi(x̄) be the negation of the intensity of light received at point i of

the room’s surface, as a function of x̄, the position of the light source. It is

not hard to see that, within any face of the polyhedron, the light intensity is

least at some vertex of the face, since those are the points at maximal distance

from the light source and with minimal angle to it. Therefore, we need only

consider a finite number of possibilities for i: one for each pair (f, v) where f

is a face of the polyhedron and v is a vertex of f . For each such pair, we can

compute qi via a simple formula of optics, qi(x̄) = −ū · (x̄ − v)/d(x̄, v)3, where

d is as usual the Euclidean distance, and u is a unit vector facing inwards at a

perpendicular angle to f . In this formula, one factor ū · (x̄− v)/d(x̄, v) accounts

for the angle of incidence of light from the source onto the part of face v near

vertex f , while the other factor 1/d(x̄, v)2 accounts for the inverse-square rule

for falloff of light from a point source in three-dimensional space. Note that we

can neglect occlusions from other faces in this formula, because, if some face is

occluded, then at least one other face will be facing away from the light source

and entirely unilluminated; this unilluminated face will dominate the occluded

one in our min-max optimization.

In [Amenta et al. 1999], as part of a proof of quasiconvexity of a more com-

plex function used for smoothing three-dimensional meshes by solid angles, we

showed that the function qi defined above is quasiconvex; more precisely, we

showed that (−qi(x̄))−1/2 is a convex function of x̄ by using Mathematica to

calculate the principal determinants of its Hessian, and by showing from the

structure of the resulting formulae that these determinants are always nonnega-

tive. Therefore, we can express the problem of finding an optimal illumination

point as a quasiconvex program.

2.5. Longest intersecting prefix. This example is due to Chan [2004].

Suppose we are given an ordered sequence of convex sets Ki, 0 ≤ i < n, that

are all subsets of the same compact convex set X ⊂ Rd. We would like to find

the maximum value ` such that
⋂

i<` Ki 6= ?. That is, we would like to find the

longest prefix of the input sequence, such that the convex sets in this prefix have

a nonempty intersection (Figure 4).
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K0

K1

K2
K3

K4

K5

K6

Figure 4. Instance of a longest intersecting prefix problem. The longest inter-

secting prefix is (K0, K1, K2, K3).

To represent this as a quasiconvex program, define a nested convex family

κi : Z 7→ K(Rd) for each set Ki in the sequence, as follows:

κi(λ) =

{

Ki, if λ < −i

X, otherwise.

The optimal value (λ, x̄) for the quasiconvex program formed by this set of nested

convex families has x̄ ∈ κi(λ) = Ki for all i < −λ, so the prefix of sets with index

up to (but not including) −λ has a nonempty intersection containing x̄. Since

the quasiconvex program solution minimizes λ, −λ is the maximum value with

this property. That is, the first −λ values of the sequence Ki form its longest

intersecting prefix.

More generally, the same technique applies equally well when each of the

convex sets Ki has an associated value ki, and we must find the maximum value

` such that
⋂

ki<` Ki 6= ?. The longest intersecting prefix problem can be seen

as a special case of this problem in which the values ki form a permutation

of the integers from 0 to n − 1. We will see an instance of this generalized

longest intersecting prefix problem, in which the values ki are integers with

some repeated values, when we describe Chan’s solution to the Tukey median

problem.

2.6. Linear, convex, quasiconvex. There are many ways of modeling linear

programs, but one of the simplest is the following: a linear program is the search

for a vector x̄ that satisfies all of a set of closed linear inequalities āi · x̄ ≥ bi

and that, among all such feasible vectors, minimizes a linear objective function

f(x) = c̄ · x̄. The vectors x̄, āi, and c̄ all have the same dimension, which we call

the dimension of the linear program. We typically use the symbol n to denote the

number of inequalities in the linear program. It is often useful to generalize such

programs somewhat, by keeping the linear constraints but allowing the objective

function f(x) to be convex instead of linear; such a generalization is known as
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Figure 5. Conversion of convex program into quasiconvex program, by treating

each half-space constraint as a quasiconvex step function.

a convex program, and many linear programming algorithms can be adapted to

handle the convex case as well.

For instance, consider the following geometric problem, which arises in col-

lision detection algorithms for maintaining simulations of virtual environments:

we are given as input two k-dimensional convex bodies P and Q, specified as

intersections of half-spaces P =
⋂

Pi and Q =
⋂

Qi; we wish to find the clos-

est pair of points p̄, q̄ with p̄ ∈ P and q̄ ∈ Q. If we view p̄, q̄ as forming a

2k-dimensional vector x̄, then each constraint p̄ ∈ Pi or q̄ ∈ Qi is linear in x̄,

but the objective function d(p̄, q̄) is nonlinear: evaluating the distance using the

Pythagorean formula results in a formula that is the square root of a sum of

squares of differences of coordinates. We can square the formula to eliminate the

square root, but what remains is a convex quadratic function. Thus, the closest

distance problem can be expressed as a convex program; similar formulations

are also possible when P and Q are expressed as convex hulls of their vertex sets

[Matoušek et al. 1996].

These formulations seem somewhat different from our quasiconvex program-

ming framework: in the linear and convex programming formulations above, we

have a large set of constraints and a single objective function, while in quasicon-

vex programming we have many input functions that take a role more analogous

to objectives than constraints. Nevertheless, as we now show, any linear or con-

vex program can be modeled as a quasiconvex program. Intuitively, the idea is

simply to treat each half-space constraint as a quasiconvex step function, and in-

clude them together with the convex objective functions in the set of quasiconvex

functions defining a quasiconvex program (Figure 5).

Theorem 2.1. Suppose a convex program is specified by n linear inequalities

āi · x̄ ≥ bi and a convex objective function f(x̄), and suppose that the solution of

this convex program is known to lie within a compact convex region K. Then we

can find a set of n + 1 nested convex families κi(λ) such that the solution (λ, x̄)

of the quasiconvex program formed by these nested convex families is an optimal

solution to the convex program, with λ = f(x̄).
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Proof. For each inequality āi · x̄ ≥ bi form a nested convex family

κi(λ) = K ∩ {x̄ | āi · x̄ ≥ bi};

that is, κi ignores its argument λ and produces a constant compact convex set

of the points satisfying the ith inequality. Also form a nested convex family

κn = κf,K representing the objective function.

If (λ, x̄) is the optimal solution to the quasiconvex program defined by the

nested convex families κi, then āi ·x̄ ≥ bi (else x̄ would not be contained in κi(λ))

and λ = f(x̄) (else either x̄ would be outside κn(λ) or the pair (f(x̄), x̄) would be

a better solution). There could be no ȳ satisfying all constraints āi · ȳ ≥ bi with

f(ȳ) < λ, else (f(ȳ), ȳ) would be a better solution than (λ, x̄) for the quasiconvex

program. Therefore, x̄ provides the optimal solution to the convex program as

the result states. ˜

The region K is needed for this result as a technicality, because our quasiconvex

programming formulation requires the nested convex families to be compact.

In practice, though, it is not generally difficult to find K; for instance, in the

problem of finding closest distances between convex bodies, we could let K be a

bounding box defined by extreme points of the convex bodies in each axis-aligned

direction.

3. Algorithms

We now discuss techniques for solving quasiconvex programs, both numeri-

cally and combinatorially.

3.1. Generalized linear programming. Although linear programs can be

solved in polynomial time, regardless of dimension [Karmarkar 1984; Khachiyan

1980], known results in this direction involve time bounds that depend not just

on the number and dimension of the constraints, but also on the magnitude of the

coordinates used to specify the constraints. In typical computational geometry

applications the dimension is bounded but these magnitudes may not be, so

there has been a long line of work on linear programming algorithms that take a

linear amount of time in terms of the number of constraints, independent of the

magnitude of coordinates, but possibly with an exponential dependence on the

dimension of the problem [Adler and Shamir 1993; Chazelle and Matoušek 1993;

Clarkson 1986; 1987; 1995; Dyer and Frieze 1989; Matoušek et al. 1996; Megiddo

1983; Megiddo 1984; 1991]. In most cases, these algorithms can be interpreted as

dual simplex methods: as they progress, they maintain a basis of d constraints,

and the point x̄ optimizing the objective function subject to the constraints in

the basis. At each step, the basis is replaced by another one with a worse value

of x̄; when no more basis replacement steps are possible, the correct solution has

been found.
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Very quickly, workers in this area realized that similar techniques could also

be applied to certain nonlinear programs such as the minimum enclosing ball

problem [Adler and Shamir 1993; Amenta 1994; Chazelle and Matoušek 1993;

Clarkson 1995; Dyer 1984; 1992; Fischer et al. 2003; Gärtner 1995; 1999; Ma-

toušek et al. 1996; Megiddo 1983; Post 1984; Welzl 1991]. One of the most

popular and general formulations of this form of generalized linear program is

the class of LP-type problems defined by Matoušek et al. [1996]; we follow the

description of this formulation from [Amenta et al. 1999].

An LP-type problem consists of a finite set S of constraints and an objective

function f mapping subsets of S to some totally ordered space and satisfying

the following two properties:

(i) For any A ⊂ B, f(A) ≤ f(B).

(ii) For any A, p, and q,

f(A) = f(A ∪ {p}) = f(A ∪ {q}) =⇒ f(A) = f(A ∪ {p, q}).

The problem is to compute f(S) using only evaluations of f on small subsets

of S.

For instance, in linear programming, S is a set of half-spaces and f(S) is the

point in the intersection of the half-spaces at which some linear function takes

its minimum value. In the smallest enclosing ball problem, S consists of the

points themselves, and f(A) is the smallest enclosing ball of A, where the total

ordering on balls is given by their radii. It is not hard to see that this system

satisfies the properties above: removing points can only make the radius shrink

or stay the same, and if a ball contains the additional points p and q separately

it contains them both together.

A basis of an LP-type problem is a set B such that f(A) < f(B) for any

A ( B. Thus, due to the first property of an LP-type problem, the value of

the overall problem is the same as the value of the optimal basis, the basis B

that maximizes f(B). The dimension of an LP-type problem is the maximum

cardinality of any basis; although we have not included it above, a requirement

that this dimension be bounded is often included in the definition of an LP-type

problem. The dimension of an LP-type problem may differ from the dimension

of some space Rd that may be associated in some way with the problem; for

instance, for smallest enclosing balls in Rd, the dimension of the LP-type problem

turns out to be d + 1 instead of d.

As described in [Matoušek et al. 1996], efficient and simple randomized algo-

rithms for bounded-dimension LP-type problems are known, with running time

O(dnT + t(d)E log n) where n is the number of constraints, T measures the time

to test whether f(B) = f(B ∪ {x}) for some basis B and element x ∈ S, t(d)

is exponential or subexponential, and E is the time to perform a basis-change

operation in which we must find the basis of a constant-sized subproblem and

use it to replace the current basis. It is also possible with certain additional as-
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sumptions to solve these problems deterministically in time linear in n [Chazelle

and Matoušek 1993].

As shown in [Amenta et al. 1999], quasiconvex programs can be expressed as

LP-type problems, in such a way that the dimension of the LP-type problem is

not much more than the dimension of the domain of the quasiconvex functions;

therefore, quasiconvex programs can be solved in a linear number of function

evaluations and a sublinear number of basis-change operations.

In order to specify the LP-type dimension of these problems, we need one

additional definition: suppose we have a nested convex family κi. If κi(λ) does

not depend on λ, we say that κi is constant ; such constant families arose, for

instance, in our treatment of convex programs. Otherwise, suppose κi is asso-

ciated with a quasiconvex function qi. If there is no open set S such that qi is

constant over S, and if κ(t′) is contained in the interior of κ(t) for any t′ < t,

we say that κ is continuously shrinking. We note that this property is differ-

ent from the related and more well-known property of strict quasiconvexity (a

quasiconvex function is strictly quasiconvex if, whenever it is constant on a line

segment, it remains constant along the whole line containing the segment): L1

distance from the origin (in Rd, d > 1) is continuously shrinking but not strictly

quasiconvex. On the other hand, the function

f(x, y) = min{r | x2 + (y − r)2 ≤ r2}

(on the closed upper half-plane y ≥ 0) is strictly quasiconvex but not continu-

ously shrinking, since the origin is on the boundary of all its level sets.

We repeat the analysis of [Amenta et al. 1999], showing that quasiconvex

programs are LP-type problems, below.

Theorem 3.1. Any quasiconvex program forms an LP-type problem of dimen-

sion at most 2d + 1. If each κi in the quasiconvex program is either constant or

continuously shrinking , the dimension is at most d + 1.

Proof. We form an LP-type problem in which the set S consists of the nested

convex families defining the quasiconvex program, and the objective function

Λ(T ) gives the value of the quasiconvex program defined by the nested convex

families in T . Then, property 1 of LP-type problems is obvious: adding another

nested convex family to the input can only further constrain the solution val-

ues and increase the min-max solution. To prove property 2, recall that Λ(T )

is defined as the minimum point of the intersection {(λ, x̄) | x̄ ∈ κi(λ)} (the

intersection is nonempty by the remark in Section 1.3 about replacing infima

by minima). If this point belongs to the intersection for sets A, A ∪ {κi}, and

A ∪ {κk}, then clearly it belongs to the intersection for A ∪ {κi, κj}. It remains

only to show the stated bounds on the dimension.

First we prove the dimension bound for the general case, where we do not

assume continuous shrinking of the families in S. Let (λ, x̄) = Λ(S). For any
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λ′ < λ,
⋂

i∈S

κi(λ
′) = ?,

so by Helly’s theorem some (d+1)-tuple of sets κi(λ
′) has empty intersection. If

there is some λ′′ < λ for which this (d+1)-tuple’s intersection becomes nonempty,

replace λ′ by λ′′, find another (d + 1)-tuple with empty intersection for the new

λ′, and repeat until this replacement process terminates. There are only finitely

many possible (d + 1)-tuples of nested convex families, and each replacement

increases λ′, so the replacement process must terminate and we eventually find

a (d + 1)-tuple B− of nested convex families that has empty intersection for all

λ′ < λ.

With this choice of B−, Λ(B−) = (λ, ȳ) for some ȳ, so the presence of B−

forces the LP-type problem’s solution to have the correct value of λ. We must

now add further nested convex families to our basis to force the solution to also

have the correct value of x̄. Recall that

x̄ ∈ L =
⋂

i∈S

κi(λ),

and x̄ is the minimal point in L. By Helly’s theorem again, the location of

this minimal point is determined by some d-tuple B+ of the sets κi(λ). Then

Λ(B−∪B+) = Λ(S), so some basis of S is a subset of B−∪B+ and has cardinality

at most 2d + 1.

Finally, we must prove the improved dimension bound for well-behaved nested

convex families, so suppose each κi ∈ S is constant or continuously shrinking.

Our strategy will be to again find a tuple B− that determines λ, and a tuple

B+ that determines x̄, but we will use continuity to make the sizes of these two

tuples add to at most d + 1.

The set L defined above has empty interior: otherwise, we could find an open

region X within L, and a nested family κi ∈ S such that κi(λ
′)∩X = ? for any

λ′ < λ, violating the assumption that κi is constant or continuously shrinking. If

the interior of some κi(λ) contains a point of the affine hull of L, we say that κi is

slack ; otherwise we say that κi is tight. The boundary of a slack κi(λ) intersects

L in a subset of measure zero (relative to the affine hull of L), so we can find

a point ȳ in the relative interior of L and not on the boundary of any slack κi.

Form the projection π : Rd 7→ Rd−dim L onto the orthogonal complement of L.

For any ray r in Rd−dim L starting at the point π(L), we can lift that ray to a

ray r̂ in Rd starting at ȳ, and find a hyperplane containing L and separating the

interior of some κi(λ) from r̂ \ {ȳ}. This separated κi must be tight (because

it has ȳ on its boundary as the origin of the ray) so the separating hyperplane

must contain the affine hull of L (otherwise some point in L within a small

neighborhood of x̄ would be interior to κi). Therefore the hyperplane is projected

by π to a lower dimensional hyperplane separating π(κi(λ)) from π(L). Since

one can find such a separation for any ray,
⋂

tight κi
π(κi(λ)) can not contain any



QUASICONVEX PROGRAMMING 303

points of any such ray and must consist of the single point π(L). At least one

tight κj must be continuously shrinking (rather than constant), since otherwise
⋂

κi∈S κi(λ
′) would be nonempty for some λ′ < λ. The intersection of the interior

of π(κj(λ)) with the remaining projected tight constraints π(κi(λ)) is empty, so

by Helly’s theorem, we can find a (d− dimL + 1)-tuple B− of these convex sets

having empty intersection, and the presence of B− forces the LP-type problem’s

solution to have the correct value of λ. Similarly, we can reduce the size of the

set B+ determining x̄ from d to dimL, so the total size of a basis is at most

(d − dim L + 1) + dimL = d + 1. ˜

This result provides theoretically efficient combinatorial algorithms for quasicon-

vex programs, and allows us to claim O(n) time randomized algorithms for most

quasiconvex programming problems in the standard computational model for

computational geometry, in which primitives of constant description complexity

may be assumed to be solved in constant time. For certain well-behaved sets of

quasiconvex functions (essentially, the family of sets Sx̄,λ = {κ ∈ S | x̄ ∈ κ(λ)}

should have bounded Vapnik–Chervonenkis dimension) the technique of Chazelle

and Matousek [1993] applies and these problems can be solved deterministically

in O(n) time.

However, there are some difficulties with this approach in practice. In particu-

lar, although the basis-change operations have constant description complexity,

it may not always be clear how to implement them efficiently. Therefore, in

Section 3.3 we discuss alternative numerical techniques for solving quasiconvex

programs directly, based only on simpler operations (function and gradient eval-

uation). It may be of interest to combine the two approaches, by using numerical

techniques to solve the basis change operations needed for the LP-type approach;

however, we do not have any theory describing how the LP-type algorithms might

be affected by approximate numerical results in the basis-change steps.

3.2. Implicit quasiconvex programming. In some circumstances we may

have a set of n inputs that leads to a quasiconvex program with many more

than n quasiconvex functions; for instance, there may be one such function per

pair of inputs. If we directly apply an LP-type algorithm, we will end up with a

running time much larger than the O(n) input size. Chan [2004] showed that, in

such circumstances, the time for solving the quasiconvex program can often be

sped up to match the time for a decision algorithm that merely tests whether a

given pair (λ, x̄) provides a feasible solution to the program.

As a simple example, consider a variation of the smallest enclosing ball prob-

lem. Suppose that we wish to place a center that minimizes the maximum sum

of distances to any k-tuple of sites, rather than (as in the smallest enclosing

ball problem) minimizing the maximum distance to a single site. This can be

expressed again as a quasiconvex program: the sum of distances to any k-tuple

of sites is quasiconvex, as it is a sum of convex functions. There are O(nk) such

functions, so the problem can be solved in O(nk) time by the methods discussed
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already. However, the quality of any fixed center can easily be evaluated much

more quickly, in O(n) time, and Chan’s technique provides an automatic method

for turning this fast evaluation algorithm into a fast optimization algorithm for

choosing the best center location.

Chan’s result applies more generally to LP-type problems, but we state it here

as it applies to implicit quasiconvex programming.

Theorem 3.2. Let Q be a space of quasiconvex functions, P be a space of input

values, and f : 2P 7→ 2Q map sets of input values to sets of functions in Q.

Further , suppose that P, f , and S satisfy the following properties:

• There exists a constant-time subroutine for solving quasiconvex programs of

the form f(B) for any B ⊂ P with |B| = O(1).

• There exists a decision algorithm that takes as input a set P ⊂ P and a pair

(λ, x̄), and returns yes if and only if x̄ ∈ κ(λ) for all κ ∈ f(P ). The running

time of the decision algorithm is bounded by D(|P |), where there exists a

constant ε > 0 such that D(n)/nε is monotone increasing .

• There are constants α and r such that , for any input set P ⊂ P, we can find

in time at most D(|P |) a collection of sets Pi, 0 ≤ i < r, each of size at most

α|P |, for which f(P ) =
⋃

i f(Pi).

Then for any P ⊂ P we can solve the quasiconvex program f(P ), where |P | = n,

in randomized expected time O(D(n)).

The proof involves solving a slightly more general problem in which we are given,

not just a single input P , but a set of inputs P1, . . ., Pd, where d is the dimension

of the LP-type problems coming from Q, and must solve the quasiconvex program

∪f(Pi). Given any such problem, we partition each input Pi into ri subproblems

Pi,j of size at most αin for an appropriately chosen i, by repeatedly subdividing

large subproblems into smaller ones. We then view the subproblems Pi,j as

being constraints for an LP-type problem in which the objective function is the

solution to the quasiconvex program
⋃

Pi,j∈S f(Pi,j). This new LP-type problem

turns out to have the same dimension as the quasiconvex programs with which

we started, and the result follows by applying a standard LP-type algorithm to

this problem and solving the divide-and-conquer recurrence that results.

The first and last conditions of the theorem are easily met when f(P ) produces

one or a constant number of quasiconvex functions per k-tuple of inputs for

some constant k (as in our example of optimizing the sum of k distances): then,

constant sized input sets lead to constant sized quasiconvex programs, and if

the input is partitioned into k + 1 equal-sized subsets, the complements of these

subsets provide the sets Pi needed for the last condition. For such problems,

the main difficulty in applying this theorem is finding an appropriate decision

algorithm. For our example of minimizing the maximum sum of k distances, the

decision algorithm is also straightforward (select and add the k largest distances
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w

Figure 6. Example showing the difficulty of applying standard gradient descent

methods to quasiconvex programming. The function to be minimized is the max-

imum distance to any point; only points within the narrow shaded intersection

of circles have function values smaller than the value at point w. Figure taken

from [Eppstein 2004].

from the given center to the sites) and so we can apply Chan’s result to solve

this problem in O(n) time.

Chan’s implicit quasiconvex programming algorithm is important in the ro-

bust statistics application described later. This algorithm has also been applied

to problems of inverse parametric minimum spanning tree computation [Chan

2004; Eppstein 2003a] and facility location [Eppstein and Wortman 2005].

3.3. Smooth quasiconvex programming. If all functions qi(x̄) are quasi-

convex, the function q(x̄) = maxi qi(x̄) is itself quasiconvex, so we can apply

hill-climbing procedures to find its infimum. Such hill climbing procedures may

be desirable in preference to the combinatorial algorithms for LP-type problems,

as they avoid the difficulty of describing and implementing an appropriate ex-

act basis change procedure. In addition, a hill climbing information that uses

only numerical evaluation of function values (or possibly also function gradient

evaluations) can be implemented in a generic way that does not depend on the

specific form of the quasiconvex functions given to it as input.

However, many of the known nonlinear optimization techniques require the

function being optimized to satisfy some smoothness conditions. In many of our

applications the individual functions qi are smooth, but their maximum q may

not be smooth, so it is difficult to apply standard gradient descent techniques.

The difficulty may be seen, for instance, in the smallest enclosing ball problem

in the plane (Figure 6). A basis for this problem may consist of either two or

three points. If a point set has only two points in its basis, and our hill climbing

procedure for circumradius has reached a point w equidistant from these two

points and near but not on their midpoint, then improvements to the function

value q(w) may be found only by moving w in a narrow range of directions

towards the midpoint. Standard gradient descent algorithms may have a difficult

time finding such an improvement direction.
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To avoid these difficulties, we introduced in [Eppstein 2004] the following

algorithm, which we call smooth quasiconvex programming, and which can be

viewed as a generalization of Zoutendijk’s [1960] method of feasible directions

for convex programming. If a quasiconvex function qi is differentiable, and w is a

point where qi is not minimal, then one can find a point with a smaller value by

moving a sufficiently small distance from x along any direction having negative

dot product with the gradient of qi at w. Thus, we can improve q(w) by moving

in a direction that is negative with respect to all the gradients of the functions

that determine the value of q(w).

We formalize this notion and generalize it to nondifferentiable functions as

follows. Assume for the purposes of this algorithm that, for each of the input

quasiconvex functions qi, and each x̄ that is not the minimum point of qi, we also

can compute a vector-valued function q∗i (x̄), satisfying the following properties:

(i) If qi(ȳ) < qi(x̄), then (ȳ − x̄) · q∗i (x̄) > 0, and

(ii) If q∗i (x̄) · ȳ > 0, then for all sufficiently small ε > 0, qi(x̄ + εȳ) < qi(x̄).

Less formally, any vector ȳ is an improving direction for qi(x̄) if and only if it

has positive inner product with q∗i (x̄).

If the level set q≤λ
i is a smooth convex set (one that has at each of its boundary

points a unique tangent plane), then the vector q∗i (x̄) should be an inward-

pointing normal vector to the tangent plane to q
≤q(x̄)
i at x̄. For example, in the

smallest enclosing ball problem, the level sets are spheres, having tangent planes

perpendicular to the radii, and q∗i should point inwards along the radii of these

spheres. If qi is differentiable then q∗i can be computed as the negation of the

gradient of qi, but the functions q∗i also exist for discontinuous functions with

smooth level sets.

Our smooth quasiconvex programming algorithm begins by selecting an initial

value for x̄, and a desired output tolerance. Once these values are selected, we

repeat the following steps:

(i) Compute the set of vectors q∗i (x̄), for each i such that qi(x̄) is within the

desired tolerance of maxi qi(x̄).

(ii) Find an improving direction ȳ; that is, a vector such that ȳ · q∗i (x̄) > 0 for

each vector q∗i (x̄) in the computed set. If no such vector exists, q(x̄) is within

the tolerance of its optimal value and the algorithm terminates.

(iii) Search for a value ε for which q(x̄ + εȳ) ≤ q(w̄), and replace x̄ by x̄ + εȳ.

The search for a vector ȳ in step 2 can be expressed as a linear program. However,

when the dimension of the quasiconvex functions’ domain is at most two (as in

the planar smallest enclosing ball problem) it can be solved more simply by

sorting the vectors q∗i (x̄) radially around the origin and choosing ȳ to be the

average of two extreme vectors.

In step 3, it is important to choose ε carefully. It would be natural, for

instance, to choose ε as large as possible while satisfying the inequality in that
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step; such a value could be found by a simple doubling search. However, such a

choice could lead to situations where the position of x̄ oscillates back and forth

across the true optimal location. Instead, it may be appropriate to reduce the

resulting ε by a factor of two before replacing x̄.

We do not have any theory regarding the convergence rate of the smooth

quasiconvex programming algorithm, but we implemented it and applied it suc-

cessfully in the automated algorithm analysis application discussed below [Epp-

stein 2004]. Our implementation appeared to exhibit linear convergence: each

iteration increased the number of bits of precision of the solution by a constant.

Among numerical algorithms techniques, the sort of gradient descent we perform

here is considered naive and inefficient compared to other techniques such as con-

jugate gradients or Newton iteration, and it would be of interest to see how well

these more sophisticated methods could be applied to quasiconvex programming.

4. Applications

We have already described some simple instances of geometric optimization

problems that can be formulated as quasiconvex programs. Here we describe

some more complex applications of geometric optimization, in which quasiconvex

programming plays a key role.

4.1. Mesh smoothing. An important step in many scientific computa-

tion problems, in which differential equations describing airflow, heat transport,

stress, global illumination, or similar quantities are simulated, is mesh generation

[Bern and Eppstein 1995; Bern and Plassmann 2000]. In this step, a complex

two- or three-dimensional domain is partitioned into simpler regions, called ele-

ments, such as triangles or quadrilaterals in the plane or tetrahedra or cuboids

in three dimensions. Once these elements are formed, one can then set up simple

equations relating the values of the quantity of interest in each of the elements,

and solve the equations to produce the results of the simulation. In this section

we are particularly concerned with unstructured mesh generation, in which the

pattern of connections from element to element does not form a regular grid; we

will consider a problem in structured mesh generation in a later section.

In meshing problems, it is important to find a mesh that has small elements

in regions of fine detail, but larger elements elsewhere, so that the total number

of elements is minimized; this allows the system of equations derived from the

mesh to be solved quickly. It is also important for the accuracy of the simulation

that the mesh elements be well shaped ; typically this means that no element

should have very sharp angles or angles very close to 180◦. To achieve a high

quality mesh, it is important not only to find a good initial placement of mesh

vertices (the main focus of most meshing papers) but then to modify the mesh

by changing its topology and moving vertices until no further quality increase

can be achieved. We here concentrate on the problem of moving mesh vertices
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Figure 7. Mesh of an arched domain. Too much Laplacian smoothing can lead

to invalid placements of the internal vertices beyond the boundaries of the arch.

Figure 8. Optimization-based smoothing of a triangular mesh in R
2. At each

step we remove a vertex from the mesh, leaving a star-shaped polygon, then add a

new vertex within the kernel (shaded) of the star-shaped region and retriangulate.

Figure taken from [Amenta et al. 1999].

while retaining a fixed mesh topology, known as mesh smoothing [Amenta et al.

1999; Bank and Smith 1997; Canann et al. 1998; Djidjev 2000; Freitag 1997;

Freitag et al. 1995; 1999; Freitag and Ollivier-Gooch 1997; Vollmer et al. 1999].

Two approaches to mesh smoothing have commonly been used, although they

may sometimes be combined [Canann et al. 1998; Freitag 1997]: In Laplacian

smoothing, all vertices are moved towards the centroid of their neighbors. Al-

though this is easy and works well for many instances, it has some problems; for

instance in a regular mesh on an arched domain (Figure 7), repeated Laplacian

smoothing can cause the vertices at the top of the arch to sag downwards, even-

tually moving them to invalid positions beyond the boundaries of the domain.

Instead, optimization-based smoothing takes a more principled approach, in

which we decide on a measure of element quality that best fits our application,

and then seek the vertex placement that optimizes that quality measure. How-

ever, since simultaneous global optimization of all vertex positions seems a very

difficult problem, we instead cycle through the vertices optimizing their posi-

tions a single vertex at a time. At each step (Figure 8), we select a vertex and

remove it from the mesh, leaving a star-shaped region consisting of the elements

incident to that vertex. Then, we place a new vertex within the kernel of the
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min max area

min max altitude

min max anglemax min area

max min altitude

min max aspect ratio

max min angle

max min altitude

min max aspect ratiomax min angle

min max perimeter min max enclosing diskmax min edge length

min max diameter

Figure 9. Level set shapes for various mesh element quality measures. Figure

modified from one in [Amenta et al. 1999].

star-shaped region, and form a mesh again by connecting the new vertex to the

boundary of the region. Each step improves the overall mesh quality, so this

optimization process eventually converges to a locally optimal placement, but

we have no guarantees about its quality with respect to the globally optimal

placement.

However, in the individual vertex placement steps we need accept no such

compromises with respect to global optimization. As we showed in [Amenta

et al. 1999], for many natural measures qi(x̄) of the quality of an element inci-

dent to vertex x̄ (with smaller numbers indicating better quality), the problem

of finding a mesh minimizing the maximum value of qi can be expressed as a

quasiconvex program. Figure 9 illustrates the level set shapes resulting from

various of these quasiconvex optimization-based mesh smoothing problems. For

shape-based quality measures, such as maximizing the minimum angle, the opti-

mal vertex placement will naturally land in the interior of the kernel of the region

formed by the removal of the previous vertex placement. For some other quality

measures, such as minimizing the maximum perimeter, it may be appropriate to

also include constant quasiconvex functions, forcing the vertex to stay within the

kernel, similar to the functions used in our transformation of convex programs

to quasiconvex programs. It would also be possible to handle multiple quality
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measures simultaneously by including quasiconvex functions of more than one

type in the optimization problem.

In most of the cases illustrated in Figure 9, it is straightforward to verify that

the quality measure has level sets of the convex shape illustrated. One possible

exception is the problem of minimizing the maximum aspect ratio (ratio of the

longest side length to shortest altitude) of any element. To see that this forms a

quasiconvex optimization problem, Amenta et al. [1999] consider separately the

ratios of the three sides to their corresponding altitudes; the maximum of these

three will give the overall aspect ratio. The ratio of a side external to the star

to its corresponding altitude has a feasible region (after taking into account the

kernel constraints) forming a half-space parallel to the external side, as shown in

Figure 9 (top center). To determine the aspect ratio on one of the other two sides

of a triangle ∆i, normalize the triangle coordinates so that the replaced point has

coordinates (x, y) and the other two have coordinates (0, 0) and (1, 0). The side

length is then
√

x2 + y2, and the altitude is y/
√

x2 + y2, so the overall aspect

ratio has the simple formula (x2 + y2)/y. The locus of points for which this is a

constant b is given by x2 + y2 = by, or equivalently x2 + (y − (b/2))2 = (b/2)2.

Thus the feasible region is a circle tangent to the fixed side of ∆i at one of its two

endpoints (Figure 9, center right). Another nontrivial case is that of minimizing

the smallest enclosing ball of the element, shown in the bottom right of the figure;

in that case the level set boundary consists of curves of two types, according to

whether, for placements in that part of the level set, the enclosing ball touches

two or three of the element vertices, but the curves meet at a common tangent

point to form a smooth convex level set.

Bank and Smith [1997] define yet another measure of the quality of a triangle,

computed by dividing the triangle’s area by the sum of the squares of its edge

lengths. This gives a dimensionless quantity which Bank and Smith normalize

to be one for the equilateral triangle (and less than one for any other triangle).

As Bank and Smith show, the lower level sets for this mesh quality measure form

circles centered on the perpendicular bisector of the two fixed points of the mesh

element, so, as with the other measures, finding the placement optimizing Bank

and Smith’s measure can be expressed as a quasiconvex program.

We have primarily discussed triangular mesh smoothing here, but the same

techniques apply with little modification to many natural element quality mea-

sures for quadrilateral and tetrahedral mesh smoothing. Smoothing of cubical

meshes is more problematic, though, as moving a single vertex may cause the

faces of one of the cuboid elements to become significantly warped. Several in-

dividual quasiconvex quality measures for quadrilateral and tetrahedral meshes,

and the shapes of their level sets, are discussed in more detail in [Amenta et al.

1999]. The most interesting of these from the mathematical viewpoint is the

problem of maximizing the minimum solid angle of any tetrahedral element, as
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Figure 10. Planar graph (left), its representation as a set of tangent disks on

a sphere (center), and the corresponding polyhedral representation (right). Left

and center images taken from [Bern and Eppstein 2001].

measured at its vertices, which with some difficulty we were able to show leads

to a quasiconvex objective function.

4.2. Graph drawing. The Koebe–Thurston–Andreev embedding theorem

[Brightwell and Scheinerman 1993; Koebe 1936; Sachs 1994] states that any pla-

nar graph embedding can be transformed into a collection of disks with disjoint

interiors on the surface of a sphere, one disk per vertex, such that two disks are

tangent if and only if the corresponding two vertices are adjacent (Figure 10,

left and center). The representation of the graph as such a collection of tan-

gent disks is sometimes called a coin graph. For maximal planar graphs, this

coin graph representation is unique up to Möbius transformations (the family of

transformations of the sphere that transform circles to circles), and for nonmaxi-

mal graphs it can be made unique by adding a new vertex within each face of the

embedding, adjacent to all vertices of the face, and finding a disk representation

of the resulting augmented maximal planar graph.

Given a coin graph representation, the graph itself can be drawn on the sphere,

say by placing a vertex at the center of each circle and connecting two vertices

by edges along an arc of a great circle; similar drawings are also possible in the

plane by using polar projection to map the circles in the sphere onto circles in the

plane [Hliněný 1997]. Coin graphs can also be used to form a three-dimensional

polyhedral representation of the graph, as follows: embed the sphere in space,

and, for each disk, form a cone in space that is tangent to the sphere at the

disk’s boundary; then, form a polyhedron by taking the convex hull of the cone

apexes. The resulting polyhedron’s skeleton is isomorphic to the original graph,

and its edges are tangent to the sphere (Figure 10, right).

In order to use these techniques for visualizing graphs, we would like to choose

a coin graph representation that leads to several desirable properties identified as

standard within the graph drawing literature [di Battista et al. 1999], including

the display of as many as possible of the symmetries of the original graph, and

the separation of vertices as far apart from each other as possible. In [Bern and
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Eppstein 2001] we used quasiconvex programming to formalize the search for a

drawing based on these objectives.

In order to understand this formalization, we need some more background

knowledge about Möbius transformations and their relation to hyperbolic geom-

etry. We can identify the unit sphere that the Möbius transformations transform

as being the boundary of a Poincaré or Klein model of hyperbolic space H3. The

points on the sphere can be viewed as “infinite” points that do not belong to

H3 but are the limit points of certain sequences of points within H3. With this

identification, circles on the sphere become the limit points of hyperplanes in

H3. Any isometry of H3 takes hyperplanes to hyperplanes, and therefore can be

extended to a transformation of the sphere that takes circles to circles, and the

converse turns out to be true as well. We can determine an isometry of H3 by

specifying which point of H3 is mapped to the center of the Poincaré or Klein

model, and then by specifying a spatial rotation around that center point. The

rotation component of this isometry does not change the shape of objects on

the sphere, so whenever we seek the Möbius transformation that optimizes some

quality measure of a transformed configuration of disks on the sphere, we can

view the problem more simply as one of seeking the optimal center point of the

corresponding isometry in H3.

To see how we apply this technique to our graph drawing problem, first con-

sider a version of the problem in which we seek a disk representation maximizing

the radius of the smallest disk. More generally, given any collection of circles on

the sphere, we wish to transform the circles in order to maximize the minimum

radius. Thus, let qi(x̄) measure the (negation of the) transformed radius of the

ith circle, as a function of the transformed center point x̄ ∈ H3. If we let Hi

denote the hyperplane in H3 that has the ith circle as its set of limit points, then

the transformed radius is maximized when the circle is transformed into a great

circle; that is, when x̄ ∈ Hi. If we choose a center point x̄ away from Hi, the

transformed radius will be smaller, and due to the uniform nature of hyperbolic

space the radius can be written as a function only of the distance from x̄ to Hi,

not depending in any other way on the location of x̄. That is, the level sets

of qi are the convex hyperbolic sets within some distance R of the hyperplane

Hi. Therefore, qi is a quasiconvex hyperbolic function. In fact, the quasiconvex

program defined by the functions qi can be viewed as a hyperbolic version of a

generalized minimum enclosing ball problem, in which we seek the center x̄ of

the smallest ball that touches each of the convex sets Hi. The two-dimensional

version of this problem, in which we seek the smallest disk touching each of a

collection of hyperbolic lines, is illustrated in Figure 11. If we form a Klein or

Poincaré model with the resulting optimal point x̄ at the center of the model,

the corresponding Möbius transformation of the model’s boundary maximizes

the minimum radius of our collection of circles.

Further, due to the uniqueness of quasiconvex program optima, the resulting

disk representation must display all the symmetries possible for the original pla-
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Figure 11. Two-dimensional analogue of max-min radius transform problem:

find the smallest disk touching all of a collection of hyperbolic lines.

nar graph embedding; for, if not all symmetries were displayed, one could use an

undisplayed symmetry to relabel the vertices of the disk representation, achiev-

ing a second disk representation with equal quality to the first. For instance, in

Figure 10, the disk representation shown has three planes of mirror symmetry

while the initial drawing has only one mirror symmetry axis.

Bern and Eppstein [2001] then consider an alternative version of the graph

drawing problem, in which the objective is to maximize the minimum distance

between certain pairs of vertices on the sphere surface. For instance, one could

consider only pairs of vertices that are adjacent in the graph, or instead consider

all pairs; in the latter case we can reduce the number of pairs that need be

examined by the algorithm by using the Delaunay triangulation in place of the

complete graph. The problem of maximizing the minimum spherical distance

among a set of pairs of vertices can be formulated as a quasiconvex program

by viewing each pair of vertices as the two limit points of a hyperbolic line in

H3, finding the center x̄ of the smallest ball in H3 that touches each of these

hyperbolic lines, and using this choice of center point to transform the sphere.

Möbius transformations can also be performed on the augmented plane R2 ∪

{∞} instead of on a sphere, and act on lines and circles within that plane; a

line can be viewed as a limiting case of a circle that passes through the special

point ∞. Multiplication of each coordinate of each point by the same constant

k forms a special type of Möbius transformation, which (if k > 1) increases

every distance, so it does not make sense to look for an unrestricted Möbius

transformation of the plane that maximizes the minimum Euclidean distance

among a collection of pairs of points. However, Bern and Eppstein were able

to show, given a collection of points within the unit ball in the plane, that

seeking the Möbius transformation that takes that disk to itself and maximizes

the minimum distances between certain pairs of the points can again be expressed
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Figure 12. Conformal meshing: transform domain to a more simply shaped

region with a known mesh, then invert the transformation to transform the mesh

back to the original domain.

as a two-dimensional quasiconvex program. The proof of quasiconvexity is more

complex and involves simultaneously treating the unit ball as a Poincaré model

of H2 and the entire plane as the boundary of a Poincaré model of H3.

Along with these coin graph based drawing methods, Bern and Eppstein also

considered a different graph drawing question, more directly involving hyperbolic

geometry. The Poincaré and Klein models of projective geometry have been

considered by several authors as a way of achieving a “fish-eye” view of a large

graph, so that a local neighborhood in the graph is visible in detail near the center

of the view while the whole graph is spread out on a much smaller scale at the

periphery [Lamping et al. 1995; Munzner 1997; Munzner and Burchard 1995].

Bern and Eppstein [Bern and Eppstein 2001] found quasiconvex programming

formulations of several versions of the problem of selecting an initial viewpoint for

these hyperbolic drawings, in order for the whole graph to be visible in as large

a scale as possible. For instance, a natural version of this problem would be to

choose a viewpoint minimizing the maximum hyperbolic distance to any vertex,

which is just the hyperbolic smallest enclosing ball problem again. One question

in this area that they left open is whether one can use quasiconvex programming

to find a Klein model of a given graph that maximizes the minimum Euclidean

distance between adjacent vertices.

4.3. Conformal mesh generation. The ideas of mesh generation and optimal

Möbius transformation coincide in the problem of conformal mesh generation

[Bern and Eppstein 2001]. In this problem, we wish to generate a mesh for a

simply-connected domain in R2 by using a conformal transformation (that is, a

transformation that preserves angles of incidence between transformed curves)

to map the shape into some easy-to-mesh domain such as a square, then invert

the transformation to map the meshed square back into the original domain

(Figure 12). There has been much work on algorithms for finding conformal maps

[Driscoll and Vavasis 1998; Howell 1990; Smith 1991; Stenger and Schmidtlein

1997; Trefethen 1980] and conformal meshes have significant advantages: the

orthogonality of the angles at mesh vertices means that one can avoid certain

additional terms in the definition of the partial differential equation to be solved

[Bern and Plassmann 2000; Thompson et al. 1985].
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If we replace the square in Figure 12 by a disk, the Riemann mapping the-

orem tells us that a conformal transformation always exists and is, moreover,

unique up to Möbius transformations that transform the disk to itself; any such

transformation preserves conformality. Thus, we have several degrees of freedom

for controlling the size of the mesh elements produced by the conformal method:

we can use a larger or smaller grid on the disk or square, but we can also use

a Möbius transformation in order to enlarge certain portions of the domain and

shrink others before meshing it. We would like to use these degrees of freedom

to construct a mesh that has small elements in regions of the domain where fine

detail is desired, and large elements elsewhere, in order to limit the total number

of elements of the resulting mesh.

Bern and Eppstein [2001] formalized the problem by assuming an input do-

main in which certain interior points pi are marked with a desired element size

si. If we find a conformal map f from the domain to a disk, the gradient of

f maps the marked element sizes to desired sizes s′i in the transformed disk:

s′i = ‖f ′(pi)‖. We can then choose a structured mesh with element size min s′i in

the disk, and transform it back to a mesh of the original domain. The goal is to

choose our conformal map in a way that maximizes min s′i, so that we can use a

structured mesh with as few elements as possible. Another way of interpreting

this is that s′i can be seen as the radius of a small disk at f(pi). What we seek is

the transformation that maximizes the minimum of these radii. This is not quite

the same as the max-min radius graph drawing problem of the previous section,

because the circles to be optimized belong to R2 instead of to a sphere, but as in

the previous section we can view the unit disk as being a Poincaré model of H2

(using the fact that circles in H2 are mapped by the Poincaré model into circles

in the unit disk), and seek a hyperbolic isometry that maps H2 into itself and

optimizes the circle radii. The transformed radius of a circle is a function only

of the distance from that circle to the center point of the transformed model, so

the level sets of the functions representing the transformed radii are themselves

circles and the functions are quasiconvex.

The quasiconvex conformal meshing technique of Bern and Eppstein does not

account for two remaining degrees of freedom: first, it is possible to rotate the

unit disk around its center point and, while that will not change the element size

as measured by Bern and Eppstein’s formalization, it will change the element

orientations. This is more important if we also consider the second degree of

freedom, which is that instead of using a uniform grid on a square, we could

use a rectangle with arbitrary aspect ratio. Bern and Eppstein leave as an open

question whether we can efficiently compute the optimal choice of conformal map

to a high-aspect-ratio rectangle to maximize the minimum desired element size.
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4.4. Brain flat mapping. In [Hurdal et al. 1999] methods are described for

visualizing the complicated structure of the brain by stretching its surface onto

a flat plane. This stretching is done via conformal maps: surfaces of major

brain components such as the cerebellum are simply connected, so there exists

a conformal map from these surfaces onto a Euclidean unit disk, sphere, or

hyperbolic plane. The authors approximate this conformal map by using a fine

triangular mesh to represent the brain surface, and forming the Koebe disk

representation of this mesh. Each triangle from the brain surface can then be

mapped to the triangle connecting the corresponding three disk centers. As in

the conformal meshing example, there is freedom to modify the conformal map

by means of a Möbius transformation, so Bern and Eppstein [2001] suggested

that the optimal Möbius transformation technique described in the previous two

sections could also be useful in this application.

Although conformal transformation preserves angles, it distorts other impor-

tant geometric information such as area. Bern and Eppstein proposed to ame-

liorate this distortion by using an optimal Möbius transformation to find the

conformal transformation minimizing the maximum ratio a/a′ where a is the

area of a triangle in the initial three-dimensional map, and a′ is the area of its

image in the flat map.

Unfortunately it has not yet been possible to prove that this optimization

problem leads to quasiconvex optimization problems. Bern and Eppstein for-

malized the difficulty in the following open question: Let T be a triangle in the

unit disk or on the surface of a sphere, and let C be the set of center points

for Poincaré models (of H2 in the disk case or H3 in the sphere case) such that

the Möbius transformations corresponding to center points in C transform T

into a triangle of area at least A. Is C necessarily convex? Note that, at least

in the spherical case, the area of the transformed triangle is the same as the

hyperbolic solid angle of T as viewed from the center point, so this question

seems strongly reminiscent of the difficult problem of proving quasiconvexity for

tetrahedral mesh smoothing to maximize the minimum Euclidean solid angle,

discussed in the initial subsection of this section. A positive answer would allow

the quasiconvex programming technique to be applied to this brain flat mapping

application.

4.5. Optimized color gamuts. Tiled projector systems [Humphreys and

Hanrahan 1999; Li et al. 2000; Raskar et al. 1999] are a recent development

in computer display technology, in which the outputs of multiple projectors are

combined into large seamless displays for collaborative workspaces. There are

many difficult research issues involved in achieving this seamlessness: how to

move the data quickly enough to all the screens, how to maintain physical align-

ment of the projectors, how to handle the radial reduction in brightness (vi-

gnetting) common to many projector systems, and so on. Here we concentrate

on one small piece of this puzzle: matching colors among the outputs of mul-
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Figure 13. An additive color gamut, with vertices labeled by colors: K = black,

R = red, G = green, B = blue, C = cyan, M = magenta, Y = yellow,

W = white.

tiple projectors. Any imaging device has a gamut, the set of colors that it can

produce. However, two projectors, even of the same model, will have somewhat

different gamuts due to factors such as color filter batches and light bulb ages.

We seek a common gamut of colors that can be produced by all the projectors,

and a coordinate system for that gamut so that we can display color images in a

seamless fashion across multiple projectors [Bern and Eppstein 2003; Majumder

et al. 2000; Stone 2001].

Most projectors, and most computer graphics software, use an additive color

system in which colors are produced by adding signals of three primary colors,

typically red, green, and blue. If we view the gamuts as sets of points in a linear

three-dimensional device-independent color space, additive color systems pro-

duce gamuts that are the Minkowski sums of three line segments, one per color

signal, and therefore have the geometric form of parallelepipeds (Figure 13).

The color spaces representing human vision are three-dimensional, so these par-

allelepipeds have twelve degrees of freedom: three for the black point of the

projector (representing the color of light it projects when it is given a zero input

signal) and three each for the three primary colors (that is, the color that the

projector produces when given an input signal with full strength in one primary

color channel and zero in the other two color channels). The black point and

the three primary colors form four of the eight parallelepiped vertices; the other

four are the secondary colors cyan, yellow, and magenta, and the white point

produced when all three input color channels are saturated.

The computational task of finding a common color gamut, then, can be repre-

sented as a twelve-dimensional geometric optimization problem in which we seek

the best parallelepiped to use as our gamut, according to some measure of gamut

quality, while constraining our output parallelepiped to lie within the intersection

of a collection of input parallelepipeds, one per projector of our system.

To represent this problem as a quasiconvex program, Bern and Eppstein [2003]

suppose that we are given eight quasiconvex functions dK , dR, dG, dB , dC , dM ,
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dY , and dW , where each dX : R3 7→ R measures the distance of a color from the

ideal location of corner X of the color cube (here each capital letter is the initial

of one of the colors at the color cube corners, except for K which by convention

stands for black). This formulation allows different distance functions to be used

for each color; for instance, we might want to weight dK and dW more strongly

than the other six color distances. We also form eight functions fX : R12 7→ R3

mapping our twelve-dimensional parametrization of color gamuts into the color

values of each of the gamut corners. If we parametrize a gamut by the black

point and three primary colors, then fK , fR, fG, and fB are simply coordinate

projections, while the other four functions are simple linear combinations of the

coordinates. For each of the eight colors X, define qX(x̄) = dX(fX(x̄)). The level

sets of qX are simply Cartesian products of the three dimensional level sets of

dX with complementary nine-dimensional subspaces of R12, so they are convex

and each qX is quasiconvex.

It remains to formulate the requirement that our output gamut lie within

the intersection of the input gamuts. If we are given n input gamuts, form a

half-space Hi,j (with 0 ≤ i < n and 0 ≤ j < 6) for each of the six facets

of each of these parallelepipeds, and for each color X form a nested convex

family κi,j,X(λ) = {x̄ ∈ R12 | fX(x̄) ∈ Hi,j} that ignores its argument λ and

returns a constant half-space. We can then represent the problem of finding a

feasible gamut that minimizes the maximum distance from one of its corners

to the corner’s ideal location as the quasiconvex program formed by the eight

quasiconvex functions qX together with the 48n nested convex families κi,j,X .

4.6. Analysis of backtracking recurrences. In this section we discuss

another application of quasiconvex programming, in the automated analysis of

algorithms, from our paper [Eppstein 2004]. There has been much research on

exponential-time exact algorithms for problems that are NP-complete (so that no

polynomial time solution is expected); see [Beigel 1999; Byskov 2003; Dantsin

and Hirsch 2000; Eppstein 2001a; 2001b; 2003b; Gramm et al. 2000; Paturi

et al. 1998; Schöning 1999] for several recent papers in this area. Although other

techniques are known, many of these algorithms use a form of backtracking search

in which one repeatedly performs some case analysis to find an appropriate

structure in the problem instance, and then uses that structure to split the

problem into several smaller subproblems which are solved by recursive calls to

the algorithm.

For example, as part of a graph coloring algorithm [Eppstein 2001b] we used

the following subroutine for listing all maximal independent sets of a graph G

that have at most k vertices in the maximum independent set (we refer to such

a set as a k-MIS ). The subroutine consists of several different cases, and applies

the first of the cases which is found to be present in the input graph G:

• If G contains a vertex v of degree zero, recursively list each (k − 1)-MIS in

G \ {v} and append v to each listed set.
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T (n, h) ≤ max
8

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

T (n+3, h−2)+T (n+3, h−1)+T (n+4, h−2)+T (n+5, h−2),
T (n, h+1)+T (n+1, h+2),
2 T (n+2, h)+2 T (n+3, h),
2 T (n+2, h)+2 T (n+3, h),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+5, h−2),
T (n+1, h)+T (n+3, h−1)+3 T (n+3, h+3),
T (n+3, h−2)+2 T (n+3, h−1)+T (n+7, h−2),
T (n+1, h)+2 T (n+4, h−2),
3 T (n+1, h+2)+2 T (n+1, h+5),
2 T (n+2, h)+T (n+3, h+1)+T (n+4, h)+T (n+4, h+1),
T (n+1, h−1)+T (n+4, h−1),
T (n+1, h+3)+2 T (n+2, h)+T (n+3, h),
2 T (n+2, h−1),
T (n, h+3)+T (n+1, h+2)+T (n+2, h),
T (n+1, h−1)+T (n+4, h−1),
2 T (n+1, h+1)+T (n+2, h+1),
9 T (n+2, h+3),
T (n+1, h)+T (n+1, h+1),
9 T (n+9, h−5)+9 T (n+9, h−4),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−2)+2 T (n+6, h−3),
T (n+1, h−1)+T (n+4, h)+T (n+4, h+1),
2 T (n+2, h)+T (n+3, h)+T (n+4, h)+T (n+5, h),
T (n+1, h)+2 T (n+2, h+1),
T (n+1, h−1),
2 T (n+2, h+1)+T (n+3, h−2)+T (n+3, h),
T (n+1, h+1)+T (n+1, h+2)+T (n+2, h),
2 T (n+2, h)+2 T (n+3, h),
T (n+1, h+2)+T (n+2, h−1)+T (n+2, h+1),
T (n+1, h),
T (n+2, h+1)+T (n+3, h−2)+T (n+4, h−3),
T (n−1, h+2),
3 T (n+4, h)+7 T (n+4, h+1),
T (n+2, h−1)+2 T (n+3, h−1),
T (n+2, h−1)+T (n+2, h)+T (n+2, h+1),
T (n+3, h−2)+T (n+3, h)+2 T (n+4, h−2),
T (n+1, h)+T (n+3, h−1)+T (n+3, h+3)+T (n+5, h)+T (n+6, h−1),
2 T (n+1, h+4)+3 T (n+3, h+1)+3 T (n+3, h+2),
3 T (n+3, h+1)+T (n+3, h+2)+3 T (n+3, h+3)+3 T (n+4, h),
T (n+2, h−1)+T (n+3, h−1)+T (n+4, h−2),
T (n, h+1),
T (n+1, h+2)+T (n+3, h−2)+T (n+3, h−1),
2 T (n+3, h−1)+T (n+3, h+2)+T (n+5, h−2)+T (n+5, h−1)+T (n+5, h)+2 T (n+7, h−3),
T (n+2, h+2)+2 T (n+3, h)+3 T (n+3, h+1)+T (n+4, h),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+6, h−3)+T (n+7, h−4),
T (n+1, h−1),
T (n+1, h)+2 T (n+3, h),
4 T (n+3, h+1)+5 T (n+3, h+2),
4 T (n+2, h+3)+3 T (n+4, h)+3 T (n+4, h+1),
T (n+3, h−2)+2 T (n+3, h−1)+T (n+6, h−3),
4 T (n+2, h+3)+6 T (n+3, h+2),
T (n, h+1)+T (n+4, h−3),
T (n+1, h−1)+2 T (n+3, h+2),
2 T (n+2, h+1)+3 T (n+2, h+3)+2 T (n+2, h+4),
2 T (n+2, h)+2 T (n+2, h+3),
2 T (n+2, h)+T (n+2, h+3)+T (n+3, h+2)+T (n+4, h)+T (n+4, h+1),
2 T (n, h+2),
T (n+2, h)+T (n+3, h−2)+T (n+3, h−1),
T (n+3, h−2)+2 T (n+4, h−2)+T (n+5, h−3),
T (n+1, h)+T (n+5, h−4)+T (n+5, h−3),
T (n+1, h+2)+T (n+2, h−1)+T (n+3, h−1),
T (n+2, h−1)+T (n+2, h)+T (n+4, h−1),
10 T (n+3, h+2),
6 T (n+2, h+2),
T (n+2, h)+T (n+3, h),
2 T (n+3, h−1)+T (n+3, h+2)+T (n+5, h−2)+T (n+5, h−1)+T (n+5, h)+T (n+6, h−2)+T (n+7, h−2),
6 T (n+3, h+1),
3 T (n, h+3),
T (n+2, h−1)+T (n+2, h)+T (n+4, h−2),
2 T (n+5, h−3)+5 T (n+5, h−2),
2 T (n+2, h)+T (n+2, h+1)+T (n+4, h−1),
8 T (n+1, h+4),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+5, h−2)+T (n+7, h−3),
T (n+1, h−1)+T (n+2, h+2),
5 T (n+2, h+2)+2 T (n+2, h+3)

Table 1. A recurrence arising from unpublished work with J. Byskov on graph

coloring algorithms, taken from [Eppstein 2004].
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• If G contains a vertex v of degree one, with neighbor u, recursively list each

(k − 1)-MIS in G \ N(u) and append u to each listed set. Then, recursively

list each (k − 1)-MIS in G \ {u, v} and append v to each listed set.

• If G contains a path v1-v2-v3 of degree-two vertices, then, first, recursively

list each (k − 1)-MIS in G \ N(v1) and append v1 to each listed set. Second,

list each (k − 1)-MIS in G \ N(v2) and append v2 to each listed set. Finally,

list each (k − 1)-MIS in G \ ({v1} ∪ N(v3)) and append v3 to each listed set.

Note that, in the last recursive call, v1 may belong to N(v3) in which case the

number of vertices is only reduced by three.

• If G contains a vertex v of degree three or more, recursively list each k-MIS

in G \ {v}. Then, recursively list each (k − 1)-MIS in G \N(v) and append v

to each listed set.

Clearly, at least one case is present in any nonempty graph, and it is not hard

to verify that any k-MIS will be generated by one of the recursive calls made

from each case. Certain of the sets generated by this algorithm as described

above may not be maximal, but if these nonmaximal outputs cause difficulties

they can be removed by an additional postprocessing step. We can bound the

worst-case number of output sets produced by this algorithm as the solution to

the following recurrence in the variables n and k:

T (n, k) = max















T (n − 1, k − 1)

2T (n − 2, k − 1)

3T (n − 3, k − 1)

T (n − 1, k) + T (n − 4, k − 1)

As base cases, T (0, 0) = 1, T (n,−1) = 0, and T (n, k) = 0 for k > n. Each

term in the overall maximization of the recurrence comes from a case in the

case analysis; the recurrence uses the maximum of these terms because, in a

worst-case analysis, the algorithm has no control over which case will arise.

Each summand in each term comes from a recursive subproblem called for that

case. It turns out that, for the range of parameters of interest n/4 ≤ k ≤ n/3,

the recurrence above is dominated by its last two terms, and has the solution

T (n, k) = (4/3)n(34/43)k. We can also find graphs having this many k-MISs,

so the analysis given by the recurrence is tight. Similar but somewhat more

complicated multivariate recurrences have arisen in our algorithm for 3-coloring

[Eppstein 2001a] with variables counting 3- and 4-value variables in a constraint

satisfaction instance, and in our algorithm for the traveling salesman problem in

cubic graphs [Eppstein 2003b] with variables counting vertices, unforced edges,

forced edges, and 4-cycles of unforced edges. Another such recurrence, of greater

complexity but with the same general form, is depicted in Table 1.

We would like to perform this type of analysis algorithmically: if we are given

as input a recurrence such as the ones discussed above, can we efficiently deter-

mine its asymptotic solution, and determine which of the cases in the analysis
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are the critical ones for the performance of the backtracking algorithm that gen-

erated the recurrence? We showed in [Eppstein 2004] that these questions can

be answered automatically by a quasiconvex programming algorithm, as follows.

Let x̄ denote a vector of arguments to the input recurrence, and for each term

in the input recurrence define a univariate linear recurrence, by replacing x̄ with

a weighted linear combination ξ = w̄ · x̄ throughout. For instance, in the k-

bounded maximal independent set recurrences, the four terms in the recurrence

lead to four linear recurrences

t1(ξ) = t1(ξ − w̄ · (1, 1)),

t2(ξ) = 2t2(ξ − w̄ · (2, 1)),

t3(ξ) = 3t3(ξ − w̄ · (3, 1)),

t4(ξ) = t4(ξ − w̄ · (1, 0)) + t4(ξ − w̄ · (4, 1)).

We can solve each of these linear recurrences to find constants ci such that

ti(ξ) = O(cξ
i ); it follows that, for any weight vector w̄, T (x̄) = O(max cw̄·x̄

i ).

This technique only yields a valid bound when each linear recurrence is solv-

able; that is, when each term on the right-hand side of each linear recurrence

has a strictly smaller argument than the term on the left hand side. In addition,

different choices of w̄ in this upper bound technique will give us different bounds.

To get the tightest possible upper bound from this technique, for x̄ = nt̄ where

t̄ is a fixed target vector, constrain w̄ · t̄ = 1 (this is a normalizing condition since

multiplying w̄ by a scalar does not affect the overall upper bound), and express

ci as a function ci = qi(w̄) of the weight vector w̄; set ci = +∞ whenever the

corresponding linear inequality has a right-hand side term with argument greater

than or equal to that on the left hand side. We show in [Eppstein 2004] that

these functions qi are quasiconvex, as their level sets can be expressed by the

formula

q≤λ
i =

{

w̄

∣

∣

∣

∑

j

λ−w̄·δi,j ≤ 1
}

,

where the right-hand side describes a level set of a sum of convex functions of w̄.

Therefore, we can find the vector w̄ minimizing maxi qi(w) as a quasiconvex

program. The value λ of this quasiconvex program gives us an upper bound

T (nt̄) = O(λn) on our input recurrence.

In the same paper, we also show a lower bound T (nt̄ ) = Ω(λnn−c), so the

upper bound is tight to within a factor that is polylogarithmic compared to

the overall solution. The lower bound technique involves relating the recurrence

solution to the probability that a random walk in a certain infinite directed

graph reaches the origin, where the sets of outgoing edges from each vertex in

the graph are also determined randomly with probabilities determined from the

gradients surrounding the optimal solution of the quasiconvex program for the

upper bound.



322 DAVID EPPSTEIN

Figure 14. The Tukey depth of the point marked with the + sign is three, since

there is a half-plane containing it and only three sample points; equivalently,

three points can be removed from the sample set to place the test point outside

the convex hull of the remaining points (shaded).

4.7. Robust statistics. If one has a set of n observations xi ∈ R, and wishes

to summarize them by a single number, the average or mean is a common choice.

However, it is sensitive to outliers: replacing a single observation by a value far

from the mean can change the mean to an arbitrarily chosen value. In contrast,

if one uses the median in place of the mean, at least n/2 observations need to

be corrupted before the median can be changed to an arbitrary value; if fewer

than n/2 observations are corrupted, the median will remain within the interval

spanned by the uncorrupted values. In this sense, the median is robust while the

mean is not. More generally, we define a statistic to be robust if its breakdown

point (the number of observations that must be corrupted to cause it to take an

arbitrary value) is at least cn for some constant c > 0.

If one has observations x̄i ∈ Rd, it is again natural to attempt to summarize

them by a single point x̄ ∈ Rd. In an attempt to generalize the success of the

median in the one-dimensional problem, statisticians have devised many notions

of the depth of a point, from which we can define a generalized median as being

the point of greatest depth [Gill et al. 1992; Hodges 1955; Liu 1990; Liu et al.

1999; Mahalanobis 1936; Oja 1983; Tukey 1975; Zuo and Serfling 2000]. Of

these definitions, the most important and most commonly used is the Tukey

depth [Hodges 1955; Tukey 1975], also known as half-space depth or location

depth. According to this definition, the depth of a point x̄ (which need not be

one of our sample points) is the minimum number of sample points contained

in any half-space that contains x̄ (Figure 14). The Tukey median is any point

of maximum depth. It follows by applying Helly’s theorem to the system of

half-spaces containing more than dn/(d + 1) observations that, for observations

in Rd, the Tukey median must have depth at least n/(d + 1). This depth is

also its breakdown point, so the Tukey median is robust, and it has other useful

statistical properties as well, such as invariance under affine transformations and

the ability to form a center-outward ordering of the observations based on their

depths.
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There has been much research on the computation of Tukey medians, and

of other points with high Tukey depth [Chan 2004; Clarkson et al. 1996; Cole

1987; Cole et al. 1987; Jadhav and Mukhopadhyay 1994; Langerman and Steiger

2000; 2001; 2003; Matoušek 1992; Naor and Sharir 1990; Rousseeuw and Ruts

1998; Struyf and Rousseeuw 2000]. Improving on many previously published

algorithms, Chan [Chan 2004] found the best bound known for Tukey median

construction, O(n log n + nd−1) randomized expected time, using his implicit

quasiconvex programming technique.

Let B be a bounding box of the sample points. Each d-tuple t of sample

points that are in general position in Rd defines a hyperplane that bounds two

closed half-spaces, H+
t and H−

t . If we associate with each such half-space a

number k+
t or k−

t that counts the number of sample points in the corresponding

half-space, then the pairs (B ∩ H±
t ,−k±

t ) can be used to form a generalized

longest intersecting prefix problem, as defined in Section 2.5; borrowing the

terminology of LP-type problems, call any such pair a constraint. The solution

to the quasiconvex program defined by this set of constraints is a pair (k, x̄),

where k is minimal and every half-space with more than k samples contains

x̄. If a half-space H contains fewer than n − k samples, therefore, it does not

contain x̄, so the depth of x̄ is at least n − k. Any point of greater depth

would lead to a better solution to the problem, so x̄ must be a Tukey median

of the samples, and we can express the problem of finding a Tukey median as

a quasiconvex program. This program, however, has O(nd) constraints, larger

than Chan’s claimed time bound. To find Tukey medians more quickly, Chan

applies his implicit quasiconvex programming technique: we need to be able

to solve constant sized subproblems in constant time, solve decision problems

efficiently, and partition large problems into smaller subproblems.

It is tempting to perform the partition step as described after Theorem 3.2,

by dividing the set of samples arbitrarily into d+1 equal-sized subsets and using

the complements of these subsets. However, this idea does not seem to work

well for the Tukey median problem: the difficulty is that the numbers k±
t do not

depend only on the subset, but on the whole original set of sample points.

Instead, Chan modifies the generalized longest intersecting prefix problem (in

a way that doesn’t change its optimal value) by including a constraint for every

possible half-space, not just those half-spaces bounded by d-tuples of samples.

There are infinitely many such constraints but that will not be problematic as

long as we can satisfy the requirements of the implicit quasiconvex programming

technique. To perform the partition step for this technique, we use a standard

tool for divide and conquer in geometric algorithms, known as ε-cuttings. We

form the projective dual of the sample points, which is an arrangement of hy-

perplanes in Rd; each possible constraint boundary is dual to a point in Rd

somewhere in this arrangement, and the number k±
t for the constraint equals

the number of arrangement hyperplanes above or below this dual point. We

then partition the arrangement into a constant number of simplices, such that
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each simplex is crossed by at most εn hyperplanes. For each simplex we form a

subproblem, consisting of the sample points corresponding to hyperplanes that

cross the simplex, together with a constant amount of extra information: the

simplex itself and the numbers of hyperplanes that pass above and below it.

Each such subproblem corresponds to a set of constraints dual to points in the

simplex. When recursively dividing a subproblem already of this form into even

smaller sub-subproblems, we intersect the sub-subproblem simplices with the

subproblem simplex and partition the resulting polytopes into smaller simplices;

this increases the number of sub-subproblems by a constant factor. In this way

we fulfill the condition of Theorem 3.2 that we can divide a large problem into a

constant number of subproblems, each described by an input of size a constant

fraction of the original.

Subproblems of constant size may be solved by constructing and searching

the arrangement dual to the samples within the simplex defining the subprob-

lem. It remains to describe how to perform the decision algorithm needed for

Theorem 3.2. Decision algorithms for testing the Tukey depth of a point were

already known [Rousseeuw and Ruts 1996; Rousseeuw and Struyf 1998], but here

we need to solve a slightly more general problem due to the extra information

associated with each subproblem. Given k, x̄, and a subproblem of our overall

problem, we must determine whether there exists a violated constraint ; that is, a

half-space that is dual to a point in the simplex defined by the subproblem, and

that contains more than k sample points but does not contain x̄. Let H be the

hyperplane dual to x̄, and ∆ be the simplex defining the subproblem. If there

exists a violated constraint dual to a point h ∈ ∆, we can assume without loss of

generality that either h ∈ H or h is on the boundary of ∆; for, if not, we could

find another half-space containing as many or more samples by moving h along

a vertical line segment until it reaches either H or the boundary. Within H and

each boundary plane of the simplex, we can construct the (d − 1)-dimensional

arrangement formed by intersecting this plane with the planes dual to the sam-

ple points, in time O(n log n + nd−1). Within each face of these arrangements,

all points are dual to half-spaces that contain the same number of samples, and

as we move from face to face, the number of sample points contained in the

half-spaces changes by ±1, so we can compute these numbers in constant time

per face as we construct these arrangements. By searching all faces of these

arrangements we can find a violated constraint, if one exists.

To summarize, by applying the implicit quasiconvex programming technique

of Theorem 3.2 to a generalized longest intersecting prefix problem, using ε-

cuttings to partition problems into subproblems and (d−1)-dimensional arrange-

ments to solve the decision algorithm as described above, Chan [2004] shows

how to find the Tukey median of any point set in randomized expected time

O(n log n + nd−1).
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5. Conclusions

We have introduced quasiconvex programming as a formalization for geo-

metric optimization intermediate in expressivity between linear and convex pro-

gramming on the one hand, and LP-type problems on the other. Quasiconvex

programs are capable of expressing a wide variety of geometric optimization prob-

lems and applications, but are still sufficiently concrete that they can be solved

both by rapidly converging numeric local improvement techniques and (given

the assumption of constant-time primitives for solving constant-sized subprob-

lems) by strongly-polynomial combinatorial optimization algorithms. The power

of this approach is demonstrated by the many and varied applications in which

quasiconvex programming arises.
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1. An Invitation to Arrangement Models

The complements of coordinate hyperplanes in a real or complex vector space

are easy to understand: The coordinate hyperplanes in R
n dissect the space into

2n open orthants; removing the coordinate hyperplanes from C
n leaves the com-

plex torus (C∗)n. Arbitrary subspace arrangements, i.e., finite families of linear

subspaces, have complements with far more intricate combinatorics in the real

case, and far more intricate topology in the complex case. Arrangement models

improve this complicated situation locally— constructing an arrangement model

means to alter the ambient space so as to preserve the complement and to re-

place the arrangement by a divisor with normal crossings, i.e., a collection of

smooth hypersurfaces which locally intersect like coordinate hyperplanes. Al-

most a decade ago, De Concini and Procesi provided a canonical construction

of arrangement models—wonderful arrangement models — that had significant

impact in various fields of mathematics.
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Why should a discrete geometer be interested in this model construction?

Because there is a wealth of wonderful combinatorial and discrete geometric

structure lying at the heart of the matter. Our aim here is to bring these discrete

pearls to light.

First, combinatorial data plays a descriptive role in various places: The combi-

natorics of the arrangement fully prescribes the model construction and a natural

stratification of the resulting space. We will see details and examples in Section 2.

In fact, the rather coarse combinatorial data reflect enough of the situation so

as to, for instance, determine algebraic-topological invariants of the arrange-

ment models (compare the topological interpretation of the algebra D(L,G) in

Section 4.2).

Secondly, the combinatorial data put forward in the study of arrangement

models invites purely combinatorial generalizations. We discuss such generaliza-

tions in Section 3 and show in Section 4 how this combinatorial generalization

opens unexpected views when related back to geometry.

Finally, in Section 5 we propose arrangement models as a tool for resolving

group actions on manifolds. Again, it is an open eye for discrete core data that

enables the construction.

We have kept the exposition self-contained and illustrated it with many ex-

amples. We invite discrete geometers to discover an algebro-geometric context

in which familiar discrete structures play a key role. We hope that yet many

more bridges will be built between algebraic and discrete geometry— areas that,

despite the differences in terminology, concepts, and methods, share what has

inspired and driven mathematicians for centuries: a passion for geometry.

2. Introducing the Main Character

2.1. Basics on arrangements. We first need to fix some basic terminology, in

particular as it concerns the combinatorial data of an arrangement. We suggest

that the reader, who is not familiar with the setting, reads through the first

part of this Section and compares the notions to the illustrations given for braid

arrangements in Example 2.1.

An arrangement A = {U1, . . . , Un} is a finite family of linear subspaces

in a real or complex vector space V . The topological space most obviously

associated to such an arrangement is its complement in the ambient space,

M(A) := V \
S

A.

Having arrangements in real vector spaces in mind, the topology of M(A)

does not look very interesting: the complement is a collection of open polyhedral

cones, and apart from their number there is no significant associated topological

data. In the complex case, however, already a single hyperplane in C
1, the origin,

has a nontrivial complement: it is homotopy equivalent to S1, the 1-dimensional
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sphere. The complement of two (for instance, coordinate) hyperplanes in C
2 is

homotopy equivalent to the torus S1 × S1.

The combinatorial data associated with an arrangement is usually recorded in

the intersection lattice L = L(A), which is the set of intersections of subspaces

in A, partially ordered by reversed inclusion. We adopt terminology from the

theory of partially ordered sets and often denote the unique minimum in L(A)

(corresponding to the empty intersection, i.e., the ambient space V ) by 0̂ and

the unique maximum of L(A) (the overall intersection of subspaces in A) by 1̂.

In many situations, the elements of the intersection lattice are labeled by the

codimension of the corresponding intersection. For arrangements of hyperplanes,

this information is recorded in the rank function of the lattice — the codimension

of an intersection X is the number of elements in a maximal chain in the half-

open interval (0̂, X] in L(A).

As with any poset, we can consider the order complex ∆(L) of the proper part,

L := L \ {0̂, 1̂}, of the intersection lattice, i.e., the abstract simplicial complex

formed by the linearly ordered subsets in L,

∆(L) =
{
X1 < . . . < Xk

∣∣ Xi ∈ L \ {0̂, 1̂}
}
.

The topology of ∆(L) plays a prominent role for describing the topology of ar-

rangement complements. For instance, it is the crucial ingredient for the explicit

description of cohomology groups of M(A) by Goresky and MacPherson [1988,

Part III].

For hyperplane arrangements, the homotopy type of ∆(L) is well known: the

complex is homotopy equivalent to a wedge of spheres of dimension equal to the

codimension of the total intersection of A. The number of spheres can as well be

read from the intersection lattice, it is the absolute value of its Möbius function.

For subspace arrangements however, the barycentric subdivision of any finite

simplicial complex can appear as the order complex of the intersection lattice.

Besides ∆(L), we will often refer to the cone over ∆(L) obtained by extending

the linearly ordered sets in L by the maximal element 1̂ in L. We will denote

this complex by ∆(L \ {0̂}) or ∆(L>0̂).

In order to have a standard example at hand, we briefly discuss braid arrange-

ments. This class of arrangements has figured prominently in many places and

has helped develop lots of arrangement theory over the last decades.

Example 2.1 (Braid arrangements). The arrangement An−1 given by the

hyperplanes

Hij : xi = xj , for 1 ≤ i < j ≤ n,

in real n-dimensional vector space is called the (real) rank n−1 braid arrange-

ment . There is a complex version of this arrangement. It consists of hyperplanes

Hij in C
n given by the same linear equations. We denote the arrangement by

AC
n−1. Occasionally, we will use the analogous AR

n−1 if we want to stress the real
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L(A2) = Π3

∆(Π3 \ {0̂})

H12 : x1=x2
H23 : x2=x3

H13 : x1=x3

A2 ⊆ V

Figure 1. The rank 2 braid arrangement A2, its intersection lattice Π3, and the

order complex ∆(Π3 \ {0̂}).

setting. In many situations a similar reasoning applies to the real and to the

complex case. To simplify notation, we then use K to denote R or C.

Observe that the diagonal ∆ = {x ∈ Kn | x1 = . . . = xn} is the overall

intersection of hyperplanes in An−1. Without loosing any relevant information on

the topology of the complement, we will often consider An−1 as an arrangement

in complex or real (n−1)-dimensional space V = Kn/∆ ∼=
{
x ∈ Kn |

∑
xi = 0

}
.

This explains the indexing for braid arrangements, which may appear unusual

at first sight.

The complement M(AR
n−1) is a collection of n! polyhedral cones, correspond-

ing to the n! linear orders on n pairwise noncoinciding coordinate entries. The

complement M(AC
n−1) is the classical configuration space of the complex plane

F (C, n) =
{
(x1, . . . , xn) ∈ C

n
∣∣ xi 6= xj for i 6= j

}
.

This space is the classifying space of the pure braid group, which explains the

occurrence of the term “braid” for this class of arrangements.

As the intersection lattice of the braid arrangement An−1 we recognize the

partition lattice Πn, i.e., the set of set partitions of {1, . . . , n} ordered by reversed

refinement. The correspondence to intersections in the braid arrangement can

be easily described: The blocks of a partition correspond to sets of coordinates

with identical entries, thus to the set of points in the corresponding intersection

of hyperplanes.

The order complex ∆(Πn) is a pure, (n−1)-dimensional complex that is ho-

motopy equivalent to a wedge of (n−1)! spheres of dimension n−1.

In Figure 1 we depict the real rank 2 braid arrangement A2 in V = R
3/∆, its

intersection lattice Π3, and the order complex ∆(Π3 \ {0̂}). We denote partitions

in Π3 by their nontrivial blocks. The complex depicted is a cone over ∆(Π3), a

union of three points, which indeed is the wedge of two 0-dimensional spheres.
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Figure 2. The maximal wonderful model for A2.

2.2. The model construction. We provide two alternative definitions for

De Concini–Procesi arrangement models: the first one describes the models as

closures of open embeddings of the arrangement complements. It comes in handy

for technical purposes. By contrast, the second definition, which describes ar-

rangement models as results of sequences of blowups, is much more intuitive and

suitable for inductive constructions and proofs.

Definition 2.2 (Model construction I). Let A be an arrangement of real

or complex linear subspaces in V . Consider the map

Ψ : M(A) → V ×
∏

X∈L
>0̂

P(V/X)

x 7→
(
x , (〈x,X〉/X)X∈L

>0̂

)
;

(2–1)

it encodes the relative position of each point in the arrangement complement

M(A) with respect to the intersection of subspaces in A. The map Ψ is an open

embedding; the closure of its image is called the (maximal) De Concini–Procesi

wonderful model for A and is denoted by YA.

Definition 2.3 (Model construction II). Let A be an arrangement of real

or complex linear subspaces in V . Let X1, . . . , Xt be a linear extension of the op-

posite order L
op

>0̂
on L>0̂. The (maximal) De Concini–Procesi wonderful model

for A is the result YA of successively blowing up subspaces X1, . . . , Xt, respec-

tively their proper transforms.

