During the past few decades, the gradual merger of Discrete Geometry and the
newer discipline of Computational Geometry has provided enormous impetus
to mathematicians and computer scientists interested in geometric problems.
This volume, which contains 32 papers on a broad range of topics of current
interest in the field, is an outgrowth of that synergism. It includes surveys and
research articles exploring geometric arrangements, polytopes, packing, cov-
ering, discrete convexity, geometric algorithms and their complexity, and the
combinatorial complexity of geometric objects, particularly in low dimension.
There are points of contact with many applied areas such as mathematical
programming, visibility problems, kinetic data structures, and biochemistry,
as well as with algebraic topology, geometric probability, real algebraic geom-
etry, and combinatorics.



Mathematical Sciences Research Institute
Publications

52

Combinatorial and Computational Geometry



Mathematical Sciences Research Institute Publications

D GrA W~

© ® <

10-11
12-13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
81
52
33
34
85
36
87
38

39
40

42
43
44
45

46

48
49
50
51
52

Freed/Uhlenbeck: Instantons and Four-Manifolds, second edition

Chern (ed.): Seminar on Nonlinear Partial Differential Equations

Lepowsky/Mandelstam/Singer (eds.): Vertex Operators in Mathematics and Physics

Kac (ed.): Infinite Dimensional Groups with Applications

Blackadar: K-Theory for Operator Algebras, second edition

Moore (ed.): Group Representations, Ergodic Theory, Operator Algebras, and
Mathematical Physics

Chorin/Majda (eds.): Wave Motion: Theory, Modelling, and Computation

Gersten (ed.): Essays in Group Theory

Moore/Schochet: Global Analysis on Foliated Spaces

Drasin/Earle/Gehring/Kra/Marden (eds.): Holomorphic Functions and Moduli

Ni/Peletier/Serrin (eds.): Nonlinear Diffusion Equations and Their Equilibrium States

Goodman/de la Harpe/Jones: Cozeter Graphs and Towers of Algebras

Hochster/Huneke/Sally (eds.): Commutative Algebra

Thara/Ribet/Serre (eds.): Galois Groups over Q

Concus/Finn/Hoffman (eds.): Geometric Analysis and Computer Graphics

Bryant/Chern/Gardner/Goldschmidt/Griffiths: Exterior Differential Systems

Alperin (ed.): Arboreal Group Theory

Dazord/Weinstein (eds.): Symplectic Geometry, Groupoids, and Integrable Systems

Moschovakis (ed.): Logic from Computer Science

Ratiu (ed.): The Geometry of Hamiltonian Systems

Baumslag/Miller (eds.): Algorithms and Classification in Combinatorial Group Theory

Montgomery/Small (eds.): Noncommutative Rings

Akbulut/King: Topology of Real Algebraic Sets

Judah/Just/Woodin (eds.): Set Theory of the Continuum

Carlsson/Cohen/Hsiang/Jones (eds.): Algebraic Topology and Its Applications

Clemens/Kollar (eds.): Current Topics in Complex Algebraic Geometry

Nowakowski (ed.): Games of No Chance

Grove/Petersen (eds.): Comparison Geometry

Levy (ed.): Flavors of Geometry

Cecil/Chern (eds.): Tight and Taut Submanifolds

Axler/McCarthy/Sarason (eds.): Holomorphic Spaces

Ball/Milman (eds.): Convex Geometric Analysis

Levy (ed.): The Fightfold Way

Gavosto/Krantz/McCallum (eds.): Contemporary Issues in Mathematics Education

Schneider/Siu (eds.): Several Complex Variables

Billera/Bjorner/Green/Simion/Stanley (eds.): New Perspectives in Geometric
Combinatorics

Haskell/Pillay/Steinhorn (eds.): Model Theory, Algebra, and Geometry

Bleher/Its (eds.): Random Matriz Models and Their Applications

Schneps (ed.): Galois Groups and Fundamental Groups

Nowakowski (ed.): More Games of No Chance

Montgomery/Schneider (eds.): New Directions in Hopf Algebras

Buhler/Stevenhagen (eds.): Algorithmic Number Theory

Jensen/Ledet/Yui: Generic Polynomials: Constructive Aspects of the Inverse Galois
Problem

Rockmore/Healy (eds.): Modern Signal Processing

Uhlmann (ed.): Inside Out: Inverse Problems and Applications

Gross/Kotiuga: Electromagnetic Theory and Computation: A Topological Approach

Darmon/Zhang (eds.): Heegner Points and Rankin L-Series

Bao/Bryant/Chern/Shen (eds.): A Sampler of Riemann—Finsler Geometry

Avramov/Green/Huneke/Smith/Sturmfels (eds.): Trends in Commutative Algebra

Goodman/Pach/Welzl (eds.): Combinatorial and Computational Geometry

Volumes 1-4 and 6-27 are published by Springer-Verlag



Combinatorial and
Computational Geometry

Edited by

Jacob E. Goodman
City College, CUNY

Janos Pach
City College, CUNY and
Courant Institute, NYU

Emo Welzl
ETH Zurich

CAMBRIDGE

@|J) UNIVERSITY PRESS



Jacob E. Goodman: Department of Mathematics, City College, CUNY,
New York, NY 10031 goodman@sci.ccny.cuny.edu

Janos Pach: Courant Institute, NYU, 251 Mercer Street, New York, NY 10012
and City College, CUNY, New York, NY 10031 pach@courant.nyu.edu

Emo Welzl: Informatik, Eidgendssische Technische Hochschule,
Rémistrasse 101, CH-8092 Ziirich, Switzerland emo@inf.ethz.ch

Silvio Levy (Series Editor): Mathematical Sciences Research Institute,
17 Gauss Way, Berkeley, CA 94720, United States levy@msri.org

The Mathematical Sciences Research Institute wishes to acknowledge support by
the National Science Foundation. This material is based upon work supported by
NSF Grant 9810361.

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo
Cambridge University Press 40 West 20th Street, New York, NY 10011-4211, USA
www.cambridge.org
Information on this title: www.cambridge.org/9780521848626
(© Mathematical Sciences Research Institute 2005

This publication is in copyright. Subject to statutory exception and to the
provisions of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

First published 2005
Printed in the United States of America
A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication data

Combinatorial and computational geometry / edited by Jacob E. Goodman, Jdnos
Pach, Emo Welzl.
p. cm. — (Mathematical Sciences Research Institute publications ; 52)
Includes bibliographical references and index.
ISBN 0-521-84862-8 (hb)
1. Discrete geometry. 2. Combinatorial geometry. 3. Geometry—Data processing.
I. Goodman, Jacob E. II. Pach, Janos. III. Welzl, Emo. IV. Series.

QA640.7.D54 2005
516’.11-dc22
2005042199

ISBN-13 978-0-521-84862-6 hardback ISBN-10 0-521-84862-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party Internet Web sites referred to in this publication, and does not
guarantee that any content on such Web sites is, or will remain, accurate or appropriate.



Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

Contents

Preface xi

Geometric Approximation via Coresets 1
P. K. AcArRwAL, S. HAR-PELED AND K. R. VARADARAJAN

Applications of Graph and Hypergraph Theory in Geometry 31

IMRE BARANY

Convex Geometry of Orbits 51
ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

The Hadwiger Transversal Theorem for Pseudolines 79
SAUGATA BAsu, JAcOB E. GOODMAN, ANDREAS HOLMSEN, AND
RicHARD POLLACK

Betti Number Bounds, Applications and Algorithms 87
SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANGOISE ROy

Shelling and the h-Vector of the (Extra)ordinary Polytope 97
MARGARET M. BAYER

On the Number of Mutually Touching Cylinders 121
ANDRAS BEZDEK

Edge-Antipodal 3-Polytopes 129
KARrROLY BEZDEK, TIBOR BISZTRICZKY, AND KAROLY BOROCZKY

A Conformal Energy for Simplicial Surfaces 135
ALEXANDER BOBENKO

On the Size of Higher-Dimensional Triangulations 147
PETER BRASS

The Carpenter’s Ruler Folding Problem 155
GRUIA CALINESCU AND ADRIAN DUMITRESCU

A Survey of Folding and Unfolding in Computational Geometry 167
ErIK D. DEMAINE AND JOSEPH O’ROURKE

vii



viii CONTENTS

On the Rank of a Tropical Matrix
MIKE DEVELIN, FRANCISCO SANTOS, AND BERND STURMFELS

The Geometry of Biomolecular Solvation
HERBERT EDELSBRUNNER AND PATRICE KOEHL

Inequalities for Zonotopes
RicHARD EHRENBORG

Quasiconvex Programming

DAviD EPPSTEIN

De Concini—Procesi Wonderful Arrangement Models: A Discrete
Geometer’s Point of View

EvA MARIA FEICHTNER

Thinnest Covering of a Circle by Eight, Nine, or Ten Congruent Circles
GABOR FEJES TOTH

On the Complexity of Visibility Problems with Moving Viewpoints
PETER GRITZMANN AND THORSTEN THEOBALD

Cylindrical Partitions of Convex Bodies
ALADAR HEPPES AND WLODZIMIERZ KUPERBERG

Tropical Halfspaces
MICHAEL JOsSwiIG

Two Proofs for Sylvester’s Problem Using an Allowable Sequence of
Permutations

HaGiT LAST

A Comparison of Five Implementations of 3D Delaunay Tessellation
YUANXIN LIU AND JACK SNOEYINK

The Bernstein Basis and Real Root Isolation

BERNARD MOURRAIN, FABRICE ROUILLIER, AND
MARIE-FRANGOISE Roy

Extremal Problems Related to the Sylvester—Gallai Theorem
NIRANJAN NILAKANTAN

A Long Noncrossing Path Among Disjoint Segments in the Plane
JANOS PacH AND RoM PINCHASI

On a Generalization of Schonhardt’s Polyhedron
JORG RAMBAU

On Hadwiger Numbers of Direct Products of Convex Bodies
ISTVAN TALATA

213

243

277

287

333

361

377

399

409

433

439

459

479

495

501

017



CONTENTS

Binary Space Partitions: Recent Developments
CsaBAa D. ToTH

The Erdés—Szekeres Theorem: Upper Bounds and Related Results
GEzA TOTH AND PAVEL VALTR

On the Pair-Crossing Number
PAVEL VALTR

Geometric Random Walks: A Survey
SANTOSH VEMPALA

529

957

569

o7T






Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

Preface

The Great Bear is looking so geometrical,
One would think that something or other could be proved.

— Christopher Fry, “The Lady’s Not for Burning”

During the past several decades, the gradual merger of the field of discrete
geometry and the newer discipline of computational geometry has provided a
significant impetus to mathematicians and computer scientists interested in geo-
metric problems. The resulting field of discrete and computational geometry has
now grown to the point where not even a semester program, such as the one
held at the Mathematical Sciences Research Institute in the fall of 2003, with
its three workshops and nearly 200 participants, could include everyone involved
in making important contributions to the area. The same holds true for the
present volume, which presents just a sampling of the work generated during the
MSRI program; we have tried to assemble a sample that is representative of the
program.

The volume includes 32 papers on topics ranging from polytopes to complexity
questions on geometric arrangements, from geometric algorithms to packing and
covering, from visibility problems to geometric graph theory. There are points
of contact with both mathematical and applied areas such as algebraic topology,
geometric probability, algebraic geometry, combinatorics, differential geometry,
mathematical programming, data structures, and biochemistry.

We hope the articles in this volume—surveys as well as research papers—
will serve to give the interested reader a glimpse of the current state of discrete,
combinatorial and computational geometry as we stand poised at the beginning
of a new century.

Jacob E. Goodman
Janos Pach
Emo Welzl

xi
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Geometric Approximation via Coresets

PANKAJ K. AGARWAL, SARIEL HAR-PELED,
AND KASTURI R. VARADARAJAN

ABSTRACT. The paradigm of coresets has recently emerged as a powerful
tool for efficiently approximating various extent measures of a point set P.
Using this paradigm, one quickly computes a small subset @ of P, called
a coreset, that approximates the original set P and and then solves the
problem on @ using a relatively inefficient algorithm. The solution for @
is then translated to an approximate solution to the original point set P.
This paper describes the ways in which this paradigm has been successfully
applied to various optimization and extent measure problems.

1. Introduction

One of the classical techniques in developing approximation algorithms is the
extraction of “small” amount of “most relevant” information from the given data,
and performing the computation on this extracted data. Examples of the use of
this technique in a geometric context include random sampling [Chazelle 2000;
Mulmuley 1993], convex approximation [Dudley 1974; Bronshteyn and Ivanov
1976], surface simplification [Heckbert and Garland 1997], feature extraction
and shape descriptors [Dryden and Mardia 1998; Costa and César 2001]. For
geometric problems where the input is a set of points, the question reduces to
finding a small subset (a coreset) of the points, such that one can perform the
desired computation on the coreset.

As a concrete example, consider the problem of computing the diameter of a
point set. Here it is clear that, in the worst case, classical sampling techniques like
e-approximation and e-net would fail to compute a subset of points that contain
a good approximation to the diameter [Vapnik and Chervonenkis 1971; Haussler
and Welzl 1987]. While in this problem it is clear that convex approximation

Research by the first author is supported by NSF under grants CCR-~00-86013, EIA-98-70724,
EIA-01-31905, and CCR-02-04118, and by a grant from the U.S.-Israel Binational Science
Foundation. Research by the second author is supported by NSF CAREER award CCR-
0132901. Research by the third author is supported by NSF CAREER award CCR-0237431.



2 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

(i.e., an approximation of the convex hull of the point set) is helpful and provides
us with the desired coreset, convex approximation of the point set is not useful
for computing the narrowest annulus containing a point set in the plane.

In this paper, we describe several recent results which employ the idea of
coresets to develop efficient approximation algorithms for various geometric prob-
lems. In particular, motivated by a variety of applications, considerable work
has been done on measuring various descriptors of the extent of a set P of n
points in R%. We refer to such measures as extent measures of P. Roughly
speaking, an extent measure of P either computes certain statistics of P itself
or of a (possibly nonconvex) geometric shape (e.g. sphere, box, cylinder, etc.)
enclosing P. Examples of the former include computing the k-th largest distance
between pairs of points in P, and the examples of the latter include computing
the smallest radius of a sphere (or cylinder), the minimum volume (or surface
area) of a box, and the smallest width of a slab (or a spherical or cylindrical
shell) that contain P. There has also been some recent work on maintaining
extent measures of a set of moving points [Agarwal et al. 2001Db].

Shape fitting, a fundamental problem in computational geometry, computer
vision, machine learning, data mining, and many other areas, is closely related to
computing extent measures. The shape fitting problem asks for finding a shape
that best fits P under some “fitting” criterion. A typical criterion for measuring
how well a shape v fits P, denoted as (P, ), is the maximum distance between
a point of P and its nearest point on 7, i.e., u(P,7y) = maxyecp minge~ ||p — ¢l|.
Then one can define the extent measure of P to be y(P) = min, u(P, ), where
the minimum is taken over a family of shapes (such as points, lines, hyperplanes,
spheres, etc.). For example, the problem of finding the minimum radius sphere
(resp. cylinder) enclosing P is the same as finding the point (resp. line) that fits
P best, and the problem of finding the smallest width slab (resp. spherical shell,
cylindrical shell)! is the same as finding the hyperplane (resp. sphere, cylinder)
that fits P best.

The exact algorithms for computing extent measures are generally expensive,
e.g., the best known algorithms for computing the smallest volume bounding box
containing P in R® run in O(n?®) time. Consequently, attention has shifted to
developing approximation algorithms [Barequet and Har-Peled 2001]. The goal
is to compute an (1+¢)-approximation, for some 0 < € < 1, of the extent measure
in roughly O(nf(e)) or even O(n+ f(e)) time, that is, in time near-linear or linear
in n. The framework of coresets has recently emerged as a general approach to
achieve this goal. For any extent measure p and an input point set P for which
we wish to compute the extent measure, the general idea is to argue that there
exists an easily computable subset Q C P, called a coreset, of size 1/50(1), SO

LA slab is a region lying between two parallel hyperplanes; a spherical shell is the region
lying between two concentric spheres; a cylindrical shell is the region lying between two coaxial
cylinders.
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that solving the underlying problem on @ gives an approximate solution to the
original problem. For example, if u(Q) > (1 — €)u(P), then this approach gives
an approximation to the extent measure of P. In the context of shape fitting, an
appropriate property for @ is that for any shape v from the underlying family,
w(Q,7v) > (1 —e)u(P,~). With this property, the approach returns a shape v*
that is an approximate best fit to P.

Following earlier work [Barequet and Har-Peled 2001; Chan 2002; Zhou and
Suri 2002] that hinted at the generality of this approach, [Agarwal et al. 2004]
provided a formal framework by introducing the notion of e-kernel and showing
that it yields a coreset for many optimization problems. They also showed that
this technique yields approximation algorithms for a wide range of problems.
Since the appearance of preliminary versions of their work, many subsequent
papers have used a coreset based approach for other geometric optimization
problems, including clustering and other extent-measure problems [Agarwal et al.
2002; Badoiu and Clarkson 2003b; Badoiu et al. 2002; Har-Peled and Wang 2004;
Kumar et al. 2003; Kumar and Yildirim > 2005].

In this paper, we have attempted to review coreset based algorithms for ap-
proximating extent measure and other optimization problems. Our aim is to
communicate the flavor of the techniques involved and a sense of the power of
this paradigm by discussing a number of its applications. We begin in Section 2
by describing e-kernels of point sets and algorithms for constructing them. Sec-
tion 3 defines the notion of e-kernel for functions and describes a few of its
applications. We then describe in Section 4 a simple incremental algorithm for
shape fitting. Section 5 discusses the computation of e-kernels in the streaming
model. Although e-kernels provide coresets for a variety of extent measures,
they do not give coresets for many other problems, including clustering. Sec-
tion 6 surveys the known results on coresets for clustering. The size of the
coresets discussed in these sections increases exponentially with the dimension,
so we conclude in Section 7 by discussing coresets for points in very high dimen-
sions whose size depends polynomially on the dimension, or is independent of
the dimension altogether.

2. Kernels for Point Sets

Let p be a measure function (e.g., the width of a point set) from subsets
of R? to the nonnegative reals R* U {0} that is monotone, i.e., for P; C P,
pw(P1) < u(Py). Given a parameter € > 0, we call a subset @ C P an e-coreset
of P (with respect to u) if

(1 —e)u(P) < wQ).

Agarwal et al. [2004] introduced the notion of e-kernels and showed that it
is an f(g)-coreset for numerous minimization problems. We begin by defining
e-kernels and related concepts.
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Figure 1. Directional width and e-kernel.

e-kernel. Let S%~! denote the unit sphere centered at the origin in R?. For any
set P of points in R? and any direction v € S¥1, we define the directional width
of P in direction u, denoted by w(u, P), to be

w(u, P) = max (u, p) — min (u, p) ,
(u, P) = max (u, p) — min {u, p)

where (-,-) is the standard inner product. Let € > 0 be a parameter. A subset
Q C P is called an e-kernel of P if for each u € S~ 1,

(1 —e)w(u, P) <w(u, Q).

Clearly, w(u,Q) < w(u,P). Agarwal et al. [2004] call a measure function p
faithful if there exists a constant ¢, depending on p, so that for any P C R? and
for any €, an e-kernel of P is a ce-coreset for P with respect to u. Examples
of faithful measures considered in that reference include diameter, width, radius
of the smallest enclosing ball, and volume of the smallest enclosing box. A
common property of these measures is that p(P) = p(conv(P)). We can thus
compute an e-coreset of P with respect to several measures by simply computing
an (g/c)-kernel of P.

Algorithms for computing kernels. An e-kernel of P is a subset whose con-
vex hull approximates, in a certain sense, the convex hull of P. Other notions of
convex hull approximation have been studied and methods have been developed
to compute them; see [Bentley et al. 1982; Bronshteyn and Ivanov 1976; Dudley
1974] for a sample. For example, in the first of these articles Bentley, Faust, and
Preparata show that for any point set P C R? and € > 0, a subset Q of P whose
size is O(1/e) can be computed in O(|P| + 1/¢) time such that for any p € P,
the distance of p to conv(Q) is at most ediam(@). Note however that such a
guarantee is not enough if we want @) to be a coreset of P with respect to faithful
measures. For instance, the width of () could be arbitrarily small compared to
the width of P. The width of an e-kernel of P, on the other hand, is easily seen
to be a good approximation to the width of P. To the best of our knowledge,
the first efficient method for computing a small e-kernel of an arbitrary point set
is implicit in [Barequet and Har-Peled 2001].
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We call P a-fat, for a < 1, if there exists a point p € R? and a hypercube C
centered at the origin so that

p+aC C conv(P) C p+C.

A stronger version of the following lemma, which is very useful for constructing
an e-kernel, was proved in [Agarwal et al. 2004] by adapting a scheme from
[Barequet and Har-Peled 2001]. Their scheme can be thought of as one that
quickly computes an approximation to the Lowner—John Ellipsoid [John 1948].

LEMMA 2.1. Let P be a set of n points in RY such that the volume of conv(P)
is nonzero, and let C = [—1,1]¢. One can compute in O(n) time an affine
transform 1 so that 7(P) is an a-fat point set satisfying aC C conv(7(P)) C C,
where « 1s a positive constant depending on d, and so that a subset Q C P is an
e-kernel of P if and only if 7(Q) is an e-kernel of 7(P).

The importance of Lemma 2.1 is that it allows us to adapt some classical ap-
proaches for convex hull approximation [Bentley et al. 1982; Bronshteyn and
Ivanov 1976; Dudley 1974] which in fact do compute an e-kernel when applied
to fat point sets.

We now describe algorithms for computing e-kernels. By Lemma 2.1, we can
assume that P C [—1,+1]% is a-fat. We begin with a very simple algorithm.

Let & be the largest value such that § < (¢/v/d)a and 1/6 is an integer. We
consider the d-dimensional grid Z of size §. That is,

Z = {(6ir,....000) | i1, ... ia € Z}.

For each column along the z4-axis in Z, we choose one point from the highest
nonempty cell of the column and one point from the lowest nonempty cell of the
column; see Figure 2, top left. Let @ be the set of chosen points. Since P C
[-1,+1)4, |Q| = O(1/(ae)?~1). Moreover @ can be constructed in time O(n +
1/(ae)?1) provided that the ceiling operation can be performed in constant
time. Agarwal et al. [2004] showed that @) is an e-kernel of P. Hence, we can
compute an e-kernel of P of size O(1/¢%71) in time O(n+1/9~1). This approach
resembles the algorithm of [Bentley et al. 1982].

Next we describe an improved construction, observed independently in [Chan
2004] and [Yu et al. 2004], which is a simplification of an algorithm of [Agarwal
et al. 2004], which in turn is an adaptation of a method of Dudley [1974]. Let 8
be the sphere of radius v/d + 1 centered at the origin. Set § = \/za < 1/2. One
can construct a set J of O(1/6%1) = O(1/e(@=1)/2) points on the sphere § so
that for any point  on 8, there exists a point y € J such that || — y|| < J. We
process P into a data structure that can answer e-approximate nearest-neighbor
queries [Arya et al. 1998]. For a query point ¢, let ¢(q) be the point of P returned
by this data structure. For each point y € J, we compute p(y) using this data
structure. We return the set Q = {p(y) | y € J}; see Figure 2, top right.
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We now briefly sketch, following the argument in [Yu et al. 2004], why @ is is
an e-kernel of P. For simplicity, we prove the claim under the assumption that
©(y) is the eract nearest-neighbor of 3 in P. Fix a direction v € S*~!. Let 0 € P
be the point that maximizes (u,p) over all p € P. Suppose the ray emanating
from o in direction u hits 8 at a point x. We know that there exists a point
y € J such that || — y|| < 4. If ¢(y) = o, then ¢ € Q and

max{u — max(u =0.
peg< D) q€g< ,q)

Now suppose ¢(y) # o. Let B be the d-dimensional ball of radius ||y — ||
centered at y. Since ||y — o(y)|| < |ly — o, ¢(y) € B. Let us denote by z the
point on the sphere OB that is hit by the ray emanating from y in direction —u.
Let w be the point on zy such that zylow and h the point on oz such that
yhlox; see Figure 2, bottom.

®

o A

Figure 2. Top left: A grid based algorithm for constructing an e-kernel. Top
right: An improved algorithm. Bottom: Correctness of the improved algorithm.

The hyperplane normal to u and passing through z is tangent to B. Since
(y) lies inside B, (u,¢(y)) > (u, z). Moreover, it can be shown that (u,o) —
(u, p(y)) < ae. Thus, we can write

Iglea1§<u,p> — %1635(@’ q) < (u,0) — (u, p(y)) < ae.
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Similarly, we have minyep (u, p) — mingeg (u,q) > —ae.

The above two inequalities together imply that w(u, Q) > w(u, P)—2ae. Since
aC C conv(P), w(u, P) > 2a. Hence w(u, Q) > (1—¢)w(u, P), for any u € S~1,
thereby implying that @ is an e-kernel of P.

A straightforward implementation of the above algorithm, i.e., the one that
answers a nearest-neighbor query by comparing the distances to all the points,
runs in O(n/e(@=1/2) time. However, we can first compute an (£/2)-kernel Q' of
P of size O(1/&%~1) using the simple algorithm and then compute an (£/4)-kernel
using the improved algorithm. Chan [2004] introduced the notion of discrete
Voronoi diagrams, which can be used for computing the nearest neighbors of a
set of grid points among the sites that are also a subset of a grid. Using this
structure Chan showed that ¢(y), for all y € J, can be computed in a total time
of O(n + 1/e471) time. Putting everything together, one obtains an algorithm
that runs in O(n + 1/e971) time. Chan in fact gives a slightly improved result:

THEOREM 2.2 [Chan 2004]. Given a set P of n points in R? and a parameter
e > 0, one can compute an e-kernel of P of size O(1/e@=V/2) in time O(n +
1/€d_(3/2)).

Experimental results. Yu et al. [2004] implemented their e-kernel algorithm
and tested its performance on a variety of inputs. They measure the quality of
an e-kernel @ of P as the maximum relative error in the directional width of P
and . Since it is hard to compute the maximum error over all directions, they
sampled a set A of 1000 directions in S?~! and computed the maximum relative
error with respect to these directions, i.e.,

err(Q, P) = max w(u, P) ) (2-1)

They implemented the constant-factor approximation algorithm of [Barequet
and Har-Peled 2001] for computing the minimum-volume bounding box to con-
vert P into an a-fat set, and they used the ANN library [Arya and Mount 1998]
for answering approximate nearest-neighbor queries. Table 1 shows the running
time of their algorithm for a variety of synthetic inputs: (i) points uniformly
distributed on a sphere, (ii) points distributed on a cylinder, and (iii) clustered
point sets, consisting of 20 equal sized clusters. The running time is decomposed
into two components: (i) preprocessing time that includes the time spent in con-
verting P into a fat set and in preprocessing P for approximate nearest-neighbor
queries, and (ii) query time that includes the time spent in computing (z) for
x € J. Figure 3 shows how the error err(Q, P) changes as the function of ker-
nel. These experiments show that their algorithm works extremely well in low
dimensions (< 4) both in terms of size and running time. See [Yu et al. 2004]
for more detailed experiments.
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Input Input d=2 d=4 d=26 d=238
Type Size Pre  Que Pre  Que Pre Que Pre Que
104 0.03 0.01 0.06 0.05 0.10 9.40 0.15 52.80
sphere 10° 0.54 0.01 0.90 0.50 1.38  67.22 1.97 1393.88
106 9.25 0.01 13.08 1.35 19.26  227.20 26.77 5944.89
10 0.03 0.01 0.06 0.03 0.10 2.46 0.16 17.29
cylinder 10° 0.60 0.01 0.91 0.34 1.39  30.03 1.94 1383.27
106 9.93 0.01 13.09 0.31 18.94  87.29 26.12  5221.13
104 0.03 0.01 0.06 0.01 0.10 0.08 0.15 2.99
clustered ~ 10° 0.31 0.01 0.63 0.02 1.07 1.34 1.64 18.39
106 5.41 0.01 8.76 0.02 14.75 1.08 22.51 54.12

Table 1. Running time for computing e-kernels of various synthetic data sets,
€ < 0.05. Prepr denotes the preprocessing time, including converting P into a
fat set and building ANN data structures. Query denotes the time for performing
approximate nearest-neighbor queries. Running time is measured in seconds. The
experiments were conducted on a Dell PowerEdge 650 server with a 3.06GHz
Pentium IV processor and 3GB memory, running Linux 2.4.20.
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Figure 3. Approximation errors under different sizes of computed e-kernels.
Left: sphere. Right: various geometric models. All synthetic inputs had 100,000
points.

Applications. Theorem 2.2 can be used to compute coresets for faithful mea-
sures, defined in Section 2. In particular, if we have a faithful measure p that can
be computed in O(n®) time, then by Theorem 2.2, we can compute a value T,
(1—e)u(P) <@ < u(P) by first computing an (¢/c)-kernel @ of P and then using
an exact algorithm for computing 1(Q). The total running time of the algorithm
is O(n +1/e?=6/2) 4 1/e2(@=1)/2) For example, a (1 + ¢)-approximation of the
diameter of a point set can be computed in time O(n + 1/e971) since the exact
diameter can be computed in quadratic time. By being a little more careful, the
running time of the diameter algorithm can be improved to O(n 4 1/£4-(3/2))
[Chan 2004]. Table 2 gives running times for computing an (1+¢)-approximation
of a few faithful measures.

We note that e-kernels in fact guarantee a stronger property for several faithful
measures. For instance, if () is an e-kernel of P, and C is some cylinder containing
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Extent Time complexity
Diameter n+1/e4=6/2
Width (n+1/e%72)log(1/e)

Minimum enclosing cylinder | n 4 1/¢%"
Minimum enclosing box(3D) | n 4 1/&*

Table 2. Time complexity of computing (1 + ¢)-approximations for certain
faithful measures.

@, then a “concentric” scaling of C by a factor of (1 4 c£), for some constant c,
contains P. Thus we can compute not only an approximation to the minimum
radius 7* of a cylinder containing P, but also a cylinder of radius at most (1+¢)r*
that contains P.

The approach described in this section for approximating faithful measures
had been used for geometric approximation algorithms before the framework of
e-kernels was introduced; see [Agarwal and Procopiuc 2002; Barequet and Har-
Peled 2001; Chan 2002; Zhou and Suri 2002], for example. The framework of
e-kernels, however, provides a unified approach and turns out to be crucial for
the approach developed in the next section for approximating measures that are
not faithful.

3. Kernels for Sets of Functions

The crucial notion used to derive coresets and efficient approximation algo-
rithms for measures that are not faithful is that of a kernel of a set of functions.

Figure 4. Envelopes, extent, and e-kernel.

Envelopes and extent. Let § = {fi,..., f,} be a set of n d-variate real-
valued functions defined over x = (z1,...,%q-1,24q) € R?. The lower envelope
of F is the graph of the function £5 : R — R defined as £4(z) = minfcy f().
Similarly, the upper envelope of F is the graph of the function iy : RY — R
defined as Uy (z) = maxseg f(z). The extent €5 : R — R of F is defined as

QS(}‘(I’) = ﬂf{(ﬂf) — Sg‘(:ﬂ)
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Let € > 0 be a parameter. We say that a subset § C F is an e-kernel of F if
(1-e)€q(z) < Eg(z)  VoeR™

Obviously, €g(z) < €5(x), as § C F.

Let H = {hy,...,h,} be a family of d-variate linear functions and £ > 0 a
parameter. We define a duality transformation that maps the d-variate function
(or a hyperplane in RdH) h:2gr1 = a1x1 + agxa + -+ + aqTq + agq41 to the
point h* = (ai,as,...,aq4,aqs1) in R Let H* = {h* | h € H}. It can be
proved [Agarwal et al. 2004] that K C J is an e-kernel of H if and only if K* is
an e-kernel of H*. Hence, by computing an e-kernel of H* we can also compute
an e-kernel of H. The following is therefore a corollary of Theorem 2.2.

COROLLARY 3.1 [Agarwal et al. 2004; Chan 2004]. Given a set F of n d-variate
linear functions and a parameter € > 0, one can compute an e-kernel of F of size
O(1/e%2) in time O(n + 1/e4=1/2)),

We can compute e-kernels of a set of polynomial functions by using the notion
of linearization.

Linearization. Let f(x,a) be a (d+ p)-variate polynomial, x € R? and a € RP.

Let a',...,a™ € RP, and set F = {fl(x) = f(z,a") [1<i < n} Suppose we can
express f(z,a) in the form

f(z,a) = o(a) + Pr(a)pr(x) + - - + Yr(a)pr(@), (3-1)

where 1y, ...,y are p-variate polynomials and 1, ..., @y are d-variate polyno-
mials. We define the map ¢ : R — R”

pla) = (p1(2), . pr(2))-

Then the image I = {<p(a:) |z e Rd} of R? is a d-dimensional surface in R” (if

k > d), and for any a € R?, f(x,a) maps to a k-variate linear function

ha(yrs- - yx) = Yo(a) + Yi(a)yr + -+ + Yr(a)y

in the sense that for any z € R?, f(x,a) = ha(p(z)). We refer to k as the
dimension of the linearization o, and say that F admits a linearization of di-
mension k. The most popular example of linearization is perhaps the so-called
lifting transform that maps R? to a unit paraboloid in R For example, let
f(x1,22,a1,a2,a3) be the function whose absolute value is some measure of the
“distance” between a point (z1,22) € R* and a circle with center (ay,a9) and
radius as, which is the 5-variate polynomial

T1,x2,01,02,03) = az — (1 —ai) — (T2 —a2) .
f( ) =a3—( )2 = ( )?

We can rewrite f in the form

f(z1, 22,01, a2,a3) = [a3 — af — a3] + [2a121] + [2a0@0] — [2] + 23], (3-2)



GEOMETRIC APPROXIMATION VIA CORESETS 11

thus, setting

1/)0(60 = G% - Cl% - a%ﬂ/}l (a) = 20/17’(/)2 (G) = 2a2aw3 (a/) = _1a
1(z) = 21, a(a) = 22, @3(x) = 2] + 23,

we get a linearization of dimension 3. Agarwal and Matousek [1994] describe an
algorithm that computes a linearization of the smallest dimension under certain
mild assumptions.

Returning to the set F, let H = {h,: | 1 <i < n}. It can be verified [Agarwal
et al. 2004] that a subset X C H is an e-kernel if and only if the set § =
{fi | hai € X} is an e-kernel of F.

Combining the linearization technique with Corollary 3.1, one obtains:

THEOREM 3.2 [Agarwal et al. 2004]. Let F = {f1(x),..., fu(x)} be a family of
d-variate polynomials, where fi(z) = f(x,a') and a* € R? for each 1 < i < n,
and f(x,a) is a (d+p)-variate polynomial. Suppose that F admits a linearization
of dimension k, and let ¢ > 0 be a parameter. We can compute an -kernel of F

of size O(1/) in time O(n + 1/e*=1/2), where o = min {d, k/2}.

Let F = {(fi)",....(fu)¥/"}, where 7 > 1 is an integer and each f; is a
polynomial of some bounded degree. Agarwal et al. [2004] showed that if G is
an (¢/2(r — 1))"-kernel of {fi,..., fn}, then {(f;)¥/" | fi € G} is an e-kernel of
F. Hence, we obtain the following.

THEOREM 3.3. Let F = {(fl)l/r, cee (fn)l/”} be a family of d-variate functions
as in Theorem 3.2, each f; is a polynomial that is nonnegative for every x € R,
and r > 2 is an integer constant. Let ¢ > 0 be a parameter. Suppose that F
admits a linearization of dimension k. We can compute in O(n + 1/e"kF=1/2)
time an e-kernel of size O(1/¢"%) where o = min {d, k/2}.

Applications to shape fitting problems. Agarwal et al. [2004] showed that
Theorem 3.3 can be used to compute coresets for a number of unfaithful measures
as well. We illustrate the idea by sketching their (1+¢)-approximation algorithm
for computing a minimum-width spherical shell that contains P = {p1,...,pn}.
A spherical shell is (the closure of) the region bounded by two concentric spheres:
the width of the shell is the difference of their radii. Let f;(x) = || — ps||. Set
F=A{f1,-.., fn}. Let w(z,S) denote the width of the thinnest spherical shell
centered at = that contains a point set S, and let w* = w*(S) = min, cga w(z, S)
be the width of the thinnest spherical shell containing S. Then

P)= — pl| — min ||z — p|| = — mi = €5 ().
w(z, P) = max |z — pl| — min |lo — p| = max fy(2) - min f,(z) = Ex(2)

Let G be an e-kernel of F, and suppose () C P is the set of points corresponding to
G. Then for any z € R, we have w(z, Q) > (1—e)w(z, P). So if we first compute
G (and therefore @) using Theorem 3.3, compute the minimum-width spherical
shell A* containing @, and take the smallest spherical shell containing P centered
at the center of A*, we get a (1 + O(e))-approximation to the minimum-width
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spherical shell containing P. The running time of such an approach is O(n+ f(¢)).
It is a simple and instructive exercise to translate this approach to the problem
of computing a (1 + ¢)-approximation of the minimum-width cylindrical shell
enclosing a set of points.

Using the kernel framework, Har-Peled and Wang [2004] have shown that
shape fitting problems can be approximated efficiently even in the presence of a
few outliers. Let us consider the following problem: Given a set P of n points in
R?, and an integer 1 < k < n, find the minimum-width slab that contains n — k
points from P. They present an e-approximation algorithm for this problem
whose running time is near-linear in n. They obtain similar results for problems
like minimum-width spherical/cylindrical shell and indeed all the shape fitting
problems to which the kernel framework applies. Their algorithm works well
if the number of outliers k is small. Erickson et al. [2004] show that for large
values of k, say roughly n/2, the problem is as hard as the (d — 1)-dimensional
affine degeneracy problem: Given a set of n points (with integer co-ordinates) in
R do any d of them lie on a common hyperplane? It is widely believed that
the affine degeneracy problem requires Q(n¢=!) time.

Points in motion. Theorems 3.2 and 3.3 can be used to maintain various
extent measures of a set of moving points. Let P = {p1,...,p,} be a set of n
points in R, each moving independently. Let p;(t) = (pi1(t),...,pia(t)) denote
the position of point p; at time ¢t. Set P(¢) = {p;(t) | 1 <i < n}. If each p;; is a
polynomial of degree at most r, we say that the motion of P has degree r. We
call the motion of P linear if r = 1 and algebraic if r is bounded by a constant.

Given a parameter € > 0, we call a subset @ C P an e-kernel of P if for any
direction v € S9! and for all ¢ € R,

(1 - 6)(")(11’7 P(t)) < w(uv Q(t))a

where w() is the directional width. Assume that the motion of P is linear,
e, pi(t) = a; + bit, for 1 < i < n, where a;,b; € RY. For a direction u =
(uy,...,uq) € S¥!, we define a polynomial

d d
filu,t) = (pi(t),u) = (a; + bit,u) = agju;+ Y bij - (tug).
j=1 j=1

Set F = {f1,..., fn}. Then
W(u, P(t)) - m?X <pi(t)a 7.L>7Hliin <pi(t)vu> = m;dX fi(uvt)*miin fi(uvt) = G?(uvt)'

Evidently, ¥ is a family of (d+ 1)-variate polynomials that admits a linearization
of dimension 2d (there are 2d monomials). Exploiting the fact that u € S?~!,
Agarwal et al. [2004] show that F is actually a family of d-variate polynomials
that admits a linearization of dimension 2d—1. Using Theorem 3.2, we can there-
fore compute an e-kernel of P of size O(1/e%~(1/2)) in time O(n + 1/2¢=(/2)),
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The above argument can be extended to higher degree motions in a straightfor-
ward manner. The following theorem summarizes the main result.

THEOREM 3.4. Given a set P of n moving points in R? whose motion has degree
r > 1 and a parameter € > 0, we can compute an e-kernel Q of P of size O(1/&%)
in O(n + 1/e0+Dd=G/2)) time.

The theorem implies that at any time ¢, Q(t) is a coreset for P(t) with respect to
all faithful measures. Using the same technique, a similar result can be obtained
for unfaithful measures such as the minimum-width spherical shell.

Yu et al. [2004] have performed experiments with kinetic data structures that
maintain the axes-parallel bounding box and convex hull of a set of points P with
algebraic motion. They compare the performance of the kinetic data structure
for the entire point set P with that of the data structure for a kernel @ computed
by methods similar to Theorem 3.4. The experiments indicate that the number
of events that the data structure for ) needs to process is significantly lower
than for P even when @ is a very good approximation to P.

4. An Incremental Algorithm for Shape Fitting

Let P be a set of n points in R%. In [Badoiu et al. 2002] a simple incremental
algorithm is given for computing an e-approximation to the minimum-enclosing
ball of P. They showed, rather surprisingly, that the number of iterations of their
algorithm depends only on € and is independent of both d and n. The bound was
improved by Badoiu and Clarkson [2003b; 2003a] and by Kumar et al. [2003].
Kumar and Yildirim [> 2005] analyzed a similar algorithm for the minimum-
volume enclosing ellipsoid and gave a bound on the number of iterations that is
independent of d. The minimum-enclosing ball and minimum-enclosing ellipsoid
are convex optimization problems, and it is somewhat surprising that a variant
of this iterative algorithm works for nonconvex optimization problems, e.g., the
minimum-width cylinder, slab, spherical shell, and cylindrical shell containing
P. As shown in [Yu et al. 2004], the number of iterations of the incremental
algorithm is independent of the number n of points in P for all of these problems.

We describe here the version of the algorithm for computing the minimum-
width slab containing P. The algorithm and its proof of convergence are readily
translated to the other problems mentioned. Let @ be any affinely independent
subset of d + 1 points in P.

(i) Let S be the minimum-width slab containing @, computed by some brute-
force method. If a (1 + ¢)-expansion of S contains P, we return this (1 + ¢)-
expansion.

(ii) Otherwise, let p € P be the point farthest from S.

(iii) Set @ = Q U {p} and go to Step 1.

It is clear that when the algorithm terminates, it does so with an e-approximation
to the minimum-width slab containing P. Also, the running time of the algorithm
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is O(k(n+ f(O(k)))), where k is the number of iterations of the algorithm, and
f(t) is the running time of the brute-force algorithm for computing a minimum-
enclosing slab of ¢ points. Following an argument similar to the one used for
proving the correctness of the algorithm for constructing e-kernels, Yu et al.
[2004] proved that the above algorithm converges within O(1/e(@~1)/2) iterations.
They also do an experimental analysis of this algorithm and conclude that its
typical performance is quite good in comparison with even the coreset based
algorithms. This is because the number of iterations for typical point sets is
quite small, as might be expected. See the original paper for details.

We conclude this section with an interesting open problem: Does the in-
cremental algorithm for the minimum-enclosing cylinder problem terminate in
O(f(d) - g(d,e)) iterations, where f(d) is a function of d only, and g(d,¢) is a
function that depends only polynomially on d? Note that the algorithm for the
minimum-enclosing ball terminates in O(1/¢) iterations, while the algorithm for
the minimum-enclosing slab can be shown to require Q(1/£(4=1/2) iterations.

5. Coresets in a Streaming Setting

Algorithms for computing an e-kernel for a given set of points in R¢ can be
adapted for efficiently maintaining an e-kernel of a set of points under insertions
and deletions. Here we describe the algorithm from [Agarwal et al. 2004] for
maintaining e-kernels in the streaming setting. Suppose we are receiving a stream
of points p1, ps, ... in R%. Given a parameter € > 0, we wish to maintain an e-
kernel of the n points received so far. The resource that we are interested in
minimizing is the space used by the data structure. Note that our analysis is
in terms of n, the number of points inserted into the data structure. However,
n does not need to be specified in advance. We assume the existence of an
algorithm A that can compute a d-kernel of a subset S C P of size O(1/§%) in
time O(|S| + Tx(0)); obviously Tx(d) = Q(1/6%). We will use A to maintain an
e-kernel dynamically. Besides such an algorithm, our scheme only uses abstract
properties of kernels such as the following:

(1) If Py is an e-kernel of P;, and Ps is a d-kernel of Py, then Ps is a (d+¢)-kernel
of Pl;

(2) If P is an e-kernel of P, and @ is an e-kernel of @1, then P, U Q2 is an
e-kernel of P, U Q.2

Thus the scheme applies more generally, for instance, to some notions of coresets
defined in the clustering context.

2This property is, strictly speaking, not true for kernels. However, if we slightly modify the
definition to say that @ C P is an e-kernel of P if the 1/(1 — ¢)-expansion of any slab that
contains @ also contains P, both properties are seen to hold. Since the modified definition is
intimately connected with the definition we use, we feel justified in pretending that the second
property also holds for kernels.
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We assume without loss of generality that 1/e is an integer. We use the dy-
namization technique of [Bentley and Saxe 1980], as follows: Let P = (p1,...,pn)
be the sequence of points that we have received so far. For integers ¢ > 1, let
pi = €/ci?, where ¢ > 0 is a constant, and set §; = Hle(l +p) — 1. We
partition P into subsets Py, Py,...,P,, where u = Llogz eknj + 1, as follows.
|Po] = n mod 1/, and for 1 < i < u, |P;j| = 271/ if the i-th rightmost
bit in the binary expansion of LeknJ is 1, otherwise |P;| = 0. Furthermore, if
0 <1 < j < u, the points in P; arrived before any point in P;. These conditions
uniquely specify Py, ..., P,. We refer to i as the rank of P;. Note that for i > 1,
there is at most one nonempty subset of rank i.

Unlike the standard Bentley—Saxe technique, we do not maintain each P;
explicitly. Instead, for each nonempty subset P;, we maintain a d;-kernel @; of
P;;if P, = @, we set Q; = @ as well. We also let Q9 = FPy. Since

1+5i=H(1+§—2) Sexp(Z%)

=1 =1

Exm 1 n%e £
—exp<glzzll—2> gexp(g) < 1—1—5, (5-1)
provided ¢ is chosen sufficiently large, @; is an (¢/3)-kernel of P;. Therefore,
Ui, Q: is an (g/3)-kernel of P. We define the rank of a set @Q; to be i. For
i > 1, if P; is nonempty, |Q;]| will be O(1/pF) because p; < §;; note that |Qo| =
|P0| < 1/Ek.

For each i > 0, we also maintain an ¢/3-kernel K; of |J;5,@;, as follows.
Let u = [logy(e"n)| + 1 be the largest value of i for which P; is nonempty. We
have K,, = @, and for 1 < i < u, K; is a p;-kernel of K;;1 U @;. Finally,
Ko = Qo U K;. The argument in (5-1), by the coreset properties (1) and (2),
implies that K; is an (¢/3)-kernel of |-, @;, and thus Ky is the required e-kernel
of P. The size of the entire data structure is

> (1Qil + 1Ki]) < [Qol + [Ko| + > O(1/pF)
i=0 i=1
[logz *n | +1 ok 2k+1
& i log n
=0(1/") + ; O(E—k> = 0<£—k> .

At the arrival of the next point p,, 1, the data structure is updated as follows.
We add p,41 to Qo (and conceptually to Py). If Qo] < 1/&* then we are done.
Otherwise, we promote (o to have rank 1. Next, if there are two J;-kernels
Rz, Qy of rank j, for some j < Llog2 eF(n + 1)J + 1, we compute a p;11-kernel
Q. of Q; UQy using algorithm A, set the rank of @, to j + 1, and discard the
sets Q, and @Qy. By construction, @ is a dj41-kernel of P, = P, U P, of size
O(l/pé?ﬂ) and |P,| = 27 /e*. We repeat this step until the ranks of all Q;’s are
distinct. Suppose ¢ is the maximum rank of a @); that was reconstructed, then
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we recompute K¢, ..., Ky in that order. That is, for £ > ¢ > 1, we compute a
pi-kernel of K1 U Q; and set this to be K;; finally, we set Ko = K7 U Qq.

For any fixed i > 1, Q; and K; are constructed after every 2°~! /e* insertions,
therefore the amortized time spent in updating @) after inserting a point is

Llog2 Ek’I’LJ —+1 k Llog2 sknJ —+1 k

> mo(5en(m)-of T 5=n(H)

If T4 (x) is bounded by a polynomial in 1/z, then the above expression is bounded
by O(e*Ty (¢)).

THEOREM 5.1 [Agarwal et al. 2004]. Let P be a stream of points in R?, and
let € > 0 be a parameter. Suppose that for any subset S C P, we can compute
an e-kernel of S of size O(1/e¥) in O(|S| + Ta(e)) time, where Ty(e) > 1/&*
is bounded by a polynomial in 1/e. Then we can maintain an e-kernel of P of
size O(1/e*) using a data structure of size O(log®* ™ (n)/e*). The amortized
time to insert a point is O(c*Tx(c)), and the running time in the worst case is

O ((log;mk‘*'1 n)/e* + Ty (e/ log® n)log n) .

Combined with Theorem 2.2, we get a data-structure using (logn /)@ space
to maintain an e-kernel of size O(1/e(@~1)/2) using (1/¢)°(¥) amortized time for
each insertion.

Improvements. The previous scheme raises the question of whether there is a
data structure that uses space independent of the size of the point set to maintain
an e-kernel. Chan [2004] shows that the answer is “yes” by presenting a scheme
that uses only (1/¢)°(4) storage. This result implies a similar result for maintain-
ing coresets for all the extent measures that can be handled by the framework
of kernels. His scheme is somewhat involved, but the main ideas and difficulties
are illustrated by a simple scheme, reproduced below, that he describes that uses
constant storage for maintaining a constant-factor approximation to the radius
of the smallest enclosing cylinder containing the point set. We emphasize that
the question is that of maintaining an approximation to the radius: it is not
hard to maintain the axis of an approximately optimal cylinder.

A simple constant-factor offline algorithm for approximating the minimum-
width cylinder enclosing a set P of points was proposed in [Agarwal et al. 2001a].
The algorithm picks an arbitrary input point, say o, finds the farthest point v
from o, and returns the farthest point from the line ov.

Let rad(P) denote the minimum radius of all cylinders enclosing P, and let
d(p,?) denote the distance between point p and line £. The following observation
immediately implies an upper bound of 4 on the approximation factor of the
above algorithm.

OBSERVATION 5.2. d(p,ov) < 2<|||Z:§”| + 1) rad({o, v, p}).



GEOMETRIC APPROXIMATION VIA CORESETS 17

Unfortunately, the above algorithm requires two passes, one to find v and one to
find the radius, and thus does not fit in the streaming framework. Nevertheless,
a simple variant of the algorithm, which maintains an approximate candidate
for v on-line, works, albeit with a larger constant:

THEOREM 5.3 [Chan 2004]. Given a stream of points in R (where d is not nec-
essarily constant), we can maintain a factor-18 approzimation of the minimum
radius over all enclosing cylinders with O(d) space and update time.

