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Preface

Overview

At the beginning of 1999, Springer-Verlag published the book Open Geome-
try OpenGL�+Advanced Geometry. There, the authors Georg Glaeser
and Hellmuth Stachel presented a comprehensive library of geometric meth-
ods based on OpenGL routines. An accompanying CD-ROM provided the source
code and many sample files. Many diverse topics are covered in this book. The
theoretical background is carefully explained, and many examples are given.

Since the publication of Open Geometry, the source code has been improved
and many additional features have been added to the program. Contributors from
all over the world have come up up with new ideas, questions, and problems. This
process has continued up to the present and Open Geometry is growing from
day to day.

In order to make all of these improvements accessible to the public, and also
in order to give deeper insight into Open Geometry, we decided to write this
new Handbook on Open Geometry GL 2.0. It will fill certain gaps of Open
Geometry 1.0 and explain new methods, techniques, and examples. On the
accompanying CD-ROM the new source code and the sample files are included.

The Handbook now contains 101 well-documented examples and the reader is
able to learn about Open Geometry by working through them. In addition,
we present a compendium of all important Open Geometry classes and their
methods.
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However, we did not intend to write a new tutorial for Open Geometry. The
Handbook is rather a sequel, written for the readers of the first book and for
advanced programmers. Furthermore, it is a source of creative and good examples
from diverse fields of geometry, computer graphics, and many other related fields
like physics, mathematics, astronomy, biology, and geography.

Organization

In Chapter 1 we explain the philosophy and capacity of Open Geometry as
well as the basic structure of an Open Geometry program. This is necessary
to make the Handbook readable for advanced programmers who have not read
the first book. Furthermore, it will be helpful to the reader in order to avoid
programming style that might not be compatible with future versions.

Chapter 2 explains the most important 2D classes and provides new examples
of animation and kinematics. We present enhanced methods of parameterized
curves and conic section, and we introduce Béziers and B-spline curves in Open
Geometry.

At the beginning of Chapter 3 we present a few basic 3D classes and explain
in detail how to use the camera. In the following we include a wide section on
diverse mathematical surfaces (our archives are full of them). Finally, the concept
of spline surfaces will provide a powerful tool for practical applications.

The chapter on 3D Graphics is split because of our rich collection of new ex-
amples. One of the most important changes is the possibility to get high-quality
views of Cad3D objects and to export them to other programs. We got some
remarkable effects by using POV-Ray, a freeware ray-tracing program.

In Chapter 5 we show cross connections between Open Geometry and diverse
geometric fields, such as descriptive geometry, projective geometry and differen-
tial geometry.

In Chapter 6 you can find a compendium of all important Open Geometry
classes and all important methods. This has not been done till now, neither in the
first book on Open Geometry 1.0 nor anywhere else. Dozens of new examples
will explain the new methods and ideas that have been developed during the last
year.

Guidelines for introducing new classes and good programming style are given in
Chapter 7. Furthermore, we present examples of typical mistakes that weaken
output quality and computing time. Usually these problems can be overcome by
obeying only few simple rules.

The handbook would be useless without an accompanying CD-ROM. It includes
the improved and enlarged source code and the complete listings of the new
sample files. Thus, the reader will be able to visualize all the examples on her/his
computer, and to explore the new possibilities herself/himself.
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The book is intended for anybody interested in computer graphics. Like Open
Geometry 1.0, it can be used by students and teachers, both at high school
or university, by scientists from diverse fields (mathematics, physics, computer
graphics), and by people working in artistic fields (architects, designers). Of
course, the reader must be able to write (or be willing to learn how to write)
simple programs in C++.
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4.28 The caustic curve generated by the reflection on an oloid. . . . . . . . . . . . . 376

4.29 A light ray undergoes multiple reflections inside a hyperbolically curved fiber. . 382

5.1 The genesis of top, front, and side views according to G. Monge. . . . . . . . . 390

5.2 Shade contour on a cube for parallel light. . . . . . . . . . . . . . . . . . . . . . 393

5.3 Central projection and net projection. . . . . . . . . . . . . . . . . . . . . . . . 397



List of Figures xix

5.4 The net projection of a space curve. . . . . . . . . . . . . . . . . . . . . . . . . 400

5.5 The lines of an elliptic congruence with rotational symmetry. . . . . . . . . . . 401

5.6 Projecting a circle by the rays of a net of rotation. . . . . . . . . . . . . . . . . 402

5.7 Extending E2 to the projective space P2. . . . . . . . . . . . . . . . . . . . . . . 405

5.8 Diverse cross ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

5.9 The cross ratio of four points or tangents of a conic. . . . . . . . . . . . . . . . 410

5.10 Diverse projective scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

5.11 A projectivity between conic and straight line generates a curve of class three. 421

5.12 The osculating quadric of a ruled surface. . . . . . . . . . . . . . . . . . . . . . 426

5.13 The director surface of a line congruence. . . . . . . . . . . . . . . . . . . . . . 431

5.14 Director surface, focal surfaces, and midsurface of a line congruence. . . . . . . 436

6.1 Different arrows in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

6.2 A complex line as intersection curve of two parameterized surfaces. . . . . . . . 445

6.3 Two conics and their points of intersection. . . . . . . . . . . . . . . . . . . . . 448

6.4 Integral curve of a differential equation. . . . . . . . . . . . . . . . . . . . . . . 450

6.5 A four-bar linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

6.6 A 2D function graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

6.7 A cubic spline and a parabola of n-th order. . . . . . . . . . . . . . . . . . . . . 463

6.8 Different 2D sectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

6.9 A slider crank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

6.10 A trochoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

6.11 Different arrows in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

6.12 Output of the sample file for Cad3Data. . . . . . . . . . . . . . . . . . . . . . . 488

6.13 A function graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

6.14 A helical surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

6.15 A 2D polygon (object of type L3d) is interpolated by a spline curve. . . . . . . 496

6.16 An example for the use of O3dGroup. . . . . . . . . . . . . . . . . . . . . . . . 504

6.17 An ashtray is shaded with different smooth limits. . . . . . . . . . . . . . . . . 516

6.18 A regular dodecahedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

6.19 Different flight routes on the Earth. . . . . . . . . . . . . . . . . . . . . . . . . 532



xx List of Figures

6.20 Output of the sample file for Solid. . . . . . . . . . . . . . . . . . . . . . . . . . 534

6.21 Two examples for the use of the class SurfWithThickness. . . . . . . . . . . . . 540

6.22 A half torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

6.23 A typical GammaBuffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

6.24 Another typical GammaBuffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

6.25 Correct and incorrect use of SetOpacity(. . . ). . . . . . . . . . . . . . . . . . . . 565

6.26 Using CreateAura(. . . ) for achieving special 3D effects. . . . . . . . . . . . . . . 567

6.27 Different options for displaying coordinate systems in Open Geometry 2.0. . 568

6.28 Three different parametric representations of the same curve. . . . . . . . . . . 570

6.29 Bad parameterization of a conic section surface. . . . . . . . . . . . . . . . . . . 572

6.30 Rational parametric representation of a circle. . . . . . . . . . . . . . . . . . . . 573

6.31 Parameterizing Kummer’s model of the Roman surface. . . . . . . . . . . . . . 574

6.32 The final rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

7.1 A function graph with minima, maxima, and a saddle point. . . . . . . . . . . . 593

7.2 Elliptic compass of Hoecken. . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

7.3 The gardener method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

7.4 Mechanism using the two-point guidance. . . . . . . . . . . . . . . . . . . . . . 606

7.5 Wheels gliding along straight lines. . . . . . . . . . . . . . . . . . . . . . . . . . 609

7.6 Generation of an ellipse with a slider crank. . . . . . . . . . . . . . . . . . . . . 609

7.7 Inside rolling of two circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

7.8 Planetary motion of gears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

7.9 Inverse elliptic motion and limaçon of E. Pascal. . . . . . . . . . . . . . . . . 611
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1

Introduction

This section is meant to introduce the gentle reader to the world of Open Geo-
metry. We will talk about Open Geometry in general and about its history.
We will explain the use of this handbook and how to start your first program.

The installation procedure of Open Geometry is described in Appendix D.
However, there is no need to hurry. Just take your time and read carefully through
the following sections. We will teach you everything you need to know to get
started with Open Geometry. Later, in Section 1.4, we will come back to the
installation process.

If you already have some experience with version 1.0 of Open Geometry, you
may want to skip this introduction. Of course, we do not recommend this. But
if you really cannot wait to run your first program with the new version you
should at least have a quick look at Section 1.6. It will tell you about the most
important changes and new features of Open Geometry 2.0.

1.1 What Is Open Geometry?
Open Geometry is a geometric programming system: With the help of a C++
compiler, the user is able to create images and animations with arbitrary geomet-
ric context. The system provides a large library that allows one to fulfill virtually
any geometric task. The Open Geometry library itself is based on OpenGL,
a system-independent graphics library that is supported by most compilers and
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hardware systems.1

Additional to the rather basic but very effective OpenGL functions, the Open
Geometry library provides the reader with 2D and 3D solutions to:

• the most common intersection and measuring problems,

• the creation of “sweeps” (e.g., path curves and path surfaces, i.e., sweeps of
arbitrary curves),

• the creation of general solids by means of Boolean operations.

Open Geometry is a software environment that tries to link theory and practice
of geometric programming. The user is able to realize direct geometrical thinking
without having to care much about implementations. The idea is to write system-
independent and readable graphics programs. Besides the code for the powerful
geometric library, the attached CD contains C++ source code for more than 200
sample programs and executables for several platforms.

Summing up, Open Geometry:

• makes elementary and advanced geometric programming easy;

• fully supports the OpenGL standard (z-buffering, smooth shading, texture
mapping, etc.),

• offers an advanced geometry library, with emphasis on kinematics and dif-
ferential geometry;

• supports features like object generation by means of sweeping or Boolean
operations.

Open Geometry was written for:

• students who want to get a deeper understanding of geometry;

• scientists who want to create excellent images for their publications;

• programmers who want to develop professional graphics software; and

• all people who love graphics and geometry.

1OpenGL is the premier environment for developing portable, interactive 2D and
3D graphics applications. Since its introduction in 1992, OpenGL has become the in-
dustry’s most widely used and supported 2D and 3D graphics application programming
interface (API), bringing thousands of applications to a wide variety of computer plat-
forms. OpenGL supports a broad set of rendering, texture mapping, special effects,
and other powerful visualization functions.
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The History of Open Geometry

At the end of the eighties, Georg Glaeser and Hellmuth Stachel started with
the idea of developing environments for geometers in order to allow them to
develop their ideas more efficiently. Working closely together, thet took two dif-
ferent approaches: Hellmuth Stachel concentrated on writing CAD systems.2

Georg Glaeser developed a programming environment for “geometry program-
mers,” first in Pascal (SuperGraph, [11]), later on in C and C++ ([12]). Addi-
tionally, he wrote a book about fast algorithms for 3D Graphics in C ([13]).

At the end of 1998, Open Geometry 1.0 was first published ([14]), being a
mixture of all the experiences made in these years.

In June 1999 Hans-Peter Schröcker began to work intensively with Open Geo-
metry, and it soon turned out that with his help, the programming system
improved amazingly. Thousands of lines of code flew from his “pen.” This is why
he is now coauthor of this book.

A main goal was to support as many systems as possible. The system in which
Open Geometry was created initially is Windows NT (or Windows 2000
respectively). It is still the system, in which Open Geometry should run more
or less bug-free. Windows 9x is also good, since it has the same user inter-
face. The system was also successfully tested in a Linux environment. Up-
dates can be found in the Internet. So please, have a look at the web page
http://www.uni-ak.ac.at/opengeom/ every once in a while.

1.2 Why Open Geometry?
There are quite a few 2D and 3D software applications on the market. Some of
them are really professional graphics systems, providing excellent methods for
the creation and manipulation of objects, both in 2D and 3D. Others specialize
in the mathematical and geometrical background, and with their help, many
scientific problems can be solved and visualized. In fact, the competition is stiff.
So, why did we try to make another approach?

The thing is that Open Geometry is not intended to be “yet another graphics
program.” Open Geometry is a programming system that has another phi-
losophy in mind: This philosophy is that the system is “open” and thus not
restricted, since the user has direct access via programming. Menu systems can
be wonderful, and they enable the user to do many things, but still, they are
limited by nature.

Open Geometry has now been in development for a couple of years, and though
its “body” has always been under control of a very few people, many program-
mers have contributed ideas and source code to it. These programmers come from

2The first result was the Cad3D system. The DOS version of this system comes
with the CD.



4 Chapter 1. Introduction

FIGURE 1.1. A four-bar linkage (left), a catacaustic (right).

various fields and from different educational backgrounds, but they always have
had a strong affinity to geometry, and that is what makes Open Geometry so
appropriate for even the most complicated geometrical tasks.

FIGURE 1.2. A rolling snail (logarithmic spiral) and a floating boat.

In the meantime, you can, e.g., easily:

• define a four-bar linkage and calculate path curves of arbitrary points con-
nected with it ("fourbar.cpp", Figure 1.1, left),

• display a caustic of a curved line both as the envelope of reflected
light rays and as a path curve of the focal point of an osculating conic
("catacaustic.cpp", Figure 1.1, right);

• illustrate how a logarithmic spiral rolls down some specially designed stairs
("rolling snail.cpp", Figure 1.2, left);

• simulate how a ship floats on a stormy ocean and, hopefully, does not sink
("stormy ocean.cpp", Figure 1.2, right);

• show how a tripod can be moved along a developable surface and, in a second
stage, show conversly how the surface can be moved so that it always touches
a fixed plane ("oloid.cpp", Figure 1.3),
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FIGURE 1.3. A moving tripod and the revolution of a “wobbler” (oloid).

• create a ruled surface as the path surface of a straight line and display its cen-
tral line or even the normal surface along this line ("normal surfaces.cpp",
Figure 1.4, left),

• let little arrows run around a Möbius strip and thus show the surface’s
one-sided character ("moebius with arrows.cpp", Figure 1.4, right),

• let all the above programs run in one menu-driven demo that can be executed
in real time on virtually any modern computer ("demo1.exe").

FIGURE 1.4. Ruled surface with normal surface (left), one-sided Möbius strip
(right).

1.3 About This Handbook and How to Use It
This handbook provides the reader with as much information about Open Geo-
metry (Open Geometry 2.0) as possible. It is written for both beginners and
advanced Open Geometry users. One should be able to use the book without



6 Chapter 1. Introduction

having to read one chapter after the other. Nevertheless, it is recommended to
skim over the introductory sections at the beginning.

The CD comes with quite a few executable demo programs. They are located in
the "DEMOS/" directory and can be executed via mouse click. In general, they are
multi scene applications with mostly about a dozen single applications compiled
together. Before you work through a chapter, it is a good idea to browse through
the corresponding demo programs. Then you have a good idea of what awaits
you and which examples it might be worth focusing on.

An important part of the book is the index, which has automatically been
produced by a self-written program.3 In the index and throughout the book,
OpenGL-keywords are written in slanted letters, Open Geometry-keywords
are written in italic letters, and C-keywords are written in bold letters.

Our goal at the beginning was to describe every single class including all their
member functions. This turned out to be almost impossible. Therefore, the listing
in Chapter 6 is not complete. Still, we are convinced that we have described all
those classes and functions that an Open Geometry user will ever work with.
The residual classes were written only for internal use, and they are never used in
application files. We also know that Open Geometry will continue developing,
so that any update will again have undocumented classes.

Even though this book contains quite a lot of information, it no longer covers
those theoretical topics the original one did (e.g., kinematics and Boolean op-
erations). Thus, if you need more theoretical background in this respect, please
refer to [14]. Of course, there are some entirely new topics that you can find in
this book, e.g., sections about projective geometry, fractals or Bézier surfaces,
and B-spline surfaces.

The present book contains lots of information that is not covered in [14]. This
concerns mainly the dozens of new classes and functions that have been im-
plemented since Version 1.0 was published. The sample files are quite different,
which makes the book a useful addition to the first one. In the various subdi-
rectories you can find dozens of new application files. You can view many of
the corresponding executables with the enclosed demo-browser. We also created
hundreds of new images, and the book has again become not only a handbook
about software but also a “geometrical picture book.”

All the applications of version 1.0 are compatible with the new version. Thus,
you need not change anything in your programs written so far. Maybe minor
corrections can be useful to support new features like the restart option or the
multi scene option.

This book is full of source code listings. Usually we will indicate the source file at
the top of the listing. The given path will be relative to Open Geometry’s home

3The program “beauty.exe” is documented in [12].
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directory (e.g., "D:/OPENGEOM/") or to the subdirectory "OPENGEOM/HANDBOOK/".
The same is true for all other file names. That is, if you do not find a file in
"OPENGEOM/", you will find it in "OPENGEOM/HANDBOOK/".

1.4 A First Program: Learning by Doing
Before we explain everything in detail, we want to get you into the kind of
geometrical thinking that is well supported by Open Geometry.

From school, you probably remember the following theorem:

Let A and B be fixed points, and C be an arbitrary third point. The three points
have a well-defined circumcircle. When C runs on that circle, the angle γ in the
triangle ABC will stay constant as long as C stays on the same side of AB.
When C is on the other side, the angle is 180◦ − γ.

FIGURE 1.5. The angle at the periphery of a circle.

Now you want to write a little program that shows an animation of this (similar
to Figure 1.5).

Geometrically speaking, you know what to do:

• Choose three points A, B, C;

• determine the circumcircle;

• calculate the angle γ = ∠ACB; and finally,

• move C along the circle (e.g., by means of a constant rotation about its
center).
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As a programmer, you know that it would be arduous to reinvent the wheel
all the time. Therefore, use a programming system that provides all the basic
tasks for you. You just have to know the commands, and — as you will see soon
— these commands come quite naturally. Open Geometry is object-oriented.
This means that the type of a variable is usually a class that not only contains
data but is equipped with member functions (also called methods). Besides such
classes, Open Geometry also supports “ordinary functions” that you probably
know from OpenGL.

With this example we will try to get started with Open Geometry. We do it
in several steps:

A. The simple program "circumcircle.cpp"

Take a look at the following listing, which you will understand immediately (we
will not go into detail for the time being):

Listing of "circumcircle.cpp":

#include "opengeom.h"
#include "defaults2d.h"

P2d A, B, C;
Circ2d CircumCircle;

void Scene: :Init( )
{

A( −4, 0 ) ;
B( 4, 0 ) ;
C( 3, 5 ) ;
CircumCircle.Def( Black, A, B, C ) ;

}

void Scene: :Draw( )
{

StraightLine2d( Black, A, B, VERY THICK ) ;
StraightLine2d( Green, A, C, MEDIUM ) ;
StraightLine2d( Green, B, C, MEDIUM ) ;
CircumCircle.Draw( THIN ) ;
A.Mark( Red, 0.2, 0.1 ) ;
B.Mark( Red, 0.2, 0.1 ) ;
C.Mark( Green, 0.2, 0.1 ) ;

}
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The program uses two predefined Open Geometry classes, P2d (“two-dimen-
sional points”) and Circ2d (circle in 2D). They are declared via "opengeom.h".
There is another file "defaults2d.h" included that initializes a standard 2D
window of “handy” size, which is about the size of the sheet of paper in front
of you when you measure in centimeters, or about the size of your screen when
you measure in inches. Three points and one circle are declared.

In an initializing part, we assign Cartesian coordinates to the points and calcu-
late the circumcircle by means of the member function Def(. . . ) of Circ2d. In
the drawing part, we draw the sides of the triangle ABC and the circumcircle.
StraightLine2d(. . . ) is a predefined function; Draw(. . . ) is a member function of
Circ2d. Note the line styles and the different colors. Finally, we mark the points
by means of the member function Mark(. . . ). The output for the time being is
to be seen in Figure 1.6.

FIGURE 1.6. The output of "circumcircle.cpp".

B. Compiling the program, simple changes in the program

At this stage you should install Open Geometry on your computer (if you have
not already done so). Appendix D will tell you how to do this. Furthermore, you
will need to know how to compile and execute the above program.

Here is the recipe for the Windows environment in connection with a Microsoft
Visual C++ compiler.4 (If you work on another platform or with another com-
piler, you can still run the executable "circumcircle.exe" on your CD in order
to understand the following.)

1. Load the workspace mfcgl.

2. Open the file "try.cpp".

3. Be sure that except the first two #include statements all other lines are
commented.

4The system is compatible with versions 5.0 and 6.0, where the compiler should not
give any warning even at the highest warning level.
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4. Search for the string "circumcircle.cpp". Remove the comments on this
line.

5. Build and execute the program. A graphics window should appear, similar
to Figure 1.6.

Now, in order to get a feeling for the program, make a minor change:

• Add a fourth point M to the list of points.

• Initialize this point after the definition of the circumcircle:

M = CircumCircle.GetCenter( );

• Add the line

M.Mark( Gray, 0.15, 0.1 );

in the drawing part.

• Recompile and see what happens. (Clearly, the center of the circumcircle is
additionally marked.)

Now you can test what can be done with the executable via menu or keyboard
without any change: You can, e.g., move the image by means of the arrows on
the keyboard, or you can export the image as an EPS or BMP file.

C. The animated program "circumference.cpp"

We now add a few additional commands and then animate the whole pro-
gram. If you find it too bothersome to type everything, just load the file
"circumference.cpp" almost exactly as in B, beginning with Step 3. The listing
of the file is to be found below.

In order to show the angle γ, we use the function MarkAngle(. . . ), which — as a
side effect — returns the value of γ (in degrees).5 Since the sign of the angle is of
no relevance, we take the absolute value of γ (fabs(. . . )). For the information of
the viewer, the angle is written on the screen with the function PrintString(. . . ),
which obviously works in the same way as the well-known C function printf(. . . ).
The Greek letter γ is displayed with the string $gamma$.6 Additionally, the
supplementary angle 180◦ −γ is displayed. In order to allow such a sophisticated
output, we need to call the function HiQuality( ) in the Init( ) part. There, we
also find the command AllowRestart( ), which — as the name tells — allows a
restart of the animation at any time.

5In many cases Open Geometry prefers to work with degrees instead of arc lengths.
Especially rotation angles are always given in degrees for better understanding.

6On page 562 you will find a more detailed description of how to print special
symbols on the Open Geometry screen.
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Listing of "circumference.cpp":

#include "opengeom.h"

// Four points and a circle are global
P2d A, B, C, M;
Circ2d CircumCircle;

void Scene: :Init( )
{

A( −4, 0 ) ; // points of a triangle
B( 4, 0 ) ;
C( 3, 5 ) ;
CircumCircle.Def( Black, A, B, C ) ;
M = CircumCircle.GetCenter( ) ; // center of circle
HiQuality( ) ; // output allows Greek letters
AllowRestart( ) ; // restart via menu is possible

}

void Scene: :Draw( )
{

StraightLine2d( Black, A, B, VERY THICK ) ;
StraightLine2d( Green, A, C, MEDIUM ) ;
StraightLine2d( Green, B, C, MEDIUM ) ;
CircumCircle.Draw( THIN ) ;
Real gamma;
// show the angle gamma as an arc
gamma = fabs( MarkAngle( Blue, A, C, B, 1, 20, THIN ) ) ;
// show the value of the angle on the screen
PrintString( Blue, −3, 8,

"$gamma$=%.3f", gamma ) ;
PrintString( Blue, −3, 7,

"180 -$gamma$=%.3f", 180 − gamma ) ;
// mark the points
A.Mark( Red, 0.2, 0.1 ) ;
B.Mark( Red, 0.2, 0.1 ) ;
C.Mark( Green, 0.2, 0.1 ) ;
M.Mark( Gray, 0.15, 0.1 ) ;

}

void Scene: :Animate( )
{

C.Rotate( M, 1 ) ; // C runs on the circle
}

void Scene: :CleanUp( )
{
}
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void Projection: :Def( )
{

if ( VeryFirstTime( ) ) // Initialization of the drawing window
{

xyCoordinates( −12.0, 12.0, −8.0, 8.0 ) ;
}

}

Do not forget to delete the line that includes "defaults2d.h"! At this stage, of
course, you do not understand everything, and actually you do not have to. The
strategy is “learning by doing”. In general, it is probably a good idea to take a
look at several demo files and compare what is written there with the output.

Since we are now doing something non-trivial (we animate the scene), we had
to copy the contents of "defaults2d.h" into our program and modify them. Do
not worry about this right now. We will explain everything later on. Just see
what is done: The point C is rotated about a point M which is the center of
the circumcircle. The rotation angle is small (only 1◦), since the rotation is done
for every new frame. Modern computers are fast enough to run this animation
in real time, i.e., to display at least 20 images per second. The basic graphics
output is done by OpenGL-routines that are invisibly used by the Open Geo-
metry-library.

D. The third dimension – quite easy

Well, you might think, 2D problems are much easier to solve than 3D problems.
Of course, you are right, but it would not be Open Geometry if it did not solve
the same tasks in 3D – and that more or less by simply replacing all occurrences
of 2d by 3d. Naturally, points in 3D should be initialized with three coordinates,
and the point C must now rotate about the circle’s axis. Finally, a 3D projection
instead of a 2D window has to be initialized. But that is all in order to create a
new Open Geometry-application "circumference3d.cpp"!

E.g., the function StraightLine3d(. . . ) clearly draws a straight line in 3D, and
the function MarkAngle(. . . ) draws an arc in 3D when the parameters are space
points P3d. The member function of the class Scene, DefaultOrthoProj( ), defines
an ortho-projection in given direction.

Take a look at the listing of "circumference3d.cpp". It illustrates that the
theorem of the constant angle at circumference is also true, when C moves on an
arbitrary circle in space that contains A and B.
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Listing of "circumference3d.cpp":

#include "opengeom.h"

P3d A, B, C, M;
Circ3d CircumCircle;

void Scene: :Init( )
{

A( −4, 3, −3 ) ; // points of a triangle
B( 4, 0, 3 ) ;
C( 3, 0, 5 ) ;
CircumCircle.Def( Black, A, B, C, 100 ) ;
M = CircumCircle.GetCenter( ) ; // center of circle
HiQuality( ) ; // output allows Greek letters
AllowRestart( ) ; // restart via menu is possible

}

void Scene: :Draw( )
{

StraightLine3d( Black, A, B, VERY THICK ) ;
StraightLine3d( Green, A, C, MEDIUM ) ;
StraightLine3d( Green, B, C, MEDIUM ) ;
CircumCircle.Draw( THIN ) ;
Real gamma;
// show the angle gamma as an arc
gamma = fabs( MarkAngle( Blue, A, C, B, 1, 20, THIN ) ) ;
// show the value of the angle on the screen
PrintString( Blue, −3, 8,

"$gamma$=%.3f", gamma ) ;
PrintString( Blue, −3, 7,

"180 -$gamma$=%.3f", 180 − gamma ) ;
// mark the points
A.Mark( Red, 0.2, 0.1 ) ;
B.Mark( Red, 0.2, 0.1 ) ;
C.Mark( Green, 0.2, 0.1 ) ;
M.Mark( Gray, 0.15, 0.1 ) ;

}

void Scene: :Animate( )
{

C.Rotate( CircumCircle.GetAxis( ), 1 ) ; // C runs on the circle
}

void Scene: :CleanUp( )
{
}
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void Projection: :Def( )
{

if ( VeryFirstTime( ) ) // Initialization of the drawing window
{

DefaultOrthoProj( 28, 18, 12 ) ;
}

}

FIGURE 1.7. Torus as locus of space points with constant angle at circumference.

With only slight modifications, one can illustrate the following theorem by means
of an animation (Figure 1.7):
The locus of all space points from which a line segment AB is seen under constant
angle at circumference γ is a torus.
Have a look at the corresponding file "torus as locus1.cpp". Since only few
lines differ from "circumference3d.cpp", you will soon understand the code.
Here is the drawing of the meridians of the torus:

Listing from "torus as locus1.cpp":

StrL3d rot axis;
rot axis.Def( A, B ) ;
Circ3d meridian circle;
meridian circle.Def( Red, A, C, B, 50 ) ;
int i, n = 30;
for ( i = 0; i < n; i++ )
{
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meridian circle.Draw( THIN ) ;
meridian circle.Rotate( rot axis, 360.0 / n ) ;

}
Circ3d parallel circle;
parallel circle.Def( Black, C, rot axis, 70 ) ;
parallel circle.Draw( MEDIUM ) ;

Obviously, a new class StrL3d – a straight line in 3D as a geometric object
with member functions like Def(. . . ) – is used. The 3D circle Circ3d can now be
rotated about the axis AB. The axis can also be used to generate a parallel circle
on the torus.

The animation part is adapted slightly so that the point C now runs somehow
on the torus:

Listing from "torus as locus1.cpp":

C.Rotate( CircumCircle.GetAxis( ), 2 ) ;
StrL3d axis;
axis.Def( A, B ) ;
C.Rotate( axis, 2 ) ; // C now runs on a torus

Try out what happens if you change the rotation angles or, e.g., the value of the
variable n in the rotation of the meridian circle.

FIGURE 1.8. The illustration of the theorem about the angle at circumference in
space (output of "torus as locus2.cpp").
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Finally, we want to display the described torus in a more sophisticated way
("torus as locus2.cpp", Figure 1.8). The surface shall be displayed shaded.
We, therefore, use an appropriate class and declare an instance of that class:

SurfOfRevol Torus;

In the initializing part, the surface is defined

Listing from "torus as locus2.cpp":

Circ3d meridian circle;
meridian circle.Def( Red, A, C, B, 60 ) ;
CubicSpline3d m;
meridian circle.Copy( m, 15, 52 ) ;
Torus.Def( Yellow, false, 60, m, −140, 125, StrL3d( A, B ) ) ;

Of course, those few lines need some explanation – which will be given when
surfaces of revolution are described in detail7. (You are free to experiment what
happens if you change the parameters). The drawing of the surface, however, is
done extremely simple by means of the single line. Additionally, the axis of the
torus is displayed:

Listing from "torus as locus2.cpp":

Torus.Shade( SMOOTH, REFLECTING ) ;
Torus.GetAxis( ).Draw( Black, −3, A.Distance( B ) + 3, MEDIUM ) ;

The torus now appears shaded on the screen8. The scene can automatically be
manipulated via menu or keyboard. E.g., the light source can be rotated, one
can display special projections like the top view, front view or right side view,
zoom in or zoom out, etc.

You might have an ultimate question: Where do the cast shadows in Figure 1.8
come from? The answer is: The scene was exported to POV-Ray and rendered by
this program. More about this new export utility of Open Geometry 2.0 can
be found on page 335 in Section 4.2. There, you will find a short introduction to
POV-Ray’s scene description language and how you can use it to render Open
Geometry scenes.

7In fact, it is not necessary to declare the torus as a surface of revolution. There
exists an Open Geometry class called Torus that can do the same. Not all examples of
this book use the simplest solution of a certain problem – be it for reasons of didactics
or because the more advanced class has not been available when the program was
written. We do not consider this as a drawback. On the contrary, you will get to know
even more of Open Geometry’s classes that way.

8“Shaded” usually means: No cast shadows.
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1.5 The Structure of an Open Geometry 2.0 Program

After your first experience with Open Geometry in the previous section, we
are going to explain the basic structure of an Open Geometry program. We
encourage the beginner to follow our little step by step introduction live on a
computer screen. Experienced Open Geometry programmers may skip this
section but perhaps even they will find one or the other useful hint.

We begin with a listing of a minimal Open Geometry program for displaying
a 2D scenery ("minimal2d.cpp"). You find it in "USER/TEMPLETS/"9.

Listing from "USER/TEMPLETS/minimal2d.cpp":

#include "opengeom.h"

void Scene: :Init( )
{
}
void Scene: :Draw( )
{
}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

xyCoordinates( −12.0, 12.0, −10.0, 10.0 ) ;
}

}

9Throughout this book, we will give path names relative to the standard Open
Geometry directory. I.e., the absolute path of the mentioned directory is something
like "D:/OPENGEOM/USER/TEMPLETS/"
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We suggest that you save this file under a different name (let’s say "simple.cpp"
in the folder "USER/". In order to make it Open Geometry’s active file, you
have to include it in "try.cpp" by inserting the line

#include "USER/simple.cpp"

(compare page 9).

Now you can compile and run "simple.cpp". You will see that the code does
nothing but open a window with a background in pure white, a few buttons and
menu items. However, there are already a few things to mention:

• You have to include "opengeom.h" at the top of every Open Geometry
file. This is not an absolute must. But you won’t be able to use any of Open
Geometry’s classes if you don’t.

• In order to compile the program without errors, you must call the functions
Init( ), Draw( ), Animate( ), CleanUp( ) and Projection::Def( ).

• You have to initialize a drawing window in Projection::Def( ).

If you begin your new program with a templet file from the "USER/TEMPLETS/"
directory, everything will be prepared and you need not bother about those
things. Still, it is important that you know a few basic facts about each part of
the above listing.

Usually it is enough to include "opengeom.h". All other necessary files will be
linked automatically to the Open Geometry project. For some tasks, however,
it is necessary to explicitly include an additional header file (e.g., "bezier.h",
"fractal.h", "kinemat.h" or "ruled surface.h"). Of course, you are free to
write and include your own header files as well.

In Projection::Def( ), you define how the scene is displayed. You can choose
between 2D and 3D views. In the above example you will see a 2D window
that is adjusted in a way that the rectangle with vertices (±12,±10) fits nicely
on the screen. Depending on the shape of your Open Geometry window, you
will usually see a little more than that. You can adjust the default window size
by pressing <Ctrl+W> in an active Open Geometry window. This opens a
dialogue box where you can set all window parameters.

If you want to see a 3D image, you have to replace Projection::Def( ) by

void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( 28, 18, 12 ) ;
}

}
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This yields a standard 3D window with eye point at (28, 18, 12) The target point
is by default set to (0, 0, 0). We suggest that you change your Projection::Def( )
to 3D right now. If you compile and run, you will see only small differences. The
scene is still empty but some buttons and menu items are no longer disabled
(Figure 1.9). They concern typical operations with eye point and light source
that only make sense in three dimensions. You can explore them a little later
when we have added objects to our scene.

FIGURE 1.9. The Open Geometry button bar.

Note that (theoretically) the difference between 2D and 3D applications can
only be seen in Projection::Def( ). In all other parts you can use both, 2D and
3D objects. Occasionally, this can be quite useful (compare Example 2.24).

Now it is time to add an object to our scene. You can, e.g., visualize Open
Geometry’s coordinate system by inserting

ShowAxes3d( Black, 10, 11, 12 ) ;

in the Draw( ) part. This displays the coordinate axes in black color. At their end
points (10, 0, 0), (0, 11, 0) and (0, 0, 12) little arrows and the letters “x”, “y” and
“z” are attached. Now you can try some of the buttons in the Open Geometry
window. Especially those for moving the camera will be of interest.

Adding of other geometric objects is usually very simple. In order to add, e.g.,
a box centered at the origin of the coordinate system to our scene, we just add
the following lines to Draw( ):

Box cube;
cube.Def( Red, 8, 8, 8 ) ;
cube.Translate( −4, −4, −4 ) ;
cube.Shade( ) ;

We tell the compiler that cube is an instance of the object Box. In the next
line we define its color and its dimension in x-, y- and z-direction. Finally, we
translate it by the vector (−4,−4,−4) in order to center it around the origin
and display it on the screen.

So far, so good – there is just one thing: Later, we will make a lot of animations,
i.e., the scene will undergo certain changes. We will have to draw a first frame, a
second frame, a third frame and so on. For every new frame the relevant changes
of the scene must be recomputed.
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For a real-time animation, you will need at least 20 frames per second. This is
no problem with sceneries of little or moderate complexity (as in our example).
If, however, many complicated objects (e.g., a smoothly shaded parameterized
surface with hundreds of triangles and a contour outline) occur, you may soon
reach the limits of your hardware.

An Open Geometry program starts by calling Init( ) and Draw( ). If you see
the first frame you can start an animation by either pressing <Ctrl+F> or by
clicking on the button labelled Fps (frames per second). This causes an alternate
calling of Draw( ) and Animate( ) until the user stops the animation or closes the
Open Geometry window. Hence, the commands of these two functions have to
be executed every time before a new frame can be displayed. If there are some
tasks that need not be repeatedly performed you can (and should!) place them
somewhere else. It is, e.g., not necessary to define and adjust the box in Draw( ).
A good alternative code would look as follows

#include "opengeom.h"

Box Cube;

void Scene: :Init( )
{

Cube.Def( Red, 8, 8, 8 ) ;
Cube.Translate( −4, −4, −4 ) ;

}
void Scene: :Draw( )
{

ShowAxes3d( Black, 10, 11, 12 ) ;
Cube.Shade( ) ;

}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( 28, 18, 12 ) ;
}

}
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We define the cube globally before Init( )10. This means that all following func-
tions such as Init( ), Draw( ), and Animate( )will have access to Cube. In Init( )
we define and translate the cube while only the shading is left to Draw( ). Note
that the definition could also be done by means of a constructor, i.e., together
with the declaration of Cube. However, we do not recommend this in general
(it does not really increase the code’s readability, and, what is more important,
might impede the restarting of the program). Note further that the drawing and
shading has to be done in Draw( ). If you do it somewhere else, you will not get
an error message but you won’t be able to see the object you want to display11.

Finally, we write a small animation and insert

Cube.Rotate( Yaxis, 3 ) ;

into Animate( ). With every new frame the cube will be rotated through 3◦ about
the y-axis of the coordinate system. You can switch to the next frame by press-
ing <Ctrl+N> in the Open Geometry window. Alternatively, you can press
<Ctrl+F> or <Ctrl+R> to start the auto–animation or the auto–animation
plus rotation about the z-axis. There exist menu items and buttons for these
commands as well. You may try to identify them – a wrong guess can’t do any
harm.

Note the fundamental difference between inserting a line like

Cube.Rotate( Xaxis, 45 ) ;

in Init( ) and in Animate( ). In the first case, the cube will be rotated only once
about x while, in the second case, it will be rotated with every new frame. The
lines in Animate( ) may as well be written in Draw( ) and sometimes we will do
that (because the part is very short or because we want the start with scene that
has already changed). In general, it is better for a clear and understandable code
to separate drawing and animation.

The only remaining part of an Open Geometry program is CleanUp( ). In fact,
this part is not used very frequently. It is called only once at the very end of
the program. Perhaps you need global access to dynamically allocated memory.
Then you can, e.g., free the memory in CleanUp( ). However, this is an advanced
topic and shall be skipped at this place.

Finally, if you only want to do some drawing (no animation, no memory alloca-
tion, no special camera position), you can use the templets
"USER/TEMPLETS/minimal2d.cpp" or "USER/TEMPLETS/minimal3d.cpp".

10As a general rule, we will write the first letter of a global variable in uppercase
format. Therefore we changed the name from cube to Cube.

11Well, if you want to obscure your ideas, you can do it by calling drawing routines
in Animate( ).
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There, a file ("defaults2d.h" or "defaults3d.h", respectively) that takes re-
sponsibility for all obligatory function calls except Init( ) and Draw( ) is included.
You yourself need not worry about anything.

1.6 What Has Been Changed in the New Version?
Ever since Open Geometry has been released, hundreds of minor changes or
corrections and dozens of implementations of new classes have been made. You
will not be told about the minor corrections, but you will find the description
of all the new classes in the “compendium”. The main goal has always been to
stay compatible with the first release.

• A change that has to be mentioned here is the following: In the function
Projection::Def( ) we used to have question

if ( FrameNum( ) == 1 ) . . .

This has been changed to

if ( VeryFirstTime( ) ) . . .

for the following reason: When a scene is started and the first frame is
drawn, one can interactively make some non-relevant changes (like rotating
the camera or changing the light source or simply resizing the drawing win-
dow) that actually have nothing to do with the definition of the geometrical
objects. In such a case, when the scene is redrawn, FrameNum( ) will still be
1. So any change of the camera, e.g., would be undone in Projection::Def( ),
which can be nasty.12

• Some minor changes that shall be mentioned concern the menu system.
The menu item “Program” now has two more sub-items “Program→Restart
program” and “Program→Show source code”, the menu item “Help” a new
sub-item “Help→Display initializing file ’og.ini’”

In the status bar you can now see whether you run a 2D application or a
3D application. In the 2D case it is just the hint 2D, in the case of a 3D
application, however, you will see the word Perspective when the eye point
is not infinite or the word Ortho3d when a normal projection is applied.

• Besides those small changes, there are several improvements that count
much more: One of them is that there is now a way to restart a program at
any time, if some rules are obeyed (those rules are explained in Section 7.2).
When you add the line

AllowRestart( );

12Don’t worry, we are still compatible with the old style. But we would be glad, if
you erase it from your templet files and do not use it any longer.
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in the Init( )-part, you can restart the program either via keyboard
(<Crtl+Shift+r>) or the menu item “Program→Restart program”.13

• Another improvement is that you can now export 3D scenes as EPS-files. If
the result was always correct, this would be a real “revolution”, since this
would mean that we can generate 3D images with extremely high resolution.
However, there are some restrictions that decrease the value of this new
feature: The drawing order must be back to front in order to create correct
images. Still, simple 3D scenes can now be stored in the EPS format and
then been manipulated with other professional programs (or a text editor,
if you are a Post Script hacker).

• A change that is really notable, is the possibility of exporting scenes to POV-
Ray. This opens the large world of ray-tracing to scenes that were generated
via Open Geometry. Many of the images in this book have been rendered
by POV-Ray.

• One of the major improvements in Open Geometry 2.0 is the possibility
of compiling several programs at once (compare Section 7.1). Having done
this, you can leaf through the programs via menu item, or shortcut key.

Imagine, e.g., that you are preparing a public presentation. You write your
sample files, compile them at once and show them to the audience without
any need to compile during your speech. Or perhaps you want to display
Open Geometry scenes on a remote computer with no Open Geometry
installed. You can compile your scenes, create a single "*.exe" file and run
it wherever you like.

1.7 What to Keep in Mind from the Beginning
How to use Open Geometry

Every Open Geometry application is written in C++. This has the advantage
that your application is as good as you are able to tell the computer your geomet-
rical ideas via programming commands. In practice, this means: The more Open
Geometry commands and Open Geometry classes you know, the quicker you
will get the best results.

It also means, however, that you have to know some basics about C++. In fact,
it is not much you have to know – you will learn more and more by just taking
a look at simple demo files.

13You can automatize this with a single line in the file "og.ini". More about this in
7.3.
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In order to explore Open Geometry’s classes, you can have a look at the header-
files in the "H/"-directory. Usually, you should be able to guess the contents from
the filenames. Alternatively, you can search this directory for a string like

"class Sphere".

This will lead you directly to "sphere.h" where you will find all constructors,
operators, methods and member variables of the class Sphere, whether they are
private, protected or public. Most of them are listed in Chapter 6 of this book.
The remaining undocumented classes should hardly be of relevance to you.

If you want to have a look at the implementation of a method, search, e.g., for
the string

"Sphere::GetContour".

You will find it together with the implementation of the corresponding method
in "C/o.cpp".

The advanced programmer may get a deeper understanding of Open Geome-
try by studying the source code. But, please, do not change it! If you want to
use classes of your own, just read on. Very soon, you will be told how to integrate
them in Open Geometry.

Programming style

You can, of course, use any programming style that C++ supports. You can
break lines almost wherever you want, use any indent you want, keep space
between braces or brackets or not, etc., etc.

We also do not tell you whether you should write every command into a single
line or not, or how many comments you should add. Nor do we force anyone
to use readable names – though this helps a lot when other persons skim over
the code. Of course, you need not use an initial capital letter for your global
variables as we did throughout the book.

The main thing that counts is to write solid code. We only ask you to keep a few
things in mind before you seriously start to program, in order to

• stay compatible to future versions of Open Geometry,

• write applications that can later on be adapted for a multi scene application.

Please read this:

Here are some rules that should be obeyed. Otherwise, you might not stay com-
patible with updates:
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• Please, do not change any of the files you can find in the "C/" directory.
These files with the meaningless names "d.cpp", "e.cpp", "f.cpp", etc., are
only there in order to enable you to compile the system with your personal
C++ compiler. If you find any bug in one of these files, please report it to us,
and we will supply you with the updated code. The same is true, if you have
a good idea of how to expand a given class. In order to add your personal
implementations, please use the (almost empty) file "add code.cpp" in the
directory "USER/". We will give an example later on.

• Something similar is true for the header files in the "H/"-directory. You are
asked to put new header files into the subdirectory "H/" of the "USER/"
directory. The reason for this is that we unconsciously might have the idea
of giving a future header file the same name as you did, and an update
would overwrite your file.

• Use the variable type Real instead of double. For the time being, this is
no must, at all, since both types are identical in the current version. This
may change, however, when future hardware supports 64-bit floating point
variables.



This page intentionally left blank 



2

2D Graphics

Now that you learned about the basics of Open Geometry programming, you
can work trough many new examples and sample files. In order to give a certain
structure to this book, we start with examples from geometry in two dimensions.
Many of Open Geometry’s 2D classes and methods will be presented in this
chapter. You will see:

• Open Geometry’s basic 2D classes (points, straight and curved lines, cir-
cles, conics, polygons,. . . );

• simple and complex computer animations of physical concepts and kinemat-
ical devices;

• fractal programming with Open Geometry;

• free-form curves (Bézier curves and B-splines);

and much more.

Note that there is no real need to study all the examples, one after the other.
You can skip any of them; cross references and the index always allow you to
find additional information in other parts of this book. If you have a look at
the examples, you will probably agree that many of them are quite interesting
and not trivial at all. We are confident that we shall convince you that Open
Geometry is really a versatile geometric programming system.

Additionally, you can find demo executables in the "DEMOS/" directory that allow
one to have a look at the output of the sample programs without compiling them
all.
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2.1 Basic 2D Classes
To begin with, we will give a short introduction to Open Geometry’s basic 2D
classes by describing a few rather simple examples. However, we do not give a full
description of the respective class. This is left to Chapter 6, where the reader will
find a header listing and a detailed description of all the important classes and
functions. Usually, we will refer to a certain Open Geometry sample program.
Therefore, it is advisable to have your computer turned on while reading the
following pages.

Our starting example already presents many basic classes like points, straight
lines, circles, and conic sections:

Example 2.1. Three planets
In "three planets.cpp" we display the path curves of three planets (Mercury,
Venus, and Earth) around the sun. We want to give an impression of apparent
distances and circulation periods. So we approximate the real cosmic distances
and scale them down to Open Geometry size.1

FIGURE 2.1. Output of "three planets.cpp".

The path curves of the planets are ellipses with the sun as common focal point.
Their supporting planes are almost identical (i.e., they have rather small in-
tersection angles). The eccentricity (a measure of the flatness of an ellipse) of
most planet paths is close to zero. For this reason, we will approximate the path
ellipses of Venus and Earth by circles around the sun. Their radii are 108 mil-
lion kilometers and 150 million kilometers, respectively. Only the path curve of
Mercury is visibly an ellipse. Its distance to the sun varies between 46 million
kilometers and 70 million kilometers.

1As a general rule, you should scale all your objects to a size such that they fit in a
standard Open Geometry window. The alternative of zooming in or zooming out is
possible as well, but may disturb the z-buffering algorithm in 3D applications.
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The velocity of the planets is determined by Kepler’s second law and is not
constant (compare Example 2.2). In order to simplify things, we will, however,
assume a constant angular velocity for the revolution around the sun. The cir-
culation periods of Mercury, Venus, and Earth are 88, 225, and 365 Earth days,
respectively.

The global constants in "three planets.cpp" are as follows:

Listing from "three planets.cpp":

const P2d Sun = Origin2d;

const Real Factor = 0.05;

const Real VenusDistance = 108 ∗ Factor;
const Real EarthDistance = 150 ∗ Factor;

const Real EarthVelocity = 0.25;
const Real VenusVelocity = EarthVelocity / 225 ∗ 365;
const Real MercuryVelocity = EarthVelocity / 88 ∗ 365;

Factor is the zoom factor that adjusts the image to our computer screen. It is not
absolutely necessary to use a constant of our own for the sun (we could use Ori-
gin2d instead), but it will make the code more readable and lucid. Furthermore,
we need three global variables for the animation of the scene: Two points V and
E (the centers of Venus and Earth) and a straight line SunMercury connecting
the sun with the current position of Mercury. Revolving these elements around
the sun will give the animation. We define some starting configuration in Init( ):

Listing from "three planets.cpp":

void Scene: :Init( )
{

V.Def( VenusDistance, 0 ) ;
V.Rotate( Sun, 100 ) ;
E.Def( EarthDistance, 0 ) ;
E.Rotate( Sun, 200 ) ;
SunMercury.Def( Sun, P2d( 17, −24 ) ) ;
AllowRestart( ) ;

}
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and continue building up the scene in Draw( ). The path curves of Venus and
Earth are circles of given radius with the common center Sun. Apart from that,
we draw a sky circle, i.e., a circle around E. It will serve as a projection line for
the positions of Venus and Mercury. In our program the planets themselves are
small circles. Here, we cannot take into account cosmic dimensions: even a single
pixel would be much too large. Apart from that, we draw a black semicircle for
the dark side of the planets. The entire code for Venus reads thus:

Listing from "three planets.cpp":

const Real rad v = 0.5;
Circ2d venus;
venus.Def( Gray, V, rad v, FILLED ) ;

V2d dir;
dir.Def( V.x, V.y ) ;
dir.Normalize( ) ;
dir = V2d( dir.y, −dir.x ) ;
P2d X;
X = V + rad v ∗ dir;
Sector2d venus shadow;
venus shadow.Def( Black, X, V, 180, 10, FILLED ) ;

The semicircle is a Sector2d object with a central angle of 180◦ and 10 points on
its circumference. We determine its starting point by rotating the radius vector
of the Venus circle through 90◦.

The path ellipse of Mercury is initialized as follows:

Listing from "three planets.cpp":

Conic path of mercury;
P2d A, B, C;
A.Def( −46, 0 ) ;
B.Def( 70, 0 ) ;
C.Def( 12, 56.745 ) ;
A ∗= Factor;
B ∗= Factor;
C ∗= Factor;
path of mercury.Def( Black, 50, A, B, C, Sun ) ;
path of mercury.Draw( THIN ) ;

From the input data mentioned above we compute three points A, B, and C on
the ellipse’s axes. We scale them with the global zoom factor and define a conic
by these three points and one focal point (Sun). In order to draw the planet
itself, we intersect the straight line SunMercury with the path ellipse:
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Listing from "three planets.cpp":

int n;
P2d M1, M2;
n = path of mercury.SectionWithStraightLine( SunMercury, M1, M2 ) ;
if ( SunMercury.GetParameter( M1 ) < 0 )

M1 = M2;
Circ2d mercury;
const Real rad m = 0.5;
mercury.Def( Red, M1, rad m, FILLED ) ;

We need not worry about the number n of intersection points. As SunMercury
runs through one focal point of the ellipse, there will always be two of them.
Taking the intersection point on one half-ray avoids surprises that stem from the
order of the two solutions M1, M2. The dark side of Mercury can be determined
in the same way as above.

Now we intersect the straight lines connecting Earth with Venus and Mercury,
respectively, with the sky circle. We take the intersection points closer to Venus
and Mercury, respectively, to define an arc on the sky circle that gives a good
impression of the apparent distance of Venus and Mercury for a viewer on Earth.

Listing from "three planets.cpp":

StrL2d v;
v.Def( E, V ) ;
P2d Q1, Q2;
n = sky circle.SectionWithStraightLine( v, Q1, Q2 ) ;
if ( Q2.Distance( V ) < Q1.Distance( V ) )

Q1 = Q2;

StrL2d m;
m.Def( E, M1 ) ;
P2d R1, R2;
n = sky circle.SectionWithStraightLine( m, R1, R2 ) ;
if ( R2.Distance( M1 ) < R1.Distance( M1 ) )

R1 = R2;

Sector2d arc;
arc.Def( LightBlue, Q1, E, R1, 15, EMPTY ) ;
arc.Draw( true, THICK ) ;

StraightLine2d( Gray, E, V, THIN ) ;
StraightLine2d( Red, E, M1, THIN ) ;
if ( FrameNum( ) % 10 < 7 )
{

Q1.Mark( Yellow, 0.15 ) ;
R1.Mark( Yellow, 0.15 ) ;

}
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We mark the intersection points only in certain frames to get a twinkling effect
(although planets do not really twinkle). In the remaining part of Draw( ) we
simply draw the planets and their dark sides (Figure 2.1). ♦
The next example, too, stems from the field of astronomy. We parameterize an
ellipse according to Kepler’s laws.

Example 2.2. Kepler’s law
The planets of our solar system orbit around the sun according to Kepler’s first
and second laws (Figure 2.2):

1. The path curve of a planet P around the sun S is an ellipse with focal
point S.

2. During equal time intervals ∆ the line segment PS sweeps sectors of equal
area.

FIGURE 2.2. Kepler’s first and second laws (left). The true planet P , the average
planet A, and the eccentric planet E (right).

These two laws are enough to parameterize the path ellipse with the time pa-
rameter t. It is, however, not possible to write down the parameterized equation
using only elementary functions. Still, we can simulate the motion in an Open
Geometry program ("keplers law.cpp").

In order to describe the planet’s motion, Kepler introduced two “virtual plan-
ets”: The average planet A and the eccentric planet E. The true planet’s path
curve is an ellipse c with midpoint M and semiaxes a and b. The path of A is
the same ellipse c. It revolves around the sun S with constant angular velocity
so that it has the same circulation period as P . The eccentric planet’s path is a
circle around M with radius a. It moves in a way that the straight line EP is
always parallel to the ellipse’s minor axis (Figure 2.2).



Section 2.1. Basic 2D Classes 33

We denote the angle ∠SME by te (eccentric amplitude) and the angle between
the ellipse’s major axis and SA by ta (average amplitude). Now the Kepler
equation states the relation

te − ε sin te − ta = 0, (1)

where ε is the numeric eccentricity
√

a2 − b2/a of c. In order to find the position
P (t) of the planet, we compute the position A(t) of the average planet and the
angle ta, solve equation (1) for te, find E(t) and subsequently P (t). This seems
to be easy, but unfortunately, there exists no elementary solution to (1). We have
to use iteration methods to determine the roots.

For programming purposes, it helps considerably to see that (1) has exactly one
root for any fixed real ta: The left-hand side of the equation takes positive and
negative values, and it is strictly monotonic (its derivative with respect to te is
always positive).

In "keplers law.cpp" we decided on the following strategy: We compute a
number of positions of the planets before Draw( ) and store them in an array. In
Draw( ) we do not perform any computation but simply mark the correct points
according to the frame number we use. Besides speeding up the animation a little,
this yields the same computation time for each new frame. As a consequence,
the animation will be smoother.

In the preamble we decide on the number of points and reserve the required
memory for the average planet, eccentric planet, and true planet:

Listing from "keplers law.cpp":

const int N = 150;
const int N2 = 2 ∗ N;
P2d APlanet [N2], EPlanet [N2], TPlanet [N2];

Then we write a function returning the value of the Kepler equation (1):

Listing from "keplers law.cpp":

Real TA;
Real KeplerFunction( Real t )
{

return t − E / A ∗ sin( t ) − TA;
}
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Note that this function actually depends on two input parameters: the real t and
the global variable TA, where the current parameter value of the average planet
is stored. E is the linear eccentricity

√
a2 − b2 of c. Using the average amplitude

ta and the eccentric amplitude te, we can parameterize the path curves of the
planets as follows:

Listing from "keplers law.cpp":

P2d AveragePlanet( Real ta )
{

return Sun + B ∗ B / ( E ∗ cos( ta ) + A ) ∗
V2d( cos( ta ), sin( ta ) ) ;

}
P2d EccentricPlanet( Real te )
{

return P2d( A ∗ cos( te ), A ∗ sin( te ) ) ;
}
P2d TruePlanet( Real te )
{

return P2d( A ∗ cos( te ), B ∗ sin( te ) ) ;
}

In Init( ) we compute the path points in a simple for loop. The Open Geome-
try class Function provides a root-finding algorithm for that purpose. We need
not bother about the number of solutions; there exists exactly one. Furthermore,
we can gain half the points by a simple reflection on the x-axis.

Listing from "keplers law.cpp":

int i;
Real delta = PI / ( N − 1 ) ;
for ( i = 0, TA = 0.001; i < N; i++, TA += delta )
{

APlanet [i] = AveragePlanet( TA ) ;
Function eccentric( KeplerFunction ) ;
eccentric.CalcZeros( −3.3, 3.3, 50, 1e−3 ) ;
EPlanet [i] = EccentricPlanet( eccentric.Solution( 1 ) ) ;
TPlanet [i] = TruePlanet( eccentric.Solution( 1 ) ) ;
APlanet [ 2∗N−1−i].Def( APlanet [i].x, −APlanet [i].y ) ;
EPlanet [ 2∗N−1−i].Def( EPlanet [i].x, −EPlanet [i].y ) ;
TPlanet [ 2∗N−1−i].Def( TPlanet [i].x, −TPlanet [i].y ) ;

}
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The rest is clear. In Draw( ) we mark the planets and draw their path curves.
The variable Index indicates the current position. It is initialized with zero and
changed in Animate( ):

Listing from "keplers law.cpp":

void Scene: :Animate( )
{

Index++;
Index = Index % N2;

}

♦
Open Geometry is a good tool for illustrating theorems of elementary plane
geometry. As an example, we choose a recent theorem that was published as a
question by J. Fukuta in 1996 and proved by Z. Čerin in 1998 ([5]). It states
that applying certain operations to a triangle will always result in a regular
hexagon (Figure 2.3).

Example 2.3. Fukuta’s theorem
We start with an arbitrary triangle and divide each side into two fixed affine ratios
λ1 and λ2. These new points form a hexagon. To each side of the hexagon we add
a third point to form an equilateral triangle. Three consecutive of these points
define a triangle and the barycenters of these triangles lie on a regular hexagon.
Furthermore, the barycenters of the initial triangle and the final hexagon are
identical.

Now, what can Open Geometry do with this theorem? Of course, we can im-
plement the construction of the regular hexagon ("fukuta1.cpp"). For frequent
tasks we introduce three auxiliary functions:

Listing from "fukuta1.cpp":

P2d AffComb( P2d &A, P2d &B, Real lambda )
{

return P2d( ( 1 − lambda ) ∗ A.x + lambda ∗ B.x,
( 1 − lambda ) ∗ A.y + lambda ∗ B.y ) ;

}
void MakeTriangle( const P2d &X, const P2d &Y, Color col,

Poly2d &poly )
{

P2d Z( 0.5 ∗ X.x + 0.5 ∗ Y.x + sqrt( 3 ) / 2 ∗ ( Y.y − X.y ),
0.5 ∗ X.y + 0.5 ∗ Y.y + sqrt( 3 ) / 2 ∗ ( X.x − Y.x ) ) ;
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FIGURE 2.3. Fukuta’s theorem.

poly.Def( col, 3, FILLED ) ;
poly [ 1] = X;
poly [ 2] = Y;
poly [ 3] = Z;

}

void DrawMedians( P2d &A, P2d &B, P2d &C, Color c,
ThinOrThick thick )

{
P2d AM = 0.5 ∗ P2d( B.x + C.x, B.y + C.y ) ;
P2d BM = 0.5 ∗ P2d( C.x + A.x, C.y + A.y ) ;
P2d CM = 0.5 ∗ P2d( A.x + B.x, A.y + B.y ) ;
StraightLine2d( c, A, AM, thick ) ;
StraightLine2d( c, B, BM, thick ) ;
StraightLine2d( c, C, CM, thick ) ;

}
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AffComb(. . . ) gives the intermediate point of a line segment that corresponds to
a given affine ratio lambda, MakeTriangle(. . . ) defines a regular triangle with two
given vertices as Poly2d object, and DrawMedians(. . . ) draws the medians of a
triangle.

With the help of these functions it is easy to construct and display all relevant
objects of Fukuta’s theorem. We draw the initial triangle in the first frame,
add the first hexagon in the second frame, the regular triangles in the third
frame, and so on. This makes the theorem’s contents much more lucid than one
single picture. By switching from frame to frame you will be able to watch the
development of the regular hexagon.

In order to get an attractive image, it is important to choose the line styles and
shading options with care. For this reason, we did not, e.g., shade the triangles
whose barycenters lie on the regular hexagon. Furthermore, it is important to
mark the points after drawing the straight lines passing through them. Otherwise,
they would be covered by the other lines.2. The actual implementation of the
drawing routines is rather lengthy. We do not display it here but you can find
them in "fukuta1.cpp"

We can extend the previous program and write an Open Geometry animation
of Fukuta’s theorem. In order to do this, we have only to define the input data
(i.e., the first triangle and the two affine ratios) globally, change their values in
Animate( ), and draw the whole picture in every single frame ("fukuta2.cpp").
The animation comes from redefining the vertices of the initial triangle and the
affine ratios in Animate( ). Run "fukuta2.cpp" and watch it! ♦
Now we present the first example using a very fundamental 2D class: a pa-
rameterized plane curve (class ParamCurve2d). It is among the most fre-
quently used classes in Open Geometry. If you want to display a curve of
your own, we recommend starting with the templet "paramcurve2d.cpp" from
"USER/TEMPLETS/".

Example 2.4. The quadratrix
There are three classic geometric problems that the ancient Greeks tackled but
could not solve. For many centuries thereafter, mathematicians tried to solve
them, but it was not until the development of modern algebra that they were
finally proved to be unsolvable. These classic problems are:

1. the squaring of a circle;

2. the trisection of an arbitrary angle;

3. the doubling of the volume of a cube.

2In 2D mode, the drawing order of the objects determines their visibility relations.
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The Greeks were interested only in geometric solutions that use no other means
than straighedge and compass. Ultimately, everything ends up in the question
of whether certain irrational numbers (e.g., π or 3

√
2) are “constructible” or not

(today we know that they are not).

FIGURE 2.4. Generation of the quadratrix.

The squaring of the circle and the trisection of an arbitrary angle are related to
a special plane curve c. Therefore, c is called either a quadratrix or trisectrix.

We can generate the quadratrix by very simple kinematic methods (Figure 2.4).
Suppose that p and q are two straight lines through a point Q0 with coordinates
(0, 1). The line p runs through the origin O of our coordinate system; q is parallel
to the x-axis.

We rotate p about O and translate q in the direction of the y-axis. For both
motions we assume constant velocities so that p and q intersect in Q1(0, −1)
after a half turn of p. The quadratrix is defined as the locus of all intersection
points of p and q during these motions.

Of course, c is not an algebraic curve. An arbitrary line through O intersects c
in infinitely many points. The first intersection point X of x and c is of special
interest. Using the parameterized equation

c: �x(t) = (1 − t)
(

tan π
2 t

1

)

of c, we obtain X = limt→1 �x(t) = (2/π, 0)t. Thus, c can be used for a graphic
construction of a transcendental number related to π. If it could be constructed
exactly (i.e., if there existed a finite algorithm to determine it with the help of
straightedge and compass only), one would have a solution to the squaring of a
circle.

The trisection problem of an angle α = π/2t can also be solved with the help of
the quadratrix. In order to divide α in three equal parts, we draw three horizontal
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lines at distance it/3 from the origin and intersect them with c (i = 1, 2, 3;
Figure 2.4).

In "quadratrix.cpp" we illustrate these properties of the quadratrix. We im-
plement it as a parameterized curve:

Listing from "quadratrix.cpp":

class MyQuadratrix: public ParamCurve2d
{
public:

P2d CurvePoint( Real t )
{

if ( fabs( 1 − t ) > 0.005 )
return P2d( S ∗ ( 1 − t ) ∗ tan( 0.5 ∗ PI ∗ t ), S ∗ ( 1 − t ) ) ;

else
return P2d( 2 ∗ S / PI, 0 ) ;

}
};
MyQuadratrix Quadratrix;

The value S is a globally defined scale factor that we use to fill a standard
Open Geometry drawing screen. The CurvePoint(. . . ) function takes care of
the special case t = 1 where �x(t) is undefined. For the animation we use a global
point P and a global straight line p. They are rotated and translated by constant
increments:

Listing from "quadratrix.cpp":

const Real Delta = −0.75;
V2d TranslVec( 0, 2 ∗ S ∗ Delta / 180 ) ;

In order to point out the use of c for the trisection of an arbitrary angle, we use
two points R1 and R3. These points belong to the parameter values t0/3 and
2t0/3, respectively, if Q = OP∩p is the curve point �x(t0). In "quadratrix.cpp"
we have to take care of the scale factor S and determine R1 and R3 as follows:
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Listing from "quadratrix.cpp":

if ( fabs( P.y ) > 0.02 )
Q = p ∗ q;

else
Q = Quadratrix.CurvePoint( 1 ) ;

P2d R1 = Quadratrix.CurvePoint( 1 − Q.y / S / 3 ) ;
P2d R2 = R1;
R2.Reflect( Yaxis2d ) ;
P2d R3 = Quadratrix.CurvePoint( 1 − 2 ∗ Q.y / S / 3 ) ;
P2d R4 = R3;
R4.Reflect( Yaxis2d ) ;

The points R2 and R4 are just symmetric points for obtaining a prettier image.
For reasons of symmetry (after all, we are geometers!) we actually print two
quadratrices and move p up and down inside a square. Otherwise, p would soon
leave the range of your computer screen. ♦

Associated curves

There exist many ways of associating a curve c∗ with a given plane curve c : �x =
�x(u) (compare, e.g., http://www.xahlee.org or related sites on the internet).
In the following we will present some of them. In Open Geometry 2.0 they
are all implemented as methods of ParamCurve2d. Thus, you can display these
special curves almost immediately on the screen.

Example 2.5. The evolute
An osculating circle o of c is a circle that intersects c in three neighboring points.
The locus of all centers of osculating circles is called the evolute e of c. Alter-
natively, e can be defined as the hull curve of all normals n of c. Figure 2.5
shows the evolute of an ellipse. We have used a slightly modified version of
"get evolute.cpp" to produce this picture.

The method GetEvolute(. . . ) is a member of ParamCurve2d. Its implementation
in "f.cpp" reads as follows:

Listing from "C/f.cpp":

void ParamCurve2d: :GetEvolute( Real u1, Real u2,
L2d &evolute )

{
int n = evolute.Size( ) ;
const Real eps = 1e−5;
Real u = u1;
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FIGURE 2.5. Evolutes of an ellipse (left) and an astroid (right).

Real delta = ( u2 − u1 ) / ( n − 1 ) ;
for ( int i = 1; i <= n; i++, u += delta )

evolute [i] = Normal( u − eps ) ∗ Normal( u + eps ) ;
}

It needs three arguments: The two real numbers u1 and u2 define the parameter
interval [u1, u2] in which the evolute is drawn; the points of the evolute e are
stored in the L2d object evolute.