To avoid confusion with spherical blowups that have been appearing in model

constructions as well [Gaiffi 2003], let us emphasize here that, also in the real

setting, we think about blowups as substituting points by projective spaces.

Before we list the main properties of arrangement models let us look at a first

example.

Example 2.4 (The arrangement model YA2
). Consider the rank 2 braid

arrangement A2 in V = R
3/∆. Following the description in Definition 2.3 we

obtain YA2
by a single blowup of V at {0}. The result is an open Möbius band;

the exceptional divisor D123
∼= RP1 in YA2

intersects transversally with the

proper transforms Dij of the hyperplanes Hij , 1 ≤ i < j ≤ 3. We illustrate the

blowup in Figure 2.
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To recognize the Möbius band as the closure of the image of Ψ according to

Definition 2.2, observe that the product on the right-hand side of (2–1) consists

of two relevant factors, V × RP1. A point x in M(A2) gets mapped to (x, 〈x〉)

and we observe a one-to-one correspondence between points in M(A2) and points

in YA2
\ (D123 ∪D12 ∪D13 ∪D23). Points added when taking the closure are of

the form (y,Hij) for y ∈ Hij \ {0} and (0, `) for ` some line in V .

Observe that the triple intersection of hyperplanes in V has been replaced by

double intersections of hypersurfaces in YA2
. Without changing the topology of

the arrangement complement, the arrangement of hyperplanes has been replaced

by a normal crossing divisor. Moreover, note that the irreducible divisor com-

ponents D12, D13, D23, and D123 intersect if and only if their indexing lattice

elements form a chain in L(A2).

The observations we made for YA2
are special cases of the main properties of

(maximal) De Concini–Procesi models that we list in the following:

Theorem 2.5 [De Concini and Procesi 1995a, Theorems in § 3.1 and § 3.2]. (1)

The arrangement model YA as defined in 2.2 and 2.3 is a smooth variety with

a natural projection map to the original ambient space, π : YA −→ V , which

is one-to-one on the arrangement complement M(A).

(2) The complement of π−1(M(A)) in YA is a divisor with normal crossings; its

irreducible components are the proper transforms DX of intersections X in L,

YA \ π−1(M(A)) =
⋃

X∈L
>0̂

DX .

(3) Irreducible components DX for X ∈ S ⊆ L>0̂ intersect if and only if S is

a linearly ordered subset in L>0̂. If we think about YA as stratified by the

irreducible components of the normal crossing divisor and their intersections,

then the poset of strata coincides with the face poset of the order complex

∆(L>0̂).

Example 2.6 (The arrangement model YA3
). We now consider a somewhat

larger and more complicated example, the rank 3 braid arrangement A3 in V ∼=
R

4/∆. First note that the intersection lattice of A3 is the partition lattice Π4,

which we depict in Figure 3 for later reference. Again, we denote partitions by

their nontrivial blocks.

Following again the description of arrangement models given in Definition 2.3,

the first step is to blow up V at {0}. We obtain a line bundle over RP2; in Figure 4

we depict the exceptional divisor D1234
∼= RP2 stratified by the intersections of

proper transforms of hyperplanes in A3.

This first step is now followed by the blowup of triple, respectively double in-

tersections of proper transforms of hyperplanes in arbitrary order. In each such

intersection the situation locally corresponds to the blowup of a 2-dimensional

real vector space in a point as discussed in Example 2.4. Topologically, the ar-

rangement model YA3
is a line bundle over a space obtained from a 7-fold punc-
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L(A3) = Π4
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34242312
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1234

134124

Figure 3. The intersection lattice of A3.

tured RP2 by gluing 7 Möbius bands along their boundaries into the boundary

components.

We can easily check the statements of Theorem 2.5 for YA3
. In particular, we

see that intersections of irreducible divisors in YA3
are nonempty if and only if the

corresponding index sets form a chain in L>0̂. For instance, the 0-dimensional

stratum of the divisor stratification that is encircled in Figure 4 corresponds to

the chain 14 < 134 < 1234 in Π4 \ {0̂}. For comparison, we depict the order

complex of Π4 \ {0̂} in Figure 5. Recall that the complex is a pure 2-dimensional

cone with apex 1234 over ∆(Π4); we only draw its base.

If our only objective was to construct a model for M(A3) with a normal cross-

ing divisor, it would be enough to blow up Bl{0}V in the 4 triple intersections.

The result would be a line bundle over a 4-fold punctured RP2 with 4 Möbius

bands glued into boundary components.
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D14 D13

12|34

234

34
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134
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Figure 4. The construction of YA3
.
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Figure 5. The order complex ∆(Π4).

This observation leads to a generalization of the model construction presented

so far: it is enough to do successive blowups on a specific subset of intersections

in A to obtain a model with similar properties as those summarized in Theo-

rem 2.5. In fact, appropriate subsets of intersections lattices, so-called building

sets, were specified in [De Concini and Procesi 1995a]; all give rise to wonderful

arrangement models in the sense of Theorem 2.5. The only reservation being

that the order complex ∆(L>0̂) is no longer indexing nonempty intersections of

irreducible divisors: chains in L>0̂ are replaced by so-called nested sets — subsets

of building sets that again form an abstract simplicial complex.

We will not give the original definitions of De Concini and Procesi for build-

ing sets and nested sets in this survey. Instead, we will present a generalization

of these notions for arbitrary meet-semilattices in Section 3.1. This combina-

torial abstraction has proved useful in many cases beyond arrangement model

constructions. Its relation to the original geometric context will be explained in

Section 4.1.

2.3. Some remarks on history. Before we proceed, we briefly sketch the

historic background of De Concini–Procesi arrangement models. Moreover, we

outline an application to a famous problem in arrangement theory that, among

other issues, served as a motivation for the model construction.

Compactifications of configuration spaces due to Fulton and MacPherson

[1994] have prepared the scene for wonderful arrangement models. Their work

is concerned with classical configurations spaces F (X,n) of smooth algebraic

varieties X, i.e., spaces of n-tuples of pairwise distinct points in X:
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F (X,n) = { (x1, . . . , xn) ∈ Xn |xi 6= xj for i 6= j}.

A compactification X[n] of F (X,n) is constructed in which the complement of

the original configuration space is a normal crossing divisor; in fact, X[n] has

properties analogous to those listed for arrangement models in Theorem 2.5. The

relation to the arrangement setting can be summarized by saying that, on the one

hand, the underlying spaces in the configuration space setting are incomparably

more complicated — smooth algebraic varieties X rather than real or complex

linear space; the combinatorics, on the other hand, is far simpler — it is the com-

binatorics of our basic Examples 2.4 and 2.6, the partition lattice Πn. The notion

of building sets and nested sets, which constitutes the defining combinatorics of

arrangement models, has its roots in the Fulton–MacPherson construction for

configuration spaces, hence is inspired by the combinatorics of Πn.

Looking along the time line in the other direction, De Concini–Procesi ar-

rangement models have triggered a number of more general constructions with

similar spirit: compactifications of conically stratified complex manifolds by

MacPherson and Procesi [1998], and model constructions for mixed real sub-

space and halfspace arrangements and real stratified manifolds by Gaiffi [2003]

that use spherical rather than classical blowups.

As a first impact, the De Concini–Procesi model construction has yielded

substantial progress on a longstanding open question in arrangement theory

[De Concini and Procesi 1995a, Section 5], the question being whether com-

binatorial data of a complex subspace arrangement determines the cohomology

algebra of its complement. For arrangements of hyperplanes, there is a beautiful

description of the integral cohomology algebra of the arrangement complement

in terms of the intersection lattice — the Orlik–Solomon algebra [1980]. Also,

a prominent application of Goresky and MacPherson’s Stratified Morse Theory

states that cohomology of complements of (complex and real) subspace arrange-

ments, as graded groups over Z, are determined by the intersection lattice and

its codimension labelling. In fact, there is an explicit description of cohomology

groups in terms of homology of intervals in the intersection lattice [Goresky and

MacPherson 1988, Part III]. However, whether multiplicative structure is deter-

mined as well remained an open question 20 years after it had been answered for

arrangements of hyperplanes (see [Feichtner and Ziegler 2000; Longueville 2000]

for results on particular classes of arrangements).

The De Concini–Procesi construction allows to apply Morgan’s theory on ra-

tional models for complements of normal crossing divisors [Morgan 1978] to ar-

rangement complements and to conclude that their rational cohomology algebras

indeed are determined by the combinatorics of the arrangement. A key step in

the description of the Morgan model is the presentation of cohomology of divisor

components and their intersections in purely combinatorial terms [De Concini

and Procesi 1995a, 5.1, 5.2]. For details on this approach to arrangement coho-

mology, see [De Concini and Procesi 1995a, 5.3].
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Unfortunately, the Morgan model is fairly complicated even for small arrange-

ments, and the approach is bound to rational coefficients. The model has been

considerably simplified in work of Yuzvinsky [2002; 1999]. In [Yuzvinsky 2002]

explicit presentations of cohomology algebras for certain classes of arrangements

were given. However, despite an explicit conjecture of an integral model for

arrangement cohomology in [Yuzvinsky 2002, Conjecture 6.7], extending the re-

sult to integral coefficients remained out of reach. Only years later, the ques-

tion has been fully settled to the positive in work of Deligne, Goresky and

MacPherson [Deligne et al. 2000] with a sheaf-theoretic approach, and paral-

lely by de Longueville and Schultz [2001] using rather elementary topological

methods: Integral cohomology algebras of complex arrangement complements

are indeed determined by combinatorial data.

3. The Combinatorial Core Data: A Step Beyond Geometry

We will now abandon geometry for a while and in this section fully concentrate

on combinatorial and algebraic gadgets that are inspired by De Concini–Procesi

arrangement models.

We first present a combinatorial analogue of De Concini–Procesi resolutions

on purely order theoretic level following [Feichtner and Kozlov 2004, Sections 2

and 3]. Based on the notion of building sets and nested sets for arbitrary lattices

proposed therein, we define a family of commutative graded algebras for any

given lattice.

The next Section then will be devoted to relate these objects to geometry—

to the original context of De Concini–Procesi arrangement models and, more

interestingly so, to different seemingly unrelated contexts in geometry.

3.1. Combinatorial resolutions. We will state purely combinatorial def-

initions of building sets and nested sets. Recall that, in the context of model

constructions, building sets list the strata that are to be blown up in the construc-

tion process, and nested sets describe beforehand the nonempty intersections of

irreducible divisor components in the final resolution.

Let L be a finite meet-semilattice, i.e., a finite poset such that any pair of ele-

ments has a unique maximal lower bound. In particular, such a meet-semilattice

has a unique minimal element that we denote with 0̂. We will talk about semilat-

tices for short. As a basic reference on partially ordered sets we refer to [Stanley

1997, Chapter 3].

Definition 3.1 (Combinatorial building sets). A subset G ⊆ L>0̂ in

a finite meet-semilattice L is called a building set if for any X ∈ L>0̂ and

max G≤X = {G1, . . . , Gk} there is an isomorphism of posets

ϕX :

k∏

j=1

[0̂, Gj ]
∼=
−→ [0̂, X] (3–1)
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with ϕX(0̂, . . . , Gj , . . . , 0̂) = Gj for j = 1, . . . , k. We call FG(X) := max G≤X the

set of factors of X in G.

There are two extreme examples of building sets for any semilattice: we can

take the full semilattice L>0̂ as a building set. On the other hand, the set of

elements X in L>0̂ which do not allow for a product decomposition of the lower

interval [0̂, X] form the unique minimal building set (see Example 3.3 below).

Intuitively speaking, building sets are formed by elements in the semilattice

that are the perspective factors of product decompositions.

Any choice of a building set G in L gives rise to a family of so-called nested

sets. These are, roughly speaking, subsets of G whose antichains are sets of

factors with respect to the chosen building set. Nested sets form an abstract

simplicial complex on the vertex set G. This simplicial complex plays the role

of the order complex for arrangement models more general than the maximal

models discussed in Section 2.2.

Definition 3.2 (Nested sets). Let L be a finite meet-semilattice and G a

building set in L. A subset S in G is called nested (or G-nested if specification is

needed) if, for any set of incomparable elements X1, . . . , Xt in S of cardinality at

least two, the join X1 ∨ . . . ∨Xt exists and does not belong to G. The G-nested

sets form an abstract simplicial complex N(L,G), the nested set complex with

respect to L and G.

Observe that if we choose the full semilattice as a building set, then a subset is

nested if and only if it is linearly ordered in L. Hence, the nested set complex

N(L,L>0̂) coincides with the order complex ∆(L>0̂).

Example 3.3 (Building sets and nested sets for the partition lat-

tice). Choosing the maximal building set in the partition lattice Πn, we obtain

the order complex ∆((Πn) \ {0̂}) as the associated complex of nested sets. Topo-

logically, it is a cone over a wedge of (n− 1)! spheres of dimension n−1.

The minimal building set Gmin in Πn is given by partitions with at most one

block of size larger or equal 2, the so-called modular elements in Πn. We can

identify these partitions with subsets of {1, . . . , n} of size larger or equal 2. A

collection of such subsets is nested, if and only if none of the pairs of subsets

have a nontrivial intersection, i.e., for any pair of subsets they are either disjoint

or one is contained in the other. Referring to a naive picture of such containment

relation explains the choice of the term nested— it appeared first in the work

of Fulton and MacPherson [1994] on compactifications of classical configuration

spaces. As we noted earlier, the combinatorics they are concerned with is indeed

the combinatorics of the partition lattice.

For the rank 3 partition lattice Π3, maximal and minimal building sets co-

incide, G = Π3 \ {0̂}. The nested set complex N(Π3,G) is the order complex

∆(Π3 \ {0̂}) depicted in Figure 1.
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For the rank 4 partition lattice Π4, we have seen the nested set complex for

the maximal building set N(Π4,Gmax) in Figure 5. The nested set complex asso-

ciated with the minimal building set Gmin in Π4 is depicted in Figure 6. Again,

N(Π4,Gmin) is a cone with apex 1234, and we only draw its base, N(Π4,Gmin).

N(Π4,Gmin)

1423

124234

34

134

24

13

123

12

Figure 6. The nested set complex N(Π4,Gmin).

Adding one or two 2-block partitions to Gmin yields all the other building sets

for Π4. The corresponding nested set complexes are subdivisions of N(Π4,Gmin).

When studying the (maximal) wonderful model YA3
in Example 2.6 we had

observed that, if we only wanted to achieve a model with normal crossing di-

visors, it would have been enough to blow up the overall and the triple inter-

sections. This selection of strata, respectively elements in L(A3) = Π4, exactly

corresponds to the minimal building set Gmin in Π4 — a geometric motivation for

Definition 3.1.

We can also get a glimpse on the geometry that motivates the definition of

nested sets: comparing simplices in N(Π4,Gmin) with intersections of irreducible

divisor components in the arrangement model resulting from blowups along sub-

spaces in Gmin, we see that there is a 1-1 correspondence. For instance, {12, 34} is

a nested set with respect to Gmin, and divisor components D12 and D34 intersect

in the model (compare Figure 4).

It is not a coincidence that, in the example above, one nested set complex is

a subdivision of the other if one building set contains the other. In fact, the

following holds:

Theorem 3.4 [Feichtner and Müller 2005, Proposition 3.3, Theorem 4.2]. For

any finite meet-semilattice L, and G a building set in L, the nested set complex
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N(L,G) is homotopy equivalent to the order complex of L>0̂,

N(L,G) ' ∆(L>0̂).

Moreover , if L is atomic, i .e., any element is a join of a set of atoms, and G and

H are building sets with G⊇H, then the nested set complex N(L,G) is obtained

from N(L,H) by a sequence of stellar subdivisions. In particular , the complexes

are homeomorphic.

We now propose a construction on semilattices producing new semilattices: the

combinatorial blowup of a semilattice in an element.

Definition 3.5 (Combinatorial blowup). For a semilattice L and an ele-

ment X in L>0̂ we define a poset (BlXL,≺) on the set of elements

BlXL = {Y | Y ∈ L, Y 6≥ X} ∪ {Y ′ | Y ∈ L, Y 6≥ X, andY ∨X exists in L }.

The order relation < in L determines the order relation ≺ within the two parts

of BlXL described above,

Y ≺ Z, forY < Z in L,

Y ′ ≺ Z ′,forY < Z in L,

and additional order relations between elements of these two parts are defined

by

Y ≺ Z ′,forY < Z in L,

where in all three cases it is assumed that Y,Z 6≥ X in L. We call BlXL the

combinatorial blowup of L in X.

In fact, the poset BlXL is again a semilattice. Figure 7 explains what is going

on.

The construction does the following: it removes the closed upper interval on

top of X from L, and then marks the set of elements in L that are not larger or

equal X, but have a join with X in L. This subset of L (in fact, a lower ideal

in the sense of order theory) is doubled and any new element Y ′ in the copy is

BlXL

L≥X

Y : Y 6≥X, Y ∨X ex.

X

Y

Y ′

L

Figure 7. A combinatorial blowup.
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12′ 13′ 23′

Bl123Π3Π3

123

12 13 23 12 13 23

Figure 8. The combinatorial blowup of Π3 in 123.

defined to be covering the original element Y in L. The order relations in the

remaining, respectively the doubled, part of L stay the same as before.

In Figure 8 we give a concrete example: the combinatorial blowup of the

maximal element 123 in Π3, Bl123Π3. The result should be compared with

Figure 2. In fact, Bl123Π3 is the face poset of the divisor stratification in YA2
=

Bl{0}V .

The following theorem shows that the three concepts introduced above— com-

binatorial building sets, nested sets, and combinatorial blowups— fit together so

as to provide a combinatorial analogue of the De Concini–Procesi model con-

struction.

Theorem 3.6 [Feichtner and Kozlov 2004, Theorem 3.4]. Let L be a semilattice,

G a combinatorial building set in L, and G1, . . . , Gt a linear order on G that is

nonincreasing with respect to the partial order on L. Then, consecutive combi-

natorial blowups in G1, . . . , Gt result in the face poset of the nested set complex

N(L,G):

BlGt
(. . . (BlG2

(BlG1
L)) . . .) = F(N(L,G)).

3.2. An algebra defined for atomic lattices. For any atomic lattice, we

define a family of graded commutative algebras based on the notions of building

sets and nested sets given above. Our exposition here and in Section 4.2 follows

[Feichtner and Yuzvinsky 2004]. Restricting our attention to atomic lattices is

not essential for the definition. However, for various algebraic considerations and

for geometric interpretations (compare Section 4.2) it is convenient to assume

that the lattice is atomic.

Definition 3.7. Let L be a finite atomic lattice, A(L) its set of atoms, and G

a building set in L. We define the algebra D(L,G) of L with respect to G as

D(L,G) := Z [{xG}G∈G]
/

I,

where the ideal of relations I is generated by

t∏

i=1

xGi
for {G1, . . . , Gt} 6∈ N(L,G) ,

∑

G≥H

xG for H ∈ A(L).
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Observe that this algebra is a quotient of the face ring of the nested set com-

plex N(L,G).

Example 3.8 (Algebras associated to Π3 and Π4). For Π3 and its only

building set Gmax = Π3 \ {0̂}, the algebra reads as follows:

D(Π3,Gmax)=Z [x12, x13, x23, x123]
/〈

x12x13, x12x23, x13x23

x12 + x123, x13 + x123, x23 + x123

〉

∼=Z [x123]/〈x
2
123〉.

For Π4 and its minimal building set Gmin, we obtain the following algebra after

simplifying slightly the presentation:

D(Π4,Gmin) ∼= Z [x123, x124, x134, x234, x1234]
/

〈 xijk x1234 for all 1 ≤ i < j < k ≤ 4

xijk xi′j′k′ for all ijk 6= i′j′k′

x2
ijk + x2

1234 for all 1 ≤ i < j < k ≤ 4

〉
.

There is an explicit description for a Gröbner basis of the ideal I, which in par-

ticular yields an explicit description for a monomial basis of the graded algebra

D(L,G).

Theorem 3.9. (1) [Feichtner and Yuzvinsky 2004, Theorem 2] The following

polynomials form a Gröbner basis of the ideal I:
∏

G∈S

xG for S 6∈ N(L,G),

k∏

i=1

xAi

( ∑

G≥B

xG

)d(A,B)

,

where A1, . . . , Ak are maximal elements in a nested set H ∈ N(L,G), B ∈ G

with B>A =
∨k

i=1Ai, and d(A,B) is the minimal number of atoms needed

to generate B from A by taking joins.

(2) [Feichtner and Yuzvinsky 2004, Corollary 1] The resulting linear basis for

the graded algebra D(L,G) is given by the following set of monomials:
∏

A∈S

x
m(A)
A ,

where S is running over all nested subsets of G, m(A) < d(A′, A), and A′ is

the join of S∩L<A.

Part (2) of Theorem 3.9 generalizes a basis description by Yuzvinsky [1997] for

D(L,G) in the case of G being the minimal building set in an intersection lattice

L of a complex hyperplane arrangement. Yuzvinsky’s basis description has also

been generalized in a somewhat different direction by Gaiffi [1997], namely for

closely related algebras associated with complex subspace arrangements.
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We will return to the algebra D(L,G) and discuss its geometric significance

in Section 4.2.

4. Returning to Geometry

4.1. Understanding stratifications in wonderful models. We first relate

the combinatorial setting of building sets and nested sets developed in Section 3.1

to its origin, the De Concini–Procesi model construction. Here is how to recover

the original notion of building sets [De Concini and Procesi 1995a, Definition in

§ 2.3], we call them geometric building sets, from our definitions:

Definition 4.1 (Geometric building sets). Let L be the intersection lattice

of an arrangement of subspaces in real or complex vector space V and cd : L → N

a function on L assigning the codimension of the corresponding subspace to each

lattice element. A subset G in L is a geometric building set if it is a building set

in the sense of 3.1, and for any X ∈ L the codimension of X is equal to the sum

of codimensions of its factors, FG(X):

cd (X) =
∑

Y ∈FG(X)

cd (Y ).

An easy example shows that the notion of geometric building sets indeed is more

restrictive than the notion of combinatorial building sets. For arrangements of

hyperplanes, however, the notions coincide [Feichtner and Kozlov 2004, Propo-

sition 4.5.(2)].

Example 4.2 (Geometric versus combinatorial building sets). Let A

denote the following arrangement of 3 subspaces in R
4:

A1 : x4 = 0, A2 : x1 = x2 = 0, A3 : x1 = x3 = 0.

The intersection lattice L(A) is a boolean algebra on 3 elements; we depict the

lattice with its codimension labelling in Figure 9. The set of atoms obviously is

a combinatorial building set. However, any geometric building set must contain

the intersection A2 ∩A3: its codimension is not the sum of codimensions of its

(combinatorial) factors A2 and A3.

L(A)

1 2 2

3 3

4

3

0

A1 A2 A3

A2 ∩A3

Figure 9. Geometric versus combinatorial building sets.
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As we mentioned before, there are wonderful model constructions for arrange-

ment complements M(A) that start from an arbitrary geometric building set G

of the intersection lattice L(A) [De Concini and Procesi 1995a, 3.1]: In Def-

inition 2.2, replace the product on the right hand side of (2–1) by a product

over building set elements in L, and obtain the wonderful model YA,G by again

taking the closure of the image of M(A) under Ψ. In Definition 2.3, replace the

linear extension of L
op

>0̂
by a nonincreasing linear order on the elements in G, and

obtain the wonderful model YA,G by successive blowups of subspaces in G, and

of proper transforms of such.

The key properties of these models are analogous to those listed in Theo-

rem 2.5, where in part (2), lattice elements are replaced by building set ele-

ments, and in part (3), chains in L as indexing sets of nonempty intersections of

irreducible components of divisors are replaced by nested sets. Hence, the face

poset of the stratification of YA,G given by irreducible components of divisors

and their intersections coincides with the face poset of the nested set complex

N(L,G). Compare Examples 2.6 and 3.3, where we found that nested sets with

respect to the minimal building set Gmin in Π4 index nonempty intersections of

irreducible divisor components in the arrangement model YA3,Gmin
.

While the intersection lattice L(A) captures the combinatorics of the strat-

ification of V given by subspaces of A and their intersections, the nested set

complex N(L,G) captures the combinatorics of the divisor stratification of the

wonderful model YA,G. More than that: combinatorial blowups turn out to be

the right concept to describe the incidence change of strata during the construc-

tion of wonderful arrangement models by successive blowups:

Theorem 4.3 [Feichtner and Kozlov 2004, Proposition 4.7(1)]. Let A be a com-

plex subspace arrangement , G a geometric building set in L(A), and G1, . . . , Gt

a nonincreasing linear order on G. Let Bli(A) denote the result of blowing up

strata G1, . . . , Gi, for i ≤ t, and denote by Li the face poset of the stratification

of Bli(A) by proper transforms of subspaces in A and the exceptional divisors.

Then the poset Li coincides with the successive combinatorial blowups of L in

G1, . . . Gi:

Li = BlGi
(. . . (BlG2

(BlG1
L)) . . .).

Combinatorial building sets, nested sets and combinatorial blowups occur in

other situations and prove to be the right concept for describing stratifications

in more general model constructions. This applies to the wonderful conical com-

pactifications of MacPherson and Procesi [1998] as well as to models for mixed

subspace and halfspace arrangements and for stratified real manifolds by Gaiffi

[2003].

Also, combinatorial blowups describe the effect which stellar subdivisions in

polyhedral fans have on the face poset of the fans. In fact, combinatorial blowups

describe the incidence change of torus orbits for resolutions of toric varieties by
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consecutive blowups in closed torus orbits. This implies, in particular, that for

any toric variety and for any choice of a combinatorial building set in the face

poset of its defining fan, we obtain a resolution of the variety with torus orbit

structure prescribed by the nested set complex associated to the chosen building

set. We believe that such combinatorially prescribed resolutions can prove useful

in various concrete situations (see [Feichtner and Kozlov 2004, Section 4.2] for

further details).

There is one more issue about nested set stratifications of maximal wonder-

ful arrangement models that we want to discuss here, mostly in perspective of

applications in Section 5. According to Definition 2.2, any point in the model

YA can be written as a collection of a point in V and lines in V , one line for

each element in L(A). There is a lot of redundant information in this rendering,

e.g., points on the open stratum π−1(M(A)) are fully determined by their first

“coordinate entry”, the point in M(A) ⊆ V .

Here is a more economic encoding of a point ω on YA [Feichtner and Kozlov

2003, Section 4.1]: we find that ω can be uniquely written as

ω = (x,H1, `1,H2, `2, . . . ,Ht, `t) = (x, `1, `2, . . . , `t), (4–1)

where x is a point in V , the H1, . . . ,Ht form a descending chain of subspaces

in L>0̂, and the `i are lines in V . More specifically, x = π(ω), and H1 is the

maximal lattice element that, as a subspace of V , contains x. The line `1 is

orthogonal to H1 and corresponds to the coordinate entry of ω indexed by H1 in

P(V/H1). The lattice element H2, in turn, is the maximal lattice element that

contains both H1 and `1. The specification of lines `i, i.e., lines that correspond

to coordinates of ω in P(V/Hi), and the construction of lattice elements Hi+1,

continues analogously for i ≥ 2 until a last line `t is reached whose span with

Ht is not contained in any lattice element other than the full ambient space V .

Observe that the Hi are determined by x and the sequence of lines `i; we choose

to include the Hi in order to keep the notation more transparent.

The full coordinate information on ω can be recovered from (4–1) by setting

H0 =
⋂

A, `0 = 〈x〉, and retrieving the coordinate ωH indexed by H ∈ L>0̂ as

ωH = 〈`j ,H〉/H ∈ P(V/H),

where j is chosen from {1, . . . , t} such that H ≤ Hj , but H 6≤ Hj+1.

A nice feature of this encoding is that for a given point ω in YA we can tell

the open stratum in the nested set stratification which contains it:

Proposition 4.4 [Feichtner and Kozlov 2003, Proposition 4.5]. A point ω in a

maximal arrangement model YA is contained in the open stratum indexed by the

chain H1>H2> . . . >Ht in L>0̂ if and only if its point/line description (4–1)

reads ω = (x,H1, `1,H2, `2, . . . ,Ht, `t).
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4.2. A wealth of geometric meaning for D(L,G). We turn to the algebra

D(L,G) that we defined for any atomic lattice L and combinatorial building set

G in L in Section 3.2. We give two geometric interpretations for this algebra;

one is restricted to L being the intersection lattice of a complex hyperplane

arrangement and originally motivated the definition of D(L,G), the other applies

to any atomic lattice and provides for a somewhat unexpected connection to toric

varieties.

We comment briefly on the projective version of wonderful arrangement mod-

els that we need in this context (see [De Concini and Procesi 1995a, § 4] for

details). For any arrangement of linear subspaces A in V , a model for its pro-

jectivization PA = {PA | A ∈ A} in PV , i.e., for M(PA) = PV \
⋃

PA, can

be obtained by replacing the ambient space V by its projectivization PV in the

model constructions 2.2 and 2.3. The constructions result in a smooth projective

variety that we denote by Y P
A. A model Y P

A,G for a specific geometric building set

G in L can be obtained analogously. In fact, under the assumption that P(
⋂

A)

is contained in the building set G, the affine model YA,G is the total space of a

(real or complex) line bundle over the projective model Y P
A,G which is isomorphic

to the divisor component in YA,G indexed with
⋂

A.

The most prominent example of a projective arrangement model is the min-

imal wonderful model for the complex braid arrangement, YAC

n−2
,Gmin

. It is iso-

morphic to the Deligne–Knudson–Mumford compactification M0,n of the moduli

space of n-punctured complex projective lines [De Concini and Procesi 1995a,

4.3].

Here is the first geometric interpretation of D(L,G) in the case of L being the

intersection lattice of a complex hyperplane arrangement.

Theorem 4.5 [De Concini and Procesi 1995b; Feichtner and Yuzvinsky 2004].

Let L = L(A) be the intersection lattice of an essential arrangement of complex

hyperplanes A and G a building set in L which contains the total intersection

of A. Then, D(L,G) is isomorphic to the integral cohomology algebra of the

projective arrangement model Y P
A,G:

D(L,G) ∼= H∗(Y P
A,G,Z).

Example 4.6 (Cohomology of braid arrangement models). The pro-

jective arrangement model Y P
A2

is homeomorphic to the exceptional divisor in

YA2
= Bl{0}C

2, hence to CP1. Its cohomology is free of rank 1 in degrees 0 and

2 and zero otherwise. Compare with D(Π3,Gmax) in Example 3.8.

The projective arrangement model Y P
A3,Gmin

is homeomorphic to M0,5, whose

cohomology is known to be free of rank 1 in degrees 0 and 4, free of rank 5 in

degree 2, and zero otherwise. At least the coincidence of ranks is easy to verify

in comparison with D(Π4,Gmin) in Example 3.8.
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Theorem 4.5 in fact gives an elegant presentation for the integral cohomology

of M0,n
∼= Y P

An−2,Gmin
in terms of generators and relations:

H∗(M0,n) ∼= D(Πn−1,Gmin)

∼= Z [ {xS}S⊆[n−1],|S|≥2 ]
/〈 xS xT for S ∩ T 6= ?, S 6⊆T, T 6⊆S,

∑
{i,j}⊆S

xS for 1≤ i< j≤n− 1

〉
.

A lot of effort has been spent on describing the cohomology of M0,n (see

[Keel 1992]), but none of the presentations comes close to the simplicity of the

one stated above.

A nice expression for the Hilbert function of H∗(M0,n) has been derived

in [Yuzvinsky 1997] as a consequence of a monomial linear basis for minimal

projective arrangement models presented there.

To propose a more general geometric interpretation for D(L,G), we start by de-

scribing a polyhedral fan Σ(L,G) for any atomic lattice L and any combinatorial

building set G in L.

Definition 4.7 (A simplicial fan realizing N(L,G)). Let L be an atomic

lattice with set of atoms A = {A1, . . . , An}, G a combinatorial building set in L.

For any G ∈ G define the characteristic vector vG in R
n by

(vG)i :=

{
1 if G ≥ Ai,

0 otherwise,
for i = 1, . . . , n.

The simplicial fan Σ(L,G) in R
n is the collection of cones

VS := cone{vG | G ∈ S}

for S nested in G.

By construction, Σ(L,G) is a rational, simplicial fan that realizes the nested set

complex N(L,G). The fan gives rise to a (noncompact) smooth toric variety

XΣ(L,G) [Feichtner and Yuzvinsky 2004, Proposition 2].

Example 4.8 (The fan Σ(Π3,Gmax) and its toric variety). We depict

Σ(Π3,Gmax) in Figure 10. The associated toric variety is the blowup of C
3

in {0} with the proper transforms of coordinate axes removed.

v23

v123

v13

v12

Figure 10. The simplicial fan Σ(Π3,Gmax).
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The algebra D(L,G) here gains another geometric meaning, this time for any

atomic lattice L. The abstract algebraic detour of considering D(L,G) in this

general setting is rewarded by a somewhat unexpected return to geometry:

Theorem 4.9 [Feichtner and Yuzvinsky 2004, Theorem 3]. For an atomic lattice

L and a combinatorial building set G in L, D(L,G) is isomorphic to the Chow

ring of the toric variety XΣ(L,G),

D(L,G) ∼= Ch∗(XΣ(L,G)).

5. Adding Arrangement Models to the Geometer’s Toolbox

Let a differentiable action of a finite group Γ on a smooth manifoldM be given.

The goal is to modify the manifold by blowups so as to have the group act on

the resolution M̃ with abelian stabilizers— the quotient M̃/Γ then has much

more manageable singularities than the original quotient. Such modifications

for the sake of simplifying quotients have been of crucial importance at various

places. One instance is Batyrev’s work [1999] on stringy Euler numbers, which

in particular implies a conjecture of Reid [1992], and constitutes substantial

progress towards higher dimensional MacKay correspondence.

There are two observations that point to wonderful arrangement models as a

possible tool in this context. First, the model construction is equivariant if the

initial setting carries a group action: if a finite group Γ acts on a real or complex

vector space V , and the arrangement A is Γ-invariant, then the arrangement

model YA,G carries a natural Γ-action for any Γ-invariant building set G ⊆ L(A).

Second, the model construction is not bound to arrangements. In fact, locally

finite stratifications of manifolds which are local subspace arrangements, i.e.,

locally diffeomorphic to arrangements of linear subspaces, can be treated in a

fully analogous way. In the complex case, the construction has been pushed to

so-called conical stratifications in [MacPherson and Procesi 1998] with a real

analogue in [Gaiffi 2003].

The significance of De Concini–Procesi model constructions for abelianizing

group actions on complex varieties has been recognized by Borisov and Gunnells

[2002], following work of Batyrev [1999; 2000]. Here we focus on the real setting.

5.1. Learning from examples: permutation actions in low dimension.

Consider the action of the symmetric group Sn on real n-dimensional space by

permuting coordinates:

σ (x1, . . . , xn) = (xσ(1), . . . , xσ(n)) for σ ∈ Sn, x ∈ R
n.

Needless to say, we find a wealth of nonabelian stabilizers: For a point x ∈

R
n that induces the set partition π = (B1| . . . |Bt) of {1, . . . , n} by pairwise

coinciding coordinate entries, the stabilizer of x with respect to the permutation

action is the Young subgroup Sπ = SB1
× . . .× SBt

of Sn, where SBi
denotes

the symmetric subgroup of Sn permuting the coordinates in Bi for i = 1, . . . , t.
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The locus of nontrivial stabilizers for the permutation action of Sn, in fact, is

a familiar object: it is the rank (n−1) braid arrangement An−1. A natural idea

that occurs when trying to abelianize a group action by blowups is to resolve

the locus of nonabelian stabilizers in a systematic way. We look at some low-

dimensional examples.

Example 5.1 (The permutation action of S3). We consider S3 acting

on real 2-space V ∼= R
3/∆. The locus of nontrivial stabilizers consists of the 3

hyperplanes in A2: for x ∈ Hij \ {0}, stabx = 〈(ij)〉 ∼= Z2; in fact, 0 is the only

point having a nonabelian stabilizer, namely it is fixed by all of S3.

Blowing up {0} in V according to the general idea outlined above, we recognize

the maximal wonderful model for A2 that we discussed in Example 2.4.

H23

H12

H13

A2 ⊆ V YA2

stab (x, 〈x〉)=1

(x, 〈x〉)

ψ23 ψ13

x

(0, `)

ψ12

stab (y,H12)=〈(12)〉

y

stab (0, `)=1

stabψ12 = 〈(12)〉

(y,H12)

Figure 11. S3 acting on YA2
.

By construction, S3 acts coordinate-wise on YA2
. For points on proper trans-

forms of hyperplanes (y,Hij) ∈ Dij , 1 ≤ i < j ≤ 3, stabilizers are of or-

der two: stab (y,Hij) = 〈(ij)〉 ∼= Z2. Otherwise, stabilizers are trivial, unless

we are looking at one of the three points ψij marked in Figure 11. E.g., for

ψ12=(0, 〈(1,−1, 0)〉), stabψ12 = 〈(12)〉 ∼= Z2. Although the transposition (12)

does not fix the line 〈(1,−1, 0)〉) point-wise, it fixes ψ12 as a point in YA2
! We

see that transpositions (ij) ∈ S3 act on the open Möbius band YA2
by central

symmetries in ψij .

Observe that the nested set stratification is not fine enough to distinguish

stabilizers: as the points ψij show, stabilizers are not isomorphic on open strata.

Example 5.2 (The permutation action of S4). We now consider S4 acting

on real 3-space V ∼= R
4/∆. The locus of nonabelian stabilizers consists of the

triple intersections of hyperplanes in A3, i.e., the subspaces contained in the

minimal building set Gmin in L(A3)=Π4. Our general strategy suggests to look

at the arrangement model YA,Gmin
.

We consider a situation familiar to us from Example 2.6. In Figure 12, we illus-

trate the situation after the first blowup step in the construction of YA,Gmin
, i.e.,

the exceptional divisor after blowing up {0} in V with the stratification induced

by the hyperplanes of A3. To complete the construction of YA,Gmin
, another

4 blowups in the triple intersections of hyperplanes are necessary, the result of
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14

13

34
134

D13

D34

D134

D14

12|34

234

34

124

13 134

14|23

23
14

123
12

ν=(0, 〈(1,−1,−1, 1)〉

(0, 〈(1,−1, 1,−1)〉)

24
13|24

ω=(0, 〈(1,−1, 0, 0)〉

stab ν ∼= Z2 o Z2

stabω ∼= Z2 × Z2

Figure 12. S4 acting on Bl{0}V , where V = R
4/∆.

which we illustrate locally for the triple intersection corresponding to 134. Triple

intersections of hyperplanes in Bl{0}V have stabilizers isomorphic to S3 — the

further blowups in triple intersections are indeed necessary to obtain an abelian-

ization of the permutation action.

Again, we observe that the nested set stratification on YA,Gmin
does not dis-

tinguish stabilizers: we indicate subdivisions of nested set strata resulting from

nonisomorphic stabilizers by dotted lines, respectively unfilled points in Fig-

ure 12.

We now look at stabilizers of points on the model YA,Gmin
. We find points

with stabilizers isomorphic to Z2 — any generic point on a divisor Dij will be

such. We also find points with stabilizers isomorphic to Z2 × Z2, e.g., the point

ω on D1234 corresponding to the line 〈(1,−1, 0, 0)〉.

But, on YA,Gmin
we also find points with nonabelian stabilizers! For example,

the intersection ofD14 andD23 onD1234 corresponding to the line 〈(1,−1,−1, 1)〉

is stabilized by both (14) and (12)(34) in S4, which do not commute. In fact,

the stabilizer is isomorphic to Z2 oZ2.

This observation shows that blowing up the locus of nonabelian stabilizers is

not enough to abelianize the action! Further blowups in double intersections of

hyperplanes are necessary, which suggests, contrary to our first assumption, the

maximal arrangement model YA3
as an abelianization of the permutation action.

Some last remarks on this example: observe that stabilizers of points on YA3

all are elementary abelian 2-groups. We will later see that the strategy of resolv-

ing finite group actions on real vector spaces and even manifolds by constructing
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a suitable maximal De Concini–Procesi model does not only abelianize the ac-

tion, but yields stabilizers isomorphic to elementary abelian 2-groups.

Also, it seems we cannot do any better than that within the framework of

blowups, i.e., we neither can get rid of nontrivial stabilizers, nor can we reduce

the rank of nontrivial stabilizers any further. The divisors Dij are stabilized

by transpositions (ij) which supports our first claim. For the second claim,

consider the point ω = (0, `1) in YA3
with `1 = 〈(1,−1, 0, 0)〉 (here we use the

encoding of points on arrangement models proposed in (4–1)). We have seen

above that stabω ∼= Z2 × Z2, in fact stabω = 〈(12)〉 × 〈(34)〉. Blowing up YA3

in ω means to again glue in an open Möbius band. Points on the new exceptional

divisor Dω
∼= RP1 will be parameterized by tupels (0, `1, `2), where `2 is a line

orthogonal to `1 in V . A generic point on this stratum will be stabilized only

by the transposition (12), specific points however, e.g., (0, `1, 〈(0, 0, 1,−1)〉) will

still be stabilized by all of stabω ∼= Z2 × Z2.

5.2. Abelianizing a finite linear action. Following the basic idea of propos-

ing De Concini–Procesi arrangement models as abelianizations of finite group

actions and drawing from our experiences with the permutation action on low-

dimensional real space in Section 5.1 we here treat the case of finite linear actions.

Let a finite group Γ act linearly and effectively on real n-space R
n. Without

loss of generality, we can assume that the action is orthogonal [Vinberg 1989,

Section 2.3, Theorem 1]; we fix the appropriate scalar product throughout.

Our strategy is to construct an arrangement of subspaces A(Γ) in real n-space,

and to propose the maximal wonderful model YA(Γ) as an abelianization of the

given action.

Construction 5.3 (The arrangement A(Γ)). For any subgroup H in Γ,

define a linear subspace

L(H) := span{ ` | ` line in R
n with H ◦ ` = ` }, (5–1)

the linear span of all lines in V that are invariant under the action of H.

Denote by A(Γ) = A(Γ ˘ R
n) the arrangement of proper subspaces in R

n

that are of the form L(H) for some subgroup H in Γ.

Observe that the arrangement A(Γ) never contains any hyperplane: if L(H) were

a hyperplane for some subgroup H in Γ, then also its orthogonal line ` would be

invariant under the action of H. By definition of L(H), however, ` would then

be contained in L(H) which in turn would be the full ambient space.

Theorem 5.4 [Feichtner and Kozlov 2005, Thm. 3.1]. For any effective linear

action of a finite group Γ on n-dimensional real space, the maximal wonderful

arrangement model YA(Γ) abelianizes the action. Moreover , stabilizers of points

on the arrangement model are isomorphic to elementary abelian 2-groups.

The first example coming to mind is the permutation action of Sn on real n-

space. We find that A(Sn) is the rank 2 truncation of the braid arrangement,
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A
rk≥2
n−1 , i.e., the arrangement consisting of subspaces in An−1 of codimension at

least 2. For details, see [Feichtner and Kozlov 2005, Section 4.1]. In earlier work

[Feichtner and Kozlov 2003], we had already proposed the maximal arrangement

model of the braid arrangement as an abelianization of the permutation action.

We proved that stabilizers on YAn−1
are isomorphic to elementary abelian 2-

groups by providing explicit descriptions of stabilizers based on an algebraic-

combinatorial set-up for studying these groups.

5.3. Abelianizing finite differentiable actions on manifolds. We now

look at a generalization of the abelianization presented in Section 5.2. Assume

that Γ is a finite group that acts differentiably and effectively on a smooth real

manifold M . We first observe that such an action induces a linear action of

the stabilizer stabx on the tangent space TxM at any point x in M . Hence,

locally we are back to the setting that we discussed before: For any subgroup

H in stabx, we can define a linear subspace L(x,H) := L(H) of the tangent

space TxM as in (5–1), and we can combine the nontrivial subspaces to form an

arrangement Ax := A(stab ˘ TxM) in TxM .

Combined with the information that a model construction in the spirit of

De Concini–Procesi arrangement models exists also for local subspace arrange-

ments, we need to stratify the manifold so as to locally reproduce the arrange-

ment Ax in any tangent space TxM . Here is how to do that:

Construction 5.5 (The stratification L). For any x ∈ M , and any sub-

group H in stabx, define a normal (!) subgroup F (x,H) in H by

F (x,H) = {h ∈ H | h ◦ y = y for any y ∈ L(x,H)};

F (x,H) is the subgroup of elements in H that fix all of L(x,H) point-wise.

Define L(x,H) to be the connected component of the fixed point set of F (x,H)

in M that contains x. Now combine these submanifolds so as to form a locally

finite stratification

L = (L(x,H))x∈M, H≤stab x.

Observe that, as we tacitly did for stratifications induced by arrangements or by

irreducible components of divisors, we only specify strata of proper codimension.

The stratification L locally coincides with the tangent space stratifications

coming from our linear setting. Technically speaking: for any x ∈M , there exists

an open neighborhood U of x in M , and a stabx-equivariant diffeomorphism

Φx : U → TxM such that

Φx(L(x,H)) = L(x,H) (5–2)

for any subgroup H in stabx. In particular, (5–2) shows that the stratification

L of M is a local subspace arrangement.

Theorem 5.6 [Feichtner and Kozlov 2005, Theorem 3.4]. Let a finite group Γ act

differentiably and effectively on a smooth real manifold M . Then the wonderful
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model YL induced by the locally finite stratification L of M abelianizes the action.

Moreover , stabilizers of points on the model YL are isomorphic to elementary

abelian 2-groups.

Example 5.7 (Abelianizing the permutation action on RP2). We take

a small nonlinear example: the permutation action of S3 on the real projective

plane induced by S3 permuting coordinates in R
3.

We picture RP2 by its upper hemisphere model in Figure 13, where we agree

to place the projectivization of ∆⊥ on the equator. The locus of nontrivial

stabilizers of the S3 permutation action consists of the projectivizations of hy-

perplanes Hij :xi = xj , for 1 ≤ i < j ≤ 3, and three additional points Ψij on

P∆⊥ indicated in Figure 13. The S3 action can be visualized by observing that

transpositions (ij) ∈ S3 act as reflections in the lines PHij , respectively.

∆ = [1 : 1 : 1]

Ψ23 = [0 : 1 : −1]
[1 : −2 : 1]

Ψ12=[1 : −1 : 0]

[−2 : 1 : 1] Ψ13 = [1 : 0 : −1]

[1 : 1 : −2]

PH13

PH23

PH12

Figure 13. S3 acting on RP
2: the stabilizer stratification.

We find that the arrangements A` in the tangent spaces T`RP2 are empty,

unless ` = [1:1:1]. Hence, (5–2) allows us to conclude that the L-stratification of

RP2 consists of a single point, [1:1:1]. Observe that the S3-action on T[1:1:1]RP2

coincides with the permutation action of S3 on R
3/∆.

The wonderful model YL hence is a Klein bottle, the result of blowing up RP2

in [1:1:1], i.e., glueing a Möbius band into the punctured projective plane.

Observe that the L-stratification is coarser than the codimension 2 truncation

of the stabilizer stratification: The isolated points Ψij on P∆⊥ have nontrivial

stabilizers, but do not occur as strata in the L-stratification.
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Thinnest Covering of a Circle by Eight,

Nine, or Ten Congruent Circles

GÁBOR FEJES TÓTH

Abstract. Let rn be the maximum radius of a circular disc that can be

covered by n closed unit circles. We show that rn = 1 + 2 cos(2π/(n−1))

for n = 8, n = 9, and n = 10.

1. Introduction

What is the maximum radius rn of a circular disk which can be covered by

n closed unit circles? The determination of rn for n ≤ 4 is an easy task: we

have r1 = r2 = 1, r3 = 2/
√

3 and r4 =
√

2. The problem of finding r5 has been

motivated by a game popular on fairs around the turn of the twentieth century

[Neville 1915; Ball and Coxeter 1987, pages 97–99]. The goal of the game was

to cover a circular space painted on a cloth by five smaller circles equal to each

other. The difficulty consisted in the restriction that an “on-line algorithm” had

to be used, that is no circle was allowed to be moved once it had been placed.

Neville [1915] conjectured that r5 = 1.64100446 . . . and this has been verified by

K. Bezdek [1979; 1983] who also determined the value of r6 = 1.7988 . . . . The

proofs of these cases are complicated. The case n = 7 is again easy. We have

r7 = 2 and if 7 unit circles cover a circle C7 of radius 2, then one of them is

concentric with C7 while the centers of the other circles lie in the vertices of a

regular hexagon of side
√

3 concentric with C7. In his thesis Dénes Nagy [1975]

claimed without proof that rn = 1 + 2 cos
(

2π/(n−1)
)

for n = 8 and n = 9 and

that, as for n = 7, the best arrangement has (n−1)-fold rotational symmetry.

He conjectured the same for n = 10. Krotoszyński [1993] claimed to have proved

this even for n ≤ 11. Unfortunately, his proof contains some errors. In fact,

Melissen and Schuur (see [Melissen 1997]) gave a counter example for n = 11.

Part of this work was done at the Mathematical Sciences Research Institute at Berkeley, CA,

where the author was participating in a program on Discrete and Computational Geometry.

The research was also supported by OTKA grants T 030012, T 038397, and T 043520.
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In this note we settle the cases n = 8, n = 9, and n = 10.

Theorem. Let rn be the maximum radius of a circular disk which can be covered

by n unit circles. Then we have for n = 8, 9, and 10

rn = 1 + 2 cos
2π

n− 1
.

Moreover , if for n = 8, n = 9, or n = 10, n unit circles cover a circle Cn of radius

rn, then one of them is concentric with Cn and the centers of the other circles

are situated in the vertices of a regular (n−1)-gon at a distance 2 sin
(

π/(n−1)
)

from the center of Cn.

The analogous problems of the thinnest covering of a square and an equilateral

triangle with a given number of equal circles, as well as the dual problem con-

cerning the densest packing of a given number of equal circles in a circle, a square

or an equilateral triangle have been investigated intensively. A comprehensive

account can be found in [Melissen 1997].

Generally, given a compact set C in a metric space, one can consider the

problems of the densest packing of n balls in C and the thinnest covering of C

with n balls. In lack of similarity the problems are formulated in a dual form.

Let rC(n) be the maximum number with the property that n balls of radius

rC(n) can be packed in C and let RC(n) be the minimum number with the

property that n balls of radius rC(n) can cover C. The basic task is, of course,

to design effective algorithms determining the values of rC(n) and RC(n), as well

as the corresponding arrangements. So far only the case of rC(n) for C a square

has been solved, by an algorithm devised by Peikert [1994]; see also [Peikert

et al. 1992]. Exact solutions are generally known only for small values of n.

The only exception is the problem of densest packing of circles in an equilateral

triangle. When C is an equilateral triangle, rC(n) is known for all n of the

form k(k + 1)/2, the triangular numbers; see [Groemer 1960; Oler 1961]. If C is

an equilateral triangle with side-length 1, we have for such triangular numbers

rC(n) = 1/2(k +
√

3 − 1). The optimal arrangement is given by the regular

triangular lattice.

Many conjectured best arrangements of circles, both for packing and for cov-

ering, have been constructed using different heuristic algorithms. The examples

show that optimal arrangements quite often contain freely movable circles. This

raises the following questions.

Does there exist a compact set C for which for infinitely many n an optimal

packing of (covering with) n congruent circles contains a freely movable circle?

Does there exist a C for which there is no n at all such that an optimal packing

of (covering with) n congruent circles contains a freely movable circle? Is there

a constant c, possibly depending on C but independent of n such that the number

of freely movable circles in an optimal arrangement is at most c?
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The densest packing of n = k(k + 1)/2 circles in an equilateral triangle shows

another interesting phenomenon. According a conjecture of Erdős and Oler

[Croft et al. 1991, page 248] if n is a triangular number, then rC(n) = rC(n −
1), that is, the optimal arrangement for n − 1 circles is obtained by removing

one circle from the optimal arrangement of n circles. The conjecture has been

confirmed for n = 6 and n = 10 [Melissen 1997]. There is a similar situation

on the sphere: it is known (see [Rankin 1955], for example) that if C = Sd, the

d-dimensional sphere, then rC(d + 3) = rC(d + 4) = . . . = rC(2d + 2). This

suggests the following question.

For a given compact set C, are there natural numbers k = k(C) and K = K(C)

such that rC(n) > rC(n+ k) and RC(n) > RC(n+K) for every n?

I conjecture that the answer is yes if C = Sd and also if C is a compact convex set

in Euclidean or spherical space, but I would not be surprised if the answer turned

out to be no for general compact sets, or even for convex bodies in hyperbolic

geometry.

2. Proof of the Theorem

For the proof we modify the argument used by Schütte [1955] for the de-

termination of the thinnest covering of the sphere by 5 and 7 congruent caps.

Clearly, it suffices to show the second statement of the theorem, from that it

follows immediately that no circle of radius greater than rn can be covered by

n unit circles (n = 8, n = 9, or 10). The proof of the three cases are similar,

however the case n = 10 is more complicated. We shall leave two of the more

involved discussions for n = 10 to Section 3. In the treatment of all three cases

the functions fr(α) and Fr(α) defined for 0 ≤ α ≤ π by

fr(α) = 2 arcsin
sin(α/2)

r

and

Fr(α) = r2
(

arcsin
sin(α/2)

r
− 1

2
sin

(

2 arcsin
sin(α/2)

r

)

)

+
sinα

2

play an important role. Here r > 2 is not a variable but a parameter.

The geometric meaning of fr(α) and Fr(α) is the following: Let C be a circle

of radius r centered at o and let ˜C be a unit circle with center õ ∈ C such that

bdC and bd ˜C intersect, say in a and b. If ]aõb = α, then f(α) = ]aob and

F (α) is the area of the domain bounded by the segments õa, õb and the arc ab

of bdC.

We have

f ′r(α) =
cos(α/2)

(

r2 − sin2(α/2)
)1/2

, f ′′r (α) = − (r2 − 1) sin(α/2)

2
(

r2 − sin2(α/2)
)3/2

,
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F ′
r(α) =

sinα sin(α/2)

2
(

r2 − sin2(α/2)
)1/2

+
cosα

2
,

F ′′
r (α) = −

(

sin
α

2

)

(

cosα
(

sin2(α/2) − r2
)

− r2 cos2(α/2)

2(r2 − sin2(α/2))3/2
+ cos

α

2

)

.

Hence it is easily seen that fr(α) is concave and strictly increasing for 0 ≤ α ≤ π.

The concavity of Fr(α) needs some calculation. To check it, we have to show

that

cosα
(

sin2 α

2
− r2

)

− r2 cos2
α

2
+ 2 cos

α

2

(

r2 − sin2 α

2

)3/2

> 0.

Introducing the abbreviations s = sin(α/2) and c = cos(α/2), we have

cosα
(

s2 − r2
)

− r2c2 + 2c
(

r2 − s2
)3/2

> cosα
(

s2 − r2
)

− r2c2 + 2c
(

r2 − s2
)

=
(

2c2 − 1
) (

1 − c2 − r2
)

− r2c2 + 2c
(

r2 − 1 + c2
)

= (r2 − 1) (1 − c) (1 + 3c) + 2c3 (1 − c) > 0.

Let Cn be a circle of radius rn centered at o and let C0, . . . , Cn−1 be closed

unit circles with centers o0, . . . , on−1 covering Cn. We assume that for a circle

Ci, i = 0, . . . , n−1, for which Ci∩bdCn 6= ? the centers of Ci and Cn lie on the

same side of the radical axis of the circles Ci and Cn. Otherwise we reflect Ci in

this radical axis and still get a covering of Cn. Let C0, . . . , Cn−1 be unit circles

in the position described in the theorem, that is so that C0 is concentric with

Cn and the centers ō1, . . . , ōn−1 of C1, . . . , Cn−1 are situated in the vertices of

a regular (n−1)-gon at distance 2 sin
(

π/(n−1)
)

from o. We are going to show

that the two arrangements of circles are congruent.

The following lemma claims that the two arrangements of circles {Ci}n
i=0 and

{Ci}n
i=0 have the same topological structure.

Lemma. Exactly one of the circles {Ci}n−1

i=0
is contained in intCn. Moreover ,

no three of the circles intersecting bdCn can have a common point .

Since rn > 2, there is a circle, say C0, which is contained in intCn. Observe that

an arc of bdCn which is covered by a unit circle spans at o an angle not greater

than 2 arcsin(1/rn). Since

6 arcsin
1

r8
= 2.76326081 . . . < π and 7 arcsin

1

r9
= 2.989550105 . . . < π,

it follows that if n = 8 or n = 9, then Ci ∩ bdCn 6= ? for i = 1, . . ., n − 1. We

also observe that three unit circles with a common point cannot cover a part of

bdCn whose angle spanned at o exceeds 2 arcsin(2/rn). Since

4 arcsin
1

r8
+ arcsin

2

r8
= 2.942412903 . . . < π
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and

5 arcsin
1

r9
+ arcsin

2

r9
= 3.111686536 . . . < π,

it follows that for n = 8 and 9 no three of the circles Ci, i = 1, . . . , n − 1, can

have a common point.

This argument breaks down when n = 10. We have

7 arcsin
1

r10
= 2.841948021 . . . < π,

showing that at most two of the circles {Ci}9
i=0 are contained in intC10; however

8 arcsin
1

r10
= 3.24794059 . . . > π,

so we cannot exclude in this way that two of the circles {Ci}9
i=0 are contained in

intC10. Also the proof that no three of the circles intersecting bdCn can have

a common point requires a different argument. Melissen [1997, pp. 108–111]

proved the Lemma for n = 10 using an argument based on the investigation of

distances. In Section 3 we repeat Melissen’s argument for the proof of the first

part of the Lemma and give an alternative proof for the second statement, using

estimations of areas.

Let Di, i = 0, . . . , n− 1, be the Dirichlet cell of Ci with respect to Cn. From

the considerations above it follows that each vertex in the cell complex of the

Dirichlet cells is trihedral, D0 is an (n−1)-gon, while for i = 1, . . . , n−1, Di is a

curved quadrilateral bounded by three line segments and an arc of bdCn. Thus

the cell complex of the cells Di is isomorphic to the cell complex of the Dirichlet

cells Di of the circles Ci.

We introduce some notations. We describe them for the circles Ci. The same

symbols with a bar will be used for the corresponding objects and quantities for

the circles Ci (see Figure 1).

Let the vertices of D0 be p1, . . . , pn−1 and let the vertices of Dirichlet cells

on bdCn be q1, . . . , qn−1. We write pn = p1, qn = q1 and assume, as we may

without loss of generality, that the notation is chosen so that the vertices of Di

are pi, pi+1, qi+1, qi for i = 1, . . . , n− 1. We write

αi = ]qioiqi+1, βi = ]pioiqi, γi = ]pi+1oiqi+1,

δi = ]pioipi+1, εi = ]pio0pi+1.

We note that the assumption that o and oi lie on the same side of the radical

axis of Cn and Ci implies that

αi ≤ π

for i = 1, . . . , n− 1. It is easy to check that

ᾱi =
6π

n− 1
, β̄i = γ̄i =

(n− 5)π

n− 1
, and δ̄i = ε̄i =

2π

n− 1
.
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Figure 1.

Using the relation ᾱi = 6π/(n−1) one can verify that

f
(

6π

n− 1

)

=
2π

n− 1
.

We dissect Cn into the triangles Ti = pio0pi+1, T
∗
i = pioipi+1, T

−
i = pioiqi,

T+

i = pi+1oiqi+1 and into the regions Ri bounded by the segments oiqi, oiqi+1

and the arc qiqi+1 of bdCn, for i = 1, . . . , n−1. We shall estimate the total area of

these domains and show that it is less than the area of Cn unless the arrangement

of the circles C0, . . . , Cn−1 is congruent to that of the circles C0, . . . , Cn−1.

Observe that the triangles Ti and T ∗
i are congruent, so that

n−1
∑

i=1

δi =

n−1
∑

i=1

εi = 2π =

n−1
∑

i=1

δ̄i =

n−1
∑

i=1

ε̄i (1)

and
n−1
∑

i=1

(βi + γi) = (n− 1)2π −
n−1
∑

i=1

(αi + δi) = (n− 2)2π −
n−1
∑

i=1

αi. (2)

We have

2π =

n−1
∑

i=1

]qioqi+1 ≤
n−1
∑

i=1

frn
(αi) ≤ (n− 1)frn

(
∑n−1

i=1
αi

n− 1

)

.

Hence we get

n−1
∑

i=1

αi ≥ (n− 1)f−1
rn

(

2π

n− 1

)

= (n− 1)
6π

n− 1
=

n−1
∑

i=1

ᾱi. (3)

Now we are in the position to estimate the total area of the parts of Cn. Using

Jensen’s inequality we get
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n−1
∑

i=1

(a(Ti) + a(T ∗
i )) ≤

n−1
∑

i=1

sin εi ≤ (n− 1) sin

∑n−1

i=1
εi

n− 1
, (4)

n−1
∑

i=1

(a(T−
i ) + a(T+

i )) ≤ 1

2

n−1
∑

i=1

(sin βi + sin γi) ≤ (n− 1) sin

∑n−1

i=1
(βi + γi)

n− 1
, (5)

n−1
∑

i=1

a(Ri) ≤
n−1
∑

i=1

Frn
(αi) ≤ (n− 1)Frn

(
∑n−1

i=1
αi

n− 1

)

. (6)

In view of (1) we have

(n− 1) sin

∑n−1

i=1
εi

n− 1
=

n−1
∑

i=1

sin ε̄i =

n−1
∑

i=1

(a(T i) + a(T ∗
i )).

Write

α =
n−1
∑

i=1

αi

n− 1
.

Then we have, in view of (2),

∑n−1

i=1
(βi + γi)

n− 1
=

2(n− 2)π

n− 1
− α;

hence, by (5) and (6),

n−1
∑

i=1

(

a(T−
i ) + a(T+

i ) + a(Ri)
)

≤ (n− 1)

(

sin
(

2(n− 2)π

n− 1
− α

)

+ Frn
(α)

)

.

The function

sin

(

2(n− 2)π

n− 1
− α

)

+ Frn
(α)

is concave for 0 ≤ α ≤ π and, as it can be checked numerically, decreasing for

α = 6π/(n−1). Therefore it is decreasing for 6π/(n−1) ≤ α ≤ π. Observing

that

6π

n− 1
= ᾱi and

2(n− 2)π

n− 1
− 6π

n− 1
=

2(n− 10)π

n− 1
= β̄i = γ̄i,

we deduce that

n−1
∑

i=1

(

a(T−
i ) + a(T+

i ) + a(Ri)
)

≤ (n− 1)

(

sin
2(n− 10)π

n− 1
+ Frn

(

6π

n− 1

))

=
1

2

n−1
∑

i=1

(sin β̄i + sin γ̄i) +

n−1
∑

i=1

Frn
(ᾱi)

=

n−1
∑

i=1

(

a(T−
i ) + a(T+

i ) + a(Ri)
)

. (7)
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Adding inequalities (4) and (7) we get

a(Cn) =

n−1
∑

i=1

(a(Ti) + a(T ∗
i ) + a(T−

i ) + a(T+

i ) + a(Ri))

≤
n−1
∑

i=1

(a(T i) + a(T ∗
i ) + a(T −

i ) + a(T +

i ) + a(Ri)) = a(Cn).

Therefore we have equality in all of the inequalities (5)–(7). This can only

occur if the arrangements of the circles C0, . . . , Cn−1 and C0, . . . , Cn−1 are con-

gruent.

3. Proof of the Lemma for n = 10

Let C0, . . . , C9 be closed unit circles covering the circle C10 of radius r10. As in

the previous section, we denote the center of Ci, i = 0, . . . , 9 by oi and the center

of C10 by o. We shall follow the argument of Melissen to show that no eight of

the circles can cover bdC10. Suppose that bdC10 ⊂
⋃7

i=0
Ci. Since the angular

measure of an arc of bdC10 covered by a unit circle is at most 2 arcsin(1/r10)

and

7 arcsin
1

r10
= 2.841948021 . . . < π,

no proper subset of the circles Ci, i = 0, . . . , 7 covers bdC10, hence no three of

the arcs Ci ∩ bdC10, 0 ≤ i ≤ 7 intersect. This property defines a cyclic order

of the arcs Ci ∩ bdC10. We assume that the notation is chosen so that this

cyclic order coincides with the order of the indices, that is C0 ∩ C1 ∩ bdC10 6=
?, . . . , C6 ∩C7 ∩ bdC10 6= ?, C7 ∩C0 ∩ bdC10 6= ?. We choose points q1, . . . , q8
from the sets C0 ∩ C1 ∩ bdC10, . . . , C7 ∩ C0 ∩ bdC10, respectively.

Recall that the maximum angular measure of an arc of bdC10 covered by

three unit circles with a common point is 2 arcsin(2/r10). Since

arcsin
2

r10
+ 5arcsin

1

r10
= 2.940546309 . . . < π,

no three of the circles Ci, i = 0, . . . , 7 have a common point. Let

pi = bdCi−1 ∩ Ci ∩ intC10

for i = 1, . . . , 7, and p8 = C7 ∩ C0 ∩ intC10 (see Figure 2).

The main observation of Melissen is that the points pi, i = 1, . . . , 8, cannot

be covered by two circles. This follows easily from the following result:

Proposition. We have

|pipi+3| > 2 and |pipi+4| > 2

for i = 1, . . . , 8, with pi = pi+8.
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Figure 2.

Indeed, the first inequality readily implies that one of the circles C8 and C9

contains all points pi with an odd subscript and the other contains all points

with an even subscript. This, however, contradicts the second inequality.

In order to estimate the distances between the points pi we need a lower bound

for the distance |opi|. Let h(ϑ) be the minimum distance between o and a point

of intersection of the boundaries of two unit circles that cover an arc of angular

measure ϑ from bdC10, with 0 ≤ ϑ ≤ 4 arcsin(1/r10). It is easy to see that this

minimum distance is achieved in the symmetric position when each of the unit

circles cover an arc of angular measure ϑ
2

from bdC10. Using some trigonometry

we calculate that

h(ϑ) = r10 cos
ϑ

2
− 2

√

1 − r210 sin2 ϑ

4
cos

ϑ

4
.

Writing s = sin2 ϑ
4

we have

h′(ϑ) =

√
s
(

√

1 − r210s
2 − r10 cos ϑ

4

)2

√

1 − r210s
2

and

h′′(ϑ) =
−2r10(1 − r210s)

3/2 cos ϑ
2

+ (1 + r210 − 6r210s+ 4r410s
2) cos ϑ

4

8(1 − r210s
2)3/2

.

It immediately follows that h(ϑ) is increasing. Observing that

1 + r210 − 6r210s+ 4r410s
2 > r210 −

5

4

we get

h′′(ϑ) >
−2r10 cos ϑ

2
+ (r210 − 5

4
) cos ϑ

4

8
=

−4r10 cos2 ϑ
4

+ (r210 − 5

4
) cos ϑ

4
+ 2r10

8
.



370 GÁBOR FEJES TÓTH

The minimum of the right side is 1

8

(

r210 − 2r10 − 5

4

)

> 0, showing that h(ϑ) is

convex.

Now we are in the position to estimate the distances between the points pi.

Write ψ = ]piopi+3 and ξ = ]piopi+4. Then we have, on the one hand,

ψ = 2π − ]pi+3oqi+4 −
6

∑

j=4

]qi+joqi+j+1 − ]qi+7opi

≥ 2π − 2 arcsin
2

r10
− 6 arcsin

1

r10
= ψmin = 2.026062 . . . >

π

2

and

ξ = 2π − ]pi+4oqi+5 −
6

∑

j=45

]qi+joqi+j+1 − ]qi+7opi

≥ 2π − 2 arcsin
2

r10
− 4 arcsin

1

r10
= ξmin = 2.838048136 . . . >

π

2
,

and on the other hand,

ψ = ]pioqi+1 + ]qi+1oqi+2 + ]qi+2opi+3

≤ 2 arcsin
2

r10
+ 2arcsin

1

r10
= 2.633152 . . . < π

and
ξ = ]pioqi+1 + ]qi+1oqi+2 + ]qi+2opi+3 + ]pi+3opi+4

≤ 2 arcsin
2

r10
+ 4arcsin

1

r10
= 2π − ξmin.

By the law of cosines we get

|pipi+3| =
√

|opi|2 + |opi+3|2 − 2|opi||opi+3| cosψ,

|pipi+4| =
√

|opi|2 + |opi+4|2 − 2|opi||opi+4| cos ξ.

Let ϑ1, ϑ2, and ϑ3 be the angular measure of the arc of bdC10 covered by

the pair of circles Ci−1, Ci, Ci+2, Ci+3, and Ci+3, Ci+4, respectively. As the

triangles piopi+3 and piopi+4 are obtuse, we get lower bounds for |pipi+3| and

|pipi+4| if we substitute for |opi|, |opi+3|, and |opi+4| their minimum values and

for cosψ and cos ξ their maximum values:

|pipi+3| ≥
√

h2(ϑ1) + h2(ϑ2) − 2h(ϑ1)h(ϑ2) cosψmin,

|pipi+4| ≥
√

h2(ϑ1) + h2(ϑ3) − 2h(ϑ1)h(ϑ3) cos ξmin.

We have, for j = 2, 3,

ϑ1 + ϑj ≤ 2π − 8 arcsin
1

r10
.

Since h(ϑ) is increasing and convex, therefore,

h(ϑ1) + h(ϑj) ≥ 2h
(

π − 4 arcsin
1

r10

)

.
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The functions
√

h2
1 + h2

2 − 2h1h2 cosψmin and
√

h2
1 + h2

2 − 2h1h2 cos ξmin are ho-

mogeneous of degree one in the variables h1 and h2, thus, they are convex. They

are also increasing in both variables. Therefore

|pipi+3| ≥
√

2h2(π − 4 arcsin(1/r10))(1 − cosψmin) =

= 2h(π − 4 arcsin(1/r10)) sin
ψmin

2
= 2.02349 . . . > 2

and

|pipi+4| ≥
√

2h2(π − 4 arcsin(1/r10))(1 − cos ξmin) =

= 2h(π − 4 arcsin(1/r10)) sin
ξmin

2
= 2.357538 . . . > 2.

This completes the proof of the Proposition and at the same time the proof of

the first part of the Lemma.

It remains to show the second part of the Lemma, namely that if nine of the

circles C0, . . . , C9 intersect bdC10, then no three of them can have a common

point. This part of the Lemma can be settled by estimating areas in a similar

way as we did in the previous section.

Suppose that C0 ∩ bdC10 = ? and Ci ∩ bdC10 6= ? for i = 1, . . . , 9. We

shall scrutinize the cell complex formed by the Dirichlet cells Di of the circles

Ci, 0 ≤ i ≤ 9, with respect to C10. We may assume that Di ∩ bdC10 6= ?

for i = 1, . . . , 9, otherwise bdC10 is covered by eight circles, which we already

excluded. Without loss of generality we may suppose that the arcs Di ∩ bdC10,

i = 1, . . . , 9, are situated on bdC10 in their natural cyclic order.

We shall exclude the possibility that three of the Dirichlet cells D1, . . . , D9

intersect. We note that three circles can intersect without their corresponding

Dirichlet cells having a common point, however the case when no three of the

cells D1, . . . , D9 intersect has been already discussed in the previous section.

Observe that

Di ∩Di±j = ? for i = 1, . . . , 9, j = 3, 4. (8)

Otherwise the circles Ci, Ci±1 . . . , Ci±j cover from bdC10 an arc whose angular

measure is at most 2 arcsin(2/r10), while the angular measure of the arc cov-

ered by the other 9 − j − 1 ≤ 5 circles cannot exceed 10 arcsin(1/r10). Since

arcsin(2/r10) + 5 arcsin(2/r10) = 2.940546309 . . . < π, this is impossible.

Suppose that three of the cells D1, . . . , D9 intersect. In view of (8) they must

belong to consecutive indices. Assume, say, that D1∩D2∩D3 6= ?. If no further

triple of the cells D1, . . . , D9 intersect, then the cells are arranged as depicted

on the left side of Figure 3, where the Dirchlet cells are drawn by broken lines.

We shall refer to this situation as Case 1.

If there is another intersecting triple, say Di, Di+1, and Di+2, among the

cells D1, . . . , D9, then {1, 2, 3}∩{i, i+1, i+2} 6= ?. Otherwise the total angular
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measure of the arcs of bdC10 covered by the circles is at most 4 arcsin(2/r10) +

6 arcsin(1/r10) = 6.078289194 . . . < 2π. D2 cannot be the member of another in-

tersecting triple of cells. For, ifD2, D3, andD4 orD9, D1, andD2 intersect, then

D1 ∩D4 6= ? or D9 ∩D3 6= ?, which is impossible by (8). Thus, the only candi-

dates for another triple of intersecting cells are {D3, D4, D5} and {D8, D9, D1}.
As these triples are disjoint, only one of them can have a nonempty intersection.

Hence, the other case we have to investigate is that besides D1, D2, and D3, say

D3, D4, and D5 have a common point. This is Case 2 which is represented on

the right side of Figure 3.

As before, we denote by oi, i = 1, . . . , 10, the center of Ci, and by qi, i =

1, . . . , 9, the vertices of Dirichlet cells on bdC10 choosing the notation so that qi
is common to Di−1 and Di. We denote the vertices of D0 in their consecutive

order for the two cases by p1, p3, p4, . . . , p9 and p1, p3, p5, . . . , p9, respectively,

so that p1q1 is the side common to D1 and D9 (see Figure 3). We divide C10

into the following regions:

(i) the 16-gon P1 = p1o1p3o3p4o4p5o5p6o6p7o7p8o8p9o9, the pentagon P2 =

q2o1p3o3q3, the segment S1 cut off from C10 by the chord q2q3, the quadrilat-

erals Qi = oiqi+1oi+1pi+1, 3 ≤ i ≤ 9, and the regions Ri, 1 ≤ i ≤ 9, i 6= 2,

bounded by the segments oiqi, oiqi+1 and the arc qiqi+1 of bdCn in Case 1;

(ii) the 14-gon P1 = p1o1p3o3p5o5p6o6p7o7p8o8p9o9, the pentagons

P2 = q2o1p3o3q3 and P3 = q4o3p5o5q5,

the two segments S1 and S2 cut off from C10 by the chords q2q3 and q4q5,

respectively, the quadrilaterals Qi = oiqi+1oi+1pi+1, 5 ≤ i ≤ 9, and the

regions Ri, 1 ≤ i ≤ 9, i 6= 2, 4, bounded by the segments oiqi, oiqi+1 and the

arc qiqi+1 of bdCn in Case 2.
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As we saw in the previous section, P1 can be dissected into pairs of congruent

triangles one half of the triangles making up the cell D0. Hence we get

a(P1) ≤ 8 sin
π

4
= 5.656854249 . . . (9)

in Case 1 and

a(P1) ≤ 7 sin
2π

7
= 5.472820377 . . . (9′)

in Case 2.

The length of four sides of the pentagon P2 (P3) is bounded above by 1, while

the length of the fifth side is at most 2. The area of such a pentagon cannot

exceed the area of a pentagon with four sides of length 1 and one side of length

2 inscribed into a circle. The radius r of the circle is determined implicitly by

the equation

4 arcsin
1

2r
+ arcsin

1

r
= π.

r0 = 1.07326 is an upper bound for r and

r20

(

1

2
sin 2 arcsin

1

r0
+ 2 sin

π − arcsin 1

r0

2

)

= 2.284572282 . . .

is an upper bound for the area of the pentagon. Thus, we have

a(P2) ≤ 2.284572282 . . . (10)

and, in Case 2,

a(P2) + a(P3) ≤ 4.5691944564 . . . . (10′)

The area of S1 (S2) cannot exceed

r210

(

arcsin
1

r10
− 1

2
sin 2 arcsin

1

r10

)

= 0.27675335 . . . ,

the area of a segment of C10 cut off by a chord of length 2. Hence

a(S1) ≤ 0.27675335 . . . (11)

and

a(S1) + a(S2) ≤ 0.533506699 . . . . (11′)

Using the rough estimate a(Qi) ≤ 1 we get

9
∑

i=3

a(Qi) ≤ 7 (12)

and
9

∑

i=5

a(Qi) ≤ 5, (12′)

respectively.

We estimate the total area of the regions Ri using the method developed in

the previous section. Let x = ]q2oq3 in Case 1 and x = ]q2oq3 + ]q4oq5 in
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Case 2. Then we have x ≤ 2 arcsin(1/r10) and x ≤ 4 arcsin(1/r10), respectively.

Writing αi = ]qioiqi+1 we have

2π − x =
∑

1≤i≤9, i 6=2

]qioqi+1 ≤
∑

1≤i≤9, i 6=2

fr10
(αi) ≤ 8fr10

(

1

8

∑

1≤i≤9, i 6=2

αi

)

and

2π − x =
∑

1≤i≤9, i 6=2,4

]qioqi+1 ≤
∑

1≤i≤9, i 6=2,4

fr10
(αi) ≤ 8fr10

(

1

8

∑

1≤i≤9, i 6=2,4

αi

)

,

hence

1

8

∑

1≤i≤9, i 6=2

αi ≥ f−1
r10

(

2π−x
8

)

≥ f−1
r10

(

π − arcsin 1

r10

4

)

= 2.028453422 . . .

and

1

7

∑

1≤i≤9, i 6=2, 4

αi ≥ f−1
r10

(

π−x
7

)

≥ f−1
r10

(

2π − 4 arcsin 1

r10

7

)

= 1.948256547 . . . ,

respectively.

Observing that Fr10
(α) is decreasing for α ≥ 1.9 we get for the total area of

the regions Ri the estimate

∑

1≤i≤9, i 6=2

a(Ri) ≤
∑

1≤i≤9, i 6=2

Fr10
(αi) ≤ 8Fr10

(

1

8

∑

1≤i≤9, i 6=2

αi

)

≤ 8Fr10

(

f−1
r10

(

π − arcsin 1

r10

4

))

= 4.92397937 . . . (13)

in Case 1 and

∑

1≤i≤9, i 6=2,4

a(Ri) ≤
∑

1≤i≤9, i 6=2,4

Fr10
(αi) ≤ 7Fr10

(

1

7

∑

1≤i≤9, i 6=2,4

αi

)

≤ 7Fr10

(

f−1
r10

(

2π − 4 arcsin 1

r10

7

))

= 4.332295377 . . . (13′)

in Case 2.