PROOF. Initially, say o and v are the first two points, and set w = 0. We may
assume that o is the origin. A new point is inserted as follows:

insert(p):

1. w := max{w,rad({o, v, p})}.
2. if ||p|| > 2||v|| then v := p.
3. Return w.

After each point is inserted, the algorithm returns a quantity that is shown below
to be an approximation to the radius of the smallest enclosing cylinder of all the
points inserted thus far.

In the following analysis, ws and v¢ refer to the final values of w and v, and
v; refers to the value of v after its i-th change. Note that |lv;|| > 2|jv;—1] for
all i. Also, we have wy > rad({o,v;—1, v;}) since rad({o, v;_1,v;}) was one of the
“candidates” for w. From Observation 5.2, it follows that

d(vi—1,007) < 2 <||ﬁ;_|1|| + 1) rad({o,vi—1,v;}) < 3rad({o,vi—1,v:}) < 3wy.

Fix a point ¢ € P, where P denotes the entire input point set. Suppose that
v = v; just after ¢ is inserted. Since ||¢|| < 2||v;||, Observation 5.2 implies that
d(g,0v5) < 6wy.

For i > j, we have d(q,0v;) < d(q,00;-1) + d(q, 0v;), where ¢ is the orthogonal
projection of ¢ to ov;—7. By similarity of triangles,

d(q,ov:) = (141l / llvi—1])d(vi-1,005) < (llgll / lvi-1]])3wy-
Therefore,

[lqll
l[vi-zll
Expanding the recurrence, one can obtain that d(gq,0v5) < 18wys. So, wy <
rad(P) < 18wy. O

d(q,077) <

d(g,ov;,—1) + 3wr ifi>j.

6. Coresets for Clustering

Given a set P of n points in R? and an integer k > 0, a typical clustering
problem asks for partitioning P into k subsets (called clusters), P, ..., Py, so
that certain objective function is minimized. Given a function p that measures
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the extent of a cluster, we consider two types of clustering objective functions:
centered clustering in which the objective function is maxy<;<y 1(P;), and the
summed clustering in which the objective function is Zle w(P;); k-center and
k-line-center are two examples of the first type, and k-median and k-means are
two examples of the second type.

It is natural to ask whether coresets can be used to compute clusterings effi-
ciently. In the previous sections we showed that an e-kernel of a point set provides
a coreset for several extent measures of P. However, the notion of e-kernel is
too weak to provide a coreset for a clustering problem because it approximates
the extent of the entire P while for clustering problems we need a subset that
approximates the extent of “relevant” subsets of P as well. Nevertheless, core-
sets exist for many clustering problems, though the precise definition of coreset
depends on the type of clustering problem we are considering. We review some
of these results in this section.

6.1. k-center and its variants. We begin by defining generalized k-clustering:
we define a cluster to be a pair (f,S), where f is a g-dimensional subspace for
some ¢ < d and S C P. Define u(f,S) = max,esd(p, f). We define B(f,r)
to be the Minkowski sum of f and the ball of radius r centered at the origin;
B(f,r) is a ball (resp. cylinder) of radius r if f is a point (resp. line), and a
slab of width 2r if f is a hyperplane. Obviously, S C B(f,u(f,S)). We call
C = {(f1,P1),.--,(fx, Px)} a k-clustering (of dimension q) if each f; is a ¢-
dimensional subspace and P = Ule P;. We define u(C) = maxy<i<r 1(fi, Pi),
and set Topt(P,k,q) = ming p(C), where the minimum is taken over all k-
clusterings (of dimension ¢) of P. We use Cop(P, k, q) to denote an optimal
k-clustering (of dimension ¢) of P. For ¢ = 0,1,d — 1, the above clustering
problems are called k-center, k-line-center, and k-hyperplane-center problems,
respectively; they are equivalent to covering P by k balls, cylinders, and slabs of
minimum radius, respectively.

We call @ C P an additive e-coreset of P if for every k-clustering C =

{(f1,Q1), ..., (fx,Qr)} of Q, with r; = u(fi, Q:),
k
P C |JB(fisri +en(C)),
i=1

i.e., union of the expansion of each B(f;,r;) by eu(C) covers P. If for every
k-clustering C of @, with r; = u(f;, Q;), we have the stronger property

k
PC B +er),
=1

then we call @ a multiplicative e-coreset.
We review the known results on additive and multiplicative coreset for k-
center, k-line-center, and k-hyperplane-center.
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k-center. The existence of an additive coreset for k-center follows from the
following simple observation. Let r* = ropi (P, k,0), and let B = {Bi,..., By}
be a family of k balls of radius r* that cover P. Draw a d-dimensional Cartesian
grid of side length er*/2d; O(k/e?) of these grid cells intersect the balls in B.
For each such cell 7 that also contains a point of P, we arbitrarily choose a point
from P N 7. The resulting set § of O(k/e?) points is an additive e-coreset of P,
as proved by Agarwal and Procopiuc [2002]. In order to construct § efficiently,
we use Gonzalez’s greedy algorithm [1985] to compute a factor-2 approximation
of k-center, which returns a value 7 < 2r*. We then draw the grid of side
length e7'/4d and proceed as above. Using a fast implementation of Gonzalez’s
algorithm as proposed in [Feder and Greene 1988; Har-Peled 2004al, one can
compute an additive e-coreset of size O(k/e?) in time O(n + k/e?).

Agarwal et al. [2002] proved the existence of a small multiplicative e-coreset
for k-center in R*. It was subsequently extended to higher dimensions by Har-
Peled [2004b]. We sketch their construction.

THEOREM 6.1 [Agarwal et al. 2002; Har-Peled 2004b]. Let P be a set of n points
inRY, and 0 < £ < 1/2 a parameter. There exists a multiplicative e-coreset of
size O(k!/e%) of P for k-center.

PRrROOF. For k = 1, by definition, an additive e-coreset of P is also a multiplica-
tive e-coreset of P. For k > 1, let r* = rop (P, k,0) denote the smallest r for
which k& balls of radius r cover P. We draw a d-dimensional grid of side length
eTopt/ (5d), and let C be the set of (hyper-)cubes of this grid that contain points
of P. Clearly, |C| = O(k/e?). Let Q' be an additive (g/2)-coreset of P. For
every cell A in C, we inductively compute an e-multiplicative coreset of P N A
with respect to (k — 1)-center. Let Qa be this set, and let Q = [Jycc @a U Q"
We argue below that the set Q is the required multiplicative coreset. The bound
on its size follows by a simple calculation.

Let B be any family of k balls that covers ). Consider any hypercube A of C.
Suppose A intersects all the &k balls of B. Since @’ is an additive (¢/2)-coreset
of P, one of the balls in B must be of radius at least r*/(1+¢/2) > r*(1 — £/2).
Clearly, if we expand such a ball by a factor of (1 + ¢), it completely covers A,
and therefore also covers all the points of AN P.

We now consider the case when A intersects at most k& — 1 balls of B. By
induction, Qo C Q is an e-multiplicative coreset of P N A for (k — 1)-center.
Therefore, if we expand each ball in B that intersects A by a factor of (1 + €),
the resulting set of balls will cover P N A. g

Surprisingly, additive coresets for k-center exist even for a set of moving points
in R%. More precisely, let P be a set of n points in R? with algebraic motion of
degree at most A, and let 0 < € < 1/2 be a parameter. Har-Peled [2004a] showed
that there exists a subset Q C P of size O((k/e?)A*1) so that for all t € R, Q(t)
is an additive e-coreset of P(t). For k = O(n'/*c%), Q can be computed in time
O(nk/e?).
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k-line-center. The existence of an additive coreset for k-line-center, i.e., for
the problem of covering P by k congruent cylinders of the minimum radius, was
first proved in [Agarwal et al. 2002].

THEOREM 6.2 [Agarwal et al. 2002]. Given a set P of finite points in R® and a
parameter 0 < € < 1/2, there exists an additive e-coreset of size

O((k 4 1)!/ed=1HFk)
of P for the k-line-center problem.

PrOOF. Let Copy = {(¢1,P1),..., (g, Pr)} be an optimal k-clustering (of di-
mension 1) of P, and let r* = u(P,k, 1), i.e., the cylinders of radius r* with
axes {1,...,40 cover P and P; C B(¢;,r*). For each 1 < i < k, draw a family
L; of O(1/&%71) lines parallel to ¢; so that for any point in P; there is a line
in L; within distance er*/2. Set L = |J, L;. We project each point p € P; to
the line in L; that is nearest to p. Let p be the resulting projection of p, and
let P; be the set of points that project onto £ € L. Set P = Ueer P,. Tt can
be argued that a multiplicative (g/3)-coreset of P is an additive e-coreset of P.
Since the points in P lie on a line, by Theorem 6.1, a multiplicative (¢/3)-coreset
Q¢ of Py of size O(k!/c") exists. Observing that Q = Urer Q¢ is a multiplicative
(e/3)-coreset of P, and thus Q = {p | p € @} is an additive e-coreset of P of size
O((k + 1) /gd=1+F), O

Although Theorem 6.2 proves the existence of an additive coreset for k-line-
center, the proof is nonconstructive. However, Agarwal et al. [2002] have shown
that the iterated reweighting technique of Clarkson [1993] can be used in conjunc-
tion with Theorem 6.2 to compute an e-approximate solution to the k-line-center
problem in O(nlogn) expected time, with constants depending on k, ¢, and d.

When coresets do not exist. We now present two negative results on core-
sets for centered clustering problems. Surprisingly, there are no multiplicative
coresets for k-line-center even in R

THEOREM 6.3 [Har-Peled 2004b]. For any n > 3, there exists a point set P =
{p1,...,pn} in R?, such that the size of any multiplicative (1/2)-coreset of P
with for 2-line-center is at least |P| — 2.

PROOF. Let p; = (1/2%,2%) and P(i) = {p1,...,pi}. Let Q be a (1/2)-coreset of
P=P(n). Let Q; =QnNP(i) and Qf =Q\ Q; .

If the set @ does not contain the point p; = (1/2i7 2i), for some 2 < i <n-—1,
then @) can be covered by a horizontal strip h™ of width < 2¢~1 that has the
x-axis as its lower boundary. Clearly, if we expand A~ by a factor of 3/2, it still
will not cover p;. Similarly, we can cover Qj' by a vertical strip ™ of width
1/2+! that has the y-axis as its left boundary. Again, if we expand h* by a
factor of 3/2, it will still not cover p;. We conclude, that any multiplicative
(1/2)-coreset for P must include all the points po, ps, ..., Dn-1. a
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This construction can be embedded in R?, as described in [Har-Peled 2004b], to
show that even an additive coreset does not exist for 2-plane-clustering in R?,
i.e., the problem of covering the input point set of two slabs of the minimum
width.

For the special case of 2-plane-center in R?, a near-linear-time approximation
algorithm is known [Har-Peled 2004b]. The problem of approximating the best
k-hyperplane-clustering for ¥ > 3 in R® and k& > 2 in higher dimensions in
near-linear time is still open.

6.2. k-median and k-means clustering. Next we focus our attention to
coresets for the summed clustering problem. For simplicity, we consider the
k-median clustering problem, which calls for computing & “facility” points so
that the average distance between the points of C' and their nearest facility is
minimized. Since the objective function involves sum of distances, we need to
assign weights to points in coresets to approximate the objective function of the
clustering for the entire point set. We therefore define k-median clustering for a
weighted point set.

Let P be a set of n points in Rd, and let w : P — Z™T be a weight function.
For a point set C C R?, let u(P,w,C) = > pep W(p)d(p, C), where d(p,C) =
mingec d(p, ¢). Given C, we partition P into k clusters by assigning each point
in P to its nearest neighbor in C'. Define

p(Pyw, k) = min pu(P,w,C).
CCR?
ICl=k
For k = 1, this is the so-called Fermat—Weber problem [Wesolowsky 1993]. A
subset @ C P with a weight function y : P — Z7T is called an e-coreset for
k-median if for any set C' of k points in RY,

(1 - s)lu’(vav C) < N(QvXa C) < (1 + E)N(vaa C)

Here we sketch the proof from [Har-Peled and Mazumdar 2004] for the ex-
istence of a small coreset for the k-median problem. There are two main in-
gredients in their construction. First suppose we have at our disposal a set
A={ay,...,an} of “support” points in R? so that w(P,w, A) < ep(P,w, k) for
a constant ¢ > 1, i.e., A is a good approximation of the “centers” of an optimal
k-median clustering. We construct an e-coreset 8 of size O((|A|logn)/e?) using
A, as follows.

Let P, C P, for 1 < i < m, be the set of points for which a; is the
nearest neighbor in A. We draw an exponential grid around a; and choose
a subset of O((logn)/e?) points of P;, with appropriate weights, for 8. Set
p = p(P,w, A)/cn, which is a lower bound on the average radius u(P, w, k)/n of
the optimal k-median clustering. Let C; be the axis-parallel hypercube with side
length p27 centered at a;, for 0 < i < [2log(cn)]. Set Vo = Co and V; = C;\C;_,
for i > 1. We partition each V; into a grid of side length £p27 /a, where o > 1 is
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a constant. For each grid cell 7 in the resulting exponential grid that contains
at least one point of P;, we choose an arbitrary point in P; N7 and set its weight
to Zpeme w(p). Let 8; be the resulting set of weighted points. We repeat this
step for all points in A, and set § = U?;l 8;. Har-Peled and Mazumdar showed
that 8 is indeed an e-coreset of P for the k-median problem, provided « is chosen
appropriately.

The second ingredient of their construction is the existence of a small “sup-
port” set A. Initially, a random sample of P of O(klogn) points is chosen and
the points of P that are “well-served” by this set of random centers are filtered
out. The process is repeated for the remaining points of P until we get a set
A’ of O(k:log2 n) support points. Using the above procedure, we can construct
an (1/2)-coreset 8 of size O(klog®n). Next, a simple polynomial-time local-
search algorithm, described in [Har-Peled and Mazumdar 2004], can be applied
to this coreset and a support set A of size k can be constructed, which is a
constant-factor approximation to the optimal k-median/means clustering. Plug-
ging this A back into the above coreset construction yields an e-coreset of size
O((k/e%)logn).

THEOREM 6.4 [Har-Peled and Mazumdar 2004]. Given a set P of n points in R,
and parameters € > 0 and k, one can compute a coreset of P for k-means and
k-median clustering of size O((k/e%)logn). The running time of this algorithm
is O(n + poly(k,logn, 1/¢)), where poly(-) is a polynomial.

Using a more involved construction, Har-Peled and Kushal [2004] showed that
for both k-median and k-means clustering, one can construct a coreset whose size
is independent of the size of the input point set. In particular, they show that
there is a coreset of size O(k?/e?) for k-median and O(k3/e4*!) for k-means.
Chen [2004] recently showed that for both k-median and k-means clustering,
there are coresets whose size is O(dke=2logn), which has linear dependence on
d. In particular, this implies a streaming algorithm for k-means and k-median
clustering using (roughly) O(dke=2log®n) space. The question of whether the
dependence on n can be removed altogether is still open.

7. Coresets in High Dimensions

Most of the coreset constructions have exponential dependence on the dimen-
sions. In this section, we do not consider d to be a fixed constant but assume that
it can be as large as the number of input points. It is natural to ask whether
the dependence on the dimension can be reduced or removed altogether. For
example, consider a set P of n points in R A 2-approximate coreset for the
minimum enclosing ball of P has size 2 (just pick a point in P, and its furthest
neighbor in P). Thus, dimension-independent coresets do exist.

As another example, consider the question of whether a small coreset exists
for the width measure of P (i.e., the width of the thinnest slab containing P). It
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is easy to verify that any e-approximate coreset for the width needs to be of size
at least 1 /EQ((d_l)/ 2). Indeed, consider spherical cap on the unit hypersphere,
with angular radius cy/z, for appropriate constant c. The height of this cap
is 1 — cos(cy/g) < 2e. Thus, a coreset of the hypersphere, for the measure of
width, in high dimension, would require any such cap to contain at least one
point of the coreset. As such, its size must be exponential, and we conclude that
high-dimensional coresets (with size polynomial in the dimension) do not always
exist.

7.1. Minimum enclosing ball. Given a set of points P, an approximation
of the minimum radius ball enclosing P can be computed in polynomial time
using the ellipsoid method since this is a quadratic convex programming problem
[Gartner 1995; Grotschel et al. 1988]. However, the natural question is whether
one can compute a small coreset, @@ C P, such that the minimum enclosing ball
for @) is a good approximation to the real minimum enclosing ball.

Bédoiu et al. [2002] presented an algorithm, which we have already mentioned
in Section 4, that generates a coreset of size O(1/e?). The algorithms starts with
a set Cp that contains a single (arbitrary) point of P. Next, in the i-th iteration,
the algorithm computes the smallest enclosing ball for C;_;. If the (1 + ¢)-
expansion of the ball contains P, then we are done, as we have computed the
required coreset. Otherwise, take the point from P furthest from the center
of the ball and add it to the coreset. The authors show that this algorithm
terminates within O(1/g?) iterations. The bound was later improved to O(1/¢)
in [Kumar et al. 2003; Badoiu and Clarkson 2003b]. Badoiu and Clarkson showed
a matching lower bound and gave an elementary algorithm that uses the “hill
climbing” technique. Using this algorithm instead of the ellipsoid method, we
obtain a simple algorithm with running time O(dn/e + 1/e°M) [Badoiu and
Clarkson 2003a].

It is important to note that this coreset Q) is weaker than its low dimensional
counterpart: it is not necessarily true that the (1 + €)-expansion of any ball
containing ) contains P. What is true is that the smallest ball containing @,
when (1 + €)-expanded, contains P. In fact, it is easy to verify that the size of
a coreset guaranteeing the stronger property is exponential in the dimension in
the worst case.

Smallest enclosing ball with outliers. As an application of this coreset, one
can compute approximately the smallest ball containing all but k& of the points.
Indeed, consider the smallest such ball bypt, and consider P’ = P N bype. There
is a coreset Q C P’ such that

(1) 1@l = O(1/e), and
(2) the smallest enclosing ball for @, if e-expanded, contains at least n— k points
of P.
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Thus, one can just enumerate all possible subsets of size O(1/¢) as “candidates”
for @, and for each such subset, compute its smallest enclosing ball, expand the
ball, and check how many points of P it contains. Finally, the smallest candidate
ball that contains at least n — k points of P is the required approximation. The
running time of this algorithm is dn®(/¢).
k-center. We execute simultaneously k& copies of the incremental algorithm for
the min-enclosing ball. Whenever getting a new point, we need to determine to
which of the k clusters it belongs to. To this end, we ask an oracle to identify
the cluster it belongs to. It is easy to verify that this algorithm generates an e-
approximate k-center clustering in k /e iterations. The running time is O(dkn/e+
ik /z0W),

To remove the oracle, which generates O(k/e) integer numbers between 1 and
k, we just generate all possible sequence answers that the oracle might give.
Since there are O(k9*/¢)) sequences, we get that the running time of the new
algorithm (which is oracle free) is O(dnk©*/2)). One can even handle outliers;
see [Badoiu et al. 2002] for details.

7.2. Minimum enclosing cylinder. One natural problem is the computation
of a cylinder of minimum radius containing the points of P. We saw in Section 5
that the line through any point in P and its furthest neighbor is the axis for a
constant-factor approximation. Har-Peled and Varadarajan [2002] showed that
there is a subset Q C P of (1/)°™) points such that the axis of an e-approximate
cylinder lies in the subspace spanned by (). By enumerating all possible candi-
dates for @, and solving a “low-dimensional” problem for each of the resulting
candidate subspaces, they obtain an algorithm that runs in dn/9°Y time. A
slightly faster, but more involved algorithm, was described earlier in [Badoiu
et al. 2002].

The algorithm of Har-Peled and Varadarajan extends immediately to the
problem of computing a k-flat (i.e., an affine subspace of dimension k) that
minimizes the maximum distance to a point in P. The resulting running time
is dn®/9)°" | The approach also handles outliers and multiple (but constant
number of) flats.

Linear-time algorithm. A natural approach for improving the running time
of the minimum enclosing cylinder, is to adapt the general approach underlying
the algorithm of [Badoiu and Clarkson 2003a] to the cylinder case. Here, the
idea is that we start from a center line £y. At each iteration, we find the furthest
point p; € P from ¢; ;. We then generate a line ¢; which is “closer” to the
optimal center line. This can be done by consulting with an oracle, that provides
us with information about how to move the line. By careful implementation,
and removing the oracle, the resulting algorithm takes O(ndC.) time, where
C. = exp(Ei3 log? %) See [Har-Peled and Varadarajan 2004] for more details.
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This also implies a linear-time algorithm for computing the minimum radius
k-flat. The exact running time is

O(k?) 1
€ 2

The constants involved were recently improved by Panigrahy [2004], who also
simplified the analysis.

Handling multiple slabs in linear time is an open problem for further research.
Furthermore, computing the best k-flat in the presence of outliers in near-linear
time is also an open problem.

The L, measure. A natural problem is to compute the k-flat minimizing not
the maximum distance, but rather the sum of squared distances; this is known
as the Ly measure, and it can be solved in O(min(dn?, nd?)) time, using singular
value decomposition [Golub and Van Loan 1996]. Recently, Rademacher et al.
[2004] showed that there exists a coreset for this problem. Namely, there are
O(k?/¢) points in P, such that their span contains a k-flat which is a (1+4¢)-
approximation to the best k-flat approximating the point set under the L, mea-
sure. Their proof also yields a polynomial time algorithm to construct such a
coreset. An interesting question is whether there is a significantly more efficient
algorithm for computing a coreset. Rademacher et al. also show that their
approach leads to a polynomial time approximation scheme for fitting multiple
k-flats, when k and the number of flats are constants.

7.3. k-means and k-median clustering. Badoiu et al. [2002] consider the
problem of computing a k-median clustering of a set P of n points in R They
show that for a random sample X from P of size O(1/e%log1/¢), the following
two events happen with probability bounded below by a positive constant: (i)
The flat span(X) contains a (1 + €)-approximate 1-median for P, and (i) X
contains a point close to the center of a 1-median of P. Thus, one can generate
a small number of candidate points on span(X), such that one of those points is
a median which is an (1 + €)-approximate 1-median for P.

To get k-median clustering, one needs to do this random sampling in each of
the k clusters. It is unclear how to do this if those clusters are of completely
different cardinality. B&adoiu et al. [2002] suggest an elaborate procedure to
do so, by guessing the average radius and cardinality of the heaviest cluster,
generating a candidate set for centers for this cluster using random sampling,
and then recursing on the remaining points. The resulting running time is

o(k/)?M JO(1),, 10g0(k) n,

and the results are correct with high-probability.



26 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN

A similar procedure works for k-means; see [de la Vega et al. 2003]. Those
algorithms were recently improved to have running time with linear dependency
on n, both for the case of k-median and k-means [Kumar et al. 2004].

7.4. Maximum margin classifier. Let PT and P~ be two sets of points,
labeled as positive and negative, respectively. In support vector machines, one is
looking for a hyperplane h such that P+ and P~ are on different sides of h, and
the minimum distance between h and the points of P = PT U P~ is maximized.
The distance between h and the closest point of P is known as the margin of h.
In particular, the larger the margin is, the better generalization bounds one can
prove on h. See [Cristianini and Shaw-Taylor 2000] for more information about
learning and support vector machines.

In the following, let A = A(P) denote the diameter of P, and let p denote the
width of the maximum width margin for P. Har-Peled and Zimak [2004] showed
an iterative algorithm for computing a coreset for this problem. Specifically, by
iteratively picking the point that has maximum violation of the current classifier
to be in the coreset, they show that the algorithm terminates after O((A/p)?/e)
iterations. Thus, there exist subsets @~ C P~ and QT C PT, such that the
maximum margin linear classifier h for @ and Q= has a > (1—¢)p margin for P.
As in the case of computing the minimum enclosing ball, one calls a procedure
for computing the best linear separator only on the growing coresets, which are
small. Kowalczyk [2000] presented a similar iterative algorithm, but the size of
the resulting coreset seems to be larger.

8. Conclusions

In this paper, we have surveyed several approximation algorithms for geomet-
ric problems that use the coreset paradigm. We have certainly not attempted
to be comprehensive and our paper does not reflect all the research work that
can be viewed as employing this paradigm. For example, we do not touch upon
the body of work on sublinear algorithms [Chazelle et al. 2003] or on property
testing in the geometric context [Czumaj and Sohler 2001]. Even among the re-
sults that we do cover, the choice of topics for detailed exposition is (necessarily)
somewhat subjective.
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ABSTRACT. The aim of this survey is to collect and explain some geomet-
ric results whose proof uses graph or hypergraph theory. No attempt has
been made to give a complete list of such results. We rather focus on typi-
cal and recent examples showing the power and limitations of the method.
The topics covered include forbidden configurations, geometric construc-
tions, saturated hypergraphs in geometry, independent sets in graphs, the
regularity lemma, and VC-dimension.

1. Introduction

Among n distinct points in the plane the unit distance occurs at most O(n3/2)
times. The proof of this fact uses two things. The first is a theorem from graph
theory saying that a graph on n vertices containing no K53 can have at most
O(n®/?) edges. The second is a simple fact from plane geometry: the unit
distance graph contains no Ky 3.

This is the first application of graph theory in geometry, and is contained in a
short and extremely influential paper of Paul Erdds [1946]. The first application
of hypergraph theory in geometry is even earlier: it is the use of Ramsey’s
theorem in the famous Erdds and Szekeres result from 1935 (see below in the
next section). Actually, Erdés and Szekeres proved Ramsey’s theorem (without
knowing it had been proved earlier) since they needed it for the geometric result.

The aim of this survey is to collect and explain some geometric results whose
proof uses graph or hypergraph theory. Such applications vary in depth and
difficulty. Often a very simple geometric statement adds an extra condition to
the combinatorial structure at hand, which helps in the proof. At other times,
the geometry is not so simple but is dictated by the combinatorics of the objects
in question.

I do not attempt to give a complete list of such results, but rather concen-
trate on typical or recent examples showing the power and limitations of such
methods. Instead of presenting complete proofs I have tried to give a sketch
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emphasizing the interaction between geometry and (hyper)graph theory. To
fill in the details the reader is advised to consult the original papers and the
excellent books [Matousek 2002] and [Pach and Agarwal 1995]. Although I've
tried to incorporate every important result, the choice of material, of course,
reflects my personal preferences. Also, several further examples could have been
included: the Lovasz Local Lemma, discrepancy results, planar graphs and geo-
metric graphs, etc. But in these cases I felt that either the method is more
probabilistic than combinatorial, or the question is not so much geometric.

Some remarks on notation are in place here: b, ¢, c;, C denote different con-
stants. The O( ) and o( ) notation is often used. K, ,, denotes the complete
bipartite graph with classes of size n and m. K¥(t) stands for the complete k-
partite k-uniform hypergraph with ¢ vertices in each class. The set {1,2,...,n}
will be denoted simply by [n]. A graph is denoted by G = (V, E) where V is
the set of vertices, and E the set of edges. The independence number a(G) of
a graph G is the maximum size independent set in G, and a subset W C V
is independent if there are no edges between vertices of W. A hypergraph, or
set system, is usually denoted by H, its ground set (or vertex set) by V, its
(hyper)edges are e € H, or sometimes F € H. A transversal of H isaset T CV
intersecting every edge in H.

2. Forbidden Configurations

This method is typically used for counting geometric objects. It is usually
based on a simple geometric fact (showing that some configuration cannot oc-
cur) combined with a graph or hypergraph theorem saying that, if certain con-
figuration is forbidden, then the number of edges is bounded. The case of the
unit distance graph in the introduction illustrates the method quite clearly; this
section gives a few more examples. We mention in passing that the unit distance
problem is still wide open: the maximal number of unit distances among n points

14+(c/Inlnn) and C'fl4/3.

is somewhere between n

The first example is counting point-line incidences: Given a set of lines, L,
and a set of points, P, both of them finite, how many incidences can there
be? We only assume that two lines have at most one point in common and
there is at most one line passing through two points. (So we are not working
in the Euclidean plane.) The setting immediately defines a bipartite graph with
bipartition classes L and P, with (¢,p) € L x P forming an edge if they are
incident. This is a bipartite graph containing no Kj2. Then a theorem of
K&véri, T. Sés, and Turdn [K&vari et al. 1954] applies. We state the result for

the case when |L| = |P| = n: such a graph has at most
3(1 ++/An —3)

edges. This bound is asymptotically tight: the example of the projective plane
of order g (where ¢ is a prime power) shows n = ¢? 4+ ¢ + 1 points and the same
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number of lines while the number of incidences is exactly
n
(@ +q+1)(g+1)= S (1+Vin =3).

A miracle has happened: of the whole point-line structure, only the bipartiteness
and the forbidden subgraph K5, are needed to obtain the exact bound. It
is worth mentioning that while this exact bound follows from the forbidden
subgraph theorem [K6vari et al. 1954], the sharpness of the forbidden subgraph
theorem is implied by the example of the projective plane. So geometry pays
back its due to combinatorics.

Remark. The situation is different when the points and lines belong to the
Euclidean plane (cf. the Szemerédi-Trotter theorem [1983]) but there, the struc-
ture is richer. The actual bound is O(|P|?/3|L|?/3 +|P|+|L|) which is tight apart
from the implied constant. There are several proofs available now: the simplest
is by L. Székely [1997] based on the crossing lemma. The above forbidden sub-
graph argument, combined with the so-called cutting lemma, also provides a nice
proof, for details see [Matousek 2002].

Remark. The original motivation for bounding the number of edges in a
(bipartite) graph with no Kso comes from number theory, see [Erdds 1938].
Erdés proves the weaker bound 3n3/2 on the number of edges but gives the
example of the finite projective plane (in disguise) to show that the bound is
quite good.

Examples of this type abound. Here is a less well known one due to Turan
[1970].

THEOREM 1. If X C R? has n elements and is of diameter one, then there are
at least n?/6 — O(n) pairs x,y € X whose distance is at most 1/+/2.

The proof is simple. First a little geometry: Among any four points of X there
are two that are at distance 1/v/2 or closer. (One cannot give a bound smaller
than 1/4/2: see the square of diameter one.) So the graph G(X,FE), whose
edges are the pairs with distance larger than 1/v/2, contains no K4. By Turan’s
theorem [1941] the complementary graph has at least n?/6 — O(n) edges. This
proof also indicates which set of n points shows that the bound n?/6 — O(n) is
tight.

The classical Erdés—Szekeres theorem [1935] uses, in its proof, a certain for-
bidden configuration. We say that n points in the plane are in conver position
if they form the vertices of a convex n-gon. We now state the Erdds—Szekeres
theorem:

THEOREM 2. For every n > 3 there is N = N(n) such that every point set
X C R? in general position with |X| > N contains a subset of size n that is in
conver position.

For the proof one checks that N(4) = 5, that is, among 5 points in the plane
there are 4 in convex position. Now set N(n) = R4(5,n), the Ramsey number,
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which means that in every red-blue colouring of all quadruples of an R4(5,n)-set
either there are 5 points whose all quadruples are red or there are n points whose
all quadruples are blue. This number is finite (by the Ramsey theorem, [Ramsey
1930]). Now let X C R? contain N or more elements. Colour its quadruples in
convex position Blue, and colour the rest Red. There are no 5 points whose all
quadruples are Red (since N(4) = 5), so there are n points in X with all of their
quadruples in convex position. It is very simple to see now that these n points
are also in convex position. Here the forbidden configuration was 5 points with
all of its quadruples nonconvex.

Our examples so far have shown forbidden subgraphs. Often other structures
are forbidden. Here comes the beautiful case of lower envelope of segments in
R?. The setting is this: given n line segments in the plane, none of them vertical,
what is the complexity of their lower envelope? That is, consider the segments
as linear functions, each defined on some interval, take the pointwise minimum,
f, of these functions. How many segments make up the graph of this minimum?
The answer is cna(n), where a(n) is a very slowly increasing function, the inverse
of the Ackerman function. Without going into the details (which can be found
in [Hart and Sharir 1986] and [Matousek 2002]), I explain what kind of forbidden
structure appears here.

Index the segments by 1,...,n. The function f(z) is piecewise linear. Assume
I, I, ..., I, are the intervals (in this order on the horizontal axis) where f is
linear. (So we want to estimate ¢, the number segments on the graph of f.)
Attach index i to the interval Iy, if the graph of f coincides with the ith segment
on I;. Writing the various indexes, as they appear on the horizontal axis from
left to right, we get a sequence aj,as,...,a; of numbers from [n] that has the
following properties:

® a; # a1,
e there are no indices i; < iy < i3 < @4 < i5 such that a;, = a;, = ai; # a;, =
Ay -

Only the second property (saying that a, b, a, b, a cannot be a subsequence of our
sequence) needs a proof, and we leave it to the reader. This is a forbidden subse-
quence condition. Sequences with these properties are called Davenport—Schinzel
sequences of order 3. Determining the maximal length of such a sequence on [n]
had been an open problem from 1965 until Hart and Sharir [1986] proved, by
combinatorial methods, that the maximal length is O(na(n)). That this bound
is sharp was shown later (by Peter Shor; see [Matousek 2002]). The ingenious
construction gives n segments whose lower envelope has cna(n) segments. Once
again, combinatorics gives the upper bound in a geometric problem, and a geo-
metric construction shows that this bound is precise.

Further examples of forbidden configurations can be found in the books [Pach
and Agarwal 1995] and [Matousek 2002].
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3. Constructions

Any hypergraph H on n vertices gives rise, in a natural way, to a point set
X(H) in R™. Simply represent each S € H by its characteristic vector x(S)
whose ith component is one if the ith element of the ground set is in S and
is zero otherwise. This set X (H) is, in fact, a subset of the vertices of the
unit cube. The properties of the hypergraph are reflected in the properties of
X (H) and vice versa. This simple connection, combined with powerful results
from extremal set theory, can have amazing results, like the counterexample to
Borsuk’s conjecture.

In 1933 Borsuk asked whether every set of diameter one in R? can be parti-
tioned into d+1 sets of diameter smaller than one. One may immediately assume
that the sets in question are convex since taking convex hull does not increase
the diameter. Among convex sets, the regular simplex and the unit ball can in-
deed be partitioned into d + 1 sets of smaller diameter (but not into fewer sets).
This had been known for smooth convex bodies as well (with a fairly simple
proof), but for polytopes, despite many efforts, there had been no proof in sight.
Then, in 1992, an ingenious construction was found by Kahn and Kalai [1993]
showing that the conjecture is far from being true: the smallest number of sets
in a suitable partition must be at least 2¢Vd for some small positive c¢. Their
construction is based on the following, equally beautiful, result of Frankl and
Wilson [1981]:

THEOREM 3. Let q be a prime power. Let F be a family of 2q-subsets of [4q] so
that no two sets in F' have intersection of size q. Then

P g2<4q1>.
qg—1

How does one use this result to produce a counterexample? Consider the edges
of the complete graph K (V, E) whose vertex set is V = [4q]. For every partition
P ={A, B} of V let S(A, B) be the set of edges connecting a vertex in A to one
in B. Now define H to be the family of sets S(A, B) where |A| = |B| = 2¢. So
H is a 4¢?-uniform hypergraph on the set E, |E| = 2q(4q — 1), which gives rise
to a point set X (H) in RIEI. As is easy to see, the smallest intersection between
Sl = S(Al,Bl) € H and SQ = S(AQ,BQ) € H occurs when |A1 ﬂA2| = (. It
follows that the Euclidean distance between x(S1) and x(S2) is the largest when
|A1 N A2| = ¢g. By the Frankl-Wilson theorem every subfamily of H with more
than 2(4qq__11) sets contains two sets, S and Sy with |A; N As| = ¢. That is, when
partitioning H into fewer than

3 (5)
h(q) = 57 31
2( qq—l )
subfamilies, one of them contains a pair S; and Sy with |A; N As| = ¢. The

same applies to X (H) which sits in d = 2¢g(4q — 1)-dimensional space: in any
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partition of X (H) into fewer than h(q) sets one of the sets has the same diameter
as X(H). It is easy to see that h(g) grows faster than 1.2V4 > d+1if d is large
enough. This is the first counterexample to Borsuk’s conjecture. Several others
with direct proofs and better estimates are available now. For a comprehensive
survey, see [Ralgorodskii 2001].

The morale is that geometric intuition can be misleading in higher dimension.
Taking convex hulls may not help at all and the discrete structure of the point
set can be more important.

The Frankl-Wilson theorem has further geometric applications, many of them
given in the original paper [Frankl and Wilson 1981]. They show for instance
that the chromatic number, g(d), of R? is exponential: g(d) > (1 + o(1))1.2¢.
Here g(d) is defined as the smallest number n such that R? can be coloured by
n colours so that no two points of the same colour are distance one apart. The
question of estimating g(2) and more generally g(d) goes back to E. Nelson, J.
Isbell, and P. Erdds; see [Hadwiger 1961]. Determining g(d) has turned out to
be hard. For instance, the value of g(2) is known to be either 4,5,6, or 7, but
which of these numbers it is remains a mystery, after 60 years. Larman and
Rogers [1972] proved that g(d) < 3¢. This, together with the Frankl-Wilson
theorem shows that the chromatic number of R? is exponential in d.

Geometric intuition did not help in the following construction, which is based
on extremal hypergraph theory. Danzer and Griinbaum [1962] showed that
among 2¢ + 1 points in R? there are three that form an acute triangle. (The
proof is beautiful!) This raised the question to determine the smallest N such
that among any set of N points in R?, there are three that form an angle > 7/2.
It was conjectured that the smallest such N is 2d — 1. But this was soundly
refuted by Erdds and Fiiredi [1983] with the following example, which is quite
natural once you have seen it. Consider the vertices of the unit cube. Clearly,
no angle is larger than 7/2. Three vertices a, b, ¢ give angle 7/2 at b if and only
if the vectors a — b and ¢ — b are orthogonal. As a,b, ¢ are 0-1 vectors, they are
characteristic vectors of sets A, B,C' C [d]. The condition (a — b)(c —b) = 0
translates directly to ANC C B C AUC. Thus the target is to construct a large
family H of sets on the ground set [d] with no three sets A, B,C € H satisfying
B C AUC (a slightly weaker yet sufficient condition). A quite natural random
hypergraph with 1.13% edges has this property. In the corresponding set in R?,
with 1.13% points, all angles are smaller than /2. For details see [Erdés and
Fiiredi 1983], where the authors also prove, with similar methods, the existence
of a set in R? of size exponential in d such that all distances between two points
of the set are between .99 and 1.01.

4. Saturated Hypergraphs

The saturated hypergraph theorem of Erdds and Simonovits [1983] says the
following:
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THEOREM 4. For every positive integer k and t and every p > 0 there exists
6 > 0 with the following property. Let H be a k-uniform hypergraph on n vertices
and with at least p(Z) edges. Then H contains at least

[on™]
copies (not necessarily induced) of K*(t).

One way to remember the statement is to assume that H is a random k-uniform
hypergraph with edge-probability p. Then the expected number of copies of
K*(t) is ptk (t"t) > const n**. The saturated hypergraph theorem says that a
hypergraph with positive edge density behaves like a "random hypergraph” of
the same edge density. It is not surprising then that the proof of Theorem 4 goes
by averaging.

This theorem is very useful when one has a family F' of geometric objects and
happens to know that a positive fraction of the k element subfamilies of I’ have
a certain property, and one wants to show that, say, F' has a large subfamily
with some other property. Our example is the following point-selection theorem
of Alon et al. [1992], a similar and earlier example is in [Bardny et al. 1990].

THEOREM 5. Let X C R? be an n-point set and let F be a family of some

(d + 1)-tuples of X with |F| = a(dil), where a € (0,1]. Then F contains a

cqo®? "
d+1

(where cq > 0 and sq are constants) such that (g p conv .S is nonempty.

subfamily F' of size

In this theorem o may even depend on n, a case which is needed when bounding
the number of halving hyperplanes of a given n-set in R? (see [Barany et al.
1990] and [Alon et al. 1992]).

What is the way of proving such a result? The first (geometric) idea is to
use the fractional Helly theorem of [Katchalski and Liu 1979]. It says that if in
a family of N convex sets (in RY) a positive fraction of the (d + 1)-tuples are
intersecting, then the family has a large, ¢ N size intersecting subfamily. So we
call the convex hull of an edge in F' a simplex of F', and try to show that a positive
fraction of the (d + 1)-tuples of the simplices of F are intersecting. Then comes
the second (combinatorial) idea: F is a (d+ 1)-uniform hypergraph with positive
edge density, thus the saturated hypergraph theorem stated above ensures that
there are many copies of K9t1(t) for any fixed number ¢. So the next target
is to prove that such a K9*1(t) contains (d + 1) vertex-disjoint simplices that
intersect, provided ¢ is large enough. Actually one has the freedom of choosing ¢
as large as needed provided it depends only on d. Once this is proved, a routine
double-counting argument shows that a positive fraction of the (d + 1)-tuples
of simplices of F' are intersecting. So what remains to be shown is a geometric
statement, called the Coloured Tverberg Theorem:
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THEOREM 6. Given pairwise disjoint sets Cy,...,Cqr1 C R each with |C;| =
4d+ 3, there are pairwise disjoint sets S, ..., Say1 C R, each with |S;| = d+1,
such that |C; N S;| =1 for all i,j and

d+1

m conv S; # 2.

Here the C; are the classes (called colours) of K91(¢), the convex hull of each
edge of K%t1(t) is a simplex of F, and the S; are what we are after: an inter-
secting (d + 1)-tuple of pairwise vertex-disjoint simplices of F'. The proof of this
theorem, which is due to Zivaljevi¢ and Vreéica [1992], is difficult and unusual
since it is based on equivariant algebraic topology, although the statement is
from convex geometry, or linear algebra, if you wish. In fact, all proofs for d > 2
use algebraic topology.

Another example of this kind is a lattice-point version of the fractional Helly
theorem, due to Bardny and Matousek [2003]. Assume that in a finite family
F of convex sets in R? the intersection of every (d + 1) sets contains a lattice
point, i.e., a point all of whose coordinates are integral. Helly’s theorem says
that all the sets have a common point. But this may not be a lattice point: take,
for instance, the convex hull of all but one vertices of the unit cube in R?, this
is one convex set for each (missing) vertex of the cube. They form a family F'
where every 2¢ — 1 sets share a lattice point, but () F' contains no lattice point
whatsoever. However, it is known (see [Doignon 1973] or [Scarf 1977]) that the
Helly number of lattice convex sets in R? is 2¢, that is, if in a finite family F of
convex sets in R? every 2% or fewer sets have a lattice point in common, then
() F contains a lattice point. In the given case this implies that the fractional
Helly number of lattice convex sets in R? is (at most) 2¢. (This fact is proved
in [Alon et al. 2002].) So what is the precise value of this number? The answer
isd+ 1:

THEOREM 7. For every d > 1 and every a € (0,1] there is a § > 0 with
the following property. Let K1, ..., Ky be convex sets in R* such that Nicr Ki
contains a lattice point for at least oz(dﬂ\rfl) indezx sets I C [N] of size (d + 1).
Then there is a lattice point common to at least BN sets among the K;.

In the proof the application of the saturated hypergraph theorem leads to what
we call the coloured Helly theorem for convex lattice sets:

THEOREM 8. For every integer d and r, there is an integer t such that the
following holds. Assume that for each vertex v of KeT1(t) there is a conver set
K, € R, such that for each edge e of K“T1(t), the intersection ),
a lattice point. Then there is a set R, of size v, in one of the classes of K4T1(t)
such that the intersection )

K, contains
vER K, contains a lattice point.

This is only needed for r = 2%, but that does not seem to make any difference
in the proof, which, besides using two distinct pieces of geometry, is technical,
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difficult, and combinatorial in nature. The method can be developed further
and, when combined with the Alon-Kleitman technique [1992], it shows what
can be saved from Helly’s theorem when every (d + 1) of the sets have a lattice
point in common:

THEOREM 9. For every integer d > 2 there is an integer H(d) such that the
following holds. Let F be a finite family of convex sets in R®. Assume that the
intersection of every (d+ 1) sets from F contains a lattice point. Then there is
a set S of lattice points with |S| < H(d) such that S intersects every set in F.

For d = 2 this was proved by T. Hausel [1995] with H(2) = 2.

The applications of the saturated hypergraph theorem always lead to new, and
often difficult, problems in geometry. In such problems the vertices of a K4+1(¢)
are some geometric objects, the objects in each edge satisfy a certain property,
and one wants to find a special subfamily of these objects, like in Theorem 9 or
in the Coloured Tverberg Theorem.

5. Independent Sets in Graphs

Given a graph G(V, E) on n vertices and maximum degree d, the simplest
possible greedy algorithm produces an independent set W of size n/(d+1). (An
equally simple random choice gives an independent set of size n/4d.) In a seminal
paper [Ajtai et al. 1981], Ajtai, Komlds, and Szemerédi showed that this can be
improved for triangle-free graphs: if G is triangle free, then

o(G) > cnlogd
d

with some universal constant ¢ > 0. Subsequently ¢ = 1 + o(1) was shown
by Shearer [1983]. Here d is fixed and n goes to infinity. The original proof
goes via sequential random choices, and the difficulty is to ensure that after each
iteration, the remaining structure is still random, or behaves as if it were random.
According to his coauthors, Szemerédi’s philosophy, that random subgraphs of
a graph behave very regularly, and his vision that such a proof should work,
proved decisive. Since then, the method has been applied several times and with
great success.

This lower bound on «(G) has the immediate corollary (see [Ajtai et al. 1980])
that the Ramsey number Ry (n, 3) is O(n?/Inn) which turned out to be the right
order of magnitude (see [Kim 1995]). The result on «(G) has been generalized
from triangle-free graphs to “locally sparse” graphs and hypergraphs in various
ways. Locally sparse here means, for instance, that there are few edges connect-
ing the neighbours of every vertex, or that two vertices don’t have too many
common neighbours. We are going to explain two such cases: the problems
come from geometry and the solution, or the crucial step of the solution, from
hypergraph theory.
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The first concerns Heilbronn’s conjecture which says that every set of N points
in the unit disk B contains three points such that the triangle spanned by them
has area less then const/N2. In 1982 Komlés, Pintz, and Szemerédi [Komlds
et al. 1982] constructed a counterexample to this conjecture. In the next few
paragraphs I describe their construction, starting with the geometric part which
is simpler and perhaps more probabilistic than geometric.

Choose first n points randomly, independently, and uniformly from B, set
t=n%" and A = 10%%' (N is going to be smaller than n.) Write V' for the set
of these points and call a triangle with vertices from V' small if its area less than
A. The small triangles define a hypergraph H on V. The target is to show that
H contains a large independent set W C V. The probability that three random
points span a small triangle is less than

2 2
YA t
/ —2rmdr = 3271A < —;.
o T n
This can be seen by fixing two points at distance r, and then averaging over 7.
The expected size of H is less than nt?/6. Hence by Markov’s inequality,

|H| < nt?/3

with probability at least 1/2.

A 2-cycle in H is e1,e2 € H with |e; Nea| = 2, a 3-cycle is ey, ea, e5 € H with
le;Ne;| = 1 for all distinct ¢, j, and a 4-cycle is ey, e2, e3,e4 € H with |e;Ne;| =1
ifj=44+1 mod4 and 0if j =i+ 2 mod 4. The following facts are checked
easily: with high probability

1

e the number of 2-cycles is less than n0!,

e the number of 3-cycles is less than n%7,

e the number of 4-cycles is less than n7.

Thus deleting all vertices in 2-,3-; or 4-cycles you get, with positive probability,
a new 3-uniform hypergraph H* on ground set V* where |V*| = n(1 — o(1)).
The next, and crucial, step is plain hypergraph theory.

LEMMA 10. Assume H is a 3-uniform hypergraph on [n] with at most nt?/3
edges, without cycles of length 2,3,4, and let t < n%'. Then H contains an
independent set W with

W\ > const?vlnt.

Setting N = const%\/m we have a point set W in the unit disk, of N points,
without small triangles; moreover A = ct?/n? = ¢(In N)/N?2. This is the coun-
terexample to Heilbronn’s conjecture.

The crucial Lemma 10 is an improvement over the simple estimate o(H) >
n/(3t) which is true even if short cycles are not excluded. The proof is by
sequential random choices, validating, once more, Szemerédi’s philosophy. The
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short cycle condition guarantees that the hypergraph is locally sparse, in the
sense that the neighbourhoods of two distinct vertices are “independent”.

Although Lemma 10 is often very useful, it typically improves an existing
estimate by a log-factor. In the Heilbronn case, for instance, it is not at all
clear where the truth lies. To decide where it lies, most probably, quite different
methods will be needed.

In contrast with Heilbronn’s problem, the next application of the improved
independence number method gives an almost precise answer to a geometric
problem. It is a recent result of Kim and Vu [2004]. We need to introduce some
terminology.

A graph G(V, E) is (d,e)-regular if its degrees are between d(1 — ¢) and d.
The codegree of a the graph, D = D(G) is the maximum number of common
neighbours of z,y € V, © # y. An independent set W C V is called mazimal if
it is not contained in a larger independent set. In the following theorem, which
is from [Kim and Vu 2004], the asymptotics is understood with d — oo and w(d)
denotes a function that tends to infinity as d — oo.

THEOREM 11. Let G be a (d, e)-regular graph on n vertices, where
e = (w(d)Ind)~".

If
D(G) < sz

w(d)In”d

then G contains a mazximal independent set W with

(1+0(1)5 m% <|wj<( +0(1))gln% +w(d)5 DIn’ D.
The error term u)(d)%Dln2 D is dominating if w(d)D In® D is larger than In %.
Otherwise, that is, when w(d)DIn®> D = o(In 43, G contains a maximal inde-
pendent set of size (1 +0(1))% In %. The method is, again, a sequential random
choice of vertices but the remainder term has to be estimated precisely which
makes the proof hard.

This result is used in [Kim and Vu 2004] to answer a question of Segre from
1959 (see [Szényi 1997]) on arcs in projective planes. An arc in a projective
plane P of order ¢ is a set A C P containing no three points on a line. An
arc is complete if it is not contained in a larger arc. Segre’s question is this:
What are the possible sizes of complete arcs in P? Simple counting arguments,
using properties of the projective plane, show that the size of a complete arc
is always between /2¢ and q + 2. Szényi [1997] showed that almost all values
in the interval [cg®/%,q] can be the size of a complete arc. Kim and Vu [2003]
showed the existence of complete arcs whose size is \/g(In q)® with some universal
constant b. This is close to the lower bound +/2¢q. Further, it is proved in [Kim
and Vu 2004] that sizes of complete arcs in P are almost dense in the interval

[v24,q]-
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THEOREM 12. There are positive constants b,c and Q such that the following
holds. For every plane P of order ¢ > @ and every qx € [\/aln4 q,q], P contains
a complete arc A with

cq” < |A] < g*In’q.