The code itself is very simple. We get the number n of points in the L2d object
evolute, divide the parameter interval [u1, u2] into n − 1 parts of equal length,
and intersect two “neighboring” normals3 of c that correspond to the partition
points.4

By the way, if you want to use all the methods of ParamCurve2d with the
evolute, you can define a second parameterized curve in your Open Geometry
program. The virtual function CurvePoint(. . . ) has to be more or less the same
as the code in GetEvolute(. . . ). You have only to specify the curve name before
calling any methods of the base curve (e.g., MyCurve.CurvePoint(. . . ) instead of
CurvePoint(. . . )). The same holds for all special curves in the following text. ♦
Example 2.6. The catacaustic
Suppose now that c is a reflecting curve: A ray of light intersecting c is reflected
according to the law of reflection: The normal n of c is bisectrix of the incoming
and outgoing rays (see Figure 2.6).

3By “neighboring” we mean two normals that are sufficiently close; the real con-
stant eps serves to define this term.

4This is more or less a “geometric construction” of the evolute. Open Geome-
try’s philosophy aims at avoiding complicated computations. Instead, the user should
immediately transfer geometric ideas to the program file.
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FIGURE 2.6. The law of reflection.

If you reflect the lines of a pencil with vertex E on c, the reflected lines are all
tangent to a certain curve cc – the catacaustic of c with respect to the pole E.
In order to implement the method GetCata(. . . ) of the class ParamCurve2d in
Open Geometry, we basically did the same as in the previous example: We
intersect two “neighboring” reflected rays:

Listing from "C/f.cpp":

void ParamCurve2d: :GetCata( P2d &Pole, Real u1, Real u2,
L2d &catacaustic )

{
int n = catacaustic.Size( ) ;
const Real eps = 1e−5;
Real u = u1;
Real delta = ( u2 − u1 ) / ( n − 1 ) ;
for ( int i = 1; i <= n; i++, u += delta )
{

Real u a = u − eps, u b = u + eps;
P2d A = CurvePoint( u a ) ;
P2d B = CurvePoint( u b ) ;
StrL2d a( Pole, A ) ;
StrL2d b( Pole, B ) ;
a.Reflect( Tangent( u a ) ) ;
b.Reflect( Tangent( u b ) ) ;
catacaustic [i] = a ∗ b;

}
}
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FIGURE 2.7. The catacaustic cc of a circle c with respect to the pole E. On the
right-hand side you can see two “real world” caustics in a cup.

Of course Pole is identical to the pole E, while the meaning of the input pa-
rameters u1, u2, and catacaustic is analogous to GetEvolute(. . . ). In order to
produce Figure 2.7, we used the program "get catacaustic.cpp". You can see
the catacaustic cc of a circle c and one reflected ray r being tangent to cc. More
on catacaustics and diacaustics (caustics of refraction) can be found in various
places in this book (see Examples 2.32, 2.43, 2.44, 3.25 and 4.12)). ♦

Example 2.7. The pedal curve
Things become easier when the points of the associated curve can be constructed
explicitly (and not by intersecting two “neighboring” tangents). This is the case
with the pedal curve cp. The points of cp are the pedal points of the pole E
on all the tangents of c (Figure 2.8). Since the Open Geometry class StrL2d
provides the method NormalProjectionOfPoint(. . . ), the code of GetPedal(. . . ) is
really simple:

Listing from "C/f.cpp":

void ParamCurve2d: :GetPedal( P2d &Pole, Real u1, Real u2, L2d &pedal )
{

int n = pedal.Size( ) ;
Real u = u1;
Real delta = ( u2 − u1 ) / ( n − 1 ) ;
for ( int i = 1; i <= n; i++, u += delta )

pedal [i] = Tangent( u ).NormalProjectionOfPoint( Pole ) ;
}

♦
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FIGURE 2.8. The pedal curve cp (left, compare "get pedal.cpp") and the ortho-
nomic co (right, compare "get orthonomic.cpp") of a circle c. Both curves are limaçons
of Pascal.

Example 2.8. The orthonomic
If you reflect E on all tangents of c, you get another special curve: the orthonomic
co of c with respect to E (Figure 2.8). By definition, co is homothetic to the pedal
curve cp with center E and factor 2. Its implementation in Open Geometry
reads as follows

Listing from "C/f.cpp":

void ParamCurve2d: :GetOrtho( P2d &Pole, Real u1, Real u2,
L2d &orthonomic )

{
int n = orthonomic.Size( ) ;
Real u = u1;
Real delta = ( u2 − u1 ) / ( n − 1 ) ;
for ( int i = 1; i <= n; i++, u += delta )
{

P2d P = Pole;
P.Reflect( Tangent( u ) ) ;
orthonomic [i] = P;

}
}

In contrast to the method GetPedal(. . . ), we have to take into account that a
point will be changed when reflected on a straight line. Therefore, we copy the
pole to the point P before passing it as an argument. ♦
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Example 2.9. The antipedal curve and the antiorthonomic
Being given a plane curve c, it is easy to find the antipedal ap and the antiortho-
nomic ao (i.e., the curves having c as pedal curve or orthonomic, respectively).
Figure 2.9 shows their construction. Their implementation in Open Geometry
(methods GetAntiPedal(. . . ) and GetAntiOrtho(. . . )) is just as straightforward, so
we will not display the code at this place.

FIGURE 2.9. Antipedal curve (left, compare "get anti pedal.cpp") and the an-
tiorthonomic (right, compare "get anti ortho.cpp") of an ellipse c.

♦
Now we turn to another class of associated curves: Sometimes, the associated
curve depends on an additional parameter. That is, there exists a one-parameter
family of associated curves. Our first example of this type is the involute:

Example 2.10. The involute
The involute i of c might as well be called the antievolute; i.e., the evolute of i
is c. The involute is, however, not uniquely determined. Each point on c is the
start point of its own involute curve, and we need an additional parameter (e.g.,
the curve parameter u) to specify it.

Figure 2.10 shows the geometric construction of the involute iP to a point P =
P (u0) ∈ c. If Q = Q(u) is a second point on c, we can find a point IP of iP on
the tangent tQ of c in Q. The distance between Q and IP is equal to the arc
length a between P and Q measured on c.

You can see the following properties of an involute curve:

• All tangents of c are perpendicular to any involute of c.

• The involutes belong to a family of offset curves (compare the following
example).
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FIGURE 2.10. Involutes of a plane curve c (left) and the involute of a circle (right).

• P is a cusp of iP and the curve normal of c in P is the tangent of iP in P .

We implemented a method GetInvolute(. . . ) in Open Geometry that reads as
follows:

Listing from "C/f.cpp":

void ParamCurve2d: :GetInvolute( Real param value, Real u1, Real u2,
L2d &involute )

{
int n = involute.Size( ) ;
const int accuracy = 300;
Real u = u1;
Real delta = ( u2 − u1 ) / ( n − 1 ) ;
for ( int i = 1; i <= n; i++, u += delta )
{

StrL2d t = Tangent( u ) ;
int sign = Signum( param value − u ) ;
Real length = sign ∗ ArcLength( param value, u, accuracy ) ;
involute [i] = t.InBetweenPoint( length ) ;

}
}

The arguments u1, u2 and involute have the usual meaning. But GetInvolute(. . . )
needs the curve parameter u = param value as an additional argument to spec-
ify the cusp P = P (u) of the involute. As an example we wrote the program
"get involute.cpp". Its output, the involute of a circle c, can be seen on the
right-hand side of Figure 2.10. ♦



Section 2.1. Basic 2D Classes 47

Example 2.11. Offset curves
The offset curve od at distance d of c is well-known in geometry and computer
graphics (d is a real constant). With the help of the unit normal vector �n(u) it
can be parameterized according to

od . . . �y(u) = �x(u) + d�n(u).

The point �y(u) is located on the curve normal through �x(u). The distance be-
tween these two points is always d.

This fixed distance is a parameter to determine the offset curve od. In Fig-
ure 2.11 two offset curves of an astroid at distance ±d are displayed (compare
"get offset.cpp").

FIGURE 2.11. Two offset curves of an astroid c.

Thus, the method GetOffset(. . . ) again needs four arguments.

Listing from "C/f.cpp":

void ParamCurve2d: :GetOffset( Real distance, Real u1, Real u2,
L2d &offset )

The parameter to specify the offset curve is the distance distance. Its Open Geo-
metry implementation can be found in "f.cpp". ♦
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FIGURE 2.12. Two ellipses as general offset curves of an ellipse c

("general offset.cpp").

Example 2.12. Generalized offset curves
The concept of offset curves can be generalized a little. The distance d on the
normals of c may depend on the curve parameter u. We did not implement
this special curve as a method of ParamCurve2d, but we wrote a sample file
"general offset.cpp" to present a surprising example of this curve type.

At first, we define an ellipse as base curve c (in fact, you may use any conic
section here). Next, we implement a function OffsetDistance(. . . ):

Listing from "general offset.cpp":

Real OffsetDistance( Real u )
{

Real rad of curvature = Curve.RadiusOfCurvature( u ) ;
return exp( Log( rad of curvature ) / 3 ) ;

}

It returns the cube root of the radius of curvature of c in the curve point
P = P (u). Using this function we derive an object of type ParamCurve2d called
GenOff1:

Listing from "general offset.cpp":

class GeneralOffset1: public ParamCurve2d
{
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public:
P2d CurvePoint( Real u )
{

V2d normal = Curve.NormalVector( u ) ;
return Curve.CurvePoint( u ) + OffsetDistance( u ) ∗ normal;

}
};
GeneralOffset1 GenOff1;

In the same way, we define a parameterized curve GenOff2 using the negative
offset distance. The general offset curves are then ellipses themselves (Figure 2.12;
for a proof see [9]). In fact, we can even take an arbitrary distance function
proportional to OffsetDistance( u ) and still will get an ellipse. ♦

Families of curves

A single curve is a very common object of geometry. But sometimes this is not
enough, and single- or multiple-parametric families of curves are at the center of
interest. In this chapter we present three examples of this.

Example 2.13. Pencil of circles
We start with perhaps the most famous family of curves: the pencil of circles
("pencil of circles.cpp"). It consists of all circles through two given points
A and B. For the time being, we assume that A and B are real points. We assign
the coordinate vectors (−R, 0)t and (R, 0)t, respectively, to them.

FIGURE 2.13. A pencil of circles and the pencil of its orthogonal circles.

In our program we define those points as global constants, with C0 the circle with
diameter AB. It is now very easy to draw members of the pencil of circles P1.
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We decide on the total number CircNum of circles and on a certain “distance”
Delta. Then we write in Draw( ):

Listing from "pencil of circles.cpp":

Circ2d circ;
P2d C, D;
int i;
Real t;

t = −0.5 ∗ Delta ∗ CircNum;
for ( i = 0; i < CircNum; i++, t += Delta )
{

C.Def( 0, t ) ;
circ.Def( LightRed, A, B, C ) ;
circ.Draw( THIN ) ;

}

t = −0.5 ∗ Delta ∗ CircNum;
for( i = 0; i < CircNum; i++, t += Delta )
{

C.Def( t, 0 ) ;
D = C;
C0.InvertPoint( D ) ;
D.Def( 0.5 ∗ ( C.x + D.x ), 0.5 ∗ ( C.y + D.y ) ) ;
circ.Def( LightGreen, D, D.Distance( C ) ) ;
circ.Draw( THIN ) ;

}

We define a few local variables at the top. In the first loop we do nothing but
vary the point C on the y-axis and draw the circle through A, B, and C in light
red. By the way, the global variable Delta has the value 2R/CircNum. This is just
enough to ensure that no circle is drawn twice.

The second loop looks more interesting. There, we vary C on the x-axis, deter-
mine its inversion D at the fixed circle C0, and draw the circle with diameter CD
in light green. The circles of the second loop belong to a pencil P2 of circles as
well. The base points are, however, imaginary. Their coordinates are (0,±2iR)t.

The most interesting property of P2 is the following: The circles of P2 and P1
intersect orthogonally. In order to illustrate this, we draw two circles c1 ∈ P1
and c2 ∈ P2 in medium thickness and get their intersection points:
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Listing from "pencil of circles.cpp":

t = X.Next( ) ;
C.Def( t, 0 ) ;
D = C;
C0.InvertPoint( D ) ;
D.Def( 0.5 ∗ ( C.x + D.x ), 0.5 ∗ ( C.y + D.y ) ) ;
GreenCircle.Def( Green, D, D.Distance( C ) ) ;
GreenCircle.Draw( MEDIUM ) ;

t = Y.Next( ) ;
C.Def( 0, t ) ;
RedCircle.Def( Red, A, B, C ) ;
RedCircle.Draw( MEDIUM ) ;

i = RedCircle.SectionWithCircle( GreenCircle, C, D ) ;

Here X and Y are objects of type PulsingReal. This type is very useful for small
animations as in the present example. In the following part, we draw the normals
of each circle in the intersection points and mark all relevant points. We need
not worry about the number of intersection points: Any two circles from P1
and P2 have exactly two points in common. Figure 2.13 shows the output of
"pencil of circles.cpp". ♦
The circles of the previous example form a net of curves that intersect orthog-
onally. There exists another well-known net of that type: The net of confocal
conics.

Example 2.14. Confocal conics
Given two points F1, F2 ∈ R

2, there exists a one-parametric family E of ellipses
having F1 and F2 as focal points. Every point of R

2 that is not situated on the
straight line F1F2 lies on exactly one ellipse from E . Furthermore, there exists a
one-parametric family H of hyperbolas with the analogous properties.

In "confocal conics.cpp" we display both families, E and H. We define the
focal points F1, F2 together with their half-distance E (eccentricity) globally,
decide on a certain integer ConicNum, and reserve memory for ConicNum ellipses
and hyperbolas that will be displayed (in red and green, respectively):
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FIGURE 2.14. Families of confocal ellipses and hyperbolas.

Listing from "confocal conics.cpp":

const Real E = 5;
const P2d F1( −E, 0 ), F2( E, 0 ) ;

const int ConicNum = 15;
Conic Ell [ConicNum], Hyp [ConicNum];

Conic RedConic, GreenConic;
PulsingReal X, Y;

The conics RedConic and GreenConic will be used for an animation. Most of these
global variables are initialized in Init( ):

Listing from "confocal conics.cpp":

void Scene: :Init( )
{

// define background hyperbolas
int i, j = ConicNum − 2;
Real delta = E / ( ConicNum − 1 ) ;
Real t = −E + delta;
for ( i = 0; i < j; i++, t += delta )

Hyp [i].Def( LightGreen, 200, P2d( t, 0 ),
F1, F2, HYPERBOLA ) ;

Hyp [ConicNum−2].Def( LightGreen, 200, P2d( 0.05 − E, 0 ),
F1, F2, HYPERBOLA ) ;
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Hyp [ConicNum−1].Def( LightGreen, 200, P2d( E − 0.05, 0 ),
F1, F2, HYPERBOLA ) ;

// define background ellipses
delta = 1;
t = 0.5 ∗ delta;
for ( i = 0; i < ConicNum; i++, t += delta )

Ell [i].Def( LightRed, 200, P2d( 0, t ), F1, F2, ELLIPSE ) ;

X.Def( E ∗ 0.11973, 0.05, −E + 0.0001,
E − 0.0001, HARMONIC ) ;

Y.Def( E ∗ 1.22495, 0.05, 0.05, 10, LINEAR ) ;

AllowRestart( ) ;
}

Of course, the appropriate defining method for the conics uses one conic point
and the two common focal points. Additionally, we must specify the respective
conic type (ELLIPSE or HYPERBOLA) in order to avoid ambiguities. In Draw( )
we display these conics. Additionally, we draw the degenerate members (straight
line segments) of each of the families E and H, define two special conics, and
mark their intersection points:

Listing from "confocal conics.cpp":

Yaxis2d.Draw( LightGreen, −15, 15, THIN ) ;
Xaxis2d.Draw( LightGreen, −15, −E, THIN ) ;
Xaxis2d.Draw( LightGreen, E, 15, THIN ) ;
Xaxis2d.Draw( LightRed, −E, E, THIN ) ;

RedConic.Def( Red, 150, P2d( 0, Y.Next( ) ),
F1, F2, ELLIPSE ) ;

GreenConic.Def( Green, 150, P2d( X.Next( ), 0 ),
F1, F2, HYPERBOLA ) ;

RedConic.Draw( THICK ) ;
GreenConic.Draw( THICK, 15 ) ;

const Real x = RedConic.DistMA( ) ∗ GreenConic.DistMA( ) / E;
const Real y = RedConic.DistMC( ) ∗ GreenConic.DistMC( ) / E;
P2d( x, y ).Mark( Black, 0.2, 0.1 ) ;
P2d( x, −y ).Mark( Black, 0.2, 0.1 ) ;
P2d( −x, y ).Mark( Black, 0.2, 0.1 ) ;
P2d( −x, −y ).Mark( Black, 0.2, 0.1 ) ;
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Note that we deliberately avoid the SectionWithConic(. . . ) method of the class
Conic for the computation of the intersection points (last six lines of the above
listing). This method finds the intersection point by solving an algebraic equa-
tion of order four. Our calculation is simpler. Additionally, we avoid numerical
problems that arise from the fact that the conic axes are parallel to the coordi-
nate axes x and y.5 ♦

Example 2.15. Cassini’s oval
In the preceding example we have considered the set of conics with common
focal points F1 and F2. Each such conic consists of all points X ∈ R

2 satisfying
XF1 ± XF2 = 2a. Cassini’s oval o (G.D. Cassini, 1625–1712) is defined in a
similar way:

o := {X ∈ R
2 | XF1 · XF2 = a2}, a ∈ R = const.

Actually, there exist many different forms of Cassini’s ovals. Their shape de-
pends on the ratio e : a, where 2e is the distance between F1 and F2. In any case,
o is a quartic curve. Its implicit equations in Cartesian coordinates and polar
coordinates read

o . . . (x2 + y2)2 − 2e2(x2 − y2) = a4 − e4 (2)

and
o . . . r2 = e2 cos 2ϕ ±

√
a4 − e4 sin2 2ϕ, (3)

respectively. For a ≥ e the curve is connected; for a ≥ √
2e it is even convex. For

a = e the origin is a double point, and Cassini’s oval is identical to Bernoulli’s
lemniscate. Finally, for a ≤ e the curve splits into two parts symmetric to the
y-axis (compare Figure 2.15).

Both equations (2) and (3) are not too good for an Open Geometry visual-
ization. The main problem consists in the different shapes of the curve. There
exists no proper parameterized equation of o covering all cases. Thus, we will try
a different approach to the problem. Instead of drawing line segments (as with
an L2d, PathCurve2d, or ParamCurve2d object), we will mark a few hundred
curve points. This turns out to be much faster in an animation that shows the
transition between different shapes of the curve.

In "cassini.cpp" we use three global constants: E (the “focal distance”), Point-
Num (the number of points to be drawn) and Thickness (a real value that deter-
mines the radius of the circles that mark the points). Our only global variable
will be the pulsing real A that occurs in equations (2) and (3). It is defined in
Init( ):

5This leads to zeros of multiplicity µ > 1 of the algebraic of order four. Our current
root-solving algorithm is not very stable in this case.
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FIGURE 2.15. Different shapes of Cassini’s oval.

Listing from "cassini.cpp":

A.Def( E − 0.059, 0.07, −2.5 ∗ E, 2.5 ∗ E, HARMONIC ) ;

The weird initial value ensures that o will be more or less a lemniscate in the
first frame. Our strategy is now the following:

1. We start with a straight line s(ϕ) of direction (cos ϕ, sin ϕ)t through the
origin.

2. We intersect s(ϕ) with o. The polar coordinates of the up to four solution
points can be computed from (3).

3. We mark the solution points, rotate s(ϕ) about the origin through a given
small angle δ, and start the same procedure again.

This is done in Draw( ):

Listing from "cassini.cpp":

const Real E2 = E ∗ E;
const Real E4 = E2 ∗ E2;
const Real a = A.Next( ) ;
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const Real a4 = a ∗ a ∗ a ∗ a;

Real phi, delta = 2 ∗ PI / PointNum, c2, x, r, c, s;

for ( phi = 0; phi <= 2 ∗ PI; phi += delta )
{

c2 = cos( 2 ∗ phi ) ;
x = E4 ∗ c2 ∗ c2 + a4 − E4;
if ( x >= 0 )
{

x = sqrt( x ) ;
if ( E2 ∗ c2 + x >= 0 )
{

r = sqrt( E2 ∗ c2 + x ) ;
c = cos( phi ), s = sin( phi ) ;
P2d( r ∗ c, r ∗ s ).Mark( Red, Thickness ) ;
P2d( −r ∗ c, −r ∗ s ).Mark( Red, Thickness ) ;

r = E2 ∗ c2 − x;
if ( r >= 0 )
{

r = sqrt( r ) ;
P2d( r ∗ c, r ∗ s ).Mark( Red, Thickness ) ;
P2d( −r ∗ c, −r ∗ s ).Mark( Red, Thickness ) ;

}
}

}
}

We start by defining some local constants for frequently used terms. Next, we
define local variables used in the following computation part. In a for-loop we
mark the real solution points of s(ϕ) in a straightforward computational way.

If there exist four real solutions on one straight line s(ϕ0), the curve consists of
two parts. Then there exist two real tangents t1 and t2 to o through the origin.
On each tangent ti we find two points of tangency Ti and T ′

i (Figure 2.15). In
the regions around these points our drawing method yields a bad distribution of
points. Thus, we mark them and two “neighboring” tangent points explicitly in
order to get a better graphical result:
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Listing from "cassini.cpp":

const Real eps = 0.03 ∗ a;
if ( a < E )
{

x = 0.5 ∗ asin( a ∗ a / E2 ) ;
r = pow( E4 − a4, 0.25 ) − eps;
for ( int i = 0; i < 3; i++, r += eps )
{

P2d P( r ∗ cos( x ), r ∗ sin( x ) ) ;
P.Mark( Red, Thickness ) ;
P.Reflect( Yaxis2d ) ;
P.Mark( Red, Thickness ) ;
P.Reflect( Xaxis2d ) ;
P.Mark( Red, Thickness ) ;
P.Reflect( Yaxis2d ) ;
P.Mark( Red, Thickness ) ;

}
}

The real eps depends on the parameter a and ensures a good distance of the
neighboring tangent points. ♦

2.2 Animations
The previous section of this book already contains a few examples of animations
in Open Geometry. However, these animations were not the main content of
the respective programs. This section’s examples put a special emphasis on the
animation part and provide many different ways of altering position, shapes, and
relations of objects. You will learn to use them efficiently for the production of
real-time animations with Open Geometry 2.0.

Example 2.16. Propagation of waves
An example of a 2D animation of a physical concept is realized in the sample file
"wavefront.cpp". There, we consider a wave source E, (i.e., a point emitting
sound waves or optical waves). According to the laws of acoustics or optics, the
wave will spread to all directions with constant velocity. The set of all points on
the wave belonging to the same time parameter t is called a wave front. If the
wave remains undisturbed, all wave fronts are circles with common center E.

Suppose now that c is a reflecting curve. Each point of a wave front that meets
c is reflected and continues its travel in a new direction with the same constant
velocity. Depending on the shape of c and the position of E relative to c, the
wave front’s shape will be changed considerably. It is not difficult to prove the
following theorem (compare Figure 2.16 and [30]):
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After being reflected on a curve c, the wave fronts are offset curves of the ortho-
nomic o of c with respect to E.6

c

E

o

FIGURE 2.16. After the reflection on c, the wave fronts are all offset curves of the
orthonomic o of c with respect to E.

In "wavefront.cpp" the reader can find an animation of the physical model.
The reflecting curve c . . . C(u) is a class of type ParamCurve2d, each wave front
to be displayed is a class of type L2d. We first define a function returning the
point P (u, t) of the wave front (u is the parameter of the corresponding point on
c, t is the time parameter). Thus, each wave front may be regarded as a u-line
of a curved parameterization of the plane.

Listing from "wavefront.cpp":

// Function returning a reflected point. t is the time parameter,
// u is the parameter value of the corresponding point on the
// reflecting curve, (i.e, the u-lines are exactly the wave fronts)
P2d WaveFront( Real t, Real u )
{

P2d P, Q;
Q = refl curve.CurvePoint( u ) ;
V2d dir = Q − E;
dir.Normalize( ) ;
P = E + t ∗ dir;
if ( t > E.Distance( Q ) )

P.Reflect( refl curve.Tangent( u ) ) ;
return P;

}

6The terms offset curve and orthonomic are explained on pages 47 and 44,
respectively.
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Now to the animation. We introduce a few parameters (global constants) to
determine:

• The center E of the wave fronts.

• The parameter interval [U1,U2] of the reflecting curve (it is necessary to
define U1 and U2 globally, since we must have access to them in the Draw( )
part of our file).

• The time interval [T1,T2] during which the wave fronts will be displayed.
Usually we will have T1 = 0; i.e., the wave fronts will be drawn as soon as
they are emitted.

• The number M of points on each wave front. Since the wave fronts tend to
get rather long as t approaches the end of the time interval, you may have
to adjust this in order to get “smooth” curves.

• The number N of wave fronts to be displayed.

• The velocity of the animation (SpeedFactor).

Next, we define the three variables:

Listing from "wavefront.cpp":

const Real Step = ( T2 − T1 ) / N; // time interval between
// two wave fronts

Real delta; // the parameter used for the animation
L2d U [N]; // the N wave fronts to be drawn

The time interval is divided into equal parts of length Step each, the real Delta
is used in Animate( ), the i-th wave front itself is an L2d-object named U[i]. The
Draw( ) and Animate( ) part of our scene read as follows:

Listing from "wavefront.cpp":

void Scene: :Draw( )
{

ShowAxes2d( Green, −10, 10, −7, 7 ) ;
// define and draw N wave fronts with M points each
int i = 0, j = 0;
for ( i = 0; i < N; i++ )
{

U [i].Def( Blue, M ) ;
for ( j = 0; j <= M; j++ )
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{
// to delay the wave fronts at the
// beginning of the animation
if ( FrameNum( ) < i ∗ SpeedFactor )

U [i] [j] = E;
else
{

Real u0 = U1 + j ∗ ( U2 − U1 ) / ( M − 1 ) ;
Real t0 = T1 + i ∗ ( T2 − T1 ) / N;
U [i] [j] =

WaveFront( t0 + Step ∗ Delta / SpeedFactor, u0 ) ;
}

}
// only draw the relevant wave fronts
if ( FrameNum( ) > i ∗ SpeedFactor )

U [i].Draw( THIN ) ;
}
refl curve.Draw( THICK ) ;
E.Mark( Red, 0.2, 0.1 ) ;

}

void Scene: :Animate( )
{

Delta = FrameNum( ) % SpeedFactor;
}

We divide the “parameter range” of the wave front area into equally distributed
stripes of width (T2 − T1)/2. In each stripe we draw one wave front per frame.
Repeating this in cycles of SpeedFactor frames (compare Animate( )), we produce
the illusion of wave fronts traveling with constant velocity (while in reality, they
move a short distance and jump back again). Note the additional delay of the
i-th wave front during the first frames of the animation.

In "wavefront.cpp" the reflecting curve c is an ellipse, and the wave source E
is one of its focal points. Due to the focal property, the reflected wave fronts are
parts of circles with center F (the other focal point of c; see Figure 2.17). ♦
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FIGURE 2.17. Output of the program "wavefront.cpp".

Example 2.17. Rolling snail
The next example concerns one of the most remarkable plane curves: the equian-
gular or logarithmic spiral. In polar coordinates its equation reads

σ . . . r(ϕ) = �epϕ ϕ ∈ (−∞,∞).

The real constants � and p are called the radius and parameter of the curve.
The spiral has a number of beautiful properties. For example, the evolute or the
catacaustic of s is an equiangular spiral again. For our purposes, the following
will be of importance to us: The angle ψ between the radius vector and the
corresponding curve tangent is constant (Figure 2.18).

We can use this to construct a stair upon which a logarithmic spiral can roll up
and down (right-hand side of Figure 2.18). Our “wheel” consists of the spiral arc
between the parameter values ϕ0 = 0 and ϕ1 = 2π. The length of the stairs equals
the arc length of s in this interval. The stairs themselves are not orthogonally:
we need a little corner for the spiral to fit in. The angles are determined by the
angle ψ formed by the radius vector and curve tangent.

The corresponding Open Geometry program is called "rolling snail.cpp".
In order to draw the spiral, we have to derive a class from ParamCurve2d. We do
this and add some additional — rather special — methods that will be described
in the following.

Listing from "rolling snail.cpp":

class EquiangularSpiral: public ParamCurve2d
{
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FIGURE 2.18. The radius vectors and the tangents of an equiangular spiral intersect
in a constant angle ψ (left). The spiral can roll steadily on a stair (right).

public:
void Def( Color c, int n, Real radius, Real parameter,

Real t0, Real t1 )
{

rad = radius;
par = parameter;
S.Def( rad, 0 ) ;
E.Def( exp( 2 ∗ par ∗ PI ) ∗ rad, 0 ) ;
ParamCurve2d: :Def( c, n, t0, t1 ) ;

}
virtual P2d CurvePoint( Real t )
{

P2d X( cos( t ), sin( t ) ) ;
X ∗= rad ∗ exp( par ∗ t ) ;
return X;

}
Real ParamValue( Real t0, Real dist )
{

return ( 2 ∗ log( rad ∗ sqrt( par ∗ par + 1 ) ∗
exp( par ∗ t0 ) + dist ∗ par ) −
log( ( par ∗ par + 1 ) ∗ rad ∗ rad ) ) / ( 2 ∗ par ) ;

}
void RotateAndDraw( ThinOrThick thickness, Real dist,

P2d V, V2d v )
{

Real tt = ParamValue( 0, dist ) ;
P2d T1 = CurvePoint( tt ) ;
StrL2d normal;
normal.Def( P2d( 0.5 ∗ ( T1.x + V.x ), 0.5 ∗ ( T1.y + V.y ) ),

V2d( V.y − T1.y, T1.x − V.x ) ) ;
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Real angle = v.Angle( TangentVector( tt ), false, true ) ;
Real d = 0.5 ∗ T1.Distance( V ) ;
Real dd = d / tan( 0.5 ∗ angle ) ;
angle = Deg( angle ) ;
P2d C = normal.InBetweenPoint( dd ) ;

Rotate( C, −angle ) ;
S.Rotate( C, −angle ) ;
E.Rotate( C, −angle ) ;
Origin2d.Rotate( C, −angle ) ;

Draw( thickness ) ;
StraightLine2d( col, S, E, thickness ) ;
Origin2d.Mark( Red, 0.2, 0.1 ) ;

Rotate( C, angle ) ;
S.Rotate( C, angle ) ;
E.Rotate( C, angle ) ;
Origin2d.Rotate( C, angle ) ;

}
private:

Real rad;
Real par;
P2d S;
P2d E;

};
EquiangularSpiral Spiral;

We define the spiral by its parameter and radius. In addition, we set two points
S and E: the start and end point of our arc. The parametric representation in
rectangular coordinates reads

�x(t) =
(

x(t)
y(t)

)
= �ept

(
cos t
sin t

)

and is implemented in CurvePoint(. . . ). The function ParamValue(. . . ) has two
real input parameters t1 and dist. The return parameter t1 is the explicit solution
of the integral equation

∫ t1

t0

√
ẋ(t) + ẏ(t) = dist.

Geometrically speaking, we can say that the arc length between �x(t0) and �x(t1)
is dist. We need this, of course, to simulate the rolling of the spiral.

For reasons of simplicity, we assume at first that σ rolls on one straight line s
only. We assume further that in a starting position the start point S is the point
of contact (the velocity pole of the motion; Figure 2.19).
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FIGURE 2.19. Rotating the spiral in the correct position.

In a neighboring position the point of contact belongs to some parameter value
t (computed by ParamValue(. . . )) that depends on the distance ∆ measured on
s. We have to rotate the spiral to its correct position.

This (and a little more) is done in the rather lengthy function RotateAndDraw(. . . ).
We refer to a fixed spiral, compute the center and angle of the rotation, rotate and
draw all relevant elements. Then we immediately undo the rotation. This proce-
dure is a little complicated but necessary: The CurvePoint(. . . ) and Tangent(. . . )
functions of ParamCurve2d refer to the parameterized equation and thus re-
turn only the points and tangents of the original position. The rotation is now
defined by two pairs (T, t) and (V, v) of point plus tangent (right-hand side of
Figure 2.19).

Equipped with the class EquiangularSpiral, the rest of the program is easy to
write. We have to adjust the length and angles of the stair with radius and
parameter of the spiral, and we have to write a proper animation. We use the
parameter P of the spiral and the length Length of the stair as global constants.
With the help of some basic calculus we compute the radius of s as well as height
and vertices of the stairs in Init( ) (N is the total number of stairs):

Listing from "rolling snail.cpp":

Real r = fabs( Length ∗ P / Sqrt( 1 + P ∗ P ) /
( exp( 2 ∗ PI ∗ P ) − 1 ) ) ;

Real angle = atan( P ) ;
Real h = r ∗ fabs( exp( 2 ∗ P ∗ PI ) − 1 ) ;
Real height = h ∗ cos( angle ) ;

int i;
Real x = 0.5 ∗ h ∗ sin( angle ) ;
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for ( i = 0; i < N2; i += 2 )
Vertex [i].Def( 0.5 ∗ ( i − N ) ∗ Length + i ∗ x,

0.5 ∗ ( N − i ) ∗ height ) ;
for ( i = 1; i < N2; i += 2 )

Vertex [i].Def( 0.5 ∗ ( i − N + 1 ) ∗ Length +
( i − 1 ) ∗ x, 0.5 ∗ ( N − i + 1 ) ∗ height ) ;

So far, so good. But we still have to animate the whole thing. We use three
global variables for this: T, Delta, and Index. The variable T gives the current
distance of the point of contact from the left vertex of the current stair. Delta is
the increment for T and can change its sign as the snail rolls down and up again,
Index is an integer value that stores the number of the current stair. Thus, in
order to animate the scene, we have to write the simple line

Spiral.RotateAndDraw( THICK, T, Vertex [Index] +
T ∗ Xdir2d, Xdir2d ) ;

in Draw( ). The animation part itself is a little trickier. Still, it is not difficult to
grasp the basic ideas:

Listing from "rolling snail.cpp":

void Scene: :Animate( )
{

T += Delta;
if ( T > Length )
{

T = 0;
Index += 2;
if ( Index == N2 )
{

Index −= 2;
Delta ∗= −1;
T = Length;

}
}
if ( T < 0 )
{

T = Length;
Index −= 2;
if ( Index == −2 )
{

Index = 0;
Delta ∗= −1;
T = 0;

}
}

}
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FIGURE 2.20. A snail rolls on a stair.

We increase T until we reach the end of a stair. There we reset it and increase
Index by 2 (because each stair consists of two end points, and Index refers to
the index of the first vertex). If we reach the end of the stair, we do everything
just the other way round. In Figure 2.20 we display several positions during the
rolling motion. ♦
Snails are nice but sometimes a little too slow (if there is no stair to roll on). In
the next examples we will deal with faster animals.

Example 2.18. About cats, dogs, and rabbits
Suppose a dog D is chasing two cats. If it is not too smart, it probably tries to
catch both at the same time. As a result, the cats will always be able to escape.
In this example we are interested in finding the path curve of the hunting dog.

In "cats and dog1.cpp" we assume that the cats C1 and C2 do nothing but run
on circular paths. We initialize a starting position of D, C1, and C2, the centers
M1 and M2 of the cat’s circular paths, and their angular velocities VelCat1 and
VelCat1, respectively, by random numbers. In Draw( ) we just mark the points and
draw their path curves. The really interesting parts are happening in Animate( )
(Cat1 = C1, Cat2 = C2 and Dog = D are globally declared variables of type
P2d):

Listing from "cats and dog1.cpp":

void Scene: :Animate( )
{

V2d dog dir = Cat1 + Cat2;
dog dir −= 2 ∗ Dog;
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if ( dog dir.Length( ) > VelDog )
{

dog dir.Normalize( ) ;
dog dir ∗= VelDog;

}
Dog.Translate( dog dir ) ;
DogRect.Translate( dog dir ) ;

Cat1.Rotate( M1, VelCat1 ) ;
Cat1Rect.Translate( Cat1.x − Cat1Rect [ 1].x,

Cat1.y − Cat1Rect [ 1].y ) ;
Cat2.Rotate( M2, VelCat2 ) ;
Cat2Rect.Translate( Cat2.x − Cat2Rect [ 1].x,

Cat2.y − Cat2Rect [ 1].y ) ;
}

At the beginning we compute the instantaneous velocity vector of the dog D. Its
direction is given by

−−→
DC1 +

−−→
DC2 =

−−→
OC1 +

−−→
OC2 − 2

−−→
OD. If it is not too short,

we normalize it and multiply it by the absolute value of the dog’s velocity. The
rectangles attached to the points D, C1, and C2 are just there to illustrate the
theme of the program. They will be textured with dog and cat bitmaps.

If you run the program you will notice that sooner or later, the dog always follows
a certain curve that seems to be independent of the dog’s starting position and
resembles a trochoid of characteristic VelCat1 : VelCat2 (Figure 2.21).

FIGURE 2.21. Some examples of the dog’s path curve. The initial position of the
dog is D0.

A closer examination reveals the underlying geometric structure. To begin with,
it is clear that the dog at any moment tries to reach the midpoint M of C1 and
C2 (Figure 2.22). If it is fast enough, it can reach it, and it then tries to stay
there. Because of this behavior, we will refer to the path curve m of M as the
attractor curve. Even if C1 and C2 have constant velocity, M will usually not
have. Thus, if M accelerates too much, the dog has to start hunting its imaginary
target again. Have a look at the middle image of Figure 2.21, where the dog’s
velocity was chosen relatively low.
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FIGURE 2.22. The dog D tries to reach the midpoint M of C1 and C2. The path
curve of M is a trochoid.

It is not difficult to see that the attractor is a trochoid (Figure 2.22). Just trans-
late the rotating rod M2C2 through the midpoint O of M1M2 and M1C1 through
C∗

2 . The midpoint of O and C∗
1 is at the same time the midpoint of C1 and C2.

Thus, the path curve of M is really a trochoid.7 Its characteristic ω1 : ω2 is given
by the angular velocities of C1 and C2. Its dimensions are half the radii of the
path circles of C1 and C2.

In "cats and dog2.cpp" we display the kinematic generation of the path curve
of M . Additionally, we delay the drawing of the dog’s path curve in order to
emphasize its generation.

A variation of the program is "rabbit and dogs.cpp". There, two wild dogs are
hunting a poor rabbit. Again, the dogs D1 and D2 are not too clever and head
directly for the rabbit R. The rabbit’s direction is determined by the wish to flee
from the dogs and to reach a sheltering cave C. The directions are computed in
Animate( ):

Listing from "rabbit and dogs.cpp":

void Scene: :Animate( )
{

if ( !Hit && !Save )
{

V2d dog1 dir = Rabbit − Dog1;
V2d dog2 dir = Rabbit − Dog2;
V2d rabbit dir = Cave − Rabbit;

7The dog’s path is, of course, not a trochoid in general. It is for example, possible
that D and M are identical only for a while. This shows that the dog’s path is not
analytic in this case and therefore cannot be a trochoid.
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dog1 dir.Normalize( ) ;
dog2 dir.Normalize( ) ;
rabbit dir.Normalize( ) ;

rabbit dir = dog1 dir + dog2 dir + 2 ∗ rabbit dir;
rabbit dir.Normalize( ) ;
rabbit dir ∗= VelRabbit;
Rabbit.Translate( rabbit dir ) ;
RabbitRect.Translate( rabbit dir ) ;
dog1 dir ∗= VelDog1;
Dog1.Translate( dog1 dir ) ;
Dog1Rect.Translate( dog1 dir ) ;
dog2 dir ∗= VelDog2;
Dog2.Translate( dog2 dir ) ;
Dog2Rect.Translate( dog2 dir ) ;

}
}

Hit and Safe are global variables of type Boolean. They are initialized with false
and can change their value at the end of Draw( ):

Listing from "rabbit and dogs.cpp":

if ( Dog1.Distance( Rabbit ) < DoubleLimit ||
Dog1.Distance( Rabbit ) < DoubleLimit )

{
V2d v( Double( ), Double( ) ) ;
Rabbit.Translate( v ) ;
RabbitRect.Translate( v ) ;

}
if ( Dog1.Distance( Rabbit ) < HitLimit ||

Dog2.Distance( Rabbit ) < HitLimit )
Hit = true;

if ( Rabbit.Distance( Cave ) < SafetyLimit )
Save = true;

If the rabbit is close enough to the cave, it is safe. If it comes too close to a dog,
it is lost and Hit is set to true. As the situation is really unfair (two dogs that
run faster than the poor rabbit), we introduce the possibility of doubling. The
rabbit makes a sudden jump in a random direction (Double( ) yields a suitable
random number). Thus, the rabbit will get caught only if it doubles in a bad
random direction. In this case, the animation stops and we enter the following
path in Draw( ):
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Listing from "rabbit and dogs.cpp":

if ( Hit )
{

Rabbit.AttachString( Red, 0.5, 0.5, "HIT" ) ;
if ( FrameNum( ) % 20 < 10 )
{

Dog1.Mark( Black, 0.2, 0.1 ) ;
Dog2.Mark( Black, 0.2, 0.1 ) ;
Rabbit.Mark( Red, 0.4 ) ;

}
else
{

Rabbit.Mark( Blue, 0.2, 0.1 ) ;
Dog1.Mark( Black, 0.2, 0.1 ) ;
Dog2.Mark( Black, 0.2, 0.1 ) ;

}
}

FIGURE 2.23. Two different endings of the rabbit hunt.

This will highlight the rabbit’s position with a blinking red point and attach
the string "HIT" to it. An analogous path exists if the rabbit reaches the cave.
Figure 2.23 shows two typical endings of the hunt: In the image on the left-hand
side the rabbit escapes after doubling twice. In the image on the right-hand side
it is caught near the sheltering cave. ♦
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FIGURE 2.24. (a) The “lucky” comet heads toward planet P0 and the system con-
sisting of S and P1. (b) C is turned aside by P0 but does not crash into the planet.
(c) All three forces of gravity guide the comet through the solar system. (d) C safely
leaves the solar system.

Example 2.19. A comet passes a solar system
A variation of the theme of the cat and rabbit hunt is to be found in
"comets fate.cpp": A comet enters a system of planets that orbit around a
sun. Initially, the planet’s velocity is constant, but under the influence of the
sun’s and planets’ forces of gravity, it will change its path. Eventually, it will
either be able to leave the solar system or crash into one of the planets or the
sun. Similar simulations may be applied not only to large objects such as planets
but also to small objects like interacting electrons or a crowd of people heading
in different directions and trying to avoid too close contact.

In "comets fate.cpp" we decide on a global constant integer N that gives the
number of planets in the solar system. Each planet Planet[i] has its own force of
gravity gi, its circular velocity ωi, and its path circle ci. The center of ci is the
fixed sun Si. According to Newton’s law, the gravity that acts on the comet C
is proportional to the planet’s mass and inversely proportional to the square of
the distance CP . The comet has a certain starting point and a certain initial
velocity �v0. The starting point is on the far right of the screen, and it is no loss
of generality to assume �v0 as parallel to the x-axis.
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In Init( ) we initialize the variables with sensible random values; in Draw( ) we
add the comet’s current position to a 2D path curve, draw the path curve and
the circular paths and mark the planets (in a size proportional to their force of
gravity), the sun and the comet.8 The part of interest is Animate( ):

Listing from "comets fate.cpp":

void Scene: :Animate( )
{

int i;
if ( !Hit )
{

// Rotate the planets.
for ( i = 0; i < N; i++ )

Planet [i].Rotate( Sun, Omega [i] ) ;

// Compute the distances of comet
// to planets and the sun.
Real Rad, R [N];
Rad = Comet.Distance( Sun ) ;
for ( i = 0; i < N; i++ )

R [i] = Comet.Distance( Planet [i] ) ;

// If comet is too close to sun or other planets
// we consider it as lost in the atmosphere.
if ( GravSun > Rad ∗ Rad ∗ Rad )
{

Comet = Sun;
Hit = true;

}
for ( i = 0; i < N; i++ )
{

if ( Grav [i] > R [i] ∗ R [i] ∗ R [i] )
{

Comet = Planet [i];
Hit = true;

}
}
// If comet is not too close to sun or other
// planet it moves under the influence of
// gravity. The force of gravity is reciprocal
// to the square of the distance to the planet.
if ( !Hit )
{

8Of course, the resulting system of planets cannot be stable! We use random values
and do not describe the situation in a real solar system.
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V2d v = Sun − Comet;
v.Normalize( ) ;
Comet += GravSun / Rad / Rad ∗ v;
for ( i = 0; i < N; i++ )
{

v = Planet [i] − Comet;
v.Normalize( ) ;
Comet += Grav [i] / R [i] / R [i] ∗ v;

}
Comet += CVel;

}
}
else
{

// If comet hits planet we mark it with
// a blinking red point.
if ( FrameNum( ) % 20 < 10 )

Comet.Mark( Red, 0.4 ) ;
}

}

We use a global variable Hit of type Boolean that tells us whether the comet has
crashed into a planet or the sun. If Hit = false, we orbit the planets to their
new position. Then we compute the distances Rad and R[ i ] of the comet to the
sun and these planets. This is necessary because the force of gravity acting on
C is proportional to the reciprocal value of the squared distance.

We will translate the comet C by a vector of length gi/R[ i ]2 in the direction
of the planet Pi (and in the direction of the sun as well). But first we have to
decide whether C has already hit a planet. This part needs some consideration.
Obviously, the crash distance δi (i.e., the distance when we assume that the
comet hit the planet) must depend on the force of gravity. A sensible limit is
δi = 3

√
gi. Otherwise, our model would catapult the comet through the planet Pi

if it is within the circle of radius δi around Pi. In the listing we have used the
equivalent expression gi > R[ i ]3.

If the comet is too close to a planet, we set Hit = true and C = Pi. Otherwise, we
apply the translations described above. Of course, we must take into account the
initial velocity �v0 (CVel in our listing) as well. If Hit is true, we will not change
the planet’s position in the next frame. Instead, we mark the crash position with
a gleaming red point. The comet’s chances to survive its travel through the solar
system increase with its initial velocity and decrease with the number of planets.
Figure 2.24 shows the typical fate of a comet. ♦
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2.3 Kinematics
Open Geometry serves very well for computer simulations of rigid 2D mecha-
nisms. In [14] a whole chapter is dedicated to this topic. In addition to this, will
give a few more examples.

Example 2.20. A complex window opener
At first, we present a sample program that is used to develop a manipulator for
performing a complex opening and closing procedure of a window. The manip-
ulator has to meet the following few conditions:

FIGURE 2.25. Four different positions of the window: (a) completely closed, (b) half
open and protecting from the sun, (c) completely open, (d) half open and reflecting the
sun rays inside the room.

• One must be able to reach the four window positions displayed in Fig-
ure 2.25. These positions guarantee optimal usage of the sunlight. A half-
transparent silvered surface either reflects the light inside the room or pre-
vents it from coming through in the half-open positions.

• On the one hand, a transition from position (b) to position (c) should be
possible without closing the window completely, i.e., without reaching posi-
tion (a). On the other hand, one should be able to close the window directly
from position (b) or (d).9

• For practical reasons the mechanism should be simple and stable at the
same time. Only standard gearing devices should be used. The essential
joints should all fit into the window frame.

It is a difficult task to find a mechanism of that kind, and Open Geometry
cannot do it for you. You rather need a good book on manipulators and a cer-
tain amount of experience. At a certain point, however, an Open Geometry
simulation might be quite helpful.

9These are essential elements of design. Without them the mechanism would be of
much less interest from the designer’s point of view.
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FIGURE 2.26. The abstract mechanism of the window manipulator.

Obviously, the problem can be solved in two dimensions only. There, you need a
manipulator providing a two-parameter mobility of freedom in order to meet the
second condition of the above list. The final proposal is the mechanism displayed
in Figure 2.26.

It consists of four arms AD, BE, CD, and DE that are all linked by joints of
revolution. The points The points The points The points The points The points
The points The points The points A, B, and C always lie on a straight line w
(the wall); A is fixed, B and C may still change their position on w. This gives
us the two parameters of freedom we need.

Having decided on the abstract mechanism, another difficult task is ahead: the
design of the mechanism’s dimensions. You must be able to reach the different
positions without crashing the window into the wall and without sweeping off
the flowers from your window sill. And what if one of the manipulator’s arms
is not long enough to reach one of the required positions? In earlier days you
had to make a large number of drawings and build a few models to find a good
solution. Nowadays, you write an Open Geometry program ("window.cpp")!

What has to be done? Given the dimensions AD, CD, BE, and DE of the mecha-
nism and the positions of A, B, and C, we have to compute the positions of D and
E. We do this in two almost identical functions called CalcD(. . . ) and CalcE(. . . ).
Only one of them needs to be listed.

Listing from "window.cpp":

P2d CalcD( P2d inA, P2d inC )
{

// Two circles with centers A and C. Their radii
// are AD and CD, respectively.
Circ2d a, c;
a.Def( NoColor, inA.x, inA.y, AD ) ;
c.Def( NoColor, inC.x, inC.y, CD ) ;
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// Intersect these circles.
P2d D1, D2;
n = a.SectionWithCircle( c, D1, D2 ) ;
if ( n == 0 ) // no real solution
{

ResetPoints( ) ;
return D old;

}
else
{

// Take the point that lies closer to the old position of D.
// This will probably be the right choice.
if ( D1.Distance( D old ) < D2.Distance( D old ) )

return D1;
else

return D2;
}

}

The two arguments of CalcD(. . . ) are the points A and C. We define two circles a
and c around these points with radii AD and CD, respectively. Obviously, D lies
on both circles a and c. So we use the method SectionWithCircle(. . . ) of Circ2d to
determine the intersection points D1 and D2 of a and c. Here, the first problems
arise: What happens if D1 and D2 are not real, and which point shall we take
instead?

SectionWithCircle(. . . ) returns an integer value n telling us the number of real
solutions. If there is no real solution (n = 0), we return to the previous stage of
our animation by resetting all points and returning the previous position D old
of D (this will soon be explained in detail). This corresponds perfectly to the
situation in practice: The mechanism simply won’t move in the desired direction.
If two solutions exist, we take the one that lies closer to the previous position
D old of D. This may yield a wrong solution in some strange constellations, but
for practical purposes it is absolutely sufficient.

It is now easy to draw the whole scene since all relevant points are known. The
Animate( ) part is, however, a bit tricky. Nevertheless, it has simple code:
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Listing from "window.cpp":

void Scene: :Animate( )
{

B old = B;
C old = C;
D old = D;
E old = E;
B.Translate( 0, Delta B ) ;
Delta B = 0;
C.Translate( 0, Delta C ) ;
Delta C = 0;
D = CalcD( A, C ) ;
E = CalcE( B, D ) ;

}

We store the current positions of B, C, D, and E, translate B and C by a certain
amount along w, and compute the new positions of D and E. The reason for the
immediate resetting of Delta B and Delta C to 0 will soon become clear.

We want to change the window position interactively. In Open Geometry this
can be done as follows

1. Write an Animate( ) part that in general, does nothing relevant. In our
example, the value of Delta B and Delta C is 0 in most frames.

2. In Draw( ) or Animate( ) ask for the last key that has been pressed and
change some animation variables according to it.

3. Immediately reset these animation variables in Animate( ).

In order to animate the scene interactively, you start a series of identical frames
by pressing <Ctrl + f> or clicking on the corresponding button. Then you
press one of your specified command keys, and the next frame will yield the
desired changes. The relevant part of "window.cpp" is as follows:

Listing from "window.cpp":

int key = TheKeyPressed( ) ;
switch (key )
{
case ’k’:

Delta B = Factor B ∗ 0.1;
break;

case ’j’:
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Delta B = −Factor B ∗ 0.1;
break;

case ’d’:
Delta C = Factor C ∗ 0.1;
break;

case ’f’:
Delta C = −Factor C ∗ 0.1;
break;

case ’i’:
Factor B ∗= 2;
break;

case ’u’:
Factor B ∗= 0.5;
break;

case ’e’:
Factor C ∗= 2;
break;

case ’r’:
Factor C ∗= 0.5;
break;

}

The effects of the different command keys are as follows: Pressing k moves the
point B up by a certain increment; pressing j moves it down again. The key i
doubles the increment; u halves it again. Thus, the velocity of B will be increased
or decreased, accordingly.10 Analogous commands are provided for the point C.

Just two more hints:

• Use PrintString(. . . ) to display the meaning of your command keys on the
screen. It will help you and any other user to handle the program correctly.

• Some keys or key combinations are occupied for other purposes, so you can’t
use them. You will find a list of all occupied keys in the “Help” menu of the
Open Geometry window.

♦

10This turned out to be necessary, since a constant increment has its drawbacks. If
it is too large, you cannot reach certain positions of the mechanism because you jump
from a good position (two solutions to both D and E) immediately to a bad position
(no solution to either D or E). If the increment is too small, the animation is too slow
to be fun.
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Example 2.21. Mechanical perspective
Our next example is the 2D animation of a perspectograph. This is a mechanical
device to produce perspective figures of a given plane figure F . Its kinematics
are not too complicated (compare Figure 2.27):

• A point M runs along the figure F .

• Two lines l1 and l2 connect M with two fixed points O1 and O2.

• l1 and l2 intersect a guiding line s parallel to O1O2 in two points P1 and P2.

• P1 and P2 are connected to two points R1 and R2 on s.

• R1 and R2 are two opposite vertices of a rhombus r1. The edges of the
rhombus are connected through joints of revolution.

• R1 is the edge of congruent rhombus r2, so that the edges of r1 and r2
intersect orthogonally at R1.

• With r2 we connect a point N by doubling an edge of r2 that does not
contain R1.

• The described mechanism provides a two-parameter mobility, and N is al-
ways located on a figure F ′ perspective to F .

We have described the mechanism in a way that is already suitable for an
Open Geometry program ("perspectograph.cpp"). There, we start by defin-
ing some global variables that — together with the position of M — determine
the initial position.

Listing from "perspectograph.cpp":

const P2d O1( 9, 3 ) ;
const P2d O2( O1.x, −7 ) ;

const Real Dist = 3.5;
const Real Length = 0.9 ∗ Dist;

const StrL2d S( Origin, V2d( O2, O1 ) ) ;
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FIGURE 2.27. The perspectograph.

Dist is the distance between the points P1 and R1 (or P2 and R2); Length is
the side length of the rhombi; and S is the guiding line parallel to O1O2. In the
next step we write a function called ComputeAndMark(. . . ). Its return value is
void; its arguments are a 2D point M and a variable add point of type Boolean.
It computes and marks all relevant points and lines for the current position of
M . If add point is true, it adds M and N to two path curves PathM and PathN,
respectively.

We could do everything directly in Draw( ) but — since the code is rather lengthy
— we preferred separating it from Draw( ). It is not worth listing the contents of
ComputeAndMark(. . . ) here. There is just one important thing: After computing
P1 and P2 we check whether their distance is larger than 2 · Length. It is easy to
see that P1P2 = Length. Thus, P1P2 > 2 ·Length yields an invalid position of the
mechanism. In this case, we give a warning and do not draw anything.

Now we can define a path for M . In our example we take the parameterized
equation of an astroid.

Listing from "perspectograph.cpp":

P2d PathPoint( Real t )
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{
Real r = 5;
return P2d( −r ∗ pow( cos( t ), 3 ) − 6,

r ∗ pow( sin( t ), 3 ) − 3.2 ) ;
}

Draw( ) and Animate( ) are simply as follows:

Listing from "perspectograph.cpp":

void Scene: :Draw( )
{

P2d X = PathPoint( T ) ;
if ( X.Dist( S ) < 0.3 )

Delta ∗= −1;
ComputeAndMark( X, true ) ;

}
void Scene: :Animate( )
{

T += Delta;
}

Here, T is a globally declared real. We take the path point and check whether
it is too close to the guiding line S. If so, we change the orientation of the path
curve by taking the negative increment. This is desirable for two reasons:

1. In practice, M cannot pass the guiding line due to mechanical reasons.

2. In the computer model there might occur discontinuities in the computation
of the relevant points (The mechanism “jumps” from one position to the
next).

By now, everything should work fine. The output of the program is displayed in
Figure 2.27. ♦
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FIGURE 2.28. A simple pulley block (left) and a sophisticated one (right). If N is
the number of pulleys, the necessary pulling force is just 1/N of the weight.

Example 2.22. Pulley blocks
A pulley block is a well-known mechanical device that allows the lifting of heavy
loads with rather small effort. In fact, there exist different kinds of pulley blocks.
In "pulley block1.cpp" we present the simplest case (Figure 2.28).

A rope is fixed at a point F and runs over three pulleys with centers M2, M1,
and S. The points M1 and S are fixed, while M2 is suspended on the rope. On
this last pulley a heavy load is attached. Pulling down the end point D of the
rope by a vector �v will lift the load by 1

2�v. Since the work on both ends has to
be the same, the load seems to have only half of its actual weight.

Now to the animation in "pulley block1.cpp". We define F, M2, S, and the
pulley radius Rad as global constants. Since the rest of the drawing is really not
time-critical, we will do it completely in Draw( ). We use a pulsing real L for the
animation. It gives the length M1M2. We initialize it as follows:

Listing from "pulley block1.cpp":

L.Def( 0.5 ∗ ( Min + Max ), −0.05, Min, Max, HARMONIC ) ;

Here Min = 3 * Rad and Max = Min + 4.5. This ensures that the pulleys will
never intersect during the animation. The pulleys themselves are objects of type
RegPoly2d, which gives us the possibility of high-quality output on the screen by
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deciding on a relatively high number of vertices.11 The drawing of the pulleys,
the suspensions, and the weight are not really exciting. Let’s have a look at the
drawing of the rope instead. It consists of line and arc segments. Quite often
we have to determine the tangents of a circle through a given point. We use a
function to do this task:

Listing from "pulley block1.cpp":

int CircleTangents( P2d Mid, Real Rad, const P2d &P, P2d T [ 2] )
{

Real d = Mid.Distance( P ) ;
if ( d < fabs( Rad ) )

return 0;
if ( d == Rad )
{

T [ 0] = P;
T [ 1] = P;
return 1;

}
Real x = Rad ∗ Rad / d;
Real y = Sqrt( Rad ∗ Rad − x ∗ x ) ;
V2d v = P − Mid;
v.Normalize( ) ;
T [ 0] = Mid + x ∗ v + y ∗ V2d( −v.y, v.x ) ;
T [ 1] = Mid + x ∗ v − y ∗ V2d( −v.y, v.x ) ;
return 2;

}

The input parameters are the circle’s center and radius, the given point, and
two more points for the points of tangency to be stored. The return value gives
the number of real solutions. With the help of CircleTangents(. . . ) and the Open
Geometry class Sector2d, it is not difficult to draw all rope segments:

11The Open Geometry class Circ2d automatically adjusts the number of points on
the circumference of the circle. That is, small circles are regular polygons with relatively
few vertices.
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Listing from "pulley block1.cpp":

StrL2d s;
P2d D( S.x + Rad, S.y − 2 ∗ Max − 2 + 2 ∗ l ) ;
s = Yaxis2d.GetParallel( −D.x ) ;
s.Draw( Black, D.y, S.y, THICK ) ;

s.Def( S, M1 ) ;
s = s.GetParallel( −Rad ) ;
s.Draw( Black, 0, S.Distance( M1 ), THICK ) ;

Sector2d arc;
arc.Def( Black, P2d( S.x + Rad, S.y ), S,

s.InBetweenPoint( 0 ), 10, EMPTY ) ;
arc.Draw( true, THICK ) ;
...

The remaining segments are implemented similarly. If you just draw the rope, the
pulleys, and the suspension parts, the animation is not too impressive. Because
of this, we draw little line segments on the pulleys that give a better sense of the
rotation. The code for the first pulley reads as follows:

Listing from "pulley block1.cpp":

V2d dir( cos( l / Rad ), sin( l / Rad ) ) ;
StrL2d s1( M1, dir ) ;
StrL2d s2 = s1;
s2.Rotate( M1, 90 ) ;
s1.Draw( Black, −Rad, Rad, THIN ) ;
s2.Draw( Black, −Rad, Rad, THIN ) ;

Here, l is the current value of the pulsing real L. We transform it to the arc
length on the pulley by dividing it by the radius. Then we define and draw two
straight lines through M1 that correspond to this length. We do the same for
the pulleys around M2 and S. The pulley around M2 rotates, however, with only
half-angular velocity, i.e., the transformation to the arc length reads l �→ l/2r.

A slightly more sophisticated pulley block is animated in "pulley block2.cpp"
(Figure 2.28). There, a series of N pulleys is used. The system of any two consec-
utive pulleys can be seen as a pulley block of the first kind. Thus, the necessary
pulling force is reduced to 1/2N ·weight. Of course, the weight will rise only very
slowly if N is too big.

What are the essential programming differences? First, we need more pulleys,
which are initialized in Init( ):
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Listing from "pulley block2.cpp":

M [ 0].Def( 0.5 ∗ ( N + 1 ) ∗ Rad, 6.5 ) ;
M [ 1].Def( M [ 0].x − 2 ∗ Rad, M [ 0].y − DeltaY ) ;
int i;
for ( i = 2; i < N; i++ )
{

M [i] = M [i−1];
M [i].Translate( −Rad, −DeltaY ) ;

}

In Draw( ) we compute their new position:

Listing from "pulley block2.cpp":

Real l = L.Next( ) ;
int i;
for ( i = 1; i < N; i++ )

M [i].y = M [ 0].y − i ∗ DeltaY + l / pow( 2, i − 1 ) ;

Rad and DeltaY are global constants; L is a pulsing real varying harmonically
between 0 and DeltaY; M[0] is the center of the fixed pulley. The pulley center
M[i] approaches the height of M[0] with constant velocity v/2i. The visualization
of the pulley rotation is similar to the previous example:

Listing from "pulley block2.cpp":

RegPoly2d Pulley;
StrL2d s;
V2d v;
Real phi;
for ( i = 0; i < N; i++ )
{

Pulley.Def( Col [i%7], M [i], Rad, 30, FILLED ) ;
Pulley.Shade( ) ;
phi = l / Rad / pow( 2, i − 1 ) ;
if ( i == 0 )

phi ∗= −1;
v.Def( cos( phi ), sin( phi ) ) ;
s.Def( M [i], v ) ;
s.Draw( Black, −Rad, Rad, THIN ) ;
s.Rotate( M [i], 90 ) ;
s.Draw( Black, −Rad, Rad, THIN ) ;

}
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We shade the pulley with a color from a certain pool of seven colors. We compute
the angular velocity (taking into account that the fixed pulley has an inverse
sense of rotation) and draw straight lines to evoke a sense of rotation.

Since there are only half arc segments this time, we do not use the class Sector2d
but an object of type L2d for the drawing of the rope segments. We define it in
Init( ) and translate it to the appropriate position in Draw( ):

Listing from "pulley block2.cpp":

HalfCircle.Def( Black, 20 ) ;
Real t, delta = PI / 19;
for ( i = 1, t = 0; i <= 20; i++, t += delta )

HalfCircle [i]( Rad ∗ cos( t ), −Rad ∗ sin( t ) ) ;

...

for ( i = 1; i < N; i++ )
{

HalfCircle.Translate( M [i].x − HalfCircle [ 1].x + Rad,
M [i].y − HalfCircle [ 1].y ) ;

HalfCircle.Draw( THICK ) ;
...

}

The semicircle of the fixed pulley needs special treatment:

Listing from "pulley block2.cpp":

HalfCircle.Reflect( Xaxis2d ) ;
HalfCircle.Translate( M [ 0].x − HalfCircle [ 1].x + Rad,

M [ 0].y − HalfCircle [ 1].y ) ;
HalfCircle.Draw( THICK ) ;
HalfCircle.Reflect( Xaxis2d ) ;

The drawing of the straight line segments, the suspensions, and the weight is not
too difficult, so we do not display it here. ♦
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FIGURE 2.29. A mechanism with periods of standstill (“Maltesien gear”).

Example 2.23. Maltesien gear
Sometimes it is necessary to use a mechanism with periods of standstill. An
example of this is the “Maltesien gear” (Figure 2.29). There, a crank rotates with
constant angular velocity. It interacts with a figure of special shape resembling
a Maltesien cross. Transmission occurs only during one quarter of a rotation
period. During the remaining period the Maltesien cross stands still.

Before implementing this mechanism in Open Geometry, we need to explore
its geometry. Take a look at the third figure in the top row of Figure 2.29 as base
figure. The basic shape of the Maltesien cross and the crank are a square of side
length 2A and a circle of radius r1. From them we subtract certain circular and
rectangular regions. The dimensions can, however, not be chosen arbitrarily:

The crank and the cross touch each other during three quarters of the motion.
This gives the distance

√
2A of their centers and the radius r1 of the circular

subtractions at the corners of the cross (Figure 2.30). Now consider the middle
position in the second row of Figure 2.29 and the auxiliary drawing in Figure 2.30.
There, the beginning of the standstill periods is displayed. The dimensions of the
triangle OPC and the law of cosines give a relation between r2 and a resulting
in r2 = A(

√
2 − 1). Finally, the circular subtraction of the crank disk is centered

at O and has radius
√

A2 + b2, where b = A − r1.
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FIGURE 2.30. The mechanism’s dimensions.

The implementation of the mechanism was realized in "maltesian gear.cpp".
The shape of crank and cross are quite unusual, and their design needs some
consideration. We begin with the crank. It consists of a circular disk of which
another circle is subtracted, a rectangle, and a small circle. The circular disk will
be an object of type ComplexPoly2d.12 We make some definitions in Init( ):

Listing from "maltesian gear.cpp":

Poly2d p [ 1];
const int m1 = 7, m2 = 20;
const int n = 2 ∗ ( m1 + m2 − 1 ) ;
p [ 0].Def( NoColor, n, FILLED ) ;

Real rad = sqrt( A ∗ A + b ∗ b ) ;
Real omega = 0.5 ∗ PI − atan( ( A + b ) / ( A − b ) ) ;

Real phi, delta = omega / ( m1 − 1 ) ;
for ( i = 1, phi = 0.5 ∗ PI; i <= m1; i++, phi −= delta )

p [ 0] [i]( rad ∗ cos( phi ), rad ∗ sin( phi ) ) ;

delta = 0.75 ∗ PI / m2;
for ( i = m1+1, phi = −0.25 ∗ PI + delta;

12We have to use a complex polygon in order to display the disk’s non convex outline
correctly.
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i <= m1 + m2; i++, phi += delta )
p [ 0] [i]( r1 ∗ cos( phi ), r1 ∗ sin( phi ) + sqrt( 2 ) ∗ A ) ;

for ( i = 2; i < m1 + m2; i++ )
p [ 0] [n−i+1]( −p [ 0] [i].x, p [ 0] [i].y ) ;

p [ 0] [n] = p [ 0] [ 1];
Crank1.Def( Blue, 1, p ) ;

In the first line we introduce an auxiliary “array” p[1] of one ordinary Poly2d
object. In the last line we define our complex polygon. Its loops consist of the
elements of p (i.e., there exists only one loop, as is indicated by the second
parameter of the defining method). The computation of the points is a little
tricky, and we must pay attention not to get confused with the indices.