From inequalities (9)–(13) we conclude that

a(C10) = a(P1) + a(P2) + a(S1) +

9
∑

i=3

a(Qi) +
∑

1≤i≤9, i 6=2

a(Ri) ≤

≤ 20.14216 < 20.1422 < a(C10)
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in Case 1, and it follows from (9′)–(13′) that

a(C10) = a(P1) + a(P2) + a(P3) + a(S1) + a(S2) +

9
∑

i=5

a(Qi) +
∑

1≤i≤9, i 6=2,4

a(Ri)

≤ 20 < 20.1422 < a(C10)

in Case 2, yielding in both cases a contradiction.

This completes the proof of the Lemma.
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On the Complexity of Visibility Problems

with Moving Viewpoints

PETER GRITZMANN AND THORSTEN THEOBALD

Abstract. We investigate visibility problems with moving viewpoints in

n-dimensional space. We show that these problems are NP-hard if the un-

derlying bodies are balls, H-polytopes, or V-polytopes. This is contrasted

by polynomial time solvability results for fixed dimension. We relate the

computational complexity to existing algebraic-geometric aspects of the

visibility problems, to the theory of packing and covering, and to the view

obstruction problem from diophantine approximation.

1. Introduction

Computer graphics and visualization deal with preparing data in order to show

(“visualize”) these data on a (two-dimensional) computer screen. In computer

graphics, the original data typically stem from the three-dimensional Euclidean

space R3, whereas in scientific visualization the data might originate from spaces

of much higher dimension (e.g., in information visualization or high-dimensional

sphere models in statistical mechanics) [Swayne et al. 1998].

In these scenarios, visibility computations play a central role [O’Rourke 1997].

In the simplest case, we are given a fixed viewpoint v ∈ Rn, and the scene consists

of a set B of bodies. Now the task is to compute a suitable two-dimensional

projection of the scene (“to render the scene”) that reflects which part of the

scene is visible from the viewpoint v. In a more dynamic setting, the viewpoint

can be moved interactively (see [Bern et al. 1994; Lenhof and Smid 1995], for

example). However, in general, after each movement of the viewpoint a new

rendering process is necessary. In order to speed up this process, commercial

renderers apply caching techniques [Wernecke 1994].

Mathematics Subject Classification: 68Q17, 68U05, 52C45, 11J13, 52A37.

Keywords: Visibility, computational complexity, computational geometry, simultaneous homo-

geneous diophantine approximation, view obstruction, computational convexity.
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From the algorithmic and geometric point of view it is desirable to establish

a more global view of the scene in advance and answer questions like: Which of

these bodies can be seen (at least partially) from some viewpoint within a given

viewpoint area? The bodies which are not even partially visible from any of these

viewpoints can be removed from the whole visualization process in advance. In

the case of dense scenes (like in the visualization of dense crystals, consisting of

many atoms) this can reduce the time consumption of the rendering processes

significantly. In n-dimensional space invisibility of a body is a sufficient criterion

for its invisibility in any low-dimensional projection.

As yet, algorithmic treatment of visibility computations with moving view-

points in dimension at least three still bears many challenges (see the recent

papers [Devillers et al. 2003; Durand 2002; Durand et al. 1997; Wang and Zhu

2000]). A main reason for this can be seen in various intrinsic difficulties in the

underlying complexity-theoretical, geometric and algebraic questions.

In the present paper, we analyze the binary Turing machine complexity of

visibility computations in spaces of variable dimension. The classes of geometric

bodies under consideration are that of balls, that of polytopes represented as the

convex hull of finitely many points (“V-polytopes”), and that of polytopes repre-

sented by an intersection of finitely many halfspaces (“H-polytopes”). Roughly

speaking, we show the following results that characterize the borderline between

tractable and hard. If the dimension of the space is part of the input, then

checking visibility of a given body B in the scene is NP-hard for all three classes.

Moreover, these hardness results persist even for very restricted classes of poly-

topes. In the case where the given body B degenerates to a single point, we can

prove also membership in NP for the two classes of polytopes. If however, the

dimension is fixed then the visibility problem becomes solvable in polynomial

time for all three classes. (For precise statements of the results see Theorems 2

and 3.)

Moreover, we relate these complexity results to existing results from several

other perspectives. From the algebraic-geometric point of view, visibility com-

putations with moving viewpoints require the study of the interaction of the

geometric bodies with lines. In particular, it is essential to characterize certain

extreme situations which correspond to common tangent lines to a given set

of bodies. In dimension 2, the resulting geometric questions typically remain

rather elementary (see [O’Rourke 1997; Pocchiola and Vegter 1996]). However,

in dimension 3 already, and even for simple types of bodies, such as balls, the

underlying geometric problems have a high algebraic degree and hence give rise

to difficult questions of real algebraic geometry [Macdonald et al. 2001; Theobald

2002]. See Section 4 for details.

We also relate our complexity results to Hornich and Fejes Tóth configurations

from the theory of packing and covering. Our results imply that already the test

whether a given visibility configuration is a Hornich or Fejes Tóth configuration

is an NP-hard problem.
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Finally, we establish a link between our hardness results and the view obstruc-

tion or lonely runner conjecture from diophantine approximation [Wills 1968;

Cusick 1973; Bienia et al. 1998]. Let ‖x‖I denote the distance of a real number

x to a nearest integer. Then, for each positive integer n, let

κ(n) = inf
v1,...,vn∈N

sup
τ∈[0,1]

min
1≤i≤n

‖τvi‖I ,

a measure for simultaneous homogeneous diophantine approximation. Wills

[1968] and later Cusick [1973] conjectured that κ(n) = 1/(n+1). Although this

conjecture has been investigated in a series of papers in the last 30 years (see the

list of references in [Chen and Cusick 1999]), the exact value of κ(n) is known only

for values up to 5. Our hardness results can be seen as a complexity-theoretical

indication why the number-theoretical view obstruction problem is hard.

The present paper is organized as follows. In Section 2, we introduce the

necessary notation and review known algorithmic results in dimension 3. In

Section 3, we determine the computational complexity of the considered visibility

problems. Finally, in Section 4, we establish connections between our complexity-

theoretical results and the other mentioned fields.

2. Preliminaries and Known Results

Throughout this paper Rn denotes n-dimensional Euclidean space; 〈 · , · 〉 and

‖·‖ denote the Euclidean scalar product and norm; and Bn = {x ∈ Rn : ‖x‖ ≤ 1}
and Sn−1 = {x ∈ Rn : ‖x‖ = 1} denote the unit ball und unit sphere.

2.1. Geometric objects and the model of computation. The geometric

objects under consideration are particular convex bodies. A convex body (or

simply body) is a bounded, closed, and convex set which contains interior points.

Our model of computation is the binary Turing machine model: all relevant

convex bodies are presented by certain rational numbers, and the size of the

input is defined as the length of the binary encoding of the input data (see, e.g.,

[Garey and Johnson 1979; Gritzmann and Klee 1994; Grötschel et al. 1993]).

Specifically, a B-ball B is a ball that is represented by a triple (n; c, ρ) with

n ∈ N, c ∈ Qn, and ρ2 ∈ (0,∞) ∩ Q such that B = c + ρBn. Let Bn denote the

class of all B-balls in Rn, and set B =
⋃

n∈N
Bn.

For rational polytopes we distinguish between H- and V-presentations [Gritz-

mann and Klee 1994]. A V-polytope is a polytope P which is represented

by a tuple (n; k; v1, . . . , vk) with n, k ∈ N, and v1, . . . , vk ∈ Qn such that

P = conv{v1, . . . , vk}, i.e., P is the convex hull of v1, . . . , vk. An H-polytope

is a polytope P represented by a tuple (n; k;A; b) with n, k ∈ N, a rational k×n-

matrix A, and b ∈ Qk such that P = {x ∈ Rn : Ax ≤ b}. Let Pn
H and Pn

V denote

the classes of H- and V-polytopes in Rn, respectively, and set PH =
⋃

n∈N
Pn
H,

PV =
⋃

n∈N
Pn
V .
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For fixed dimension H- and V-presentations of a polytope can be transformed

into each other in polynomial time. If, however, the dimension is part of the

input then the size of one presentation may be exponential in the size of the

other [McMullen 1970].

2.2. Visibility problems. A ray issuing from x is a set of the form x+[0,∞)w

with some w ∈ Rn \ {0}. If a ray issues from the origin then it is also called a

0-ray. For m + 1 bodies B0, B1, . . . , Bm from a class X we call B0 visible (with

respect to B1, . . . , Bm) if there exists a visibility ray r for B0, i.e., a ray issuing

from some point p ∈ B0 satisfying r ∩ Bi = ? for all 1 ≤ i ≤ m.

Our definition of algorithmic visibility problems depends on the class X of

geometric bodies. Note that the dimension of the ambient space is part of the

input.

Problem VisibilityX :

Instance: m, n, bodies B0, B1, . . . , Bm ⊂ Rn from the class X .

Question: Decide whether B0 is visible with respect to B1, . . . , Bm.

A visibility problem is called anchored if B0 is a single point located at the

origin. With regard to a more restricted viewing region, we call B0 visible from

the positive orthant (with respect to B1, . . . , Bm) if there exists a visibility ray

for B0 contained in the (closed) positive orthant.

Problem Quadrant VisibilityX :

Instance: m, n, bodies B0, B1, . . . , Bm ⊂ Rn from the class X .

Question: Decide whether B0 is visible from the positive orthant with respect

to B1, . . . , Bm.

In the basic form we do not require the bodies to be disjoint. We add the index

? if the input bodies B0, . . . , Bm are required to be disjoint (e.g., VisibilityB,?).

If X = PH or X = PV , we will usually denote the bodies by P0, . . . , Pm.

Remark 1. Using the techniques presented in the treatment of Quadrant

Visibility, it is also possible to prove hardness results for many other classes

of restricted viewing regions. For the sake of simplicity, we restrict ourselves to

the one example of that type that is relevant for the view obstruction problem.

Let ei be the i-th unit vector in Rn. For c ∈ Rn and ρ1, . . . , ρn > 0, conv{c±ρiei :

1 ≤ i ≤ n} is called a cross polytope in Rn. A parallelotope is a polytope

c +
∑n

i=1[−1, 1]zi with c ∈ Rn and linearly independent z1, . . . , zn ∈ Rn.

For a set A ⊂ Rn let

pos A =
{
∑k

i=1 λixi : k ∈ N, x1, . . . , xk ∈ A, λ1, . . . , λk ≥ 0
}

denote the positive hull of A.

For c ∈ Rn and a j-flat F , d(c, F ) denotes the Euclidean distance of c from F .
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3. Complexity Results for Variable Dimension

3.1. Main results. We analyze the binary Turing machine complexity of the

visibility problems for the case of variable dimension. Our main intractability

results are summarized in the following theorem.

Theorem 2. (a) For X ∈ {B,PH,PV} the problems VisibilityX and Quad-

rant VisibilityX are NP-hard . The hardness persists even if the instances

are restricted to those for which the bodies are disjoint . Moreover , in case of

H-polytopes the hardness persists if all bodies are axis-aligned cubes, and in case

of V-polytopes if all bodies are axis-aligned cross polytopes.

(b) For X ∈ {PH,PV} the anchored versions of VisibilityX and Quadrant

VisibilityX are NP-complete.

These hardness results are contrasted by the following positive results for fixed

dimension.

Theorem 3. Let X ∈ {B,PH,PV}, and the dimension n be fixed . Then

VisibilityX and Quadrant VisibilityX can be solved in polynomial time.

3.2. Informal description of the hardness proofs. Let us consider an

anchored visibility problem.

In order to show NP-hardness, we provide reductions from the well-known

NP-complete 3-satisfiability (3-Sat) problem [Garey and Johnson 1979]. Let

C = C1 ∧ . . .∧ Ck denote a 3-Sat formula with clauses C1, . . . , Ck in the variables

η1, . . . , ηn. Further, let ηi denote the complement of a variable ηi, and let the

literals η1
i and η−1

i be defined by η1
i = ηi, η−1

i = ηi. Let the clause Ci be of the

form

Ci = η
τi1

i1
∨ η

τi2

i2
∨ η

τi3

i3
, (3–1)

where τi1 , τi2 , τi3 ∈ {−1, 1} and 1 ≤ i1, i2, i3 ≤ n are pairwise different indices.

In our reduction, we construct an anchored visibility problem in Rn. The

reduction consists of two ingredients. First we enforce that any visibility 0-ray

has a direction which is close to a direction in the set {−1, 1}n. For this purpose,

consider the cube [−1, 1]n. For each of the 2n facets of the cube we construct a

suitable body (a ball or a polytope) whose positive hull covers the whole facet

with the exception of “regions near the vertices”. We call these bodies structural

bodies. Figure 1, left shows this situation for the 3-dimensional case of a ball.

Any visibility 0-ray can then be naturally associated with a 0-ray in one of the

directions {−1, 1}n; this imposes a discrete structure on the problem. The 2n

structural bodies are always part of the construction, independent of the specific

3-Sat formula. The positions of each of these 2n bodies will depend linearly on

some positive parameter γ. In fact, all bodies can be moved radially and their

size be appropriately adjusted so that the crucial covering properties persist. The

parameters will be used later to make the bodies disjoint. In order to define the

“region near a vertex” we consider Figure 1, right. For every vertex v of [−1, 1]n
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1ξ
1ξ

Figure 1. Imposing discrete structure. Left: Placing structural bodies. Right:

Vertex simplices.

let the vertex simplex of v be defined as the convex hull of v and those n points

which result by dividing exactly one component of v by 2. The construction will

be such that any point in the boundary of [−1, 1]n that is not contained in the

positive hull of a structural body will be contained in some vertex simplex.

In the second step, we relate satisfying assignments of a clause (3–1) to certain

visibility 0-rays. Let t : {True,False} → {−1, 1} be defined by t(True) = 1

and t(False) = −1. We utilize the correspondence between a truth assignment

a = (α1, . . . , αn)T ∈ {True,False}n to the variables η1, . . . , ηn and the 0-ray

with direction (t(α1), . . . , t(αn))T ∈ {−1, 1}n.

For each clause (3–1), we construct a body whose positive hull contains the

set

{x = (ξ1, . . . , ξn)T ∈ {−1, 1}n : ξi1 = −t(τi1) ∧ ξi2 = −t(τi2) ∧ ξi3 = −t(τi3)}

as well as the corresponding vertex simplices, but which does not contain the set

{x ∈ {−1, 1}n : ξi1 = t(τi1) ∨ ξi2 = t(τi2) ∨ ξi3 = t(τi3)}.

Again, the position of each body depends linearly on some positive parameter δ,

which will be used to achieve disjointness of the bodies.

The construction will guarantee that a truth assignment a satisfies the given

3-Sat formula C if and only if there exists a visibility 0-ray.

3.3. The case of balls. The following simple and well-known distance formula

is needed in the subsequent constructions. Here, for x ∈ Rn let x2 := 〈x, x〉.

Remark 4. Let c ∈ Rn, p ∈ Rn and q ∈ Rn \ {0}. Then the distance from c to

the line p + Rq is given by

d(c, p + Rq)2 = (p − c)2 − 〈q, (p − c)〉2
q2

.

Proof. The line p + Rq has distance ρ from c if and only if the quadratic

equation (p + λq − c)2 = ρ2 in λ has a solution of multiplicity two. This gives

the equation
〈q, (p − c)〉2

q2
− (p − c)2 + ρ2 = 0 . ˜
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Lemma 5. Anchored VisibilityB,? is NP-hard . Also,Anchored VisibilityB

is NP-hard even if the instances are restricted to (not necessarily disjoint) balls

of the same radius.

Proof. We complete the construction outlined in Section 3.2 so as to provide a

polynomial time reduction from 3-Sat to Anchored VisibilityB,?. Without

loss of generality let n ≥ 4.

Let us consider the 2n structural balls Si(γi) = (n; si(γi), σi(γi)), 1 ≤ i ≤ 2n,

where γi is the scaling parameter of Si as described above. Naturally, we place

these balls symmetrically so that their centers lie on coordinate axes, i.e., let

si(γi) = γiei and sn+i(γn+i) = −γn+iei , 1 ≤ i ≤ n.

In order to specify the radii σi(γi) of the structural balls, let us consider S1(γ1);

see Figure 1, left. (The construction of the other balls is done analogously.) For

convenience of notation, we shortly write S = (n; s, σ).

In order to impose the discrete structure we will satisfy the following two

conditions. Firstly, pos(S) must not contain the vertices {1}× {−1, 1}n−1. Sec-

ondly, pos(S) must contain those points which result from the vertices of the

facet {1} × [−1, 1]n−1 after dividing exactly one of the last n − 1 components

by 2. The two conditions will yield an upper and a lower bound for σ.

We start with the first condition. Since any of the 0-rays {1} × {−1, 1}n−1

has the same distance from the center s, it suffices to consider [0,∞)q with

q = (1, 1, . . . , 1)T . By Remark 4,

d(s, [0,∞)q)2 = γ2 n − 1

n
.

Consequently, we have to choose σ2 < γ2(n − 1)/n. For the second condition,

consider the point q = (1, . . . , 1, 1/2)T . Then Remark 4 yields

d(s, [0,∞)q)2 = γ2 4n − 7

4n − 3
.

Therefore, a ball centered in s with radius σ satisfying

γ2 4n − 7

4n − 3
< σ2 < γ2 n − 1

n
(3–2)

guarantees the two conditions. The construction of structural balls for all 2n

facets guarantees that any point in a facet of [−1, 1]n that is not contained in

the positive hull of a structural ball is contained in a facet of some vertex simplex.

Now we turn to the balls Ci(δi) = (ci(δi), ρi(δi)), 1 ≤ i ≤ k, representing the

k clauses. For notational convenience we describe the construction for the clause

C = η−1
1 ∨ η1

2 ∨ η−1
3 .

It should of course be clear that the construction works just as well for other

clauses. We abbreviate the ball for the clause C by C = (n; c, ρ) (without re-

ferring explicitly to the dependence on the parameter δ := δi). We set c =
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δ(1,−1, 1, 0, . . . , 0)T , hence all the Boolean variables η4, . . . , ηn are treated sim-

ilarly.

In order to represent the given clause by the ball C we guarantee the following

two properties. First, none of the 0-rays spanned by {−1, 1}n \ (1,−1, 1) ×
{−1, 1}n−3 must be contained in pos(C). Within this set of rays, the ray [0,∞)q

with q = (1,−1,−1, 1, . . . , 1)T (among others) leads to the smallest distance

from C. Remark 4 implies

d(c, [0,∞)q)2 = δ2 3n − 1

n
,

which yields the condition ρ2 < δ2(3n − 1)/n.

Moreover, we guarantee the following second property. The positive hull of

C must contain all the points in (1,−1, 1) × {−1, 1}n−3 as well as their vertex

simplices. Among all these points and among the vertices of the vertex simplices,

the vector q = (1,−1, 1/2, 1, . . . , 1)T leads to the ray with the largest distance

from c. Remark 4 implies

d(c, [0,∞)q)2 = δ2 12n − 34

4n − 3
.

Hence, a ball centered in c with radius ρ satisfying

δ2 12n − 34

4n − 3
< ρ2 < δ2 3n − 1

n

guarantees the two conditions for the clause ball. Note that the upper bound

implies that the origin is not contained in the ball.

As yet, the definitions of the 2n structural balls and the k clause balls de-

pend on the positive parameters γ1, . . . , γ2n and δ1, . . . , δk, respectively. By

choosing these parameters appropriately, we make the balls disjoint. Since

σi < γi

√

(n − 1)/n for the structural balls, we choose the parameter γi of the

i-th structural ball successively so that

γi − γi

√

n − 1

n
> γi−1 + γi−1

√

n − 1

n
.

Then

(γiei − γjej)
2 > (σi + σj)

2 for i > j.

Setting γ0 = 1, this leads to the condition

γi >

(

1 +
√

(n − 1)/n

1 −
√

(n − 1)/n

)i

=
(

2n − 1 + 2
√

n · (n − 1)
)i

.

Hence, choosing γi = (4n−1)i for 1 ≤ i ≤ 2n guarantees that the structural balls

are pairwise disjoint. Note that the binary logarithm of these numbers grows

only polynomially in the number of balls, i.e., we can choose rational centers

and (squares of) radii of the structural balls of polynomial size. Similarly, the

parameters δ1, . . . , δk of the clause balls can be chosen. In particular, when also
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choosing δ1 sufficiently large, then the clause balls are disjoint from the structural

balls.

Now it is easy to show that the given 3-Sat formula C can be satisfied if and

only if the single point B0 is visible. Let (α1, . . . , αn)T be a satisfying assignment

of C. Then there does not exist any ball B in the construction whose positive

hull contains the 0-ray in direction (t(α1), . . . , t(αn))T . Hence, B0 is visible.

Conversely, let q be a visibility ray for B0. Due to the structural balls the ray q

intersects with the vertex simplex of some vector v = (ν1, . . . , νn)T ∈ {−1, 1}n.

Consequently, the truth assignment (t−1(ν1), . . . , t
−1(νn))T is a satisfying as-

signment because otherwise the positive hull of some clause ball would contain

the vertex simplex of v. Hence, C can be satisfied.

In order to achieve the result for balls of the same size, the role of σ and

γ (respectively, ρ and δ) in (3–2) is interchanged in the sense that the radius

σ is now given and a condition on γ is imposed. Clearly, these conditions for

γ1, . . . , γ2n can be satisfied in the same way as the conditions on the radius

before. ˜

Corollary 6. VisibilityB,? is NP-hard .

Proof. It is obvious that the proof for the case that B0 is a single point gen-

eralizes to the case of a nondegenerated ball centered in 0 with some sufficiently

small radius σ0 > 0. In the following we will outline the precise argument.

Let Si = (n; si, σi), 1 ≤ i ≤ 2n, and Cj = (n; cj , ρj), 1 ≤ j ≤ k, be the

structural balls and the clause balls in the proof of Lemma 5, and set B̂0 =

(n; 0, σ0), where σ0 is such that the inequalities given in the proofs of Lemma 5

hold for both σi, ρj and for σ′
i := σi − σ0, ρ′j := ρj − σ0, 1 ≤ i ≤ 2n, 1 ≤

j ≤ k. Further, let S′
i = (n; si, σi − σ0), 1 ≤ i ≤ 2n, and C ′

j = (n; cj , ρj − σ0),

1 ≤ j ≤ k. Then it follows from the fact that (B0, S1, . . . , S2n, C1, . . . , Ck)

and (B0, S
′
1, . . . , S

′
2n, C ′

1, . . . , C
′
k) are Yes-instances of the visibility problem if

and only if the given Boolean expression is satisfiable that the same holds for

(B̂0, S1, . . . , S2n, C1, . . . , Ck). ˜

3.4. The case of V-polytopes

Lemma 7. Anchored VisibilityPV ,? is NP-hard . This result persists if the

instance are restricted to axes-aligned cross polytopes.

Proof. We establish a polynomial time reduction from 3-Sat to Anchored

VisibilityPV ,? based on the framework in Section 3.2. Again we assume n ≥ 4.

This time, we choose the 2n structural bodies as cross polytopes of the form

Si(γi) = conv{si(γi) + σij(γi)ej : 1 ≤ j ≤ n} with rational coefficients si(γi),

σij(γi) depending on the scaling parameter γi. The centers of the cross polytopes

are defined by

si(γi) = γiei and sn+i(γn+i) = −γn+iei , 1 ≤ i ≤ 2n .



386 PETER GRITZMANN AND THORSTEN THEOBALD

Now we specify the coefficients σij . We describe the construction of S1(γ1)

which for simplicity will be abbreviated by S = conv{s + σjej : 1 ≤ j ≤ n}.
The construction of the other structural bodies is then similar.

For any choice of the parameters σ2, . . . , σn > 0, the (n − 1)-dimensional

cross polytope S′ = conv{s + σjej : 2 ≤ j ≤ n} is contained in the hyperplane

ξ1 = γ. Similar to the case of the balls, two conditions are imposed on the

choice of σ2, . . . , σn. Firstly, the positive hull of S′ must not contain the vertices

{1} × {−1, 1}n. Secondly, the positive hull of S′ must contain those points

resulting from the vertices of the facet {1} × [−1, 1]n−1 by dividing exactly one

of the last n − 1 components by 2.

We choose σ2 = . . . = σn. The necessary upper and lower bounds for σ2 result

as follows. Without loss of generality we consider the 0-ray [0,∞)(1, . . . , 1)T .

The vertex γ(1, . . . , 1)T of γ[−1, 1]n is contained in a facet of the (n − 1)-

dimensional cross polytope conv{s±γ(n−1)ej : 2 ≤ j ≤ n}. On the other hand,

the point γ(1, 1, 1, . . . , 1, 1/2)T is contained in a facet of the (n− 1)-dimensional

cross polytope with vertices conv{s ± γ(n − 3/2)ej}, 2 ≤ j ≤ n. Hence, if σ2

satisfies

γ
(

n − 3

2

)

< σ2 < γ (n − 1) ,

the two conditions enforcing the discrete structure are satisfied.

In order to make the (n − 1)-dimensional polytope S′ full-dimensional we

consider some ε with 0 < ε < γ. Then s − εe1 ∈ pos S′. Hence, by adding

the vertices s± εe1 we obtain an n-dimensional cross polytope S with pos(S) =

pos(S′).

Now we show how to represent a clause by a cross polytope. Again, we describe

the construction for the clause η−1
1 ∨η1

2 ∨η−1
3 . The associated cross polytope will

be of the form C = conv{c±ρjej : 2 ≤ j ≤ n} with c = δ(1,−1, 1, 0, . . . , 0)T and

coefficients ρj (also depending on the parameter δ). For any choice of parameters

ρ4, . . . , ρn > 0, the (n − 3)-dimensional cross polytope C ′ = conv{c ± ρjej : 4 ≤
j ≤ n} is contained in the (n − 3)-dimensional flat ξ1 = δ, ξ2 = −δ, ξ3 = δ. We

choose ρ4 = . . . = ρn. As before, we add the vertices c± εej , 1 ≤ j ≤ 3, for some

parameter 0 < ε < δ to obtain a full-dimensional cross polytope. If ρ4 = 2(n−3)

then the point δ(1,−1, 1/2, 1, . . . , 1)T is contained in the n-dimensional cross

polytope. Hence, by choosing ρ4 > 2(n − 3) the positive hull of C contains all

the points in (1,−1, 1)×{−1, 1}n−3 as well as their vertex simplices. Moreover,

since pos(C) is contained in the cone defined by ξ1 ≥ 0, ξ2 ≤ 0, ξ3 ≥ 0, none of

the vectors in {−1, 1}n \ (1,−1, 1)× {−1, 1}n−3 is contained in the positive hull

of the cross polytope.

Similarly to the proof of Lemma 5, we can choose the parameters γ1, . . . , γ2n,

δ1, . . . , δk, and ε (for making the bodies n-dimensional) in such a way that the

bodies are pairwise disjoint and that their encoding lengths remain polynomially

bounded. Hence, the polynomial time reduction from 3-Sat follows in the same

way as in the proof of Theorem 5. ˜
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Using an inclusion technique like in Corollary 6 we readily obtain the following

corollary.

Corollary 8. VisibilityPV ,? is NP-hard even for axis-aligned cross polytopes.

Lemma 9. Anchored VisibilityPV
is contained in NP.

Proof. Let (m;n;P0, . . . , Pm) be an instance of Anchored VisibilityPV
with

P0 = {0} and V-polytopes P1, . . . , Pm, and let Fn−2(Pi) denote the set of all (n−
2)-dimensional faces of Pi, 1 ≤ i ≤ m. The set of all linear subspaces lin F , F ∈
Fn−2(Pi), naturally decomposes the unit sphere Sn−1 into (n − 1)-dimensional

sectors. For two 0-rays belonging to the (relative) interior (w.r.t. Sn−1) of the

same sector either both of them are visibility rays or none of them is. Each 0-ray

through a vertex of a sector can be computed in polynomial time. In particular,

two such vertices have a distance that is bounded below by a polynomial in the

input. Hence for each sector there does indeed exist a polynomial size vector

specifying a ray that meets the sector in its (relative) interior (w.r.t. Sn−1).

Hence there exists a polynomial size certificates for candidates for visibility rays.

It remains to show that it can be verified in polynomial time that a given

witness ray does not intersect any of the polytopes Pi. Since the number of

polytopes is bounded by the input length of the instance, it suffices to explain

this polynomial verification method for a single polytope P ∈ {P1, . . . , Pm}. Let

the V-presentation of P be P = conv{v1, . . . , vk}. P does not intersect the ray

[0,∞)q if and only if the system
∑k

i=1 µivi = λq,
∑k

i=1 µi = 1,

µi ≥ 0 for 1 ≤ i ≤ k,

λ ≥ 0

does not have a solution. This can be checked in polynomial time by linear

programming. ˜

3.5. The case of H-polytopes

Lemma 10. Anchored VisibilityPH
and VisibilityPH

are NP-hard . These

statements persist if we restrict the polytopes to be axis-aligned n-dimensional

unit cubes. The hardness also persists if we restrict the polytopes to be disjoint

axis-aligned n-dimensional cubes.

Proof. We give a polynomial time reduction from 3-Sat, but this time the

proof differs from the framework in Section 3.2. We begin with the anchored

version, in which P0 is a single point located in the origin.

Let C = C1 ∧ . . . ∧ Ck be an instance of 3-Sat with clauses C1, . . . , Ck in the

variables η1, . . . , ηn. Let

Ci = η
τi1

i1
∨ η

τi2

i2
∨ η

τi3

i3
.
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1

1

ξ1

ξ2

Figure 2. In order to represent the 2-clause y1
1 ∨ y−1

2 , all visibility rays in the

orthant ξ1 ≤ 0, ξ2 ≥ 0 have to be blocked. This can be achieved by placing two

unit squares centered at (−2, 1)T and (−1, 2)T .

We construct a set of axis-aligned unit cubes ensuring that 0-rays spanned

by any (nonzero) vector b = (β1, . . . , βn)T with sgn(βi1) ∈ {−τi1 , 0}, sgn(βi2) ∈
{−τi2 , 0}, sgn(βi3) ∈ {−τi3 , 0} cannot be visibility rays. Figure 2 depicts the

idea of the construction for two variables y1 and y2 and the 2-clause y1
1 ∨ y−1

2 .

Define the 2n − 3 axis-aligned unit cubes

P1 = −2τi1ei1 − τi2ei2 − τi3ei3 + [−1, 1]n ,

P2 = −τi1ei1 − 2τi2ei2 − τi3ei3 + [−1, 1]n ,

P3 = −τi1ei1 − τi2ei2 − 2τi3ei3 + [−1, 1]n .

P ′
j = −τi1ei1 − τi2ei2 − τi3ei3 + 2ej + [−1, 1]n , j ∈ {1, . . . , n} \ {i1, i2, i3} ,

P ′′
j = −τi1ei1 − τi2ei2 − τi3ei3 − 2ej + [−1, 1]n , j ∈ {1, . . . , n} \ {i1, i2, i3} .

All these cubes are contained in the set {x = (ξ1, . . . , ξn)T ∈ Rn : sgn(ξi1) ∈
{−τi1 , 0}, sgn(ξi2) ∈ {−τi2 , 0}, sgn(ξi3) ∈ {−τi3 , 0}}, and none of the cubes

contains the origin. The union of the 2n−3 cubes contains all facets of the cube

−τi1ei1 − τi2ei2 − τi3ei3 + [−1, 1]n

except the three facets which are contained in one of the hyperplanes ξi1 = 0,

ξi2 = 0, or ξi3 = 0. Namely, P1, P2, and P3 contain the facets in the hyperplanes

ξi1 = −2τi1 , ξi2 = −2τi2 , and ξi3 = −2τi3 , respectively, and for j ∈ {1, . . . , n} \
{i1, i2, i3} the cubes Pj and P ′

j contain the facets in the hyperplanes ξj = 1 and

ξj = −1. Hence, a ray [0,∞)b intersects one of the 2n − 3 cubes if and only if

sgn(βi1) ∈ {−τi1 , 0}, sgn(βi2) ∈ {−τi2 , 0}, and sgn(βi3) ∈ {−τi3 , 0}.
Altogether, a ray [0,∞)b is a visibility ray for P0 if and only if C can be

satisfied. Hence, Anchored VisibilityPH
is NP-hard even if we restrict the

polytopes to be axis-aligned n-dimensional unit cubes. Note that if the instance

cannot be satisfied then the union of the polytopes in our construction contains

the boundary of the cube [−1, 1]n. Hence, the single point P0 can be replaced
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by the cube [−1, 1]n, which shows that VisibilityPH
is NP-hard even if the

polytopes are restricted to be axis-aligned n-dimensional unit cubes.

In order to show that Anchored VisibilityPH,? and VisibilityPH,? are

NP-hard, we can scale the cubes as in the earlier proofs. ˜

Lemma 11. Anchored VisibilityPH
is contained in NP.

Proof. The proof is analogous to that of Lemma 9. ˜

3.6. Polynomial solvability results for fixed dimension. In order to prove

the polynomial solvability results for fixed dimension, we use the fact that the

theory of real closed fields can be decided in polynomial time [Ben-Or et al.

1986; Collins 1975]. More precisely, for rational polynomials p1(ξ1, . . . , ξn), . . . ,

pl(ξ1, . . . , ξn) in the variables ξ1, . . . , ξn, a Boolean formula over p1, . . . , pl is

defined as a Boolean combination (allowing the operators ∧, ∨, ¬) of polynomial

equations and inequalities of the type pi(ξ1, . . . , ξn) = 0 or pi(ξ1, . . . , ξn) ≤ 0.

We consider the following decision problem for quantified Boolean formulas over

the real numbers.

Problem Real Quantifier Elimination:

Instance: n, l, rational polynomials p1(ξ1, . . . , ξn), . . . , pl(ξ1, . . . , ξn), a Boolean

formula ϕ(ξ1, . . . , ξn) over p1, . . . , pl, and quantifiers Q1, . . . , Qn ∈
{∀ ,∃ }.

Question: Decide the truth of the statement

Q1(ξ1 ∈ R) . . . Qn(ξn ∈ R) ϕ(ξ1, . . . , ξn) .

In [Ben-Or et al. 1986; Collins 1975] it was shown:

Proposition 12. For fixed dimension n, Real Quantifier Elimination can

be decided in polynomial time.

Remark 13. Despite of this polynomial solvability result for fixed dimension,

current implementations are only capable of dealing with very small dimensions.

Generally, there are two approaches towards practical solutions of decision prob-

lems over the reals. One is based on Collins’ cylindrical algebraic decomposition

(CAD) [Collins 1975], and the other is the critical point method ([Grigor’ev and

Vorobjov 1988]; for the state of the art see [Aubry et al. 2002]).

In order to prove polynomial solvability of VisibilityB for fixed dimension, we

formulate the problem algebraically. We represent a ray p + λq, λ ≥ 0, by its

initial vector p ∈ Rn and a direction vector q ∈ Rn with ‖q‖ = 1. B0 is visible

with respect to B1 = (n; c1, ρ1), . . . , Bm = (n; cm, ρm) if and only if there exist

p, q ∈ Rn such that for all λ ∈ R the following formula holds:

‖q‖2 = 1

and ‖p − c0‖2 ≤ ρ2
0

and (λ < 0 or ‖p + λq − ci‖2 ≥ ρ2
i ) for 1 ≤ i ≤ m.
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Hence, we have to decide the truth of the following statement:

∃p ∈ Rn ∃q ∈ Rn ∀λ ∈ R

‖q‖2 = 1 ∧ ‖p − c0‖2 ≤ ρ2
0 ∧

(

(λ < 0 ∨ ‖p + λq − ci‖2 ≥ ρ2
i ) for 1 ≤ i ≤ m

)

.

After expanding the Euclidean norm and applying some trivial transformations

(such as establishing the mentioned normal form pi(ξ1, . . . , ξn) ≤ 0 for the poly-

nomial inequalities), this is a quantified Boolean formula of the required form.

Hence, Proposition 12 implies the following statement.

Lemma 14. For fixed dimension n, VisibilityB can be solved in polynomial

time.

For the case of H-polytopes, let Pi = {x ∈ Rn : Aix ≤ bi} with Ai ∈ Qki×n,

bi ∈ Qki , 0 ≤ i ≤ m. P0 is visible if and only if there exist p, q ∈ Rn such that

for all λ ∈ R we have

‖q‖2 = 1

and A0p ≤ b0

and ¬
(

Ai(p + λq) ≤ bi

)

for 1 ≤ i ≤ m.

Applying Proposition 12 on this formulation we can conclude:

Lemma 15. For fixed dimension n, VisibilityPH
can be solved in polynomial

time.

Since for fixed dimension n, a V-polytope can be transformed into a H-polytope

in polynomial time [Dyer 1983], this also implies

Corollary 16. For fixed dimension n, VisibilityPV
can be solved in polyno-

mial time.

Similarly, by small modifications of the proofs, the polynomial time solvability

results for Visibility can also be transferred to Quadrant Visibility.

4. On the Frontiers of the Results and Their Relations with

Our Other Fields

4.1. Relations with algebraic geometry. Theorems 2 and 3 do not guar-

antee membership of VisibilityB in NP. Let us illuminate this situation from

the algebraic point of view. First note that even though quantifier elimination

methods can decide Anchored VisibilityB or VisibilityB for fixed dimen-

sion in polynomial time (see Lemma 14), it is not known how to compute a short

witness of a positive solution with these methods (see [Ben-Or et al. 1986]).

For “Yes” instances of Anchored VisibilityB or VisibilityB there always

exists a ray in the closure of all visibility rays whose underlying line is simul-

taneously tangent to several balls. Hence, the question of membership in NP

is tightly connected to the algebraic characterization of the lines simultaneously
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tangent to a given set of balls in Rn. In particular, it is essential to characterize

the lines tangent to 2n− 2 balls, since the Grassmannian of lines in n-space has

dimension 2n−2 (i.e., a line in Rn has 2n−2 degrees of freedom). In [Sottile and

Theobald 2002] it was shown that for n ≥ 3, 2n − 2 balls in general position in

Rn have 3 · 2n−1 (complex) common tangent lines. Hence, the visibility problem

in dimension n is tightly connected to an algebraic problem of degree 3 · 2n−1.

Similarly, Theorems 2 and 3 do not guarantee membership of VisibilityPH

or VisibilityPV
in NP. These questions are tightly connected to the common

transversals to 2n−2 given (n−2)-dimensional flats in Rn. The generic number

of (complex) transversals to 2n − 2 given (n − 2)-flats in Rn is

1

n

(

2n − 2

n − 1

)

;

(see, e.g., [Kleiman and Laksov 1972; Sottile 1997]).

In both cases (balls and polytopes), the algebraic degree is reflected by our

hardness results in the Turing machine model.

4.2. Relations with the theory of packing and covering. Concerning

NP-hardness, Theorem 2 does not include a result for Anchored VisibilityB,?

or VisibilityB,? if the balls are unit balls. However, the following statement

shows that in “No”-instances of VisibilityB,? the number of balls necessarily

grows exponentially in the input dimension n. Even if this does not rule out

the existence of a polynomial time algorithm (since the running time of the

algorithm is not measured in terms of the dimension n but in the overall length

of the input size which in this case is exponential in n), it might give a useful

sufficient criterion for large input dimensions.

Lemma 17. Let n ≥ 6, m ∈ N, and let B0, B1, . . . , Bm be disjoint unit balls in

Rn. If m <
√

3n e(3/8)(n−1) then B0 is visible with respect to B1, . . . , Bm.

Proof. Without loss of generality we can assume that B0 is the unit ball

centered at the origin. Let 0 < r < 1 and H be a hyperplane in Rn at distance

r from the origin. Then the set of points on the unit sphere separated from

the origin by H is called an r-cap. Since any ball Bi, 1 ≤ i ≤ m, is disjoint

from B0, an elementary geometric computation shows that pos(Bi) intersects

the unit sphere in an r-cap with
√

3/2 < r < 1. A necessary condition for B0

being invisible is that these r-caps cover the unit sphere. Let τ(n, r) denote the

minimum number of r-caps covering the unit sphere. By Lemma 5.2 in [Brieden

et al. 1998], we have for r > 2/
√

n

τ(n, r) ≥ 2r
√

ner2(n−1)/2 .

Substituting the value r =
√

3/2 into this formula yields the desired estimation.

˜
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Moreover, the problem Visibility is closely related to difficult problems in the

theory of packing and covering (see [Tóth 1971] or [Zong 1999, Chapter 12]). A

Hornich configuration in Rn is a set {B1, . . . , Bm} of disjoint unit balls with

{B1, . . . , Bm} ∩ Bn = ? such that the origin is not visible with respect to

B1, . . . , Bm. The Hornich number hn is the smallest number m of disjoint unit

balls B1, . . . , Bm such that {B1, . . . , Bm} is a Hornich configuration. Hence, for

the class of unit spheres, Anchored VisibilityB,? asks whether a given config-

uration is a Hornich configuration. Similarly, a Fejes Tóth configuration in Rn is

a set {B0, . . . , Bm} of disjoint unit balls such that B0 is not visible with respect

to B1, . . . , Bm. The Fejes Tóth number `n in Rn is the smallest number m of

disjoint unit balls B0, . . . , Bm such that there exists a Fejes Tóth configuration

with m balls.

Even in dimension 3, the Hornich number h3 is not known, and the best known

bounds are 30 ≤ h3 ≤ 42. Lower and upper bounds for general dimensions n

can be found in [Zong 1999]. Concerning the Fejes Tóth number, Zong gave the

upper bound `n ≤ (8e)n(n + 1)n−1n(n2+n−2)/2 [Zong 1997].

If the balls are allowed to be of different radius then Theorem 2 implies that

already the test whether a given configuration is a (generalized) Hornich or Fejes

Tóth configuration is NP-hard.

4.3. Quadrant visibility and view obstruction. In Sections 3.2–3.5 our

hardness results for Visibility were based on reductions from 3-Sat in which

any assignment a ∈ {True,False}n was identified with one of the 2n quadrants

in Rn. For that reason, the question arises whether the hardness results still

hold for more restricted viewing areas, say, for those viewing areas which are

contained in a single quadrant.

In the following we prove the correponding part of Theorem 2.

Lemma 18. Anchored Quadrant VisibilityB,? is NP-hard . Anchored

Quadrant VisibilityB is NP-hard even if all balls are restricted to (not nec-

essarily disjoint) balls of the same radius.

Proof. Once more, we provide a reduction from 3-Sat, and therefore consider

a 3-Sat formula in the variables η1, . . . , ηn. The essential idea of the reduction is

to construct an instance of Quadrant Visibility in (n + 1)-dimensional space

Rn+1. The 0-ray with direction v := (1, . . . , 1)T is contained in the positive

orthant Q of Rn+1. By considering a hyperplane which is orthogonal to v and

which intersects (0,∞)v, we transfer the proof ideas of Anchored Visibility

to Anchored Quadrant Visibility.

In order to simplify the notation, we apply an orthogonal transformation

to transform the diagonal ray [0,∞)v into [0,∞)en+1, the nonnegative part of

the ξn+1-axis. By this operation, Q is transformed into a cone Q′. As in the

proof of Lemma 5, we impose a discrete structure on the visibility problem.

Namely, for some positive parameter τ > 0 specified below, we associate the
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Figure 3. The figure shows how to impose discrete structure on Anchored

Quadrant Visibility in case n = 2 and γ0 = . . . = γ2n =: γ (so all the

centers of the structural balls are contained in the hyperplane ξn+1 = γ). The

positive hull of the triangle on the left represents Q′, the positive orthant after

the orthogonal transformation. The right figure shows the section of the balls

through the hyperplane ξn+1 = γ.

2n truth assignments {True,False}n with the 0-rays spanned by the vectors

{1} × {−τ, τ}n. Note that the set {1} × [−τ, τ ]n is an n-dimensional cube in

Rn+1.

In order to achieve this discrete structure, we place 2n + 1 structural balls

Si(γi, τ) = (n; si(γi, τ), σi(γi, τ)), 0 ≤ i ≤ 2n, at the centers c0 = γ0en+1,

ci = γi(en+1 + τei), cn+i = γn+i(en+1 − τei), 1 ≤ i ≤ n. In contrast to the

proofs for Anchored Visibility, the centers of the structural balls do not only

depend on positive parameters γi, but also on the global positive parameter τ .

Figure 3 shows this situation for the case n = 2. The parameter τ is chosen

so that the n-dimensional cube {1} × [−τ, τ ]n is contained in Q′. The radii

si(γi, τ), 1 ≤ i ≤ n, of the structural balls can be chosen such that any visibility

ray must be close to a vertex of the n-dimensional cube; this establishes the

discrete structure. In a second step, the parameters γi can be used to scale the

balls in order to make them disjoint.

Then, similarly to the proof of Lemma 5, we can construct balls representing

the clauses of the 3-Sat formula in order to complete the desired polynomial

time reduction. ˜

It is easy to see that the hardness result can be extended to the case of Quad-

rant VisibilityB,?, where B0 is a proper ball. Moreover, by combining the

proofs in Sections 3.4 and 3.5 with a lifting into Rn+1, the hardness results can

also be established for the case of V- and H-polytopes. (For H-polytopes, the

construction from the proof of Lemma 10 is carried out in the hyperplane given
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1

1

ξ1

ξ2

Figure 4. The situation of the view obstruction problem in R
2. Here λ(2) = 1

3
.

by ξn+1 = γ; and – as in that lemma – the construction manages without any

structural bodies.)

Note that the proof technique of Lemma 18 can also be generalized to establish

hardness results for other classes of viewing areas.

The problem Anchored Quadrant Visibility is related to the problem of

diophantine approximation introduced by Wills [Wills 1968] of determining

κ(n) = inf
v1,...,vn∈N

sup
τ∈[0,1]

min
1≤i≤n

‖τvi‖I .

Based on the pigeonhole principle, Wills showed 1
2n ≤ κ(n) ≤ 1

n+1 and con-

jectured κ(n) = 1
n+1 . This conjecture was later restated by Cusick [Cusick

1973] who interpreted it as a visibility problem called view obstruction. Let

C = [− 1
2 , 1

2 ]n. For some factor α > 0, consider the infinite set of cubes

{

(

γ1 + 1
2 , . . . , γn + 1

2

)T
+ αC : γ1, . . . , γn ∈ N0

}

. (4–1)

Now the problem is to determine the supremum of α > 0 such that there exists

a visibility ray in the strictly positive orthant (see Figure 4). This supremum,

called λ(n), can be written as

λ(n) = 2 sup
ω1,...,ωn∈(0,∞)

inf
ξ∈(0,∞)

max
1≤i≤n

∥

∥ωiξ − 1
2

∥

∥

I
.

The connection between Wills’ problem and the view obstruction problem is

established by the statement that for n ≥ 2 we have λ(n) = 1−2κ(n) (see [Wills

1968; Cusick 1973]).

Yet another approach to the same core problem called lonely runner has been

given in [Bienia et al. 1998]. In spite of many research efforts during the last

30 years, the exact value of κ(n) is known only for values up to 5 ([Bohman

et al. 2001]). For n ≥ 5, only upper and lower bounds have been determined. If

one considers balls instead of cubes [Cusick and Pomerance 1984], then also the

exact values for the view obstruction problem are known only up to dimension 5

[Dumir et al. 1996].
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Although, of course, the view obstruction problem involves an infinite number

of bodies, our complexity results for finite instances can be seen as a certain

complexity-theoretical indication for the hardness of the computation of λ(n) for

larger n. Namely, by Theorem 3, for fixed dimension Anchored Visibility or

Anchored Quadrant Visibility can be solved in polynomial time. However,

if the dimension is part of the input, then the problem becomes NP-hard by

Theorem 2. In a nonrigorous sense, this can be seen as a quantification of the

strong influence of the dimension compared to the other input parameters.
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Abstract. A cylindrical partition of a convex body in R
n is a partition

of the body into subsets of smaller diameter, obtained by intersecting the
body with a collection of mutually parallel convex-base cylinders. Convex
bodies of constant width are characterized as those that do not admit a
cylindrical partition. The main result is a finite upper bound, exponential
in n, on the minimum number bc(n) of pieces needed in a cylindrical parti-
tion of every convex body of nonconstant width in R

n. (A lower bound on
bc(n), exponential in

√

n, is a consequence of the construction of Kalai and
Kahn for counterexamples to Borsuk’s conjecture.) We also consider cylin-
drical partitions of centrally symmetric bodies and of bodies with smooth
boundaries.

1. Introduction and Preliminaries

Throughout this article, M denotes a compact subset of R
n containing at least

two points. By diam M we denote the maximum distance between points of M ,

but diameter of M also means the line segment connecting any pair of points

of M that realize this distance (ambiguity is always avoided by the context). A

Borsuk partition of M is a family of subsets of M , each of diameter smaller than

diam M , whose union contains M . The Borsuk partition number of M , denoted

by b(M), is the minimum number of sets needed in a Borsuk partition of M . It is

obvious that b(M) is finite. It is also obvious that the maximum of b(M) over all

bounded sets M in R
n exists and is bounded above exponentially in n, since every

set of diameter d is contained in a ball of radius d. Therefore the n-th Borsuk

partition number, denoted by b(n), and defined as the minimum number of sets

needed for a Borsuk partition of any bounded set in R
n, is finite. Since a Borsuk
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400 ALADÁR HEPPES AND W LODZIMIERZ KUPERBERG

partition of a ball in R
n requires at least n + 1 sets, it follows that b(n) ≥ n + 1.

K. Borsuk [1933] conjectured that b(n) = n + 1, to which a counterexample was

found by G. Kalai and J. Kahn [1993] in dimension n = 1325. In fact, Kalai and

Kahn proved that, for large n, b(n) is bounded below exponentially in 1.2
√

n. (At

the time of writing of this paper, the lowest dimension known for which Borsuk’s

conjecture fails is 298; see [Hinrichs and Richter 2003].)

In this paper we consider a special kind of Borsuk partitions, which we will

call cylindrical partitions; we ask related questions and provide some answers.

Definition. By a cylinder in the direction of a line l we understand a closed

set that contains every line parallel to l that intersects the set. A cylinder’s

cross-section perpendicular to its direction is called the base of the cylinder.

Let M be a compact set, let l be a line, and let {Mi} be a Borsuk partition

of M . We say that the partition is cylindrical and that l defines its direction,

provided that each of the sets Mi is the intersection of M with a cylinder parallel

to l. For brevity, we say “cylindrical partition” instead of “cylindrical Borsuk

partition,” assuming automatically that the pieces of M are of diameter smaller

than diam M .

For the purpose of studying the problem of existence and minimum cardinality

of cylindrical partitions of M (over variable M) one can always replace M with

its convex hull ConvM . Therefore it will be assumed from now on that M is a

convex body, unless otherwise specified.

The width of M in the direction of line l is the distance between the pair of

hyperplanes of support of M that are perpendicular to l and enclose M between

them. If M has the same width in every direction, then M is said to be a body

of constant width (see [Heil and Martini 1993, p. 363]). It is easy to see that if

segment d is of maximum length among all chords of M parallel to d, then there

exist two parallel hyperplanes of support of M , each containing an end of d. It

follows that a body of constant width has a diameter in every direction. Hence:

Proposition 1. If M is a body of constant width, then M does not admit a

cylindrical partition in any direction (not even into an infinite number of pieces).

The converse to the above is true as well:

Proposition 2. If M is a bounded set of nonconstant width, then there exists

a direction in which M admits a finite cylindrical partition.

Proof. Denote the diameter of M by d. Let P1 and P2 be a pair of parallel

hyperplanes supporting M from opposite sides and determining a width d1 < d.

Let M1 be the perpendicular projection of M to P1. There exists a finite partition

of M1 (in P1) into sets of diameter smaller than
√

d2 − d2

1
. This partition gives

rise (perpendicularly to P1) to a finite cylindrical partition of M . ˜

Corollary 3. Bodies of constant width are characterized among convex bodies

as those that do not admit a finite cylindrical partition.
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The above characterization of bodies of constant width and the subsequent in-

vestigations were inspired by a previous result of A. Heppes [1959] characterizing

curves of constant width in the plane.

Definition. If M is a set of nonconstant width, let bc(M), the Borsuk cylindri-

cal partition number of M , or the cylindrical partition number of M for short,

denote the smallest number of pieces into which M can be cylindrically parti-

tioned.

The notion defined below is analogous to the n-th Borsuk number:

Definition. The maximum of bc(M) over all sets M of nonconstant width in

R
n is called the n-th cylindrical partition number and is denoted by bc(n).

The above proof of Proposition 2 may seem to indicate that already in the plane

the cylindrical partition number of a set of nonconstant width may be arbitrarily

large. But in Section 3 we show that there is an upper bound for bc(M) depending

on the dimension of the ambient space only, which justifies the definition of bc(n).

Specifically, we show that bc(n) is bounded above exponentially in n. In our proof

we apply the following classical result concerning bodies of constant width (see

[Bonnesen and Fenchel 1974, p. 129]), obtained by E. Meissner [1911] for n = 2

and n = 3, and generalized to all n by B. Jessen [1928]:

Theorem 4 (Meissner–Jessen). Every convex body in R
n can be enlarged ,

without increasing its diameter , to a body of constant width.

Henceforth, the distance from point A to point B, the segment with ends A and

B, and the line containing them are denoted by AB, AB, and
←→
AB, respectively.

Definition. Let s be a segment and let l be a line containing neither of the

two ends of s. The angle at which s is seen from l is the measure of the smallest

dihedral angle with its edge on l and containing s. We denote this angle by

\(l, s).

Observe that the above definition is meaningful in every dimension n ≥ 2, al-

though for n = 2 the angle is always 0◦ or 180◦. In the next section we present

a lemma concerning the minimum angle at which a diameter of a bounded set

can be seen from the line of another diagonal.

2. Diameters of a Bounded Set

Here we relax the standing assumption that M is a convex body. We do not

even require M to be compact, only to be bounded. In what follows, α0 denotes

the measure of the dihedral angle in a regular tetrahedron, α0 = arccos 1

3
=

70.52 . . .◦.

Lemma 5. Let M be a bounded set and let d1 and d2 be diameters of M that do

not have a common end point . Then

\
(←→

d1 , d2

)

≥ α0,
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equality being attained if and only if the convex hull of d1 ∪ d2 is a regular

tetrahedron.

Proof. (F. Santos, private communication, 2003). Assume for simplicity that

diam M = 1 and let l denote the line of d1. Observe that d2 cannot have an

end on l, hence \(l, d2) is well defined. If the segments d1 and d2 intersected,

then we would have \(l, d2) = 180◦, hence we can assume otherwise. Then the

lines of d1 and d2 cannot intersect at all, and, obviously, they cannot be parallel.

Since any pair of skew lines in R
n with n > 3 determine a 3-dimensional flat

containing them, we can now assume that M is a subset of R
3. Hence all we

need to prove is the following:

Assertion. Among all tetrahedra of diameter 1 and with two nonadjacent edges

of length 1, the minimum of the dihedral angle at either one of the two edges is

attained on, and only on, the regular tetrahedron.

Let T = ABCD be a tetrahedron with AB = CD = 1, and with all four of its

remaining edges of length at most 1. Obviously, T lies in a lens-like set L that

is in the common part of two unit balls, one centered at A and the other at B.

Let p be the plane containing
←→
AB and parallel to

←→
CD, let h denote the distance

between p and
←→
CD, and let ph be the plane parallel to p and containing

←→
CD.

The set Lh = L ∩ ph is the common part of two circular disks (in ph) of radius√
1− h2 each, their centers one unit apart. The boundary of Lh is the union of

two circular arcs: the A-arc, consisting of points in Lh one unit away from A,

and the B-arc, consisting of points one unit away from B. Clearly, edge CD of T

lies in Lh; we will vary the position of that edge within Lh in order to minimize

the dihedral angle at edge AB.

Rotating CD (within Lh) about either of its ends to a position “more parallel

to”
←→
AB (that is, to decrease the angle between

←→
CD and

←→
AB) decreases the

dihedral angle at AB. By combining at most two such rotations we can bring

CD to a position in which one of its ends, say C, lies on the B-arc, and the

other one, D, on the A-arc of Lh. Then we have AD = BC = 1. Observe that

unless the equality AD = BC = 1 held already before, this change requires at

least one rotation, thus it actually decreases the dihedral angle at AB.

Finally, if AC < 1, then increasing the length of AC while keeping the length

of the remaining edges fixed results in a decrease of the dihedral angle at
←→
AB (and

the same holds about lengthening the edge BD). To prove this fact, consider

a sufficiently small sphere centered at point B. The intersection of the sphere

with T is an isosceles (spherical) triangle t∗ = A∗D∗C∗ (labeling to reflect the

correspondence to points A, D, and C) with legs A∗D∗ and C∗D∗ whose length

remains constant, since triangles ABD and CBD remain rigid, hinged on their

common edge BD. Observe that the angle of t∗ at A∗ is the dihedral angle

of T at the edge AB. Now, as AC increases, the constant-length legs of the

isosceles triangle t∗ open wider, and the two equal angles at its base decrease.
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This argument proves that the dihedral angle at AB attains its minimum when,

and only when, T is regular, which completes the proof of the lemma. ˜

3. An Exponential Upper Bound for bc(n)

In this section we prove our main result:

Theorem 6. There is a constant k such that bc(n) ≤ kn for every n.

Proof. Let K be a convex body of nonconstant width in R
n and let ̂K be a

body of constant width containing K and of the same diameter as K, whose

existence is provided by Theorem 4. Assume diam K = diam ̂K = 1. Then there

is a line l such that d = l ∩ ̂K is of length 1, while the segment l ∩K is shorter

than 1, hence is a proper subset of d. Let H be the hyperplane perpendicular to

l and let O denote the intersection point l ∩H. There exists a round cylinder C

about l of radius r small enough so that diam (C ∩K) < 1. Let Br denote the

base of C in H, which is an (n− 1)-dimensional ball of radius r, centered at O.

Let S denote the boundary of Br, which is a sphere of dimension n− 2.

Consider a covering of S with the smallest number sn−2 of congruent spherical

caps Ci of angular diameter α slightly smaller than α0 = 70.5 . . .◦ (α0 is the

dihedral angle in a regular tetrahedron, as in Lemma 5). By a simple argument

involving a saturated packing with caps and a rough volume estimate, sn−2 is

bounded above exponentially in n. (C. A. Rogers [1963] gives a very good,

specific upper bound obtained by a refined analysis.) Let Vi denote the cone (in

H) composed of rays emanating from O and passing through Ci, and let Wi be

the subset of Vi obtained by chopping off a small tip of Vi, say Wi is the convex

hull of the closure of the set Vi \ Br, a truncated cone. The family of 1 + sn−2

subsets of H consisting of Br and the truncated cones Wi (i = 1, 2, . . . , sn−2)

covers H. This covering gives rise to a family of cylinders in the direction of

l whose intersections with K form a cylindrical partition of K. Indeed: every

diagonal of K is a diagonal of ̂K, and every diagonal of ̂K other than d, either:

(i) has a common end with d, in which case that end lies outside the union of

the cylinders over the truncated cones Wi, or

(ii) has no common end with d and therefore is seen from l at an angle greater

than or equal to α0, which implies that it cannot be contained in any one of

the cylinders over the sets Wi.

Since C does not contain any diameter of K by design and none of the cylinders

over the truncated cones Wi does either, and since each of these cylindrical pieces

is convex, we have a cylindrical partition of K, with an exponential (in n) upper

bound on the number of pieces. ˜

Remark. The construction in the proof of Theorem 6 actually demonstrates

that bc(n) ≤ 1 + sn−2. However, in case K is smooth, i.e., at every point of

the boundary of K the support hyperplane is unique, no diagonal of K has a
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common end with another diagonal of ̂K. Then the cylinders over the cones Vi,

1 ≤ i ≤ sn−2, form a cylindrical partition of K already (the “central piece” C is

not needed). Thus, bc(K) ≤ sn−2 for every n-dimensional smooth convex body

K of nonconstant width.

The construction described above in the proof of Theorem 6, combined with

the fact that the necessary number of pieces in a Borsuk partition of the n-

dimensional regular simplex is n + 1, yield:

Corollary 7. A constant k exists such that the inequalities n+ 1 ≤ bc(n) ≤ kn

hold . In dimensions up to 4, we have, more specifically , bc(2) = 3, 4≤ bc(3)≤ 7,

and 5 ≤ bc(4) ≤ 15. Moreover , by virtue of the remark above, if K is a smooth

convex body of nonconstant width in R
n, then bc(K) = 2 for n = 2, bc(K) ≤ 6

for n = 3, and bc(K) ≤ 14 for n = 4.

The inequality bc(3) ≤ 7 follows from 5α0 < 360◦ < 6α0, i.e., s1 = 6. The

inequality bc(4) ≤ 15 is obtained by the fact that the 2-sphere (the boundary

of the 3-dimensional ball) can be covered with 14 congruent spherical caps of

spherical diameter smaller than α0, i.e., s2 = 14. Indeed, the smallest diameter

of 14 congruent spherical caps that can cover the 2-sphere is approximately

69.875◦ (see [Fejes Tóth 1969]), just a little bit less than α0.

Remark. Let An denote the counterexample of Kalai and Kahn [1993] to Bor-

suk’s conjecture in R
n, whose Borsuk partition number is bounded below expo-

nentially by
√

n. Since each of the sets An is finite, the set Kn = ConvAn, being

a polyhedron, is of nonconstant width. It follows that bc(Kn) ≥ b(Kn).

Consequently, we have:

Corollary 8. There exist constants k1 > 1 and k2 such that , for large n,

k
√

n
1
≤ bc(n) ≤ kn

2
.

4. Cylindrical Partitions of Bodies With Central Symmetry

Under the assumption of central symmetry of the body to be cylindrically

partitioned, the upper bound on the number of pieces needed is much lower

than the bound obtained in the previous section:

Theorem 9. Let K be a centrally symmetric convex body in R
n other than a

ball . Then bc(K) ≤ n, and the inequality is sharp.

Proof. Assume that O is the symmetry center of K and that diam K = 1.

Then the ball B of radius 1/2 and centered at O contains K as a proper subset.

Therefore one of the diameters of B, say d, has both of its ends outside K. Let H

be a hyperplane perpendicular to d and passing through O. The set H ∩B is an

(n− 1)-dimensional ball (in H) of diameter 1, hence its boundary S, a sphere of

dimension n−2, can be covered by n congruent caps ci of diameter smaller than
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180◦, with centers placed at the vertices of a regular (n − 1)-simplex inscribed

in S. Let Ci be the cone composed of rays that emanate from O and pass

through ci. By erecting a cylinder Di parallel to d with base Ci (i = 1, 2, . . . , n),

we obtain a cylindrical partition of K into n pieces, since neither of the convex

sets Di ∩K contains a pair of antipodes of B.

The inequality is sharp, since any Borsuk partition of a ball in R
n with a pair

of small antipodal congruent caps cut off requires n pieces. ˜

5. Final Remarks and Some Open Problems

Our Proposition 1, Proposition 2, and Corollary 3 can be generalized to n-

dimensional Minkowski spaces by methods described in [Averkov and Martini

2002]. The classical Meissner–Jessen theorem (Theorem 4 here) has been gener-

alized to convex bodies in n-dimensional Minkowski spaces by G. D. Chakerian

and H. Groemer [1983]. Therefore it is perhaps possible that Theorem 6, our

main result, can be so generalized as well, although the magnitude of the upper

bound may depend on the unit ball in the Minkowski space.

One could generalize the concept of cylindrical partitions in R
n by consider-

ing “k-cylinders” obtained as a Cartesian product of a set lying in an (n − k)-

dimensional flat with a k-dimensional flat (a 1-cylinder would then be a “usual”

cylinder, i.e., a product with a line). But, because of their connection to bodies

of constant width, we decided to deal with cylindrical partitions based on the

usual cylinders only.

M. Lassak [1982] proved that b(n) ≤ 2n−1+1, and from a result of O. Schramm

[1988] on covering a body of constant width with its smaller homothetic copies

it follows that b(n) ≤ 5n
√

n(4 + log n)
(

3

2

)n/2

, presenting an upper bound of

order of magnitude
(√

1.5
)n

. The precise asymptotic behavior of b(n) remains

unknown.

The problem of determining the precise asymptotic behavior of bc(n) as n→

∞ (let alone the exact values), appears to be extremely difficult, just as, or

perhaps even more so than, the similar problem for b(n). But it seems reasonable

to expect some improvements on the bounds given in Corollary 7 and in Theorem

8. In particular, we feel that the upper bound in 4 ≤ bc(3) ≤ 7 can be lowered,

perhaps all the way down to 4. Also, one should be able to narrow the gap

between the lower and upper bounds in 5 ≤ bc(4) ≤ 15.

And, finally, it seems strange that the seemingly natural inequality b(n) ≤

bc(n) is not obvious at all; perhaps it may even be false for some n. It is a priori

conceivable that in some dimension n, the value of b(n) is attained on a body

(or bodies) of constant width only, and that in such dimension, bc(n), being

defined by bodies of nonconstant width, is smaller than b(n). Paradoxical as it

may seem, thus far such possibility has not been excluded. However, it is quite

obvious that b(n) ≤ bc(n) + 1, because every convex body of constant width can
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be reduced to a convex body of nonconstant width by separating from it one

small piece.
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Tropical Halfspaces

MICHAEL JOSWIG

Abstract. As a new concept tropical halfspaces are introduced to the

(linear algebraic) geometry of the tropical semiring (R, min, +). This yields

exterior descriptions of the tropical polytopes that were recently studied

by Develin and Sturmfels [2004] in a variety of contexts. The key tool

to the understanding is a newly defined sign of the tropical determinant,

which shares remarkably many properties with the ordinary sign of the

determinant of a matrix. The methods are used to obtain an optimal

tropical convex hull algorithm in two dimensions.

1. Introduction

The set R of real numbers carries the structure of a semiring if equipped

with the tropical addition λ ⊕ µ = min{λ, µ} and the tropical multiplication

λ�µ = λ+µ, where + is the ordinary addition. We call the triplet (R,⊕,�) the

tropical semiring1. It is an equally simple and important fact that the operations

⊕,� : R× R→ R are continuous with respect to the standard topology of R. So

the tropical semiring is, in fact, a topological semiring. Considering the tropical

scalar multiplication

λ� (µ0, . . . , µd) = (λ+µ0, . . . , λ+µd)

(and componentwise tropical addition) turns the set R
d+1 into a semimodule.

The study of the linear algebra of the tropical semiring and, more generally,

of idempotent semirings, has a long tradition. Applications to combinatorial

optimization, discrete event systems, functional analysis etc. abound. For an

introduction see [Baccelli et al. 1992]. A recent contribution in the same vein,

with many more references, is [Cohen et al. 2004].

This work has been carried out while visiting the Mathematical Sciences Research Institute in

Berkeley for the special semester on Discrete and Computational Geometry.

1Other authors reserve the name tropical semiring for (N ∪ {+∞}, min, +) and call (R ∪

{+∞}, min, +) the min-plus-semiring.
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Convexity in the tropical world (and even in a more general setting) was first

studied by Zimmermann [1977]. Following the approach of Develin and Sturmfels

[2004] here we stress the point of view of discrete geometry. We recall some of

the key definitions. A subset S ⊂ R
d+1 is tropically convex if for any two points

x, y ∈ S the tropical line segment

[x, y] =
{

λ�x⊕ µ�y
∣

∣ λ, µ ∈ R
}

is contained in S. The tropical convex hull of a set S ⊂ R
d+1 is the smallest

tropically convex set containing S; it is denoted by tconv S. It is easy to see

[Develin and Sturmfels 2004, Proposition 4] that

tconv S =
{

λ1�x1 ⊕ · · · ⊕ λn�xn

∣

∣ λi ∈ R, xi ∈ S
}

.

A tropical polytope is the tropical convex hull of finitely many points. Since

any convex set in R
d+1 is closed under tropical multiplication with an arbitrary

scalar, it is common to identify tropically convex sets with their respective images

under the canonical projection onto the d-dimensional tropical projective space

TP
d =

{

R� x
∣

∣ x ∈ R
d+1

}

= R
d+1/R(1, . . . , 1).

In explicit computations we often choose canonical coordinates for a point x ∈

TP
d, meaning the unique nonnegative vector in the class R � x which has at

least one zero coordinate. For visualization purposes, however, we usually nor-

malize the coordinates by choosing the first one to be zero (which can then be

omitted): This identification (ξ0, . . . , ξd) 7→ (ξ1−ξ0, . . . , ξd−ξ0) : TP
d → R

d is a

homeomorphism.

Develin and Sturmfels observed that tropical simplices, that is tropical convex

hulls of d+1 points in TP
d (in sufficiently general position), are related to Isbell’s

[1964] injective envelope of a finite metric space; see [Develin and Sturmfels 2004,

Theorem 29] and the Erratum. Isbell’s injective envelope in turn coincides with

the tight span of a finite metric space that arose in the work of Dress and others;

see [Dress et al. 2002] and its list of references. In a way, tropical simplices may

be understood as nonsymmetric analogues of injective hulls or tight spans.

Additionally, tropical polytopes are interesting also from a purely combinato-

rial point of view: They bijectively correspond to the regular polyhedral subdi-

visions of products of simplices; see [Develin and Sturmfels 2004, Theorem 1].

The present paper studies tropical polytopes as geometric objects in their

own right. It is shown that, at least to some extent, it is possible to develop a

theory of tropical polytopes in a fashion similar to the theory of ordinary convex

polytopes. The key concept introduced to this end is the notion of a tropical

halfspace. One of our main results, Theorem 4.7, gives a characterization of

tropical halfspaces in terms of the tropical determinant, which is the same as the

min-plus-permanent already studied by Yoeli [1961] and others; see also [Richter-

Gebert et al. 2005]. The proof leads to the definition of the faces of a tropical

polytope in a natural way. In the investigation, in particular, we prove that the



TROPICAL HALFSPACES 411

faces form a distributive lattice; see Theorem 3.7. Moreover, as one would expect

by analogy to ordinary convex polytopes, the tropical polytopes are precisely the

bounded intersections of finitely many tropical halfspaces; see Theorem 3.6.

It is a further consequence of our results on tropical polytopes that some con-

cepts and ideas from computational geometry can be carried over from ordinary

convex polytopes to tropical polytopes. In Section 5 this leads us to a compre-

hensive solution of the convex hull problem in TP
2. The general tropical convex

hull problem in arbitrary dimension is certainly interesting, but this is beyond

our current scope.

The paper closes with a selection of open questions.

2. Hyperplanes and Halfspaces

We start this section with some observations concerning the topological as-

pects of tropical convexity. As already mentioned the tropical projective space

TP
d is homeomorphic to R

d with the usual topology. Moreover, the space

TP
d carries a natural metric: For a point x ∈ TP

d with canonical coordinates

(ξ0, . . . , ξd) let

||x|| = max{ξ0, . . . , ξd}

be the tropical norm of x. Equivalently, for arbitrary coordinates (ξ′0, . . . , ξ
′
d) ∈

R � x we have that ||x|| = max
{

|ξ′i − ξ′j |
∣

∣ i 6= j
}

. We prove a special case of

[Cohen et al. 2004, Theorem 17]:

Lemma 2.1. The map

TP
d × TP

d → R : (x, z) 7→ ||x− z||

is a metric.

Proof. By definition the map is nonnegative. Moreover, it is clearly definite

and symmetric. We prove the triangle inequality: Assume that x = (ξ0, . . . , ξd),

z = (ζ0, . . . , ζd), and that y = (η0, . . . , ηd) be a third point. Then

||x− z|| = max
{

|(ξi−ζi)− (ξj−ζj)|
∣

∣ i 6= j
}

= max
{

|(ξi−ξj)− (ηi−ηj) + (ηi−ηj)− (ζi−ζj)|
∣

∣ i 6= j
}

≤ max
{

|(ξi−ξj)− (ηi−ηj)|+ |(ηi−ηj)− (ζi−ζj)|
∣

∣ i 6= j
}

≤ max
{

|(ξi−ηi)− (ξj−ηj)|
∣

∣ i 6= j
}

+ max
{

|(ηi−ζi)− (ηj−ζj)|
∣

∣ i 6= j
}

= ||x−y||+ ||y−z||. ˜

The topology induced by this metric coincides with the quotient topology on TP
d

(and thus with the natural topology of R
d). In particular, TP

d is locally compact

and a set C ⊂ TP
d is compact if and only if it is closed and bounded. Tacitly

we will always assume that d ≥ 2.
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Proposition 2.2. The topological closure of a tropically convex set is tropically

convex .

Proof. Let S be a tropically convex set with closure S̄. Then, by [Develin and

Sturmfels 2004, Proposition 4], tconv(S̄) is the set of points in TP
d which can be

obtained as tropical linear combinations of points in S̄. Now the claim follows

from the fact that tropical addition and multiplication are continuous. ˜

From the named paper by Develin and Sturmfels we quote a few results which

will be useful in our investigation.

Theorem 2.3 [Develin and Sturmfels 2004, Theorem 15]. A tropical polytope

has a canonical decomposition as a finite ordinary polytopal complex , where the

cells are both ordinary and tropical polytopes.

Proposition 2.4 [Develin and Sturmfels 2004, Proposition 20]. The intersection

of two tropical polytopes is again a tropical polytope.

Proposition 2.5 [Develin and Sturmfels 2004, Proposition 21] (see also [Helbig

1988]). For each tropical polytope P there is a unique minimal set Vert(P ) ⊂ P

with tconv(Vert(P )) = P .

The elements of Vert(P ) are called the vertices of P . The following is implied

by Theorem 2.3. There is also an easy direct proof which we omit, however.

Proposition 2.6. A tropical polytope is compact .

The tropical hyperplane defined by the tropical linear form a = (α0, . . . , αd) ∈

R
d+1 is the set of points (ξ0, . . . , ξd) ∈ TP

d such that the minimum

min{α0 + ξ0, . . . , αd + ξd} = α0 � ξ0 ⊕ · · · ⊕ αd � ξd

is attained at least twice. The point −a is contained in the tropical hyperplane

defined by a, and it is called its apex. Note that any two tropical hyperplanes

only differ by a translation.

Proposition 2.7 [Develin and Sturmfels 2004, Proposition 6]. Tropical hyper-

planes are tropically convex .

The complement of a tropical hyperplane H in TP
d has d + 1 connected compo-

nents corresponding to the facets of an ordinary d-simplex. We call each such

connected component an open sector of H. The topological closure of an open

sector is a closed sector. It is easy to prove that each (open or closed) sector is

convex both in the ordinary and in the tropical sense.

Example 2.8. Consider the zero tropical linear form 0 ∈ R
d+1. The open

sectors of the corresponding tropical hyperplane Z are the sets S0, . . . , Sd, where

Si =
{

(ξ0, . . . , ξd)
∣

∣ ξi < ξj for all j 6= i
}

.
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The closed sectors are the sets S̄0, . . . , S̄d, where

S̄i =
{

(ξ0, . . . , ξd)
∣

∣ ξi ≤ ξj for all j 6= i
}

.

In canonical coordinates this can be expressed as follows:

Si =
{

(ξ0, . . . , ξd)
∣

∣ ξi = 0 and ξj > 0, for j 6= i
}

and

S̄i =
{

(ξ0, . . . , ξd)
∣

∣ ξi = 0 and ξj ≥ 0, for j 6= i
}

.

Just as any two tropical hyperplanes are related by a translation, each translation

of a sector is again a sector. We call such sectors parallel.

The following simple observation is one of the keys to the structural results

on tropical polytopes in the subsequent sections. It characterizes the solvability

of one tropical linear equation. For related results see [Akian et al. 2005].

Proposition 2.9. Let x1, . . . , xn ∈ TP
d. Then 0 ∈ tconv{x1, . . . , xn} if and

only if each closed sector S̄k of the zero tropical linear form contains at least one

xi.

Proof. We write ξij for the canonical coordinates of the xi in R
d+1. Then all

the n(d + 1) entries in the matrix






ξ10 · · · ξ1d
...

. . .
...

ξn0 · · · ξnd







are nonnegative. Hence

0 = λ1�x1 ⊕ · · · ⊕ λn�xn

(with λi ≥ 0, as we may assume without loss of generality) if and only if min{λ1+

ξ1k, . . . , λn + ξnk} = 0 for all k. We conclude that zero is in the tropical convex

hull of x1, . . . , xn if and only if for all k there is an i such that ξik = 0 or,

equivalently, xi ∈ S̄k. ˜

Throughout the following we abbreviate [d + 1] = {0, . . . , d}, and we write

Sym(d + 1) for the symmetric group of degree d + 1 acting on the set [d + 1].

Let ei be the i-th unit vector of R
d+1. Observe that under the natural action

of Sym(d + 1) on TP
d by permuting the unit vectors tropically convex sets get

mapped to tropically convex sets. The set of all k-element subsets of a set Ω is

denoted by
(

Ω
k

)

.

We continue our investigation with the construction of a two-parameter family

of tropical polytopes.

Example 2.10. We define the k-th tropical hypersimplex in TP
d as

∆d
k = tconv

{

∑

i∈J

−ei

∣

∣

∣

∣

J ∈

(

[d + 1]

k

)

}

⊂ TP
d.
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It is essential that

Vert(∆d
k) =

{

∑

i∈J

−ei

∣

∣

∣

∣

J ∈

(

[d + 1]

k

)

}

,

for all k > 0: This has to do with the fact that the symmetric group Sym(d + 1)

acts on the set, due to which either all or none of the points
∑

i∈J −ei is a ver-

tex. But from Proposition 2.5 we know that ? 6= Vert(∆d
k) ⊆

{
∑

i∈J −ei

∣

∣ J ∈
(

[d+1]
k

)}

, and hence the claim follows. Develin, Santos, and Sturmfels [Develin

et al. 2005] construct tropical polytopes from matroids. The tropical hypersim-

plices arise as the special case of uniform matroids.

It is worth-while to look at two special cases of the previous construction.

Example 2.11. The first tropical hypersimplex in TP
d is the d-dimensional

tropical standard simplex ∆d = ∆d
1 = tconv{−e0, . . . ,−ed}. Note that ∆d is a

tropical polytope which at the same time is an ordinary polytope.

Example 2.12. The second tropical hypersimplex ∆d
2 ⊂ TP

d is the tropical

convex hull of the
(

d+1
2

)

vectors −ei−ej for all pairs i 6= j. The tropical polytope

∆d
2 is not convex in the ordinary sense. It is contained in the tropical hyperplane

Z corresponding to the zero tropical linear form. For d = 2 see Figure 1 below.

Proposition 2.13. The second tropical hypersimplex ∆d
2 ⊂ TP

d is the intersec-

tion of the tropical hyperplane Z corresponding to the zero tropical linear form

with the set of points whose tropical norm is bounded by 1.