The proof uses the fact that the conic C = {(z,2?) : 2 € GF(q)} is an arc in P
whose secants cover every point of P\ C' (except the one at infinity) ¢/2 — O(1)
times. Set D = P\ C and € = (\/qlnq)/q*, so € is small when ¢ is large. Given
an arc A C D one defines a graph G4(V, E) as follows: V is the set of points
v € C not covered by secants from A, and u,v € V form an edge in E if there
is a € A with a,u,v collinear. One has to show next (the proof is hard and
probabilistic) that there is an arc A C D, of size at most 2¢,/q, such that G4
satisfies the conditions of Theorem 11. Then one applies Theorem 11 and an
additional argument to show that G 4 contains a maximal independent set of the
desired size such that its secants cover D \ A. Further details of the proof (that
are even less geometric) can be found in the forthcoming [Kim and Vu 2004].

Results like Lemma 10 and Theorem 11 have been used to find a large match-
ing in a hypergraph: Given a hypergraph H, a matching M is a collection of
pairwise disjoint edges. Define the intersection graph, G(H) of H as follows: its
vertex set is H, and two vertices, e, f € H form an edge in G(H) ifen f = @.
So a matching in H corresponds to an independent set in G(H), and a large in-
dependent set corresponds to many pairwise disjoint edges. Further, using such
a matching one can find an economic cover of the ground set by edges. This
happens if the set of vertices left uncovered by the matching is small. In other
words, if the estimate of error term is precise. This is a very promising area with
plenty of results and conjectures. Their geometric applications are waiting to be
discovered.

6. The Regularity Lemma

Szemerédi’s famous regularity lemma is one of the most important and useful
results in combinatorics, it has millions of applications in discrete mathematics,
but surprisingly few in geometry. Here is a remarkably elegant one, due to Janos
Pach [1998].

THEOREM 13. For every d > 2 there is a positive constant cq with the following
property. Given sets X1,...,Xqr1 C R, each of size n, there are subsets Z; C
Xi, (i € [d+ 1)), each of size at least cqn such that

ﬂconv{zl, ceyZd41) F 9,
where the intersection is taken over all transversals z; € Z;, i € [d+ 1].

The proof uses several ingredients: the point selection theorem (Theorem 5),
a weak form of the regularity lemma for hypergraphs, and the so-called same-
type lemma from [Bérdny and Valtr 1998]. To state the last one we say that
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the sets Z1,...,7; in R have same type transversals if there is no hyper-
plane intersecting the convex hull of any d 4+ 1 of them. (For various equiv-
alent definitions see [Bérdny and Valtr 1998] or [Matousek 2002].) What we
will need is the following fact. If Zi,...,Z442 have same type transversals,
and if some z; € Z1,..., 2442 € Zgio satisfies zq12 € conv{zi,..., 2441}, then
Wat2 € conv{wn,..., w41} holds for all wy € Z1, ..., w442 € Zgt2. (Hopefully,
this also explains the meaning of “same type”.)

LEMMA 14. For every d > 2 and every k > d + 1 there is a positive constant
b(d, k) with the following property. Given nonempty sets Xi,..., X, C R% in
general position, there are subsets Z; C X;, (i € [k]), each with |Z;| > b(d, k)| X;]
such that Zy, ..., Zx have the same type transversals.

Remark. Ramsey’s theorem guarantees the existence of sets Z; with this property
but their size is much smaller than cn. Here geometry is needed to guarantee
linear size.

The proof of Theorem 13 begins by forming the (d + 1)-uniform hypergraph H
whose edges are the sets {z1,...,z441} with z; € X;. H has (d+1)n vertices and
ndt1 edges, so Theorem 5 gives a subhypergraph H* ¢ H and a point z € R¢
such that |[H*| > Bn?*! and z € conve for each edge e € H*, where 3 > 0
depends only on d.

Next, a weak form of the regularity lemma for hypergraph (see [Pach 1998])
is needed. Without stating it we just claim that it ensures the existence of
Y; C X;, |Y;| > v|X;| such that for every subset Z; C Y1,..., Z4y1 C Ygy1 with
|Z;] > b(d,d+2)|Y;| there are vertices z; € Z; i € [d+1] such that {z1,...,2q+1}
is an edge of H*. Here v > 0 depends only on d.

Finally, one applies the same type lemma for the sets Y7,...,Yy1 and Y40 =
{z}. This gives sets Z; C Y; (i € [d+ 1]), each of size at least b(d,d + 2)|Y7|, and
Zq+2 = {z} with same type transversals. By the weak regularity lemma, there
is at least one simplex with vertices z; € Z;, i € [d + 1] that contains z. Then,
by the same type lemma, all such simplices contain z. This finishes the proof.

It is high time to state the original regularity lemma now. We need some
terminology: Given a graph G(V, E), and disjoint sets X, Y C V, their density
is defined as

|E(X,Y)]
XY= R

where E(X,Y) is the set of edges between X and Y. Given some § > 0, and
disjoint A, B C V, the pair (A, B) is called §-regular if, for every X C A and
Y C B satisfying |X| > §|A| and |Y| > §|B| we have

d(X,Y) — d(A, B)| < 6.

Now we state the regularity lemma of Szemerédi [1978] in the hope that it will
find further geometric applications.
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THEOREM 15. Given § > 0 and an integer m, there is an M = M (6, m) such
that the vertex set of every graph G(V, E) with |V| > m can be partitioned into
classes Vo, V1,..., Vi, where m < k < M, such that |Vo| < |V1| = ... = |Vi| and
all but at most 6k* of the pairs (V;,V;), i,j € [k] are d-regular.

A proper illustration of the use of this lemma is a very recent result of Pach,
Pinchasi, and Vondrak (manuscript, 2004). This result answers a question of
Erdés in the following form: Assume ¢ > 0, X is a set of n points in R*, and
every two points in X are at distance one at least. If there are en? pairs in X
whose distance is between ¢t and ¢ 4+ 1 for some ¢ > 0, then the diameter of X is
at least cn where ¢ only depends on .

The conditions immediately cry out for the regularity lemma. In the graph
G(X,E), z,y € X form an edge if ||« — y|| € [t,t + 1]. One obtains two disjoint
sets A, B C X of size cin with (A, B) e-regular. This is a very strong condition
on the point sets A, B. Using geometry one can find subsets X C A and Y C B,
each of size con and such that ||z — y|| € [t,¢t+1] for every z € X,y € Y. Here
c2 > 0 depends on ¢ only. The rest of the proof is 3-dimensional geometry.

Szemerédi’s regularity lemma has recently been generalized for hypergraphs
by Gowers and by Rodl et al. (unpublished yet) with the potential of having
further geometric applications. The regularity lemma is extremely useful in
discrete mathematics, but, so far, it has not been applied in geometry very
often.

7. VC-Dimension and s-Nets

Given a hypergraph H with vertex set V, and e-net (where ¢ € (0,1]) is a
subset N C V that intersects each edge F € H with |E| > £|V|. In other words,
N is an e-net for H if it is a transversal for the edges with at least £|V| elements.
This definition can be extended to “infinite hypergraphs”: Assume V is a set, u
is a probability measure on V', and H is a system of y-measurable sets. Then
N C V is called an e-net for H with respect to p if it intersects every set £ € H
whose measure is at least ¢.

There is a special condition, of combinatorial nature, that ensures the exis-
tence of “very finite” e-nets. Given a set system H on a finite or infinite ground
set V', aset A C V is shattered by H if each subset of A can be produced as ANE
for a suitable £ € H. The VC-dimension of the set system H, denoted by dim H,
is the maximum of the sizes of all finite shattered subsets of V, or oo if there
are arbitrarily large shattered subsets. The VC-dimension, introduced by Vapnik
and Chervonenkis in [1971] has turned out to be a very powerful tool everywhere:
in statistics (the original motivation for the VC-dimension), discrete geometry,
computational geometry, combinatorics of hypergraphs, and discrepancy theory.
The terminology is sometimes different, for instance in computational geometry,
the set system H is called range space and its edges ranges.
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A simple example is a set of points V in R? for which H is formed by the sets
of type VN h where h is a half-space. The VC-dimension of H is then d+ 1 since,
by Radon’s theorem, no (d + 2)-set is shattered by half-spaces in R%. Another
example with finite VC-dimension, on the same ground set V', is the collection
of all Euclidean balls.

The reason for the wide range of applications of VC-dimension lies in the very
general setting and in the so called e-net theorem (see [Haussler and Welzl 1987])
and the e-approximation theorem (introduced in to [Vapnik and Chervonenkis
1971]).

THEOREM 16. Let V' be a set, and p be a probability measure on V., H a system
of p-measurable subsets of V., and ¢ € (0,1]. If dim H < d where d > 2, then
there exists an e-net for H of size at most A‘E—d In %

While an e-net intersects each (large enough) set in H in at least one point, an
e-approximation M C V provides a “proportional representation” of each set in

H: for each F € H
|M N E]
-\ <e

| M|

THEOREM 17. Let V be a set, and u be a probability measure on V., H a system
of p-measurable subsets of V., and ¢ € (0,1]. If dim H < d where d > 2, then
there exists an e-approximation for H, of size at most

Cd, 1

In—.
e2 ¢

n(E)

The e-net theorem is more often used in geometry. The following application to
an art gallery problem is due to Kalai and Matousek [1997]. An art gallery is a
simply connected compact set 1" in the plane, and the set of points visible from
x € T is, by definition,

V)={yeT :[z,y] CT}.
In other words, x sees or guards the points in V(z).

THEOREM 18. Let T C R? be a simply connected art gallery of Lebesque measure
one. Assume that for some r > 2 the Lebesgue measure of each V(x) is at least
1/r. Then T can be guarded by at most Crlur points, that is, there is a set
N C T, having at most Crlnr points, with T = UzenV ().

The proof begins by introducing the set system H = {V(z) : « € T} and noting
that a set N C T guards T iff it intersects each set in H. So we are done if H
admits an (1/7)-net of the required size. This is guaranteed by the e-net theorem
provided the VC-dimension of H is bounded by some constant independent of
T. This can be shown by a geometric argument using the fact that T is simply
connected. The details can be found in [Kalai and Matousek 1997], or in [Valtr
1998] where dim H < 23 is shown.
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There are several geometric applications of VC-dimension and the e-net theo-
rem, see for instance the books [Chazelle 2000], [Matousek 2002], and [Pach and
Agarwal 1995]. Since most of them require new concepts and further prepara-
tions that go beyond the limits of this survey, I only explain one more case, that
of a spanning tree with low crossing number. The setting is this. Given a set
X of n points in R? in general position, we want to build a spanning tree (with
vertex set X and edge set segments connecting certain pairs of X) such that
no line meets too many of the edges. The following beautiful theorem is due to
Welzl [1988] (the Inn factor has been since then removed).

THEOREM 19. Given a set X of n points in R? in general position, there is a
spanning tree with vertex set X such that no line meets more than O(y/nlnn)
edges of the tree.

For the proof one checks first that the following set system H has finite VC-
dimension: The ground set is the collection of all lines in R? and H consists
of sets of lines L, that intersect a fixed segment s. To see that dim H is finite
assume an n element set of lines A is shattered by H. These lines divide the
plane into m < (g) +n+1 cells, and if s and ¢ are two segments whose endpoints
(in pairs) belong to the same cell, then Ly and L; have the same intersection
with A. Consequently there are at most (g") segments s for which Ly N A are
pairwise distinct, so 2" < (’;) implying that dim H < n < 12.

LEMMA 20. Given a set S of k points in general position, and a set L of m lines
in R? with no point incident to any of the lines, there exist x,y € S such that
the line segment [x,y| intersects at most (cmInk)/\k lines from L.

For the proof one notes that the set system H has finite VC-dimension, so the
e-net theorem applies: with ¢ = ¢;(Ink)/k we get a collection of lines L' C L of
size coe llne ! < \/E/Q such that every open segment crossing

mlnk

Vk

elements of L crosses some line in L’. The lines in L’ divide the plane into less
than k cells. Thus one cell contains two points of S; the segment connecting
them satisfies the requirements of the lemma.

To finish the proof of the spanning tree theorem one starts with constructing
a set, L, of (;) lines that represent all possible partitions of X by lines. Setting
So = X and Ly = L one applies the lemma to S;,L; (i = 0,1,...,n —2) to
obtain a segment [z;,y;] intersecting at most c% from L;. For the next

Em ==«¢

iteration S;11 = S; \ {x;} and L;41 is the set of lines consisting of L; plus one
more, slightly perturbed, copy of each line in L; intersecting [x;, y;]. The analysis
of this algorithm finishes the proof; the details can be found in [Welzl 1988] or
[Pach and Agarwal 1995].
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8. Epilogue

Laszlé Fejes Téth asked in 1976 whether the densest packing of congruent
circles in the plane is unique or not in the following sense: Assume that in a
circle packing, C, in the plane, every circle is touched by at least six others. Is
it true then, that arbitrarily large or arbitrarily small circles occur in € unless it
is the densest packing of congruent circles. The answer is yes and is the content
of [Bérdny et al. 1984]:

THEOREM 21. Under the conditions above arbitrarily small circles occur in €
unless C is the densest packing of congruent circles.

For the proof one defines the graph G(V, E)) whose vertices are the circles with
two of them forming an edge if the corresponding circles are touching each other.
G is a planar graph. Define the function f : V' — R by f(v) = 1/r when r is
the radius of the circle corresponding to v € V. Surprisingly, this function is
subharmonic on G, that is, f(v) is less than or equal to the average of f on the
neighbours of v. This is the first geometric component in the proof. Then one
uses, or rather proves a theorem saying that, under suitable conditions on the
underlying graph, if a subharmonic function is bounded from above, then it is
necessarily constant. Finally, the “suitable” condition follows from the planarity
of G. TI'm sure that, in the world of geometry, there are hundreds of similar
proofs waiting to be discovered.
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Convex Geometry of Orbits

ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

ABSTRACT. We study metric properties of convex bodies B and their polars
B°, where B is the convex hull of an orbit under the action of a compact
group (. Examples include the Traveling Salesman Polytope in polyhe-
dral combinatorics (G = Sy, the symmetric group), the set of nonnegative
polynomials in real algebraic geometry (G = SO(n), the special orthogonal
group), and the convex hull of the Grassmannian and the unit comass ball
in the theory of calibrated geometries (G = SO(n), but with a different
action). We compute the radius of the largest ball contained in the sym-
metric Traveling Salesman Polytope, give a reasonably tight estimate for
the radius of the Euclidean ball containing the unit comass ball and review
(sometimes with simpler and unified proofs) recent results on the structure
of the set of nonnegative polynomials (the radius of the inscribed ball, vol-
ume estimates, and relations to the sums of squares). Our main tool is
a new simple description of the ellipsoid of the largest volume contained
in B°.

1. Introduction and Examples

Let G be a compact group acting in a finite-dimensional real vector space V'
and let v € V be a point. The main object of this paper is the convex hull

B = B(v) =conv(gv: g € G)
of the orbit as well as its polar
B°=B°(v)={leV*:l(gv) <1forall g€ G}.

Objects such as B and B° appear in many different contexts. We give three
examples below.

EXAMPLE 1.1 (COMBINATORIAL OPTIMIZATION POLYTOPES). Let G = S,, be
the symmetric group, that is, the group of permutations of {1,...,n}. Then
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B(v) is a polytope and varying V and v, one can obtain various polytopes of
interest in combinatorial optimization. This idea is due to A.M. Vershik (see
[Barvinok and Vershik 1988]) and some polytopes of this kind were studied in
[Barvinok 1992].

Here we describe perhaps the most famous polytope in this family, the Travel-
ing Salesman Polytope (see, for example, Chapter 58 of [Schrijver 2003]), which
exists in two major versions, symmetric and asymmetric. Let V' be the space of
nxn real matrices A = (a;;) and let S,, act in V' by simultaneous permutations of
rows and columns: (ga)i; = ag-1(;4-1(;) (We assume that n > 4). Let us choose
v such that v;; = 1 provided | — j| =1 mod n and v;; = 0 otherwise. Then,
as g ranges over the symmetric group S, matrix gv ranges over the adjacency
matrices of Hamiltonian cycles in a complete undirected graph with n vertices.
The convex hull B(v) is called the symmetric Traveling Salesman Polytope (we
denote it by ST),). It has (n — 1)!/2 vertices and its dimension is (n? — 3n)/2.

Let us choose v € V such that v;; =1 provided i —j =1 mod n and v;; =0
otherwise. Then, as g ranges over the symmetric group S,,, matrix gv ranges over
the adjacency matrices of Hamiltonian circuits in a complete directed graph with
n vertices. The convex hull B(v) is called the asymmetric Traveling Salesman
Polytope (we denote it by AT,). It has (n — 1)! vertices and its dimension is
n? —3n+1.

A lot of effort has been put into understanding of the facial structure of the
symmetric and asymmetric Traveling Salesman Polytopes, in particular, what
are the linear inequalities that define the facets of AT, and ST,, see Chapter
58 of [Schrijver 2003]. It follows from the computational complexity theory
that in some sense one cannot describe efficiently the facets of the Traveling
Salesman Polytope. More precisely, if NP # co-NP (as is widely believed), then
there is no polynomial time algorithm, which, given an inequality, decides if it
determines a facet of the Traveling Salesman Polytope, symmetric or asymmetric,
see, for example, Section 5.12 of [Schrijver 2003]. In a similar spirit, Billera and
Sarangarajan proved that any 0-1 polytope (that is, a polytope whose vertices
are 0-1 vectors), appears as a face of some AT,, (up to an affine equivalence)
[Billera and Sarangarajan 1996].

EXAMPLE 1.2 (NONNEGATIVE POLYNOMIALS). Let us fix integers n > 2 and
k > 1. We are interested in homogeneous polynomials p : R™ — R of degree 2k
that are nonnegative for all = (x1,...,2,). Such polynomials form a convex
cone and we consider its compact base:

Posagn, = {p :p(x) >0 for all z € R™ and p(z)dx = 1}, (1.2.1)

§n—1

where dz is the rotation-invariant probability measure on the unit sphere S*~1.

It is not hard to see that dim Posay , = ("+§Z_1) —1.
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It is convenient to consider a translation Posyy, ,,, p—p— (21 +--- + 22)k of
Posa

Posyy, , = {p :p(z) > —1 for all z € R™ and p(z)de = 0}. (1.2.2)

Snfl
Let U, be the real vector space of all homogeneous polynomials p : R” — R
of degree m such that the average value of p on S*~! is 0. Then, for m = 2k,
the set Posy ,, is a full-dimensional convex body in Uz p.

One can view Posy, ,, as the negative polar —B°(v) of some orbit.

We consider the m-th tensor power (R™)®™ of R™, which we view as the vector
i S L S,y < n) For x € R",
let y = 2®™ be the tensor with the coordinates y;, . ;. = @i, ---x;, . The group
G = SO(n) of orientation preserving orthogonal transformations of R™ acts in
(R™)®™ by the m-th tensor power of its natural action in R”. In particular,
gy = (gx)®™ for y = 2®™.

Let us choose e € S"~! and let w = €®™. Then the orbit {gw : g € G}
consists of the tensors ™, where x ranges over the unit sphere in R®. The
orbit {gw : g € G} lies in the symmetric part of (R™)*™. Let ¢ = Jsn—1 gw dg
be the center of the orbit (we have ¢ = 0 if m is odd). We translate the orbit by
shifting ¢ to the origin, so in the end we consider the convex hull B of the orbit
ofv=w-—q

space of all m-dimensional arrays (x“

B= Conv(gv 1g € G).

A homogeneous polynomial

p(x1,...,xy) = Z Cirrooig Ty * Ty,
1<it,eeyim<n
of degree m, viewed as a function on the unit sphere in R", is identified with the
restriction onto the orbit {gw : g € G} of the linear functional ¢ : (RM®™ - R
defined by the coefficients c;, ... ;,,. Consequently, the linear functionals ¢ on B
are in one-to-one correspondence with the polynomials p € Uy, ,. Moreover, for
m = 2k, the negative polar —B° is identified with Pos); ,,. If m is odd, then
B° = —B° is the set of polynomials p such that |p(z)| < 1 for all x € S*~1.

The facial structure of Posgy, ,, is well-understood if k = 1 or if n = 2, see, for
example, Section II.11 (for n = 2) and Section II.12 (for & = 1) of [Barvinok
2002b]. In particular, for k = 1, the set Posy ,, is the convex body of positive
semidefinite n-variate quadratic forms of trace n. The faces of Pos; ,, are param-
eterized by the subspaces of R™: if L C R" is a subspace then the corresponding
face is

Fr = {p € Posy, : p(x) =0 for all x € L}

and dim F, = r(r +1)/2 — 1, where r = codim L. Interestingly, for large n, the
set Posg ,, is a counterexample to famous Borsuk’s conjecture [Kalai 1995].
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For any k > 2, the situation is much more complicated: the membership
problem for Posay, p:

given a polynomial, decide whether it belongs to Posay n,

is NP-hard, which indicates that the facial structure of Posyy, ,, is probably hard
to describe.

EXAMPLE 1.3 (CONVEX HULLS OF GRASSMANNIANS AND CALIBRATIONS). Let
Grm(R™) be the Grassmannian of all oriented m-dimensional subspaces of R,
n > 1. Let us consider G,,(R™) as a subset of V,, , = A™ R" via the Pliicker
embedding. Namely, let e1,..., e, be the standard basis of R”. We make V, ,,
a Euclidean space by choosing an orthonormal basis e;; A---Ae;, for 1 <i; <
-+ < iy < n. Thus the coordinates of a subspace © € G,,,(R™) are indexed by
m-subsets 1 < i1 < i < --- <14, <nof {1,...,n} and the coordinate z;, ;.
is equal to the oriented volume of the parallelepiped spanned by the orthogonal
projection of e1,,...,e; onto xz. This identifies G,,(R™) with a subset of the
unit sphere in V,, . The convex hull B = conv (G,,(R™)), called the unit mass
ball, turns out to be of interest in the theory of calibrations and area-minimizing
surfaces: a face of B gives rise to a family of m-dimensional area-minimizing
surfaces whose tangent planes belong to the face, see [Harvey and Lawson 1982]
and [Morgan 1988]. The comass of a linear functional ¢ : V,,, — R is the
maximum value of £ on G,,, (R™). A calibration is a linear functional £ : V,,, , — R
of comass 1. The polar B° is called the unit comass ball.

One can easily view G,,(R™) as an orbit. We let G = SO(n), the group
of orientation-preserving orthogonal transformations of R™, and consider the
action of SO(n) in V,,, ,, by the m-th exterior power of its defining action in R"™.
Choosing v = e1 A - -+ A ey, we observe that G,,(R™) is the orbit {gv : g € G}.
It is easy to see that dim conv (G, (R™)) = ().

m

This example was suggested to the authors by B. Sturmfels and J. Sullivan.

The facial structure of the convex hull of G,,,(R™) is understood for m < 2, for
m > n — 2 and for some special values of m and n, see [Harvey and Lawson
1982], [Harvey and Morgan 1986] and [Morgan 1988]. If m = 2, then the faces
of the unit mass ball are as follows: let us choose an even-dimensional subspace
U C R™ and an orthogonal complex structure on U, thus identifying U = C2*
for some k. Then the corresponding face of conv (G, (R™)) is the convex hull of
all oriented planes in U identified with complex lines in C?*.

In general, it appears to be difficult to describe the facial structure of the unit
mass ball. The authors do not know the complexity status of the membership
problem for the unit mass ball:

giwen a point x € N R"™, decide if it lies in conv (G, (R™)),

but suspect that the problem is NP-hard if m > 3 is fixed and n is allowed to
grow.
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The examples above suggest that the boundary of B and B° can get very
complicated, so there is little hope in understanding the combinatorics (the facial
structure) of general convex hulls of orbits and their polars. Instead, we study
metric properties of convex hulls. Our approach is through approximation of a
complicated convex body by a simpler one.

As is known, every convex body contains a unique ellipsoid Ep,ax of the maxi-
mum volume and is contained in a unique ellipsoid F\,;, of the minimum volume,
see [Ball 1997]. Thus ellipsoids Epax and FEni, provide reasonable “first approx-
imations” to a convex body.

The main result of Section 2 is Theorem 2.4 which states that the maximum
volume ellipsoid of B° consists of the linear functionals ¢ : V' — R such that the
average value of £? on the orbit does not exceed (dimV)~!. We compute the
minimum- and maximum- volume ellipsoids of the symmetric Traveling Salesman
Polytope, which both turn out to be balls under the “natural” Fuclidean metric
and ellipsoid Fy,i, of the asymmetric Traveling Salesman Polytope, which turns
out to be slightly stretched in the direction of the skew-symmetric matrices.
As an immediate corollary of Theorem 2.4, we obtain the description of the
maximum volume ellipsoid of the set of nonnegative polynomials (Example 1.2),

as a ball of radius
n+2k =1\ -1/2
2k

in the L2-metric. We also compute the minimum volume ellipsoid of the convex
hull of the Grassmannian and hence the maximum volume ellipsoid of the unit
comass ball (Example 1.3).

In Section 3, we obtain some inequalities which allow us to approximate the
maximum value of a linear functional ¢ on the orbit by an LP-norm of £. We
apply those inequalities in Section 4. We obtain a reasonably tight estimate
of the radius of the Euclidean ball containing the unit comass ball and show
that the classical Kéhler and special Lagrangian faces of the Grassmannian, are,
in fact, rather “shallow” (Example 1.3). Also, we review (with some proofs and
some sketches) the recent results of [Blekherman 2003], which show that for most
values of n and k the set of nonnegative n-variate polynomials of degree 2k is
much larger than its subset consisting of the sums of squares of polynomials of
degree k.

2. Approximation by Ellipsoids

Let B C V be a convex body in a finite-dimensional real vector space. We
assume that dim B = dim V. Among all ellipsoids contained in B there is a
unique ellipsoid Fpax of the maximum volume, which we call the maximum
volume ellipsoid of B and which is also called the John ellipsoid of B or the
Lowner-John ellipsoid of B. Similarly, among all ellipsoids containing B there
is a unique ellipsoid Ey,;, of the minimum volume, which we call the minimum
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volume ellipsoid of B and which is also called the Lowner or the Lowner-John
ellipsoid. The maximum and minimum volume ellipsoids of B do not depend on
the volume form chosen in V, they are intrinsic to B.

Assuming that the center of Ey,.x is the origin, we have

Enax C B C (dim B) Epax.

If B is symmetric about the origin, that is, if B = —B then the bound can be
strengthened:

Frax C B C (\/dim B) jo.

More generally, let us suppose that F,,,x is centered at the origin. The symmetry
coefficient of B with respect to the origin is the largest o > 0 such that —aB C

B. Then
Eunax C B C < dim B )Em

o

where « is the symmetry coefficient of B with respect to the origin.
Similarly, assuming that Ey;, is centered at the origin, we have

(dlm B)_l Emin C B - Emin~

If, additionally, « is the symmetry coefficient of B with respect to the origin,
then

(0%
Emin B Emin-
( dim B ) cPC

In particular, if B is symmetric about the origin, then
(dim B) ™2 Epin C B C Enin.

These, and other interesting properties of the minimum- and maximum- volume
ellipsoids can be found in [Ball 1997], see also the original paper [John 1948],
[Blekherman 2003], and Chapter V of [Barvinok 2002a]. There are many others
interesting ellipsoids associated with a convex body, such as the minimum width
and minimum surface area ellipsoids [Giannopoulos and Milman 2000]. The
advantage of using E.x and Eh, is that these ellipsoids do not depend on the
Euclidean structure of the ambient space and even on the volume form in the
space, which often makes calculations particularly easy.

Suppose that a compact group G acts in V' by linear transformations and that
B is invariant under the action: gB = B for all g € G. Let (-, -) be a G-invariant
scalar product in V', so G acts in V by isometries. Since the ellipsoids FEy,ax
and Fn;, associated with B are unique, they also have to be invariant under the
action of G. If the group of symmetries of B is sufficiently rich, we may be able
to describe Eyax or Fni, precisely.

The following simple observation will be used throughout this section. Let
us suppose that the action of G in V is irreducible: if W C V is a G-invariant
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subspace, then either W = {0} or W = V. Then, the ellipsoids Epax and Epin
of a G-invariant convex body B are necessarily balls centered at the origin:

FErax = {x eV:(x,x) < 7"2} and FEyip, = {a: eVi(x,x) < RQ}

for some r, R > 0.

Indeed, since the action of G is irreducible, the origin is the only G-invariant
point and hence both E..x and E.;, must be centered at the origin. Further-
more, an ellipsoid E C V centered at the origin is defined by the inequality
E = {ac sq(z) < 1}, where ¢ : V' — R is a positive definite quadratic form. If
E is G-invariant, then ¢(gx) = ¢g(z) for all g € G and hence the eigenspaces of
g must be G-invariant. Since the action of G is irreducible, there is only one
eigenspace which coincides with V, from which ¢(z) = Az, z) for some A\ > 0
and all x € V and F is a ball.

This simple observation allows us to compute ellipsoids Enax and Epni, of the
Symmetric Traveling Salesman Polytope (Example 1.1).

EXAMPLE 2.1 (THE MINIMUM AND MAXIMUM VOLUME ELLIPSOIDS OF THE
SYMMETRIC TRAVELING SALESMAN PoOLYTOPE). In this case, V is the space
of n x n real matrices, on which the symmetric group S,, acts by simultaneous
permutations of rows and columns, see Example 1.1. Introduce an S,-invariant
scalar product by

(a,b) = Z a;;bi; for a = (a;;) and b = (b;;)
ij=1

and the corresponding Euclidean norm ||a|| = +/(a, a). It is not hard to see that
the affine hull of the symmetric Traveling Salesman Polytope ST, consists of the
symmetric matrices with 0 diagonal and row and column sums equal to 2, from
which one can deduce the formula dim ST,, = (n? —3n)/2. Let us make the affine
hull of ST, a vector space by choosing the origin at ¢ = (¢;;) with ¢;; = 2/(n—1)
for i # j and c¢;; = 0, the only fixed point of the action. One can see that the
action of S, on the affine hull of ST, is irreducible and corresponds to the Young
diagram (n — 2,2), see, for example, Chapter 4 of [Fulton and Harris 1991].

Hence the maximum- and minimum- volume ellipsoids of ST}, must be balls
in the affine hull of ST, centered at c¢. Moreover, since the boundary of the
minimum volume ellipsoid F.,;, must contain the vertices of ST;,, we conclude
that the radius of the ball representing Eyi, is equal to \/2n(n — 3)/(n — 1).

One can compute the symmetry coefficient of ST,, with respect to the center
c. Suppose that n > 5. Let us choose a vertex v of ST,, and let us consider the
functional ¢(x) = (v—c¢,x—c¢) on ST,,. The maximum value of 2n(n—3)/(n—1)
is attained at * = v while the minimum value of —4n/(n — 1) is attained at
the face F, of ST,, with the vertices h such that (v,h) = 0 (combinatorially,
h correspond to Hamiltonian cycles in the graph obtained from the complete
graph on n vertices by deleting the edges of the Hamiltonian cycle encoded by
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v). Moreover, one can show that for A = 2/(n — 3), we have —A\(v—c¢) +c € F,,.
This implies that the coefficient of symmetry of ST, with respect to c is equal
to 2/(n — 3). Therefore ST,, contains the ball centered at ¢ and of the radius
\/8/((71 —1)(n—3)) (for n > 5).

The ball centered at ¢ and of the radius /8/((n —1)(n —3)) touches the
boundary of ST,,. Indeed, let b = (b;;) be the centroid of the set of vertices = of
ST,, with 219 = 291 = 0. Then

0 if1<i,j<2,
2 e . . .
ifi=1,2and j>2 or j=1,2andi> 2,
blj* n—2
2(n—4
L ifi,j > 3,
(n—2)(n-23)

and the distance from c to b is precisely \/8/((n — 1)(n — 3)).

Hence for n > 5 the maximum volume ellipsoid Ey,ax is the ball centered at ¢
of the radius 1/8/((n — 1)(n — 3)).

Some bounds on the radius of the largest inscribed ball for a polytope from a
particular family of combinatorially defined polytopes are computed in [Vyalyl
1995]. The family of polytopes includes the symmetric Traveling Salesman Poly-
tope, although in its case the bound from [Vyaly! 1995] is not optimal.

If the action of G in the ambient space V is not irreducible, the situation is
more complicated. For one thing, there is more than one (up to a scaling factor)
G-invariant scalar product, hence the notion of a “ball” is not really defined.
However, we are still able to describe the minimum volume ellipsoid of the convex
hull of an orbit.

Without loss of generality, we assume that the orbit { guv:g € G } spans V'
affinely. Let (-,-) be a G-invariant scalar product in V. As is known, V can
be decomposed into the direct sum of pairwise orthogonal invariant subspaces
V;, such that the action of G in each V; is irreducible. It is important to note
that the decomposition is mot unique: nonuniqueness appears when some of
V; are isomorphic, that, is, when there exists an isomorphism V; — V; which
commutes with G. If the decomposition is unique, we say that the action of G
is multiplicity-free.

Since the orbit spans V affinely, the orthogonal projection v; of v onto each V;
must be nonzero (if v; = 0 then the orbit lies in V). Also, the origin in V' must
be the only invariant point of the action of G (otherwise, the orbit is contained
in the hyperplane (z,u) = (v,u), where u € V' is a nonzero vector fixed by the
action of G).

THEOREM 2.2. Let B be the convex hull of the orbit of a vector v € V:

B= conv(gv 1g € G).
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Suppose that the affine hull of B is V.
Then there exists a decomposition

V=V

of V into the direct sum of pairwise orthogonal irreducible components such that
the following holds.
The minimum volume ellipsoid En, of B is defined by the inequality

dimV; (z;,z;)
Ein = { : - . < 1}, 2.2.1
v —~ dimV/ (v, v;) —

where x; (resp. v;) is the orthogonal projection of x (resp. v) onto V;.
We have

/ (z, gv)*dg = Z % forallz €V, 2.2.2
G i i

where dg is the Haar probability measure on G.

PRrROOF. Let us consider the quadratic form ¢ : V' — R defined by

q(z) = L<w,gv>2 dg.

We observe that ¢ is G-invariant, that is, ¢(gz) = ¢(z) for all x € V and all
g € G. Therefore, the eigenspaces of ¢ are G-invariant. Writing the eigenspaces
as direct sums of pairwise orthogonal invariant subspaces where the action of G
is irreducible, we obtain a decomposition V' = @, V; such that

q(x) = ZN@%%) foralz eV

and some \; > 0. Recall that v; # 0 for all 4 since the orbit {gv : g € G} spans
V affinely.
To compute A;, we substitute z € V; and observe that the trace of

ai(z) = /G (, gui)? dg

as a quadratic form ¢; : V; — R is equal to (v;,v;). Hence we must have
Ai = (v;,v;)/ dim V;, which proves (2.2.2) [Barvinok 2002b].
We will also use the polarized form of (2.2.2):

(@i, yi) (vi, vi)
= § 0 LY Ui) 2.2.
/G (,90)(y, gv) dg Z mv 3

obtained by applying (2.2.2) to ¢(z +y) — q(x) — q(y)-
Next, we observe that the ellipsoid E defined by the inequality (2.2.1) contains
the orbit { gu:geG } on its boundary and hence contains B.
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Our goal is to show that F is the minimum volume ellipsoid. It is convenient
to introduce a new scalar product:
dim V; (ai, bl>

(a,b) = Ty oo

for all a,b € V.

Obviously (-,-) is a G-invariant scalar product. Furthermore, the ellipsoid F
defined by (2.2.1) is the unit ball in the scalar product (-, -).
Now,

dimV; (¢, gv)

(e gv) = - dimV (v, v;)

and hence (dim V;)(dim V;) { ) )
- imV;)(dim V;)  (ci, gv){(cj, gv
(¢, gv)* = Z (dim V)2 - (vi,v)2

,J

Integrating and using (2.2.3), we get

1 dimV; (¢, c) (¢,c)
2dg = . 2.2.4
/G(C’g”) Y7 dmV & dmV (o) dmV

Since the origin is the only fixed point of the action of G, the minimum volume
ellipsoid should be centered at the origin.

Let e1,...,ex for k = dimV be an orthonormal basis with respect to the
scalar product (-,-). Suppose that £/ C V is an ellipsoid defined by

=~ (@,¢,)?
E’:{xGV:Z%Sl}
- (0%
J=1 J
for some ayq,...,ar > 0. To show that F is the minimum volume ellipsoid, it
suffices to show that as long as E’ contains the orbit {gv 1g € G}, we must have
vol E' > vol E, which is equivalent to ay - - - o > 1.

Indeed, since gv € E’, we must have
k ] 2
Mgl for all g € G.
o'

j=1 J

Integrating, we obtain

Applying (2.2.4), we get

dimV &~ a2 =
Jj=1"J

Since £k = dimV, from the inequality between the arithmetic and geometric
means, we get «ay ...ax > 1, which completes the proof. O
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REMARK. In the part of the proof where we compare the volumes of E’ and F,
we reproduce the “sufficiency” (that is, “the easy”) part of John’s criterion for
optimality of an ellipsoid; see, for example, [Ball 1997].

Theorem 2.2 allows us to compute the minimum volume ellipsoid of the asym-
metric Traveling Salesman Polytope, see Example 1.1.

EXAMPLE 2.3 (THE MINIMUM VOLUME ELLIPSOID OF THE ASYMMETRIC TRAV-
ELING SALESMAN POLYTOPE). In this case (compare Examples 1.1 and 2.1),
V' is the space of n x n matrices with the scalar product and the action of the
symmetric group S,, defined as in Example 2.1. On can observe that the affine
hull of AT,, consists of the matrices with zero diagonal and row and column sums
equal to 1, from which one can deduce the formula dim AT}, = n? — 3n + 1.

The affine hull of AT,, is S,-invariant. We make the affine hull of AT, a
vector space by choosing the origin at ¢ = (¢;;) with ¢;; = 1/(n —1) for i # j
and ¢;; = 0, the only fixed point of the action. The action of \S;, on the affine hull
of AT, is reducible and multiplicity-free, so there is no ambiguity in choosing the
irreducible components. The affine hull is the sum of two irreducible invariant
subspaces V; and V.

Subspace V; consists of the matrices x+ ¢, where x is a symmetric matrix with
zero diagonal and zero row and column sums. One can see that the action of
Sy in Vj is irreducible and corresponds to the Young diagram (n — 2,2), see, for
example, Chapter 4 of [Fulton and Harris 1991]. We have dim Vs = (n? — 3n)/2.

Subspace V, consists of the matrices x + ¢, where x is a skew-symmetric
matrix with zero row and column sums. One can see that the action of S, in V,
is irreducible and corresponds to the Young diagram (n—2, 1, 1), see, for example,
Chapter 4 of [Fulton and Harris 1991]. We have dimV, = (n — 1)(n — 2)/2.

The orthogonal projection onto V; is defined by = — (z + x!)/2, while the
orthogonal projection onto V, is defined by x — (z — z%)/2 + c.

Applying Theorem 2.2, we conclude that the minimum volume ellipsoid of
AT, is defined in the affine hull of AT,, by the inequality:

g )

1<i#j<n

-1 -9 i — T \2

n vy
1<i#j<n

Thus one can say that the minimum volume ellipsoid of the asymmetric Trav-
eling Salesman Polytope is slightly stretched in the direction of skew-symmetric
matrices.

The dual version of Theorem 2.2 is especially simple.
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THEOREM 2.4. Let G be a compact group acting in a finite-dimensional real
vector space V. Let B be the convex hull of the orbit of a vector v € V:

B= conv(gv 1g € G).

Suppose that the affine hull of B is V.
Let V* be the dual to V and let

:{EGV*:E(x)SlforallxeB}

be the polar of B. Then the mazimum volume ellipsoid of B° is defined by the

iequality
1
Emm{::{é Ve | eg)d <-————}.
v [ i< g

PROOF. Let us introduce a G-invariant scalar product (-, -) in V, thus identifying
V and V*. Then

Boz{ceV:<c,gv)glforallgEG}.

Since the origin is the only point fixed by the action of GG, the maximum volume
ellipsoid Ep,ax of B° is centered at the origin. Therefore, F\,.x must be the polar
of the minimum volume ellipsoid of B.

Let V = @ V; be the decomposition of Theorem 2.2. Since Ey,.y is the polar

i
of the ellipsoid Fy, associated with B, from (2.2.1), we get

Erax = {c dimV Z Cl’zm?}’ vi) < 1}.

Applying (2.2.2), we get

1
Emax:{ : 5 2d < }7
C,é@gm 9= Qmv

which completes the proof. O

REMARK. Let G be a compact group acting in a finite-dimensional real vector
space V' and let v € V be a point such that the orbit {gv 1 g € V} spans V'
affinely. Then the dual space V* acquires a natural scalar product

(b, ) = /G (2 (gv)a(gv) dg

induced by the scalar product in L?(G). Theorem 2.4 states that the maximum
volume ellipsoid of the polar of the orbit is the ball of radius (dim V)~1/2
scalar product.

By duality, V' acquires the dual scalar product (which we denote below by
(-,) as well). It is a constant multiple of the product (-,-) introduced in the
proof of Theorem 2.2: (uj,us2) = (dim V')(ui,u2). We have (v,v) = dimV and

in this
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the minimum volume ellipsoid of the convex hull of the orbit of v is the ball of

radius vdim V.

As an immediate application of Theorem 2.4, we compute the maximum volume
ellipsoid of the set of nonnegative polynomials, see Example 1.2.

EXAMPLE 2.5 (THE MAXIMUM VOLUME ELLIPSOID OF THE SET OF NONNEGA-
TIVE POLYNOMIALS). In this case, U3y, is the space of all homogeneous poly-
nomials p : R” — R of degree 2k with the zero average on the unit sphere S* 1,
so dim Uy, ,, = ("+§£_1) — 1. We view such a polynomial p as a linear functional
¢ on an orbit {gv 1 g € G} in the action of the orthogonal group G = SO(n) in
(R”)®2k and the shifted set Pos’zk}n of nonnegative polynomials as the negative

polar —B° of the orbit, see Example 1.2. In particular, under this identification

/SHP%) dw:/GEQ(gv) dg,

where dr and dg are the Haar probability measures on S"~! and SO(n) respec-

p «— £, we have

tively.
Applying Theorem 2.4 to —B°, we conclude that the maximum volume ellip-
soid of —B® = Posy, ,, consists of the polynomials p such that

/SM p(z)dz =0 and /SH P2 (x) da < ((” +§: - 1) _ 1>_1 .

Consequently, the maximum volume ellipsoid of Posay ,, consists of the polyno-
mials p such that

/SH p(z)dz =1 and /Sni1 (p(z) = 1) da < ((n +§]Iz - 1) B 1)—1.

Geometrically, the maximum volume ellipsoid of Posyy ,, can be described as
follows. Let us introduce a scalar product in the space of polynomials by

oo = [ f@at)da,

where dx is the rotation-invariant probability measure, as above. Then the
maximum volume ellipsoid of Posay, ,, is the ball centered at r(z) = (z3+- - -+a2)"

and having radius
n+2k—1 1 -1/
2k

(note that multiples of r(x) are the only SO(n)-invariant polynomials, see for
example, p. 13 of [Barvinok 2002al]). This result was first obtained by more
direct and complicated computations in [Blekherman 2004]. In the same paper,



64 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN

G. Blekherman also determined the coefficient of symmetry of Posgy , (with
respect to the center r), it turns out to be equal to

()

It follows then that Posyy ., is contained in the ball centered at r and of the

radius
nak_1 . 1/2
i .

This estimate is poor if k is fixed and n is allowed to grow: as follows from results
of Duoandikoetxea [1987], for any fixed k, the set Posgy ,, is contained in a ball
of a fixed radius, as n grows. However, the estimate gives the right logarithmic
order if k£ > n, which one can observe by inspecting a polynomial p € Posyy »
that is the 2k-th power of a linear function.

We conclude this section by computing the minimum volume ellipsoid of the con-
vex hull of the Grassmannian and, consequently, the maximum volume ellipsoid
of the unit comass ball, see Example 1.3.

EXAMPLE 2.6 (THE MINIMUM VOLUME ELLIPSOID OF THE CONVEX HULL OF
THE GRASSMANNIAN). In this case, V,,, , = A" R™ with the orthonormal basis
er =ej N---Ne;,, where I is an m-subset 1 < i1 < iy < -+ < 4y, < n of the
set {1,...,n} and ey, ..., e, is the standard orthonormal basis of R™.

Let (-, -) be the corresponding scalar product in V,, ,, so that

(a,b) = asby,
i

where I ranges over all m-subsets of {1,...,n}. The scalar product allows us
to identify V5, |, with Vp, ,. First, we find the maximum volume ellipsoid of the

unit comass ball B°, that is the polar of the convex hull B = conv (G,,(R™)) of
the Grassmannian.

A linear functional a € V5, ,, = Vi, p, is defined by its coefficients a;. To apply
Theorem 2.4, we have to compute

/ (a. gv)? dg = / (a, 22 de,
SO(n) Gm (R™)

where dz is the Haar probability measure on the Grassmannian G,,(R"™). We
note that

/ (er,z){eg,x)dx =0
Gnl(Rn)

for I # J, since for i € I\ J, the reflection e; — —e; of R™ induces an isometry
of Vinn, which maps G,,(R™) onto itself, reverses the sign of (e, z) and does
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not change (e, x). Also,

-1
| tewra=(1)
G (R7) m

since the integral does not depend on I and Y, {es,z)? =1 for all z € G,,,(R™).
By Theorem 2.4, we conclude that the maximum volume ellipsoid of the unit
comass ball B° is defined by the inequality

FErax = {a €Vin: Za% < 1},
I

that is, the unit ball in the Euclidean metric of V,,, ,,. Since B° is centrally sym-

metric, we conclude that B° is contained in the ball of radius (") 2 As follows
from Theorem 4.1, this estimate is optimal up to a factor of \/m(n—1)(1+Inm).
Consequently, the convex hull B of the Grassmannian is contained in the unit

ball of V,, ,, which is the minimum volume ellipsoid of B, and contains a ball of

radius (:;) —1/2, Again, the estimate of the radius of the inner ball is optimal up
to a factor of \/m(n — 1)(1 +Inm).

3. Higher Order Estimates

The following construction can be used to get a better understanding of metric
properties of an orbit { gu:g € G}. Let us choose a positive integer k and let
us consider the k-th tensor power

Ve =V ®...aV.
—_———
k times

The group G acts in V&* by the k-th tensor power of its action in V: on
decomposable tensors we have

g1 ® - @) =g(v1) @ -+ ® g(vg).
Let us consider the orbit {gv®* : g € G} for

1)®k7:v®...®v.
———

k times

Then, a linear functional on the orbit of v®* is a polynomial of degree k on the
orbit of v and hence we can extract some new “higher order” information about
the orbit of v by applying already developed methods to the orbit of v®¥. An
important observation is that the orbit {g’u®k 1g € G} lies in the symmetric
part of V®* so the dimension of the affine hull of the orbit of v®*¥ does not
exceed (dim V,:'k _1).
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THEOREM 3.1. Let G be a compact group acting in a finite-dimensional real
vector space V', let v € V be a point, and let £ : V — R be a linear functional.
Let us define

f:G—=R by  f(g9)="Lgv).

For an integer k > 0, let di, be the dimension of the subspace spanned by the
orbit {gv®k 1g € G} in VOF. In particular, dj, < (d‘m V,:rk*l). Let

1l = ( /g () dg)l/%.

(i) Suppose that k is odd and that

/ F*(g)dg = 0.
G

Then
A N o < max £(g) < /> -

(ii) We have
£ llox < max | £(g)] < d>* |1 flo-
geG

Proor. Without loss of generality, we assume that f Z 0.
Let
Bi(v) = conv(gv®" : g € G)
be the convex hull of the orbit of v®¥. We have dim By (v) < di.
Let (@ € (V*)®" be the k-th tensor power of the linear functional £ € V*.
Thus f*(g) = (®F (gv®*).
To prove Part (1), we note that since k is odd,

max f*(g) = (max f(g))".

geG geqG

Let
u :/ g (v®*) dg
G

be the center of By (v). Since the average value of f¥(g) is equal to 0, we have
(®%(u) = 0 and hence (®*(z) = (¥F(x — u) for all 2 € V®*. Let us translate
By(v) = Bi(v) — u to the origin and let us consider the maximum volume
ellipsoid FE of the polar of By (v) in its affine hull. By Theorem 2.4, we have

E= {[, € (V®k)* : /G£2 (gv®’€ —u) dg < m}

Since the ellipsoid E is contained in the polar of B (v)’, for any linear func-
tional £ : V®* — R, the inequality

1 1

2(gv®*F —u) dg < — < ———
/G£ (g u) gfdk*dimBk(v)
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implies the inequality
Hl&X,C gu k_ uw) < 1.
geG ( )

Choosing £ = M®F with \ = d,:l/2||f||2_kk, we then obtain the upper bound for
masyec £(3).

Since the ellipsoid (dim E)E contains the polar of By (v)’, for any linear func-
tional £ : V®* — R, the inequality

r;leaécﬁ (gv®’c — u) <1

implies the inequality

/ L2 (gv®k — u) dg < dim By (v) < dy.
G

Choosing £ = A®F with any A > ||f||5*d./?, we obtain the lower bound for

maxgec f(9g)-
The proof of Part (2) is similar. We modify the definition of By (v) by letting

By (v) = conv(gv‘g’k, —gv®F g e G).

The set By (v) so defined can be considered as the convex hull of an orbit of
G x Zs and is centrally symmetric, so the ellipsoid (vdim E)E contains the
polar of By(v).

Part (2) is also proven by a different method in [Barvinok 2002b]. O

REMARK. Since dj, < (dim Vk"’k_l), the upper and lower bounds in Theorem 3.1

are asymptotically equivalent as long as k~'dimV — 0. In many interesting
cases we have d < (d‘m V,:'k_l), which results in stronger inequalities.