It would be even harder to define the cross in the same way. But there is an
alternative to computing the points’ coordinates: We simply draw a rectangle in
red and cover it with a few circles and rectangles filled in pure white.

Listing from "maltesian gear.cpp":

MaltRect1.Def( Red, 2 ∗ A, 2 ∗ A, FILLED ) ;
MaltRect1.Translate( −A, −A ) ;

int i;
for ( i = 0; i < 4; i++ )

MaltRect2 [i].Def( PureWhite, A − r2, 2 ∗ r3, FILLED ) ;
MaltRect2 [ 0].Translate( −A, −r3 ) ;
MaltRect2 [ 1].Translate( r2, −r3 ) ;
MaltRect2 [ 1].Rotate( Origin, 90 ) ;
MaltRect2 [ 2].Translate( r2, −r3 ) ;
MaltRect2 [ 3].Translate( r2, −r3 ) ;
MaltRect2 [ 3].Rotate( Origin, −90 ) ;

for ( i = 0; i < 4; i++ )
InvMalt1 [i].Def( PureWhite, Origin, r1, FILLED ) ;

InvMalt1 [ 0].Translate( −A, −A ) ;
InvMalt1 [ 1].Translate( −A, A ) ;
InvMalt1 [ 2].Translate( A, −A ) ;
InvMalt1 [ 3].Translate( A, A ) ;
for ( i = 0; i < 4; i++ )

InvMalt3 [i].Def( PureWhite, Origin, r3, FILLED ) ;
InvMalt3 [ 0].Translate( −r2, 0 ) ;
InvMalt3 [ 1].Translate( r2, 0 ) ;
InvMalt3 [ 2].Translate( 0, −r2 ) ;
InvMalt3 [ 3].Translate( 0, r2 ) ;
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The two remaining parts CrankBar and CrankEnd are a simple rectangle and
circle, respectively. The important thing in Draw( ) is now the drawing order of
the objects in order to get the correct visibility:

Listing from "maltesian gear.cpp":

void Scene: :Draw( )
{

MaltRect1.Shade( ) ;
int i;
for ( i = 0; i < 4; i++ )

MaltRect2 [i].Shade( ) ;
for ( i = 0; i < 4; i++ )

InvMalt1 [i].Draw( THIN ) ;
for ( i = 0; i < 4; i++ )

InvMalt3 [i].Draw( THIN ) ;

Crank1.Shade( ) ;
CrankBar.Shade( ) ;
CrankEnd.Draw( THIN ) ;

}

In Animate( ) we rotate the crank parts through a certain angle increment about
their common center. Then we have to determine the corresponding rotation of
the cross. We use a global real variable Psi old for that.

Listing from "maltesian gear.cpp":

void Scene: :Animate( )
{

Crank1.Rotate( Center, Delta ) ;
CrankEnd.Rotate( Center, Delta ) ;
CrankBar.Rotate( Center, Delta ) ;

Real psi = Deg( atan( CrankEnd.Mid( ).x / CrankEnd.Mid( ).y ) ) ;

int i;
if( Psi old − psi <= 0 )
{

MaltRect1.Rotate( Origin, Psi old − psi ) ;
for ( i = 0; i < 4; i++ )
{

MaltRect2 [i].Rotate( Origin, Psi old − psi ) ;
InvMalt1 [i].Rotate( Origin, Psi old − psi ) ;
InvMalt3 [i].Rotate( Origin, Psi old − psi ) ;

}
Psi old = psi;

}
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We compute the new angle denoted by ψ in Figure 2.30. (In a general position
it is, of course, not equal to 45◦.) The previous angle is already stored in Psi old.
We rotate the cross and the invisible circles and rectangles by Psi old − psi,
but only if the sense of rotation is negative. Hence, a rotation occurs only for
ψ ∈ [−45◦, 45◦], and that is exactly what we want. ♦
Now to something different. We will still deal with planar kinematics but from
a more theoretical point of view.

Example 2.24. The kinametic map
A motion in the Euclidean plane R

2 is a transformation µ : R
2 → R

2 that
leaves both the distance of any two points and the orientation of any triangle
unchanged. In a Euclidean coordinate system it reads

(
x′

y′

)
= M

(
x
y

)
+ �t

where M is an orthogonal 2 × 2 matrix of determinant 1, and �t is a translation
vector. In general, µ is a rotation about a certain center C. If C is a point at
infinity, the transformation is a pure translation. The manifold of all Euclidean
motions depends on three parameters (the coordinates of the center of rotation
and the rotation angle). Hence, its cardinality is equal to the cardinality of R

3.
In other words; it should be possible to map the points of R

3 bijectively to the
motions of R

2 in a natural way.

FIGURE 2.31. The kinematic map.

The first map of that kind was described in works by E. Study, W. Blaschke,
and J. Grünwald and is called a kinematic map. We will denote it by κ. The
visualization of κ combines some of Open Geometry’s favored tasks: 2D kine-
matics, 3D curves, and geometric constructions in space. Hence, we will have a
closer look at it:
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The kinematic map κ has a very lucid geometric interpretation. Let π be a plane
in R

3. We use a Euclidean coordinate system with x, y ⊂ π and identify R
2

with π. By Σ we denote the set of straight lines in R
3 that are not parallel to

π; by Π we denote the set of points of π. We choose a real D 
= 0 and introduce
two planes π+ . . . z = D and π− . . . z = −D. Then we can define a bijective map

g : Γ → Π × Π; s �→ g(s) = {Sl, Sr} (4)

in the following way (compare Figure 2.31):

1. Intersect the straight line s with π+ and π− in order to get two points S+
and S−.

2. Let S′
+ and S′

− be the normal projections of S+ and S− into π.

3. Rotate S′
+ and S′

− about their midpoint M through an angle of 90◦. The
resulting points are Sr and Sl.

Then, Sr and Sl are called right and left image points of s. In Figure 2.31 we
display the right and left image points of two straight lines s and t, respectively.
The straight lines s and t have a point K in common. For this reason, there
exists a rotation about the normal projection K ′ of K on π that brings Sl to
Sr and Tl to Tr. Reversed, pairs {Sl, Sr} and {Tl, Tr} of points corresponding
in a rotation always stem from intersecting lines. If we admit points at infinity,
this is not only true for rotations but for translations as well. Hence, we have a
one-to-one correspondence between the motions of R

2 and the points of R
3: the

kinematic map κ.

An Open Geometry implementation is to be found in "kinematic map1.cpp".
There exist formulas to compute the kinematic counter image K = κ−1(µ) of
a motion µ when the center K ′ and the rotation angle α of µ are given. It is,
however, more convenient to construct K from two pairs of corresponding points.
We use the following function for that task:

Listing from "kinematic map1.cpp":

void SetPoints( const P3d Pl, const P3d Pr,
P3d &P plus, P3d &P minus )

{
P3d M = 0.5 ∗ ( Pl + Pr ) ;
StrL3d axis( M, Zdir ) ;
P plus = Pl;
P minus = Pr;
P plus.Rotate( axis, 90 ) ;
P minus.Rotate( axis, 90 ) ;
P plus.z = D;
P minus.z = −D;

}
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SetPoints(. . . ) sets the values of P+ and P− when the pair {Pl, Pr} of image points
is given, D is a global variable to determine the auxiliary planes π+, π− . . . z =
±D.

Now we need a one-parameter set of planar motions. Here, we can refer to Open
Geometry’s large stock of motion classes. In our program we use the motion
induced by a four-bar linkage (“coupler motion”; see [14]). Since everything takes
place in [x, y], it is not even necessary to adapt the class FourBarLinkage for use
in 3D. We define an instance Mechanism of this class and define it in Init( )
according to the examples given in [14].

The four-bar linkage consists of four points L, M , A, and B, where L and M
are fixed points, A rotates about L, B rotates about M , A and B are linked by
a rod of constant length. We denote the initial positions of A and B by Al and
Bl, respectively. Every new position of the mechanism defines new points Ar, Br
and a motion µ with Al �→ Ar, Bl �→ Br. By means of the inverse kinematic map
κ−1, we will get a curve k ⊂ R

3 that should be displayed. We store the values of
Al and Bl in global variables and construct the points of k in Draw( ):

Listing from "kinematic map1.cpp":

Ar.x = Mechanism.GetA( ).x;
Ar.y = Mechanism.GetA( ).y;
Br.x = Mechanism.GetB( ).x;
Br.y = Mechanism.GetB( ).y;
SetPoints( Al, Ar, A plus, A minus ) ;
StrL3d a( A plus, A minus ) ;
StrL3d b( B plus, B minus ) ;
P3d K = a ∗ b;
KinPath.AddPoint( K ) ;
KinPath.Draw( THICK, STD OFFSET, 10 ) ;

The variables Ar and Br are global of type P3d; their z-coordinate, however,
is always set to zero. KinPath is an instance of the class PathCurve3d. In order
to get an attractive picture, we mark important points (including A+, A−, B+,
and B−) and draw some connecting lines. In addition, we shade three rectangular
frames that represent [x, y] and the auxiliary planes π+ and π−. We want to be
able to watch everything in [x, y]. So it seems sensible to use opacity. For this
reason, the shading has to be the last thing done in Draw( ).

Figure 2.32 shows the output of the program. It can be proved that if Sl remains
fixed while Sr varies on a circle, the straight line κ−1(Sl, Sr) moves on a regulus.
In our example, this is the case for two pairs {Al, Ar}, {Bl, Br} of points. The
kinematic image k is therefore the intersection of two quadrics and hence a space
curve of order four. Special dimensions of the mechanism may, however, cause a
splitting of k into two components.



94 Chapter 2. 2D Graphics

FIGURE 2.32. The kinematic counter image of a coupler motion is a space curve k

of order four.

We can, of course, proceed in the reverse order as well ("kinematic map2.cpp").
A space curve k defines a one-parameter set of motions in [x, y]. We can use the
kinematic map κ to draw the trajectory of a point P0 or to construct the polodes
of these motions.

In addition to the SetPoints(. . . ) method of the previous example, we need the
inverse method (i.e., the map g of equation (4)) as well. Given a straight line s,
we want to set the left and right image points Pl and Pr:

Listing from "kinematic map2.cpp":

void InvSetPoints( const StrL3d s, P3d &Pl, P3d &Pr )
{

Plane pi plus, pi minus;
pi plus.Def( P3d( 0, 0, D ), Zdir ) ;
pi minus.Def( P3d( 0, 0, −D ), Zdir ) ;
Pl = pi plus ∗ s;
Pr = pi minus ∗ s;
Pl.z = 0;
Pr.z = 0;
StrL3d axis( 0.5 ∗ ( Pl + Pr ), Zdir ) ;
Pl.Rotate( axis, −90 ) ;
Pr.Rotate( axis, −90 ) ;

}
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We introduce the counter image k of the motion through a parameterized equa-
tion and call it KinCIm (kinematic counter image). In order to transform a point
by the rotation µ that corresponds to a point K(kx, ky, kz)T ∈ k, we use a little
formula and the following function:

Listing from "kinematic map2.cpp":

P3d TransformPoint( const P3d Pl, Real u )
{

P3d K = KinCIm.CurvePoint( u ) ;
Real omega = atan( −D / K.z ) ;
K.z = 0;
P3d Pr = Pl;
Pr.Rotate( StrL3d( K, Zdir ), 2 ∗ Deg( omega ) ) ;
return Pr;

}

The center of µ is the normal projection of K onto π. The angle ω of the rotation
is given by

2ω = arctan
(
− D

kz

)
,

where ±D are the z-coordinates of the planes π+ and π−, respectively. Now,
how can we get the polodes of the motion? This is easy, since the following
result holds:

The polodes of a Euclidean motion can be found by applying the map g to the
tangents of the kinematic counter image k of the motion. The set of left image
points is the fixed polode, the set of right image points is the moving polode.

This is easy to implement in Open Geometry. We will draw the polodes as
path curves, but we could as well derive parametric representations. In Draw( )
we compute the poles F and M of fixed and moving polodes and add them to the
corresponding path curves (the kinematic counter image k is implemented as a
parameterized curve, and the global real variable U refers to a curve point of k):

Listing from "kinematic map2.cpp":

InvSetPoints( KinCIm.Tangent( U ), F, M ) ;
FixedPolode.AddPoint( F ) ;
MovingPolode.AddPoint( M ) ;
FixedPolode.Draw( MEDIUM, STD OFFSET, 10 ) ;
MovingPolode.Draw( MEDIUM, STD OFFSET, 10 ) ;
F.Mark( PureRed, 0.2, 0.1 ) ;
M.Mark( PureGreen, 0.2, 0.1 ) ;
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FIGURE 2.33. One trajectory t, the fixed polode p, and the moving polode p′ of the
kinematic image of a cubic circle k.

An example image is displayed in Figure 2.33. We additionally marked a few
points and drew connecting lines in order to make the construction more lucid.

♦

2.4 Fractals
Since B. Mandelbrot published his classic “Fractal Geometry of Nature” in
1977 ([23]) fractals have become very popular. They play an important role in
physics, chemistry, biology, astronomy, meteorology, statistics, economy, mathe-
matics, and — last but not least — computer graphics. The definition of a fractal
is, however, controversial. Mandelbrot defines it as a set of fractal dimension
higher than topological dimension. Of course, he has to explain the fractal di-
mension first. The book [7] takes a more intuitive (and less rigorous) point of
view and gives some typical properties of a fractal F :

• F is finely structured.

• F is too irregular to be described by traditional geometric means.

• F is very often self-similar or almost self-similar.

• The fractal dimension of F (whatever that is) is usually higher than its
topological dimension.

• Very often F can be easily defined (e.g, by a recursive formula).13

13For this reason, fractals are usually easy to implement in a computer program!
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These properties will be enough for our task in this book: the programming of a
few fractal images.

Example 2.25. Koch fractals
We start with a very simple but huge class: the Koch fractals. According to
Mandelbrot, we need two things to define a Koch fractal: an initiator and a
generator. The initiator is just a starting teragon (that is what polygons are called
in this context). The generator is a map that takes two points (i.e., a line segment)
as input parameters and returns a sequence of points (a polygon). Both, initiator
and generator, can usually be displayed in a simple graphic (Figure 2.34).

FIGURE 2.34. Same teragons of the Koch curve and its initiator and generator.

In our first example, the initiator is a straight line. The generator divides the
segment into three parts of equal length and returns the vertices of the equiangu-
lar triangle over the middle part. Now we can define a sequence 〈T0, T1, T2, . . . 〉
of teragons by

1. applying the generator to each edge of the initiator T0;

2. building a new teragon T1 of the vertices of T0 and the newly generated
points;

3. repeating the same procedure with the edges of T1.

Figure 2.34 shows the teragons T1, T2, T3, and T6. The fractal F to this initiator
and generator is defined as

F := lim
i→∞

Ti. (5)

In our case, F is the famous Koch curve. Note that T6 is already a very good
approximation for F .
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Open Geometry provides the class KochFractal. It is derived directly from
O2d and allows the fast and comfortable generation of Koch fractals. Take, e.g.,
a look at "koch curve.cpp".

In some respects, Koch fractals in Open Geometry are similar to parameterized
curves: The class KochFractal is an abstract class due to its purely virtual member
function Generator( ). This means that we have to derive our own class from
KochFractal and write our own Generator( ) function:

Listing from "koch curve.cpp":

class MyFractal: public KochFractal
{
public:

virtual void Generator( void )
{

int n = 3;

int n1 = n + 1;
int size1 = Size( ) − 1;
int new size = size1 ∗ n + Size( ) ;
int i, j;

P2d ∗Q = new P2d [Size( ) ];
for ( i = 0; i < Size( ) ; i++ )

Q [i] = GetPoint( i ) ;
O2d: :Def( NoColor, new size ) ;

for ( i = 0, j = 0; i < size1; i++, j += n1 )
{

pPoints [j] = Q [i];
V2d v( Q [i], Q [i+1] ) ;
v /= 3;
pPoints [j+1] = pPoints [j] + v;
pPoints [j+3] = pPoints [j+1] + v;
v.Rotate( 60 ) ;
pPoints [j+2] = pPoints [j+1] + v;

}

pPoints [new size−1] = Q [size1];
IncreaseStep( ) ;
delete [ ] Q;

}
};
MyFractal KochCurve;
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The integer n is the number of new points that are added to each segment of the
initiator. It may vary according to the stage of development of the fractal. Later
we will see examples of this. The following part (until the for loop) should not
be changed by the reader. It allocates new memory for the next teragon.

The for loop is the place to write the actual generator. There the reader has to
describe the new points pPoints[j+1],. . . ,pPoints[j+n] in terms of Q[i] and Q[i+1]
(be careful not to mix up the indices!). In our example we build the characteristic
equiangular triangle of the Koch curve.

The generator is called in the animation part of the program. Thus, with each new
frame a new teragon is created. You will notice that the generator is independent
of the initial previous teragon. That is you can change the initiator without
changing the generator. The initiator itself is more or less identical to Open
Geometry’s Init( ) part

Listing from "koch curve.cpp":

void Scene: :Init( )
{

P2d P [ 2];
P [ 0]( −10, −3 ) ;
P [ 1]( 10, −3 ) ;
KochCurve.Def( 2, P ) ;

}

We get an array P of points and define the Koch fractal. The first integer pa-
rameter of KochFractal::Def(. . . ) is the number of points in P.

Draw( ) is very simple. It reads:

Listing from "koch curve.cpp":

void Scene: :Draw( )
{

Silent( ) ;
KochCurve.Draw( Red, THIN ) ;

}
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The Silent( ) command is necessary in order to turn off the Open Geometry
message “warning: more than 30000 points!”. Consider our simple example. The
number pn of points of Tn can be computed by the recursion

pn = 4pn−1 − 3.

Thus after 8 steps we exceed the limit of 30000 points for the first time (65537
points). After a few more steps the computing time for each new frame will be
too long for nervous computer programmers. So you had better not start the
auto-animation!14

Changing the initiator immediately yields different Koch curves. The following
is taken from "koch snowflake.cpp":

Listing from "koch snowflake.cpp":

void Scene: :Init( )
{

const int m = 3;
P2d P [m+1];
P [ 0]( 5, 0 ) ;
for ( int i = 1; i <= m; i++ )
{

P [i] = P [ 0];
P [i].Rotate( Origin, −360 / m ∗ i ) ;

}
KochCurve.Def( m + 1, P ) ;

}

The initiator is a regular triangle. Note that it consists of 3 sides and therefore of
4 points. If you calculate the points via a rotation through an angle of +360 · i/m,
the orientation of the triangle changes and you will get a different fractal. Both
types are displayed in Figure 2.35.

The generator may vary together with the stage of development of the fractal.
In order to control this, the class KochFractal provides the function GetStep( )
that returns the current step. In "alt koch curve.cpp" we used this to build
the equiangular triangles on the left- or right-hand side of the edges according
to the parity of the current step. In "random koch fractal1.cpp" we allowed a
random choice of the side for each new step, in "random koch fractal2.cpp" we
changed it for every single edge. We print the essential part of the generator for
the last case (rnd( ) is an instance of RandNum and produces a random number
in [−1, 1)).

14If you do it by accident, it will cause no harm to kill the process.
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FIGURE 2.35. Two fractals of Koch type. The left fractal is called Koch’s snowflake.

Listing from "random koch fractal2.cpp":

int k = 1;
for ( i = 0, j = 0; i < size1; i++, j += n1 )
{

if ( rnd( ) > 0 )
k = −1;
pPoints [j] = Q [i];
V2d v( Q [i], Q [i+1] ) ;
v /= 3;
pPoints [j+1] = pPoints [j] + v;
pPoints [j+3] = pPoints [j+1] + v;
v.Rotate( k ∗ 60 ) ;
pPoints [j+2] = pPoints [j+1] + v;

}
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FIGURE 2.36. Two random fractals of Koch type.

Figure 2.36 shows two output examples of this program. ♦
Now it is up to you! Try different initiators and generators and explore the
astonishing variety of Koch fractals. We will present just a few more examples in
order to demonstrate what is possible. A real classic Koch fractal is the original
Peano curve: a curve developed by G. Peano in 1890. He wanted to show how
a curve can fill an object of two dimensions, e.g., a square ("peano curve.cpp").
The initiator is a square; the generator is displayed in Figure 2.37.

Example 2.26. Autumn leaves
Another interesting example can be found in "dragon filling curve.cpp".
There, the Koch fractal fills another fractal, called “the Dragon”. The initia-
tor is a line segment; the generator is displayed in Figure 2.38. With each new
segment the generator changes the side. That is, the new point lies on the right
side of the first segment, on the left side of the second segment, etc.

Listing from "dragon filling curve.cpp":

for ( i = 0, j = 0; i < size1; i++, j += n1 )
{

pPoints [j] = Q [i];
V2d v( Q [i], Q [i+1] ) ;
v /= 2;
V2d w( v.y, −v.x ) ;
if ( i % 2 )

w ∗= −1;
pPoints [j+1] = pPoints [j] + v + w;

}
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FIGURE 2.37. Steps 1, 2, and 4 in the development of the original Peano curve.

The Dragon has an interesting property: It can be used to pave the plane. Take
the initiator of a Dragon-filling curve (a line segment) and rotate it three times
about one of its end points through 90◦. These initiators will create four Dragons
that pave a certain region of the plane (Figure 2.39). If we take a square lattice of
points and use each vertex four times to develop a Dragon, we can (theoretically)
pave the whole plane.

In "autumn leaves.cpp" we did this for a lattice of 6×4 points. The Dragons are
drawn in random colors and create a pattern resembling fallen autumn leaves.
Figure 2.39 is a nice picture, but you really should not miss the opportunity to
watch the development of the Dragon leaves on your computer screen. ♦

Example 2.27. Newton fractals
Beside fractals of Koch type, there exist quite a few other classes of fractal sets.
We present a popular example: Take an arbitrary polynomial P (z) of degree n
with complex coefficients. In the algebraic sense, it has n zeros ζ1, . . . , ζn.

By N(P, z) we denote Newton’s iteration sequence 〈z0, z1, z2, . . . 〉 for the poly-
nomial P with start point z, i.e., the sequence

z0 := z, zn+1 := z − P (zn)
P ′(zn)

.

Now we define a map N : C → {ζ1 . . . ζn,∞} by

z →
{

ζi if N(P, z) converges to ζi,

∞ otherwise.
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FIGURE 2.38. The first and second teragons (dotted) of the Dragon-sweeping curve
and the Dragon.

Thus, N −1(ζi) is the “region” attracted to ζi by Newton’s iteration. We put
the word “region” in quotation marks because, in general, it is a twisted and
torn subset of C; in other words, a fractal.

The two programs we wrote for the visualization of fractals of Newton type are
"cubic newton fractal.cpp" and "quartic newton fractal.cpp". They are
almost identical. Note that P is a cubic polynomial in the first, and a quartic
polynomial in the second program. In this book we will describe the first program
only.

The basic strategy is easy and straightforward: We take a cubic polynomial P
and compute its zeros ζ0, ζ1, and ζ2. To each zero we assign a color ci, e.g., yellow
to ζ0, red to ζ1, and green to ζ2. Then we take a complex number z = z0 from
a fine rectangular grid and check whether it is “sufficiently close” to a zero ζi of
P . If this is the case, we paint the corresponding pixel in the color ci. If z0 is not
close enough to a zero of P , we apply Newton’s iteration to z0 and perform the
same check for the new value z1, etc. After a certain maximum number of futile
attempts, we quit the loop and leave the pixel white.

In "cubic newton fractal.cpp" we take the start points zi from the intersec-
tion of the rectangular region [−X0,X0]×[−Y0,Y0] and the grid {(X0+a · Dx, y0+
b · Dy) | a, b ∈ R}. The distances Dx and Dy of the grid points in the x- and y-
directions depend considerably on the screen resolution: You might adapt them
in the program source or — even better — change the size of the Open Geo-
metry window.

We recommend that you use a rather small and square window. Run an arbi-
trary Open Geometry program, press <Ctrl+W> or choose the menu item
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FIGURE 2.39. Paving the plane with Dragons.

FIGURE 2.40. Two fractals generated by Newton’s iteration.

“Image→Window→Window dimensions” to open a dialogue window and take,
e.g., a width of 300 and an aspect ratio of 1/1. Then the default values in
"cubic newton fractal.cpp" will produce a good picture in reasonable com-
puting time.

In Init( ) we set the coefficients of the cubic polynomial Ax3 + Bx2 + Cx + D and
compute its root. We do not allow quadratic or linear polynomials, since we do
not want to take care of different cases at the cost of computing time (Solution
is a globally defined array of three elements of type Complex).

Listing from "cubic newton fractal.cpp":

void Scene: :Init( )
{
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A.Set( 1, 0 ) ;
B.Set( 0, 0 ) ;
C.Set( 0, 0 ) ;
D.Set( −1, 0 ) ;

if ( A.Magnitude( ) < 1e−7 )
SafeExit( "Not a a cubic equation!" ) ;

CubicSolve( B/A, C/A, D/A, Solution ) ;
}

In Draw( ) we write two loops to start with all values of z in question. We copy
z to another complex number w and do the following while count < MaxCount:

Listing from "cubic newton fractal.cpp":

w = Newton( w ) ;
if ( IsRoot( w, Solution [ 0], Eps ) )
{

count += MaxCount;
z.MarkPixel( Yellow ) ;

}
else if ( IsRoot( w, Solution [ 1], Eps ) )
{

count += MaxCount;
z.MarkPixel( Red ) ;

}
else if ( IsRoot( w, Solution [ 2], Eps ) )
{

count += MaxCount;
z.MarkPixel( Green ) ;

}
count++;

Of course, Newton(w) is Newton’s iteration w �→ w − P (w)/P ′(w) for the poly-
nomial P . In addition, we use the IsRoot(. . . ) to check whether the input param-
eter w is sufficiently close to a root of our polynomial. “Sufficiently close” means
that w lies in a disk of radius Eps around the root. We didn’t, however, use the
Euclidean metric but the Manhattan metric to define this disk:
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Listing from "cubic newton fractal.cpp":

Boolean IsRoot( Complex z, Complex root, Real eps )
{

return fabs( z.get re( ) − root.get re( ) ) +
fabs( z.get im( ) − root.get im( ) ) < eps;

}

If w is close to a zero, we paint the corresponding pixel in the appropriate color.
The global real Eps can sometimes be chosen rather big, which will considerably
decrease the computation time. In our program we used Eps = 0.8.

Denote by A(ζi) the region of attraction for the zero ζi. Then Eps may be the
supremum of all reals r such that the “Manhattan disk” with radius r and center
ζi completely lies in A(ζi).

Figure 2.40 shows the output of the programs "cubic newton fractal.cpp"
and "quartic newton fractal.cpp". There we use the polynomials

x3 − 1 and x4 + ix2 − 1,

respectively. ♦
Example 2.28. The Mandelbrot set
Another real classic is the Mandelbrot set. It can be defined in different ways,
but for computer graphics, the following does the best job:

FIGURE 2.41. The Mandelbrot set M .

Let c ∈ C be a complex number. We define fc(z) := z2 + c, f0
c (z) := fc(z), and

for k ∈ N, fk+1
c (z) := f ◦ fk

c (z) (k ∈ N). That is, fk
c (z) is the k-th iterated

function of fc(z). According to [7], the Mandelbrot set M can now be defined as

M :=
{
c ∈ C | 〈fk

c (0)〉k≥1 is limited
}

.
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This definition gives rise to an easy visualization of M on a computer screen
("mandelbrot set1.cpp"; Figure 2.41). As in Example 2.27, we consider com-
plex numbers from the intersection D of a rectangle [X0,X1] × [Y0,Y1] and a
rectangular grid {X0 + a · Dx + i(Y0 + b · Dy) | a, b ∈ R}. For each complex
number c ∈ D, we use the function IsInSet(. . . ) to test whether it is in M or not:

Listing from "mandelbrot set1.cpp":

Boolean IsInSet( Complex c, int N, Real R )
{

int i = 0;
Complex c0 = c;
while ( i < N )
{

c = c ∗ c + c0;
if ( c.Magnitude( ) > R )

return false;
i++;

}
return true;

}

We compute fk
c (0) and return false if its absolute value exceeds a certain limit

R. If this does not happen for any k ≤ N, we assume that c ∈ M and return
true. The rest is done in Draw( ) (MaxCount = 100 and MaxRad = 100 are global
constants):

Listing from "mandelbrot set1.cpp":

void Scene: :Draw( )
{

Real x = X0, y = Y0;
Complex z;
while ( x < X1 )
{

while ( y < Y1 )
{

z.Set( x, y ) ;
if ( IsInSet( z, MaxCount, MaxRad ) )

z.MarkPixel( Black ) ;
y += Dy;

}
y = Y0;
x += Dx;

}
}
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There exists a beautiful alternative visualization of M ("mandelbrot set2.cpp";
Figure 2.41). Instead of painting the pixels of M , we can paint the pixels corre-
sponding to C \ M . The color depends on the first integer k0 for which fk0

c (0)
exceeds the maximum radius MaxRad. All we have to do is to change the function
IsInSet(. . . ) a little:

Listing from "mandelbrot set2.cpp":

const int C = 5;
const Color Col [C] = { White, Yellow, Green, Blue, Red};

int IsInSet( Complex c, int N, Real R )
{

int i = 0;
Complex c0 = c;
while ( i < N )
{

c = c ∗ c + c0;
if ( c.Magnitude( ) > R )

return i % C;
i++;

}
return 0;

}

It returns an integer value i ∈ {0, . . . , C − 1}, where C is the dimension of an
arbitrary array of colors. The Draw( ) only needs needs a small change:

Listing from "mandelbrot set2.cpp":

void Scene: :Draw( )
{

Real x = X0, y = Y0;
Complex z;
int i;
while ( x < X1 )
{

while ( y < Y1 )
{

z.Set( x, y ) ;
i = IsInSet( z, MaxCount, MaxRad ) ;
z.MarkPixel( Col [i] ) ;
y += Dy;

}
y = Y0;
x += Dx;

}
} ♦
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2.5 Conics
Together with points and straight lines, conic sections belong to the most funda-
mental objects of two-dimensional geometry, whether Euclidian, affine, or pro-
jective. They appear in many contexts and despite investigation for 2500 years,
interesting new properties are still being discovered.

The Open Geometry classes Conic and Conic3d have been considerably im-
proved and enlarged in Open Geometry 2.0. In this chapter we will present
their most important methods in action. For a complete listing the reader is
referred to Chapter 6, page 446 and page 490.

There exist several ways of defining a conic section. Analytically speaking, it is
the locus of all points in a plane that satisfy an equation of the type

c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0 (6)

with respect to a Euclidean coordinate system. Each time you define a conic in
Open Geometry, the program computes the coefficients ci of this equation.
With their help the conic type (ELLIPSE, PARABOLA, HYPERBOLA, or IR-
REGULAR) is determined and the vertices, the center, the axis, the foci, the
asymptotes, and the curve points are computed. Many other methods of Conic
refer to equation (6) as well. It allows efficient, precise, and elegant computations.

The original way of implementing a conic in Open Geometry is described in
[14], Section 4.6.15 In Open Geometry 1.0 it was necessary to specify five conic
points in order to define a conic:

P2d P [ 5];
P [ 0].Def( −5, 0 ) ;
P [ 1].Def( 0, −3 ) ;
P [ 2].Def( 5, 0 ) ;
P [ 3].Def( 0, 3 ) ;
P [ 4].Def( 4, 1.8 ) ;
Conic conic;
int number of points = 150;
conic.Def( Black, number of points, P ) ;
conic.Draw( THICK ) ;

In the new version you have more possibilities. You can define a conic section by

1. one point plus two focal points,,

2. three points plus one focal point,

3. five tangents,

15The list of methods of the class Conic given there is no longer up to date! The
new version has much more in store for you.
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4. four points plus one tangent in one of them,

5. the center plus two end points of a pair of conjugate diameters,

6. the coefficients of the implicit equation (6).

For your convenience, we list the corresponding function headers from "conic.h":

Listing from "H/conic.h":

void Def( Color col, int numPoints, const P2d P [ 5] ) ;
void Def( Color col, int numPoints, const P2d &P,

const P2d &F1, const P2d &F2, TypeOfConic type ) ;
void Def( Color col, int numPoints, const P2d &P,

const P2d &Q, const P2d &R, const P2d &F ) ;
void Def( Color col, int numPoints, const StrL2d t [ 5] ) ;
void Def( Color col, int numPoints, const P2d P [ 3],

const P2d &T, const StrL2d &t ) ;
void Def( Color col, int numPoints, const P2d &M,

const P2d &A, const P2d &B ) ;
void Def( Color col, int numPoints, Real d [ 6] ) ;

The use of these new defining methods is indicated in a first example. There we
will define a conic section by three points and one focal point.

Example 2.29. Focal points and catacaustic
The sample program "catacaustic.cpp" shows an example of the definition of
a conic section s by three points P0, P1, P2 ∈ s and one focal point E of s. There
we want to illustrate the following interesting theorem (compare [4], [25]):

The catacaustic c of a pencil of lines E(e) with respect to a reflecting curve r is
the locus of all focal points F 
= E of those conic sections that osculate r and
have E as one focal point.

What needs to be done? We define a global vertex E of the pencil of lines. The
reflecting curve r is a parameterized curve, in our case an ellipse. Furthermore,
we use a global variable T that gives the current parameter of the curve point
on r. It will be increased by a certain ∆ in Animate( ). That is all we need to
draw the osculating conic in Draw( ):
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Listing from "catacaustic.cpp":

void Scene: :Draw( )
{

ShowAxes2d( Black, −5, 10, −8, 8 ) ;
// get three neighboring points of the reflecting . . . conic
const Real eps = 0.001;
P2d P [ 3];
int i;
for ( i = 0; i < 3; i++ )

P [i] = ReflCurve.CurvePoint( T + ( i − 1 ) ∗ eps ) ;
// ...and define osculating conic section with one focal point E
Conic osc conic;
osc conic.Def( Red, 100, P [ 0], P [ 1], P [ 2], E ) ;
osc conic.Draw( MEDIUM ) ;

// midpoint and second focal point of osc conic
P2d M = osc conic.GetM( ) ;
P2d F = M + V2d( E, M ) ;
// the reflex of F on refl curve
P2d R = ReflCurve.CurvePoint( T ) ;

// draw the axes of osc conic
Real b = osc conic.DistMC( ) ;
Real e = 0.5 ∗ E.Distance( F ) ;
Real m = maximum( osc conic.DistMA( ), e ) ;
osc conic.MajorAxis( ).Draw( Red, −1.5 ∗ m, 1.5 ∗ m, THIN ) ;
osc conic.MinorAxis( ).Draw( Red, −1.5 ∗ b, 1.5 ∗ b, THIN ) ;

// draw the rest and mark the relevant points
StraightLine2d( Gray, E, R, THIN ) ;
StraightLine2d( Gray, R, F, THIN ) ;
// GetCata(. . . ) is a method of the class ParamCurve2d
ReflCurve.GetCata( E, ReflCurve.u1, ReflCurve.u2, Catacaustic ) ;
Catacaustic.Draw( MEDIUM ) ;
ReflCurve.Draw( THICK ) ;
F.Mark( Red, 0.2, 0.1 ) ;
R.Mark( Blue, 0.2, 0.1 ) ;
E.Mark( Red, 0.2, 0.1 ) ;

}
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FIGURE 2.42. Output of the program "catacaustic.cpp".

It is defined by three neighboring curve points and the focal point E. The rest
of Draw( ) is routine. We make use of several Conic methods in order to get
important conic points and draw important lines. Note that the drawing of the
catacaustic is really very simple. We define and initialize a global variable Cata-
caustic of type L2d and use the GetCata(. . . ) method of ParamCurve2d. ♦

In projective geometry, the principle of duality is well known. Its 2D version
states that any theorem of projective geometry remains valid if we interchange
the word “point” with “line” and the phrase “lies on” with “intersects.” With
the help of conic sections we can realize this principle. The central notion in this
context is that of polarity.

Let c be a conic section in the projective plane.16 The outside O(c) of c is defined
as the set of all intersection points of two different and real tangents of c. That
is, any point outside c is incident with two real conic tangents.

We consider a point P ∈ O(c). The conic tangents through P are p1 and p2,
respectively (Figure 2.43). Their points of tangency span a straight line p that
is called the polar of P with respect to c. Reversed, P is called the pole of the
straight line p.

So far, we can associate a straight line p with each point P ∈ O(c) and a pole
with each straight line that intersects c in two real points. The line p intersects

16If you are not familiar with the basic concepts of projective geometry, you can
refer to Section 5.2 and read our short introduction to that topic, or you can read the
following paragraphs without being too critical as far as range and image of certain
maps are concerned.
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the conic c in two real points. Now we extend this relation between points and
lines to the other points. Let Q be a point in the interior I(c) := P

2 \ (O(c) ∪ c)
of c (Figure 2.43; there, we assumed, without loss of generality, that Q lies on
p).

The point Q is incident with two straight lines p and t that intersect c in real
points. Their respective poles P and T span a straight line q that will be called
the polar of Q with respect to c.17 Finally, if a point R is located on the conic,
we define its polar as the conic tangent r in R.

Now, the conic c induces a bijection between the point set Π and the line set
Λ of the projective plane P

2. This bijection is called the polarity of c. It is a
realization of the principle of duality because of the following theorem:

If three points P , T , and U are situated on a straight line q, their respective
polars are concurrent in the pole Q of q.

FIGURE 2.43. Poles and polars of a conic section c.

We visualize the above considerations in an Open Geometry program:

Example 2.30. Pole and polar
In "pole and polar.cpp" we display a conic section C together with a couple
of straight lines and points that correspond in the polarity on C:

Listing from "pole and polar.cpp":

#include "opengeom.h"

Conic C;
V2d Dir; // direction vector for animation

17q is well-defined; i.e., it does not depend on the special choice of p and t.
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void Scene: :Init( )
{

// define conic through a pair of conjugate diameters.
C.Def( Black, 100, Origin2d, P2d( 5, 0 ), P2d( 0, 3 ) ) ;
Dir.Def( 0, 1 ) ;

}
void Scene: :Draw( )
{

// define point P and determine its polar p
P2d P;
P.Def( 6, 5 ) ;
StrL2d p;
p = C.GetPolar( P ) ;

// determine point on polar and inside conic
// and get its polar
P2d S1, S2;
if ( !C.SectionWithStraightLine( p, S1, S2 ) )

SafeExit( "P is outside the conic!" ) ;
const Real f = 0.8;
P2d Q;
Q = f ∗ S1 + ( 1 − f ) ∗ S2;
StrL2d q;
q = C.GetPolar( Q ) ;
q.Draw( Green, −10, 10, MEDIUM ) ;

// get some line through Q and find its pole T;
// T must be situated on the polar p of P
StrL2d t;
t.Def( Q, Dir ) ;
P2d T;
T = C.GetPole( t ) ;
...

}
void Scene: :Animate( )
{

Dir.Rotate( 1.2 ) ;
}
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We use one of Open Geometry’s new methods for the definition of the conic
in Init( ): It is given by its center plus end points of a pair conjugate diameters
(in our case, the end points happen to be the conic vertices).

In Draw( ) we define an arbitrary point P ∈ O(C) and determine its polar p by
using the GetPolar(. . . ) method of Conic. We test whether p and C have two real
points in common (they have only if P is located in the outside of C) and store
them in S1 and S2, respectively.

Next, we define the point Q ∈ p ∩ I(C) and get its polar q by means of
GetPolar(. . . ). It must be incident with P. Furthermore, we determine the pole T
of a straight line t through Q. The direction of t will be changed in Animate( ),
which causes T to travel along the polar q of Q. ♦
With the help of polarity and/or the principle of duality, one can derive certain
geometric theorems almost immediately. For example, Brianchon’s Theorem
(1806) is an immediate consequence of Pascal’s Theorem (1640):

Example 2.31. Pascal and Brianchon
The theorems of Pascal and Brianchon are both visualized in Figure 2.44.
They can be formulated as follows:

Theorem (Pascal): Let Ai and Bi be two sets of three points each on a conic
section c (i = 0, 1, 2). Then the three intersection points Si := [Aj , Bk]∩ [Ak, Bj ]
(i, j, k ∈ {0, 1, 2} pairwise different) are collinear.

Theorem (Brianchon): Let ai and bi be two sets of three tangents each of a
conic section c (i = 0, 1, 2). Then the three connecting lines si := [aj ∩bk, ak ∩bj ]
(i, j, k ∈ {0, 1, 2} pairwise different) have a common point.

FIGURE 2.44. The theorems of Pascal (1640) and Brianchon (1806).
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We produced Figure 2.44 with the help of "pascal brianchon.cpp". There we
globally define a conic C, six of its points, and six of its tangents:

Listing from "pascal brianchon.cpp":

Conic C;
P2d A [ 3], B [ 3]; // six points on conic
StrL2d a [ 3], b [ 3]; // six tangents of conic

// pulsing reals for animation
PulsingReal Rx [ 5], Ry [ 5];

We want to demonstrate both theorems with the help of a little animation.
Therefore, the conic as well as the conic points and tangents will change with
every new frame. In order to achieve this, we use additional instances of the
Open Geometry class PulsingReal. Only they can be initialized in Init( ):

Listing from "pascal brianchon.cpp":

void Scene: :Init( )
{

// initialize pulsing reals
Rx [ 0].Def( −4.5, 0.02, −3.5, −5.5, HARMONIC ) ;
Ry [ 0].Def( 2, 0.01, 1.5, 4, HARMONIC ) ;
...
Rx [ 4].Def( 0, 0.02, −2, 1, HARMONIC ) ;
Ry [ 4].Def( −5, 0.03, −3.5, −6, HARMONIC ) ;

}

The remaining elements have to be defined in Draw( ) (otherwise, there would
not be any animation). The essential part is this:
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Listing from "pascal brianchon.cpp":

// define conic
P2d P [ 5];
int i;
for ( i = 0; i < 5; i++ )

P [i].Def( Rx [i].Next( ), Ry [i].Next( ) ) ;
C.Def( Black, 100, P ) ;

// initialize points on conic
A [ 0] = P [ 0], A [ 1] = P [ 1], A [ 2] = P [ 2];
B [ 0] = P [ 3], B [ 1] = P [ 4];
B [ 2] = A [ 2];
B [ 2].Reflect( C.MajorAxis( ) ) ;

// initialize tangents of conic
for ( i = 0; i < 3; i++ )
{

a [i] = C.GetPolar( A [i] ) ;
b [i] = C.GetPolar( B [i] ) ;

}

// three points on PASCAL axis
P2d S [ 3];
S [ 0] = StrL2d( A [ 1], B [ 2] ) ∗ StrL2d( A [ 2], B [ 1] ) ;
S [ 1] = StrL2d( A [ 0], B [ 2] ) ∗ StrL2d( A [ 2], B [ 0] ) ;
S [ 2] = StrL2d( A [ 1], B [ 0] ) ∗ StrL2d( A [ 0], B [ 1] ) ;

// point of BRIANCHON
P2d T [ 3], U [ 3];
T [ 0] = a [ 1] ∗ b [ 2], U [ 0] = a [ 2] ∗ b [ 1];
T [ 1] = a [ 0] ∗ b [ 2], U [ 1] = a [ 2] ∗ b [ 0];
T [ 2] = a [ 1] ∗ b [ 0], U [ 2] = a [ 0] ∗ b [ 1];
P2d Q = StrL2d( T [ 0], U [ 0] ) ∗ StrL2d( T [ 1], U [ 1] ) ;

C.Draw( THICK ) ;
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We define the conic with the help of five “pulsing” points P[i]. Their definition
ensures that they will slowly wander over the screen during the animation. We
copy them to the points A[i] and B[i], respectively. Only B[2] needs a special
treatment in order to guarantee that it is located on C.

The class Conic does not know a Tangent(. . . ) method. It is not necessary, be-
cause GetPolar(. . . ) does the job. We use this to initialize the conic tangents.
Now we construct the three points S[i] on the Pascal axis and Brianchon’s
point Q as described in the above theorems.

In the remaining part of Draw( ) we plot a large number of straight lines on the
screen and mark important points. It is of little interest, and we do not display
it here. Note, however, a little detail: In order to draw the Pascal axis, we write
the following lines:

Listing from "pascal brianchon.cpp":

StraightLine2d( Red, S [ 0], S [ 1], THICK ) ;
StraightLine2d( Red, S [ 1], S [ 2], THICK ) ;

This ensures that, independent of the order of the points S[i] (which may change
during the animation!), exactly the line segment between all three points S[i] will
be displayed. ♦
Sometimes, it is better to use an instance of ParamCurve2d instead of the class
Conic. The following example illustrates this.

Example 2.32. Conic caustics
We have already talked about caustics of reflection (compare Example 2.6). Re-
flecting the rays of a pencil of lines with vertex E on a plane curve c yields a
hull curve c1, the catacaustic (or simply caustic) of c with respect to the pole E.
Of course, a ray of light may be reflected not only once but twice or more often.
The hull curve after n reflections is called catacaustic or caustic of order n.

It is very easy to visualize the caustics of higher order if c is a conic section. The
reason for this is that we can easily compute the reflection of a ray of light on the
conic. In "conic caustic.cpp" we introduce global constant reals A and B and
a global constant Type that stores the type of the reflecting conic c (ELLIPSE,
PARABOLA, or HYPERBOLA). Then we parameterize c:

Listing from "conic caustic.cpp":

P2d ConicPoint( Real t )
{

if ( Type == ELLIPSE )
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FIGURE 2.45. The caustics of first and second order of an ellipse (left) and the
caustics up to order three of a circle (right). In the second case, the pole E is a point
at infinity.

return P2d( A ∗ cos( t ), B ∗ sin( t ) ) ;
if ( Type == HYPERBOLA )

return P2d( A / cos( t ), B ∗ tan( t ) ) ;
else // parabola
{

const Real factor = −B − B ∗ sin( t ) ;
return P2d( A ∗ B ∗ cos( t ) / factor,

2 ∗ B ∗ B ∗ sin( t ) / factor ) ;
}

}

Note that the suggested parametric representations for parabola and hyperbola
are not standard! Compared to the more frequent parameterized equations

(
t
t2

)
and

(
a cosh(t)
b sinh(t)

)
,

respectively, they have the several advantages:

1. They require the same parameter interval [0, 2π] for all three conic types,
which is convenient for a program that treats all types equally.

2. Our parameterizations are periodic. This is an advantage if we vary a point
on the conic during the animation.

3. We can parameterize both branches of a hyperbola with a single equation.
Additionally, the distribution of points on parabola and hyperbola is quite
good.
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Of course, the use of two design parameters A and B is redundant in the parabolic
case. We use them for reasons of uniformity. In Init( ) we compute five conic points
and define c = ReflConic:

Listing from "conic caustic.cpp":

void Scene: :Init( )
{

P2d P [ 5];
int i;
for ( i = 0; i < 5; i++ )

P [i] = ConicPoint( i ) ;
ReflConic.Def( Black, 100, P ) ;

}

At first sight, the use of the function ConicPoint(. . . ) seems to be a bit ex-
aggerated, but we will be able to employ it very well in the central part of
"conic caustic.cpp". This part consists of a function to reflect a straight line
on c. The input parameters are the center E of the light rays, the number n of
reflections, and the curve parameter t.

Listing from "conic caustic.cpp":

StrL2d ReflectLine( P2d E, int n, Real t )
{

P2d C = ConicPoint( t ) ;
StrL2d s( C, E ) ;
StrL2d c = ReflConic.GetPolar( C ) ;
s.Reflect( c ) ;
int i;
P2d S1, S2;
for ( i = 1; i < n; i++ )
{

ReflConic.SectionWithStraightLine( s, S1, S2 ) ;
if ( S2 == C )
{

S2 = S1;
S1 = C;

}
s.Def( S1, S2 ) ;
c = ReflConic.GetPolar( S2 ) ;
s.Reflect( c ) ;
C = S2;

}
return s;

}
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We connect E and a conic point C = C(t) by a straight line s and reflect it on c.
In order to get the tangent of c in C, we use Open Geometry’s GetPolar(. . . )
method of the class Conic. Next, we determine the intersection points S1 and S2
of the reflected ray s and the conic c. Actually, s is an oriented straight line, and
we use it to arrange S1 and S2 in a certain order. We reflect s on the tangent of c
in S2 and repeat the whole procedure until we reach n reflections. The returned
straight line is a tangent of the caustic cn of order n, and we can implement cn

as a class curve:

Listing from "conic caustic.cpp":

class MyCaustic: public ClassCurve2d
{
public:

StrL2d Tangent( Real t )
{

return ReflectLine( E, refl numb, t ) ;
}
int refl numb;
void Def( Color c, int m, Real umin, Real umax, int n )
{

refl numb = n;
ClassCurve2d: :Def( c, m, umin, umax ) ;

}
};
MyCaustic Caustic [N];

We use a global constant DrawAll of type Boolean to display all caustics ci up
to a certain order together in one image or to draw them separately in each new
frame. In Draw( ) we write the following:

Listing from "conic caustic.cpp":

int k = FrameNum( ) % N;
Caustic [k].Def( Col [k%9], k ∗ 200, −PI, PI, k ) ;

if ( DrawAll )
{

int i;
for ( i = 0; i < k; i++ )

Caustic [i].Draw( THIN, 20 ) ;
}
else

Caustic [k].Draw( THIN, 20 ) ;
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Finally, we mark the eye point E and draw reflecting conic and coordinate axes.
The output of the program can be seen in Figure 2.45. ♦
Conics in 3-space are described by the Open Geometry class Conic3d. Actually,
3D conics are not a good topic for a chapter on 2D graphics, but since Conic3d is
derived from Conic, we will make an exception. Internally, an instance of Conic3d
is determined as follows:

1. From the input data (certain points or lines) we calculate the conic’s sup-
porting plane σ.18

2. We project the input data orthogonally into one of the coordinate planes
(usually XYplane). If the intersection angle of σ and XYplane is too close
to 90◦, we take YZplane or XZplane instead.

3. From the projected input data, we compute a 2D conic and project its points
back into σ.

Most of the usual conic methods like GetA( ), DistMA( ) and GetPole(. . . ) refer
to the 3D conic. The only exception is WriteImplicitEquation( ): It describes the
projection cylinder.

The final example in this chapter deals with conics in 3-space:

Example 2.33. Focal conics
Two conics c1 and c2 in 3-space are called a pair of focal conics if:

1. their supporting planes are orthogonal;

2. the vertices of c1 are the focal points of c2 and vice versa.

A pair of focal conics consists of either one ellipse and one hyperbola or
two parabolas. We will display both types in the Open Geometry program
"focal conics.cpp". To begin with, we implement the pair consisting of ellipse
and hyperbola. The Init( ) part reads as follows:

Listing from "focal conics.cpp":

P3d P;
P.Def( 0, −4, 0 ) ;
E1.Def( 4, −9, 0 ) ;
E2.Def( −4, −9, 0 ) ;

18Note that we do not check that all points and lines are really coplanar! The conic’s
supporting plane σ is calculated from some input data only. The remaining points and
lines will be projected into σ.
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FIGURE 2.46. Two pairs of focal conics (output of "focal conics.cpp").

FocalConic1.Def( Red, 100, P, E1, E2, ELLIPSE ) ;

F1 = FocalConic1.GetA( ) ;
F2 = FocalConic1.GetB( ) ;

V3d v = FocalConic1.GetC( ) − FocalConic1.GetM( ) ;
P = F1 + 2 ∗ FocalConic1.DistMC( ) / E1.Distance( E2 ) ∗ v;
P.Rotate( StrL3d( E1, E2 ), 90 ) ;

TypeOfConic type2 = ( FocalConic1.type( ) == ELLIPSE ) ?
HYPERBOLA : ELLIPSE;

FocalConic2.Def( Green, 100, P, F1, F2, type2 ) ;

The code is quite straightforward and easy to understand. The focal conics
FocalConic1 and FocalConic2 as well as their focal points E1, E2, F1, and F2
are globally declared. We define the first focal conic FocalConic1 by its focal
points and a third point P. In order to avoid ambiguities, we must specify the
conic type as well.

Here, F1 and F2 are the vertices of the first conic and the focal points of
FocalConic2. All we need is a third point of the second conic. We get it with the
help of a simple formula that requires the first conic’s semiaxis length and eccen-
tricity. The type of FocalConic2 is chosen with respect to the type of FocalConic1.
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Now we continue by implementing the two focal parabolas FocalParabola1 and
FocalParabola2 in Init( ). Their focal points are P1 and P2, respectively.

Listing from "focal conics.cpp":

P1.Def( −2, 4, 0 ) ;
P2.Def( 2, 4, 0 ) ;

P3d Q [ 5];
Q [ 0] = P2;
Real dist = P1.Distance( P2 ) ;
V3d w;
w.Def( 0, 0, 1 ) ;
Q [ 1] = P1 + 2 ∗ dist ∗ w;
Q [ 2] = P1 − 2 ∗ dist ∗ w;
v = 0.5 ∗ ( P2 − P1 ) ;
dist ∗= sqrt( 2 ) ;
Q [ 3] = P1 + v + dist ∗ w;
Q [ 4] = P1 + v − dist ∗ w;

FocalParabola1.Def( Blue, 100, Q ) ;

Plane p;
p.Def( Rod3d( NoColor, P1, P2 ) ) ;
int i;
for ( i = 0; i < 5; i++ )

Q [i].Reflect( p ) ;

FocalParabola2.Def( Yellow, 100, Q ) ;

This time it is convenient to define the conics via five points. We choose them
symmetric with respect to the straight line P1P2. The points of FocalParabola2
are obtained through a reflection on the parabola’s plane of symmetry p.

In Draw( ) we display the four conics together with their axes and focal points
(vertices, respectively). The output of the program is displayed in Figure 2.46.
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Listing from "focal conics.cpp":

void Scene: :Draw( )
{

FocalConic1.Draw( THICK ) ;
FocalConic2.Draw( THICK ) ;
FocalConic1.MajorAxis( ).Draw( Black, −10, 10, THIN ) ;
FocalConic1.MinorAxis( ).Draw( Black, −8, 8, THIN ) ;
FocalConic2.MinorAxis( ).Draw( Black, −15, 15, THIN ) ;

FocalParabola1.Draw( THICK ) ;
FocalParabola2.Draw( THICK ) ;
FocalParabola1.MajorAxis( ).Draw( Black, −10, 10, THIN ) ;

Zbuffer( false ) ;
E1.Mark( Green, 0.2, 0.1 ) ;
E2.Mark( Green, 0.2, 0.1 ) ;
F1.Mark( Red, 0.2, 0.1 ) ;
F2.Mark( Red, 0.2, 0.1 ) ;
P1.Mark( Yellow, 0.2, 0.1 ) ;
P2.Mark( Blue , 0.2, 0.1 ) ;

}

Focal conics have remarkable properties. For example, if you choose a point
on the first conic and connect it with all points of the second conic, you will
always get a cone of revolution (wouldn’t this be a nice idea for an Open Geo-
metry program?). An interesting relation of focal quadrics is the content of
Example 3.14. ♦

2.6 Splines

Bézier curves

In computer-aided geometric design (CAGD), Bézier curves and Bézier surfaces
play an important role. Open Geometry 2.0 provides the six new classes Bezier-
Curve2d, BezierCurve3d, RatBezierCurve2d, BezierCurve3d, BezierSurface, and
RatBezierSurface. In this chapter we are going to talk about BezierCurve2d and
RatBezierCurve2d.

Corresponding 2D and 3D classes are identical in the Open Geometry sense.
That is, we implemented the 3D classes by replacing all occurrences of “2d”
by “3d”. Therefore, the classes BezierCurve3d and RatBezierCurve3d are not
explicitly explained in this book. In the following, we will deal with 2D Bézier
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curves only. If you can handle them, you will be able to handle Bézier curves in
three dimensions as well.

A Bézier curve c is usually defined by its control points B0, . . . , Bn. The corre-
sponding polygon P = 〈B0, . . . , Bn〉 is called the control polygon; the integer n
is the degree of c. In Figure 2.47 you can see why Bézier curves are so popular:
The shape of the control polygon and the Bézier curve are very similar. To be
more accurate, Bézier curves have the following properties:

• The start point S of c is the first vertex of P , the end point E is the last
vertex.

• The first and last edge of P are tangent to c in S and E, respectively.

• The Bézier curve b lies in the convex hull of P (convex hull property ; in
Figure 2.47, this area is shaded).

• An arbitrary straight line s intersects P in at least as many points as b
(variation diminishing property).

FIGURE 2.47. A Bézier curve of order four.

Thus, it is easy to control the shape of a Bézier curve interactively. The user can
simply change certain control points and adapt the curve to his/her needs. In
contrast to spline curves, one must, however, take into account that the position
of a single control point affects all points of c.

Bézier curves have many additional properties that are of importance in CAGD.
We present the most fundamental of them along with the corresponding Open
Geometry implementations. The file "bezier curve.cpp" is a good templet
for reference.

There exists a well-known algorithm to determine a curve point C of c: De-
Casteljau’s algorithm. It works as follows:

1. Choose a real u0 ∈ [0, 1].19

19It is common practice (but not absolutely necessary) to restrict the parameter
interval to [0, 1].
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2. Divide each edge of the control polygon into segments of affine ratio u0 :
(1 − u0). This yields a polygon P1 of n − 1 edges.

3. Proceed in the same way with the polygon P1. This yields a sequence
〈P1, P2, . . . , Pn〉 of polygons. Pn consists of one single point: a curve point
of c.

Figure 2.48 illustrates this process.

FIGURE 2.48. The algorithm of DeCasteljau.

In Open Geometry, a Bézier curve is a class derived from ParamCurve2d. The
CurvePoint(. . . ) function calls the private method DeCasteljau(. . . ).20 Thus, in
order to get a Bézier curve in Open Geometry, we have to declare a global
variable of type BezierCurve2d and define it in Init( ):

Listing from "bezier curve.cpp":

BezierCurve2d BezierCurve;
void Scene: :Init( )
{

P2d P [ 4];
P [ 0]( −10, −7 ) ;
P [ 1]( −8, 4 ) ;
P [ 2]( 5, 7 ) ;
P [ 3]( 10, 7 ) ;
BezierCurve.Def( Black, 200, 4, P ) ;

}

20The mathematical parametric representation of Bézier curves (it uses Bernstein
polynomials) is of no interest to us in this book: we simply do not need it.
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The Bézier curve is of order three, i.e., there exist four control points. Instead
of using an array P of points, you could alternatively use an object of type Co-
ord2dArray for the definition. In Draw( ) we draw the curve and control polygon
and mark the control points:

Listing from "bezier curve.cpp":

void Scene: :Draw( )
{

BezierCurve.Draw( VERY THICK ) ;
BezierCurve.DrawControlPolygon( Blue, THICK ) ;
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 ) ;

}

If we restrict the parameter value to [0, 1], DeCasteljau’s algorithm is fast and
numerically stable. It is invariant to affine transformation, and it yields a field
of very useful points Bij . In our example, the point B30 is a curve point of c,
while B20 and B21 determine the tangent of c in B30 (compare Figure 2.48).

The polygon 〈B00, B10, B20, B30〉 from DeCasteljau’s algorithm is the control
polygon of a Bézier curve cl that is identical to the part of c between B00 and B30.
The polygon 〈B30, B21, B12, B03〉 determines the part cr of c between B30 and
B03 (Figure 2.49). This possibility of splitting a Bézier curve is very important
in practical applications. It is more or less a linear parametric transformation in
terms of control points.

If we apply the same algorithm with a parameter value from R\ [0, 1], we enlarge
the Bézier curve in one direction or the other. This process is illustrated on the
right-hand side of Figure 2.49.

FIGURE 2.49. The splitting (left) and enlarging (right) of a Bézier curve.

The corresponding Open Geometry routine is BezierCurve2d ::Split( Real u,
Boolean second half ). For example, the line
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BezierCurve [ 3].Split( 0.5, true ) ;

redefines the control polygon and the curve itself. As a result, you get the part
belonging to u ∈ [0.5, 1] of the original curve. If the second parameter is false
(default value), the part corresponding to [0, 0.5] will be drawn. Note that the
order of the control points will be reversed by Split(. . . ) in the first case (i.e.,
the original end point of the Bézier curve will be the new start point). You can
undo this by calling ReverseOrder( ) immediately after splitting the curve.

A Bézier curve of degree n can always be defined as a Bézier curve of degree n+1
or — more generally speaking — of degree n+ν (ν ∈ N). The construction of the
control points of the degree elevated curve is displayed in Figure 2.50. It involves
the repeated subdivision of the edges into segments of affine ratio k : n − k + 1,
(k = 0, . . . , n + 1).

FIGURE 2.50. The degree of the Bézier curve is elevated twice.

Open Geometry provides the method ElevateDegree(. . . ) to do this. The line

BezierCurve.ElevateDegree( 3 ) ;

will, e.g., elevate the degree of the Bézier curve by 3.

Before presenting a first example we have to mention that rational Bézier curves,
too, are available in Open Geometry. In contrast to ordinary (integral) Bézier
curves, rational Bézier curves offer the possibility of assigning weights to the
control points. Figure 2.51 shows an example of this. We display two rational
Bézier curves with identical control polygon but different weights.

Many properties and algorithms of integral Bézier curves remain valid for rational
Bézier curves as well. The reason for this lies in the geometric interpretation of
rational Bézier curves as central projections of integral Bézier curves:
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FIGURE 2.51. An integral and a rational Bézier curve.

Let c be a rational Bézier curve with control points Pi(xi, yi) and weights wi.
We can embed them in R

2 by assigning the z-coordinate 1 to them; i.e., we map
(x, y) to (x, y, 1). Furthermore, we introduce the points Qi according to

Qi =

{
(wixi, wiyi, wi) if wi 
= 0,

(xi, yi, 0) if wi = 0.

The points Pi and Qi are located on a straight line through the origin. The
control points Qi define an integral Bézier curve d in 3-space, and c is the central
projection of d from O onto the plane z = 1 (Figure 2.52).

FIGURE 2.52. Rational Bézier curves are obtained as central projections of integral
Bézier curves.

For rational Bézier curves in 3D, an analogous procedure is possible. The auxil-
iary curve d lies, however, in 4-space. This geometric interpretation allows an im-
mediate transformation of DeCasteljau’s algorithm to rational Bézier curves.
The algorithms for degree elevation and curve splitting work as well.

Note that the family of rational Bézier curves is much vaster than that of integral
Bézier curves. For example, an integral Bézier curve of order two is always a
parabola, while a rational Bézier curve of order two is the central projection of
a parabola, i.e., a conic section.
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In this book, rational Bézier curves will not be described in detail. For infor-
mation on defining methods the reader is referred to page 470 in Chapter 6.
Furthermore, "rat bezier curve.cpp" is a good reference if you want to learn
the usage of the class RatBezierCurve2d. Note that only simple modifications
are necessary to make the subsequent examples work for rational Bézier curves
as well.

In diverse applications of Bézier curves it is necessary to compose a curve of
pieces of Bézier arcs. The different parts have to be connected in a “smooth”
way. If two arcs have a common tangent at the end point where they meet, they
are said to be of GC1-continuity.21 If they share the osculating circle as well,
they are of GC2-continuity, etc. In the following example we present a few (rather
simple) algorithms for the construction of transition curves of GCn continuity.

Example 2.34. Bézier curves of GCn-continuity
We want to show how to construct a transition curve of GCn-continuity to two
given Bézier curves c and d. By �c(u) and �d(u) we will denote the DeCasteljau
parametric representations of c and d, respectively. The control points of c and d
will be C0, . . . , Cm and D0, . . . , Dn, respectively. We want to construct a Bézier
curve s . . . �s(u) that fulfills

�ci(1) = �si(0) and �si(1) = �di(0)

for some integer k and i = 0, . . . , k.22 The higher the integer k is, the “smoother”
the transition will be. The value k = 0 means that the end point of c and the
starting point of s are identical while k = 1 yields identical tangents in this
point, k = 2 identical osculating circles, etc. Analogous statements are true of
the end point of s and the starting point of d. In order to solve the problem, we
need the following general result on Bézier curves:

The i-th derivative of a Bézier curve in the start point (end point) depends on
the first (last) i control points only.

Thus, the problem for k = 1 has a unique solution of degree two. The control
points S0, S1, and S2 of the transition curve s are determined by

S0 = Cm, S1 = [Cm, Cm−1] ∩ [D0, D1], S2 = D0

(compare Figure 2.53, the output of "gc 1-continuity.cpp").

In order to ensure GC2-continuity, we need a transition curve of degree 4. The
solution is, however, no longer unique. The osculating circle of c in the start
point C0 does not change if we translate the control point C2 in the direction of
the straight line [C0, C1] (Figure 2.54).

21The letters “G” and “C” stand for Geometric Continuity.
22In this formula the subscript i denotes the i-th derivative of the vector function.
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FIGURE 2.53. C1-continuous transition curve between two Bézier curves c and d.

There are many possible configurations of the control points C0, C1, C2 that yield
the same curve c. Varying the point C2 as described above gives a whole family
of osculating Bézier curves. Still, we can use this to create GC2-continuations in
a very simple way ("gc 2-continuity.cpp").

In Init( ) we initialize two arbitrary Bézier curves FirstCurve and SecondCurve.
Then we declare two identical local Bézier curves:

Listing from "gc 1-continuity.cpp":

BezierCurve2d first curve, second curve;
int n1 = FirstCurve.GetPNum( ) ;
int n2 = SecondCurve.GetPNum( ) ;
first curve.Def( Green, 200, n1, P ) ;
second curve.Def( Blue, 200, n2, Q ) ;

We make sure that their degree is at least 3 and “split” them at a parameter
value with absolute value greater than 1.23

23Here we have two degrees of freedom. This indicates that the problem doesn’t have
a unique solution.
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FIGURE 2.54. Two Bézier curves with a common osculating circle.