Proof. Clearly, −ei − ej ∈ Z for i 6= j. We have to show that a point x with

canonical coordinates (ξ0, . . . , ξd) and ||x|| ≤ 1 such that, e.g., ξ0 = ξ1 = 0, is a

tropical linear combination of the
(

d+1
2

)

vertices of ∆d
2. We compute

x = (0, 0, 1, . . . , 1)⊕ ξ2�(0, 1, 0, 1, . . . , 1)⊕ · · · ⊕ ξd�(0, 1, . . . , 1, 0),

and hence the claim. ˜

In particular, this implies that ∆d
2 contains ∆d

k, for all k > 2. A similar compu-

tation further shows that ∆d
k ) ∆d

k+1, for all k.

Example 2.14. The ordinary d-dimensional ±1-cube

Cd =
{

(0, ξ1, . . . , ξd)
∣

∣ −1 ≤ ξi ≤ 1
}

is a tropical polytope: Cd = tconv{−e0 − 2e1, . . . ,−e0 − 2ed, e1 + . . . + ed}.

One way of reading Proposition 2.13 is that the intersection of the tropical hyper-

plane corresponding to the zero tropical linear form with the ordinary ±1-cube

is a tropical polytope. An important consequence is the following.

Corollary 2.15. The (nonempty) intersection of a tropical polytope with a

tropical hyperplane is again a tropical polytope.
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Proof. Let P ⊂ TP
d be a tropical polytope and H a tropical hyperplane. As

usual, up to a translation we can assume that H = Z corresponds to the zero

tropical linear form. By Proposition 2.13 the intersection P ∩ Z is contained in

a suitably scaled copy of the second tropical hypersimplex ∆d
2. Now the claim

follows from Proposition 2.4. ˜

A closed tropical halfspace in TP
d is the union of at least one and at most d

closed sectors of a fixed tropical hyperplane. Hence it makes sense to talk about

the apex of a tropical halfspace. An open tropical halfspace is the complement

of a closed one. Clearly, the topological closure of an open tropical halfspace

is a closed tropical halfspace. To each (open or closed) tropical halfspace H+

there is an opposite (open or closed) tropical halfspace H− formed by the sectors

of the corresponding tropical hyperplane which are not contained in H+. Two

halfspaces are parallel if they are formed of parallel sectors.

Lemma 2.16. Let a + S̄k ⊂ TP
d be a closed sector , for some k ∈ [d + 1], and

b ∈ a + S̄k a point inside. Then the parallel sector b + S̄k is contained in a + S̄k.

Note that this includes the case where b is a point in the boundary a+(S̄k \Sk).

The proof of the lemma is omitted.

Proposition 2.17. Each closed tropical halfspace is tropically convex .

Proof. Let H+ be a closed tropical halfspace. Without loss of generality, we

can assume that H+ is the union the of closed sectors S̄i1 , . . . , S̄il
of the tropical

hyperplane Z corresponding to the zero tropical linear form. Since we already

know that each S̄ik
is tropically convex, it suffices to consider, e.g., x ∈ S̄i1 and

y ∈ S̄i2 and to prove that [x, y] ⊂ H+. Let (ξ0, . . . , ξd) and (η0, . . . , ηd) be the

canonical coordinates of x, y ∈ TP
d, respectively. Since x ∈ S̄i1 and y ∈ S̄i2 we

have that ξi1 = 0 and ηi2 = 0. Then the minimum

min{λ + ξ0, . . . , λ + ξd, µ + η0, . . . , µ + ηd}

is λ = λ + ξi1 or µ = µ + ηi2 , for arbitrary λ, µ ∈ R. This is equivalent to

λ� x + µ� y ∈ S̄i1 ∪ S̄i2 , which implies the claim. ˜

A similar argument shows that open tropical halfspaces are tropically convex.

Corollary 2.18. The boundary of a tropical halfspace is tropically convex .

Proof. The boundary of a closed tropical halfspace H+ is the intersection of

H+ with its opposite closed tropical halfspace H−. ˜

Tropical Separation Theorem 2.19. Let P be tropical polytope, and x 6∈ P

a point outside. Then there is a closed tropical halfspace containing P but not x.

Proof. From Proposition 2.9 we infer that there is a closed sector x+ S̄k of the

tropical hyperplane with apex x which is disjoint from P . Now ek is the unique

coordinate vector such that ek 6∈ S̄k. Since P is compact and S̄k is closed there
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is some ε > 0 such that the closed sector x + εek + S̄k is disjoint from P . The

complement of the open sector x + εek + Sk is a closed tropical halfspace of the

desired kind. ˜

Tropical halfspaces implicitly occur in [Cohen et al. 2004]. In particular, their

results imply the Tropical Separation Theorem. In fact, a variation of this re-

sult already occurs in [Zimmermann 1977]. Another variant of the same is the

Tropical Farkas Lemma [Develin and Sturmfels 2004, Proposition 9].

3. Exterior Descriptions of Tropical Polytopes

Throughout this section let P ⊂ TP
d be a tropical polytope. Like their

ordinary counterparts tropical polytopes also have an exterior description.

Lemma 3.1. The tropical polytope P is the intersection of the closed tropical

halfspaces that it is contained in.

Proof. Let P ′ be the intersection of all the tropical halfspaces which contain P .

Clearly, P ′ contains P . Suppose that there is a point x ∈ P ′ \ P . Then, by the

Tropical Separation Theorem, there is a closed tropical halfspace which con-

tains P but not x. This contradicts the assumption that P ′ is the intersection

of all such tropical halfspaces. ˜

Of course, the set of closed tropical halfspaces that contain the given tropical

polytope P is partially ordered by inclusion. A closed tropical halfspace is said

to be minimal with respect to P if it is a minimal element in this partial order.

A key observation in what follows is that the minimal tropical halfspaces come

from a small set of candidates only. For a given finite set of points p1, . . . , pn ∈

TP
d let the standard affine hyperplane arrangement be generated by the ordinary

affine hyperplanes

pi +
{

(0, ξ1, . . . , ξd) ∈ R
d+1

∣

∣ ξj = 0
}

and pi +
{

(0, ξ1, . . . , ξd) ∈ R
d+1

∣

∣ ξj = ξk

}

.

For an example illustration see Figure 3. A pseudovertex of P is a vertex of the

standard affine hyperplane arrangement with respect to Vert(P ) which is con-

tained in the boundary ∂P . In [Develin and Sturmfels 2004] our pseudovertices

are called the vertices.

Here is a special case of [Develin and Sturmfels 2004, Proposition 18].

Proposition 3.2. The bounded cells of the standard affine hyperplane arrange-

ment are tropical polytopes which are at the same time ordinary convex polytopes.

Proposition 3.3. The apex of a closed tropical halfspace that is minimal with

respect to P is a pseudovertex of P .

Proof. Let H+ be a closed tropical halfspace, with apex a, which minimally

contains P . Suppose that a is not a vertex of the standard affine hyperplane

arrangement A generated by Vert(P ), but rather a is contained in the relative
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interior of some cell C of A of dimension at least one. Now there is some ε > 0

such that for each point a′ in C with ||a′−a|| < ε the closed tropical halfplane with

apex a′ and parallel to H+ still contains P . For each a′ ∈ H+ the corresponding

translate is contained in H+ and hence H+ is not minimal. Contradiction.

It remains to show that a ∈ P . Again suppose the contrary. Then, by the

Tropical Separation Theorem 2.19, there is a closed halfspace H+
1 containing P

but not a. Now, since H+ is minimal, H+
1 is not contained in H+ and, in

particular, H+
1 is not parallel to H+. As a 6∈ H+

1 the closed tropical halfspace

H+
2 with apex a which is parallel toH+

1 contains P . We infer thatH+∩H+
2 ( H+

is a closed tropical halfspace (with apex a) which contains P . This contradicts

the minimality of H+. ˜

Corollary 3.4. There are only finitely many closed tropical halfspace which

are minimal with respect to P .

Proof. The standard affine hyperplane arrangement generated by Vert(P ) is

finite, and thus there are only finitely many pseudovertices. Since there are only

2d+1 − 2 closed affine halfspaces with a given apex,2 the claim now follows from

Proposition 3.3. ˜
removed redundant “This
immediately gives the
following.”Corollary 3.5. The tropical polytope P is the intersection of the (finitely

many) minimal closed tropical halfspaces that it is contained in.

We can now prove our first main result.

Theorem 3.6. The tropical polytopes are exactly the bounded intersections of

finitely many tropical halfspaces.

Proof. Let P be the bounded intersection of finitely many tropical halfspaces

H+
1 , . . . ,H+

m. Then P is the union of (finitely many) bounded cells of the stan-

dard affine hyperplane arrangement corresponding to the apices of H+
1 , . . . ,H+

m.

By Proposition 3.2 each of those cells is the tropical convex hull of its pseu-

dovertices. Since P is tropically convex, this property extends to P , and P is a

tropical polytope.

The converse follows from Corollary 3.5. ˜

Ordinary polytope theory is combinatorial to a large extent. This is due to the

fact that many important properties of an ordinary polytope are encoded into

its face lattice. While it is tempting to start a combinatorial theory of tropical

polytopes from the results that we obtained so far, this turns out to be quite

intricate. Here we give a brief sketch, while a more detailed discussion will be

picked up in a forthcoming second paper.

A boundary slice of the tropical polytope P is the tropical convex hull of

Vert(P ) ∩ ∂H+ where H+ is a closed tropical halfspace containing P . The

2The Example 3.9 shows that there may indeed be more than one minimal halfspace with

a given apex.
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boundary slices are partially ordered by inclusion; we call a maximal element

of this finite partially ordered set a facet of P . Let F1, . . . , Fm be facets of P .

Then the set

F1 u . . . u Fm = tconv(Vert(P ) ∩ F1 . . . ∩ Fm)

is called a proper face of P provided that F1 u . . . u Fm 6= ?. The sets ? and P

are the nonproper faces. The faces of a tropical polytope are partially ordered by

inclusion, the maximal proper faces being the facets. Note that, by definition,

faces of tropical polytopes are again tropical polytopes.

Theorem 3.7. The face poset of a tropical polytope is a finite distributive lattice.

Proof. We can extend the definition of u to arbitrary faces, this gives the meet

operation. There is no choice for the join operation then: G tH is the meet of

all facets containing G and H, for arbitrary faces G and H. Denote the set of

facets containing the face G by Φ(G), that is, G =uΦ(G). It is immediate from

the definitions that Φ(G tH) = Φ(G) ∩ Φ(H) and Φ(G uH) = Φ(G) ∪ Φ(H).

Hence the absorption and distributive laws are inherited from the boolean lattice

of subsets of the set of all facets. ˜

In order to simplify some of the discussion below we shall introduce a certain

nondegeneracy condition: A set S ⊂ TP
d is called full, if it is not contained in

the boundary of any tropical halfspace. If S is not contained in any tropical

hyperplane, then, clearly, S is full. As the Example 3.9 below shows, however,

the converse does not hold.

Example 3.8. The tropical standard simplex

∆2 = tconv{(0, 1, 1), (1, 0, 1), (1, 1, 0)}

is not contained in a tropical hyperplane, and hence it is full; see Figure 1, left.

It is the intersection of the three minimal closed tropical halfspaces (1, 0, 0)+ S̄0,

(0, 1, 0) + S̄1, and (0, 0, 1) + S̄2. The tropical line segments [(0, 1, 1), (1, 0, 1)],

[(1, 0, 1), (1, 1, 0)], and [(1, 1, 0), (0, 1, 1)] form the facets. The three vertices form

the only other proper faces.

Example 3.9. The second tropical hypersimplex

∆2
2 = tconv{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is a full tropical triangle in the tropical plane TP
2, which is contained in the

tropical line Z corresponding to the zero tropical linear form. There are six

minimal closed tropical halfspaces: S̄0 ∪ S̄1, S̄1 ∪ S̄2, S̄0 ∪ S̄2, (1, 0, 0) + S̄0,

(0, 1, 0) + S̄1, and (0, 0, 1) + S̄2. Note that the three closed tropical halfspaces

S̄0 ∪ S̄1, S̄1 ∪ S̄2, and S̄0 ∪ S̄2 share the origin as their apex. The tropical

line segments [(1, 0, 0), (0, 1, 0)], [(0, 1, 0), (0, 0, 1)], and [(0, 0, 1), (1, 0, 0)] form the

facets. As in the example above, the three vertices form the only other proper

faces. The triangle is depicted in Figure 1, right.
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Figure 1. Two full tropical triangles in TP
2: the tropical standard simplex

∆2 (left) and the second tropical hypersimplex ∆2
2 ⊂ TP

2, which has collinear

vertices. Both have the same face lattice as an ordinary triangle.

Remark 3.10. It is a consequence of Proposition 2.4 and Corollary 2.15 that

boundary slices of tropical polytopes are tropical polytopes, but they need not

be faces: E.g., the intersection of ∆2
2 with the boundary of the halfspace

(0, 0, 1/2) + (S̄1 ∪ S̄2)

is the tropical (and at the same time ordinary) line segment [(0, 0, 1/2), (0, 0, 1)],

which contains the face (0, 0, 1) and is properly contained in the intersection

[(1, 0, 0), (0, 0, 1)] ∩ [(0, 1, 0), (0, 0, 1)] of two facets.

Remark 3.11. It is easy to see that the face lattice of a tropical n-gon in TP
2

(which is necessarily full) is always the same as that of an ordinary n-gon. This

will play a role in the investigation of the algorithmic point of view in Section 5.

Minimal closed tropical halfspaces can be recognized by the intersection of their

boundaries with P , provided that P is full.

Proposition 3.12. Assuming that P is full , let H+
1 and H+

2 be closed tropical

halfspaces which are minimal with respect to P . If ∂H+
1 ∩ P = ∂H+

2 ∩ P then

H+
1 = H+

2 .

Proof. If P is full then it is impossible that for any closed tropical halfspace

H+ containing P the opposite closed halfspace H− also contains P .

Let a1 and a2 be the respective apices of H+
1 and H+

2 . By Lemma 3.3 the

points a1 and a2 are contained in P and hence a1 ∈ ∂H+
2 and a2 ∈ ∂H+

1 . In

particular, a1 ∈ H
−
2 . Therefore, the closed tropical halfspace (a1 − a2) + H+

2

with apex a1 which is parallel to H+
2 is a closed tropical halfspace containing P .

Since H+
1 is minimal, H+

1 ⊆ (a1−a2)+H
+
2 and hence H+

1 ⊆ H
+
2 . Symmetrically,

H+
2 ⊆ H

+
1 , and the claim follows. ˜

Remark 3.13. The familiarity of the names for the objects defined could inspire

the question whether tropical polytopes and, more generally, point configurations

in the tropical projective space can be studied in the framework of oriented

matroids. However, as the example in Figure 1 shows, the boundaries of tropical
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halfspaces spanned by a given set of points do not form a pseudo-hyperplane

arrangement, in general.

4. Tropical Determinants and Their Signs

For algorithmic approaches to ordinary polytopes it is crucial that the inci-

dence of a point with an affine hyperplane can be characterized by the vanishing

of a certain determinant expression. Moreover, by evaluating the sign of that

same determinant, it is possible to distinguish between the two open affine half-

spaces which jointly form the complement of the given affine hyperplane. This

section is about the tropical analog.

Let M = (mij) ∈ R
(d+1)×(d+1) be a matrix. Then the tropical determinant is

defined as

tdetM =
⊕

σ∈Sym(d+1)

d
⊙

i=0

mi,σ(i) = min
{

m0,σ(0)+ . . .+md,σ(d)

∣

∣ σ ∈ Sym(d+1)
}

.

Now M is tropically singular if the minimum is attained at least twice, otherwise

it is tropically regular. Tropical regularity coincides with the strong regularity of

a matrix studied by Butkovič [1994]; see also [Burkard and Butkovič 2003].

The following is proved in [Richter-Gebert et al. 2005, Lemma 5.1].

Proposition 4.1. The matrix M is tropically singular if and only if the d + 1

points in TP
d corresponding to the rows of M are contained in a tropical hyper-

plane.

From the definition of tropical singularity it is immediate that M is tropically

regular if and only if its transpose M tr is. Hence the above proposition also

applies to the columns of M .

The tropical sign of tdet M , denoted as tsgn M , is either 0 or ±1, and it is

defined as follows. If M is singular, then tsgn M = 0. If M is regular, then there

is a unique σ ∈ Sym(d + 1) such that m0,σ(0) + . . . + md,σ(d) = tdet M . We let

the tropical sign of M be the sign of this permutation σ. See also [Baccelli et al.

1992, § 3.5.1] and Remark 4.9 below.

As it turns out the tropical sign shares some key properties with the (sign of

the) ordinary determinant.

Proposition 4.2. Let M ∈ R
(d+1)×(d+1).

(1) If M contains twice the same row (column), then tsgn M = 0.

(2) If the matrix M ′ is obtained from M by exchanging two rows (columns), we

have tsgn M ′ = − tsgn M .

(3) tsgn M tr = tsgn M .

Proof. The first property follows from Proposition 4.1. The second one is

immediate from the definition of the tropical sign. And since permuting the
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(1, 0, 0)

(0, 1, 0)

τ = 1

τ = 1

τ = −1

(0, 0, 0) (0, 1, 0)

τ ′ = 0

τ ′ = 1

τ ′ = −1

Figure 2. Values of τp,q in TP
2 for two pairs of points: nondegenerate case

for τ = τ(1,0,0),(0,1,0) (left) and degenerate case for τ ′ = τ(0,0,0),(0,1,0) (right).

On the tropical line spanned by the two black points the values are zero in both

cases.

rows of a matrix is the same as permuting the columns with the inverse, we

conclude that tsgnM tr = tsgn M . ˜

While the behavior of the sign of the ordinary determinant under scaling a row

(column) by λ ∈ R depends on the sign of λ, the tropical sign is invariant

under this operation. Given v0, . . . , vd ∈ R
d+1 we write (v0, . . . , vd) for the

(d + 1)× (d + 1)-matrix with row vectors v0, . . . , vd.

Lemma 4.3. For v0, . . . , vd ∈ R
d+1 and λ0, . . . , λd ∈ R we have tsgn(λ0 � v0,

. . . , λd � vd) = tsgn(v0, . . . , vd).

In fact, tsgn is a function on (d + 1)-tuples of points in the tropical projective

space TP
d. For given p1, . . . , pd, consider the function

τp1,...,pd
: TP

d → {−1, 0, 1} : x 7→ tsgn(x, p1, . . . , pd).

Note that we do allow the case where the points p1, . . . , pd are not in general

position, that is, they may be contained in more than one tropical hyperplane;

see the example in Figure 4, right.

Example 4.4. Consider the real (d + 1)× (d + 1)-matrix formed of the vertices

−e0, . . . ,−ed of the tropical standard simplex ∆d. Then we have

tdet(−e0, . . . ,−ed) = −d,

and the matrix is regular: The unique minimum is attained for the identity

permutation, hence

tsgn(−e0, . . . ,−ed) = 1,

or equivalently, τ−e1,...,−ed
(−e0) = 1.
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Proposition 4.5. The function τp1,...,pd
is constant on each connected compo-

nent of the set TP \ τ−1
p1,...,pd

(0).

Proof. Equip the set {−1, 0, 1} with the discrete topology. Away from zero the

function τp1,...,pd
is continuous, and the result follows. ˜

Throughout the following we keep a fixed sequence of points p1, . . . , pd, and

we write πij for the j-th canonical coordinate of pi. We frequently abbreviate

τ = τp1,...,pd
as well as p(σ) = π1,σ(1) + . . . + πd,σ(d) for σ ∈ Sym(d + 1).

Remark 4.6. The points p1, . . . , pd are in general position if and only if no

d× d-minor of the d × (d + 1)-matrix with entries πij is tropically singular; see

[Richter-Gebert et al. 2005, Theorem 5.3]. In the terminology of [Develin et al.

2005] this is equivalent to saying that the matrix (πij) has maximal tropical

rank d.

Theorem 4.7. The set
{

x ∈ TP
d

∣

∣ τ(x) = 1
}

is either empty or the union of at

most d open sectors of a fixed tropical hyperplane. Conversely, each such union

of open sectors arises in this way.

Proof. We can assume that τ(x) = 1 for some x ∈ TP
d, since otherwise

there is nothing left to prove. From Proposition 4.1 we know that the d + 1

points x, p1, . . . , pd are not contained in a tropical hyperplane, and hence they

are the vertices of a full tropical d-simplex ∆ = tconv{x, p1, . . . , pd}. Consider

the facet F = tconv{p1, . . . , pd}, and let H+ be the unique corresponding closed

tropical halfspace which is minimal with respect to ∆ and for which we have

∂H+ ∩ ∆ = F . Let a be the apex of H+, and let a + Sk be the open sector

containing x. By construction a + Sk ⊂ H
+.

Assume that τ(y) 6= τ(x) for some y ∈ a + Sk. Then there exists a point

z ∈ [x, y] with τ(z) = 0. Since sectors are tropically convex, z ∈ a + Sk. By

Proposition 4.1 there exists a tropical hyperplane K which contains the points

z, p1, . . . , pd. Let K+ be the minimal closed tropical halfspace of the tropical

hyperplane K containing x, p1, . . . , pd. As H+ and K+ are both minimal with

respect to the tropical simplex ∆, the Proposition 3.12 says that H+ = K+, and

in particular, a+Sk 3 z is an open sector of K. The latter contradicts, however,

z ∈ K.

For the converse, it surely suffices to consider the tropical hyperplane Z cor-

responding to the zero tropical linear form, since otherwise we can translate. We

have to prove that for each set K ⊂ [d + 1] with 1 ≤ #K ≤ d there is a set of

points u1, . . . , ud ∈ Z such that
{

x ∈ TP
d

∣

∣ τu1,...,ud
(x) = 1

}

=
⋃

{

Sk

∣

∣ k ∈ K
}

.

More specifically, we will even show that, for arbitrary K, those d points can

be chosen among the
(

d+1
2

)

vertices of the second tropical hypersimplex ∆d
2; see

Example 2.12. Since the symmetric group Sym(d + 1) acts on the set of open

sectors of Z as well as on the set Vert(∆d
2), it suffices to consider one set of sectors
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for each possible cardinality 1, . . . , d. Let us first consider the case where d is

odd and K = {0, 2, 4, . . . , d− 1} is the set of even indices, which has cardinality

(d + 1)/2. We set

qi =

{

−ei − ei+1 for i < d

−e0 − ed for i = d.

If we want to evaluate τq1,...,qd
(x) for some point x ∈ TP

d \ Z with canonical

coordinates (ξ0, . . . , ξd), we compute the tropical determinant and the tropical

sign of tdet(x, q1, . . . , qd), which in canonical row coordinates looks as follows:

Qd =























ξ0 ξ1 ξ2 ξ3 ξ4 · · · ξd

1 0 0 1 1 · · · 1

1 1 0 0 1 · · · 1
...

...
. . .

. . .
. . .

. . .
...

1 1 · · · 1 0 0 1

1 1 · · · 1 1 0 0

0 1 · · · 1 1 1 0























.

Since x 6∈ Z, there is a unique permutation σx ∈ Sym(d+1) such that tdet(Q) =

ξσx(0) + q(σx). We can verify that tdet(Q) = 0 in all cases and that

σx =

{

(0) if x ∈ S0,

(0 k k + 1 · · · d) if x ∈ Sk for k > 0.

Here we make use of the common cycle notation for permutations, and (0) de-

notes the identity. For k > 0 this means that σx is a (d + 2 − k)-cycle, which

is an even permutation if and only if k is even, since d is odd. We infer that

τq1,...,qd
(x) = 1 if and only if x ∈ Sk for k even.

We now discuss the case where #K ≥ (d + 1)/2 and d is arbitrary. As in

the case above, by symmetry, we can assume that K = {0, 2, 4, . . . , 2(l− 1), 2l−

1, 2l, . . . , d} for some l < bd/2c. We define

q′i = −e0 − ei,

for all i ≥ 2l+1, and we are concerned with the matrix (x, q1, . . . , ql, q
′
l+1, . . . , q

′
d),

which, in canonical row coordinates, looks like this:

Ql
d =





































ξ0 ξ1 ξ2 ξ3 ξ4 · · · ξ2l−1 ξ2l · · · ξd

1 0 0 1 1 · · · 1 1 · · · 1

1 1 0 0 1 · · · 1 1 · · · 1
...

...
. . .

. . .
. . .

. . .
...

...
. . .

...

1 1 · · · 1 0 0 1 1 · · · 1

1 1 · · · 1 1 0 0 1 · · · 1

0 1 · · · 1 1 1 0 1 · · · 1
...

...
. . .

...
...

...
. . .

. . .
. . .

...

0 1 · · · 1 1 1 · · · 1 0 1

0 1 · · · 1 1 1 · · · 1 1 0





































.



424 MICHAEL JOSWIG

Note that the upper left 2l×2l-submatrix is exactly Ql. Hence the same reasoning

now yields

σx =

{

(0) if x ∈ S0,

(0 k k + 1 · · · 2l − 1) if x ∈ Sk for k > 0,

and σx is an even permutation if and only if k is even or k > 2l.

Scrutinizing the matrices Qd and Ql
d yields that none of their d × (d + 1)-

submatrices consisting of all rows but the first contains a tropically singular mi-

nor. Equivalently, the points q1, . . . , qd as well as the points q1, . . . , ql, q
′
l+1, . . . , q

′
d

are in general position. But then the set
{

x ∈ TP
d

∣

∣ τq1,...,ql,q
′

l+1
,...,q′

d
(x) = −1

}

is just the union of the sectors in the complement [d + 1] \K, and since further,

according to Proposition 4.2, τq1,...,qd
= −τq2,q1,q3,...,ql,q

′

l+1
,...,q′

d
, the argument

given so far already covers the remaining case of #K < (d+1)/2. This completes

the proof. ˜

Now, for the fixed set of points p1, . . . , pd, we can glue together the connected

components of TP
d \ τ−1

p1,...,pd
(0) into two (if τp1,...,pd

6≡ 0) large chunks according

to their tropical sign: To this end we define the closure of the function τp1,...,pd
as

follows. Let τ̄p1,...,pd
(x) = ε if there is a neighborhood U of x such that τp1,...,pd

restricted to U \τ−1
p1,...,pd

(0) is identically ε; otherwise let τ̄p1,...,pd
(x) = 0. Clearly,

if τp1,...,pd
(x) 6= 0 then τ̄p1,...,pd

(x) = τp1,...,pd
(x).

Theorem 4.7 then implies the following.

Corollary 4.8. The set
{

x ∈ TP
d

∣

∣ τ̄(x) = 1
}

is empty or a closed tropical

halfspace. Conversely, each closed tropical halfspace arises in this way.

Remark 4.9. One can show that τ̄p1,...,pd
(x) = 1 if and only if all optimal

permutations, that is, all σ ∈ Sym(d + 1) with tdet(x, p1, . . . , pd) = ξσ(0) + p(σ)

are even. In this sense our function τ̄ captures the sign of the determinant in

the symmetrized min-plus-algebra as defined in [Baccelli et al. 1992, § 3.5.1].

Corollary 4.10. For each point x = (ξ0, . . . , ξd) ∈ TP
d with τ̄p1,...,pd

(x) = 0

there are two permutations σ and σ′ of opposite sign such that

tdet(x, p1, . . . , pd) = ξσ(0) + p(σ) = ξσ′(0) + p(σ′).

5. Convex Hull Algorithms in
��2

For points in the ordinary Euclidean plane the known algorithms can be

phrased easily in terms of sign evaluations of certain determinants. It turns out

that the results of the previous sections can be used to “tropify” many ordinary

convex hull algorithms.

In this section we do not use canonical coordinates for points in the tropical

projective space, but rather we normalize by setting the first coordinate to zero.
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This way the description of the algorithms can be made in the ordinary affine

geometry language more easily. In particular, a point in (0, ξ1, ξ2) ∈ TP
2 is

determined by its x-coordinate ξ1 and its y-coordinate ξ2. We hope that this

helps to see the strong relationship between the ordinary convex hull problem in

R
2 and the tropical convex hull problem in TP

2. Moreover, this way it may be

easier to interpret the illustrations.

Consider a set S = {p1, . . . , pn} ⊂ TP
2. Let bottom(S) be the lowest point

(least y-coordinate) of S with ties broken by taking the rightmost (highest x-

coordinate) one. Similarly, let right(S) be the rightmost one with ties broken by

taking the highest, top(S) the highest with ties broken by taking the rightmost,

and left(S) the leftmost one with ties broken by taking the highest. Clearly, some

of the four points defined may coincide. If a set of points is in general position,

that is, for any two points of the input their three rays are pairwise distinct,

then there are unique points with minimum and maximum x- and y-coordinate

respectively. In this case there are no ties.

bottom(S)

right(S)

top(S)

left(S)

Figure 3. Standard affine line arrangement generated by a set of points S ⊂ TP
2,

displayed in black. The white points are the pseudovertices on tropical line seg-

ments between any two points. Additionally, the tropical convex hull is marked.

Lemma 5.1. The points bottom(S), right(S), top(S), left(S) are vertices of the

tropical polygon tconv(S). Moreover , [bottom(S), left(S)] is a facet provided that

bottom(S) 6= left(S).

Proof. By definition, the closed sector bottom(S) + S̄1 does not contain any

point of S other than bottom(S). This certifies that, indeed, the point bottom(S)

is a vertex because of Propositions 2.5 and 2.9. We omit the proofs of the

remaining statements, which are similar. ˜
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Phase I

Phase II
Phase III

Figure 4. Three phases of Algorithm A.

Note that due to the special shape of the tropical lines, it is important how to

break the ties. For instance, if two points have the same lowest y-coordinate, then

the left one is also on the boundary, but not necessarily a vertex; see Figure 3.

A key difference between tropical versus ordinary polytopes is that the former

only have few directions for their (half-)edges. This can be exploited to produce

convex hull algorithms which do not have a directly corresponding ordinary ver-

sion.

Through each point p = (0, ξ, η) ∈ TP
2 there is a unique tropical line con-

sisting of three ordinary rays emanating from p: We respectively call the sets
{

(0, ξ + λ, η)
∣

∣ λ ≥ 0
}

,
{

(0, ξ, η + λ)
∣

∣ λ ≥ 0
}

, and
{

(0, ξ − λ, η − λ)
∣

∣ λ ≥ 0
}

the horizontal, vertical, and skew ray through x. If we have a second point

p′ = (0, ξ′, η′) then we can compare them according to the relative positions of

their three rays. This way there is a natural notion of left and right, but there

are two notions of above and below, which we wish to distinguish carefully: p′ is

y-above p if η′ > η, and it is skew-above if η′ − ξ′ > η − ξ.

The introduction of the sign of the tropical determinant now clearly allows to

take most ordinary 2-dimensional convex hull algorithms and produce a “tropi-

fied” version with little effort. For instance a suitable tropical version of Gra-

ham’s scan provides a worst-case optimal O(n log n)-algorithm. We omit the

details since we describe a different algorithm with the same complexity. The

commonly expected output of an ordinary convex hull algorithm in two dimen-

sions is the list of vertices in counter-clockwise order. As the results in the

previous section imply that the combinatorics of tropical polygons in TP
2 does

not differ from the ordinary, we adopt this output strategy.

The data structures for the Algorithm A below is are three doubly-linked lists

L, Y,B such that each input point occurs exactly once in each list. It is important

that all three lists can be accessed at their front and back with constant cost.
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In order to obtain a concise description we assume that the input set S is

in general position. For input not in general position the notions of left, right,

above, and below have to be adapted as above. The complexity of the algorithm

remains the same.

Input : S ⊂ TP
2 finite

Output: list of vertices of tconv(S) in counter-clockwise order

sort S from left to right and store the result in list L

sort S from y-below to y-above and store the result in list Y

sort S from skew-below to skew-above and store the result in list B

H ← empty list; v ← front(Y ); w ← next(v, Y )

while w y-below back(L) do

if w skew-below v then

v ← w; append v to H

w ← next(w, Y )

v ← back(L); append v to H

w ← previous(v, L)

while w to the right of back(Y ) do

if w y-above v then

v ← w; append v to H

w ← previous(w,L)

v ← back(Y ); append v to H;

w ← back(B)

while w skew-above front(L) do

if w to the left of v then

v ← w; append v to H

w ← previous(w,B)

v ← front(L); append v to H

if v 6= front(Y ) then

append front(Y ) to H

return H

Algorithm A: Triple sorting algorithm.

Proposition 5.2. The Algorithm A correctly computes the vertices of the trop-

ical convex hull in counter-clockwise order .

Proof. The algorithm has an initialization and three phases, where each phase

corresponds to one of the three while-loops; for an illustration see Figure 4. In

the first phase all the vertices between bottom(S) and right(S) are enumerated,
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in the second phase the vertices between right(S) and top(S), and in the third

phase the vertices between top(S) and left(S).

By Lemma 5.1 the point front(Y ) = bottom(S) is a vertex. Throughout the

algorithm the following invariant in maintained: v is the last vertex found, and

w is an input point not yet processed, which is a candidate for the next vertex in

counter-clockwise order. We have a closer look at Phase I, the remaining being

similar. If w is a vertex between bottom(S) and right(S) then it will be y-above

of v, hence we process the points according to their order in the sorted list Y .

However, none of those vertices can be y-above back(L) = right(S), therefore

the stop condition. Under these conditions w is a vertex if and only if w is skew-

below the tropical line segment [v, right(S)]. ˜

The worst-case complexity of the algorithm based on triple sorting is O(n log n).

If, however, the points are uniformly distributed at random, say, in the unit

square, then by applying Bucket Sort, we can sort the input in an expected

number of O(n) steps; see [Cormen et al. 2001].

If only few of the input points are actually vertices of the convex hull, then

it is easy to beat an O(n log n) algorithm. For ordinary planar convex hulls the

Jarvis’ march algorithm is known as an easy-to-describe method which is output-

sensitive in this sense. We sketch a “tropified” version, we will be instrumental

later. Its complexity is O(nh), where h is the number of vertices.

Input : S ⊂ TP
2 finite

Output: list of vertices of tconv(S) in counter-clockwise order

v0 ← bottom(S); v ← v0; H ← empty list

repeat

w ← some point in S

for p ∈ S \ {w} do

if τ̄v,w(p) = −1 or (τ̄v,w(p) = 0 and ||p− v|| > ||w − v||) then

w ← p

v ← w; S ← S \ {v}; append v to H

until v = v0

return H

Algorithm B: Tropical Jarvis’ march algorithm.

In the ordinary case, Chan [1996] has given a worst-case optimal O(n log h)

algorithm, based on a combination of Jarvis’ march and a divide-and-conquer

approach. We sketch how the same ideas can be used to obtain an O(n log h)

convex hull algorithm in TP
2. If we split the input into dn/me parts of size at

most m, then we can use our O(n log n) algorithm based on triple sorting to

compute the dn/me hulls in O((n/m)(m log m)) = O(n log m) time. Now we
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use Jarvis’ march to combine the dn/me tropical convex hulls into one. The

crucial observation is that each vertex of the big tropical polygon is also a vertex

of one of the dn/me small tropical polygons. Therefore, in order to compute

the next vertex of the big tropical polygon in the counter clockwise order, we

first compute the tropical tangent through the current vertex to each of the

small tropical polygons. In each small tropical polygon this can be done by

binary searching the vertices in their cyclic order; this requires O(log m) steps

per small tropical polygon and per vertex of the big tropical polygon. Summing

up this gives a total of O(n log m + h((n/m) log m)) = O(n(1 + h/m) log m)

operations. That is to say, if we could know the number of vertices of the big

tropical polygon beforehand, then we could split the input into portions of size

at most h, thus arriving at a complexity bound of O(n log h). But this can be

achieved by repeated guessing as has been suggested by Chazelle and Matoušek

[1995].

We summarize our findings in the following result, which is identical to the

ordinary case. Note that, as in the ordinary case, one has an Ω(n log n) worst

case lower bound for the complexity of the two-dimensional tropical convex hull

problem which comes from sorting. In this sense our output-sensitive algorithm

is optimal.

Theorem 5.3. The complexity of the problem to compute the tropical convex

hull of n points in TP
2 with h vertices is as follows:

(1) There is an output-sensitive O(n log h)-algorithm.

(2) There is an algorithm which requires expected linear time for random input .

6. Concluding Remarks

One of the main messages of this paper is that, with suitably chosen defini-

tions, it is possible to build up a theory of tropical polytopes quite similar to

the one for ordinary convex polytopes. But, of course, very many items are still

missing. We list a few open questions, and the reader will easily find more.

(1) How are the face lattices of tropical polytopes related to the face lattices of

ordinary convex polytopes? In particular, how do the face lattices of tropical

polytopes in TP
3 look alike?

(2) It is known [Develin and Sturmfels 2004, Lemma 22] that the tropical convex

hull of n points in TP
d is the bounded subcomplex of some (n + d)-dimensional

unbounded ordinary convex polyhedron (defined in terms in inequalities). Hence

the tropical convex hull problem can be reduced to solving a (dual) ordinary con-

vex hull problem, followed by a search of the bounded faces in the face lattice.

The question is: How does an intrinsic tropical convex hull algorithm look alike

that works in arbitrary dimensions? Here intrinsic means that the algorithm

should not take a detour via that face lattice computation in the realm of or-

dinary convex polytopes. While the complexity status of the ordinary convex
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hull problem is notoriously open (output-sensitive with varying dimension) it is

well conceivable that the tropical analog is, in fact, easier. An indication may be

the easy to check certificate in Proposition 2.9 which leads to a simple and fast

algorithm for discarding the nonvertices among the input points, a task which is

polynomially solvable in the ordinary case, but which requires an LP-type oracle.

(3) What is the proper definition of a tropical triangulation? Such a definition

would say that a tropical triangulation should be a subdivision into tropical sim-

plices which meet properly. The precise notion of meeting is subtle, however.

While it is obvious that the standard intersection as sets does not do any good,

the more refined way by extending the u operation also leads to surprising ex-

amples. A meaningful definition of a tropical triangulation should lead to one

solution of the previous problem.

(4) Can the dimension of an arbitrary tropical polytope, which is not necessarily

full, computed in polynomial time? Here dimension means the same as tropical

rank. In fact, this is Question (1) at the end of the paper [Develin et al. 2005].

(5) As mentioned in Remark 3.13 point configurations in the tropical projective

space do not generate an oriented matroid in the usual way. But does there exist

a more general notion than an oriented matroid which encompasses the tropical

case?
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linear assignment problem”, Math. Program. 98:1-3, Ser. B (2003), 415–429. Integer
programming (Pittsburgh, PA, 2002).
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Two Proofs for Sylvester’s Problem

Using an Allowable Sequence of Permutations

HAGIT LAST

Abstract. The famous Sylvester’s problem is: Given finitely many non-

collinear points in the plane, do they always span a line that contains

precisely two of the points? The answer is yes, as was first shown by Gallai

in 1944. Since then, many other proofs and generalizations of the problem

appeared. We present two new proofs of Gallai’s result, using the powerful

method of allowable sequences.

1. Introduction

Sylvester [1893] raised the following problem: Given finitely many noncollinear

points in the plane, do they always span a simple line (that is, a line that contains

precisely two of the points)? The answer is yes, as was first shown by Gallai

[1944].

By duality, the former question is equivalent to the question: Given finitely

many straight lines in the plane, not all passing through the same point, do they

always determine a simple intersection point (a point that lies on precisely two

of the lines)?

A natural generalization is to find a lower bound on the number of simple

lines (or simple points, in the dual version). The dual version of this question

can be generalized to pseudolines. The best lower bound [Csima and Sawyer

1993] states that an arrangement of n pseudolines in the plane determines at

least 6n/13 simple points. The conjecture [Borwein and Moser 1990] is that

there are at least n/2 simple points for n 6= 7, 13. For the history of Sylvester’s

problem, with its many proofs and generalizations, see [Borwein and Moser 1990;

Nilakantan 2005].

This paper presents two new proofs of Gallai’s result using allowable se-

quences. A proof of Gallai’s result using allowable sequences was given recently

by Nilakantan [2005], but it differs from the two given here.
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The notion of allowable sequences was introduced by Goodman and Pollack

[1980]. It has proved to be a very effective tool in discrete and computational

geometry; for a broad discussion see [Goodman and Pollack 1993]. Here is a

short description of the notion.

Let S be a set of n points in the plane, let L be the set of the lines spanned

by S, and let {k1, k2, . . . , km} be the m different slopes of the lines according to

a fixed coordinate system. We choose a directed line l in the plane with a point

P on it, such that l does not contain any point of S and is not orthogonal to any

line in L.

Here is the construction of Al,P (S), the allowable sequence of permutations

of a point set S, according to the directed line l and the point P : We label

the points of S according to their orthogonal projection on l and we get the

first permutation π0 = 1, . . . , n. Let l rotate counterclockwise around P by

180◦ and look at the orthogonal projections of the labeled points of S on l as

it rotates. A new permutation arises whenever l passes through a direction

orthogonal to one of the slopes k1, k2, . . . , km. It follows that along the course of

this rotation, beside π0, we will get m different permutations: π1, . . . , πm. Define

Al,P (S) = {π0, π1, π2, . . . , πm}.
For each 1 ≤ i ≤ m, whenever l passes through a direction orthogonal to ki,

the new permutation that arises differs from the previous one by reversing the

order of the consecutive elements whose corresponding points of S lie on a line

of slope ki. Such reversed consecutive elements are called a reversed substring.

If t lines in L have a slope equal to ki, the permutation that corresponds to ki

has t disjoint reversed substrings. A reversed substring of length 2 is called a

simple switch. A simple switch corresponds to a simple line.

Three important properties of Al,P (S) are:

1. Al,P (S) is a sequence of permutations of the elements {1, 2, . . . , n}, where n

is the cardinality of S.

2. The first permutation is π0 = 1, . . . , n − 1, n, and the last is πm = n, n −
1, . . . , 1. Here m is the number of different slopes of the lines spanned by S.

If the points of S are not collinear, then m > 1 (actually m ≥ n − 1, as was

proved in [Scott 1970]).

3. In the course of the sequence of permutations, every pair i < j switches exactly

once and so each permutation differs from the previous one by reversing at

least one increasing substring. Only increasing substrings are reversed.

For example, if πi = 1, 7, 2, 4, 6, 3, 5, then N1 = 1, 7, N2 = 2, 4, N3 = 2, 4, 6,

and N4 = 3, 5 are its increasing substrings, and so πi+1 is obtained from πi by

reversing the order of one or more of these substrings.

For the convenience of writing the proofs in Section 2, we would like to assume

that in each step only one increasing substring is reversed. We can arrange this

by replacing each permutation that contains t reversed substrings by t permuta-

tions, as we reverse a single substring at a time. The length of the new sequence
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of permutations, A, is the cardinality of L and satisfies the condition that each

permutation differs from the previous one by reversing a single increasing sub-

string.

2. The Proofs

Let S be a set of n noncollinear points in the plane. We will show the existence

of a simple spanned line by proving that A contains a permutation with a simple

switch. Assume, for a contradiction, that each reversed substring has length at

least 3.

Since S is a set of noncollinear points, then A has length greater than 2, with

π0 = 1, 2, . . . , n and πm = n, n − 1, . . . , 1 (m > 1).

For 1 ≤ r ≤ m, denote by Jr the reversed substring of πr and denote by Ir

the increasing substring of πr−1 which is reversed at πr. Jr and Ir consist of the

same set of elements, in Jr the elements are in decreasing order and in Ir they

are in increasing order. For example, if π1 = 1, 2, 5, 4, 3, π2 = 5, 2, 1, 4, 3, then,

I2 = 1, 2, 5, J2 = 5, 2, 1.

For Jr = a1, a2, . . . , ak−1, ak, we will refer to a2, . . . , ak−1 as its internal ele-

ments. By our assumption, every Ir as well as every Jr has an internal element.

Proof 1. We show that an internal element of a reversed substring cannot

change its location before a simple switch occurs.

For every 0 ≤ k ≤ m and every element 1 ≤ a ≤ n, denote by Tk(a) the

location of the element a in πk. For example, Tm(n − 1) = 2.

If Tk(a) 6= Tk−1(a), we say that JK changed the location of the element a. If

Tk(a) > Tk−1(a), we say that a moves to the right at πk.

A reversed substring, Jr, is centrally symmetric, if it is symmetric around

the middle of the permutation. For example, If π1 = 1, 2, 3, 6, 5, 4, 7, 8, 9, then

J1 = 6, 5, 4 is centrally symmetric.

Let s be the smallest number such that Js changes the location of an element

which was an internal element in Jt for t < s. Such s must exist, otherwise, all

internal elements of J1 are already on their final positions at πm. This means

that J1 is centrally symmetric. But then J2 cannot be centrally symmetric and

so its internal elements must later change their locations in order to be on their

final positions at πm.

Let a be an internal element of Jt with t < s, such that Js changes the location

of a. Without loss of generality, Ts(a) > Tt(a). Since a moves to the right, there

exist b, c such that a, b, c are consecutive elements of πs−1 and a < b < c. Since

a is an internal element of Jt, there are d, e such that d, a, e are consecutive

elements of πt and d > a > e.

Let πl, t < l < s− 1, be the first permutation in which b is the right neighbor

of a. Then there exist f, g such that a, b, f, g are consecutive elements of πl and

a < b > f > g. Since Ts−1(a) = Tl(a), it follows that Ts−1(c) = Tl(f). That

means that before a moves to the right at πs, f needs to change its location. But
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f is an internal element in Jl and so, no Jd, l < d < s, can change the location of

f (otherwise, it contradicts the definition of s). We conclude that such s cannot

exist, which leads a contradiction. ˜

Second proof. A substring of three consecutive elements x, y, z in a permuta-

tion is called a bad triplet if x < z but x, y, z are not in an increasing order.

Let πl be the last permutation that contains a bad triplet x, y, z. Such πl

exists because π1 has a bad triplet but πm does not. For example, if π1, πm are

π1 = 1, 4, 3, 2, 5, 6, πm = 6, 5, 4, 3, 2, 1, then π1 has two bad triplets 1, 4, 3 and

3, 2, 5. πm is in decreasing order, so it contains no bad triplet.

To get a contradiction, we show here that at least one of the permutations

that follows πl contains a bad triplet.

Suppose that none of the permutations that follows πl contains a bad triplet.

Then either x or z (but not both) are elements of Jl+1. Assume that x ∈ Jl+1

(similar arguments can be used for the case z ∈ Jl+1).

We define the closed interval [a, b]d to be the part of the permutation πd that

contains the consecutive elements between a and b including a and b. Example,

for πd : 6, 3, 2, 1, 5, 4 [3, 5]d = 3, 2, 1, 5.

We now consider two cases:

Case 1: x, y ∈ Jl+1.

Then x is the right neighbor of y in Jl+1, and Jl+1 contains at least one more

element to the right of x. Let a be the rightmost element of Jl+1 and b its left

neighbor. Then z > x ≥ b > a, from which follows that b, a, z are consecutive

elements of πl+1 satisfying b > a < z and b < z, which means that b, a, z is a

bad triplet.

Case 2: x ∈ Jl+1, y /∈ Jl+1.

Let s = min{k | k > l+1 and x ∈ Jk is not the leftmost element in Jk}. Such

s exists since z > x and z, x are not yet reversed at πl+1. Denote by c the left

neighbor of x in Js. Then x, c are consecutive elements of πs−1 and x < c.

Let t = max{k | k < s and x ∈ Jk}. Note that since x is an element of Jl+1

and l + 1 < s, such t exists and satisfies l + 1 ≤ t < s. Also, note that since x is

the leftmost element of Jl+1, x is the leftmost element in Jt.

Let a, b be the two right neighbors of x in Jt. Then x, a, b are three consecutive

elements of πt and x > a > b.

Since x /∈ Jr for t < r < s, it follows that in order for c to be the right neighbor

of x in πs−1, c must switch with b first, and then with a, in permutations between

t and s. So there exists r, t < r < s, such that c, b ∈ Jr and there exists q,

r < q < s, such that c, a ∈ Jq.

We claim that for every j satisfying t ≤ j < s, [x, b]j contains no increasing

substring of length greater than 2. Also, the three rightmost elements in [x, b]j
are in decreasing order.

We will prove it by induction. For j = t the claim holds. By the induction

hypothesis, the three rightmost elements in [x, b]j−1 are in decreasing order and
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Ij 6⊂ [x, b]j−1. Since, in addition, x /∈ Ij , it follows that if Ij contains elements

of [x, b]j−1, it must contain b only. If it does, the three rightmost elements of Jj

are the three rightmost elements of [x, b]j and are in decreasing order.

Any increasing substring in [x, b]j can consist of only two elements, each of

which belongs to a different reversed substring involving b. This completes the

proof of the claim. By the definition of r, for every j satisfying r ≤ j < s we have

c ∈ [x, b]j , but by the above claim, Ij 6⊂ [x, b]j−1, which implies that c cannot

switch with a in a permutation that precedes πs. So q as defined above cannot

exist: a contradiction. ˜
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A Comparison of Five Implementations of 3D

Delaunay Tessellation

YUANXIN LIU AND JACK SNOEYINK

Abstract. When implementing Delaunay tessellation in 3D, a number of

engineering decisions must be made about update and location algorithms,

arithmetics, perturbations, and representations. We compare five codes

for computing 3D Delaunay tessellation: qhull, hull, CGAL, pyramid, and

our own tess3, and explore experimentally how these decisions affect the

correctness and speed of computation, particularly for input points that

represent atoms coordinates in proteins.

1. Introduction

The Delaunay tessellation is a useful canonical decomposition of the space

around a given set of points in a Euclidean space E3, frequently used for surface

reconstruction, molecular modelling and tessellating solid shapes [Delaunay 1934;

Boissonnat and Yvinec 1998; Okabe et al. 1992]. The Delaunay tessellation is

often used to compute its dual Voronoi diagram, which captures proximity. In

its turn, it is often computed as a convex hull of points lifted to the paraboloid

of revolution in one dimension higher [Brown 1979; Brown 1980]. As we sketch

in this paper, there are a number of engineering decisions that must be made

by implementors, including the type of arithmetic, degeneracy handling, data

structure representation, and low-level algorithms.

We wanted to know what algorithm would be fastest for a particular ap-

plication: computing the Delaunay tessellation of points that represent atoms

coordinates in proteins, as represented in the PDB (Protein Data Bank) format

[Berman et al. 2000]. Atoms in proteins are well-packed, so points from PDB

files tend to be evenly distributed, with physically-enforced minimum separation

distances. Coordinates in PDB files have a limit on precision: because they have

an 8.3f field specification in units of ångstroms, they may have three decimal

digits before the decimal place (four if the number is positive), and three digits

This research has been partially supported by NSF grant 0076984.
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after. Thus, positions need at most 24 bits, with differences between neighboring

atoms usually needing 12 bits. Since the experimental techniques do not give

accuracies of thousandths or even hundredths of ångstroms, we may even reduce

these limits.

We therefore decided to see whether we could stretch the use of standard

IEEE 754 double precision floating point arithmetic [IEEE 1985] to perform De-

launay computation for this special case. We implemented a program, tess3 [Liu

and Snoeyink n.d.], which we sketch, and compared it with four popular codes

that are available for testing: qhull [Barber et al. 1996], the CGAL geometry

library’s Delaunay hierarchy [Boissonnat et al. 2002; Devillers 1998], pyramid

[Shewchuk 1998] and hull [Clarkson 1992]. Our program, designed to handle

limited precision, uniformly-spaced input using only double precision floating

point arithmetic, was fastest on both points from PDB files and randomly gen-

erated input points, although it did compute incorrect tetrahedra for one of the

20,393 PDB files that did not satisfy the input assumptions.

The performance of Delaunay code is affected by a number of algorithmic and

implementation choices. We compare these choices made by all five programs

in an attempt to better understand what makes a Delaunay program work well

in practice. In Section 2, we review the problem of computing the Delaunay

tessellation and describe the main algorithmic approaches and implementation

issues. In Section 3, we compare the programs for computing the Delaunay

tessellation. In section 4, we show experiments that compare all five programs

in speed, and some experiments that look at the performance of tess3 in detail.

There are many other programs that can compute the Delaunay tessella-

tion. These include nnsort [Watson 1981; Watson 1992], detri [Edelsbrunner

and Mücke 1994], Proshape [Koehl et al. n.d.] and Ciel [Ban et al. 2004]— the

last two are targeted particularly at computations on proteins. The candidate

programs are selected because they are the fastest programs we are able to find

for our test input sets — PDB files and randomly generated points of size up to

a million. Other work [Boissonnat et al. 2002] tests Delaunay programs on other

input distributions including scanned surfaces, which do not satisfy our input

assumptions.

2. Delaunay Tessellation

There are several common elements in the five programs that we survey.

Definition. The Delaunay diagram in E3 can be defined for a finite set of point

sites P : Given a set of sites P ′ ⊆ P , if we can find a sphere that touches every

point of P ′ and is empty of sites of P , then the relative interior of the convex

hull of P ′ is in the Delaunay diagram. The Delaunay diagram is dual to the

Voronoi diagram of P , which is defined as the partition of E3 into maximally-
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connected regions that have the same set of closest sites of P . The Delaunay

diagram completely partitions the convex hull of P .

If the sites are in general position, in the sense that no more than four points

are co-spherical and no more than three are co-planar, then the convex hulls

in the Delaunay diagram become simplices. The programs we survey have dif-

ferent approaches to enforce or simulate general position, so that the Delaunay

tessellation can always be represented by a simplicial complex.

Representation. A simplicial complex can be represented by its full facial lat-

tice: its vertices, edges, triangles and tetrahedra and their incident relationships.

A programmer will usually choose to store only a subset of the simplices and the

incidence relationships, deriving the rest as needed.

All five programs store the set of tetrahedra, and for each tetrahedron t,

references to its vertices and neighbors— a neighbor is another tetrahedron that

shares a common triangle with t. A corner is a vertex reference in a tetrahedron.

Two corners are opposite if their tetrahedra are neighbors, but neither is involved

in the shared triangle.

It is common to include a point at infinity, ∞, so that for every triangle {a, b, c}
on the convex hull, there is a tetrahedron {∞, a, b, c}. Thus, each tetrahedron

in the tessellation has exactly 4 neighbors.

Incremental construction. Each of the five programs compute the Delaunay

tessellation incrementally, adding one point at a time. A new point p is added in

two steps: First, a point location routine finds the tetrahedron (or some sphere)

that was formerly empty, but that now contains the new point p. Second, an

update routine removes tetrahedra that no longer have an empty sphere after

adding p and fills in the hole with tetrahedra emanating from p. The running

time of an incremental algorithm is proportional to the number of tetrahedra

considered in point location, plus the total number of tetrahedra created.

The worst-case number of tetrahedra created in adding a vertex is linear, so

the total number of tetrahedra is at most quadratic. This is also the worst-case

number in any one tessellation, and simple examples, such as n/2 points on each

of two skew lines or curves, give a matching lower bound. Nevertheless, linear-

size Delaunay tessellations are most commonly observed— the practice is better

than the theory predicts. Some theoretical works explain this under assumptions

on the input such as random points or uniform samples from surfaces [Attali et

al. 2003; Dwyer 1991; Erickson 2002].

For the linear-sized Delaunay tessellations observed in practice, point location

can actually become the bottleneck in 3D, as it is in 2d, because the number of

new tetrahedra from adding a new vertex is so small. There are a wide variety

of point location algorithms in the programs we survey, so we will discuss this

primarily in Section 3.
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Numerical computations. The geometric tests in Delaunay code are per-

formed by doing numerical computations. The most important is the InSphere

test. Let p be a point whose Cartesian coordinates are px, py and pz. We can rep-

resent p by a tuple (p1, px, py, pz, pq), where p1 = 1 is a homogenizing coordinate

and pq = p2
x + p2

y + p2
z. Mathematically, any positive scalar multiple of p can be

taken to represent the same point, but for computation, we prefer the computer

graphics convention that p1 = 1, and assume that the Cartesian coordinates are

b-bit integers. The special point ∞ = (0, 0, . . . , 0, 1), representing the point at

infinity, is the sole exception. Four noncoplanar points a, b, c and d define an

oriented sphere and point p lies inside, on, or outside of the sphere depending

on whether the sign of InSphere(a, b, c, d; p) in equation 2–1 is negative, zero,

or positive.

InSphere(a, b, c, d; p) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1axayazaq

b1 bx by bz bq

c1 cx cy czcq

d1dxdydzdq

p1pxpypzpq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2–1)

Note that if one of the four points on the sphere is ∞, the determinant is

equal to an orientation determinant that tests a point against a plane. Therefore,

when a tetrahedron includes the ∞ vertex, we can still use this determinant to

perform the InSphere test on its sphere and a chosen point; the test will return

the position of the point with respect to an “infinite sphere” that is an oriented

convex hull plane.

Computers store numbers with limited precision and perform floating point

operations that could result in round-off errors. In the Delaunay algorithms,

round-off errors change the sign of a determinant and produce the wrong answer

for an InSphere test. Therefore, we look at the bit complexity of the numerical

operations: Assuming that the input numbers are b-bit integers, how large can

the results of an algebraic evaluation be as a function of b?

The InSphere determinant can be expanded into an alternating sum of multi-

plicative terms, each of degree five. Therefore, if we use the determinant directly,

we need at least 5b bits to compute each multiplicative term correctly. The de-

terminant itself can take no longer than 5b bits, since the InSphere determinant

gives the volume of a parallelepiped in R4, where the thickness of the paral-

lelepiped along the x, y, z and the lifted dimension take no more than b, b, b

and 2b bits, respectively.

Knowing that, e.g., a is a finite point, and that the homogenizing coordinate

for points is unity, we can rewrite the determinant to depend on the differences

in coordinates, rather than absolute coordinates by just subtracting the row a

from all finite points, and then evaluate the determinant. The last coordinate

can also be made smaller by lifting after subtraction, although it adds extra

squaring operations that must be done within each InSphere determinant.
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When an InSphere determinant is zero, then the five points being tested lie

on a sphere, and are not in general position. (Subjecting the points to a random

perturbation will make them no longer co-spherical, except for a set of measure

zero.) Edelsbrunner and Mücke [1990] showed how to simulate general position

for determinant computations by infinitesimal perturbations of the input points,

and there have been many approaches since. We describe the approaches taken

by the different programs in Section 3.

3. Comparison of Delaunay Codes

With this background, we elaborate on the engineering choices made in the

five programs for representation, arithmetic, perturbation, update and point

location. A summary table is provided at the end of the section.

Implementation goals. The five programs that we survey were implemented

with different goals in mind.

CGAL is a C++ geometric algorithm library that includes a Delaunay trian-

gulation 3 class that encapsulates functions for Delaunay tessellation. It also

supports vertex removal [Devillers and Teillaud 2003]. It uses traits classes

to support various types of arithmetic and point representations; we tested

Simple_cartesian<double>, which uses floating point arithmetic only, and

Static_filters<Filtered_kernel<Simple_cartesian<double>>>,

which guarantees that the signs returned by geometric tests are computed exactly

by using exact arithmetic whenever its floating pointer filter “sees” that, before

a geometry test, floating point computation might produce erroneous signs.

Clarkson’s hull [1992] computes convex hull of dimension 2, 3 and 4 by an

incremental construction that can either shuffle the input points or take them as

is. It uses a low bit-complexity algorithm to evaluate signs of determinants in

double-precision floating point.

Qhull [Barber et al. 1996], initially developed at the geometry center of Uni-

versity of Minnesota, is a popular program for computing convex hulls in general

dimensions. It supports many geometric queries over the convex hull and con-

nects to geomview for display.

Shewchuk’s pyramid [1998] was developed primarily to generate quality tessel-

lation of a solid shape. In addition to taking points and producing the Delaunay

tessellation, it can take lines and triangles and compute a conforming Delaunay,

adding points on these features until the final tessellation contains, for each input

feature, a set of edges or triangles is a partition of that feature.

Our program, tess3, specializes in the Delaunay tessellation of near-uniformly

spaced points with limited precision, of the sort found in the crystallographic

structures deposited in the PDB [Berman et al. 2000]. We have been pleased

to find that it also works with NMR structures, which often have several vari-
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ants of the same structure in the same file, and therefore violate the separation

assumptions under which our code was developed.

Representation. Each program stores pointers from tetrahedra to their neigh-

bors. Pyramid and tess3 have special ways to indicate which corners in a pair of

neighboring tetrahedra correspond: Pyramid stores four bits with each neighbor

pointer to indicate the orientation of the neighboring tetrahedron and location

of the vertices of the shared triangle. Tess3 uses a corner-based representation

that is a refinement of the structure of [Paoluzzi et al. 1993] or [Kettnet et al.

2003]. An array stores all the corners so that each subsequent block of four

corners is one tetrahedron. Each corner points to its vertex and its opposite

corner— the corner in the neighboring tetrahedron across the shared triangle.

Each block is stored with vertices in increasing order, except that the first two

may be swapped to keep the orientation positive. The correspondence between

vertices in neighboring tetrahedra, where vertex 0 ≤ i < 4 is replaced by vertex

at position 0 ≤ j < 4, can be recorded in a table indexed by i, j. This sup-

ports operations such as walking through tetrahedra, or cycling around an edge

without requiring conditional tests.

Since a tetrahedron’s sphere can be used repeatedly for InSphere tests, the

minors of the determinant expanded along the last row can be pre-computed and

stored in a vector S so that the test becomes a simple dot product:

InSphere(a, b, c, d; p) = S · p.

Hull, pyramid, and tess3 store these sphere vectors.

Incremental computation. Each of the programs must update the data struc-

tures as tetrahedra are destroyed and created. One of the biggest decisions

is whether an algorithm uses flipping [Edelsbrunner and Shah 1992] to always

maintain a tessellation of the convex hull, or uses the Bowyer–Watson approach

[Bowyer 1981; Watson 1981] of removing all destroyed tetrahedra, then filling in

with new. We have observed in our experiments that flipping assigns neighbor

pointers to twice as many tetrahedra, since many tetrahedra created by flips

with a new vertex p are almost immediately destroyed by other flips with p.

Amenta, Choi and Rote [2003] pointed out that the number of tetrahedra is

not the only consideration. Since modern memory architecture is hierarchical,

and the paging policies favor programs that observe locality of reference, a ma-

jor concern is cache coherence: a sequence of recent memory references should

be clustered locally rather than randomly in the address space. A program

implementing a randomized algorithm does not observe this rule and can be

dramatically slowed down when its address space no longer fits in main memory.

Their Biased Randomized Insertion Order (BRIO) preserves enough randomness

in the input points so that the performance of a randomized incremental algo-

rithm is unchanged but orders the points by spatial locality to improve cache

coherence. More specifically, they first partition the input points into O(log n)
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sets as follows: Randomly sample half of the input points and put them into

the first set; repeatedly make the next set by randomly sampling half of the

previous set. Order the sets in the reverse order they are created. Finally, the

points within each set are ordered by first bucketing them with an octree and

traverse the buckets in a depth-first order.

To partition the points, tess3 uses a deterministic approach that we call bit-

levelling. Bit-levelling group the points whose three coordinates share i trailing

zeros (or any other convenient, popular, bit pattern) in the ith level. Levels are

inserted in increasing order, and points within each level are ordered along a

space-filling curve. With experimentally-determined data, the least-significant

bits tend to be random, so bit-levelling generates a sample without the overhead

of generating random bits. The real aim for bit-levelling, however, is to reduce

the bit-complexity of the InSphere computation. Recall that when we evaluate

the determinant for the InSphere test, one point can be used for the local origin

and subtracted from all finite points. Using floating point, the effective number

of coordinate bits in the mantissa is reduced if some of the most- and/or least-

significant bits agree. Since the points are assumed to be evenly distributed

(the next section describes how tess3 adds all the points ordered along a Hilbert

curve), in the final levels the points used for InSphere tests tend to be close

and share some most-significant bits. Since bit-levelling forms the ith level by

grouping points with the same i least-significant bits, giving cancellation in the

early, sparse levels as well.

Point location. In theory, point location is not the bottleneck for devising

optimal 3D Delaunay algorithms. In practice, however, the size of the neighbor-

hood updated by inserting a new point is close to constant, and point location to

find the tetrahedron containing a new point p can be more costly than updating

the tessellation if not done carefully.

Hull and qhull implement the two standard ways to perform point location

in randomized incremental constructions of the convex hull: Hull maintains the

history of all simplices, and searches the history dag to insert a new point. Qhull

maintains a conflict list for each facet of the convex hull in the form of an outside

set, which is the set of points yet to be processed that can “see” the facet. These

are equivalent in the amount of work done, although the history dag is larger,

and the conflict list requires that all points be known in advance.

The other programs invoke some form of walk through the tetrahedra during

the point location. The simplest kind of walk visits one tetrahedron at each

step, choose a triangle face f (randomly out of at most three) so that p and

the tetrahedron are on the opposite side of the plane through f and walk to the

neighboring tetrahedron across f . The walk always terminates by the acyclic

theorem from Edelsbrunner [1989]. We will refer to this walk as remembering

stochastic walk following Devillers et al. [2002], who also provides a comparison

with other possible walking schemes.
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Figure 1. Hilbert curve for an 8 × 8 × 8 grid.

Tess3 uses the remembering stochastic walk for point location. It locates

a sphere, rather than a tetrahedron, containing the new point p from the last

tetrahedron created. Tess3 uses sphere equations to perform the plane test.

Suppose neighboring tetrahedra t1 and t2 share a triangle in plane P12, have

vertices q1 and q2 that are not on P12, and have circumspheres S1 6= S2. Tess3

can determine the side of plane P12 that contains p by the sign of P12 · p =

q1(S2 ·p)− q2(S1 ·p). Note that this reuses the InSphere tests already performed

with p, and reduces the orientation determinant to the difference of two dot

products. When S1 = S2, a degenerate configuration, we would have to test

the plane, but this happens rarely enough that tess3 simply chooses the side

randomly.

To make the walks short, tess3 initially places all input points into a grid of

N × N × N bins, which it visits in Hilbert curve order so that nearby points

in space have nearby indices [Moon et al. 2001]. To order a set of points with

a Hilbert curve, tess3 subdivides a bounding cube into (2i)3 boxes and reorders

the points using counting sort on the index of the box on the Hilbert curve

that contains each point. Points in a box can be reordered recursively until the

number of points in each subbox is small. Parameter i is chosen large enough

so that few recursive steps are needed, and small enough that the permutation

can be done in a cache-coherent manner. We find that having (23)3 = 512 boxes

works well; ordering 1 million points takes between 1–2 seconds on common

desktop machines.

CGAL implements the Delaunay hierarchy scheme from [2002]. It combines a

hierarchical point location data structure with the remembering stochastic walk.

The Delaunay hierarchy first creates a sequence of levels so that the 0th level

is P , and each subsequent level is produced by random sampling a constant

fraction of the points from the previous level. Next, Delaunay tessellation is

created for each level, and the tetrahedra that share vertices between levels are
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linked. To locate p, at each step, a walk is performed within a level to find the

vertex closest to p. This vertex is then used as the starting point for the next

step. The hierachical tessellation makes the asymptopic point location time to

be O(() log(n)), which is optimal, while the walk, along with appropiately chosen

parameter for the sizes of the levels, allow the space used the data structure to

be small.

Pyramid uses the jump-and-walk introduced in [Mücke et al. 1996]. To locate

p in a mesh of m tetrahedra, it measures the distance from p to a random

sample of m1/4 tetrahedra, then walk from the closest of these to the tetrahedron

containing p. Each step of the walk visits a tetrahedron t, shoots a ray from the

centroid of t towards p, and go to the neighboring tetrahedron intersected by the

ray. In the worst case, this walk may visit almost all tetrahedra, but under some

uniformity assumptions the walk takes O(n1/4) steps, which is an improvement

over O(n1/3) steps that a walk would have required without the initial sampling.

Contrasting the asymptotic behavior of the Delaunay hierarchy and the jump-

and-walk, we should point out that the difference between (n1/4) and log(n)

is small for practical value of n; the Delaunay hierarchy, however, makes no

assumption about the point distribution.

Numerical computations. Each of the programs takes a different approach

to reducing or eliminating errors in numerical computation.

Qhull and tess3 use floating point operations exclusively, and are written so

that they do not crash if the arithmetic is faulty, but they may compute incorrect

structures. Qhull checks for structural errors, and can apply heuristics to repair

them in postprocessing. Tess3 assumes that input points have limited precision

and are well distributed, and uses bit-levelling and Hilbert curve orders to try

to ensure that the low-order or high-order (or both) bits agree, and that the bit

differences take even fewer bits of mantissa. We explore this in more detail in

the experiments.

CGAL has many options for evaluating geometric tests exactly. It can use

interval arithmetic [Pion 1999], without or with static filtering [Devillers and

Pion 2003] or an adapted filtering that guarantees correctness for integers of

no more than 24 bits. We list these options in increasing speed, though static

filtering is usually recommended because it makes no assumption about the input

and is still quite competitive in speed.

Hull uses a low bit-complexity algorithm for evaluating the sign of an orienta-

tion determinant that is based on Graham–Schmidt orthogonalization. The idea

is that since we care only about the sign of the determinant, we can manipulate

the determinant so far as its sign does not change. The implementation uses only

double precision floating operations and is able to compute the signs of InSphere

determinants exactly for input whose coordinates have less than 26 bits.

Pyramid uses multilevel filtering [Shewchuk 1996] and an exact arithmetic to

implement its geometric tests.
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Figure 2. Perturbing point inside (left) or outside (right) produces flat triangles

(shaded).

Perturbation to handle degeneracies. In Delaunay computation, InSphere

determinants equal to zero are degeneracies— violations of the general position

assumption that affect the running of the algorithm. They occur when a point

is incident either on the Delaunay sphere of some tetrahedron or on the plane of

the convex hull, which can be considered a sphere through the point at infinity.

Qhull allows the user to select a policy when the input contains degeneracies

or the output contains errors: either it perturbs the input numerically and tries

again, or it attempts to repair the outputs with some heuristics.

Edelsbrunner and Mücke [1990] showed how to simulate general position for

the Delaunay computation directly, but advocated “perturbing in the lifted

space” as easier. For lifted points, perturbation can be handled by simple poli-

cies: either treat all 0s as positive or treat them all as negative. These are

consistent with perturbing a point outside or inside the convex hull in 4D, re-

spectively. These perturbation schemes have three short-comings; usually only

the third has impact on practice.

(i) The output from the perturbation is dependent on the insertion order of the

points.

(ii) Perturbing the lifted points in 4D may produce a tessellation that is not the

Delaunay tessellation of any actual set of points.

(iii) The perturbation (either the “in” or the “out” version) may produce “flat”

tetrahedra near the convex hull. Figure 2 illustrates the 2D analog.

Hull and pyramid perturb points inside.

Tess3 first perturbs a point p down in the lifted dimension so that it is not

on any finite sphere; next, if p is on an infinite sphere S, p is perturbed either

into or away from the convex hull in 3D depending on these two cases: If q is

inside the finite neighbor of S, q is perturbed into the convex hull; otherwise, q is

perturbed away. This perturbation guarantees that there are no flat tetrahedra

(handling 3), yet is still simple to implement.

CGAL perturbs the point on an infinite sphere the same way as tess3 but uses

a more involved scheme for perturbing the point on a finite sphere [Devillers

and Teillaud 2003]. It has the advantage that the perturbation of a point is
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determined by its index, which is independent from the insertion order; their

scheme also guarantees that there are no flat tetrahedra (handling 1, 3).

Program F point location E C degeneracy L

CGAL N Delaunay hierarchy Y N Perturbing E
3

C++

Hull N history dag Y Y Perturb points into hull in
E

4

C

Pyramid Y jump-and-walk Y N Perturb points into hull in
E

4. Remove flat
tetrahedra by
post-processing

C

QHull N outside set N N Perturb points into hull in
E

4. Remove flat
tetrahedra by
post-processing.

C

Tess3 N Hilbert ordering,
zig-zag walk

N Y Perturbation in E
4 with

no flat tetrahedra.
C

Table 1. Program comparison summary. Column abbreviations: F = uses flips;

E = exact; C = uses caching spheres; L = programming language. Versions and

dates: CGAL version 2.4; hull and pyramid obtained in March 2004; qhull version

2003.1; Tess3 last revised in 9/2003.

A note on the weighted Delaunay tessellation. The definition of the

Delaunay tessellation can be generalized easily to a weighted version, which

associates each site p with a real number pw. Recall that a point p in the

Delaunay tessellation is represented by a tuple (p1, px, py, pz, pq), where pq is the

lifted coordinate. In the weighted version, we let pq = p2
x +p2

y +p2
z −pw, and the

tessellation is the projection of the lower convex hull of the lifted points, as in

the unweighted version. Note that a weighted site can be redundant: If it is in

the interior of the convex hull, then it is not a new vertex of the tessellation. The

weighted Delaunay tessellation has a number of applications in computational

biology, such as computing the alpha shape [Edelsbrunner and Mücke 1994] and

the skin surface [Cheng et al. 2001]. For these applications, the weight for a point

site is the squared radius of the atom, and no redundant site occurs because of

the physically-enforced minimum separation distances between atoms.

Each of the programs we study in this paper has been extended or can be

easily modified to handle weighted points. For the programs that compute the

tessellation via convex hull, namely hull and qhull, the weights are handled

simply by changing the lifting computation. Pyramid uses flipping to maintain

the tessellation and has to take extra care to insure that the flipping does not get

stuck, which can happen [Edelsbrunner and Shah 1996]. Tess3 tries to locate a

sphere which has the new point inside, so if the point is redundant, the location
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Figure 3. Running time of the programs with 10 bit random points.

routine does not terminate. However, as discussed before, if the input come

from protein atoms, this does not happen. CGAL’s Delaunay hierarchy currently

does not handle weighted points, though its regular triangulation code, which is

developed separately and is slower, does.

We chose not to study the performance of the programs with the weighted

Delaunay tessellation, partly to make the comparisons easier and mostly because

in our application, the weights come from radii of the atoms that differ very little,

which implies that resulting tessellation will be similar. For input from PDB files,

we have never observed any performance difference between the weighted and

the unweighted version.

4. Experiments

In this section we report on experiments running the five programs on ran-

domly generated points and on PDB files. We first report on running time.

Then, because tess3 uses only standard floating point arithmetic, we report on

the (small number of) errors that it makes.

We have tried to use the latest available codes of these programs. Hull and

pyramid codes were given to us by the authors. CGAL and Qhull codes were

downloaded from their web sites. The latest version of CGAL in April, 2004 is

3.0.1; however, we found that it is more than two times slower than CGAL 2.4

due to compiler issues. (Sylvain Pion, an author of the CGAL code, has found

a regression in the numerical computation code generated by gcc that probably

explains the slow-down.) We therefore proceed to use CGAL 2.4. Qhull 2003.1

we used is the latest version.
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Figure 4. Running time of the programs with PDB files.

The plots in Figures 3 and 4 show the running time comparisons using random

data and PDB data as input, respectively, using a logarithmic scale on the x axis

and the running time per point in micro-seconds on the y axis. Hull’s running

time is much slower than the rest of the programs, with time per point between

0.4–0.6 ms. In Figure 4, we omitted it so other plots can be compared more

easily. The timings are performed on a single processor of an AMD Athlon

1.4GHZ machine with 2GB of memory, running Red Hat Linux 7.3. Using time

per point removes the expected linear trend and allows easier comparison across

the entire x-coordinate range. Lines indicate the averages of ten runs; individual

runs are plotted with markers. We should also mention that CGAL’s running

time seems to be affected most by compiler changes, with the slowest as much

as 2.5 times slower than the fastest.1

We generated random data by choosing coordinates uniformly from 10-bit

nonnegative integers. This ensures that the floating point computations of both

Qhull and tess3 are correct. For the PDB data, for each input size n that is

indicated on the x-axis, we try to find 10 files whose number of atoms are closest

to n, though there is only one (with the indicated name) for each of the three

largest sizes. We have posted online [Liu and Snoeyink n.d.] the names of these

PDB files, as well as the program used to generate the random data.

1The timing plots are produced with a version that is roughly 1.5 times slower than the

fastest we have been able to compile. The reason for this is that the public machine that

compiled the fastest binary had a Linux upgrade, and, for unknown reasons, we could not

since reproduce the speed on that machine (or other machines we have tried).
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total created MkSph. InSph. (µs) Update Point location Mem.
sph./tetra (µs) fl.pt. exct. (µs) fl.pt. exct. (MB)

CGAL 2,760,890 – 0.06p 18.5p 0.1p 21.8%p 25.3%p 39
0.24t 1.72t 16.1t 22.1%t 27.9%t

Hull 2,316,338 10.02 0.14 – 2.40 – 73.1% 401

Pyramid 5,327,541f – 0.21 0.72 2.44 50.2% 38.1% 57
2,662,496n

QHull 2,583,320 0.65 0.12 >4.39 9.0% – 172

Tess3 2,784,736 0.13 0.04 – 2.42 3.88%h – 77
0.43%w

Table 2. Summary of timings and memory usage, running the programs against

the same 100k randomly generated points with 10 bit coordinates. Dates and

versions as in Table 1. Notes: For pyramid tetrahedra creation, numbers marked

f include all initialized by flipping and marked n include only those for which new

memory is allocated— equivalently, only those not immediately destroyed by a

flip involving the same new point. For CGAL timings, p indicates profiler and t

direct timing. For tess3 point location, h includes the preprocessing to order the

points along a Hilbert curve; w is walk only.

There are a few immediate conclusions: The ordering of programs, tess3 <

CGAL (fp) < pyramid (fp) < pyramid(ex) & CGAL < Qhull < hull, is consis-

tent, although hull is particularly slow with the PDB files in comparison and is

therefore not shown. In Figure 3 and 4, we can see a clear penalty for exact

arithmetic, because even when an exact arithmetic package is able to correctly

evaluate a predicate with a floating point filter, it must still evaluate and test an

error bound to know that it was correct. Time per point shows some increase

for everything but CGAL and tess3, which we believe is due to point location.

To further explain the difference in these programs’ running time, we used

the gcc profiler to determine the time-consuming routines. There are caveats

to doing so; function level profiling turns off optimizations such as inlining, and

adds overhead to each function call, which is supposed to be factored out, but

may not be. (This affects CGAL the most, with its templated C++ functions we

could not get reasonable profiler numbers, so we also tried to time its optimized

code, but this has problems with clock resolution.) The table shows some of our

findings for running the programs against the same 100k randomly generated

points with 10 bit coordinates.

The “total created spheres/tetra” column shows that flipping must initialize

many more tetrahedra. The MakeSphere and InSphere columns, which record

time to make sphere equations and test points against them, indicate that there

are speed advantages to using native floating point arithmetic for numerical com-

putations. Even simple floating point filters must check error bounds for compu-

tations. Note that for the programs that do not cache spheres, the InSphere test
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Figure 5. 1H1K points and bad tetrahedra.

is a determinant computation. The Update column indicates the time to update

the tetrahedral complex and does not include any numerical computation time.

The Point Location column indicates the percentage of time a program spends

in point location (for tess3, this number includes the time for sorting the points

along the Hilbert curve). The Memory column indicates the total amount of

memory the programs occupy in the end.