Polynomials on the unit sphere. As is discussed in Examples 1.2 and 2.5,
the restriction of a homogeneous polynomial f : R® — R of degree m onto the
unit sphere S*~! C R” can be viewed as the restriction of a linear functional
¢ : (R")®™ — R onto the orbit of a vector v = e®™ for some e € S*"! in

the action of the special orthogonal group SO(n). In this case, the orbit of
n+mk—1) in

v®F = ¢®mk gpans the symmetric part of (R")™, so we have dj, = (e

Theorem 3.1.
Hence Part (1) of Theorem 3.1 implies that if f is an n-variate homogeneous
polynomial of degree m such that

f¥(x) dz =0,
Sn—1
where dz is the rotation-invariant probability measure on S”~!, then

n+mk-—1 —1/2k n+mk-—1 1/2k
( ) 1l < ma f(a:)§< ) 1 Flae.

mk zeSn—1 mk
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1/2k
o= ([ )

We obtain the following corollary.

where

COROLLARY 3.2. Suppose that k > (n — 1) max{In(m + 1), 1}. Then

[fllzr < max [f(2)] < ol fll2k,
zesSn—1

for some absolute constant o > 0 and all homogeneous polynomials f : R™ — R
of degree m. One can take o = exp(l + 0.56*1) =~ 3.27.

PROOF. Applying Part(2) of Theorem 3.1 as above, we conclude that for any
homogeneous polynomial f : R™ — R of degree m,

n+mk-—1 1/2k
) T

< <
Il < ma, ol < ("5

This inequality is also proved in [Barvinok 2002b]. Besides, it can be deduced

from some classical estimates for spherical harmonics; see p. 14 of [Miiller 1966].
We use the estimate

a a a

1 <bln— —b)In ——;

n(b) Sblng+(a=b)n o=

see, for example, Theorem 1.4.5 of [van Lint 1999]. Applying the inequality with
b=mk and a = n + mk — 1, we get

a n—1
-_= —_— < p—
blnb mk In (1—1— " ) <n-1

and
k—1 k

(a—b)lnaib:(n—l)ln%S(n—l)(ln(m—f—l)—l—lnn_l).
Summarizing,

1 n+mk—1 1 1 1 k

—1 <-4 -4 —1 f = —.

2kn< mk >_2+2+2pnp R
Since p~!Inp < e~ for all p > 1, the proof follows. 0

Our next application concerns calibrations; compare Examples 1.3 and 2.6.

THEOREM 3.3. Let G (R™) C A™R"™ be the Plicker embedding of the Grass-
mannian of oriented m-subspaces of R™. Let £ : A\ R™ — R be a linear func-

tional. Let
1/2k
= ([ #wa)
Gm(R™)
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where dz is the Haar probability measure on G, (R™). Then, for any positive
integer k,

€]z < max  6(x)] < (di)"?*]|€]|2k,

z€Gm (R™)

_ m k n+j—i
where d, =[], szl T

PROOF. As we discussed in Example 1.3, the Grassmannian G,,(R™) can be
viewed as the orbit of v = ey A--- Ae,,, where eq, ..., e, is the standard basis of
R™, under the action of the special orthogonal group SO(n) by the m-th exterior
power of its defining representation in R™. We are going to apply Part (2) of
Theorem 3.1 and for that we need to estimate the dimension of the subspace
spanned by the orbit of v®¥. First, we identify A™ R" with the subspace of
skew-symmetric tensors in (R™)®™ and v with the point

Z (Sgl’l J)ea(l) - ® €o(m)>

gES

where Sy, is the symmetric group of all permutations of {1,...,m}.
Let us consider W = (R™)®™*_ We introduce the right action of the symmetric
group Sy, on W by permutations of the factors in the tensor product:

(u1 Q- ®umk)a = Ug(1) @+ @ Ug(mk)-

For i = 1,...,m, let R; C S, be the subgroup permuting the numbers 1 <
a < mk such that ¢ =i mod m and leaving all other numbers intact and for
j=1,...,k, let C; C Sy be the subgroup permuting the numbers m(i—1)+1 <
a < mi and leaving all other numbers intact.

Letw=¢€;1® - --®e,,. Then

&k = (k!)_mw®k< Z a> < Z (sgna)a).
ogER1 XX R, ceCyx--xCg

It follows then that v®* generates the G L,-module indexed by the rectangular
mx k Young diagram, so its dimension dj, is given by the formula of the Theorem,
see Chapter 6 of [Fulton and Harris 1991]. O

COROLLARY 3.4. Under the conditions of Theorem 3.3, let
k >m(n —1)max{lnm, 1}.
Then
1€]]2k < comass of £ < «||£||2x

for some absolute constant o > 0.
One can choose o = eXp(0.5 +0.5¢7 4+ 1/In 3) ~ 4.93.
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PrROOF. We have

d <HHn—|—j—z u n+j—1 m_ n+k—1\"
k F—j+1- \{hk—j+1) —\ n-1

1=17=1
Hence

k-1 k—1 k-1
Ind, < mln mt Sm(n—l)lnL—i-mklnL

n—1 n—1 k

n+k—1 k
< — _— = — .
< m(n 1)<1n — —|—1> m(n 1)<lnn71+2>,

compare the proof of Corollary 3.2.
If m > 3 then Inm > 1 and k/(n — 1) > mInm. Since the function p~*Inp
is decreasing for p > e, substituting p = k/(n — 1), we get
n—1 k Inm+Inlnm

—1
Inp = 1
pnp k nn—l - mlnm

Therefore, for m > 3, we have

1ld <lnm—|—lnlnm+ 1 <1
ok k= 2lnm Inm ~ 2 2 In3’

If m < 2 then

n—1 k
1 <e !
E n—1- ’

since the maximum of p~!1n p for is attained at p = e. Therefore,
! Ind, <e ' +1< = + ! —|— =
ok M= 2 In3

The proof now follows. O

To understand the convex geometry of an orbit, we would like to compute the
maximum value of a “typical” linear functional on the orbit. Theorem 3.1 allows
us to replace the maximum value by an LP norm. To estimate the average value
of an L? norm, we use the following simple computation.

LEMMA 3.5. Let G be a compact group acting in a d-dimensional real vector space
V' endowed with a G-invariant scalar product (-,-) and let v € V be a point.
Let S¥=1 C V be the unit sphere endowed with the Haar probability measure dc.
Then, for every positive integer k, we have

1/2k
/ (/ (e, gv>2k dg) de < M
si-1 \Ja d

PRrROOF. Applying Hélder’s inequality, we get

1/2k 1/2k
/ (/ (¢, gv)?* dg) de < (/ / (e, gv)?* dg dc) .
Sd-1 G si—-1 Jag
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Interchanging the integrals, we get

/ /(c,gv)zl“c dgdc:/ (/ (¢, gv)?* dc) dg. 3.5.1
si-1 JG G \Jsi-1

Now we observe that the integral inside has the same value for all g € G. There-
fore, (3.5.1) is equal to

B L(d/2)T'(k +1/2)
/sd—l (e,0)%k de = (v, v)* Tk dR)

see, for example, [Barvinok 2002b].
Now we use that T'(k +1/2) < T'(k + 1) < k¥ and
I'(d/2) 1

Th+d2)  @2d2+) - [@dRtkh-1) = (d/2)7". 0

4. Some Geometric Corollaries

The metric structure of the unit comass ball. Let V,, , = /\m R™ with
the orthonormal basis e; = e;; A--- Ae; , where I is an m-subset 1 < 7; <
ip < -+ < im < nof the set {1,...,n}, and the corresponding scalar product
(-,+). Let Gy (R™) C Vi be the Pliicker embedding of the Grassmannian of
oriented m-subspaces of R, let B = conv (G,,(R™)) be the unit mass ball, and
let B® C V;, ,, = Vinn be the unit comass ball, consisting of the linear functionals
with the maximum value on G,,(R") not exceeding 1, see Examples 1.3 and 2.6.

The most well-known example of a linear functional ¢ : V;,, ,, — R of comass
1 is given by an exterior power of the Kéhler form. Let us suppose that m and
n are even, so m = 2p and n = 2q. Let

w=e NegtezNes+---+e_1Neq

and 1
f:;!w/\-~-/\w€Vm7n.
p times
Then

max ,x) =1,
xEGm(]R")<f >

and, moreover, the subspaces ¢ € G,,(R™) where the maximum value 1 is at-
tained look as follows. We identify R™ with CY by identifying

Re; ®Rex =Res @ Rey = --- = Rey—q @Req:(c-

Then the subspaces = € G, (R™) with (f,z) = 1 are exactly those identified with

the complex p-dimensional subspaces of CY, see [Harvey and Lawson 1982].
1/2
We note that the Euclidean length (f, f)1/2 of f is equal to 1 . In
p

particular, if m = 2p is fixed and n = 2q grows, the length of f grows as
" = (n/2m
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Another example is provided by the special Lagrangian calibration a. In this
case, n = 2m and

a=TRe (ex +iea) A - A(€2m—1 + i€2m).

The length (a,a)/? of a is 20"~Y/2, The maximum value of (a,z) for = €
G (R™) is 1 and it is attained on the “special Lagrangian subspaces”, see [Harvey
and Lawson 1982].

The following result shows that there exist calibrations with a much larger
Euclidean length than that of the power f of the K&hler form or the special
Lagrangian calibration a.

THEOREM 4.1. (i) Let ¢ € Vi, be a vector such that

max (c,z) = 1.
zEG, (R™)

(c,0)/2 < <”>1/2.

m

Then

(ii) There exists ¢ € Vi n such that

max (c,z) =1
z€Gm (R™)

(ere)'/? 2 Vm(n — 15)(1 TInm) (7:2)1/2’

where B > 0 is an absolute constant.
One can choose 3 = exp(—0.5 — 0.5¢e"! —1/In 3)/\/5 ~ 0.14.

and

PrOOF. Part (1) follows since the convex hull of the Grassmannian contains a
—1/2

ball of radius :1 ; see Example 2.6.

To prove Part (2), let us choose k = |[m(n — 1)(1 4+ lnm)] in Lemma 3.5.
Then, by Corollary 3.4,

1/2k
a™! max (c,z) < / (e, )" da )
z€G, (R™) Gm(R™)

for some absolute constant & > 1. We apply Lemma 3.5 with V = V;,, ,, d = ("),

m

G =80(n), and v = €1 A -+ A ey,. Hence (v,v) =1 and there exists ¢ € V1,
with (¢, ¢) =1 and such that

1/2k n -1/2
(/ (c, z)?* dx) < @( ) .
G (R™) m

Rescaling ¢ to a comass 1 functional, we complete the proof of Part (2). O
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For m = 2 the estimate of Part (2) is exact up to an absolute constant, as wit-
nessed by the Kéhler calibration. However, for m > 3, the calibration ¢ of Part
(2) has a larger length than the Kéhler or special Lagrangian calibrations. The
gap only increases when m and n grow. The distance to the origin of the sup-
porting hyperplane (¢, z) = 1 of the face of the convex hull of the Grassmannian
is equal to (c,c) /2
the origin. Thus, the faces spanned by complex subspaces or the faces spanned

so the faces defined by longer calibrations ¢ are closer to

by special Lagrangian subspaces are much more “shallow” than the faces defined
by calibrations ¢ in Part (2) of the Theorem. We do not know if those “deep”
faces are related to any interesting geometry. Intuitively, the closer the face to
the origin, the larger piece of the Grassmannian it contains, so it is quite pos-
sible that some interesting classes of manifolds are associated with the “long”
calibrations ¢ [Morgan 1992].

The volume of the set of nonnegative polynomials. Let U, , be the
space of real homogeneous polynomials p of degree m in n variables such that the
average value of p on the unit sphere S"~1 C R" is 0, so dim Uy, ,, = ("+Zz_1) -1
for m even and dimU,, , = ("+;’i—1) for m odd. As before, we make Uy, ,, a
Euclidean space with the L? inner product

{f9) = f(@)g(x)dz.

Sn—1
We obtain the following corollary.

COROLLARY 4.2. Let ¥, 5, C Upy,n be the unit sphere, consisting of the polyno-
mials with L?-norm equal to 1. For a polynomial p € Uy, ,,, let

= max Z)|.
Iplloe = macx, [p(z)]

Then

/E bl dp < B/~ Din(m 1 5 1

for some absolute constant 3 > 0. One can take § = \/iexp(l +O.5e’1) ~ 4.63.
PROOF. Let us choose k = [(n — 1)In(m + 1) 4+ 1]|. Then, by Corollary 3.2,

1/2k
||p||ooSa( / p%dx) ,
Sn—1

where we can take o = exp(l +0.5€_1). Now we use Lemma 3.5. As in Examples
1.2 and 2.5, we identify the space Uy, , with the space of linear functionals {(c, gv)
on the orbit {gv tg € SO(n)} of v. By the remark after the proof of Theorem
2.4, we have (v,v) = dimU,, . The proof now follows. O

Thus the L°-norm of a typical n-variate polynomial of degree m of the unit
L?-norm in Uy, is O(y/(n — 1)In(m + 1) + 1). In contrast, the L> norm of a
particular polynomial can be of the order of n™/2, that is, substantially bigger.
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Corollary 4.2 was used by the second author to obtain a bound on the volume
of the set of nonnegative polynomials.

Let us consider the shifted set Pos)y, ,, C Usg,n of nonnegative polynomials
defined by (1.2.2). We measure the size of a set X C Usy,, by the quantity

vol X \'/*

vol K ’
where d = dim Uy, , and K is the unit ball in Usg, 5, which is more “robust” than
just the volume vol X, as it takes into account the effect of a high dimension;
see Chapter 6 of [Pisier 1989).

The following result is from [Blekherman 2003], we made some trivial im-
provement in the dependence on the degree 2k.

THEOREM 4.3. Let Pos’%’n C Uag,p, be the shifted set of nonnegative polynomials,
let K C Usy be the unit ball and let d = dim Uz, = ("5 7") — 1. Then

(VOlPOSg;ML)l/d - 5
vol K ~V(—1)In(2k+1)+1

for some absolute constant v > 0. One can take v = exp(—l — 0.56_1)/\/5 R
0.21.

Proor. Let s, C U, be the unit sphere. Let p € Yok, be a point.
The ray Ap : A > 0 intersects the boundary of Posgkm at a point p; such that
mingegn-1 p1(z) = —1, so the length of the interval [0,p;] is | mingegn—1 p(x)] <

[[p[]oo-
Hence

1/d 1/d
<%>/ = </ | min p(w)\ddp>/ > </ ||P||ddp)
vol K Sokom zesSn—1 N Yok,n -
-1
> / ol dp > ( / ||p||oodp> ,
Yok,n Yok,n

by the consecutive application of Hélder’s and Jensen’s inequalities, so the proof
follows by Corollary 4.2. O

1/d

We defined Posyy, ,, as the set of nonnegative polynomials with the average value
1 on the unit sphere, see (1.2.1). There is an important subset Sqag,n, C Posak n,
consisting of the polynomials that are sums of squares of homogeneous poly-
nomials of degree k. It is known that Posar, = Sqorn if K =1, n = 2, or
k =2 and n = 3, see Chapter 6 of [Bochnak et al. 1998]. The following result
from [Blekherman 2003] shows that, in general, Sgay n is a rather small subset
of Posag p.

Translating p — p — (22 + - -+ + 22)*, we identify Sqay ,, with a subset Sk n
of UQkyn.
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THEOREM 4.4. Let Sqy;,,, C Uk be the shifted set of sums of squares, let

K C Usg,n be the unit ball and let d = dim Usy, , = ("T257") — 1. Then

vol Sgarn )/ _ gin (k=1 V2 ook — 1\ 72
Vol K =7 k 2%

for some absolute constant v > 0. One can choose v = exp(l + 0.5671) =~ 3.27.

In particular, if k is fixed and n grows, the upper bound has the form c(k)n=*/2
for some c(k) > 0.

The proof is based on bounding the right hand side of the inequality of Theo-
rem 4.4 by the average width of Sqag,; see Section 6.2 of [Schneider 1993]. The
average width is represented by the integral

2
max (g, dg.
/ZM f@m(g f7)dg

By Corollary 3.2, we can bound the integrand by

1/2q
a< /E o df)

for some absolute constant @ and ¢ = ("*7') and proceed as in the proof of

Lemma 3.5. The factor 2** comes from an inequality of [Duoandikoetxea 1987],
which allows us to bound the L2-norm f? by 2** for every polynomial f € %y ,.
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The Hadwiger Transversal Theorem for
Pseudolines

SAUGATA BASU, JACOB E. GOODMAN, ANDREAS HOLMSEN,
AND RICHARD POLLACK

ABSTRACT. We generalize the Hadwiger theorem on line transversals to
collections of compact convex sets in the plane to the case where the sets
are connected and the transversals form an arrangement of pseudolines.
The proof uses the embeddability of pseudoline arrangements in topological
affine planes.

Santal6 [1940] showed, by an example, that Vincensini’s proof [1935] of an
extension of Helly’s theorem was incorrect. Vincensini claimed to have proved
that for any finite collection S of at least three compact convex sets in the plane,
any three of which are met by a line, there must exist a line meeting all the sets.
This would have constituted an extension of the planar Helly theorem [Helly
1923] to the effect that the same assertion holds if “line” is replaced by “point.”
The Santal6 example was later extended by Hadwiger and Debrunner [1964] to
show that even if the convex sets are disjoint the conclusion still may not hold.

In 1957, however, Hadwiger showed that the conclusion of the theorem is
valid if the hypothesis is strengthened by imposing a consistency condition on
the order in which the triples of sets are met by transversals:

THEOREM [Hadwiger 1957]. If By, ..., By is a family of disjoint compact convex
sets in the plane with the property that for any 1 < i < j < k < n there is a
line meeting each of B;, B;, By, in that order, then there is a line meeting all the
sets B;.

In [Goodman and Pollack 1988] two of us gave a generalization of Hadwiger’s
theorem to the case of hyperplane transversals, and this in turn was extended in
[Pollack and Wenger 1990; Wenger 1990], culminating in the following result:
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THEOREM [Anderson and Wenger 1996]. Let A be a finite collection of connected
sets in R%. A has a hyperplane transversal if and only if for some k with 0 <
k < d there exists a rank k + 1 acyclic oriented matroid structure on A such that
every k + 2 members of A are met by an oriented k-flat consistently with that
oriented matroid structure.

Our purpose in this paper is to extend the original Hadwiger theorem in a dif-
ferent direction —replacing “lines” by “pseudolines.” A pseudoline in the affine
plane is simply the homeomorphic image of a line. If that were all, the theorem
would be true trivially: for any finite collection of sets there is a pseudoline meet-
ing them in any prescribed order! (Of course this needs a suitable interpretation
in the case where the sets are not mutually disjoint; see below.) But to reflect
more accurately the properties of sets of lines in the plane, one insists that all the
pseudolines under consideration form an arrangement, which means that they
are finite in number, that any two meet exactly once, where they cross, and (for
technical reasons) that they do not all pass through the same point.! (For exam-
ples of pseudoline arrangements that are not isomorphic, in a natural sense, to
arrangements of straight lines, see, e.g., [Goodman 2004].) Furthermore, given
a pseudoline arrangement A we say that a pseudoline ! extends A if AU {l} is
also an arrangement of pseudolines. Thus the theorem we are going to prove is
the following:

THEOREM 1. Suppose Bi,...,B, is a family of connected compact sets in the
plane such that for each 1 <1 < j < k < n there is a pseudoline l;j;, meeting each
of By, B, By, at points p;, p;, pk, not necessarily distinct, contained in By, B;, By,
respectively, with p; lying between p; and py on l;;i;. Suppose further that the
pseudolines l;ji, constitute an arrangement A. Then there exists a pseudoline [
that extends the arrangement A and meets each set B;.

As in Wenger’s generalization [1990], we do not assume the sets to be disjoint
or even convex, merely connected. And in fact we will prove Theorem 1 by
generalizing Wenger’s proof, and by using the following result on topological
planes:

THEOREM [Goodman et al. 1994]. Any arrangement of pseudolines in the pro-
jective plane can be extended to a topological projective plane.

Here a topological projective plane means P2, together with a distinguished col-
lection L of pseudolines, one for each pair of points, varying continuously with
the points, any two meeting (and crossing) exactly once. If we call a topological
projective plane with one of its distinguished pseudolines removed a topological
affine plane (TAP), the theorem above can trivially be modified to read: Any

1This is actually the definition of a “pseudoline arrangement” in the projective plane, while
in the affine plane one allows pseudolines also to be “parallel”; in a finite arrangement, however,
pseudolines can always be perturbed slightly to meet “at finite distance,” and we will assume
this whenever convenient.
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arrangement of pseudolines in the affine plane can be extended to a TAP. We
will use it in this form.

For background on pseudoline arrangements and on geometric transversal
theory, the reader may consult the following surveys: [Eckhoff 1993; Goodman
2004; Goodman et al. 1993; Griinbaum 1972; Wenger 1999; Wenger 2004].

We now introduce some notions that will be used in the proof of the theorem.

Since P? can be modeled by a closed circular disk A with antipodal points on
the boundary OA identified, we will model our TAP by using int A, the interior
of A, and call two pseudolines parallel if they meet on JA. (From now on,
whenever we speak of “pseudolines” in the TAP, we will mean members of the
distinguished family of pseudolines constituting its “lines.”) An arrangement of
pseudolines is thus a finite set of Jordan arcs, each joining a pair of antipodal
points of A, any two meeting (and crossing) exactly once, or possibly at their
endpoints (the parallel case).

We will also speak of directed pseudolines, which corresponds to specifying
one of the antipodal points where the pseudoline meets JA. Thus it will make
sense to say: let p be a point on A and let [, be a pseudoline in the direction p.
Further, when we direct a pseudoline, we specify a positive and a negative open
half-space bounded by that line, determined with respect to a fixed orientation
of A. We denote these half-spaces by Hy(l,) and H_(l,); see Figure 1.

Now let A and B be two connected compact sets in our TAP and let p € JA.
If there is a pseudoline in the direction of p that contains points a € A and
b € B, with either a = b or a preceding b on the pseudoline, we say that p is an
(AB)-transversal direction. If there is a pseudoline [, that strictly separates A
and B such that A C Hy(l,) and B C H_(l,), we say that p is a (AB)-separating
direction.

Notice that a given direction can be both an (AB)-transversal direction and a
(BA)-transversal direction; even the same pseudoline, in fact, can meet A before
B and B before A in this sense.

0A

Figure 1.
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Notice also that given a pair A, B, each direction p is either a transversal
direction or a separating direction for A, B, but not both; this follows by a simple
continuity argument, sweeping a pseudoline in direction p across the TAP.

Finally, notice that if there is an (AB)-separating direction p, no direction
g can be both an (AB)-transversal direction and a (BA)-transversal direction.
This follows from the fact that if two pseudolines have the same direction ¢, they
must cross a given pseudoline { in direction p the same way: both from H, (1) to
H_(l), or both from H_(I) to Hy(l).

It then follows from the definition of a TAP and the compactness of our sets
that the set Tap of (AB)-transversal directions is a closed arc of OA: If A and
B have a point in common then clearly T4 = JA. If not, consider any two
distinct directions py,ps € Tap. For i = 1,2 choose points a; € A, b; € B along
a pseudoline /; in direction p;, with a; preceding b;, as well as a parametrized
arc a(t) C A from a; to as and a parametrized arc b(t) C B from by to bs. By
continuity, the set of directions a(t)b(f) must contain one of the two arcs on JA
joining py and ps. It follows that the set T'ap is itself an arc (possibly all of 9A),
and this must be closed by the compactness of the sets A and B.

We have thus proved the following:

LEMMA 2. Let A and B be connected compact sets in the plane. Then
OA =TapUSsgUTBsUSBAa,

where Tap = —Tpa is the closed arc corresponding to the (AB)-transversal di-
rections, and Sap = —Spa is the open arc corresponding to the (AB)-separating
directions. (Note that Sap can be empty.)

To complete the proof of Theorem 1, we extend the arrangement A to a topo-
logical affine plane. We want to show first that there is a direction p € A that
is a transversal direction for every pair B;, Bj. For each pair B;, Bj, let S;; be
the open arc of (B; B;)-separating directions. Now define the following antipodal

sets:
S+:USZ'j B 87:USji
i<j i<j

If there is no point p € A that is a transversal direction for every pair B;, B;
then we must have 0A = 8§, US_. But since 84 and S_ are open sets that cover
OA there must be a point p € 8§ NS_. But then we would have pseudolines I,
and [, both directed toward p, and sets B;, B;, By, B; with ¢ < j and k <[, such
that B; C hy(lh), Bj C h—(l1), Bx C h_(lz), and B; C hy(l3). It is then easy
to check that there would always be some triple that violates the transversal
assumption; see Figure 2 for a typical case.

This means that there is a direction ¢ € A that is a transversal direction
for every pair B;, B;. It follows that ¢ is not a separating direction for any pair
B;, Bj, so that a pseudoline in direction g sweeping through the TAP must pass
simultaneously through all the sets B; at some point. This completes the proof.
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p

Figure 2. If i < k, there is no l;5; if k < 4, there is no ;.

REMARKS. 1. It is not hard to see that Theorem 1 is equivalent to the following.

THEOREM 3. Suppose L is an arrangement of pseudolines in the affine plane.
For each triple i < j < k in [1,n], select three (not necessarily distinct) points
belonging to the same pseudoline of L, and label them i, j, k, with the point labeled
J between the other two (or possibly equal to one or both). Then there is a
pseudoline 1 extending the arrangement L such that for each i € [1,n] there are
points labeled i in both (closed) half-spaces bounded by .

2. As in the original Hadwiger theorem, one cannot strengthen the conclusion
of Theorem 1 to include the assertion that the common transversal meets the
sets in the order 1,2,...,n (see [Wenger 1990] for an example). But it is easily
seen that, as in [Wenger 1990], that stronger assertion follows if we are willing
to assume that every siz of the sets are met in a consistent order; the argument
is the same, mutatis mutandis.

THEOREM 4. Suppose Bi,...,B, is a family of at least six connected com-
pact sets in the plane such that for each 1 < f < g< h<i<j<k<n
there is a pseudoline lgnygr meeting each of By, By, By, Bi, B;, By at points
D#,Dgs PhsDis Pjs Pk, not necessarily distinct, contained in By, By, By, B;, Bj, By,
respectively, and occurring in that order on lfgngi. Suppose further that the
pseudolines lgnyi constitute an arrangement A. Then there exists a pseudoline
l that extends the arrangement A and meets all of the sets By,..., By, in that
order.

The example in [Wenger 1990] showing that the number 6 in the corresponding
result for straight lines and convex sets is tight does not seem correct. Here is an
example, however, showing that the result would fail for a collection Bi,..., Bg
of convex sets if we assumed only that every five were met in a consistent order;
here every five sets have a transversal meeting them in numerical order, but all
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six do not:

3. In the process of proving Theorem 1, we have actually proven the following
(stronger) theorem about TAPs:

THEOREM 5. If By,..., B, is a family of connected compact sets in a topological
affine plane P with the property that for any 1 <1i < j < k <n there is a pseudo-
line of P meeting each of B;, Bj, By in that order, then there is a pseudolineline
of P meeting all the sets B;.

This raises the question: What other transversal theorems extend to TAPs?

4. Finally, what about higher dimensions? The notion of ‘topological plane’
extends only trivially to dimension > 3, since, as is well-known, Desargues’s the-
orem holds automatically in higher dimensions and any d-dimensional “topologi-
cal projective space” is consequently isomorphic to the usual projective space P?.
Nevertheless, one may ask: Does Theorem 1 extend in some way, in dimension
> 2, to a result about (finite) arrangements of pseudohyperplane transversals?
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ABSTRACT. Topological complexity of semialgebraic sets in R* has been
studied by many researchers over the past fifty years. An important mea-
sure of the topological complexity are the Betti numbers. Quantitative
bounds on the Betti numbers of a semialgebraic set in terms of various pa-
rameters (such as the number and the degrees of the polynomials defining
it, the dimension of the set etc.) have proved useful in several applications
in theoretical computer science and discrete geometry. The main goal of
this survey paper is to provide an up to date account of the known bounds
on the Betti numbers of semialgebraic sets in terms of various parameters,
sketch briefly some of the applications, and also survey what is known about
the complexity of algorithms for computing them.

1. Introduction

Let R be a real closed field and S a semialgebraic subset of R*, defined by
a Boolean formula, whose atoms are of the form P =0, P > 0, P < 0, where
P € P for some finite family of polynomials P C R[X7, ..., X]. It is well known
[Bochnak et al. 1987] that such sets are finitely triangulable. Moreover, if the
cardinality of P and the degrees of the polynomials in P are bounded, then
the number of topological types possible for S is finite [Bochnak et al. 1987].
(Here, two sets have the same topological type if they are semialgebraically
homeomorphic). A natural problem then is to bound the topological complexity
of S in terms of the various parameters of the formula defining S.

One measure of topological complexity are the various Betti numbers of S.
The i-th Betti number of S (which we will denote by b;(S)) is the rank of
H;(S,Z). In case, R happens to be R then H;(S,Z) denotes the i-th singular
homology group of S with integer coeflicients. For semialgebraic sets defined
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over general real closed fields the definition of homology groups requires more
care and several possibilities exists. For instance, if S is closed and bounded,
then using the fact that S is finitely triangulable, H;(S,Z) can be taken to be the
i-th simplicial homology group of S, and this definition agrees with the previous
definition in case R = R. For a general locally closed semialgebraic set, one
can take for H;(S,Z) the i-th Borel-Moore homology groups, which are defined
in terms of the simplicial homology groups of the one-point compactification of
S, and which are known to be invariants under semialgebraic homeomorphisms
[Bochnak et al. 1987]. Note that, even though some of the early results on
bounding the Betti numbers of semialgebraic sets were stated only over R, the
bounds can be shown to hold over any real closed field by judicious applications
of the Tarski-Seidenberg transfer principle. We refer the reader to [Basu et al.
2003] (Chapter 7) for more details.

2. Early Bounds

For a polynomial P € R[X1,..., X}], we denote by Z(P,R") the set of zeros
of P in R¥. The first results on bounding the Betti numbers of algebraic sets are
due to Oleinik and Petrovsky [1949; 1951; 1949a; 1949b]. They considered the
problem of bounding the Betti numbers of a nonsingular real algebraic hypersur-
face in R¥ defined by a single polynomial equation of degree d. More precisely,
they prove that the sum of the even Betti numbers, as well as the sum of the odd
Betti numbers, of a nonsingular real algebraic hypersurface in R* defined by a
polynomial of degree d are each bounded by %dk + lower order terms. Indepen-
dently, Thom [1965] proved a similar bound of 1d(2d — 1)*~! on the sum of all
the Betti numbers of Z(P, ]Rk)7 where P is only assumed to be nonnegative over
R* without the assumption that Z(P, RF ) is a nonsingular hypersurface. Milnor
[1964] also proved the same bound in the case Z(P,R") is an arbitrary real alge-
braic subset. Moreover, he proved a bound of (sd)(2sd —1)*~! on the sum of the
Betti numbers of a basic semialgebraic set defined by the conjunction of s weak
inequalities P, > 0,...,Ps; > 0, with P, € R[Xy,..., Xy],deg(P;) < d. Note
that there is a cost for generality: the bounds of Thom and Milnor are slightly
weaker (in the leading constant) than those proved by Oleinik and Petrovsky.
Note also that these bounds on the sum of the Betti numbers of an algebraic set
are tight, since the solutions to the system of equations,

(X1 = 1)(X; =2) - (X —d) = = (Xp — )(Xp — 2)--- (Xp — d) = 0,

or equivalently of the single equation

(X1 = D)X =2) - (Xy —d) 4+ (X = D(Xg = 2) - (X — ) =0,

consist of d¥ isolated points and the only nonzero Betti number of this set is
by = d*.
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The method used to obtain these bounds is based on a basic fact from Morse
theory — that the sum of the Betti numbers of a compact, nonsingular, hyper-
surface in R is at most the number of critical points of a well chosen projection.
In case of a nonsingular real algebraic variety, the critical points of a projection
map satisfy a simple system of algebraic equations obtaining by setting the poly-
nomial defining the hypersurface, as well as £ — 1 different partial derivatives to
zero. The number of solutions to such a system can be bounded from above by
Bezout’s theorem. The case of an arbitrary real algebraic variety (not neces-
sarily compact and nonsingular) is reduced to the compact, nonsingular case by
carefully using perturbation arguments.

Even though the bounds mentioned above are bounds on the sum of all the
Betti numbers, in different combinatorial applications it suffices to have bounds
only on the zero-th Betti number (that is the number of connected components).
For instance, given a finite set of polynomials P C R[X1,...,Xk], a natural
question is how many of the 3 sign conditions in {0, 1, =1} are actually realized
at points in R*. We define

signz =0 if and only if z = 0,
signz =1 if and only if z > 0,
signx = —1 if and only if = < 0.

Let P C R[Xy,...,Xx]. A sign condition on P is an element of {0,1,—1}7. A
strict sign condition on P is an element of {1, —1}%. We say that P realizes the
sign condition o at € R* if

N\ sign P(z) = o(P).
Pe?

The realization of the sign condition o is

R(o) = {z e R | A signP() =o(P)},
Pe?P
The sign condition o is realizable if R(o) is nonempty.

Warren [1968] proved a bound of (4esd/k)* on the number of strict sign
conditions realized by a set of s polynomials in R*¥ whose degrees are bounded
by d. Alon [1995] extended this result to all sign conditions by proving a bound
of (8esd/k)*. The fact that these bounds are polynomial in s (for fixed values
of k) is important in many applications. Note that this bound is tight since it is
an easy exercise to prove that the number of sign conditions realized by a family
of linear polynomials in general position is

éjzo C) (s i l) (2-1)

see for example [Basu et al. 2003].
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3. Early Applications

One of the first applications of the bounds of Oleinik—Petrovsky, Thom and
Milnor, was in proving lower bounds in theoretical computer science. The model
for computation was taken to be algebraic decision trees. Given an input x € Rk,
an algebraic decision tree decides membership of x in a certain fixed semialgebraic
set S C RF. Starting from the root of the tree, at each internal node, v, of the
tree, it evaluates a polynomial f, € R[Xy,..., Xx] (where deg(f,) < d, for some
fixed constant d), at the point (x1,...,x,) and branches according to the sign of
the result. The leaf nodes of the tree are labelled as accepting or rejecting. On an
input x € R*, the algebraic decision tree accepts z if and only if the computation
terminates at an accepting leaf node. Moreover, an algebraic decision tree tests
membership in S, if it accepts x if and only if € S. The main idea behind
using the Oleinik—Petrovsky, Thom and Milnor bounds in proving lower bounds
for the problem of testing membership in a certain semialgebraic set S C R*
is that if the set S is topologically complicated, then an algebraic decision tree
testing membership in it has to have large depth.

Ben-Or [1983] proved that the depth of an algebraic computation tree testing
membership in S must be Q(logby(S)). Several extensions of this result were
proved by Yao [1995; 1997]. He proved that instead of by(S) one could use
in fact the Euler characteristic of S (which is the alternating sum of the Betti
numbers), as well as the sum of the Betti numbers of S. This made the theorem
useful for proving lower bounds for a wider class of problems by including sets
with a single connected component but complicated topology [Montana et al.
1991]. Another early application of the Oleinik—Petrovsky, Thom and Milnor
bounds was in proving upper bounds on the number of order types of simple
configurations of points in R*. Given an ordered set, S, of s points in R¥, the
order type of S is determined by the (kil) orientations of the (kil) oriented
simplices spanned by (k + 1)-tuples of points. A point configuration is simple
if no k + 1 of them are affinely dependent. Using Milnor’s bound on the Betti
numbers of basic semialgebraic sets Goodman and Pollack [1986b] proved an
upper bound of s* on the number of realizable simple order types of s points in
R* [Goodman and Pollack 1986a] rather than the trivial bound of 2%. as well as
on the number of combinatorial types of simple polytopes with s vertices in R”
[Goodman and Pollack 1986a]. In fact, Milnor’s bound actually yields a bound
on the number of isotopy classes of simple configurations of s points in R¥. The
isotopy class of a point configuration in R* consists of all point configurations
in R¥ having the same order type which are reachable by continuous order type
preserving deformations of the original point configuration. Alon [1995] extended
these bounds to all configurations — not necessarily simple ones.

All of these applications are based on the simple observation that different
strict sign conditions must belong to different connected components. Any sit-
uation where geometric types can be characterized by a sign condition gives an
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application of this type. Two other application in this spirit are bounds on the
number of weaving patterns of lines [Pach et al. 1993] and the size of a grid which
will support all order types of s points in the plane [Goodman et al. 1989; 1990].

4. Modern Bounds

Pollack and Roy [1993] proved a bound of (;)O(d)* on the number of con-
nected components of the realizations of all realizable sign conditions of a family
of s polynomials of degrees bounded by d. The proof was based on Oleinik—
Petrovsky, Thom and Milnor’s results for algebraic sets, as well as with defor-
mation techniques and general position arguments.

From this bound one can deduce a tight bound on the number of isotopy
classes of all point configurations in R* (not just the simple ones). Note that
Warren’s bound mentioned before is a bound on the number of realizable strict
sign conditions (extended by Alon to all sign conditions) but not on the number of
connected components of their realizations. Thus, Warren’s (or Alon’s) bounds
cannot be used to bound the number of isotopy classes (of simple or nonsimple
configurations).

In some applications, notably in geometric transversal theory as well in bound-
ing the complexity of the configuration space in robotics, it is useful to study
the realizations of sign conditions of a family of s polynomials in R[X7, ..., Xj]
restricted to a real variety Z(Q,R") where the real dimension of the variety
7(Q,R") can be much smaller than k. In [Basu et al. 1996] it was shown that
the number of connected components of the realizations of all realizable sign
condition of a family, P C R[X,..., Xk] of s polynomials, restricted to a real
variety of dimension k', where the degrees of the polynomials in P U {Q} are all
bounded by d, is bounded by (,;,)O(d)*.

There are also results bounding the sum of the Betti numbers of semialgebraic
sets defined by a conjunction of weak inequalities. Milnor [1964] proved a bound
of (sd)(2sd — 1)*~! on the sum of the Betti numbers of a basic semialgebraic
set defined by the conjunction of s weak inequalities P, > 0, ..., P, > 0,
with P; € R[Xq,..., Xk] such that deg(P;) < d. In another direction, Barvinok
[1997] proved a bound of k() on the sum of the Betti numbers of a basic, closed
semialgebraic set defined by polynomials of degree at most 2. Unlike all previous
bounds, this bound is polynomial in k for fixed values of s.

Extending such bounds to arbitrary semialgebraic sets is not trivial, because
Betti numbers are not additive and the union of two topologically trivial semial-
gebraic sets can clearly have arbitrarily large higher Betti numbers. Basu [1999]
proved a bound on the sum of the Betti numbers of a P-closed semialgebraic set
on a variety. A P-closed semialgebraic set is one defined by a Boolean formula
without negations whose atoms are of the form P > 0 or P < 0 with P € P. The
bound is s*' O(d)¥. Very recently Gabrielov and Vorobjov [> 2005], succeeded
in removing even the P-closed assumption at the cost of a slightly worse bound.
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They showed that the sum of the Betti numbers of an arbitrary semialgebraic
set defined by a Boolean formula whose atoms are of the form P =0, P > 0 or
P < 0 with P € P, is bounded by O(s2d).

There have been recent refinements of the bounds on the Betti numbers of
semialgebraic sets in another direction. All the bounds mentioned above are
either bounds on the number of connected components or on the sums of all (or
even or odd) Betti numbers. Basu [2003] proved different bounds (for each 1)
on the i-th Betti number of a basic, closed semialgebraic set on a variety. If S
is a basic closed semialgebraic set defined by s polynomials in R[X7, ..., Xj] of
degree d, restricted to a real variety of dimension &’ and defined by a polynomial
of degree bounded by d, then b;(S) is bounded by (,,° ;)O(d)*. In the same
paper, a bound of s‘.°® on the (k — £)-th Betti number of a basic, closed
semialgebraic set defined by polynomials of degree at most 2 is proved. For
fixed ¢ this bound is polynomial in both s and k. More recently, in [Basu et al.
2005] the authors bound (for each i) the sum of the i-th Betti number over all
realizations of realizable sign conditions of a family of polynomials restricted to
a variety of dimension k' by

3 (S_)zu'd(zd — )Rl
1<j<ki—i

This generalizes and makes more precise the bound in [Basu et al. 1996] which

is the special case with ¢ = 0. The technique of the proof uses a generalization

of the Mayer—Vietoris exact sequence.

All the bounds on the Betti numbers of semialgebraic sets described above,
depend on the degrees of the polynomials used in describing the semialgebraic
set. However, it is well known that in the case of real polynomials of one variable,
the number of real zeros can be bounded in terms of the number of monomials
appearing in the polynomial (independent of the degree). This is an easy con-
sequence of Descartes’ law of signs [Basu et al. 2003]. Hence, it is natural to
hope for a similar result in higher dimensions. Khovansky [1991] proved a bound
of 2 (mk)* on the number of isolated real solutions of a system of & polyno-
mial equations in k variables in which the number of monomials appearing with
nonzero coefficients is bounded by m. Using this, one can obtain similar bounds
on the sum of the Betti numbers of an algebraic set defined by a polynomial
with at most m monomials in its support. The semialgebraic case requires some
additional technique and it was shown in [Basu 1999] that the sum of the Betti
numbers of a P-closed semialgebraic set on a variety, is bounded by sk/ZO(kmz),
where m is a bound on the number of monomials.

5. Modern Applications

Using [Pollack and Roy 1993] one immediately obtains reasonably tight bounds
on the number of isotopy classes of not necessarily simple geometric objects such
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as the number of isotopy classes (with respect to order type) of configurations of
n points in R* or the number of isotopy classes (with respect to combinatorial
type) of k—polytopes with n vertices.

Using [Basu et al. 1996], Goodman, Pollack, and Wenger [Goodman et al.
1996] were able to extend the known bounds on the number of geometric per-
mutations (1-order types) induced by line transversals (¢ = 1) to the number of
(-order types induced by ¢-flat transversals to n convex sets in R®. As is the case
for line transversals in R®, the lower bounds are about the square root of the
upper bounds (in the plane, the corresponding result is tight [Edelsbrunner and
Sharir 1990]). A much fuller discussion of Geometric Transversal Theory can be
found in [Goodman et al. 1993].

6. Algorithms

A natural algorithmic problem is to design efficient algorithms for computing
the Betti numbers of a given semialgebraic set. Clearly the problem of deciding
whether a given semialgebraic set is empty is NP-hard, and counting its number
of connected component is #P-hard. However, in view of the bounds described
above we could hope for an algorithm having complexity polynomial in the num-
ber of polynomials and their degrees and singly exponential in the number of
variables. This seems to be a very difficult problem in general and only partial
results exist in this direction.

The cylindrical algebraic decomposition [Collins 1975] makes it possible to
compute triangulations, and thus the number of connected components [Schwartz
and Sharir 1983] as well as the higher Betti numbers in time polynomial in the
number of polynomials and their degrees and doubly exponential in the number
of variables (see [Basu et al. 2003]).

Various singly exponential time algorithms have been obtained for finding a
point in every connected component of an algebraic set [Canny 1988b; Renegar
1992], of a semialgebraic set [Grigor’ev and Vorobjov 1988; Canny 1988b; Heintz
et al. 1989; Renegar 1992], in every connected component of the sign conditions
defined by a family of polynomials on a variety [Basu et al. 1997].

Computing the exact number of connected components in singly exponential
time is a more difficult problem. The notion of a roadmap introduced by Canny
[1988a] is the key to the solution. The basic algorithm has since been generalized
and refined in several papers [Canny 1988a; 1993; Grigor’ev and Vorobjov 1992;
Heintz et al. 1994; Gournay and Risler 1993; Basu et al. 2000] (see [Basu et al.
2003] for more details). Single exponential algorithms for computing the Euler—
Poincaré characteristic (which is the alternating sum of the Betti numbers) of
algebraic (as well as P-closed semialgebraic) sets are described in [Basu 1999).
However, the problem of computing all the Betti numbers in single exponential
time remains open.
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Shelling and the h-Vector of
the (Extra)ordinary Polytope

MARGARET M. BAYER

ABSTRACT. Ordinary polytopes were introduced by Bisztriczky as a (non-
simplicial) generalization of cyclic polytopes. We show that the colex order
of facets of the ordinary polytope is a shelling order. This shelling shares
many nice properties with the shellings of simplicial polytopes. We also
give a shallow triangulation of the ordinary polytope, and show how the
shelling and the triangulation are used to compute the toric h-vector of
the ordinary polytope. As one consequence, we get that the contribution
from each shelling component to the h-vector is nonnegative. Another con-
sequence is a combinatorial proof that the entries of the h-vector of any
ordinary polytope are simple sums of binomial coefficients.

1. Introduction

This paper has a couple of main motivations. The first comes from the study
of toric h-vectors of convex polytopes. The h-vector played a crucial role in
the characterization of face vectors of simplicial polytopes [Billera and Lee 1981;
McMullen and Shephard 1971; Stanley 1980]. In the simplicial case, the h-vector
is linearly equivalent to the face vector, and has a combinatorial interpretation
in a shelling of the polytope. The h-vector of a simplicial polytope is also the
sequence of Betti numbers of an associated toric variety. In this context it
generalizes to nonsimplicial polytopes. However, for nonsimplicial polytopes, we
do not have a good combinatorial understanding of the entries of the h-vector.
(Chan [1991] gives a combinatorial interpretation for the h-vector of cubical

polytopes.)
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The definition of the (toric) h-vector for general polytopes (and even more
generally, for Eulerian posets) first appeared in [Stanley 1987]. Already there
Stanley raised the issue of computing the h-vector from a shelling of the polytope.
Associated with any shelling, Fy, F5, ..., F,, of a polytope P is a partition of
the faces of P into the sets G; of faces of F}; not in Ui<j F;. The h-vector can
be decomposed into contributions from each set §;. When P is simplicial, the
set §; is a single interval [G,, F;] in the face lattice of P, and the contribution
to the h-vector is a single 1 in position |G,|. For nonsimplicial polytopes, the
set G; is not so simple. It is not clear whether the contribution to the h-vector
from G; must be nonnegative, and, if it is, whether it counts something natural.
(Tom Braden [2003] has announced a positive answer to this question, based on
[Barthel et al. 2002; Karu 2002].) Another issue is the relation of the h-vector of
a polytope P to the h-vector of a triangulation of P. This is addressed in [Bayer
1993; Stanley 1992].

A problem in studying nonsimplicial polytopes is the difficulty of generating
examples with a broad range of combinatorial types. Bisztriczky [1997] dis-
covered the fascinating “ordinary” polytopes, a class of generally nonsimplicial
polytopes, which includes as its simplicial members the cyclic polytopes. These
polytopes have been studied further in [Dinh 1999; Bayer et al. 2002; Bayer 2004].
The last of these articles showed that ordinary polytopes have surprisingly nice
h-vectors, namely, the h-vector is the sum of the h-vector of a cyclic polytope
and the shifted h-vector of a lower-dimensional cyclic polytope. These h-vectors
were calculated from the flag vectors, and the calculation did not give a com-
binatorial explanation for the nice form that came out. So we were motivated
to find a combinatorial interpretation for these h-vectors, most likely through
shellings or triangulations of the polytopes.

This paper is organized as follows. In the second part of this introduction
we give the main definitions. The brief Section 2 warms up with the natural
triangulation of the multiplex. Section 3 is devoted to showing that the colex
order of facets is a shelling of the ordinary polytope. The proof, while laborious,
is constructive, explicitly describing the minimal new faces of the polytope as
each facet is shelled on. We then turn in Section 4 to h-vectors of multiplicial
polytopes in general, and of the ordinary polytope in particular. Here a “fake
simplicial h-vector” arises in the shelling of the ordinary polytope. In Section 5,
the triangulation of the multiplex is used to triangulate the boundary of the
ordinary polytope. This triangulation is shown to have a shelling compatible
with the shelling of Section 3. The shelling and triangulation together explain
combinatorially the h-vector of the ordinary polytope.
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About the title. Bisztriczky chose the name “ordinary polytope” to invoke
the idea of ordinary curves. The name is, of course, a bit misleading, since it
applies to a truly extraordinary class of polytopes. We feel that these polytopes
are extraordinary because of their special structure, but we hope that they will
also turn out to be extraordinary for their usefulness in understanding general
convex polytopes.

Definitions. For common polytope terminology, refer to [Ziegler 1995].
The toric h-vector was defined by Stanley for Eulerian posets, including the
face lattices of convex polytopes.

DEFINITION 1 [Stanley 1987]. Let P be a (d—1)-dimensional polytopal sphere.
The h-vector and g-vector of P are encoded as polynomials:

a | a2l
h(P7 .’17) = Zhixd_l and g(P7 JJ) = Z gimz,
i=0 1=0

with the relations g9 = ho and g; = h;—h;—1 for 1 < i < d/2. Then the
h-polynomial and g-polynomial are defined by the recursion

(i) g(@,2) =h(z,z) =1, and

(i) A(Pz)= >  g(Ga)(x—1)"17dmE,
G face of P
G#P

It is easy to see that the h-vector depends linearly on the flag vector. In the case
of simplicial polytopes, the formulas reduce to the well-known transformation
between f-vector and h-vector.

DEFINITION 2 [Ziegler 1995]. Let C be a pure d-dimensional polytopal complex.
If d = 0, a shelling of C is any ordering of the points of C. If d > 0, a shelling of
C is a linear ordering Fy, Fs, ..., Fs of the facets of C such that for 2 < j < s,
the intersection F; N (U2 <j FZ) is nonempty and is the union of ridges (that is,
(d—1)-dimensional faces) of € that form the initial segment of a shelling of F}.

DEFINITION 3 [Bayer 1993]. A triangulation A of a polytopal complex € is
shallow if and only if every face o of A is contained in a face of € of dimension
at most 2dimo.

THEOREM 1.1 [Bayer 1993]. If A is a simplicial sphere forming a shallow tri-
angulation of the boundary of the convex d-polytope P, then h(A,x) = h(P,x).

Note: Theorem 4 in [Bayer 1993] gives h(P, x) = h(A, ) for a shallow subdivision
A of the solid polytope P. The proof goes through for shallow subdivisions of
the boundary, because it is based on the uniqueness of low-degree acceptable
functions [Stanley 1987], which holds for lower Eulerian posets.
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DEFINITION 4 [Bisztriczky 1996]. A d-dimensional multiplez is a polytope with
an ordered list of vertices, xg, x1, ..., T,, with facets Fy, Fy, ..., F}, given by

Fi = COHV{I’i_d+1, Lied42y -+ 3 Lj—1sLj41, Lj42y - - - 7Ii+d—1}7
with the conventions that z; = zq if i < 0, and x; = z,, if i > n.