Listing from "gc 1-continuity.cpp":

if ( n1 <= 2 )
first curve.ElevateDegree( 3 − n1 ) ;

if ( n2 <= 2 )
second curve.ElevateDegree( 3 − n2 ) ;

first curve.Split( 2.0 ) ;
second curve.Split( −2.0 ) ;

The effect is that the curves are actually enlarged in one direction or the other.
Next we split the curves again at the reciprocal parameter value and take the
appropriate half:

Listing from "gc 1-continuity.cpp":

first curve.Split( 0.5, true ) ;
second curve.Split( 0.5 ) ;
first curve.ReversePolygon( ) ;

The local Bézier curves are now GC∞–continuations of c and d, respectively (the
second curve only up to a reversal of the order of the control points; Figure 2.55).
This means that we can take the first and last three control points to build a
Bézier curve of GC2–continuity. If we vary the third point as described, we need
only a transition curve of order four:
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Listing from "gc 1-continuity.cpp":

P2d R [ 5];
R [ 0] = first curve.GetControlPoint( 0 ) ;
R [ 1] = first curve.GetControlPoint( 1 ) ;
R [ 3] = second curve.GetControlPoint( 1 ) ;
R [ 4] = second curve.GetControlPoint( 0 ) ;

P2d A, B;
A = first curve.GetControlPoint( 2 ) ;
B = second curve.GetControlPoint( 2 ) ;
StrL2d s1, s2;
s1.Def( A, V2d( R [ 0], R [ 1] ) ) ;
s2.Def( B, V2d( R [ 3], R [ 4] ) ) ;
R [ 2] = s1 ∗ s2;
TransitionCurve.Def( Red, 200, 5, R ) ;

FIGURE 2.55. A GC2–transition curve t to c and d.

Of course, we can create GCn transition curves for an arbitrary n ∈ N as well.
We determine GC∞ continuations of c and d as above, elevate their degree if
necessary, and take n points from each continuation curve to build the control
polygon of the transition ("c n-continuity.cpp"). Note, however, that this
algorithm does not produce the solution of lowest degree to the problem. ♦
A great advantage of Bézier curves is the possible intuitive design of curves. You
start with a control polygon that resembles the shape you want to create. Then
you vary one or the other control point to make some adjustments, and within
a few minutes you have designed the curve you want. For this purpose, it is
convenient to have a program that allows both to watch the Bézier curve and to
change the control points. We wrote a simple sample file that will demonstrate
how to do this in Open Geometry("bezier manip.cpp").
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Example 2.35. A manipulator for Bézier curves
At first, we define an ordinary planar Bézier curve c. We draw the curve and its
control polygon and mark the control points. For the manipulation we use two
global variables:

Listing from "bezier manip.cpp":

int Index = 0; // index of control point that is to be changed
Real Increment = 0.1; // increment for changing

Index gives the number of the active Bézier point, i.e., the Bézier point that
you want to change. You will be able to translate it in the positive or negative
direction parallel to the x- or y-axis. The translation vector will be of length In-
crement. Both variables can change their values during the animation. In Draw( )
we highlight the active control point in red color. . .

Listing from "bezier manip.cpp":

P2d P = BezierCurve.GetControlPoint( Index ) ;
P.Mark( Red, 0.3, 0.2 ) ;

. . . before we listen to the user’s keystroke:

Listing from "bezier manip.cpp":

int key = TheKeyPressed( ), n = BezierCurve.GetPNum( ) ;
switch (key )
{
case ’u’:

P.y += Increment;
BezierCurve.SetControlPoint( Index, P ) ;
break;

case ’d’:
P.y −= Increment;
BezierCurve.SetControlPoint( Index, P ) ;
break;

case ’l’:
P.x −= Increment;
BezierCurve.SetControlPoint( Index, P ) ;
break;

case ’r’:
P.x += Increment;
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BezierCurve.SetControlPoint( Index, P ) ;
break;

case ’+’:
Index++;
Index %= n;
break;

case ’-’:
Index−−;
if ( Index == −1 )

Index = n−1;
break;

case ’i’:
Increment ∗= 0.5;
break;

case ’I’:
Increment ∗= 2;
break;

case ’e’:
BezierCurve.ElevateDegree( 1 ) ;
break;

case ’p’:
PrintData( ) ;
break;

}

It is intended that the user start the animation by pressing <Ctrl+F> or clicking
on the Fps button in the button bar. Then the computer will check whether a new
user input has arrived with every new frame and — according to the respective
key — perform a certain action. These actions concern the translation of the
active control point, the changing of Index and Increment, the degree elevation
of the Bézier curve, and the output of the control polygon.

The last point is important because you probably want to use the Bézier curve
you have designed for another purpose. We wrote a little routine for that purpose:

Listing from "bezier manip.cpp":

void PrintData( )
{

int i, n = BezierCurve.GetPNum( ) ;
for ( i = 0; i < n; i++ )
{

BezierCurve.GetControlPoint( i ).Print( ) ;
}

}
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It will write the necessary data to Open Geometry’s standard output file
"try.log". If you view this file with an arbitrary text editor, you will see some-
thing like

( -10.000, -7.000, 0.000 )
( -8.000, 4.000, 0.000 )
( 5.000, 7.000, 0.000 )
( 10.000, -7.000, 0.000 )

In order to use this data in another Open Geometry program, you have to edit
this file and adapt it to the syntax of C++. Of course, you can use it with other
programs as well. The text output in "try.log" is rather simple. If you want
to use the control polygon data frequently, you should probably write your own
output routine, either with the help of standard C output commands or with
Open Geometry’s PrintString(. . . ) (compare page 561).

The program can easily be adapted to Bézier curves in space and to rational
Bézier curves. You will need a few additional command keys, but the basic prin-
ciples remain the same. In any case, you should not forget to print an instruction
on the screen. In "bezier manip.cpp" the corresponding code lines read as fol-
lows:

Listing from "bezier manip.cpp":

const Real x = 10.4, y = 0;

PrintString( Black, x, y + 8.5, "Start Animation (Ctrl +’f’)," ) ;
PrintString( Black, x, y + 8,

"then manipulate the control points:" ) ;

PrintString( Green, x + 6, y + 6, "’u’...move up" ) ;
PrintString( Green, x + 6, y + 5.3, "’d’...move down" ) ;
PrintString( Green, x + 6, y + 4.6, "’l’...move left" ) ;
PrintString( Green, x + 6, y + 3.9, "’r’...move right" ) ;

PrintString( Green, x + 6, y + 2.2, "’+’...index++" ) ;
PrintString( Green, x + 6, y + 1.5, "’−’...index--" ) ;
PrintString( Green, x + 6, y + 0.8, "’I’...double increment" ) ;
PrintString( Green, x + 6, y + 0.1, "’i’...half increment" ) ;
PrintString( Green, x + 6, y − 0.6, "’e’...elevate degree" ) ;
PrintString( Green, x + 6, y − 1.3, "’p’...print data" ) ;

PrintString( Red, x, y + 6, "index =%2.0f", Index ) ;
PrintString( Red, x, y + 5.3, "increment =%2.2f", Increment ) ;
PrintString( Red, x, y + 4.6, "P.x =%2.2f", P.x ) ;
PrintString( Red, x, y + 3.9, "P.y =%2.2f", P.y ) ;
PrintString( Red, x, y + 3.2, "P.z =%2.2f", P.z ) ;
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We display a list of command keys and show the current value of the important
variables. Additionally, we draw the coordinate axes and a coordinate grid in
order to give some orientation on the screen. ♦

Example 2.36. Edge-orthogonal Bézier patches
As another example of the use of the class BezierCurve2d, we present the solu-
tion to a problem from the field of technical engineering. In the grid design for
numerical evaluation of supersonic turbines, special pairs of plane Bézier curves
are needed ([10]).

Given an arbitrary Bézier curve b : B(u) . . .�b(u) of order N (in our program
"edge orthogonal.cpp" it will be called BaseCurve), we are looking for a Bézier
curve e : E(u) . . . �e(u) of order N with the property that the normal n(u) of
b in B(u) is the straight line through B(u) and E(u). One can imagine b and
E as borderlines of a plane Bézier patch Φ : X(u, v) . . . �x(u, v) of order (N, 1)
where the v-parameter lines intersect b orthogonally. Thus, one says that b and
e determine an edge-orthogonal Bézier patch (compare [22] and Figure 2.56).

FIGURE 2.56. Two Bézier curves b and e that determine an edge-orthogonal Bézier
patch.

In "edge orthogonal.cpp" we used two completely different approaches to solve
the problem. In general, there exists a two-parametric variety of exact solutions.
It is clear that for any exact solution the control points E0 and EN−1 of e must
lie on the normals n(0) and n(1) of b through start and end point, respectively.
Reversed, any pair (E0, EN−1) of points on n(0) and n(1) uniquely determines
an exact solution. Explicit formulas for the control points are known, and it is
no problem to display the result in Open Geometry. We will return to this a
little later.

The second approach is completely different. We are not looking for an exact
solution but for a solution of sufficient accuracy for practical use. In our simple
case this has no advantages compared to the exact solution, but we can generalize
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the concept in different ways: We may look for edge-orthogonal patches in higher
dimensions or for edge-orthogonal patches with a rational control structure (a
weight is assigned to each control point). Furthermore, we will no longer be
restricted to right angles and can ask for an arbitrary angle function along the
base curve. Even some fantasy conditions on the patch may (almost) be fulfilled,
despite the absence of an exact solution!

The basic idea is simple: Given the base curve b, we start with an arbitrary
test curve t: T (u) . . .�t(u). If α(u) denotes the angle between B(u)T (u) and the
normal of b in B(u), we may use the score

s :=
∫ 1

0
|α(u)| du (7)

to judge the quality of t. This score is, of course, not the only possibility. We may,
for example, optimize the integral over |α(u)|2 or the maximal angle deviation.
In any case, a small score indicates good approximations to an edge-orthogonal
patch. A score equal to 0 characterizes the exact solutions.

Now we replace a control point Ti of t by a random point T ∗ and compute the
new score s∗. If s∗ < s, we accept the change; otherwise, we refuse it. Thus, we
get a sequence 〈ti〉 of test curves that induces a monotonical decreasing (and thus
convergent!) sequence 〈si〉 of scores. In the end we can hope to get a satisfying
result. The whole procedure is an application of the well-known Monte Carlo
method.

Before implementing this idea in Open Geometry, we have to decide on cer-
tain details of a reasonable strategy. In "edge orthogonal.cpp" we rely on the
following:

• We create a random vector �v of a constant length (e.g., 0.5 units).

• We replace the control point Tn(i) of t by T ∗
n(i) . . .�tn(i) + �v and accept or

reject the change according to the criterion described above.

• The sequence 〈ni〉 takes the values 1, 2, . . . , N −2, N −1, N −2, . . . , 1, 0 and
continues periodically.24

Now to the corresponding code. In Init( ) we define three Bézier curves b, t
(TestCurve), and e (ExactSolution).

24This “forward and backward” process takes into account the formal symmetry of
Bézier curves: Reversing the sequence of the control points does not change the curve’s
shape.
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Listing from "edge orthogonal.cpp":

void Scene: :Init( )
{

P2d B [N];
B [ 0]( −10, −6 ) ;
B [ 1]( −7, −7.5 ) ;
B [ 2]( −4, −8 ) ;
B [ 3]( 0, −8 ) ;
B [ 4]( 2, −6 ) ;
BaseCurve.Def( Green, 200, N, B ) ;

P2d T [N];
int i;
for ( i = 1; i < N1; i++ )

T [i].Def( rnd x( ), rnd y( ) ) ;
T [ 0] = B [ 0] + 3 ∗ fabs( test x( ) )

∗ BaseCurve.NormalVector( 0 ) ;
T [N−1] = B [N1] + 3 ∗ fabs( test x( ) )

∗ BaseCurve.NormalVector( 1 ) ;
TestCurve.Def( Red, 200, N, T ) ;

V2d v [N];
Real alpha = GetAlpha( &BaseCurve, &TestCurve ) ;
Real beta = GetBeta( &BaseCurve, &TestCurve ) ;
P2d E [N];
for ( i = 1; i < N1; i++ )
{

v [i] = alpha ∗ i / N1 ∗ ( B [i] − B [i−1] ) +
beta ∗ ( N1 − i ) / N1 ∗ ( B [i+1] − B [i] ) ;

v [i] = V2d( −v [i].y, v [i].x ) ;
E [i] = B [i] + v [i];

}
E [ 0] = TestCurve.GetControlPoint( 0 ) ;
E [N1] = TestCurve.GetControlPoint( N1 ) ;
ExactSolution.Def( Blue, 200, N, E ) ;

}
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The global constant N = 5 is the order of our curves, b is defined in the usual
way, while the control points of t are random points from a certain area.25 The
first and the last control point of t are restricted to the normals n(0) and n(1)
of b.

In the last third of Init( ) we compute the exact solution. First, the mathematical
formulas: We denote the coordinate vectors of the control points of b by �bi. Then
the coordinate vectors of the control points �ei of e can be computed according
to

�ei = �bi + α
i

N
D�di−1 + β

N − i

N
D�di, (8)

where

α, β ∈ R, �di := �bi+1 −�bi, and D =
(

0 −1
1 0

)
.

In our example we draw the exact solution curve through the start and end points
of the test curve. This allows a comparison of test curve and exact solution. You
will see that they may differ considerably even though score and maximal angle
deviation are very small. We have to compute the corresponding reals α and β
first. Since we will need this later, we write our own functions for this task:

Listing from "edge orthogonal.cpp":

Real GetAlpha( BezierCurve2d ∗c, BezierCurve2d ∗d )
{

int m = c−>GetPNum( ) ;
m−−;
int n = d−>GetPNum( ) ;
return c−>GetControlPoint( m ).Distance

(d−>GetControlPoint( n − 1 ) ) /
c−>GetControlPoint( m ).Distance
( c−>GetControlPoint( m − 1 ) ) ;

}

The input parameters of GetAlpha( ) are two Bézier curves, in our example
the base curve and the test curve. It returns the value BNTN/BNBN−1. The
analogous function GetBeta( ) returns B0T0/B0B1, and we can use both to define
the exact solution according to (8).

Now to the approximation process. In Animate( ) we determine the index of the
point to be changed. We initialize a global variable Index of type integer with 1
and change it in Animate( ) according to the following code:

25Remember to use global variables Rnd x( ) and Rnd y( ) of type RandNum! If
Rnd x( ) and Rnd y( ) are local, they will not change their value during a fast animation.
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Listing from "edge orthogonal.cpp":

void Scene: :Animate( )
{

if ( ( FrameNum( ) ) % ( N2 ) < N1 )
Index += 1;

else
Index −= 1;

}

Here N1 = N−1 and N2 = 2N−2. This yields the periodic sequence we mentioned
above. In Draw( ) we use two auxiliary functions. The first returns the angle
between the normal n(u) of b and the straight line B(u)T (u):

Listing from "edge orthogonal.cpp":

Real Angle( BezierCurve2d ∗c, BezierCurve2d ∗d, Real u )
{

return c−>NormalVector( u ).Angle( V2d( c−>CurvePoint( u ),
d−>CurvePoint( u ) ), false, true ) ;

}

The second computes the score according to (7). Unfortunately, we cannot use
Open Geometry’s Integral(. . . ) function, since we need pointers to Bézier
curves as additional input parameters. It is, however, quite easy to adapt the
source code of Integral(. . . ) from "h.cpp" to our needs.

Listing from "edge orthogonal.cpp":

Real CalcScore( BezierCurve2d (∗c), BezierCurve2d (∗d), int n )
{

if ( n % 2 ) n++;
Real area = fabs( Angle( c, d, 0 ) ) + fabs( Angle( c, d, 1 ) ) ;
Real dt = (Real) 1 / n;
Real t = dt;
int i, m = 4;
for ( i = 1; i < n; i++ )
{

area += m ∗ fabs( Angle( c, d, t ) ) ;
m = 6 − m;
t += dt;

}
return area ∗ dt / 3;

}
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The input parameters are two pointers to Bézier curves and an integer value n
that determines the number of intervals to be taken for the approximation of the
integral through Simpson’s formula. Now we take our chances by changing the
right control point of the test curve:

Listing from "edge orthogonal.cpp":

P old = TestCurve.GetControlPoint( Index ) ;
if ( ! (Index == 0) && ! (Index == N1) )
{

V2d v( Test x( ), Test y( ) ) ;
v.Normalize( ) ;
v ∗= VectorLength;
P = P old + v;

}
else if ( Index == 0 )
{

V2d v = BaseCurve.NormalVector( 0 ) ;
v ∗= Test x( ) ;
v ∗= VectorLength;
P = P old + v;

}
else if ( Index == N1 )
{

V2d v = BaseCurve.NormalVector( 1 ) ;
v ∗= Test x( ) ;
v ∗= VectorLength;
P = P old + v;

}
TestCurve.SetControlPoint( Index, P ) ;

The variables P and P old are global variables of type P3d. We store the old
control point in P old and create a new random point P simply by adding the
random vector v. If the first or last point of the control polygon is to be changed,
we restrict the change to the normals n(0) and n(1) of b. In a next step, we
compute the score and accept the change if it has improved. Otherwise, we
reject it.
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Listing from "edge orthogonal.cpp":

Score = CalcScore( &BaseCurve, &TestCurve, 100 ) ;
int i;
if( Score old < Score )
{

TestCurve.SetControlPoint( Index, P old ) ;
PrintString( Black, 7, 3.5, "Score =%2.6f", Score old ) ;

}
else
{

PrintString( Black, 7, 3.5, "Score =%2.6f", Score ) ;
Score old = Score;

if( (Index == 0) || (Index == N1) )
{

Real alpha = GetAlpha( &BaseCurve, &TestCurve ) ;
Real beta = GetBeta( &BaseCurve, &TestCurve ) ;
EdgeOrthogonalPatch( alpha, beta,

&BaseCurve, &ExactSolution ) ;
}

}

In addition, we print the current score on the screen and recompute the exact
solution if T0 or TN has changed. For this last task we wrote a function of our
own (EdgeOrthogonalPatch(. . . )) that more or less reads like the code we used
in Init( ) to initialize e. The main difference is that we have to employ pointers
and dynamic memory allocation, since we use two input Bézier curves.

Now we implement some additional features in order to be able to judge the
quality of the solution. We compute the maximal angle deviation and draw the
angle function. Furthermore, we draw a distance curve to b. The distance function
we use is proportional to the angle error. Thus, you can easily identify the regions
of good and not so good approximation on b.

Listing from "edge orthogonal.cpp":

const int number of points = 300;
Real u;
Real delta = (Real) 1 / ( number of points − 1 ) ;
Real max deviation = 0;
Real deg = 0;
for ( i = 0, u = 0; i < number of points; i++, u+= delta )
{

deg = Angle( &BaseCurve, &TestCurve, u ) ;
max deviation = max( max deviation, fabs( Deg( deg ) ) ) ;
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P2d F( 4 ∗ u + 7, Angle( &BaseCurve, &TestCurve, u ) + 6 ) ;
F.Mark( Black, 0.04 ) ;
P2d E = BaseCurve.CurvePoint( u ) +

Deg( deg ) ∗ ErrorFactor ∗ BaseCurve.NormalVector( u ) ;
E.Mark( Yellow, 0.04 ) ;

}
StraightLine2d( Black, P2d( 7, 6 ), P2d( 11, 6 ), THIN ) ;

Finally, we imitate a plane Bézier patch by drawing the connecting lines of
corresponding points B(u) and T (u) on b and t. We draw the Bézier curves and
their control polygons and print the information of interest on the screen. A
last good thing is the possibility of changing the length of the random vector.
Otherwise, no change would occur after a while, since any random attempt yields
a worse score. We implement this as follows:

Listing from "edge orthogonal.cpp":

int key = TheKeyPressed( ) ;
switch (key )
{
case ’d’:

VectorLength ∗= 2;
break;

case ’f’:
VectorLength ∗= 0.5;
break;

}

FIGURE 2.57. Three steps on the way to finding an edge-orthogonal Bézier patch.
The test curve at the start (left), after 500 frames (middle), and after 1700 frames
(right). At the end there is no visible deviation from the right angle condition.
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We can thus interactively control the length of the random vector. Figure 2.57
shows three steps on the way to an almost exact solution. ♦

Example 2.37. Bézier approximation
We have mentioned earlier that the Monte Carlo method of the previous ex-
ample can be generalized to many other ideas. So, why not try to approx-
imate arbitrary parameterized curves through Bézier curves? We did this in
"bezier approx.cpp".

FIGURE 2.58. The test curve converges to the target curve (equiangular spiral).
After 3000 frames the maximal error is almost invisible.

First, we define the target curve t : T (u) . . .�t(u) (i.e., the curve we want to
approximate). It is an object of type ParamCurve2d with one special property.

Listing from "bezier approx.cpp":

class MyCurve: public ParamCurve2d
{
public:

P2d CurvePoint( Real u ) const
{

Real u0 = −2, u1 = 5;
u = ( 1 − u ) ∗ u0 + u ∗ u1;
Real r = exp( 0.3 ∗ u ) ;
return P2d( r ∗ cos( u ), r ∗ sin( u ) ) ;

}
};
MyCurve TargetCurve;
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We specify the parameter interval [u0, u1] of t in CurvePoint(. . . ) and transform
it immediately to [0, 1]. Hence, we can define the target curve in Init( ):

Listing from "bezier approx.cpp":

TargetCurve.Def( Green, 200, 0, 1 ) ;

This is necessary, since we want to approximate a parameterized curve through
a Bézier curve b : B(u) . . .�b(u) (i.e., we want to have B(u) ≈ T (u)) and the
standard parameter interval for Bézier curves is [0, 1]. In our case, the target
curve is an equiangular spiral, a hard task, since the curvature changes rather
fast along the curve. But you will see that we are able to get satisfying results.

The quality of a solution will be judged by the score function
∫ 1

0
dist(B(u)T (u)) dt.

We implement it in more or less the same way as in "edge orthogonal.cpp":

Listing from "bezier approx.cpp":

Real DistError( ParamCurve2d ∗target, BezierCurve2d ∗test,
Real u )

{
return target−>CurvePoint( u ).Distance(

test−>CurvePoint( u ) ) ;
}
Real CalcScore( ParamCurve2d ∗target, BezierCurve2d ∗test, int n )
{

if ( n % 2 ) n++;
Real area = DistError( target, test, 0 ) +

DistError( target, test, 1 ) ;
Real dt = (Real) 1 / n;
Real t = dt;
int i, m = 4;
for ( i = 1; i < n; i++ )
{

area += m ∗ DistError( target, test, t ) ;
m = 6 − m;
t += dt;

}
return area ∗ dt / 3;

}
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Next, we define the first test curve in Init( ). The first and the last points will
be the start and end points of the target curve t. The initial degree of t is just
3. We will be able to elevate it interactively during the program.

Listing from "bezier approx.cpp":

P2d T [ 3];
T [ 0] = TargetCurve.CurvePoint( 0 ) ;
T [ 1].Def( rnd x( ), rnd y( ) ) ;
T [ 2] = TargetCurve.CurvePoint( 1 ) ;
TestCurve.Def( Red, 200, 3, T ) ;

The next steps are analogous to those in "edge orthogonal.cpp". We apply
a random change to a control point of the test curve, compute the new score,
and accept the change only if the score has improved. A little difference is the
sequence of indices of control points. We do not need to change the first and last
points, so this sequence takes the values 〈1, 2, . . . , n− 2, n− 1, n− 1, . . . , 2, 1 . . . 〉
and continues periodically. We implement it in Animate( ) as follows:

Listing from "bezier approx.cpp":

Index = FrameNum( ) % ( N2 ) ;
if ( Index > N3 )

Index = N2 − Index;
else

Index++;

A very important feature is the possibility of elevating the degree of the test
curve during the random process. We can do this in the same way as we control
the length of the random vector. At the end of Draw( ) we write the following
lines:

Listing from "bezier approx.cpp":

int key = TheKeyPressed( ) ;
switch (key )
{
case ’d’:

VectorLength ∗= 2;
break;

case ’f’:
VectorLength ∗= 0.5;
break;

case ’s’:
ElevateDeg = true;

}
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ElevateDeg is a global variable of type Boolean. If it is true, we elevate the degree
of the test curve and adapt two global variables in Animate( ):

Listing from "bezier approx.cpp":

if ( ElevateDeg )
{

TestCurve.ElevateDegree( 1 ) ;
N++;
N2 = 2 ∗ N − 4;
N3 = N − 3;
ElevateDeg = false;

}

If you run the program, you will see the target curve and a random Bézier curve
of degree 2 through start and end points of the target curve. Press <Ctrl + F>
and use the keys s, d, and f for interactive control of the random process. We
recommend the following strategy for fast convergence:

• Reduce the vector length until the score changes rather quickly.

• If the score does no longer improve considerably, increase the vector length.

• Elevate the degree of the test curve and start again by reducing the vector
length step by step.

Figure 2.58 shows the convergence of the test curve. ♦

B-spline curves

So far, we have extensively dealt with Bézier curves and their useful properties
for CAGD. However, they have two serious disadvantages that must not be
forgotten:

1. If you want to display a complex shape, you need a very high number of
control points.

2. The changing of a single control point or a single weight will affect the whole
curve.

The common technique to overcome these difficulties is the use of spline curves:
One combines different parts of integral or rational Bézier curves. An appropriate
choice of the control polygons of adjacent curves guarantees GCk-continuity or
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Ck-continuity, i.e., the different curve segments will form a smooth curve. We
have shown how to do this in Example 2.34.

The curve segments are the spline segments; the whole curve is called a Bézier
spline. However, the most frequent spline technique does not use Bézier splines
but B-splines. Theoretically, there is no essential difference between Bézier
splines and B-splines: Both approaches yield the same class of curves. But the
storage of the control data is more efficient with B-splines.

The theoretic description of B-spline curves is more complex than the description
of Bézier curves.26 Their base functions Nk

i are recursively defined via a knot
vector T = (t0, . . . , tn−1, tn, tn+1, . . . , tn+k) with ti ∈ R and t0 ≤ t1 ≤ · · · ≤ tn+k.
We start by setting

N1
i (t) :=

{
1 for ti ≤ t < ti+1

0 otherwise
(9)

and define recursively for k > 1,

Nk
i (t) =

t − ti
ti+k−1 − ti

Nk−1
i (t) +

ti+k − t

ti+k − ti+1
Nk−1

i+1 (t). (10)

The B-spline base functions have the following properties (compare [18] and
Figure 2.59):

1. Nk
i (t) > 0 for ti < t < ti+k.

2. Nk
i (t) = 0 for t0 ≤ t ≤ ti and ti+k ≤ t ≤ tn+k.

3.
n∑

i=0

Nk
i (t) = 1 for t ∈ [tk−1, tn+1].

4. For ti ≤ tl ≤ ti+k the base functions Nik(t) are Ck−2-continuous at the
knots tl.

Points 1 and 2 guarantee that the influence of each base function is limited to
a certain well-defined supporting interval. Point 3 is responsible for the affine
invariance of curve and control polygon, and point 4 allows one to control the
degree of continuity via the integer k.

Note that coinciding knots ti = ti+1 = · · · = ti+j are allowed. In fact, some basic
B-spline techniques rely on these multiple knots.

26It would be a miracle if this were not the case. We have to describe a sequence of
spline segments with a control structure and additional information about the degree
of continuity, not just a single curve.



152 Chapter 2. 2D Graphics

FIGURE 2.59. Six B-spline functions over the knot vector T = (t0, . . . , t5).

Example 2.38. B-spline base functions
It is a nice and interesting task to write a program to display the B-spline base
function ("base functions.cpp"): We will use a recursive function call, and
overwriting some methods, we derive a successor class of ParamCurve2d. At
first, we declare global constants for the knot vector T, the colors, and the scale
factors in the x and y directions.27

Listing from "base functions.cpp":

const int M = 8;
const Real T [M] = { −4, −2.5, −1, 0.2, 1.1, 2, 2.9, 4 };
const int K = 8; // maximal order of the B−spline base functions
const Color Col [ 10] = { Brown, Red, Yellow, Green, Blue, Orange,

Cyan, Pink, Magenta, LightYellow };
const Real ScaleX = 3, ScaleY = 8;

Then we define a recursive function SplineN(. . . ) according to equation (10):

27The B-spline base functions are too small to fit in a standard Open Geometry
window.
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Listing from "base functions.cpp":

Real SplineN( Real t, int i, int k )
{

if ( k == 1 )
return ( ( t <= T [i] ) || ( T [i+1] < t ) ) ? 0 : 1;

else
{

return ( t − T [i] ) / ( T [i+k−1] − T [i] ) ∗
SplineN( t, i, k − 1 ) +
( T [i+k] − t ) / ( T [i+k] − T [i+1] ) ∗
SplineN( t, i + 1, k − 1 ) ;

}
}

With the help of this family of functions we define the base functions as param-
eterized curves. We use two private member variables and overwrite the defining
method and drawing method (taking into account the respective supporting in-
terval). If K = 1 or K = 2, the B-spline base functions consist of line segments,
and we draw them directly.

Listing from "base functions.cpp":

class BSplineBase: public ParamCurve2d { public:
void Def( Color c, int PointNum, int i, int k )
{

I = i, K = k;
ParamCurve2d: :Def( c, PointNum,

min( 0, T [I] ), min( T [M−1], T [I+K] ) ) ;
}
virtual P2d CurvePoint( Real u )
{

return P2d( ScaleX ∗ u, ScaleY ∗ SplineN( u, I, K ) ) ;
}
void Draw( ThinOrThick style, Real max dist = −1 )
{

if ( I > 0 )
StraightLine2d( col, P2d( ScaleX ∗ T [ 0], 0 ),

P2d( ScaleX ∗ T [I], 0 ), style ) ;
if ( I + K < M − 1 )

StraightLine2d( col, P2d( ScaleX ∗ T [I+K], 0 ),
P2d( ScaleX ∗ T [M−1], 0 ), style ) ;

if ( K == 1 && I < M − 1 )
{

StraightLine2d( col, P2d( ScaleX ∗ T [I], 0 ),
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P2d( ScaleX ∗ T [I], ScaleY ), style ) ;
StraightLine2d( col, P2d( ScaleX ∗ T [I], ScaleY ),

P2d( ScaleX ∗ T [I+1], ScaleY ), style ) ;
StraightLine2d( col, P2d( ScaleX ∗ T [I+1], ScaleY ),

P2d( ScaleX ∗ T [I+1], 0 ), style ) ;
}
else if ( K == 2 && I < M − 2 )
{

StraightLine2d( col, P2d( ScaleX ∗ T [I], 0 ),
P2d( ScaleX ∗ T [I+1], ScaleY ), style ) ;

StraightLine2d( col, P2d( ScaleX ∗ T [I+1], ScaleY ),
P2d( ScaleX ∗ T [I+2], 0 ), style ) ;

}
else

ParamCurve2d: :Draw( style, max dist ) ;
}

private:
int I, K;

};

Next, we declare a 2D array of instances of class BaseF and define it in Init( ):

Listing from "base functions.cpp":

BSplineBase BaseF [M] [K];

void Scene: :Init( ) {
int i, k;
for ( k = 1; k < K; k++ )

for ( i = 0; i < M − k; i++ )
BaseF [i] [k].Def( Col [k], 61, i, k ) ;

}
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In Draw( ) we repeat this loop with a draw command and display the coordinate
axes plus a scale indicating the knots (on the x-axis) and the unit (on the y-axis).
With small adaptations this program was used to produce Figure 2.59. ♦
Now we proceed with the introduction to B-spline curves. A B-spline is a piece-
wise polynomial curve whose segments are of continuity class Cκ (κ ≥ 0). We
choose a knot vector T = (t0, . . . , tn, tn+1, . . . , tn+k) and a sequence of control
points �d0, . . . , �dn in R

2 or R
3. A B-spline curve b of order k with control points

�di and knot vector T is defined as

b . . . �x(t) =
n∑

i=0

�diN
k
i (t). (11)

The parameter interval is usually restricted to [tk−1, tn+1] because only there
is the full range of B-spline base functions available. Of course, this does not
mean that the knots t0, . . . , tk−2 and tn+2, . . . , tn+k have no effect on the shape
of the B-spline. Chosen in an appropriate way, they can guarantee certain nice
properties of the curve (we shall see examples of this later in this chapter).

In general, a B-spline curve is of Ck−2-continuity: The (k−2)-nd derivative �x(k−2)

is still continuous, while �x(k−1) is not. If, however, a knot is of multiplicity l (i.e.,
it occurs l-times in the knot vector T), the continuity class reduces to Ck−l−1.

In Figure 2.60 (left-hand side) we display a C2-continuous B-spline curve with
six control points �di and a uniform knot vector T = (0, 1, . . . , 9) (i.e., n = 5 and
k = 4). The connection between curve and control polygon is not as obvious as
in the case of Bézier curves.

FIGURE 2.60. Two B-spline curves with the same control polygon but different knot
vectors: T = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) for the left and T = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3) for
the right curve.

This changes if we consider the B-spline curve with the same control polygon
but knot vector T = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3) (right-hand side of Figure 2.60). The
first and the last knot have multiplicity k, which results in a behavior we already
know from Bézier curves: �d0 and �d5 are start and end points of the B-spline, the
first and the last side of the control polygon are curve tangents in these points.
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These properties are key features for any application of B-splines in CAGD, and
it will be useful to have a defining method that already cares for the correct
choice of the knot vector. But first, we must have a look at the implementation
of B-splines in Open Geometry 2.0.

We provide four classes of B-spline curves: NUBS2d, NUBS3d, NURBS2d, and
NURBS3d. “NUBS” stands for “Non Uniformal B-Spline” and means that the
knot vector need not consist of evenly distributed elements. “NURBS” means
“Non Uniformal Rational B-Spline.” It is defined in analogy to ordinary (integral)
B-splines. However, as with rational Bézier curves, we can assign weights to the
control points.28

In the following we will describe only the class NUBS2d. The remaining classes
have been implemented in a similar way.29

NUBS2d is to successor of ParamCurve2d. Like all other B-spline classes, it is
defined in "nurbs.h". The header reads as follows:

Listing from "H/nurbs.h":

class NUBS2d: public ParamCurve2d
{
public:

NUBS2d( ) { T = A = NULL; D = E = NULL; }
void Def( Color c, int size, int knum, Real K [ ], int pnum,

P2d P [ ] ) ;
void Def( Color c, int size, int pnum, P2d P [ ], int continuity,

Boolean closed = false ) ;
˜NUBS2d( ) { AllocMemory( 0, 0 ) ; }
virtual P2d CurvePoint( Real u ) { return DeBoor( u ) ; }
void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot( int i ) {return T [i]; };
P2d GetControlPoint( int i ) { return D [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }

private:
int n, k, N, M;
Real ∗T, ∗A;
P2d ∗D, ∗E;
void AllocMemory( int knum, int pnum ) ;
P2d DeBoor( Real u ) const;
int ComputeInterval( Real u ) const;

28This is completely analogous to the case of rational Bézier curves (compare
page 130).

29We have prepared sample files that demonstrate the use of each of the mentioned
classes ("nubs2d.cpp", "nubs3d.cpp", "nurbs2d.cpp", "nurbs3d.cpp").
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Boolean Closed;
};

The class provides a constructor and a destructor, two defining methods, and a
few “getters.” The CurvePoint(. . . ) function is overwritten and calls the private
member function DeBoor(. . . ). The control points are stored in the P2d array D;
the knots are stored in the Real array T. The arrays A and E are used for the
computation of curve points in DeBoor(. . . ).

The memory allocation for control points and knots must be dynamic. The
corresponding Open Geometry macros are hidden in AllocMemory(. . . ). This
method is also called by the destructor.

We could compute the curve points directly via equations (10) and (11). However,
there exists a more efficient way of doing this: the subdivision algorithm of Cox–
De Boor. In [18] it is described as follows:

1. Given a B-spline curve b defined by a sequence 〈�d0, . . . , �dn〉 of control
points and its knot vector T = (t0, . . . , tn, tn+1, . . . , tn+k) (n ≥ k − 1),
we want to compute the curve point corresponding to the parameter value
t∗ ∈ [tk−1, tn+1].

2. Determine the index r with tr ≤ t∗ < tr+1; for t∗ = tn+1 use r := n.

3. For j = r − k + 2, . . . , r compute

α1
j :=

t∗ − tj
tj+k−1 − tj

and �d1
j := (1 − α1

j ) �dj−1 + α1
j

�dj .

4. For l = 2, . . . , k − 1 and j = r − k + l + 1, . . . , r compute

αl
j :=

t∗ − tj
tj+k−l − tj

and �dl
j := (1 − αl

j) �dl−1
j−1 + αl

j
�dl−1
j .

5. The curve point in question is �dk−1
r .

In the NUBS2d member function DeBoor(. . . ) we follow this algorithm. With
a minor adaptation we can avoid the allocation of 2D arrays for the reals αj

i

and the points �dj
i . We use the one-dimensional arrays A and E for that purpose.

Step 2 is done by calling the private member function ComputeInterval(. . . ).

The preceeding listing shows two defining methods for a NUBS2d object. The
first method leaves all responsibility to the user. The control points as well as
the knots must be defined. The second method needs only the control points, an
integer to define the class of differentiability, and a Boolean variable to decide
whether the curve should be closed or not. This is a very convenient way, and
unless you are absolutely sure of what you are doing, we recommend using the
second method. We display a listing to show what happens:
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Listing from "H/nurbs.h":

void NUBS2d: :Def( Color c, int size, int pnum, P2d P [ ],
int continuity, Boolean closed )

{
Closed = closed;
if ( Closed )
{

N = pnum + continuity + 1, n = N − 1;
k = min( continuity + 2, N ) ;
M = k + N;
if ( N < k )

SafeExit( "wrong index" ) ;
AllocMemory( M, N ) ;
int i;
for ( i = 0; i < pnum; i++ )

D [i] = P [i];
int j;
for ( i = pnum; i < N; i++ )
{

j = i % pnum;
D [i] = P [j];

}
for ( i = 0; i < M; i++ )

T [i] = i;
ParamCurve2d: :Def( c, size, T [k−1], T [n+1] ) ;

}
else
{

N = pnum, n = N − 1;
k = min( continuity + 2, N ) ;
M = k + N;
if ( N < k )

SafeExit( "wrong index" ) ;
AllocMemory( M, N ) ;
int i;
for ( i = 0; i < N; i++ )

D [i] = P [i];
for ( i = 0; i < k; i++ )

T [i] = 0;
for ( i = n + 1; i < M; i++ )

T [i] = n − k + 2;
for ( i = k; i <= n; i++ )

T [i] = i − k + 1;
ParamCurve2d: :Def( c, size, T [k−1], T [n+1] ) ;

}
}
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Let’s have a look at the else-branch first. There, the B-spline is not closed,
and we already know what should happen: We want to produce a curve as on
the right-hand side of Figure 2.60. We simply copy the control points and assign
values to the knots so that t0 = · · · = tk−1 = 0 and tn+1 = · · · = tn+k = n−k+2
are k-fold knots.

The second option in this defining method sets closed to true. The output is a
closed B-spline curve, which is quite useful for certain applications. In order to
achieve this goal, we continue the sequence of control points periodically. The
knot vector has no multiple knots.

If you want a special distribution of the knots, you can modify the described
defining methods and adapt them to your needs. This is interesting if you
deal with interpolating splines (so far we have talked only about approximat-
ing splines). Then it may, for example, be necessary to approximate the knot
distance by the distance of the control points.

In Figure 2.61 we display a test series for open and closed B-spline curves with
varying degree κ of continuity. In the case κ = 0, the “curve” is identical with
its control polygon, if κ = 1, the sides of the control polygon are tangents of
the B-spline. The curve in the upper right corner is a Bézier curve; it is even of
differentiability class C∞.

FIGURE 2.61. Different B-spline curves.

B-splines in 3D and rational B-splines work in more or less the same way. Sample
code and description can be found in Chapter 6.

2.7 Further Examples
Example 2.39. Minimize distance
With a little imagination, it is easy to find many practical applications of the
following abstract geometrical problem: Given a finite set F := {F0, . . . , Fn} of
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points, we want to find a point P that lies “as close as possible” to all points
Fi. The meaning of the phrase “as close as possible” needs, of course, a more
precise explanation. It seems sensible to minimize either the sum of distances
PFi or the maximal distance. Perhaps, the barycenter B of F is a good choice
as well. The best choice depends, of course, on the given practical problem. We
will consider three approaches:

1. The distance sum d(P ) :=
∑n

i=0 PFi is minimized.

2. The sum of squared distances s(P ) :=
∑n

i=0 PFi is minimized.

3. The maximal distance m(P ) := max{PFi | i = 0, . . . , n} is minimized.

The functions d(P ), s(P ), and m(P ) will be called score functions. The solutions
to the problem will be denoted by D (distance sum), S (squared distance sum),
and M (maximal distance), respectively.30 In general, these three approaches
result in different solutions. The main difference is their behavior with respect
to points that are far off from the main point cloud (Figure 2.62). Suppose, for
example, that the points Fi are data points of a physical experiment. Then the
exceptional point F5 was probably just the result of a bad survey. One would
prefer the solution D in this case. If one is not sure whether to take D or M one
can decide on S. Its reaction to exceptional points lies somewhere between the
two extreme cases D and M . By the way; S is always the barycenter of F .

FIGURE 2.62. Three different approaches to the optimization problem. The distant
point F5 has different impact on the position of D, S, and M .

In our Open Geometry program "minimize distance.cpp" we use a Monte
Carlo method to determine D, S, and M (compare Examples 2.36 and 2.37!).
We start with an arbitrary point D = D0 and apply a small random translation
to it. Then we compare the distance sums of the old and the new point. If it
has improved, we accept the change; otherwise we refuse it. This results in a
sequence 〈D0, D1, . . . 〉 and a strictly monotonically decreasing sequence 〈d(Di)〉.
Analogous procedures yield good approximations for S and M .

In "minimize distance.cpp" we use the three functions to compute the values
of the score functions d(P ), s(P ), and m(P ) (the points Fi are defined globally):

30It is quite easy to see that there always exists a solution, but it is not obvious that
it is unique.
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Listing from "minimize distance.cpp":

Real DistSum( P2d &P )
{

int i;
Real sum;
for ( i = 0, sum = 0; i < N; i++ )

sum += P.Distance( F [i] ) ;
return sum;

}

Real SquareSum( P2d &P )
{

int i;
Real sum;
for ( i = 0, sum = 0; i < N; i++ )

sum += Sqr( P.Distance( F [i] ) ) ;
return sum;

}

Real MaxDist( P2d &P )
{

int i;
Real dist = 0;
for ( i = 0; i < N; i++ )

dist = max( dist, P.Distance( F [i] ) ) ;
return dist;

}

After initializing all points with sensible random values (of course, you can set
the points Fi manually as well), we compute their scores and store them in
ScoreD, ScoreS, and ScoreM, respectively. In Animate( ) we make analogous ran-
dom attempts for D, S, and M . Here are the code lines for D:
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Listing from "minimize distance.cpp":

Real new score;
V2d v;

P2d D new = D;
v.Def( RndVX( ), RndVY( ) ) ;
D new += ChangeFactor ∗ v;
new score = DistSum( D new ) ;
if ( new score < ScoreD )
{

D = D new;
ScoreD = new score;

}

After starting the program, the user has to press <Ctrl+F> to start the ani-
mation. The new random points will be computed and tested. The convergence
of the point sequence is very fast at the beginning but soon slows down. The
reason for this is that the random vectors are too large. That is why we use a
change factor that determines the maximal length of the random vector. It can
interactively be changed by pressing f or d during the animation. ♦

Example 2.40. The isoptic
Let c be an arbitrary conic and ω ∈ [0, 180] an arbitrary fixed angle. Then the
isoptic curve i(c, ω) is defined as the locus of all points from which c is seen
under an angle of ω. That is, the tangents of c through P form an angle of ω.
One usually considers the isoptics i(c, ω) and i(c, 180−ω) as parts of one and the
same curve, because they satisfy the same algebraic equation. It is problematic
to derive a parameterized equation for the isoptic. But we can rely on a simple
geometric construction (Figure 2.63):

We assume that c is an ellipse (an analogous construction is possible for the
hyperbola). By F1 and F2 we denote its focal points, by a the half-length of the
major axis. Let d be the circle with radius a centered at the ellipse’s center. Now
we take two straight lines through F2 that form an angle of ω. They intersect
d in four points 1, 1′, 2, and 2′. The normals of F1 and F11′ through 1 and 1′

are tangents t1 and t′1 of c. In the same way, we get tangents t2 and t′2. The
vertices of the parallelogram t1t

′
1t2t

′
2 are four points of i(c, ω) or i(c, 180 − ω),

respectively.

It is now immediately clear how to implement the isoptic in Open Geometry
("isoptic.cpp"). We do not compute anything; we simply perform the above
construction:
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FIGURE 2.63. The construction of the isoptic curve of an ellipse.

Listing from "isoptic.cpp":

class MyFirstIsoptic: public ParamCurve2d
{
public:

P2d CurvePoint( Real u )
{

StrL2d s1, s2;
s1.Def( F2, V2d( cos( u ), sin( u ) ) ) ;
s2 = s1;
s2.Rotate( F2, Omega ) ;
P2d X1, X2;
int n;
n = Circle.SectionWithStraightLine( s1, X1, X2 ) ;
if ( s1.GetParameter( X1 ) > 0 )

s1.Rotate( X1, 90 ) ;
else

s1.Rotate( X2, 90 ) ;
n = Circle.SectionWithStraightLine( s2, X1, X2 ) ;
if ( s2.GetParameter( X1 ) > 0 )

s2.Rotate( X1, 90 ) ;
else

s2.Rotate( X2, 90 ) ;
return s1 ∗ s2;

}
};
MyFirstIsoptic Isoptic1;
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When intersecting a straight line through F1 with the circle d, we do not need
to check whether there exist real intersection points, since n will always take
the value 2. We choose the intersection point on the positive half-ray to avoid
discontinuities that stem from the order of the solution points. Note that this
construction actually gives the points of i(c, 180 − ω). In order to get i(c, ω), we
implement a second isoptic where we replace the first occurrence of “>” by “<”.
In the remaining parts we just define, draw, and mark relevant elements. We do
not consider it necessary to display them here. ♦
Sometimes it is convenient or even necessary to regard a plane curve c as a set of
straight lines (its tangents) rather than a set of points (its points of tangency).
The principle of duality of projective geometry guarantees that both points of
view are equivalent (in the sense of projective geometry), though the latter is
much more frequent. The dual curve of a standard plane curve is called a class
curve.

Example 2.41. Class curve
It is no problem to use a class curve in Open Geometry. Version 2.0 provides
a successor class of ParamCurve2d that has all relevant methods:

Listing from "H/lines2d.h":

class ClassCurve2d: public ParamCurve2d
{
public:

virtual StrL2d Tangent( Real u ) = 0;
virtual P2d CurvePoint( Real u )
{

return Tangent( u − 1e−6 ) ∗ Tangent( u + 1e−6 ) ;
}
virtual V2d TangentVector( Real u )
{

return Tangent( u ).GetDir( ) ;
}

};

We overwrite the Tangent(. . . ), CurvePoint(. . . ), and TangentVector(. . . ) func-
tions of ParamCurve2d. Note that ClassCurve2d is a purely virtual function. In
order to use it we have to derive a successor and must implement the Tangent(. . . )
function. We did this in "class curve1.cpp" (R1 and R2 are positive reals):
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Listing from "class curve1.cpp":

class MyClassCurve: public ClassCurve2d
{
public:

StrL2d Tangent( Real t )
{

P2d P( R1 ∗ cos( t ), R1 ∗ sin( t ) ) ;
P2d Q = P;
Q ∗= R2 / R1;
Q.Rotate( Origin2d, Phi ) ;
Q.Translate( Dir ) ;
return StrL2d( P, Q ) ;

}
};
MyClassCurve ClassCurve;

We connect two points P(t) and Q(t). The point P(t) lies on a circle c1 centered at
the origin with radius R1, Q(t) is derived from P(t) through a scaling, rotating,
and translating operation. Therefore Q(t) lies on a circle c2 of radius R2 and
corresponds to P(t) in a homothety η that does not depend on t. Thus, we might
say that our class curve c is generated by two homothetic circles. In Draw( ) we
connect the corresponding points:

Listing from "class curve1.cpp":

int i, n = 40;
Real t, delta = 2 ∗ PI / n;
P2d P, Q;
for ( i = 0, t = 0; i < n; i++, t += delta )
{

P.Def( R1 ∗ cos( t ), R1 ∗ sin( t ) ) ;
Q = P;
Q ∗= R2 / R1;
Q.Rotate( Origin2d, Phi ) ;
Q.Translate( Dir ) ;
StraightLine2d( Yellow, P, Q, THIN ) ;

}
...
ClassCurve.Def( Blue, 150, −PI, PI ) ;
ClassCurve.Draw( MEDIUM, 100 ) ;
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The class curve c itself is defined and displayed in Draw( ) as well. We have to
define it in Draw( ) because we want to animate the image. In Animate( ) we will
change the values of the rotation angle Phi and the translation vector Dir.

Listing from "class curve1.cpp":

void Scene: :Animate( )
{

Phi += 1;
Dir.Def( PulseX.Next( ), PulseY.Next( ) ) ;

}

If you start the animation, you will immediately notice that the generated class
curve c is always a conic section (Figure 2.64). It is well known that two pro-
jectively linked conics generate a curve of class four in general (correspondence
principle of Chasles). With each fixed point of the projectivity the class is re-
duced by one. In our case, the circular points at infinity remain fixed, and c is
always of class two, i.e., a conic section.

FIGURE 2.64. Two homothetic circles c1 and c2 generate a conic section c.

If you want to see a curve of class four, you must not use circles. In
"class curve2.cpp" we have replaced them by congruent ellipses e1 and e2.
Using two global constants A and B and a global variable Y of type Real, the
corresponding instance of ClassCurve2d is implemented as follows:

Listing from "class curve2.cpp":

class MyClassCurve: public ClassCurve2d
{
public:
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StrL2d Tangent( Real u )
{

P2d P( A ∗ cos( u ), B ∗ sin( u ) ) ;
P2d Q( B ∗ cos( u ), A ∗ sin( u ) − Y ) ;
return StrL2d( P, Q ) ;

}
};
MyClassCurve ClassCurve;

Varying Y means translating the second ellipse e2 along the y-axis. We use a
pulsing real PulseY that swings harmonically between A − B and B − A to
control this motion:

Listing from "class curve2.cpp":

void Scene: :Draw( )
{

Xaxis2d.Draw( Black, −15, 15, THIN ) ;
Yaxis2d.Draw( Black, −15, 15, THIN ) ;

ClassCurve.Def( Blue, 100, −PI, PI ) ;
ClassCurve.Draw( THICK ) ;

Ell1.Draw( MEDIUM ) ;
Y = PulseY.Next( ) ;
Ell2.Def( Green, 100, P2d( 0, −Y ),

P2d( B, −Y ), P2d( 0, A − Y ) ) ;
Ell2.Draw( MEDIUM ) ;

}

We redefine the class curve c and the ellipse e2 in each new frame and get a
nice animation. As visualized in Figure 2.65, c changes its shape from an astroid
(Y = 0) to Steiner’s cycloid (Y = ±A ∓ B). In the latter case, there exists
exactly one fixed point of the projectivity between e1 and e2, and the class of c
is only three. ♦
Example 2.42. Angle stretch
Let r = r(u), ϕ = ϕ(u) be the parametric representation of a plane curve c in
polar coordinates. We can associate the angle-stretched curve c∗ of factor f with
c. It is defined by the parametric representation r∗(u) = r(u), ϕ∗ = f · ϕ(u).
With the help of some of Open Geometry’s predefined 2D operations, we can
easily visualize c∗, even if we do not have the parametric representation of c in
polar coordinates.

In "angle stretch.cpp" we display the angle-stretched curve of a straight line.
This task is just as difficult as drawing the angle-stretched curve of an arbitrary
parameterized curve. We define the straight line as a global constant and can
immediately derive the parameterized equation of the angle stretched curve:
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FIGURE 2.65. In general, two congruent ellipses e1 and e2 generate a curve of class
four (left, middle). The class curve on the right-hand side (Steiner’s cycloid) is of class
three only, since there is one fixed point of the projective relation between e1 and e2.

Listing from "angle stretch.cpp":

const StrL2d Line( P2d( 3, 0 ), V2d( 0, 1 ) ) ;

// the angle stretched straight line
class MyAngleStretch: public ParamCurve2d
{
public:

void Def( Color c, int n, Real u1, Real u2, Real factor )
{

Factor = factor;
ParamCurve2d: :Def( c, n, u1, u2 ) ;

}
P2d CurvePoint( Real u )
{

V2d v = Line.InBetweenPoint( tan( u ) ) ;
Real alpha = v.PolarAngleInDeg( ) ;
alpha ∗= Factor;
v.Rotate( alpha ) ;
return P2d( 0 + v.x, 0 + v.y ) ;

}
private:

Real Factor;
};
MyAngleStretch AngleStretch;

We want to write an animated program. Therefore, the stretch factor of c∗ is an
input parameter of the curves’s Def(. . . ) function. We use a pulsing real Factor
for that purpose and define c∗ with every single new frame:
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FIGURE 2.66. c∗ is an angle-stretched curve to the straight line c.

Listing from "angle stretch.cpp":

void Scene: :Draw( )
{

// Define the angle−stretched curve. The bigger the stretch
// factor, the more inbetween points are necessary.
int n = ( int ) fabs( 70 ∗ Factor( ) ) ;
AngleStretch.Def( Red, n + 50, −PI 2, PI 2, Factor( ) ) ;

// Draw everything and..
ShowAxes2d( Black, −10, 10, −8, 8 ) ;
AngleStretch.Draw( THIN, 20 ) ;
Line.Draw( Black, −10, 10, THICK ) ;

//...print current stretch factor on the screen.
PrintString( Black, 7, −5.3, "stretch factor...%2.2f",

Factor( ) ) ;
}

Note that the arc length as well as the curvature of c∗ increase with the absolute
value of the stretch factor. Therefore, the number n of curve points has to be
chosen with respect to this value. In order to compare it with the output curve,
we print the input value Factor on the screen. Finally, we do not forget to insert

Factor.Next( ) ;

in Animate( ) before we watch the interesting spiral effect of the program on the
computer screen (Figure 2.66). ♦
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Refractions

Refractions are to be seen everywhere in daily life. Diving in the sea or watch-
ing fish in an aquarium produces remarkable optical effects. Refractions play
an important role in technical applications as well: eyeglasses, optical lenses,
underwater photography, etc. Mathematicians have been interested in refrac-
tion phenomena for quite a while, and today their geometric properties are well
known:

We consider a refracting plane �. It may be imagined as the surface of a calm pool
of water. Light propagates with speed c1 through the air (on one side of �) and
with speed c2 through the water (other side of �). The real number r := c1/c2
is called the refraction ratio or index of refraction. A straight line a1 (incidence
angle α1 to the normal n of �) is refracted into a straight line a2 through a1 ∩ �
with incidence angle α2 according to Snell’s law (Figure 2.67);

sinα1

sinα2
= r. (12)

That is, α1 > α2 iff r > 1. Though in principle we have α1, α2 ∈ [−π/2, π/2],
there is a restriction on either α1 or α2: For r > 1, the refracted ray will have
a maximum angle of |αmax

2 | ≤ arcsin r−1; for r < 1 rays are refracted only
when |α1| ≤ arcsin r. For example, for r ≈ 0.75 (water→air) we have |α1| ≤
αmax

1 = 48.5◦. Refraction is always accompanied by (partial or total) reflection:
The smaller the angle α1 is, the less reflection occurs. For |α1| ≥ αmax

1 , we have
total reflection on s.

FIGURE 2.67. Snell’s law (the law of refraction).

Both reflection and refraction are geometric phenomena in two dimensions only.
In fact, reflection is a special case of refraction (r = 1). There is, however, a
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small difference: While the incoming and reflected rays lie on the same side of
�, this is not the case with the incoming and refracted rays. Given α1 and r,
equation (12) has two theoretic solutions α0

2 and π/2 − α0
2. Only one of them

is relevant for practical purposes, and a good implementation of a refraction
function in a computer program has to consider this. In the following listing you
can see the implementation of the Refract(. . . ) method of StrL2d.

Listing from "C/o.cpp":

int StrL2d: :Refract( const StrL2d &refracting line, Real ior,
StrL2d &refracted line ) const

{
P2d A;
Real lambda;
Boolean parallel;
SectionWithStraightLine( refracting line, A, lambda, parallel ) ;
// no refraction if straight line has wrong
// orientation or is parallel to refracting line.
if ( lambda < 0 || parallel )
{

refracted line.Def( point, dir ) ;
return 0;

}

// compute angle of outgoing ray
// according to Snell’s law
V2d dir = GetDir( ) ;
V2d n = refracting line.GetNormalVector( ) ;

Real alpha1 = dir.Angle( n, true, true ) ;
Real alpha2 = sin( alpha1 ) / ior;

if ( fabs( alpha2 ) > 1 )
{

refracted line.Def( A, dir ) ;
refracted line.Reflect( refracting line ) ;
return 1;

}
else
{

if ( GetPoint( ).Dist( refracting line ) < 0 )
{

alpha2 ∗= −1;
alpha2 = asin( alpha2 ) ;
n.Rotate( Deg( alpha2 ) ) ;
refracted line.Def( A, n ) ;
return 2;

}
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else
{

alpha2 = asin( alpha2 ) ;
n.Rotate( Deg( alpha2 ) ) ;
refracted line.Def( A, −n ) ;
return 2;

}
}

}

The input parameters are the refracting line, the index of refraction ior, and
a straight line where the refracted line will be stored. The return value is 2
if refraction occurs. It is 1 if the straight line is totally reflected and 0 if the
incoming ray does not intersect the reflecting line at all (i.e., if it is oriented
in a wrong direction). In order to find this ray, we check at first whether the
intersection point A with the refracting line has a positive parameter value. If
not, we assume that the ray points away from the refracting line. The straight
line remains unchanged, and we return 0.

In the next step we compute the angles α1 and α2 of the incoming and the out-
going rays. If total reflection occurs, we reflect the straight line on the refracting
line and return 1. Otherwise, we rotate the normal vector of the refracting line
through α2 and define the refracted ray. Here we must pay attention to the ori-
entation of the refracting line in order to produce the only solution of practical
relevance. Ultimately, the solution will already have the correct orientation.

Example 2.43. Refraction on a straight line
The StrL2d method Refract(. . . ) can be used in many ways. For the next program
("refraction on line.cpp") we set ourselves the following goals:

• Refract the members of a pencil of lines on a refracting line r.

• Draw the envelope d of the refracted rays (this curve is called the diacaustic
of the pencil of lines).

• Visualize the fact that the diacaustic is the evolute of a conic section (com-
pare, e.g., [16])

Everything will be implemented in a way that a varying index of refraction yields
an animated image. With the help of a few global constants and variables. . .
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FIGURE 2.68. The diacaustic d of a pencil of lines and the characteristic conic c.

Listing from "refraction on line.cpp":

const P2d Eye( 0, −2 ) ;
const StrL2d RefrLine( P2d( Eye.x, Eye.y − 3 ), V2d( 1, 0 ) ) ;
const Real E = Eye.Dist( RefrLine ), Tmax = 5;

PulsingReal IOR;
Conic CharConic;
Rect2d Water;

. . . and the Open Geometry class ClassCurve2d, it is easy to implement the
diacaustic d:

Listing from "refraction on line.cpp":

class MyDiacaustic: public ClassCurve2d
{
public:

StrL2d Tangent( Real t )
{

StrL2d s( Eye, V2d( cos( t ), sin( t ) ) ) ;
StrL2d refr;
if ( s.Refract( RefrLine, IOR( ), s ) )

return s;
else

return RefrLine; // dummy
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}
};
MyDiacaustic Diacaustic;

Just for safety reasons, we return a dummy if no real refraction occurs. In fact,
we will avoid this case by choosing an appropriate parameter interval in Draw( ):

Listing from "refraction on line.cpp":

// If IOR < 1 we draw only the lines
// that are not reflected totally.
Real t1, alpha max;
if ( IOR( ) < 1 )
{

alpha max = asin( IOR( ) ) ;
t1 = E ∗ tan( alpha max ) ;

}
else
{

alpha max = PI 2;
t1 = Tmax;

}
Real t0 = −t1;
DrawLineCongruence( t0, t1, Black, DarkGray, 20, IOR( ) ) ;
// compute and draw diacaustic
Diacaustic.Def( Red, 50, −alpha max−PI 2, alpha max−PI 2 ) ;
Diacaustic.Draw( THICK, 100 ) ;

We compute the right parameter limit t1 from formula (12) and the drawing at
the right-hand side of Figure 2.67. If t1 is not restricted by physical laws, we set
it to a globally declared maximal value. Then, we call a function to draw the
lines of the pencil and their refraction images, define the diacaustic, and draw
it. DrawLineCongruence(. . . ) is listed below:

Listing from "refraction on line.cpp":

void DrawLineCongruence( Real t0, Real t1, Color col1, Color col2, int n,
Real ior )

{
const Real delta = ( t1 − t0 ) / ( n −1 ) ;
P2d P;
StrL2d r;
Real t;
int i;
for ( i = 0, t = t0; i < n; i++, t += delta )
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{
P = RefrLine.InBetweenPoint( t ) ;
StraightLine2d( col1, Eye, P, THIN ) ;
r.Def( Eye, P ) ;
int n = r.Refract( RefrLine, ior, r ) ;
if ( n )

r.Draw( col2, −20, 5, THIN ) ;
else
{

P = r ∗ RefrLine;
r.Draw( col2, r.GetParameter( P ), 10, THIN ) ;

}
}

}

We announced earlier that we want to visualize the fact that the diacaustic is
the evolute (actually one half of the evolute) of a characteristic conic c. This
means that the refracted rays are all normals of the characteristic conic. All we
have to know is that the eye point E is a focal point and that its semiaxis is of
length a = er, where e is the distance from eye point to refracting line and r is
the current index of refraction. For r < 1 the characteristic conic is an ellipse,
for r > 1 it is a hyperbola, and for r = 1 (reflection) it is not defined. We can
implement this rather comfortably in Draw( ):

Listing from "refraction on line.cpp":

if ( fabs( IOR( ) − 1 ) > 0.25 )
{

P2d F = Eye;
F.Reflect( RefrLine ) ;
P2d P;
P = 0.5 ∗ E ∗ ( 1 + IOR( ) ) ∗ Eye +

0.5 ∗ E ∗ ( 1 − IOR( ) ) ∗ F;
CharConic.Def( Blue, 100, P, Eye, F,

( IOR( ) > 1 ? HYPERBOLA : ELLIPSE ) ) ;
CharConic.Draw( MEDIUM ) ;

}

We define the characteristic conic by two focal points Eye and F and one point
P on the main axis. The construction is a little unstable in the neighborhood
of r = 1. Therefore, we do not draw the conic within a (rather large) epsilon
interval.

Finally, we implement some extra features: We change the value of the pulsing
real IOR in Animate( ), print its current value on the screen, and draw a blue
rectangle to symbolize the water (Figure 2.68). ♦
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Example 2.44. Rainbow
Now to another program. We want to explain the genesis of a rainbow. After a
shower of rain, the air is filled with small drops of water that reflect and refract
the sun rays. In a certain configuration a viewer on Earth has the impression of
seeing a perfect circular arc in seven colors ranging from magenta to red. The
highest point of this arc is always seen under an angle of about 42◦.

In order to explain the physics behind this phenomenon, we may consider the
small drops of water in the air as spheres (compare Figure 2.69). A ray of light r
entering a sphere is refracted (ray r1), partially reflected on the inside (ray r2)
and refracted again as it leaves the sphere. Note that different indices of refraction
apply to light of different wavelengths. Therefore, the incoming ray splits up in
multiple rays whenever it is refracted.31

FIGURE 2.69. A ray of light r1 is refracted and reflected in a drop of water.

In order to understand the genesis of a rainbow, we must consider the angle γ
between incoming ray r and outgoing ray r3. It turns out that there exists a
maximum value of γ if r changes its position but not its direction. This is the
case for sun rays; they are almost parallel.

Figure 2.70 illustrates that the maximal angle is near 42◦, which confirms our
observations. In this direction the intensity of light is maximal, and we see a
rainbow. Inside the rainbow the sky seems to be brighter because of all the other
reflected and refracted rays.

In "rainbow.cpp" you will find an animation that is perhaps even more lucid
than Figure 2.70. There we use the following function for the refraction on a
circle:

Listing from "rainbow.cpp":

int RefractOnCircle( const StrL2d &r, const Circ2d &circ,

31This is the reason for the colors of the rainbow.
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FIGURE 2.70. The maximal angle of the light rays that leave the drop of water is
about 42◦. In this direction the light intensity is maximal, and we can see a rainbow.
The different colors are due to different indices of refraction of light rays of different
wavelengths.

Real ior, StrL2d &refr line )
{

P2d S1, S2;
if( !circ.SectionWithStraightLine( r, S1, S2 ) )
{

refr line = r;
return 0;

}
else
{

if ( r.GetParameter( S1 ) > r.GetParameter( S2 ) )
{

// swap S1 and S2 without using additional memory
S1 = S1 − S2;
S2 = S1 + S2;
S1 = S2 − S1;

}
StrL2d tangent;
if ( fabs( r.GetParameter( S1 ) ) < 1e−3 )

tangent = circ.GetTangent( S2 ) ;
else

tangent = circ.GetTangent( S1 ) ;
return r.Refract( tangent, ior, refr line ) ;

}
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}

Its input and output parameters are similar to those of StrL2d ::Refract(. . . ). We
refract r on circ. Here, IOR is the index of refraction, and the result is stored
in refr line. The return value tells whether no reflection, total reflection, or real
refraction occurs (0, 1,that and 2, respectively).

If real intersection points of r and circ exist, we arrange them in order of ascend-
ing parameter values. Then we compute the tangent in the relevant intersection
point and use StrL2d ::Refract(. . . ). This function takes care of the correct re-
turn value as well. Note a little detail: If the first intersection point S1 has the
parameter value 0 (or almost 0), we will always refract on the tangent in the
second intersection point S2. This is important when two refractions occur. The
new line will be defined by its direction vector and the point of refraction.