As we can see from the table, tess3 benefited particulary from its fast point

location. Caching sphere equations also helped speed up the numerical com-

putation. A version of tess3 that does not cache sphere equations is about 20

percent slower. We observed some bottlenecks of the other programs: Qhull’s

data structure is expensive to update and the code contains debugging and option

tests; Hull’s exact arithmetic incurs a significant overhead even when running

on points with few bits; Pyramid was bogged down mainly by its point location,

which samples many tetrahedra.

Point ordering. Since tess3 does not use exact arithmetic, we did additional

runs using audit routines to check the correctness of the output. We first check

the topological correctness — that is, whether our data structure indeed repre-

sents a simplicial complex (it always has) — we then check the geometric correct-

ness by testing (with exact arithmetic) for each tetrahedron if any neighboring

tetrahedron vertex is inside its sphere. We also did some runs checking every

InSphere test.

For the random data with 10 bits there are no errors, although we do find

geometric errors for larger numbers of bits. For 20,393 PDB files, our program

computes topologically correct output on all files and geometrically correct out-

put on all except one.

Figure 5 displays the 266 incorrect tetrahedra, and shows that the assumptions

of uniform distribution are egregiously violated. The comments to 1H1K state:

“This entry corresponds to only the RNA model which was built into the blue

tongue virus structure data. In order to view the whole virus in conjunction
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Figure 6. Semilog plot showing percentage of InSphere tests with round-off

errors by number of points n and number of coordinate bits, for three orderings.

We plot a dot for each of 10 runs for given n and bit number, and draw lines

through the averages of 10 runs.

with the nucleic acid template, this entry must be seen together with PDB entry

2BTV.”

We investigate how much ordering points along a Hilbert curve and bit-

levelling helps speed up tess3 and make it more resistent to numerical problems.

Figure 6 shows a log-log plot of the percentage of InSphere tests that contain

round-off errors with three different orderings: random, Hilbert ordering only,

and Hilbert ordering combined with bit-levelling. The percentages of errors are

affected by both the number of coordinate bits and the number of points in the

input; the plot illustrates variations in both of these controls. Given an input

with a certain number of coordinate bits, we can see that the combined ordering

has the lowest amount of numerical errors— and the difference becomes more

dramatic as the number of input points increases. We should emphasize that

the InSphere errors here are observed during the incremental construction and

the final output always contains much fewer errors. For example, for the com-

bined ordering, no output contains an error until the number of coordinate bits

reaches 17.

Since BRIO [Amenta et al. 2003] also uses a spatial-locality preserving or-

dering to speed up point location, we close by comparing BRIO insertion order

with a Hilbert curve order. Figure 7 compares the running times of CGAL, which

uses a randomized point location data structure, under the BRIO and Hilbert

insertion orders. The Hilbert curve is faster on average and has a smaller devia-

tion. This suggests that for input points that are uniformly distributed, adding

randomness into the insertion ordering perhaps will only slow down the program.
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Figure 7. Running time of the CGAL Delaunay hierarchy using random, BRIO

and Hilbert point orders.

5. Conclusions

We have surveyed five implementations of 3D Delaunay tessellation and com-

pared their speed on PDB files and randomly generated data. The experiments

show that Hull and QHull, the two programs that solve the more general prob-

lem of convex hull construction in 4D, are slower, penalized by not doing point

location in 3D. Amongst the other three programs, tess3 is the fastest because

its point location is carefully engineered for input points that are uniformly

distributed in space. Exact arithmetic with filtering is quite efficient, as demon-

strated by CGAL and Pyramid, but still incurs an overhead. We show that it is

possible to have an implementation that works well even when straightforward

bit-complexity analysis suggests otherwise.
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Abstract. In this mostly expository paper we explain how the Bernstein
basis, widely used in computer-aided geometric design, provides an efficient
method for real root isolation, using de Casteljau’s algorithm. We discuss
the link between this approach and more classical methods for real root
isolation. We also present a new improved method for isolating real roots
in the Bernstein basis inspired by Roullier and Zimmerman.

Introduction

Real root isolation is an important subroutine in many algorithms of real

algebraic geometry [Basu et al. 2003] as well as in exact geometric computations,

and is also interesting in its own right.

Our approach to real root isolation is based on properties of the Bernstein

basis. We first recall Descartes’ Law of Signs and give a useful partial reciprocal

to it. Section 2 contains the definition and main properties of the Bernstein

basis. In the third section, several variants of real root isolation based on the

Bernstein basis are given. In the fourth section, the link with more classical real

root isolation methods [Uspensky 1948] is established. We end the paper with a

few remarks on the computational efficiency of the algorithms described.

1. Descartes’ Law of Signs

The number of sign changes, V(a), in a sequence a = a0, . . . , ap of elements

in R \{0} is defined by induction on p by

V(a0) = 0,

V(a0, . . . , ap) =

{

V(a1, . . . , ap)+1 if a0a1 < 0,

V(a1, . . . , ap) if a0a1 > 0.

459
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This definition extends to any finite sequence a of elements in R by considering

the finite sequence b obtained by dropping the zeros in a and defining V(a) =

V(b), with the convention V(?) = 0.

Let P = apX
p + · · · + a0 be a univariate polynomial in R[X]. We write

V(P ) for the number of sign changes in a0, . . . , ap and pos(P ) for the number of

positive real roots of P , counted with multiplicity.

We state the famous Descartes’ law of signs, of 1636. (Descartes’ text appears

in [Struik 1969, pp. 90–91]. See also [Basu et al. 2003], for example, for a proof.)

Theorem 1.1 (Descartes’ law of signs).

(i) pos(P ) ≤ V(P ).

(ii) V(P )−pos(P ) is even.

In general, it is not possible to conclude much about the number of roots on an

interval using only Theorem 1.1.

An instance where Descartes’ law of signs permits a sharp conclusion is the

following.

Theorem 1.2. Let

D = {(x+ iy) ∈ R[i] | x < − 1
2 , (x+1)2 +y2 < 1}

be the part of the open disk with center (−1, 0) and radius 1 which is to the left

of the line x = − 1
2 in R

2 = R[i]. If P ∈ R[X] is square-free and has either no

roots or exactly one simple root in (0,+∞), and all its complex roots in D, then

V(P ) = 0 or V(P ) = 1 and

(i) P has one root in (0,+∞) if and only if V(P ) = 1,

(ii) P has no root in (0,+∞) if and only if V(P ) = 0.

The proof of the theorem relies on the following lemmas.

Lemma 1.3. For A, B ∈ R[X]

V(A) = 0, V(B) = 0 =⇒ V(AB) = 0.

Proof. Obvious. ˜

Lemma 1.4. For A, B ∈ R[X]

V(A) = 1, B = X +b, b ≥ 0 =⇒ V(AB) = 1.

Proof. If b = 0, V(AB) = V(A) = 1. Now, let b > 0. Let

A = adX
d +ad−1X

d−1 + · · ·+a0,

and suppose, without loss of generality, that ad = 1. Since V(A) = 1 and ad = 1,

there exists k such that

ai







≥ 0 if i > k,

< 0 if i = k,

≤ 0 if i < k.

(1–1)
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Letting ci be the coefficient of Xi in AB and making the convention that ad+1 =

a−1 = 0, we have

ci =







ai−1 +aib ≥ 0 if k+1 < i ≤ d,

ak−1 +akb < 0 if i = k,

ai−1 +aib ≤ 0 if i < k,

and cd+1 = ad > 0. So, whatever the sign of ck+1, V(AB) = 1. ˜

Lemma 1.5. If V(A) = 1, B = X2 + bX + c with b > 1, b > c > 0, then

V(AB) = 1.

Proof. Let A = adX
d + ad−1X

d−1 + · · · + a0 and suppose without loss of

generality that ad = 1. Since V(A) = 1 and ad = 1, there exists k such that

(1–1) is satisfied. Letting ci be the coefficient of Xi in AB and making the

convention that ad+2 = ad+1 = a−1 = a−2 = 0, we have

ci =







ai−2 +ai−1b+aic ≥ 0 for k+2 < i ≤ d+2,

ak−2 +ak−1b+akc < 0 for i = k,

ai−2 +ai−1b+aic ≤ 0 for i < k.

The only way to have V(AB) > 1 would be to have ck+1 > 0, ck+2 < 0, but this

is impossible since

ck+2−ck+1 = ak+2c+ak+1(b−c)+ak(1−b)−ak−1 > 0. ˜

Proof of Theorem 1.2. Notice first that by Theorem 1.1, V(P ) = 1 implies

that P has one root in (0,+∞), and V(P ) = 0 implies that P has no root in

(0,+∞). Note also that

• if X +a has its root in (0,+∞), then a < 0 and V(X +a) = 1,

• if X +b has its root in (−∞, 0], then b ≥ 0 and V(X +b) = 0,

• if X2+bX+c has its roots in D, then b > 1, b > c > 0 and V(X2+bX+c) = 0.

Now decompose P into irreducible factors of degree 1 and 2 over R. If P has

one root a in (0,+∞), V(X + a) = 1. Starting from X + a and multiplying

successively by the other irreducible factors of P , we get polynomials with sign

variations equal to 1, using Lemma 1.4 and Lemma 1.5. Finally, V(P ) = 1.

If P has no root in (0,+∞), starting from 1 and multiplying successively by

the irreducible factors of P , we get polynomials with sign variations equal to 0,

using Lemma 1.3. Finally, V(P ) = 0. ˜

2. The Bernstein Basis

The Bernstein basis is widely used in computer-aided design [Farin 1990]. We

recall some of its main properties, in order to use them for real root isolation in

the next section.
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Notation 2.1. Let P be a polynomial of degree ≤ p. The Bernstein polynomials

of degree p for c, d are the

Bp,i(c, d) =

(

p

i

)

(X−c)i(d−X)p−i

(d−c)p
,

for i = 0, . . . , p.

Remark 2.2. Note that Bp,i(c, d) = Bp,p−i(d, c) and that

Bp,i(c, d) =
(X−c)

d−c

p

i
Bp−1,i−1(c, d).

Since the multiplicity of the polynomial Bp,i(c, d) at x = c is i and Bp,i(c, d) is a

polynomial of degree p, we immediately deduce that the polynomials Bp,i(c, d),

i = 0, . . . , p are linearly independent and form a basis of the vector space of

polynomials of degree ≤ p.

Here are some simple transformations, useful to understand the connection

between the Bernstein basis and the monomial basis.

Reciprocal polynomial in degree p: Recp(P (X)) = XpP (1/X). The nonzero

roots of P are the inverses of the nonzero roots of Rec(P ).

Contraction by ratio λ: for every nonzero λ, Cλ(P (X)) = P (λX). The roots of

Cλ(P ) are of the form x/λ, where x is a root of P .

Translation by c: for every c, Tc(P (X)) = P (X−c). The roots of Tc(P (X)) are

of the form x+c where x is a root of P .

Proposition 2.3. Let P =
∑p

i=0 biBp,i(d, c) ∈ R[X] be of degree ≤ p. Let

T−1 (Recp(Cd−c(T−c(P )))) =

p
∑

i=0

ciX
i.

Then
(

p

i

)

bi = cp−i.

Proof. Performing the contraction of ratio d−c after translating by −c trans-

forms
(

p

i

)

(X−c)i(d−X)p−i

(d−c)p
into

(

p

i

)

Xi(1−X)p−i.

Translating by −1 after taking the reciprocal polynomial in degree p transforms
(

p

i

)

Xi(1−X)p−i into

(

p

i

)

Xp−i. ˜

Let P be of degree p. We denote by b = b0, . . . , bp the coefficients of P in the

Bernstein basis of c, d. Let n(P ; (c, d)) be the number of roots of P in (c, d)

counted with multiplicities.

Proposition 2.4. (i) V(b) ≥ n(P ; (c, d)).

(ii) V(b)−n(P ; (c, d)) is even.
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Proof. This follows immediately from Descartes’ law of signs (Theorem 1.1),

using Proposition 2.3. Indeed, the image of (c, d) under the translation by −c

followed by the contraction of ratio d−c is (0, 1). The image of (0, 1) under the

inversion z 7→ 1/z is (1,+∞). Finally, translating by −1 gives (0,+∞). ˜

We now describe a special case where the number V(b) coincides with the number

of roots of P on (c, d). Let d > c, and C(c, d)0 be the closed disk with center

(c, 0) and radius d− c, and let C(c, d)1 be the closed disk with center (d, 0) and

radius d−c.

Theorem 2.5 (Theorem of 2 circles). If P is square-free and has either no

root or exactly one simple root in (c, d) and P has no complex root in C(c, d)0∪
C(c, d)1, then

(i) P has one root in (c, d) if and only if V(b) = 1,

(ii) P has no root in (c, d) if and only if V(b) = 0.

Proof. We identify R
2 with C = R[i]. The image of the complement of C(c, d)0

(resp. C(c, d)1) under the translation by −c followed by the contraction of ratio

d−c is the complement of C(0, 1)0 (resp. C(0, 1)1). The image of the complement

of C(0, 1)0 under the inversion z 7→ 1/z is

{(x+ iy) ∈ R[i] | 0 < x2 +y2 < 1}.

The image of the complement of C(0, 1)1 under the inversion z 7→ 1/z is

{(x+ iy) ∈ R[i] | x < 1
2}.

The image of the complement of C(0, 1)0∪C(0, 1)1 under z 7→ 1/z is

{(x+ iy) ∈ R[i] | 0 < x2 +y2 < 1, x < 1
2}.

Translating this region by −1, we get the region

D = {(x+ iy) | x < − 1
2 , (x+1)2 +y2 < 1}

defined in Theorem 1.2.

The statement then follows from Theorem 1.2 and Proposition 2.3. ˜

Notice that this result which is a weaker version of the two-circles theorem pre-

sented in [Mehlhorn 2001], and related to [Ostrowski 1950], is given for the sake

of simplicity. Indeed, one can use instead the two-circles D
(

1
2 ± i

2
√

3
, 1√

3

)

, as

proved in the works cited.

The coefficients b = b0, . . . , bp of P in the Bernstein basis of c, d give a rough

idea of the shape of the polynomial P on the interval c, d. The control line of P

on [c, d] is the union of the segments [Mi, Mi+1] for i = 0, . . . , p−1, with

Mi =

(

i d+(p− i) c

p
, bi

)

.
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Figure 1. Graph of P on [0, 1] and the control line.

It is clear from the definitions that the graph of P goes through M0 and Mp

and that the line M0, M1 (resp. Mp−1, Mp) is tangent to the graph of P at M0

(resp. Mp).

Example 2.6. We take p = 3, and consider the polynomial P with coefficients

(4,−6, 7, 10) in the Bernstein basis for 0, 1

(1−X)3, 3(1−X)2X, 3(1−X)X2, X3.

We draw the graph of P on [0, 1], the control line, and the X-axis in Figure 1.

The control polygon of P on [c, d] is the convex hull of the points Mi for i =

1, . . . , p.

Example 2.7. Continuing Example 2.6, we draw the graph of P on [0, 1] and

the control polygon in Figure 2.

An important and well-known property of the Bernstein polynomials is the fol-

lowing:

Proposition 2.8. The graph of P on [c, d] is contained in the control polygon

of P on [c, d].

Proof. In order to prove the proposition, it is enough to prove that any line L

above (respectively under) all the points in the control polygon of P on [c, d] is

Figure 2. Graph of P on [0, 1] and the control polygon.
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above (respectively under) the graph of P on [c, d]. If L is defined by Y = aX+b,

let us express the polynomial aX +b in the Bernstein basis. Since

1 =

(

X−c

d−c
+

d−X

d−c

)p

,

the binomial formula gives

1 =

p
∑

i=0

(

p

i

) (

X−c

d−c

)i (

d−X

d−c

)p−i

=

p
∑

i=0

Bp,i(c, d).

Since

X =

(

d

(

X−c

d−c

)

+c

(

d−X

d−c

)) (

X−c

d−c
+

d−X

d−c

)p−1

,

the binomial formula together with Remark 2.2 gives

X =

p−1
∑

i=0

(

d

(

X−c

d−c

)

+c

(

d−X

d−c

))

Bp−1,i(c, d)

=

p
∑

i=0

(

id+(p− i)c

p

)

Bp,i(c, d).

Thus,

aX +b =

p
∑

i=0

(

a

(

id+(p− i)c

p

)

+b

)

Bp,i(c, d).

It follows immediately that if L is above every Mi, that is, if

a

(

id+(p− i)c

p

)

+b ≥ bi

for every i, then L is above the graph of P on [c, d], since P =
∑p

i=0 biBp,i(c, d)

and the Bernstein polynomials of c, d are nonnegative on [c, d]. A similar argu-

ment holds for L under every Mi. ˜

The following algorithm computes the coefficients of P in the Bernstein bases of

c, e and e, d from the coefficients of P in the Bernstein basis of c, d.

Algorithm 2.9 (de Casteljau).

Input: a list b = b0, . . . , bp representing a polynomial P of degree ≤ p in the

Bernstein basis of c, d, and a number e ∈ R.

Output: the list b′ = b′0, . . . , b
′
p representing P in the Bernstein basis of c, e and

the list b′′ = b′′0 , . . . , b′′p representing P in the Bernstein basis of e, d.

1. Define α = (d−e)/(d−c) and β = (e−c)/(d−c).

2. Initialization: b
(0)
j := bj , j = 0, . . . , p.

3. For i = 1, . . . , p

For j = 0, . . . , p− i

compute b
(i)
j := αb

(i−1)
j +βb

(i−1)
j+1 .

4. Output b′ = b
(0)
0 , . . . , b

(j)
0 , . . . , b

(p)
0 and b′′ = b

(p)
0 , . . . , b

(p−j)
j , . . . , b

(0)
p .
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De Casteljau’s algorithm can be visualized by means of the triangle

b
(0)
0 b

(0)
1 . . . . . . b

(0)
p−1 b

(0)
p

b
(1)
0 . . . . . . . . . b

(1)
p−1

. . . . . . . . . . . .

. . . . . . . . .

b
(p−1)
0 b

(p−1)
1

b
(p)
0

where b
(i)
j := αb

(i−1)
j +βb

(i−1)
j+1 , α = (d−e)/(d−c) and β = (e−c)/(d−c).

The coefficients of P in the Bernstein basis of c, d appear in the top side of

the triangle and the coefficients of P in the Bernstein basis of c, e and e, d appear

in the two other sides of the triangle.

Notation 2.10. We denote by ã the list obtained by reversing the list a.

Proof of correctness of de Casteljau’s Algorithm. It is enough to

prove the part of the claim concerning c, e. Indeed, by Remark 2.2, b̃ represents P

in the Bernstein basis of d, c, and the claim is obtained by applying de Casteljau’s

Algorithm to b̃ at e. The output is b̃′′ and b̃′ and the conclusion follows using

again Remark 2.2.

Let δp,i be the list of length p+1 consisting of zeros except a 1 at the i+1-th

place. Note that δp,i is the list of coefficients of Bp,i(c, d) in the Bernstein basis

of c, d. We will prove that the coefficients of Bp,i(c, d) in the Bernstein basis

of c, e coincide with the result of de Casteljau’s Algorithm 2.9 performed with

input δp,i. The correctness of de Casteljau’s Algorithm 2.9 for c, e then follows

by linearity.

First notice that, since α = (d−e)/(d−c) and β = (e−c)/(d−c),

d−X

d−c
= α

X−c

e−c
+

e−X

e−c
,

X−c

d−c
= β

X−c

e−c
.

Thus

(

d−X

d−c

)p−i

=

p−i
∑

k=0

(

p− i

k

)

αk

(

X−c

e−c

)k (

e−X

e−c

)p−i−k

,

(

X−c

d−c

)i

= βi

(

X−c

e−c

)i

.

It follows that

Bp,i(c, d) =

(

p

i

) p
∑

j=i

(

p− i

j− i

)

αj−iβi

(

X−c

e−c

)j (

e−X

e−c

)p−j

.
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Since
(

p

i

)(

p− i

j− i

)

=

(

j

i

)(

p

j

)

,

Bp,i(c, d) =

p
∑

j=i

(

j

i

)

αj−iβi

(

p

j

) (

X−c

e−c

)j (

e−X

e−c

)p−j

.

Finally,

Bp,i(c, d) =

p
∑

j=i

(

j

i

)

αj−iβiBp,j(c, e).

On the other hand, we prove by induction on p that de Casteljau’s Algorithm

with input δp,i outputs the list δ′p,i starting with i zeros and with (j + 1)-th

element
(

j
i

)

αj−iβi for j = i, . . . , p.

The result is clear for p = i = 0. If de Casteljau’s Algorithm applied to

δp−1,i−1 outputs δ′p−1,i−1, the equality

(

j

i

)

αj−iβi = α

(

j−1

i

)

αj−i−1βi +β

(

j−1

i−1

)

αj−iβi−1

proves by induction on j that the algorithm applied to δp,i outputs δ′p,i. So the

coefficients of Bp,i(c, d) in the Bernstein basis of c, e coincide with the output of

the algorithm with input δp,i. ˜

de Casteljau’ Algorithm works both ways.

Corollary 2.11. Let b, b′ and b′′ be the lists of coefficients of P in the Bernstein

basis of (c, d), (c, e) and (e, d) respectively .

(i) De Casteljau’s Algorithm applied to b with weights α = (d− e)/(d− c) and

β = (e−c)/(d−c) outputs b′ and b′′.

(ii) De Casteljau’s Algorithm applied to b′ with weights α = (e−d)/(e− c) and

β = (d−c)/(e−c) outputs b and b̃′′.

(iii) De Casteljau’s Algorithm applied to b′′ with weights α = (d−c)/(d−e) and

β = (c−e)/(d−e) outputs b̃′ and b.

De Casteljau’s Algorithm gives a geometric construction of the control polygon

of P on [c, e] and on [e, d] from the control polygon of P on [c, d]. The points

of the new control polygons are constructed by taking iterated barycenters with

weights α and β.

Example 2.12. Continuing Example 2.7, de Casteljau’s Algorithm gives

4 −6 7 10

−1 1
2

17
2

− 1
4

9
2

17
8
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Figure 3. Control line of P on [0, 1
2
].

We construct the control line of P on [0, 1
2 ] from the control line of P on [0, 1]

as explained in Figure 3.

We then draw the graph of P on [0, 1] and the control line on [0, 1
2 ] in Figure 4.

3. Real Root Isolation in the Bernstein Basis

Let P be a polynomial of degree p in R[X]. We are going to explain how

to characterize the roots of P in R, performing exact computations. The roots

of P in R will be described by intervals with rational end points. Our method

will be based on Descartes’ law of signs (Theorem 1.1) and the properties of the

Bernstein basis studied in the preceding section.

Proposition 3.1. Let b, b′ and b′′ be the lists of coefficients of P in the Bern-

stein basis of c, d; c, e; and e, d. If c < e < d,then

V(b′)+V(b′′) ≤ V(b).

Moreover if P (e) 6= 0, V(b)−V(b′)−V(b′′) is even.

Proof. The proof of the proposition is based on the following easy observations:

Figure 4. Graph of P on [0, 1] and control line on [0, 1
2
].
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(i) Inserting in a list a = a0, . . . , an a value x in [ai, ai+1] if ai+1 ≥ ai (resp. in

[ai+1, ai] if ai+1 < ai) between ai and ai+1 does not modify the number of

sign variations.

(ii) Removing from a list a = a0, . . . , an with first nonzero ak, k ≥ 0, and last

nonzero a`, k ≤ ` ≤ n, an element ai, i 6= k, i 6= ` decreases the number of

sign variation by an even (possibly zero) natural number.

Indeed the lists b(j) defined from the values b
(i)
j (see de Casteljau’s algorithm),

as follows:

b(0) = b
(0)
0 , . . . , . . . , . . . , . . . , . . . , b(0)

p

b(1) = b
(0)
0 , b

(1)
0 , . . . , . . . , . . . , . . . , b

(1)
p−1, b

(0)
p

. . .

b(i) = b
(0)
0 , . . . , . . . , b

(i)
0 , . . . , . . . , b

(i)
p−i, . . . , . . . , b

(0)
p

. . .

b(p−1) = b
(0)
0 , . . . , . . . , . . . , . . . , b

(p−1)
0 , b

(p−1)
1 , . . . , . . . , . . . , . . . , b(0)

p

b(p) = b
(0)
0 , . . . , . . . , . . . , . . . , . . . , b

(p)
0 , . . . , . . . , . . . , . . . , . . . , b(0)

p

are successively obtained by inserting intermediate values and removing elements

that are not end points, since when c < e < d, b
(i)
j is between b

(i−1)
j and b

(i−1)
j+1 ,

for i = 1, . . . , p, j = 0, . . . , p− i− 1. Thus V(b(p)) ≤ V(b) and the difference is

even. Since

b′ = b
(0)
0 , . . . , . . . , . . . , . . . , . . . , b

(p)
0 ,

b′′ = b
(p)
0 , . . . , . . . , . . . , . . . , . . . , b(0)

p ,

V(b′)+V(b′′) ≤ V(b(p)), and V(b′)+V(b′′) ≤ V(b). If P (e) 6= 0, it is clear that

V(b(p)) = V(b′)+V(b′′), since b
(p)
0 = P (e) 6= 0. ˜

Example 3.2. Continuing Example 2.12, we observe, denoting by b, b′ and b′′,
the lists of coefficients of P in the Bernstein basis of 0, 1, 0, 1

2 , and 1
2 , 1, that

V(b) = 2. This is visible on Figure 1: the control line for [0, 1] cuts twice the

X-axis. Similarly, V(b′) = 2. This is visible on Figure 4: the control line for

[0, 1
2 ] also cuts twice the X-axis. Similarly, it is easy to check that V(b′′) = 0.

We cannot decide from this information whether P has two roots on (0, 1
2 ) or

no root on (0, 1
2 ).

Suppose that P ∈ R[X] is a polynomial of degree p with all its real zeros in

(−2`, 2`) and is square-free. Consider natural numbers k and c such that 0 ≤
c ≤ 2k and define

ac,k =
−2`+k +c2`+1

2k
.

It is clear that, for k big enough, the polynomial P has at most one root in

(ac,k, ac+1,k) and has no other complex root in C(ac,k, ac+1,k)0∪C(ac,k, ac+1,k)1.
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Let b(P, c, k) be the list of coefficients of P in the Bernstein basis of (ac,k, ac+1,k).

Note that b(P, 0, 0), the list of coefficients of P in the Bernstein basis of (−2`, 2`),

can easily be computed from P , using Proposition 2.3.

Using Theorem 2.5, it is possible to decide, for k big enough, whether P

has exactly one root in (ac,k, ac+1,k) or has no root on (ac,k, ac+1,k) by testing

whether V(b(P, c, k)) is zero or one.

Example 3.3. Continuing Example 3.2, let us study the roots of P on (0, 1),

as a preparation to a more formal description of Algorithm 3.4 (B1 Real Root

Isolation).

The Bernstein coefficients of P for (0, 1) are 4,−6, 7, 10. There may be roots

of P on (0, 1) as there are sign variations in its Bernstein coefficients.

As seen in Example 3.2, a first application of de Casteljau’s Algorithm with

weights α = β = 1
2 gives

4 −6 7 10

−1 1
2

17
2

− 1
4

9
2

17
8

There may be roots of P on (0, 1
2 ) as there are sign variations in the Bernstein

coefficients of P which are 32,−8,−2, 17. There are no roots of P on (1
2 , 1).

We apply once more de Casteljau’s Algorithm with weights 1
2 , 1

2 :

4 −1 − 1
4

17
8

3
2 − 5

8
15
16

7
16

5
32

19
64

There are no sign variations on the sides of the triangle so there are no roots of

P on (0, 1
4 ) and on (1

4 , 1
2 ).

An isolating list for P is a finite list L of rational points and disjoint open

intervals with rational end points of R such that each point or interval of L

contains exactly one root of P in R and every root of P in R belongs to an

element of L.

Algorithm 3.4 (B1 Real Root Isolation).

Input: a square-free nonzero polynomial P ∈ R[X], an interval (−2`, 2`) con-

taining the roots of P in R, the list b(P, 0, 0) of the Bernstein coefficients of

P for (−2`, 2`).

Output: a list L(P ) isolating for P .

1. Initialization: Define Pos := {b(P, 0, 0)} and L(P ) := ?.

2. While Pos is nonempty:

• Remove b(P, c, k) from Pos.

• If V(b(P, c, k)) = 1 then insert (ac,k, ac+1,k) in L(P ).
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• If V(b(P, c, k)) > 1 then

– Compute b(P, 2c, k+1) and b(P, 2c+1, k+1) using de Casteljau’s Algo-

rithm with weights (1
2 , 1

2 ) and insert them in Pos.

– If P (a2c+1,k+1) = 0 then insert a2c+1,k+1 in L(P ).

3. Output L(P ).

The hypotheses are not a real loss of generality since, given any polynomial Q,

a square-free polynomial P having the same roots at Q can be computed using

the gcd of Q and Q′ (see for example [Basu et al. 2003]).

Moreover, setting

Q = cpX
p + . . .+c0,

C(Q) =
∑

0≤i≤p

∣

∣

∣

∣

ci

cp

∣

∣

∣

∣

,

the absolute value of any root of Q in R is smaller than C(Q) [Mignotte and

Ştefănescu 1999; Basu et al. 2003], so that it is easy, knowing Q, to compute `

such that (−2`, 2`) contains the roots of Q in R.

Since each subdivision yields after a scaling and a shift, new polynomials on

[0, 1] for which the distance between the roots if doubled, by the two-circles

theorem, the maximal number h of the subdivisions is bounded by

h ≤ dlog2(2/s)e,

where s is the minimal distance between the complex roots of Q. Using classical

bounds on this minimal distance between the roots of a polynomial Q with

integer coefficients [Mignotte and Ştefănescu 1999; Basu et al. 2003], one can

prove that

h ≤ (p−1) log2 ‖Q‖2 + 1
2 (p+2) log2 p + 1

(where ‖Q‖2 is the 2-norm of the coefficient vector of Q) and that the binary

complexity of computing the square-free part P of Q, computing ` such that

(−2`, 2`) contains the roots of Q in R, and performing Algorithm 3.4 (B1 Real

Root Isolation) for P , is O(p6(τ + log2 p)2), where p is a bound on the degree

of Q and τ a bound on the bitsize of the coefficients of Q [Basu et al. 2003].

The coefficients of the elements of the b(P, c, k) computed in the algorithm are

rational numbers of bitsize O(p2(τ+log2 p)) [Basu et al. 2003]. Since there are at

most 2p values of b(P, c, k) in Pos throughout the computation, and there are p+1

coefficients in each b(P, c, k), the workspace of the algorithm is O(p4(τ +log2 p)).

An improved version of Algorithm 3.4 (B1 Real Root Isolation) is based on

the following idea, inspired from [Rouillier and Zimmermann 2004]: since every

b(P, c, k) computed in the algorithm carries the whole information about P , it is

not necessary to store the value of b(P, c, k) at all the nodes, and the workspace

of the algorithm can be improved.
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It will be necessary to convert the Bernstein coefficients of P on an interval

(ad,m, ad+1,m) into the Bernstein coefficients of P on an interval (ac,k, ac+1,k).

Algorithm 3.5 (Convert).

Input: (c, k), (d, m), and b(P, d, m), Bernstein coefficients of P on (ad,m, ad+1,m).

Output: the Bernstein coefficients b(P, c, k) of P on (ac,k, ac+1,k).

1. Initialize b := b(P, d, m).

2. Let c = c0+· · ·+cn−12
n−1+cn2n+· · ·+ck−12

k−1 and d = d0+· · ·+dn−12
n−1+

dn2n + · · ·+dm−12
m−1, with ci ∈ {0, 1}, cn 6= dn, ci = di for every i < n.

3. For i in m−1, . . . , n:

• If di = 0 then apply de Casteljau’s Algorithm to b, weights (−1, 2) and

output b′, b′′. Update b := b′.

• If di = 1 then apply de Casteljau’s Algorithm to b with weights (2,−1) and

output b′, b′′. Update b := b′′.

4. For i in n, . . . , k−1:

• If ci = 0 then apply de Casteljau’s Algorithm to b with weights (1
2 , 1

2 ) and

output b′, b′′. Update b := b′.

• If ci = 1 then apply de Casteljau’s Algorithm to b with weights (1
2 , 1

2 ) and

output b′, b′′. Update b := b′′.

5. Output b.

The correctness of this algorithm clearly follows from that of de Casteljau’s

Algorithm.

It is now easy to describe the improved real root isolation method.

Algorithm 3.6 (B2 Real Root Isolation).

Input: a square-free nonzero polynomial P ∈ R[X], an interval (−2`, 2`) con-

taining the roots of P in R, the list b(P, 0, 0) of the Bernstein coefficients of

P for (−2`, 2`).

Output: a list L(P ) isolating for P .

1. Initialization: Set Pos := {(0, 0)}, L(P ) := ?, d := 0, m := 0.

2. While Pos is nonempty:

• Remove the first element (c, k) of Pos.

• Compute b(P, c, k) from b(P, d, m) using Algorithm 3.5 (Convert).

• If V(b(P, c, k)) = 1 then insert (ac,k, ac+1,k) in L(P ).

• If V(b(P, c, k)) > 1 then:

– Insert (2c, k+1), (2c+1, k+1) at the beginning of Pos.

– If P (a2c+1,k+1) = 0 then insert a2c+1,k+1 in L(P ).

• Update d := c, m := k.

3. Output L(P ).
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The next lemma is the key result for analyzing the complexity of this algorithm.

(Note that the set of (c, k) such that b(P, c, k) is computed in Algorithm 3.4 (B1

Real Root Isolation) is naturally equipped with a binary tree structure, denoted

by T : (d, m) is a child of (c, k) if d = 2c or d = 2c+1, and m = k+1.)

Lemma 3.7. In Algorithm 3.6 (B2 Real Root Isolation), the leaves of T are

visited once, the nodes of T with one child are visited twice and the nodes of T

with two children are visited three times

Proof. Easy by induction on the depth of T , noting that if (c, k) and (d, m)

are nodes of T , ac,k < ad,m if and only if every visit of (c, k) takes place before

(d, m) is visited. ˜

The binary complexity of Algorithm 3.6 (B2 Real Root Isolation) for P , is

O(p6(τ + log2 p)2), similarly to Algorithm 3.4 (B1 Real Root Isolation), since

every node in the tree T is visited at most three times in by Lemma 3.7. However

Algorithm 3.6 (B2 Real Root Isolation) uses only O(p3(τ + log2 p)) workspace,

since only one vector of Bernstein coefficients is stored throughout the compu-

tation, rather than O(p4(τ +log2 p)) workspace in Algorithm 3.4 (B1 Real Root

Isolation).

We can also perform the computation using interval arithmetic. The basic

idea of interval arithmetic is that real numbers are represented by intervals with

rational bounds encoded as floating point numbers with a fixed precision. The

advantages of interval arithmetic is that it is much quicker than exact arithmetic,

and it allows us to compute with polynomials known approximately.

The interval arithmetic we consider is indexed by two natural numbers u, n,

defining the precision. The u, n-intervals are of the form [ i
2I , j

2J ], with i and j

being integers between −2u and 2u, i ≤ j, and I and J being integers between

−2n and 2n. A consistent interval arithmetic is compatible with the arithmetic

operations: if α and β are two real numbers represented respectively by two

intervals A and B, the result A�B of any arithmetic operation � will contain

the real number α�β. In the next paragraph, we assume working with a multi-

precision interval arithmetic such as in [Revol and Rouillier 2002] (where u can

be arbitrary fixed by the user). In order to perform Algorithm 3.6 (B2 Real

Root Isolation) in this arithmetic, we only need to double an interval, subtract

two intervals and compute the average of two intervals.

The sign of an interval [a, b], where a ≤ b, is defined as follows:

sign[a, b] =















0 if a = b = 0,

1 if a > 0,

−1 if b < 0,

? if a ≤ 0 ≤ b, a 6= 0, b 6= 0.

The number of sign variations in a list A = [a0, b0], . . . , [ap, bp] of intervals with

rational end points is defined as follows:
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• If sign[ai, bi] 6= ? for all i = 0, . . . , p, set

V([a0, b0], . . . , [ap, bp]) = V(sign[a0, b0], . . . , sign[ap, bp]).

• If, for every i = 1, . . . , p such that sign[ai, bi] = ?, both sign[ai−1, bi−1] and

sign[ai+1, bi+1] are defined and moreover sign[ai−1, bi−1] sign[ai+1, bi+1] < 0,

then set

V(A) = V(B),

where B is obtained by removing from A all the [ai, bi] such that sign[ai, bi]=?.

• Otherwise set V(A) = ?.

Example 3.8. If A = [1, 2], [−2,−1], V(A) = 1. If A = [1, 2], [−1, 1], V(A) = ?.

If A = [1, 2], [−1, 1], [−2,−1], V(A) = 1.

Algorithm 3.9 (B3 Real Root Isolation).

Input: an integer `, a precision u, n, a list b̄(0, 0) with p+1 elements which are

u, n-intervals, and whose first and last element do not contain 0.

Output: a list L and a list N of intervals such that for every polynomial P such

that (−2`, 2`) contains the roots of P in R, and whose Bernstein coefficients

for (−2`, 2`) belong to b̄(0, 0), there exists one and only one root of P in each

interval of L and all the other roots of P in (−2`, 2`), belong to an interval

of N .

1. Initialization: Compute V(b̄(0, 0)), using Proposition 2.3 and u, n-arithmetic

define Pos := {(0, 0)}, L := ?, N := ?, d := 0, m := 0.

2. While Pos is nonempty:

• Remove the first element (c, k) of Pos.

• Compute b̄(c, k) from b̄(d, m) by Algorithm 3.5 (Convert), using u, n-arith-

metic.

• If V(b̄(c, k)) = 1 then insert (ac,k, ac+1,k) in L.

• If V(b̄(c, k)) > 1 then insert (2c, k+1), (2c+1, k+1) at the beginning of Pos.

• If V(b̄(c, k)) = ? then insert (ac,k, ac+1,k) in N .

• Update d := c, m := k.

3. Output L, N .

Interval arithmetic can be used as well when the polynomial P is known exactly.

In this case we can compute the square-free part of P and it is easy to design a

variant of Algorithm 3.9 and output a list of isolating intervals by augmenting

precision, examining again the intervals where no decision has been taken yet.

Algorithm 3.10 (B4 Real Root Isolation).

Input: a square-free P ∈ R[X], and the list b(P, 0, 0) of Bernstein coefficients

of P for (−2`, 2`), where (−2`, 2`) contains the roots of P in R.

Output: a list L(P ) isolating for P .
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1. Initialization: u such that the elements of b(P, 0, 0) belong to (−2u, 2u), n :=

1. Compute V(b(P, 0, 0)), define Pos := {(0, 0)}, L(P ) := ?, N(P ) := ?,

d := 0, m := 0.

2. While Pos is nonempty:

• Remove the first element (c, k) of Pos.

• Compute b(P, c, k) from b(P, d, m) by Algorithm 3.5 (Convert) using u, n-

arithmetic.

• If V(b(P, c, k)) = 1 then insert (ac,k, ac+1,k) in L(P ).

• If V(b(P, c, k)) > 1 then:

– Insert (2c, k+1), (2c+1, k+1) at the beginning of Pos.

– If P (a2c+1,k+1) = 0 then insert a2c+1,k+1 to L(P ).

• If V(b(P, c, k)) = ? then insert (ac,k, ac+1,k) in N(P ).

• Update d := c, m := k.

3. If N(P ) 6= ? then update n := n+1, Pos = N(P ) and go to step 2.

4. Output L(P ).

4. Real Root Isolation in the Monomial Basis

The preceding methods for real root isolation are adapted to polynomials given

in the Bernstein basis. However in many cases, the polynomials are given in the

monomial basis, and the conversion to the Bernstein basis is computationally

expensive. It is thus natural to look for real root isolation algorithms adapted

to the case where the polynomials are expressed in the monomial basis.

Such algorithms for real root isolation in the monomial basis are very classical,

and have been studied extensively, starting from [Uspensky 1948] (see [Rouillier

and Zimmermann 2004] for a bibliography). We prove here that their correctness

is an immediate consequence of the correctness of the corresponding algorithms

in the Bernstein basis.

Rather than looking at the Bernstein coefficients of the same polynomial P on

varying intervals, we are going to consider different polynomials closely related

to P on each interval. We need some notation. Suppose as before that P ∈ R[X]

is a polynomial of degree p with all its real zeros in (−2`, 2`) and is square-free,

consider natural numbers k and c such that 0 ≤ c ≤ 2k and define

ac,k =
−2`+k +c2`+1

2k
.

We define

Pc,k := C2`+1−k(T−ac,k
(P )).

Pc,k is simply the result of the transformation operated on P when the segment

(ac,k, ac+1,k) is sent to (0, 1) by a translation followed by a contraction.

The following lemma is the key result making the connection between the real

root isolation in the monomial basis and the Bernstein basis.
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Lemma 4.1. Let Qc,k := T−1 (Recp(Pc,k)) . Then V(Qc,k) = V(b(P, c, k)).

Proof. Immediate by Proposition 2.3. ˜

The four algorithms of the preceding section have analogous versions in the

monomial basis [Rouillier and Zimmermann 2004]. We describe only the algo-

rithms corresponding to the conversion from one interval to another and the

improved root isolation algorithm.

Algorithm 4.2 (M1 Change interval).

Input: (c, k), (d, m) and the polynomial Pd,m.

Output: the polynomial Pc,k.

1. Let c = c0+· · ·+cn−12
n−1+cn2n+· · ·+ck−12

k−1 and d = d0+· · ·+dn−12
n−1+

dn2n+ · · ·+dm−12
m−1, with ci ∈ {0, 1}, cn 6= dn, ci = di for every i < n. and

R := Pd,m.

2. For i from m−1 to n:

• If di = 0, then R := C2(R).

• If di = 1, then R := C2(T−1(R)).

3. For i from n to k−1:

• If ci = 0, then R := C1/2(R).

• If ci = 1, then R := C1/2(T−1/2(R)).

4. Output R.

The correctness of the algorithm follows clearly from the definition of Pc,k.

It is now easy to describe the improved real root isolation method in the

monomial basis.

Algorithm 4.3 (M2 Real Root Isolation).

Input: a square-free nonzero polynomial P ∈ R[X], and an interval (−2`, 2`)

containing the roots of P in R.

Output: a list L(P ) isolating for P .

1. Initialization: Define Pos := {(0, 0)}, L(P ) := ?, d := 0, m := 0.

2. While Pos is nonempty:

• Remove the first element (c, k) of Pos.

• Compute Pc,k from Pd,m using Algorithm 3.5 (Change Interval). Take

Qc,k := T−1 (Recp(Pc,k)) .

• If V(Qc,k) = 1, then insert (ac,k, ac+1,k) in L(P ).

• If V(Qc,k) > 1 then:

– Insert (2c, k+1), (2c+1, k+1) at the beginning of Pos.

– If P (a2c+1,k+1) = 0 then insert a2c+1,k+1 in L(P ).

• Update d := c, m := k.

3. Output L(P ).
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The correctness of Algorithm 4.3 follows from the correctness of Algorithm 3.6

and Lemma 4.1.

The complexity analysis of the real root isolation method in the monomial

basis and in the Bernstein basis are quite similar.

5. Efficiency of the Methods

The experimental behavior of Algorithms 4.3 [M2 Real Root Isolation in

monomial basis], more precisely of its interval arithmetic variants is excellent,

and real root isolation can be performed by this method for polynomials of degree

several thousands and with coefficients of bit size several hundred (see [Rouillier

and Zimmermann 2004] for details on these experimental results).

The experimental behavior in the case of the Bernstein basis has not been

studied fully yet, but the first experiments indicate that the algorithms presented

here are as efficient as the corresponding ones in the monomial basis, if the

polynomial is initially given in the Bernstein basis.

Implementations of these algorithms are available in the libraries RS (see

http://fgbrs.lip6.fr/salsa/Software/) and synaps (see http://www-sop.inria.fr/

galaad/software/synaps/).

References

[Basu et al. 2003] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in real algebraic

geometry, Algorithms and Computation in Mathematics 10, Springer, Berlin, 2003.

[Farin 1990] G. Farin, Curves and surfaces for computer aided geometric design,
Academic Press, Boston, 1990.

[Mehlhorn 2001] K. Mehlhorn, “A remark on the Sign Variation Method for real
root isolation”, preprint, 2001. Available at http://www.mpi-sb.mpg.de/˜mehlhorn/

ftp/Descartes.ps.
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NIRANJAN NILAKANTAN

Abstract. We discuss certain extremal problems in combinatorial geom-

etry, including Sylvester’s problem and its generalizations.

1. Introduction

Many interesting problems in combinatorial geometry have remained unsolved

or only partially solved for a long time. From time to time breakthroughs are

made. In this survey, we shall discuss the known results about some metric and

nonmetric problems. In particular, we shall discuss the Sylvester–Gallai problem

and the Dirac–Motzkin conjecture on the existence and number of ordinary lines,

the Dirac conjecture on the number of connecting lines, and the problem of

distinct and repeated distances. The main focus will be on versions of these

problems in the Euclidean and real projective plane.

The method of allowable sequences will be described as a tool to give purely

combinatorial solutions to extremal problems in combinatorial geometry.

2. Sylvester’s Problem

Sylvester [1893] posed a question in the Educational Times that was to remain

unsolved for 40 years until it was raised again by Erdős [1943]. Then it was soon

solved by Gallai [1944], who gave an affine proof. More followed: Steinberg’s

proof in the projective plane and others by Buck, Grünwald and Steenrod, all

collected in [Steinberg et al. 1944]; Kelly’s Euclidean proof [1948], and others,

including [Motzkin 1951; Lang 1955; Williams 1968].

We give the following definitions before we state the problem and its solutions.

Let P be a finite set of 3 or more noncollinear points in the plane. Let F be

a finite collection of simple closed curves in the real projective plane which do

479
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not separate the plane, every two of which have exactly one point in common,

where they cross. F is known as a pseudoline arrangement.

Connecting line: a line containing two or more points of P .

Ordinary line: a connecting line which has exactly two points of P on it.

Vertex: an intersection of two or more lines of a straight line arrangement or

pseudolines of a pseudoline arrangement.

Ordinary point: a vertex which is the intersection of exactly two lines or two

pseudolines.

Sylvester asked for a proof of the statement that every set P of noncollinear

points always determines an ordinary line. In the dual, one has to show that

any straight line arrangement in which not all lines are concurrent has an or-

dinary point. By the principle of duality, proofs for point configurations carry

over trivially into proofs for line arrangements and vice versa. The canonical

correspondence maps the point (a, b) to the line y = −ax + b.

Levi [1926] introduced the notion of a pseudoline defined above. A natural

question to ask is whether every pseudoline arrangement in which not all pseu-

dolines are concurrent has an ordinary vertex. This is more general than the

question of whether every straight line arrangement has an ordinary vertex, since

every straight-line arrangement has an equivalent pseudoline arrangement, but

there exist unstretchable pseudoline arrangements [Grünbaum 1970; Goodman

and Pollack 1980b].

Solutions to Sylvester’s problem. We now show some of the techniques used

to solve Sylvester’s problem in the both the primal and dual versions, and in the

Euclidean as well as the projective plane.

Gallai’s proof (affine). Choose any point p1 ∈ P . If p1 lies on an ordinary line,

we are done, so we may assume that p1 does not lie on any ordinary line. Project

p1 to infinity and consider the set of lines containing p1. These lines are parallel,

and there are at least two such lines. Let s be a connecting line not through p1

which forms the smallest angle with the parallel lines:

p1

s

We assert that s is ordinary. If not, it must have at least 3 points p2, p3, p4, as

in the figure at the top of the next page. The connecting line through p1 and p3

has another point p5, since it is not ordinary (this point is shown in two possible

positions in the figure). Then, either p5p2 or p5p4 forms a smaller angle with

the parallel lines than s, contradicting the hypothesis that s forms the smallest

angle.
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p1

p2

p3

p4

p5 p5

s

Kelly’s proof (Euclidean). We have the set P of points not all collinear and the

set S of connecting lines determined by P . Any point in P and any connecting

line not through the point determine a perpendicular distance from the point to

the line. The collection of all these distances is finite, because P and S are finite,

so there is a smallest such distance. Let p∗ ∈ P and s∗ ∈ S be a nonincident

pair realizing this smallest distance, and let q be the foot of the perpendicular

line from p∗ to s∗:

s∗
p2p1q

p∗

Then s∗ is ordinary; otherwise it would contain three points of P , at least two

of them lying on the same side of q. Let these two points be p1 and p2, with p1

between q and p2. Now the distance from p1 to the connecting line p∗p2 would

be less than the distance from p∗ to s∗, giving a contradiction.

Steinberg’s proof (projective). With S and P as above, take any p in P . If p lies

on an ordinary line we are done, so we may assume that p lies on no ordinary

line. Let l be a line through p that is not a connecting line, that is, one that

contains no point of P apart from p. Let Q be the set of intersections of l with

lines in S, and take q ∈ Q next to p (meaning that one of the open segments

determined by p and q on the projective line l contains no element of Q). Let

s be a line of S through q; then s must be ordinary. Otherwise, there would be

three points of P on s, say p1, p2, p3 (arranged in that order in s \ {q}; note that

q is not in P , by our choice of l):

s

p

p4

p4

p3p2p1q

The line through p and p2 would then contain another point of P , say p4, since

p lies on no ordinary line; then p1p4 or p3p4 would meet the forbidden segment

pq (see the figure where two possibilities for p4 are shown).
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The Dirac–Motzkin conjecture. Having determined the existence of an

ordinary line (or point, in the dual problem), attention was turned to the problem

of establishing the number of ordinary lines (or points). For P an allowable set

of points— one not all of whose elements are collinear— let m(P ) denote the

number of ordinary lines determined by P . Define

m(n) = min
|P |=n

m(P ),

where P ranges over all allowable sets of points of cardinality |P | = n.

De Bruijn and Erdős [1948] proved that m(n) ≥ 3, and this was proved again

by Dirac [1951], who conjectured that there were at least bn/2c ordinary lines. In

a different context, Melchior [1941] proved again the m(n) ≥ 3 bound. Motzkin

[1951] improved this to m(n) >
√

2n − 2. Kelly and Moser [1958] improved the

lower bound to 3n/7. Kelly and Rottenberg [1972] proved the same result for

pseudoline arrangements. In 1980, Hansen gave a lengthy “proof” of Dirac’s

bn/2c conjecture, but it was found to be incorrect by Csima and Sawyer [1993],

who nonetheless proved that there exist at least 6n/13 ordinary lines.

Creating point configurations with few ordinary lines is hard. When n is odd,

we know of configurations where the conjecture is tight only when n = 7 and

n = 13. The former is shown by the Kelly–Moser configuration [1958]:

and the latter by the Crowe–McKee configuration [1968]. The Böröczky config-

urations [Crowe and McKee 1968] are valid for all even n; they are most easily

visualized dually— here is the case n = 12, with dots marking ordinary vertices:
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Solutions to the generalized problem. We now outline the techniques used

in the progress towards settling the conjecture.

pencil: a collection of lines all of which intersect at a single point.

near-pencil: a collection of lines all but one of which intersect at a single point.

According to the moment’s convenience, we assume given either some arrange-

ment L of lines not forming a pencil or near-pencil, or a configuration of points

not all collinear. We seek to prove a lower bound for the number of ordinary

points in the first case, and ordinary lines in the second.

Melchior’s proof of the existence of 3 ordinary points. The lines of L partition

the real projective plane into polygonal regions. Let V,E and F denote the

number of vertices, edges and faces in the partition. By Euler’s formula,

V − E + F = 1.

Let fi denote the number of faces with exactly i sides and vi the number of

vertices incident with exactly i lines. Since the lines are not all concurrent,

every face has at least three sides, so f2 = 0. Then,

V =
∑

i≥2

vi, F =
∑

i≥3

fi, 2E =
∑

i≥3

ifi = 2
∑

i≥2

ivi.

This implies that

3 = 3V − E + 3F − 2E = 3
∑

i≥2

vi −
∑

i≥2

ivi + 3
∑

i≥3

fi −
∑

i≥3

ifi

=
∑

i≥2

(3 − i)vi +
∑

i≥3

(3 − i)fi,

and hence that

v2 = 3 +
∑

i≥4

(i − 3)vi +
∑

i≥4

(i − 3)fi ≥ 3 +
∑

i≥4

(i − 3)vi.

Thus, any finite set of nonconcurrent lines has at least 3 ordinary points.

Motzkin’s proof of the existence of O(
√

n) ordinary lines. Consider a point

p ∈ P not lying on any ordinary line. (If there is no such point, there are at

least n/2 ordinary lines and we are done.) Consider the set of connecting lines

not passing through p. These partition the plane into regions, and p lies in one

of these, which is called its cell C. If p has at least 3 lines on the boundary of

its cell, then all the lines in the boundary of the region containing p must be

ordinary.

It is easy to see that no point of P can lie on the edges of the cell C. Suppose

one of the lines l on the boundary of the cell is not ordinary, that is, l has 3

points p1, p2, p3 labeled so that p1, x separate p2, p3, where x is a point on l not

in P on the boundary of C (see figure on the next page). The line pp1 is not

ordinary by hypothesis, and therefore contains a point q of P . But then either
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p1p2p3

x

q

p

l

qp2 or qp3 cuts the cell C, contradicting the fact that C is the polygonal region

containing p.

Thus, the ordinary lines partition the plane into polygonal regions, and all

the points which do not lie an any ordinary line lie in one of these regions. It is

easy to see that no region can have more than one point.

Now, m ordinary lines determine at most
(
m
2

)
+ 1 regions, and can have at

most 2m points of P on them. Since every point is on an ordinary line or in a

cell, we have
(
m
2

)
+ 1 + 2m ≥ n, implying that m ≥

√
2n − 2.

Kelly and Moser’s proof of the existence of 3n/7 ordinary lines. Let P be the set

of points and S the set of connecting lines. We denote a generic point by p and a

generic line by s. The set of lines of S which do not go through p subdivide the

plane into polygonal regions. p is contained in one of these polygonal regions,

which is called its residence.

Neighbor of p: a line of S containing the edges of the residence of p.

Order of p: the number of ordinary lines passing through p.

Rank of p: the number of neighbors of p which are ordinary lines.

Index of p: the sum of its order and rank.

Theorem 1. If a point q has precisely one neighbor , then S is a near-pencil .

This is because the neighboring line is the only line which does not pass through

q, and all the other lines pass through q:

pq

Theorem 2. If a point p has precisely two neighbors, then S is a near-pencil .

The lines of S that do not pass through p form a pencil, or else p would have at

least three neighbors. Let q be the vertex of the pencil. Let si and sj be two
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lines through q and pi and pj be points on si and sj respectively, different from

q. The connecting line through pi and pj does not pass through q and therefore

passes through p. Thus, only one line of S passes through p, and all the rest

pass through q, as in the previous figure.

As a consequence of the previous two theorems, we have:

Theorem 3. If S is not a near-pencil , each point of P has at least three neigh-

bors.

Theorem 4. If the order of p is zero, every neighbor of p is an ordinary line.

This was proved in [Motzkin 1951]; we gave the proof on page 483.

Theorem 5. Any point of P not of order two has index at least three.

If the order is zero and S is not a near-pencil, the rank is at least three. If the

order is at least three, there is nothing more to prove. If the order is one, the

rank is at least two and the correct proof of this was given by Dirac in his review

of Kelly and Moser’s article [Dirac 1959].

Theorem 6. If a line s of S is a neighbor of three points p1, p2, p3, then the

points of P which lie on s are on the connecting lines determined by p1, p2, p3.

Three points that have a common neighbor cannot be collinear: if p1, p2 sepa-

rate x, p3, where x is the intersection of s with p1p2, then s cannot lie on the

boundary of p3’s cell. Let the intersections of p1p2, p2p3, p3p1 with s be x3, x1,

x2 respectively. If p is a point of P on s such that xixj separate xkp, then ppi

and ppj separate s from pk. Here, i, j, k is some permutation of 1, 2, 3.

p1

p2

p3

x1x2
x3

This implies the following.

Theorem 7. A line l of S is a neighbor of at most four points.

Suppose l was the neighbor of five points p1, . . . , p5. Looking at p1, p2, p3, we

see that at least 2 of x1, x2, x3 must be elements of P . Assume that x2, x3 are

elements of P . However, neither x2 nor x3 can be on the lines p1p4 or p1p5. This

means that one of the points of P on l is not on the connecting lines of the set

p1, p4, p5, implying that l is not a neighbor of one of the three points.

Theorem 8. If Ii is the index of the point pi, then

m ≥ 1

6

n∑

i=1

Ii
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Since each ordinary line can be counted at most six times — four times as a

neighbor and twice as being incident with each of its points—the sum of the

index over all the points is greater than six times the number of ordinary lines.

Theorem 9. m ≥ 3n/7.

Let k be the number of points of order 2. Then

m ≥ 3(n − k) + 2k

6
=

3n − k

6
,

which leads to 6m ≥ 3n− k ≥ 3n−m since m ≥ k (trivially). Hence m ≥ 3n/7.

Proof by Csima and Sawyer. Csima and Sawyer improved upon Kelly and Moser

by showing that except for pencils and the Kelly–Moser configuration the number

s of ordinary points in a configuration of n lines is at least 6
13n, with eqaulity

occuring for the McKee configuration. They generalize the Kelly–Moser proof

in the following way. In the Kelly–Moser proof, the sum of the indices of each

point was compared to the six times the number of ordinary lines to get the

desired bound. In the Csima–Sawyer result, the index is a weighted sum of the

order and the rank. The following is a sketch of their proof for an arrangement

of lines, and works for arrangements of pseudolines as well.

Attached: An ordinary point which not on a line but associated to it, by

proximity. For instance, in the proof of Kelly and Moser, the ordinary lines

on the boundary of the cell of a point are attached to it.

Type of a line l: The pair T (l) = (µ, ν), if there are exactly µ ordinary points

on l and ν ordinary points attached to l.

α-weight of a line l of type (µ, ν): : the number wα(l) = αµ + ν.

Theorem 10. Suppose Γ is a finite configuration of lines in the real projective

plane having two lines of type (2, 0) that intersect in an ordinary point . Then Γ

is the Kelly–Moser configuration.

Theorem 11. Apart from pencils, if T (l) 6= (2, 0), then w1(l) ≥ 3.

This is a restatement of a theorem of Kelly and Moser, which asserts that the

index of a point which is not of order two is at least three.

Theorem 12. If l1 and l2 have an ordinary intersection in any configuration

other than pencils, then w1(l1) + w1(l2) ≥ 5.

Theorem 13. Except for pencils and the Kelly–Moser configuration, s ≥ 6
13n.

Partition the ordinary points into the sets

σ = ordinary points that lie on a line of type (2, 0),

τ = ordinary points that do not lie on a line of type (2, 0).
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and the lines into sets of bad, good and fair lines:

B = lines l of type (2, 0),

G = lines l that contain a point in σ but l /∈ B,

F = lines l that do not contain a point in σ.

The set G is further partitioned into sets

Gj = lines l in G which contain exactly j points of σ

Consider two lines l and m. If their intersection is in σ, we can assume without

loss of generality that l ∈ B. Then m has a 1-weight of at least three, and lies in

G. Thus, each point in σ appears on exactly one line from B and one line from

G. If B = |B|, G = |G|, F = |F|, and Gj = |Gj |, we have

G =
∑

j

Gj

∑

j≥1

Gj = |σ| = 2B.

If l ∈ G1, then T (l) = (µ, ν) ≥ (1, 0), and w1(l) = µ + ν ≥ 3, and since α ≥ 1,

we have wα(l) = αµ + ν ≥ α + 2. If l ∈ G2, then wα(l) ≥ 2α + 1. If l ∈ Gj for

j ≥ 3, then wα(l) ≥ jα. If l ∈ B, then wα(l) = 2α, and if l ∈ F, then wα(l) ≥ 3.

Thus,
∑

l∈Γ

wα(l) =
∑

l∈B

wα(l) +
∑

j

∑

m∈Gj

+
∑

l∈F

wα(l)

≥ 2αB + (α + 2)G1 + (2α + 1)G2 +
∑

j≥3

jαGj + 3F

= 2αB + α(
∑

j≥1

jGj) + 2G1 + G2 + 3F

= (4α − 2)B + 3G1 + 3G2 +
∑

j≥3

jGj + 3F

≥ (4α − 2)B + 3G + 3F

Choosing α = 5
4 we get,

∑

l∈Γ

w5/4(l) ≥ 3B + 3G + 3F = 3n.

Consider a matrix with rows labeled by the lines l and columns labeled by

the ordinary points. If the ith line is incident with the j-th ordinary point, the

(i, j)-th entry of the matrix is 5
4 . If the j-th point is attached to the i-th line,

the (i, j)-th entry is 1. All other entries are zero.

An ordinary point P is attached to at most four lines. Therefore, the column

sum is at most 2(5
4 )+4 = 13

2 . The sum over all the rows is exactly
∑

l∈Γ w5/4(l) ≥
3n. Consequently,

3n ≤
∑

l∈Γ

w5/4(l) ≤ 13
2 s.
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3. Allowable Sequences

The notion of allowable sequences has proved very effective in determining

the combinatorial classification of configurations of the plane.

A configuration of n points is an ordered n-tuple of distinct points in the

plane. The points are labeled 1, 2, . . . , n. Given a configuration C and a directed

line l which is not orthogonal to any line determined by two points of C, the

orthogonal projection of C on l determines a permutation of 1, 2, . . . , n. As the

line l rotates in a counterclockwise direction about a fixed point, we obtain a

periodic sequence of permutations which is called the circular sequence of the

configuration.

Allowable sequences are circular sequences constrained by the following prop-

erties:

1. Succesive permutations differ only by having the order of two or more adjacent

numbers switched.

2. If a move results in the reversal of a pair ij then every other pair is reversed

subsequently before i and j switch again.

Allowable sequences and the Sylvester problem. The point configurations

encountered in the Sylvester problem must take into account highly degenerate

cases. Since many points may be collinear, the corresponding circular sequence

will have switches in which more than two adjacent numbers are reversed. The

problem of showing the existence of an ordinary line is equivalent to the problem

of determining whether a simple switch occurs.

History of the use of allowable sequences. Though the concept was intro-

duced by Goodman and Pollack [1980a] to study the Erdős-Szekeres conjecture,

it has been very useful in solving a range of problems which depend mainly on

the order types of the point configuration. In particular, it has been used to

show that

• every pseudoline arrangement of less than nine lines is stretchable [Goodman

and Pollack 1980b];

• the number of directions determined by 2n points is at least 2n [Ungar 1982];

• the number of k-sets among a set of n points is O(nk1/2) [Edelsbrunner and

Welzl 1985];

• the maximum number of at most k-sets is O(nk) [Welzl 1986];

• pseudoline arrangements are semispace equivalent if and only if they have

the same allowable sequence modulo local equivalence [Goodman and Pollack

1984].

Properties determined by allowable sequences.

• i1, i2, . . . , ik are collinear if and only if they switch simultaneously

• i is in the convex hull of i1, i2, . . . , ik if and only if in every permutation in

the sequence, i is preceded by one of i1, i2, . . . , ik.
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• i is an extreme point if and only if some permutation begins with i

• ij is parallel to kl if and only if they both switch simultaneously

• ijk turn counterclockwise if and only if ij precedes ik, written as ij ≺ ik.

• ij separates k from m if and only if when ij switches, k and m are on opposite

sides of the substring ij in the permutation.

Using allowable sequences, Edelsbrunner and Welzl [1985] were able to derive

improved upper bounds for the k−set problem viz. that the number of k−sets

is O(n
√

k). Welzl [1986] generalized this result to bound the number of at

most k−sets in a configuration of n points. Ungar [1982] was able to settle the

conjecture regarding the number of directions determined by a configuration of

points.

As an example of the power of allowable sequences, we give the following proof

by Ungar.

Ungar’s proof for the number of directions determined by 2n points.

We pay special attention to switches which straddle the midpoint of a permu-

tation. A switch in which some indices cross the midpoint is called a crossing

move. The ith crossing move causes an increasing string straddling the midpoint

to be reversed. If di denotes the distance from the midpoint to the nearest end of

the string, then, at the ith crossing move, exactly 2di indices cross the midpoint.

Since every index must cross the midpoint, if there are t crossing moves in all,

then

2d1 + 2d2 + · · · + 2dt ≥ 2n

since some indices can cross more than once.

Between two crossing moves, there must be at least di + di+1 − 1 noncrossing

moves, since we must first tear down a decreasing string of length di and build

an increasing string of length di+1, and a decreasing string can be shortened by

at most one in a switch (an increasing string can be increased by at most one in

a switch).

Thus, the total number of switches between the first crossing move and when

this same crossing move occurs in reverse corresponds to a half period and has∑
(di + di+1 − 1 + 1) =

∑
(2di) ≥ 2n.

This is a tight lower bound, since the regular 2n-gon determines exactly 2n

directions, as in the Böröczky configuration of page 482.

When the number of points is odd, say 2n + 1, the number of directions can

be shown to be at least 2n, since all but one point must cross the position n + 1

in the permutation.

4. Colored Extensions of Sylvester’s Problem

Let {Pi} be a collection of sets of points, and let all points in the same set

be assigned a color. A line is monochromatic if it passes through at least two

points of the same color and no points of any other color. The following problem
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is attributed to Graham and Newman: Given a finite set of points in the plane

colored either red or blue, and not all collinear, must there exist a monochromatic

line? Motzkin [1967] solved the problem in the dual, showing there must exist a

monochromatic point in an arrangement of colored lines. The proof is sketched

in Section 4 (page 490). Chakerian [1970] and Stein gave additional proofs.

monochromatic point: an intersection point in an arrangement of colored

lines where all the lines intersecting at that point have the same color.

Consider the following question: Does there exist for every k a set of points in

the plane so that if one colors the points by two colors in an arbitrary way, there

should always be at least one line which contains at least k points, all of whose

points have the same color? This is known to be true for k = 3, but nothing is

known for larger values of k.

Various generalizations of this problem to higher dimensions have been pro-

posed and solved [Chakerian 1970; Borwein 1982; Borwein and Edelstein 1983;

Tingley 1975; Baston and Bostock 1978].

Clearly, we cannot insist that the monochromatic line be ordinary without

additional restrictions. In the search for ordinary lines in the colored setting,

Fukuda [1996] raised the following question. Let R be a set of red points and

B be a set of blue points in the plane, not all on the same line. If R and B

are separated by a line and their sizes differ by at most one, then there exists

an ordinary bichromatic line, that is, a line with exactly one red point and one

blue point. This conjecture is shown not to be true for small n in [Finschi and

Fukuda 2003].

Pach and Pinchasi [2000] have shown that there exist bichromatic lines with

few points.

Motzkin’s solution of the existence of a bichromatic point.

Theorem 14. Let S and T be two sets of nonconcurrent lines in the real pro-

jective plane colored red and blue respectively . At least one of the intersection

points in S ∪ T is monochromatic.

Suppose S and T do not define any monochromatic vertex. Then, every inter-

section point w of two red lines has a blue line passing through it. These lines

can be ordered so that the blue line lies in between the red lines. Since not all

the blue lines are concurrent, there is some other blue line that does not pass

through this intersection point. The new blue line forms a triangle wxy with the

two red lines, as shown here (blue = gray):

x y

w

z

v
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Consider such a triangle that is minimal in the sense that it does not completely

contain another such triangle. This must exist because there only finitely many

triangles in the arrangement.

The intersection point v of the two blue lines must be monochromatic. If not,

there must exist a red line through v producing a triangle vzx of the original

type (two red lines and a blue line) which is contained in the minimal triangle,

contradicting the assumption that wxy is minimal.

5. Connecting Lines and Dirac’s Conjecture

Another interesting problem concerns the connecting lines of a set of P points.

Define an i−line to be a connecting line containing exactly i points of P and

let ti(P ) denote the number of i−lines determined by P . Also, let t(P ) =∑
i≥2 ti(P ). Let r(n) be the minimum over all configurations of n points of the

maximum number of connecting lines from a single point. i.e.

r(n) = min
P⊂Rn

max
p∈P

t(p)

Dirac [1951] asked whether one of the n points must always be incident with

at least bn
2 c of the connecting lines. He showed that this was the best possible

by placing all the points evenly on two intersecting lines. He also proved a trivial

lower bound of
√

n. In [Grünbaum 1972] a list of exceptions to this formulation

is enumerated.

Erdős relaxed the problem by asking whether it could be shown that r(n) ≥
cn. The more general question he raised was the following. Is it true that there

exists an absolute constant c independent of k and n such that if 0 ≤ k ≤ 2 and

ti(P ) = 0 for i > n − k then

ckn < t(P ) < 1 + kn

The upper bound is trivial, and the lower bound was shown by Beck [1983]

and Szemerédi and Trotter [1983], but with very small constants. Clarkson et

al. [1990] improved the constant significantly.

The question of whether t(P ) ≥ n was raised by Erdős [1943] and proved

by various people including Erdős and Hanani [Hanani 1951]. Kelly and Moser

[1958] were able to prove that

t(P ) ≥ kn − 1
2 (3k + 2)(k − 1)

if k is small compared to n and any connecting line contains at most n−k points.

6. A Solution for Sylvester’s Problem Using Allowable

Sequences

We now look at a simple application of allowable sequences to solve Sylvester’s

problem.
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Consider an allowable sequence of permutations of 1, . . . , n. In the first half-

period, each permutation is obtained from the previous one by the switch of a

substring that is monotonically increasing. We shall pay special attention to the

switches involving 1 or n. We claim that the first switch involving a substring to

the right of n or a substring to the left on 1 in the permutation is simple, thus

proving the theorem.

Assume that n makes a switch before 1 makes a switch. Similar arguments

hold for 1 if this not the case. This assumption implies that the first switch

involving n does not involve 1.

Every substring switch involving n has n at the end of the substring before

switch. After the switch, the right of n in the permutation consists of a concate-

nation of substrings, each of which is monotonically decreasing, since a switch

turns an increasing substring into a decreasing one. Note that either n is in-

volved in a simple switch, in which case there is nothing further to prove, or else

each switch involving n has length at least three.

If there have been no switches to the right of n, the length of the longest

monotonically increasing substring to the right of n is at most two, which can

happen only at the end of one substring and the beginning of another formed by

the switches involving n. Thus, the first switch involving elements to the right

of n in the permutation has a length of exactly two.

There must be at least one such switch, since:

(i) n must switch at least twice as there is no switch of length n, which corre-

sponds to the case when all the points are collinear, an excluded case.

(ii) We have assumed that n switches before 1, implying that 1 is not involved

in the first switch involving n, which in turn implies that the elements to the

right n are not always monotonically decreasing.

References

[Baston and Bostock 1978] V. J. Baston and F. A. Bostock, “A Gallai-type problem”,
J. Combinatorial Theory Ser. A 24:1 (1978), 122–125.

[Beck 1983] J. Beck, “On the lattice property of the plane and some problems of Dirac,
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A Long Noncrossing Path Among Disjoint

Segments in the Plane

JÁNOS PACH AND ROM PINCHASI

Abstract. Let L be a collection of n pairwise disjoint segments in general
position in the plane. We show that one can find a subcollection of Ω(n1/3)
segments that can be completed to a noncrossing simple path by adding
rectilinear edges between endpoints of pairs of segments. On the other
hand, there is a set L of n segments for which no subset of size (2n)1/2 or
more can be completed to such a path.

1. Introduction

Since the publication of the seminal paper of Erdős and Szekeres [1935], many

similar results have been discovered, establishing the existence of various regular

subconfigurations in large geometric arrangements. The classical tool for proving

such theorems is Ramsey theory [Graham et al. 1990]. However, the size of the

regular substructures guaranteed by Ramsey’s theorem are usually very small (at

most logarithmic) in terms of the size n of the underlying arrangement. In most

cases, the results are far from optimal. One can obtain better bounds (nε for

some ε > 0) by introducing some linear orders on the elements of the arrangement

and applying some Dilworth-type theorems [1950] for partially ordered sets [Pach

and Törőcsik 1994; Larman et al. 1994; Pach and Tardos 2000]. A simple one-

dimensional prototype of such a statement is the Erdős-Szekeres lemma: any

sequence of n real numbers has a monotone increasing or monotone decreasing

subsequence of length
⌈√

n
⌉

. In this note, we give a new application of this idea.

A collection L of segments in the plane is in general position if no two elements

of L are parallel, all of their endpoints are distinct, and no three endpoints are

collinear. A polygonal path P = p1p2 . . . pn is called simple if no pair of its

vertices coincide, i.e., pi 6= pj whenever i 6= j. It is called noncrossing if no

Research supported by NSF Grant CCR-00-98246. János Pach has also been supported by a
PSC-CUNY Research Award and by grants from NSA and the Hungarian Research Foundation
OTKA.
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Figure 1. An arrangement of segments showing that f(n) ≤ 2
√

2n.

two edges share an interior point. A polygonal path P is called alternating with

respect to L if every other edge of P belongs to L.

We consider the following old problem of unknown origin: what is the max-

imum length f(n) of an alternating path that can be found in any collection

of n pairwise disjoint segments in the plane in general position? This question

appears in a list of open problems in computational geometry collected and an-

notated by Urrutia [2002]. The easy construction described there can be slightly

improved to show that f(n) ≤ 2
√

2
√

n for n = 2k2. Consider a 2k-gon inscribed

in a circle C and replace each of its edges e with k pairwise disjoint chords of

C, almost parallel to e, that are farther away from the center of C than e is.

(See Figure 1.) It seems likely that the order of magnitude of this bound is not

far from optimal. For some similar problems, see [Hoffmann and Tóth 2003;

Mirzaian 1992; Pach and Rivera-Campo 1998; Rappaport et al. 1990].

First we consider the special case when all segments cross the same line.

Theorem 1. Let L be a collection of n pairwise disjoint segments in general

position in the plane, all of whose members cross a given line. Then one can

select Ω(n1/2) segments from L that can be completed to a noncrossing simple

alternating path.

Theorem 2. The maximum length f(n) of an alternating path that can be

found in any collection of n pairwise disjoint segments in the plane satisfies

f(n) = Ω(n1/3).

Proof of Theorem 2 assuming Theorem 1. By the Dilworth theorem (for

example), any collection L of n pairwise disjoint segments has a subcollection

L1 consisting of least n1/3 segments whose projections to the x-axis are pairwise

disjoint, or a subcollection L2 consisting of at least n2/3 segments, all of which

can be crossed by a line parallel to the y-axis. In the first case, the elements of

L1 can be connected to form an alternating path. In the second case, we can

apply Theorem 1. ˜
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2. Proof of Theorem 1

Assume without loss of generality that all segments cross the y-axis, no two

of them are parallel, and all 2n coordinates of their endpoints are distinct. The

above-below relation between the crossings of the segments with the y-axis in-

duces a natural linear order on the elements of L. We apply the Erdős-Szekeres

lemma to find a subsequence of L consisting of
⌈√

n
⌉

segments with increasing

or decreasing slopes with respect to this order. Since we can always flip the

plane about the y-axis, we may assume that the slopes of the elements of this

subsequence are monotone increasing. In what follows, for convenience we as-

sume that
√

n and all other numbers that appear in the argument (except the

coordinates of the endpoints) are integers satisfying the necessary divisibility

conditions so that we do not have to use “floor” and “ceiling” operations. This

will not effect the asymptotic results obtained in this paper.

To be more precise, we find a sequence of at least
√

n segments s1, . . . , sm

(m =
√

n) of L such that if i < j, then si is above sj and the slope of si is

smaller than that of sj (see Figure 2).

Partition s1, . . . , sm into k = m/5 groups, each consisting of 5 consecutive

segments. That is, let Gi = {s5(i−1)+1, . . . , s5(i−1)+5} for every 1 ≤ i ≤ k. For

each Gi, apply again the Erdős-Szekeres lemma and find a subsequence of 3

segments such that the x-coordinates of their right endpoints form an increasing

or a decreasing sequence. By flipping the plane about the x-axis, if necessary, we

can also assume that for at least half of the Gis, these sequences are decreasing.

From now on, we disregard all other segments. Summarizing: we now have k/2

groups L1, . . . , Lk/2, each consisting of 3 elements of L. For each 1 ≤ i ≤ k/2, let

Li = {`i
1, `

i
2, `

i
3}, where `a

b is above `a′

b′ and its slope is smaller, whenever a < a′,

or if a = a′ and b < b′. Moreover, for a fixed a and any b < b′, the x-coordinate

of the right endpoint of `a
b is larger than that of `a

b′ . Let S := L1 ∪ · · · ∪ Lk/2.

Denote by pa
b and qa

b the left endpoint and the right endpoint of `a
b , respec-

tively. For any two points r, s, let [r, s] stand for the segment connecting r and s.

Define a set of auxiliary segments as follows. For 1 ≤ a ≤ k/2 and b = 1, 2, let

za
b = [qa

b , qa
b+1]. We say that za

b is bad, if there is a segment in S that meets the

interior of za
b . For any segment `t

j ∈ S meeting the interior of za
b , we have t > a,

because all elements of ∪t<aLt lie strictly above za
b , otherwise they would cross

`a
b . Define the witness index of a bad segment za

b as the smallest index t > a

with the property that there exists an `t
j meeting the interior of za

b .

Lemma 2.1. If the witness index of a bad segment za
b is t, then `t

1 meets za
b .

Moreover , qt
1 must belong to the interior of the region enclosed by the y-axis, `a

b ,

`a
b+1, and za

b .

Proof. We know that t > a and that for some j the segment `t
j crosses za

b .

Assume that j > 1. Let W denote the region bounded by the y-axis, `a
b+1, za

b ,

and `t
j . The segment `t

1 lies above `t
j , and the x-coordinate of its right endpoint
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p1

1

p1

3

p1
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l1
1

l1
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l1
3

q1

3

q1

2

q1

1

Figure 2. The segments li1, l
i
2, l

i
3.

qt
1 is larger than the x-coordinate of qt

j . Clearly, the intersection point r of `t
j and

za
b is the rightmost corner of the boundary of W . There is a point on `t

1 whose

x-coordinate is the same as that of r. This point must lie above r and outside

the region W . Since `t
1 crosses the y-axis above `t

j and below `a
b+1, at a boundary

point of R, and it has a point outside W , it must have another crossing with the

boundary of W . Using the fact that the elements of S are pairwise disjoint, this

second crossing must belong to za
b .

As for the second part of the lemma, let R denote the region bounded by the

y-axis, `a
b , `a

b+1, and za
b . We have seen that `t

1 meets the boundary of R (at a

point of za
b ). Since `t

1 is disjoint from both `a
b and `a

b+1, and it intersects the

y-axis below `a
b+1, it follows that `t

1 cannot cross the boundary of R a second

time. Therefore, qt
1 must belong to the interior of R. ˜

Lemma 2.2. No two different bad segments can have the same witness index .