Given an ordered set V = {zg,z1,...,2,}, a subset Y C V is called a Gale
subset if between any two elements of V'\'Y there is an even number of elements
of Y. A polytope P with ordered vertex set V is a Gale polytope if the set of
vertices of each facet is a Gale subset.

DEFINITION 5 [Bisztriczky 1997]. An ordinary polytope is a Gale polytope such
that each facet is a multiplex with the induced order on the vertices.

Cyclic polytopes can be characterized as the simplicial Gale polytopes. Thus the
only simplicial ordinary polytopes are cyclics. In fact, these are the only ordi-
nary polytopes in even dimensions. However, the odd-dimensional, nonsimplicial
ordinary polytopes are quite interesting.

We use the following notational conventions. Vertices are generally denoted
by integers ¢ rather than by z;. Where it does not cause confusion, a face of a
polytope or a triangulation is identified with its vertex set, and max F' denotes
the vertex of maximum index of the face F'. Interval notation is used to denote
sets of consecutive integers, so [a,b] = {a,a+1,...,0—1,b}. If X is a set of
integers and c is an integer, write X +c = {z+c:z € X}.

2. Triangulating the Multiplex

Multiplexes have minimal triangulations that are particularly easy to describe.

THEOREM 2.1. Let M%™ be a multiplex with ordered vertices 0, 1, ..., n. For
0 <i < n—d, let T; be the convex hull of [i,i+d]. Then M%™ has a shallow
triangulation as the union of the n—d—+1 d-simplices T;.

PROOF. The proof is by induction on n. For n = d, the multiplex M%? is
the simplex Ty itself. Assume M®" has a triangulation into simplices T}, for
0 < i < n—d. Consider the multiplex M%*"+! with ordered vertices 0, 1, ...,
n+1. Then M%" 1 = conv(M%™ U {n+1}), where n+1 is a point beyond facet
F,, of M%™, beneath the facets F; for 0 < i < n—d+1, and in the affine hulls of
the facets F; for n—d+2 < i <n—1. (See [Bisztriczky 1996].) Thus, M4"*1 is
the union of M%" and conv(F, U {n+1}) = Th11_q, and M4"NT, 11 4= F,.
By the induction assumption, the simplices T;, with 0 < ¢ < n+1—d, form a
triangulation of M®n+1,

The dual graph of the triangulation is simply a path. (The dual graph is the
graph having a vertex for each d-simplex, and an edge between two vertices if
the corresponding d-simplices share a (d—1)-face.) The ordering Ty, T3, To, ...,
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T, _q is a shelling of the simplicial complex that triangulates M®™. So the h-
vector of the triangulation is (1,n—d,0,0,...). This is the same as the g-vector
of the boundary of the multiplex, which is the h-vector of the solid multiplex.
So by [Bayer 1993], the triangulation is shallow. O

Note, however, that M®" is not weakly neighborly for n > d+2 (as observed in
[Bayer et al. 2002]). This means that it has nonshallow triangulations. This is
easy to see because the vertices 0 and n are not contained in a common proper
face of M.

Consider the induced triangulation of the boundary of M%". For notational
purposes we consider Ty and T, separately. All facets of Ty except [1,d] are
boundary facets of M®%". Write Ty o = [0,d—1] = Fy, and Ty ; = [0,d]\{;} for
1<j<d—1. Write T,,_g\, = [n—d+1,n] = F,,, and T},\; = [n—d,n]\{j} for
n—d+1 < j <n—1. For 1 <i <n—d—1, the facets of T; are T} ; = [i,i+d]\{j}.
Two of these facets (j = i and j = i+d) intersect the interior of M%™. For
1 <j <n—1, the facet F; is triangulated by T;\; for j—d+1 <4 < j—1 (and
0 <14 < n—d). The facet order Fy, I}, ..., F,, is a shelling of the multiplex AM/%™.
The (d—1)-simplices T}y ; in the order To\o, Tov1, Tove, Tives -+ Th—d—1\n—2;
Ton—avn—2> Tn—a\n—1, T—a+1\n (increasing order of j and, for each j, increasing
order of i), form a shelling of the triangulated boundary of M®™,

3. Shelling the Ordinary Polytope

Shelling is used to calculate the h-vector, and hence the f-vector of simplicial
complexes (in particular, the boundaries of simplicial polytopes). This is possible
because (1) the h-vector has a simple expression in terms of the f-vector and
vice versa; (2) in a shelling of a simplicial complex, among the faces added to the
subcomplex as a new facet is shelled on, there is a unique minimal face; (3) the
interval from this minimal new face to the facet is a Boolean algebra; and (4) the
numbers of new faces given by (3) match the coefficients in the f-vector/h-vector
formula. These conditions all fail for shellings of arbitrary polytopes. However,
some hold for certain shellings of ordinary polytopes.

As mentioned earlier, noncyclic ordinary polytopes exist only in odd dimen-
sions. Furthermore, three-dimensional ordinary polytopes are quite different
combinatorially from those in higher dimensions. We thus restrict our attention
to ordinary polytopes of odd dimension at least five. It turns out that these are
classified by the vertex figure of the first vertex.

THEOREM 3.1 [Bisztriczky 1997; Dinh 1999]. For each choice of integers n >
k>d=2m+1 > 5, there is a unique combinatorial type of ordinary polytope
P = P4k sych that the dimension of P is d, P has n+1 vertices, and the first
vertex of P is on exactly k edges. The vertex figure of the first vertex of PHFm
is the cyclic (d—1)-polytope with k wvertices.
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We use the following description of the facets of P by Dinh. For any subset
X C Z,let ret,, (X) (the retraction of X) be the set obtained from X by replacing
every negative element by 0 and replacing every element greater than n by n.

THEOREM 3.2 [Dinh 1999]. Let X,, be the collection of sets
X =[,i+2r—=1JUY U i+k,i+k+2r—1], (3-1)
where i € Z, 1 <r <m, Y is a paired (d—2r—1)-element subset of [i+2r+1,
i+k—2], and |ret,(X)| > d. The set of facets of P&*™ s
F(PHE™) = {ret, (X) : X € X}

It is easy to check that when n = k, |ret,(X)| = d for all X € X,,, and that
ret,, (X,,) is the set of d-element Gale subsets of [0, k], that is, the facets of the
cyclic polytope P4F:k,

Note that X,,_; C X,,. We wish to describe F(P%*") in terms of F(P®k:n=1);
for this we need the following shift operations. If F' = ret,,_;(X) € F(P®kn-1),
let the right-shift of F' be rsh(F) = ret,,(X +1). Note that rsh(F) may or may
not contain 0. In either case, rsh(F)N[1,n] = F+1, so |rsh(F)| > |F| > d, If
F =ret,(X) € F(P¥*m), let the left-shift of F be Ish(F) = ret,,_1 (X —1). Note
that Ish(F)\ {0} = (F—1)N[1,n]; Ish(F) contains 0if 0 € For 1€ F.

LEMMA 3.3. Ifn > k+1 and F € F(PY*") with max F > k, then Ish(F) €
S’“(Pd’k’n_l).

PROOF. Let F = ret,(X), with X = [i,i+2r—1JUY U [i+k,i+k+2r—1].
Then X —1 also has the form of equation (3-1) (for i —1). The set Ish(F) is the
vertex set of a facet of P“*"~1 as long as |Ish(F)| > d. We check this in three
cases.

Case 1. It k < i+k+2r—1 < n, then i+2r—1 > 0, s0 Y C [i+2r+1,
i+k—2] C[2,i+k—2]. Then

Ish(F) D max{i+2r—2,0} U (Y —1) U [i+k—1,i+k+2r—2],
so [Ish(F)| > 14 (d—2r—1)+2r =d.
Case 2. If i+k > n, then i > n—k > 1. Also, |F| > d implies maxY <n—1. So
Ish(F) = [i—1,i+2r—2]U (Y —1) U {n—1},
so [Ish(F)| =2r+(d—2r—1)+1=d.
Case 3. If i+k <n<i+k+2r—1,theni+2r—1>n—%k>1, and
F = [max{0,3},i+2r—1]UY U [i+k,n],

80
|F| = (i+2r—max{0,i})+(d—2r—1)+(n—i—k+1)
=d+n—k—max{i,0} > d+1.
Then |Ish(F)| > |F|—1 > d.
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Thus, Ish(F) is a facet of P&Fn—1, O

Identify each facet of the ordinary polytope P%*™ with its ordered list of vertices.
Then order the facets of P%“*™ in colex order. This means, if F' = iqiy. .. ip and
G = jij2...jq, then F' <. G if and only if for some ¢ > 0, ip,—; < jg—¢ while for
0<s<t,ip_s =Jg—s-

LEMMA 3.4. Ifn > k+1 and Fy and Fy are facets of P**" with max F; > k,
then Fy <. Fy implies Ish(Fy) <. Ish(F»).

PROOF. Suppose F; <. Fy, and let ¢ be the maximum vertex in F» not in F}.
Then Ish(Fy) <. Ish(F3) as long as ¢ > 2, for in that case g—1 € Ish(F3)\Ish(F}),
while [¢, n—1]NIsh(F1) = [¢,n—1]NIsh(F2). (If ¢ = 1, then ¢ shifts to 0 in Ish(F?),
but 0 may be in Ish(Fy) as a shift of a smaller element.) So we prove ¢ > 2.
Write
Fy =ret,([i,i+2r—1JUY U [i+k,i+k+2r—1])
and
Fy =ret,([i',i' +2r' =1 UY U [i' +k, i +k+2r" —1]).

Since max Fy > k, i+2r—1>0,s0 Y U [i+k,i+k+2r—1] C [2,n], Thus, if

g €Y Uli+k,i+k+2r—1], then ¢ > 2. Otherwise

YUlitkitk+2r—1))=Y Ui +k,i+k+2r" —1]),

but Y # Y’. This can only happen when Y U [i+k,i+k+2r—1]) is an interval;
in this case i+k+2r—1 >n+1. Then g = i+2r—1= (i+k+2r—1)—k >
n+l1—Fk > 2. O

PROPOSITION 3.5. Let n > k+1. The facets of P%*™ are

{F: FeJ(P*n=1) and max F < n—2}
U {rsh(F) : F € F(P“*"=1) and max F > n—2}.

Proor. If maxX < n—2, then ret,(X) = ret,_1(X); in this case, letting
F =ret,(X), F € F(P¥En=1) if and only if F € F(PLF"). If F € F(Pdrn-l)
with max F > n—2, then rsh(F) € F(P%*") with maxrsh(F) > n—1. Now
suppose that G' = ret,, (X) € F(P4*") with maxG > n—1. Let F = Ish(G) =
ret, 1(X —1) € F(PH*"=1); then max I > n—2. By definition, rsh(F) =

ret, (X —1)+1) =ret, (X) =G. O
THEOREM 3.6. Let Fy, F, ..., F, be the facets of P**™ in colex order.
(i) Fi, Fy, ..., F, is a shelling of P%F™.

(ii) For each j there is a unique minimal face G; of F; not contained in Uz;ll F;.

iii) For each j, 2 < j <wv—1, G; contains the vertex of F; of maximum index

(iii) J, 25 , Gj j :
and is contained in the d—1 highest vertices of F).

(iv) For each j, the interval |G, F;] is a Boolean lattice.
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Note that this theorem is not saying that the faces of P%*™ in the interval
[G;, F}y] are all simplices.

Proor. We construct explicitly the faces G; in terms of F;. The reader may
wish to refer to the example that follows the proof.

Cyclic polytopes. We start with the cyclic polytopes. (For the cyclics, the
theorem is generally known, or at least a shorter proof based on [Billera and Lee
1981] is possible, but we will need the description of the faces G; later.)

Let Fy, Fy, ..., F, be the facets, in colex order, of P%**_the cyclic d-polytope
with vertex set [0, k]. Each facet Fj can be written as

— 70 1 2 /4 k
F=LUljul;Uu---UIlUI},

where I jQ is the interval of F; containing 0, if 0 € F}, and I JQ = @ otherwise; 1 ]k is
the interval of F; containing k, if & € F};, and I Jk = @ otherwise; and the [ f are
the other (even) intervals of F; with the elements of J f preceding the elements of
I, (For example, in PT9°, Fy ={0,1,2,4,5,7,8}, I§ = {0,1,2}, I} = {4,5},
I2 = {7,8}, and I = @.) For the interval [a, b], write E([a, b]) for the integers in
the even positions in the interval, that is, F([a,b]) = [a,b]N{a+2i+1:: € N}.
Let G; = Uj_, E(I}) U I}. Since I? = F} if and only if j = 1, G; = @, and for
all j > 1, G, contains the maximum vertex of F;. Since Fj is a simplex, [G;, Fj]
is a Boolean lattice.

To show that Fy, F», ..., F, is a shelling of P®** we show that G; is not
in a facet before F; and that every ridge of P#** in F; that does not contain
G is contained in a previous facet. For j > 0 the face G; consists of the right
end-set IF (if nonempty) and the set Ui E(If) of singletons. Note that G;
satisfies condition (c) of the theorem (which here just says that the lowest vertex
of F; is not in G;), unless j = v, in which case G, = F,. Any facet F of P*:*
containing G; must satisfy Gale’s evenness condition and therefore must contain
an integer adjacent to each element of Jj_, E(I £). If any element of the form
max If—!—l is in F, then F' occurs after F} in colex order. This implies that any
F; previous to F; and containing G; also contains ngl If U Ij’?. But F} is the
first facet in colex order that contains J)_, If U I]’?. So G is not in a facet before
Fj.

Now let ¢ € G;; we wish to show that F}\{g} is in a previous facet. If
g € E(If) for £ > 0, let F = F;\{g} U {minIf—l}. Then F' satisfies Gale’s
evenness condition and is a facet before F;. Otherwise g € I¥\ E(IF); in this
case let F' = Fj\{g} U {max I} +1} (where we let max[9+1 = 0 if [ = ).
Again F satisfies Gale’s evenness condition and is a facet before F}.

Thus the colex order of facets is a shelling order for the cyclic polytope
PRk and we have an explicit description for the minimal new face G j as Fjis
shelled on.
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General ordinary. Now we prove the theorem for general P%*™ by induction
on n > k, for fixed k. Among the facets of P“*™ first in colex order are those
with maximum vertex at most n—2. These are also the first facets in colex order
of P%*n=1 Thus the induction hypothesis gives us that this initial segment is
a partial shelling of P®*" and that assertions 2-4 hold for these facets.

Later facets. It remains to consider the facets of P%*" ending in n—1 or n.
These facets come from shifting facets of P“*"~1 ending in n—2 or n—1. Our
strategy here will be to prove statement (b) of the theorem for these facets. The
intersection of F}; with Uz;ll F; is then the antistar of G in F}, and so it is the
union of (d—2)-faces that form an initial segment of a shelling of F;. This will
prove that the colex order Fy, Fs, ..., F, is a shelling of P%*".

Note that there is nothing to show for the last facet of P%*™ in colex order.
It is F,, = [n—d+1,n], and is the only facet (other than the first) whose vertex
set forms a single interval. Assume from now on that j is fixed, with j < v—1.
Later we will describe recursively the minimal new face G; as F) is shelled on. It
will always be the case that max F; € G;. We will prove that G is truly a new
face (is not contained in a previous facet), and that every ridge not containing
all of G is contained in a previous facet.

Ridges not containing the last vertex. It is convenient to start by showing
that every ridge of P%*" contained in F; and not containing max F} is contained
in an earlier facet. This case does not use the recursion needed for the other parts
of the proof. Write

X =[i,i+2r—1JUY Ufi+k,i+k+2r—1]

and F; =ret,(X) = {z1,22,...,2p} with 0 < 21 < 29 < --- < 2, < n. The facet
F}; is a (d—1)-multiplex, so its facets are of the form

Fi(z) ={z:1<l<p 0<|l—t] <d—2}

for 2<t<p-—1, F;(21) ={z1,22,...,za—1}, and Fj(%,) ={zp—da+2,. .-, 2p—1,2p}-
If Fj(2:) does not contain max F; = z,, then t < p—d+1 and this implies
1 <z <i+2r—1. Consider such a z;.

The first ridge. For ¢ = 1, there are three cases to consider.

Case 1. Suppose z; > 1. Then Fj(21) = [i,i4+2r—1]UY". Let I be the right-most
interval of F;(21). Let Z = (I—k) U F;(1), and F = ret,(Z). Since ¢ > 1 and
max Fj;(21) < i+k—2, the interval I —k contributes at least one new element to
F,so |F|>d.

Case 2. Suppose z; = 0 and the right-most interval of Fj(%;) is odd. In this
case the left-most interval of F; must also be odd, so ¢ < 0, and F}(Z1) contains
i+k but not i+k—1. Let F = F;(%) U {i+k—1}.
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Case 3. Suppose z; = 0 and the right-most interval of F;(%1) is even (and then
so is the left-most interval). Then Fj;(%1) = [0,i4+2r—1]UY U [i+k, k—1] (where
the last interval is empty if i = 0). Let

F=F;jZ)U{i+2r} ={0}U1,i4+2r]UY U [i+k,k—1].

(When ¢ = 0 and r = (d—1)/2, this gives F' = [0,d—1].) In all cases F is a facet
of P4k containing Fj;(21). It does not contain max Fj, so F <. Fj.

Deleting a later vertex. Now assume 2 < t < p—d+1; then z; > max{i+1,1}.
Here

Fj(%) = [max{i,0}, 2, — 1] U [zg41, i+ 2r =1 U Y U [i+ k, 2, — 1+ K],

and |Fj ()| = zz—max{7,0}4+d—2 > d—1. Also note that z;—1+k is the (d—2)nd
element of {21, z2,...,2p} after z;, 80 2t —1+k = 24442 < 2, = max Fj.

Case 1. If z,—1 is even, let F' = F;(2;) U{i+2r}. Then F = ret,(Z), where
Z=ll,zz—1U[z+1,i4+2r)UY U [i+k, 2t — 14+ k],

and |F| > d.

Case 2. If z;—i is odd and max([i,i+2r—1]UY) < i+k—2, let F = ret,(2),
where

Z=[i-1,z—1U[z+1,i+2r—1JUY U[i+k—1,2z: —14+k].

Then F D Fj(2,) U {i+k—1}, s0 |F| > d.

Case 3. Finally, suppose z;: —i is odd and maxY = i+k—2. Let [q,i+k—2] be
the right-most interval of Y, and let F' = ret,,(Z), where

Z=lqg—k,zz—1U [z +1,i+2r—1JU (Y \[g,i+k—2]) U [q, 2t — 1+ k].

Then F D Fj(%) U {i+k—1}, so |[F| > d.
In all cases, F is a facet of P®*" containing F;(%;) and max F; € F, so F
occurs before F} in colex order.

Determining the minimal new face. We now describe the faces G; recur-
sively. (We are still assuming that max F; > n—1.) Let G be the face of Ish(F})
that is the minimal new face when Ish(F}) is shelled on, in the colex shelling of
the polytope P%*"=1 Let G; = G+1; this is a subset of the last d—1 vertices
of F; and contains max F;. By [Bayer et al. 2002, Theorem 2.6] and [Bisztriczky
1996], G; is a face of F;. For any facet F; of pdkn, G; C F; if and only if
G C Ish(F;). So by the induction hypothesis, G, is not contained in a facet
occurring before F} in colex order.
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Ridges in previous facets. It remains to show that any ridge of P%*™ con-
tained in F; but not containing all of GG; is contained in a facet prior to Fj}.
Note that we have already dealt with those ridges not containing max F;. Now
let g € G, g; = g+1 € G, and assume g; # max F;. The only ridge of P%k:n
contained in Fj, containing max Fj, and not containing g, is F;(g;).

Let H be the unique ridge of P%*¥"~1 in Ish(F}) containing max(Ish(F})), but
not containing g. By the induction hypothesis, H is contained in a facet F' of
Pokn=1 gccurring before Ish(Fj) in colex order. Suppose Fj(g;) is contained in
a facet I, of P¥™ occurring after F; in colex order. Then H is contained in
Ish(F;). Thus the ridge H of P%*"~1 is contained in three different facets: F
(occurring before Ish(F}) in colex order), Ish(F}), and Ish(F}) (occurring after
Ish(F}) in colex order). This contradiction shows that the ridge F};(§;) can only
be contained in a facet of P4*" occurring before F; in colex order.

Boolean intervals. Finally to verify assertion 4 of the theorem, observe that
every facet F} is a (d— 1)-dimensional multiplex. The face G; of F; contains
the maximum vertex u of F;. The vertex figure of the maximum vertex in any
multiplex is a simplex [Bisztriczky 1996]. The interval [G,, F}] is an interval in
[u, F};], which is the face lattice of a simplex, so [G;, F}] is a Boolean lattice. O

A nonrecursive description of the faces G, generalizing that for the cyclic case
in the proof, is as follows. Write the facet I} as a disjoint union, F; = A? U
I; U Ij2 u---u If U I7, where I7' is the interval of F}; containing n if n € Fj,
and I]TL = & otherwise; the I f (1 < ¢ < p) are even intervals of F; written in
increasing order; and Ag is

e the interval containing 0, if max F; < k—1;

e the union of the interval containing max F; —k and the interval containing
max F; —k+2 (if the latter exists), if £ < max F; < n—1;

e the interval containing n—k, if max F; =n and n—k € F};

o @, if maxF; =nand n—k ¢ Fj.

Then G, = J,_, E(If) U I7'. The vertices of G are among the last d vertices of
F}; and so are affinely independent [Bisztriczky 1996]; thus G; is a simplex.

Example. Table 1 gives the faces F; and G for the colex shelling of the ordinary
polytope P%6:8,

Let us look at what happens when facet Fi3 is shelled on. The ridges of P68
contained in Fy3 are 0123, 0236, 01367, 012678, 12378, 2368, and 3678. The first
ridge, 0123, is contained in Fy = 01234. The ridge 0236 is Fi3(3) = Fi3(1), and
max([i,i+2r—1JUY) =3 <4 =i+k—2, so we find that 0236 is contained
in Fy = 02356. The ridge 01367 is Fi3(23) = Fi3(2), so we find that 01367 is
contained in Fg = 013467. This facet Fi3 = 0123678 is shifted from the facet

012567 of P>57, which in turn is shifted from the facet 01456 of the cyclic
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J i Gi|l J L Gj

1| 01234 ol 9] 23568 68
2| 012 45 5| 10 3456 8| 468
3]0 2345 35| 11| 1234 78 78
4]0 23 56 6|12 12 45 78| 578
5/0 3456 | 46| 13|0123 678 | 678
6013267 | 7|14 34 678 | 4678
7|01 4567 | 57| 15| 012 5678 | 5678
8| 2345 8| 8|16 45678 | 45678

Table 1. Shelling of P55#

polytope P?56. When 01456 occurs in the shelling of the cyclic polytope, its
minimal new face is its right interval, 456. In P%%2, then, the minimal new face
when F3 is shelled on is 678. The other ridges of Fi3 not containing 678 are
12378 and 2368. The interval [G13, F13] contains the triangle 678, the 3-simplex
3678, the 3-multiplex 012678, and Fy3 itself (which is a pyramid over 012678).

Note that for the multiplex, M%" = P%dn  this theorem gives a shelling
different from the one mentioned in Section 2. In the standard notation for the
facets of the multiplex (see Definition 4), the colex shelling order is Fy, Fi, ...,
Fo_gq, Fru1, Fr—o, ..., Fr_q41, F,. The statements of this section hold also for
even-dimensional multiplexes.

4. The h-Vector from the Shelling

The h-vector of a simplicial polytope can be obtained easily from any shelling
of the polytope. For P a simplicial polytope, and U[G;, F;] the partition of
a face lattice of P arising from a shelling, h(P,z) = Zj z4-1Gil For gen-
eral polytopes, the (toric) h-vector can also be decomposed according to the
shelling partition. For a shelling, Fi, Fy, ..., F,, of a polytope P, write §;
for the set of faces of Fy not in (J;_; F;. Then h(P,z) = Z?Zl h(S;,x), where
MSGj, ) =Y geg, 9(G @) (x— 1)4=1-dim & However, in general we do not know
that the coefficients of h(G;, ) count anything natural, nor even that they are
nonnegative. Stanley raised this issue in [Stanley 1987, Section 6]. It has appar-
ently been settled in [Braden 2003].

We turn now to h-vectors of ordinary polytopes. In [Bayer 2004] we used the
flag vector of the ordinary polytope to compute its toric h-vector.

THEOREM 4.1 [Bayer 2004]. Forn>k>d=2m+1>5 and 1 <i<m,

hi (PR = (k—d+i> (k) (k;—fH—i—l).

) i1—1
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We did not understand why the h-vector turned out to have such a nice form.
Here we show how the h-vector can be computed from the colex shelling. Prop-
erties 2 and 4 of Theorem 3.6 are critical.

In [Bayer 2004] we showed that the flag vector of a multiplicial polytope
depends only on the f-vector. However, for our purposes here it is more useful
to write the h-vector in terms of the f-vector and the flag vector entries of the
form fo;. We introduce a modified f-vector. Let f_1 = f_1 = 1, fo = fo, and
Jic1 = fac1+ (fo,a—1 —dfg—1); and for 1 < j < d—2, let

fi = Fi+(foje1—G+2) fip)+ (fos— G+1)f5)
(Thus, f1 = fi+(foo—3f2)+ (for—2f1) = fi+ (foa—3/2).)
THEOREM 4.2. If P is a multiplicial d-polytope, then

d d
z) =Y hi(P)a™ =" fisi(P)(z—1)*".
=0 1=0

PROOF. As observed in the proof of Theorem 2.1, the g-polynomial of an e-
dimensional multiplex M with n+1 vertices is g(M,z) = 14+ (n—e)z. So for a
multiplicial d-polytope P,

h(P,x) = Z g(G,z)(z—1)t-t-dimC

G face of P
G#P

= Y (14 (f(@)-1-dimG)z)(x—1)* 1 7mC

G face of P
GZp

d
> fialz— 1“+Zfol (i+1) fi)a(z—1)41
=0

d

fica(z— 1‘“+me G+ 1) f) [z =1 4 (2= 1)1

(=)

= (@-1)%+ fo(z—1)"""

d—1
+Z fim1+ (foi— @+ 1) i)+ (fo,im1 —ifi—1)) (@ — 1)
(fd 1+ (fo,a—1 —dfa—1))

i_l(P)(l‘—l)dii. ]

I
.M&

Il
o

K2

Simplicial polytopes are a special case of multiplicial polytopes. Clearly, when P
is simplicial, f(P) = f(P), and we recover the definition of the simplicial h-vector
in terms of the f-vector. The multiplicial hA-vector formula can be thought of as
breaking into two parts: one involving the f-vector, and matching the simplicial
h-vector formula; the other involving the “excess vertex counts,” fo ;j—(j+1)f;.
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In the simplicial case the sum of the entries in the h-vector is the number of facets.
For multiplicial polytopes Z?:o hi(P) = fa—1(P) = fa—1+(fo.a—1—dfi—1).

In general, applying the simplicial h-formula to a nonsimplicial f-vector pro-
duces a vector with no (known) combinatorial interpretation. This vector is
neither symmetric nor nonnegative in general. We will see that in the case of or-
dinary polytopes something special happens. Write h'(P, z) for the h-polynomial
that P would have if it were simplicial.

DEFINITION 6. The h'-polynomial of a multiplicial d-polytope P is given by

d

d
W(Pa) =Y WP =3 fi(P)(x—1)"".
=0

i=0
(The I -vector is then the vector of coefficients of the h'-polynomial.)

THEOREM 4.3. Let P**" be an ordinary polytope. Let \J;_,[Gj, Fj] be the
partition of the face lattice of P**" associated with the colex shelling of P&k
Then for alli, 0 < i <d, h/(P%n, z) =370, 211

Furthermore, if C%* is the cyclic d-polytope with k+1 vertices, then for all
i, 0 <i < d, hi(P¥F") > hy(C*), with equality for i > d/2.

PrROOF. Direct evaluation gives hj(P) = h);(P) = 1. Let Fy, F5, ..., F, be the
colex shelling of P%*" By Theorem 3.6, part 2, the set of faces of P%*" has
a partition as U;Zl[Gj,Fj]. By Theorem 3.6, part 4, the interval [G;, F}] has

exactly
d—1—-dim G}
f—dim Gj

faces of dimension ¢ for dimG; < ¢ < d—1. Let k; = |{j :dimGy = i—l}’.
Then f, = Zi;l) (zf;ﬁl)kzi. These are the (invertible) equations that give f; in
terms of h}, so for all i, h} = k; = |{j : dim G; = i—1}|.

The second part we prove by induction on n > k. We will also need the
following statement, which we prove in the course of the induction as well. If Fj
is a facet of P4%" with max F; = n—2, then |G;| < (d—1)/2. The base case
of the induction is the cyclic polytope, C%* = P4*% We need to show that if
Fj is a facet of C* with max F; = k—2, then |G| < (d—1)/2. This follows
from the description of G in the proof of Theorem 3.6, because in this case, in
F;=I) UL UI}U---UI UIF, the set IF is empty and |G;| = 5|Uj_, If| <
1(d—1) (since d is odd).

Recall from the proof of Theorem 3.6 that for each facet F} of pdkn, Gj is
pkn=1.

the same size as the minimum new face G of the corresponding facet of
that facet is the same (as vertex set) as Fj, if max F; < n—2, and is Ish(F}), if
max F; > n—1. From Proposition 3.5 we see that each facet of Pdkn=1 with
maximum vertex n—2 gives rise to two facets of P®*" while all others give rise
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to exactly one facet each. Thus, for all 7,
h;(Pd7k’n) — h;(pd,kfﬂ*l)
+|{j : Fj is a facet of P“*" with max F; =n—1 and |G;| = i}|.

Thus, for all i, h}(P%k") > bl (P%*"=1) so by induction, h.(P%¥m") > bl (C%F).
Furthermore, if max F; = n—1, then max(Ish(F})) = (n—1)—1, so by the induc-
tion hypothesis, |G| < (d—1)/2. So for i > d/2, hL(P¥*") = pl(Pdknr—1) =
hi(Cd”“). O

Note that for the multiplex M%" (d odd or even), h'(M®") = (1,n—d+
1,1,1,...,1,1), while A(M%") = (1,n—d+1,n—d+1,...,n—d+1,1).

Now for multiplicial polytopes, we consider the remaining part of the h-vector,
coming from the parameters fo ; —(j+1)f;. This is

h(P,z)—h'(P,x)
d—1
= (fo,a—1—dfa—1 +Z (fo.i—(G+1)fi)+ (foim1—ific1)) (x—1)%
1=2

So
h(P,z+1)—h(P,z+1)

d—1
= (foa—1—dfa—1)+ Y ((foi—(i+1) )+ (foior—ifio1)) a*™
=2

&
;..

(fo i— i+ 1) fi)(z+ 1)zt 170

1=2
So
d—1 - d—1 |
SO i(P) = H(P) @4+ 1) = S (o — (14 1) fr)a =1,
=2 i=2

For the ordinary polytope, this equation can be applied locally to give the con-
tribution to h(P%*" z)— b/ (P4%" z) from each interval [G;, F;] of the shelling
partition. For each j, and each i > dim G, let b;;, = > (fo(H)—(i+1)), where
the sum is over all i-faces H in [G}, F;]. Let b;j(z) = Z?:_;imcj bt
Write b;(z) in the basis of powers of (z+1): bj(z) = Y. a;(x+1)4"1~% Then
aj; = hi(G;)—hi(G;), the contribution to h;(P%Fm) —hlL(P¥km) from faces in
the interval [G;, F}j]. Note that for fixed j, >, a;; = b;(0) = fo(F;)—d. We will
return to the coefficients a; ; after triangulating the ordinary polytope.

Example. The h-vector of P568 is h(P558) = (1,4,7,7,4,1). The sum of the
h; is 24, which counts the 16 facets plus one for each of the four 6-vertex facets,
plus two for each of the two 7-vertex facets. Referring to Table 1, we see that
h'(P558) = (1,4,5,3,2,1); from this we compute f(P>%%) = (9,31,52,44, 16).
The nonzero a;; here are ag2 = ar3 = ai11,2 = a12,3 = 1 and a133 = ai54 = 2.
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In this case each interval [Gj, F};] contributes to h;(P%*") — hi(P%F") for at
most one %, but this is not true in general.

5. Triangulating the Ordinary Polytope

Triangulations of polytopes or of their boundaries can be used to calculate
the h-vector of the polytope if the triangulation is shallow [Bayer 1993]. The
solid ordinary polytope need not have a shallow triangulation, but its bound-
ary does have a shallow triangulation. The triangulation is obtained simply by
triangulating each multiplex as in Section 2. This triangulation is obtained by
“pushing” the vertices in the order 0, 1, ..., n. (See [Lee 1991] for pushing
(placing) triangulations.)

THEOREM 5.1. The boundary of the ordinary polytope P**™ has a shallow tri-
angulation. The facets of one such triangulation are the Gale subsets of [i,i+ k]
(where 0 < i < n—k) of size d containing either 0 or n or the set {i,i+k}.

Proor. First we show that each such set is a consecutive subset of some facet
of P4*m Suppose Z is a Gale subset of [i,i+k] of size d containing {i,i+k}.
Write Z = [i,i+a—1]UY U [i+k—b+1,i+k], where a > 1, b > 1, and

YN{ita,i+k—b}=o.

Since Z is a Gale subset, |Y| is even; let r = (d—1—1Y)/2. Since |Z] = d,
a+b=2r+1, so a and b are each at most 2r. Define X = [i+a—2r,i+a—1] U
YUli+k—b+1,i+k—b+2r]. Note that i+k—b+1 = (i+a—2r)+k. Then
ret,, (X) is the vertex set of a facet of P%*" and Z is a consecutive subset of
ret,, (X).

Now suppose that Z is a Gale subset of [0, k] of size d containing 0, but not k.
Write Z = {0} UY U [j—2r+1,j], where j < k,r > 1,and j—2r € Y. Then |Y| =
d—2r—1, and Z =ret,(X), where X = [j—2r+1—k,j—k]UY U [j—2r+1,7].
So Z itself is the vertex set of a facet of P%¥™. The case of sets containing n
but not n —k works the same way.

Next we show that all consecutive d-subsets of facets F' of P%*™ are of one
of these types. Let F' = ret, (X), where

X =[ii+2r—1|UY U[i+k,i+tk+2r—1],

with Y a paired subset of size d—2r—1 of [i+2r+1,i+k—2]. Suppose first
that i+2r—1 > 0 and i+k < n. Let Z be a consecutive d-subset of F'. Since
Y| =d—2r—1, |[i,i+2r—1NF| < 2r, and |[i+k,i+k+2r—1]NF| < 2r, it
follows that i+ 2r —1 and ¢+ k& must both be in Z. Thus we can write Z =
[i+2r—a,i+2r—1|UY U [i+k,i+k+b—1], witha+b=2r+1,i4+2r—a >0,
and i+k+b—1<n. Let { =i+2r—a. Then i+k+b—1={¢+k,s0o0 < { <n—k,
and Z is a Gale subset of [¢, £+ k] containing {¢, {+k}.
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Ifi+2r—1<0, theni+k+2r—1 <k <n, and
F={0}UY U[i+k,i+k+2r—1].

Then |F| = d and F itself is a Gale subset of [0, k] of size d containing 0. Similarly
for the case i+k > n.

The sets described are exactly the (d—1)-simplices obtained by triangulating
each facet of P%*" according to Theorem 2.1. The fact that this triangulation is

shallow follows from the corresponding fact for this triangulation of a multiplex.
O

Let T = T(P%*™) be this triangulation of 9P%*". Since T is shallow, we have
h(P%km x) = h(T,x). We calculate h(T,z) by shelling T.

THEOREM 5.2. Let Fy, Fy, ..., F, be the colex order of the facets of P%*™.
For each j, if Fj = {z1,22,...,2p,} (21 < 22 < -+ < 2,,), and 1 < £ <
bj _d+17 let Tj,é = {257 7S PR Zf+d71}' Then Tl,lv T1,27 ety Tl,p17d+17 T2,17
cois Topy—dity -y Toty ooy Top,—as1 s a shelling of T(PLF™).

Let Uj, be the minimal new face when T}, is shelled on. As vertex sets,
Ujp,—dr1 = Gj.

PrOOF. Throughout the proof, write F; = {21,20,...,2p,} (21 < 22 < --- <
2p;). We first show that G is the unique minimal face of T} ;. 441 not contained
in Uf;ll fjgdﬂ Tie) U ( ﬁ;d Tje¢). The set G; is not contained in a facet of
P&Em earlier than F;. So G; does not occur in a facet of T of the form T; , for
i < j. Also, max F; € Gj, so G does not occur in a facet of T of the form T,
for £ < p; —d. Thus G; does not occur in a facet of T before T p;—d+1-

We show that for z;, € G, Tjp,—a+1\{24} is contained in a facet of T occurring
before T} . —a+1. There is nothing to check for j = v, because p, —d+1 =1
and so T, ; = F), is the last simplex in the purported shelling order. So we may
assume that j < v and thus G is contained in the last d —1 vertices of F}.

Case 1. If pj > d and q = p; (giving the maximal element of F}), then T} ,. —q11\
{ij} c TLPj—d'
Case 2. Suppose p; —d+2 < ¢ < p;—1. Then

Tjp,—d+1\{2q} S{2g—dr2, s 2¢-1,2¢11 -+, 2p; } = H.

This is a ridge of P%*n in F; not containing G, and hence H is contained
in a previous facet F, of P%*"  Since H is a ridge in both F; and Fy, H is
obtained from each facet by deleting a single element from a consecutive string
of vertices in the facet. So |H| < [FyN[zq—ay2,2p,;]| < [H[+1, and so d—1 <
|[FeN[2p, —d+1, 2p;]| < d. So T —atr1\ {2} is contained in a consecutive set of d
elements of Fy, and hence in a (d—1)-simplex of T(P%*") belonging to Fy. This
simplex occurs before T} . 441 in the specified shelling order.

Case 3. Otherwise p; = d (so pj—d+1 =1) and ¢ = d. Then T;; = F; and
H = T;1\{za} is aridge of P%*" in F; not containing max F}, so H is contained
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in a previous facet Fy of P#¥"  As in Case 2, d—1 < |FyN[z1,24-1]| < d. So
T;1\ {24} is contained in a consecutive set of d elements of Fy, and hence in a
(d—1)-simplex of T(P%*") belonging to Fy. This simplex occurs before T ;. — 441
in the specified shelling order.

So in the potential shelling of T, G; is the unique minimal new face as

j

view of the simplex T} 4. Recall that Fj is of the form ret,, (X), where X = [i,i+
2r—1|UY U [i+k,i+k+2r—1], with Y a subset of size d—2r—1. If i+2r—1 <0
or i+k > n, then p; = IF]| =d, and Tj71 = Tj,pj
pleted this case. So assume i+2r—12> 0 and i+k < n. A consecutive string of
length d in ret,, (X) must then be of the form [i+s,i+2r—1]UY U [i+k,i+k+ 5]
for some s, 0 < s < 2r—1. (All such strings—with appropriate Y—having
i+s > 0and i+k+s < n occur as Tj,.) In particular, for ¢ < p; —d+1,
Tjo=Tje41\{maxTj 1} U{minT} p41 —1} and maxTj, = min Tj , + k.

Now define U, ¢ for ¢ < p; —d recursively by U; s = Uj p41\ {2} U {z—k, 2—1},
where z = maxT}¢y1. By the observations above, U;, C Tj,. We prove by

Tjp;—d+1 is shelled on. Write Uj ;. —4+1 = Gj. At this point we need a clearer

—d+1 = F}; we have already com-

downward induction that Uj; 4 is not contained in a facet F; of P%*" before F;,
that Uj ¢ is not contained in a facet of T occurring before T} ¢, and that any ridge
of Tin T} o not containing all of Uy, is in an earlier facet of T. The base case of
the induction is £ = p; —d+1, and this case has been handled above.

Note that {z—k,z—1} is a diagonal of the 2-face {z—k—1,2—k,2—1, 2}
of P4%m [Dinh 1999]. So if F; is a facet of P“*" containing Uj,, then F;
contains {z—k—1,z—k,z—1,z}. Thus F; contains Uj ¢41, so, by the induction
assumption, ¢ > j. Therefore, for ¢ < j, and any r, T;, does not contain U ,.
For r < ¢, T}, does not contain z—1 = max1T} ¢, so T}, does not contain Uj ,.

Now we will show that for any g € U; ¢, T} ¢\{g} is in a previous facet of TJ.

Case 1. If g=z—1=maxT}, and £ > 2, then Tj ,\{g} C T} 1.

Case 2. If g = z—1 =maxT,, and £ = 1, then T} ,\ {g} is the leftmost ridge
of P&* in F; and, in particular, does not contain max Fj. So H = Tj\ {g}
is contained in a previous facet F, of P4*".  As in the ¢ = p; —d+1 case,
FeN[min T} ¢, max T} ¢] is contained in a consecutive set of d elements of F,, and
hence in a (d—1)-simplex of T(P%*") belonging to F.. So Tj,\{g} is contained
in a previous facet of 7.

Case 3. Suppose g < z—1 and g € U; NUjg41. Since {z—1,2} C Tjrya,
T}.o+1 contains at most d—3 elements less than g. The ridge H of P%*" in F;
containing T} ¢41\{g} consists of the d—2 elements of F; below g and the (up to)
d—2 elements of F; above g. In particular, H contains min 7T} 41 —1 = min T} ,.
So Tj,\{g} € H. Since dimT},\{g9} = d—2, H is the (unique) smallest
face of P&*" containing Tj 41\ {g}. By the induction hypothesis Tj¢11\{g}
is contained in a previous facet T;, of T; here ¢ < j because maxTj 41 €
T;e41\{9}. The (d—2)-simplex Tj,41\{g} is then contained in a ridge of
P%E™ contained in Fj, but this ridge must be H, by the uniqueness of H. So
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T;\{g9} C H = F;NF;. Asin carlier cases, F;N[min 7} o, max T} ¢] is contained in
a consecutive set of d elements of F;, and hence in a (d—1)-simplex of T(P%Fm)
belonging to F;. So T} ¢\ {g} is contained in a previous facet of TJ.

Case 4. Finally, let ¢ = z—k, which is minTj,+1. Then T}, contains d—2
elements above g. Let H be the ridge of P“*" in F; containing 7} ¢\ {g}. Then
max H = maxT}, < max Fj, so H does not contain G;. So H is in a previous
facet F; of P%*"  As in earlier cases, F;N [min T ;, max T} ¢] is contained in a
consecutive set of d elements of F}, and hence in a (d— 1)-simplex of T(P%Fm)
belonging to F;. So T} ¢\ {g} is contained in a previous facet of T.

Thus T171, 1—’1727 ceey Tl,pl—d+17 1—'2717 ey T2,p2—d+1a ey Tv,ly ceey T’U,p,,,—d-&-l
is a shelling of T(P%Fm). O

COROLLARY 5.3. Letn >k > d =2m+1 > 5. Let U[G;, Fj] be the partition
of the face lattice of PY*™ from the colex shelling, and let U [Uj.e,Tje] be the
partition of the face lattice of T(P%*™) from the shelling of Theorem 5.2. Then

(i) For each i, h;(P¥km) > pl(Pdkn),
(ii) The contribution to h;(P%*™) —hi(PYF") from the interval |G, F}) is

ajyz- = |{£ : |Uj’g| :i, 1 Sﬁ Spe—d}| 2 0.

PRrOOF. The h-vector of T counts the sets U; ¢ of each size. Among these are all
the sets G counted by the h’-vector of P%*", Thus

hi(T(PHE™)) = [{(7,0) : [Ujel = i} |
> |{(4,€) : |Uje| =i and £ = p; —d+1}| = B (PF™).

Recall that we write §; for the set of faces of Fy not in |J,;; Fi; here §j is
the set of faces in [Gj, F;]. Write also TG, for the set of faces of T that are
contained in F; but not in {J;_; F;. By [Bayer 1993, Corollary 7], since T is a
shallow triangulation of dP%F", g(G,x) = > (v —1)4"1=dime where the sum is
over all faces o of T that are contained in G but not in any proper subface of G.
Thus

hGjx)= Y. g(Ga)(x—1)4"1"4mE

GE[Gy,Fj)
pe—d+1
- E (Jl—l)d_l_dimo — 2 : l‘d_‘Uﬂl
O'E(.TGJ' =1
Since h'(Sj,x) — pd=1G;l = zd—|Uj,pj—d+1\7
pe—d

S ajiat =Gy x) ' (Gj.x) = Y at Vi,
i =1

or
aji=|{:|Ujel =i, 1 <L <p,—d}| >0. O
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(4, 0) T Uje || () T Ui
1,1 | 01234 o ||11,1] 1234 7 27
2,1 | 012 45 5||11,2| 234 78 78
3,1 |0 2345 35| 12,1 | 12 45 7 257
4,1 |0 23 56 6|[12,2| 245 78| 578
51 |0 3456 46 || 13,1 | 0123 6 126
6,1 |01 346 16 || 13,2 | 123 67 267
6,2 | 13467 7113,3| 23 678 | 678
7,1 |01 456 | 156 || 14,1 34 678 | 4678
7,2 | 1 4567 | 57| 15,1 |012 56 1256
8,1 2345 8| 8/ 15,2 | 12 567 | 2567
9,1 23 56 8| 68153 | 2 5678 | 5678
10,1 3456 8 | 468 || 16,1 45678 | 45678

Table 2. Shelling of triangulation of P58

Example. Table 2 gives the shelling of the triangulation of P*>68. (Refer back
to Table 1 for the shelling of P58 itself.) Among the rows (6,1), (7,1), (11,1),
(12,1), (13,1), (13,2), (15,1), (15,2) (rows (j,¢) that are not the last row for
that j), count the Uj, of cardinality i to get h;(P558)—hl(P558). Note that
Uis,s = Gis (from Table 1), and that Uiz e = Uiz 3\ {8} U {2,7}. The ridges
in Ty3,9 are 1236, 1237, 1267, 1367, and 2367. The first ridge, 1236, falls under
Case 1 of the proof of Theorem 5.2; it is contained in the previous facet, 173 .
The next ridge, 1237, falls under Case 3; it is contained in the ridge 12378 of
P68 in 13 = 0123678, and 12378 also contains the ridge 2378 in T13,3. The
induction assumption says that 2378 is contained in an earlier facet, in this case
Th1,2, and 12378 is contained in Fy;. Finally, the ridge 1237 is contained in
the simplex T41,1, part of the triangulation of F7;. The last ridge of 7132 not
containing 267 is 1367. It falls under Case 4. The set 1367 is contained in the
ridge 01367 of P68 contained in Fi3. This ridge is also contained in the earlier
facet Fg. The ridge 1367 of the triangulation is contained in the simplex T 2.

THEOREM 5.4. Let n > d+k—1. For 1 <i<d—1, hy(P¥*")—h;(P4Rn=1) s
the number of facets Tj ¢ of T(PH*™) such that max F; = n—1 and |Uj,| = i.
For 1 <i<m, this is ("~ 71).

PROOF. Refer to Proposition 3.5 for a description of the facets of P%*™ in terms
of those of P&¥n=1 For n > d+k—1, for every facet P%*" ending in n, the
translation F'—1 is a facet of P4*"~1  (For smaller n, a facet of P%*" may end
in 0, in which case Ish(F) is a proper subset of F'—1.) The same holds for the
simplices T} ¢ triangulating these facets, and for the sets U; . The facets of pdkin
ending in n — 2 are facets of P%*"~1 and the same holds for the corresponding
T and Uj 4. The contributions to h(P%4*™) from facets ending in any element



SHELLING AND THE (EXTRA)ORDINARY POLYTOPE 117

but n—1 thus total A(P%*7=1) So for 1 < i < d—1, hy(P%F") — (PR —1)
is the number of facets Tj ¢ of T(P%*") such that max F; = n—1 and |U, | = i.

Now consider the set § of facets T}, of T(P%*") with max F; = n—1. For
each T' € §, T is a set of d elements occurring consecutively in some F; with
maximum element n—1. So T' can be written as

T=[bn—k—-1]U[n—k+1,cUY Ule,b+k, (5-1)
where
(i) n—k—d+1<b<n—-k-1;
(ii) n—k <c <b+d—1and c—n+kis even (here ¢ = n—k means [n—k+1,c] =

2);

(iii) Y is a paired subset of [c+2,e—1];

(iv) e=b+k—1ifn—k—bisodd, and e = b+k if n—k—b is even; and

(v) IT| =d.

In these terms, the minimum new face U when T is shelled on is U = [b+1,n—
E—1JUE(Y)U {b+k}.

We give a bijection between the facets T in 8§ with |U| =i (where 1 <4 < m)
and the (k—d)-element subsets of [1,k—d+i—1]. Let T be as in Equation 5-1.
Then ¢ = |U| = n—k—b+]|Y]/2. For each x > c+1, let y(x) be the number
of pairs in Y with both elements less than z. Let ay = n—k—-0 = 1i—|Y|/2.
Write [c+1,e—1]\Y = {x1,22,...,2_q}, with the zs increasing. (This set has
k —d elements because d = (¢c—b)+|Y |+ (b+k—e+1), so |[c+1,e—1]\Y| =
e—c—1—|Y|=k—d.) Set

A(T) ={a1+ylze)+0—1:1<L<k-d}.

To see that this is a subset of [1,k—d+i—1], note that the elements of A(T)
form an increasing sequence with minimum element a; and maximum element
a1 +y(zp—q)+(k—d—1) < a1 +|Y|/2+(k—d—1) =k—d+i—1.

For the inverse of this map, write a (k —d)-element subset of [1,k—d+i—1]
as A ={a1,as,...,a5_q}, with the ays increasing. Then 1 < ay <. Let

x1 =n—k+d—2i+a;—x(a; odd).
Set
T(A)=[n—k—ai,n—k—1]U[n—k+1,21 -1 UY U [n—a; —x(a; odd),n—ay],
where
Y = ([z1,n—a1—1—x(a1 odd)]\{z1+2(ar—a1)—(£—1): 1 <L < k—d}).
We check that this gives a set of the required form.
(1) Since 1< a1 <i<d—1n—-k—d+1<n—k—-a; <n—-k-—1.

(2) z1—1—n+k=d—2i—1+ (a1 — x(a1 odd)), which is nonnegative and even;
x1—1=(n—-k—a1+d—1)—(2i—2a;1+x(a; odd)) <n—k—ay+d—1.
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(3) Y is clearly a subset of [x14+1,n—a; —x(a1 odd)—1]. To see that Y is paired
note that the difference between two consecutive elements in the removed set is
(r1+2(aps1—a1)—0) —(x14+2(ag—a1)— (£ —1)) = 2(aps1 —ae) — 1.