Now to the program itself. We use one circle Circle, a point L1, three straight
lines Line1, Line2, Line3 and a pulsing real Phi as global constants or variables.
During the whole animation Line1 will contain the fixed point L1. The circle and
the pulsing real are defined in Init( ):

Listing from "rainbow.cpp":

void Scene: :Init( )
{

const Real rad = 5;
const P2d center( 0, 0 ) ;
Circle.Def( Black, center, rad, EMPTY ) ;
Real phi = asin( rad / L1.Distance( center ) ) ;
phi ∗= −1.001;
Phi.Def( −PI, phi / 800, −PI − phi, −PI + phi, HARMONIC ) ;
ScaleLetters( 0.7, 1 ) ;

}

Phi is initialized in a way that the straight line through L1 and direction
(cos phi, sin phi) will always intersect the circle (phi is the current value of Phi).
A very important part is Draw( ):
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Listing from "refraction on circle.cpp":

void Scene: :Draw( )
{

Line1.Def( L1, V2d( cos( Phi( ) ), sin( Phi( ) ) ) ) ;
StrL2d normal;
Real delta = 0.0018;
int j;
Real ior = 0.75 − 1.2 ∗ delta;
Color col [ 7] = { DarkMagenta, LightBlue, LightCyan, LightGreen,

Yellow, Orange, Red };
// seven colors of the rainbow

for ( j = 0; j < 7; j++ )
{

if ( RefractOnCircle( Line1, Circle, 1/ior, Line2 ) )
{

P2d P = Line1 ∗ Line2;
if ( j == 0 )
{

normal.Def( P, V2d( P − Circle.GetCenter( ) ) ) ;
P2d H = Line1.InBetweenPoint( Line1.GetParameter( P )−5 ) ;
DrawArrow2d( Black, H, P, 1, 0.2, FILLED, MEDIUM ) ;

// mark incoming ray
}
if ( RefractOnCircle( Line2, Circle, ior, Line3 ) )
{

P = Line2 ∗ Line3;
P2d Q = Line2.GetPoint( ) ;
StraightLine2d( col [j], Q, P, MEDIUM ) ;
normal.Def( P, P2d(Circle.GetCenter( ) ) ) ;
P2d R = Q;
R.Reflect( normal ) ;
StrL2d r( P, V2d( R − P ) ) ;
P2d S1, S2;
Circle.SectionWithStraightLine( r, S1, S2 ) ;
if ( S1.Distance( R ) > S2.Distance( R ) )
{

// different way of swapping points
P2d tmp;
SwapElements( S1, S2, tmp ) ;

}
StraightLine2d( col [j], R, S2, THIN ) ;
StrL2d s;
if ( RefractOnCircle( r, Circle, ior, s ) )

s.Draw( col [j], 0, 5, THIN ) ;
if ( j == 0 || j == 6 ) // print angle of outgoing ray

// on the screen
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{
P2d H = s.InBetweenPoint( 5 ) ;
char str [ 16];
sprintf( str, "%4.1f", −s.GetDir( ).PolarAngleInDeg( ) ) ;
WriteNice( Black, str, H.x, H.y − 0.06∗(j−1),

0, 0.6, 1, XYplane ) ;
}

}
}
else

Line1.Draw( Black, 0, 1000, MEDIUM ) ;
ior += delta;

}
Circle.Draw( MEDIUM ) ;

}

We distinguish seven different cases according to the wavelength of the light
(different color and different index of refraction). The incoming ray of light is
successively refracted (or reflected) on the circle, and the respective line segments
are drawn. Furthermore, we display the current angles of the outgoing rays on
the screen. ♦



3

3D Graphics I

In Open Geometry, the main difference between many classes and methods in
planar and spatial geometry is the suffix “3d” instead of “2d.” Of course, you
should know a little more than this about Open Geometry’s 3D classes before
you start writing programs of your own. On the one hand, geometry in three
dimensions provides many more objects of interest. On the other hand, they are
much harder to deal with.

As far as programming is concerned, an important difference between 2D and
3D is the velocity of animations: Numerous visibility decisions by means of z-
buffering cost some CPU time. Therefore, you should use your computer’s re-
sources with care. Occasionally, we will point out examples of this.

Because of the mass of examples, we have split the chapter on 3D graphics into
two parts. This part deals with the more fundamental concepts such as:

• Open Geometry’s basic 3D classes,

• manipulation of the camera,

• parameterized surfaces,

• free-form surfaces (Bézier surfaces and NURBS),

• simple 3D animations.

The second part is dedicated to more complex topics.
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3.1 Basic 3D Classes
In this introductory chapter we will present a few very fundamental 3D classes
of Open Geometry: points (class P3d), straight lines (class StrL3d), planes
(class Plane), circles (class Circ3d), and polygons (class Poly3d). With the help
of simple sample files you will see them in action and learn how to use them.

Example 3.1. Three planes
We consider a triangle and two circles in 3-space. They mutually intersect and
define a unique intersection point and three line segments that we would like
to display (Figure 3.1). In order to determine the intersection point and line
segments, we will use the triangle’s and circles’ supporting planes.

FIGURE 3.1. The mutual intersection of two circles and a triangle (compare file
"three planes.cpp").

The source code of this example can be found in "three planes.cpp". We use
three global variables and one global constant:

Listing from "three planes.cpp":

RegPoly3d R [ 3]; // Three regular polygons,
Plane Eps [ 3]; // their supporting planes,
P3d S; // and their intersection point.

// array of colors for the three polygons
const Color Col [ 3] = { Yellow, Blue, Pink };

The triangle and the two circles will be objects of type RegPoly3d. We could
as well use the class Circ3d. It would not make any difference, since it is a
successor of RegPoly3d, and we do not need its advanced features. Furthermore,
we use three planes (the polygons’ supporting planes) and a 3D point S (their
intersection point) as well. All elements are defined in Init( ):
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Listing from "three planes.cpp":

void Scene: :Init( )
{

// Define the three polygons...
int n [ 3] = { 3, 100, 100 };
for ( int i = 0; i < 3; i++ )
{

R [i].Def( Col [i], P3d( 16 − 3 ∗ i ,0,0), Zaxis, n [i] ) ;
R [i].Translate( −3, 3, 1 ) ;

}
// ...and bring them in a good position:
R [ 0].Translate( 4, −6, 0 ) ;
R [ 1].Rotate( Zaxis, 30 ) ;
R [ 1].Rotate( Xaxis, 70 ) ;
R [ 2].Rotate( Zaxis, −50 ) ;
R [ 2].Rotate( Yaxis, −55 ) ;

// Define the supporting planes of the polygons...
for ( i = 0; i < 3; i++ )

Eps [i].Def( R [i] [ 1], R [i] [ 2], R [i] [ 3] ) ;

// and intersect them:
if ( !Eps [ 2].SectionWithTwoOtherPlanes( Eps [ 0], Eps [ 1], S ) )

Write( "no common point" ) ;
}

At first, we define the three polygons by their color, some vertex point, their axis
(Open Geometry’s global constant Zaxis), and the number of vertex points.
The two circles are approximated by polygons of 100 sides. Subsequently, we
bring them into a good relative position by certain translations and rotations
about the coordinate axes.

The supporting planes are defined via three polygon vertices. We can access the
vertex point by means of the [ ] operator. The intersection point is computed by
a new method of the class Plane: SectionWithTwoOtherPlanes(. . . ) returns true
if a unique intersection point exists and stores it in the global variable S. If S is
not uniquely determined, we give an alert by opening a little window with the
warning “no common point.”

In Draw( ) we shade the three polygons in their respective colors and with a
thick black contour:
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Listing from "three planes.cpp":

void Scene: :Draw( )
{

int i, j;

// Shade the polygons...
for ( i = 0; i < 3; i++ )
{

R [i].ShadeWithContour( Black, THICK ) ;
}

// ...determine the end points of their mutual intersecting
// line segments:
P3d S1, S2;
for ( i = 0; i < 2; i++ )
{

for ( j = i + 1; j < 3; j++ )
{

if ( R [i].SectionWithOtherPoly3d( R [j], S1, S2 ) )
StraightLine3d( Black, S1, S2, THICK, 1e−2 ) ;

}
}

// Mark their intersection point. Zbuffer( false )
// guarantees that it is always visible.
Zbuffer( false ) ;
S.Mark( Black, 0.3, 0.15 ) ;
Zbuffer( true ) ;

}

Then we have to determine the mutual intersection line segments of the polygons.
For that purpose the SectionWithOtherPoly3d(. . . ) method of RegPoly3d is very
convenient. It returns true if an intersection occurs and stores the end points of
the line segment in S1 and S2. The Open Geometry command StraightLine3d
connects them by a thick black line.

The last argument of StraightLine3d is not mandatory. It gives a critical offset
distance for Open Geometry’s visibility algorithm (z-buffering). In our example
it is larger than the default offset of 1e−3. As a consequence, the straight lines
will clearly stand out. A similar trick is used for the marking of the intersection
point S. It will never be concealed by any other object.

We recommend that you experiment a bit with these visibility options: Change
the offset in StraightLine3d or mark S with active z-buffer and watch the different
outputs. Note that the final output depends on your graphics card, too. For the
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production of Figure 3.1 we used Open Geometry’s export option to POV-Ray.
It should look a little different from your screen output, but that is all right.

More about Open Geometry’s camera option can be found in Section 3.2. The
export to POV-Ray is described in Section 4.2 on page 335. ♦

Example 3.2. Some objects
Open Geometry knows a number of geometric primitives that can be displayed
with very little effort. The simple sample file "some objects.cpp" is a simple
sample file that demonstrates how to do this. We display a cube, a sphere, a
cylinder of revolution, a tetrahedron, and a torus in aesthetic arrangement.

FIGURE 3.2. Geometric primitives created in Open Geometry 2.0 and rendered
with POV-Ray.

Listing from "some objects.cpp":

#include "opengeom.h"
#include "torus.h" // needed for the class "Torus"

Torus T;
Sphere S;
Box B;
RegPrism Base;
RegPrism C;

class RegTetrahedron: public RegFrustum
{
public:

void Def( Color c, Real side, const StrL3d &axis = Zaxis )
{

RegFrustum: :Def( c, side/sqrt( 3), 0, side∗sqrt( 2/3),
3, SOLID, axis ) ;
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}
}
RegTetrahedron H;

void Scene: :Init( )
{

Base.Def( Gray, 9, 0.2, 100 ) ;
// regular prism of radius = 9, height = 0.2;
// it has 100 sides, i.e., it approximates a cylindrical tray

Base.Translate( 0, 0, −0.2 ) ;

C.Def( Magenta, 2, 4, 40 ) ;
// approximate a cylinder by a prism of 40 sides

C.Translate( 0, −5.5, 0 ) ;

B.Def( Green, 4, 4, 4 ) ; // cube of side length 4
B.Translate( −7, −2, 0 ) ;

S.Def( Orange, Origin, 2 ) ; // sphere of radius = 2, centered at origin
S.Translate( 0, 0, 2 ) ;

T.Def( Blue, 20, 40, 2, 1 ) ;
// torus with 20 parallel circles and 40 meridian circles (radius = 1 ) ;
// the radius of the midcircle equals 2.

T.Translate( 6, 0, 1 ) ;

H.Def( Yellow, 6 ) ; // regular tetrahedron of side length = 6
H.Translate( 0, 5, 0 ) ;

}
void Scene: :Draw( )
{

Base.Shade( ) ;
C.Shade( ) ;
T.Shade( ) ;
S.Shade( ) ;
B.Shade( ) ;
H.Shade( ) ;

}



Section 3.2. Manipulation of the Camera 187

At the top of the file we declare a few global variables that describe instances of
Open Geometry primitives. An Open Geometry class RegTetrahedron does
not yet exists. Therefore, we derive it from the already existing class RegFrustum.
A tetrahedron can be interpreted as a regular frustum of three sides where the
top polygon is of radius 0. Furthermore, the side length side of the base polygon
and the height height have to satisfy the relation side : height = 1/

√
3 :

√
2/3.

Perhaps you feel that the class RegTetrahedron is useful enough to belong to
Open Geometry’s standard classes. Almost certainly it will in a future version.
For the time being you may implement it yourself. Section 7.4 tells you how to
proceed. However, if you are a beginner, you should not worry about this more
advanced topic.

In the Init( ) part we define the primitives and translate them to a good position.
Note that methods for geometric transformations (Translate(. . . )) are available
for all of the primitives we have used, even for RegTetrahedron. They inherit it
from their common ancestor class O3d.

Figure 3.2 shows a POV-Ray rendering of the scene. We used two different light
sources and assigned reflecting textures to some of the objects. ♦

3.2 Manipulation of the Camera
In this section we show how to work with the member functions of the “virtual
camera.” In a first example we demonstrate how the camera can be initialized
and later on changed easily in the function Projection::Def( ), which has to be
implemented by the user anyway. Figure 3.3 shows the output. The code is easy
to comprehend. When the program is started and the animation is run, a compass
is displayed from different views. When the program is restarted, a kardan joint
is loaded from a file and displayed in various ortho projections.

Listing of "manipulate camera1.cpp":

#include "opengeom.h"

Cad3Data Obj;
Box B;
Boolean UseOrthoProj = true;

void Scene: :Init( )
{

UseOrthoProj = !UseOrthoProj;
Obj.Delete( ) ;
Obj.Def( 10 ) ;
if ( UseOrthoProj )
{
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FIGURE 3.3. Different views of a scene (left: perspective, right: normal projection).
Output of "manipulate camera1.cpp"

Obj.ReadNewMember( "DATA/LLZ/kardan complete.llz",
0.08 ) ;

Obj.Translate( −5 ∗ Xdir ) ;
}
else
{

Obj.ReadNewMember( "DATA/LLZ/compass.llz", 0.08 ) ;
Obj.Rotate( Zaxis, 75 ) ;
Obj.Translate( 6, −2, 0.5 ) ;

}
B.Def( Yellow, P3d( −8, −4, −0.5), P3d( 8, 4, 0 ) ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

B.Shade( ) ;
Obj.Shade( ) ;

}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
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void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

if ( UseOrthoProj )
DefaultOrthoProj( 18, 18, 12 ) ;

else
DefaultCamera( 18, 18, 12 ) ;

ZoomIn( 1.3 ) ;
ParallelLight( 1, 2, 3 ) ;

}
else
{

int f = ( FrameNum( ) − 1 ) % 120;
if ( f < 60 )

RotateHorizontally( 2 ) ;
else if ( f < 70 )

RotateVertically( 2 ) ;
else if ( f < 80 )

ZoomIn( 1.02 ) ;
else if ( f < 90 )

ZoomOut( 1.02 ) ;
else if ( f < 100 )

RotateVertically( −2 ) ;
else

LightDirection.Rotate( Zaxis, 5 ) ;
}

}

If you are a bit advanced, you already know that animations should be made
only in the animation part. Thus, the manipulation of the camera should be
moved to Animate( ).1 There, however, you have to call the camera-functions —
as anywhere else in your code — with the help of the global variable TheCamera.2

1If you leave the code in Projection::Def( ), the following might happen: You move
to the 10-th frame and then resize the window or make some other irrelevant change
that will not increase the frame number. Then the change of the camera that belongs
to frame 10 will be called more than once, and this may lead to slightly different results
after the animation.

2Actually, TheCamera is a macro that replaces the word by (*Global.camera); the
global variable Global.camera is obviously a pointer variable, but don’t worry about it.
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Listing from "manipulate camera2.cpp":

void Scene: :Animate( )
{

int f = ( FrameNum( ) − 1 ) % 120;
if ( f < 60 )

TheCamera.RotateHorizontally( 2 ) ;
else if ( f < 70 )

TheCamera.RotateVertically( 2 ) ;
else if ( f < 80 )

TheCamera.ZoomIn( 1.02 ) ;
else if ( f < 90 )

TheCamera.ZoomOut( 1.02 ) ;
else if ( f < 100 )

TheCamera.RotateVertically( −2 ) ;
else

LightDirection.Rotate( Zaxis, 5 ) ;
}

Object transformations, matrix operations

This is a good opportunity to talk about the difference between rotations of
the camera and rotation of the object. When there is one single object in the
scene and you want to create a certain view of it, it does not matter whether you
rotate the object or the camera. The following two programs would produce very
similar output. In the first program, the object (a dodecahedron) is rotated by
means of a matrix so that it appears in a top view. Note that Open Geometry
really changes the coordinates of the object! If you want to undo the rotation,
you have to rotate the object by means of the inverse matrix!

Listing of "manipulate camera3.cpp":

#include "opengeom.h"
#include "dodecahedron.h"

RegDodecahedron D;
void Scene: :Init( )
{

D.Def( Green, 4 ) ;
RotMatrix r;
r.Def( TheCamera.GetPosition( ) ) ;
D.MatrixMult( r ) ;

}
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void Scene: :Draw( )
{

D.Shade( ) ;
}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultOrthoProj( 28, 18, 12 ) ;
}

}

The second program is much easier to read: It creates a top view of the object
without rotating it. Clearly, for this task the second solution is the better one:

Listing of "manipulate camera4.cpp":

#include "opengeom.h"
#include "dodecahedron.h"

RegDodecahedron D;
void Scene: :Init( )
{

D.Def( Green, 4 ) ;
}
void Scene: :Draw( )
{

D.Shade( ) ;
}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultOrthoProj( 0, 0, 35 ) ; // Top view
}

}
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However, it happens quite often that you have to apply more complex rotations
to a single object. This is necessary, for example, in order to let the predefined
teddy touch the floor in three distinct points (Figure 3.4). The solution was
found by playing around with several angles.

FIGURE 3.4. The teddy has to be rotated and translated to get it in the correct posi-
tion with respect to the floor (output of "manipulate camera5.cpp"). Left: front view,
right: perspective. Note that the shadows would immediately show a wrong position.

Listing of "manipulate camera5.cpp":

#include "opengeom.h"

Cad3Data Teddy;
Box B;

void Scene: :Init( )
{

Teddy.Delete( ) ;
Teddy.Def( 10 ) ;
Teddy.ReadNewMember( "DATA/LLZ/teddy.llz", 0.08 ) ;
Teddy.Rotate( Zaxis, 60 ) ;
Teddy.Rotate( Xaxis, 97 ) ;
Teddy.Rotate( Zaxis, 50 ) ;
Teddy.Translate( −1, 0, 1.61 ) ;
B.Def( Gray, P3d( −6, −4, −0.5), P3d( 4, 4, 0 ) ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

B.Shade( ) ;
Teddy.Shade( ) ;
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}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( 18, 18, 12 ) ;
ZoomIn( 1.3 ) ;
ParallelLight( 1, 2, 3 ) ;

}
}

Remember that the coordinates are manipulated with every rotation. So when
you have an object with 10 000 vertices and you apply three rotations, it is
definitely faster to create one single rotation matrix:

. . .
Teddy.ReadNewMember( "DATA/LLZ/teddy.llz", 0.08 ) ;
RotMatrix z1, x, z2;
z1.Def( Arc( 60 ), Zdir ) ;
x.Def( Arc( 97 ), Xdir ) ;
z2.Def( Arc( 50 ), Zdir ) ;
Teddy.MatrixMult( z1 ∗ x ∗ z2 ) ;
. . .

Note that the definition of a matrix requires the angle in arc length, which is
a bit different from our usual conventions, but these definitions are used quite
often internally, and since the computer calculates in arc lengths, this speeds up
the code a bit.

Speeding up time-critical code with OpenGL display lists

Speaking of speed and speaking of rotation matrices we can assert that both
are strength of OpenGL. So, for some applications, you can use these OpenGL
features in order to get a real-time animation done.
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Example 3.3. Rocking horse
As an example, we want a rocking horse (Figure 3.5) to “rock realistically.” The
object is stored in a file, and it has a few thousand vertices. It has to be rotated
about a general axis and, additionally, to be translated for each new frame. If
you do this with the Open Geometry routines, this costs a great deal of CPU
time. Additionally, the changes have to be undone after the drawing. In such a
case, a classical OpenGL solution is to be preferred: We use the matrix calculus
with its functions glMatrixMode( ), glPushMatrix( ), and glPopMatrix( ). The
general rotation is done with a combination of glTranslated( ) and glRotated( ),
and the ordinary translation again with glTranslated( ). The changes are applied
only to the OpenGL projection and not to the object coordinates. Thus, they
are undone when we reactivate the previous matrix. Additionally, the speed is
increased when we use display lists that are embedded in the glNewList( )–
glEndList( ) block. With glCallList( ) they are redisplayed with respect to the
actual matrix. Here is the complete listing of the corresponding program:

FIGURE 3.5. Rocking horse, animated in real time via OpenGL. Output of
"rocking horse.cpp"

Listing of "rocking horse.cpp":

#include "opengeom.h"

Cad3Data Horse;
PulsingReal Angle;
Boolean FirstTime;

void Scene: :Init( )
{

FirstTime = true;
Horse.ReadNewMember( "data/llz/rocking horse.llz" ) ;
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Horse.SetAllColors( Brown ) ;
Angle.Def( 0, 2, 25, −25, HARMONIC ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

Real t = Angle( ) ;
glMatrixMode( GL MODELVIEW ) ;
glPushMatrix( ) ;
glTranslated( 0, 0, −1 ) ;
glRotated( t, 0, 1, 0 ) ;
glTranslated( 1.0 ∗ Arc( t ), 0, 0.0006 ∗ t ∗ t ) ;
if ( FirstTime )
{

glNewList( 1, GL COMPILE AND EXECUTE ) ;
Horse.Shade( ALL FACES ) ;
glEndList( ) ;
FirstTime = false;

}
else

glCallList( 1 ) ;
glPopMatrix( ) ;

}
void Scene: :CleanUp( )
{
}
void Scene: :Animate( )
{

Angle.Next( ) ;
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultOrthoProj( 7, 9, 5 ) ;
SetDepthRange( −4, 4 ) ;
ParallelLight( 3, 5, 3 ) ;

}
}

The global variable Angle of type PulsingReal is a perfect tool for the creation of
a harmonic movement. Note the other global variable FirstTime, which enables
us to build and redisplay the list. ♦
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Optimize OpenGL’s hidden surface algorithm

In Projection::Def( ) of "rocking horse.cpp" we used the camera’s member
function SetDepthRange(. . . ), which has influence on the image quality. Its pa-
rameters should — in the optimal case — be the minimal and maximal distance
from the projection plane. (This plane is perpendicular to the principal ray and
contains the target point.) Everything closer to the eye point or further away is
clipped by the OpenGL “graphics engine”.

OpenGL uses the method of depth-buffering (or z-buffering) for the fast removal
of hidden surfaces. In pure OpenGL code you would enable and disable the buffer
with the following lines:

glEnable( GL DEPTH TEST ) ;
glDepthFunc( GL LEQUAL ) ;
glDepthRange( 0, 1 ) ;
. . .
glDisable( GL DEPTH TEST ) ;

In Open Geometry, this is done by the scene’s member function Zbuffer( ) with
a Boolean parameter on off. You do not need to know the algorithm in detail,
but you should know that the closer its ranges are adapted to the depth range
of the actual scene the better it works. And this is what SetDepthRange(. . . )
does for you. When your scene has a diameter of 0.5 units and you set the range
from −1000 to +1000, the output will be poor. Typical Open Geometry scenes
have a diameter of 5 to 20 units, – like the objects on the sketch on your drawing
paper. Therefore, the default depth range is from −40 to +40, which turns out
to be a good average depth range.

All Open Geometry routines are optimized for the default depth range. For
example, lines on a surface are by default drawn with a tiny offset in the di-
rection to the eye point. This offset can generally be changed, when you add
an additional Real offset number at the end of Open Geometry functions like
StaightLine3d(. . . ), StrL3d::Draw(. . . ), StrL3d::LineDotted(. . . ), L3d::Draw(. . . ),
ParamSurface::WireFrame(. . . ), Polyhedron::Contour(. . . ), etc. The default value
for offset is the value STD OFFSET = 0.001. For extreme cases, you can
choose a value offset = 10 * STD OFFSET or so for large scenes, or offset = 0.1
* STD OFFSET for tiny scenes. You can let Open Geometry do the work for
you when you use the scene’s member function ChangeDefaultOffset( ). For ex-
ample, a parameter value 2 doubles the value of STD OFFSET. In the rare case
that you deal with surface parts that have almost zero distance, the algorithm
will cause problems in any case.

For the production of Figure 3.6 we used Open Geometry’s default depth
range and offset. The two surfaces (Plücker conoids; compare Example 3.17)
are apparently identical. However, for the picture on the left-hand side we zoomed
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in on a very small surface (diameter of 1 to 2 drawing units). You can see the
bad visibility performance in the regions around the surface axis. The object on
the right-hand side has a diameter of about 20 drawing units. There, the hidden
line algorithm works well.

FIGURE 3.6. Too small surfaces without additional settings of default offset and
depth range may cause visibility problems. The surface on the left-hand side has a
diameter of about 1 to 2 drawing units; the surface on the right-hand side has good
Open Geometry dimensions

How to find the optimal view and lighting quickly

As a final point, we want to explain how you can quickly optimize the view and
the light direction for your application: You first make a guess (say, take the
default camera from "defaults3d.h"). Then you start the program and — via
keyboard shortcuts or menu — change the camera and the light source. When
you are satisfied with the output, save the settings via menu or the shortcut
<Ctrl + l>. This creates a file "tmp.dat" that looks like this:

// The following changes have been made interactively
// Insert this code into ’Projection: :Def( )’

if ( VeryFirstTime( ) )
{

DefaultCamera( 42.76, 13.35, 21.40 ) ;
ChangeTarget( 7.93, −1.20, 3.90 ) ;
ChangeFocus( 70.0 ) ;
SwitchToNormalProjection( ) ;
SetDepthRange( −10.4, 10.4 ) ;
ParallelLight( 0.27, −0.53, 0.80 ) ;

}

Just insert the contents of this file into your application file in your implementa-
tion of Projection::Def( ). The file "tmp.dat" is written to Open Geometry’s
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standard output directory as specified in "og.ini". If you want to change this
value, you can edit this file and insert a path of your choice.3

Impossibles

This chapter’s concern is how to display 3D objects on a 2D medium like the
screen of your computer or a sheet of paper coming out of your printer, a very
common task indeed. However, it can be a bit tricky. For the transition from
space to plane, we always pay with a loss of information: Theoretically, it is
impossible to reconstruct a 3D object from a single image in 2D.

When we watch real-life objects, this problem usually does not occur. We have
two images as input data (we watch with two eyes), and we get additional infor-
mation by walking around the object, turning our head or rolling our eye-balls.
Furthermore, we consider phenomena of illumination and reflection, and last but
not least, we have a certain notion of the object we watch.

Reversed, all of this can be used to create illusions on your computer screen.
It is you who determines what the user will see. You can play with the user’s
imagination and make her/him believe to be seeing something that is not really
there. This is, however, not just a joke. Deceiving images may be used to create
sensible impressions. We will present a few (not too serious) examples of optical
illusions in the following.

Example 3.4. Tribar
Start the program "tribar.cpp". You will see three lengthy boxes connected
in a way to form three right angles. Of course, this is not possible, and you
can immediately discover the trick by (literally) taking a different point of view
(Figure 3.7).

FIGURE 3.7. The impossible tribar.

3This may turn out to be necessary in case of a network installation of Open Geo-
metry.
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FIGURE 3.8. The arrangement of the boxes and the position of eye and target point.

The corresponding code is very easy. We arrange three boxes parallel to the
coordinate axes in the way that is displayed in Figure 3.8.4 The boxes are of a
certain dimension B × B × H. Thus, the points E and T that — seemingly —
coincide in Figure 3.7 have coordinates (h, b, 0)t and (0, h−b, 2b−h)t, respectively.
Now we have only to find the right projection.

Listing from "tribar.cpp":

void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( H, B, 0.5 ∗ H ) ;
ChangeTarget( 0, H − B, −H + 2 ∗ B + 0.5 ∗ H ) ;
ChangeFocus( 30 ) ;
SwitchToNormalProjection( ) ;
ParallelLight( 0.72, 0.35, 0.60 ) ;

}
}

4You can probably imagine the scene after a short look at the right-hand side of
Figure 3.7. This is, however, possible only because you automatically assume boxes
with edges parallel to the coordinate axes. Otherwise, the reconstruction problem has
no unique solution.
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We choose E and T as eye point and target point, change the focus, and switch to
normal projection.5 This yields projection rays parallel to ET and ensures that
these points have coinciding images. It is important to use normal projection.
Otherwise, the different distortions of the boxes would immediately give the clue
to the solution. ♦
Example 3.5. Reconstruction
Another example of a misleading 2D image of a 3D object can be found in
"reconstruction.cpp". In the first frame you will see an object that you would
probably interpret as the image of a wire frame model of a cube. The corre-
sponding 3D object has, however, eight random vertices on certain projection
rays. Rotate the camera a little and you will see its irregular shape (Figure 3.9).

FIGURE 3.9. The image of a bizarre object seems to be the image of a cube.

Again, the code is not difficult. We define a global constant Eye of type P3d. Eye
is a point on the positive x-axis. Our image plane will be [ y, z ]. After initializing
the vertices P[ i ] of the “cube’s” image we create the “cube’s” vertices in Init( ):

Listing from "reconstruction.cpp":

const Real alpha = 1;
for ( i = 0; i < 8; i++ )
{

V3d dir = Eye − P [i];
dir.Normalize( ) ;
Q [i] = P [i] + rnd( ) ∗ dir;
Rad [i] = Eye.Distance( Q [i] ) ∗ tan( Arc( alpha ) ) ;

5In fact, before doing this we translated E and T by h/2 in the z-direction in order
to keep the image at the center of the screen.
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}

We choose random numbers that yield points Q[ i ] between the image plane
and the eye point. At the same time, we compute the radius Rad[ i ]. Later in the
Draw( ) part we will mark the point Q[ i ] with radius Rad[ i ] and thus ensure that
these points seemingly have the same size in the first frame (their corresponding
fovy angle is 2 ·alpha◦). This is important for the illusion of a normal projection.
In reality we use, of course, the central projection with center Eye. ♦
Example 3.6. Impossible cube
A third example of an optical illusion is implemented in "impossible cube.cpp"
(Figure 3.10). The corresponding source code is too low-level to be of interest
at this place. We do nothing but include a Cad3D-object: the impossible cube.
The difficult task is the creation of this cube.

FIGURE 3.10. The impossible cube and its construction.

Again, we have to use a normal projection. After deciding on the direction �p of
the projection rays, we have to define the “projection cylinder” of the vertical
edge at the back left. By subtracting this cylinder from the horizontal edge at the
front top, we cut out the gap to look through. This needs only some elementary
vector calculus. Any computation can be performed in 2D only. ♦
Example 3.7. Mirrors
Having a quick look at Figure 3.11, you probably have the impression of seeing
twelve balls in cyclic arrangement. Perhaps a second glance will convince you that
there are only two balls. The remaining ten arise from multiple reflection on two
mirror planes. Starting the program "deception.cpp" will confirm this. You can
rotate the eye point in the horizontal and vertical directions; the impression will
remain the same. Still, everything is just illusion.

Reflections in real-time animations are usually a difficult task. As long as only
planar reflections occur, the introduction of a “mirror window” is a good idea.
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FIGURE 3.11. How many balls do you see?

Instead of computing the reflection image in the mirror, one can watch a virtual
scene through a window (Figure 3.12).

FIGURE 3.12. Looking through a mirror window (left). The arrangement of mirrors
and spheres (right).

In "deception.cpp" we used this trick in a slightly modified way. Actually,
we display no fewer than twelve balls and six mirror frames. In order to give
the illusion of mirrored images, we draw additional polygons that prevent the
spectator from seeing too much. In contrast to Figure 3.12, these polygons are
shaded in pure white.

In order to reach a satisfying result, we must take into account many little things.
We are to begin with the drawing order of the mirrors. They are defined in Init( ):

Listing from "deception.cpp":

// define the six mirrors
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const Real l = 12, w = 7;
int i;
for ( i = 0; i < 6; i++ )
{

Mirror [i].Def( Blue, l, w, FILLED ) ;
Mirror [i].Rotate( Xaxis, 90 ) ;

}
// it is important to define
// the mirrors in this order.
Mirror [ 0].Rotate( Zaxis, 180 ) ;
Mirror [ 1].Rotate( Zaxis, 120 ) ;
Mirror [ 2].Rotate( Zaxis, −120 ) ;
Mirror [ 3].Rotate( Zaxis, − 60 ) ;
Mirror [ 4].Rotate( Zaxis, 60 ) ;

Later, in Draw( ), we will shade them using transparency. Therefore, it is impor-
tant that the frontmost mirrors be the last to be shaded. We already took care
of this when defining them. In Draw( ) we can shade them in ascending order if
we look at the scene from an eye point with only positive x and y coordinates.
The twelve spheres are initialized in Init( ) as well:

Listing from "deception.cpp":

const Real r = 0.5, dist = 0.7 ∗ l;
for ( i = 0; i < 12; i++ )
{

S [i].Def( Yellow, Origin, r, 50 ) ;
S [i].Translate( dist, 0, r ) ;
S [i].Rotate( Zaxis, 15 + i ∗ 30 ) ;

}

In order to give you some orientation for the following, we display the mirrors and
spheres together with their numbers in a top view on the right side of Figure 3.12.
Initially (in the first frame), we will look at the scene in the direction indicated
in the picture; i.e., both mirror surfaces M4 and M5 are visible. In this case, we
have to draw two large polygons (deceptors) with two “windows” to cover the
parts of the scene that must not be visible. In Figure 3.13 we display the outline
of the deceptor polygons without shading them.6

The deceptors are objects of type ComplexPoly3d (because they are not convex).
We define them in Init( ):

6Actually, we had to decrease their size considerably in comparison with the original
program. Otherwise, they would not be visible.
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FIGURE 3.13. The deceptor polygons.

Listing from "deception.cpp":

// define the two deceptive polygons
const Real m = 3000, v = 1500; // cant be too large
Poly3d poly [ 2];
poly [ 0].Def( NoColor, 4 ) ;
poly [ 0] [ 1].Def( m, 0, v ) ;
poly [ 0] [ 2].Def( − m, 0, v ) ;
poly [ 0] [ 3].Def( − m, 0, w − v ) ;
poly [ 0] [ 4].Def( m, 0, w − v ) ;
poly [ 1].Def( NoColor, 4 ) ;
poly [ 1] [ 1].Def( l, 0, 0 ) ;
poly [ 1] [ 2].Def( l, 0, w ) ;
poly [ 1] [ 3].Def( 0, 0, w ) ;
poly [ 1] [ 4].Def( 0, 0, 0 ) ;
Deceptor [ 0].Def( PureWhite, 2, poly ) ;
Deceptor [ 1].Def( PureWhite, 2, poly ) ;
Deceptor [ 1].Rotate( Zaxis, 60 ) ;
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Now the most important part has to be done. With respect to the current position
of the eye point, we have to draw different parts of the scene. In the initial con-
figuration we must shade all mirrors transparently, shade all spheres, and draw
both deceptors. If the eye point is rotated between mirrors four and one (com-
pare Figure 3.12), we must shade the mirrors three and five with transparency,
while mirror one is displayed in a different color and without transparency (we
just see its back). Likewise, we must shade only the spheres S8, . . . , S11, S0, S1
and deceptor zero. Using two variables Draw4 and Draw5 of type Boolean, we
can distinguish all four cases of relevance. The complete listing of Draw( ) reads
as follows:

Listing from "deception.cpp":

void Scene: :Draw( )
{

// get the position of the eye with
// respect to Mirror [ 4] and Mirror [ 5]
Eye = TheCamera.GetPosition( ) ;
if ( Eye.DistFromPlane( Pi4 ) >= 0 )

Draw4 = true;
else

Draw4 = false;
if ( Eye.DistFromPlane( Pi5 ) <= 0 )

Draw5 = true;
else

Draw5 = false;

int i;

if ( Draw4 && Draw5 ) // Mirror [ 4] and Mirror [ 5] visible
{

for ( i = 0; i < 12; i++ )
S [i].Shade( ) ;

for ( i = 0; i < 6; i++ )
Mirror [i].ShadeTransparent( LightBlue, 0.2,

DarkBlue, MEDIUM ) ;
Deceptor [ 0].Shade( ) ;
Deceptor [ 1].Shade( ) ;

}
else if ( Draw4 ) // Mirror [ 4] visible, Mirror [ 5] invisible
{

for ( i = 0; i < 6; i++ )
S [i].Shade( ) ;

Mirror [ 1].ShadeTransparent( LightBlue, 0.2,
DarkBlue, MEDIUM ) ;

Mirror [ 4].ShadeTransparent( LightBlue, 0.2,
DarkBlue, MEDIUM ) ;
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Mirror [ 5].ShadeWithContour( DarkBlue, MEDIUM ) ;
Deceptor [ 1].Shade( ) ;

}
else if ( Draw5 ) // Mirror [ 5] visible, Mirror [ 4] invisible
{

S [ 0].Shade( ) ;
S [ 1].Shade( ) ;
for ( i = 8; i < 12; i++ )

S [i].Shade( ) ;
Mirror [ 3].ShadeTransparent( LightBlue, 0.2,

DarkBlue, MEDIUM ) ;
Mirror [ 5].ShadeTransparent( LightBlue, 0.2,

DarkBlue, MEDIUM ) ;
Mirror [ 4].ShadeWithContour( DarkBlue, MEDIUM ) ;
Deceptor [ 0].Shade( ) ;

}
else // Mirror [ 4] and Mirror [ 5] invisible
{

S [ 0].Shade( ) ;
S [ 1].Shade( ) ;
Mirror [ 4].ShadeWithContour( DarkBlue, MEDIUM ) ;
Mirror [ 5].ShadeWithContour( DarkBlue, MEDIUM ) ;

}
}

♦

3.3 A Host of Mathematical Surfaces
Nowadays, scientific publications or courses at school or university require excel-
lent illustrations and pictures. One of the most important tasks in this context
is the visualization of mathematical surfaces. Open Geometry has some very
convenient methods to give you support with this:

• You can easily draw parameterized curves and shade parameterized surfaces.

• There exist features that allow you to draw the wire frame, border lines, or
contours of surfaces.

• You have access to many objects of geometric relevance like the points,
normal vectors, or the tangent planes of your surface. Furthermore, you can
easily write your own methods to create additional objects satisfying the
needs of your specific surface. In this section you will find many examples
for this.
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• You can intersect two different surfaces or calculate the self-intersection of
a parameterized surface.

• You have the possibility of creating smoothly shaded surfaces with soft
highlights. A new feature is the surface with thickness that yields images of
high perspicuity.

• You can rotate the surface in real time and watch it from any viewpoint.
Thus, you will get a clear notion even of complicated surfaces.

• You can produce high-quality printouts of your surface.

• You can export the surface to the freeware ray-tracing program POV-Ray.
There, you can equip it with different textures and assign different material
properties to it.

Example 3.8. Rider’s surface
A first example demonstrates the power of Open Geometry’s class Param-
Surface. We will visualize a special ruled surface Φ that was called Reiterfläche
(rider’s surface) in [8]: Let d1 and d2 be two straight lines with orthogonal di-
rection vectors that do not intersect. In an appropriate coordinate system their
equations may be written as

d1 . . . y = 0, z = B and d2 . . . x = 0, z = −B.

Now, the generators of Φ are the straight lines that intersect d1 and d2 in points
D1 and D2 of a fixed distance D > 2B. Using the abbreviation A :=

√
D2 − 4B2,

a parametric representation of Φ reads

Φ: X(u, v) . . . �x(u, v) = (1 − v)�d1(u) + v�d2(u),

where �d1(u) = (A cos u, 0, B)t and �d2(u) = (0, A sinu, −B)t. The parameter
range is, of course, [−π, π] × (−∞,∞). Now the implementation of Φ in Open
Geometry is easy ("normal surfaces.cpp").

Listing from "normal surfaces.cpp":

class RuledSurf: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

return ( 1 − v ) ∗ D1( u ) + v ∗ D2( u ) ;
}

};
RuledSurf RuledSurface;



208 Chapter 3. 3D Graphics I

FIGURE 3.14. Φ, the base circle c and the line of striction s (left); Φ and the normal
surfaces along c and s (right).

So far, everything is standard as presented in [14]. But perhaps you want to
do something special with your surface (see Figure 3.14). For example, you can
display the normal surface Nc of Φ along the base circle c . . . v = 1/2.7 Without
any computation we implement it as follows:

Listing from "normal surfaces.cpp":

class NormSurfBaseCircle: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

return RuledSurface.SurfacePoint( u, 0.5 ) +
v ∗ RuledSurface.NormalVector( u, 0.5 ) ;

}
};
NormSurfBaseCircle NormalSurface BC;

7That is, the ruled surface generated by the normals of Φ along c.
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In the geometric theory of ruled surfaces, the line of striction s : S(u) . . . �s(u)
plays an important role. We determine the feet S0(u, ε) and S1(u, ε) of the com-
mon normal of two neighboring generators g(u) and g(u + ε). Passage to the
limit ε → 0 yields the limiting point of striction

S(u) = lim
ε→0

S0(u, ε) = lim
ε→0

S1(u, ε)

on g(u). The direct computation of the line of striction is usually a difficult task.
With Open Geometry it can be visualized almost immediately:

Listing from "normal surfaces.cpp":

class LineOfStric: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

const Real eps = 1e−5;
const Real u0 = u − eps, u1 = u + eps;

StrL3d g0, g1;
g0.Def( D1( u0 ), D2( u0 ) ) ;
g1.Def( D1( u1 ), D2( u1 ) ) ;

P3d G0, G1;
V3d dummy;
g0.CommonNormal( g1, dummy, G0, G1 ) ;

return 0.5 ∗ ( G0 + G1 ) ;
}

};
LineOfStric LineOfStriction;

We determine two “symmetric” generators g(u ± ε) of Φ, use the Open Geo-
metry method CommonNormal(. . . ) of StrL3d to get the feet S0 and S1 of the
common normal, and return their midpoint (Figure 3.14).8

Finally, we want to display the normal surface Ns of Φ along the line of striction
s. This is a little harder, since we do not have the parametric representation
S(u) = X(u, v(u)) of s. That is, we cannot use the NormalVector(. . . ) method
of ParamSurface. Instead, we write a function to compute the normal vector
directly. The rest is the same as above.

8There exists an alternative to this procedure that is even simpler. We could define Φ
as an instance of the class RuledSurface. There, all these methods are directly available
(compare pages 211 ff).
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Listing from "normal surface.cpp":

V3d NormalVector LoS( Real u )
{

V3d normal vector =
V3d( D1( u ), D2( u ) ) ∧ LineOfStriction.TangentVector( u ) ;
normal vector.Normalize( ) ;
return normal vector;

}

class NormSurfLoS: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

return LineOfStriction.CurvePoint( u ) +
v ∗ NormalVector LoS( u ) ;

}
};
NormSurfLoS NormalSurface LoS;

Just a few more remarks:

• The v-lines of Φ and the normal surfaces are straight lines. Thus, we do not
need too many facets in the v-direction to get a satisfying picture. We used
a total 100×20 facets; if you do not need the contour outline, even 100×10
is enough. This will considerably speed up any animation.

• We encounter numerical problems if we use the parameter range u ∈ [−π, π]
for the normal surface along the line of striction s. The “normal” returned
by NormalVector LoS(u) is not defined at the cusps of s. For this reason, we
defined the surface as follows:

Listing from "normal surfaces.cpp":

const Real eps = 0.05;
NormalSurface LoS.Def( LightRed, 100, 10,

u1 + eps, u2 − eps, 0, 4 ) ;

• The normal surfaces have four straight lines in common. We compute and
draw them as follows:
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Listing from "normal surfaces.cpp":

StrL3d s( RuledSurface.SurfacePoint( PI / 4, 0.5 ),
RuledSurface.NormalVector( PI / 4, 0.5 ) ) ;

int i;
for ( i = 0; i < 4; i++ )
{

s.Rotate( Zaxis, 90 ∗ i ) ;
s.Draw( Black, −4, 0, THICK ) ;

}

The complete output can be seen in Figure 3.14. ♦
We already mentioned the new Open Geometry class RuledSurface. The fol-
lowing pages will show you how to use it. In fact, Example 3.8 could have used
that class as well. But sometimes it is better to learn things the hard way.

Ruled Surfaces

Ruled surfaces play an important role in theoretical as well as in applied geome-
try. They consist of a one-parameter family of straight lines (the generating lines,
generators, or rulings). We can always parameterize a ruled surface Φ according
to

Φ . . . �X(u, v) = �x(u) + v�y(u).

The curve d . . . �x = �x(u, v) is called the directrix of Φ; the direction vector �y(u)
gives the direction of the generator g(u). The directrix is not unique; it can be
replaced by an arbitrary curve on Φ (Well, you had better not take a generator!).
For theoretical investigations one usually assumes that |�y | ≡ 1. This is, however,
not necessary for our purposes.

Open Geometry’s class RuledSurface is derived from ParamSurface. It is an
abstract class with two purely virtual member functions. In order to use Ruled-
Surface you have to derive your own additional class. The purely virtual member
functions of RuledSurface are

virtual P3d DirectrixPoint( Real u ) ;
virtual V3d DirectionVector( Real u ) ;

Since their meaning is clear, we can immediately start with an easy example.
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Example 3.9. Right helicoid
If we choose directrix and direction vector according to

�x(u) =


 0

0
pu


 and �y(u) =


cos u

sinu
0


 ,

we get a right helicoid. In "right helicoid.cpp" we derive the class MyRuled-
Surface:

Listing from "right helicoid.cpp":

class MyRuledSurface: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real u )
{

Real p = 1;
return P3d( 0, 0, p ∗ u ) ;

}
virtual V3d DirectionVector( Real u )
{

V3d v( cos( u ), sin( u ), 0 ) ;
return v;

}
};
MyRuledSurface Helicoid;

The definition in Init( ) is identical to the definition of a general parameterized
surface:

Listing from "right helicoid.cpp":

void Scene: :Init( )
{

int n = 3;
int n1 = n ∗ 35; // Segments in the u-direction.
int n2 = 15; // Segments in the v-direction;
Real u1 = −n ∗ PI, u2 = n ∗ PI; // Range of parameter u.
Real v1 = −5, v2 = −v1; // Range of parameter v.
Helicoid.Def( LightCyan, n1, n2, u1, u2, v1, v2 ) ;
Helicoid.PrepareContour( ) ;

}
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The same is true of the shading of the helicoid. It is done in Draw( ) and reads
thus:

Listing from "right helicoid.cpp":

void Scene: :Draw( )
{

Helicoid.Shade( SMOOTH, REFLECTING ) ;
Helicoid.Contour( Black, MEDIUM ) ;
Helicoid.WireFrame( Black, 9, 24, THIN ) ;
Helicoid.DrawBorderLines( Black, MEDIUM ) ;
Helicoid.DrawDirectrix( Black, 2, MEDIUM ) ;

}

The only new method is DrawDirectrix(. . . ). The second parameter gives the
number of points on the curve. In our case, the directrix is a straight line (the
z-axis), and two points are sufficient. Note that we need not worry about the v-
parameter range or the pitch of the screw. DrawDirectrix(. . . ) will automatically
draw the right interval of the z-axis. ♦

Example 3.10. Ruled surface of order three
Sometimes a ruled surface is not defined by directrix and direction vector but in
a geometric way. In [26] we find, e.g., the following exercise:

FIGURE 3.15. The generation of the ruled surface Φ.

Draw the ruled surface Φ whose generators:

• intersect a circle c in a plane parallel to [x, y],
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• intersect a straight line L parallel to z through a point of c,

• are parallel to the plane π . . . x = z.

The resulting ruled surface Φ is algebraic of order three. Thus, we called the cor-
responding Open Geometry program "order three surface.cpp". We will
write the code in a way that is independent of the particular positions of L and
π. If L does not intersect c, the resulting surface is of order four. In this case,
you should probably rename the program to avoid misunderstandings.

At the top of "order three surface.cpp" we define the radius of the circle c,
the straight line L, and the normal vector V of π. Furthermore, we will use a
rectangle Frame and a real U0 to illustrate the generation of the surface with an
animation.

Listing from "order three surface.cpp":

const Real Radius = 6;
const StrL3d L( P3d( Radius, 0, 0 ), V3d( 0, 0, 1 ) ) ;
const V3d V( 1, 0, −1 ) ;
Rect3d Frame;
Real U0;

The interesting thing in the implementation of Φ as a ruled surface is the virtual
function DirectionVector(. . . ). We do not perform any calculations but construct
the direction vector directly. We define the plane through a directrix point and
perpendicular to V and intersect it with L:

Listing from "order three surface.cpp":

virtual V3d DirectionVector( Real u )
{

P3d D = DirectrixPoint( u ) ;
Plane p( D, V ) ;
P3d X = p ∗ L;
V3d v;
v = X − D;
return v;

}

In order to illustrate the generation of Φ = Phi, we want to draw the rectangle
Frame parallel to π through a generating line g(u0). In Init( ) we prepare this by
positioning the rectangle parallel to π:
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Listing from "order three surface.cpp":

Real distx = 2;
Real disty = 5;
Real angleVZ = Deg( V.Angle( V3d( 0, 0, 1 ) ) ) ;
Real length = Phi.SurfacePoint( PI, 0 ).

Distance( Phi.SurfacePoint( PI, 1 ) ) ;
Frame.Def( Blue, length + 2 ∗ distx,

2 ∗ Radius + 2 ∗ disty, FILLED ) ;
StrL3d axis( Origin, V3d( 0, 0, 1 ) ∧ V ) ;
Frame.Rotate( axis, angleVZ ) ;

Later, in Draw( ), we will translate the rectangle to its proper position. But first,
we shade Φ and draw the generating line g(U0):

Listing from "order three surface.cpp":

P3d D = Phi.DirectrixPoint( U0 ) ;
P3d E = Phi.SurfacePoint( U0, 1 ) ;
StraightLine3d( Black, D, E, THICK, 1e−3 ) ;

Real c = cos( U0 ) ;
Real s = sin( U0 ) ;
Real u1 = ArcTan2( V.y ∗ V.y ∗ s + 2 ∗ V.x ∗ V.y ∗ c

− V.x ∗ V.x ∗ s, V.y ∗ V.y ∗ c − 2 ∗ V.x ∗ V.y ∗ s
− V.x ∗ V.x ∗ c ) ;

P3d F = Phi.DirectrixPoint( −u1 + PI ) ;
StraightLine3d( Black, F, E, THICK, 1e−3 ) ;

In fact, we do a little more. The supporting plane of Frame intersects Φ in
three straight lines: g(U0), a line at infinity, and a second generator g(U1). We
draw the second generator as well. The intersection point F of g(U1) and c is
determined analytically, as displayed above. It is the second intersection point
of the straight line through D parallel to V3d( −V.y, V.x, 0 ) and the circle c.
Now to the adjustment of the rectangle:

Listing from "order three surface.cpp":

Real t0 = 0.45, t1 = 0.5 − t0;
P3d X = t0 ∗ ( Frame [ 2] + Frame [ 3] ) +

t1 ∗ ( Frame [ 1] + Frame [ 4] ) ;
P3d Y = 0.5 ∗ ( D + F ) ;
V3d v = Y − X;
Frame.Translate( v ) ;
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We compute a point X inside the frame, the midpoint Y of D and F, and translate
the rectangle by the vector

−−→
XY . The actual position of X varies with the shape

of the surface Φ. If you change the straight line L or the vector V, you may have
to use another real number t0. Finally, we vary U0 in Animate( ) to get some
animation as well. ♦

Example 3.11. Elliptical motion in 3D
Another example of a ruled surface defined by geometric constraints rather than
mathematical equations is displayed in "3d ell motion.cpp". Let d1 and d2 be
two nonintersecting straight lines in space, and let D1 ∈ d1 and D2 ∈ d2 be two
points on them. If we vary them on d1 and d2 without changing their distance,
we get a series of straight lines D1D2 that define a ruled surface Φ.9

Because of its simple mechanical definition, Φ is of importance in 3D kinematics
and robotics. It is closely related to the general elliptic motion in the plane
(compare "ellipse2.cpp").

In "3d ell motion.cpp" we start by setting some parameters that define the two
straight lines d1 and d2. In an appropriate coordinate system their equations are

d1 . . .

{
y = 0,

z = −H/2,
and d2 . . .

{
y = tan(ϕ) x,

z = H/2,

respectively (compare Figure 3.16). Then we introduce a parameter R that gives
the constant distance of D1 and D2 during the motion. Given the point D1 ∈
d1, there exist two corresponding points D2 and D2 on d2.10 We get them as
intersection points of d2 and the sphere with center D1 and radius R. They may,
however, be conjugate complex or coinciding. The latter happens for two points
Dl

1 and Dr
1 on d1. They are situated at distance d =

√
R2 − H2/ sin(ϕ) from the

foot M1(0, 0, −H/2)t ∈ d1 of the common normal of d1 and d2.

These obvious and clear considerations are a little tricky to implement: The class
RuledSurface does not allow two direction vectors. We write a function of our own
to handle this task (R = Radius, H/2 = H2, cos ϕ = CAngle, sinϕ = SAngle):

Listing from "3d ell motion.cpp":

P3d CalcPoint( Real t, Boolean sign )
{

P3d M( Dist ∗ cos( t ), 0, −H2 ) ;
Sphere s( NoColor, M, Radius + 1e−8 ) ;
StrL3d l( P3d( 0, 0, H2 ), V3d( CAngle, SAngle, 0 ) ) ;

9If the directions of d1 and d2 are orthogonal, we get the rider’s surface of Exam-
ple 3.8.

10Because of this, d1 and d2 are double lines of Φ.
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FIGURE 3.16. Relevant points and lines (left) and the ruled surface Φ (right).

P3d A( 0, 0, 0 ), B( 0, 0, 0 ) ;
int n = s.SectionWithStraightLine( l, A, B ) ;
if ( n )
{

if ( sign )
return ( l.GetParameter( A ) >

l.GetParameter( B ) ? A : B ) ;
else

return ( l.GetParameter( A ) >
l.GetParameter( B ) ? B : A ) ;

}
else
{

Write( "warning:suspicious surface points!" ) ;
return Origin;

}
}

The first input parameter t defines a point D1(d cos t, 0,−H/2)t on d1. Using the
cosine function for the parameterization of d1 allows us to avoid the points with
imaginary generators while we reach the remaining points twice. CalcPoint(. . . )
will return one of the two corresponding points on d2 according to the second
input parameter sign. The use of sign helps us to find the correct return value
later in the program.

Two points D2 and D2 corresponding to D1 ∈ d1 belong — as points on d2 —
to two parameter values v2 and v2. We choose the bigger parameter value if sign
is true and the smaller value if sign is false. One may imagine that sign == true
always picks out the “left” or “upper” solution point.

The implementation of the ruled surface is now not too difficult:
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Listing from "3d ell motion.cpp":

class MyRuledSurface: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real u )
{

return M1 + Dist ∗ cos( u ) ∗ Dir1;
}
virtual V3d DirectionVector( Real u )
{

P3d D = DirectrixPoint( u ) ;
P3d X = CalcPoint( u, u < 0 ) ;
return X − D;

}
};
MyRuledSurface RS;

If the directrix parameter u is negative, we decide on the “left” solution point.
If it is positive, we take the other one. Since we use the parameter intervals
u ∈ [−π, π], v ∈ [0, 1], this will yield the desired results. You can test it by
watching the animation of "3d ell motion.cpp". A generator of Φ glides around
the surface without changing its length. ♦

Example 3.12. A special torse
As our next example we choose a very special surface T, the tangent surface of
the space curve c with parameterized equation

x(t) = − 4
√

3(sin 3t + 3 sin t),

y(t) = 4
√

3(cos 3t + 3 cos t),
z(t) = 6 sin t.

The surface T is a torse, a developable ruled surface and at the same time the
hull surface of a one-parameter set of planes. The curve c is called the edge of
regression of T. We can state the following interesting properties of c and T
(compare [19], Figure 3.17):

• c is a sextic with two real cusps corresponding to the parameter values
t = ±π/2.

• c lies on an ellipsoid of revolution E with semiaxis lengths of a = 4 4
√

3 and
b = 4

√
3. E is centered around the origin and z is its axis of revolution.

• The top view of c is a nephroid c′, i.e., a special trochoid.
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• T is an algebraic surfacealgebraic!surface of order six and class four.

• The rulings of T (i.e., the tangents of c) intersect [x, y] in a second nephroid
n and have constant slope γ = arctan(3− 1

4 ) ≈ 37.2◦ with respect to [x, y].

• There exist two conic sections on T: a double hyperbola h in [x, z] and an
ellipse e in a plane ε with slope γ through y.

FIGURE 3.17. The torse T and related curves and surfaces.

Our aim is now the production of a high-quality picture of this surface that shows
all of its relevant properties ("torse.cpp"). We start by deriving a successor of
the class RuledSurface:

Listing from "torse.cpp":

class MyTorse: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real t )
{

Real x, y, z;
x = −pow( 3, 0.25 ) ∗ ( sin( 3 ∗ t ) + 3 ∗ sin( t ) ) ;
y = pow( 3, 0.25 ) ∗ ( cos( 3 ∗ t ) + 3 ∗ cos( t ) ) ;
z = 6 ∗ sin( t ) ;
return P3d( x, y, z ) ;

}
virtual V3d DirectionVector( Real t )
{

Real x, y, z;
x = − 3 ∗ pow( 3, 0.25 ) ∗ ( cos( 3 ∗ t ) + cos( t ) ) ;
y = − 3 ∗ pow( 3, 0.25 ) ∗ ( sin( 3 ∗ t ) + sin( t ) ) ;
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z = 6 ∗ cos( t ) ;
V3d v;
v.Def( x, y, z ) ;
StrL3d s;
P3d D, S;
D = DirectrixPoint( t ) ;
s.Def( D, v ) ;
S = XYplane ∗ s;
return V3d( S.x − D.x, S.y − D.y, S.z − D.z ) ;

}
};
MyTorse Torse;

Note that we do not use the tangent vector of c directly as direction vector
of the rulings. In DirectionVector(. . . ) we rather intersect the ruling with [x, y]
and return the vector connecting directrix point and intersection point. Hence,
the nephroid n will be the borderline of the surface if we use the v-parameter
interval [v0, 1]. Now we define the projection cylinder of c and the ellipsoid of
revolution E:

Listing from "torse.cpp":

class NephroidCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

P3d A = Torse.DirectrixPoint( u ) ;
P3d B( A.x, A.y, 0 ) ;
return ( 1 − v ) ∗ A + v ∗ B;

}
};
NephroidCylinder Cylinder;

class MyEllipsoid: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

const Real a = 4 ∗ pow( 3, 0.25 ) + 0.05, b = 4 ∗ sqrt( 3 ) ;
P3d P( a ∗ cos( u ), 0, b ∗ sin( u ) ) ;
P.Rotate( Zaxis, v ) ;
return P;

}
};
MyEllipsoid Ellipsoid;



Section 3.3. A Host of Mathematical Surfaces 221

The double hyperbola h is not entirely contained in the real surface part. In
Figure 3.17 only small parts are visible. Because of this, we use an L3d object
DoubleHyperbola.11 We determine its points by intersecting the rulings of T with
[x, z ]. Only if the intersection points are within the parameter range of T we
add them to DoubleHyperbola:

Listing from "torse.cpp":

int n = 28;
DoubleHyperbola.Def( Black, n ) ;
int i;
Real t, delta = PI / ( n − 1 ) ;
for ( i = 0, t = −0.5 ∗ PI; i < n; i++, t += delta )
{

StrL3d s = Torse.Generator( t ) ;
P3d S = XZplane ∗ s;
if ( fabs( fabs( s.GetParameter( S ) ) ) <=

Torse.DirectionVector( t ).Length( ) )
DoubleHyperbola [i] = S;

}

A similar method is suitable for the ellipse on T. Here it is sufficient to determine
five ellipse points:

Listing from "torse.cpp":

P3d P [ 5];
Plane p;
Real alpha = atan( pow( 3, −0.25 ) ) ;
p.Def( Origin, V3d( sin( alpha ), 0, cos( alpha) ) ) ;
for ( i = 0; i < 5; i++ )

P [i] = p ∗ Torse.Generator( i ) ;
TorseEllipse.Def( Black ,150, P ) ;

11At the time we wrote "torse.cpp" the method GetSelfIntersection(. . . ) of Param-
Surface was not yet available. Therefore, this example shows a work-around to the
problem of finding the self-intersection in a special case. Occasionally, this may be
quite useful.
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Finally, in order to draw the nephroid c′ we get the borderline of the projection
cylinder using the GetULine(. . . ) method of ParamSurface. Taking a sensible
amount of surface points and curve points, we can draw the image. You have to
decide whether you want a fast animation or a really beautiful picture (e.g., an
illustration for a book on Open Geometry). In the latter case, you can draw
contour outline (which is very time-consuming) and compute a relatively high
number of facets on each surface.

The surface displayed in this example is related to another interesting surface
Ψ, a surface with a one-parameter family of congruent parabolas on it. The
parabolas are the lines of steepest slope, and their supporting planes envelop
just the torse T. The surface Ψ possesses an edge of regression r that is situated
on a cylinder of revolution Γ, a double cubic c, and a double hyperbola h. We
display everything in Figure 3.17.

The corresponding Open Geometrycode is standard. We use parameterized
equations of the surfaces and curves. Perhaps it is noteworthy that we drew the
v-lines (parabolas and, at the same time, curves of steepest slope) of the surface
separately:

Listing from "surface of parabolas.cpp":

L3d vline1, vline2;

Surface.GetVLine( vline1, 0.5 ∗ PI, Black, 30 ) ;
Surface.GetVLine( vline2, 1.5 ∗ PI, Black, 30 ) ;

vline1.Draw( MEDIUM, 0.0005 ) ;
vline2.Draw( MEDIUM, 0.0005 ) ;

int i, n = 25;
Real u, delta = 2 ∗ PI / ( n − 1 ) ;
for ( i = 0, u = 0; i < n; i++, u += delta )
{

Surface.GetVLine( vline1, u, Black, 30 ) ;
Surface.GetVLine( vline2, u + PI, Black, 30 ) ;
vline1.Draw( THIN ) ;
vline2.Draw( THIN ) ;

}

We did this because we used a parametric representation where two v-lines
cover one parabola. If we used the standard WireFrame(. . . ) or VLines method of
ParamSurface, it would yield only half-parabolas in this case. Of course, we need
to know that corresponding v-lines belong to parameter values v0 and v0 + π,
respectively. ♦
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Intersections and self-intersections of surfaces

When it comes to surfaces, one thing must not be overlooked: Surfaces intersect
each other, and sometimes they intersect themselves. Few programs manage to
determine intersection lines correctly, and even fewer manage to determine the
self-intersections. This disadvantage is diminished by hidden-surface removal.
Nevertheless, a real “perfect image” needs the lines to be drawn as well. What
is more, sometimes one has to do further calculations with the intersection lines,
and at least at that point we definitely need an intersection algorithm!

Open Geometry has a rather robust built-in algorithm for the determination
of intersection curves. The result is of type ComplexL3d. Such a complex line
is an accumulation of an arbitrary number of (closed or not closed, straight or
curved) lines. With the Draw(. . . ) command it is displayed easily.

Example 3.13. Intersection of parameterized surfaces
Let us learn by doing: The following program "surf x surf.cpp" displays two
intersecting parameterized surfaces (tori). The output is to be seen in Figure 3.18.
Transparency helps to get a better imagination.

FIGURE 3.18. Two intersecting surfaces (output of "surf x surf.cpp").

Note that you should call the member function PrepareContour( ) of the surfaces.
This internally creates an “intelligent” approximating polyhedron that “knows”
about neighboring triangles, etc. As an additional advantage, you get the contour
line “for free.” Obviously a shaded image with border lines, contour lines, and
intersection lines supports human imagination considerably.

Listing of "surf x surf.cpp":

#include "opengeom.h"
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#include "defaults3d.h"
class Type1: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

const Real a = 9, b = 6;
Real r = a + b ∗ cos( v ) ;
P3d P( r ∗ cos( u ), r ∗ sin( u ), b ∗ sin ( v ) ) ;
return P;

}
};
class Type2: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

const Real a = 7.5, b = 6;
Real r = a + b ∗ cos( v ) ;
P3d P( r ∗ cos( u ), r ∗ sin( u ), b ∗ sin ( v ) ) ;
P.Rotate( Xaxis, 80 ) ;
return P;

}
};
Type1 Surf1;
Type2 Surf2;
ComplexL3d Section;

void Scene: :Init( )
{

int n1 = 61, n2 = 25;
Real u1 = PI/2, u2 = 2 ∗ PI; // Range of parameter u
Real v1 = PI / 2, v2 = v1 + PI; // Range of parameter v
Surf1.Def( LightOrange, n1, n2, u1, u2, v1, v2 ) ;
Surf1.PrepareContour( ) ;
Surf2.Def( LightOrange, n1, n2, u1, u2, v1, v2 ) ;
Surf2.PrepareContour( ) ;
Surf1.SectionWithSurface( Section, Surf2, false ) ;
ChangeDefaultOffset( 2 ) ;

}
void Scene: :Draw( )
{

Section.Draw( Black, MEDIUM ) ;
Surf2.Shade( SMOOTH, REFLECTING ) ;
Surf1.Shade( SMOOTH, REFLECTING ) ;
Surf2.Contour( Black, MEDIUM ) ;
Surf2.DrawBorderLines( Black, MEDIUM ) ;
Surf1.Contour( Black, MEDIUM ) ;
Surf1.DrawBorderLines( Black, MEDIUM ) ;

}
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FIGURE 3.19. Two touching intersecting surfaces. Left: two tori, right: two hyper-
boloids (output of "hyp x hyp.cpp").

Every mathematician knows that things get critical when the surfaces touch each
other. Then the intersection line has a double point, and nearly all algorithms
become unstable. Open Geometry sometimes overcomes the problem by itself
(Figure 3.19; left), sometimes an easy trick helps: In Figure 3.19, right, one of
the two surfaces was rotated about its axis about half a degree. The reason for
this is quite simple: The surfaces are approximated by polyhedra, i.e., they are
triangulated. Two almost identical triangles may induce a numerical problem. A
tiny rotation helps in most cases. ♦

Example 3.14. Confocal quadrics
Figure 3.20 shows an example that is anything but trivial. The lines of curva-
ture on a general ellipsoid are calculated as the intersection lines with “general
hyperboloids.” For the correct display, the program not only has to calculate
the intersection lines of the hyperboloids with the ellipsoid but of course also
the intersection line of the two different types of hyperboloids. At the very least,
the two-sheeted hyperboloid has therefore to be split up. As a matter of fact,
since everything is so symmetrical, it is enough to consider only one sheet; the
intersection line of the other sheet is congruent. For more details, please have a
look at the corresponding program "lines of curvature.cpp".

Just a few passages shall be pointed out. We declare the ellipsoid, a certain
number of the two types of hyperboloids, and a global parameter A that changes
the curvature of the hyperboloids:
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Listing from "lines of curvature.cpp":

const int N = 6, N0 = 4;
Type1 Ell;
Type2 Hyp1 [N];
Type3 Hyp2 [N];
ComplexL3d S1 [N], // Hyp1 [i] ∩ Ell

S2 [N], // Hyp2 [i] ∩ Ell
S3; // Hyp1 [i] ∩ Hyp2 [i]

Real A;

FIGURE 3.20. The lines of curvature on a general ellipsoid are space curves of
order four. They are the intersecting lines of the ellipsoid with confocal quadrics, i.e.,
hyperboloids (output of "lines of curvature.cpp").