Proof. Assume to the contrary that t is the witness index of two bad segments,

za
b and za′

b′ . Suppose without loss of generality that `a
b lies above `a′

b′ . We know

that both of them lie above `t
1. As in the proof of Lemma 2.1, let R denote the

region bounded by the y-axis, `a
b , `a

b+1, and za
b . Similarly, let R′ denote the region

bounded by the y-axis, `a′

b′ , `a′

b′+1, and za′

b′ . R and R′ do not overlap. Indeed,

since the elements of S are pairwise disjoint, R and R′ could overlap only if `a′

b′

crossed za
b . However, this would contradict the minimality of t.
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On the other hand, by Lemma 2.1, `t
1 must intersect both za

b and za′

b′ , and

its right endpoint qt
1 must belong to the interiors of both R and R′. We thus

obtained the desired contradiction. ˜

Now we are in a position to prove Theorem 1.

By Lemma 2.2, the number of bad segments is at most k/2. We say that

an index i (1 ≤ i ≤ k/2) is good if at least one of the segments zi
1, z

i
2 is not

bad. Obviously, at least k/2 − 1
2 (k/2) = k/4 indices between 1 and k/2 are

good. Assume without loss of generality that the first k/4 indices are good. To

complete the proof it is sufficient to show how to draw a noncrossing simple

alternating path P that uses the segments `i
2, `

i
3 (and perhaps even `i

1) for 1 ≤

i ≤ k/4 = Ω(
√

n).

Let the first points of P be q1
1 , p1

1, q
1
2 , p1

2, q
1
3 , p1

3, in this order. That is, so far

we have built a “zigzag” path that uses the segments `11, `
1
2, `

1
3. Since 2 is a good

index, there exists a segment z2
j (j = 1 or 2) which is not bad. Let us extend

P by adding the vertices p2
j , q

2
j , q2

j+1, and hence adding the edges `2j (from left

to right) and z2
j . Next we can add the point p2

j+1 and, if j = 1, also the points

q2
3 , p2

3, zigzagging just like before. Continuing in the same manner, we build a

path P using at least two edges from each group Li (i ≤ k/4). It is easy to

check that P is a noncrossing path, because (1) its edges belonging to L ⊂ S

are pairwise disjoint; (2) its edges to the left of the y-axis do not cross any other

edge, by the assumption that the slopes of the elements of S form an increasing

sequence; (3) its edges to the right of the y-axis are not bad, therefore they do

not cross any other edge of P . This completes the proof of Theorem 1.
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On a Generalization of Schönhardt’s Polyhedron

JÖRG RAMBAU

Abstract. We show that the nonconvex twisted prism over an n-gon can-

not be triangulated without new vertices. For this, it does not matter what

the coordinates of the n-gon are as long as the top and the bottom n-gon

are congruent and the twist is not too large. This generalizes Schönhardt’s

polyhedron, which is the nonconvex twisted prism over a triangle.

1. The Background

Lennes [1911] was the first to present a simple three-dimensional nonconvex

polyhedron whose interior cannot be triangulated without new vertices. The

more famous example, however, was given by Schönhardt [1927]: he observed

that in the nonconvex twisted triangular prism (subsequently called “Schön-

hardt’s polyhedron”) every diagonal that is not a boundary edge lies completely

in the exterior. This implies that there can be no triangulation of it without new

vertices because there is simply no interior tetrahedron: all possible tetrahedra

spanned by four of its six vertices would introduce new edges. Moreover, he

proved that every simple polyhedron with the same properties must have at

least six vertices. Later, further such nonconvex, nontriangulable polyhedra with

an arbitrary number of points have been presented. Among them, Bagemihl’s

polyhedron [1948] also has the feature that every nonfacial diagonal is in the

exterior.

The nonconvex twisted prism over an arbitrary n-gon would arguably be the

most natural generalization of Schönhardt’s polyhedron. Surprisingly enough,

there has been no proof so far that it cannot be triangulated without new ver-

tices. One of the reasons seems to be that— in contrast to Schönhardt’s and

Bagemihl’s polyhedra— not every nonfacial diagonal lies completely outside the

polygonal prism. Yet, the nonconvex twisted polygonal prism indeed cannot be
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triangulated without new vertices, as we will show below. For this, it does not

matter what the coordinates of the n-gon are as long as the top and the bottom

n-gon are congruent and the twist is just a perturbation by rotation, i.e., it is

not too large.

There is also a convex variant of Schönhardt’s polyhedron, the untwisted tri-

angular prism. Consider the two possible cyclically symmetric triangulation of its

boundary quadrilaterals. They appear if we untwist the Schönhardt polyhedron

and keep the diagonals on the boundary quadrilaterals. Neither such boundary

triangulation can be extended to the interior without new vertices. The reason

is analogous to the Schönhardt case: every possible tetrahedron would induce

at least one diagonal that intersects one of the prescribed diagonals. We will

show below the corresponding generalization to the polygonal prism: there is no

a triangulation of the general (untwisted) polygonal prism extending a cyclically

symmetric triangulation of the boundary quadrilaterals.

Besides the fact that the (frequently asked) question about the existence of

triangulations of the nonconvex twisted polygonal prism deserves a conclusive

answer at last, we mention one other motivation for studying problems like this.

Deciding the existence of a triangulation without new vertices for a given poly-

hedron is NP-hard [Ruppert and Seidel 1992]. In studying the twisted polygonal

prism we surprisingly hit the borderline between existence and nonexistence of

triangulations without new vertices in a single type of point configurations, and

this could make the twisted or untwisted polygonal prism a handy gadget for

NP-hardness proofs. A similar pattern appears, e.g., in a proof that finding

minimal triangulations of polytopes is NP-hard [Below et al. 2000].

2. The Objects

Consider a two-dimensional point configuration Cn := {v0, v1, . . . , vn−1} in

strictly convex position labeled counterclockwise. Fix a point o in the interior

of Cn in R2. For α ∈ [0, 2π), let Cn(α) be a copy of Cn rotated by α around

the point o (rotation by an angle in (0, 2π) means counterclockwise rotation).

We call the corresponding points w0, w1, . . . , wn−1. The Cayley embedding of Cn

and Cn(α) is defined by

Pn(α) := conv
(

(Cn × {0}) ∪ (Cn(α) × {1})
)

.

A triangulation of a three-dimensional polyhedron P is a dissection into finitely

many tetrahedra such that any two intersect in a common face (possibly empty).

For a triangulation of P and a simplex F of arbitrary dimension we say T uses

F if F is a face of some tetrahedron in T . Faces are denoted by their sets of

vertices. A triangulation without new vertices or a v-triangulation of P is a

triangulation all of whose vertices are vertices of P .
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Pn := Pn(0) is known as a prism over Cn. The cyclic set of diagonals

Dc :=
{

{vi, wi+1} : i = 0, 1, . . . , n−1
}

induces a triangulation of the quadrilateral facets of Pn(0) into the triangles

{vi, wi, wi+1} and {vi, wi+1, vi+1}, i = 0, 1, . . . , n−1 (indices taken modulo n).

The continuity of the determinant function ensures that there is an α > 0 such

that no full-dimensional tetrahedron in Pn(0) has a reversed orientation (sign of

determinant of the points in homogeneous coordinates) in Pn(α). In that case,

the vertical edges {vi, wi} and the reverse cyclic edges {wi, vi+1} are among the

boundary edges of Pn(α), for all i = 0, 1, . . . , n−1. For such an α, we call Pn(α)

a convex twisted prism over Cn. (Pn(α) is a convex twisted prism over Cn if

and only if the map sending vi, wi ∈ Pn(α) to the corresponding vi, wi ∈ Pn(0)

induces a weak map of oriented matroids [Björner et al. 1993].)

For a convex twisted prism over Cn, the cyclic set of tetrahedra is the set of

tetrahedra

Tc :=
{

{vi, vi+1, wi, wi+1} : i = 0, 1, . . . , n−1
}

.

Any pair of consecutive such tetrahedra intersects in a common edge.

3. The Results

Theorem 3.1. For all n ≥ 3, no prism Pn(0) over an n-gon admits a triangu-

lation without new vertices that uses the cyclic set Dc of diagonals.

Theorem 3.2. For all n ≥ 3 and all sufficiently small α > 0, no convex twisted

prism Pn(α) admits a triangulation that contains the cyclic set Tc of tetrahedra.

We define the nonconvex twisted prism P̌n(α) to be the topological closure of

Pn(α)\Tc. Since the twist is not too large, this is a nonconvex simple polyhedron.

Here is now the generalization of Schönhard’s polyhedron:

Corollary 3.3. For all n ≥ 3 and all sufficiently small α > 0, the nonconvex

twisted prism P̌n(α) cannot be triangulated without new vertices.

Remark 3.4. When Cn is a regular triangle and α ∈ (0, 2π/3), the twisted

prism P3(α) coincides with Schönhardt’s twisted prism.

4. The Tools

For a more detailed background about the following consult [Huber et al.

2000] and the references therein.

Minkowski sums and mixed subdivisions. Let P and Q be point configu-

rations in R2. Then the Minkowski sum of P and Q scaled by λ ∈ (0, 1) is the

point configuration

(1−λ)P + λQ := {(1−λ)p + λq : p ∈ P, q ∈ Q} ⊂ R2.
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We make the following simplifying assumption: we consider only generic λ ∈

(0, 1), for which (1−λ)p + λq = (1−λ)p′ + λq′ implies that p = p′ and q = q′.

A mixed cell in (1−λ)P + λQ is the Minkowski sum (1−λ)σ + λτ of subsets

σ ⊆ P and τ ⊆ Q. A mixed subdivision of (1−λ)P + λQ is a dissection of

(1−λ)P + λQ into finitely many mixed cells such that any two intersect in

common faces (possibly empty).

A two-dimensional mixed cell is fine if it is the Minkowski sum of either two

edges or of a point and a triangle. In the first case, the cell is a parallelogram,

in the second case the cell is a triangle. A mixed subdivision is fine if it contains

only fine mixed cells.

Cayley embeddings. Let P and Q as above. Then the Cayley embedding of

P and Q is the point configuration

C(P,Q) := {(p, 0) : p ∈ P} ∪ {(q, 1) : q ∈ Q} ⊂ R3.

For example, Pn(α) from above is a Cayley embedding for all α.

The Cayley trick. The Cayley trick states that for all P and Q as above,

triangulations of C(P,Q) are in one-to-one correspondence with fine mixed sub-

divisions of (1−λ)P +λQ for all λ ∈ (0, 1). We will only need the fact that every

triangulation of C(P,Q) induces a fine mixed subdivision of (1−λ)P +λQ for all

λ ∈ (0, 1).

The correspondence is given by intersecting C(P,Q) with a horizontal hyper-

plane Hλ at height λ. The intersection of any tetrahedron in a triangulation

of C(P,Q) with Hλ is a fine mixed cell in
(

(1−λ)P + λQ
)

× {λ} ⊂ R3. Since

intersection with affine hyperplanes preserves face relations, the set of all fine

mixed cells so obtained yields a fine mixed subdivision of (1−λ)P + λQ.

Applied to Pn(α) this means: each triangulation of Pn(α) induces a fine mixed

subdivision of Sn(α, λ) := (1−λ)Cn + λCn(α) for every λ ∈ (0, 1). In summary,

we have the following correspondences between objects in the Cayley embedding

and the Minkowski sum:

Pn(α) Sn(α, λ)

tetrahedra fine mixed polygons
tetrahedra with a triangle on the top or the bottom fine mixed triangles
tetrahedra with edges on both top and bottom fine mixed parallelograms
nonhorizontal triangles fine mixed edges
nonhorizontal edges fine mixed points
orientation counterclockwise orientation

Since the Minkowski sum lives in one dimension less than the Cayley embedding,

we rather work with Sn(α, λ).
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5. The Proofs

Let α ≥ 0 be small enough such that Pn(α) is a prism or a twisted prism.

Fix a (small) ε ∈ (0, 1) such that |ε(vj − vi)| < |(1−ε)(wj − wi)| for all i, j =

0, 1, . . . , n−1. (All following considerations are also true for arbitrary ε ∈ (0, 1);

the choice of a small ε makes some arguments more transparent) In particular,

the scaled Minkowski sum Sn(α) := Sn(α, 1−ε) = εPn + (1−ε)Pn(α) does not

contain multiple points. (We use ε here instead of λ as in the Cayley trick of the

previous page to generate the impression of a small scaling factor.) For brevity,

we will use the notation (i, j) for the point εvi + (1−ε)wj , i, j = 0, 1, . . . , n−1.

Some notions and notation. In all what follows, we use the term “edges” not

only for boundary edges but also for interior edges, sometimes called “diagonals”.

Consider mixed edges. All mixed edges are, by definition, Minkowski sums of

either a point and an edge or of an edge and a point. In our notation, they are

of the form (e, i) := {(k, i), (l, i)} or of the form (j, e) := {(j, k), (j, l)} for some

edge (or diagonal, see above) e = {k, l} in Cn or Cn(α), resp.

The following notions are motivated by regarding ε as being small. We high-

light the most important one as a definition.

Definition 5.1 (Short and Long Edges). Call a mixed edge short if it is of

the form (e, i), call it long otherwise. The short mixed edge ei := {(i, i), (i+1, i)}

is called special.

The special edges are interesting in Sn because— via the Cayley trick — they

correspond to triangles that are incompatible with the cyclic set of diagonals

Dc in Pn. Moreover, they are interesting in Sn(α) for α > 0 because the cyclic

set of tetrahedra Tc covers the corresponding triangles in Pn(α) so that in any

triangulation containing Tc no other cell can use them.

For i = 0, 1, . . . , n−1, there are the convex sub-n-gons (Cn, i) := εCn +

(1−ε)wi and (i, Cn(α)) := εvi + (1−ε)Cn(α) in Sn. By construction, all (Cn, i)

are scaled translates of Cn, and all (i, Cn(α)) are scaled translates of Cn(α),

which itself is an angle-preserving image of Cn under a (small) rotation that

we call r(α). The long translation that shifts (Cn, i) to (Cn, j) along the long

edge {(i, i), (i, j)} is denoted by Tij ; the short translation that moves (i, Cn(α))

to (j, Cn(α)) along the short edge {(i, i), (j, i)} is denoted by tij . Note that we

regard Cn, (Cn, i), and (j, Cn(α)) as point configurations in convex position, not

as two-dimensional polytopes. The corresponding polytopes will be denoted by

conv(Cn), conv(Cn, i), and conv(j, Cn(α)), resp.

Call the n-gons (Cn, i) small and the n-gons (j, Cn) large. Similarly, we call

a mixed triangle with only short edges small ; we call a mixed triangle with only

long edges large. By definition of the Minkowski sum, each mixed triangle is

either small or large. We can regard short mixed edges as edges that have both

end points in the same small sub-n-gon. The special short mixed edge ei lies in

the boundary of Sn(α). Figure 1 illustrates the setup.
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Cn × {0}

Cn(α) × {1}

εCn + (1−ε)Cn(α)

i

i

(Cn, i)

e
ei

(i, i)

Figure 1. Cutting the Cayley embedding of two n-gons with a horizontal hyper-

plane close to the top yields their Minkowski sum scaled as in Sn(α); the cyclic

set of diagonals and the special edges are drawn thicker.

Road-map of the proofs. Note that any triangulation of Pn that uses the

cyclic set of diagonals induces a mixed subdivision M of Sn in which no special

edge ei is used. Consider any nonspecial short edge e in M in some small n-gon

(Cn, i). Then the “region” between e and ei must be covered by M somehow.

We want to show that this cannot be accomplished unless at least one special

edge is used. We even show that at least one special edge must be used as an

edge of some mixed triangle (Theorem 5.10).
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How can the region between e and ei be subdivided? There must be a cell

adjacent to e on the same side as ei. If we use a mixed triangle, i.e., a small

triangle, then we harvest new short edges in the same small n-gon. One of these

new short edges is “closer” to ei in a sense to be defined precisely below, and we

can proceed. If we use a mixed parallelogram then there is another short edge e′

opposite to e in some other small n-gon (Cn, j) at a “partner vertex” j of e. But

the “regions” containing potential partner vertices for e′ towards ej will turn out

to be strictly smaller than for e.

But what happens if we use a mixture of mixed triangles and parallelograms?

It fact, both ideas from above can be merged by using a certain lexicographic

partial order on short edges, in which the short edges that are hit by “chasing

the mixed subdivision M towards special short edges” are strictly decreasing.

This shows that not all special short edges can be avoided by M .

We can make this idea precise for both the prism and the twisted prism. In

the latter case, it is no surprise that even all special edges must be used, since

they are boundary edges of Sn(α). However, using the cyclic set of tetrahedra

means covering all special short edges by parallelograms, and we will show that

at least one of them must be in a small triangle.

In the sequel, we will formalize these arguments in order to obtain rigorous

proofs of Theorems 3.1 and 3.2.

Ordering short mixed edges. For the following, let e be a short edge in

(Cn, i). We want to give an orientation to the halfplanes separated by the line

l(e) spanned by e. If e = ei, then we make use of the fact that ei is in the

boundary of Sn, thus l(e) is a supporting hyperplane for Sn. Therefore, we can

define the positive side l(e)+ of e to be the halfplane not containing Sn. If e 6= ei,

we define the positive side l(e)+ of e to be the halfplane containing ei. This idea

of investigating the subdivision between e and ei can now be formulated as

looking at cells on the positive side of l(e).

The following is a simple observation.

Lemma 5.2. Let σ be a mixed parallelogram in Sn(α) with short edges e and e′.

Then:

(i) If σ is on the positive sides or on the negative sides of both of its short edges

then l(e) and l(e′) have opposite orientations.

(ii) If σ is on the positive side of e and on the negative side of e′, or vice versa,

then l(e) and l(e′) have parallel orientations.

One of the cases mentioned in Lemma 5.2 can actually never occur. This will

allow us to keep on finding new cells on the positive sides of short edges.

Lemma 5.3 (Orientation Lemma). There is no fine mixed 2-cell σ in Sn on

the positive side of all of its short edges.
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(4, 3) (3, 3)

(4, 4)

(1, 4)
(2, 2)

(3, 2)

(1, 2) (2, 1)

α

Figure 2. Parallelograms which are on the positive sides of both of their short

edges exist when α is too large; in the picture α = π/3. However, it can be seen

that the bad parallelogram flips its orientation when P4(α) is untwisted.

Remark 5.4. The correctness of the Orientation Lemma heavily depends on

the congruence of the top/bottom polygons of Pn(α) and on the restriction of

α. That the lemma is false in even slightly more general situations can be seen

in the example in Figure 2.

Proof. Assume, for the sake of contradiction, that σ is a mixed 2-cell in Sn

lying on the positive side of all of its short edges. Since σ contains the short

edge e, it must be either a small triangle or a parallelogram.

Consider the case where σ is a small triangle on the positive side of all of

its edges. The special edge ei cannot be an edge of σ, since σ is contained in

conv Sn, and l(ei)
+ was defined to be the side of l(ei) not containing Sn. By

definition of the orientations of short edges other than ei, we conclude that ei

must be contained in σ. Since (Cn, i) is convex, this can only be the case if ei is

an edge of σ: contradiction.

Therefore, σ must be a parallelogram lying on the positive sides of both of its

short edges e in (Cn, i) and e′ in (Cn, j) for some i, j ∈ {0, 1, . . . , n−1}. We first

consider this in the case of the prism, i.e., when α = 0. We will also include the

degenerate case, i.e., where σ is a line segment, into our considerations. Since

σ ⊂ l(e)+∩ l(e′)+, the orientations of e and e′ must be opposite (Lemma 5.2). In

terms of translations, Tij(l(e)
+) = l(e′)− and Tji(l(e

′)+ = l(e)−. By definition of

the orientation, ei is on the positive side of e, and hence (i, i) ∈ l(e)+. Similarly,
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(j, j) ∈ l(e′)+. This implies

(i, i) ∈ l(e)+,

(j, i) = Tji(j, j) ∈ Tji(l(e
′)+) = l(e)−,

(i, j) = Tij(i, i) ∈ Tij(l(e)
+) = l(e′)−,

(j, j) ∈ l(e′)+.

(5–1)

These are necessary conditions for a nondegenerate σ being on the positive side

of both of its short edges. While being on the positive side of short edges

does not make sense for degenerate σ, Conditions (5–1) have a meaning in the

degenerate case as well. For further reference, we call these necessary conditions

the orientation conditions.

Since α = 0, the points (i, i), (j, i), (i, j), and (j, j) lie on a straight line `.

Since ε is very small, the points appear on ` in the order (i, i), (j, i), (i, j), and

(j, j). This tells us that ` starts in l(e)+, enters l(e)−, and then returns into

l(e)+. This implies that ` = l(e). By the symmetric argument, also ` = l(e′).

Therefore, σ is a segment. Moreover, its short edges are actually e = {(i, i), (j, i)}

and e′ = {(i, j), (j, j)} because the points in (Cn, i) are in strictly convex position.

This shows that a nondegenerate σ cannot exist in the prism. Moreover, we

have learned the following useful fact: if the points (i, i), (j, i), (i, j), and (j, j)

satisfy the orientation conditions (5–1) for the short edges e and e′ of some

(possibly degenerate) parallelogram σ then σ = {(i, i), (j, i), (i, j), (j, j)}.

Since σ cannot exist in the prism, consider the case where α > 0 so that

Pn(α) is still a twisted prism. That means, no full-dimensional tetrahedron in

Pn switches orientation during the twisting towards Pn(α). That implies that

no full-dimensional parallelogram in Sn(0) changes its orientation with respect

to its short edges (by the Cayley trick correspondence, page 504; easy exercise

in linear algebra).

Now, untwist Pn(α), and hence σ. Then, σ must degenerate to a segment

in Pn. During the untwist, for all α > 0 the points (i, i), (j, i), (i, j), and

(j, j) must always satisfy the orientation conditions. Since the conditions de-

fine a closed space and untwisting changes all data continuously in α, they

must also hold in the degenerate position α = 0. Hence, σ must be of the

form {(i, i), (j, i), (i, j), (j, j)} for some i, j ∈ {0, 1, . . . , n−1}. In particular,

e = {(i, i), (j, i)}.

We finally show that during the twist, σ folds up in the “wrong” direction.

Consider the order of the short edges incident to (i, i) counterclockwise starting

at an edge of Sn. In this order ei is the first edge, by definition. Twisting Pn

again counterclockwise by α will turn the slope of the short edge e = {(i, i), (j, i)}

counterclockwise into the slope of the long edge {(i, i), (i, j)}. Therefore, the long

edge {(i, i), (i, j)} and the special short edge ei are on different sides of e. This

means, σ lies on the negative side of e: contradiction. ˜
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(i, i)
ei

ind1(e)

Cn(i)
e

+

Figure 3. Primary index ind1(e) of a short edge e.

The following quantity defines how close a short edge is to the corresponding

special short edge. See Figure 3 for an illustration.

Definition 5.5 (Primary Index). We define the primary index ind1(e) of

any short edge e in Sn(α) by

ind1(e) := vol
(

conv(Cn, i) ∩ l(e)+
)

.

We now turn our attention to measuring how many short partner edges a short

edge can find to build a parallelogram on its positive side. Consider the unique

line l(e, i) parallel to e through (i, i). Let l(e, i, α) be the line that is obtained

from l(e, i) by a rotation by −α around (i, i). Its orientation is obtained by

rotating the orientation of l(e) by −α as well. The resulting positive halfplane

defined by l(e, i, α) is called l(e, i, α)+.

Lemma 5.6 (Partner Lemma). Let σ be a mixed parallelogram with short

edges e and e′ so that σ lies on the positive side of e. Assume, e lies in the small

polygon (Cn, i) and e′ lies in the small polygon (Cn, j). Then (j, i) lies in the

interior of l(e, i, α)+.

Proof. Assume, for the sake of contradiction, that (j, i) lies in l(e, i, α)−. By

definition, ei is inside l(e)+. Since ei is a boundary edge of Sn(α), one of the

long edges E of σ must separate ei from σ. Let (k, i) := E ∩ e, where k = i is

possible.

Let β be the angle from e to E around (k, i). This angle is the same as the

angle from l(e, i) to {(i, i), (i, j)} around (i, i): the short translation tki moves

(k, i) to (i, i), E onto {(i, i), (i, j)}, and e into l(e, i)∩ conv Sn(α). There are two

cases: either 0 < β < π or −π < β < 0.

If 0 < β < π then the slope of e turns counterclockwise around (k, i) into the

slope of E. Since σ, and hence E, are in l(e)+, the interior of the positive side

l(e)+ of l(e) can be characterized as follows: a point x ∈ R2 is in the interior

of l(e)+ if and only if the angle from e to {(k, i), x} around (k, i) is in the

interval (0, π). Since the orientation of l(e, i) is parallel to this, the analogous

characterization holds for the interior of l(e, i)+. The characterization of the

interior of the positive side l(e, i, α)+ of l(e, i, α) is analogous.
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(i, i)
ei

(k, i)

eβ
γ

α

β

(i, j)
l(e, i)

(j, i)

σ

l(e, i, α)

E
−

Figure 4. The case 0 < β < π in the proof of the Partner Lemma.

Let γ be the angle from {(i, i), (j, i)} to l(e, i, α) around (i, i). The assumption

that (j, i) lies in l(e, i, α)− can now be expressed as −γ ∈ [−π, 0] ⇐⇒ γ ∈

[0, π]. The angle from {(i, i), (j, i)} to {(i, i), (i, j)} around (i, i) equals α, by

construction of Pn(α). (See Figure 4 for an illustration.) Therefore:

α = \
(

{(i, i), (j, i)}, {(i, i), (i, j)}
)

= \
(

{(i, i), (j, i)}, l(e, i, α)
)

) + \
(

l(e, i, α), l(e, i)
)

) + \
(

l(e, i), {(i, i), (j, i)}
)

= γ
︸︷︷︸

∈[0,π]

+ α + β
︸︷︷︸

∈(0,π)

∈ (α, α + 2π).

This is a contradiction.

If −π < β < 0 then we get analogously γ ∈ [−π, 0]. (See Figure 5 for an

illustration.) Thus:

α = \
(

{(i, i), (j, i)}, {(i, i), (i, j)}
)

= \
(

{(i, i), (j, i)}, l(e, i, α)
)

) + \
(

l(e, i, α), l(e, i)
)

) + \
(

l(e, i), {(i, i), (j, i)}
)

= γ
︸︷︷︸

∈[−π,0]

+ α + β
︸︷︷︸

∈(−π,0)

∈ (α − 2π, α).

Contradiction again, and we are done. ˜

The following secondary index measures for any short edge the size of the region

in which partner edges for a parallelogram can be found. See Figure 6 for a

sketch.
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(i, i) ei

(k, i)

e

β γ
α

β

(i, j)

l(e, i)

(j, i)

σ l(e, i, α)

E

−

Figure 5. The case −π < β < 0 in the proof of the Partner Lemma.

(i, i)
ei

α

ind2(e)

l(e, i)

l(e, i, α)

Cn(i)
e

+
+

+

Figure 6. Secondary index ind2(e) of a short edge e.

Definition 5.7 (Secondary Index). The secondary index of a short edge e

is defined as

ind2(e) := vol
(

conv(Cn, i) ∩ l(e, i, α)+
)

.

We can now define a lexicographic partial order induced by primary and sec-

ondary index. This will turn out to be the crucial relation among short edges

in M . It is the partial order that will always decrease when we “chase M along

short edges towards special short edges”.

Definition 5.8. Let e and e′ be short edges in M ′. Then

e ≺ e′ : ⇐⇒

{

either ind1(e) < ind1(e
′)

or ind1(e) = ind1(e
′) and ind2(e) < ind2(e

′).

The following lemma is the formalization of “chasing the mixed subdivision to-

wards special short edges”.
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Lemma 5.9 (Order Lemma). Let e be a short edge in a mixed subdivision M

of Sn(α). Then the following hold :

(i) ind1(e) ≥ 0 and ind2(e) ≥ 0.

(ii) ind1(e) = 0 if and only if e = ei for some i = 0, 1, . . . , n−1.

(iii) If e 6= ei for all i = 0, 1, . . . , n−1, then there exists another short edge e′ in

M with e′ ≺ e; moreover , there exists a 2-cell σ such that both e and e′ are

short edges of σ, and σ is on the positive side of e and on the negative side

of e′.

Proof. Assertions (a) and (b) are true by definition.

In order to prove (c), consider a short edge e in M . Assume that e is in

(Cn, i) and that e 6= ei. Then the mixed subdivision M must contain cells that

subdivide the convex hull of e and ei. In particular, there must be a cell σ on

the positive side of e. There are two cases: Either σ is a simplex containing only

short edges inside (Cn, i), or σ is a parallelogram containing two short and two

long edges.

Case 1: The cell σ is a simplex with short edges. By construction, l(e)+

contains σ. By Lemma 5.3, σ lies on the negative side of one of its short edges,

say e′. Then l(e′)+ does not contain σ. Moreover, since (Cn, i) is convex, l(e)

and l(e′) do not cross inside conv(Cn, i). Thus, l(e′)+ ∩ conv(Cn, i) ⊆ l(e)+ ∩

conv(Cn, i) \ σ. Therefore, ind1(e
′) ≤ ind1(e)− vol(σ) < ind1(e), whence e′ ≺ e.

Case 2: The cell σ is a parallelogram containing two short and two long

edges. Consider the short edge e′ in σ opposite to e. It lies in (Cn, j) for some

j = 0, 1, . . . , n−1 with j 6= i.

We first prove that e and e′ have the same primary index. By Lemma 5.3, σ

lies on the negative side of e′. By construction, σ lies on the positive side of e.

Therefore, by Lemma 5.2, the parallel lines l(e) and l(e′) have parallel orienta-

tions. That means, Tij(l(e)
+) = l(e′)+. Because Tij(conv(Cn, i)) = conv(Cn, j),

we conclude ind1(e
′) = ind1(e).

Next, we show that the secondary index of e′ is strictly smaller than that of e.

By Lemma 5.6, (j, i) lies in the interior of l(e, i, α)+. This implies that (j, j) =

Tij(j, i) lies in the interior of Tij(l(e, i, α)+). Since the parallel lines l(e) and

l(e′) have parallel orientations, the parallel lines l(e, i, α) and l(e′, j, α) also have

parallel orientations. Thus, l(e′, j, α)+ is strictly contained in Tij(l(e, i, α)+).

Therefore,

ind2(e
′) = vol

(

conv(Cn, j) ∩ l(e′, j, α)+
)

= vol
(

conv Tij(Cn, i) ∩ l(e′, j, α)+
)

< vol
(

conv Tij(Cn, i) ∩ Tij(l(e, i, α)+)
)

= vol
(

conv(Cn, i) ∩ (l(e, i, α)+)
)

= ind2(e
′).

This proves that e′ ≺ e, and (iii) is proven as well. ˜
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The neighborhood of special short edges. We are now in a position to

prove the main property of mixed subdivisions of Sn(α).

Theorem 5.10. Let α ≥ 0 such that Pn(α) is a prism or a twisted prism. Then

every mixed subdivision M of Sn(α) contains at least one triangle one of whose

edges is some special short edge.

Remark 5.11. If α is too large then not only the Order Lemma is false but also

Theorem 5.10, which can be seen in Figure 7. Theorem 3.2, however, might still

be true for large α because the cyclic set of tetrahedra defines parallelograms that

are incompatible with the parallelogram that is on the positive sides of both of

its short edges in Figure 7. One could consider all α ≥ 0 for which the face lattice

of Pn(α) equals the one of the twisted prism in our sense. Since the existence of

triangulations depends on the orientations of tetrahedra (the oriented matroid)

rather than on the face lattice, we decided not to investigate this any further.

If the top and the bottom n-gons are not congruent, Theorem 5.10— and even

Theorem 3.1— do not hold either, as can be seen in Figure 8.

(4, 3) (3, 3)e3

(4, 4)

(1, 4)

e4

(2, 2)

(3, 2)

e2

(1, 2) (2, 1)e1

Figure 7. When α is too large (here α = π/3), there exists a mixed subdivision

where no special edge is covered by a mixed triangle; the parallelogram of Figure 2

serves as kind of an adapter between two part of the subdivision that would

be incompatible otherwise. This mixed subdivision disappears when P4(α) is

untwisted. The indicated mixed subdivision does, however, not contradict the

statement in Theorem 3.2 for larger α, since it does not use the parallelograms

corresponding to the cyclic set of tetrahedra.
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e3

(4, 4)

(1, 4)

(4, 1)

(1, 1)

e4

(3, 4)

(2, 1)

(4, 3)

(1, 2)

(3, 3)

(2, 3)

(3, 2)

(2, 2)

e2
e1

Figure 8. Congruence of top and bottom n-gons is important: even if the

top and the bottom n-gon of a Cayley embedding of two n-gons are normally

equivalent, there may be triangulations using the cyclic set of diagonals of the re-

sulting combinatorial polygonal prism; the figure shows the corresponding mixed

subdivision; note that indeed no special edge is used.

Proof. Since every triangulation of Pn(α) induces a triangulation of its top

and its bottom polygon, at least one short triangle must be used. Not all of its

short edges can be edges of Sn(α). Therefore, there is a short edge having cells

on both of its sides. Hence, there is at least on 2-cell that is on the positive side

of some short edge. By Lemma 5.3, every such cell lies on the negative side of

one of its other short edges.

Let σ be a cell on the positive side of its short edge e and on the negative

side of its short edge e′ such that e′ is minimal with respect to “≺”. Then, by

Lemma 5.3(iii), e′ is a special edge.

Every parallelogram σ with a special short edge ei must lie on the negative side

of ei, since the positive side of ei is outside Sn(α). Therefore, the parallelogram

σ lies on the same side of ei as (Cn, i). Assume the opposite edge e of σ lies in

(Cn, j) for some j ∈ {0, 1, . . . , n−1}. Then, by Lemma 5.2, σ lies on the opposite

side of e as (Cn, j). In particular, σ lies on the opposite side of e as ej , which

means, σ lies also on the negative side of e. ˜

Proof of Theorem 3.1 (prism). For the sake of contradiction, assume that

there is a triangulation T of Pn that uses the cyclic set Dc of diagonals. Using

the Cayley trick, T induces a fine mixed subdivision M of Sn that uses, among

others, the set of points (i, i+1) for all i = 0, 1, . . . , n−1, corresponding to the

cyclic set of diagonals (labels again regarded modulo n). The triangles in the

quadrilateral facets of Pn induce the mixed edges {(i, i), (i, i+1)} in the boundary

of Sn. They already cover the whole boundary of Sn. Thus, the special edges

ei := {(i, i), (i+1, i)} in the boundary of Sn, which correspond to the reverse

cyclic set of diagonals in the quadrilateral facets of Pn, are not used in M .

However, by Theorem 5.10, at least one ei must be in M : contradiction. ˜

Proof of Theorem 3.2 (twisted prism). For the sake of contradiction,

assume that there is a triangulation T of Pn that uses the cyclic set Tc of tetra-

hedra. Construct the corresponding mixed subdivision M of Sn(α). The set Mc

of mixed cells corresponding to Tc are parallelograms that cover all the special
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edges ei. Therefore, there can be no other cell that contains a special edge. By

Theorem 5.10, there must be at least one mixed triangle containing a special

edge ei: contradiction. ˜
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On Hadwiger Numbers of Direct Products

of Convex Bodies

ISTVÁN TALATA

Abstract. The Hadwiger number H(K) of a d-dimensional convex body
K is the maximum number of mutually nonoverlapping translates of K

that can touch K. We define H∗(K) analogously, with the restriction that
all touching translates of K are pairwise disjoint. In this paper, we verify
a conjecture of Zong [1997] by showing that for any d1, d2 ≥ 3 there exist
convex bodies K1 and K2 such that Ki is di-dimensional, i = 1, 2, and
H(K1 ×K2) > (H(K1)+1)(H(K2)+1)− 1 holds, where K1 ×K2 denotes
the direct product of K1 and K2. To obtain the inequality, we prove that if
K is the direct product of n convex discs in the plane and there are exactly
k parallelograms among its factors, then H∗(K) = 4k(4·6n−k+1)/5. Based
on this formula, we also establish that for every d ≥ 3 there exists a strictly
convex d-dimensional body K fulfilling H(K) ≥ 16

35
(
√

7)d−1.

1. Introduction and Main Results

The Hadwiger number H(K) of a d-dimensional convex body K is the maxi-

mum number of mutually nonoverlapping translates of K that can be arranged

so that all touch K. Often H(K) is called the translative kissing number of K as

well. H∗(K) is defined analogously with the restriction that all touching trans-

lates of K are pairwise disjoint. Trivially, H∗(K) ≤ H(K). It is known that

H(K) ≤ 3d − 1 [Hadwiger 1957], with equality attained only for parallelotopes

[Groemer 1961].

Let Ai ⊆ R
di , i = 1, 2 . . . , n, for some positive integer n. We denote by

A1 × A2 × . . . × An the direct product of the Ai’s in their given order, which is

the collection of the ordered n-tuples {(x1, x2, . . . xn) | xi ∈ Ai, 1 ≤ i ≤ n}, and

Mathematics Subject Classification: Primary 52C17, 52A21; Secondary 52C07.

Keywords: Hadwiger number, translative kissing number, finite packing, strictly convex body,
Minkowski metric, Cartesian product, direct product.
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it is identified with a subset of R
d, where d =

∑n
i=1 di, by writing the coordinates

of the xi’s consecutively in one d-tuple. It is also called the Cartesian product

of the Ai’s, and sometimes it is denoted by
∏n

i=1 Ai as well. Clearly, the direct

product of convex bodies is also a convex body. If A ⊆ R
d, then An stands for

the direct product of n copies of A.

Let Ki be a di-dimensional convex body, for i = 1, 2. Observe that if Ci is a

packing with translates of Ki, i = 1, 2, then C1(×)C2 = {A×B | A ∈ C1, B ∈ C2}
is a packing with translates of K1×K2. By looking at which translates of K1×K2

touch each other in C1(×)C2, we get the general inequality

H(K1 × K2) ≥ (H(K1) + 1)(H(K2) + 1) − 1. (1–1)

Zong [1997] proved that there is equality in (1–1) when min(d1, d2) ≤ 2. He

also conjectured that there are some large integers d1, d2 for which inequality

(1–1) is strict for suitable di-dimensional convex bodies Ki, i = 1, 2. In the

following theorem, we verify Zong’s conjecture, and we even show that more is

true: We provide examples for a strict inequality in (1–1) for every d1, d2 ≥ 3.

Theorem 1.1. For every d1, d2 ≥ 3, there is a d1-dimensional convex body K1

and a d2-dimensional convex body K2 such that

H(K1 × K2) ≥ (H(K1) + 1)(H(K2) + 1) + 16 · 3d1+d2−6 − 1 (1–2)

holds.

To prove Theorem 1.1, we rely on the value of H∗(K) when K is the direct

product of two circles. In the following proposition, we determine that quan-

tity in a more general setting when the convex body is the direct product of

finitely many arbitrary convex discs. (By a convex disc we always mean a two-

dimensional convex body.)

Proposition 1.2. Let D1, D2, . . . Dn be convex discs, n ≥ 1. If there are exactly

k parallelograms among the discs, then

H∗(D1 × D2 × . . . × Dn) = 4k

(

4(6n−k) + 1

5

)

(1–3)

holds.

Note that one can prove

H∗(K1 × K2) ≥ H∗(K1)H
∗(K2) (1–4)

the same way as (1–1). Proposition 1.2 shows that there can be strict inequality

in (1–4), e.g., that is the case when K1 and K2 are convex discs that are different

from parallelograms.

Since H(K) < 3d − 1 for any convex body K different from a parallelotope

[Groemer 1961], one may ask how large H(K) can be, when K belongs to some

specific class of convex bodies, in which the shapes of the bodies are very different
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from a parallelotope, for example, when the bodies are strictly convex, i.e., their

boundaries contain no segment. Based on Proposition 1.2, for every d ≥ 3 we

are able to show the existence of a strictly convex d-dimensional body, having

relatively large Hadwiger number, as d → ∞.

Theorem 1.3. For every d ≥ 3 there exists a strictly convex d-dimensional body

S such that

H(S) ≥ 16

35
(
√

7)d ≈ 2.6457d−o(d) (1–5)

holds.

The lattice kissing number HL(K) is the maximum number of those translates

that touch K in a lattice packing of K. Trivially, HL(K) ≤ H(K). Although

in several cases H(K) = HL(K) holds (for example, it holds for every convex

disc by [Grünbaum 1961]), it can happen that H(K)−HL(K) > 0 [Zong 1994].

In fact, H(K) − HL(K) ≥ 2d−1 holds for some d-dimensional convex body K,

for every d ≥ 3 [Talata 1998a], showing that there can be exponentially large

gap between H(K) and HL(K). Minkowski [1896/1910] (see also [Cassels 1959])

showed that HL(K) ≤ 2d+1 − 2 holds for strictly convex d-dimensional bodies;

thus Theorem 1.3 implies new asymptotic bounds showing that both the gap

and the ratio between H(K) and HL(K) can be relatively large.

Corollary 1.4. For every integer d ≥ 1, denote by Kd the collection of all

d-dimensional convex bodies. Then

max
K∈Kd

(H(K)−HL(K)) ≥ (
√

7)d−1− 2d+1+ 2 ≈ 2.6457d−o(d) (1–6)

and

max
K∈Kd

(H(K)/HL(K)) ≥ 8
35

(
√

7/2
)d ≈ 1.3228d−o(d) (1–7)

hold .

We would like to note that the proofs of Theorems 1.1 and 1.3 (and the proof

of the lower bound part for H∗
(
∏n

i=1 Di

)

in Proposition 1.2) are constructive:

thus, general methods are given to construct bodies of different shapes, based

on some initially given convex discs and some parameters, implying for example,

that with respect to the Hausdorff metric, in every neighbourhood of any d-

dimensional parallelotope there are convex bodies which possess the properties

described in the Theorems 1.1 and 1.3. Furthermore, when the initial discs are

unit circles, we can calculate the actual values for those parameters to make the

definitions of those bodies.

We conclude this section with two conjectures. First, we suggest that there

may not be any kind of analogue of Zong’s formula [1997] for H(K1 × K2)

when K1 and K2 are sufficiently high dimensional convex bodies. That is, we

conjecture that H(K1 × K2) can not be expressed as a function of H(K1) and

H(K2) in general.
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Conjecture 1.1. For some d1, d2 ≥ 3, there exist a pair (K1, K
′
1) of d1-dim-

ensional convex bodies and a pair (K2, K
′
2) of d2-dimensional convex bodies such

that H(K1) = H(K ′
1) and H(K2) = H(K ′

2), but H(K1 × K2) 6= H(K ′
1 × K ′

2).

Second, we consider a quantity similar to H(K): The touching number t(K)

of a d-dimensional convex body K is defined as the maximum number of mu-

tually touching translates of K. We have t(K) ≤ 2d, with equality exactly for

parallelotopes [Danzer and Grünbaum 1962]. It is conjectured in [Füredi et al.

1991] that for strictly convex bodies t(K) ≤ (2 − ε)d holds for some ε > 0. We

conjecture the analogous inequality for H(K) in case of strictly convex bodies.

Conjecture 1.2. There exists an absolute constant ε > 0 such that

H(K) ≤ (3 − ε)d (1–8)

holds whenever K is a strictly convex d-dimensional body .

We organize the remaining part of the paper in the following way: In Section 2

we introduce notation and recall some facts. Then we prove Proposition 1.2,

Theorem 1.1 and Theorem 1.3 in Sections 3, 4 and 5, respectively. In those sec-

tions we usually prove various statements organized in lemmas and propositions

so that we can combine them to get the desired theorem or proposition.

2. Preliminaries

For arbitrary A, B ⊆ R
d and α, β ∈ R, let αA+βB = {αa+βb | a ∈ A, b ∈ B}.

We write A + v instead of A + {v}, and further, we write A − B instead of

A + (−1)B. The notation conv( · ) stands for the convex hull and [a, b] stands

for the segment whose endpoints are a, b ∈ R
d. If c ∈ R, then {c} denotes

the fractional part of c, that is, {c} = c − [c], where [c] is the largest integer

which does not exceed c. In the text, we always avoid confusion with the similar

notation for a one-element set by using fractional parts only in inequalities. We

denote by |S| the cardinality of a set S. We use the notation od for the origin of

R
d.

We denote by ∂K the boundary of a convex body K. For an od-symmetric

convex body K, let distK be the distance function of the Minkowski metric whose

unit ball is K. Note that we denote the usual Euclidean distance simply by dist.

Recall that distK1×K2×...×Kn
= max1≤i≤n(distKi

). In a metric space, a set S

is called r-discrete for some r > 0 if the distance between any two points of S

is at least r in the given metric. If the distance is larger than r we say S is

r+-discrete.

A Hadwiger configuration of a convex body K is a collection of mutually

nonoverlapping translates of K which all touch K. It is easy to see that any

collection {K + vi}n
i=1 of translates of a convex body K is a Hadwiger config-

uration of K if and only if vi ∈ ∂(K − K) and distK−K(vi, vj) ≥ 1, for every

i 6= j [Talata 1998b]. Clearly, K + vi and K + vj are touching if and only if
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distK−K(vi, vj) = 1. Thus H(K) is the maximum cardinality of a 1-discrete

subset of ∂(K − K) in the metric distK−K . Furthermore, it is not difficult to

see that H(K)+1 is the maximum cardinality of a 1-discrete subset S ⊆ K −K

in the metric distK−K , and |S| = H(K) + 1 holds only if od ∈ S. (To see this,

observe that if S ⊆ K − K is 1-discrete with respect to distK−K , then replac-

ing each p ∈ S \ {od} with that q ∈ ∂(K − K) for which p ∈ [od, q], we get a

1-discrete set with respect to distK−K .) Similarly, one can obtain that H∗(K) is

the maximum cardinality of a 1+-discrete subset of K−K in the metric distK−K .

Note if K is od-symmetric, then K − K can be replaced by K in the preceding

characterizations of H(K) and H∗(K), since then K − K = 2K.

3. Determining H∗(K) for Direct Products of Convex Discs

In this section, we prove Proposition 1.2. First we prove several lemmas, then

we combine those to get the actual proof of the proposition. Note that in some

cases we even allow 0-dimensional convex bodies to appear as factors in direct

products for sake of completeness. Observe that K1 × K2
∼= K2 when K1 is a

0-dimensional convex body (i.e., K1 is a point).

Lemma 3.1. Let K be a d-dimensional convex body , d ≥ 0, and let I be a

segment . Then H∗(K × I) = 2H∗(K).

Proof. We may assume that K is od-symmetric and I = [−1, 1]. If S ⊆ K is 1+-

discrete in the metric distK , then S×{−1, 1} is 1+-discrete in the metric distK×I ,

implying H∗(K × I) ≥ 2H∗(K). On the other hand, if S ⊆ K × I is 1+-discrete

in the metric distK×I , then let S1 = S ∩ (K × [−1, 0]), and S2 = S ∩ (K × [0, 1]).

Now, let π : K × I → K be the projection of the direct product body to the first

factor. Then both π(S1) and π(S2) are 1+-discrete subsets of K in the metric

distK , implying H∗(K × I) ≤ 2H∗(K). ˜

Observe that an immediate consequence of Lemma 3.1 is that H∗(K × P ) =

2nH(K) holds if P is an n-dimensional parallelotope, n ≥ 1.

Lemma 3.2. Let K be a d-dimensional convex body , d ≥ 0, and let D be a

convex disc. Then H∗(K × D) ≤ 6H∗(K) − 1.

Proof. We may assume that both K and D are symmetric about the origin.

Let S ⊆ K × D be 1+-discrete in the metric distK×D, and let s0 ∈ S. Define

π1 : K ×D → K and π2 : K ×D → D as projections of the direct product body

to its first and second factor, respectively. Consider an affine regular hexagon

H inscribed to D, having vertices v1, v2, . . . , v6. We may even assume that H is

chosen in a way that π2(s0) ∈ [o2, v1]; see [Fejes Tóth 1972]. Then the segments

[o2vi], 1 ≤ i ≤ 6, divide H into six regions Ui, 1 ≤ i ≤ 6, such that their diameters

are equal to 1 in the metric distD, and
⋃6

i=1 Ui = D. Let Si = S ∩ (K × Ui).

Then π1(Si) ⊆ K is 1+-discrete in the metric distK , implying |Si| ≤ H∗(K) for

each i. But s0 is contained in two Si’s, implying H∗(K × I) ≤ 6H∗(K) − 1. ˜
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Lemma 3.3. Let C be a centrally symmetric convex disc, different from a par-

allelogram, and let k be a positive integer . Let m = 6k − 1. Then there exists a

sequence S = 〈si〉m−1
i=0 of points of ∂C such that for every i ≥ j, distC(si, sj) > 1

holds if and only if 1
6

< { i−j
m } < 5

6
is satisfied .

Proof. If C is a circle, then it is easy to check that 〈si〉m−1
i=0 can be chosen as

consecutive vertices of a regular m-gon. For general C, we describe a little bit

more sophisticated construction for S. Pick an affine regular hexagon H that

is inscribed to C. Since C is not a parallelogram, it can be seen that we can

choose H in a way that no side of H is longer than any segment in ∂C which

is parallel to that side. Fix a positive constant ε < 1. If s′i is already defined,

let vi+1 be the first point chosen on ∂C in counterclockwise direction for which

distC(vi, vi+1) = 1 + ε. Let V = 〈vi〉m−1
i=0 . It is easy to check that if ε is small

enough, then every point of V lies in a small neighbourhood of some vertex of

H, and v0, v6, v12, . . . v1, v7 . . . etc. are consecutive points on ∂C. Now, to get S,

order the points of V consecutively in counterclockwise direction, starting with

v0, so s0 = v0, s1 = v6, s2 = v12 . . . etc. It is easy to check that for any i ≥ j,

distC(si, sj) > 1 holds if and only if min(|i− j|, |m + j − i|) ≥ k, from which one

can get that S has the property required in the lemma. ˜

Lemma 3.4. Let n and q be integers, n ≥ 1, q ≥ 3. Let

m =
(q − 2) · qn + 1

q − 1
.

Then for every positive integer j ≤ m − 1, there is an integer i, 1 ≤ i ≤ n, such

that
1

q
<

{

qn−ij

m

}

<
q − 1

q
.

Proof. Define a sequence by a0 = 1 and ai = qai−1 − 1, for every i ≥ 1. It

is easy to check that an = qn −
∑n−1

i=0 qi = ((q − 2)(qn) + 1)/(q − 1), for every

n ≥ 0. That is, m = an.

Let 1 ≤ j ≤ an − 1. We claim that there are integers t, z, j1 ≥ 0 such

that j = (q − 2)qtz + j1, 1 ≤ t ≤ n − 1, at−1 ≤ j1 ≤ at − at−1 and z ≤
∑n−t−1

i=0 qi hold. To see this, we express j in the number system of base q as

(bn−1, bn−2, . . . , b1, b0)q. That is, j =
∑n−1

i=0 biq
i, where bi ∈ {0, 1, . . . , q − 1} for

every i. Note an−1 =
∑n−1

i=0 (q−2)qi. If k ≤ n−1, then ak −ak−1 = (q−2)qk−1

and ak−1 = (q−1)+
∑k−2

i=1 (q−2)qi also hold. We distinguish three cases. First,

if bi ∈ {0, q − 2} for every i, then let t = 1 + min{k | bk = q − 2}. Second, if

k0 6= q − 1, where k0 = max{k | bk /∈ {0, q − 2}}, then let t = k0 + 1. Third, if

k0 = q − 1, then let t = min{k | k > k0, bk = 0}. In all cases, let j1 =
∑t−1

i=0 biq
i

and z =
∑n−t−1

i=0 ciq
i, where ci = bi+t/(q − 2) ∈ {0, 1} for 1 ≤ i ≤ n − t − 1. It

is easy to check that the defined t, z and j1 all have the claimed properties.

We show that the lemma holds for i = t. Clearly, qn−tj = (q−2)qnz + qn−tj1
holds, thus (q − 2)qnz = ((q − 1)an − 1)z implies the equality {qn−tj/an} =
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{(qn−tj1−z)/an}. Now, on one hand, qn−tj1/an < (q−1)/q by j1 ≤ (q−2)qt−1.

On the other hand, (qn−tj1−z)/an ≥ (qn−tat−1−
∑n−t−1

i=0 qi)/an. Observe that

ak = qk−iai −
∑k−i−1

i=0 qi, for every k > i. This can be proved by induction on

k−i. Consequently, (qn−tj1−z)/an ≥ an−1/an > 1/q. This completes the proof

of the lemma. ˜

Proof of Proposition 1.2. From Lemma 3.1 follows that H∗(K × P ) =

4H∗(K) for any parallelogram P , implying that in the following it is enough

to consider (1–3) for k = 0. Assume that K =
∏n

i=1 Di is a direct product of

convex discs all different from a parallelogram. We may also assume that all the

discs Di are symmetric about o2. On the one hand, for d = 0, Lemma 3.2 implies

H∗(D1) ≤ 5, thus repeated applications of Lemma 3.2 yield H∗(K) ≤ cn, where

cn is defined as c0 = 1, ci = 6ci−1 − 1 for every i ≥ 1. Since cn = (4(6n) + 1)/5,

consequently H∗(K) ≤ (4(6n) + 1)/5. On the other hand, applying Lemma 3.3

for k = cn−1, m = cn and C = Di, for any 1 ≤ i ≤ n, we obtain a sequence

〈si(j)〉m−1
j=0 of points of ∂Di such that for every j and j0, distDi

(si(j), si(j0)) >

1 is equivalent with 1/6 < {(j − j0)/m} < 5/6. Now, define a point pj =
∏n

i=1 si(b(i, j)), for every 0 ≤ j ≤ m − 1, where 0 ≤ b(i, j) ≤ m − 1, b(i, j) ≡
6n−ij (mod m). Then S = {pj}m−1

j=1 ⊆ ∂K, and S is 1+-discrete in the metric

distK = max1≤i≤n(distDi
), since for every j1 6= j2, by applying Lemma 3.4 for

q = 6 and j = j1 − j2, there is an index i such that 1/6 < {6n−i(j1 − j2)/m} <

5/6, that is equivalent with distDi

(

si(b(i, j1)), si(b(i, j2))
)

> 1. Consequently,

H∗(K) ≥ cn. ˜

4. Verifying a Conjecture of Zong

In this section, we prove Theorem 1.1. For a set S ⊆ R
d and any x ∈ R we

denote by (S, x) the set S×{x} ⊆ R
d+1. Further, if C ⊆ R

2, then let C(r) = r·C.

From now on, I stands for the interval [−1, 1] in the paper. Let C be a centrally

symmetric convex disc, 0 < ε < 1, 0 < δ ≤ 1. We define a three-dimensional

convex body as the convex hull of four suitable homothetic copies of C placed

in R
3: Let B(C, ε, δ) = conv(C1, C2,−C2,−C1), where C1 = ((1 − δ)C) × {1}

and C2 = C × {1 − ε}. Next we prove two lemmas. Combining these, first we

get Theorem 1.1 for d1 = d2 = 3 in Proposition 4.3, then we prove it in general.

Lemma 4.1. Let C be an arbitrary centrally symmetric convex disc that is

different from a parallelogram, 0 < ε ≤ 1/3, and 0 < δ < δ0, where δ0 < 1 is

a positive constant that depends on C only (when C is a circle, one can choose

δ0 = 1 − (2 sin(π
5
))−1 ≈ 0.1493). If B = B(C, ε, δ), then H(B) = 16 holds.

Proof. We may assume that C is symmetric about the origin. Let αn be the

largest possible value for the minimum distance occuring in a set of n points of

∂C with respect to the metric distC , for any n ≥ 1. If C is a circle, then αn

is the side length of a regular n-gon insribed into C. Observe that H(C) = 6
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implies α6 ≥ 1 and α8 < 1. By Proposition 1.2 we have H∗(C) = 5, from which

α5 > 1 follows. Let δ0 = min(α8, 1 − (1/α5)).

First we show H(B) ≥ 16. Let Vi ⊆ ∂C be a set of i points that is αi-discrete

in the metric distC , for i = 5, 6. Let V = ((1−δ)V5, 1)∪(V6, 0)∪(−(1−δ)V5,−1).

It is easy to check that V is a 1-discrete subset of ∂B in the metric distB. Thus

H(B) ≥ 16.

Next we prove H(B) ≤ 16. First we introduce further notation. We define

the projection functions h : R
3 → R and π : R

3 → R
2 by h(x) = x3 and

π(x) = (x1, x2) if x = (x1, x2, x3) ∈ R
3. For c ∈ R, let P (c) be the plane

{x ∈ R
3 | h(x) = c}. Denote by P+(c) the open halfspace {x ∈ R

3 | h(x) > c}.
Let C be a Hadwiger configuration of B. We can partition C into {C1, C2, C3}

in a way that for B + v ∈ C we have B + v ∈ C1 if h(v) ≥ 2ε, B + v ∈ C2

if h(v) ≤ −2ε, and B + v ∈ C3 otherwise. Let ni = |Ci|, i = 1, 2, 3. We may

assume n1 ≥ n2. It is clear that for every B′ ∈ C1, B′ ∩P (1+ ε) is a translate of

(C, 1 + ε), and B′ ∩ P+(1 + ε) 6= ?, so U = {π(B′) | B′ ∈ C1} is a packing of n1

translates of C, each having common point with the C. This immediately gives

n1 ≤ 7.

Now we consider when n1 ≥ 6. Let C′ = {B′ ∈ C | B′∩P 6= ?, B′∩P+ 6= ?},
where P = P (1− 2ε) and P+ = P (1− 2ε)+. Observe that {π(B′ ∩P ) | B′ ∈ C′}
is a packing of sets all containing a translate of C(1 − δ), where δ < α8, and

having centers of symmetry on ∂(2C). This implies |C′| ≤ 7. If C ∈ U , then

at least five other members of U touch C. But if B′ = B + v ∈ C1, and π(B′)

is such a touching disc, then B′ touches B at a point p = (1/2)v for which

ε ≤ h(p) ≤ 1− ε, and thus h(v) ≤ 2−2ε. Therefore |C′∩C1| ≥ 5. By ε ≤ 1/3 we

have C3 ⊆ C′. Thus n3+5 ≤ |C′|, implying n3 ≤ 2. Therefore |C| ≤ 7+2+7 = 16.

If C /∈ U , then n1 = 6, and there are at least three members of U that touch C.

(To see this, one can replace U by a Hadwiger configuration of C similarly as we

did in Section 2 by “pushing out” the translates, and then use the description

of all possible Hadwiger configurations of six translates by [Swanepoel 2000] to

observe that at most three translates can be “pushed back”. Note that for circles

the claim be easily shown directly, using angles determined by the translation

vectors). Similarly to the case C ∈ U , we get |C′∩C1| ≥ 3, implying n3 +3 ≤ |C′|
and thus n3 ≤ 4. Then |C| ≤ 6 + 4 + 6 = 16.

Finally, we consider when n1 ≤ 5. Since for {π(B′ ∩P (0)) | B′ ∈ C3} one can

easily show by ε ≤ 1/3 that it is a packing of translates of C, all touching C, we

have n3 ≤ 6. Combining the upper bounds, we get |C| = 5 + 6 + 5 ≤ 16. ˜

Lemma 4.2. Let {Ci}n
i=1 be a collection of n centrally symmetric convex discs

that are different from parallelograms, n ≥ 1. If 0 < ε < 1, 0 < δ ≤ γ, where

γ < 1 is a positive constant that depends on {Ci}n
i=1 only , and Bi = B(Ci, ε, δ),

1 ≤ i ≤ n, then

H

( n
∏

i=1

Bi

)

≥ 4(19)n + 9n

5
− 1. (4–1)
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If every Ci is a circle, one can choose γ = δn = 1 −
(

2 sin
(

π
6

+ 5π
4(6n+1)+6

))−1
.

In particular , if δ ≤ γ, then H(B1 ×B2) ≥ 304. (Note if C1, C2 are circles, then

one can choose γ = δ2 = 1 −
(

2 sin
(

5π
29

))−1 ≈ 0.030169.)

Proof. Let K =
∏n

i=1 Bi. Let Ai(j) = (Ci(1 − δ), j), for j = −1, 1, and

let Ai(0) = (Ci, j), 1 ≤ i ≤ n. Clearly, Ai(j) ⊆ Bi. Moreover, if p ∈ Ai(j)

and q ∈ Ai(k), j 6= k, then distBi
(p, q) ≥ 1. Let D =

∏n
i=1 Mi, where

Mi ∈ {Ai(j)}j=−1,0,1, and Mi is chosen in an arbitrary way. Then, there is

a permutation π of the 3n coordinates so that π(D) = U × W × Z, where

U =
∏

Mi 6=Ai(0)
Ci(1 − δ), W =

∏

Mi=Ai(0)
Ci and Z is a single vector having

coordinates from the set {−1, 0, 1}. Denote by 2m the dimension of U . By

Proposition 1.2, for some γ0 > 0 there is a (1/(1 − γ0))-discrete set S1 ⊆ U in

the metric distU having cardinality cn = (4(6m)+1)/5, and by H(Ci) = 6, there

is a 1-discrete set S2 ⊆ W in the metric distW having cardinality 7n−m. Let

X = π−1(S1×S2×Z). Let Y be the union of such sets X when Mi’s are choosen

all possible ways, and let γ be the minimum of all occuring γ0’s. Clearly, Y ⊆ K

and Y is 1-discrete in the metric distK if (1 − δ)/(1 − γ) ≥ 1, that is, δ ≤ γ.

Thus H(K) + 1 ≥ |Y |. If every Ci is a unit circle, then S1 is a subset of the

direct products of inscribed regular cn-gons Gi, and 1/(1 − γ) can be chosen as

the minimum distance that is larger than 1 and occurs among the vertices of Gi.

Corresponding to the choices of the sets Mi, we can count the cardinality of Y :

|Y | =

n
∑

m=0

(

n

m

)

4(6n−m) + 1)

5
(7m)(2n−m) =

4

5
(19n) +

1

5
(9n), (4–2)

Finally, based on H(K) ≥ |Y | − 1 and (4–2), we get (4–1). ˜

Combining Lemma 4.1 and Lemma 4.2 for n = 2, it readily implies the following.

Proposition 4.3. Let C1, C2 be arbitrary convex discs that are different from

parallelograms, 0 < ε ≤ 1/3, and 0 < δ < µ, where µ < 1 is a positive constant

that depends on C1, C2 only . Then Bi = B(Ci, ε, δ), i = 1, 2, satisfies

H(B1 × B2) ≥ (H(B1) + 1)(H(B2) + 1) + 15. (4–3)

If C1, C2 are circles, then one can choose µ = 0.03.

Proof of Theorem 1.1. For any d1, d2 ≥ 3, let Ki = B×Idi−3, i = 1, 2, where

Id−3 is a (d−3)-dimensional cube. Since H(K×In)+1 = 3n(H(K)+1) holds for

every convex body K and positive integer n by Zong [1997], from Proposition 4.3

one can immediately deduce (1–2). ˜

5. Hadwiger Numbers of Strictly Convex Bodies

In this section, we prove Theorem 1.3. First we show that for every odd integer

d ≥ 3 there exists a d-dimensional convex body for which H∗(K) is relatively
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large. After that we prove a similar statement for arbitrary d ≥ 3, which will

imply Theorem 1.3.

Proposition 5.1. For every odd integer d ≥ 3 there exists a d-dimensional

convex body K such that

H∗(K) ≥ 8(
√

7)d−1 + 2(
√

2)d−1

5
(5–1)

holds.

Proof. Let n = (d− 1)/2. Consider K0 =
∏n

i=1 Di where every Di is a strictly

convex disc that is symmetric about the origin. Let πi : K0 → Di be the pro-

jection to the ith factor of the direct product. Denote by J an arbitrary subset

of N = {1, 2, . . . , n}. Let m = |J |, PJ =
∏

i∈J Di, and let QJ =
∏

i∈NrJ Di.

Then gJ(K0) = PJ ×QJ for some permutation gJ of the coordinates. By Propo-

sition 1.2, there is a set SJ ⊆ ∂PJ of cardinality (4(6m) + 1)/5 which is a

1+-discrete set in the metric distPJ
. Let Ti(J) = πi(S), for i ∈ J , and let

Vi =
⋃

{J :i∈J} Ti(J), for every 1 ≤ i ≤ n. We may assume that πi(SJ) ⊆ ∂Di

holds for every i and J , by moving out the points of πi(SJ) towards ∂Di on a ray

emanating from the center o2 if necessary. We can even perturb the elements of

every occuring set SJ if necessary so that o2 /∈ (p+q)/2 holds for every p, q ∈ Vi,

p /∈ q, and SJ still remains 1+-discrete in the metric distK1
and πi(SJ) ⊆ ∂Di

is still holds for every i. Let Wi = conv(Vi), 1 ≤ i ≤ n, W =
∏n

i=1 Wi, and let

K = conv((W, 1), (−W,−1)). Denote by XJ the set g−1
J (SJ × {on−m}), and let

X =
⋃

J⊆N XJ . Observe that if p, q ∈ X, p 6= q, then either p, q ∈ XJ for some

J , or p ∈ XJ , q ∈ XM for some J, M ⊆ N , J 6= M . In the first case, there is

an index i ∈ J for which distDi
(πi(p), πi(q)) > 1. In the second case, there is an

index i ∈ (J \ M) ∪ (M \ J), for which either πi(p) = o2 and πi(q) ∈ ∂Di, or

πi(q) = o2 and πi(p) ∈ ∂Di holds, implying dist(Wi−Wi)/2(πi(p), πi(q)) > 1. Let

Y = (X, 1)∪ (−X,−1). It is easy to see that Y ⊆ K and Y is 1+-discrete in the

metric distK . Counting the cardinality of Y by the corresponding choices of J ,

we get

|Y | = 2
n

∑

m=0

(

n

m

)

4(6m) + 1)

5
=

8(7n) + 2n+1

5
. (5–2)

By H∗(K) ≥ |Y |, we obtain (5–1). ˜

If d ≥ 4 is even, then one can apply Proposition 5.1 in dimension d−1 and com-

bine that with the cylindrical construction of Lemma 3.1 to get a d-dimensional

convex body K with H∗(K) ≥ (16(
√

7)d−2 + 4(
√

2)d−2)/5. Comparing this

formula with (5–1), we get the following.

Corollary 5.2. For every integer d ≥ 3 there exists a d-dimensional convex

body K such that

H∗(K) ≥ 16(
√

7)d−2 + 4(
√

2)d−2

5
≥ 16

35
(
√

7)d ≈ 2.6457d−o(d). (5–3)
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Proof of Theorem 1.3. Consider the collection Kd of all d-dimensional convex

bodies equipped with the Hausdorff metric [Schneider 1993]. Note that H∗(K) is

not decreasing in a sufficiently small neighbourhood of K (this latter is obvious

by the description of H∗(K) in terms of 1+-discrete subsets, see Section 2),

and the strictly convex bodies form a dense set in Kd. Therefore we can apply

Corollary 5.2 to get a convex body K ∈ Kd for which (5–3) holds, and we can

pick a strictly convex body S sufficiently close to it in the Hausdorff metric so

that H(S) ≥ H∗(S) ≥ H∗(K). ˜

Remark 1. Instead of proving only existence, one can also construct strictly

convex bodies of various shapes having the properties of Theorem 1.3: By the

proof of Proposition 5.1 and the paragraph following that we have a description

of an od-symmetric convex polytope K that fulfils (5–3), for every d ≥ 3. We

also have a description of a 1+-discrete set Y ⊆ ∂K in the metric distK whose

cardinality is at least the lower bound appearing in (5–3). Denote by τ the

minimum distance occuring in Y with respect to the metric distK . Then K ⊆
int(τK), therefore to each facet F of τK we can find a Euclidean ball B(F )

which touches F at a point p ∈ relintF and contains K, just the radius of the

ball needs to be sufficiently large. Let S =
⋂

{B(F ) | F is a facet of τK}. Then

S is strictly convex, and (1–5) holds.

Remark 2. In particular, when K is constructed in the proof of Proposition 5.1

by applying Proposition 1.2 for direct products of unit circles, then one can

explicitely define a strictly convex body S fulfilling (1–5): If d is odd, then K is

chosen as conv((W, 1), (−W,−1)) where W is the direct product of n copies of a

regular cn-gon, inscribed into a unit circle. One can check τ = 2/(1+cos(π/cn)),

and for every facet F of τK, the body K is contained in a ball B(F ) that

touches F at its baricenter (that is, at (1/|vert(F )|)
∑

v∈vert(F ) v) and has radius

(n+4)τ2/(τ2 −1), so S can be chosen as the intersection of such balls. To make

the definiton more expicit, one may even calculate the centers of the balls B(F )

in terms of the vertices of G. The case when d is even can be treated similarly.

Remark 3. Finally, we note that similarly to the proof of Theorem 1.3, one

can show that every dense subcollection of the space of all d-dimensional convex

bodies contains a member S for which (1–5) holds.
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Abstract. A binary space partition tree is a data structure for the rep-

resentation of a set of objects in space. It found an increasing number of

applications over the last decades. In recent years, intensifying research

focused on its combinatorial properties, which affect directly the efficiency

of applications. Important advances were made on binary space partitions

for disjoint line segments in the plane and for axis-aligned objects in higher

dimensions. New research directions were also initiated on some realistic

polygonal scenes and on kinetic binary space partitions. This paper at-

tempts to give an overview of these results and reiterates some of the most

pressing open problems.

1. Introduction

The binary space partition tree is a geometric data structure obtained by a

recursive partitioning scheme, called binary space partition (for short, BSP) over

a set of input objects: The space is partitioned along a hyperplane into two

half-spaces, then either half-space is partitioned recursively until every subprob-

lem contains only a trivial fraction of the input objects. The concept of BSP

has emerged from the computer graphics community in the seventies. It was

originally designed to assist efficient hidden-surface removal algorithms for mov-

ing viewpoints, but it has later found widespread applications in many areas of

computational and combinatorial geometry.

In many of the applications, the bottle neck of the space complexity is the size

of the BSP tree they rely on. Combinatorial research focused on determining

the worst case complexity of BSPs for certain classes of inputs. Despite the

simplicity of the BSP algorithm, it is often challenging to determine the so-

called partition complexity even for simple object classes such as disjoint line

segments in the plane, or axis-aligned boxes in higher dimensions. Ideally, the

partition hyperplanes do not split the input objects, and the size of the BSP tree

is linear in terms of the input size. In many cases, however, it is inevitable that

529
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input objects are also fragmented, and the size of the data structure becomes

superlinear.

This paper surveys results on the combinatorial properties of BSPs from the

last four-five years. Inevitably, we include less recent results as well because

early ideas and observations are often used, sometimes in an enhanced form,

to obtain new results. Before we move on to the latest developments, let us

define the binary space partition and the partition complexity, and recall a few

applications and early results.

Definitions. A binary space partition tree is a recursive partition scheme for

an input set of pairwise interior disjoint objects in R
d, d ∈ N. If the input

contains two full-dimensional objects or a lower-dimensional object, we partition

the space by a hyperplane h and recursively apply two binary space partitions

for the objects clipped in each of the two open half-spaces of h. If the input is

at most one full-dimensional object (and no lower-dimensional object), we stop.

The partition algorithm naturally corresponds to a binary tree: Every node

corresponds to the input of a recursive call of the BSP: The root corresponds to

the initial input set, the two children of a non-leaf node correspond to the inputs

of its two subproblems. The BSP tree data structure is based on this binary

tree: Every leaf stores at most one full-dimensional object which is the input

of the corresponding subproblem; and every non-leaf node stores the splitting

hyperplane and the (lower-dimensional) objects of the corresponding subproblem

that lie on the splitting hyperplane. As a convention, the non-leaf nodes store

only k-dimensional fragments of k-dimensional objects lying on the splitting

hyperplane in R
d, 0 ≤ k ≤ d. For example, if a splitting hyperplane h crosses

an input segment s then the point h ∩ s is never stored. Figure 1 depicts an

example for a recursive partitioning and corresponding BSP tree for four input

objects.

a

b
c

d a1

b1

c

d

`1

`2

`3

`4

`5

a2

b2

`1

`2 `3, d

`4 `5 a2

a1 b1 b2 c

∅

Figure 1. Three disjoint ellipses and a line segment (left), binary space partition

with five partition lines (middle), and the corresponding BSP tree (right).

The binary space partition algorithm also defines a convex space partition:

Every node of the BSP tree corresponds to a convex polytope, which is the
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intersection of the halfspaces bounded by the splitting hyperplanes of its ances-

tors. The root corresponds to the space R
d. A splitting hyperplane stored at a

non-leaf node splits the corresponding convex polytope into the two polytopes

corresponding to the two child nodes. The polytope corresponding to a node is

also called the cell of the (sub)problem because it contains every input object of

the (sub)problem. Observe that the set of all leaves of a BSP tree correspond to

a convex partition of the space.

An important special BSP, called autopartition, is defined for at most (d−1)-

dimensional input objects in R
d. An autopartition is a BSP where every splitting

hyperplane contains an input object of the corresponding (sub)problem.

A BSP has two important parameters: Its size is the total number of fragments

of objects stored at the nodes of the BSP tree; its height is the height of the BSP

tree. The BSP in Figure 1 has size 6 and height 3. An easy way to compute

the size of the BSP is to sum the number of input objects and the number of

cuts, the events when a splitting hyperplane partitions (a fragment of) an input

object. If the BSP does not make “useless cuts”, that is, if every splitting plane

partitions the convex hull of the input objects, then the BSP size is an upper

bound on the number of non-leaf nodes of the BSP tree.

There are many BSPs for every input set depending on the choice of the

splitting hyperplane at each subproblem. The partition complexity of a set S of

objects is the size of the smallest BSP for S. The minimal size BSP does not

necessarily comes with minimal heights, though. The autopartition complexity of

a set S is the size of the smallest autopartition for S. Clearly, the autopartition

complexity is never smaller than the partition complexity.

The convention that objects lying in a partition hyperplane are not partitioned

further leads to somewhat counterintuitive phenomenon: A set of objects in R
d

with superlinear partition complexity will have linear partition complexity when

embedded into R
d+1 because a single splitting hyperplane contains them all. One

may define another binary partitioning scheme which would partition recursively

the fragments of objects lying in each splitting hyperplane. The minimal number

of fragments under such an alternative partition scheme may be much higher than

the partition complexity. In this survey, we focus on combinatorial properties of

the partition complexity.

1.1. Applications. The initial and most prominent applications, where the

BSP tree itself is stemming from, lie in computer graphics: BSPs support fast

hidden-surface removal [Schumacker et al. 1969; Fuchs et al. 1980; Murali 1998]

and ray tracing [Naylor and Thibault 1986] for moving viewpoints. Rendering

is used for visualizing spatial opaque surfaces on the screen. A common and

efficient rendering technique is the so-called painter’s method. It draws every

object sequentially according to the depth order or back-to-front order, starting

with the deepest object and proceeding with the objects closer to the viewer.
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When all the objects have been drawn, every pixel represents the color of the

object closest to the viewpoint.

Figure 2. Objects may have cyclic overlaps.

Unfortunately, some sets of objects have cyclic overlaps, where no valid depth

order exists (Figure 2). A BSP partitions the input objects into fragments for

which the depth order always exists for every viewpoint. It is easy to extract

the depth order of the fragments by a simple traversal of the BSP tree. An

additional benefit of BSPs is that the depth order can easily be updated as the

viewpoint moves continuously: It is enough to swap the two children of a node of

the BSP tree when the viewpoint crosses the corresponding splitting hyperplane.

(Computing the depth order, if it exists, for a fixed viewpoint may be easier than

constructing a BSP, however; see [de Berg 1993].)

The first applications of BSPs were soon followed by many others, e.g., con-

structive solid geometry [Thibault and Naylor 1987; Naylor et al. 1990; Buchele

1999] and shadow generation [Chin and Feiner 1989; Batagelo and Jr. 1999]. The

BSP for the faces of a full dimensional polyhedral solid can represent the solid

and its boundary with Boolean set operations. This, in turn, can be used for

efficient real-time shadow generation by computing the union of shadow volumes

obtained from traversals of the BSP tree in depth order for each light source

position. BSPs were also used in surface simplification [Agarwal and Suri 1998;

Shaffer and Garland 2001; Pauly et al. 2002] for clustering sample points.

Other applications of BSP trees include range counting [Agarwal and Ma-

toušek 1992], point location [Arya et al. 2000; de Berg 2000], collision detection

[Ar et al. 2000; Ar et al. 2002], robotics [Ballieux 1993], graph drawing [Asano

et al. 2003], and network design [Mata and Mitchell 1995]. BSP trees gen-

eralize some of the most commonly used geometric search structures such as

quadtrees/octrees, Kd-trees, and BAR-trees [Duncan et al. 2001], each of which

has numerous applications on its own right.

Early research. Research on combinatorial properties of BSPs began with

two influential papers of Paterson and Yao [1990; 1992]. They considered BSPs

for disjoint (d − 1)-dimensional hyper-rectangles in R
d (including line segments

in the plane). Many of their initial observations (about free cuts, anchored seg-

ments, and round-robin algorithms) are key elements of the most recent partition

algorithms, as well.
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Paterson and Yao [1990] gave a randomized and a deterministic algorithm

to construct a BSP of size O(n log n) and height O(log n) for n disjoint line

segments in the plane. The height bound is optimal apart from a constant

factor, but the size bound is not known to be tight. A lower bound construction,

where the partition complexity of n disjoint line segments is Ω(n log n/ log log n),

is discussed in Section 3.

They also proved that the partition complexity of n disjoint (d−1)-dimensional

simplices in R
d, d ≥ 3, is O(nd−1), which is best possible for d = 3 and tight for

autopartitions in every dimension [Paterson and Yao 1990]. In three-space, there

are n disjoint line segments, lying along a hyperbolic paraboloid, whose partition

complexity is Θ(n2). The same lower bound carries over to hyper-rectangles in

R
d with the same Θ(n2) partition complexity. The gap between the upper and

lower bounds in higher dimensions has resisted research efforts so far.

Open Problem. What is the partition complexity of n disjoint (d − 1)-dimen-

sional simplices in R
d, for d ≥ 4?

Every BSP computes a convex partition of the free space around the input ob-

jects. The size of the convex partition is the number of leaves of the BSP tree.

The partition complexity of (d−1)-dimensional simplices is, therefore, cannot be

smaller than the minimum convex partition of a polyhedron with n faces in R
d.

It would be tempting to derive lower bounds on the BSP size from the convex

partitioning, unfortunately, no super-quadratic lower bound is known for this

problem [Chazelle 1984] for any d ∈ N.

Open Problem. What is the size of a minimum convex partition of a polyhedron

with n faces in R
d, d > 3?