(4) This condition holds by definition.

(5) To check the cardinality of T(A), observe that

x1+2(ap—qg—a1)—(k—d—1) < x1+2(k—d+i—1)—2a; — (k—d—1)
=x1+k—d+2i—2a;—1 =n—a;—x(a; odd)—1.

So
{r1+2(ap—a1)—(£—=1): 1 <l <k—d} C[z1+1,n—a;—1—x(a; odd)],

and
Y| = (n—a;—x(a; odd) —z1) — (k—d) = 2i — 2a;.

So |[T(A)| =x1—(n—k—a1)+|Y]|+x(a1 odd) =d.
Also, in this case U = [n—k—a1+1,n—k—1]U E(Y) U {n—a1}, so |U| = 1.
It is straightforward to check that these maps are inverses. The main point is
that, if ap = a1 +y(z¢)+£—1, then

z1+2(ar—a1)—(0—1) = z1+2(y(xe) +0—-1)—(£—1)
=x1+2y(ze) +0—1 = 4. O

Example. Consider the ordinary polytope P7-%:!5. There are six facets with

maximum vertex 14; they are (with sets G; underlined) {4,5,7,8,9, 10, 13, 14},
{4,5,7,8,10,11, 13,14}, {4,5,8,9,10,11, 13,14}, {2,3,4,5,7,8,11,12, 13, 14},
{2,3,4,5,8,9,11, 12,13, 14}, and {0, 1,2, 3,4,5,9,10,11,12,13,14}. Among
the 6-simplices occurring in the triangulation of these facets, six have |Uj | = 3.
Table 3 gives the bijection from this set of simplices to the 2-element subsets of
[1,4].

iy blc| e Y ar | x1,z2 | y(x) | A(Te)
45,7,810,11,13 | 4 | 8 | 13 10,11] 2 | 9,12 | 0,1 | (2,4}
5,8,9,10,11,13,14 | 5 | 6 | 13| 8,9,10,11 | 1 | 7,12 | 0,2 | {1,4}
3,4,5,7,8,11,12 | 3| 8 | 11 3|91 00 | {34
4,5,7,8,11,12,13 | 4 | 8 | 13 11,12 2 | 9,10 | 0,0 | {2,3}
5,8,9,11,12,13,14 |5 | 6 [ 13| 8,9,11,12| 1 | 7,10 | 0,1 | {1,3}
5,9,10,11,12,13,14 | 5 | 6 | 13 | 9,10,11,12 | 1 | 7.8 | 0,0 | {1,2}

Table 3. Bijection with 2-element subsets of {1,2,3,4}

Again, the results of this section hold for even-dimensional multiplexes as well.
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6. Afterword

The story of the combinatorics of simplicial polytopes is a beautiful one. There
one finds an intricate interplay among the face lattice of the polytope, shellings,
the Stanley—Reisner ring and the toric variety, tied together with the h-vector.
The cyclic polytopes play a special role, serving as the extreme examples, and
providing the environment in which to build representative polytopes for each h-
vector (the Billera—Lee construction [Billera and Lee 1981]). In the general case
of arbitrary convex polytopes, the various puzzle pieces have not interlocked
as well. In this paper we made progress on putting the puzzle together for
the special class of ordinary polytopes. Since the ordinary polytopes generalize
the cyclic polytopes, a natural next step would be to mimic the Billera—Lee
construction, or Kalai’s extension of it [1988], on the ordinary polytopes, as a
way of generating multiplicial flag vectors. It would also be interesting to see if
there is a ring associated with these polytopes, particularly one having a quotient
with Hilbert function equal to the h/-polynomial. Another open problem is to
determine the best even-dimensional analogues of the ordinary polytopes. They
may come from taking vertex figures of odd-dimensional ordinary polytopes,
or from generalizing Dinh’s combinatorial description of the facets of ordinary
polytopes. Looking beyond ordinary and multiplicial polytopes, we should ask
what other classes of polytopes have shellings with special properties that relate
to the h-vector?
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On the Number of Mutually Touching Cylinders

ANDRAS BEZDEK

ABSTRACT. In a three-dimensional arrangement of 25 congruent nonover-
lapping infinite circular cylinders there are always two that do not touch
each other.

1. Introduction

The following problem was posed by Littlewood [1968]:

What is the mazimum number of congruent infinite circular cylinders that can
be arranged in R® so that any two of them are touching? Is it 77

This problem is still open. The analogous problem concerning circular cylin-
ders of finite length became known as a mathematical puzzle due to a the popular
book [Gardner 1959]: Find an arrangement of 7 cigarettes so that any two touch
each other. The question whether 7 is the largest such number is open. For
constructions and for a more detailed account on both of these problems see the
research problem collection [Moser and Pach > 2005].

A very large bound for the maximal number of cylinders in Littlewood’s orig-
inal problem was found by the author in 1981 (an outline proof was presented
at the Discrete Geometry meeting in Oberwolfach in that year). The bound
was expressed in terms of various Ramsey constants, and so large that it merely
showed the existence of a finite bound. In this paper we use a different approach
to show that at most 24 cylinders can be arranged so that any two of them are
touching:

THEOREM 1. In an arrangement of 25 congruent nonoverlaping infinite circular
cylinders there are always two that do not touch each other.

Mathematics Subject Classification: 52C15, 52A40.
Keywords: packing, cylinders.

Partially supported by the Hungarian National Science Foundation, grant numbers T043520
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In Section 2, we introduce the necessary terminology to talk about relative po-
sitions of the cylinders. In Section 3 we prove Theorem 1. We will describe a
four-cylinder arrangement in which the cylinders cannot be mutually touching
and show that in a family of 25 mutually touching cylinders there are always
four cylinders of this type.

One of the needed lemmas can be stated and proved independently from the
cylinder problem. To ease the description of the proof of Theorem 1 we place
this lemma separately, in Section 4.

2. Terminology

The term cylinder will always refer to a circular cylinder infinite at both ends.
More precisely, the cylinder of radius r and azis [ is the set of those points in
R? that are at a distance of at most r from a given line I. If r = 1, we speak of
unit cylinders. Two cylinders are nonoverlapping if they do not have common
interior points. Two cylinders are touching if they do not overlap, but have at
least one common boundary point.

Consider a family of mutually touching cylinders. For reference choose one
of the cylinders, say ¢, and assign a positive direction to its axis [. We say that
a cylinder lies in front of another cylinder with respect to the directed axis [ if
the first cylinder can be shifted parallel to [ in the positive direction to infinity
without crossing the other cylinder. This relation is not transitive, so it does not
give rise to an ordering among the cylinders.

There is another natural way of describing a relative position among mutually
touching cylinders. We say that a cylinder is (clockwise) to the right of another
if a clockwise rotation by « (with 0 < o < 7) around [ takes the plane separating
the second cylinder from ¢ to the plane separating the first cylinder from c. To
avoid ambiguity, we say that counterclockwise rotation around the axis [ is the
one which matches the right-hand rule with the thumb pointing in the positive
direction of the axis I. The relation of “being to the right” clearly defines an
order among cylinders that are touching ¢, in such a way that their contact
points, if looked at from the direction of the axis of ¢, belong to a circular arc
less than m. We will refer to this order as the clockwise order with respect to [.

3. Proof of Theorem 1

Assume we have an arrangement of 25 mutually touching cylinders so that
one of the cylinders is ¢ with directed axis [. Most likely the first thing one
notices while studying cylinder arrangements is that no two of the cylinders are
parallel. Otherwise the number of cylinders is at most four.

Most of our conclusions will come from studying the front view, which is what
we see by looking at the cylinder packing from the positive direction of [. We
intentionally use the term “front view” instead of “projection”, since we would
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like to keep track of the relation of “being in front”. Let the unit disc d be the
image of cylinder c. The images of the other cylinders are strips of width 2, all
touching disc d at different points. A simple integral averaging argument shows
that among these 24 contact points in the front view one can choose 5 along an
arc on the boundary of d with central angle at most 7 /3.

Label the corresponding cylinders c1, ca, c3, ¢4, c5 in clockwise order, so that
cylinder c5 is rightmost.

LEMMA 1. In any oriented complete graph with vertices labelled 1,2,3,4,5 one
can choose three vertices i < j < k so that either i — j — k ori < j < k holds.

PrOOF. If the conclusion is not true, we may assume that 2 — 3 «— 4 or
2 «— 3 — 4 holds. Consider the first case: If 2 « 4, then either 1 <+ 2 « 4 or
1 — 2 — 3 holds, a contradiction. If 2 — 4 then either 3«4« 50r2 —-4 —5
holds, a contradiction. The second case is handled in the same way. 0

Consider the abstract complete graph whose vertices are the cylinders ¢y, co, c3,
ca,c5. Orient the edges according to the “being in front” relation. According to
Lemma 1 three of the cylinders, say c1, ca, cs, are such that (i) ¢; is in front of
¢o which is in front of cg, or (ii) ¢; is behind ¢; which is behind cs.

We will show that cylinders ¢, c1, co and c3 cannot be mutually touching. In
this respect case (ii) can be reduced to case (i) by reflecting the cylinders along
a plane passing through the axis of the cylinder c¢. Indeed such plane reflection
preserves the relation of “being in front”, but reverses the clockwise order. The
impossibility of case (i) is stated as a separate lemma below. Its proof completes
the proof of Theorem 1.

LEMMA 2 (A FORBIDDEN ARRANGEMENT OF FOUR CYLINDERS). If a packing of
four cylinders ¢, ¢, ca, c3 satisfies the conditions listed below, two of them must
be disjoint.

Contact condition: Cylinders ci,ca,c3 are touching ¢ so that their contact
points if looked at from the direction of the axis of ¢ belong to a circular arc of
length at most /3.

Clockwise order condition: Cylinders c1,ca,cs are labelled according to their
clockwise order with respect to the directed axis | of ¢ so that c3 is the rightmost
one.

“Being in front” condition: Cylinder c1 is in front of cylinder co which is
in front of cylinder c3 with respect to the directed axis 1 of c.

PrOOF. Assume to the contrary that cylinders ¢, ¢1, ¢o, ¢35 are mutually touching
and satisfy all three conditions. Let strips s1, s3 and s3 be the images of cylinders
c1, o and c¢3 in front view. Assume that strip s3 is horizontal. Let the unit disc d
with center O be the image of cylinder ¢. According to the contact condition and
the clockwise order condition, the elevation angle of so is positive and smaller
than 7/3. See Figure 1, left.
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Figure 1.

Denote by P the contact point of cylinders ¢; and c3, and by P* the image
of P in front view. P* certainly belongs to both s; and s3, but not to strip so,
since c3 is in front of c¢3. Since strip s; is obtained from s, by a counterclockwise
rotation around O, P* lies to the left of strip ss.

Let the unit discs d* and d** with centers O* and O** be the images in front
view of the unit spheres inscribed in ¢; and c3 respectively and containing P.
Strip s; contains d*, and is tangent to d. There are two such strips, but since P*
does not belong to so, the strip that is clockwise to the right of the other must
be also to the right of so, thus it cannot be the same as s;. Thus the position of
d* determines s;.

Discs d* and d** are symmetrical with respect to point P*. First fix P* and
move d* horizontally to the right so that it has P* on its boundary. Simulta-
neously move d** so that P* remains the symmetry center of d* and d**. Then
move P*, along with d* and d** horizontally to the right until P* gets onto the
circle centered at O of radius 3 (see Figure 1, right).

Notice that in the new position, (i) distance O*O** is 2 and the distance P*O
is 3, (ii) P* is the midpoint of O*O** and (iii) O** is on the left of the vertical
line through O. Let e be the support line of d whose slope is v/3. Lemma 3 of
Section 4 states that in this new position, d* lies to the left of line e, without
touching e (except when O**O = 4). This means that d*, before it was moved,
was to the left of line e, without touching e. Thus strip s; is obtained from s3 by
a counterclockwise rotation by an angle greater than 7/3, contradicting Contact
condition of Lemma 3. g
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Figure 2.
4. T-linkages

By a T-linkage we will mean a mobile structure consisting of a bar of length 3
connected at its endpoint to the midpoint of a bar of length 2, so they can rotate
about the contact point.

LEMMA 3. Let AOB be an equilateral triangle of side length 4. Assume that
a T-linkage is attached to O by the free endpoint of its longer bar (see Figure
2, left). As one endpoint of the shorter bar moves along the interior of median
AA’, the other endpoint of the shorter bar and A stay in the same open halfplane
bounded by the line of median BB'.

PRrROOF. Denote by H the open halfplane bounded by line BB’ and containing
A. Denote by M the intersection of AA’ and BB’. A simple computation shows
that when one endpoint of the shorter bar of the T-linkage coincides with M then
the other one belongs to H. Thus, if Lemma 3 were not true then by a continuity
argument the T-linkage would have a position with endpoints of the shorter bar
on lines AA’ and BB’ respectively. We will prove that such a position does not
exists. In fact we show more:

CrAM. If X is a point on line AA’ different from both A and A" and if Y is
a point on line BB’ such that XY = 2, the distance from O to the midpoint of
XY is smaller than 3.

We distinguish four cases depending on which of the angles determined by lines
of AA’ and BB’ contains the segment XY. Figure 2, right, shows how the
angles are labelled I, 11, III, IV. It suffices to check the cases when XY belongs
to angles I or II. Indeed the cases of angles IT and IV are the same by symmetry.
Furthermore, if segment XY belongs to the angle III then reflecting XY around
M we get a segment whose midpoint is farther from O than the midpoint of XY'.

Case 1: XY lies in angle I. Let k be the circumcircle of the triangle X MY (see
Figure 3, left). Since MO is the angle bisector of ZB’M A’ the line of MO and
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Figure 3.

the perpendicular bisector of XY intersect each other on k, say at E. Denote
by F' the diagonally opposite point of E on k.

Let G be the perpendicular projection of O onto line EF. Denote by P the
midpoint of XY. We will express PO? in terms of the angle « = ZPEM (with
—7/6 < a < 7/6) and show that PO? is smaller than 9. Since ZXMY = 27/3
we have EF = 4/+/3. Since EP = /3 and MO = 4/\/3 we get

4
OF = EF cosa+ MO = —(cosa + 1).

V3

Computing the parallel and perpendicular components of PO with respect to
line EF we get

PO? = OF*sin? a + (OF*cosae — EP)? = OE? —20FE cosaV/3 + 3

= 18(cosa+1)* — 8(cosar + 1) cosa + 3 = £ (—8 cos® av + 8 cos v + 25)

= —i(cosoz—%)2—|—9<97

as claimed.

Case 2: XY lies in angle II. Let k be the circumcircle of triangle X MY (see
Figure 3, right). The line perpendicular to MO and the perpendicular bisector
of XY intersect each other on k, say at E. Let L be the perpendicular projection
of M onto line XY. Let G be the perpendicular projection of O onto line LM.

Denote by P the midpoint of XY. We will express PO? in terms of the directed
angle « = ZPEM = /ZEML = ZGOM (with —7/3 < a < 7/3) and show that
PO? is smaller than 9. It is easy to see that MO = 4/\/5, EM = 4/\/§cosa
and EP =1/ V3 . Computing the parallel and perpendicular components of PO
with respect to line XY we get
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PO? = (EM cosa — EP + MOsina)? + (—EM sin o + MO cos )?
((4cos® @ — 1+ 4sina)® + (—4cosasina + 4 cos a)?)

(25 — 8sin? e — 8sin )

—~

W= W=

(17 4 8cos? a — 8sin ) =
=—2(1+42sina)*+9<09.

1
3

Equality holds only if &« = —7/6, that is, when X coincides with A. Thus the
Claim holds. g
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Edge-Antipodal 3-Polytopes

KAROLY BEZDEK, TIBOR BISZTRICZKY, AND KAROLY BOROCZKY

ABSTRACT. A convex 3-polytope in E3 is called edge-antipodal if any two
vertices, that determine an edge of the polytope, lie on distinct parallel
supporting planes of the polytope. We prove that the number of vertices
of an edge-antipodal 3-polytope is at most eight, and that the maximum is
attained only for affine cubes.

1. Introduction

Let X be a set of points in Euclidean d-space E¢. Then conv X and aff X
denote, respectively, the convex hull and the affine hull of X.

Two points x and y are called antipodal points of X if there are distinct parallel
supporting hyperplanes of conv X, one of which contains x and the other contains
y. We say that X is an antipodal set if any two points of X are antipodal points
of X. In the case that X is a convex d-polytope P, a related notion was recently
introduced in [Talata 1999]. P is an edge-antipodal d-polytope if any two vertices
of P, that lie on an edge of P, are antipodal points of P.

According to a well-known result of Danzer and Griinbaum [1962], conjectured
independently by Erdds [1957] and Klee [1960], the cardinality of any antipodal
set in £ is at most 2¢. Talata [1999] conjectured that there exists a smallest pos-
itive integer m such that the cardinality of the vertex set of any edge-antipodal
3-polytope is at most m. In an elegant paper, Csikds [2003] showed that m < 12.
In this paper, we prove that m = 8.

THEOREM. The number of vertices of an edge-antipodal 3-polytope P is at most
eight, with equality only if P is an affine cube.

Mathematics Subject Classification: 52A40, 52B10, 52C10, 52C17.
Keywords: convex, polytope, edge-antipodal.
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We remark that with some additional case analysis, it can be deduced from
the proof of the Theorem that the vertex set of P is in fact antipodal. This is
not the case for edge-antipodal d-polytopes P; when d > 4 (see [Talata 1999 for
d = 4), and thus, it seems highly challenging to determine the higher dimensional
analogue of the Theorem. We note that Pér [2005] has shown that for each d > 4,
there exists an integer m(d), formula unknown, such that Py has at most m(d)
vertices.

2. Proof of the Theorem

For sets X1, Xa,...,X, in E3, let [X1,Xa,...,X,] be the convex hull of
X1UXoU---UX,, and (X1, Xs,...,X,,) the affine hull of X7 UXoU---UX,.
For a point z, set [z] = [{z}] and (z) = ({z}).

For a point  and a line L in E3, let ¢(x, L) denote the line through z that
is parallel to L. Likewise, if H is a plane in E3, let h(x, H) denote the plane
through x that is parallel to L.

Let P C E? denote a (convex) 3-polytope with the set V(P) of vertices, the
set E(P) of edges and the set F(P) of facets. We recall that by Euler’s Theorem,

V(P = EP)]+ [F(P)] = 2.

Let v € V(P). Then v has degree k (deg v = k) if v is incident with exactly k
edges of P. It is a consequence of Euler’s Theorem (cf. [Fejes Téth 1953]) that
the average degree of a vertex of P is less than six, and thus,

REMARK 1. Any 3-polytope contains a vertex of degree k with k < 5.

Next, let
S = {U15U27"' y Uny Unt1 = vl} - V(P)a

where n > 3. We say that [S] is a contour section of P if dim(S) = 2, [S] is not
a facet of P and [v;,v;41] € E(P) fori=1,...,n.

Finally, let v and w be antipodal vertices of P. When there is no danger of
confusion, we denote by H!” and H;,, the distinct parallel supporting planes of
P such that v € HY and w € H},.

Henceforth, we assume that P is edge-antipodal. Thus, if [v,w] € £(P) then
v and w are antipodal.

We begin our arguments with some simple observations concerning a paral-
lelogram @ = [w, x,y, z] with sides [w,z] and [z, y] :

REMARK 2. If {[w,z],[z,y]} C E(P) then (w, z) and (y,z) are supporting lines
of P, and (Q) NP C Q.

REMARK 3. If [z,w,y,v] C QNP and [w,v] € E(P) then v € [y, 2].

From these two remarks, we deduce:
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REMARK 4. Any facet or any contour section of P is a triangle or a parallelo-
gram.

We examine now P when it is nonsimplicial or simplicial, and determine when
a subpolytope of P is necessarily edge-antipodal.

LEMMA 1. Let F = [w,x,y,z] € F(P) be a parallelogram with sides [w,z] and
[,y], and let H be a plane such that HNF = [z,y] and v € (HNV(P))\{z,y}.

1.1 If HN P is a contour section of P then H N P is a parallelogram.
1.2 If HN P is a facet of P then h(v,(F)) is a supporting plane of P.

PROOF. We suppose that H N P = [z,y,v] is a contour section, and seek a
contradiction.

Let L = (y,z) and R = [F,v,p] where p is the point on ¢(v, L) such that
Q = [v,y,2,p] and Q" = [v,z,w,p| are parallelograms. Next, H N P ¢ F(P)
implies that there is a u € V(P) such that H separates v and R, and [u, y] € £(P).
We have now a contradiction by Remark 2. On the one hand; (@) N P C @ and
(Q)NP C @, and so ¢(u, L) meets the relative interior of H N P. On the other
hand; ¢(u, L) is a supporting line of P.

Let HN P € F(P). By Remark 4, H N P is a parallelogram or a triangle.

If HN P = [v,z,y,u] is a parallelogram with sides, say, [v,z] and [z, y] then

HN v,z y,u] = [z,y] and  H7NO[v,2,y,u] = [v,u]

by Remark 2, and from this it follows that h(v, (F')) supports P. If HN P =
[v, z,y] then the assertion is immediate in the case that HY = (F'), and it is easy
to check that H} # (F') # H,) yields h (v, (F)) N P C {(v,L). O

LEMMA 2. Let P be simplicial and v € V(P). Then degv # 5.

PROOF. We suppose that [v,v;,v;41] € F(P) for ¢ = 1,...,5 with vg = v1, and
seek a contradiction.

Let P = [v,v1,...,vs). If v1,v0,...,v5 are coplanar then [vy,...,vs] € F(P),
E(P) C £(P) and P is edge-antipodal; a contradiction by Remark 4.

Let, say, [v1,v2,v3,v4] € F(P). Then H = (v1,vs,v5) strictly separates v
and [vs,vs], and with H N (v,v;) = {u;} for j € {3,4}, H N P is a pentagon
with cyclically labelled vertices vy, va, us, us4, vs. By Remark 2, £(vs, (v1,v2)) is
a supporting line of H N P. Since v, v3,v3 and vy are coplanar, we obtain also
from Remark 2 that L' = ¢(vs, (v1,v2)) is a supporting line of P. Then

{[v,ve,v3], [v,v3,v4]} T F(P)

yields that H' = (v, L’) is a supporting plane of P, and H N H' is a supporting
line of H N P. Since ug € H N H' and the lines H N H' and £(vs, (v1,v2)) are
parallel, we obtain that {us,us,vs} C H' and v,v3,vs and vs are coplanar; a
contradiction.
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Since P is simplicial, there is an edge among the [v;, v;41]’s such that neither
[Vi—1,Vi, Vi41] DOT [U5,Vit1, Vit2] is a face of P. Let, say,

[Ug,v:;, 1}5] S .7:(]5)

Then each of (v1,v2,v3) and (va, v3, v4) strictly separates v and vs, and we may
assume that H = (v1, v, v3) separates v and v4. Hence, with H N (v, v;) = {u;}
for j € {4,5}, the intersection H NPisa pentagon with cyclically labelled vertices
V1, V2, V3, Ug, us. We apply now Remark 2 with (v1,v2,v3) and (va,vs,v4), and
obtain that £(vy, (va, v3)) and £(vy, (va, v3)) are supporting lines of P. This yields
directly that ¢(v1, (va,v3)) and £(uq, (v2,v3)) are parallel supporting lines of the
pentagon H N P. Then vq,us and us are collinear, and v,vq,v4 and vy are
coplanar; a contradiction. O

LEMMA 3. Let {w,v1,v2,v3,v4,05 = v1} C V(P) such that [w,v;,v;11] € F(P)
fori=1,2,3,4. Then P, = [V(P)\ {w}] is edge-antipodal.

PROOF. Since the assertion is immediate in the case that £(P,) C E(P), we
may assume that the v;’s are not coplanar and that, say,

E(Pw) \ E(P) = {[v1, v3]} -

Let H = (w,v1,v3), U = (va,v4), @ = [w, v1,v3,p] be the parallelogram with
sides [w,v;] and [w,vs], and H,, and H; be distinct parallel supporting planes
of P such that w € H,, and v; € Hy. We assume that v3 ¢ H,, and observe that
with (ve,v4) = [v2, v4] \ {v2,04}:

(i) HNU € HN P C @ by Remark 2;

(il) Hy NQ = {w} and H; strictly separates vz and p;

(iii) (w, vy, u) and (w, vs, u) are supporting planes of P for each v € U\ (v2, v4);
(iv) HN H, and H N H; are supporting lines of the projection of P upon H
along the direction of any line contained in H,, or H;.

Let H, NU be the point 4, U = (w,u) and P be the projection of P upon H
along U.

Since @ € U \ (v2,v4), it follows from (iii) that (w,v;) and (w,vs) are sup-
porting lines of P. Since U C H,,, it follows from (iv) that H N H; supports P.
But then (v, p) supports P by (ii), and consequently, (w, v3, ) and (£(v1,U),p)
are parallel supporting planes of P, and hence of P,,.

In the case that H,, NU = @, letting figuratively @ € U tend to infinity yields
that (¢(w,U),vs) and (¢(v1,U),p) are parallel supporting planes of P, and hence
of P,. O

COROLLARY. Let P be simplicial and w € V(P) be such that degw < 4. Then
P, = [V(P)\ {w}] is edge-antipodal.

We are now ready to proceed with the proof of the Theorem.
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If P is not simplicial then by Remark 4, there is a parallelogram F € F(P).
By 1.2, there is a plane H, parallel to (F') and supporting P, that contains any
vertex of P\ F that is in an F’ € F(P) such that F' N F € £(P). From this
and Remark 2, it readily follows that H contains any vertex v of P\ F' such that
[v,2] € E(P) for some vertex x of F. Hence, V(P) C HU (F) and |[V(P)| < 8 by
Remark 4. We note that in this case, the degree of any vertex of P is at most
four.

Let P be simplicial. If the degree of any vertex of P is at most four, we have

3IF(P)| = 2[E(P)| < 4V(P)|,

and it follows from Euler’s Theorem that |V(P)| < 6.

We suppose that there is a w € V(P) such that degw > 4. Then degw > 6
by Lemma 2. From Remark 1, there is a vy € V(P) such that deg vy < 4. By the
Corollary, Py = [V(P) \ {vo}] is edge-antipodal. We note that w € V(P,) and
degw > 5. Thus, P, is simplicial by the preceding, and degw > 6 by Lemma 2.

Since each iteration of the above yields a simplicial edge-antipodal subpoly-
tope of P with w as a vertex, we have a contradiction.

Finally, we remark that if P is strictly edge-antipodal (meaning that whenever
[v,w] € E(P), there exist HY and HY such that H* NP = {v} and H, NP =
{w}), then |V(P)| < 5. This follows from the Theorem (P is necessarily simpli-
cial, V(P) is antipodal and |V(P)| < 6) and the result of Griinbaum [1963] that
there is no strictly antipodal set of six points in E3.
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A Conformal Energy for Simplicial Surfaces

ALEXANDER I. BOBENKO

ABSTRACT. A new functional for simplicial surfaces is suggested. It is in-
variant with respect to Mobius transformations and is a discrete analogue
of the Willmore functional. Minima of this functional are investigated. As
an application a bending energy for discrete thin-shells is derived.

1. Introduction

In the variational description of surfaces, several functionals are of primary
importance:

e The area A = f dA, where dA is the area element, is preserved by isometries.

e The total Gaussian curvature § = f K dA, where K is the Gaussian curvature,
is a topological invariant.

e The total mean curvature M = f HdA, where H is the mean curvature,
depends on the external geometry of the surface.

e The Willmore energy W = [ H? dA is invariant with respect to Mobius trans-
formations.

Geometric discretizations of the first three functionals for simplicial surfaces are
well known. For the area functional the discretization is obvious. For the local
Gaussian curvature the discrete analog at a vertex v is defined as the angle defect

G(v) =27 — Zai,

where the «; are the angles of all triangles (see Figure 2) at vertex v. The total
Gaussian curvature is the sum over all vertices G = ), G(v). The local mean

Keywords: Conformal energy, Willmore functional, simplicial surfaces, discrete differential
geometry.
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curvature at an edge e is defined as

where [ is the length of the edge and 6 is the angle between the normals to
the adjacent faces at e (see Figure 6). The total mean curvature is the sum
over all edges M =" M/(e). These discrete functionals possess the geometric
symmetries of the smooth functionals mentioned above.

Until recently a geometric discretization of the Willmore functional was miss-
ing. In this paper we introduce a Mobius invariant energy for simplicial surfaces
and show that it should be treated as a discrete Willmore energy.

2. Conformal Energy

Let S be a simplicial surface in 3-dimensional Euclidean space with set of
vertices V, edges E and (triangular) faces F'. We define a conformal energy for
simplicial surfaces using the circumcircles of their faces. Each (internal) edge
e € FE is incident to two triangles. A consistent orientation of the triangles
naturally induces an orientation of the corresponding circumcircles. Let ((e)
be the external intersection angle of the circumcircles of the triangles sharing e,
which is the angle between the tangent vectors of the oriented circumcircles.

DEFINITION 1. The local conformal (discrete Willmore) energy at a vertex v is
the sum

W(v)=> ple) —2r

esv
over all edges incident on v. The conformal (discrete Willmore) energy of a
simplicial surface S without boundary is the sum

W(S)= 3 S W) = 3 Ble) VI,

veV eckE

over all vertices; here |V is the number of vertices of S.

Figure 1. Definition of the conformal (discrete Willmore) energy.



A CONFORMAL ENERGY FOR SIMPLICIAL SURFACES 137

Figure 1 presents two neighboring circles with their external intersection angle j3;
as well as a view “from the top” at a vertex v showing all n circumcircles passing
through v with the corresponding intersection angles (i, ..., 3,. For simplicity
we will consider only simplicial surfaces without boundary.

The energy W(S) is obviously invariant with respect to Mobius transforma-
tions. This invariance is an important property of the classical Willmore energy
defined for smooth surfaces (see below).

Also, W(S) is well defined even for nonoriented simplicial surfaces, because
changing the orientation of both circles preserves the angle 5(e).

The star S(v) of the vertex v is the subcomplex of S comprised by the triangles
incident with v. The vertices of S(v) are v and all its neighbors. We call S(v)
convez if for any its face f € F(S(v)) the star S(v) lies to one side of the plane
of F, and strictly convez if the intersection of S(v) with the plane of f is f itself.

PROPOSITION 2. The conformal energy is nonnegative:
W(v) > 0.

It vanishes if and only if the star S(v) is convex and all its vertices lie on a
common sphere.

The proof is based on an elementary lemma:

LEMMA 3. Let P be a (not necessarily planar) n-gon with external angles [3;.
Choose a point P and connect it to all vertices of P. Let «; be the angles of the
triangles at the tip P of the pyramid thus obtained (see Figure 2). Then

n n
Z Bi = Z Qi
i=1 i=1

and equality holds if and only if P is planar and convex and the vertex P lies
inside P.

The pyramid obtained is convex in this case; note that we distinguish between
convex and strictly convex polygons (and pyramids). Some of the external angles
B; of a convex polygon may vanish. The corresponding side-triangles of the
pyramid lie in one plane.

Figure 2. Toward the proof of Lemma 3.



138 ALEXANDER I. BOBENKO

PRrROOF. Denote by v; and §; the angles of the side-triangles at the vertices of P
(see Figure 2). The claim of Lemma 3 follows from adding over alli =1,...,n
the two obvious relations

Bit1 =7 — (Vig1 + 64), T — (v + i) = .

All inequalities become equalities only in the case when P is planar, convex and
contains P. m

As a corollary we obtain a polygonal version of Fenchel’s theorem [1929].

COROLLARY 4.
n
Zﬁi > 2m.
i=1

PrOOF. For a given P choose the point P varying on a straight line encircled
by P. There always exist points P such that the star at P is not strictly convex,
and thus Y «a; > 27. O

PROOF OF PROPOSITION 2. The claim of Proposition 2 is invariant with respect
to Mo&bius transformations. Applying a Mobius transformation M that maps the
vertex v to infinity, we make all circles passing through v into straight lines and
arrive at the geometry shown in Figure 2, with P = M(co). Now the result
follows immediately from Corollary 4. g

THEOREM 5. Let S be a simplicial surface without boundary. Then
W(S) >0,
and equality holds if and only if S is a convex polyhedron inscribed in a sphere.

PrOOF. Only the second statement needs to be proved. By, Proposition 2, the
equality W (.S) = 0 implies that all vertices and edges of S are convex (but not
necessarily strictly convex). Deleting the edges that separate triangles lying in
one plane one obtains a polyhedral surface Sp with circular faces and all strictly
convex vertices and edges. Proposition 2 implies that for every vertex v there
exists a sphere S, with all vertices of the star S(v) lying on it. For any edge
(v1,v2) of Sp two neighboring spheres S,, and S,, share two different circles of
their common faces. This implies S,, = S,, and finally the coincidence of all the
spheres S,. O

The discrete conformal energy W defined above is a discrete analogue of the
Willmore energy [1993] for smooth surfaces, which is given by

W(S)Zi/s(kl—kz)QdAz/SH2dA—/stA.

Here dA is the area element, ki, ks the principal curvatures, H = %(kl + ko)
the mean curvature, K = kiko the Gaussian curvature of the surface. Here we
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prefer a definition for W with a Mobius-invariant integrand. It differs from the
one in the introduction by a topological invariant.
We mention two important properties of the Willmore energy:

e W(S) >0, and W(S) = 0 if and only if S is the round sphere.
o W(S) (together with the integrand (k1 —kz)? dA) is M&bius-invariant [Blaschke
1929; Willmore 1993].

Whereas the first statement follows almost immediately from the definition, the
second is a nontrivial property. We have shown that the same properties hold
for the discrete energy W; in the discrete case Mobius invariance is built into
the definition, and the nonnegativity of the energy is nontrivial.

In the same way one can define conformal (Willmore) energy for simplicial
surfaces in Euclidean spaces of higher dimensions and space forms.

The discrete conformal energy is well defined for polyhedral surfaces with
circular faces (not necessarily simplicial).

3. Computation of the Energy

Consider two triangles with a common edge. Let a,b,¢,d € R® be their
other edges, oriented as in Figure 3. Identifying vectors in R® with imaginary
quaternions Im H one obtaines for the quaternionic product

ab= —(a,b) +a x b, (3-1)

where (a,b) and a x b are the scalar and vector products in R®.

Figure 3. Formula for the angle between circumcircles.

PROPOSITION 6. The external angle 5 € [0, 7] between the circumcircles of the
triangles in Figure 3 is given by one of the equivalent formulas:

~Regq _ Reabed (a,c)(b,d) — {a,b){c,d) — (b, c){d, a)

cos(3) = - - )
lal |abed| lal [o |ef |d]

where ¢ = ab~led™! is the cross-ratio of the quadrilateral.

PROOF. Since Re ¢, |g| and 8 are M6bius-invariant it is enough to prove the first
formula for the planar case a,b,c,d € C, mapping all four vertices to a plane
by a Mobius transformation. In this case ¢ becomes the classical complex cross-
ratio. Considering the arguments a, b, ¢, d € C one easily arrives at § = m—argq.
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The second representation follows from the identity b= = —b/|b| for imaginary
quaternions. Finally, applying (3-1) we obtain

Re abed = (a,b){c,d) — (axb,cxd) = {a,b){c,d) + (b, c){d,a) — (a,c)(b,d). O

4. Minimizing Discrete Conformal Energy

Similarly to the smooth Willmore functional W, minimizing the discrete con-
formal energy W makes the surface as round as possible.

Let S denote the combinatorial data of S. The simplicial surface S is called
a geometric realization of the abstract simplicial surface S.

DEFINITION 7. Critical points of W (S) are called simplicial Willmore surfaces.
The conformal (Willmore) energy of an abstract simplicial surface is the infimum
over all geometric realizations

W(S) = inf W(S).
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Figure 4. Discrete Willmore spheres of inscribable (W = 0) and noninscribable
(W > 0) type, and discrete Boy surface.

Kevin Bauer implemented the proposed conformal functional with the Brakke’s
evolver [1992] and ran some numerical minimization experiments, whose results
are exemplified in Figure 4. Corresponding entries in each row show initial con-
figurations and the corresponding Willmore surfaces that minimize the conformal
energy.
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Figure 5. A discrete Willmore sphere of noninscribable type with 11 vertices and
W =2r.

Define the discrete Willmore flow as the gradient flow of the energy W. Under
this flow the energy of the first simplicial sphere decreases to zero and the surface
evolves into a convex polyhedron with all vertices lying on a sphere. The abstract
simplicial surface of the central example is different and we obtain a simplicial
Willmore sphere with positive conformal energy.

The rightmost example in the figure is a simplicial projective plane. The
initial configuration is made from squares divided into triangles; see [Petit 1995].
We see that the minimum is close to the smooth Boy surface known (by [Karcher
and Pinkall 1997]) to minimize the Willmore energy for projective planes.

The minimization of the conformal energy for simplicial spheres is related
to a classical result of Steinitz [1928], who showed that there exist abstract
simplicial 3-polytopes without geometric realizations all of whose vertices belong
to a sphere. We call these combinatorial types noninscribable.

The noninscribable examples of Steinitz are constructed as follows [Griinbaum
2003]. Let S be an abstract simplicial sphere with vertices colored black and
white. Denote the sets of white and black vertices by V,, and V, respectively, so
V =V, UV,. Assume that |V,,| > |V3| and that there are no edges connecting two
white vertices. It is easy to see that S with these properties cannot be inscribed
in a sphere. Indeed, assume that we have constructed such an inscribed convex
polyhedron. Then the equality of the intersection angles at both ends of an edge
(see left Figure 1) implies that

2m [V > ) Ble) > 27| Val.
ecEl
This contradiction of the assumed inequality implies the claim.

To construct abstract polyhedra with |V,,| > |V;|, take a polyhedron P whose
number of vertices does not exceed the number of faces, |F'| > |V|. Color all
the vertices black, add white vertices at the faces and connect them to all black
vertices of a face. This yields a polyhedron with black (original) edges and
|Viw| = |E| > |V3] = |V|. The example with minimal possible number of vertices
|V| = 11 is shown in Figure 5. The starting polyhedron P here consists of two
tetrahedra identified along a common face: F' =6, V = 5.
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Hodgson, Rivin and Smith [Hodgson et al. 1992] have found a characterization
of inscribable combinatorial types, based on a transfer to the Klein model of
hyperbolic 3-space. It is not clear whether there exist noninscribable examples
of non-Steinitz type.

Numerical experiments lead us to:

CONJECTURE 8. The conformal energy of simplicial Willmore spheres is quan-
tized:

W =2nN, for N eN.

This statement belongs to differential geometry of discrete surfaces. It would be
interesting to find a (combinatorial) meaning of the integer N. Compare also
with the famous classification of smooth Willmore spheres by Bryant [1984], who
showed that the energy of Willmore spheres is quantized by W = 47N, N € N.
The discrete Willmore energy is defined for ambient spaces (R™ or S™) of any
dimension. This leads to combinatorial Willmore energies
— n
WiL(S) = élelfSW(S’), S c s,
where the infimum is taken over all realizations in the n-dimensional sphere.
Obviously these numbers build a nonincreasing sequence W,,(S) > W,,11(S)
that becomes constant for sufficiently large n.

Complete understanding of noninscribable simplicial spheres is an interesting
mathematical problem. However the phenomenon of existence of such spheres
might be seen as a problem in using of the conformal functional for applications
in computer graphics, such as the fairing of surfaces. Fortunately the problem
disappears after just one refinement step: all simplicial spheres become inscrib-
able. Let S be an abstract simplicial sphere. Define its refinement S'g as follows:
split every edge of S into two by putting additional vertices and connect these
new vertices sharing a face of S by additional edges.

PROPOSITION 9. The refined simplicial sphere Sg is inscribable, and thus
W(Sgr)=0.

PRrROOF. Koebe’s theorem (see [Ziegler 1995; Bobenko and Springborn 2004],
for example) states that every abstract simplicial sphere S can be realized as a
convex polyhedron S all of whose edges touch a common sphere S2. Starting
with this realization S it is easy to construct a geometric realization Sg of the
refinement Sx inscribed in S2. Indeed, choose the touching points of the edges
of S with S? as additional vertices of Sgr and project the original vertices of
S (which lie outside of the sphere S?) to S?. One obtains a convex simplicial
polyhedron Sg inscribed in S2. O

Another interesting variational problem involving the conformal energy is the
optimization of triangulations of a given simplicial surface. Here one fixes the
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vertices and chooses an equivalent triangulation (abstract simplicial surface S)
minimizing the conformal functional. The minimum

W)= msin W(S)

yields an “optimal” triangulation for a given vertex data. In the case of S? this
optimal triangulation is well known.

PrOPOSITION 10. Let S be a simplicial surface with all vertices V' on a two-
dimensional sphere S?. Then W (S) = 0 if and only if it is the Delaunay trian-
gulation on the sphere, i.e., S is the boundary of the convex hull of V.

In differential geometric applications such as the numerical minimization of the
Willmore energy of smooth surfaces (see [Hsu et al. 1992]) it is not natural to
preserve the triangulation by minimizing the energy, and one should also change
the combinatorial type decreasing the energy.

The discrete conformal energy W is not just a discrete analogue of the Will-
more energy. One can show that it approximates the smooth Willmore energy,
although the smooth limit is very sensitive to the refinement method and must
be chosen in a special way. A computation (to be published elsewhere) shows
that if one chooses the vertices of a curvature line net of a smooth surface 8 for
the vertices of S and triangularizes it, W (S) converges to W(S) by natural re-
finement. On the other hand, the infinitesimal equilateral triangular lattice gives
in the limit and energy half again higher. Possibly the minimization of the dis-
crete Willmore energy with vertices on the smooth surface could be used for the
computation of the curvature line net. We will be investigating this interesting
and complicated phenomenon.

5. Bending of Simplicial Surfaces

An accurate model for the bending of discrete surfaces is important for mod-
eling in virtual reality.

Let 8¢ be a thin shell and § its deformation. The bending energy of smooth
thin shells is given by the integral [Grinspun et al. 2003]

E= /(H — Hy)?dA,

where Hy and H are the mean curvatures of the original and deformed surface
respectively. For Hy = 0 it reduces to the Willmore energy.

To derive the bending energy for simplicial surfaces let us consider the limit
of fine triangulation, i.e. of small angles between the normals of neighboring
triangles. Consider an isometric deformation of two adjacent triangles. Let
0 be the complement of the dihedral angle of the edge e, or, equivalently, the
angle between the normals of these triangles (see Figure 6) and () the external
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intersection angle between the circumcircles of the triangles (see Figure 1) as a
function of 6.

PROPOSITION 11. Assume that the circumcenters of the circumcircles of two
adjacent triangles do not coincide. In the limit of small angles 8 — 0, the angle
0B between the circles behaves as

3(60) = 5(0) + £ + o(6°),

where | is the length of the edge and L # 0 is the distance between the centers of
the circles.

This proposition and our definition of conformal energy for simplicial surfaces
motivate to suggest

l
E=Y E92
eckE

for the bending energy of discrete thin-shells.

Figure 6. Toward the definition of the bending energy for simplicial surfaces.

In [Bridson et al. 2003; Grinspun et al. 2003] similar representations for the
bending energy of simplicial surfaces were found empirically. They were demon-
strated to give convincing simulations and good comparison with real processes.
In [Grinspun et al. 2003] the distance between the barycenters is used for L in
the energy expression but possible numerical advantages in using circumcenters
are indicated.

Using the Willmore energy and Willmore flow is a hot topic in computer
graphics. Applications include fairing of surfaces and surface restoration. We
hope that our conformal energy will be useful for these applications and plan to
work on them.

Acknowledgements

I thank Ulrich Pinkall for the discussion in which the idea of the discrete Will-
more functional was born. I am also grateful to Giinter Ziegler, Peter Schroder,
Boris Springborn, Yuri Suris and Ekkerhard Tjaden for useful discussions and
to Kevin Bauer for making numerical experiments with the conformal energy.



A CONFORMAL ENERGY FOR SIMPLICIAL SURFACES 145

References

[Blaschke 1929] W. Blaschke, Vorlesungen iber Differentialgeometrie, vol. III, Grund-
lehren der math. Wissenschaften 29, Springer, Berlin, 1929.

[Bobenko and Springborn 2004] A. I. Bobenko and B. A. Springborn, “Variational
principles for circle patterns and Koebe’s theorem”, Trans. Amer. Math. Soc. 356:2
(2004), 659-689.

[Brakke 1992] K. A. Brakke, “The surface evolver”, Ezperiment. Math. 1:2 (1992),
141-165.

[Bridson et al. 2003] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of clothing
with folds and wrinkles”, in Eurographics/SIGGRAPH Symposium on Computer
Animation (San Diego, 2003), edited by D. Breen and M. Lin, 2003.

[Bryant 1984] R. L. Bryant, “A duality theorem for Willmore surfaces”, J. Differential
Geom. 20:1 (1984), 23-53.

[Fenchel 1929] W. Fenchel, “Uber Kriimmung und Windung geschlossener Raumkur-
ven”, Math. Ann. 101 (1929), 238-252.

[Grinspun et al. 2003] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schréder,
“Discrete shells”, pp. 62-67 in Furographics/SIGGRAPH Symposium on Computer
Animation (San Diego, 2003), edited by D. Breen and M. Lin, 2003.

[Griinbaum 2003] B. Griinbaum, Convez polytopes, Graduate Texts in Mathematics
221, Springer, New York, 2003.

[Hodgson et al. 1992] C. D. Hodgson, I. Rivin, and W. D. Smith, “A characterization
of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere”,
Bull. Amer. Math. Soc. (N.S.) 27:2 (1992), 246-251.

[Hsu et al. 1992] L. Hsu, R. Kusner, and J. Sullivan, “Minimizing the squared mean
curvature integral for surfaces in space forms”, Experiment. Math. 1:3 (1992), 191—
207.

[Karcher and Pinkall 1997] H. Karcher and U. Pinkall, “Die Boysche Flache in
Oberwolfach”, Mitt. Dtsch. Math.-Ver. no. 1 (1997), 45-47.

[Petit 1995] J.-P. Petit, Das Topologikon, Vieweg, Braunschweig, 1995.

[Steinitz 1928] E. Steinitz, “Uber isoperimetrische Probleme bei konvexen Polyedern”,
J. reine angew. math. 159 (1928), 133-143.

[Willmore 1993] T. J. Willmore, Riemannian geometry, Oxford Univ. Press, New York,
1993.

[Ziegler 1995] G. M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics
152, Springer, New York, 1995.

ALEXANDER I. BOBENKO

INSTITUT FUR MATHEMATIK

TECHNISCHE UNIVERSITAT BERLIN

STRASSE DES 17. JuNI 136

10623 BERLIN

GERMANY
bobenko@math.tu-berlin.de






Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

On the Size of Higher-Dimensional
Triangulations

PETER BRASS

ABSTRACT. I show that there are sets of m points in three dimensions,
in general position, such that any triangulation of these points has only
O(n5/3) simplices. This is the first nontrivial upper bound on the MinMax
triangulation problem posed by Edelsbrunner, Preparata and West in 1990:
What is the minimum over all general-position point sets of the maximum
size of any triangulation of that set? Similar bounds in higher dimensions
are also given.

1. Introduction

In the plane, all triangulations of a set of points use the same number of
triangles. This is a simple consequence of each triangle having an interior angle
sum of 7, and each interior point of the convex hull contributing an angle sum
of 27, which must be used up by the triangles.

Neither the constant size of triangulations nor the constant angle sum of sim-
plices holds in higher dimensions. A classic example is the cube, which can be
decomposed in two ways: into five simplices (cutting off alternate vertices) or into
six simplices (which are even congruent; it is a well-known simple geometric puz-
zle to assemble six congruent simplices, copies of conv((000), (100), (010), (011)),
into a cube).

For higher-dimensional cubes, the same problem was studied in a number
of papers [Bohm 1989; Broadie and Cottle 1984; Haiman 1991; Hughes 1993;
Hughes 1994; Lee 1985; Marshall 1998; Orden and Santos 2003; Sallee 1984;
Smith 2000]. This suggest that one should be interested in the possible values
of the numbers of simplices for arbitrary point sets.

It is well known that a triangulation of n points in d-dimensional space has
size Q(n) and O(n/%21). The lower bound is obvious (each point must go some-
where); and, at least in three-dimensional space, as upper bound one can use that
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Figure 1. A cube can be triangulated with five or six simplices.

from each point the outer facets of the incident simplices can be viewed as faces
of a starshaped polytope with at most n — 1 vertices, which is combinatorially
isomorphic to a convex polytope.

In more detail this problem was solved by Rothschild and Straus [1985], who
showed that the minimum number of simplices in any triangulation of any full-
dimensional set of n points in d-dimensional space is n —d. This is reached by
gluing simplices together along faces, such that each additional simplex generates
a new vertex, and all vertices are in convex position. Another method, without
the general position, would be to place n—d+1 points on a line, and d—1 points
off that line. They also showed that the maximum number of simplices in any
triangulation of any full-dimensional set of n points in d-dimensional space is
cyc_poly(n+1,d,d+1)—(d+1) = O(nl%/21), where cyc_poly(n+1,d,d+1) is the
number of d-faces of the d+ 1-dimensional cyclic polytope on n+1 vertices. This
is a consequence of the upper bound theorem for simplicial d-spheres [Stanley
1983].

These were the maximum and minimum triangulation size, taken over all
sets of n points in d-dimensional space. As a next step, it would be interesting
to give bounds on the maximum and minimum triangulation size of a fixed
set [Rothschild and Straus 1985, Problem 6.2]. For that we have to make some
general-position assumption, no d+1 points collinear, otherwise there are always
point sets for which there is only a unique triangulation. The questions are:

MAXMIN PROBLEM. What is the smallest number fY1Min(n) " such that each
set of n points in d-dimensional space, no d+ 1 collinear, has a triangulation

with at most fY1Min(n) simplices?

MINMAX PROBLEM. What is the largest number fYHMax ()" such that each set
of n points in d-dimensional space, no d+1 collinear, has a triangulation with

fcll\/IinMax(

at least n) simplices?

This problem was considered in three-dimensional space by Edelsbrunner, Prepa-
rata and West [Edelsbrunner et al. 1990], who showed that f}aMin(p) < 3n—11,
so every set of n point in general position in three-dimensional space has a
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small triangulation. They also gave some bounds, if additionally the number of
points of the convex hull is given. Together with the lower bound of Sleator,
Tarjan and Thurston [Sleator et al. 1988], who constructed a convex polyhedron
which requires 2n — 10 simplices in any triangulation, this determines the exact
minimum for point sets in convex position, and leaves only a linear-sized gap in
general.