In the initialization part, the surfaces and the intersection lines are stored:

Listing from "lines of curvature.cpp":

Real delta = 0.71;
A = delta / 2;
Real v2 = 1.25;
for ( i = 0; i < N; i++ )
{

Hyp1 [i].Def( LightBlue, n1, n2, 0, 2∗PI, 0.01, v2 ) ;
Hyp1 [i].SectionWithSurface( S1 [i], Ell, false ) ;
Hyp2 [i].Def( LightGreen, n1, n2, 0, 2∗PI, 0.01, v2 ) ;
Hyp2 [i].SectionWithSurface( S2 [i], Ell, false ) ;
if ( i == N0 )
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{
Hyp1 [N0].SectionWithSurface( S3, Hyp2 [N0], false ) ;

}
A += delta;

}

In the drawing part, finally, everything is displayed:

Listing from "lines of curvature.cpp":

int i;
for ( i = 0; i < N; i++ )
{

S1 [i].Draw( i == N0 ? Black : Gray, MEDIUM ) ;
S1 [i].Rotate( Zaxis, 180 ) ;
S1 [i].Draw( i == N0 ? Black : Gray, MEDIUM ) ;
S1 [i].Rotate( Zaxis, 180 ) ;
S2 [i].Draw( i == N0 ? Black : Gray, MEDIUM ) ;
S2 [i].Rotate( Yaxis, 180 ) ;
S2 [i].Draw( i == N0 ? Black : Gray, MEDIUM ) ;
S2 [i].Rotate( Yaxis, 180 ) ;

}
Ell.Shade( SMOOTH, REFLECTING ) ;
Ell.Contour( Black, MEDIUM ) ;
for ( i = 0; i < 2; i++ )
{

S3.Draw( Black, MEDIUM ) ;
S3.Rotate( Zaxis, 180 ) ;
S3.Draw( Black, MEDIUM ) ;
S3.Rotate( Yaxis, 180 ) ;
Hyp1 [N0].Shade( SMOOTH, REFLECTING ) ;
Hyp1 [N0].Contour( Black, MEDIUM ) ;
Hyp1 [N0].ULines( Black, 2, MEDIUM ) ;
Hyp1 [N0].Rotate( Zaxis, 180 ) ;
Hyp2 [N0].Shade( SMOOTH, REFLECTING ) ;
Hyp2 [N0].Contour( Black, MEDIUM ) ;
Hyp2 [N0].ULines( Black, 2, MEDIUM ) ;
Hyp2 [N0].Rotate( Xaxis, 180 ) ;

}

♦
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Example 3.15. Self-intersections
Now to the self-intersection. In the original book ([14]), we introduced the Klein
bottle, which is an example of a one-sided surface (another is the Möbius strip).
By definition, a Klein bottle must have a self-intersection. When you display
it and you show parameter lines and the contour, but you do not show the
self-intersection, there is something important missing!

FIGURE 3.21. How to split the Klein bottle in order to get the self-intersection.

The trick to get the self-intersection is to split the surface into two parts. In
our case, it turned out to be a good idea to split the u-interval of the surface
(u ∈ [0, 2π]) into two intervals u ∈ [2.5, 4] and u ∈ [4.2, 6.5] (Figure 3.21), left).
The rule is that the intervals must not overlap. They do not have to cover the
entire parameter range; quite the contrary: The intervals should be as small as
possible!

You will agree that this needs testing. For exammple, if we had chosen the slightly
different intervals u ∈ [3, 4] and u ∈ [4.2, 6.5], the result would have been only
part of the intersection curve (Figure 3.21, right). Therefore, for the time being
we do the calculation of self-intersection in the drawing part of the scene:

Listing from "klein bottle.cpp":

ComplexL3d SelfIntersection;
. . .

void Scene: :Draw( )
{

Bottle.GetSelfIntersection( SelfIntersection,
’u’, 2.5, 4, 4.2, 6.5, 10, true ) ;

return;
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. . .
}

FIGURE 3.22. The famous Klein bottle has by definition a self-intersection (output
of "klein bottle.cpp").

The second parameter of GetSelfIntersection(. . . ) tells the program that the u-
interval has to be split (the only alternative is ‘v’); the following four parameters
are the borders of the two intervals, the next parameter is an “accuracy param-
eter.” In our case, the relatively small number 10 was chosen (20 is the default;
the number may be as high as 200, but this will consume time, and in most cases,
it is not necessary). The last parameter, finally, tells the program to display a
(two-colored) wire frame, including the intersection line (Figure 3.21). But keep
in mind that drawing is done only in the actual drawing part!

When everything is fine, move the line with the GetSelfIntersection(. . . ) command
into to the initializing part and remove the return statement. The output is now
worth seeing (Figure 3.22)!

Another example of a self-intersection is the snail in Figure 3.23. In this case,
the u-interval was split by the line

Surface.GetSelfIntersection( Section, ’u’, −PI, 0.8, 0.8 + 0.01,
PI, 20, true ) ;
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FIGURE 3.23. The shell of the snail — a spiral surface — has two branches of
self-intersections (output of snail with self intersection.cpp).

As a final example, we display a minimal surface, one of the surfaces in between
the catenoid and the helicoid. (A soap bubble forms this surface when a wire
frame is dipped into soapy water.) Figure 3.24 shows two views of the surface,
and the wire frame in the testing phase, created by the line

Surf.GetSelfIntersection( Section, ’u’,
−1.2, 0.3, 0.3 + 0.01, 1.2, 12, true ) ;

♦

Surface with thickness

Open Geometry 2.0 provides a new class called SurfWithThickness. A parame-
terized surface Φ, an offset surface Ω of Φ, and a transition surface T , connecting
the borderlines of Φ and Ω, are displayed. This creates images of high optical
appeal and supports our 3D perception of the displayed objects.

Example 3.16. Cage of gold
The geometry of the sample program "cage of gold1.cpp" is very simple. We
want to display some circles of longitude and latitude on a sphere Σ. They are
realized as 3D surfaces with thickness. Circles of longitude and latitude will touch
each other and thus create the impression of solid objects.

As usual, we define some global constants to determine the radius of Σ, the offset
distance, and the number of circles. Then we have to write a function returning
a surface point of Σ:
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FIGURE 3.24. A minimal surface with self-intersections (output of "minimal.cpp").

Listing from "cage of gold1.cpp":

P3d PointOnSphere( Real u, Real v )
{

P3d P( 0, Radius, 0 ) ;
P.Rotate( Xaxis, Deg( u ) ) ;
P.Rotate( Zaxis, Deg( v ) ) ;
return P;

}

Next, we define global variables of type SurfWithThickness (to be precise: point-
ers to objects of type SurfWithThickness), allocate the memory, and define the
surfaces:

Listing from "cage of gold1.cpp":

// 5 circles of latitude, N circles of longitude
SurfWithThickness ∗CircOfLat [ 5];
SurfWithThickness ∗CircOfLong [N];

void Scene: :Init( )
{

// Allocate memory for the surfaces.
int i;
for ( i = 0; i < 5; i++ )

CircOfLat [i] = new SurfWithThickness( PointOnSphere ) ;
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FIGURE 3.25. A spherical and a hyperbolic cage of gold.

for ( i = 0; i < N; i++ )
CircOfLong [i] = new SurfWithThickness( PointOnSphere ) ;

// Parameter limits for circles of latitude.
Real u0 = 1.0, u1 = 1.2;
Real u2 = −0.5 ∗ ( u1 − u0 ), u3 = −u2;
Real u4 = 0.5 ∗ ( u1 + u2 ) + 0.5 ∗ ( u1 − u0 ) ;
Real u5 = 0.5 ∗ ( u1 + u2 ) − 0.5 ∗ ( u1 − u0 ) ;

// Parameter limits for circles of longitude.
Real v0 = 0, v1 = 0.25;

// Define circles of latitude.
CircOfLat [ 0]−>Def( Yellow, 4, 75, u0, u1, −PI, PI ) ;
CircOfLat [ 1]−>Def( Yellow, 4, 75, −u1, −u0, −PI, PI ) ;
CircOfLat [ 2]−>Def( Yellow, 4, 75, u2, u3, −PI, PI ) ;
CircOfLat [ 3]−>Def( Yellow, 4, 75, u4, u5, −PI, PI ) ;
CircOfLat [ 4]−>Def( Yellow, 4, 75, −u5, −u4, −PI, PI ) ;

// Define circles of longitude.
Real delta = 2 ∗ PI / N;
for ( i = 0; i < N; i++ )

CircOfLong [i]−>Def( Yellow, 25, 4, −u1, u1,
v0 + i ∗ delta, v1 + i ∗ delta ) ;

}
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Note that this procedure is essentially different from the implementation of a
parameterized surface (class ParamSurface). In Init( ) we allocate the dynamic
memory using the keyword new.12 For the definition of the surfaces we use the
this pointer −> and the usual input parameters (color, number of segments in
the u- and v-directions and u- and v-parameter range).

In our example we set the reals u0,. . . ,u5 in a way to achieve a good distribution
of five circles of latitude. The N circles of longitude are equally distributed along
the sphere. The Draw( ) part is very simple: We simply shade the surfaces.

Listing from "cage of gold1.cpp":

void Scene: :Draw( )
{

int i;
for ( i = 0; i < 5; i++ )

CircOfLat [i]−>ShadeWithThickness( DarkGray,
Thickness, THIN ) ;

for ( i = 0; i < N; i++ )
CircOfLong [i]−>ShadeWithThickness( DarkGray,

−Thickness, THIN ) ;
}

The additional input parameters specify the color of the small transition surface,
the offset distance, and the linestyle of the outline. An optional argument of type
Boolean decides whether the contour outline will be displayed as well. Finally,
do not forget to free the dynamically allocated memory in CleanUp( )!

Listing from "cage of gold1.cpp":

void Scene: :CleanUp( )
{

int i;
for ( i = 0; i < 5; i++ )

delete CircOfLat [i];
for ( i = 0; i < N; i++ )

delete CircOfLong [i];
}

12If you are not familiar with dynamic memory allocation, we recommend using the
Open Geometry macros ALLOC ARRAY and FREE ARRAY (compare page 598).
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The output can be seen in Figure 3.25. There we display a little variation of the
cage of gold as well ("cage of gold2.cpp"). We simply replaced the sphere Σ
by a hyperboloid H of revolution. ♦

Further examples

In the remaining part of this chapter we give examples of two more fascinating
surface types: Plücker’s conoid and supercyclides.

Example 3.17. A host of Plücker conoids
One of the most interesting geometric surfaces is Plücker’s conoid Π. Generations
of mathematicians have been fascinated by Π since its discovery by J. Plücker
in 1868. We will illustrate a few of their results in a sequence of programs.

FIGURE 3.26. Plücker’s conoid Π.

To start with, we use a parameterized equation to produce a picture of Π. An
implicit equation of Π is

Π . . . z(x2 + y2) − hxy = 0. (1)

The real number h is called the height of Π. We can rewrite this equation in
cylindrical coordinates as

Π . . . z =
h

2
sin 2ϕ.

This gives rise to a first geometric definition of Π:

Let g be a straight line intersecting the z-axis perpendicularly. Rotate g with
constant angular velocity about z and let it swing harmonically along z. One full
rotation corresponds to two swinging periods. Then g sweeps Plücker’s conoid Π.

There are many other ways of defining Π. We will see some of them in the follow-
ing text. But they are not so convenient for obtaining a good parameterization
of Π.

In "pluecker1.cpp" we draw a nice image of Π. We implement Π as a ruled
surface according to our considerations:
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Listing from "pluecker1.cpp":

class MyPlueckerConoid: public RuledSurface
{

virtual P3d DirectrixPoint( Real u )
{

return P3d( 0, 0, 0.5 ∗ Height ∗ sin( 2 ∗ u ) ) ;
}
virtual V3d DirectionVector( Real u )
{

return V3d( cos( u ), sin( u ), 0 ) ;
}

};
MyPlueckerConoid PlueckerConoid;

The remaining drawing is Open Geometry standard and we omit displaying it
here. Using the Generator(. . . ) method of RuledSurface we draw a rotating and
swinging generator of Π:

Listing from "pluecker1.cpp":

StrL3d g;
g = PlueckerConoid.Generator( U ) ;
g.Draw( Black, V0, V1, THICK, 1e−3 ) ;

Here, U, V0, and V1 are global variables, U is increased in Animate( ); [V0,V1]
is the v-parameter range of our surface.

Now we proceed a little further. On Π we find a two-parameter manifold of conic
sections. They are all ellipses that intersect the z-axis. Their top view is always
a circle. These considerations immediately result in a second definition of Π:

Let ζ be a cylinder of revolution and let e and g be an ellipse and a straight line,
respectively, on ζ. Then Π consists of all horizontal lines that intersect e and g.

We illustrate this in "pluecker2.cpp". To begin with, we create Π exactly as
in "pluecker1.cpp". It is not a good idea to use the second definition of Π
to derive a parametric representation. This would inevitably result in numerical
problems with direction vectors almost identical to the zero vector.

Then we write a function taking two input parameters x and y and returning
the point P (x, y, z) ∈ Π according to equation (1). The point P is not uniquely
determined iff x = y = 0. In this case we simply return the origin.
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Listing from "pluecker2.cpp":

P3d PointOnConoid( Real x, Real y )
{

if ( x == 0 && y == 0 )
return Origin;

else
return P3d( x, y, Height ∗ x ∗ y / ( x ∗ x + y ∗ y ) ) ;

}

Now we take a cylinder of revolution ζ through z and use the function
PointOnConoid(. . . ) to parameterize the part below the elliptical intersection
with Π.

Listing from "pluecker2.cpp":

class MyCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

P3d M( 2, 5, −0.5 ∗ Height ) ;
P3d M1( 2 ∗ M.x, 2 ∗ M.y, 0 ) ;
P3d N1( M.x − M.y, M.x + M.y, 0 ) ;
P3d O1( M.x + M.y, M.y − M.x, 0 ) ;
M1 = PointOnConoid( M1.x, M1.y ) ;
N1 = PointOnConoid( N1.x, N1.y ) ;
O1 = PointOnConoid( O1.x, O1.y ) ;
Plane p;
p.Def( M1, N1, O1 ) ;
Real rad = sqrt( M.x ∗ M.x + M.y ∗ M.y ) ;
P3d P( M.x + rad ∗ cos( u ), M.y + rad ∗ sin( u ),

−0.5 ∗ Height ) ;
StrL3d s( P, Zdir ) ;
P3d Q = p ∗ s;
return ( 1 − v ) ∗ P + v ∗ Q;

}
};
MyCylinder Cylinder;



Section 3.3. A Host of Mathematical Surfaces 237

We specify the midpoint of ζ, take three points M1, N1, and O1 on a base circle,
and project them onto the conoid by means of PointOnConoid(. . . ). These points
determine a plane π. We parameterize the circle with z-coordinate −h/2 and
take the corresponding point in π to get the desired parametric representation.

You would probably like to know why we use the auxiliary plane π instead of
the PointOnConoid(. . . ) function to find the points on the ellipse. The reason is
simple: PointOnConoid(. . . ) is numerically unstable in the neighborhood of the
origin. Try it and watch the ugly cylinder you get!

The rest is simple. We shade Π and ζ and draw a generator of Π that runs across
the surface during the animation. In Draw( ) we write the following lines:

Listing from "pluecker2.cpp":

P3d A = Cylinder.SurfacePoint( U, 1 ) ;
P3d B = Zaxis.NormalProjectionOfPoint( A ) ;
StraightLine3d( Black, A, B, THICK, 0.005 ) ;
A.Mark( Black, 0.3, 0.2 ) ;
B.Mark( Black, 0.3, 0.2 ) ;

Here, U is a global variable of type Real that is increased in Animate( ). The
output can be seen in Figure 3.27.

FIGURE 3.27. Alternative generation of Plücker’s conoid: Any cylinder of revolution
through the axis intersects Π in an ellipse.

Of course, it is interesting to visualize the different ellipses on Π. We do
this in "pluecker3.cpp". There are only few differences between this file and
"pluecker2.cpp". Firstly, we use two global real variables X and Y as coordi-
nates for the base circle’s center.
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Listing from "pluecker3.cpp":

class MyCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

P3d M( X, Y, −0.5 ∗ Height ) ;
...

}

Secondly, we do not compute the surface points of the cylinder in Init( ) but in
Draw( ) (PulsingX and PulsingY are two pulsing reals):

Listing from "pluecker3.cpp":

X = PulsingX.Next( ) ;
Y = PulsingY.Next( ) ;
Cylinder.Def( Red, 50, 5, −PI, PI, 0, 1 ) ;

And thirdly, we no longer animate a generator of Π. Only the cylinder of revo-
lution changes from frame to frame.

There exists a very interesting kinematical way to create Plücker’s conoid Π.
Suppose that ζ and Z are both cylinders of revolution with radii r and R = 2r,
respectively. Then we have the following theorem:

If ζ rolls inside Z, an arbitrary ellipse e of ζ sweeps Plücker’s conoid.

In "pluecker4.cpp" we define and shade Π as usual. Additionally, we need a
few global variables and constants:

Listing from "pluecker4.cpp":

const Real BigRadius = 12;
const Real SmallRadius = 0.5 ∗ BigRadius;
const Real Phi = 1;
const Real Psi = −2 ∗ Phi;
StrL3d RollingAxis;
L3d RollingEllipse;
const int N = 18;
L3d FixedEllipse [N];
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They define the radii of the fixed and the rolling cylinder two angle increments
for the simulation of the rolling motion, the axis of the rolling cylinder, the ellipse
on the rolling cylinder and a number N of ellipses to be drawn on Π. Then we
define the fixed cylinder:

Listing from "pluecker4.cpp":

class MyFixedCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

const Real radius = BigRadius + 0.05;
P3d P( radius ∗ cos( u ), radius ∗ sin( u ), −0.5 ∗ Height ) ;
P3d Q = PointOnConoid( P.x, P.y ) ;
return ( 1 − v ) ∗ P + v ∗ Q;

}
};
MyFixedCylinder FixedCylinder1, FixedCylinder2;

Its radius is a little larger than BigRadius in order to avoid visibility problems (the
two cylinders actually touch each other along a generator). Then we parameterize
the base circle and determine the corresponding points on Π. The line segment
between P (u) and Q(u) will have just the right length. Note that we create
two instances of the fixed cylinder. We will use the second instance to create a
complement of the lower cylinder part (compare Figure 3.28).

FIGURE 3.28. A cylinder of radius r rolls inside a cylinder of radius R = 2r.

The rolling cylinder is defined similarly to the previous programs:
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Listing from "pluecker4.cpp":

class MyRollingCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

P3d M( SmallRadius, 0, −0.5 ∗ Height ) ;
P3d M1( 2 ∗ M.x, 2 ∗ M.y, 0 ) ;
P3d N1( M.x − M.y, M.x + M.y, 0 ) ;
P3d O1( M.x + M.y, M.y − M.x, 0 ) ;
M1 = PointOnConoid( M1.x, M1.y ) ;
N1 = PointOnConoid( N1.x, N1.y ) ;
O1 = PointOnConoid( O1.x, O1.y ) ;
Plane pi;
pi.Def( M1, N1, O1 ) ;
Real rad = sqrt( M.x ∗ M.x + M.y ∗ M.y ) ;
P3d P( M.x + rad ∗ cos( u ), M.y + rad ∗ sin( u ),

−0.5 ∗ Height ) ;
StrL3d s( P, Zdir ) ;
P3d Q = pi ∗ s;
return ( 1 − v ) ∗ P + v ∗ Q;

}
};
MyRollingCylinder RollingCylinder1, RollingCylinder2;

Again we will use two instances of the class. The Init( )part turns out to be of
more interest than Draw( ). We give a complete listing

Listing from "pluecker4.cpp":

void Scene: :Init( )
{

PlueckerConoid.Def( LightBlue, 50, 50, 0, PI,
−BigRadius, BigRadius ) ;

PlueckerConoid.PrepareContour( ) ;

FixedCylinder1.Def( Red, 80, 5, −PI, PI, 0, 1 ) ;
FixedCylinder1.PrepareContour( ) ;

FixedCylinder2.Def( Green, 80, 5, −PI, PI, 0, 1 ) ;
FixedCylinder2.Reflect( XYplane ) ;
FixedCylinder2.Rotate( Zaxis, 90 ) ;
FixedCylinder2.PrepareContour( ) ;

RollingAxis.Def( P3d( SmallRadius, 0, 0 ), Zdir ) ;
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RollingCylinder1.Def( Red, 50, 5, −PI, PI, 0, 1 ) ;

RollingCylinder2.Def( Green, 50, 5, −PI, PI, 0, 1 ) ;
RollingCylinder2.Reflect( XYplane ) ;
RollingCylinder2.Rotate( RollingAxis, 180 ) ;

RollingCylinder1.GetULine( RollingEllipse, 1, DarkBlue ) ;

Real delta = (Real) 360 / N;
int i;
for ( i = 0; i < N; i++ )
{

FixedEllipse [i] = RollingEllipse;
FixedEllipse [i].Rotate( Zaxis, ( i + 1 ) ∗ delta ) ;
RollingAxis.Rotate( Zaxis, delta ) ;
FixedEllipse [i].Rotate( RollingAxis, − 2 ∗ ( i + 1 ) ∗ delta ) ;

}
RollingEllipse.ChangeColor( Black ) ;

}

We define the conoid and the fixed cylinders. The second instance of the fixed
cylinder is transformed to a complement of the first. Both parts together yield
just an ordinary cylinder of revolution. This is possible because of certain sym-
metries of Π.

Next, we define the axis of the rolling cylinders and the rolling cylinders them-
selves. One borderline of the first instance is the rolling ellipse. We use it to
define the ellipses on Π in the for-loop. Note that the rolling axis is at the same
position before and after the loop.

In Draw( ) we just draw and shade the relevant elements (the two parts of the
fixed cylinder are displayed with transparency). It is not necessary to list it here.
In Animate( ) we revolve the rotating cylinder’s parts, the ellipse on it, and its
axis (the rotating axis) about z through the angle Phi. The first elements are
then revolved about the rotating axis through the angle Ψ = −2Phi. This gives
exactly the rolling motion. The output of the program is displayed in Figure 3.29.

Listing from "pluecker4.cpp":

void Scene: :Animate( )
{

RollingCylinder1.Rotate( Zaxis, Phi ) ;
RollingCylinder2.Rotate( Zaxis, Phi ) ;
RollingEllipse.Rotate( Zaxis, Phi ) ;
RollingAxis.Rotate( Zaxis, Phi ) ;
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RollingCylinder1.Rotate( RollingAxis, Psi ) ;
RollingCylinder2.Rotate( RollingAxis, Psi ) ;
RollingEllipse.Rotate( RollingAxis, Psi ) ;

}

FIGURE 3.29. The ellipse on the rolling cylinder sweeps Plücker’s conoid Π.

Closely related to the above definitions of Π is the following: The common nor-
mals of a straight line d and the members of a general pencil of lines (apex E,
supporting plane ε) generate Plücker’s conoid.

We illustrate this in "pluecker5.cpp". But before we start, we have to take
some things into consideration. What is the connection between d, E, ε, and the
conoid Π? For reasons of symmetry d has to be the double line of Π. As before,
we will use it as the z-axis of our coordinate system. Now everything will become
clear if we consider the top view. The feet of the common normals seemingly lie
on a circle with diameter z′E′. Thus, the current generation of Π is a disguised
version of the generation we used in "pluecker2.cpp".

The plane ε has to be the supporting plane of an ellipse e ⊂ Π or, since Π is of
order 3, a tangent plane of Π. Finally E is an arbitrary point on e. This is all we
have to know for our program.

In addition, to shade our standard conoid Π, we implement an ellipse on Π as a
parameterized curve:

Listing from "pluecker5.cpp":

class MyConoidEllipse: public ParamCurve3d
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{
public:

P3d CurvePoint( Real u )
{

const P2d M( 2, −4 ) ;
const Real radius = sqrt( M.x ∗ M.x + M.y ∗ M.y ) ;
P2d P( M.x + radius ∗ cos( u ), M.y + radius ∗ sin( u ) ) ;
return PointOnConoid( P.x, P.y ) ;

}
};
MyConoidEllipse ConoidEllipse;

We choose a curve point E and compute the normal of the ellipse’s supporting
plane ε in Init( ):

Listing from "pluecker5.cpp":

P3d A = ConoidEllipse.CurvePoint( 1.1974 ) ;
P3d B = ConoidEllipse.CurvePoint( 3.7479 ) ;
V3d normal = V3d( A, B ) ∧ V3d( A, E ) ;
Axis.Def( E, normal ) ;

In Draw( ), we take a curve point P of the ellipse and its normal projection Q
on the z-axis. The straight line [P,Q] is a generator of Π. Varying P yields the
animation (Figure 3.30).

Next, we draw the relevant lines and points. In order to create a nice image, we
draw a circle in ε around E. The plane ε intersects Π in the ellipse and another
straight line s. We draw this line as well:

Listing from "pluecker5.cpp":

void Scene: :Draw( )
{

// Draw the axis of the conoid.
Zaxis.Draw( Green, −0.5 ∗ Height, 0.5 ∗ Height, THICK, 1e−2 ) ;

// Shade the conoid.
PlueckerConoid.Shade( SMOOTH, REFLECTING ) ;
PlueckerConoid.VLines( DarkBlue, 20, THIN ) ;
PlueckerConoid.ULines( Black, 2, MEDIUM ) ;
PlueckerConoid.Contour( Black, MEDIUM ) ;

ConoidEllipse.Draw( THICK, 1e−3 ) ;

// A point on the ellipse...
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P3d P = ConoidEllipse.CurvePoint( U ) ;
// ...and its corresponding point on z.
P3d Q = Zaxis.NormalProjectionOfPoint( P ) ;

StrL3d s;
s.Def( E, P ) ;
s.Draw( Red, −Radius, Radius, THICK ) ;
StraightLine3d( Green, P, Q, THICK ) ;

E.Mark( Red, 0.2, 0.1 ) ;
P.Mark( Black, 0.2, 0.1 ) ;
Q.Mark( Green, 0.2, 0.1 ) ;

Circ3d circle;
circle.Def( Orange, E, Axis.GetDir( ), Radius, 80, FILLED ) ;

Plane pi;
pi.Def( E, Axis.GetDir( ) ) ;
P3d S, T;
S = pi ∗ Zaxis;
pi.Def( S, Zdir ) ;
int n;
n = circle.SectionWithPlane( pi, S, T ) ;
if ( n == 2 )

StraightLine3d( Red, S, T, MEDIUM ) ;

circle.ShadeTransparent( Orange, 0.3, Red, MEDIUM ) ;
}

FIGURE 3.30. The common normals of a straight line and the members of a pencil
of lines generate Π.

Another remarkable property of Π is the following: All common normals of an ar-
bitrary straight line s and the rulings on Π generate another example of Plücker’s
conoid. If s is parallel to the axis of Π, the two conoids are even congruent.

Have a look at "pluecker6.cpp" if you don’t believe it! We define the conoid
Π1 in almost the same way as in the previous examples. Its axis is parallel to z
but does not contain the origin. The second conoid is defined in the geometric
way we have just mentioned: We determine the direction vector of the common
normal:
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Listing from "pluecker6.cpp":

StrL3d Axis1( P3d( −V0, 0, 0 ), Zdir ) ;
StrL3d Axis2( P3d( V0, 0, 0 ), Axis1.GetDir( ) ) ;

P3d PointOnAxis( Real u )
{

return P3d( 0, 0, H2 ∗ sin( 2 ∗ u ) ) ;
}

class MyPlueckerConoid1: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real u )
{

return Axis1.NormalProjectionOfPoint( PointOnAxis( u ) ) ;
}
virtual V3d DirectionVector( Real u )
{

return V3d( cos( u ), sin( u ), 0 ) ;
}

};
MyPlueckerConoid1 PlueckerConoid1;

class MyPlueckerConoid2: public RuledSurface
{

virtual P3d DirectrixPoint( Real u )
{

return Axis2.NormalProjectionOfPoint( PointOnAxis( u ) ) ;
}
virtual V3d DirectionVector( Real u )
{

return Axis2.GetDir( ) ∧
PlueckerConoid1.DirectionVector( u ) ;

}
};
MyPlueckerConoid2 PlueckerConoid2;

In addition, we use a PathCurve3d named Conic to display the path of the foot
of the common normal on the generators of the conoids and an L3d object
IntersectionCurve to mark the residual intersection curve. We define them in
Init( ):
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Listing from "pluecker6.cpp":

Conic.Def( Black, (int) ( 2 ∗ PI / Phi) + 1 ) ;

int n = 301;
IntersectionCurve.Def( Black, n ) ;
Real u0 = −0.82, u1 = −u0;
Real delta = ( u1 − u0 ) / ( n − 1 ) ;
int i;
Real u;
for ( i = 0, u = u0; i < n; i++, u += delta )

IntersectionCurve [i] = YZplane ∗
PlueckerConoid1.Generator( u ) ;

There are just enough points on Conic to fill the whole elliptical intersection of
the two conoids (Phi is the increment of the surface parameter u in Animate( )).
The residual real and finite intersection consists of the x-axis and an algebraic
curve of order three in [y, z]. We compute it by intersecting the generators of Π1
with this plane. In Draw( ) we draw the conoids, determine the generating lines of
a parameter value u, draw relevant lines, and mark relevant points (Figure 3.31).

FIGURE 3.31. Two congruent Plücker conoids. Any generator of the first conoid
intersects a generator of the second orthogonally in a common ellipse.

Given an arbitrary ruled surface Φ and a point P , we can construct the pedal
curve of Φ with respect to P . The pedal curve consists of all normal projections
of P on the generators of Φ. The class RuledSurface supports three methods
concerning pedal curves:

• P3d PedalPoint( Real u, P3d Pole ) returns the normal projection of Pole on
the generator g(u) of Φ.
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• void GetPedalLine(L3d &pedal line, P3d Pole, Color col, int size) stores the
pedal line of Φ with respect to Pole in pedal line.

• void DrawPedalLine(P3d Pole, Color col, int n, ThinOrThick , Real offset)
draws the pedal line of Φ with respect to Pole.

We use this to illustrate yet another property of Plücker’s conoid: It is the only
nontrivial example of a ruled surface with only plane pedal curves. Have a look
at the code of "pluecker7.cpp". Besides minor things (drawing lines, marking
points, etc.), the only relevant change to previous programs is in Draw( ). There
we insert the following line:

Listing from "pluecker7.cpp":

PlueckerConoid.DrawPedalLine( Pole, Red, 150, THICK, 1e−2 ) ;

FIGURE 3.32. The pedal curves of Π are ellipses (”pluecker7.cpp”).

Varying the global variable P3d Pole yields a one-parameter family of plane pedal
curves. You will immediately note that they are just congruent ellipses on Π. In
fact, the top view of the pedal curve with respect to a pole P is a circle with
diameter OP ′. In our program P ′ has always the same distance from O, so all
pedal curves are congruent. ♦
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Example 3.18. Supercyclides
An interesting class of surfaces are supercyclides. They are very special surfaces
of conic sections. On a supercyclide Σ we find two families F1, F2 of conics. The
planes of the conics of Fi belong to a pencil of planes with axis ai (characteristic
lines). The tangent planes of Σ along a conic c1 ∈ F1 envelop a quadratic cone
with apex on a2 and the other way round. There exist quite a few different
types of supercyclides. For example, one can distinguish them with respect to
the position of the characteristic lines. Originally dating back to the nineteenth
century ([3]), supercyclides turned up only recently in CAGD (see, e.g., [28, 29]).

FIGURE 3.33. Two supercyclides.

In the following we will give examples of different types of supercyclides and
visualize some of their geometric properties. In order to do so, we need a para-
metric representation. Note that the defining properties mentioned above are of
a projective nature. We will therefore derive a projective parameterization at
first and transform it to Euclidean coordinates in a second step. For those who
are not so familiar with the basic concepts of projective geometry (especially
homogeneous coordinates) we recommend a quick glance at the corresponding
section in Chapter 5.

Let A, B, C, and D be four independent points and a, b, c, and d their homo-
geneous coordinate vectors. With the help of three independent quadratic poly-
nomials f(s), a(s), and b(s) in the variable s and three independent quadratic
polynomials g(t), c(t), and d(t) in the variable t, a homogeneous parametric
representation of Σ reads

Σ . . .x(s, t) = g(t)[a(s)a + b(s)b] + f(s)[c(s)c + d(s)d].

The parameter range for s and t is R ∪ ∞. For example x(∞, t) is defined as
lims→∞ s−2x(s, t). It is always a little dangerous to use homogeneous parametric
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representations for the visualization of surfaces. The zeros of the x0-coordinate
of x(s, t) yield points at infinity, which are not really good for a triangulation
(i.e., you cannot use them at all). Already parameter values that are too close
to the zeros of the x0-coordinate can have disastrous effects on the image. We
will have to restrict the parameters to intervals that avoid these zeros.

The first task we set ourselves is the development of a useful Open Geometry
mask for the visualization of supercyclides. It should be possible to produce an
attractive image by changing the relevant input data without too much effort.
You should always try to do this when you have to write a series of similar
programs (compare Section 7.6).

Now consider the program "supercyclide1.cpp". There, we start by defining
the points A, B, C, and D. It will be a good idea to give them “nice” (i.e.,
symmetric) positions in the Euclidean sense. They are situated at the corners of
a cube centered at the origin in a way that AB and CD are skew but form a right
angle.

Listing from "supercyclide1.cpp":

const Real K = 8;
const P3d PA( −K, −K, −K ), PB( K, K, −K ) ;
const P3d PC( K, −K, K ), PD( −K, K, K ) ;

Now we have to define the quadratic forms f(s), a(s), and b(s). In our example
we choose f(s) = s2 + 1, a(s) = s(s + 1), and b(s) = s(s − 1).

Listing from "supercyclide1.cpp":

const Real F0 = 1, F1 = 0, F2 = 1;
const Real A0 = 0, A1 = 1, A2 = 1;
const Real B0 = 0, B1 = −1, B2 = 1;

Real F( Real s ) { return F0 + s ∗ F1 + s ∗ s ∗ F2; }
Real A( Real s ) { return A0 + s ∗ A1 + s ∗ s ∗ A2; }
Real B( Real s ) { return B0 + s ∗ B1 + s ∗ s ∗ B2; }

The quadratic forms g(t), c(t), and b(t) are defined in an analogous fashion.
It is important to avoid getting confused by using homogeneous coordinates.
Therefore, we write down everything in a neat and clean way. We start with the
homogeneous coordinate functions:
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Listing from "supercyclide1.cpp":

Real X0( Real s, Real t )
{

return G( t ) ∗ ( A( s ) ∗ 1 + B( s ) ∗ 1 ) +
F( s ) ∗ ( C( t ) ∗ 1 + D( t ) ∗ 1 ) ;

}
Real X1( Real s, Real t )
{

return G( t ) ∗ ( A( s ) ∗ PA.x + B( s ) ∗ PB.x ) +
F( s ) ∗ ( C( t ) ∗ PC.x + D( t ) ∗ PD.x ) ;

}
Real X2( Real s, Real t )
{

return G( t ) ∗ ( A( s ) ∗ PA.y + B( s ) ∗ PB.y ) +
F( s ) ∗ ( C( t ) ∗ PC.y + D( t ) ∗ PD.y ) ;

}
Real X3( Real s, Real t )
{

return G( t ) ∗ ( A( s ) ∗ PA.z + B( s ) ∗ PB.z ) +
F( s ) ∗ ( C( t ) ∗ PC.z + D( t ) ∗ PD.z ) ;

}

Note that we use the Euclidean coordinates of A, B, C, and D for the coordinate
functions X1( s, t ), X2( s, t ), and X3( s, t ), while X0( s, t ) requires the
coefficient 1 four times. We could, e.g., easily cast the point A to infinity if we
replaced A( s )∗ 1 by A( s )∗ 0. Remember that we want to create a mask for
later usage. Therefore, the redundancy of the above code seems to be justified.
Now it is easy to get the parameterized equation of the supercyclide Σ:

Listing from "supercyclide1.cpp":

P3d CyclidPoint( Real s, Real t )
{

P3d P( X1( s, t ), X2( s, t ), X3( s, t ) ) ;
P /= X0( s, t ) ;
return P;

}
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You may wonder why we do not implement a parameterized surface at once.
It is again for reasons of readability. We cannot exhaust the whole parameter
interval R ∪ ∞. Hence, we have to split the surface and parameterize each part
separately. It is a question of trial and error (or intuition) how many patches are
necessary and how they are to be parameterized. We cannot give a general rule.
You will have to try on your own. For supercyclides it seems to be a sensible
idea to start with four different patches Σi with parameterizations

X1(s, t), X2(1/s, t), X3(s, 1/t), and X4(1/s, 1/t),

where s and t range over (−1, 1). You probably have to change the parameter
range for one patch or the other. Perhaps, one or two of them cannot be used
at all because of “infinity problems.” The corresponding Open Geometry code
for Σ1 and Σ2 is as follows:

Listing from "supercyclide1.cpp":

class MySuperCyclide1: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real s, Real t )
{

return CyclidPoint( s, t ) ;
}

};
MySuperCyclide1 SuperCyclide1;

class MySuperCyclide2: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real s, Real t )
{

return CyclidPoint( 1 / s, t ) ;
}

};
MySuperCyclide2 SuperCyclide2;
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In Init( ) we define all four patches. Additionally, we prepare the contour but
only if a global constant of type Boolean is set to true. This is a convenient way
to toggle between fast image generation and animation on the one hand and a
high-quality output on the other.

We do the same with the drawing of the wire frame and the border lines of
the surface patches. For the output in Figure 3.33 we set DrawWireLines and
DrawBorderLines to true. Furthermore, we display only the three patches Σ2,
Σ3, and Σ4 for s, t ∈ (0, 1).

In Figure 3.33 (left side) you can see that the conics on the surface lie in the
planes of two pencils with axes a1 := AB and a2 = CD. In order to produce
this picture, we added a few more code lines ("supercyclide2.cpp"). There, we
basically use the same code as in "supercyclide1.cpp" but add some additional
features. We introduce the following global variables:

Listing from "supercyclide2.cpp":

Poly3d Frame1, Frame2;
PulsingReal R;
Conic3d SLine, TLine;
P3d S [ 5], T [ 5];

and initialize some of them in Init( ):

Listing from "supercyclide2.cpp":

const Real f = 0.9999;

const Real s01 = −0.6, s11 = 0.6;
const Real t01 = −0.5, t11 = 0.5;
SuperCyclide1.Def( Col [ 0], 20, 20, s01, s11, t01, t11 ) ;

const Real s02 = −f, s12 = f;
const Real t02 = −0.7, t12 = 0.7;
SuperCyclide2.Def( Col [ 1], 20, 20, s02, s12, t02, t12 ) ;

const Real s03 = −0.7, s13 = 0.7;
const Real t03 = −f, t13 = f;
SuperCyclide3.Def( Col [ 2], 20, 20, s03, s13, t03, t13 ) ;

const Real s04 = −f, s14 = f;
const Real t04 = −f, t14 = f;
SuperCyclide4.Def( Col [ 3], 20, 20, s04, s14, t04, t14 ) ;
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One side of the two rectangles will always be a1 and a2, respectively. The pulsing
real R will be used for their animation: Frame1 and Frame2 will rotate forward
and backward about a1 and a2, respectively. They will intersect Σ in conics that
will be stored in SLine and TLine (the conics are s- and t-parameter lines). We
implement this in Draw( ):

Listing from "supercyclide2.cpp":

Real r = R( ) ;
int i;
for ( i = 0; i < 5; i++ )
{

S [i] = SuperCyclide3.SurfacePoint( i, r ) ;
T [i] = SuperCyclide2.SurfacePoint( r, i ) ;

}
// SLine and TLine are instances of Conic3d !
SLine.Def( Black, 100, S ) ;
TLine.Def( Black, 100, T ) ;
SLine.Draw( THICK ) ;
TLine.Draw( THICK ) ;
S [ 0].Mark( Black, 0.2, 0.1 ) ;
T [ 0].Mark( Black, 0.2, 0.1 ) ;
P3d P = 0.5 ∗ ( S [ 0] + T [ 0] ) ;
P.Mark( Black, 0.2, 0.1 ) ;
StraightLine3d( Black, S [ 0], T [ 0], THICK ) ;

// bring the frames into correct position
// and shade with transparency
P.Def( 0, 0, −K ) ;
V3d v = S [ 0] − P;
v.Normalize( ) ;
Frame1 [ 3] = P + 2.5 ∗ K ∗ v + V3d( K, K, 0 ) ;
Frame1 [ 4] = P + 2.5 ∗ K ∗ v − V3d( K, K, 0 ) ;

P.Def( 0, 0, K ) ;
v = T [ 0] − P;
v.Normalize( ) ;
Frame2 [ 3] = P + 2.5 ∗ K ∗ v − V3d( K, −K, 0 ) ;
Frame2 [ 4] = P + 2.5 ∗ K ∗ v + V3d( K, −K, 0 ) ;

Frame1.ShadeTransparent( LightGray, 0.5, Black, MEDIUM ) ;
Frame2.ShadeTransparent( LightGray, 0.5, Black, MEDIUM ) ;



254 Chapter 3. 3D Graphics I

In a first step we initialize the conic points S[ i ], T[ i ] and define the corresponding
conics. The points S[ 0 ] and T[ 0 ] play an important role: They are situated in
planes of symmetry and can be used to adjust the frame rectangles. The midpoint
P of S[ 0 ] and T[ 0 ] has a straight line x as trajectory during the animation. A
second straight line y lies on Σ and is displayed in Figure 3.33 as well.

On the right-hand side of Figure 3.33 you see a different example of a supercyclide
("supercyclide3.cpp"). There, we used the polynomials

f(s) = 1 − s2, a(s) = 2s2 − s − 1, b(s) = 2s2 + s − 1,

g(t) = 1 − t2, c(t) = 2t2 − t − 1, d(t) = 2t2 + t − 1.

The parameter lines are hyperbolas, which makes the choice of the correct pa-
rameter intervals a little difficult. We split the surface into four patches and
decide on the following code:

Listing from "supercyclide3.cpp":

const Real f = 0.9999;

const Real s01 = −0.6, s11 = 0.6;
const Real t01 = −0.5, t11 = 0.5;
SuperCyclide1.Def( Col [ 0], 20, 20, s01, s11, t01, t11 ) ;

const Real s02 = −f, s12 = f;
const Real t02 = −0.7, t12 = 0.7;
SuperCyclide2.Def( Col [ 1], 20, 20, s02, s12, t02, t12 ) ;

const Real s03 = −0.7, s13 = 0.7;
const Real t03 = −f, t13 = f;
SuperCyclide3.Def( Col [ 2], 20, 20, s03, s13, t03, t13 ) ;

const Real s04 = −f, s14 = f;
const Real t04 = −f, t14 = f;
SuperCyclide4.Def( Col [ 3], 20, 20, s04, s14, t04, t14 ) ;

Note that we limit certain parameter ranges by f = 0.9999. You may try what
happens in the case of f = 1, but it will not be very attractive. In contrast to the
previous example it is not a good idea to use the class Conic3d for the drawing
of the surface conics: They are hyperbolas and will usually be drawn beyond the
surface edges. We use globally declared objects of type L3d instead:
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Listing from "supercyclide3.cpp":

Poly3d Frame1, Frame2;
PulsingReal R;
L3d SLine [ 4], TLine [ 4];

The corresponding code lines in Draw( ) have to be replaced by the following:

Listing from "supercyclide3.cpp":

Real r = R.Next( ) ;
int n = 50;
int i;
SuperCyclide1.GetULine( SLine [ 0], −0.5 ∗ r, Black, n ) ;
SuperCyclide2.GetULine( SLine [ 1], −0.5 ∗ r, Black, n ) ;
SuperCyclide3.GetULine( SLine [ 2], r, Black, n ) ;
SuperCyclide4.GetULine( SLine [ 3], r, Black, n ) ;

SuperCyclide1.GetVLine( TLine [ 0], −0.5 ∗ r, Black, n ) ;
SuperCyclide2.GetVLine( TLine [ 1], r, Black, n ) ;
SuperCyclide3.GetVLine( TLine [ 2], −0.5 ∗ r, Black, n ) ;
SuperCyclide4.GetVLine( TLine [ 3], r, Black, n ) ;

SLine [ 0].Draw( THICK ) ;
SLine [ 1].Draw( THICK ) ;
SLine [ 2].Draw( THICK ) ;
SLine [ 3].Draw( THICK ) ;

TLine [ 0].Draw( THICK ) ;
TLine [ 1].Draw( THICK ) ;
TLine [ 2].Draw( THICK ) ;
TLine [ 3].Draw( THICK ) ;

StraightLine3d( Black,
Axis2.NormalProjectionOfPoint( SLine [ 2] [ 1] ),
Axis1.NormalProjectionOfPoint( TLine [ 1] [ 1] ),
THIN ) ;

That is, we draw objects of type L3d rather than objects of type Conic3d. The
last line in the above listing draws the intersection line segment that lies in both
frames and improves the 3D impression of the image. ♦
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3.4 Modeling Surfaces
In the preceding chapter you got to know a number of parameterized surfaces
from the field of pure geometry. In this chapter we will use those surfaces for the
modeling of objects from everyday life. Of course, there exist standard techniques
for that task (NURBS or Bézier spline surfaces; Open Geometry 2.0 supports
them as well). Sometimes, however, it could be necessary to develop shapes of
your own in order to display a complex object. We will give you a few examples
and, hopefully, useful hints to help you with this task.

Example 3.19. Energy spirals
In modeling a “real world” curve c or surface Φ it is sometimes more convenient
to use cylindrical coordinates (�, ϕ, ζ) instead of Cartesian coordinates (x, y, z).
These two kinds of coordinates are linked by the equations

x = � cos(ϕ), y = � sin ϕ, z = ζ. (2)

The geometric meaning of �, ϕ, and ζ is shown in Figure 3.34. This figure also
explains the name of these coordinates: The point P (�, ϕ, ζ) lies on a cylinder of
revolution around the z-axis with radius �.

FIGURE 3.34. The geometric meaning of the cylindrical coordinates �, ϕ, and ζ.

Though in principle, any curve or surface may be described in cylindrical coordi-
nates, they are especially useful when some kind of rotational or helical symmetry
with respect to the z-axis occurs.

As an example we present the model of a Feng-Shui energy spiral (see Fig-
ure 3.35). You can find those spirals in diverse shops nowadays. They are quite
popular for their elegance: Suspending them on a string (the z-axis) and rotat-
ing them about z gives, depending on the sense of rotation, the impression of
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an inside-up-outside-down or outside-down-inside-up motion. You can watch the
same effect in our computer simulation ("energy spiral1.cpp").

FIGURE 3.35. Two Feng-Shui energy spirals (the output of "energy spiral1.cpp"

and "energy spiral2.cpp").

The main programming problem is finding a closed curve c winding up along the
z-axis in big loops and winding down again in small loops. We derive this curve
from the well-known path curve of a point during a helical motion. In cylindrical
coordinates its parametric representation simply reads

c′ . . . C(ϕ) = (�0, ϕ, p ϕ)T (3)

with constant �0 and p (the screw parameter). Now, what is the difference be-
tween a helix and our target curve c? Obviously, the �-coordinate of c cannot
be constant. If we assume a parameter interval I that is symmetric with respect
to 0, the graph of �(ϕ) must — more or less — look like the that drawn in
Figure 3.36. The minimum value r and maximum value R of �(ϕ) in I are the
minimum and maximum radii of the spiral surface. At the top and at the bot-
tom of the spiral we get the radius (R + r)/2. The ζ-coordinate function must
be a function symmetric with respect to the y-axis, looking like the graph on
the right-hand side of Figure 3.36. Both functions have to be part of periodic
Cm-functions (m being at least equal to one but preferably even bigger) with
fundamental interval I in order to achieve appropriate smoothness of our model.

In our program we basically used the sine function:

�(ϕ) =
R − r

2
sin(n−1ϕ) +

R + r

2
, ζ(ϕ) =

h

2
sin(n−1ϕ + π/2), (4)
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FIGURE 3.36. The two generating functions �(ϕ) and ζ(ϕ) of the energy spiral.

and I = [−nπ, nπ]. Here h denotes the total height of the surface and n the
number of windings. According to (2) the final parametric representation of c in
cylindrical coordinates is

c . . . C(ϕ) =


�(ϕ) cos(ϕ)

�(ϕ) sin(ϕ)
ζ(ϕ)


 ϕ ∈ [−nπ, nπ]. (5)

It is now easy to obtain the parametric representation of the cylindrical spiral
surface from our example. Switch on the auto-rotation about z to see the up-
down movement! Alternatively, you can run "energy spiral2.cpp". There, the
spiral is implemented as a tubular surface (Figure 3.35. ♦
Other examples of spiral surfaces can be found in modern architecture. For ex-
ample, in the new Reichstag building in Berlin you can find a dome in the shape
of an ellipsoid of revolution with two spirals winding up inside (Figure 3.37).
Another example that was not realized but carefully planned (also from the
static point of view!) can be seen on the right-hand side of Figure 3.37. It is a
sculpture having the form of a reversed vortex; winding up outside and winding
down inside, allowing people to walk up and down again without changing their
direction.

Example 3.20. Candlestick
As our next example we present the computer visualization of an elegant candle-
stick (Figure 3.38). In the corresponding program "candlestick.cpp", we will
use different features of Open Geometry such as parameterized curves and
surfaces, surfaces of revolution, tubular surfaces, and the importation of Cad3D
objects.

We divide the object into five parts. The top and the bottom parts are solids
consisting of geometric primitives like spheres, cylinders, and cones of revolu-
tion. It is a good idea to model them in Cad3D ("candlestick1.llz" and
"candlestick2.llz") and import them in Open Geometry. We define a global
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FIGURE 3.37. The output of "reichstag.cpp" and "marielas building.cpp".

variable Data of type Cad3Data and write the following in the Init( ) part of our
program:

Listing from "candlestick.cpp":

Data.ReadNewMember( "DATA/LLZ/candlestick1.llz" ) ;
Data.ReadNewMember( "DATA/LLZ/candlestick2.llz" ) ;
Data.SetAllColors( Brown ) ;
Data [ 0].Translate( 0, 0, −H2 − 3.5 ) ;
Data [ 1].Translate( 0, 0, H2 + 4.8 ) ;

The translation of the objects takes into account the total height of the candle-
stick and the height of the Cad3D objects we imported. The shading will be
done by the command Data.Shade( ) in the Draw( ) part.

The next surface parts are two surfaces of revolution. They are symmetric with
respect to the horizontal plane σ through the midpoint of the object (we used
σ = [x, y]). In Init( ), we define only one of them as described in [14], page 167.
In Draw( ) we write these lines:

Listing from "candlestick.cpp":

MiddlePart.Shade( SMOOTH, REFLECTING ) ;
MiddlePart.Reflect( XYplane ) ;
MiddlePart.Shade( SMOOTH, REFLECTING ) ;
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FIGURE 3.38. A photo of the original candlestick (left) and the output of
"candlestick.cpp" (right).

and see both of surfaces.13

The most interesting object part is probably the center of the object. It consists
of four elegantly curved lines connecting the two surfaces of revolution. In a first
step we have to find a parameterized equation for one of them (we will call it c).
It is of a shape that suggests a parameterization in cylindrical coordinates. By
considerations very similar to those made in Example 3.19, we obtain

�(u) = rmax cos u + 4u2 (rmin − ε)
π2 , z(u) = pu3 + u

4H − pπ3

4
.

The real constants rmax, rmin, p, and H determine the shape of the curve (max-
imal and minimal radius, slope and total height) while ε is just a small real
number to correct the minimal radius. Given the parametric representation of c
we can easily implement the corresponding tubular surface HelicalTub. Finally,
we rotate and shade it four times in Draw( ):

Listing from "candlestick.cpp":

for ( i = 0; i < N; i++ )
{

HelicalTub.Rotate( Zaxis, i ∗ angle ) ;

13Note that this in possible only because the reflection � on [ x, y ] is idempotent,
i.e., � ◦ � = id. Otherwise, the object transformation in Draw( ) would yield unwanted
results.
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HelicalTub.Shade( SMOOTH, REFLECTING ) ;
}

♦

Example 3.21. Spiral stove
For the modeling of our next surface we are face with a special task: We want
to connect two arbitrary parameterized curves so that the curvature changes
steadily. That is, the second derivative has no singularities (C2-continuity). We
have already done something similar with Bézier curves in Example 2.34. Here,
too we will use a Bézier curve as connecting curve.

The radius of curvature of a Bézier curve at the start or end point is given by

� =
n

n − 1
a2

h
.

The meaning of the parameters a and h is explained in Figure 3.39. Note that
the control point B2 may still vary on a straight line parallel to B0B1 (i.e., the
length b may be changed) without affecting the curve’s radius of curvature � in
B0. The successive control points B3, B4, . . . have no impact on �.

FIGURE 3.39. The osculating circle at the start point of a Bézier curve and a
C2-connection of start and end point of a helispiral.

In "osculating curves.cpp" we implement a convenient method for construct-
ing a C2-continuous Bézier curve. We derive a class from ParamCurve3d in
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the usual way (in our example a helispiral curve). In addition, we implement
a method to set the three starting points of the Bézier curve.

class MyCurve: public ParamCurve3d
{
public:

P3d CurvePoint( Real t )
{

const Real r = 3, c = 0.1;
Real x, y, z;
x = r ∗ c ∗ t ∗ cos( t ) ;
y = r ∗ c ∗ t ∗ sin( t ) ;
z = 10 ∗ c ∗ t;
return P3d( x, y, z + 7 ) ;

}
void C2Continuation( Real t, Real a, Real b,

P3d &A, P3d &B, P3d &C, int n )
{

A = CurvePoint( t ) ;
B = Tangent( t ).InBetweenPoint( a ) ;
Circ3d osc circle;
GetOsculatingCircle( t, NoColor, 1, osc circle ) ;
Real h = n / ( n − 1.0 ) ∗ a ∗ a / osc circle.GetRadius( ) ;
Plane p( A, osc circle.axis ) ;
V3d v1 = B − A, v2 = osc circle.Middle − A;
v1.Normalize( ) ;
v2.Normalize( ) ;
C = B + h ∗ v2 + b ∗ v1;

}
};

The input parameters of the function C2Continuation(. . . ) are the parameter
value t of the curve, the design parameters a and b (compare Figure 3.39), the
first three control points A, B, and C and the order n of the Bézier curve. We get
the necessary curvature information from the curve’s osculating circle, compute
the real number h and perform the construction of Figure 3.39 in the osculating
plane of the curve point in question.

We draw the helispiral in the interval [u0, 0] and construct the continuation
Bézier curve in Draw( ):

P3d P [ 6];
Curve.C2Continuation( U0, −3, 0, P [ 0], P [ 1], P [ 2], 5 ) ;
Curve.C2Continuation( 0, 3, −9, P [ 5], P [ 4], P [ 3], 5 ) ;
BezierCurve.Def( Blue, 200, 6, P ) ;

Actually, we connect the start and end points of the helispiral. The construction
itself is very simple, but we have to pay attention to the correct order of the
control points and the correct sign of the second input parameter a. We must
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have a < 0 is necessary for a continuation at the start point, while a > 0 is
needed at the end point. Finally, we draw the common osculating circles and
some additional lines to get a nice illustration (Figure 3.39).

Now we return to the actual modeling of a real-world surface: a specially designed
stove ("spiral stove.cpp"). It has the shape of a slightly deformed ball that
turns into a (more or less) tubular surface with a helispiral spine curve. The
helispiral shape is chosen because it permits a free flow of smoke. It is necessary to
connect the stove to the chimney by means of normed tubes. Thus, the helispiral
tube must finally change to a cylinder of revolution with vertical axis and given
radius r1.

For the actual Open Geometry model we mainly use a channel surface. Only
the bottom part will be a hemissphere of radius r0. The spine curve of the surface
consists of three parts: Two Bézier curves b1 and b2 and a helispiral curve h
(Figure 3.41). The tangent of b1 at the start point and of b2 at the end point
is the z-axis. This allows the connection to the normed tube and to the bottom
hemissphere. Furthermore, the Bézier curves are C2-continuous transition curves
to h (as in the previous example) in order to guarantee a smooth channel surface.

The radius function r(t) should ideally have the shape displayed in Figure 3.40
([τ0, τ1] is the parameter interval we use for the midcurve). It starts with the
initial radius r0 and quickly approaches the final radius r1. The shape of the
curve suggests the function

r(t) = (r0 − r1)e−c(x−τ0) + r1

with c ∈ R
+.

FIGURE 3.40. The radius function.

At the very beginning of our program we decide on the initial and final radii
R0 and R1 of the channel surface and on the parameter interval [T0,T1] of
the helispiral midcurve. The CurvePoint(. . . ) function of the helispiral reads as
follows:

Listing from "spiral stove.cpp":

P3d CurvePoint( Real t )
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{
const Real r = 3, c = 0.2;
Real x, y, z;
x = r ∗ c ∗ t ∗ cos( t ) ;
y = r ∗ c ∗ t ∗ sin( t ) ;
z = 10 ∗ c ∗ t;
return P3d( x, y, z ) ;

}

Of course, we implement the method for constructing C2-continuous Bézier
curves of "osculating curves.cpp" as well. Our total t-parameter interval for
the channel surface will be [T0 − 1,T1 + 1] ([T0,T1] for the helispiral and two
times an interval of length 1 for the Bézier curves). Therefore, the radius and
midpoint functions for the spiral surface are as follows:

Listing from "spiral stove.cpp":

Real rad function( Real v )
{

v = v − T0 + 1;
return ( R0 − R1 ) ∗ exp( −5 ∗ v ∗ v ) + R1;

}
P3d mid function( Real v )
{

if ( v <= T0 )
{

return BezierCurve1.CurvePoint( v + 1 − T0) ;
}
if ( T0 < v && v < T1 )

return MidCurve.CurvePoint( v ) ;
else

return BezierCurve2.CurvePoint( v − T1 ) ;
}

The Bézier curves must, of course, be defined in Init( ). The z-axis is tangent to
both curves:
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Listing from "spiral stove.cpp":

P3d P1 [ 5], P2 [ 5];
MidCurve.C2Continuation( T0, −3, 0, P1 [ 4], P1 [ 3], P1 [ 2], 4 ) ;
P1 [ 1].Def( 0, 0, −15 ) ;
P1 [ 0].Def( 0, 0, −22 ) ;
BezierCurve1.Def( Blue, 200, 5, P1 ) ;

MidCurve.C2Continuation( T1, 3, 0, P2 [ 0], P2 [ 1], P2 [ 2], 4 ) ;
P2 [ 3].Def( 0, 0, 5 ) ;
P2 [ 4].Def( 0, 0, 10 ) ;
BezierCurve2.Def( Green, 200, 5, P2 ) ;

FIGURE 3.41. The spiral stove.

We define three parts of the channel surface in order to be able to use different
colors. Furthermore, we translate the three midcurve parts a little and draw
them in the corresponding colors. The output of the program is displayed in
Figure 3.41. ♦
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3.5 Spline Surfaces
Open Geometry 2.0 not only supports Bézier curves and B-spline curves (see
Section 2.6) but Bézier surfaces and B-spline surfaces as well. Curves and surfaces
are defined and implemented in a more or less analogous way. However, there
is an important difference: The spline surfaces are defined via a 2D array of
control points.

This makes dynamic memory allocation much harder and has an effect on the
use of the corresponding classes in an Open Geometry program. Fortunately,
Open Geometry can support you with that task. In the following we will
shortly describe the main properties of Bézier surfaces and spline surfaces and
present a few examples. Since most properties are analogous to the corresponding
2D classes, we do not go too much into detail.

Bézier surfaces

Integral Bézier surfaces are defined by (m + 1)(n + 1) control points Bij ; for
rational Bézier surfaces we can additionally prescribe an array ωij of weights
(i = 0, . . . , m, j = 0, . . . , n). The following (very basic) properties are important
for the use of Bézier surfaces for design purposes (compare Figure 3.42):

• The border lines are Bézier curves with control polygons B00, . . . , Bm0,
Bm0, . . . , Bmn, Bmn, . . . , B0n and B0n, . . . , B00, respectively.

• The surface contains the points B00, Bm0, B0n, and Bmn of the control net.

• The tangent plane in B00 is spanned by B00, B01, and B10. Analogously we
can determine the tangent planes in Bm0, B0n, and Bmn.

• The control net gives a rough idea of the shape of the Bézier surface.

• The µ-th partial derivatives of the surface along the border line defined by
B00, . . . , Bm0 depend on the points Bij with 0 ≤ j ≤ µ only.14

For the computation of a surface point X = X(u, v), Open Geometry uses a
generalization of DeCasteljau’s algorithm to two-dimensional arrays. That is,
we apply the algorithm to the u-threads of the control nets and produce a control
polygon B∗

0 , . . . , B∗
n. Then we apply the original algorithm to this polygon and

get the corresponding surface point. Of course, it is also possible to start with
the v-threads of the control net.

The Open Geometry classes BezierSurface (and RatBezierSurface) provide
more or less the same methods as the corresponding Bézier curves. That is,
we can split them, elevate the degree, separately change a control point or

14This is important for the construction of smooth blending surfaces.
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FIGURE 3.42. We split a Bézier surface into three patches Φ1, Φ2, and Φ3. Then we
elevate the degree of Φ2 and change the control point P .

weight, draw the control net, and mark the control points. Occasionally, we have
to specify a parameter direction (SplitU(. . . ) and SplitV(. . . )). You can learn
their usa by having a look at the two sample files "bezier surface.cpp" and
"rat bezier surface.cpp". A few sample code lines can be found on pages 484
and 522.

In this place it is necessary to draw your attention to a very important point:
The number of control points is not known before the definition of the surface.
Therefore, it is necessary to allocate the memory for them dynamically. As long
as only one-dimensional arrays are needed (e.g., for Bézier curves), the user need
not be aware of this. C++ syntax does not differ from the standard case. Here,
however, you have to use arrays of pointers to control points. We display the
important code lines of "bezier surface.cpp":

Listing from "bezier surface.cpp":

BezierSurface BezSurf [ 3];

void Scene: :Init( )
{

const int m = 4, n = 3;
P3d ∗∗P = NULL;
ALLOC 2D ARRAY( P3d, P, m, n, "P" ) ;

...
// define the Bézier surfaces
BezSurf [ 0].Def( Blue, 31, 61, m, n, P ) ;
...
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FREE 2D ARRAY( P3d, P, 4, 3, "P" ) ;
}

We define an array of pointers to a P3d object and we allocate and free the
memory in Init( ) by using Open Geometry macros. This method is both
simple and safe. You need not bother about the complex task of allocating the
memory yourself. If you want to use the control points globally, you have to
move the code line that frees the memory to CleanUp( ). This is one of the rare
occasions where this part of an Open Geometry program is really necessary.15

Displaying rational Bézier surfaces is almost as easy. The only difference is that
you have to reserve additional memory for a 2D array of reals (the weights). The
corresponding listing from "rat bezier surface.cpp" reads as follows:

Listing from "rat bezier surf.cpp":

RatBezierSurface BezSurf [ 3];

void Scene: :Init( )
{

const int m = 4, n = 3;
P3d ∗∗P = NULL;
Real ∗∗weight = NULL;
ALLOC 2D ARRAY( P3d, P, m, n, "P" ) ;
ALLOC 2D ARRAY( Real, weight, m, n, "weight" ) ;

. . .
// define the Bézier surfaces
BezSurf [ 0].Def( Blue, 31, 61, m, n, P, weight ) ;
. . .

FREE 2D ARRAY( P3d, P, m, n, "P" ) ;
FREE 2D ARRAY( Real, weight, m, n, "weight" ) ;

}

15If you use dynamic memory allocation, you will usually write a class of your own
with appropriate destructor. That is, the freeing process is handled by class methods
and is not directly visible.



Section 3.5. Spline Surfaces 269

Example 3.22. Cube corner
Even the simple task of designing a more or less cube-shaped object can be
challenging. For a student’s project we had to display a cube with rounded edges.
The transition between the rounding surface and the cube’s faces had to be very
smooth. The designer wanted to avoid any visible discontinuities. Therefore, we
could not simply use quarters of cylinders of revolution: A shadow falling on the
rounded edge would have had a break point.

In order to avoid this, we need at least C2-continuity. Therefore, we decided to
use cylinders with a Bézier curve as base line. The order of the base line b must
be at least five. Figure 3.43 shows a possible configuration of the control points
Pi.

FIGURE 3.43. The profile of the rounding cylinder with control points and parallel
curves.

The triples {P0, P1, P2} and {P2, P3, P4}, respectively, are collinear. As a design
parameter we can choose P1 somewhere on the straight line through P0 and P2.
The corresponding point P3 is determined by the configuration’s symmetry.

With "cube corner1.cpp" we want to solve the following tasks:

• Visualize the cube corner with the rounded edges and all intersection curves.

• Allow interactive change of the design parameter to get an attractive and
useful shape.

• Return the design parameter of the optimal shape for further testing and
use.