In this survey we focus on the worst case (maximum) partition complexity of a

set of objects of a certain type. Computation or approximation of the optimal

size BSP for specific instances seems to be an elusive open problem (see e.g.,

[Agarwal et al. 2000c]).

Open Problem. Is it NP-hard or is there a polynomial algorithm to compute

the partition complexity of n given disjoint line segments in the plane?

Open Problem. Is it APX-hard or is there a polynomial time approximation

scheme to compute the partition complexity of n given disjoint line segments in

the plane?

Road map. In Section 2, we continue with recalling earlier ideas and observa-

tions which proved to be omnipresent in later results on BSPs. This section can

be considered a short warm up course on the basics on binary space partitioning,

which is essential in understanding the sometimes intricate partition schemes

and lower bound constructions. Section 3 sketches the proof for two closely

related results on disjoint line segments in the plane: An Ω(n log n/ log log n)

lower bound construction and a constructive upper bound on segments with k
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distinct orientations, k ∈ N. Section 4 gathers a series of results about BSPs for

axis-aligned input objects, where all splitting hyperplanes are also axis-aligned.

We conclude the paper with two short sections related to other fields of com-

putational geometry: Section 5 reviews results on realistic object classes which

sometimes allow for linear partition complexity. Section 6 deals with kinetic

BSPs for continuously moving input objects.

2. Preliminaries

Many of the resent results on BSPs are based on or are extending basic con-

cepts known for decades. In this section, we present the most important ideas

with references the their recent extensions or enhancements.

Free cuts. A hyperplane h that does not split any input object but partitions

the set of objects into smaller sets (i.e., at least two of int(h−), h, and int(h+)

intersect input objects), is called a free cut. A minimum size BSP should use

free cuts whenever they are available [Paterson and Yao 1990]. A BSP that uses

free cuts only is called perfect. De Berg, de Groot, and Overmars [de Berg et al.

1997a] designed an O(n2 log n) time algorithm to detect if a perfect BSP exists

for n disjoint lien segments in the plane.

Cutting along a (d − 1)-dimensional object whose (relative) boundary lies

on the boundary of the cell is clearly a free cut (Figure 3). In the plane, this

implies, for instance, that if segment s is cut already at points p and q, then the

subproblem containing the middle fragment pq ⊂ s can be partitioned along pq

without cutting any input segment. Therefore, if we track the cuts of a single

input segment through an optimal binary space partitioning, then only the two

endings (the portion between the segment endpoint and the first or last cut) can

be further fragmented. This observation leads to an O(n log n) upper bound on

the partition complexity of n disjoint line segments [Paterson and Yao 1990], but

it is a basic element in all BSP algorithms.

Free cuts along objects. Consider a (d − 1)-dimensional object s in R
d. If a

fragment ŝ of s is bounded by cuts (previous splitting planes), then a hyperplane

along ŝ is a free cut for the subproblem containing ŝ. As a consequence, we can

assume that whenever a splitting hyperplane cuts a fragment ŝ of s then ŝ is

adjacent to the (relative) boundary of s. If a splitting hyperplane h partitions

ŝ but does not partition the common (relative) boundary of s and ŝ ⊂ s (e.g.

in Figure 3), then this commmon boundary is entirely on one side of h and the

fragment of ŝ on the other side of h is bounded by cuts and so it is a free cut.

For each final fragment of s adjacent to the boundary of s, there is one such cut

on every level of the BSP tree. Therefore the partition complexity of n disjoint

(d− 1)-dimensional simplices in R
d is upper bounded by the product of the size

and the height of a BSP for their (d − 2)-dimensional boundary simplices. For
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example, we obtain an O(n log n) size BSP for n disjoint line segments in the

plane from a 2n size and dlog 2ne height Kd-tree of the 2n segment endpoints.

� � � � � � � � � � � � �
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Figure 3. An input triangle s in R
3 is cut by three vertical splitting planes h1,

h2, and h3. The striped triangle fragment is a free cut for the cell bounded by

the three splitting planes.

Paterson and Yao [1990] showed that cutting along all input objects in a

random order and applying free cuts whenever possible results in an O(nd−1)

expected size BSP for n disjoint (d−1)-dimensional simplices in R
d, d ≥ 3. This

BSP, however, can have linear expected height in the worst case, e.g., if the input

is the face set of a convex polytope. In three-space, this gives a randomized BSP

of O(n2) size and O(n) height for n disjoint triangles.

We can construct deterministically a BSP of O(log2 n) height and O(n2 log2 n)

size: Project all triangle edges to the xy-plane, and cover them with O(n2) pair-

wise non-crossing segments. By [Paterson and Yao 1990], there is a O(n2 log(n2))

size and O(log(n2)) height BSP for these segments. The lifting of the planar

splitting lines to vertical splitting planes in R
3 along with all possible free cuts

gives a BSP for the triangles. Refining this idea, Agarwal et al. [2000c] designed

a BSP of size O(n2 log2 n) size and O(log n) height for n disjoint triangles; while

Agarwal, Erickson, and Guibas [Agarwal et al. 1998] reported a randomized BSP

of expected O(n2) size and O(log n) height.

Cycles. Assume that we are given disjoint (d − 1)-dimensional objects in Rd.

If the hyperplane spanned by any object is disjoint from all other objects, then

every hyperplane through an object is a free cut and we obtain a perfect BSP

of size n by partitioning along them in an arbitrary order. We can define a

binary relation between two objects a and b saying that a � b if and only if the

hyperplane through a splits b. A BSP of size n using free cuts only still exists

if � is an acyclic relation: No object is cut if we always split the space along a

minimum element with respect to �. Sets with large partition complexity ought

to have many cycles w.r.t. �. Figure 4 depicts examples of cycles in the plane

and in three space. Cycles are vital in the analysis of BSPs for disjoint line

segments in the plane.
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Anchored segments. A line segment is anchored if one of its endpoints lies

on the boundary of the cell. An anchored segment has only a uni-directional

extension that might split other segments. Paterson and Yao [1992] found a small

BSP for axis-aligned anchored segments in the plane that cuts non-anchored

segments at most four times. Using this BSP as a subroutine inductively, they

obtain an O(n) size BSP for n disjoint axis-parallel line segments: If a segment

is partitioned into c pieces during a BSP for anchored segments, then c−2 pieces

are free-cuts in their proper subproblems and are not fragmented any further,

the remaining two pieces are anchored and are taken care of by the next call of

the subroutine for anchored segments. This idea was extended and turned out

to be extremely fruitful in a number of recent results [Tóth 2003b; Tóth 2003a]

Figure 4. A set of line segments with a free cut and two cycles, one of which

is an anchored cycle (left). Axis-aligned rectangles where � defines a complete

bipartite graph (right).

De Berg et al. [1997b] noticed a useful property of cycles of anchored segments.

Consider a cycle (a1, a2, . . . , ak) of anchored segments, where ai � ai+1 for i =

1, 2, . . . , k−1 and ak � a1. Assume, furthermore, that the first anchored segment

hit by the extension of ai is ai+1 for i = 1, 2, . . . k−1, and a1 for i = k (Figure 4).

A cycle cut for (a1, a2, . . . , ak) is a partition subroutine where we cut sequentially

along the segments ak, ak−1, . . . , a1 in this order. Note that only the first splitting

line can cut anchored segments. Indeed, ak−1 � ak, so the extension of ak−1 hits

ak. The split along ak−1 does not extend beyond ak, along which we have made

a previous cut. Similarly, partitions along ak−2, . . . , a2, a1 are all free cuts w.r.t.

anchored segments of the initial problem. This property of cycles of anchored

segments in the plane unfortunately does not generalize to higher dimensions.

One possible higher dimensional generalization of anchored segments was in-

troduced by Dumitrescu et al. [2004] in the context of BSPs for axis-aligned

k-flats in R
d. An axis-aligned k-flat b is called an `-stabber, 0 ≤ ` ≤ k, if two

opposite (k − `)-faces of b lie on the boundary of the convex hull. Tóth [2003a]

defined another generalization: A 1-stabber b is a shelf with respect to a cell C

if C \ b is simply connected. He showed that the partition complexity of shelves

is O(n log n) in R
3.
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Round-robin partition. Researchers tried to construct small size BSPs by

computing, for each subproblem, a splitting plane that optimizes some objective

function [Paterson and Yao 1992; Nguyen 1996; Nguyen and Widmayer 1995].

Intuitively, an “optimal” cut should cut few objects and partition the input into

almost equal size subproblems. Local optimization rarely lead to near optimal

BSPs, one notable exception is the case of axis-parallel segments in R
d, d ≥ 3.

Paterson and Yao [1992] considered the product of the number of segments for

each axis-parallel direction as an objective function. They showed that locally

optimal axis-aligned cuts (i.e., cuts decreasing maximally this value) build up

to an O(nd/(d−1)) size and O(log n) height BSP, which is best possible. The

orientation of optimal axis-aligned cuts in recursive calls varies in an irregular

order.

A simple but efficient round-robin BSP scheme for axis-aligned objects in R
d

works in rounds: Each round partitions the space into 2d pieces in d recursive

steps along axis-aligned hyperplanes of all d orientations. The round-robin BSP

scheme for points in R
d is the well known Kd-tree. For axis-aligned line segments

in R
d, a round-robin BSP makes a cut recursively along the median hyperplanes

of the segment endpoints. This BSP has O(n(d−1)/d) size and O(log n) height,

which is best possible for n axis-aligned segments [Paterson and Yao 1992]. Re-

cently, round-robin schemes [Dumitrescu et al. 2004; Hershberger et al. 2004]

lead to non-trivial bounds on the axis-aligned partition complexity of (disjoint)

k-flats in R
d for certain values of k.

3. Line Segments in the Plane

The best known upper bound on the partition complexity of n disjoint line seg-

ments in the plane is O(n log n). Paterson and Yao [1990] found an astonishingly

simple randomized BSP of expected O(n log n) size. The trapezoid decomposi-

tion method of Preparata [1981] (see also [Preparata and Shamos 1985]) gives

a deterministic BSP of this size as well. It was widely believed that disjoint

segments in the plane have linear partition complexity, this was supported by

experiments and by linear upper bounds for certain input classes such as axis-

parallel segments [Paterson and Yao 1992], anchored segments, and segments of

similar length [de Berg et al. 1997b]. Tóth [2003c] gave a family of n disjoint line

segments for every n, n ∈ N, whose partition complexity is Θ(n log n/ log log n).

An extension of these ideas lead to an O(n log k) bound on the partition com-

plexity of n disjoint line segments with k distinct orientations.

Lower bound construction. We show how the idea of cycles over segments

in the plane can be developed into a lower bound construction whose partition

complexity is Θ(n log n/ log log n). For the sake of simplicity, we focus on au-

topartitions, where every cut is made along an input segment. We start with the

simple observation that a BSP cuts at least one segment of every cycle. If every



538 CSABA D. TÓTH

segment appears in a unique cycle of size 3, then this already implies that the

partition complexity of n segments is at least n + n/3. To guarantee a higher

rate of fragmentation we design a recursive construction on k levels: The con-

struction Si on level i, 1 < i ≤ k, consists of copies of the construction Si−1 of

level i − 1. On the lowest level, S0 consists of a single line segment.

We squeeze Si−1 into a long and skinny rectangle, and build congruent copies

of this deformed Si−1 into Si. Note that the partition complexity is invariant

under affine transformations. The copies of Si−1 are so skinny that their position

in Si can be described by disjoint line segments, which we call sticks. The lower

bound on the partition complexity depends on three elements: (a) If Si consists

of x copies of Si−1 arranged in cycles then we can guarantee that any BSP makes

at least Ω(x) cuts on sticks. (b) If a cut of a stick (that is, a cut through a copy of

Si−1) implies that Ω(|Si−1|) true segments of Si−1 are cut, then the arrangement

of sticks at level i actually guarantees Ω(n) cuts on the input segments. (c) Once

we make sure that cycles of sticks at distinct levels induce distinct cuts on each

input segment, then the entire construction gives a lower bound of Ω(kn) on the

partition complexity, where k is the number of levels. It remains to show how

to find a construction satisfying all three conditions with k = Ω(log n/ log log n)

levels.

Figure 5. A cycle (left) and two cycles composed of cycles enclosed in long and

skinny boxes (middle and right). A line spanned by segments in one rectangle

either pierces a cycle in another rectangle (middle) or not (right).

A splitting line ` intersecting a copy of Si−1 does not necessarily cut all the

true segments in Si−1. If ` cuts all sub-constructions Si−2 within Si−1, then it

destroys the cycle arrangement of the sticks in Si−1 (Figure 5, middle) and so

this cycle arrangement does not induce any cuts on segments of Si−1. Therefore

we assume that the sticks of Si−1 are arranged so that no line ` spanned by an

input segment in another copy of Si−1 destroys their cycle (Figure 5, right). If,

however, a line ` cuts only a fixed fraction ci−1, 0 < ci−1 < 1, of the sticks of

Si−1, then it cuts only
(
∏i

j=1 cj

)

· n true segments. Since we want
∏k

i=1 ci to

be a constant independent of k = Ω(log n/ log log n), a cut through Si−1 must
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actually cut the vast majority of the sticks of Si−1, which requires an asymmetric

cyclic arrangement of sticks.

Consider an asymmetric cycle in Si with three sticks such that two sticks

correspond to i2 copies of Si−1 (lying in disjoint skinny rectangles along the same

segment), and the third stick corresponds to only one copy of Si−1 (Figure 6,

left). If every line ` cutting Si cuts through both heavy sticks, then ` cuts
∏k

i=1 ci =
∏k

i=1 2i2/(i2 + 1) = O(1) fraction of the true segments. Recall that s

cycle cut may split only one sticks in the cycle. This means that an acyclic cycle

could be partitioned efficiently by cutting the light stick only, and none of the

2i2 copies of Si−1 along the heavy sticks (Figure 6, left).

`1

`2

`1

`2

`3

Figure 6. An asymmetric cycle (left), an asymmetric cycle with a one-step

staircase structure on either side of the smallest rectangle (middle), and with a

four step staircase (right).

We can overcome this difficulty with one additional idea: We want that if

neither of the heavy sticks is cut by a line `, then the light stick should be cut

many times. Specifically, we want that any BSP of the stick arrangement at level

i either cuts a heavy stick once or it cuts the light stick i2 times. Both scenarios

incur the same number of cuts on sticks, and on true segments, too. We can

force the light stick to be cut many times by arranging i2 copies of Si−1 in a

staircase fashion on either side of the light stick. (Figure 6, middle and right).

Technically, we break each heavy stick into i2 distinct sticks in a staircase-like

structure as depicted in Figure 6, right).

Tóth [2003c] shows that both the autopartition and partition complexity of

this construction is Ω(n log n/ log log n). The partition complexity of n disjoint

line segments in the plane is, thus, O(n log n) and Ω(n log n/ log log n).

Open Problem. What is the partition complexity of n disjoint line segments

in the plane?

Convex cycles. The importance of cycles of anchored segments was already

noted by de Berg, de Groot, and Overmars [de Berg et al. 1997b]. The segments

of a cycle (a1, a2, . . . , ak), however, can be quite irregular: A cycle cut can parti-

tion a non-anchored segment into k fragments (Figure 4). Tóth [2003b] defined

a convex cycle, which is a cycle of anchored segments lying along sides of a con-



540 CSABA D. TÓTH

vex polygon (Figure 7). Cutting sequentially along segments of a convex cycle

partitions any non-anchored segment into at most four pieces. To make sure

that every set of segments in a cycle contains a subset forming a convex cycle,

we drop the condition that ak � a1 in the definition of convex cycles (Figure 7,

right).

b

b

b

a

a

ba
b

s

1

3

3

5

4

2 2

1

Figure 7. A convex cycle (a1, a2, a3) and a cycle (b1, b2, . . . , b5) that contains

a convex cycle (b1, b2, b3) with b3 6� b1.

Limited number of line directions. Paterson and Yao [1992] proved, us-

ing anchored segments, that the partition complexity of n disjoint axis-parallel

segments in the plane is at most 3n. This was further improved to 2n − 1 [Du-

mitrescu et al. 2004] (see Section 4). The proof techniques, however, do not

generalize for cases where the segments have three or more distinct orientations.

Tóth [2003b] proved recently that for any k, k ∈ N, the autopartition complex-

ity of n disjoint line segments with k distinct orientations is O(nk), while their

partition complexity is O(n log k). The latter bound is asymptotically tight for

k = O(1) and also for the lower bound construction described above, that is,

where n disjoint segments have k = 2O(log n/ log log n) distinct orientations.

The partitioning algorithm for a set S of disjoint segments works in phases:

Every phase i performs a BSP for a fixed set Ai of anchored segments such that

no segment of S is cut more than O(log k) times (respectively, O(k) times in

the case of autopartitions). At an odd phase 2i − 1, we let A2i−1 be the set

of lower anchored segments at the current subproblem, that is, all (fragments

of) segments whose lower endpoint is on the boundary of a cell. Similarly, at

an even phase 2i, A2i is the set of all upper anchored segments. The result

follows immediately, since if a segment s ∈ S is cut in phase i then it is split into

c log k fragments, c log k− 2 of which are free cuts in their subproblem and 2 are

anchored fragments. The two endings of s may be cut again O(log k) times in
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phase i + 1 and i + 2 during a BSP for upper and lower anchored segments, but

s is no longer cut in later phases.

A phase i calls a BSP subroutine P for the set Ai in each cell. P (Ai) makes

two types of cuts: (1) A segment-cut splits a cell along a line ` spanned by a

segment s ∈ Ai. It is applied if ` does not cut any anchored segment in the

cell. (2) A cycle-cut partitions along a convex cycle of anchored segments (as

described in Section 2). Every cycle-cut is followed by a cleanup step, where we

apply the subroutine P for subsets Bi ⊂ Ai of those anchored segments of Ai

which are split by the cycle cut. One can ensure that Bi has at most half as many

distinct orientations as Ai in each resulting subcell (in case of autopartitions, Bi

has at least one fewer distinct orientations than Ai in each subcell).

For every phase, the segment-cut and cycle-cut steps can be assigned into

different levels according to recursive calls where subroutine P applied them.

Since the number of distinct orientations decreases by a factor of two in each

level, there are at most log k levels (at most k levels for autopartitions). One can

also ensure by carefully isolating the region in which a cycle-cut splits anchored

segments of Ai that every input segment is cut O(1) times in each level. This

implies that every segment is cut at most O(log k) times in total (O(k) times for

autopartitions).

4. Axis-aligned Binary Space Partitions

A k-dimensional object is axis-aligned, if each of its `-dimensional faces is

parallel to ` coordinate axes, 1 ≤ ` ≤ k. In an orthogonal coordinate system,

axis-aligned objects are also called orthogonal, rectilinear, or isothetic. Note

that BSPs are invariant under affine transformations of the Euclidean space,

and so the partition complexity of axis-aligned objects is independent of the

angles among the coordinate axes. BSPs for axis-aligned objects are important,

because in many applications input objects are axis-aligned by nature or are

modeled by their axis-aligned bounding boxes.

The simplest axis-aligned objects are the boxes, defined as a cross product
∏d

i=1[ai, bi] of d intervals in R
d. The extent dimensions of a box B are the

coordinates i where ai < bi, while in every non-extent dimension, ai = bi.

An axis-aligned k-flat is a box with k extent dimensions. An axis-parallel line

segment, for example, is a 1-flat.

Every partition algorithm in this section uses axis-aligned splitting hyper-

planes only, such BSPs are said to be axis-aligned. Note that every cell in an

axis-aligned BPS is an axis-aligned box. For most axis-aligned input classes,

the axis-aligned BSPs are best possible among all BSPs ignoring constant or

logarithmic factors, because they match the partition complexity known for the

class. In some cases, lower bounds known for axis-aligned BSPs are higher by a

constant or logarithmic factor than those for the general BSPs. Of course, it is
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easy to construct instances where the smallest BSP and the smallest axis-aligned

BSP have significantly different sizes.

Segments and rectangles in the plane. After Paterson and Yao [1992]

showed that the partition complexity of n disjoint axis-parallel line segments in

the plane is O(n), it remained to determine the exact value of the coefficient

hidden in the asymptotic notation. A partition algorithm due to d’Amore and

Franciosa [1992], originally designed for axis-aligned boxes, always computes an

axis-aligned BSP of size at most 2n−1. Dumitrescu, Mitchell, and Sharir [2004]

almost matched this bound with a construction (Figure 8, middle) whose axis-

aligned partition complexity is 2n − o(n).

For disjoint axis-aligned rectangles, Berman, DasGupta, and Muthukrishnan

[Berman et al. 2002] showed that the partition complexity is at most 3n−1. Their

partition algorithm is a blend of previous algorithms [Paterson and Yao 1992;

d’Amore and Franciosa 1992], combined with a charging scheme. In [Dumitrescu

et al. 2004] a construction is given where the axis-aligned partition complexity

is at least 7
3n − o(n). The authors point out, however, that their construction

cannot grant a lower bound that would match 3n − 1, since it does have an

axis-aligned BSP of size 2.444n + o(n).

Open Problem. What is the coefficient of the linear term in the (axis-aligned)

partition complexity of disjoint axis-aligned boxes in the plane?

A tradeoff between size and height. Arya [2002] noticed that the height of a

linear size axis-aligned BSP for disjoint axis-parallel segments cannot always be

logarithmic. Examining the construction on Figure 8, left, he showed that there

is a tradeoff between the size and the height of axis-aligned BSP trees. If the

height of such a tree is h then its size is Ω(n log n/ log h). A more complicated,

but stronger formulation of his result says that the BSP-tree of height h must

have size Ω(nr) in the worst case where r ∈ N,
∑r

i=0

(

h
i

)

≤ n/8.

Figure 8. Arya’s construction (left), Dumitrescu’s construction with 2·3·3·4 = 72

disjoint axis-parallel line segments (middle), and the corresponding axis-aligned

tiling of size 72 + 33 + (3 + 1)2 (right).
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On the two extremities, this implies that an axis-aligned BSP-tree of size

O(n) has height nΩ(1); and one of height O(log n) has size Ω(n log n). The set of

segments in Arya’s construction, however, has linear partition complexity: All

segments become anchored after a diagonal cut (dotted line on Figure 8, left).

No tradeoff is known so far for the size and height of general BSP trees.

Open Problem. Is there a tradeoff between the size and the height of the BSP

trees for disjoint line segments (with arbitrary orientations)?

k-flats in d-dimensions. Paterson and Yao [1992] proved that the axis-aligned

partition complexity of n disjoint line segments in R
d, d > 2, lies between

(n/d)d/(d−1) + n and d · (n/d)d/(d−1) + n. There has been no improvement on

the coefficients on the main terms so far. Their lower bound construction is a

cubic grid
∏d

i=1{1, 2, . . . , (n/d)1/(d−1)} where d lines of distinct orientation stab

each grid cell. Their upper bound can be obtained by a round-robin partition

algorithm applying median cuts in all d directions.

Dumitrescu, Mitchell, and Sharir obtained an O(nd/(d−k)) upper bound for

the partition complexity of n axis-aligned k-flats in R
d [Dumitrescu et al. 2004].

It is not difficult to see that a round-robin cutting scheme delivers this bound,

too: Let every round consist of d recursive cuts in all d directions such that every

splitting hyperplane cuts through the median of the vertex set of the fragments

clipped to the cell. The total number of fragments may increase by a factor of

2k in each round, because every (fragment of a) k-flat can be split along each

of its k extents. At the same time, the number of fragments in one subproblem

decreases by a factor of 2d−k. So there are at most (log2 n)/(d − k) rounds,

and the BSP size is O(n · nk/(d−k)). Dumitrescu et al. [2004], in fact, applied a

somewhat different partition scheme where all cuts for each hyperplane direction

are made simultaneously. They also give a matching lower bound of Ω(nd/(d−k))

for the case where k < d/2.

The formula Θ(nd/(d−k)) is no longer valid for disjoint objects if k ≥ d/2 (the

axis-aligned partition complexity is Θ(n5/3) for k = 2 and d = 4 [Dumitrescu

et al. 2004]). The reason for this is that disjointness plays no role if k < d/2,

but it is restrictive for k ≥ d/2. Indeed, if two objects whose extent dimensions

together do not contain all d dimensions intersect, then they have a common non-

extent dimension where their coordinates coincide. Any system of k-flats in R
d,

k < d/2, can be perturbed into a pairwise disjoint set by translating each object

independently by a small random vector. If the random vectors are sufficiently

small, then this perturbation does not decrease the partition complexity (every

BSP for the perturbed set translates into a BSP of less than or equal size for

the original input). Two flats whose extent dimensions contain all d dimensions

may not always be separated by an arbitrarily small perturbation. The simplest

examples are a set of axis-parallel segments in the plane and in R
3, respectively:

A small random perturbations removes all segment-segment intersection in three-

space, but intersections may prevail in the plane.
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The disjointness requirement is more apparent for the following generalization

of free cut segments in higher dimensions: An axis-aligned box is a stabber in

dimension i if its extent contains the extent of the bounding box of the input in

dimension i. It is an M-stabber for a set M ⊆ {1, 2, . . . , d}, if it is a stabber in

every dimension i ∈ M ; we can also say that it is a k-stabber if k = |M |. An

M1-stabber and an M2-stabber intersect if M1 ∪ M2 = {1, 2, . . . , d}. Stabbers

were defined by Dumitrescu, Mitchell, and Sharir [Dumitrescu et al. 2004]. Later

Hershberger, Suri, and Tóth [Hershberger et al. 2004] gave an alternative defini-

tion saying that a box is k-stabber, if all its j-faces, j < k, lie on the boundary

of the bounding box.

The concept of stabbers is crucial in any axis-aligned BSP algorithm. Let us

mention just two of their useful properties: (i) A (d − 1)-stabber is a free-cut

in R
d. (ii) Apart from at most 2k fragments incident to the vertices of b, every

fragment of a k-flat b is a `-stabber for some 1 ≤ ` ≤ k. A set of disjoint stabbers

corresponds to a pairwise intersecting set system: Let us map every stabber b to

the set ϕ(b) ⊂ {1, 2, . . . , d} of dimensions in which b is not a stabber. {ϕ(b) : b} is

a pairwise intersecting set system; and vice versa: Given a pairwise intersecting

set system D on {1, 2, . . . , d}, there is a set of stabbers in R
d whose image under

ϕ is D.

Tilings. In every lower bound construction where the partition complexity is

high, the free space surrounding the input objects is also complex in the sense

that its smallest convex partition is often superlinear. Researchers expected

that if there is no space among the (convex) input objects (or, if the convex

partition of the free space has the same order of magnitude as the input), then

the partition complexity would be significantly smaller. A tiling in R
d is a set

of d-dimensional objects that partition the space. An axis-aligned tiling is a set

of full-dimensional axis-aligned boxes that partition the space.

Already in the plane, the worst case partition complexity of axis-aligned tilings

is smaller than that of disjoint boxes. Berman, DasGupta, and Muthukrishnan

[Berman et al. 2002] showed that every axis-aligned tiling of size n has an axis-

aligned BSP of size at most 2n (recall that the axis-aligned partition complexity

of disjoint rectangles is at least 7
3n − o(n) [Dumitrescu et al. 2004]). This is

asymptotically optimal, since a construction from [Dumitrescu et al. 2004], orig-

inally designed for disjoint line segments, can be converted to an axis-aligned

tiling. Their lower bound construction for axis-parallel line segments consists

of 2k(k + 1) bundles of k parallel lines (Figure 8, middle). These 2k3 + 2k2)

segments can be blown up to skinny axis-aligned boxes such that each bundle

fills an axis-aligned rectangle, and the free space between the rectangles can be

covered by k2 + (k + 1)2 = O(k2) interior-disjoint axis-aligned boxes (Figure 8,

right). A total of n = 2k3 + O(k2) boxes tile the plane, and their axis-aligned

BSP cannot be smaller than that of the original k3 segments we have started

with, that is, at least 4k3 − O(k2).
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The difference in the partition complexity of disjoint and plane filling rectan-

gles was only the coefficient of the linear term. In three- and higher dimensions

the upper bounds on the partition complexity of tilings is smaller in exponent

than that of disjoint boxes. Hershberger and Suri [2003] observed that every

tiling where all (d−3)-dimensional faces of every tile lie on the convex hull has a

linear size axis-aligned BSP. (This is not true for disjoint axis-aligned boxes, in

general: In the known worst-case constructions, all (d − 3)-dimensional faces lie

on the convex hull.) This implies that it is enough to partition an axis-aligned

tiling until every cell is empty of (d−3)-dimensional faces, and then a linear size

BSP in each cell results in a BSP for the input tiling.

Hershberger, Suri, and Tóth [Hershberger et al. 2004] apply a round-robin

BSP for the (d − 3)-dimensional faces of an axis-aligned tiling in R
d. One can

show that the number of (d − 3)-faces in each subproblem decreases by a factor

of 23. Therefore the round-robin scheme terminates in 1
3 log n+O(1) rounds. In

each round of the round-robin scheme, every (d − 2)-face is split into at most

2d−2 fragments. In the course of 1
3 log n + O(1) rounds, every (d − 2)-face is

partitioned into (2d−2)
1

3
log n+O(1) = O(n(d−2)/3) fragments. Since the (d − 1)-

faces that become free-cut in their subproblem are not fragmented any further,

every (d − 1)-face and every tile is partitioned into O(n(d−2)/3) fragments, as

well. The round-robin scheme for (d − 3)-faces partitions the axis-aligned tiling

in R
d into n ·O(n(d+1)/3) = O(n(d+1)/3) fragments such that no (d− 3)-face lies

in the interior of a cell. By applying a linear size BSP for the tiling clipped in

each resulting cell, we obtain a BSP of size O(n(d+1)/3) for an axis-parallel tiling

with n tiles in R
d. By contrast, the best known upper bound on the partition

complexity of n disjoint full-dimensional boxes in R
d is O(nd/2) only.

In dimensions d = 3, the partition complexity of axis-aligned tilings of size

n is O(n4/3), which is tight by a construction of Hershberger and Suri [2003].

They start with the lower bound construction of Paterson and Yao [1992] for

axis-parallel line segments in three space, which consists of 3k2 axis-parallel line

segments such that three segments of distinct directions stab every unit cube

in [0, k] × [0, k] × [0, k] grid. Then they replace every segment by an air-tight

bundle of k axis-aligned skinny boxes, and fill the free space between the bundles

by 2k3 pairwise disjoint boxes. They obtain a tiling with n = 5k3 boxes. By

the argument of Paterson and Yao, each grid cell corresponds to a cut through

a bundle of k skinny boxes, which gives a total of k · k3 = Θ(n4/3) cuts of

tiles. Generalizing this idea and ideas of Dumitrescu et al. [2004], Hershberger,

Suri, and Tóth [Hershberger et al. 2004] gave a construction in d-dimensions for

which the axis-aligned partition complexity is Ω(nβ(d)), where limd→∞ β(d) =

(1+
√

5)/2 = 1.618. Apart from the staggering gap between the upper and lower

bounds for d ≥ 4, many problems remain open on BSPs of axis-aligned and of

general tilings.
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Open Problem. What is the (axis-aligned) partition complexity of n space

filling axis-aligned boxes in R
d, d ≥ 4?

Open Problem. What is the partition complexity of n space filling simplices in

R
d, d ≥ 3?

Open Problem. What is the partition complexity of n tetrahedra that form the

triangulation of a convex polytope in d-space, d ≥ 3?

Fat rectangles. Another characteristics of the lower bound constructions for

n axis-aligned rectangles in R
3 is that the rectangles are long and skinny (they

are axis-parallel line segments fattened by a small ε > 0 in all extent dimen-

sions). It was reasonable to expect that disjoint fat objects have small partition

complexity. An axis-aligned k-flat is fat if the ratio of a largest inscribed and a

smallest circumscribed cubes1 in the k-dimensional space spanned by the object

is bounded by a constant.

De Berg [1995] proved that the partition complexity of full dimensional dis-

joint fat objects is linear in every dimension. This is true for any set of disjoint

fat objects even if they are not axis-aligned (Section 5 deals with further ex-

tensions of this result). On the other hand, n disjoint fat but not axis-aligned

rectangles may have Θ(n2) partition complexity [Paterson and Yao 1990].

Agarwal et al. [2000b; 1998] considered n disjoint axis-aligned fat 2-flats in R
3

and proved that their partition complexity is n·2O(
√

log n). Tóth [2003a] improved

this upper bound and gave an algorithm to compute a BSP of O(n log8 n) size

and O(log4 n) height. He also gave a lower bound construction for which the

axis-aligned partition complexity is Ω(n log n).

The main difficulty in dealing with a fat rectangle r in three-space is that the

fragments of r clipped to a cell of a subproblem is not necessarily fat anymore.

Every fragment, however, belongs to one of the following three types, each of

which has some useful properties that help our partitioning algorithm.

For an input rectangle r and a cell C, we say that the fragment r′ = r ∩ C is
• a corner if r′ is incident to a vertex of the original axis-parallel rectangle r,
• bridge if one extent of r′ is the same as the corresponding extent of C (r′ is a

1-stabber) and the other lies in the interior of the corresponding extent of C

(see Figure 9), or
• a shelf if one extent of r′ is the same as the corresponding extent of C and

the other is incident to one endpoint of the other extent of C (see Figure 9).

Every rectangle has only four vertices, therefore in every level of the BSP tree,

at most four sub-problems contain corners of an input rectangle r. This implies

that the number of cuts on corners of an input r is bounded by (four times) the

height of the BSP. A bridge fragment r′ of a fat rectangle r is not necessarily

1Traditionally, an object is called fat if the ratio of the radii of a circumscribed and an

inscribed ball is bounded by a constant. Our definition, in terms of cubes, is equivalent to the

standard definition (with a different constant threshold).
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Figure 9. Shelves, bridges, and free-cuts clipped to a cell C in R
3.

fat. It still preserves part of the fatness of r, a property we call semi-fatness: If

r is α-fat then the extent of r′ in the interior of that of C is at most α times

longer than the extent containing the corresponding extent of C. The semi-

fatness allows us to separate bridges of different orientations (see subroutine P3

below). Finally, there is an O(n log n) size BSP for n disjoint shelves such that

it partitions every rectangle into at most O(log2 n) fragments.

We outline the main ideas to construct a O(log4 n) height BSP for disjoint

axis-aligned fat rectangles. The partition algorithm is composed of a four level

hierarchy of BSPs: We give a glimpse of each level and explain the lowest level

(a BSP for shelves) in detail below.

The main algorithm, P1, makes cuts recursively along the median xy-plane

of the vertices of the input rectangles. Since the number of rectangle vertices

in a cell is halved in each step, P1 terminates in O(log n) rounds. After every

median cut of P1, a cleanup step is applied in each cell C, which is a BSP for

the stabbers w.r.t. C and partitions every rectangle into O(log6 n) fragments. If

the cleanup step P2 makes a cut along a stabber r ∩C, then subsequent median

cuts of P1 cannot partition r ∩ C anymore. This ensures that the median cuts

performed by P1 may split any rectangle O(log n) times only.

The BSP P2 for a set S of stabbers makes cuts recursively along the median

xz-plane of the vertex set of S. Each median cut of P2 is followed by another

cleanup subroutine, P3, which in each cell separates the stabbers of S from other

stabbers (i.e., fragments that became stabbers due to the last median cut by

P2). Finally, P3 makes cuts along yz-planes, and calls a BSP P4 for all shelves

after every such step. We describe the BSP P4 for a set S of n shelves in a cell.

P4 has O(n log n) size and it partitions every rectangle into O(log n) fragments.

Consider a set S⊥ of n⊥ disjoint shelves in a cell C. Assume for simplicity

that they are all adjacent to the bottom side of C. The subroutine BSP for

S⊥ is a simple recursive algorithm: We split C by a horizontal plane h through

the highest upper edge of a shelf in S⊥, then we split the subcell below h along

the highest shelf (a free cut) and along the median shelf, and recursively call

this subroutine for each resulting subproblem (Figure 10 shows an example).

The algorithm terminates in log n⊥ rounds because the number of shelves in a

subproblem is halved in each round. None of the shelves is split, and we show that
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every axis-parallel segment disjoint from these shelves is cut O(log n⊥) times: A

segment parallel to stabbing extent of the shelves is never cut, a vertical segment

is cut at most once in every round, which amounts to O(log n⊥) cuts. Lastly,

consider a segment s orthogonal to the shelves. In subproblems where s is a

stabbing segment, it lies above the highest shelf and so it cannot be cut at all.

In a subproblem where an endpoint of s lies in the interior of a cell, s be cut by

the splitting planes along the median shelf, which totals to at most 2 log n⊥ cuts

during the entire subroutine.

Figure 10. First two rounds of the BSP for shelves.

This was a BSP for shelves along the one side of a cell C. We still need to

integrate six BSPs for each of the six sides of C: If we näıvely call the subroutine

six times sequentially for the subproblems and for each side then the number of

cuts on axis-parallel segments might be (O(log n))6. We use, instead, the concept

of overlay of BSPs to keep the number of cuts on every segment O(log n). We

compute independently six BSPs for the shelves adjacent to each side, then we

“overlay” them one after another: A cut along a splitting plane made in one BSP

may incur splits in several cells resulting from previous BSPs. The combination

is still a valid BSP because every subproblem is split by a hyperplane. The

number of cuts on each segment is the sum of the cuts made by each of the six

BSPs rather than their product. The overlay of BSPs is a key concept to keep

the number of cuts low throughout this algorithm.

In general we would like know the partition complexity of n disjoint axis-

aligned fat k-flats in R
d, 1 < k < d. It is easy to show a lower bound of

Ω(n(d−k+1)/(d−k)). Indeed, consider a worst case construction for n axis-parallel

line segments in R
d−k+1, whose partition complexity is Ω(n(d−k+1)/(d−k)) by

Paterson and Yao [1992]. Embed it into a (d−k+1)-dimensional affine subspace

H of R
d and expand it to a k-dimensional square orthogonally to H. We obtain

n pairwise disjoint k-dimensional squares in R
d. The size of any BSP for this

set is Ω(n(d−k+1)/(d−k)). We expect that this bound can be attained apart from

a polylogarithmic factor, that is, out of the k extents of a k-dimensional fat

rectangle, k − 1 extents are essentially redundant with respect to the partition

complexity.
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Open Problem. What is the (axis-aligned) partition complexity of n disjoint

fat axis-aligned k-flats in R
d, 1 < k < d?

5. From Fatness to Guardable Scenes

The worst case constructions for the partition complexity of general and axis-

aligned disjoint objects in 3-space use long and skinny input objects. This obser-

vation suggests that disjoint fat objects must have small partition complexity. A

full dimensional object is fat if the ratio of an circumscribed and inscribed ball

is bounded by a constant. Fat objects are often easier to handle. Among other

things, the union of fat objects have small combinatorial complexity in many

cases [Efrat and Sharir 2000; Pach and Tardos 2002; Pach et al. 2003]. A result

that every set of disjoint fat objects has linear partition complexity [de Berg

1995] initiated a flurry of work on extensions defining new object classes which

also have linear partition complexity by analogous arguments.

Fat full dimensional objects De Berg, de Groot, and Overmars [1997b] have

proved that the partition complexity of n disjoint convex fat objects in the plane

is O(n). De Berg [1995] has later found an elegant proof that establishes linear

partition complexity for disjoint full dimensional fat polyhedra with constant

number of vertices (e.g., fat tetrahedra) in R
d, d ∈ N, as well. His partition

algorithm generates the BSP tree in O(n log n) time for any d ∈ N, where the

constant of proportionality depends on the dimension. We briefly describe his

method below.

Consider an orthogonal coordinate system and then compute the axis-aligned

bounding box of every fat object. Generate a BSP for the set V of vertices of

all bounding boxes by repeating one of the following two steps starting with a

bounding cube C of V : (i) Partition the cubic cell C into 2d congruent cubes if

at least two sub-cubes have non-empty intersection with V . (ii) Otherwise every

point of V ∩C lies in one of the subcubes C ′. In this case, partition C along the

sides of the bounding cube of (V ∩C)∪c′ and (subsets of) where c′ is the common

vertex of C and C ′. Every subproblem that still contains a vertex of V is a cube

(allowing recursion). The subcells of the complement of the bounding box of

(V ∩C)∪ c′ in C are not necessarily fat but they can be expressed as the union

of O(1) cubes. Every cell of the resulting partition is empty of bounding box

vertices of the fat input objects. This implies that every resulting cell intersects

only a constant number of input objects. In each subproblem, one can complete

the BSP with a constant number of cuts if every fat object is either convex or

polyhedral with constant combinatorial complexity.

Note that the argument above used only that the input objects are fat, and

that they are pairwise disjoint. The extensions of disjoint fat scenes define prop-

erties of the whole input scene rather than properties of individual objects.
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Relaxations. De Berg [2000] noticed that the above argument goes through

verbatim if, instead of disjoint fat objects, he requires a much weaker property:

unclutteredness. A set of objects is uncluttered if every axis-aligned cube inter-

secting more than a constant number of input objects contains a vertex of the

bounding box of an input object. It is easy to see that every set of disjoint fat

objects is uncluttered. The converse is false and so the class of uncluttered sets

is strictly larger than that of fat objects.

De Berg et al. [2003] further explored possible relaxations of fatness and

unclutteredness that still grants linear partition complexity. A set of n objects

is guardable if there are O(n) guard points such that every axis-aligned box that

intersects more than a constant number of objects must contain a guard point.

Every uncluttered set is guardable with the obvious choice for guard points being

the bounding box vertices. On the other hand, there are guardable sets that are

cluttered (Figure 11, right). Unlike fatness and unclutteredness [de Berg et al.

2002], however, there is no polynomial time algorithm known to decide if a set of

objects is guardable or not, let alone finding a guard points for a given guardable

set [de Berg et al. 2003].

uncluttered

disjoint fat

guardable

SCC

∪

∪

∪

Figure 11. The relations between the classes of polygonal scenes (left), and a

guardable but cluttered set of boxes (right).

Another property likely to imply low partition complexity is the small simple-

cover complexity (SSC), defined originally by Mitchell, Mount, and Suri [Mitchell

et al. 1997]. We cite the definition from [de Berg et al. 2002]: A set of n objects

has SSC, if their convex hull can be covered by O(n) balls such that the number

of objects intersecting each ball is bounded by a small constant. De Berg et

al. [2003] proved that in the plane a set of objects has SCC if and only if it is

guardable. In higher dimensions, however, SCC is a strictly broader property

than guardability. It is not known if there is a small size BSP for an SCC set.

Open Problem. What is the partition complexity of a set of objects with small

simple-cover complexity in R
d, d ≥ 3?

Tobola and Nechvile [2003] extended the definition of unclutteredness to sets of

axis-aligned objects where the neighborhood of every object is uncluttered after

a linear transformation. A set S of axis-aligned objects is locally uncluttered if

for every object s ∈ S the fragments of objects clipped in a neighborhood N(s)
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of s are uncluttered after a linear transformation Ts. The neighborhood N(s) is

the axis-aligned box obtained from s by fattening each extent with a multiple

of the longest extent of s. Tobola and Nechvile [2003] show that every locally

uncluttered set of n objects in R
d has an O(n) size axis-aligned BSP.

6. Kinetic Binary Space Partitions

The first motivation for binary space partitions was efficient hidden-surface

removal from a moving viewpoint. The input objects of the BSP were, however,

assumed to be static. Recent research on BSPs for moving objects was set in

the model of kinetic data structures (KDS) of [Basch et al. 1999]. In this model,

objects move continuously along a given trajectory (flight plan), typically along

a line or a low degree algebraic curve. The splitting hyperplanes are defined

by faces of the input objects, and so they move continuously, too. The BSP is

updated only at discrete events, though, when the combinatorial structure of the

BSP changes.

In the KDS paradigm, the goal is to maintain at all times a BSP whose size

and height is below a reasonable threshold, which is usually close to the partition

complexity available for static input. Efficiency of the algorithms are measured

by additional parameters: the total space required during the algorithm, total

time, which is broken down into the total number of events and the maximum

update time for an event.

First Agarwal et al. [2000c] studied the BSP in the KDS setting. They

consider n moving line segments in the plane such that the trajectory of every

segment endpoint is a constant degree polynomial and the segments are pairwise

disjoint at all times. They design a randomized algorithm to maintain a BSP of

expected size O(n log n) in O(n log n) space, the number of events is O(n2) and

each event requires an expected O(log n) update time.

Instead of adapting a previously known static BSP algorithm [Paterson and

Yao 1990] to KDS paradigm, they start out from a randomized incremental BSP,

which is an adaptation of the vertical (trapezoid) decomposition of Mulmuley

[1990] and Seidel [1991]. They fix a random permutation of the segments, which

is the only random choice in the algorithm. In their BSP, every splitting line

is either vertical or a free cut (i.e., lies along an input segment); they call such

BSPs cylindrical. By restricting the possible splitting planes, they reduce the

number of possible event types: In fact, the only possible combinatorial event

is that a segment endpoint starts or stops crossing a vertical splitting line. A

careful analysis of the effects of these events on the BSP tree establishes the

bounds on the update time and the total space requirement.

All known kinetic BSPs are based on vertical decomposition. This choice keeps

the types of the possible combinatorial events under control, but the number of

events can be suboptimal. If the x coordinates of every two segment endpoints

are swapped during the motion, then the number of events can be Θ(n2) for any
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cylindric kinetic BSP. For arbitrary kinetic BSPs, no such lower bound is known.

Agarwal et al. [2000a] established lower bounds on the combinatorial changes

every kinetic BSP has to go through: They give a set P of n points in the plane

all moving along axis-parallel lines with constant velocity such that any kinetic

BSP for P experiences Ω(n3/2) combinatorial changes.

Open Problem. How many combinatorial changes occur in the kinetic BSP of

n points moving with constant velocity in the plane?

Agarwal, Erickson, and Guibas [Agarwal et al. 1998] adapted the cylindrical

BSP method to potentially intersecting line segments. They maintain a BSP of

size O(n log n + k) and height O(log n) in total time O(n log2 n + k log n), all in

expectation, where k is the number of intersecting segment pairs. They apply

this algorithm to derive a kinetic BSP for n disjoint triangles in R
3, for which

they maintain a randomized BSP of expected O(n2) size and O(log n) height in

O(n2 log n) total time.

De Berg, Comba, and Guibas [de Berg et al. 2001] give a deterministic kinetic

BSP for disjoint segments in the plane. Their algorithm is based on a static BSP

algorithm due to Paterson and Yao [1990] using segment trees. They maintain

a BSP of size O(n log n) and height O(log2 n). The segment tree changes every

time when the x-coordinates of two segment endpoints swap. So if every endpoint

moves along a constant-degree polynomial trajectory, then the number of events

is O(n2), each requiring O(log2 n) update time. The average update time is

O(log n), though, similarly to the randomized algorithm of [Agarwal et al. 2000c].

Open Problem. Is there a kinetic BSP of size O(npolylog n) and height

O(polylog n) with o(n2) events for n disjoint line segments whose endpoints are

moving along straight line trajectories?
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The Erdős–Szekeres Theorem:

Upper Bounds and Related Results

GÉZA TÓTH AND PAVEL VALTR

Abstract. Let ES(n) denote the least integer such that among any ES(n)
points in general position in the plane there are always n in convex po-
sition. In 1935, P. Erdős and G. Szekeres showed that ES(n) exists and

ES(n) ≤
`
2n−4

n−2

´
+ 1. Six decades later, the upper bound was slightly im-

proved by Chung and Graham, a few months later it was further improved
by Kleitman and Pachter, and another few months later it was further im-
proved by the present authors. Here we review the original proof of Erdős
and Szekeres, the improvements, and finally we combine the methods of
the first and third improvements to obtain yet another tiny improvement.

We also briefly review some of the numerous results and problems related
to the Erdős–Szekeres theorem.

1. Introduction

In 1933, Esther Klein raised the following question. Is it true that for every

n there is a least number— which we will denote by ES(n) — such that among

any ES(n) points in general position in the plane there are always n in convex

position?

This question was answered in the affirmative in a classical paper of Erdős and

Szekeres [1935]. In fact, they showed (see also [Erdős and Szekeres 1960/1961])

that

2n−2 + 1 ≤ ES(n) ≤

(

2n − 4

n − 2

)

+ 1.

The lower bound, 2n−2 +1, is sharp for n = 2, 3, 4, 5 and has been conjectured

to be sharp for all n. However, the upper bound,
(

2n − 4

n − 2

)

+ 1 ≈ c
4n

√
n

,
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was not improved for 60 years. Recently, Chung and Graham [1998] managed

to improve it by 1. Shortly after, Kleitman and Pachter [1998] showed that

ES(n) ≤
(

2n−4
n−2

)

+ 7 − 2n. A few months later the present authors [Tóth and

Valtr 1998] proved that ES(n) ≤
(

2n−5
n−2

)

+ 2, which is a further improvement,

roughly by a factor of 2.

In this note we review the original proof of Erdős and Szekeres, all three

improvements, and then we combine the ideas of the first and third improvements

to obtain the following result, which is a further improvement by 1.

Theorem 1. For n ≥ 5, any set of
(

2n−5
n−2

)

+ 1 points in general position in the

plane contains n points in convex position. That is, ES(n) ≤
(

2n−5
n−2

)

+ 1.

Next section contains a brief review of some of the numerous results and problems

related to the Erdős–Szekeres theorem.

2. Some Related Results

Many researchers have been motivated by the Erdős–Szekeres theorem. Here

we mention only a small part of the research related to the Erdős–Szekeres

theorem. See [Morris and Soltan 2000; Bárány and Károlyi 2001; Braß et al.

2005] for the latest survey.

Empty polygons. A famous open problem related to the Erdős–Szekeres the-

orem is the empty–hexagon problem. Let P be a finite set of points in general

position in the plane. A subset Q ⊂ P, |Q| = n, is called an n-hole (or an empty

convex n-gon) in P , if it is in convex position and its convex hull contains no

further points of P . Let g(n) be the smallest positive integer such that any P ,

|P | ≥ g(n), in general position contains an n-hole. It is easy to see that g(3) = 3,

g(4) = 5. Harborth [Harborth 1978] proved g(5) = 10. Horton [Horton 1983]

gave a construction showing that no finite g(7) exists.

The empty–hexagon problem: Is there a finite g(6)?

Using a computer search, Overmars [Overmars 2003] found a set of 29 points

in general position having no empty hexagon. Thus, if g(6) exists then g(6) ≥ 30.

Let Xk(P ) be the number of empty k-gons in an n-element point set P in

general position, for k ≥ 0; as special cases X0(P ) = 1, X1(P ) = n, X2(P ) =
(

n
2

)

,

since every subset of P of size up to 2 is considered an empty polygon. There

are several equalities and inequalities involving these parameters. Ahrens et al.

[1999] proved general results giving the following interesting equalities on the

numbers Xk(P ):

∑

k≥0

(−1)kXk(P ) = 0,
∑

k≥1

(−1)kkXk(P ) = −|P ∩ Int(P )|,
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where |P ∩ Int(P )| is the number of interior points of P . Pinchasi et al. [≥

2005] proved these two equalities by a simple argument (the “continuous motion”

method) and gave also some other equalities and inequalities, such as

X4(P ) ≥ X3(P ) − 1
2n2 − O(n), X5(P ) ≥ X3(P ) − n2 − O(n).

Let Yk(n) = min|P |=n Xk(P ) be the minimum number of empty convex k-gons

in a set of n points. By the construction of Horton, Yk(n) = 0 for k ≥ 7. For

k ≤ 6, the best known bounds are

n2 − 5n + 10 ≤ Y3(n) ≤ 1.6195...n2 + o(n2),
(

n − 3

2

)

+ 6 ≤ Y4(n) ≤ 1.9396...n2 + o(n2),

3
⌊ n

12

⌋

≤ Y5(n) ≤ 1.0206...n2 + o(n2),

0 ≤ Y6(n) ≤ 0.2005...n2 + o(n2).

The lower bounds are given in [Dehnhardt 1987], the upper bounds in [Bárány

and Valtr 2004].

Convex bodies. Several authors [Bisztriczky and Fejes Tóth 1989; 1990; Pach

and Tóth 1998; Tóth 2000] have extended the Erdős–Szekeres theorem to families

of pairwise disjoint convex sets, instead of points.

A family of pairwise disjoint convex sets is said to be in convex position if

none of its members is contained in the convex hull of the union of the others.

It is easy to construct an arbitrarily large family of pairwise disjoint convex

sets such that no three or more of them are in convex position. So, without

any additional condition on the family, we cannot generalize the Erdős–Szekeres

theorem.

For points we had the condition “no three points are on a line”, that is, “any

three points are in convex position”. Therefore, the most natural condition to

try for families of convex sets is “any three convex sets are in convex position”.

Bisztriczky and Fejes Tóth [1989] proved that there exists a function P3(n)

such that if a family F of pairwise disjoint convex sets has more than P3(n)

members, and any three members of F are in convex position, then F has n

members in convex position. In [Bisztriczky and Fejes Tóth 1990] they showed

that this statement is true with a function P3(n), triply exponential in n. Pach

and Tóth [1998] further improved the upper bound on P3(n) to a simply expo-

nential function. The best known lower bound for P3(n) is the classical lower

bound for the original Erdős–Szekeres theorem, 2n−2 ≤ P3(n).

In the case of points, if we have a stronger condition that every four points

are in convex position, then the problem becomes uninteresting; in this case all

points are in convex position.

In case of convex sets, the condition “every four are in convex position” does

not make the problem uninteresting, but it still turns out to be a rather strong
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condition. Let F be a family of pairwise disjoint convex sets. If any k members

of F are in convex position, then we say that F satisfies property Pk. If no n

members of F are in convex position, then we say that F satisfies property Pn.

Property Pn
k means that both Pk and Pn are satisfied. Using these notions, the

above cited result of Pach and Tóth states that if a family F satisfies property

Pn
3 , then |F| ≤

(

2n−4
n−2

)2
.

Bisztriczky and Fejes Tóth [1990] raised the following more general question.

What is the maximum size Pk(n) of a family F satisfying property Pn
k ? Some

of their bounds were later improved in [Pach and Tóth 1998] and [Tóth 2000].

The best known bounds are

2n−2 ≤ P3(n) ≤

(

2n − 4

n − 2

)2

,

2

⌊

n + 1

4

⌋2

≤ P4(n) ≤ n3,

n − 1 +

⌊

n − 1

k − 2

⌋

≤ P5(n) ≤ 6n − 12,

n − 1 +

⌊

n − 1

k − 2

⌋

≤ Pk(n) ≤ n +
1

k − 5
n for k ≥ 6.

See [Erdős and Szekeres 1960/1961] for the first line, [Pach and Tóth 1998] for

the first and second, and [Bisztriczky and Fejes Tóth 1990; Tóth 2000] for the

last two.

Pach and Tóth [2000] investigated the case when the sets are not necessarily

disjoint.

The partitioned version. It follows from the exponential upper bound on the

number ES(n) by a simple counting argument that for a given n every “huge”

set of points in general position in the plane contains “many” n-point subsets in

convex position. However, geometric arguments yield much stronger results.

A convex n-clustering is defined as a finite planar point set in general position

which can be partitioned into n finite sets X1, X2, . . . , Xn of equal size such that

x1x2 . . . xn is a convex n-gon for each choice x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn.

The positive fraction Erdős–Szekeres theorem [Bárány and Valtr 1998] states

that for any n any sufficiently large finite set X of points in general position

contains a convex n-clustering of size ≥ εn |X|, where εn > 0 is independent

of X. Pór [2003] and Pór and Valtr [2002], answering a question of Bárány,

proved a partitioned version of the Erdős–Szekeres theorem: for any n there are

two positive constants cn, c′n such that any finite X in general position can be

partitioned into at most cn convex n-clusterings and a remaining set of at most

c′n points. The optimal constants 1/εn, c′n are exponential in n, while cn is at

least exponential in n and at most of order nO(n2). For details see [Pór and Valtr

2002].
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The positive fraction Erdős–Szekeres theorem for collections of convex sets

can be found in [Pach and Solymosi 1998], and the partitioned Erdős–Szekeres

theorem for collections of convex sets can be found in [Pór and Valtr ≥ 2005].

3. The Upper Bound of Erdős and Szekeres

Definition. The points (x1, y1), (x2, y2), . . . , (xn, yn), x1 < x2 < . . . < xn, form

an n-cap if
y2 − y1

x2 − x1
>

y3 − y2

x3 − x2
> . . . >

yn − yn−1

xn − xn−1
.

Similarly, they form an n-cup if

y2 − y1

x2 − x1
<

y3 − y2

x3 − x2
< . . . <

yn − yn−1

xn − xn−1
.

Theorem 2 [Erdős and Szekeres 1935]. Let f(n,m) be the least integer such

that any set of f(n,m) points in general position in the plane contains either an

n-cap or an m-cup. Then

f(n,m) =

(

n + m − 4

n − 2

)

+ 1.

The following observation has a key role in the proof of the Erdős–Szekeres

theorem.

Observation 1. If a point v is the rightmost point of a cap and also the leftmost

point of a cup then the cap or the cup can be extended to a larger cap or cup,

respectively.

Proof. Let u be the second point of the cap from the right, and let w be the

second point of the cup from the left. Now, depending on the angle uvw, either

the cap can be extended by w, or the cup can be extended by u. See Figure 1. ˜

u

v

w

u

v

w

Figure 1. Either the cap can or the cup can be extended.

Proof that f(n,m) ≤
(

n+m−4
n−2

)

+ 1. We use double induction on n and m.

The statement trivially holds for n = 2 and any m, and for m = 2 and any

n. Let n,m ≥ 3 and suppose that the statement holds for (n,m−1) and for

(n−1,m). Take
(

n+m−4
n−2

)

+ 1 points in general position. By induction we know

that any subset of at least
(

n+m−5
n−3

)

+ 1 points contains either an (n−1)-cap or

an m-cup. In the latter case we are done, so we can assume that any subset of at

least
(

n+m−5
n−3

)

+1 points contains an (n−1)-cap. Take an (n−1)-cap and remove
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its right endpoint from the point set. Since we still have at least
(

n+m−5
n−3

)

+ 1

points, we have another (n−1)-cap, remove its right endpoint again, and continue

until we have
(

n+m−5
n−3

)

points left. We have removed
(

n+m−4
n−2

)

+ 1 −
(

n+m−5
n−3

)

=
(

n+m−5
m−3

)

+ 1 points, each of them a right endpoint of some (n−1)-cap. But the

set of these points, by induction, contains either an n-cap or an (m−)1-cup. In

the first case we are done. In the second case we have an (m−1)-cup whose left

endpoint v is the right endpoint of some (n−1)-cap. Observation 1 then finishes

the induction step. ˜

Proof of the Erdős–Szekeres theorem. Since ES(n) ≤ f(n, n), we have

ES(n) ≤
(

2n−4
n−2

)

+ 1. ˜

Erdős and Szekeres [1935] also proved that the bound f(n,m) ≤
(

n+m−4
n−2

)

+ 1

is tight for any n,m. But it does not imply that the bound for ES(n) is tight

as well. The best known lower bound is 2n−2 + 1 ≤ ES(n) [Erdős and Szekeres

1960/1961] and in fact it is conjectured to be tight.

4. Three Improvements

Theorem 3 [Chung and Graham 1998]. For n ≥ 4,

ES(n) ≤

(

2n − 4

n − 2

)

.

Proof. Take
(

2n−4
n−2

)

points in general position. Let A be the set of those points

which are right endpoints of some (n−1)-cap. Just as above, we can argue that

|A| ≥
(

2n−4
n−2

)

−
(

2n−5
n−3

)

=
(

2n−5
n−3

)

. If |A| >
(

2n−5
n−3

)

, then A contains either an n-cap

or an (n−1)-cup. In the first case we are done immediately, in the second we have

an (n−1)-cup whose left endpoint is also a right endpoint of some (n−1)-cap

and we are done as in the previous proof. So we can assume that |A| =
(

2n−5
n−3

)

.

Let B be the set of the other points, clearly |B| =
(

2n−5
n−3

)

. Let b ∈ B. The set

{b}∪A has size
(

2n−5
n−3

)

+1 so again it contains either an n-cap or an (n−1)-cup.

In the case of n-cap we are done, so we can assume that it contains an (n−1)-cup

for any choice of b. If the left endpoint of this (n−1)-cup is an element of A,

we are done by Observation 1, since we have an (n−1)-cup whose left endpoint

is also a right endpoint of some (n−1)-cap. So, the left endpoint of this (n−1)-

cup is b. Therefore, any b ∈ B is the left endpoint of an (n−1)-cup whose right

endpoint is in A. We can argue analogously, that any a ∈ A is the right endpoint

of an (n−1)-cap whose left endpoint is in B. Let S be the set of all segments

ab, where a ∈ A, b ∈ B, and there is an (n−1)-cup or (n−1)-cap whose right

endpoint is a and left endpoint is b. Let ab be the element of S with the largest

slope. Suppose that ab represents an (n−1)-cup, the other case is analogous.

We know that there is an (n−1)-cap whose right endpoint is a and left endpoint

is b′. Now it is easy to see that either the (n−1)-cup and b′, or the (n−1)-cap

and b determine a convex n-gon. This concludes the proof; see Figure 2. ˜
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b

b′
a

Figure 2. Either b′ can be added to the cup, or b to the cap.

Theorem 4 [Kleitman and Pachter 1998]. For n ≥ 4,

ES(n) ≤

(

2n − 4

n − 2

)

− 2n + 7.

Proof. We say that a point set is vertical if its two leftmost points have the

same x-coordinate. Observe, that any point set can be made vertical by an

appropriate rotation. We define caps and cups for vertical sets just like for any

set of points, the only difference is that now the vertical edge determined by

the two leftmost points is allowed to be the leftmost edge of a cup or a cap; see

Figure 3.

Let fv(n,m) be the least integer such that any vertical set of fv(n,m) points

in general position contains either an n-cap or an m-cup. Take fv(n,m)−1 points

in a vertical point set with no n-caps and m-cups. Let a and b be the two leftmost

points such that a is above b. Let A be the set of those points which are right

endpoints of some (n−1)-cap, and B be the set of the other points. Since the two

leftmost points do not belong to A, B is a vertical point set. If |B| ≥ fv(n−1,m)

then B has an (n−1)-cap or an m-cup. The first case contradicts the definition

of A, the second case contradicts the assumption that we do not have an m-cup.

So, |B| ≤ fv(n−1,m) − 1. Now consider the set A′ = A ∪ {b} and suppose that

|A′| ≥ f(n,m−1). Then A′ has an n-cap or an (m−1)-cup. The first case is a

contradiction immediately, in the second case consider the left endpoint of that

(m−1)-cup. If it is b, then it can be extended to an m-cup by a, a contradiction.

If it is in A, then the usual argument works, we have an (n−1)-cup whose left

endpoint is also a right endpoint of some (n−1)-cap and one of them can be

extended by Observation 1. So |A| = |A′| − 1 ≤ f(n,m−1) − 2. Combining the

two inequalities we get that

fv(n,m) ≤ fv(n−1,m) + f(n,m−1) − 2,
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and an analogous argument shows that

fv(n,m) ≤ fv(n,m−1) + f(n−1,m) − 2.

Using the known values of f(n,m), and that fv(n, 3) = fv(3, n) = n, we get that

fv(n,m) ≤
(

n+m−4
n−2

)

+ 7 − n − m, and the result follows. In fact, the inequality

obtained for fv(n,m) is sharp [Kleitman and Pachter 1998]. ˜

b

a

Figure 3. A vertical point set with a 5-cap.

Theorem 5 [Tóth and Valtr 1998]. For n ≥ 3,

ES(n) ≤

(

2n − 5

n − 2

)

+ 2.

Proof. Take
(

2n−5
n−3

)

points in general position. Suppose that the set P does

not contain n points in convex position. Let x be a vertex of the convex hull

of P . Let y be a point outside the convex hull of P such that none of the lines

determined by the points of P \ {x} intersects the segment xy. Finally, let ` be

a line through y which avoids the convex hull of P .

Consider a projective transformation T which maps the line ` to the line at

infinity, and maps the segment xy to the vertical half-line v−(x′), emanating

downwards from x′ = T (x). We get a point set P ′ = T (P ) from P . Since `

avoided the convex hull of P , the transformation T does not change convexity

on the points of P , that is, any subset of P is in convex position if and only

if the corresponding points of P ′ are in convex position. So the assumption

holds also for P ′, no n points of P ′ are in convex position. By the choice of the

point y, none of the lines determined by the points of P ′ \{x′} intersects v−(x′).

Therefore, any m-cap in the set Q′ = P ′ \{x′} can be extended by x′ to a convex

(m + 1)-gon.

Since no n points of P ′ are in convex position, Q′ cannot contain any n-cup

or (n−1)-cap. Therefore, by the Lemma,

|Q′| ≤ f(n−1, n) − 1 =

(

2n − 5

n − 2

)

, |P | ≤

(

2n − 5

n − 2

)

+ 1,

and the theorem follows. ˜
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x′

Figure 4. Any (n−1)-cap can be extended by x′ to a convex n-gon.

5. A Combination of Two Methods

Proof of Theorem 1. Suppose that the set P does not contain n points in

convex position and |P | =
(

2n−5
n−2

)

+ 1. Let x be a vertex of the convex hull of P

and y be a point outside the convex hull of P so close to x that none of the lines

determined by the points of P \ {x} intersects the segment xy. Finally, let ` be

a line through y which avoids the convex hull of P .

Consider a projective transformation T which maps the line ` to the line at

infinity, and maps the segment xy to the vertical half-line v−(x′), emanating

downwards from x′ = T (x). We get a point set P ′ from P . Just like in the

previous proof, T does not change convexity on the points of P . Let P ′′ =

P ′ \ {x′}. By the assumption, P ′′ does not contain any (n−1)-cap or n-cup.

Let A be the set of those points of P ′′ which are right endpoints of some

(n−2)-cap, and let B = P ′′ \ A. If |A| >
(

2n−6
n−3

)

then A contains either an

(n−1)-cap or an (n−1)-cup. The first case contradicts the assumption, in the

second case we have an (n−1)-cup whose left endpoint is also a right endpoint

of some (n−2)-cap, so, either the (n−1)-cup or the (n−2)-cap can be extended

by one point and we get a contradiction. So, |A| ≤
(

2n−6
n−3

)

. If |B| >
(

2n−6
n−2

)

,

then B contains either an (n−2)-cap or an n-cup. The first case contradicts the

definition of A, since we find a right endpoint of some (n−2)-cap in B, the second

case contradicts the assumption. So |B| ≤
(

2n−6
n−2

)

. But then |P ′′| = |A| + |B| ≤
(

2n−6
n−3

)

+
(

2n−6
n−2

)

=
(

2n−5
n−2

)

= |P ′′|, therefore, |A| =
(

2n−6
n−3

)

and |B| =
(

2n−6
n−2

)

.

Let b ∈ B. The set {b} ∪ A has size
(

2n−6
n−3

)

+ 1 so again it contains either an

(n−1)-cap or an (n−1)-cup. In the case of (n−1)-cap we are done, so we can

assume that it is an (n−1)-cup for any choice of b. If the left endpoint of this

(n−1)-cup is an element of A, we have an (n−1)-cup whose left endpoint is also

a right endpoint of some (n−2)-cap, so, either the (n−1)-cup or the (n−2)-cap

can be extended by one point and we get a contradiction again. Hence the left

endpoint of the (n−1)-cup is b. Therefore, any b ∈ B is the left endpoint of an
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u1

u2
u3

b=v1

v2

v3

v4

a=v5=u4

x′

Figure 5. x′, u1, u2, u3, v1, v2 determine a convex hexagon.

(n−1)-cup whose right endpoint is in A. We can argue analogously, considering

the sets {a} ∪ B, that any a ∈ A is the right endpoint of an (n−2)-cap whose

left endpoint is in B.

Let S be the set of all segments ab, where a ∈ A, b ∈ B, and there is ei-

ther an (n−1)-cup or (n−2)-cap whose right endpoint is a and left endpoint

is b. Let ab be the element of S with the largest slope. Suppose that ab

represents an (n−1)-cup. The argument in the other case is analogous. Let

b = v1, v2, . . . , vn−1 = a be the points of the (n−1)-cup from left to right. We

know that there is also an (n−2)-cap whose right endpoint is a and left end-

point in B. Let u1, u2, . . . , un−2 = a be its points from left to right. If un−3

lies above the line v1v2, then uj , v1, v2, . . . , vn−1 determine a convex n-gon and

we are done. Otherwise x′, u1, u2, . . . , un−3, v1, v2 determine a convex n-gon; see

Figure 5. This concludes the proof. ˜
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Rényi Institute
Hungarian Academy of Sciences
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On the Pair-Crossing Number

PAVEL VALTR

Abstract. By a drawing of a graph G, we mean a drawing in the plane
such that vertices are represented by distinct points and edges by arcs. The
crossing number cr(G) of a graph G is the minimum possible number of
crossings in a drawing of G. The pair-crossing number pair-cr(G) of G is
the minimum possible number of (unordered) crossing pairs in a drawing
of G. Clearly, pair-cr(G) ≤ cr(G) holds for any graph G. Let f(k) be the
maximum cr(G), taken over all graphs G with pair-cr(G) = k. Obviously,
f(k) ≥ k. Pach and Tóth [2000] proved that f(k) ≤ 2k

2. Here we give
a slightly better asymptotic upper bound f(k) = O(k2

/ log k). In case of
x-monotone drawings (where each vertical line intersects any edge at most

once) we get a better upper bound f
mon(k) ≤ 4k

4/3.

1. Introduction

By a drawing of a graph G, we mean a drawing in the plane such that vertices

are represented by distinct points and edges by arcs. The arcs are allowed to

cross, but they may not pass through vertices (except for their endpoints) and no

point is an internal point of three or more arcs. Two arcs may have only finitely

many common points. A crossing is a common internal point of two arcs. A

crossing pair is a pair of edges which cross each other at least once. A drawing

is planar, if there are no crossings in it. A subdrawing of a drawing is defined

analogously as a subgraph of a graph.

The crossing number cr(G) of a graph G is the minimum possible number of

crossings in a drawing of G. The pair-crossing number pair-cr(G) of G is the

minimum possible number of (unordered) crossing pairs in a drawing of G.

In this paper we investigate the relation between the crossing number and

the pair-crossing number. Clearly, pair-cr(G) ≤ cr(G) holds for any graph G.

The problem of deciding whether cr(G) = pair-cr(G) holds for every G appears

quite challenging. Let f(k) be the maximum cr(G), taken over all graphs G

with pair-cr(G) = k. Obviously, f(k) ≥ k. Pach and Tóth [2000] proved that

This work was supported by project 1M0021620808 of The Ministry of Education of the Czech
Republic.
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f(k) ≤ 2k2. In fact, they proved this bound in a stronger version when the

pair-crossing number is replaced by the so-called odd-crossing number, which is

the minimum number of pairs of edges in a drawing that cross each other an

odd number of times. Here we find a slightly better asymptotic upper bound on

f(k):

Theorem 1. f(k) = O(k2/ log k).

The improvement is small but its proof gives some insight to the structure of

possible counterexamples to f(k) = k.

We get a significantly subquadratic upper bound in the case of (x-)monotone

drawings. A drawing D is monotone if every edge is drawn as an x-monotone

curve, meaning that no vertical line intersects it more than once. The monotone

crossing number crmon(G) is the minimum possible number of crossings in a

monotone drawing of G. The monotone pair-crossing number pair-crmon(G) is

defined analogously— it is the minimum possible number of (unordered) crossing

pairs in a monotone drawing of G. Let fmon(k) be the maximum crmon(G), taken

over all graphs G with pair-crmon(G) = k. Obviously, fmon(k) ≥ k.

Theorem 2. fmon(k) ≤ 4k4/3.

Theorem 1 is proved in Section 2 and Theorem 2 in Section 3.

Remarks. 1. It is possible that our results hold also if the (monotone) pair-

crossing number is replaced by the so-called (monotone) odd-crossing number

(see [Pach and Tóth 2000] for the definition of the odd-crossing number and for

a similar result). We did not investigate this question.

2. Some related results can be found in [Kolman and Matoušek 2004]. In

particular, these authors prove that

cr(G) = O

(

log3 |V |

(

pair-cr(G) +
∑

v∈V

(deg v)2
))

for any graph G = (V,E).

3. One could hope to prove f(k) = k by a contradiction, considering local

modifications of a drawing witnessing f(k) > k. We tried this approach but it

does not seem to work in some straightforward way. Our difficulties with this

approach might have an explanation in an example [Kratochv́ıl and Matoušek

1994] of a drawing in which it is not possible to eliminate multiple crossings of

edge pairs without introducing new crossing pairs.

2. A Logarithmic Improvement over the Quadratic Bound

Here we give a simple proof of f(k) ≤ 2k2 and then refine the method, thereby

obtaining f(k) = O(k2/ log k).
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A simple proof of the quadratic bound. The bound f(k) ≤ 2k2 can be

proved easily; this was probably known to experts but, as far as we know, hasn’t

appeared in print. Let G be a graph with pair-cr(G) = k. Consider a drawing D0

of G witnessing pair-cr(G) = k. At most 2k edges, the bad edges, are involved

in at least one crossing in D0. The remaining edges, the good edges, form a

planar subdrawing Dpl of D0. Each of the bad edges is drawn in a single face of

Dpl. Let us choose a drawing D of G that extends Dpl such that each bad edge

is drawn within a single face of Dpl, and the number of crossings is minimized

among all such drawings.

We now show that every two edges cross at most once in the drawing D.

Suppose on the contrary that x1, x2 are common crossings of two edges e, f . We

swap the portions of e and f between x1 and x2, thereby eliminating x1, x2 and

introducing no new crossings (see Figure 1). If the swap creates selfintersections

of e or f , we easily eliminate them without introducing any new crossings (see

Figure 2). We get a contradiction with the minimum number of crossings in D.

f

e

x1 x2

e

f

e

f

e

f

x1 x2

Figure 1. Swapping e, f between x1, x2 (two cases).

Figure 2. Eliminating selfintersections of an edge.

Thus, any two edges in D cross each other at most once.

It follows that there are at most
(

2k
2

)

≤ 2k2 crossings in D.
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The logarithmic improvement. Here we prove Theorem 1. Let G be a

graph with pair-cr(G) = k. Let us consider a drawing D0 of G witnessing

pair-cr(G) = k. Let t be a suitable parameter to be fixed later (it will be of

order log k). Let us call an edge of G good if it crosses no edge in the drawing

D0, light if it crosses at least one and at most t edges in D0, and heavy if it

crosses more than t edges in D0. Although we later redraw light and heavy

edges several times, the notation “good”, “light”, or “heavy” is fixed for each

edge of G by the above definition. Let l be the number of light edges and h the

number of heavy edges.

Let D1 be the subdrawing of D0 formed by the good and light edges, and let

Dpl be its planar subdrawing formed by the good edges only.

Consider a cell of Dpl. Suppose that some light edge in this cell crosses at

least 2t other light edges. Then we can decrease the number of crossings in D1

without introducing any new crossing pair of edges, as can be seen from the

following result of Schaefer and Štefankovič [2004] (implicitly contained in the

proof of their Theorem 3.2): Let D be a drawing of a graph G, and let e be an

edge of G that crosses at most t other edges in D. Suppose that e has at least 2t

crossings in D. Then the edge e and the edges crossing it can be redrawn (within

a small neighborhood of e) in such a way that the obtained drawing D′ of G has

fewer crossings than D and that there are no new crossing pairs of edges in D′

(compared to D).

Applying the result of Schaefer and Štefankovič finitely many times, we obtain

a redrawing D2 of D1 with the same or smaller number of crossing pairs, such

that each light edge is redrawn within the same face of Dpl and is involved in

at most 2t − 1 crossings. Thus, there are at most l · (2t − 1)/2 crossings in D2

(recall that l is the number of light edges).

Now, let D3 be a redrawing of D2 such that each light edge is redrawn within

the same face of Dpl and that the number of crossings in D3 is minimized. D3 has

at most as many crossings as D2, i.e., at most l · (2t − 1)/2 crossings. Moreover,

every two edges in D3 cross each other at most once (otherwise we could argue

analogously as in Figs. 1 and 2).

Finally, we add the heavy edges to the drawing D3, in such a way that each

heavy edge is drawn in the same face of Dpl as in D0, the number of heavy-light1

crossings is minimized, and subject to this, the number of heavy-heavy crossings

is minimized. Let D4 be the obtained drawing of G.

We claim that each heavy edge crosses any other edge at most once. To see

this, first suppose that a heavy edge e crosses a light edge f at least twice, and

let x1 and x2 be two crossings of e and f . Let ze be the number of crossings

of the portion of e between x1 and x2 with light edges, and similarly for zf . If

zf ≤ ze, then e can be routed along f between x1 and x2, thereby decreasing

1A crossing is heavy-light, if it is a crossing of a heavy edge with a light edge. Heavy-heavy

and light-light crossings are defined analogously.
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the number of heavy-light crossings. See Figure 3. Possible selfintersections of e

are eliminated as in Figure 2. If zf > ze, then the drawing D3 did not have the

e

f

e

f

x1 x2

x1 x2

e

f

e

f

Figure 3. Rerouting e along f between x1 and x2 (two cases).

minimum number of crossings, as the number of crossings in it could be decreased

by routing f along e. Again, possible selfintersections of f are eliminated as in

Figure 2.

Similarly, suppose that two heavy edges e and f cross at least twice, and let

x1, x2 be two of their common crossings. Then swapping the portions of e and

f between x1 and x2 eliminates x1 and x2; see Figure 1. (As above, possible

selfintersections of e or f are eliminated as in Figure 2.)

Thus, the heavy edges are involved in at most
(

h
2

)

+ h · l ≤ h(h + l) ≤ h · 2k

crossings. The good edges are involved in no crossings and the number of light-

light crossings is at most l · (2t − 1)/2. Thus, the total number of crossings in

D4 is at most h · 2k + l · (2t − 1)/2. Using the obvious inequalities l ≤ 2k and

h ≤ 2k/t, this is at most O(k2/t + k2t). Setting t = 1

2
log

2
k, say, gives the

claimed bound. The proof of Theorem 1 is complete.

3. Monotone Drawings

In this section we prove Theorem 2. Let G be a graph with pair-crmon(G) = k.

Among all monotone drawings of G witnessing pair-crmon(G) = k, we choose a

drawing D with the minimum number of crossings. We define good, light , and

heavy edges in D in the same way as in the proof of Theorem 1 (now, the

parameter t will be equal to k1/3).

Lemma 1. Let e be a light edge in D. Then e intersects each edge at most 2t−1

times.

Proof. Consider an edge f ∈ E(D), f 6= e. Since D is monotone, each pair of

consecutive common crossings of e, f determines a lens bounded by one of the

edges e, f from above and by the other one from below. Let L be such a lens.
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We claim that at least one edge intersecting e has an endpoint inside L.