For higher dimensions, the vertices of a cyclic polytope give a lower bound for
fMaxMin(p) gince in any triangulation of the cyclic polytope, each facet must be
facet of some simplex, and each simplex has only d+1 facets. Together with the
above-mentioned general upper bound of [Rothschild and Straus 1985] on any
triangulation this shows

Q (cyc_poly(n, d—1, d)) < fylaMiniy < 0 (cyc_poly(n +1,d,d+ 1)) ,

SO
Q(nLd/ZJ) < fcll\/IaXMin(n) < O(?’LM/Q])

For the MinMax-Problem, the situation is much worse, only constant-factor
improvements for the trivial lower and upper bounds are known [Edelsbrunner
et al. 1990; Urrutia 2003], so Q(n) < fMaMax(n) < O(n?); and although some
other problems raised in [Edelsbrunner et al. 1990] were solved [Bern 1993], no
progress on the growth rate of f21"Ma%(n) was made since then. It is the aim of

this paper to prove the first nontrivial upper bound.
THEOREM 1. fMinMax(n) — O(n>/3).
This follows from

LEMMA 2. Any triangulation of a point set in three-dimensional space that arises
by a small perturbation from the n'/3 xn'/3 x n'/3 lattice cube contains at most
O(n®/3) simplices.

This upper bound is probably not sharp even in that class of perturbed lattice
cubes. It is easy to construct a perturbed lattice cube that allows a triangulation
of size Q(n4/ 3), and that is probably the true maximum in that class.

The same argument works also in higher dimensions, unfortunately the im-
provement over the general upper bound of O(nw/ 2W) on the number of simplices
in any d-dimensional triangulation is very small, especially if compared with the
only known (trivial) lower bound f)nMax(n) = Q(n).

THEOREM 3. fYinMax(p) = O (n(1/D+(d=DId/21/d) for fired dimension d.

The improvement in the exponent is thus

A(EIOR
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2. The Proof
Let X,, be a set of n points, which is obtained from the lattice cube
X:L = {(x1,$2,$3) | x; € {1, PN ,n1/3}}

by a small perturbation. Any point p € X has a unique preimage p* € X*
before the perturbation was applied, and any simplex {p1,p2,ps3,ps} C X has a
preimage {pi,p5,p5,pi} C X*, which is a possibly degenerate simplex (points
coplanar or even collinear). Let T be the triangulation of X, then we partition
T = T3UT<2 by classifying the simplices T' € T according to the affine dimension
of their preimage T™; a simplex T € T3 has a nondegenerate simplex T™ as
preimage, a simplex T' € J<2 has a coplanar, or even collinear, fourtuple T
(degenerate simplex) as preimage.

We have less than 6n simplices in T3, since any nondegenerate simplex in X*
is a nondegenerate simplex with integer coordinates, so it has volume at least %;
and the volume of conv(X™*) is less than n.

The preimages T* of simplices T € T3 together partition the cube conv(X*)
into nondegenerate simplices, and the vertices of these simplices are points of
X™* so we can refine this partition to a triangulation 8* of X*. Each face of a
simplex T*, T" € T3 of the partition is a union of faces of simplices from the
triangulation 8*. The triangulation 8* still contains at most 6n simplices.

The main problem is to bound |T<3|, the number of almost-degenerate sim-
plices in 7. Consider a simplex T' € T<3, its preimage 7™ is some coplanar
fourtuple of points in X*. Now T™ cannot intersect the interior of the preimage
S* of any of the full-dimensional simplices S € T3. So each T' € TJ<5 has a
preimage T™ that is contained in the union of the faces of the S*, S € T3, so
also in the union of faces of the S*, S* € &". Therefore each T € T<, has a
preimage T that is contained in a lattice plane of X* spanned by a face of some
S* of the triangulation 8*. Let {E;};csr be the set of planes spanned by faces
of simplices of the triangulation S* € 8*, and let a; be the number of simplices
S* € 8* which have a face contained in the plane E;. Since each of the 5* € 8*
contributes four faces, we have

Z a; < 24n.

iel
Since T™* is contained in the union of faces of simplices S* € §8*, this holds also
for the vertices of T™; so they are either vertices of faces of the triangulation
8*, or contained in the sides or relative interior of faces, which is not possible
in a triangulation 8* of X*. So each vertex of T™ is a vertex of some simplex
S*, and therefore the numbers b; of points from X*NFE; that are vertices of T*
ser bi < 72n. But also each b; is at most [ X*NEy|, so
we have b; < n2/3 for each i. But these b; points contained in E; can generate

contained in E; satisfies )

only less than O(b?) simplices, since any set of b; points can span at most O(b?)
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nonoverlapping simplices. So the total number of simplices in T<5 is less than
> ;e CbF for some C. Thus

|T<2| < max {Z Ccv?

icl

Zbi <72n,0<b; < n2/3} = 0(n°?).
il

The d-dimensional version is proved in exactly the same way: the point set
Xn,q is any perturbation of the nt/dx ... xn'/4lattice cube. Any triangulation
Tn,a of such a set will contain at most O(n) simplices with a full-dimensional
preimage in the unperturbed lattice X ;, since any nondegenerate simplex with
integer vertices has a volume at least %. All the remaining simplices of the tri-
angulation are near-degenerate, they have preimages which are contained in the
union of faces of the full-dimensional simplices. The full-dimensional preimages
of simplices partition the cube into nondegenerate simplices with vertices from
X, 4» and we can refine this to a triangulation S}, ; of X7 ; with O(n) simplices.
The faces of this triangulation span a set of affine lattice subspaces. Each near-
degenerate simplex has a preimage in one of these subspaces, and each vertex of
that near-degenerate simplex has a preimage that is in 8}, ; vertex of a simplex
with a face that spans that affine subspace. The total number of pairs of vertices
and incident faces in 87 ; is O(n) and each of these pairs belongs to an affine
lattice subspace, and can belong to the preimages of near-degenerate simplices
only in that subspace. We sum now over all such subspaces, and count each
point only for those subspaces where it is vertex with an incident face that spans
the subspace. A subspace s that contains bs points can contain only O(bgd/ 2])
preimages of near-degenerate simplices, since that is the maximum number of
simplices that these by points can span. And each subspace contains at most
nld=1/d points, since that is the maximum intersection of a proper affine sub-
space with the lattice cube. We now consider this just as an abstract optimization
problem for the variables b,, and get an upper bound of

max {Z OJRED) ’ st =0(n),0< b, < n(d1)/d} .

This maximum is again reached if each nonvanishing b, is as large as possible,
s0 by = n(4=1/d for O(n'/®) variables b,, which is the claimed bound.

3. Related Problems

The most important problem would be to get a nontrivial lower bound for
fé\/““MaX(n). It is still possible that there are point sets which allow only linear-
sized triangulations. Perhaps it might help to compute some exact values and
extremal configurations for small n; the first nontrivial values seem to be

fé\/IinMax(5) =3 and fal)\/[inMax(G) _ 5’
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both realized by points in convex position.
A good lower bound on fMinMax(n) would also be interesting since it would
imply an upper bound for the d-dimensional Heilbronn triangle problem. Let
MinVol
9d (n)
the minimum volume of a simplex spanned by this set, then

be the maximum over all choices of n points from the unit cube of

. 1
MinVol
gq 0 (n) < fé\/[inMax(n)'

For d > 3, the best upper bound we have on g}i"Vel(n) is only slightly better than

the trivial bound [Brass 2005]; for lower bounds see [Barequet 2001; Lefmann
2000].

It should be possible to determine the exact function for faMin(n) or at
least the right multiplicative constant.

The problem of triangulating the d-cube with minimal number of simplices
was already mentioned in the beginning. It does not quite fall in the model here,
since the vertices of the cube are not in general position. The mazrimum number
of simplices in any triangulation of the d-cube are d!, by the volume argument
used above, and this number can be reached easily. The minimum number of
simplices is known to be between

1 6 \%/2 ]
_ [ —— d! d 0.816)%d!
ONZES (d+1> and  (0.816)

(see [Smith 2000] and [Orden and Santos 2003], respectively); so the gap between
upper an lower bound is still enormous, of order 2°(¢logd),
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The Carpenter’s Ruler Folding Problem

GRUIA CALINESCU AND ADRIAN DUMITRESCU

ABSTRACT. A carpenter’s ruler is a ruler divided into pieces of different
lengths which are hinged where the pieces meet, which makes it possi-
ble to fold the ruler. The carpenter’s ruler folding problem, originally
posed by Hopcroft, Joseph and Whitesides, is to determine the smallest
case (or interval on the line) into which the ruler fits when folded. The
problem is known to be NP-complete. The best previous approximation
ratio achieved, dating from 1985, is 2. We improve this result and pro-
vide a fully polynomial-time approximation scheme for this problem. In
contrast, in the plane, there exists a simple linear-time algorithm which
computes an exact (optimal) folding of the ruler in some convex case of
minimum diameter. This brings up the interesting problem of finding the
minimum area of a convex universal case (of unit diameter) for all rulers
whose maximum link length is one.

1. Introduction

The carpenter’s ruler folding problem is: Given a sequence of rigid rods (links)
of various integral lengths connected end-to-end by hinges, to fold it so that its
overall folded length is minimum. It was first posed in [Hopcroft et al. 1985],
where the authors proved that the problem is NP-complete using a reduction
from the NP-complete problem PARTITION (see [Garey and Johnson 1979;
Cormen et al. 1990]). A simple linear-time factor 2 approximation algorithm,
as well as a pseudo-polynomial O(L?n) time dynamic programming algorithm,
where L is the maximum link length, where presented in [Hopcroft et al. 1985]
(see also [Kozen 1992]). A physical ruler is idealized in the problem, so that the
ruler is allowed to fold onto itself and lie along a line segment whose length is
the size of the case, and thus no thickness results from the segments which lie
on top of each other.

The decision problem can be stated as follows. Given a ruler whose links have
lengths I1,1s,...,1,, can it be folded so that its overall folded length is at most
k? Note that different orderings of the links can result in different minimum case

Keywords: approximation scheme, carpenter’s ruler, folding problems, universal case.
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lengths. For example if the ruler has links of lengths 6, 6 and 3 in this order,
the ruler can be folded into a case of length 6, but if the links occur in the order
6, 3 and 6, the optimal case-length is 9.

Our first result (Section 2) improves the 19-year old factor 2 approximation:

THEOREM 1. There exists a fully polynomial-time approzimation scheme for the
carpenter’s ruler folding problem.

A fully polynomial-time approximation scheme (FPTAS) for a minimization
problem is a family of algorithms A., for all ¢ > 0, such that A. has run-
ning time polynomial in the size of the instance and 1/e, and the output of A,
is at most (1 + ¢) times the optimum [Garey and Johnson 1979).

In Section 3, we study a natural, related question: the condition that the
folding must lie on a line is relaxed, by considering foldings in the plane with
the objective of minimizing the diameter of a convex case containing the folded
ruler. Here foldings allow for a free reconfiguration of the joint angles, with the
proviso that each link of the ruler maintains its length (the shape of the case is
unconstrained). In contrast with the problem on the line, this variant admits an
easy exact (optimal) solution which can be computed in linear time, using exact
arithmetic.

This brings up the interesting problem of finding the minimum area of a
convex case (of unit diameter) for all rulers whose maximum link length is one.
A closed curve of unit diameter in the plane is said to be a wuniversal case for
all rulers whose maximum link length is one if each such ruler admits a planar
folding inside the curve. Our results are summarized in:

THEOREM 2. There exists an O(n) algorithm for the carpenter’s ruler folding
problem in the plane with lengths ly,ls, ..., l,, which computes a folding in a
convezx case of minimum diameter L = max(ly,...,l,). The minimum area A
of a convex universal case (of unit diameter) for all rulers whose mazimum link
length is one satisfies

a4 V3
8~ 73 4
The lower bound is % = 0.375 and the upper bound is ~ 0.614. We believe the

latter is closer to the truth.

Other folding problems with links allowed to cross have been studied, for ex-
ample in [Hopcroft et al. 1984; Kantabutra 1992; Kantabutra 1997; Kantabutra
and Kosaraju 1986; van Kreveld et al. 1996], while linkage folding problems for
noncrossing links have been investigated for example in [Connelly et al. 2003;
Streinu 2000]. For other universal cover problems, such as the worm problem,
see [Croft et al. 1991; Klee and Wagon 1991] and the references therein.
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2. Proof of Theorem 1

We present two approximation schemes: one based on trimming the solution
space and one based on rounding and scaling. We start with notation and
observations which apply to both algorithms.

A folding F' of the ruler can be specified by the position on the line of the
first (free) endpoint of the ruler (i.e., the free endpoint of the first link) and a
binary string of length n in which the i-th bit is —1 or 1 depending on whether
the é-th segment is folded to the left or right of its fixed endpoint (view this as
a sequential process). We call this binary string the folding vector.

For a given folding F', let the interval Ir = [aF,br| be the smallest closed
interval which contains it (i.e., it contains all the segments of the ruler). We
refer to it as the folding interval. See also Figure 1.

e o —_—

Figure 1. A carpenter’s ruler with segments of length 1, 3, 2 and 4 folded so that
it fits into a case of length 5 (left). Its folding vector is (—1,1,1 — 1). Another
folding into a case of same length (right). Its folding vector is (1, —1,1 — 1).

Denote by OPT the minimum folded length for a ruler whose lengths are
l1,1la, ..., 1. A trivial lower bound — on which the 2-approximation algorithm is
based —is OPT > L, where L = max(ly,ls,...,l,) is the maximum rod length.
We further exploit this observation and the 2-approximation algorithm given in
[Hopcroft et al. 1985].

OBSERVATION 1. An optimal solution can be computed by fixing the first segment
at [0,11] (with the free endpoint of the first link at 0), and then computing all
foldings that extend it, whose intervals have length at most 2L (thus are included
in the interval [—2L + 1y, 2L)).

PRrROOF. Consider an optimal solution. Clearly the first segment can be fixed at
any given position of its free endpoint and at any of the two possible orientations.
Since there exist approximate solutions whose folding intervals have length at
most 2L, foldings with larger intervals do not need to be considered (are not
optimal). O

One can also see that the observation can be somewhat strengthened, since in
fact, any of the links can be fixed at a given position and orientation.

OBSERVATION 2. An optimal solution can be computed by first fizing one segment
of length L (if more exist, select one arbitrarily) at [0, L] and then computing all
foldings that extend it, whose intervals have length at most 2L (thus are included
in the interval [—L,2L)).
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Consider a folding F, whose vector is (1,...,&p), for a given ruler Iy,la, ..., 1,.
For i =1,...,n, let the partial folding F; of the ruler l1,lo,...,l; be that whose
folding vector is (e1,...,&;).

For a folding F' whose interval is [a, b], clearly the endpoint = of the last seg-
ment also lies in the same interval, i.e., z € [a,b]. We say that F' has parameters
a, b and x, or that F' is given by a, b and z.

A FPTAS based on trimming the solution space. We now describe
the first algorithm which we note, has some similarity features with the fully
polynomial-time approximation scheme for the subset-sum problem [Ibarra and
Kim 1975] (see also [Cormen et al. 1990] for a more accessible presentation).
Let ¢ be the approximation parameter, where 0 < ¢ < 1. For simplicity as-
sume that m = 8n/e is an integer. Set 6 = Le/(2n). Consider the parti-
tion of the interval [-2L,2L] into m elementary intervals of length ¢, given by
[-2L + jo, —2L + (j + 1)0), for j = 0,...,m — 1, except that the last interval in
this sequence, for j = m — 1, is closed at both ends. For simplicity of exposition,
we consider the interval [—2L, 2L] instead of the interval [-2L+1;, 2L] mentioned
in Observation 1 (and then the expression of m above is an overestimate). An
interval triplet denoted (I, I, I,.), is any of the m? ordered triples of elementary
intervals.

The algorithm iteratively computes a set of partial foldings &F; of the ruler
l,la,...,1;, for « = 1,...,n, so that at most one partial folding per interval
triplet is maintained at the end of the ¢-th iteration. A partial folding whose
folding interval is [a, b], and the endpoint of the last segment at x is associated
with the interval triplet (I, Iy, I;), where a € I,, b € I, and = € I,. If at step
1 more partial foldings per interval triplet are computed, all but one of them
are discarded; the one selected for the next step is chosen arbitrarily from those
computed.

F1 consists of one (partial) folding, given by af = 0, b} = I, 2} = l;. Let
1 > 2. In the i-th iteration, the algorithm computes from the set F;_; of partial
foldings of the first ¢ — 1 links, all the partial foldings of the first ¢ links that
extend foldings in F;_1, and whose intervals are included in the interval [—2L, 2L]
(there are at most 2|F;_1| of these). It then ”trims” this set to obtain F;, so
that if an interval triplet has more partial foldings associated with it, exactly
one is maintained for the next iteration. Clearly, |F;| < m? at the end of the i-th
iteration, for any ¢ = 1,...,n. Note that this bound holds during the execution
of each iteration as well. After the last iteration n, the algorithm outputs a
folding of the ruler (one in F,,) whose interval has minimum length.

Let now F' be an optimal folding as specified in Observation 1, whose vector
is (€1,...,6n). We have e = 1. For i = 1,...,n, let the partial folding F; have
the (folding) interval [a;, b;] and the endpoint of the last segment at x; € [a;, b;].
We have a1 =0, by =1; and xy = [y, and also x; = 22:1 gjlj, fori=1,...,n.
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LEMMA 1. For i =1,...,n, the algorithm computes a partial folding F} € F;
of the ruler ly,la,...,l;, whose interval is [a},b;] and the endpoint of the last
segment is at x}, so that

(A) |ai — ai] <4,

(B) |b; — bl| <6,

(X) |z, — 2} < id.
PrOOF. We proceed by induction. The basis ¢ = 1 is clear. Let ¢ > 2, and
assume that a partial folding F/_, of the ruler l1,ls,...,l;_1, is computed by the
algorithm after ¢ — 1 iterations, as specified. We thus have

|ai—1 —a;_y| < (i — 1),

|bi—1 = bi_4| < (i = 1)d,

|wi—1 — iy | < (i —1)0.

The partial folding F; (corresponding to F') has parameters

a; = min(a;—1, xi—1 + &il;),
bi = Inax(bi,l, Ti—1 + Eili),

T = X1 + &il;.

Consider the partial folding F;" obtained from F]_; (i.e., which extends F]_;)
so that its ¢-th bit in the folding vector is e; (the same as in F;). Note that
the algorithm computes F’ in the first part of iteration ¢ (before trimming). Its
parameters are

"
i

/

s /
a; = min(a;_q,x;_4 +&ili),

// / /
by = max(b;_q,x;_; +&il;),

U

€T

’
=x;,_1+ gil;.

Let the interval triplet which contains F!” be (I4,Ip,I;). The algorithm dis-
cards all but one partial folding in this interval triplet, say F}, with parameters
as, b, x;. This implies that
|a; — ai| <0,
;= b/ <6,
@) — 2l < 6.
The lemma follows once we show that
(A7) |a; — aj| < (i —1)9,
(B) o —b!| < (i— 16,
(X)) wi—af] < (- 1)5,



160 GRUIA CALINESCU AND ADRIAN DUMITRESCU

since then, the partial folding F! which is computed by the algorithm, satisfies
the imposed conditions after step 4, e.g. for (A),

la; —a}| < la; —a| + |a —al| < (i —1)5 4+ = id.

(B) and (X) follow in a similar way.

We will show that (A’) holds by examining four cases, depending on how the
minimums for a; and for a are achieved. The proof of (B’) is very similar (with
max taking the place of min) and will be omitted.

To prove (A'), recall that

la! — a;| = |min(a;_i,2;_; + &;il;) — min(a;_1,vi—1 + &:l;)].

Put A = |a} — a;]. We distinguish four cases.
Case 1: min(a)_y,x},_, +&;l;) = a;_; and min(a;—1,x;—1 +&:l;) = a;—1. Then
using the induction hypothesis,

A= |a;_1 — ai_1| < (Z — 1)5

. : li / _ ! : _
Case 2: min(a;_q,xi_1 + €l;) = xi_ + €l; and min(a;—1,z;-1 + &il;) =

Zi—1 + €;l;. Similarly, the induction hypothesis yields
A=z, —xi—q] < (i—1)d.
Case 3: min(a}_y,x;_; +&:l;) = a}_, and min(a;—1, -1 +€il;) = xi—1 +&il;.
Note that in this case ¢; = —1. We have two subcases.
Case 8.1: x;—1 —l; < al_;. Recall that a;_, < z}_, — ;. We have
i — 1l <aj_y <a_ —1.
Then
A=laj_y — (im1 = )| < |iy — I = (zion = 1) < (i = 1)0,
where the last in the chain of inequalities above is implied by the induction

hypothesis.
Case 3.2: a;_y < x;i_1 — ;. Recall that x;_1 —; < a;—;. We have
aj_ < @iy — 1 <aiog.
Then
A=lai_y = (wim1 = L)] < laj_y — aia| < (i = 1)5,
again by the induction hypothesis.
Case 4: min(a}_,,z}_; +&;l;) = xf_1 +¢e;l; and min(a;—1, x—1 +&:l;) = a;-1.

Note that in this case ; = —1. Thus «}_; —I; < a,_; and a;—1 < x;—1 — ;. We

i—

have two subcases.
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Case 4.1: x,_; —l; < a;—1. Then

A=lai1 = (xiy = )] < |wicy =l — (25 — )] < (i —1)0.

Case 4.2: a;—1 < x}_; —l;. Then
A= [(zi_y =) —aia] < laj_y —ai1] < (i = 1)é.

This concludes the proof of (A').
We also clearly have

|2 — @] = l(wio1 + ili) — (@ F&ili)| = |wioy — i 4| < (i = 1),
which proves (X’) and concludes the proof of the lemma. O

Lemma 1 for ¢ = n implies that the algorithm computes a folding F" of the ruler
whose interval is [a’, ], so that if F' is an optimal folding whose interval is [a, b],

la —a'| <né = Le/2,
b— | < nd = Le/2.

Since the algorithm selects in the end a folding whose interval length is minimum,
it outputs one whose interval length is not more than

[ —a'| <|b—a|]+eL < (1+¢)OPT.

The last in the chain of inequalities above follows from the lower bound b — a =
OPT > L.

It takes O(log L) time to compute the three parameters for each partial fold-
ing, and O(log L) space to store this information. Since there are n iterations,
and each takes O(m?log L) time, the total running time is O(nm3logL)) =
O(n*(1/e)31log L). As each (partial) folding can be stored in O(nlog L) space,
the total space is also O(n*(1/¢)%log L).

REMARK 1. Using Observation 2, one can modify the algorithm so that m =
6n/e (versus m = 8n/e), which leads to maintaining a somewhat smaller number
of interval triplets.

A FPTAS based on rounding and scaling. We apply the rounding and scal-
ing technique, inspired by the method used to obtain an approximation scheme
for Knapsack (from [Ibarra and Kim 1975]; see also [Garey and Johnson 1979,
pages 135-137]). The algorithm is:

(i) Set
- i 1
Call the new instance of the carpenter’s ruler folding problem with lengths I;
the reduced instance.
(ii) Use the pseudo-polynomial algorithm in [Hopcroft et al. 1985] to solve ex-
actly the reduced instance. Output the same folding vector.
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Note that the maximum length of the reduced instance is L = [4n] and there-
fore the running time of the algorithm is

O(nlog L + L*n) = O(nlog L + n*(1/¢)?).

We refine the notation as follows: given folding F whose vector is (1, ..., el),
set 2l =0 and fori=1,...,n, set 2f' = Z; 1€51;. As before ap = mlnl ozf

and by = max]_ Ox , and note that the length of F is by — ap. Define x , AF
and by in the same way using the length function [ instead of I. Let

i 1 i 1
L Ly
@ = g [L nsJ

Note that 0 < ¢; < 1 and I; = (I; + ¢;)Le/(4n).
Let A be any folding for the original instance and B be an optimum folding
for the reduced instance. We have:

: : - Le Le :
_E:B.:E:B. A E B
—jzlsz lz j:151 (lz+qz)4n 4n <$z +j:151 q1>'

Using 0 < ¢; < 1, we obtain

Le € Le
B~ L€ B < eop LE
‘rl — n(‘/l’.’b +n) 4771:1;1 + 4’
and therefore
bg < LeE + Le
B=1" BT
Similarly we have:
o> Legn Le

and consequently
S Le Le
ap = in ap 47.
Using the fact that B has optimum length for [, and the inequality by—a4 > L,

we get:

Le Le  Le €
bp —ap < = (bg — =< (ba—an) + =(ba —an). 2-1
B —ap 4n(B aB)+2_4(A as) + 2<A aa) (2-1)
Further:
L, 1 4n 4n
A7 Af Y . A -
zaz z.(zzmgfqz)j zgqlgLHn
Jj=1 j=1
and therefore
ba < —bg+n. (2-2)
Similarly we have:
dn ‘ 4
A_ oA A, s 2N oa
1 Lal.l 257, ql — L xl n7
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and consequently
an

aa 2 T (2-3)
Plugging Equations (2-2) and (2-3) into (2-1) and using again the inequality
ba —ay > L, we obtain

Le (4n in €
—ap< = (2= —(=Zas — —(bg — < (by — .
by —ap < ( ba+n— (Toaa n)) + (b4 —aa) < (ba —aa)(1+)
If we now let A be an optimal folding for the original instance, we find that
b —ap < (14 ¢)OPT; this completes the second proof of Theorem 1.

3. Folding in the Plane: Proof of Theorem 2

For the purposes of this section, a folding of the ruler is a polygonal chain
of n segments (links), numbered from 1 to n, lying in the plane. Let go be the
free endpoint of the first link, and ¢; be its other endpoint. Call v; = goqq the
vector of link 1. Inductively define (ga,...,q, and) va,...,v,, the vectors of
links 2,...,n. The joint angle between links ¢ and 7 + 1 is the angle € [0, 7]
between v; and v;41. The angle is counterclockwise if it describes a left turn,
and clockwise if it describes a right turn. Angles of 0 and 7 are considered both
left and right turns.

It is obvious that the diameter of any convex case in which the ruler is folded is
at least L, where L is the maximum link length. The following simple linear-time
algorithm computes a folding of the ruler, so that all joint angles in (0, 7] are
clockwise (or counterclockwise). The algorithm is certainly implicit in [Hopcroft
et al. 1985], where an extensive analysis of reconfiguration problems for rulers
confined in discs is made.

Fix arbitrarily a disk D of diameter L, whose boundary is the circle C. Fix
the first free endpoint of the ruler (i.e., the free endpoint of the first link) at
some point pg of C. For i = 1,... n, iteratively fix the next point of the ruler
(i-e., the next endpoint of its i-th link) at one of the at most two intersection
points of C' with the circle with center at p;_; and radius /;. One can also
select the appropriate intersection point at each step, so that all joint angles in
(0, 7] are clockwise (or counterclockwise). An illustration appears in Figure 2.
Consider now the closed convex curve R, of unit diameter, obtained from a
Reuleauz triangle, by replacing one of the circular arcs with a straight segment,
as in Figure 3. (A Reuleaux triangle can be obtained from an equilateral triangle
ABC by joining each pair of its vertices by a circular arc whose center is at the
third vertex; see [Yaglom and Boltyanskii 1961].) The above algorithm can be
modified to compute a folding of a ruler with maximum link length 1 inside R:
Fix the first free endpoint of the ruler at some point py of the circular arc AB.
Iteratively fix the next point of the ruler at some intersection point (it exists!)
with the open curve BAC. The area of R is %7‘( — %\/5 ~ 0.614, as claimed.
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Figure 2. A carpenter’s ruler with five links folded so that it fits in a circular
case of diameter L, where L = I3 is the maximum link-length. All joint angles
in this folding are counterclockwise (i.e., left turns).

C

Figure 3. The closed curve R obtained from a Reuleaux triangle, and a ruler
with four links folded inside; the length of I3 is 1.

It remains to prove the lower bound in Theorem 2. Consider a 3-link ruler
ABCD with lengths AB =1, BC' =z < 1 and CD = 1, where the choice of
the length = = (V7 — 1) ~ 0.8229 of the middle link is explained below. We
will show that the area of any convex case for it is at least %. In any folding
in which the unit length links do not intersect, the diameter of the case exceeds
one. Assume therefore that they intersect (see Figure 4). The area of BCAD
(i.e., the convex hull of the four endpoints of the links) is

absina  (1—a)(1—=0)sina a(l—b)sina (1 —a)bsina sina

2+ 2 + 2 + 2 27

where a = BOD.
For a given x, the area is minimized when either A = D so that the folding
forms an isosceles triangle (small z), or when AD is parallel to BC and AD =1
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D -

B C

Figure 4. A ruler with link-lengths 1, z and 1.

(large x). The area of the isosceles triangle is

JHG B 0-3)

The area of the trapezoid BCAD is

1+ ) (1 + x)2
2 2 ’
Now choose x to balance the two areas. A routine calculation gives
VT-1
2 )

and the corresponding area is 3/8. This completes the proof of Theorem 2.

€r =

We conclude with these questions: Is the curve R a convex universal case of
minimum area? If not, what is the minimum area of such a universal case? Does
convexity of the case make any difference?
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1. Introduction

Folding and unfolding problems have been implicit since Albrecht Diirer [1525],
but have not been studied extensively in the mathematical literature until re-
cently. Over the past few years, there has been a surge of interest in these
problems in discrete and computational geometry. This paper gives a brief sur-
vey of most of the work in this area. Related, shorter surveys are [Connelly and
Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000].
We are currently preparing a monograph on the topic [Demaine and O’Rourke
> 2005].

In general, we are interested in how objects (such as linkages, pieces of paper,
and polyhedra) can be moved or reconfigured (folded) subject to certain con-
straints depending on the type of object and the problem of interest. Typically
the process of unfolding approaches a more basic shape, whereas folding compli-
cates the shape. We define the configuration space as the set of all configurations
or states of the object permitted by the folding constraints, with paths in the
space corresponding to motions (foldings) of the object.

This survey is divided into three sections corresponding to the type of object
being folded: linkages, paper, or polyhedra. Unavoidably, areas with which we
are more familiar or for which there is a more extensive literature are covered
in more detail. For example, more problems have been explored in linkage and
paper folding than in polyhedron folding, and our corresponding sections reflect
this imbalance. On the other hand, this survey cannot do justice to the wealth
of research on protein folding, so only a partial survey appears in Section 2.5.

2. Linkages

2.1. Definitions and fundamental questions. A linkage or framework con-
sists of a collection of rigid line segments (bars or links) joined at their endpoints
(vertices or joints) to form a particular graph. A linkage can be folded by mov-
ing the vertices in R? in any way that preserves the length of every bar. Unless
otherwise specified, we assume the vertices to be universal joints, permitting the
full angular range of motions. Restricted angular motions will be discussed in
Section 2.5.2.

Linkages have been studied extensively in the case that bars are permitted to
cross; see, for example, [Hopcroft et al. 1984; Jordan and Steiner 1999; Kapovich
and Millson 1995; Kempe 1876; Lenhart and Whitesides 1995; Sallee 1973;
Whitesides 1992]. Such linkages can be very complex, even in the plane. Kempe
[1876] suggested an incomplete argument to show that a planar linkage can be
built so that a vertex traces an arbitrary polynomial curve— there is a linkage
that can “sign your name.” It was not until recently that Kempe’s claim was
established rigorously by Kapovich and Millson [2002]. Hopcroft, Joseph, and
Whitesides [Hopcroft et al. 1984] showed that deciding whether a planar linkage
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can reach a particular configuration is PSPACE-complete. Jordan and Steiner
[1999] proved that there is a linkage whose configuration space is homeomorphic
to an arbitrary compact real algebraic variety with Euclidean topology, and thus
planar linkages are equivalent to the theory of the reals (solving systems of poly-
nomial inequalities over reals). On the other hand, for a linkage whose graph is
just a cycle, all configurations can be reached in Euclidean space of any dimen-
sion greater than 2 by a sequence of simple motions [Lenhart and Whitesides
1995; Sallee 1973], and in the plane there is a simple restriction characterizing
which polygons can be inverted in orientation [Lenhart and Whitesides 1995].

Recently there has been much work on the case that the linkage must remain
simple, that is, never have two bars cross.! The remainder of this survey assumes
this noncrossing constraint. Such linkage folding has applications in hydraulic
tube bending [O’Rourke 2000] and motion planning of robot arms. There are
also connections to protein folding in molecular biology, which we touch upon in
Section 2.5. See also [Connelly et al. 2003; O’Rourke 2000; Toussaint 1999a] for
other surveys on linkage folding without crossings.

Perhaps the most fundamental question one can ask about folding linkages
is whether it is possible to fold between any two configurations. That is, is
there a folding between any two simple configurations of the same linkage (with
matching graphs, combinatorial embeddings, and bar lengths) while preserving
the bar lengths and not crossing any bars during the folding? Because folding
motions can be reversed and concatenated, this fundamental question is equiv-
alent to whether every simple configuration can be folded into some canonical
configuration, a configuration whose definition depends on the type of linkage
under consideration.

We concentrate here on allowing all continuous motions that maintain sim-
plicity, but we should mention that different applications often further constrain
the permissible motions in various ways. For example, hydraulic tube bending
allows only one joint to bend at any one time, and moreover the joint angle can
never reverse direction. Such constraints often drastically alter what is possible.
See, for example, [Arkin et al. 2003].

In the context of linkages whose edges cannot cross, three general types of
linkages are commonly studied, characterized by the structure of their associ-
ated graphs (see Figure 1): a polygonal arc or open polygonal chain (a single
path); a polygonal cycle, polygon, or closed polygonal chain (a single cycle); and
2 The canonical configuration of an arc is the
straight configuration, all vertex angles equal to 180°. A canonical configuration

a polygonal tree (a single tree).

1Typically, bars are allowed to touch, provided they do not properly cross. However, in-
sisting that bars only touch at common endpoints does not change the results.

2More general graphs have been studied largely in the context of allowing bars to cross,
exploring either aspects of the configurations space (e.g., the Kempe work mentioned earlier),
or the conditions which render the graph rigid. Graph rigidity is a rich topic, not detailed
here, which also plays a role in the noncrossing-bar scenario in Section 2.2.1.
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Figure 1. The three common types of linkages and their associated canonical
. . ? . .
configurations. From top to bottom, a polygonal arc — the straight configu-

. ? . . ?
ration, a polygonal cycle — a convex configuration, and a polygonal tree — a
(nearly) flat configuration.

of a cycle is a convex configuration, planar and having all interior vertex angles
less than or equal to 180°. It is relatively easy to show that convex configura-
tions are indeed “canonical” in the sense that any one can be folded into any
other, a result that first appeared in [Aichholzer et al. 2001]. Finally, a canonical
configuration of a tree is a flat configuration: all vertices lie on a horizontal line,
and all bars point “rightward” from a common root. Again it is easy to fold any
flat configuration into any other [Biedl et al. 2002b].

The fundamental questions thus become whether every arc can be straight-
ened, every cycle can be convexified, and every tree can be flattened. The answers
to these questions depend on the dimension of the space in which the linkage
starts, and the dimension of the space in which the linkage may be folded. Over
the past few years, this collection of questions has been completely resolved:

Can all arcs be straightened?

2D: Yes [Connelly et al. 2003]
3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]
4D+: Yes [Cocan and O’Rourke 2001]

Can all cycles be convexified?

2D: Yes [Connelly et al. 2003]
3D: No [Cantarella and Johnston 1998; Biedl et al. 2001]
4D+: Yes [Cocan and O’Rourke 2001]

Can all trees be flattened?

2D: No [Biedl et al. 2002b]
3D: No (from arcs)
4D+: Yes [Cocan and O’Rourke 2001]
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The answers for arcs and cycles are analogous to the existence of knots tied
from one-dimensional string: nontrivial knots exist only in 3D. In contrast, the
situation for trees presents an interesting difference in 2D: while trees in the plane
are topologically unknotted, they can be geometrically locked. This observation
is some evidence for the belief that the fundamental problems are most difficult
in 2D.

The next three subsections describe the historical progress of these results
and other results closely related to the fundamental questions. Along the way,
Sections 2.3.1-2.3.4 describe several special forms of linkage folding arising out of
a problem posed by Erdés in 1935; and Section 2.3.8 considers the generalization
of multiple chains. Finally, Section 2.5 discusses the connections between linkage
folding and protein folding, and describes the most closely related results and
open problems.

2.2. Fundamental questions in 2D. Section 2.2.1 describes the development
of the theorems for straightening arcs and convexifying cycles in 2D. Section 2.2.2
discusses the contrary result that not all trees can be flattened.

2.2.1. The carpenter’s rule problem: polygonal chains in 2D. The questions of
whether every polygonal arc can be straightened and every polygonal cycle can
be convexified in the plane have arisen in many contexts over the last quarter
of a century.® In the discrete and computational geometry community, the arc-
straightening problem has become known as the carpenter’s rule problem because
a carpenter’s rule folds like a polygonal arc.

Most people’s initial intuition is that the answers to these problems are YES,
but describing a precise general motion proved difficult. It was not until 2000
that the problems were solved by Connelly, Demaine, and Rote [Connelly et al.
2003], with an affirmative answer. Figure 2 shows an example of the motion
resulting from this theorem.

More generally, the result in [Connelly et al. 2003] shows that a collection of
nonintersecting polygonal arcs and cycles in the plane may be simultaneously
folded so that the outermost arcs are straightened and the outermost cycles are
convexified. The “outermost” proviso is necessary because arcs and cycles can-
not always be straightened and convexified when they are contained in other
cycles. The key idea for the solution, introduced by Giinter Rote, is to look for
expansive motions in which no vertex-to-vertex distance decreases. Bars can-
not cross before getting closer, so expansiveness allows us to ignore the difficult
nonlocal constraint that bars must not cross. Expansiveness brings the problem
into the areas of rigidity theory and tensegrity theory, which study frameworks
of rigid bars, unshrinkable struts, and unexpandable cables. Tools from these

3Posed independently by Stephen Schanuel and George Bergman in the early 1970’s, Ulf
Grenander in 1987, William Lenhart and Sue Whitesides in 1991, and Joseph Mitchell in 1992;
see [Connelly et al. 2003].
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Figure 2. Two views of convexifying a “doubled tree” linkage. The top snap-
shots are all scaled the same, and the bottom snapshots are rescaled to improve
visibility.

areas helped show that, infinitesimally, arcs and cycles can be unfolded ex-
pansively. These infinitesimal motions are combined by flowing along a vector
field defined implicitly by an optimization problem. As a result, the motion is
piecewise-differentiable (C!). In addition, any symmetries present in the initial
configuration of the linkage are preserved throughout the motion. Similar tech-
niques show that the area of each cycle increases by this motion and furthermore
by any expansive motion [Connelly et al. 2003].

Since the original theorem, two additional algorithms have been developed for
unfolding polygonal chains. Figure 3 provides a visual comparison of all three
algorithms.

Tleana Streinu [2000] demonstrated another expansive motion for straight-
ening arcs and convexifying polygons that is piecewise-algebraic, composed of a
polynomial-length sequence of mechanisms, each with a single degree of freedom.
In this sense the motion is easier to implement “mechanically.” It is also possible
to compute the algebraic curves involved, though the running time is exponen-
tial in n. This method also elucidates an interesting combinatorial structure to
2D linkage unfolding through “pseudotriangulations,” which have subsequently
received much attention in computational geometry (see [O’Rourke 2002; Rote
2003], for example).

Cantarella, Demaine, Iben, and O’Brien [Cantarella et al. 2004] gave an
energy-based algorithm for straightening arcs and convexifying polygons. This
algorithm follows the downhill gradient of an appropriate energy function, cor-
responding roughly to the intuition of filling the polygon with air. The resulting
motion is not expansive, essentially averaging out the strut constraints. On the
other hand, the existence of the downhill gradient relies on the existence of ex-
pansive motions from [Connelly et al. 2003], by showing that the latter decrease
energy. The motion avoids self-intersection not through expansiveness but by
designing the energy function to approach +o0o near an intersecting configura-
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NN

(a) Via convex programming [Connelly et al. 2003]

(b) Via pseudotriangulations [Streinu 2000]. Pinned vertices are circled.

<0 OO

(¢) Via energy minimization [Cantarella et al. 2004].

Figure 3. Convexifying a common polygon via all three convexification methods.

tion; any downhill flow avoids such spikes. The result is a C'°° motion, easily
computed as a piecewise-linear motion in angle space. The number of steps in
the piecewise-linear motion is polynomial in two quantities: in the number of
vertices n, and in the ratio between the maximum edge length and the initial
minimum distance between a vertex and an edge.

2.2.2. Trees in 2D. It was shown in [Biedl et al. 2002b] that not all trees can be
flattened in the plane. The example there consists of at least 5 petals connected
at a central high-degree vertex. The version shown in Figure 4 uses 8 petals.
Each petal is an arc of three bars, the last of which is “wedged” into the center
vertex.

Intuitively, the argument that the tree is locked is as follows. No petal can be
straightened unless enough angular room has been made. But no petal can be
reduced to occupy less angular space by more than a small positive number unless
the petal has already been straightened. This circular dependence implies that
no petal can be straightened, so the tree is locked. The details of this argument,
in particular obtaining suitable tolerances for closeness, are somewhat intricate
[Biedl et al. 2002b]. The key is that each petal occupies a wedge of space whose
angle is less than 90°, which is why at least 5 petals are required.
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Figure 4. The locked tree on the left, from [Biedl et al. 2002b], cannot be

reconfigured into the nearly flat configuration on the right. (Figure 1 of [Biedl
et al. 2002b].)

Figure 5. The locked tree from [Connelly et al. 2002]. Based on Figure 1(c) of
[Connelly et al. 2002].

This tree remains locked if we replace the central degree-5 (or higher) vertex
with multiple degree-3 vertices connected by very short bars [Biedl et al. 2002b,
full version]. Connelly, Demaine, and Rote [Connelly et al. 2002] showed that
the tree in Figure 5, with a single degree-3 vertex and the remaining vertices
having degrees 1 and 2, is locked, proving tightness of the arc-and-cycle result in
[Connelly et al. 2003]. In [Connelly et al. 2002] an extension to rigidity /tensegrity
theory is given that permits establishing via linear programming that many
classes of planar linkages (e.g., trees) are locked. In particular, this method is
used to give short proofs that the tree in Figure 4 and the tree with one degree-3
vertex are strongly locked, in the sense that sufficiently small perturbations of
the vertex positions and bar lengths result in a tree that cannot be moved more
than € in the configuration space for any € > 0.
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Figure 6. (a) Flipping a polygon until it is convex. Pockets are shaded. (b) The
first flip shown in three dimensions.

2.3. Fundamental questions in 3D. Linkage folding in 3D was initiated ear-
lier, by Paul Erdés [1935]. His problem and its solution are described in Section
2.3.1. Sections 2.3.2-2.3.4 consider various extensions of this problem. All of
this work deals with linkages that start in the plane, but fold through 3D. The
more general situation, an arbitrary linkage starting in 3D, is addressed in Sec-
tion 2.3.6. As this problem proves unsolvable in general, additional special cases
are addressed in Section 2.3.7. Finally, Section 2.3.8 considers the generalized
problem of multiple interlocking chains.

2.3.1. Flips for planar polygons in 3D. The roots of linkage folding go back to
[Erdés 1935], a problem posed in the American Mathematics Monthly. Define
a pocket of a polygon to be a region bounded by a subchain of the polygon
edges, and define the lid of the pocket to be the edge of the convex hull con-
necting the endpoints of that subchain. Every nonconvex polygon has at least
one pocket. Erdés defined a flip as a rotation of a pocket’s chain of edges into
3D about the pocket lid by 180°, landing the subchain back in the plane of the
polygon, such that the polygon remains simple (i.e., non-self-intersecting); see
Figure 6. He asked whether every polygon may be convexified by a finite number
of simultaneous pocket flips.

The answer was provided in a later issue of the Monthly [Nagy 1939]. First,
Nagy observed that flipping several pockets at once could lead to self-crossing;
see Figure 7b. However, restricting to one flip at a time, Nagy proved that a
finite number of flips suffice to convexify any polygon; see Figure 6 for a three-
step example. This beautiful result has been rediscovered and reproved several
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:

Figure 7. Flipping multiple pockets simultaneously can lead to crossings [Nagy
1939].

Figure 8. Quadrangles can require arbitrarily many flips to convexify [Griinbaum
1995; Toussaint 1999b; Bied| et al. 2001].

times, as uncovered by Griinbaum and Toussaint and detailed in their histories
of the problem [Griilnbaum 1995; Toussaint 1999b]; only recently has a subtle
oversight in Nagy’s proof been corrected.

Unfortunately, the number of required flips can be arbitrarily large in terms
of the number of vertices, even for a quadrangle. This fact was originally proved
by Joss and Shannon (1973); see [Griinbaum 1995; Toussaint 1999b; Biedl et al.
2001]. Figure 8 shows the construction. By making the vertical edge of the
quadrangle very short and even closer to the horizontal edge, the angles after
the first flip approach the mirror image of the original quadrangle, and hence
the number of required flips approaches infinity.

Mark Overmars* posed the still-open problem of bounding the number of flips
in terms of natural measures of geometric closeness such as the diameter (max-
imum distance between two vertices), sharpest angle, or the minimum feature
size (minimum distance between two nonincident edges).

Another open problem is to determine the complexity of finding the shortest
or longest sequence of flips to convexify a given polygon. Weak NP-hardness
has been established for the related problem of finding the longest sequence of
flipturns [Aichholzer et al. 2002].

4Personal communication, February 1998.
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2.3.2. Flips in nonsimple polygons. Flips can be generalized to apply to nonsim-
ple polygons: consider two vertices adjacent along the convex hull of the polygon,
splitting the polygon into two chains, and rotate one (either) chain by 180° with
respect to the other chain about the axis through the two vertices. Simplicity
may not be preserved throughout the motion, just as it may not hold in the initial
or final configuration. The obvious question is whether every nonsimple polygon
can be convexified by a finite sequence of such flips. Grinbaum and Zaks [1998]
proved that if at each step we choose the flip that maximizes the resulting sum
of distances between all pairs of vertices, then this metric increases at each flip,
and the polygon becomes convex after finitely many flips. Without sophisticated
data structures, computing these flips requires Q(n?) time per flip. Toussaint
[1999b] proved that a different sequence of flips convexifies a nonsimple polygon,
and this sequence can be computed in O(n) time per flip. More recently, it has
been established® that every sequence of flips eventually convexifies a nonsimple
polygon. We expect that each flip can be executed in polylogarithmic amortized
time using dynamic convex-hull data structures as in [Aichholzer et al. 2002].°

2.3.3. Deflations. A deflation [Fevens et al. 2001; Wegner 1993; Toussaint 1999b)
is the reverse of a flip, in the sense that a deflation of a polygon should result in
a simple polygon that can be flipped into the original polygon. More precisely, a
deflation is a rotation by 180° about a line meeting the polygon at two vertices
and nowhere else, thus separating the chain into two subchains, such that the
rotation does not cause any intersections. Hence, after the deflation, this line
becomes a line of support (a line extending a convex-hull edge). Wegner [1993]
proposed the notion of deflations, and their striking similarity to flips led him
to conjecture that every polygon can be deflated only a finite number of times.
Surprisingly, this is not true: Fevens, Hernandez, Mesa, Soss, and Toussaint
[Fevens et al. 2001] characterized a class of quadrangles whose unique deflation
leads to another quadrangle in the class, thus repeating ad infinitum.

2.3.4. Other variations. Erdés flips have inspired several directions of research
on related notions, including pivots, pops, and flipturns. See [Toussaint 1999b)
for a survey of this area, with more recent work on flipturns in [Ahn et al. 2000;
Aichholzer et al. 2002; Biedl 2005].

2.3.5. Efficient algorithms for planar linkages in 3D. Motivated by the in-
efficiency of the flip algorithm, Biedl et al. [2001] developed an algorithm to
convexify planar polygons by motions in 3D using a linear number of simple
moves. The essence of this algorithm is to lift the polygon, bar by bar, at all
times maintaining a convex chain (or arch) lying in a plane orthogonal to the
plane containing the polygon; see Figure 9. The details of the algorithm are
significantly more involved than the overarching idea.

5Personal communication with Therese Biedl, May 2001.

6Personal communication with Jeff Erickson.
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Figure 9. A planar polygon partially lifted into a convex arch lying in a vertical
plane (shaded). (Based on Figure 6 of [Bied! et al. 2001].)

A second linear-time algorithm, which is in some ways conceptually simpler,
was developed by Aronov, Goodman, and Pollack [Aronov et al. 2002]. Their
algorithm at all times maintains the arch as a convex quadrilateral. At each
step, the algorithm lifts two edges, forming a “twisted trapezoid,” incorporates
the trapezoid into the arch, makes the arch planar, and reduces it back to a
quadrilateral. Avoiding intersections during the lifting phase requires a delicate
argument.

In contrast to convexifying a cycle, it is relatively easy to straighten a polyg-
onal arc lying in a plane, or on the surface of a convex polyhedron, by motions
in 3D [Biedl et al. 2001]. For an arc in a plane, the basic idea is to pull the
arc up into a vertical line. For a convex surface, the same idea is followed, but
with the orientation of the line changing to remain normal to the surface. The
algorithm lifts each bar in turn, from one end of the arc to the other, at all
times maintaining a prefix of the arc in a line normal to the current facet of the
polyhedron. Each lifting motion causes two joint angles to rotate, so that the
lifted prefix remains normal to the facet at all times, while the remainder of the
chain remains in its original position. Whenever the algorithm reaches a vertex
that bridges between two adjacent facets, it rotates the prefix to bring it normal
to the next facet. This algorithm also generalizes to flattening planar trees and
trees on the surface of a convex polyhedron, via motions in 3D.

2.3.6. Almost knots. What if the linkage starts in an arbitrary position in 3D
instead of in a plane? In general, a polygonal arc or an unknotted polygonal cycle
in 3D cannot always be straightened or convexified [Cantarella and Johnston
1998; Toussaint 2001; Biedl et al. 2001] (page 170). Figure 10 shows an example
of a locked arc in 3D. Provided that each of the two end bars is longer than the
sum s of the middle three bar lengths, the ends of the chain cannot get close
enough to the middle bars to untangle the chain (sometimes called the “knitting
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Figure 10. A locked polygonal arc in 3D with 5 bars [Cantarella and Johnston
1998; Bied! et al. 2001].

needles” example). More precisely, because the ends of the chain remain outside
a sphere with radius s and centered at one of the middle vertices, we can connect
the ends of the chain with an unknotted flexible cord outside the sphere, and
any straightening motion unties the resulting knot, which is impossible without
crossings [Biedl et al. 2001].