270 Chapter 3. 3D Graphics I

We start by defining three congruent Bézier curves XCurve, YCurve, and ZCurve
in planes perpendicular to the coordinate axes:

Listing from "cube corner1.cpp":

P3d P [N];
P [ 0].Def( −L, −A, 0 ) ;
P [ 1].Def( −L, −f ∗ A, 0 ) ;
P [ 2].Def( −L, 0, 0 ) ;
P [ 3].Def( −L, 0, −f ∗ A ) ;
P [ 4].Def( −L, 0, −A ) ;
XCurve.Def( Black, 200, N, P ) ;

In the above listing, L and A are global parameters to determine the length of
the rounding cylinders and the distance of P0 and P4 from the cube’s edge. The
integer N gives the order of the Bézier curve, and f is a local parameter that
is responsible for the positions of P1 and P3. The control points of YCurve and
ZCurve are determined by transforming the control points of XCurve:

Listing from "cube corner1.cpp":

int i;
for ( i = 0; i < N; i++ )
{

P [i].Rotate( Zaxis, 90 ) ;
P [i].Reflect( YZplane ) ;

}
YCurve.Def( Black, 200, N, P ) ;

for ( i = 0; i < N; i++ )
{

P [i].Rotate( Xaxis, 90 ) ;
P [i].Rotate( Zaxis, 90 ) ;

}
ZCurve.Def( Black, 200, N, P ) ;

Now we have to find the intersection curves of the rounding cylinders. Again, they
lie on plane Bézier curves. We find their control points by projecting the control
points of XCurve, YCurve, and ZCurve in planes of symmetry of the coordinate
axes:



Section 3.5. Spline Surfaces 271

Listing from "cube corner1.cpp":

StrL3d s;
Plane a;
a.Def( Origin, V3d( 1, −1, 0 ) ) ;
P3d XY [N];
for ( i = 0; i < N; i++ )
{

s.Def( XCurve.GetControlPoint( i ), Xdir ) ;
XY [i] = a ∗ s;

}
XYCurve.Def( Black, 50, N, XY ) ;

The same is done for the two remaining intersection curves. The cylinders them-
selves are parameterized surfaces. We define them, already taking care of the
intersection curves:

Listing from "cube corner1.cpp":

class MyXYCylinder: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

if ( u <= 0.5 )
return ( 1 − v ) ∗ XCurve.CurvePoint( u ) +

v ∗ XYCurve.CurvePoint( u ) ;
else

return ( 1 − v ) ∗ XCurve.CurvePoint( u ) +
v ∗ ZXCurve.CurvePoint( u ) ;

}
};
MyXYCylinder XYCyl;

So far, we have done everything necessary for the visualization. In order to be
able to change the surface shape interactively, we put the defining methods of
all Bézier curves and the rounding cylinders into a function

void ComputeSurfaces( Real f ),

where f is the value of the design parameter. For the animation we use two global
variables: a real F and a variable of type Boolean called ComputeAgain. Init( )
and Animate( ) now read
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Listing from "cube corner1.cpp":

void Scene: :Init( )
{

F = 0.0;
ComputeAgain = false;
ComputeSurfaces( F ) ;

}

and

Listing from "cube corner1.cpp":

void Scene: :Animate( )
{

if ( ComputeAgain )
{

ComputeSurfaces( F ) ;
ComputeAgain = false;

}
}

The values of F and CompteAgain can change only in a small part written in
Draw( ):

Listing from "cube corner1.cpp":

int key = TheKeyPressed( ) ;
switch (key )
{
case ’f’:

F += 0.02;
ComputeAgain = true;
break;

case ’j’:
F −= 0.02;
ComputeAgain = true;
break;

}
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FIGURE 3.44. Differently shaped cube corners.

That is, if you start the animation and press the key f or j you can change the
appearance of the cube corner. Finally, we print the current value of the design
parameter on the screen in order to fulfill the last task of the program. Two
possible shapes of the cube corner are displayed in Figure 3.44.

After having decided on the optimal shape with respect to technical and optical
criteria, the designer encounters other problems. He has to produce a model
of the object, and again, Open Geometry can help considerably. In order to
produce a metal template, the curve’s profile plus some data for the milling tool
are needed. We write the necessary routines in "cube corner2.cpp". At the top
of the file we find the global constants that determine the length between the
cube’s edge and the beginning of the profile curve, the thickness of the material,
the radius of the milling tool, and the number of discrete positions of the tool
that have to be computed.

Listing from "cube corner2.cpp":

const Real Length = 5.5;
const Real Distance = 0.5;
const Real MillingRad = 1.1;
const int N = 31;

In Init( ) we define the profile curve according to the consideration of the
"cube corner1.cpp" example. Using the method GetOffset(. . . ) of Param-
Curve2d, we can easily display the offset curve at the given distance, taking
into account the thickness of the material. It is necessary to check that it is not
curved too much and has no singularities.
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Listing from "cube corner2.cpp":

const Real a = 0.65 ∗ Length;
const int n = 5;
P2d P [n];
P [ 0].Def( 0, Length ) ;
P [ 1].Def( 0, a ) ;
P [ 2].Def( 0, 0 ) ;
P [ 3].Def( a, 0 ) ;
P [ 4].Def( Length, 0 ) ;
BezierCurve.Def( Black, 200, n, P ) ;
OffsetCurve.Def( Green, 200 ) ;
BezierCurve.GetOffset( Distance, 0, 1, OffsetCurve ) ;

Besides displaying the relevant curves, we perform another task in Draw( ): We
compute different positions of the milling tool and mark them with small circles
(Figure 3.43). The circle centers lie on another offset curve of the profile. The
milling operator has to know their coordinates, so we write them in "try.log".
Note that the vertex of the control polygon of the profile curve coincides with
the center of our coordinate system (P2 = (0, 0)t). This choice gives the most
convenient coordinates for the milling process. ♦

B-spline surfaces

B-spline surfaces and rational B-spline surfaces (NURBS surfaces) are the most
frequent surface type in today’s CAGD, and Open Geometry 2.0 supports
them as well. Please, make sure that you are familiar with the contents of the
section on B-spline curves (page 150) before reading on.

In order to define a B-spline surface, you need a 2D array

{�dij | i = 0, . . . , n1, j = 0, . . . , n2}
of control points, two knot vectors

T1 = {0, . . . , ni − 1, ni, ni + 1, . . . , ni + ki}, i = 1, 2,

and a 2D array of weights ωij (in the case of a rational surface). In parameterized
form, the integral B-spline surface is described by

Φ . . . �X(u, v) =
n1∑
i=0

n2∑
j=0

�dijN
k1
i (u)Nk2

j (v),

u ∈ [tk1−1, tn1+1], v ∈ [tk2−1, tn2+1],

where Nk
i (u) is defined in equation (9) of Chapter 2. However, this is not really

important to us because we can compute the surface point �X(u0, v0) in the
following way:
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1. We apply the algorithm of Cox–De Boor (see page 157) for u = u0 to the
u-threads {�dij | i0 = const.} of the control net {�dij}. This yields a sequence
{�ej} of auxiliary control points.

2. We apply the Cox–De Boor algorithm for v = v0 to the sequence �ej and
gain the surface point �X(u0, v0).

Rational B-spline surfaces can be obtained by applying these algorithms in 4D
and by projecting the resulting surfaces in 3-space.

We now give an example of the use of the Open Geometry class NUBS Surf.
The class NURBS Surf is employed in a completely analogous way. The slightly
different defining methods are listed in Chapter 6, page 501.

Example 3.23. NUBS surface
In Chapter 2, page 159, we described how to generate open and closed B-spline
curves. When we deal with B-spline surfaces we can close the u- and/or v-threads
of the control nets and get four types of surfaces (open–open, closed–open, open–
closed, closed–closed). In "nubs surf.cpp" we will generate a random sequence
of NUBS surfaces of all four types.16 We use the two global variables

NUBS Surf Surf;
RandNum Rnd( −1, 1 ) ;

The rest of the program is contained in Draw( ). This means that a new surface
will be computed with every new frame. At first, we must reserve the memory
for the control points. We use the Open Geometry macro ALLOC 2D ARRAY
for that task:

Listing from "nubs surf.cpp":

int pnum1 = 5, pnum2 = 7; // dimension of control nets

// allocate memory for the control points
P3d ∗∗P = NULL;
ALLOC 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;

Now we define the B-spline surface. Initially, the control points are located on
a torus before they are translated in a random direction. The values of the two
Boolean variables close u and close v are also determined at random.

16"nurbs surf.cpp" does the same for a rational B-spline surface.
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FIGURE 3.45. NUBS surfaces that are closed in zero, one, and two parameter direc-
tions, respectively.

Listing from "nubs surf.cpp":

int i, j;
for ( i = 0; i < pnum1; i++ )

for ( j = 0; j < pnum2; j++ )
{

P [i] [j].Def( 3, 0, 0 ) ;
P [i] [j].Rotate( Yaxis, i ∗ 360.0 / pnum1 ) ;
P [i] [j].Translate( 10, 0, 0 ) ;
P [i] [j].Rotate( Zaxis, j ∗ 360.0 / pnum2 ) ;
P [i] [j].Translate( Rnd( ), Rnd( ), Rnd( ) ) ;

}
Boolean close u = Rnd( ) > 0;
Boolean close v = Rnd( ) > 0;
Surf.Def( Yellow, 50, 50, pnum1, pnum2, P, 3, 3, close u, close v ) ;
Surf.PrepareContour( ) ;

The two integers after the input parameter P determine the continuity class of
the u- and v-parameter lines, respectively. In our case, the surface will be of class
C3. Now we immediately free the memory by writing

FREE 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;

Finally, we shade the surface and draw some parameter lines and the control net.
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Listing from "nubs surf.cpp":

Surf.Shade( SMOOTH, REFLECTING ) ;
Surf.MarkControlPoints( Black, 0.25, 0.15 ) ;
Surf.DrawControlPolygon( Black, MEDIUM ) ;
Surf.Contour( Brown, MEDIUM ) ;
Surf.WireFrame( Brown, 10, 10, THIN ) ;
if ( !close v )

Surf.ULines( Brown, 2, MEDIUM ) ;
if ( !close u )

Surf.VLines( Brown, 2, MEDIUM ) ;

In Figure 3.45 you can see the results for different values of close u and close v.
♦

3.6 Simple 3D Animations
One of the best things in Open Geometry is the possibility of creating animated
scenes. Open Geometry offers a host of tools for transforming the objects of
your scenes. Therefore, animations of moderate complexity can easily be done.
This chapter will present a few examples of that kind. More advanced animations
are left to Sections 4.1 and 4.5.

Example 3.24. Planetary paths
The apparent path curves of planets against the firmament are of a strange
shape. Their weird loops amazed professional astronomers a few hundred years
ago and hobby astronomers of today. The Deutsches Museum München exhibits
a mechanical apparatus to explain their generation (Figure 3.46).

Of course, we have to write an Open Geometry animation of that. The corre-
sponding program is "planet path.cpp". There, we visualize the path of Mer-
cury on an imaginary sky sphere. We chose Mercury because the supporting
plane of its path circle17 intersects the supporting plane of Earth’s path circle in
the (rather big) angle of about 7◦. As a consequence, the resulting path curve
will be more impressive.

We start the program by defining three spheres: Sun, Earth, and Mercury. The
initial position of Mercury is chosen with respect to real astronomical dimension.

17Of course, Mercury’s path is not a circle but an ellipse. For reasons of simplicity,
we will approximate it by a circle.
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FIGURE 3.46. A mechanical device to display the apparent path curve of a planet
in the Deutsches Museum München (left) and its Open Geometry simulation.

Listing from "planet path.cpp":

Sun.Def( Yellow, Origin, 1, 10, 10 ) ;
Earth.Def( Blue, P3d( 15, 0, 0 ), 0.5, 8, 8 ) ;

Mercury.Def( Red, P3d( 6, 0, 0 ), 0.5, 8, 8 ) ;
Real phi = 7;
Mercury.Rotate( Yaxis, phi ) ;
MercuryAxis = Zaxis;
MercuryAxis.Rotate( Yaxis, phi ) ;
Mercury.Rotate( MercuryAxis, 30 ) ;

In Animate( ) we will rotate Earth and Mercury about their respective axes. The
ratio of angular velocities should actually be 88 : 365. We modified it to 91 : 364
in order to achieve a closed path curve after one terrestrial year. We display only
the equatorial zone of the sky sphere because we do not want to disturb the
view of what is happening. Therefore, we use a parameterized surface with the
parameter interval (u, v) ∈ [−tπ, tπ] × [360] and t = 0.1. Later, in Draw( ), we
will shade it by using some transparency.

Listing from "planet path.cpp":

class MySkySphere: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{
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P3d P( 0, Radius ∗ cos( u ), Radius ∗ sin( u ) ) ;
P.Rotate( Zaxis, v ) ;
return P;

}
};
MySkySphere SkySphere;

The most interesting part of Draw( ) is this:

Listing from "planet path.cpp":

StrL3d proj ray;
proj ray.Def( Earth.GetCenter( ), Mercury.GetCenter( ) ) ;

Sphere sky sphere;
sky sphere.Def( NoColor, Origin, Radius ) ;
int n;
P3d A, B;
n = sky sphere.SectionWithStraightLine( proj ray, A, B ) ;
if( proj ray.GetParameter( A ) < 0 )

A = B;
StraightLine3d( Black, Earth.GetCenter( ), A, MEDIUM ) ;
A.Mark( Green, 0.2, 0.1 ) ;
MercuryPath.AddPoint( A ) ;
MercuryPath.Draw( THICK ) ;

We define the projection ray through the centers of Earth and Mercury
and intersect it with the sky sphere. In order to be able to use the
SectionWithStraightLine(. . . ) method of Sphere, we define the sky sphere as a
Sphere object as well. We ensure that the correct intersection point (the point
with positive parameter value on the projection ray) is always stored in A and
add this point to the apparent path curve. The resulting image shows the typical
loops of the planetary path. ♦
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Example 3.25. Circle caustics of higher order
In Example 2.32 we presented the n-th caustic cn of a conic with respect to
a general light source E. Here we will demonstrate how to generate the n-th
caustic of a circle with the help of a reflecting cylinder ζ. Depending on the
position of the light source E and the height h of ζ, a light ray will be reflected
n times before it intersects the base plane of ζ. Thus, the n-th circle caustic will
be visible.

In reality, at most one-half of the caustic occurs. Usually it is even less than
one-half, because the light rays have to enter through the top circle. For our
program ("reflecting cylinder.cpp") we will make two assumptions:

• The cylinder ζ is a one-way mirror, i.e., light rays can enter the interior but
are then reflected inside ζ.

• The light source E is a point at infinity.

The second assumption yields two nice results (compare Figure 3.47)

1. The n-th caustic cn is a trochoid (compare [14], page 239). Let r be the
radius of ζ and a and b the radii of the fixed and rolling circles, respectively.
Then we have

a + 2b = r and
a

b
=

2
2n − 1

. (6)

2. The primary image c0 of cn is an ellipse.18

Now we are going to visualize these results. We start with the caustic cn:

Listing from "reflecting cylinder.cpp":

class MyCaustic: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

Real a = Radius / ( 2 ∗ ReflNum ) ;
Real b = ( Radius − a ) / 2;
Real t = ( a + b ) / b;
P3d P( ( a + b ) ∗ cos( u ) + b ∗ cos( t ∗ u ),

( a + b ) ∗ sin( u ) + b ∗ sin( t ∗ u ), 0 ) ;
return P;

18These results are due to a public talk given by C. Engelhart from Munich’s
Technical University. The primary image c0 is defined as the set of all points X ∈ ζ
such that EX intersects cn after n reflections in ζ.
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FIGURE 3.47. A ray of light l is reflected three times at a cylinder of revolution and
intersects the catacaustic c3. Its primary image c0 on the cylinder is an ellipse.

}
void Def( Color c, int n, Real umin, Real umax, int N )
{

ReflNum = N;
ParamCurve3d: :Def( c, n, umin, umax ) ;

}
private:

int ReflNum;
};
MyCaustic Caustic;

The number n of reflections is stored in the private integer variable ReflNum and
has to be passed together with the definition of the caustic. For the parametric
representation we solved the formulas (6) for a and followed considerations in
[14].

We use a global variable N to store the number of reflections. During the ani-
mation we will be able to change this value interactively. Therefore, we have to
define the caustic in Draw( ):

Listing from "reflecting cylinder.cpp":

Caustic.Def( Yellow, N ∗ 100, Umin, Umax, N ) ;
Caustic.Draw( MEDIUM ) ;
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We draw only one-half of the caustic (the part that can actually occur). For this
we have to take umin = (1 − 2N)π and umax = 0. The higher the number N of
reflections, the longer the caustic will be. Hence the total number of computed
curve points depends on N as well.

Now we compute the primary image of cn on ζ. For this task we will use a special
function:

Listing from "reflecting cylinder.cpp":

void ReflectAtCylinder( StrL3d &s )
{

V3d d = s.GetDir( ) ;
P3d P = s.GetPoint( ) ;
int n;
Real t1, t2;
n = QuadrEquation( d.x ∗ d.x + d.y ∗ d.y, 2 ∗ P.x ∗ d.x + 2 ∗ P.y ∗ d.y,

P.x ∗ P.x + P.y ∗ P.y − Radius ∗ Radius, t1, t2 ) ;
if ( n )
{

P3d S = s.InBetweenPoint( max( t1, t2 ) ) ;
d.Reflect( Plane( S, V3d( S.x, S.y, 0 ) ) ) ;
s.Def( S, d ) ;

}
}

The input parameter is a straight line s. We insert the parametric representation
of s in the equation x2 + y2 = r2 of ζ and compute the parameter values of
the intersection points by solving the resulting quadratic equation. Then we use
the fact that in Open Geometry every StrL3d object is equipped with an
orientation: Since we deal only with reflection on the inside of ζ, we can always
take the intersection point S that corresponds to the bigger parameter value.
Finally, we reflect s at the tangent plane of ζ in S and redefine s. Note that the
“new” line s will have the right orientation! Now we can implement the image
c0 of cn on the reflecting cylinder:

Listing from "reflecting cylinder.cpp":

class MyCausticImage: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

P3d C = Caustic.CurvePoint( u ) ;
V3d dir = Caustic.TangentVector( u ) ;
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if ( u < critical u )
dir ∗= −1;

dir.z = DeltaZ;
StrL3d s( C, dir ) ;
int i;
for ( i = 0; i < ReflNum; i++ )

ReflectAtCylinder( s ) ;
return s.GetPoint( ) ;

}
Real CriticalU( void )
{

return critical u;
}
void Def( Color col, int m, Real umin, Real umax, int n )
{

ReflNum = n;
critical u = ( 0.5 − ReflNum ) ∗ PI;
ParamCurve3d: :Def( col, m, umin, umax ) ;

}
private:

int ReflNum;
Real critical u;

};
MyCausticImage CausticImage;

Here we have two private member variables: the total number of reflections and
a critical parameter value that depends on this number. The main idea of the
CurvePoint(. . . ) function tracing back the path of the incoming ray of light. We
start with the caustic point and the corresponding tangent vector dir. The z-
value of dir is set to a value DeltaZ that remains constant during the program. It
determines the position of the light source E in [y, z]. DeltaZ and the incidence
angle α of the light rays with [x, y] satisfy the relation DeltaZ = tanα.

We have to take care to use the correct orientation of the light ray at the be-
ginning of the backward ray-tracing. Later, our function ReflectAtCylinder(. . . )
will do this for us. For this purpose we can use the critical parameter value criti-
cal u. It belongs to the cusp of cn. There, we have to correct the direction of the
tangent. We reflect s at the cylinder’s surface and finally return the point used
for the last redefinition of s in ReflectAtCylinder(. . . ). Again, we have to put the
definition of the curve in Draw( ):

Listing from "reflecting cylinder.cpp":

CausticImage.Def( Red, N ∗ 100, Umin, Umax, N ) ;
CausticImage.Draw( MEDIUM ) ;
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In order to demonstrate the generation of both curves cn and c0, we draw the path
of one ray of light on the screen. The considerations behind the following lines
are identical to those of the CurvePoint(. . . ) function of the primary image c0:

Listing from "reflecting cylinder.cpp":

V3d dir = Caustic.TangentVector( U ) ;
if ( U < CausticImage.CriticalU( ) )

dir ∗= −1;
dir.z = DeltaZ;
P3d C old, C = Caustic.CurvePoint( U ) ;
C.Mark( Yellow, 0.2, 0.1 ) ;
StrL3d s( C, dir ) ;
int i;
for ( i = 0; i < N; i++ )
{

ReflectAtCylinder( s ) ;
C old = C;
if ( i > 0 )

C old.Mark( Yellow, 0.15 ) ;
C = s.GetPoint( ) ;
StraightLine3d( Yellow, C old, C, THIN ) ;

}
C.Mark( Red, 0.2, 0.1 ) ;
s.Draw( Yellow, 0, 10, THIN ) ;

Finally, we define and shade the reflecting cylinder ζ transparently and allow
the interactive control of N. The height of ζ will always be enough to provide
space for the primary image c0. The output of "reflecting cylinder.cpp" is
displayed in Figure 3.47.

Listing from "reflecting cylinder.cpp":

ReflCyl.Def( Blue, Radius, Radius, ( 2 ∗ N − 1 ) ∗ Radius ∗ DeltaZ,
50, HOLLOW, Zaxis ) ;

SetOpacity( 0.2 ) ;
ReflCyl.Shade( SMOOTH, REFLECTING ) ;
SetOpacity( 1 ) ;

// Allow interactive change of reflection number.
int key = TheKeyPressed( ) ;
switch (key )
{
case ’f’:

N += 1;
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Umin = −( 2 ∗ N − 1 ) ∗ PI;
break;

case ’j’:
if ( N > 1 )

N −= 1;
Umin = −( 2 ∗ N − 1 ) ∗ PI;
break;

}
PrintString( Black, 6, 17.5, "Press <f>or <j>to increase or" ) ;
PrintString( Black, 6, 16.5, "decrease the number of reflections" ) ;
PrintString( Black, 6, 15.0, "number of reflections...%2.0f", N ) ;

♦

Example 3.26. Folding conoids
In "folding conoids1.cpp" we visualize a simple mechanical method of gen-
erating a pair of right conoids. We start with a bunch si of z-parallel lines in
[x, z ] (i = 0, . . . ,N). Here, A[ i ] and B[ i ] are the intersection points of si with
two x-parallel straight lines a and b. That is, the points A[ 0 ], A[N ], B[ 0 ], and
B[N ] are the corners of a rectangle in [ x, z ].

FIGURE 3.48. Folding a pair of right conoids.

Now we choose a joint of revolution F[ i ] on each line si. The joint F[ i ] allows a
rotation about an axis parallel to x; i.e., we can fold the line segment A[ i ]B[ i ].
Now we translate a and the points A[ i ] parallel to z and keep b and the points
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B[ i ] fixed. Then the line segments will fold at the joints F[ i ] and yield two sets
of rulings on right conoids (Figure 3.48).19

Reversed, we can (at least locally) generate any right conoid Ψ in this way:
Figure 3.49 displays the normal projection of a generator s of Ψ onto a director
plane. We consider an arbitrary plane ε parallel to the projection rays. The
intersection curve of Ψ and ε is c. Now we choose a curve c∗ ⊂ Ψ such that for
any generator s of Ψ the distance between A := s ∩ c and A∗ := c ∩ c∗ is of
constant length a+ b (a and b are arbitrary positive reals); F is the unique point
on s with AF = a and FA∗ = b. If b > Fε, we can find a real point B ∈ ε
such that FB = FA∗ = b, and this is still possible in some neighborhood of the
generator s. Now the points A, B, and F have the same meaning as A[i], B[i],
and F[i] in the preceding considerations.

FIGURE 3.49. Any right conoid can be folded.

It is not difficult to imitate this construction mechanically or in an Open Geo-
metry program. The corresponding code is straightforward. Its heart is a func-
tion that computes the position of F[ i ] from the z-coordinate ζ of A[ i ]:

Listing from "folding conoids1.cpp":

void SetPoints( Real zeta )
{

int i;
Real x, y, z;
for ( i = 0, x = X0; i < N; i++, x += Delta x )
{

z = ( a [i] ∗ a [i] − b [i] ∗ b [i] + ( Z1 + zeta ) ∗ ( Z1 − zeta ) )
/ ( 2 ∗ ( Z1 − zeta ) ) ;

y = −z ∗ z + 2 ∗ zeta ∗ z + a [i] ∗ a [i] − zeta ∗ zeta;
if ( y >= 0 )

19All rulings intersect either a or b and the line at infinity of [ y, z ].
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{
y = Sqrt( y ) ;
A [i].Def( x, 0, zeta ) ;
F [i].Def( x, y, z ) ;

}
}

}

We have to intersect two circles in a plane parallel to [ y, z ] centered at A[ i ] and
B[ i ]. Their radii a[ i ] and b[ i ] are determined by the initial position of the joints
F[ i ]. We define them in Init( ):

Listing from "folding conoids1.cpp":

void Scene: :Init( )
{

int i;
Real x;
for ( i = 0, x = X0; i < N; i++, x += Delta x )
{

a [i] = cos( x ) + 0.5 ∗ Height;
b [i] = Height − a [i];
A [i].Def( x, 0, Z0 ) ;
B [i].Def( x, 0, Z1 ) ;
F [i].Def( x, 0, Z0 + a [i] ) ;

}
}

The points X0, X1, Z0, and Z1 are the original x- and z-coordinates of A[ 0 ],
A[N ], B[ 0 ], and B[N ] (Figure 3.48). Height = Z1 – Z0 is the total height of the
rectangle. In order to provide the possibility of an interactive animation we write
in Draw( ):

Listing from "folding conoids1.cpp":

int key = TheKeyPressed( ) ;
switch (key )
{
case ’u’:

SetPoints( A [ 0].z + Delta z) ;
break;

case ’d’:
SetPoints( A [ 0].z − Delta z ) ;

break;
}
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Having started the animation, the z-coordinate of the points A[ i ] will be in-
creased by Delta z each time you press “u”. Pressing “d” will decrease the z-
coordinate.

Of course, we can also shade the two conoids. In "folding conoids2.cpp" we
introduced a new class derived from RuledSurface:

Listing from "folding conoids2.cpp":

class FoldingConoid: public RuledSurface
{
public:

void Def( Color c, int m, int n, Real u1, Real u2,
Real v1, Real v2, Real height, Real zeta )

{
H = height;
Zeta = zeta;
RuledSurface: :Def( c, m, n, u1, u2, v1, v2 ) ;

};
virtual Real FoldingFunction( Real u ) = NULL;
virtual P3d DirectrixPoint( Real u )
{

return P3d( u, 0, Zeta ) ;
};
virtual V3d DirectionVector( Real u )
{

Real a = FoldingFunction( u ) ;
Real b = H − a;
Real z = ( a ∗ a − b ∗ b + ( H + Zeta ) ∗ ( H − Zeta ) )

/ ( 2 ∗ ( H − Zeta ) ) ;
Real y = sqrt( fabs( −z ∗ z + 2 ∗ Zeta ∗ z +

a ∗ a − Zeta ∗ Zeta ) ) ;
return V3d( 0, y, z − Zeta ) ;

};
private:

Real H;
Real Zeta;

};

An instance of this class needs the standard input parameters of a parameterized
surface, the total height of the initial rectangle, and the current z-coordinate zeta
of the straight line a. The DirectrixPoint(. . . ) and DirectionVector(. . . ) functions
of RuledSurface are replaced by the virtual function FoldingFunction(. . . ). The
computation of the direction vector is more or less a copy of the last example’s
SetPoints(. . . ).

The first conoid of "folding conoids2.cpp" is an instance of FoldingConoid,
while the second is much easier to implement as an instance of RuledSurface:
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Listing from "folding conoids2.cpp":

class MyConoid1: public FoldingConoid
{

virtual Real FoldingFunction( Real u )
{

return cos( 2 ∗ PI / 5 ∗ u ) + 5;
}

};
MyConoid1 Conoid1;

class MyConoid2: public RuledSurface
{

virtual P3d DirectrixPoint( Real u )
{

return P3d( u, 0, Height ) ;
};
virtual V3d DirectionVector( Real u )
{

return Conoid1.SurfacePoint( u, 1 ) − DirectrixPoint( u ) ;
}

};
MyConoid2 Conoid2;

For the animation we use a pulsing real Z and define the conoids in Draw( ).
Figure 3.50 shows a few screen shots from the program.

FIGURE 3.50. The folded conoids are smooth-shaded.
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Listing from "folding conoids2.cpp":

Real z = Z.Next( ) ;
Conoid1.Def( Blue, 50, 25, −5, 5, 0, 1, Height, z ) ;
Conoid2.Def( Green, 50, 25, −5, 5, 0, 1 ) ;

♦
In our next example, we go on folding surfaces. This time, however, we deal with
torses rather than conoids.

Example 3.27. Folding torses
It is well known that the class of developable surfaces is rather small: Only cylin-
ders, cones, and torses can be mapped isometrically to the plane. Developable
surfaces are characterized by the existence of a one-parameter set of rulings along
which the plane of tangency is constant. At least locally, a developable surface
can be flattened — without being stretched or torn — to a plane area. Reversed,
we can twist a plane area and get a torse. Have a look at "folding torses.cpp"
to see an animation. We fold and twist a circle ring and get a developable helical
surface (a helical torse).

FIGURE 3.51. Twisting a flat ring to a screw torse.

The basic geometric idea of the program is very simple. The generators of the
developed torse are the tangents of some circle c. We take a finite set {g0, . . . , gn}
of equally distributed generators and rotate g1, . . . , gn about g0 through a small



Section 3.6. Simple 3D Animations 291

angle ϕ. Then we rotate g2, . . . , gn about g1 through ϕ, and so on. After n steps,
the generators gi approximate a helical torse. We can start the whole thing again
and, after n more steps, get another helical torse.

In "folding torses.cpp" we implement a new class called TorseGrid. It consists
of two sequences A0, . . . , An and B0, . . . , Bn of points. The points Ai and Bi

determine a straight line gi = AiBi (the generator of the developed torse). We
define some standard methods for defining, drawing, and shading the grid. The
key method, however, is the following:

Listing from "folding torses.cpp":

void TorseGrid: :Twist( int i, Real w )
{

StrL3d a( A [i], B [i] ) ;
int j;
for ( j = i + 1; j < PNum; j++ )
{

A [j].Rotate( a, w ) ;
B [j].Rotate( a, w ) ;

}
}

It performs just the rotation operation we have described above; i.e., the straight
lines gi+1, . . . , gn are rotated around the axis gi through w. In Init( ) we initialize
the starting position with the help of two auxiliary functions (N is the total
number of torse generators; L is their length):

Listing from "folding torses.cpp":

P3d P [N], Q [N];
int i;
Real t, delta = 2 ∗ PI / ( N − 1 ) ;
for ( i = 0, t = 0; i < N; i++, t += delta )
{

P [i] = FirstPoint( t ) ;
Q [i] = SecondPoint( t, L ) ;

}
Torse.Def( N, P, Q ) ;
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The auxiliary functions return a point on the circle c and on the corresponding
circle tangent:


r cos t

r sin t
ζ


 and


r cos t − L sin t

r sin t + L cos t
ζ


 .

Now Draw( ) is really very simple. We shade the torse and twist it with each new
frame:

Listing from "folding torses.cpp":

void Scene: :Draw( )
{

Torse.DrawGenerators( Black, THIN, 1e−2 ) ;
Torse.DrawBorder( Black, MEDIUM ) ;
Torse.ShadeFlat( Green ) ;
Torse.Twist( FrameNum( ) % N, Phi ) ;

}

♦

Example 3.28. Minding’s isometries
Surprisingly, the rather simple concept of Example 3.27 is capable of dealing with
a very complex problem of differential geometry (of course, within certain limits
that result from the fact that we use only a discrete number of generators). It is
known as Minding’s problem: Bend a ruled surface Φ to another ruled surface
Φ∗ so that the generators of Φ and Φ∗ correspond.

All solutions to Minding’s problem were described by E. Kruppa in 1951 ([20]).
He could describe all surfaces that can be bent to a given ruled surface Φ in the
Minding sense. Furthermore, he gave a criterion to decide whether two given
surfaces Φ and Φ∗ are Minding isometric (which is how two surfaces of that kind
are called). This criterion is rather simple within the whole theory of Kruppa
but far too complicated to be explained here. An immediate consequence of
Kruppa’s theory is the following proposition:

If two ruled surfaces Φ and Φ∗ are Minding isometric, their central lines neces-
sarily correspond.

This means that in a neighborhood of a ruling r ⊂ Φ the Minding isometric
map is just a rotation about r. That is almost what we did in the previous
example. The only (irrelevant) difference is that here successive generators are
skew, while they intersect in "helical torse2.cpp". Hence, we can (at least
locally) approximate any Minding isometric map.
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FIGURE 3.52. Bending helicoids in the Minding sense.

A first example is "minding1.cpp". We added a few methods to the class TorseG-
rid and call it GeneratorGrid in this program. The additional methods are “get-
ters” for A[i], B[i], and gi = A[i]B[i] which are quite use for experimental usage
of GeneratorGrid. A further special method is Shade(. . . ):

Listing from "minding1.cpp":

void GeneratorGrid: :ShadeFlat( Color col )
{

int i;

Poly3d triangle1, triangle2;
for ( i = 1; i < PNum; i++ )
{

triangle1.Def( col, 3, FILLED ) ;
triangle1 [ 1] = A [i−1];
triangle1 [ 2] = A [i];
triangle1 [ 3] = B [i];
triangle2.Def( col, 3, FILLED ) ;
triangle2 [ 1] = A [i−1];
triangle2 [ 2] = B [i];
triangle2 [ 3] = B [i−1];
triangle1.Shade( ) ;
triangle2.Shade( ) ;

}
}
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We cannot shade a spatial quadrangle, so we shade two triangles instead. We
already used this in "helical torse2.cpp" even though it was not absolutely
necessary, since we shaded only plane quadrangles.20

Furthermore, we changed the curves on which A[ i ] and B[ i ] are located:

Listing from "minding1.cpp":

P3d FirstPoint( Real t )
{

return P3d( R ∗ cos( t ), R ∗ sin( t ), t ∗ P ) ;
}
P3d SecondPoint( Real t, Real dist )
{

return FirstPoint( t ) + dist ∗ V3d( −sin( t ), cos( t ), 0 ) ;
}

That is, the initial surface is a helicoid with generators orthogonal but skew to the
axis of rotation. The rest of the program can remain as it is, a good argument for
the flexibility of our concept. Because of the symmetry of the initial configuration
our animation is an exact model for the bending of a helical surface to a catenoid.

As an alternative, we can bend a right helicoid into a cone of revolution
("minding2.cpp"). This is, however, only a theoretical possibility, since it needs
an infinite number of rotations. The cone of revolution is the result of a passage
to the limit (Figure 3.52).

Just one more thing: In "minding1.cpp" we experimented a little with the pa-
rameters of the surface and the animation to produce a nice, closed catenoid.
The animation will stop when B[ 0 ] and B[N ] are sufficiently close. If you use
other parameters, you will get a catenoid, too but there may be gaps or regions
that are covered twice and the animation will continue. If the animation runs
too long, the twisted surface becomes very long and small, and at some point
the visibility algorithms will fail. ♦
In Section 2.1 we already talked about families of curves in two dimensions. Of
course, there exist numerous 3D examples as well. We present two of them that
concern curves on a torus.

20This method is not as sophisticated as Open Geometry’s standard shading al-
gorithms. When a surface triangle is to be shaded, Open Geometry creates the im-
pression of a smooth surface by computing different colors for the three vertices and
blending them.
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Example 3.29. Spiric lines
In "torus curves1.cpp" we intersect a torus T with a plane π parallel to its
axis a. The resulting curve is called a spiric line and was already investigated by
the ancient Greeks (Perseus, 130 b.c.). It is an algebraic curve of order four
and can be of diverse shapes. Let A be the radius of the midcircle of T, B the
radius of the meridians, and D the distance between π and a, see Figure 3.53.

FIGURE 3.53. Different shapes of spiric lines. (a) D = 0: two circles, (b)
0 < D < A − B: two ovals, (c) D = A − B: lemniscate, (d) A − B < D < A: closed
concave curve, (e) A = D: oval with flatpoints, (f ) A < D < A + B: closed oval curve.

In the program we adjust a frame rectangle, representing the plane π, in a suitable
position; i.e., in Init( ) we get it in a position parallel to the z-axis; in Draw( )
we translate it to the point (0, y, 0)t.

Listing from "torus curves1.cpp":

Frame.Translate( 0, y − Frame [ 1].y, 0 ) ;

The real number y is the current value of an instance of a pulsing real PulsingReal
that swings harmonically between ±(A+B). In the next step we shade the torus
surface and intersect the carrier plane of the frame with the parallel circles of
the torus:

Listing from "torus curves1.cpp":

int i, n;
Circ3d circle;
Real v;
Real delta = PI / ( CircNum − 1 ) ;
Plane p( Frame [ 1], Frame [ 2], Frame [ 3] ) ;
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P3d S [ 2];
for ( i = 0, v = 0; i <= CircNum; i++, v += delta )
{

circle.Def( Red, P3d( 0, 0, B ∗ sin( v ) ),
V3d( 0, 0, 1 ), A − B ∗ cos( v ), 10, EMPTY ) ;

n = circle.SectionWithPlane( p, S [ 0], S [ 1] ) ;
if ( n )

Curve.AddPoint( S [ 0] ) ;
}

Curve.Draw( MEDIUM ) ;
Curve.Reflect( YZplane ) ;
Curve.Draw( MEDIUM ) ;
Curve.Reflect( XYplane ) ;
Curve.Draw( MEDIUM ) ;
Curve.Reflect( YZplane ) ;
Curve.Draw( MEDIUM ) ;

If there exist real intersection points, we add the first one to the PathCurve3d
object Curve.21 This path curve will store the point of one quarter of the spiric
line. We draw it and reflect it three times at the coordinate planes to get the
whole curve.

So far, so good. Our way of calculating the curve points leads to numerical
problems if A < D < A + B. We need a correction in order to avoid gaps in the
curve. Simply connecting the end points of corresponding quarters will help:

Listing from "torus curves1.cpp":

if ( fabs( y ) >= A − B )
{

P3d H1 = Curve [ 1];
P3d H2 = H1;
H2.Reflect( YZplane ) ;
StraightLine3d( DarkBlue, H1, H2, MEDIUM ) ;
H1.Reflect( XYplane ) ;
H2.Reflect( XYplane ) ;
StraightLine3d( DarkBlue, H1, H2, MEDIUM ) ;

}

21You see that the use of PathCurve3d is not limited to kinematic animations.
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Now the output is entirely satisfactory, and our animation shows the transition
between the different shapes of the spiric line (Figure 3.54).

Using the same idea, we can write a 2D animation as well ("spiric lines.cpp").
There we compute the points of the spiric line directly and add them to our path
curve. We used this program to produce Figure 3.53. Here are the relevant lines
in Draw( ):

Listing from "spiric lines.cpp":

int i;
Real v;
Real delta = PI / ( PointNum − 1 ) ;
for ( i = 0, v = 0; i <= PointNum; i++, v += delta )
{

Real x = Sqr( A − B ∗ cos( v ) ) − y ∗ y;
if ( x >= 0 )
{

SpiricLine.AddPoint( P2d( sqrt( x ), B ∗ sin( v ) ) ) ;
}

}

FIGURE 3.54. Spiric lines on a torus.

♦



298 Chapter 3. 3D Graphics I

FIGURE 3.55. Villarceau circles on a torus (left) and a generic intersection of
torus and a plane through the torus center (right).

Example 3.30. Planar sections of a torus
A variation of the idea of Example 3.29 is to be found in "torus curves2.cpp".
There we intersect a torus with a plane through its center. The resulting curves
are again of order four and of diverse shapes.

The basic programming ideas are the same. We must, however, take care of a
certain problem that arises when the intersecting plane is of small slope. Then
only few parallel circles intersect the plane, and we do not get enough curve
points.

Therefore, we replace the parallel circles by meridian circles if the angle Phi be-
tween the π and the [x, y ]-plane is within a certain critical interval [−Phi0,Phi0 ].
By setting Phi0 := arcsin B/A we can ensure that all meridian circles have real
intersection points with π. The relevant lines in Draw( ) read as follows:

Listing from "torus curves2.cpp":

if ( fabs( Phi ) < Phi0 )
{

int i, j, n;
Circ3d circle;
Real u;
Real delta = 2 ∗ PI / ( CircNum − 1 ) ;
Plane p( Frame [ 1], Frame [ 2], Frame [ 3] ) ;
P3d S [ 2];
for ( i = 0, u = 0; i <= CircNum; i++, u += delta )
{

circle.Def( Red, P3d( A ∗ cos( u ), A ∗ sin( u ), 0 ),
V3d( −A ∗ sin( u ), A ∗ cos( u ), 0 ), B, 10, EMPTY ) ;

n = circle.SectionWithPlane( p, S [ 0], S [ 1] ) ;
for ( j = 0; j < n; j++ )

Curve [j].AddPoint( S [j] ) ;
}

}
else
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{
int i, j, n;
Circ3d circle;
Real v;
Real delta = 2 ∗ PI / ( CircNum − 1 ) ;
Plane p( Frame [ 1], Frame [ 2], Frame [ 3] ) ;
P3d S [ 2];
for ( i = 0, v = 0; i <= CircNum; i++, v += delta )
{

circle.Def( Red, P3d( 0, 0, B ∗ sin( v ) ),
V3d( 0, 0, 1 ), A − B ∗ cos( v ), 10, EMPTY ) ;

n = circle.SectionWithPlane( p, S [ 0], S [ 1] ) ;
for ( j = 0; j < n; j++ )

Curve [j].AddPoint( S [j] ) ;
}

}

In Animate( ) we rotate the frame rectangle about the x-axis through a certain
angle Delta. In addition, we update the rotation angle Phi that is used for the
decision whether to use parallel circles or meridian circles for the calculation of
curve points:

Listing from "torus curves2.cpp":

void Scene: :Animate( )
{

Frame.Rotate( Xaxis, Delta ) ;
Phi += Delta;
if ( Phi > 90 )

Phi −= 180;
}

By the way; in the case of Phi = ±Phi0 we get a pair of circles as intersection
curve. This was discovered by Villarceau in 1848. We choose Phi = −Phi0
as start value. So you can see the Villarceau circles in the first frame (Fig-
ure 3.55). ♦
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4

3D Graphics II

After having dealt with rather fundamental examples of 3D geometry in Chap-
ter 3 we pass on to more advanced topics. You will find sections on

• spatial kinematics,

• complex animations

• Open Geometry’s import and export facilities,

• Boolean operations,

• texture mapping.

We believe that even experienced Open Geometry programmers will find new
ideas in this chapter. Novices may perhaps not understand every detail of the
examples, but the results are definitely worth looking at.

4.1 Spatial Kinematics
The modeling of kinematic devices in three-space is usually much more demand-
ing than the analogous task in 2D. Usually the involved motions are much more
complicated than those of planar kinematics, and without a basic knowledge of
the geometric concepts and a good store of methods for realizing them on the
computer screen, it may be very difficult to visualize them. In the following we
present some examples that will give a few hints on how to do this in Open
Geometry 2.0.
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Example 4.1. Escher kaleidocycles
First we present the Open Geometry animation of a few sophisticated spatial
mechanisms that are called Escher kaleidocycles in [33]. The name of the famous
Dutch artist M.C. Escher is a bit misleading in this context; since [33] just
makes use of Escher’s well known regular plane-filling patterns (see [6]) as
textures for beautiful little paper models. The mechanism itself was studied
earlier by R. Bricard.

FIGURE 4.1. Various kaleidocycles (compare the programs "kaleidocycle1.cpp"

and "kaleidocycle2.cpp").

Three different types of these mechanisms are mentioned in [33]. In fact, using
the same ideas, it is easy to derive infinitely many examples of kaleidocycles (we
will do this in our programs). But before beginning to write any animation we
have to understand their geometric properties. In Figure 4.1 several images are
displayed. You can see that the objects consist of an even number n of congruent
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tetrahedra. They are arranged in cyclic order. At corresponding edges they are
linked in a way that a rotation about the edge is possible.

FIGURE 4.2. The cinematic mechanism of the Escher kaleidocycle.

For simplicity, we will restrict our attention to the case n = 6 in the following
description. Then, from the point of view of spatial kinematics, we have six
frames Σ1, . . . ,Σ6 (each represented by a tetrahedron) that are connected by six
axes of revolution a12, . . . , a61 (see Figure 4.2). A system of this kind is rigid
in general, but, as in our example, it may turn out to be flexible under certain
circumstances. A closer examination shows, for example, that two successive axes
ai−1,i and ai,i+1 have perpendicular directions.1

We can also represent the kaleidocycle by a mechanism M that consists of six
straight lines l1, . . . , l6 (li being the common normal of ai−1,i and ai,i+1) that
can be rotated about these axes.

Furthermore, we see that the distance d between the feet of li is constant. These
conditions are already sufficient to guarantee the following properties of M (Fig-
ure 4.2):

1. The common normals l1, . . . , l6 form a closed 3D polygon.

2. M possesses one-parameter mobility.

1In the following we will adopt the convention of always reading indices modulo 6.
This gives us the possibility to write down our thoughts in both a readable and exact
way.
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3. Independent of the current position of M , the axes a12, a34, a56 and a23,
a45, a61 intersect in a common point Z1 or Z2, respectively.2

4. The two opposite axes ai,i+1 and ai+3,i+4 span a plane σi, and M is always
symmetric with respect to σi.

5. The three planes σ1, σ2, and σ3 intersect in the straight line z = [Z1, Z2 ].

6. A rotation about z through an angle of n · 120◦ brings σi to σi+n.

All of these properties are relevant to our attempt to realize this mechanism on
the computer. In order to keep the symmetry during the animation, we will use
a further frame Σ0 in which the straight line z is fixed. Only translations in the
direction of z will be permitted.

Now we have to do some precalculations to determine the position of our system’s
axes. We can assume that z is the third axis of a Cartesian coordinate system
and that σ0 is the [x, z]-plane. The axes a12 and a23 are then determined by their
intersection points with z and the [x, y]-plane (compare Figure 4.3):

a12 ∩ z = (0, 0, u)t, a23 ∩ z = (0, 0, u∗)t,

a12 ∩ [x, y ] = (v, 0, 0)t, a23 ∩ [x, y ] = (cv∗, sv∗, 0)t,

where c = cos 60◦ and s = sin 60◦.

FIGURE 4.3. Calculating the position of the axes.

Taking into account the possible translation along z, we can, without loss of
generality, assume that v∗ = v. In the animation this will help us to keep the
mechanism centered near the origin of our coordinate system.

The straight lines a12 and a23 have to meet the following two conditions:

2Of course, the points Z1 and Z2 vary as M is actuated.
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• a12 and a23 are perpendicular.

• The feet F1 and F2 of their common normal l1 are separated by the fixed
distance d.

The first condition yields

u∗ = −cv2

u
.

After some strenuous computations, the second condition leads to the following
relation between u and v:

c2s2v6 + c(2s2u2 − cd2)v4 + [s2(u2 − d2) − 2c2d2]u2v2 − d2u4 = 0. (1)

This equation reduces to an algebraic equation of degree three in the variable
V := v2. It can efficiently be solved by well-known formulas ([35]) that are inte-
grated into Open Geometry 2.0. We will prefer this to solving equation (1) for
u (which would require the solution to an equation of degree two only!) for the
following reason:

We can prove that the algebraicalgebraic!equation of degree three that we get
by substituting v =

√
V always has exactly one positive solution V0 > 0 without

any restriction on the parameter u. To prove this is not difficult, but still, this
is not the right place for it. The solution V0 is the only one that is useful for
our purposes. This is quite convenient for our animation program. Solving (1)
for u would mean that we have to take care of the range of parameter v to
avoid imaginary solutions and the usual numerical problems. After all these
considerations, we are ready to write the program ("r6-mechanism.cpp").3

According to (1), we define a function CalcV( Real u ) taking u as argument and
returning v as value:

Listing from "r6-mechanism.cpp":

Real CalcV( Real U )
{

Real coeff [ 4];
const Real u 2 = U ∗ U;
const Real d 2 = Dist ∗ Dist;
const Real angle in rad = 2 ∗ PI / N;
const Real c = cos( angle in rad ) ;
const Real c 2 = c ∗ c;
const Real s 2 = pow( sin( angle in rad ), 2 ) ;

3M is called an R6 mechanism because it consists of six frames connected by 6
axes of Revolution.
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coeff [ 0] = −d 2 ∗ u 2 ∗ u 2;
coeff [ 1] = u 2 ∗ ( s 2 ∗ ( u 2 − d 2 ) − 2 ∗ c 2 ∗ d 2 ) ;
coeff [ 2] = c ∗ ( 2 ∗ s 2 ∗ u 2 − c ∗ d 2 ) ;
coeff [ 3] = c 2 ∗ s 2;
Real u [ 3];
int n = 0;
n = ZerosOfPoly3( coeff, u ) ;
if ( n == 1 )

return Sqrt( u [ 0] ) ;
else

return Sqrt( u [ 2] ) ;
}

Note that we need not worry much about finding the correct solution. The
ZerosOfPoly3(. . . ) function returns the real solutions in ascending order, and
we know that there exists exactly one positive root. We use this function to com-
pute the first axis axis[ 0 ] = a12. Then we define the following axis axis[ 1 ] = a23
due to our considerations above and use the symmetry of M to get the rest. We
draw the common normals, mark the relevant points, and the job is done!4

Listing from "r6-mechanism.cpp":

Zaxis.LineDotted( Blue, −16, 16, 32, THIN ) ;
int i = 0;
// Intersection point of the axes Axis [ 0],
// Axis [ 2] and Axis [ 4] with the z-axis:
P3d Z1( 0, 0, U ) ;
// Intersection point of the axes Axis [ 1],
// Axis [ 3] and Axis [ 5] with the z-axis:
P3d Z2( 0, 0, − cos( 2 ∗ PI / N ) ∗ V ∗ V / U ) ;

// Intersection points of the axes and [xz]-plane
// define the axes of revolution:
P3d P [N];
const Real angle = (Real) 360 / N;
for ( i = 0; i < N; i += 2 )
{

P [i].Def( V, 0, 0 ) ;
P [i].Rotate( Zaxis, i ∗ angle ) ;
Axis [i].Def( Z1, P [i] ) ;
StraightLine3d( Black, Z1, P [i], MEDIUM ) ;

}

4In the following listing the integer N denotes the number of axes, e.g., N = 6 in our
case.
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for ( i = 1; i < N; i += 2 )
{

P [i].Def( V, 0, 0 ) ;
P [i].Rotate( Zaxis, i ∗ angle ) ;
Axis [i].Def( Z2, P [i] ) ;
StraightLine3d( Black, Z2, P [i], MEDIUM ) ;

}

// The feet of the common normals
P3d F [N];
V3d dummy; // Just needed as argument of CommonNormal(. . . )
int j = 0;
for ( i = 0; i < N; i++ )
{

j = (i+1) % N; // Cyclic order of axes!
Axis [i].CommonNormal( Axis [j], dummy, F [i], F [j] ) ;
StraightLine3d( Green, P [i], P [j], THIN ) ;
StraightLine3d( Red, F [i], F [j], THICK ) ;

}

...

// Draw and mark the remaining relevant elements
for ( i = 0; i < N; i++ )
{

StraightLine3d( Red, Origin, F [i], THIN ) ;
F [i].Mark( Red, 0.2, 0.1 ) ;
P [i].Mark( Black, 0.2, 0.1 ) ;

}
Z1.Mark( Black, 0.2, 0.1 ) ;
Z2.Mark( Black, 0.2, 0.1 ) ;
Origin.Mark( Red, 0.1 ) ;

}

For the animation we simply vary the point Z1 = (0, 0, u)t ∈ z. We took a special
distribution of the points to guarantee a more or less constant velocity of the
animation. This ensures that the points Z1(u) vary on the whole z-axis but get
slower in the region near the origin.
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Listing from "r6-mechanism.cpp":

void Scene: :Animate( )
{

// The following yields a more or less
// constant animation velocity
Phi += delta;
U = tan( Phi ) ∗ N / 3;
// Calculate data for new position of axes
V = CalcV( U ) ;

}

Note that we took care, in our computations as well as in the Open Geometry
program, to avoid using the numerical values of cos 60◦ and sin 60◦. The reason
for this is that the whole thing works just as fine with 8, 10, 12, or more axes
of revolution! You can use any even integer N ≥ 6 to build a kaleidocycle. Try
this by changing the global constant N at the beginning of "r6-mechanism.cpp"
(in fact, the name of the program will then become obsolete as you simulate an
RN-mechanism).

You might want to animate not only the abstract mechanism but also the charm-
ing models from [33]. Geometrically speaking, we have to do the following (com-
pare "kaleidocycle1.cpp"): On each axis ai we take two points Ai and Bi of
fixed distance t0 to the foot Fi of the common normal li of ai and ai+1 (see
Figure 4.4).

FIGURE 4.4. How to realize the physical model from [33]: The axes ai and ai+1 are
linked by the four edges of a tetrahedron.

Here t0 is an arbitrary positive real number. It is, however, advisable for t0 to
satisfy the inequality

t0 ≤ tmax
0 =

d

tan(2π/N)
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in order to avoid self intersections during the motion. The choice t0 = tmax
0 yields

a mechanism where the hole in the center vanishes at one moment (Figure 4.1).

The points Ai, Bi, Ai+1, and Bi+1 on two consecutive axes are the vertices of a
tetrahedron (Figure 4.4) that was used in [33] to produce a physical model of the
R6 mechanism. In Open Geometry this can easily be imitated by introducing
an array of 4N triangles (objects of type Poly3d with three vertices; Figure 4.1).
Of course, you can increase the number of tetrahedra by changing the global
constant N in "kaleidocycle1.cpp" as well.

We have not done it yet, but perhaps you want to equip the tetrahedra’s faces
with beautiful Escher textures. Have a look at Section 4.4 if you want to know
how to do this. ♦
Our next example shows that really interesting geometry may be hidden in al-
most trivial things of everyday life.

Example 4.2. The peeling of an apple
In 1960 the Austrian geometer W. Wunderlich wrote a short paper with the
astonishing title “Geometrische Betrachtungen um eine Apfelschale” (“Geomet-
ric considerations concerning an apple-paring”). He deals with certain geometric
problems related to the peeling of an apple. We will explain this a little later
after having exploited the beautiful kinematics of Wunderlich’s paper for our
purposes:

Let Γ be a cone of revolution with central angle 2α and apex O and let c be a
circle (or rather a disk) with center O and radius R that is situated in a tangent
plane of Γ. We want to study the motion induced by the rolling of c on Γ. It is
the composition of two rotations about the axes of Γ and c. We will denote them
by z and a, respectively.

FIGURE 4.5. A circle c rolls on a cone of revolution Γ.

By Σ we denote the sphere with center O and radius R. It intersects Γ in two
circles m and m. During the motion, c rolls on both circles, m and m. This gives
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us the ratio ωz : ωa of angular velocities we need for an animation. The circle m
is of radius r = R sinα, and we obtain ωz : ωa = R : r = 1 : sinα.

In order to compute the position P (ϕ) of a point P we have to do the following:

1. Rotate P and a around z through an angle of ϕ. This gives two new positions
P1 and a1.

2. Rotate P1 around a1 through an angle of ϕ · sin α.

That is exactly what we used in "rolling circle.cpp". However, in order to
achieve a closed motion, we construct the parameters of our motion in a slightly
different order:

Listing from "rolling circle.cpp":

const Real Radius = 8;
const int RotNumb = 4;
const Real Transmission = 2.0 / RotNumb;
const Real Alpha = asin( Transmission ) ;
const Real Height = Radius ∗ cos( Alpha ) ;
const Real R = Radius ∗ cos( PI ∗ sin( Alpha ) ) ;

Radius is the radius R of the rolling circle; RotNumb is the number of rotations
about z that are necessary for a full period. Transmission gives the ratio of the
angular velocities of the rotation around the fixed and rolling circles’ axes, re-
spectively. In order to get closed path curves it is sufficient (but not necessary)
to compute it by dividing RotNumb by an integer value n = 2.0. Alpha, Height,
and R are the parameters to determine the cone Γ.

What else do we need? We need two increments Delta and Phi for the rotation
about z and a and a bunch of points and lines that are animated during the
motion:

Listing from "rolling circle.cpp":

RegPoly3d Circle;

const int N = 2 ∗ RotNumb;
P3d P [N+2];
Color Col [N];
PathCurve3d PathOfP [N];
StrL3d Generator [RotNumb];

StrL3d Axis, LineOfContact;

PathCurve3d Geodetic [N];
RegFrustum Cone1, Cone2;
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Circle is the rolling circle; N is the number of trajectories we want to display. In
addition, we will rotate N straight lines (generators of a certain ruled surface).
They will trace a geodetic line on Γ, and we display it as well (PathCurve3d
Geodetic[ N ]). Axis and LineOfContact are the axes of c and the generating line
of Γ in the plane of c. The cone Γ itself will be a double cone; i.e., we use one
regular frustum for each half of Γ. Now to their initialization:

Listing from "rolling circle.cpp":

void Scene: :Init( )
{

const Real r = Radius ∗ sin( Alpha ) ;
Cone1.Def( Green, r, 0, Height, 100, HOLLOW, Zaxis ) ;
Cone2.Def( Green, r, 0, −Height, 100, HOLLOW, Zaxis ) ;
Cone1.Translate( 0, 0, −Height ) ;
Cone2.Translate( 0, 0, Height ) ;

V3d dir( 0, cos( Alpha ), sin( Alpha ) ) ;
Circle.Def( Black, Origin, dir, Radius, 100, FILLED ) ;
Axis = Circle.GetAxis( ) ;

int n = (int) ( 360 / Delta) + 2;
int i;
for ( i = 0; i < RotNumb; i++ )
{

Generator [i].Def( Origin, V3d( 0, −dir.z, dir.y ) ) ;
Generator [i].Rotate( Axis, i ∗ 360 / N ) ;
P [i] = Generator [i].InBetweenPoint( Radius ) ;
Col [i] = i % 2 ? Red : Blue;
PathOfP [i].Def( Col [i], n ) ;

}
for ( i = RotNumb; i < N; i++ )
{

P [i] = Generator [i−RotNumb].InBetweenPoint( −Radius ) ;
Col [i] = i % 2 ? Red : Blue;
PathOfP [i].Def( Col [i], n ) ;

}
P [N] = P [ 0];
P [N+1] = P [ 1];

LineOfContact = Generator [ 0];

for ( i = 0; i < N; i++ )
Geodetic [i].Def( Yellow, 200 ) ;

}
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First, we define the cone Γ, the circle c, and its axis a. Then we define the
generators and the path curves of certain special points. The integer n gives the
minimal number of points on each path curve PathOfP[ i ]. The generators are
equally distributed diameters of c; the points P[ i ] are their end points. Note that
we insert two extra points P[N ] and P[N + 1 ]. This will help us to imitate a
cyclic order of the points P[ i ] in Draw( ).

Draw( ) itself is rather easy. We mark and draw the points and lines we previously
defined. We add the points to the path curves and draw them as well. The only
part of interest is the computation of the geodetic lines:

Listing from "rolling circle.cpp":

StrL3d s;
P3d S;
const Real h = Height + 0.1;
const Real t = P [ 0].Distance( P [ 2] ) ;

for ( i = 0; i < N; i++ )
{

s.Def( P [i], P [i+2] ) ;
S = s ∗ LineOfContact;
if ( fabs( S.z ) < h )

Geodetic [i].AddPoint( S ) ;
Geodetic [i].Draw( MEDIUM, 1e−3, 2 ) ;
s.Draw( Yellow, 0, t, MEDIUM ) ;

}

We find a path point by intersecting the connecting line of two points P[ i ] and
P[ i + 2 ] (imitating cyclic order!) with the line of contact. We add this point to
the path curve only if it lies on the part of Γ we are interested in. We can do
this without problems, since the third parameter of Geodetic.Draw(. . . ) hinders
the drawing of line segments that are too long.

In Animate( ) we simply do our animation (rotations about z and a ) as explained
above. There is no need to print it here. Just a few words on the motion itself.
From a geometric point of view, we display just two different trajectories and two
different geodetics. However, all red and all blue points have the same trajectory.
The trajectories (at least the parts between the cusps) are curves of constant
slope on the sphere κ.

The connection to the peeling of an apple will become clear if you increase the
number RotNumb of rotations. (Try it!) You can peel the apple along a spiral line
without tearing the paring in two. Afterward, you can spread the paring on the
table and you will get a double spiral in an“S” shape. Geometrically speaking, we
can say that two consecutive points P[ i ] and P[ i+1 ] determine the segment of a
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straight line (the blade of your knife) that generates a torse T. The development
of T yields the “S” shape. We visualize this in "apple paring.cpp".

The basic ideas are just the same as in "rolling circle.cpp": A circle rolls on
a cone of revolution. However, there are quite a few differences in the drawing
part: We display the paths of only two points. No straight lines are rotated. For
this purpose we write two functions that compute the position of the circle axis
and of a point P:

Listing from "apple paring.cpp":

StrL3d GetAxis( Real delta )
{

StrL3d axis( Origin, V3d( 0, CosAlpha, SinAlpha ) ) ;
axis.Rotate( Zaxis, delta ) ;
return axis;

}
P3d GetPoint( Real delta )
{

P3d P( 0, −Radius ∗ SinAlpha, Radius ∗ CosAlpha ) ;
P.Rotate( Zaxis, delta ) ;
P.Rotate( GetAxis( delta) , −delta ∗ Transmission ) ;
return P;

}

The argument delta is the angle (in degrees) of rotation about z. We use these
functions to define the paring torse T:

Listing from "apple paring.cpp":

class MyParingTorse: public RuledSurface
{

virtual P3d DirectrixPoint( Real delta )
{

return GetPoint( delta ) ;
}
virtual V3d DirectionVector( Real delta )
{

return V3d( GetPoint( delta ), GetPoint( delta − 360 ) ) ;
}

};
MyParingTorse ParingTorse;
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The definition of the paring torse and the path of P in Init( ) is quite noteworthy:

Listing from "apple paring.cpp":

int n = RotNumb − 4;
Real u0 = ( RotNumb − n ) ∗ 360;
ParingTorse.Def( Red, n ∗ 40, 2, u0, u0 + n ∗ 360, 0, 1 ) ;
ParingTorse.PrepareContour( ) ;
PointNum = (int) ( 360 / Delta ∗ ( n + 1 ) + 2 ) ;
PathOfP.Def( Black, PointNum ) ;

We decide on an integer n that gives the number of windings of the torse that will
be displayed. Using RotNumb-1 would yield almost the whole apple; we display
less. Note that we use the relatively high number RotNumb = 12 in our program.
Otherwise, the resulting image would not come close enough to an apple. Then
we define the torse with an appropriate parameter interval. We use a rather high
number of segments in the u-direction (the surface is rather “long”), while we
calculate a minimum number of segments in v-direction. We can afford doing
this even though we draw the contour of the surface: Since T is a torse, the
v-lines are straight lines and the contour consists of straight line segments, too.
The number of points on the path curve depends on the parameter interval of T
and the increment Delta of the animation.

In Draw( ) we get the points of the cutting tool, mark them, and draw their path
curve. (Remember: They actually have the same path curve!)

Listing from "apple paring.cpp":

P3d P;
P = GetPoint( D ) ;
P.Mark( Blue, 0.3, 0.2 ) ;
GetPoint( D − 360 ).Mark( Blue, 0.3, 0.2 ) ;
PathOfP.AddPoint( P ) ;
PathOfP.Draw( THICK ) ;

We draw the z-axis and shade the paring torse as well as the rolling circle.
Finally, we rotate the circle about z through Delta and increase the global real
D by Delta in Animate( ). The output of the program is displayed in Figure 4.6.

♦
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FIGURE 4.6. The peeling of an apple.

FIGURE 4.7. A circle and two straight lines print their image on a rolling cylinder.

Example 4.3. The anti development of a cylinder
A cylinder of revolution Γ is a developable surface. That is, you can cut it along
a ruling and spread it into a plane π. This procedure maps a curve c∗ on the
cylinder to a curve c in the plane (development of c∗). Reversed, an arbitrary
curve c ⊂ π can be mapped to a curve c∗ on the cylinder. We call c∗ the anti
development of c.

In "rolling cylinder.cpp" we visualize the anti development of a circle c and
two straight lines l1 and l2. Given the circle c and its supporting plane ε, we roll
the cylinder on ε. Imagine now that the circle is freshly painted. It will leave a
trace on Γ that yields exactly the anti developed image c∗. The same is true for
l1 and l2.

Now, what are the essential code lines of "rolling cylinder.cpp"? The rolling
of Γ is not too difficult. We decide on its radius R1 and height Height (global
constants) and define it in Init( ).

Listing from "rolling cylinder.cpp":

RollingCylinder.Def( Green, R1, Height, 50, SOLID, Yaxis ) ;
RollingCylinder.Translate( 0, −0.5 ∗ Height, R1 ) ;
Axis = RollingCylinder.GetAxis( ) ;
XCoord = Axis.InBetweenPoint( 0 ).x;
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Axis is the axis of Γ, XCoord is a real variable that stores the current x-value of
Axis during the animation. Of course, we will roll the cylinder in the x-direction.

As animation parameter we use a pulsing real Phi. It gives the rotation amount
along the Axis. Phi is defined as follows:

Listing from "rolling cylinder.cpp":

const Real a = 0.55 ∗ R2;
Phi.Def( −a, 0.05, −a, a, HARMONIC ) ;

Here R2 is the radius of c. This ensures that each point of c will be printed on
the surface of Γ. Now let us have a quick look at Animate( ) before we return to
the remaining parts of Init( ) and Draw( )

Listing from "rolling cylinder.cpp":

void Scene: :Animate( )
{

Real phi = Phi.Next( ) ;
Real delta = phi ∗ Factor;
XCoord += delta;

Axis.Translate( delta, 0, 0 ) ;
Tau.Translate( V3d( delta, 0, 0 ) ) ;
RollingCylinder.Translate( delta, 0, 0 ) ;
Curve1.Translate( delta, 0, 0 ) ;
Curve2.Translate( delta, 0, 0 ) ;
Curve3.Translate( delta, 0, 0 ) ;
Curve4.Translate( delta, 0, 0 ) ;

RollingCylinder.Rotate( Axis, phi ) ;
Curve1.Rotate( Axis, phi ) ;
Curve2.Rotate( Axis, phi ) ;
Curve3.Rotate( Axis, phi ) ;
Curve4.Rotate( Axis, phi ) ;

}
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We translate all relevant elements by δ in direction of the x-axis. Rotation
and translation are proportional; Factor gives just the right relation between
angle of rotation and arc length on Γ. Note that XCoord is updated to the
current x-value of the axis. We have already introduced the other players of
"rolling cylinder.cpp" in the above listing. They are the vertical plane Tau
through the axis and four objects of type PathCurve3d. In Draw( ) they act as
follows:

Listing from "rolling cylinder.cpp":

int n;
P3d S1, S2;
n = Circle.SectionWithPlane( Tau, S1, S2 ) ;
if ( n )

if ( S1.y > 0 )
{

Curve1.AddPoint( S1 ) ;
Curve2.AddPoint( S2 ) ;

}
else
{

Curve1.AddPoint( S2 ) ;
Curve2.AddPoint( S1 ) ;

}

Tau.SectionWithStraightLine( Line3, S1, Dummy ) ;
if ( fabs( S1.y ) < H2 )

Curve3.AddPoint( S1 ) ;

Tau.SectionWithStraightLine( Line4, S1, Dummy ) ;
if ( fabs( S1.y ) < H2 )

Curve4.AddPoint( S1 ) ;

We intersect Tau with the circle c and add the intersection points to Curve1
and Curve2 according to the sign of their y-coordinates. We do the same with
the straight lines l1 and l2. Since we do not want to paint the air, we add the
intersection points only if they are within a relevant y-interval.