Suppose that this is not true. A sling in L is a continuous portion of an edge

such that it is contained in L and its endpoints lie on e (see Figure 4). If there

were some slings in L, we could reroute them along e (and outside L) in such

a way that no new crossing pairs are introduced and the number of crossings is

decreased (see Figure 4). Thus, there are no slings in L. It follows that rerouting

e

f

L
L

e

f

x1 x2 x1 x2

Figure 4. Three slings (bold) in a lens L determined by e, f and rerouting these

slings along e.

f along e at the lens L (see Figure 5) decreases the number of crossings and

introduces no new crossing pairs— a contradiction with the choice of D. Thus,

there had to be an edge intersecting e and having an endpoint inside L.

e

f

x1 x2
e

f

L

Figure 5. Rerouting f along e at the lens L.

Since at most t edges intersect e (e is light), it follows that there are at most

2(t − 1) lenses determined by e, f . Thus, e, f cross each other at most 2t − 1

times. ˜

There are k crossing pairs in D. By Lemma 1, each crossing pair involving

at least one light edge has at most 2t − 1 common crossings. Thus, there are at

most k(2t − 1) crossings involving at least one light edge.

We redraw the heavy edges so that there are no crossings with good edges, the

number of heavy-light crossings is minimized, and subject to this, the number

of heavy-heavy crossings is minimized.

The obtained drawing has at most k(2t − 1) crossings involving at least one

light edge. Moreover, any two heavy edges cross at most once, for otherwise we

could get a better drawing by swapping these two edges as in Figure 1 (top).

Since there are at most b2k/tc heavy edges, the total number of crossings is at

most k(2t− 1) +
(

b2k/tc
2

)

. Choosing t = k1/3, this is at most 4k4/3. This finishes

the proof of Theorem 2.
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Geometric Random Walks: A Survey

SANTOSH VEMPALA

Abstract. The developing theory of geometric random walks is outlined
here. Three aspects —general methods for estimating convergence (the
“mixing” rate), isoperimetric inequalities in Rn and their intimate connec-
tion to random walks, and algorithms for fundamental problems (volume
computation and convex optimization) that are based on sampling by ran-
dom walks —are discussed.

1. Introduction

A geometric random walk starts at some point in R
n and at each step, moves

to a “neighboring” point chosen according to some distribution that depends

only on the current point, e.g., a uniform random point within a fixed distance

δ. The sequence of points visited is a random walk. The distribution of the

current point, in particular, its convergence to a steady state (or stationary)

distribution, turns out to be a very interesting phenomenon. By choosing the

one-step distribution appropriately, one can ensure that the steady state distri-

bution is, for example, the uniform distribution over a convex body, or indeed

any reasonable distribution in R
n.

Geometric random walks are Markov chains, and the study of the existence

and uniqueness of and the convergence to a steady state distribution is a classical

field of mathematics. In the geometric setting, the dependence on the dimension

(called n in this survey) is of particular interest. Pólya proved that with prob-

ability 1, a random walk on an n-dimensional grid returns to its starting point

infinitely often for n ≤ 2, but only a finite number of times for n ≥ 3.

Random walks also provide a general approach to sampling a geometric distri-

bution. To sample a given distribution, we set up a random walk whose steady

state is the desired distribution. A random (or nearly random) sample is ob-

tained by taking sufficiently many steps of the walk. Basic problems such as

optimization and volume computation can be reduced to sampling. This con-
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nection, pioneered by the randomized polynomial-time algorithm of Dyer, Frieze

and Kannan [1991] for computing the volume of a convex body, has lead to many

new developments in recent decades.

In order for sampling by a random walk to be efficient, the distribution of

the current point has to converge rapidly to its steady state. The first part

of this survey (Section 3) deals with methods to analyze this convergence, and

describes the most widely used method, namely, bounding the conductance, in

detail. The next part of the survey is about applying this to geometric random

walks and the issues that arise therein. Notably, there is an intimate connection

with geometric isoperimetric inequalities. The classical isoperimetric inequality

says that among all measurable sets of fixed volume, a ball of this volume is the

one that minimizes the surface area. Here, one is considering all measurable sets.

In contrast, we will encounter the following type of question: Given a convex set

K, and a number t such that 0 < t < 1, what subset S of volume t · vol(K) has

the smallest surface area inside K (i.e., not counting the boundary of S that is

part of the boundary of K)? The inequalities that arise are interesting in their

own right.

The last two sections describe polynomial-time algorithms for minimizing a

quasi-convex function over a convex body and for computing the volume of a

convex body. The random walk approach can be seen as an alternative to the

ellipsoid method. The application to volume computation is rather remarkable

in the light of results that no deterministic polynomial-time algorithm can ap-

proximate the volume to within an exponential (in n) factor. In Section 9, we

briefly discuss the history of the problem and describe the latest algorithm.

Several topics related to this survey have been addressed in detail in the

literature. For a general introduction to discrete random walks, the reader is

referred to [Lovász 1996] or [Aldous and Fill ≥ 2005]. There is a survey by

Kannan [1994] on applications of Markov chains in polynomial-time algorithms.

For an in-depth account of the volume problem that includes all but the most

recent improvements, there is a survey by Simonovits [2003] and an earlier article

by Bollobás [1997].

Three walks. Before we introduce various concepts and tools, let us state

precisely three different ways to walk randomly in a convex body K in R
n. It

might be useful to keep these examples in mind. Later, we will see generalizations

of these walks.

The Grid Walk is restricted to a discrete subset of K, namely, all points in K

whose coordinates are integer multiples of a fixed parameter δ. These points form

a grid, and the neighbors of a grid point are the points reachable by changing

any one coordinate by ±δ. Let e1, . . . , en denote the coordinate vectors in R
n;

then the neighbors of a grid point x are {x ± δei}. The grid walk tries to move

to a random neighboring point.
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Grid Walk (δ)

• Pick a grid point y uniformly at random from the neighbors of the current

point x.

• If y is in K, go to y; else stay at x.

The Ball Walk tries to step to a random point within distance δ of the current

point. Its state space is the entire set K.

Ball Walk (δ)

• Pick a uniform random point y from the ball of radius δ centered at the

current point x.

• If y is in K, go to y; else stay at x.

Hit-and-run picks a random point along a random line through the current point.

It does not need a “step-size” parameter. The state space is again all of K.

Hit-and-run

• Pick a uniform random line ` through the current point x.

• Go to a uniform random point on the chord ` ∩ K.

To implement the first step of hit-and-run, we can generate n independent ran-

dom numbers, u1, . . . , un each from the standard Normal distribution, and then

the direction of the vector u = (u1, . . . , un) is uniformly distributed. For the

second step, using the membership oracle for K, we find an interval [a, b] that

contains the chord through x parallel to u so that |a − b| is at most twice (say)

the length of the chord (this can be done by a binary search with a logarithmic

overhead). Then pick random points in [a, b] till we find one in K.

For the first step of the ball walk, in addition to a random direction u, we

generate a number r in the range [0, δ] with density f(x) proportional to xn−1

and then z = ru/|u| is uniformly distributed in a ball of radius δ.

Do these random walks converge to a steady state distribution? If so, what

is it? How quickly do they converge? How does the rate of convergence depend

on the convex body K?

These are some of the questions that we will address in analyzing the walks.

2. Basic Definitions

Markov chains. A Markov chain is defined using a σ-algebra (K, A), where K

is the state space and A is a set of subsets of K that is closed under complements

and countable unions. For each element u of K, we have a probability measure

Pu on (K, A), i.e., each set A ∈ A has a probability Pu(A). Informally, Pu is the

distribution obtained on taking one step from u. The triple (K, A, {Pu : u ∈ K})
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along with a starting distribution Q0 defines a Markov chain, i.e., a sequence of

elements of K, w0, w1, . . ., where w0 is chosen from Q0 and each subsequent

wi is chosen from Pwi−1
. Thus, the choice of wi+1 depends only on wi and is

independent of w0, . . . , wi−1.

A distribution Q on (K, A) is called stationary if one step from it gives the

same distribution, i.e., for any A ∈ A,
∫

A

Pu(A) dQ(u) = Q(A).

A distribution Q is atom-free if there is no x ∈ K with Q(x) > 0.

The ergodic flow of subset A with respect to the distribution Q is defined as

Φ(A) =

∫

A

Pu(K \ A) dQ(u).

It is easy to verify that a distribution Q is stationary iff Φ(A) = Φ(K \A). The

existence and uniqueness of the stationary distribution Q for general Markov

chains is a rather technical issue that is not covered in this survey; see [Revuz

1975].1 In all the chains we study in this survey, the stationary distribution will

be given explicitly and can be easily verified. To avoid the issue of uniqueness of

the stationary distribution, we only consider lazy Markov chains. In a lazy ver-

sion of a given Markov chain, at each step, with probability 1/2, we do nothing;

with the rest we take a step according to the Markov chain. The next theorem is

folklore and will also be implied by convergence theorems that we present later.

Theorem 2.1. If Q is stationary with respect to a lazy Markov chain then it is

the unique stationary distribution for that Markov chain.

For some additional properties of lazy Markov chains, see [Lovász and Simonovits

1993, Section 1]. We will hereforth assume that the distribution in the definition

of Φ is the unique stationary distribution.

The conductance of a subset A is defined as

φ(A) =
Φ(A)

min{Q(A), Q(K \ A)}

and the conductance of the Markov chain is

φ = min
A

φ(A) = min
0<Q(A)≤ 1

2

∫

A
Pu(K \ A) dQ(u)

Q(A)
.

The local conductance of an element u is `(u) = 1 − Pu({u}).

The following weaker notion of conductance will also be useful. For any 0 ≤

s < 1
2 , the s-conductance of a Markov chain is defined as

φs = min
A:s<Q(A)≤ 1

2

Φ(A)

Q(A) − s
.

1For Markov chains on discrete state spaces, the characterization is much simpler; see
[Norris 1998], for example.
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Comparing distributions. We will often have to compare two distributions

P and Q (typically, the distribution of the current point and the stationary

distribution). There are many reasonable ways to do this. Here are three that

will come up.

(i) The total variation distance of P and Q is

‖P − Q‖tv = sup
A∈A

|P (A) − Q(A)|.

(ii) The L2 distance of P with respect to Q is

‖P/Q‖ =

∫

K

dP (u)

dQ(u)
dP (u) =

∫

K

(

dP (u)

dQ(u)

)2

dQ(u).

(iii) P is said to be M-warm with respect to Q if

M = sup
A∈A

P (A)

Q(A)
.

If Q0 is O(1)-warm with respect to the stationary distribution Q for some

Markov chain, we say that Q0 is a warm start for Q.

Convexity. Convexity plays a key role in the convergence of geometric random

walks. The following notation and concepts will be used.

The unit ball in R
n is Bn and its volume is vol(Bn). For two subsets A,B of

R
n, their Minkowski sum is

A + B = {x + y : x ∈ A, y ∈ B}.

The Brunn-Minkowski theorem says that if A,B and A+B are measurable, then

vol(A + B)1/n ≥ vol(A)1/n + vol(B)1/n. (2–1)

Recall that a subset S of R
n is convex if for any two points x, y ∈ S, the

interval [x, y] ⊆ S. A function f : R
n → R+ is said to be logconcave if for any

two points x, y ∈ R
n and any λ ∈ [0, 1],

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ.

The product and the minimum of two logconcave functions are both logcon-

cave; the sum is not in general. The following fundamental properties, proved

by Dinghas [1957], Leindler [1972] and Prékopa [1973; 1971], are often useful.

Theorem 2.2. All marginals as well as the distribution function of a logcon-

cave function are logconcave. The convolution of two logconcave functions is

logconcave.

Logconcave functions have many properties that are reminiscent of convexity.

For a logconcave density f , we denote the induced measure by πf and its centroid

by zf = Ef (X). The second moment of f refers to Ef (|X−zf |
2). The next three

lemmas are chosen for illustration from [Lovász and Vempala 2003c]. The first
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one was proved earlier by Grünbaum [1960] for the special case of the uniform

density over a convex body. We will later see a further refinement of this lemma

that is useful for optimization.

Lemma 2.3. Let f : R
n → R+ be a logconcave density function, and let H be

any halfspace containing its centroid . Then
∫

H

f(x) dx ≥
1

e
.

Lemma 2.4. If X is drawn from a logconcave distribution in R
n, then for any

integer k > 0,

E(|X|k)1/k ≤ 2kE(|X|).

Note that this can be viewed as a converse to Hölder’s inequality which says that

E(|X|k)1/k ≥ E(|X|).

Lemma 2.5. Let X ∈ R
n be a random point from a logconcave distribution with

second moment R2. Then P(|X| > tR) < e−t+1.

A density function f : R
n → R+ is said to be isotropic, if its centroid is the

origin, and its covariance matrix is the identity matrix. This latter condition

can be expressed in terms of the coordinate functions as
∫

Rn

xixjf(x) dx = δij

for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector

v ∈ R
n,

∫

Rn

(vT x)2f(x) dx = |v|2.

In terms of the associated random variable X, this means that

E(X) = 0 and E(XXT ) = I.

We say that f is near-isotropic up to a factor of C or C-isotropic, if

1

C
≤

∫

Rn

(vT x)2 dπf (x) ≤ C

for every unit vector v. The notions of “isotropic” and “near-isotropic” extend

to nonnegative integrable functions f , in which case we mean that the density

function f/
∫

Rn f is isotropic. For any full-dimensional integrable function f with

bounded second moment, there is an affine transformation of the space bringing

it to isotropic position, and this transformation is unique up to an orthogonal

transformation of the space. Indeed if f is not isotropic, we can make the centroid

be the origin by a translation. Next, compute A = E(XXT ) for the associated

random variable X. Now A must be positive semi-definite (since each XXT is)

and so we can write A = BBT for some matrix B. Then the transformation

B−1 makes f isotropic.
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It follows that for an isotropic distribution in R
n, the second moment is

E(|X|2) =
∑

i

E(X2
i ) = n.

Further, Lemma 2.5 implies that for an isotropic logconcave distribution f ,

P(X > t
√

n ) < e−t,

which means that most of f is contained in a ball of radius O(
√

n), and this is

sometimes called its effective diameter.

Computational model. If the input to an algorithm is a convex body K in

R
n, we assume that it is given by a membership oracle which on input x ∈ R

n

returns Yes if x ∈ K and No otherwise. In addition we will have some bounds

on K — typically, Bn ⊆ K ⊆ RBn, i.e., K contains a unit ball around the origin

and is contained in a ball of given radius. It is enough to have any point x in K

and the guarantee that a ball of radius r around x is contained in K and one of

radius R contains K (by translation and scaling this is equivalent to the previous

condition). Sometimes, we will need a separation oracle for K, i.e., a procedure

which either verifies that a given point x is in K or returns a hyperplane that

separates x from K. The complexity of the algorithm will be measured mainly

by the number of oracle queries, but we will also keep track of the number of

arithmetic operations.

In the case of a logconcave density f , we have an oracle for f , i.e., for any

point x it returns Cf(x) where C is an unknown parameter independent of x.

This is useful when we know a function proportional to the desired density, but

not its integral, e.g., in the case of the uniform density over a bounded set, all we

need is the indicator function of the support. In addition, we have a guarantee

that the centroid of f satisfies |zf |
2 < Z and the eigenvalues of the covariance

matrix of f are bounded from above and below by two given numbers. Again,

the complexity is measured by the number of oracle calls. We will say that an

algorithm is efficient if its complexity is polynomial in the relevant parameters.

To emphasize the essential dependence on the dimension we will sometimes use

the O∗(.) notation which suppresses logarithmic factors and also the dependence

on error parameters. For example, n log n/ε = O∗(n).

Examples. For the ball walk in a convex body, the state space K is the convex

body, and A is the set of all measurable subsets of K. Further,

Pu({u}) = 1 −
vol (K ∩ (u + δBn))

vol(δBn)

and for any measurable subset A, such that u 6∈ A,

Pu(A) =
vol (A ∩ (u + δBn))

vol(δBn)
.
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If u ∈ A, then

Pu(A) = Pu(A \ {u}) + Pu({u}).

It is straightforward to verify that the uniform distribution is stationary, i.e.,

Q(A) =
vol(A)

vol(K)
.

For hit-and-run, the one-step distribution for a step from u ∈ K is given as

follows. For any measurable subset A of K,

Pu(A) =
2

voln−1(∂Bn)

∫

A

dx

`(u, x)|x − u|n−1
(2–2)

where `(u, x) is the length of the chord in K through u and x. The uniform

distribution is once again stationary. One way to see this is to note that the

one-step distribution has a density function and the density of stepping from u

to v is the same as that for stepping from v to u.

These walks can be modified to sample much more general distributions. Let

f : R
n → R+ be a nonnegative integrable function. It defines a measure πf (on

measurable subsets of R
n):

πf (A) =

∫

A
f(x) dx

∫

Rn f(x) dx
.

The following extension of the ball walk, usually called the ball walk with a

Metropolis filter has πf as its stationary distribution (it is a simple exercise to

prove, but quite nice that this works).

Ball walk with Metropolis filter (δ, f)

• Pick a uniformly distributed random point y in the ball of radius δ centered

at the current point x.

• Move to y with probability min
{

1, f(y)
f(x)

}

; stay at x with the remaining

probability.

Hit-and-run can also be extended to sampling from such a general distribution

πf . For any line ` in R
n, let π`,f be the restriction of π to `, i.e.,

π`,f (S) =

∫

p+tu∈S
f(p + tu) dt

∫

`
f(x) dx

,

where p is any point on ` and u is a unit vector parallel to `.

Hit-and-run (f)

• Pick a uniform random line ` through the current point x.

• Go to a random point y along ` chosen from the distribution π`,f .
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Once again, it is easy to verify that πf is the stationary distribution for this

walk. One way to carry out the second step is to use a binary search to find

the point p on ` where the function is maximal, and the points a and b on both

sides of p on ` where the value of the function is εf(p). We allow a relative error

of ε, so the number of oracle calls is only O(log(1/ε)). Then select a uniformly

distributed random point y on the segment [a, b], and independently a uniformly

distributed random real number in the interval [0, 1]. Accept y if f(y) > rf(p);

else, reject y and repeat.

3. Convergence and Conductance

So far we have seen that random walks can be designed to approach any

reasonable distribution in R
n. For this to lead to an efficient sampling method,

the convergence to the stationary distribution must be fast. This section is

devoted to general methods for bounding the rate of convergence.

One way to define the mixing rate of a random walk is the number of steps

required to reduce some measure of the distance of the current distribution to

the stationary distribution by a factor of 2 (e.g., one of the distance measures

from page 581). We will typically use the total variation distance. For a discrete

random walk (i.e., the state space is a finite set), the mixing rate is character-

ized by the eigenvalues gap of the transition matrix P whose ijth entry is the

probability of stepping from i to j, conditioned on currently being at i. Let

λ1 ≥ λ2 . . . ≥ λn be the eigenvalues of P . The top eigenvalue is 1 (by the defini-

tion of stationarity) and let λ = max{λ2, |λn|} (in the lazy version of any walk,

all the λi are nonnegative and λ = λ2). Then, for a random walk starting at

the point x, with Qt being the distribution after t steps, the following bound on

the convergence can be derived (see [Lovász 1996], for example). For any point

y ∈ K,

|Qt(y) − Q(y)| ≤

√

Q(y)

Q(x)
λt. (3–1)

Estimating λ can be difficult or impractical even in the discrete setting (if, for

example, the state space is too large to write down P explicitly).

Intuitively, a random walk will “mix” slowly if it has a bottleneck, i.e., a

partition S,K \ S of its state space, such that the probability of stepping from

S to K \ S (the ergodic flow out of S) is small compared to the measures of S

and K \S. Note that this ratio is precisely the conductance of S, φ(S). It takes

about 1/φ(S) steps in expectation to even go from one side to the other. As we

will see in this section, the mixing rate is bounded from above by 2/φ2. Thus,

conductance captures the mixing rate upto a quadratic factor. This was first

proved for discrete Markov chains by Jerrum and Sinclair [1989] who showed

that conductance can be related to the eigenvalue gap of the transition matrix.

A similar relationship for a related quantity called expansion was found by Alon
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[1986] and by Dodziuk and Kendall [1986]. The inequality below is a discrete

analogue of Cheeger’s inequality in differential geometry.

Theorem 3.1.
φ2

2
≤ 1 − λ ≤ 2φ.

As a consequence of this and (3–1), we get that for a discrete random walk

starting at x, and any point y ∈ K,

|Qt(y) − Q(y)| ≤

√

Q(y)

Q(x)

(

1 −
φ2

2

)t

. (3–2)

For the more general continuous setting, Lovász and Simonovits [1993] proved

the connection between conductance and convergence. Their proof does not use

eigenvalues. We will sketch it here since it is quite insightful, but does not

seem to be well-known. It also applies to situations where the conductance can

be bounded only for subsets of bounded size (i.e., the s-conductance, φs, can

be bounded from below for some s > 0). We remind the reader that we have

assumed that our Markov chains are lazy.

To show convergence, we need to prove that |Qt(A) − Q(A)| falls with t for

every measurable subset A of K. However, this quantity might converge at

different rates for different subsets. So we consider

sup
A:Q(A)=x

Qt(A) − Q(A)

for each x ∈ [0, 1]. A bound for every x would imply what we want. To prove

inductively that this quantity decreases with t, Lovász and Simonovits define the

following formal upper bound. Let Gx be the set of functions defined as

Gx =

{

g : K → [0, 1] :

∫

u∈K

g(u) dQ(u) = x

}

.

Using this, define

ht(x) = sup
g∈Gx

∫

u∈K

g(u) (dQt(u) − dQ(u)) = sup
g∈Gx

∫

u∈K

g(u) dQt(u) − x,

It is clear that for A with Q(A) = x, ht(x) ≥ Qt(A) − Q(A) since the indicator

function of A is in Gx. The function ht(x) has the following properties.

Lemma 3.2. Let t be a positive integer .

a. The function ht is concave.

b. If Q is atom-free, then ht(x) = supA:Q(A)=x Qt(A)−Q(A) and the supremum

is achieved by some subset .

c. Let Q be atom-free and t ≥ 1. For any 0 ≤ x ≤ 1, let y = min{x, 1 − x}.

Then,

ht(x) ≤ 1
2ht−1(x − 2φy) + 1

2ht−1(x + 2φy).
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The first part of the lemma is easily verified. We sketch the second part: to

maximize ht, we should use a function g that puts high weight on points u with

dQt(u)/dQ(u) as high as possible. Let A be a subset with Q(A) = x, so that

for any point y not in A, the value of dQt(y)/dQ(y) is no more than the value

for any point in A (i.e., A consists of the top x fraction of points according to

dQt(u)/dQ(u)). Let g be the corresponding indicator function. These points

give the maximum payoff per unit of weight, so it is optimal to put as much

weight on them as possible. We mention in passing that the case when Q has

atoms is a bit more complicated, namely we might need to include one atom

fractionally (so that Q(A) = x). In the general case, ht(x) can be achieved by a

function g that is 0 − 1 valued everywhere except for at most one point.

The third part of the lemma, which is the key to convergence, is proved below.

Proof of Lemma 3.2c. Assume that 0 ≤ x ≤ 1
2 . The other range is proved

in a similar way. We will construct two functions, g1 and g2, and use these to

bound ht(x). Let A be a subset to be chosen later with Q(A) = x. Let

g1(u) =

{

2Pu(A) − 1 if u ∈ A,

0 if u /∈ A,
and g2(u) =

{

1 if u ∈ A,

2Pu(A) if u /∈ A.

First, note that 1
2 (g1 + g2)(u) = Pu(A) for all u ∈ K, which means that

1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) =

∫

u∈K

Pu(A) dQt−1(u)

= Qt(A). (3–3)

By the laziness of the walk (Pu(A) ≥ 1
2 iff u ∈ A), the range of the functions g1

and g2 is between 0 and 1 and if we let

x1 =

∫

u∈K

g1(u) dQ(u) and x2 =

∫

u∈K

g2(u) dQ(u),

then g1 ∈ Gx1
and g2 ∈ Gx2

. Further,

1

2
(x1 + x2) =

1

2

∫

u∈K

g1(u) dQ(u) +
1

2

∫

u∈K

g2(u) dQ(u)

=

∫

u∈K

Pu(A) dQ(u) = Q(A) = x

since Q is stationary. Next, since Q is atom-free, there is a subset A ⊆ K that

achieves ht(x). Using this and (3–3),

ht(x) = Qt(A) − Q(A)

=
1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) − Q(A)

=
1

2

∫

u∈K

g1(u) (dQt−1(u) − dQ(u)) +
1

2

∫

u∈K

g2(u) (dQt−1(u) − dQ(u))

≤
1

2
ht−1(x1) +

1

2
ht−1(x2).
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0 x1 x(1−2ϕ) x x(1+2ϕ) x2 1

ht

ht−1

Figure 1. Bounding ht.

We already know that x1 + x2 = 2x. In fact, x1 and x2 are separated from x.

x1 =

∫

u∈K

g1(u) dQ(u)

= 2

∫

u∈A

Pu(A) dQ(u) −

∫

u∈A

dQ(u)

= 2

∫

u∈A

(1 − Pu(K \ A)) dQ(u) − x

= x − 2

∫

u∈A

Pu(K \ A) dQ(u)

= x − 2Φ(A)

≤ x − 2φx

= x(1 − 2φ).

(In the penultimate step, we used the fact that x ≤ 1
2 .) Thus we have,

x1 ≤ x(1 − 2φ) ≤ x ≤ x(1 + 2φ) ≤ x2.

Since ht−1 is concave, the chord from x1 to x2 on ht−1 lies below the chord from

x(1 − 2φ) to x(1 + 2φ) (see Figure 1). Therefore,

ht(x) ≤ 1
2ht−1(x(1 − 2φ)) + 1

2ht−1(x(1 + 2φ))

which is the conclusion of the lemma. ˜

In fact, a proof along the same lines implies the following generalization of part

(c).

Lemma 3.3. Let Q be atom-free and 0 ≤ s ≤ 1. For any s ≤ x ≤ 1 − s, let

y = min{x − s, 1 − x − s}. Then for any integer t > 0,

ht(x) ≤
1

2
ht−1(x − 2φsy) +

1

2
ht−1(x + 2φsy).

Given some information about Q0, we can now bound the rate of convergence to

the stationary distribution. We assume that Q is atom-free in the next theorem
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and its corollary. These results can be extended to the case when Q has atoms

with slightly weaker bounds [Lovász and Simonovits 1993].

Theorem 3.4. Let 0 ≤ s ≤ 1 and C0 and C1 be such that

h0(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}.

Then

ht(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}

(

1 −
φ2

s

2

)t

.

Proof. By induction on t. The inequality is true for t = 0 by the hypothesis.

Now, suppose it holds for all values less than t. Assume s = 0 (for convenience)

and without loss of generality that x ≤ 1/2. From Lemma 3.3, we know that

ht(x) ≤
1

2
ht−1(x(1 − 2φ)) +

1

2
ht−1(x(1 + 2φ))

≤ C0 +
1

2
C1

(

√

x(1 − 2φ) +
√

x(1 + 2φ)
)

(

1 −
φ2

2

)t−1

= C0 +
1

2
C1

√
x

(

√

1 − 2φ +
√

1 + 2φ
)

(

1 −
φ2

2

)t−1

≤ C0 + C1

√
x

(

1 −
φ2

2

)t

.

Here we have used
√

1 − 2φ +
√

1 + 2φ ≤ 2(1 − φ2

2 ). ˜

The following corollary, about convergence from various types of “good” starting

distributions, gives concrete implications of the theorem.

Corollary 3.5. a. Let M = supA Q0(A)/Q(A). Then,

‖Qt − Q‖tv ≤
√

M

(

1 −
φ2

2

)t

.

b. Let 0 < s ≤ 1
2 and Hs = sup{|Q0(A) − Q(A)| : Q(A) ≤ s}. Then,

‖Qt − Q‖tv ≤ Hs +
Hs

s

(

1 −
φ2

s

2

)t

.

c. Let M = ‖Q0/Q‖. Then for any ε > 0,

‖Qt − Q‖tv ≤ ε +

√

M

ε

(

1 −
φ2

2

)t

.

Proof. The first two parts are straightforward. For the third, observe that the

L2 norm,

‖Q0/Q‖ = EQ0

(

dQ0(x)

dQ(x)

)

.

So, for 1−ε of Q0, dQ0(x)/dQ(x) ≤ M/ε. We can view the starting distribution

as being generated as follows: with probability 1 − ε it is a distribution with
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sup Q0(A)/Q(A) ≤ M/ε; with probability ε it is some other distribution. Now

using part (a) implies part (c). ˜

Conductance and s-conductance are not the only known ways to bound the rate

of convergence. Lovász and Kannan [1999] have extended conductance to the

notion of blocking conductance which is a certain type of average of the conduc-

tance over various subset sizes (see also [Kannan et al. 2004]). In some cases, it

provides a sharper bound than conductance. Let φ(x) denote the minimum con-

ductance over all subsets of measure x. Then one version of their main theorem

is the following.

Theorem 3.6. Let π0 be the measure of the starting point . Then, after

t > C ln

(

1

ε

)
∫ 1

2

π0

dx

xφ(x)2

steps, where C is an absolute constant , we have ‖Qt − Q‖tv ≤ ε.

The theorem can be extended to continuous Markov chains. Another way to

bound convergence which we do not describe here is via the log-Sobolev inequal-

ities [Diaconis and Saloff-Coste 1996].

4. Isoperimetry

How to bound the conductance of a geometric random walk? To show that

the conductance is large, we have to prove that for any subset A ⊂ K, the

probability that a step goes out of A is large compared to Q(A) and Q(K \ A).

To be concrete, consider the ball walk. For any particular subset S, the points

that are likely to “cross over” to K \S are those that are “near” the boundary of

S inside K. So, showing that φ(S) is large seems to be closely related to showing

that there is a large volume of points near the boundary of S inside K. This

section is devoted to inequalities which will have such implications and will play

a crucial role in bounding the conductance.

To formulate an isoperimetric inequality for convex bodies, we consider a

partition of a convex body K into three sets S1, S2, S3 such that S1 and S2 are

“far” from each other, and the inequality bounds the minimum possible volume

of S3 relative to the volumes of S1 and S2. We will consider different notions of

distance between subsets. Perhaps the most basic is the Euclidean distance:

d(S1, S2) = min{|u − v| : u ∈ S1, v ∈ S2}.

Suppose d(S1, S2) is large. Does this imply that the volume of S3 = K \(S1∪S2)

is large? The classic counterexample to such a theorem is a dumbbell— two large

subsets separated by very little. Of course, this is not a convex set!

The next theorem, proved in [Dyer and Frieze 1991] (improving on a theorem

in [Lovász and Simonovits 1992] by a factor of 2; see also [Lovász and Simonovits

1993]) asserts that the answer is yes.
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Theorem 4.1. Let S1, S2, S3 be a partition into measurable sets of a convex

body K of diameter D. Then,

vol(S3) ≥
2d(S1, S2)

D
min{vol(S1), vol(S2)}.

A limiting version of this inequality is the following: For any subset S of a convex

body of diameter D,

voln−1(∂S ∩ K) ≥
2

D
min{vol(S), vol(K \ S)}

which says that the surface area of S inside K is large compared to the volumes of

S and K \S. This is in direct analogy with the classical isoperimetric inequality,

which says that the surface area to volume ratio of any measurable set is at least

the ratio for a ball.

How does one prove such an inequality? In what generality does it hold? (i.e.,

for what measures besides the uniform measure on a convex set?) We will address

these questions in this section. We first give an overview of known inequalities

and then outline the proof technique.

Theorem 4.1 can be generalized to arbitrary logconcave measures. Its proof

is very similar to that of 4.1 and we will presently give an outline.

Theorem 4.2. Let f be a logconcave function whose support has diameter D

and let πf be the induced measure. Then for any partition of R
n into measurable

sets S1, S2, S3,

πf (S3) ≥
2d(S1, S2)

D
min{πf (S1), πf (S2)}.

In terms of diameter, this inequality is the best possible, as shown by a cylinder.

A more refined inequality is obtained in [Kannan et al. 1995; Lovász and Vempala

2003c] using the average distance of a point to the center of gravity (in place of

diameter). It is possible for a convex body to have much larger diameter than

average distance to its centroid (e.g., a cone). In such cases, the next theorem

provides a better bound.

Theorem 4.3. Let f be a logconcave density in R
n and πf be the corresponding

measure. Let zf be the centroid of f and define M(f) = Ef (|x− zf |). Then, for

any partition of R
n into measurable sets S1, S2, S3,

πf (S3) ≥
ln 2

M(f)
d(S1, S2)πf (S1)πf (S2).

For an isotropic density, M(f)2 ≤ Ef (|x − zf |
2) = n and so M(f) ≤

√
n. The

diameter could be unbounded (e.g., an isotropic Gaussian).

A further refinement, based on isotropic position, has been conjectured in

[Kannan et al. 1995]. Let λ be the largest eigenvalue of the inertia matrix of f ,
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i.e.,

λ = max
v:|v|=1

∫

Rn

f(x)(vT x)2 dx. (4–1)

Then the conjecture says that there is an absolute constant c such that

πf (S3) ≥
c
√

λ
d(S1, S2)πf (S1)πf (S2).

Euclidean distance and isoperimetric inequalities based on it are relevant for

the analysis of “local” walks such as the ball walk. Hit-and-run, with its nonlocal

moves, is connected with a different notion of distance.

The cross-ratio distance between two points u, v in a convex body K is com-

puted as follows: Let p, q be the endpoints of the chord in K through u and v

such that the points occur in the order p, u, v, q. Then

dK(u, v) =
|u − v‖p − q|

|p − u‖v − q|
= (p : v : u : q).

where (p : v : u : q) denotes the classical cross-ratio. We can now define the

cross-ratio distance between two sets S1, S2 as

dK(S1, S2) = min{dK(u, v) : u ∈ S1, v ∈ S2}.

The next theorem was proved in [Lovász 1999] for convex bodies and extended

to logconcave densities in [Lovász and Vempala 2003d].

Theorem 4.4. Let f be a logconcave density in R
n whose support is a convex

body K and let πf be the induced measure. Then for any partition of R
n into

measurable sets S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

All the inequalities so far are based on defining the distance between S1 and S2

by the minimum over pairs of some notion of pairwise distance. It is reasonable

to think that perhaps a much sharper inequality can be obtained by using some

average distance between S1 and S2. Such an inequality was proved in [Lovász

and Vempala 2004]. As we will see in Section 6, it leads to a radical improvement

in the analysis of random walks.

Theorem 4.5. Let K be a convex body in R
n. Let f : K → R+ be a logconcave

density with corresponding measure πf and h : K → R+, an arbitrary function.

Let S1, S2, S3 be any partition of K into measurable sets. Suppose that for any

pair of points u ∈ S1 and v ∈ S2 and any point x on the chord of K through u

and v,

h(x) ≤
1

3
min(1, dK(u, v)).

Then

πf (S3) ≥ Ef (h(x))min{πf (S1), πf (S2)}.
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The coefficient on the RHS has changed from a “minimum” to an “average”. The

weight h(x) at a point x is restricted only by the minimum cross-ratio distance

between pairs u, v from S1, S2 respectively, such that x lies on the line between

them (previously it was the overall minimum). In general, it can be much higher

than the minimum cross-ratio distance between S1 and S2.

The localization lemma. The proofs of these inequalities are based on an

elegant idea: integral inequalities in R
n can be reduced to one-dimensional in-

equalities! Checking the latter can be tedious but is relatively easy. We illustrate

the main idea by sketching the proof of Theorem 4.2.

For a proof of Theorem 4.2 by contradiction, let us assume the converse of its

conclusion, i.e., for some partition S1, S2, S3 of R
n and logconcave density f ,

∫

S3

f(x) dx < C

∫

S1

f(x) dx and

∫

S3

f(x) dx < C

∫

S2

f(x) dx

where C = 2d(S1, S2)/D. This can be reformulated as
∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0 (4–2)

where

g(x) =







Cf(x) if x ∈ S1,

0 if x ∈ S2,

−f(x) if x ∈ S3.

and h(x) =







0 if x ∈ S1,

Cf(x) if x ∈ S2,

−f(x) if x ∈ S3.

These inequalities are for functions in R
n. The main tool to deal with them

is the localization lemma [Lovász and Simonovits 1993] (see also [Kannan et al.

1995] for extensions and applications).

Lemma 4.6. Let g, h : R
n → R be lower semi-continuous integrable functions

such that
∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0.

Then there exist two points a, b ∈ R
n and a linear function ` : [0, 1] → R+ such

that
∫ 1

0

`(t)n−1g((1 − t)a + tb) dt > 0 and

∫ 1

0

`(t)n−1h((1 − t)a + tb) dt > 0.

The points a, b represent an interval A and one may think of l(t)n−1dA as the

cross-sectional area of an infinitesimal cone with base area dA. The lemma says

that over this cone truncated at a and b, the integrals of g and h are positive.

Also, without loss of generality, we can assume that a, b are in the union of the

supports of g and h.

The main idea behind the lemma is the following. Let H be any halfspace

such that
∫

H

g(x) dx =
1

2

∫

Rn

g(x) dx.
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Let us call this a bisecting halfspace. Now either

∫

H

h(x) dx > 0 or

∫

Rn\H

h(x) dx > 0.

Thus, either H or its complementary halfspace will have positive integrals for

both g and h. Thus we have reduced the domains of the integrals from R
n to a

halfspace. If we could repeat this, we might hope to reduce the dimensionality

of the domain. But do there even exist bisecting halfspaces? In fact, they are

aplenty: for any (n−2)-dimensional affine subspace, there is a bisecting halfspace

with A contained in its bounding hyperplane. To see this, let H be halfspace

containing A in its boundary. Rotating H about A we get a family of halfspaces

with the same property. This family includes H ′, the complementary halfspace

of H. Now the function
∫

H
g −

∫

Rn\H
g switches sign from H to H ′. Since this

is a continuous family, there must be a halfspace for which the function is zero,

which is exactly what we want (this is sometimes called the “ham sandwich”

theorem).

If we now take all (n−2)-dimensional affine subspaces given by some xi = r1,

xj = r2 where r1, r2 are rational, then the intersection of all the corresponding

bisecting halfspaces is a line (by choosing only rational values for xi, we are

considering a countable intersection). As long as we are left with a two or higher

dimensional set, there is a point in its interior with at least two coordinates that

are rational, say x1 = r1 and x2 = r2. But then there is a bisecting halfspace H

that contains the affine subspace given by x1 = r1, x2 = r2 in its boundary, and

so it properly partitions the current set. With some additional work, this leads to

the existence of a concave function on an interval (in place of the linear function

` in the theorem) with positive integrals. Simplifying further from concave to

linear takes quite a bit of work.

Going back to the proof sketch of Theorem 4.2, we can apply the lemma to

get an interval [a, b] and a linear function ` such that

∫ 1

0

`(t)n−1g((1 − t)a + tb) dt > 0 and

∫ 1

0

`(t)n−1h((1 − t)a + tb) dt > 0.

(4–3)

(The functions g, h as we have defined them are not lower semi-continuous. How-

ever, this can be easily achieved by expanding S1 and S2 slightly so as to make

them open sets, and making the support of f an open set. Since we are proving

strict inequalities, we do not lose anything by these modifications).

Let us partition [0, 1] into Z1, Z2, Z3.

Zi = {t ∈ [0, 1] : (1 − t)a + tb ∈ Si}.
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Note that for any pair of points u ∈ Z1, v ∈ Z2, |u − v| ≥ d(S1, S2)/D. We can

rewrite (4–3) as
∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z1

`(t)n−1f((1 − t)a + tb) dt

and
∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z2

`(t)n−1f((1 − t)a + tb) dt.

The functions f and `(.)n−1 are both logconcave, so F (t) = `(t)n−1f((1−t)a+tb)

is also logconcave. We get,
∫

Z3

F (t) dt < C min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (4–4)

Now consider what Theorem 4.2 asserts for the function F (t) over the interval

[0, 1] and the partition Z1, Z2, Z3:
∫

Z3

F (t) dt ≥ 2d(Z1, Z2)min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (4–5)

We have substituted 1 for the diameter of the interval [0, 1]. Also, d(Z1, Z2) ≥

d(S1, S2)/D = C/2. Thus, Theorem 4.2 applied to the function F (t) contradicts

(4–4) and to prove the theorem in general, it suffices to prove it in the one-

dimensional case.

In fact, it will be enough to prove (4–5) for the case when each Zi is a single

interval. Suppose we can do this. Then, for each maximal interval (c, d) con-

tained in Z3, the integral of F over Z3 is at least C times the smaller of the

integrals to its left [0, c] and to its right [d, 1] and so one of these intervals is

“accounted” for. If all of Z1 or all of Z2 is accounted for, then we are done. If

not, there is an unaccounted subset U that intersects both Z1 and Z2. But then,

since Z1 and Z2 are separated by at least d(S1, S2)/D, there is an interval of Z3

of length at least d(S1, S2)/D between U ∩Z1 and U ∩Z2 which can account for

more.

We are left with proving (4–5) when each Zi is an interval. Without the factor

of two, this is trivial by the logconcavity of F . To get C as claimed, one can

reduce this to the case when F (t) = ect and verify it for this function [Lovász

and Simonovits 1993]. The main step is to show that there is a choice of c so

that when the current F (t) is replaced by ect, the LHS of (4–5) does not increase

and the RHS does not decrease.

5. Mixing of the Ball Walk

With the isoperimetric inequalities at hand, we are now ready to prove bounds

on the conductance and hence on the mixing time. In this section, we focus on

the ball walk in a convex body K. Assume that K contains the unit ball.
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A geometric random walk is said to be rapidly mixing if its conductance is

bounded from below by an inverse polynomial in the dimension. By Corollary

3.5, this implies that the number of steps to halve the variation distance to

stationary is a polynomial in the dimension. The conductance of the ball walk

in a convex body K can be exponentially small. Consider, for example, starting

at point x near the apex of a rotational cone in R
n. Most points in a ball of

radius δ around x will lie outside the cone (if x is sufficiently close to the apex)

and so the local conductance is arbitrarily small. So, strictly speaking, the ball

walk is not rapidly mixing.

There are two ways to get around this. For the purpose of sampling uniformly

from K, one can expand K a little bit by considering K ′ = K +αBn, i.e., adding

a ball of radius α around every point in K. Then for α > 2δ
√

n, it is not hard

to see that `(u) is at least 1/8 for every point u ∈ K ′. We can now consider the

ball walk in K ′. This fix comes at a price. First, we need a membership oracle

for K ′. This can be constructed as follows: given a point x ∈ R
n, we find a

point y ∈ K such that |x− y| is minimum. This is a convex program and can be

solved using the ellipsoid algorithm [Grötschel et al. 1988] and the membership

oracle for K, Second, we need to ensure that vol(K ′) is comparable to vol(K).

Since K contains a unit ball, K ′ ⊆ (1 + α)K and so with α < 1/n, we get that

vol(K ′) < evol(K). Thus, we would need δ < 1/2n
√

n.

Does large local conductance imply that the conductance is also large? We

will prove that the answer is yes. The next lemma about one-step distributions

of nearby points will be useful.

Lemma 5.1. Let u, v be such that |u − v| ≤ tδ√
n

and `(u), `(v) ≥ `. Then,

‖Pu − Pv‖tv ≤ 1 + t − `.

Roughly speaking, the lemma says that if two points with high local conductance

are close in Euclidean distance, then their one-step distributions have a large

overlap. Its proof follows from a computation of the overlap volume of the balls

of radius δ around u and v.

We can now state and prove a bound on the conductance of the ball walk.

Theorem 5.2. Let K be a convex body of diameter D so that for every point u

in K, the local conductance of the ball walk with δ steps is at least `. Then,

φ ≥
`2δ

16
√

nD
.

The structure of most proofs of conductance is similar and we will illustrate it

by proving this theorem.

Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove

that
∫

S1

Px(S2) dx≥
`2δ

16
√

nD
min{vol(S1), vol(S2)} (5–1)
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Note that since the uniform distribution is stationary,

∫

S1

Px(S2) dx =

∫

S2

Px(S1) dx.

Consider the points that are “deep” inside these sets, i.e. unlikely to jump

out of the set (see Figure 2):

S′
1 =

{

x ∈ S1 : Px(S2) <
`

4

}

and

S′
2 =

{

x ∈ S2 : Px(S1) <
`

4

}

.

Let S′
3 be the rest i.e., S′

3 = K \ S′
1 \ S′

2.

S′

1

S′

2

Figure 2. The conductance proof. The dark line is the boundary between S1

and S2.

Suppose vol(S′
1) < vol(S1)/2. Then

∫

S1

Px(S2) dx ≥
`

4
vol(S1 \ S′

1) ≥
`

8
vol(S1)

which proves (5–1).

So we can assume that vol(S′
1) ≥ vol(S1)/2 and similarly vol(S′

2) ≥ vol(S2)/2.

Now, for any u ∈ S′
1 and v ∈ S′

2,

‖Pu − Pv‖tv ≥ 1 − Pu(S2) − Pv(S1) > 1 −
`

2
.

Applying Lemma 5.1 with t = `/2, we get that

|u − v| ≥
`δ

2
√

n
.
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Thus d(S1, S2) ≥ `δ/2
√

n. Applying Theorem 4.1 to the partition S′
1, S

′
2, S

′
3, we

have

vol(S′
3) ≥

`δ
√

nD
min{vol(S′

1), vol(S′
2)}

≥
`δ

2
√

nD
min{vol(S1), vol(S2)}

We can now prove (5–1) as follows:
∫

S1

Px(S2) dx =
1

2

∫

S1

Px(S2) dx +
1

2

∫

S2

Px(S1) dx ≥ 1
2vol(S′

3)
`

4

≥
`2δ

16
√

nD
min{vol(S1), vol(S2)}. ˜

As observed earlier, by going to K ′ = K + (1/n)Bn and using δ = 1/2n
√

n, we

have ` ≥ 1/8. Thus, for the ball walk in K ′, φ = Ω(1/n2D). Using Corollary 3.5,

the mixing rate is O(n4D2).

We mentioned earlier that there are two ways to get around the fact that the

ball walk can have very small local conductance. The second, which we describe

next, is perhaps a bit cleaner and also achieves a better bound on the mixing

rate. It is based on the observation that only a small fraction of points can have

small local conductance. Define the points of high local conductance as

Kδ =

{

u ∈ K : `(u) ≥
3

4

}

Lemma 5.3. Suppose that K is a convex body containing a unit ball in R
n.

a. Kδ is a convex set .

b. vol(Kδ) ≥ (1 − 2δ
√

n)vol(K).

The first part follows from the Brunn-Minkowski inequality (2–1). The second

is proved by estimating the average local conductance [Kannan et al. 1997] and

has the following implication: if we set δ ≤ ε/2
√

n, we get that at least (1 − ε)

fraction of points in K have large local conductance. Using this, we can prove

the following theorem.

Theorem 5.4. For any 0 ≤ s ≤ 1, we can choose the step-size δ for the ball

walk in a convex body K of diameter D so that

φs ≥
s

200nD
.

Proof. The proof is quite similar to that of Theorem 5.2. Let S1, S2 be a

partition of K. First, since we are proving a bound on the s-conductance, we

can assume that vol(S1), vol(S2) ≥ svol(K). Next, we choose δ = s/4
√

n so that

by Lemma 5.3,

vol(Kδ) ≥ (1 − 1
2s)vol(K).
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So only an s/2 fraction of K has small local conductance and we will be able to

ignore it. Define
S′

1 =
{

x ∈ S1 ∩ Kδ : Px(S2) < 3
16

}

,

S′
2 =

{

x ∈ S2 ∩ Kδ : Px(S1) < 3
16

}

.

As in the proof of Theorem 5.2, these points are “deep” in S1 and S2 respectively

and they are also restricted to be in Kδ. Recall that the local conductance of

every point in Kδ is at least 3/4. We can assume that vol(S′
1) ≥ vol(S1)/3.

Otherwise,
∫

S1

Px(S2) dx ≥
(

2
3vol(S1) −

1
2svol(K)

)

3
16 ≥ 1

32vol(S1).

which implies the theorem. Similarly, we can assume that vol(S′
2) ≥ vol(S2)/3.

For any u ∈ S′
1 and v ∈ S′

2,

‖Pu − Pv‖tv ≥ 1 − Pu(S2) − Pv(S1) > 1 − 3
8 .

Applying Lemma 5.1 with t = 3/8, we get that

|u − v| ≥
3δ

8
√

n
.

Thus d(S1, S2) ≥ 3δ/8
√

n. Let S′
3 = Kδ \ (S′

1 ∪S′
2) Applying Theorem 4.1 to the

partition S′
1, S

′
2, S

′
3 of Kδ, we have

vol(S′
3) ≥

3δ

4
√

nD
min{vol(S′

1), vol(S′
2)}

≥
s

16nD
min{vol(S1), vol(S2)}

The theorem follows:
∫

S1

Px(S2) dx ≥ 1
2vol(S′

3)
3
16 >

s

200nD
min{vol(S1), vol(S2)}. ˜

Using Corollary 3.5(b), this implies that from an M-warm start, the variation

distance of Qt and Q is smaller than ε after

t ≥ C
M2

ε2
n2D2 ln

(

2M

ε

)

(5–2)

steps, for some absolute constant C.

There is another way to use Lemma 5.3. In [Kannan et al. 1997], the following

modification of the ball walk, called the speedy walk, is described. At a point

x, the speedy walk picks a point uniformly from K ∩ x + δBn. Thus, the local

conductance of every point is 1. However, there are two complications with

this. First, the stationary distribution is not uniform, but proportional to `(u).

Second, each step seems unreasonable— we could make δ > D and then we

would only need one step to get a random point in K. We can take care of

the first problem with a rejection step at the end (and using Lemma 5.3). The

root of the second problem is the question: how do we implement one step of
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the speedy walk? The only general way is to get random points from the ball

around the current point till one of them is also in K. This process is the ball

walk and it requires 1/`(u) attempts in expectation at a point u. However, if we

count only the proper steps, i.e., ones that move away from the current point,

then it is possible to show that the mixing rate of the walk is in fact O(n2D2)

from any starting point [Lovász and Kannan 1999]. Again, the proof is based

on an isoperimetric inequality which is slightly sharper than Theorem 4.2. For

this bound to be useful, we also need to bound the total number of improper or

“wasted” steps. If we start at a random point, then this is the number of proper

steps times E(1/`(u)), which can be unbounded. But, if we allow a small overall

probability of failure, then with the remaining probability, the expected number

of wasted steps is bounded by O(n2D2) as well.

The bound of O(n2D2) on the mixing rate is the best possible in terms of the

diameter, as shown by a cylinder. However, if the convex body is isotropic, then

the isoperimetry conjecture (4–1) implies a mixing rate of O(n2).

For the rest of this section, we will discuss how these methods can be extended

to sampling more general distributions. We saw already that the ball walk can

be used along with a Metropolis filter to sample arbitrary density functions.

When is this method efficient? In [Applegate and Kannan 1990] and [Frieze

et al. 1994] respectively, it is shown that the ball walk and the lattice walk are

rapidly mixing from a warm start, provided that the density is logconcave and

it does not vary much locally, i.e., its Lipschitz constant is bounded. In [Lovász

and Vempala 2003c], the assumptions on smoothness are eliminated, and it is

shown that the ball walk is rapidly mixing from a warm start for any logconcave

function in R
n. Moreover, the mixing rate is O(n2D2) (ignoring the dependence

on the start), which matches the case of the uniform density on a convex body.

Various properties of logconcave functions are developed in [Lovász and Vempala

2003c] with an eye to the proof. In particular, a smoother version of any given

logconcave density is defined and used to prove an analogue of Lemma 5.3. For

a logconcave density f in R
n, the smoother version is defined as

f̂(x) = min
C

1

vol(C)

∫

C

f(x + u) du,

where C ranges over all convex subsets of the ball x + rBn with vol(C) =

vol(Bn)/16. This function is logconcave and bounded from above by f every-

where (using Theorem 2.2). Moreover, for δ small enough, its integral is close to

the integral of f . We get a lemma very similar to Lemma 5.3. The function f̂

can be thought of as a generalization of Kδ.

Lemma 5.5. Let f be any logconcave density in R
n. Then

(i) The function f̂ is logconcave.

(ii) If f is isotropic, then
∫

Rn f̂(x) dx ≥ 1 − 64δ1/2n1/4.
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Using this along with some technical tools, it can be shown that φs is large.

Perhaps the main contribution of [Lovász and Vempala 2003c] is to move the

smoothness conditions from requirements on the input (i.e., the algorithm) to

tools for the proof.

In summary, analyzing the ball walk has led to many interesting developments:

isoperimetric inequalities, more general methods of proving convergence (φs) and

many tricks for sampling to get around the fact that it is not rapidly mixing from

general starting points (or distributions). The analysis of the speedy walk shows

that most points are good starting points. However, it is an open question as

to whether the ball walk is rapidly mixing from a pre-determined starting point,

e.g., the centroid.

6. Mixing of Hit-and-Run

Hit-and-run, introduced in [Smith 1984], offers the attractive possibility of

long steps. There is some evidence that it is fast in practice [Berbee et al. 1987;

Zabinsky et al. 1993].

Warm start. Lovász [1999] showed that hit-and-run mixes rapidly from a warm

start in a convex body K. If we start with an M -warm distribution, then in

O

(

M2

ε2
n2D2 ln

(

M

ε

))

steps, the distance between the current distribution and the stationary is at most

ε. This is essentially the same bound as for the ball walk, and so hit-and-run

is no worse. The proof is based on cross-ratio isoperimetry (Theorem 4.5) for

convex bodies and a new lemma about the overlap of one-step distributions. For

x ∈ K, let y be a random step from x. Then the step-size F (x) at x is defined

as

P (|x − y| ≤ F (x)) = 1
8 .

The lemma below asserts that if u, v are close in Euclidean distance and cross-

ratio distance then their one-step distributions overlap substantially. This is

analogous to Lemma 5.1 for the ball walk.

Lemma 6.1. Let u, v ∈ K. Suppose that

dK(u, v) <
1

8
and |u − v| <

2
√

n
max{F (u), F (v)}.

Then

‖Pu − Pv‖tv < 1 −
1

500
.

Hit-and-run generalizes naturally to sampling arbitrary functions. The iso-

perimetry, the one-step lemma and the bound on φs were all extended to arbi-

trary logconcave densities in [Lovász and Vempala 2003d]. Thus, hit-and-run is

rapidly mixing for any logconcave density from a warm start. While the analysis
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is along the lines of that in [Lovász 1999] and uses the tools developed in [Lovász

and Vempala 2003c], it has to overcome substantial additional difficulties.

So hit-and-run is at least as fast as the ball walk. But is it faster? Can it get

stuck in corners (points of small local conductance) like the ball walk?

Any start. Let us revisit the bad example for the ball walk: starting near the

apex of a rotational cone. If we start hit-and-run at any interior point, then

it exhibits a small, but inverse polynomial, drift towards the base of the cone.

Thus, although the initial steps are tiny, they rapidly get larger and the current

point moves away from the apex. This example shows two things. First, the

“step-size” of hit-and-run can be arbitrarily small (near the apex), but hit-and-

run manages to escape from such regions. This phenomenon is in fact general as

shown by the following theorem, proved recently in [Lovász and Vempala 2004].

Theorem 6.2. The conductance of hit-and-run in a convex body of diameter D

is Ω(1/nD).

Unlike the ball walk, we can bound the conductance of hit-and-run (for arbitrar-

ily small subsets). From this we get a bound on mixing time.

Theorem 6.3. Let K be a convex body that contains a unit ball and has centroid

zK . Suppose that EK(|x − zK |2) ≤ R2 and ‖Q0/Q‖ ≤ M . Then after

t ≥ Cn2R2 ln3 M

ε
,

steps, where C is an absolute constant , we have ‖Qt − Q‖tv ≤ ε.

The theorem improves on the bound for the ball walk (5–2) by reducing the

dependence on M and ε from polynomial (which is unavoidable for the ball

walk) to logarithmic, while maintaining the (optimal) dependence on R and n.

For a body in near-isotropic position, R = O(
√

n) and so the mixing time is

O∗(n3). One also gets a polynomial bound starting from any single interior

point. If x is at distance d from the boundary, then the distribution obtained

after one step from x has ‖Q1/Q‖ ≤ (n/d)n and so applying the above theorem,

the mixing time is O(n4 ln3(n/dε)).

The main tool in the proof is a new isoperimetric inequality based on “average”

distance (Theorem 4.5). The proof of conductance is on the same lines as shown

for Theorem 5.2 in the previous section. It uses Lemma 6.1 for comparing one-

step distributions.

Theorems 6.2 and 6.3 have been extended in [Lovász and Vempala 2004] to

the case of sampling an exponential density function over a convex body, i.e.,

f(x) is restricted to a convex body and is proportional to eaT x for some fixed

vector a. It remains open to determine if hit-and-run mixes rapidly from any

starting point for arbitrary logconcave functions.

As in the ball walk analysis, it is not known (even in the convex body case)

if starting at the centroid is as good as a warm start. Also, while the theorem is
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the best possible in terms of R, it is conceivable that for an isotropic body the

mixing rate is O(n2).

7. Efficient Sampling

Let f be a density in R
n with corresponding measure πf . Sampling f , i.e.,

generating independent random points distributed according to πf is a basic

algorithmic problem with many applications. We have seen in previous sections

that if f is logconcave there are natural random walks in R
n that will converge

to πf . Does this yield an efficient sampling algorithm?

Rounding. Take the case when f is uniform over a convex body K. The

convergence depends on the diameter D of K (or the second moment). So the

resulting algorithm to get a random point would take poly(n,D) steps. However,

the input to the algorithm is only D and an oracle. So we would like an algorithm

whose dependence on D is only logarithmic. How can this be done? The ellipsoid

algorithm can be used to find a transformation that achieves D = O(n1.5) in

poly(n, log D) steps.

Isotropic position provides a better solution. For a convex body in isotropic

position D ≤ n. For an isotropic logconcave distribution, (1 − ε) of its measure

lies in a ball of radius
√

n ln(1/ε). But how to make f isotropic? One way is by

sampling. We get m random points from f and compute an affine tranformation

that makes this set of points isotropic. We then apply this transformation to f . It

is shown in [Rudelson 1999], that the resulting distribution is near-isotropic with

m = O(n log2 n) points for convex bodies and m = O(n log3 n) for logconcave

densities [Lovász and Vempala 2003c] with large probability.

Although this sounds cyclic (we need samples to make the sampling efficient)

one can bootstrap and make larger and larger subsets of f isotropic. For a convex

body K such an algorithm was given in [Kannan et al. 1997]. Its complexity is

O∗(n5). This has been improved to O∗(n4) in [Lovász and Vempala 2003b].

The basic approach in [Kannan et al. 1997] is to define a series of bodies, Ki =

K ∩ 2i/nBn. Then K0 = Bn is isotropic upto a radial scaling. Given that Ki

is 2-isotropic, Ki+1 will be 6-isotropic and so we can sample efficiently from it.

We use these samples to compute a transformation that makes Ki+1 2-isotropic

and continue. The number of samples required in each phase is O∗(n) and the

total number of phases is O(n log D). Since each sample is drawn from a near-

isotropic convex body, the sample complexity is O∗(n3) on average (O∗(n4) for

the first point and O∗(n3) for subsequent points since we have a warm start).

This gives an overall complexity of O∗(n5). The improvement to O∗(n4) uses

ideas from the latest volume algorithm [Lovász and Vempala 2003b], including

sampling from an exponential density and the pencil construction (see Section

9).
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A similar method also works for making a logconcave density f isotropic

[Lovász and Vempala 2003c]. We consider a series of level sets

Li =

{

x ∈ R
n : f(x) ≥

Mf

2(1+1/n)i

}

where Mf is the maximum value of f . In phase i, we make the restriction of f to

Li isotropic. The complexity of this algorithm is O∗(n5). It is an open question

to reduce this to O∗(n4).

Independence. The second important issue to be addressed is that of inde-

pendence. If we examine the current point every m steps for some m, then are

these points independent? Unfortunately, they might not be independent even

if m is as large as the mixing time. Another problem is that the distribution

might not be exactly πf . The latter problem is easier to deal with. Suppose

that x is from some distribution π so that ‖π − πf‖tv ≤ ε. Typically this affects

the algorithm using the samples by some small function of ε. There is a general

way to handle this (sometimes called divine intervention). We can pretend that

x is drawn from πf with probability 1− ε and from some other distribution with

probability at most ε. If we draw k samples, then the probability of success (i.e.,

each sample is drawn from the desired distribution) is at least 1 − kε.

Although points spaced apart by m steps might not be independent, they are

“nearly” independent in the following sense. Two random variables X,Y will be

called µ-independent (0 < µ < 1) if for any two sets A,B in their ranges,

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣ ≤ µ.

The next lemma summarizes some properties of µ-independence.

Lemma 7.1. (i) Let X and Y be µ-independent , and f, g be two measurable

functions. Then f(X) and g(Y ) are also µ-independent .

(ii) Let X,Y be µ-independent random variables such that 0 ≤ X ≤ a and

0 ≤ Y ≤ b. Then
∣

∣E(XY ) − E(X)E(Y )
∣

∣ ≤ µab.

(iii) Let X0, X1, . . . , be a Markov chain, and assume that for some i > 0, Xi+1

is µ-independent from Xi. Then Xi+1 is µ-independent from (X0, . . . , Xi).

The guarantee that π is close to πf will imply the following.

Lemma 7.2. Let Q be the stationary distribution of a Markov chain and t be

large enough so that for any starting distribution Q0 with ‖Q0/Q‖ ≤ 4M we

have ‖Qt − Q‖tv ≤ ε. Let X be a random point from a starting distribution Q0

such that ‖Q0/Q‖ ≤ M . Then the point Y obtained by taking t steps of the chain

starting at X is 2ε-independent from X.
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Proof. Let A,B ⊆ R
n; we claim that

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

= P(X ∈ A)
∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣

≤ 2ε.

Since

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

=
∣

∣P(X ∈ Ā, Y ∈ B) − P(X ∈ Ā)P(Y ∈ B)
∣

∣

we may assume that Q0(A) ≥ 1/2. Let Q′
0 be the restriction of Q0 to A, scaled

to a probability measure. Then Q′
0 ≤ 2Q0 and so ‖Q′

0/Q‖ ≤ 4‖Q0/Q‖ ≤ 4M .

Imagine running the Markov chain with starting distribution Q′
0. Then, by the

assumption on t,
∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣ = ‖Q′
t(B) − Qt(B)‖tv

≤ ‖Q′
t(B) − Q(B)‖tv + ‖Qt(B) − Q(B)‖tv

≤ 2ε,

and so the claim holds. ˜

Various versions of this lemma, adapted to the mixing guarantee at hand, have

been used in the literature. See [Lovász and Simonovits 1993; Kannan et al.

1997; Lovász and Vempala 2003b] for developments along this line.

We conclude this section with an effective theorem from [Lovász and Vempala

2003a] for sampling from an arbitrary logconcave density.

Theorem 7.3. If f is a near-isotropic logconcave density function, then it can

be approximately sampled in time O∗(n4) and in amortized time O∗(n3) if n or

more nearly independent sample points are needed ; any logconcave function can

be brought into near-isotropic position in time O∗(n5).

8. Application I: Convex Optimization

Let S ⊂ R
n, and f : S → R be a real-valued function. Optimization is the

following basic problem: min f(x) s.t. x ∈ S, that is, find a point x ∈ S which

minimizes by f . We denote by x∗ a solution for the problem. When the set S

and the function f are convex2, we obtain a class of problems which are solvable

in poly(n, log(1/ε)) time where ε defines an optimality criterion. If x is the point

found, then |x − x∗| ≤ ε.

The problem of minimizing a convex function over a convex set in R
n is a com-

mon generalization of well-known geometric optimization problems such as linear

2In fact, it is enough for f to be quasi-convex.
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programming as well as a variety of combinatorial optimization problems includ-

ing matchings, flows and matroid intersection, all of which have polynomial-time

algorithms [Grötschel et al. 1988]. It is shown in [Grötschel et al. 1988] that the

ellipsoid method [Judin and Nemirovskĭı 1976; Hačijan 1979] solves this problem

in polynomial time when K is given by a separation oracle. A different, more ef-

ficient algorithm is given in [Vaidya 1996]. Here, we discuss the recent algorithm

of [Bertsimas and Vempala 2004] which is based on random sampling.

Note that minimizing a quasi-convex function is easily reduced to the feasi-

bility problem: to minimize a quasi-convex function f(x), we simply add the

constraint f(x) ≤ t and search (in a binary fashion) for the optimal t.

In the description below, we assume that the convex set K is contained in the

axis-aligned cube of width R centered at the origin; further if K is nonempty

then it contains a cube of width r. It is easy to show that any algorithm with

this input specification needs to make at least n log(R/r) oracle queries. The

parameter L is equal to log R
r .

Algorithm.

Input: A separation oracle for a convex set K and L.

Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of side length R and center z = 0.

2. Check if z is in K. If so, report z and stop. If not, set

H = {x | aT x ≤ aT z}.

where aT x ≤ b is the halfspace containing K reported by the oracle.

3. Set P = P ∩ H. Pick m random points y1, y2, . . . , ym from P . Set z to

be their average.

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

The number of samples required in each iteration, m, is O(n). Roughly speaking,

the algorithm is computing an approximate centroid in each iteration. The idea

of an algorithm based on computing the exact centroid was suggested in [Levin

1965]. Indeed, if we could compute the centroid in each iteration, then by Lemma

2.3, the volume of P falls by a constant factor (1 − 1/e) in each iteration. But,

finding the centroid, is #P-hard, i.e., computationally intractable.

The idea behind the algorithm is that an approximate centroid can be com-

puted using O(n) random points and the volume of P is likely to drop by a

constant factor in each iteration with this choice of z. This is formalized in the

next lemma. Although we need it only for convex bodies, it holds for arbitrary

logconcave densities.
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P

z

K

H

Figure 3. An illustration of the algorithm.

Lemma 8.1. Let g be a logconcave density in R
n and z be the average of m

random points from πg. If H is a halfspace containing z,

E (πg(H)) ≥

(

1

e
−

√

n

m

)

.

Proof. First observe that we can assume g is in isotropic position. This is

because a linear transformation A affects the volume of a set S as vol(AS) =

|det(A)|vol(S) and so the ratio of the volumes of two subsets is unchanged by

the transformation. Applying this to all the level sets of g, we get that the ratio

of the measures of two subsets is unchanged.

Since z = 1
m

∑m
i=1 yi,

E
(

|z|2
)

=
1

m2

m
∑

i=1

E
(

|yi|2
)

=
1

m
E

(

|yi|2
)

=
1

m

n
∑

j=1

E
(

(yi
j)

2
)

=
n

m
,

where the first equality follows from the independence between yi’s, and equali-

ties of the second line follow from the isotropic position. Let h be a unit vector

normal to H. We can assume that h = e1 = (1, 0, . . . , 0).

Next, let f be the marginal of g along h, i.e.,

f(y) =

∫

x:x1=y

g(x) dx. (8–1)

It is easy to see that f is isotropic. The next lemma (from [Lovász and Vempala

2003c]; see [Bertsimas and Vempala 2004] for the case of f arising from convex

bodies) states that its maximum must be bounded.
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Lemma 8.2. Let f : R → R+ be an isotropic logconcave density function. Then,

max
y

f(y) < 1.

Using Lemma 2.3,
∫ ∞

z1

f(y) dy =

∫ ∞

0

f(y) dy −

∫ z1

0

f(y) dy

≥
1

e
− |z1|max

y
f(y)

≥
1

e
− |z|.

The lemma follows from the bound on E(|z|). ˜

The guarantee on the algorithm follows immediately. This optimal guarantee is

also obtained in [Vaidya 1996]; the ellipsoid algorithm needs O(n2L) oracle calls.

Theorem 8.3. With high probability , the algorithm works correctly using at

most 2nL oracle calls (and iterations).

The algorithm can also be modified for optimization given a membership oracle

only and a point in K. It has a similar flavor: get random points from K; restrict

K using the function value at the average of the random points; repeat. The

oracle complexity turns out to be O(n5L) which is an improvement on previous

methods. This has been improved for linear objective functions using a variant

of simulated annealing [Kalai and Vempala 2005].

9. Application II: Volume Computation

Finally, we come to perhaps the most important application and the princi-

pal motivation behind many developments in the theory of random walks: the

problem of computing the volume of a convex body.

Let K be a convex body in R
n of diameter D such that Bn ⊂ K. The next

theorem from [Bárány and Füredi 1987], improving on [Elekes 1986], essentially

says that a deterministic algorithm cannot estimate the volume efficiently.

Theorem 9.1. For every deterministic algorithm that runs in time O(na) and

outputs two numbers A and B such that A ≤ vol(K) ≤ B for any convex body

K, there is some convex body for which the ratio B/A is at least
(

cn

a log n

)n

where c is an absolute constant .

So, in polynomial time, the best possible approximation is exponential in n and

to get a factor 2 approximation (say), one needs exponential time. The basic

idea of the proof is simple. Consider an oracle that answers “yes” for any point
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Reference Complexity New ingredient(s)

[Dyer et al. 1991] n23 Everything

[Lovász and Simonovits 1990] n16 Localization lemma

[Applegate and Kannan 1990] n10 Logconcave sampling

[Lovász 1990] n10 Ball walk

[Dyer and Frieze 1991] n8 Better error analysis

[Lovász and Simonovits 1993] n7 Many improvements

[Kannan et al. 1997] n5 Isotropy, speedy walk

[Lovász and Vempala 2003b] n4 Annealing, hit-and-run

Table 1. Complexity comparison

in a unit ball and “no” to any point outside. After m “yes” answers, the convex

body K could be anything between the ball and the convex hull of the m query

points. The ratio of these volumes is exponential in n.

Given this lower bound, the following result of Dyer, Frieze and Kannan [Dyer

et al. 1991] is quite remarkable.

Theorem 9.2. For any convex body K and any 0 ≤ ε, δ ≤ 1, there is a random-

ized algorithm which computes an estimate V such that with probability at least

1 − δ, we have (1 − ε)vol(K) ≤ V ≤ (1 + ε)vol(K), and the number of oracle

calls is poly(n, 1/ε, log(1/δ).

Using randomness, we can go from an exponential approximation to an arbitrar-

ily small one!

The main tool used in [Dyer et al. 1991] is sampling by a random walk. They

actually used the grid walk and showed that by “fixing up” K a bit without

changing its volume by much, the grid walk can sample nearly random points

in polynomial time. Even though the walk is discrete, its analysis relies on a

continuous isoperimetric inequality, quite similar to the one used for the anal-

ysis of the ball walk. The original algorithm of Dyer, Frieze and Kannan had

complexity O∗(n23). In the years since, there have been many interesting im-

provements. These are summarized in Table 9. In this section, we describe the

latest algorithm from [Lovász and Vempala 2003b] whose complexity is O∗(n4).

Let us first review the common structure of previous volume algorithms. As-

sume that the diameter D of K is poly(n). All these algorithms reduce volume

computation to sampling from a convex body, using the “Multi-Phase Monte-

Carlo” technique. They construct a sequence of convex bodies K0 ⊆ K1 ⊆ · · · ⊆

Km = K, where K0 = Bn or some body whose volume is easily computed.

They estimate the ratios vol(Ki−1)/vol(Ki) by generating sufficiently many in-

dependent (nearly) uniformly distributed random points in Ki and counting

the fraction that lie in Ki−1. The product of these estimates is an estimate of

vol(K0)/vol(K).
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In order to get a sufficiently good estimate for the ratio vol(Ki−1)/vol(Ki), one

needs about mvol(Ki)/vol(Ki−1) random points. So we would like to have the

ratios vol(Ki)/vol(Ki−1) be small. But, the ratio of vol(K) and vol(K0) could

be nΩ(n) and so m has to be Ω(n) just to keep the ratios vol(Ki)/vol(Ki−1) poly-

nomial. The best choice is to keep these ratios bounded; this can be achieved,

for instance, if K0 = Bn and Ki = K ∩ (2i/nBn) for i = 1, 2, . . . ,m = Θ(n log n).

Thus, the total number of random points used is O(m2) = O∗(n2). Since

vol(Ki) ≤ 2vol(Ki−1) for this sequence, a random point in Ki−1 provides a

warm start for sampling from Ki. So each sample takes O∗(n3) steps to gener-

ate, giving an O∗(n5) algorithm. In [Applegate and Kannan 1990; Lovász and

Simonovits 1993], sampling uniformly from Ki was replaced by sampling from a

smooth logconcave function to avoid bad local conductance and related issues.

The number of phases, m, enters the running time as its square and one would

like to make it as small as possible. But, due to the reasons described above,

m = Θ(n log n) is optimal for this type of algorithm and reducing m any further

(i.e., o(n)) seems to be impossible for this type of method.

The algorithm in [Lovász and Vempala 2003b] can be viewed as a variation of

simulated annealing. Introduced in [Kirkpatrick et al. 1983], simulated annealing

is a general-purpose randomized search method for optimization. It walks ran-

domly in the space of possible solutions, gradually adjusting a parameter called

“temperature”. At high temperature, the random walk converges to the uni-

form distribution over the whole space; as the temperature drops, the stationary

distribution becomes more and more biased towards the optimal solutions.

Instead of a sequence of bodies, the algorithm in [Lovász and Vempala 2003b]

constructs a sequence of functions f0 ≤ f1 ≤ . . . ≤ fm that “connect” a function

f0 whose integral is easy to find to the characteristic function fm of K. The

ratios (
∫

fi−1)/(
∫

fi) can be estimated by sampling from the distribution whose

density function is proportional to fi, and averaging the function fi−1/fi over

the sample points. Previous algorithms can be viewed as the special case where

the functions fi are characteristic functions of the convex bodies Ki. By choosing

a different set of fi, the algorithm uses only m = O∗(
√

n) phases, and O∗(
√

n)

sample points in each phase. In fact, it uses exponential functions of the form

f(x) = e−aT x/T restricted to some convex body. The temperature T will start

out at a small value and increase gradually. This is the reverse of what happens

in simulated annealing.

Besides annealing, the algorithm uses a pre-processing step called the pencil

construction. We describe it next.

Let K be the given body in R
n and ε > 0. Let C denote the cone in R

n+1

defined by

C =

{

x ∈ R
n+1 : x0 ≥ 0,

n
∑

i=1

x2
i ≤ x2

0

}
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where x = (x0, x1 . . . , xn)T. We define a new convex body K ′ ∈ R
n+1 as follows:

K ′ =
(

[0, 2D] × K
)

∩ C.

In words, K ′ is a sharpened (n + 1)-dimensional “pencil” whose cross-section is

K and its tip is at the origin. See Figure 4. The idea of the algorithm is to start

Figure 4. The pencil construction when K is a square.

with a function that is concentrated near the tip of the pencil, and is thus quite

close to an exponential over a cone, and gradually move to a nearly constant

function over the whole pencil, which would give us the volume of the pencil.

The integral of the starting function is easily estimated. The sharpening takes

less than half of the volume of the pencil away. Hence, if we know the volume of

K ′, it is easy to estimate the volume of K by generating O(1/ε2) sample points

from the uniform distribution on [0, 2D] × K and then counting how many of

them fall into K ′.
We describe the annealing part of the algorithm in a bit more detail. For each

real number a > 0, let

Z(a) =

∫

K′

e−ax0 dx

where x0 is the first coordinate of x. For a ≤ ε2/D, an easy computation shows

that

(1 − ε)vol(K ′) ≤ Z(a) ≤ vol(K).

On the other hand, for a ≥ 2n the value of Z(a) is essentially the same as the

integral over the whole cone which is easy to compute. So, if we select a sequence

a0 > a1 > . . . > am for which a0 ≥ 2n and am ≤ ε2/D, then we can estimate

vol(K ′) by

Z(am) = Z(a0)

m−1
∏

i=0

Z(ai+1)

Z(ai)
.

The algorithm estimates each ratio Ri = Z(ai+1)/Z(ai) as follows. Let µi be

the probability distribution over K ′ with density proportional to e−aix0 , i.e., for

x ∈ K ′,
dµi(x)

dx
=

e−aix0

Z(ai)
.
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To estimate the ratio Ri, the algorithm draws random samples X1, . . . , Xk from

µi, and computes

Wi =
1

m

m
∑

j=1

e(ai−ai+1)(X
j)0 .

It is easy to see that E(Wi) = Ri. The main lemma in the analysis is that the

second moment of Wi is small.

Lemma 9.3. Let X be a random sample from dµi and

Y = e(ai−ai+1)X0 .

Then,
E(Y 2)

E(Y )2
≤

a2
i+1

ai(2ai+1 − ai)
.

From the lemma, it follows that with

ai+1 = ai

(

1 −
1
√

n

)

we get that E(Y 2)/E(Y )2 is bounded by a constant. So with k samples,

E(W 2
i )

E(Wi)2
≤

(

1 +
O(1)

k

)

.

Hence, the standard deviation of the estimate Z = W1W2 . . .Wm is at most ε

times E(W1W2 . . .Wm) = vol(K), for k = O(m/ε2). Further, the number of

phases needed to go from a0 = 2n to am ≤ ε2/D is only
√

n log(D/ε2). So the

total number of sample points needed is only O∗(n) (it would be interesting to

show that this is a lower bound for any algorithm that uses a blackbox sampler).

As mentioned earlier, the samples obtained are not truly independent. This

introduces technical complications. In previous algorithms, the random variable

estimating the ratio was bounded (between 1 and 2) and so we could directly

use Lemma 7.1. For the new algorithm, the individual ratios being estimated

could be unbounded. To handle this further properties of µ-independence are

developed in [Lovász and Vempala 2003b]. We do not go into the details here.

How fast can we sample from µi? Sampling from µ0 is easy. But each µi−1 no

longer provides a warm start for µi, i.e., dµi−1(x)/dµi(x) could be unbounded.

However, as the next lemma asserts, the L2 distance is bounded.

Lemma 9.4. ‖µi−1/µi‖ < 8.

The proof of this lemma and that of Lemma 9.3 are both based on the following

property of logconcave functions proved in [Lovász and Vempala 2003b].

Lemma 9.5. For a > 0, any convex body K and logconcave function f in R
n,

the function

Z(a) = an

∫

K

f(ax) dx
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is logconcave.

Finally, hit-and-run only needs bounded L2 norm to sample efficiently, and by

the version of Theorem 6.3 for the exponential density, we get each sample in

O∗(n3) time. Along with the bound on the number of samples, this gives the

complexity bound of O ∗ (n4) for the volume algorithm.

It is apparent that any improvement in the mixing rate of random walks will

directly affect the complexity of volume computation. Such improvements seem

to consistently yield interesting new mathematics as well.
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