Alt, Knauer, Rote, and Whitesides [Alt et al. 2004] proved that it is PSPACE-
hard to decide whether a 3D polygonal arc (or a 2D polygonal tree) can be
reconfigured between two specified configurations. On the other hand, it remains
open to determine the complexity of deciding whether a polygonal arc can be
straightened. The next two sections describe special cases of 3D chains, more
general than planar chains, that can be straightened and convexified.

2.3.7. Simple projection. The “almost knottedness” of the example in Sec-
tion 2.3.6 suggests that polygonal chains having simple orthogonal projections
can always be straightened or convexified. This fact is established by two papers
[Biedl et al. 2001; Calvo et al. 2001]. In addition, there is a polynomial-time
algorithm to decide whether a polygonal chain has a simple projection, and if so
find a suitable plane for projection [Bose et al. 1999].

For a polygonal arc with a simple orthogonal projection, the straightening
method is relatively straightforward [Biedl et al. 2001]. The basic idea is to
process the arc from one end to the other, accumulating bars into a compact
“accordion” (z-monotone chain) lying in a plane orthogonal to the projection
plane, in which each bar is nearly vertical. Once this accumulation is complete,
the planar accordion is unfolded joint-by-joint into a straight arc. We observe
that a similar algorithm can be used to fold a polygonal tree with a simple
orthogonal projection into a generalized accordion, which can then be folded
into a flat configuration.

For a polygonal cycle with a simple orthogonal projection, the convexification
method is based on two steps [Calvo et al. 2001]. First, the projection of the
polygon is convexified via the results described in Section 2.2.1, by folding the
3D polygon to track the shadow, keeping constant the ascent of each bar. Sec-
ond, Calvo, Krizanc, Morin, Soss, and Toussaint [Calvo et al. 2001] develop an
algorithm for convexifying a polygon with convex projection. The basic idea is
to reconfigure the convex projection into a triangle, and stretch each accordion
formed by an edge in the projection. In linear time they show how to compute
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a motion for the second step that consists of O(n) simple moves, each changing
at most seven vertex angles.

2.3.8. Interlocked chains in 3D. Although we have settled on page 170 the
question of when one chain can lock (only in 3D), the conditions that permit
pairs of chains to “interlock” are largely unknown. This line of investigation was
prompted by a question posed by Anna Lubiw [Demaine and O’Rourke 2001]:
into how many pieces must an n-bar 3D chain be cut (at vertices) so that the
pieces can be separated and straightened? It is now known that the chain need
be fractured into no more than [n/2] — 1 pieces [Demaine et al. 2002b] but this
upper bound is likely not tight: the only lower bound known is |(n — 1)/4].

A collection of disjoint, noncrossing chains can be separated if, for any dis-
tance d, there is a non-self-crossing motion that results in every pair of points
on different chains being separated by at least d. If a collection cannot be sep-
arated, its chains are interlocked. Which collections of relatively short chains
can interlock was investigated in several papers [Demaine et al. 2003¢; Demaine
et al. 2002b]. Three typical results (all for chains with universal joints) are as
follows:

(i) No pair of 3-bar open chains can interlock, even with an arbitrary number
of additional 2-bar open chains.

(ii) A 3-bar open chain can interlock with a 4-bar closed chain. (See Figure 11.)

(iii) A 3-bar open chain can interlock with a 4-bar open chain.

The proof of the first result (for just a pair of 3-bar chains) identifies a plane
parallel to and separating the middle bars of each chain, and then nonuniformly
scales the coordinate system to straighten the other links while avoiding in-
tersections. The second result uses a topological argument based on “links”
(multicomponent knots), in a manner similar to the use of knots in the proof
that the chain in Figure 10 is locked. The proof of the third listed result is quite
intricate, relying on ad hoc geometric arguments [Demaine et al. 2002b]. There
are many open problems here, one of the most intriguing being this: what is the
smallest k& that permits a k-bar open chain to interlock with a 2-bar open chain?
(See [Glass et al. 2004].)

N
T NAL

Figure 11. A 3-bar open chain (grey) interlocked with a 4-bar closed chain
(black).




FOLDING AND UNFOLDING IN COMPUTATIONAL GEOMETRY 181

2.4. Fundamental questions in 4D and higher dimensions. In all di-
mensions higher than 3, it is known that all knots are trivial; analogously, all
polygonal arcs can be straightened, all polygonal cycles can be convexified, and
all polygonal trees can be flattened [Cocan and O’Rourke 2001] (page 170). Intu-
itively, this result holds because the number of degrees of freedom of any vertex is
at least two higher than the dimensionality of the obstacles imposed by any bar.
This property allows Cocan and O’Rourke [2001] to establish, for example, that
the last bar of a polygonal arc can be unfolded by itself to any target position
that is simple.

Cocan and O’Rourke [2001] show how to straighten an arc using O(n) simple
moves that can be computed in O(n?) time and O(n) space. On the other
hand, their method for convexifying a polygon requires O(n%) simple moves and
O(n®logn) time to compute.

2.5. Protein folding. Protein folding [Chan and Dill 1993; Hayes 1998; Merz
and Le Grand 1994] is an important problem in molecular biology because it
is generally believed that the folded structure of a protein (the fundamental
building block of life) determines its function and behavior.

2.5.1. Connection to linkages. A protein can be modeled by a linkage in which the
vertices represent amino acids and the bars represent bonds connecting them.
The bars representing bonds are typically close in length, within a factor less
than two. Depending on the level of detail, the protein can be modeled as a tree
(more precise) or as a chain (less precise).

An amazing property of proteins is that they fold quickly and consistently
to a minimum-energy configuration. Understanding this motion has immediate
connections to linkage folding in 3D. A central unsolved theoretical question
[Biedl et al. 2001] arising in this context is whether every equilateral polygonal
arc in 3D can be straightened. Cantarella and Johnston [Cantarella and Johnston
1998] proved that this is true for arcs of at most 5 bars. More generally, can
every equilateral polygonal tree in 3D be flattened?

2.5.2. Fixed-angle linkages. A more accurate mathematical model of foldings
of proteins is not by linkages whose vertices are universal joints, but rather by
fized-angle linkages in which each vertex forms a fixed angle between its incident
bars. This angular constraint roughly halves the number of degrees of freedom
in the linkage; the basic motion is rotating a portion of the linkage around a
bar of the linkage. Foldings of such linkages have been explored extensively by
Soss and Toussaint [Soss and Toussaint 2000; Soss 2001]. For example, they
prove in [Soss and Toussaint 2000] that it is NP-complete to decide whether a
fixed-angle polygonal arc can be flattened (reconfigured to lie a plane), and in
[Soss 2001] that it is NP-complete to decide whether a fixed-angle polygonal arc
can be folded into its mirror image.
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More positive results analyze the polynomial complexity of determining the
maximum extent of a rotation around a bar: Soss and Toussaint [Soss and Tou-
ssaint 2000; Soss 2001] prove an O(n?) upper bound, and Soss, Erickson, and
Overmars [Soss 2001; Soss et al. 2003] give a 3SUM-hardness reduction, suggest-
ing an Q(n?) lower bound.

Another line of investigation on fixed-angle chains was opened in [Aloupis
et al. 2002a; Aloupis et al. 2002b]. Define a linkage X to be flat-state connected
if, for each pair of its flat realizations x; and xs, there is a reconfiguration from
x1 to xo that avoids self-intersection throughout. In general this motion alters
the linkage to nonflat configurations in R® intermediate between the two flat
states. The main question is to determine whether every fixed-angle open chain
is flat-state connected. It has been established that the answer is YES for chains
all of whose fixed angles between consecutive bars are nonacute [Aloupis et al.
2002a], and although other special cases have been settled [Aloupis et al. 2002b],
the main question remains open.

2.5.3. Producible chains. A connection between fixed-angle nonacute chains
and a model of protein production was recently established in [Demaine et al.
2003b]. Here the ribosome — the “machine” that creates protein chains in biolog-
ical cells—is modeled as a cone, with the fixed-angled chain produced bar-by-bar
inside and emerging through the cone’s apex. A configuration of a chain is said
to be a-producible if there exists a continuous motion of the chain as it is created
by the above model from within a cone of half-angle o < 7/2. The main result
of [Demaine et al. 2003b] is a theorem that identifies producible with flattenable
chains, in this sense: a configuration of a chain whose fixed angles are > 7 — «,
for @« < 7/2, is a-producible if and only if it is flattenable. For example, for
a = 45°, this theorem says that a fixed-135%-angle chain (which is nonacute) is
producible within a 90° cone if and only if that configuration is flattenable.

The proof uses a coiled cannonical configuration of the chain, which can be
obtained by time-reversal of the production steps, winding the chain inside the
cone. This canonical form establishes that all a-producible chains can be recon-
figured to one another. Then it is shown how to produce any flat configuration
by rolling the cone around on the plane into which the flat chain is produced.
Because locked chains are not flattenable, the equivalence of producible and
flattenable configurations shows that cone production cannot lead to locked con-
figurations. This result in turn leads to the conclusion that the producible chains
are rare, in a technical sense, suggesting that the entire configuration space for
folding proteins might not need to be searched.

2.5.4. The H-P model. So far in this section we have not considered the forces
involved in protein folding in nature. There are several models of these forces.
One of the most popular models of protein folding is the hydrophobic-hydro-
philic (H-P) model [Chan and Dill 1993; Dill 1990; Hayes 1998], which defines
both a geometry and a quality metric of foldings. This model represents a protein
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as a chain of amino acids, distinguished into two categories, hydrophobic (H) and
hydrophilic (P). A folding of such a protein chain in this model is an embedding
along edges of the square lattice in 2D or the cubic lattice in 3D without self-
intersection. The optimum or minimum-energy folding maximizes the number of
hydrophobic (H) nodes that are adjacent in the lattice. Intuitively, this metric
causes hydrophobic amino acids to avoid the surrounding water.

This combinatorial model is attractive in its simplicity, and already seems to
capture several essential features of protein folding such as the tendency for the
hydrophobic components to fold to the center of a globular protein [Chan and
Dill 1993]. While a 3D H-P model most naturally matches the physical world,
in fact it is more realistic as a 2D model for computationally feasible problem
sizes. The reason for this is that the perimeter-to-area ratio of a short 2D chain
is a close approximation to the surface-to-volume ratio of a long 3D chain [Chan
and Dill 1993; Hayes 1998].

Much work has been done on the H-P model [Berger and Leighton 1998;
Chan and Dill 1991; Chan and Dill 1990; Crescenzi et al. 1998; Hart and Istrail
1996; Lau and Dill 1989; Lau and Dill 1990; Lipman and Wilber 1991; Unger and
Moult 1993a; Unger and Moult 1993b; Unger and Moult 1993c]. Recently, on the
computational side, Berger and Leighton [Berger and Leighton 1998] proved NP-
completeness of finding the optimal folding in 3D, and Crescenzi et al. [Crescenzi
et al. 1998] proved NP-completeness in 2D. Hart and Istrail [Hart and Istrail
1996] have developed a 3/8-approximation in 3D and a 1/4-approximation in 2D
for maximizing the number of hydrophobic-hydrophobic adjacencies.

Aichholzer, Bremner, Demaine, Meijer, Sacristan, and Soss [Aichholzer et al.
2003] have begun exploring an important yet potentially more tractable aspect of
protein folding: can we design a protein that folds stably into a desired shape?
In the H-P model, a protein folds stably if it has a unique minimum-energy
configuration. So far, Aichholzer et al. [Aichholzer et al. 2003] have proved the
existence of stably folding proteins of all lengths divisible by 4, and for closed
chains of all possible (even) lengths. It remains open to characterize the possible
shapes (connected subsets of the square grid) attained by stable protein foldings.

3. Paper

Paper folding (origami) has led to several interesting mathematical and com-
putational questions over the past fifteen years or so. A piece of paper, normally
a (solid) polygon such as a square or rectangle, can be folded by a continuous
motion that preserves the distances on the surface and does not cause the paper
to properly self-intersect. Informally, paper cannot tear, stretch, or cross itself,
but may otherwise bend freely. (There is a contrast here to folding other ma-
terials, such as sheet metal, that must remain piecewise planar throughout the
folding process.) Formally, a folding is a continuum of isometric embeddings of
the piece of paper in R3. However, the use of the term “embedding” is weak:
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paper is permitted to touch itself provided it does not properly cross itself. In
particular, a flat folding folds the piece of paper back into the plane, and so the
paper must necessarily touch itself. We frequently ignore the continuous motion
of a folding and instead concentrate on the final folded state of the paper; in
the case of a flat folding, the flat folded state is called a flat origami. This con-
centration on the final folded state was recently justified by a proof that there
always exists a continuous motion from a planar polygonal piece of paper to any
“legal” folded state [Demaine et al. 2004].

Some of the pioneering work in origami mathematics (see Section 3.3.1) studies
the crease pattern that results from unfolding a flat origami, that is, the graph
of edges on the paper that fold to edges of a flat origami. Stated in reverse,
what crease patterns have flat foldings? Various necessary conditions are known
[Hull 1994; Justin 1994; Kawasaki 1989], but there is little hope for a polynomial
characterization: Bern and Hayes [Bern and Hayes 1996] have shown that this
decision problem is NP-hard.

A more recent trend, as in [Bern and Hayes 1996], is to explore computational
origami, the algorithmic aspects of paper folding. This field essentially began
with Robert Lang’s work on algorithmic origami design [Lang 1996], starting
around 1993. Since then, the field of computational origami has grown signifi-
cantly, in particular in the past two years by applying computational geometry
techniques. This section surveys this work. See also [Demaine and Demaine
2002].

3.1. Categorization. Most results in computational origami fall under one or
more of three categories: universality results, efficient decision algorithms, and
computational intractability results. This categorization applies more generally
to folding and unfolding, but is particularly useful for results in computational
origami.

A wuniversality result shows that, subject to a certain model of folding, every-
thing is possible. For example, any tree-shaped origami base (Section 3.2.2), any
polygonal silhouette (Section 3.2.1), and any polyhedral surface (Section 3.2.1)
can be folded out of a sufficiently large piece of paper. Universality results often
come with efficient algorithms for finding the foldings; pure existence results are
rare.

When universality results are impossible (some objects cannot be folded), the
next-best result is an efficient decision algorithm to determine whether a given
object is foldable. Here “efficient” normally means “polynomial time.” For
example, there is a polynomial-time algorithm to decide whether a “map” (grid
of creases marked mountain and valley) can be folded by a sequence of “simple
folds” (Section 3.3.4).

Not all paper-folding problems have efficient algorithms, and this can be
proved by a computational intractability result. For example, it is NP-hard to
tell whether a given crease pattern folds into some flat origami (Section 3.3.2),
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even when folds are restricted to simple folds (Section 3.3.4). These results imply
that there are no polynomial-time algorithms for these problems, unless some
of the hardest computational problems known can also be solved in polynomial
time, which is generally deemed unlikely.

We further distinguish computational origami results as addressing either
origami design or origami foldability. In origami design, some aspects of the
target configuration are specified, and the goal is to design a suitable detailed
folded state that can be folded out of paper. In origami foldability, the tar-
get configuration is unspecified and arbitrary; rather, the initial configuration
is specified, in particular the crease pattern, possibly marked with mountains
and valleys, and the goal is to fold something (anything) using precisely those
creases. While at first it may seem that understanding origami foldability is a
necessary component for origami design, the results indicate that in fact origami
design is easier to solve than origami foldability, which is usually intractable.

Our survey of computational origami is divided accordingly into Section 3.2
(origami design) and Section 3.3 (origami foldability).

3.2. Origami design. We define origami design loosely as, given a piece of
paper, fold it into an object with certain desired properties, e.g., a particular
shape. The natural theoretical version of this problem is to ask for an origami
with a specific silhouette or three-dimensional shape; this problem can be solved
in general (Section 3.2.1), although the algorithms developed so far do not lead
to practical foldings. A specific form of this problem has been solved for practi-
cal purposes by Lang’s tree method (Section 3.2.2), which has brought modern
origami design to a new level of complexity. Related to this work is the problem
of folding a piece of paper to align a prescribed graph (Section 3.2.3), which can
be used for a magic trick involving folding and one complete straight cut.

3.2.1. Silhouettes and polyhedra. A direct approach to origami design is to
specify the exact final shape that the paper should take. More precisely, suppose
we specify a particular flat silhouette, or a three-dimensional polyhedral surface,
and desire a folding of a sufficiently large square of paper into precisely this
object, allowing coverage by multiple layers of paper. For what polyhedral shapes
is this possible? This problem is implicit throughout origami design, and was
first formally posed in [Bern and Hayes 1996]. The surprising answer is “always,”
as established by Demaine, Demaine, and Mitchell in 1999 [Demaine et al. 1999c¢;
2000d].

The basic idea of the approach is to fold the piece of paper into a thin strip,
and then wrap this strip around the desired shape. This wrapping can be done
particularly efficiently using methods in computational geometry. Specifically,
three algorithms are described in [Demaine et al. 2000d] for this process. One
algorithm optimizes paper usage: the amount of paper required can be made
arbitrarily close to the surface area of the shape, but only at the expense of in-
creasing the aspect ratio of the rectangular paper. Another algorithm maximizes
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Figure 12. A flat folding of a square of paper, black on one side and white on the
other side, designed by John Montroll [Montroll 1991, pp. 94-103]. (Figure 1(b)
of [Demaine et al. 2000d].)

the width of the strip subject to some constraints. A third algorithm places the
visible seams of the paper in any desired pattern forming a decomposition of the
sides into convex polygons. In particular, the number and total length of seams
can be optimized in polynomial time in most cases [Demaine et al. 2000d].

All of these algorithms allow an additional twist: the paper may be colored
differently on both sides, and the shape may be two-colored according to which
side should be showing. In principle, this allows the design of two-color models
similar to the models in Montroll’'s Origami Inside-Out [Montroll 1993]. An
example is shown in Figure 12.

Because of the use of thin strips, none of these methods lead to practical
foldings, except for small examples or when the initial piece of paper is a thin
strip. Nonetheless, the universality results of [Demaine et al. 2000d] open the
door to many new problems. For example, how small a square can be folded into
a desired object, e.g., a k X k chessboard? This optimization problem remains
open even in this special case, as do many other problems about finding efficient,
practical foldings of silhouettes, two-color patterns, and polyhedra.

3.2.2. Tree method. The tree method of origami design is a general approach
for “true” origami design (in contrast to the other topics that we discuss, which
involve less usual forms of origami). In short, the tree method enables design
of efficient and practical origami within a particular class of three-dimensional
shapes, most useful for origami design. Some components of this method, such
as special cases of the constituent molecules and the idea of disk packing, as
well as other methods for origami design, have been explored in the Japanese
technical origami community, in particular by Jun Maekawa, Fumiaki Kawahata,
and Toshiyuki Meguro. This work has led to several successful designs, but a full
survey is beyond the scope of this paper; see [Lang 2003; Lang 1998]. It suffices
to say that the explosion in origami design over the last 30 years, during which
the majority of origami models have been designed, may largely be due to an
understanding of these general techniques.
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Figure 13. Lang's TreeMaker applied to an 8-vertex tree to produce a lizard
base. (Figure 2.1.11 of [Lang 1998].)

Here we concentrate on Robert Lang’s work [1994a; 1994b; 1996; 1998; 2003],
which is the most extensive. Over the past decade, starting around 1993, Lang
has developed the tree method to the point where an algorithm and computer
program have been explicitly defined and implemented. Anyone with a Mac-
intosh computer can experiment with the tree method using Lang’s program
TreeMaker [Lang 1998].

The tree method allows one to design an origami base in the shape of a
specified tree with desired edge lengths, which can then be folded and shaped
into an origami model. See Figure 13 for an example. More precisely, the
tree method designs a uniazial base [Lang 1996], which must have the following
properties: the base lies above and on the zy-plane, all facets of the base are
perpendicular to the xy-plane, the projection of the base to the zy plane is
precisely where the base comes in contact with the xy-plane, and this projection
is a one-dimensional tree.

It is known that every metric tree (unrooted tree with prescribed edge lengths)
is the projection of a uniaxial base that can be folded from, e.g., a square. The
tree method gives an algorithm to find the folding that is optimal in the sense
that it folds the uniaxial base with the specified projection using the smallest
possible square piece of paper (or more generally, using the smallest possible
scaling of a given convex polygon). These foldings have led to many impressive
origami designs; see [Lang 2003] in particular.

There are two catches to this result. First, it is currently unknown whether
the prescribed folding self-intersects, though it is conjectured that self-intersec-
tion does not arise, and this conjecture has been verified on extensive examples.
Second, the optimization problem is difficult, a fairly general form of nonlinear
constrained optimization. So while optimization is possible in principle in finite
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Figure 14. Crease patterns for folding a rectangle of paper flat so that one com-
plete straight cut makes a butterfly (left) or a swan (right), based on [Demaine
et al. 2000c; Demaine et al. 1999b].

time, in practice heuristics must be applied; fortunately, such heuristics fre-
quently yield good, practical solutions. Indeed, additional practical constraints
can be imposed, such as symmetry in the crease pattern, or the constraint that
angles of creases are integer multiples of some value (e.g., 22.5°) subject to some
flexibility in the metric tree.

3.2.3. One complete straight cut. Take a piece of paper, fold it flat, make one
complete straight cut, and unfold the pieces. What shapes can result? This
fold-and-cut problem was first formally stated by Martin Gardner [1960], but
goes back much further, to a Japanese puzzle book [Sen 1721] and perhaps to
Betsy Ross in 1777 [Harper’s 1873]; see also [Houdini 1922, pp. 176-177]. A
more detailed history can be found in [Demaine et al. 2000c].

More formally, given a planar graph drawn with straight edges on a piece of
paper, can the paper be folded flat so as to map the entire graph to a common
line, and map nothing else to that line? The surprising answer is that this is
always possible, for any collection of line segments in the plane, forming noncon-
vex polygons, adjoining polygons, nested polygons, etc. There are two solutions
to the problem. The first (partial) solution [Demaine et al. 2000c; Demaine et al.
1999b] is based on a structure called the straight skeleton, which captures the
symmetries of the graph, thereby exploiting a more global structure of the prob-
lem. This solution applies to a large class of instances, which we do not describe
in detail here. See Figure 14 for two examples. The second (complete) solution
[Bern et al. 2002] is based on disk packing to make the problem more local, and
achieves efficient bounds on the number of creases.

While this problem may not seem directly connected to pure paper folding
because of the one cut, the equivalent problem of folding a piece of paper to
line up a given collection of edges is in fact closely connected to origami design.
Specifically, one subproblem that arises in TreeMaker (Section 3.2.2) is that the
piece of paper is decomposed into convex polygons, and the paper must be folded
flat so as to line up all the edges of the convex polygons, and place the interior
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Figure 15. A locally flat-foldable vertex: 01 + 03 + -+ = 02 + 04 + - -- = 180°.

of these polygons above this line. The fold-and-cut problem is a generalization
of this situation to arbitrary graphs: nonconvex polygons, nested polygons, etc.
In TreeMaker, there are important additional constraints in how the edges can
be lined up, called path constraints, which are necessary to enforce the desired
geometric tree. These constraints lead to additional components in the solution
called gussets.

3.3. Origami foldability. We distinguish origami design from origami fold-
ability in which the starting point is a given crease pattern and the goal is to fold
an origami that uses precisely these creases. (Arguably, this is a special case of
our generic definition of origami design, but we find it a useful distinction.) The
most common case studied is when the resulting origami should be flat, i.e., lie
in a plane.

3.3.1. Local foldability. For crease patterns with a single vertex, it is relatively
easy to characterize flat foldability. Without specified crease directions, a single-
vertex crease pattern is flat-foldable precisely if the alternate angles around the
vertex sum to 180°; see Figure 15. This is known as Kawasaki’s theorem [Bern
and Hayes 1996; Hull 1994; Justin 1994; Kawasaki 1989]. When the angle condi-
tion is satisfied, a characterization of valid mountain-valley assignments and flat
foldings can be found in linear time [Bern and Hayes 1996; Justin 1994], using
Maekawa’s theorem [Bern and Hayes 1996; Hull 1994; Justin 1994] and another
theorem of Kawasaki [Bern and Hayes 1996; Hull 1994; Kawasaki 1989] about
constraints on mountains and valleys. In particular, Hull has shown that the
number of distinct mountain-valley assignments of a vertex can be computed in
linear time [Hull 2003].

A crease pattern is called locally foldable if there is a mountain-valley assign-
ment so that each vertex locally folds flat, i.e., a small disk around each vertex
folds flat. Testing local foldability is nontrivial because each vertex has flexi-
bility in its assignment, and these assignments must be chosen consistently: no
crease should be assigned both mountain and valley by the two incident vertices.
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Bern and Hayes [Bern and Hayes 1996] proved that consistency can be resolved
efficiently when it is possible: local foldability can be tested in linear time.

3.3.2. Existence of folded states. Given a crease pattern, does it have a flat
folded state? Bern and Hayes [Bern and Hayes 1996] have proved that this
decision problem is NP-hard, and thus computationally intractable. Because
local foldability is easy to test, the only difficult part is global foldability, or
more precisely, computing a valid overlap order of the crease faces that fold
to a common portion of the plane. Indeed, Bern and Hayes [Bern and Hayes
1996] prove that, given a crease pattern and a mountain-valley assignment that
definitely folds flat, finding the overlap order of a flat folded state is NP-hard.

3.3.3. Equivalence to continuous folding process. In the previous section we
have alluded to the difference between two models of folding: the final folded
state (specified by a crease pattern, mountain-valley or angle assignment, and
overlap order) and a continuous motion to bring the paper to that folded state.
Basically all results, in particular those described so far, have focused on the
former model: proving that a folded state exists with the desired properties.
Intuitively, by appropriately flexing the paper, any folded state can be reached by
a continuous motion, so the two models should be equivalent. Only recently has
this been proved, initially for rectangular pieces of paper [Demaine and Mitchell
2001], and recently for general polygonal pieces of paper [Demaine et al. 2004]
but overall the number of creases is uncountably infinite. An interesting open
problem is whether a finite crease pattern suffices.

The only other paper of which we are aware that explicitly constructs contin-
uous folding processes is [Demaine and Demaine 1997]. This paper proves that
every convex polygon can be folded into a uniaxial base via Lang’s universal mol-
ecule [Lang 1998] without gussets. Furthermore, unlike [Demaine and Mitchell
2001], no additional creases are introduced during the motion, and each crease
face remains flat. This result can be used to animate the folding process.

3.3.4. Map folding: sequence of simple folds. In contrast to the complex origami
folds arising from reaching folded states [Demaine and Demaine 1997; Demaine
and Mitchell 2001], we can consider the less complex model of simple folds. A
simple fold (or book fold) is a fold by £180° along a single line. Examples
are shown in Figure 16. This model is closely related to “pureland origami”,
introduced by Smith [1976; 1980; 1988; 1993].

We can ask the same foldability questions for a sequence of simple folds. Given
a crease pattern, can it be folded flat via a sequence of simple folds? What if a
particular mountain-valley assignment is imposed?

An interesting special case of these problems is map folding (see Figure 16):
given a rectangle of paper with horizontal and vertical creases, each marked
mountain or valley, can it be folded flat via a sequence of simple folds? Tradi-
tionally, map folding has been studied from a combinatorial point of view; see,
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Figure 16. Folding a 2 x 4 map via a sequence of 3 simple folds.
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Figure 17. Two maps that cannot be folded by simple folds, but can be folded
flat. (These are challenging puzzles.) The numbering indicates the overlap order
of faces. (Figure 12 of [Arkin et al. 2004].)

e.g., [Lunnon 1968; Lunnon 1971]. Arkin, Bender, Demaine, Demaine, Mitchell,
Sethia, and Skiena [Arkin et al. 2004] have shown that deciding foldability of a
map by simple folds can be solved in polynomial time. If the simple folds are
required to fold all layers at once, the running time is at most O(nlogn), and
otherwise the running time is linear.

Surprisingly, slight generalizations of map folding are (weakly) NP-complete
[Arkin et al. 2004]. Deciding whether a rectangle with horizontal, vertical, and
diagonal (£45°) creases can be folded via a sequence of simple folds is NP-
complete. Alternatively, if the piece of paper is more general, a polygon with
horizontal and vertical sides, and the creases are only horizontal and vertical,
the same problem is NP-complete.

These hardness results are weak in the sense that they leave open the exis-
tence of a pseudopolynomial-time algorithm, whose running time is polynomial
in the total length of creases. Another intriguing open problem, posed by Jack
Edmonds, is the complexity of deciding whether a map has some flat folded
state, as opposed to a folding by a sequence of simple folds. Examples of maps
in which these two notions of foldability differ are shown in Figure 17.

3.4. Flattening polyhedra. When one flattens a cardboard box for recycling,
generally the surface is cut open. Suppose instead of allowing cuts to a polyhedral
surface in order to flatten it, we treat it as a piece of paper and fold as in origami.
We run into the same dichotomy as in Section 3.3.2: do we want a continuous
motion of the polyhedron, or does a description of the final folded state suffice?
If we start with a convex polyhedron, and each face of the crease pattern must
remain rigid during the folding, then Connelly’s extension [Connelly 1980] of
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Figure 18. Inverting a tetrahedral cone by a continuous isometric motion. Based
on Figure 2.5 of [Connelly 1993].

N

Figure 19. Flattening a tetrahedron, from left to right. Note that the faces are
not flat in the middle picture.

Cauchy’s rigidity theorem [1813] (see also [Cromwell 1997, pp. 219-247]) says
that the polyhedron cannot fold at all. Even if we start with a nonconvex
polyhedron and keep each face of the crease pattern rigid, the Bellows Theorem
[Connelly et al. 1997] says that the volume of the polyhedron cannot change,
so foldings are limited. However, if we allow the paper to curve (e.g., introduce
new creases) during the motion, as in origami, then folding becomes surprisingly
flexible. For example, a cone can be inverted [Connelly 1993]; see Figure 18.

A natural question is whether every polyhedron can be flattened: folded into a
flat origami. Intuitively, this can be achieved by applying force to the polyhedral
model, but in practice this can easily lead to tearing. There is an interesting
connection of this problem to a higher-dimensional version of the fold-and-cut
problem from Section 3.2.3. Given any polyhedral complex, can R? be folded
(through R*) “flat” into R3 so that the surface of the polyhedral complex maps to
a common plane, and nothing else maps to that plane? While the applicability of
four dimensions is difficult to imagine, the problem’s restriction to the surface of
the complex is quite practical, e.g., in packaging: flatten the polyhedral complex
into a flat folded state, without cutting or stretching the paper.

The flattening problem remains open if we desire a continuous folding process
into the flat state. If we instead focus on the existence of a flat folded state of
a polyhedron, then much more is known. Demaine, Demaine, and Lubiw’ have
shown how to flatten several classes of polyhedra, including convex polyhedra
and orthogonal polyhedra. See Figure 19 for an example. Recently, Demaine,
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Demaine, Hayes, and Lubiw® have shown that all polyhedra have flat folded
states. They conjecture further that every polyhedral complex can be flattened.

A natural question is whether the methods of Demaine and Mitchell [Demaine
and Mitchell 2001] and [Demaine et al. 2004] described in Section 3.3.3 can be
generalized to show that these folded states induce continuous folding motions
as in Figure 18.

4. Polyhedra

A standard method for building a model of a polyhedron is to cut out a flat
net or unfolding, fold it up, and glue the edges together so as to make precisely
the desired surface. Given the polyhedron of interest, a natural problem is to
find a suitable unfolding. On the other hand, given a polygonal piece of paper,
we might ask whether it can be folded and its edges can be glued together so as
to form a convex polyhedron. These two questions are addressed in Sections 4.1
and 4.2, respectively. Section 4.3 extends different forms of the latter question to
nonconvex polyhedra. Section 4.4 connects these problems to linkage and paper
folding.

4.1. Unfolding polyhedra. A classic open problem is whether (the surface
of) every convex polyhedron can be cut along some of its edges and unfolded
into one flat piece without overlap [Shephard 1975; O’Rourke 2000]. Such edge-
unfoldings go back to Diirer [1525], and have important practical applications
in manufacturing, such as sheet-metal bending [O’Rourke 2000; Wang 1997]. Tt
seems folklore that the answer to this question should be YES, but the evidence
for a positive answer is actually slim. Only very simple classes of polyhedra are
known to be edge-unfoldable; for example, pyramids, prisms, “prismoids,”® and
other more specialized classes [Demaine and O’Rourke > 2005]. In contrast,
experiments by Schevon [Schevon 1989; O’Rourke 2000] suggest that a random
edge-unfolding of a random polytope overlaps with probability 1. Of course,
such a result would not preclude, for every polytope, the existence of at least
one nonoverlapping edge-unfolding, or even that a large but subconstant fraction
of the polytope’s edge-unfoldings do not overlap. However, the unlikeliness of
finding an unfolding by chance makes the search more difficult.

An easier version of this edge-unfolding problem is the fewest-nets problem:
prove an upper bound on the number of pieces required by a multipiece non-
overlapping edge unfolding of a convex polyhedron. The obvious upper bound is
the number F of faces in the polyhedron; the original problem asks whether an
upper bound of 1 is possible. The first bound of ¢F' for ¢ < 1 was obtained by

"Manuscript, March 2001.
8Manuscript in preparation.

9The convex hull of two equiangular convex polygons, oriented so that corresponding edges
are parallel.
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Michael Spriggs,'® who established ¢ = 2/3. The smallest value of ¢ obtained so
far!! is 1/2. Proving an upper bound that is sublinear in F would be a significant
advancement.

We can also examine to what extent edge unfoldings can be generalized to
nonconvex polyhedra. In particular, define a polyhedron to be topologically con-
vex if its 1-skeleton (graph) is the 1-skeleton of a convex polyhedron. Does every
topologically convex polyhedron have an edge-unfolding? In particular, every
polyhedron composed of convex faces and homeomorphic to a sphere is topologi-
cally convex; can they all be edge-unfolded? This problem was posed by Schevon
[Schevon 1987].

Bern, Demaine, Eppstein, Kuo, Mantler, and Snoeyink [Bern et al. 2003] have
shown that the answer to both of these questions is NO: there is a polyhedron
composed of triangles and homeomorphic to a sphere that has no (one-piece,
nonoverlapping) edge-unfolding. The polyhedron is shown in Figure 20. It con-
sists of four “hats” glued to the faces of a regular tetrahedron, such that only the
peaks of the hats have positive curvature, that is, have less than 360° of incident
material. This property limits the unfoldings significantly, because (1) any set of
cuts must avoid cycles in order to create a one-piece unfolding, and (2) a leaf in
a forest of cuts can only lie at a positive-curvature vertex of the polyhedron: a
leaf at a negative-curvature vertex (more than 360° of incident material) would
cause local overlap.

The complexity of deciding whether a given topologically convex polyhedron
can be edge-unfolded remains open.

Another intriguing open problem in this area is whether every polyhedron
homeomorphic to a sphere has some one-piece unfolding, not necessarily using
cuts along edges. It is known that every convex polyhedron has an unfolding
in this model, allowing cuts across the faces of the polytope. Specifically, the
star unfolding [Agarwal et al. 1997; Aronov and O’Rourke 1992] cuts the shortest
paths from a common source point to each vertex of the polytope, and the source
unfolding [Mitchell et al. 1987] cuts the points with more than one shortest path
to a common source. Both of these unfoldings avoid overlap, the star unfolding
being the more difficult case to establish [Aronov and O’Rourke 1992]. The
source unfolding (but not the star unfolding) also generalizes to unfold convex
polyhedra in higher dimensions [Miller and Pak 2003].

But many nonconvex polyhedra also have such unfoldings. For example, Fig-
ure 20 illustrates one for the polyhedron described above. Biedl, Demaine, De-
maine, Lubiw, Overmars, O’Rourke, Robbins, and Whitesides [Biedl et al. 1998|
have shown how to unfold many orthogonal polyhedra, even with holes and
knotted topology, although it remains open whether all orthogonal polyhedra

10Personal communication, August 2003.

11Personal communication from Vida Dujmovié, Pat Morin, and David Wood, Febru-
ary 2004.
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Figure 20. (Left) Simplicial polyhedron with no edge-unfolding. (Right) An
unfolding when cuts are allowed across faces.

can be unfolded. The only known scenario that prevents unfolding altogether
[Bern et al. 2003] is a polyhedron with a single vertex of negative curvature (see
Figure 21), but this requires the polyhedron to have boundary (edges incident
to only one face).

Figure 21. A polyhedron with boundary that has no one-piece unfolding even
when cuts are allowed across faces. Vertex v has negative curvature, that is,
more than 360° of incident material. (Based on Figure 9 of [Bern et al. 2003].)

A recent approach to unfolding both convex and nonconvex polyhedra in any
dimension is the notion of “vertex-unfolding” [Demaine et al. 2003a]; see Fig-
ure 22. Specifically, a vertex-unfolding may cut only along edges of the polyhe-
dron (like an edge-unfolding) but permits the facets to remain connected only at
vertices (instead of along edges as in edge-unfolding). Thus, a vertex-unfolding
is connected, but its interior may be disconnected, “pinching” at a vertex. This
notion also generalizes to polyhedra in any dimension. Demaine, Eppstein, Er-
ickson, Hart, and O’Rourke [Demaine et al. 2003a] proved that every simplicial
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Figure 22. Vertex-unfolding of a triangulated cube with hinge points aligned.
(Based on Figure 2 of [Demaine et al. 2003a].)

manifold in any dimension has a nonoverlapping vertex-unfolding. In partic-
ular, this result covers triangulated polyhedra in 3D, possibly with boundary,
but it remains open to what extent vertex-unfoldings exist for polyhedra with
nontriangular faces. For example, does every convex polyhedron in 3D have a
vertex-unfolding?

4.2. Folding polygons into convex polyhedra. In addition to unfolding
polyhedra into simple planar polygons, we can consider the reverse problem
of folding polygons into polyhedra. More precisely, when can a polygon have
its boundary glued together, with each portion gluing to portions of matching
length, and the resulting topological object be folded into a conver polyhedron?
(There is almost too much flexibility with nonconvex polyhedra for this problem,
but see Section 4.3 for related problems of interest in this context.) A particular
kind of gluing is an edge-to-edge gluing, in which each entire edge of the polygon
is glued to precisely one other edge of the polygon. The existence of such a
gluing requires a perfect pairing of edges with matching lengths.

4.2.1. Edge-to-edge gluings. Introducing this area, Lubiw and O’Rourke [Lubiw
and O’Rourke 1996] showed how to test in polynomial time whether a polygon
has an edge-to-edge gluing that can be folded into a convex polyhedron, and
how to list all such edge-to-edge gluings in exponential time. A key tool in their
work is a theorem of A. D. Aleksandrov [Alexandrov 1950]. The theorem states
that a topological gluing can be realized geometrically by a convex polyhedron
precisely if the gluing is topologically a sphere, and at most 360° of material is
glued to any one point — that is, every point should have nonnegative curvature.

Based on this tool, Lubiw and O’Rourke use dynamic programming to de-
velop their algorithms. There are ©(n?) subproblems corresponding to gluing
subchains of the polygon, assuming that the two ends of the subchain have al-
ready been glued together. These subproblems are additionally parameterized
by how much angle of material remains at the point to which the two ends of
the chain glue in order to maintain positive curvature. It is this parameteriza-
tion that forces enumeration of all gluings to take exponential time. But for the
decision problem of the existence of any gluing, the remaining angle at the ends
only needs to be bounded, and only polynomially many subproblems need to be
considered, resulting in an O(n?) algorithm.
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Figure 23. The five edge-to-edge gluings of the Latin cross [Lubiw and O'Rourke
1996].

A particularly surprising discovery from this work [Lubiw and O’Rourke 1996]
is that the well-known “Latin cross” unfolding of the cube can be folded into
exactly five convex polyhedra by edge-to-edge gluing: a doubly covered (flat)
quadrangle, an (irregular) tetrahedron, a pentahedron, the cube, and an (irregu-
lar) octahedron. See Figure 23 for crease patterns and gluing instructions. These
foldings are the subject of a video [Demaine et al. 1999a].

4.2.2. Non-edge-to-edge gluings. More recently, Demaine, Demaine, Lubiw, and
O’Rourke [Demaine et al. 2000b; Demaine et al. 2002a] have extended this work
in various directions, in particular to non-edge-to-edge gluings.

In contrast to edge-to-edge gluings, any convex polygon can be glued into a
continuum of distinct convex polyhedra, making it more difficult for an algorithm
to enumerate all gluings of a given polygon. Fortunately, there are only finitely
many combinatorially distinct gluings of any polygon. For convex polygons,
there are only polynomially many combinatorially distinct gluings, and they
can be enumerated for a given convex polygon in polynomial time. This result
generalizes to any polygon in which there is a constant bound on the sharpest
angle. For general nonconvex polygons, there can be exponentially many (29(%))
combinatorially distinct gluings, but only that many. Again this corresponds
to an algorithm running in 200" time. Because of the exponential worst-case
lower bound on the number of combinatorially distinct gluings, we are justified
both here and in the enumeration algorithm of [Lubiw and O’Rourke 1996] to
spend exponential time. It remains open whether there is an output-sensitive
algorithm, whose running time is polynomial in the number of resulting gluings,
or in the number of gluings desired by the user. For non-edge-to-edge gluings,
it even remains open whether there is a polynomial-time algorithm to decide
whether a gluing exists.

The algorithms for enumerating all non-edge-to-edge gluings have been imple-
mented independently by Anna Lubiw (July 2000) and by Koichi Hirata [Hirata
2000] (June 2000). These programs have been applied to the example of the
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Latin cross. There are surprisingly many more, but still finitely many, non-edge-
to-edge gluings: a total of 85 distinct gluings (43 modulo symmetry). A manual
reconstruction of the polyhedra resulting from these gluings reveals 23 distinct
shapes: the cube, seven different tetrahedra, three different pentahedra, four
different hexahedra, six different octahedra, and two flat quadrangles [Demaine
et al. 2000a; Demaine and O’Rourke > 2005].

Alexander, Dyson, and O’Rourke [Alexander et al. 2002] performed a case
study of all the gluings of the square, reconstructing all the incongruent polyhe-
dra that result. This situation is complicated by the existence of entire continua
of gluings and polyhedra. Nonetheless, the entire configuration space of the poly-
hedra can be characterized, as shown in Figure 24. Although in this case it is
connected, there are convex polygons of n vertices whose space of all gluings into
polyhedra has Q(n?) connected components [Demaine and O’Rourke > 2005].
Although it is almost certain that all of these gluings lead to distinct polyhedra,
it seems difficult to establish this property without a method for reconstructing
the three-dimensional structure, the topic of the next section.

4.2.3. Constructing polyhedra. Another intriguing open problem in this area
[Demaine et al. 2002a] remains relatively unexplored: Aleksandrov’s theorem
implies that any valid gluing (homeomorphic to a sphere and having nonnegative
curvature everywhere) can be folded into a unique convex polyhedron, but how
efficiently can this polyhedron be constructed? The key difficulty here is to
determine the dihedral angles of the polyhedron, that is, by how much each
crease is folded. Finding a (superset of) the creases is straightforward:1? every
edge of the polyhedron is a shortest path between two positive-curvature vertices,
so compute all-pairs shortest paths in the polyhedral metric defined by the gluing
[Chen and Han 1996; Kaneva and O’Rourke 2000; Kapoor 1999].

Sabitov [Sabitov 1996] recently presented a finite algorithm for this recon-
struction problem, reducing the problem to finding roots of a collection of poly-
nomials of exponentially high degree. The algorithm is based on another his
results [Sabitov 1998; Sabitov 1996] that expresses the volume of a triangulated
polyhedron as the root of a polynomial in the edge lengths, independent of how
the polyhedron is geometrically embedded in 3-space. (This result was also
used to settle the famous Bellows Conjecture [Connelly et al. 1997].) Sabitov’s
algorithm was recently extended and its bounds improved by Fedorchuk and
Pak [Fedorchuk and Pak 2004] to express the internal vertex-to-vertex diagonal
lengths as roots of a polynomial of degree 4™ for a polyhedron of m edges. The
polyhedron can easily be reconstructed from these diagonal lengths.

12Personal communication with Boris Aronov, June 1998. The essence of the argument is
also present in [Alexandrov 1941].
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Figure 24. The continua of polyhedra foldable from a square. (Figure 2 of
[Alexander et al. 2002].)

4.3. Folding nets into nonconvex polyhedra. Define a net to be a con-
nected edge-to-edge gluing of polygons to form a tree structure, the edges shared
by polygons denoting creases. An open problem mentioned in Section 4.2.3 is
deciding whether a given net can be folded into a convex polyhedron using only
the given creases. More generally, we can ask whether a given net folds into a
nonconvex polyhedron. Now Aleksandrov’s theorem and Cauchy’s rigidity the-
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orem do not apply, so for a given gluing we are no longer easily guaranteed
existence or uniqueness.

Given the dihedral angles associated with creases in the net, it is easy to
decide foldability in polynomial time [Biedl et al. 1999b; Sun 1999]: we only
need to check that edges match up and no two faces cross. Without the di-
hedral angles, when does a given net fold into any polyhedron? Biedl, Lubiw,
and Sun [Biedl et al. 1999b; Sun 1999] proved a closely related problem to be
weakly NP-complete: does a given orthogonal net (each face is an orthogonal
polygon) fold into an orthogonal polyhedron? The difference with this problem
is that it constrains each dihedral angle to be +90°. It remained open whether
this constraint actually restricted what polyhedra could be folded, even for this
particular reduction. More generally, is there a nonorthogonal polyhedron (i.e.,
one that has at least one dihedral angle not a multiple of 90°) having orthogonal
faces and that is homeomorphic to a sphere? The answer to this question (posed
in [Biedl et al. 1999b]) turns out to be NO, as proved by Donoso and O’Rourke
[Donoso and O’Rourke 2002]. The answer is YES, however, if the polyhedron is
allowed to have genus 6 or larger; on the other hand, the answer remains NO for
genus up to 2 [Biedl et al. 2002a]. It remains open whether such nonorthogonal
polyhedra with orthogonal faces exist with genus 3, 4, or 5.

4.4. Continuously folding polyhedra. The results described so far for
polyhedron folding and unfolding are essentially about folded or unfolded states,
and not about the continuous process of reaching such states. In the context
of paper folding, we saw in Section 3.3.3 that these two notions are largely
equivalent. In the context of linkages, we saw that the two notions can differ,
particularly in 3D. Relatively little has been studied in the context of polyhedron
folding.

One special case that has been explored is orthogonal polyhedra. Specifically,
Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] have proved that there is
an edge-unfolding of an orthogonal polyhedron (which is an orthogonal net) that
cannot be folded into the orthogonal polyhedron by a continuous motion that
keeps the faces rigid and avoids self-intersection. The basis for their example is
the locked polygonal arc in 3D (Figure 10), converted into an orthogonal locked
polygonal arc in 3D, and then “thickened” into an orthogonal tube. A single
chain of faces in the unfolding is what prevents the continuous foldability.

One would expect, analogous to the results described in Section 3.3.3 [Demaine
and Mitchell 2001], that collections of polygons hinged together into a tree can
be folded into all possible configurations if we allow additional creases during
the motion. However, this extension (equivalent to a polygonal piece of paper)
remains open. A particularly interesting version of this question, posed in [Biedl
et al. 1999b], is whether a finite number of additional creases suffice.

An interesting collection of open questions arise when we consider polyhedron
foldings with creases only at polyhedron edges. For example, do all convex
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Figure 25. Folding the Latin cross into an octahedron, according to the crease
pattern in Figure 23(e), by affinely interpolating all dihedral angles. (Figure 2 of
[Demaine et al. 1999a].)

polyhedra have continuous edge-unfoldings? (This question may be easier to
answer negatively than the classic edge-unfolding problem.) Figure 25 shows
a simple example of such a folding, taken from a longer video [Demaine et al.
1999a], based on the simple rule of affinely interpolating each dihedral angle from
start to finish. Connelly, as reported in [Miller and Pak 2003], asked whether the
source unfolding can be continuously bloomed, i.e., unfolded so that all dihedral
angles increase monotonically. Although an affirmative answer to this question
has just been obtained,'® it remains open whether every general unfolding can
be executed continuously.

5. Conclusion and Higher Dimensions

Our goal has been to survey the results in the newly developing area of fold-
ing and unfolding, which offers many beautiful mathematical and computational
problems. Much progress has been made recently in this area, but many impor-
tant problems remain open. For example, most aspects of unfolding polyhedra
remain unsolved, and we highlight two key problems in this context: can all con-
vex polyhedra be edge-unfolded, and can all polyhedra be generally unfolded?
Another exciting new direction is the developing connection between linkage
folding and protein folding.

Finally, higher dimensions are just beginning to be explored. We mentioned
in Section 2.4 that 1D (one-dimensional) linkages in higher dimensions have
been explored. But 2D “linkages” in 4D —and higher-dimensional analogs—
have received less attention. One model is 2D polygons hinged together at their
edges to form a chain. Such a hinged chain has fewer degrees of freedom than
a 1D linkage in 3D; for example, a hinged chain can be forced to fold like a
planar linkage by extruding the linkage orthogonal to the plane. See Figure 26.
Biedl, Lubiw, and Sun [Biedl et al. 1999b; Sun 1999] showed that even hinged
chains of rectangles do not have connected configuration spaces, by considering
an orthogonal version of Figure 10. It would be interesting to explore these
chains of rectangles in 4D.

Turning to the origami context, one natural open problem is a generaliza-
tion of the fold-and-cut problem: given a polyhedral complex drawn on a d-

13Personal communication with Stefan Langerman et al., February 2004.



202 ERIK D. DEMAINE AND JOSEPH O’ROURKE

‘

Figure 26. Extruding a linkage into an equivalent collection of polygons (rect-
angles) hinged together at their edges.

dimensional piece of paper, is it always possible to fold the paper flat (into d-
space) while mapping the (d—1)-dimensional facets of the complex to a common
(d—1)-dimensional hyperplane? What if our goal is to map all k-dimensional
faces to a common k-dimensional flat, for all kK =0,1,...,d?

Salvador Dali’s famous painting (“Christ”) of Christ on an unfolded 4D hy-
percube suggests the possibilities for unfolding higher-dimensional polyhedra.
All of the unsolved 