There is just one little thing to do. The image c∗ of c is obviously a closed curve.
However, we draw two half curves, and our method is not capable of adding the
transition points to c∗. Thus, we have to add them manually. We use two global
constants and two global variables for this purpose
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Listing from "rolling cylinder.cpp":

const P3d P1( R2, 0, 0 ) ;
const P3d P2( −R2, 0, 0 ) ;
Boolean AddP1 = true, AddP2 = true;

Here P1 and P2 are the critical points. We add them to the curves in Draw( ):

Listing from "rolling cylinder.cpp":

if ( XCoord > R2 && AddP1 )
{

Curve1.AddPoint( P1 ) ;
Curve2.AddPoint( P1 ) ;
AddP1 = false;

}
if ( XCoord < −R2 && AddP2 )
{

Curve1.AddPoint( P2 ) ;
Curve2.AddPoint( P2 ) ;
AddP2 = false;

}

Now everything is fine. We add a rectangular frame to the scene and watch the
cylinder roll (Figure 4.7). In this picture the diameter of c is just the arc length
of a cylinder circle. Thus, the anti developed image has a double tangent with
identical points of tangency. ♦

Example 4.4. Rolling cone
Of course, we can also roll a cone Γ on a plane and paint the image of a circle
on it (Figure 4.8). We did this in "rolling cone.cpp". The basic ideas are the
same as in "rolling cylinder.cpp". There are, however, certain important
differences.

FIGURE 4.8. The anti development of a circle on a cone of revolution.
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First of all, there is no need to roll the cone backwards and forwards. During the
motion the apex O of Γ remains fixed. Thus, Γ will stay in a limited area all the
time. We denote the height and radius of the base circle by h and r, respectively.
Then the generators are of length e =

√
h2 + r2. The motion is periodic only if

r : e is rational, i.e., in general, it is not.

We take O as the origin of a Cartesian coordinate system. The fixed plane will
be [ x, y ]. Then the motion is the composition of a rotation about z and about
the axis a of Γ. The ratio of the corresponding angular velocities ϕ and � is r : e.
We define the cone and its axis in Init( ):

Listing from "rolling cone.cpp":

RollingCone.Def( Green, R1, Height, 50, HOLLOW, Zaxis ) ;
RollingCone.Translate( 0, 0, −Height ) ;
RollingCone.Rotate( Xaxis, 90 + Deg( atan( R1 / Height ) ) ) ;
Axis = RollingCone.GetAxis( ) ;

The global constants R1 and Height have been defined thus:

Listing from "rolling cone.cpp":

const Real R1 = 3, Side = 3.25 ∗ R1;
const Real Height = Sqrt( Side ∗ Side − R1 ∗ R1 ) ;

Thus, the ratio of radius and length of generator is rational and the motion will
be periodic.

We define a circle c as in the previous program. It will print its image on the
cone surface during the animation. In addition to "rolling cylinder.cpp", we
use a global constant ApexInside of type Boolean. It tells us whether the apex
O lies inside the circle or not. We need it in Draw( ) in order to determine the
correct points to the path curves.

We determine the curve points in the following way: The current line of contact
between the cone and the base plane is stored in a global variable StrL. We
intersect StrL with the circle. This is realized by intersecting c with an auxiliary
plane τ through the line of contact and parallel to the z-axis.

Now we have to decide which intersection points we add to which path curves. If
the apex lies inside c, we add the point with positive parameter value on StrL to
Curve1. Curve2 remains empty. If the apex is outside c, we add the points only
if they have positive parameter values.
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Furthermore, we have to take into account two critical points P1 and P2 that
have to be added when StrL is tangent to c. We solve this problem by testing the
distance from P1 and P2 to the auxiliary plane τ . If it is below a certain limit
Tol, we add the points to the curve.5 The complete code of this passage reads as
follows:

Listing from "rolling cone.cpp":

int n;
P3d S1, S2;
Plane tau( P3d( 0, 0, 1 ), StrL ) ;
n = Circle.SectionWithPlane( tau, S1, S2 ) ;
if ( ApexInside )
{

if ( StrL.GetParameter( S1 ) > 0 )
Curve1.AddPoint( S1 ) ;

else
Curve1.AddPoint( S2 ) ;

}
else
{

if ( P1.IsInPlane( tau, Tol ) && StrL.GetParameter( P1 ) > 0 )
{

Curve1.AddPoint( P1 ) ;
Curve2.AddPoint( P1 ) ;

}
if ( P2.IsInPlane( tau, Tol ) && StrL.GetParameter( P2 ) > 0 )
{

Curve1.AddPoint( P2 ) ;
Curve2.AddPoint( P2 ) ;

}
if ( n )
{

Real s1 = StrL.GetParameter( S1 ) ;
if ( s1 > 0.02 )
{

if ( s1 > StrL.GetParameter( S2 ) )
{

Curve1.AddPoint( S1 ) ;
Curve2.AddPoint( S2 ) ;

}
else
{

5This is a little dirty. It may happen that we add them twice or even more often.
But since the distances in this area of the curve are too small, you will never be able
to see this little mistake.
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Curve1.AddPoint( S2 ) ;
Curve2.AddPoint( S1 ) ;

}
}

}
}

Finally, in Animate( ) we replace the translation of "rolling cylinder.cpp" by
a rotation about z:

Listing from "rolling cone.cpp":

void Scene: :Animate( )
{

Axis.Rotate( Zaxis, Phi ) ;
StrL.Rotate( Zaxis, Phi ) ;
RollingCone.Rotate( Zaxis, Phi ) ;
Curve1.Rotate( Zaxis, Phi ) ;
Curve2.Rotate( Zaxis, Phi ) ;

RollingCone.Rotate( Axis, Rho ) ;
Curve1.Rotate( Axis, Rho ) ;
Curve2.Rotate( Axis, Rho ) ;

}

♦

Example 4.5. Rolling hyperboloids
In the preceding examples we have already presented a few rolling surfaces: cones,
cylinders, and planes rolling on one another. These were all developable surfaces;
i.e., along one generating line the plane of tangency is constant. There exist,
however, nontrivial rolling motions of general (nondevelopable) ruled surfaces.
Consider the example of "rolling hyperboloids.cpp". There, two congruent
hyperboloids roll on one another. This motion has technical relevance. If we equip
the hyperboloids with gears, they can transmit a uniform rotation between their
axis.6

We define the axes of the hyperboloids Hyp1 and Hyp2 as follows:

6Actually, the motion is not a pure rolling. There is a translation component as well.
This causes stringent requirements on the material, and therefore, gear wheels of that
kind are not too common in practice.
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FIGURE 4.9. Two hyperboloids of revolution roll on one another (left). Three path
curves of the relative motion with fixed Hyp2.

Listing from "rolling hyperboloids.cpp":

Axis1.Def( P3d( 0, 0, Rad ), V3d( cos( Angle ),
sin( Angle ), 0 ) ) ;

Axis2.Def( P3d( 0, 0, −Rad ), V3d( cos( Angle ),
−sin( Angle ), 0 ) ) ;

Rad and Angle are global constants to determine the shape of the hyperboloid.
The hyperboloids themselves are parameterized surfaces (the second hyperboloid
is defined analogously):

Listing from "rolling hyperboloids.cpp":

class MyHyperboloid1: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

P3d P( u, 0, Eps ) ;
P.Rotate( Axis1, v ) ;
return P;

}
StrL3d Ruling( Real v )
{

return StrL3d( SurfacePoint( 0, v ), SurfacePoint( 1, v ) ) ;
}

};
MyHyperboloid1 Hyp1;
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Hyp1 and Hyp2 touch along the x-axis of our coordinate system. Because of this,
we need a small positive real Eps to avoid visibility problems along the line of
contact. Be aware that Angle must be chosen with care. The intersection curve of
Hyp1 and Hyp2 is of order 4. In our case it splits into one double line (the x-axis)
and a remaining part of second order that needs to be imaginary. In Animate( )
we rotate the hyperboloids about their respective axes in opposite directions.
The output of the program can be seen in Figure 4.9.

Listing from "rolling hyperboloids.cpp":

Hyp1.Rotate( Axis1, Speed ) ;
Hyp2.Rotate( Axis2, −Speed ) ;

In "rolling hyperboloid.cpp" (singular!) we literally take a slightly dif-
ferent point of view: Again, we use two hyperboloids Hyp1 and Hyp2 that
initially touch along the x-axis, but we connect the fixed coordinate frame
with Hyp2. Thus, we get a rather curious motion where Hyp1 rolls on Hyp2.
The Init( ) and Draw( ) parts of the program hardly change. In addition to
"rolling hyperboloids.cpp", we trace the paths of three points P, Q, and R,
and we draw the line of contact at any moment. The most important change
takes place in Animate( ). We rotate everything about the axis of Hyp2 and then,
if necessary, about the axis of Hyp1 (compare Figure 4.9).

Listing from "rolling hyperboloid.cpp":

void Scene: :Animate( )
{

Axis1.Rotate( Axis2, Speed ) ;
LineOfContact.Rotate( Axis2, Speed ) ;
Hyp1.Rotate( Axis2, Speed ) ;
P.Rotate( Axis2, Speed ) ;
Q.Rotate( Axis2, Speed ) ;
R.Rotate( Axis2, Speed ) ;

Hyp1.Rotate( Axis1, Speed ) ;
P.Rotate( Axis1, Speed ) ;
Q.Rotate( Axis1, Speed ) ;
R.Rotate( Axis1, Speed ) ;

}

♦
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Example 4.6. Kardan joint
In technical applications it is often necessary to transmit a rotation from an
axis a to a second axis b of different direction. Think of a car’s steering wheel:
By turning it around, you activate the connecting axis of the tires. There exist
different joints that have been developed to perform tasks of this kind. In this
example we present an animation for one of them: the kardan joint.

It can be used for the transmission of a rotation between two intersecting axes.
Have a look at Figure 4.10: The two axes a and b end in shafts that are attached
to a cross. The pointsA and B are end points of the cross arms. The shafts can
still rotate about the cross arms.

If the kinematics are not completely clear to you, we recommend that you start
the corresponding Open Geometry animation in "kardan.cpp". At start-up,
the program displays the wire-frame model. You can start the animation and
study it. If you want to see the solid model, you have to restart the program (press
<Ctrl + Shift + R> or use the menu item “Program→Restart Program”).

FIGURE 4.10. A wire frame model and a solid model of a kardan joint.

Note that the angle γ between a and b will be increased by some increment after
one full turn. If γ is large enough, you can clearly verify that the transmission is
not uniform. The axis a revolves with constant angular velocity, while the motion
of b is irregular. This behavior limits the technical applications of kardan joints,
especially for the transmission of high-speed rotations.

However, for our computer animation this is not the main problem. It is not too
difficult to see that the respective angles of rotation α and β are related via the
equation

tanβ =
1

cos γ
tanα (2)

(compare Figure 4.10). To us, the main problem is the motion of the cross in
the center of the joint. For the animation in our sample file "kardan.cpp" we
proceed as follows:

1. We rotate the axis a (and all related objects) by a constant angle increment,
compute the corresponding angle of rotation β of b from equation (2) and
rotate b and all related objects to their correct positions.
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2. We rotate the middle cross back to some initial position. This makes the
next step much easier.

3. We consider two end points A and B of the current cross position and the
corresponding points A0 and B0 of the initial cross position and determine
the unique rotation R that brings A0 to A and B0 to B.

4. Since the cross center M remains fixed during the motion, we can bring the
cross into the current position by applying the rotation R to the cross in
initial position.

The idea of repeatedly rotating an object back to some initial position is some-
times useful for kinematic animations. We used it in Example 2.17 as well. The
axis of rotation is, of course, found by intersecting the planes of symmetry of
two pairs of corresponding points.

Now we come to the description of the Open Geometry implementation. We
use the following global variables:

Listing from "kardan.cpp":

Real Alpha, Beta, Gamma, Omega, Omega0, SG, CG;
P3d M, A, B, A0, B0;
StrL3d Axis [ 3], MomAxis, MomAxis0;

// axes of object and for rotating the middle cross

const Real Rad = 3.3; // radius of shafts
Cad3Data Obj; // Cad3D-data for solid model

Boolean WireFrame = 0; // show wire frame or solid model
Arrow3d RotArrow1, RotArrow2, RotArrow3; // indicate rotation of axes

The first few variables (Alpha, Beta, Gamma, A, B) refer to the geometric descrip-
tion of the mechanism as given above; A0 and B0 are cross points in zero position;
in Omega and Omega0 the angle of rotation from zero position to the current
position will be stored. The corresponding axes are MomAxis and MomAxis0,
respectively. We need two variables for that in order to undo the last rotation
before performing the current one. SG and SC are abbreviations for the sine and
cosine of the current axis angle γ = Gamma. Furthermore, we use a = Axis[0],
b = Axis[1], and z = Axis[2] (the z-axis of our coordinate system; it is perpen-
dicular to a and b). The remaining variables are needed for the drawing of the
scene.

In Init( ) we initialize the starting configuration of the mechanism. The function
do calcs( ) computes some of the relevant data. It is separated from Init( ) because
the user is not expected to change anything in that part.
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Listing from "kardan.cpp":

void do calcs( )
{

M = Obj [ 0] [ 0].GetCenterOfBoundingBox( ) ;
M.z = 4.5;

Axis [ 0].Def( M, Zdir ) ;
Axis [ 1].Def( M, Xdir ) ;
Axis [ 2].Def( M, Xdir ) ;
Axis [ 2].Rotate( Axis [ 0], Gamma − 180 ) ;

A = M + Rad∗Ydir;
B = M + Rad∗Zdir;
A0 = A;
B0 = B;

Real g = Arc( Gamma ) ;
SG = sin( g ) ;
CG = cos( g ) ;
Omega0 = 0;
MomAxis0 = Zaxis;

}
void Scene: :Init( )
{

WireFrame = Boolean( 1 − WireFrame ) ;

Obj.Delete( ) ;
Obj.Def( 100 ) ;

Alpha = Beta = 0;
Gamma = 30;

Color col [ 6] = { Gray, Green, Pink, Yellow, Yellow, Blue};
Obj.ReadNewMember( "DATA/LLZ/kardan complete.llz", 0.1 ) ;
Obj [ 0].SetColors( col ) ;

do calcs( ) ;

if ( WireFrame )
Write( "This is..." ) ;

AllowRestart( ) ;

RotArrow1.Def( 3, Axis [ 0], 6, V3d( 2,2,1 ) ) ;
RotArrow2.Def( 4, Axis [ 1], 10, V3d( 2,2,5 ) ) ;
RotArrow3.Def( −4, Axis [ 2], 10, V3d( 2,2,5 ) ) ;

}
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Draw( ) is very simple. In fact, we do nothing but call a draw routine for the
wire frame model or shade all Cad3D objects. We do not list the draw routine;
it is rather lengthy and of little interest.

Listing from "kardan.cpp":

void Scene: :Draw( )
{

if ( WireFrame )
ShowRotations( ) ;

else
Obj.Shade( ) ;

}

The really important part of "kardan.cpp" is Animate( ). We display it together
with a few comments. With the help of the basic idea (rotating the middle cross
back and forth) it is not too difficult to understand the code:

Listing from "kardan.cpp":

void Scene: :Animate( )
{

Alpha += 3; // increment angle of rotation

// adjust arrows
RotArrow2.Twist( 3 ) ;
RotArrow3.Twist( −3 ) ;

// calculate current angles and points
Real a = Arc( Alpha ) ;
Real Beta0 = Beta;
Real b = ArcTan2( Tan( a ), CG ) ;
Beta = Deg( b ) ;
Beta −= 180;
while ( fabs( Beta − Alpha ) > 45 )
{

Beta += 180;
}
b = Arc( Beta ) ;
Real sb = sin( b ) ;
V3d MA( 0, cos( a ), sin ( a ) ) ;
V3d MB( SG ∗ sb, −CG ∗ sb, cos ( b ) ) ;
A = M + Rad ∗ MA;
B = M + Rad ∗ MB;
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// In order to adjust the middle cross, we must rotate
// the rod A0A into the position B0B. The axis of rotation
// (MomAxis) is obtained by intersecting two planes of
// symmetry:
Rod3d A0A( Gray, A0, A ) ;
Rod3d B0B( Gray, B0, B ) ;
Plane s1( A0A ), s2( B0B ) ;
MomAxis = s1 ∗ s2;
MomAxis.SetPoint( M ) ;

// Now we have to compute the angle of rotation:
P3d N = MomAxis.NormalProjectionOfPoint( A ) ;
V3d v = A − N;
v.Normalize( ) ;
V3d v0 = A0 − N;
v0.Normalize( ) ;
Omega = Deg( ArcCos( v ∗ v0 ) ) ;

// Change sign of Omega if necessary:
P3d A1 = A0;
A1.Rotate( MomAxis, Omega ) ;
if ( A1.Distance( A ) > 1e−3 )
{

Omega ∗= −1;
A1 = A0;
A1.Rotate( MomAxis, Omega ) ;
if ( A1.Distance( A ) > 1e−3 )

SafeExit( "problems" ) ;
}

P3d B1 = B0;
B1.Rotate( MomAxis, Omega ) ;
if ( B1.Distance( B ) > 1e−3 )
{

ShowReal( "B dist =", B.Distance( B1 ) ) ;
// Should not happen!

}

// Rotate all objects:
if ( Omega0 )

Obj [ 0] [ 2].Rotate( MomAxis0, −Omega0 ) ;
Obj [ 0] [ 2].Rotate( MomAxis, Omega ) ;
Obj [ 0].Rotate( 3, 4, Axis [ 1], 3 ) ;
Obj [ 0] [ 5].Rotate( Axis [ 2], Beta0 − Beta ) ;
Omega0 = Omega;
MomAxis0 = MomAxis;

// Increase angle between two main axes of
// revolution by 4 after one full turn.
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if ( fabs( Alpha − 360 ) < 0.01)
{

change gamma( 4 ) ;
}

}

Animate( ) calls the function change gamma(. . . ) after each full rotation. There,
the angle γ between the axes a and b is increased. Consequently, some of the
global variables have to be adapted:

Listing from "kardan.cpp":

void change gamma( Real delta )
{

Gamma += delta;
Axis [ 2].Rotate( Axis [ 0], delta ) ;
Obj [ 0] [ 1].Rotate( Axis [ 0], delta ) ;
Obj [ 0] [ 5].Rotate( Axis [ 0], delta ) ;
RotArrow3.Rotate( Axis [ 0], delta ) ;
Real g = Arc( Gamma ) ;
SG = sin( g ) ;
CG = cos( g ) ;
Alpha = 0;
Omega0 = 0;
MomAxis0 = Zaxis;

}

For a picture of the final output, please, see Figure 4.10. ♦

4.2 Import and Export
The import and export facilities of Open Geometry have been considerably
enlarged in version 2.0. We still support import of ASC files and Cad3D objects.
The latter can be smooth-shaded and equipped with different colors in Open
Geometry 2.0. In the near future, we are planning to implement the import of
ASE files as well.

Open Geometry 2.0 exportation to DXF, BMP, EPS files and POV-Ray in-
clude files (new!) is possible. We implemented the EPS export option for 3D
scenes as well (new!). Of course, it can work only with certain drawbacks, since
PostScript does not support z-buffering. Later in this chapter we will explain
this more closely.
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FIGURE 4.11. The import and export facilities of Open Geometry 2.0.

The graphic in Figure 4.11 illustrates the import and export facilities of Open
Geometry 2.0.

We are especially fond of the new export possibility in POV-Ray’s Scene de-
scription language. POV-Ray is a freeware ray-tracing program. With only a
little effort you can create photorealistic renderings of your Open Geometry
scenes. Many pictures in this book have been created that way.

The import of ASC files is explained in Section 11.2 of [14]. Examples 3.3 and 4.6
show how to integrate Cad3D objects in Open Geometry. See also Figure 4.15
and Figure 4.16.

In the following we will explain the different export facilities of Open Geometry
in more detail.

BMP

Open Geometry can export the content of your screen to BMP files. This may
be an alternative to making a hard copy of your screen as described in [14], pp.
320 ff. Furthermore, it is really useful for the preparation of animated GIF or
AVI files.

The export of one single bitmap image is very easy: Simply choose “Image→Export
Image→Save Image as BMP” from the Open Geometry menu. You can choose
between 8-bit and 24-bit color resolution.7 Alternatively, you can use the short-
cuts <Ctrl + B> and <Ctrl + 8>. Note that the final number of pixels de-
pends on the size of your Open Geometry window as well as on your screen
resolution.

7If you choose 8-bit resolution, make sure that the Open Geometry window side
lengths are multiples of eight. Otherwise, the output will not be correct. You can adjust
the window size via the menu item “Image→Window→Window dimensions”.
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There exists a third way of exporting in BMP format: Use the method
SaveAsBitmapAnimation(. . . ) of the class Scene. Its header can be found in
"scene.h":

int SaveAsBitmapAnimation( const char ∗path = "BMP",
int start frame = 1,
int increase = 1,
int max files = 50,
int bit depth = 24 ) ;

It has to be put in the Animate( ) part. The first argument specifies the path
for you pictures to be stored. The default directory for this is specified in
"og.ini". That is, if you work with the default settings, they will be written to
"OPENGEOM/BMP/". During the animation the frames with numbers

start frame, start frame + 1 · increase, . . . , start frame + n · increase

will be stored as "001.bmp", "002.bmp", "003.bmp" until the number max file is
reached. Be careful not to use up all your free disk space while doing this: Scaling
the Open Geometry window to a reasonable size and minimizing white space
might help a lot.

Having created a series of bitmaps, you can proceed to convert them into GIF
files and arrange animations for the Internet. Have a look at our home page to
see examples of this (http://www.uni-ak.ac.at/opengeom/).

DXF

Exporting DXF (Drawing eXchange Format) is very easy in Open Geometry,
and nearly every CAD program can load such files. You can store your 3D data
as DXF file by simply selecting “Image→Export Image as DXF file”.

There are a few things to keep in mind, however, when working with DXF files.

• DXF files that contain many polygons need a lot of disk space.

• You cannot store mapping coordinates or material properties in DXF files.

• DXF files are text files that cannot be loaded very quickly.

• Open Geometry will store only polygons. It will not export lines!

If you are going to load DXF files with 3D Studio Max, activate the “force two
sided” option and keep in mind that Open Geometry stores the whole scene
as a single object.

If you want to create several objects, you can proceed as follows:
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• Let Open Geometry draw only the part you want to store as one object
(by commenting out the other command lines).

• Save the scene under a distinct name.

• Repeat the process for the other parts of the scene. Since the storage is done
in 3D, you need not worry about viewport or camera.

If you want to know more about Open Geometry and DXF, have a look at
[14], pp. 307 ff. There, you will find a few sample programs for the import and
export of DXF files with the help of Open Geometry.

EPS

Open Geometry allows you to export your scenes as EPS files (Encapsulated
Post Script). The EPS file format is not platform-specific and is vector-oriented.
The output quality is excellent, and conversions to other file formats are possi-
ble. This may also be a remedy for a major drawback of EPS: its bad storage
performance. Some EPS files can be compressed to about 10% of their original
size.

Open Geometry has always supported the export of 2D scenes to EPS. The
new version Open Geometry 2.0 provides this possibility for 3D scenes as well.
However, there are some limits to this feature.

The export from Open Geometry to EPS is very simple. Run an Open Geo-
metry program and press <Ctrl+E> or choose the menu item “Image/Export
image/Save image as EPS-file”. This command works for 2D and 3D scenes. So far,
the export of 2D scenes was possible with only one minor problem (transparency
is lost). Almost all 2D pictures in this book were produced in this way.

The export of 3D scenes is much more delicate: In general, it will produce visibil-
ity errors. The reason for this is the following: When Open Geometry displays
a 3D scene, all visibility decisions are made with the help of z-buffering. In EPS,
however, this is different. There, visibility relations depend on the drawing or-
der.8

If you produce an EPS file from a 3D image, you must control the drawing
order, either directly in Open Geometry or after the export (with the help of
a graphics package or by editing the EPS file). This can, of course, be rather
laborious, and we do not recommend it for complex scenes.9

However, for scenes with only straight lines, curves, polygons, and other simple
objects, EPS export may be a good idea. We present an example of this:

8This is the reason why Open Geometry’s 2D graphics and EPS go together much
better: Visibility decisions are made in the same way.

9It is almost impossible to use it when parameterized surfaces are to be displayed.
The EPS-file contains hundreds of small triangles with wrong visibility. Furthermore,
the surface will not be smooth-shaded.
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Example 4.7. Reflection on corner
It is a well-known geometric phenomenon that a ray of light being reflected on
the inside of a cube corner (three pairwise orthogonal reflecting planes) is cast
back in a parallel direction (Figure 4.12). This is easy to see with the help of
basic vector calculus:

FIGURE 4.12. A ray of light is reflected on the corner of a cube and is cast back in
a parallel direction.

Let the reflecting planes be the coordinate planes of a Euclidean coordinate
system and (x, y, z)t be the direction of the incoming ray of light. Each reflection
on a coordinate plane changes the sign of one coordinate. Thus, the reflected ray
has direction (−x,−y, −z)t.

This is simulated in the file "reflect on corner.cpp". We define three global
variables and initialize them in Init( ):

Listing from "reflect on corner.cpp":

RegPoly3d Square [ 3];
StrL3d IncomingLight;
const Plane CoordPlane [ 3] = { XYplane, YZplane, XZplane };

void Scene: :Init( )
{

// initialize reflecting planes and incoming ray
Real a = 4;
StrL3d axis [ 3];
axis [ 0].Def( P3d( a, a, 0 ), Zdir ) ;
axis [ 1].Def( P3d( 0, a, a ), Xdir ) ;
axis [ 2].Def( P3d( a, 0, a ), Ydir ) ;
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int i;
for ( i = 0; i < 3; i++ )

Square [i].Def( AlmostWhite, Origin, axis [i], 4 ) ;
IncomingLight.Def( P3d( 5, 2, 3 ), V3d( −1, −0.5, −1.6 ) ) ;

}

With respect to the later export to EPS the first thing to be done in Draw( )
is the shading of the squares that symbolize the cube corner planes. Only later,
will we compute and draw the reflected rays:

Listing from "reflect on corner.cpp":

void Scene: :Draw( )
{

// shade reflecting planes
int i;
for ( i = 0; i < 3; i++ )

Square [i].ShadeWithContour( Black, MEDIUM ) ;

P3d S [ 3];
P3d L = IncomingLight.InBetweenPoint( −10 ) ;
int k;
StrL3d lightray = IncomingLight;

for ( k = 0; k < 4; k++ )
{

Real t = 1e10;
int i0 = −1;
for ( i = 0; i < 3; i++ )
{

S [i] = CoordPlane [i] ∗ lightray;
Real dist = lightray.GetParameter( S [i] ) ;
if ( dist > 1e−5 && dist < t )
{

t = dist;
i0 = i;

}
}
if ( i0 == −1 )
{

if ( k != 3 )
Write("bad") ;

else
S [i0] = lightray.InBetweenPoint( 10 ) ;

}
DrawArrowV3d( Red, L, S [i0], 1.4, 0.2 ) ;
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if ( k < 3 )
{

L = S [i0];
V3d dir = lightray.GetDir( ) ;
dir.Reflect( CoordPlane [i0] ) ;
StrL3d nrm( L, CoordPlane [i0].n( ) ) ;
nrm.LineDotted( Black, 0, 3, 6, ThinOrThick( 2 ) ) ;
lightray.Def( L, dir ) ;

}
}

}

For the drawing of the reflected rays we compute the intersection points of the
incoming rays with the reflection planes and take the point with the lowest pa-
rameter value larger than a certain small ε > 0. We display the corresponding ray
by means of Open Geometry’s ShowV3d(. . . ) function. For better illustration
we line-dot the plane normal as well.

Figure 4.12 shows the direct EPS output from Open Geometry. If you watch
the image carefully, you will see that not all visibility decisions are correct: There
is a small problem with the straight lines and arrows. There is no simple way of
altering this. Changing the drawing order of straight line segments and pyramids
would only make things worse. Of course, you could make certain changes to
ShowV3d(. . . ). For the time being, this might help, but you will always be able
to find viewpoints where something goes wrong. ♦
The export to EPS uses a default PostScript line width. If you want to create
an "*.eps"-file with very thin lines, you can change this value by editing the
corresponding line in "og.ini" (compare Section 7.3).

POV-Ray

Open Geometry is a program for the visualization and animation of complex
geometric objects. We believe that it does a good job with that. However, it has
not been written for the rendering of photorealistic scenes. You have just one
light source, diverse cameras, and the use of texture maps. Yet, these options
are too limited for highly realistic images.

Still, in case you feel the need for some special effects with the objects you have
created in Open Geometry, the new version has something in store for you.
You can create an include file for the Persistance of Vision Raytracer, a freeware
ray-tracing program usually referred to as POV-Ray. There exist versions for
various platforms that can be downloaded from http://www.povray.org/.

The basic ideas of ray-tracing programs and Open Geometry are rather far
apart. Ray-tracing aims at highly realistic images, taking into account different
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materials and surface properties, different kinds of lights, shadows, reflection
phenomena, and much more. The drawback is, of course, the computation time.
The image is computed pixel by pixel. The rendering of a scene of reasonable size
with a few transparent and/or reflecting objects takes at least some seconds. Even
nowadays, the computation times for complex scenes may increase to several
hours.

With hardware support, most Open Geometry programs can be animated in
absolute real time; i.e., you will get at least 20 frames per second. The resulting
output is of high quality but not photorealistic. In an attempt to combine the
advantages of both concepts, we implemented the possibility of exporting Open
Geometry objects to POV-Ray. You are able to study a complicated param-
eterized surface from all sides in Open Geometry. If you finally decide on a
good viewpoint, you can export it to POV-Ray and render a high-quality image
with texture mapping, shadows, reflections, and specular points.

POV-Ray gives you all possibilities of a modern ray-tracing program. In fact,
there are so many features that we can present only the most basic elements.
After reading through this section, you will be able to render Open Geometry
objects in POV-Ray. However, for more detailed information, please, consult the
POV-Ray documentation that comes with any regular POV-Ray distribution.

We believe that it is worthwhile having a quick glance at page 344. There, we
prepared a whole page of Open Geometry objects that have been rendered
with the help of POV-Ray.

Basically, there are two steps in the creation of a POV-Ray image. First, you have
to create a plain text file describing the scene in POV-Ray’s scene description
language. Then POV-Ray will read the file and compute the image. The second
step — the actual rendering — is a bit different from platform to platform but
not really difficult. Therefore, we will focus on step one only.

POV-Ray’s scene description language is not too far away from C or C++. It is
highly intuitive and easy to read. You will soon see a few examples of that. The
plain text file is usually characterized by the extension "*.pov". You will find
a file of that type in "DATA/INC/". It is called "mask.pov" and is derived from
one of POV-Ray’s ready-made scenes. We give a complete listing and a detailed
discussion:

#version 3.1;

// Some standard include files;
// you will find more of them in
// POV-Ray’s "include"-directory
#include "colors.inc"
#include "finish.inc"
#include "glass.inc"
#include "golds.inc"
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#include "metals.inc"
#include "shapes.inc"
#include "stones.inc"
#include "textures.inc"
#include "woods.inc"

global settings { assumed gamma 1.0 }

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

camera
{

location <28, 12, 18>
look at <0, 0, 0>
angle 20 // fovy angle
//orthographic // switch to normal projection

}

light source
{

<400, 400, 200>
color White
// shadowless

}

// Blue sky sphere to avoid pure black background
sky sphere
{

pigment
{

gradient y
color map
{

[ 0.0 color blue 0.6]
[ 1.0 color rgb <1, 1, 1>]

}
}

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sphere
{

<0, 0.5, 0>, 1.5 // Center and radius
texture
{

pigment { color Green }
}

}
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box
{

< −2, −1.5, −2>, // Near lower left corner
< 2, −1, 2> // Far upper right corner
texture
{

T Stone25 // Predefined from stones.inc
scale 4 // Scale texture

}
rotate <0, 20, 0> // Rotate through 20 deg about y-axis

}

//#declare T StandardSurface =
// texture{ pigment{ color <1, 0.8, 0.2> } }
//#declare T StandardCAD3D =
// texture{ pigment{ color <0.5, 0.8, 1> } }
//#include "name.inc"

After some comments at the top, we include a couple of standard files. There,
you will find a number of predefined textures and shapes. At the beginning, it
is not worthwhile defining your own textures. You will find templets for almost
anything you can imagine in the include files. Just read through one or the other
file to see what is in store for you.

The global setting of an assumed gamma value is a more advanced feature, and
you need not really care about it. It helps balancing different degrees of brightness
on various platforms.

Next, we define the camera and one light source. They are initialized with Open
Geometry’s default values. Note, however, that POV-Ray uses a left-handed
coordinate system with y pointing upwards (Figure 4.13). In order to transfer
coordinate values from Open Geometry to POV-Ray, you have to swap y
and z.

One light source is usually not enough to render a realistic scene. You should add
more sources to cast light in the dim corners of the image. Perhaps the POV-Ray
keyword shadowless will be useful. The corresponding light source will brighten
up the image but cast no shadows.

In most cases it is advisable to add some kind of background object to the scene.
Otherwise, everything will be embedded in pure black surroundings reminiscent
of outer space but without stars.10 In "mask.pov" we used a sky sphere for

10Of course, POV-Ray has star field textures as well, but even they have to be
mapped to some kind of object.
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FIGURE 4.13. POV-Ray coordinate system and a simple scene ("mask.pov"). The
sphere is of radius 1.5 and is centered at (0, 0.5, 0)t. The box is defined by two opposite
corners (−2, −1.5, −2)t and (2, −1, 2)t and rotated about the y-axis through 20◦. Hence,
it touches the sphere (all coordinates with respect to POV-Ray’s coordinate system).

that purpose. The sky sphere’s texture has a color map that, again, is not really
absolutely POV-Ray basic.

Now we have prepared everything and can start to add some objects to the scene.
It is easy to determine their geometry from the above listing: A sphere centered
at (0, 0.5, 0)t of radius 1.5 and a box defined by two opposite corners. The box
is rotated about the y-axis through 20◦. Do not forget that all coordinates are
taken with respect to POV-Ray’s coordinate system! That is, the sphere lies on
top of the box (Figure 4.13). The sphere’s texture is very simple, since we specify
only its color. For the box we use a predefined texture from "stones.inc".

So far, so good. We have created a little POV-Ray scene, but we have not yet
included any Open Geometry object. In order to do this, we have to start
in an Open Geometry window. There we use the menu item “Image→Export
Image→Export image as PovRay-file” or the key combination <Ctrl+P>. This
creates a POV-Ray include file that is identified by the extension "*.inc". The
same effect can be achieved by calling PreparePovRayFile(. . . ). This may be useful
for animated scenes. For example you can insert something like

if (FrameNum( )==26 )
PreparePovRayFile( "filename.inc" ) ;

in Animate( ). We are planning to implement a method for the automatic creation
of POV-Ray animations. As with to SaveAsBitmapAnimation(. . . ) you will be able
to create a series "001.inc", "002.inc". . . "020.inc" of POV-Ray include files
that can be processed by POV-Ray animation tools.

You can include your "*.inc" file in your scene by commenting out the
last line of "mask.pov" and inserting the correct path and name (e.g.,
"D:/OPENGEOM/surface.inc"). If your scene contains parameterized surfaces,
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you have to comment out the line where the texture T StandardSurface is de-
fined. If you want to render Cad3D objects, you need the T StandardCAD3D
texture as well.

Your "*.pov"-file should now compile without any difficulties. You will see that
all surfaces and all Cad3D objects have the same standard texture. Other objects
like polygons and lines have the color you have specified in Open Geometry.

So far, you have not needed to know the contents of the include files produced by
Open Geometry. If, however, you want additional effects, you will have to make
some changes in them. In order to do that, you should know something about
how Open Geometry objects are described in POV-Ray’s scene description
language.

Straight lines (line segments, curves) are a simple thing in Open Geometry;
in POV-Ray they do not exist. The reason for this is clear: A straight line or
line segment is a geometric object of dimension one and simply disappears in a
ray-traced scene. Hence, Open Geometry exports line segments as cylinders of
revolution. A typical line in Pov-source reads

cylinder {
<−7.0451914486, −2.3935121970, 0.0000000000>,
<7.0451914486, 7.5698930991, 0.0000000000>,
0.10
pigment { color rgbt <0.00, 0.00, 0.00, 0.00 > }

}

(We inserted a few line breaks for better readability.) It defines a cylinder of
revolution with the specified points as center of base and top circle and with
radius 0.10. The cylinder’s color is black, and it is not transparent. This is spec-
ified by the rgbt color vector < 0.00, 0.00, 0.00, 0.00 >. The first three entries
give the RGB value of the color; the last entry t = 0.00 is responsible for the
transparency. The relation to Open Geometry’s opacity value o is given by
t = 1 − o; i.e., the standard opacity 1 (no transparency) corresponds to t = 0.

It may turn out that the line widths in the POV-Ray rendering do not look
too good. This happens frequently if you use different camera positions in
Open Geometry and POV-Ray. In this case, you can change the value of
Global.PovRayWidth by calling the Open Geometry routine

ChangePovRayLineWidth( Real k );

The default value of Global.PovRayWidth is k = 1. It can be changed by editing
"og.ini" (compare Section 7.3).

Geometric primitives like polygons, spheres, cylinders, and cones are exported
directly to the corresponding POV-Ray objects. If you want to change their
texture options, you have to identify them in the include file and edit the texture
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statement. In order to help you with that, Open Geometry writes a comment
line at the beginning of each new object.

By the way, ten-digit precision turned out to be necessary for the exportation to
POV-Ray. Otherwise, non collinearity or coplanarity of polygonal points might
be lost, which causes compile and render errors in POV-Ray. For this reason
the include files are sometimes rather large, especially if your scene contains
parametric surfaces or Cad3D objects.

The latter object types (parameterized surfaces, Cad3D objects) are exported
to a POV-Ray mesh object. A mesh consists of triangles (a few hundred, a few
thousand, or even more). Additionally, the normal vectors at each vertex are
given in order to allow smooth-shading with soft or shiny highlights, shadows,
reflections, etc. Some examples are displayed in Figure 4.14. In POV-Ray’s scene
description language, a mesh object generated by Open Geometry has the
typical shape

mesh
{

smooth triangle
{

<−0.0053944707, −0.2049898854, 7.7896156440>,
<0.9993256912, −0.0256237351, −0.0262980438>,
<0.0000000000, −0.4207612457, 7.9889273356>,
<0.9986159170, 0.0027662509, −0.0525223595>,
<0.0056858564, −0.2160625444, 8.2103766880>,
<0.9992892679, 0.0270078186, −0.0262970855>

}
...
smooth triangle
{

<−0.0056858564, −0.2160625444, −8.2103766880>,
<−0.9992892679, 0.0270078183, 0.0262970858>,
<0.0000000000, 0.0000000000, −8.0000000000>,
<−1.0000000000, 0.0000000000, −0.0000000006>,
<0.0053944707, −0.2049898854, −7.7896156440>,
<−0.9993256912, −0.0256237356, 0.0262980444>

}
texture { T StandardSurface }
}

Again, we added line breaks for better readability. If you want a different texture,
you have to edit the texture statement in the last line. You can even insert
something like

translate <5, −2, 3>
rotate <10, −30, 30>
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before or immediately after the texture statement if you want to alter the position
of the mesh.

In order to give you an overall impression, we list the complete POV-Ray file
that was used for the rendering of Figure 6.18 in Chapter 6. The corresponding
Open Geometry code is "dodecahedron.cpp". Note the multiple light sources
that are in use to light the whole scene.

#version 3.1;

#include "colors.inc"
#include "finish.inc"
#include "glass.inc"
#include "golds.inc"
#include "metals.inc"
#include "shapes.inc"
#include "stones.inc"
#include "textures.inc"
#include "woods.inc"

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

camera
{

location <18.00, 10, 18>
look at <0, −0.66, 0>
rotate <0,23,0>
angle 26
orthographic

}

light source
{

<200, 360, −200>
color Gray65
shadowless

}
light source
{

<100, 100, 100>
color Gray65
shadowless

}
light source
{

<−100, 20, 0>
color Gray40
shadowless

}
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light source
{

<100,200, −100>
color Gray60
shadowless

}
light source
{

<0, 130, 180>
color Gray65
//shadowless

}
light source
{

<0, 100, 200>
color Gray65
//shadowless

}
// Blue sky sphere to avoid pure black background
sky sphere
{

pigment
{

gradient y
color map
{

[ 0.0 color White ]
[ 1.0 color White ]

}
}

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#declare T StandardSurface =
texture{ pigment{ color <1, 0.6, 0.5> } }

#declare T StandardSurface2 =
texture{ pigment{ color <0.7, 0.8, 1> } }

#declare T StandardSurface3 =
texture{ pigment{ color <1, 0.5, 0.6> } }

#declare T StandardCAD3D =
texture{ pigment{ color <1.0, 0.7, 0.4> }

finish {specular 1 roughness 0.001} }
#include "../../og1 5/tmp.inc"

Finally, a few words on the relation between Open Geometry and POV-Ray. As
far as geometric primitives are concerned, almost everything can easily be done
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in POV-Ray without the help of Open Geometry. There even exist POV-Ray
tools for rendering surfaces given by parametric or implicit equations.11

However, if you are used to working with Open Geometry, you will soon miss
the possibility of changing the camera position in real time when rendering a
POV-Ray image. In order to watch the opposite side of the surface, you have
to change the camera coordinates and render the whole scene again. Things are
even worse if you want to render a parameterized surface with counter lines. You
are not allowed to change the eye point; otherwise, the counter line is just some
surface polygon and looks rather weird.

Therefore, we believe that Open Geometry is a good tool for creating mesh
objects of surfaces. In return, POV-Ray provides excellent rendered images of
Open Geometry surfaces. Animations in POV-Ray are possible but rather
cumbersome in comparison with Open Geometry. But that is an indication of
the different philosophies of both programs.

FIGURE 4.14. A few POV-Ray images of Open Geometry objects.

11They are, however, not included in the standard distribution.
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4.3 Solids, Boolean Operations with Solids
Open Geometry can read solid objects that were created via Cad3D. This
3D-CAD system was written by Hellmuth Stachel, a coauthor of the original
Open Geometry book ([14]), and others, among them Georg Glaeser. The
enclosed CD provides you with a DOS version of the program. A Windows
version exists but is not included in this package.

Cad3D is not a professional but rather an educational program,12 and thus
easy to understand. Scenes are stored in binary files with suffix "*.llz". Sin-
gle solids of the scene can additionally be stored (then the file has the suffix
"*.llx"). In the directory "DATA/" you find two subdirectories "DATA/LLZ/"
and "DATA/LLX/" with dozens of stored images. Figures 4.15 and 4.16 show only
a few of them.

FIGURE 4.15. Some of the objects of the "DATA/LLX/" directory, read via Open
Geometry and exported to POV-Ray. With fast graphics hardware, all the above
objects can be smooth-shaded by Open Geometry in real time.

How to create solids directly in Open Geometry code

One of the strengths of Open Geometry is its ability to combine properties of
normally different kinds of programs. For example, there are many really good
(and expensive) CAD systems on the market. And there are many good programs
that allow other geometrical input. Mostly, however, there is a gap between these
two directions.

Figure 4.17 illustrates how Open Geometry fills that gap: A straight line that
rotates about a skew axis generates a hyperboloid of revolution. In Open Geo-
metry it is easy to display a surface like a hyperboloid, even if we do not have
explicit equations for it. The following listing shows how a new class Hyperboloid
can be introduced:

12In 1993 and 1994, Cad3D won two European software prizes for educational
programs.
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FIGURE 4.16. Some of the objects of the "DATA/LLZ/" directory, read via Open
Geometry and exported to POV-Ray. With fast graphics hardware, all the above
objects can be smooth-shaded by Open Geometryin real time.

Listing from "hyperboloid.cpp":

class Hyperboloid: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real u, Real v )
{

// This is the kinematic generation of a hyperboloid:
const Real a = 10, k = 1;
P3d P( a, u, k ∗ u ) ; // generating line in the plane x = a
P.Rotate ( Zaxis, v ) ; // sweep function
return P;

}
};

Three quarters of the surface, enclosed by planes parallel to the base plane (z =
±10), can be defined with the following code:
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FIGURE 4.17. A hyperboloid is created by means of rotation of a straight line about
a skew axis.

Listing from "hyperboloid.cpp":

Hyperboloid Hyp;

void Scene: :Init( )
{

Hyp.Def( Yellow, 50, 100, −10 ∗ sqrt( 2), 10 ∗ sqrt( 2),
90, 360 ) ;

...
}

It can then be displayed as follows:

Listing from "hyperboloid.cpp":

void Scene: :Draw( )
{
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...
Hyp.Shade( SMOOTH, REFLECTING ) ;
Hyp.ULines( Black, 20, THIN ) ;
...

}

FIGURE 4.18. A detail from the preceding image.

And now the other part: You want to display a realistic mechanism that allows
the rotation of a rod (Figure 4.18). Therefore, you need to define two (congruent)
joints by means of a CAD system.

You have two choices: The first is to start the Cad3D system that comes with
the enclosed CD, create the object there, and save it as an "*.llz" (or in this
simple case also as an "*.llx") file. In fact, we have done that all the time,
since, to be honest, it is still easier to create such objects with a CAD system.
The round arrow you can see in Figure 4.17 is such a solid that is read from a
file.

The other choice is to create the solid “live” by means of Open Geometry.13

First we declare two global variables:

Listing from "hyperboloid.cpp":

BoolResult Tube1, Tube2;

13Theoretically, Open Geometry can create everything that Cad3D can create. In
practice, however, there are numerical problems that arise due to the fact that Cad3D
sometimes uses 6-byte reals instead of either 4-byte reals or 8-byte reals.
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We have to keep in mind that they are pointer variables (see the compendium
in Chapter 6). The following listing can, we believe, be read without much ex-
planation, since there are comments at the critical lines. Just one thing: We first
define the cylinders that form the solids via Open Geometry. Then we apply
Boolean operations to these polyhedra. The result is of type BoolResult.

Listing from "hyperboloid.cpp":

int order = 60;
RegPrism Cyl1, Cyl2;
Cyl1.Def( Gray, 1.1∗r, 4, order ) ;
Cyl1.Translate( 0, 0, −2 ) ;
Cyl2.Def( Gray, r, 2, order ) ;
Cyl2.Rotate( Yaxis, 90 ) ;
// Calculate the union of the two cylinders
BoolResult Exterior = Cyl1 + Cyl2;
// Now shrink the cylinders
Real s = 0.8;
Cyl1.Scale( s, s, 1.1 ) ;
Cyl2.Scale( 1.1, s, s ) ;
// Calculate the union of the two smaller cylinders
BoolResult Interior = Cyl1 + Cyl2;
// Get the difference, i.e., the tube
Tube1 = ∗Exterior − ∗Interior;
Tube1−>Rotate( Zaxis, 90 ) ;
// Now the second solid
Tube2 = ∗Exterior − ∗Interior;
Tube2−>Rotate( Yaxis, 90 ) ;
Tube2−>Rotate( Xaxis, −90 ) ;
Tube2−>Rotate( Yaxis, 90 − angle ) ;
Tube2−>Translate( 0, 10, 0 ) ;

The two solids can finally be shaded as follows:

Listing from "hyperboloid.cpp":

Tube1−>Shade( ) ;
Tube2−>Shade( ) ;
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4.4 Texture Mapping
The basics of texture mapping with Open Geometry have been explained in
[14], p. 316. A good sample file for reference can be found on page 337 of this
book. In this section, we present two more examples:

Example 4.8. How to map images onto a cylinder
We want to map two images (bitmap files) onto a cylinder, or, more precisely,
onto a regular prism that approximates a cylinder of revolution. In order not to
offend anyone, we took pictures of ourselves (Figure 4.19, left).

These pictures fulfill two conditions:

• Their widths and heights in pixels are a power of 2 (e.g., 128 × 256). This
is due to OpenGL conventions (otherwise, the images are cut).

• In order to enable transparency, the background of the images was filled
with a bright color with RGB values greater than 230 (e.g., with white color
= < 255, 255, 255 >).

FIGURE 4.19. The two images on the left are mapped onto a regular prism.

Now we write an Open Geometry-application "map onto cyl.cpp". First, we
need some global variables:

Listing from "map onto cyl.cpp":

const int N = 16;
// We map two images onto ’cylinder’,
// or more precisely: onto an N-sided prism
Poly3d Poly; // this poly creates the prism when it is rotated N times

TextureMap Map1, Map2; // the two images with some white background
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The larger the order N of the prism, the slower the application will run. In the
initializing part we now load the images:

Listing from "map onto cyl.cpp":

Boolean transparent = true;
unsigned char rgb max = 230; // transparent beyond that value
Map1.LoadFromBitmapFile( "BMP/gg.bmp", transparent, rgb max ) ;
Map2.LoadFromBitmapFile( "BMP/hp.bmp", transparent, rgb max ) ;

When we set transparent = true, colors with RGB values greater than rgb max
are ignored (or, more precisely, are completely transparent).

Next, we define a polygon (actually a rectangle) that generates a regular N-sided
prism when it is rotated N times about the z-axis through 360/N degrees.

Listing from "map onto cyl.cpp":

const Real height = 15;
Real radius = height / N;
Poly.Def( PureWhite, 4 ) ; // NoColor is also fine,

// any other color will have influence on the image!
Poly [ 1]( radius, 0, 0 ) ;
Poly [ 2]( −radius, 0, 0 ) ;
Poly [ 3]( −radius, 0, height ) ;
Poly [ 4]( radius, 0, height ) ;
Real central angle = Arc( 360. / N ) ;
Real dist of side of the prism = radius / tan ( 0.5 ∗ central angle ) ;
Poly.Translate( 0, dist of side of the prism, −height/2 ) ;

The drawing part needs some explanation. OpenGL texture mapping in trans-
parency mode works correctly only if the following rules are obeyed:

1. You have to draw back to front, i.e., when two textured polygons overlap,
the one that is in the back has to be drawn first!

2. Transparency must be activated somehow, e.g., by means of the routine
SetOpacity(0.99). There will be no visible difference to deactivated trans-
parency mode.
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In general, it can be tricky to fulfill condition 1. In our case, though, it is not
very difficult: We check the position of the polygon’s barycenter B and determine
its distance from a plane that is perpendicular to the main projection ray (in
the program it is called mid). When B lies to the rear of this plane, the whole
face is a backface.

In a first loop we plot all backfaces; in a second one, only the frontfaces.

The rest is done with the polygon’s method ShadeWithTexture(. . . ), which takes
quite a few parameters. For better understanding, the parameters have readable
names. In principle, we drag a rectangular clipping window over the image(s).
Just skim over the lines until you see what is done in detail:

Listing from "map onto cyl.cpp":

V2d translate( 0, 0 ) ;
const V2d scale( 4.0 / N, 1 ) ;
const Real angle = 0;
const Boolean repeat = true;
SetOpacity( 0.999 ) ; // necessary for transparency
int i, k;
V3d n = TheCamera.GetProjDir( ) ;
n.z = 0;
Plane mid( Origin, n ) ; // With the help of this plane, we

// can judge whether a polygon is ’on the back side’ or not
for ( k = 0; k < 2; k++ )
{

// k = 0: plot only the backfaces of the cylinder
// k = 1: plot only the frontfaces
for ( i = 0; i < N; i++ )
{

P3d B;
B = Poly.GetBaryCenter( ) ;
if ( ( k == 0 && B.DistFromPlane( mid ) < 0 )

|| ( k == 1 && B.DistFromPlane( mid ) > 0 ) )
{

Boolean first map =
( i < N / 4 || i >= N / 2 && i < ( 3∗N ) / 4 ) ;

Poly.ShadeWithTexture( first map ? Map1 : Map2,
scale.x, scale.y, angle,
translate.x, translate.y, repeat ) ;

}
translate.x += scale.x;
if ( translate.x >= 0.99 )

translate.x = 0;
Poly.Rotate( Zaxis, 360. / N ) ;

// after N rotations, the polygon
// is again in the original position

}
}
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♦

Example 4.9. Tread
In "tread.cpp" we present a combination of both texture mapping and 3D
animation. We map a texture on a tread running around two rollers. The rollers
are cylinders of revolution implemented as objects of type RegPrism:

Listing from "tread.cpp":

RegPrism Roll1, Roll2;
const Real R1 = 4.0, R2 = 2.8;
const int Switch = ( R1 > R2 ? 1 : −1 ) ;
const Real Z1 = 5.0, Z2 = −3.0;
const StrL3d Axis1( P3d( 0, 0, Z1 ), Ydir ) ;
const StrL3d Axis2( P3d( 0, 0, Z2 ), Ydir ) ;

Their radii, their axes, and the axes’ z-coordinates are global constants. Switch
helps us to differentiate the cases R1 > R2 and R2 > R1. The cylinders’ height
or Width as we shall rather call it (their axes are parallel to y) will be computed
in Init( ) for a special reason: We intend to use a bitmap of size 128 × 256
(OpenGL standards require bitmaps with powers of 2 as side lengths). After
having computed the total length of the tread in Init( ), we adjust Width to
ensure that the whole bitmap is mapped on the tread exactly n = ImageNumber
(global constant!) times. The heart of the program is the following function:

Listing from "tread.cpp":

P3d PointOnTread( Real u, Real v )
{

if ( U0 <= u && u < U1 )
return B1 + u ∗ V1 + v ∗ Ydir;

if ( U1 <= u && u < U2 )
{

u = ( u − U1 − Switch ∗ R1 ∗ Alpha ) / R1;
return P3d( −R1 ∗ cos( u ), v, Z1 + R1 ∗ sin( u ) ) ;

}
if ( U2 <= u && u < U3 )

return A2 + ( u − U2 ) ∗ V2 + v ∗ Ydir;
if ( U3 <= u && u <= U4 )
{

u = ( u − U3 + Switch ∗ R2 ∗ Alpha ) / R2;
return P3d( R2 ∗ cos( u ), v, Z2 − R2 ∗ sin( u ) ) ;

}
else
{
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while ( u > U4 )
u −= U4;

while ( u < 0 )
u += U4;

return PointOnTread( u, v ) ;
}

}

If you develop the tread into a plane, you will get a rectangle R. We connect a
Cartesian coordinate system with R in a way that the x-axis coincides with one of
the smaller sides and the y-axis with the middle line parallel to the longer sides.
Then PointOnTread(. . . ) returns the point on the tread that corresponds to the
point with coordinates (u, v). The function uses a number of global variables, and
in order to understand their meaning and the ideas behind PointOnTread(. . . ),
we need to have a closer look at 2D geometry.

Obviously, the following problem is crucial to our program: Given two circles
c1 and c2, determine their common tangents! There exist four solutions to the
problem, but not all of them need be real. Furthermore, at least two of them have
no relevance to our purposes. In Figure 4.20 you can see a geometric construction
of the two solution tangents t1 and t2. We introduce an auxiliary circle c∗ of
radius r2 − r1. Then we determine the tangents of c∗ through the center M2 of
c2. They are parallel to the solution tangents t1 and t2. The points of tangency
lie on the corresponding diameters of c1 and c2.

FIGURE 4.20. Constructing the common tangents of two circles and using this for
a texture map plus animation.

From this drawing we get all the information we need for the computation of the
common tangents in Init( ):
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Listing from "tread.cpp":

if ( R1 < 0 || R2 < 0 )
SafeExit( "radius negative!" ) ;

const Real dist = fabs( Z1 − Z2 ) ;

if ( dist < R1 + R2 )
SafeExit( "rolls too close!" ) ;

if ( fabs( R1 − R2 ) > 0.001 )
{

Real d = dist ∗ R1 / ( R1 − R2 ) ;
Real z = R1 ∗ R1 / ( 2 ∗ d ) ;
Real x = Sqrt( R1 ∗ R1 − z ∗ z ) ;
Alpha = fabs( atan( z / x ) ) ;
A1.Def( −x, 0, Z1 − z ) ;
B1.Def( x, 0, Z1 − z ) ;

d −= dist;
z = R2 ∗ R2 / ( 2 ∗ d ) ;
x = Sqrt( R2 ∗ R2 − z ∗ z ) ;
A2.Def( −x, 0, Z2 − z ) ;
B2.Def( x, 0, Z2 − z ) ;

}
else
{

Alpha = 0;
A1.Def( −R1, 0, Z1 ) ;
B1.Def( R1, 0, Z1 ) ;
A2.Def( −R2, 0, Z2 ) ;
B2.Def( R2, 0, Z2 ) ;

}

V1 = A1 − A2;
V1.Normalize( ) ;
V2 = B2 − B1;
V2.Normalize( ) ;
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First, we compute the intersection point D of the tangents by means of the
relation R1−R2 : Z1−Z2 = R1 : d (Figure 4.20). Then it is easy to determine the
reals x and z that lead to the points of tangency A1, B1 on c1 and A2, B2 on c2. In
addition, we compute the value of the angle α as we need it in PointOnTread(. . . ).
Note that we do this only if the radii R1 and R2 are different. If they are (almost)
equal, we take the obvious values α = 0, Ai = (−Ri, 0,Zi)t and Bi = (Ri, 0,Zi)t.
Finally, V1 and V2 are the normalized vectors in the direction of A1A2 and B1B2,
respectively. Note that we catch the exceptional case without real solutions at
the very beginning. In fact, we even avoid the case of intersecting rollers.

Now we have to compute the values U0, . . . ,U4 that are used in PointOnTread(. . . ).
They give the length between successive transition points of the tread. For ex-
ample, U2 − U1 is the arc length of c1 between U1 and U1. We need the variable
Switch for that.

Listing from "tread.cpp":

const Real length = A1.Distance( A2 ) ;
U0 = 0;
U1 = length;
U2 = U1 + R1 ∗ ( PI + 2 ∗ Switch ∗ Alpha ) ;
U3 = U2 + length;
U4 = U3 + R2 ∗ ( PI − 2 ∗ Switch ∗ Alpha ) ;

Width = U4 / ( 2 ∗ ImageNumber ) ;

The width of our tread is computed with respect to the total length U4 of the
tread. Of course, this formula works only for bitmaps with ratio height : width =
2 : 1. Finally, we initialize the rollers themselves:

Listing from "tread.cpp":

Real r1 = 0.97 ∗ R1;
Real r2 = 0.97 ∗ R2;
Roll1.Def( Blue, r1, 2 ∗ Width, 30, SOLID, Yaxis ) ;
Roll2.Def( Green, r2, 2 ∗ Width, 30, SOLID, Yaxis ) ;
Roll1.Translate( 0, −Width, Z1 ) ;
Roll2.Translate( 0, −Width, Z2 ) ;

To avoid visibility problems, you may have to use a scaling factor different from
0.97. It depends on the rollers’ curvature and on the approximation quality of
the tread you use. This quality is determined by a global integer N. In Draw( )
we map the textures on the tread:
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Listing from "tread.cpp":

int i;
Real u, delta = U4 / N;
Real scale = delta / ( 2 ∗ Width ) ;
Poly3d Poly;
Poly.Def( PureWhite, 4 ) ;
for ( i = 0, u = U; i < N; i++, u += delta )
{

Poly [ 1] = PointOnTread( u, Width ) ;
Poly [ 2] = PointOnTread( u, −Width ) ;
Poly [ 3] = PointOnTread( u + delta, −Width ) ;
Poly [ 4] = PointOnTread( u + delta, Width ) ;
Poly.ShadeWithTexture( Map, 1, scale, 0, 0, i ∗ scale, true ) ;

}

Here, you have to know how Open Geometry and OpenGL handle texture
mappings (see [14]). We approximate the tread by a number of small rectangles
and map the corresponding part of the bitmap on them. The initial value of u in
the above listing is a global variable U that is used to animate the whole thing:

Listing from "tread.cpp":

void Scene: :Animate( )
{

U += 0.2;
if ( U > U4 )

U −= U4;
Roll1.Rotate( Axis1, Deg( U / R1 ) ) ;
Roll2.Rotate( Axis2, Deg( U / R2 ) ) ;

}

Because of the texture mapping, the animation is rather slow. You had better
avoid large bitmaps. With our current hardware we get about 7 frames per second
with a bitmap of size 128 × 256 (Figure 4.20). ♦

4.5 Advanced Animations
In this section we present a few examples that demonstrate Open Geometry’s
ability to simulate even very complex 3D animations. Sometimes, the difference
between 3D animations and 3D kinematics is not easy to tell. Thus, you will find
examples of interest in Section 4.1 as well.
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Example 4.10. A developable Möbius band
In 1865 the German geometer F.A. Möbius described a simple method to pro-
duce a model of a nonorientable surface ([24]). He proposed to join the opposite
corners of a long, thin slip of paper (Figure 4.21). The resulting object has only
one side and one edge.

It is not difficult to find mathematical surfaces that are topologically equivalent
to Möbius’s example ("moebius1.cpp"). Consider an axis z, a plane ε through
z, and a circle c ⊂ ε such that the center C of c does not lie on z. Now rotate c
with constant angular velocity ω about z, and a diameter D1D2 of c about the
circle axis with angular velocity ω/2. The diameter will sweep a one-sided and
nonorientable band (Figure 4.21). By the way, this band is part of a right rotoid
helicoid (compare [14], p.303).

FIGURE 4.21. Möbius’s idea of producing a one-sided surface and a topologically
equivalent right rotoid helicoid.

The program "moebius1.cpp" is not of so much interest to us at this point. It is
just some solid Open Geometry code. We will rather focus on certain geometric
properties of the original Möbius band. Obviously, it is a torse: Its development
into the plane yields the original rectangle. This is an essential difference from
the example of "moebius1.cpp". You can easily verify this by having a look at
the contour outline in Figure 4.21. It does not consist of straight line segments.
Most of the numerous examples of Möbius bands that you find in books or on
the Internet do not pass this test, i.e., they are not developable.

In fact, it took quite a while before the existence of a developable Möbius band
was proved in a strict mathematical sense. A relatively simple example was
given by M. Sadowsky in [32]. It consists of three planar parts and three parts
of cylinders of revolution. However, this surface is not analytic.

The first example of a developable and analytic Möbius band was given by
W. Wunderlich in 1962 ([38]). His example has another advantage in com-
parison with others: It approximates the stable position the paper band will
naturally take if not subjected to exterior influence and if the material is stiff
enough. This position is well defined by certain physical conditions but could
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never be given in explicit form ([31]). W. Wunderlich’s approach will allow
us to visualize an approximation of this stable position. We will denote it by
M . This is the only attempt to visualize the real-world Möbius band on the
computer screen we know of.

FIGURE 4.22. The midline of the Möbius band and the rectifying plane in a curve
point.

Wunderlich starts with a close inspection of the midline m of the band (Fig-
ure 4.21, Figure 4.22). From several photos of a model he deduces the existence
of an axis of symmetry z that intersects the band in two points A and B. In
B, the axis z is perpendicular to the tangent plane of the band. Furthermore, z
is the torse generator through A. Taking into account this behavior and a few
other measurements, he proposes a rational parametric representation for the
approximation of m. Using homogeneous coordinates x0 :x1 :x2 :x3 = 1 :x : y : z
it can be written as

x0 = 1
2

(
1 + d2u2 + 2deu4 + e2u6) ,

x1 = au + bu3 + cu5,

x2 = du + eu3,

x3 = −C,

where the coefficients a, b, c, d, e, and C have the values

a = 1
2 , b = 1

3 , c = 1
6 , d = 2

3 , e = 1
3 , and C = 4

5 . (3)

The parameter u ranges in R ∪ {∞}, and the resulting curve m is closed and
rational of order six. Its top, front, and side views are displayed in Figure 4.22.

For the next step it is important to note that m is a geodetic line on the band. This
follows immediately from the fact that the development of m yields a straight
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line. Elementary differential geometry tells us that the osculating plane σ = σ(u)
of m is perpendicular to the tangent plane τ = τ(u) of M . Not only is τ the
tangent plane of M , but the rectifying plane � = �(u) of m as well (Figure 4.23).14

In other words; M is the rectifying torse of m (the envelope of the rectifying
planes of m).

FIGURE 4.23. Wunderlich’s developable and analytic model of the stable position
of the Möbius band.

From these considerations one can conclude that M is a torse of class 21 and
order 39. It is, of course, useless to compute a parametric representation of M .
But with Open Geometry this is not necessary at all. We have already enough
information to write a program ("moebius2.cpp"). We declare the coefficients
(3) as global variables and implement the midline m of the band:

Listing from "moebius2.cpp":

class MyMidLine1: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

const Real u3 = u ∗ u ∗ u;
Real x0 = 0.5 ∗ ( 1 + d ∗ d ∗ u ∗ u +

2 ∗ d ∗ e ∗ u3 ∗ u + e ∗ e ∗ u3 ∗ u3 ) ;
Real x1 = a ∗ u + b ∗ u3 + c ∗ u3 ∗ u ∗ u;
Real x2 = d ∗ u + e ∗ u3;

14The rectifying plane of a space curve is the plane spanned by the curve tangent
and normal of the osculating plane.
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Real x3 = −C;
return P3d( x1 / x0, x2 / x0, x3 / x0 ) ;

}
StrL3d Tangent( Real u )
{

const Real u2 = u ∗ u;
Real d0 = u ∗ ( 3 ∗ e ∗ e ∗ u2 ∗ u2 +

4 ∗ d ∗ e ∗ u2 + d ∗ d ) ;
Real d1 = 5 ∗ c ∗ u2 ∗ u2 + 3 ∗ b ∗ u2 + a;
Real d2 = 3 ∗ e ∗ u2 + d;

return StrL3d( CurvePoint( u ),
P3d( d1 / d0, d2 / d0, 0 ) ) ;

}
Plane OsculatingPlane( Real u )
{

const Real u2 = u ∗ u;
Real dd0 = 15 ∗ e ∗ e ∗ u2 ∗ u2 +

12 ∗ d ∗ e ∗ u2 + d ∗ d;
Real dd1 = 20 ∗ c ∗ u2 ∗ u + 6 ∗ b ∗ u;
Real dd2 = 6 ∗ e ∗ u;
return Plane( P3d( dd1 / dd0, dd2 / dd0, 0 ),

Tangent( u ) ) ;
}
Plane RectifyingPlane( Real u )
{

Plane p = OsculatingPlane( u ) ;
p.Rotate( Tangent( u ), 90 ) ;
return p;

}
};
MyMidLine1 MidLine1;

We will need the curve’s tangent t, the osculating plane σ, and the rectifying
plane �. Usually, one would compute them by connecting “neighboring” curve
points, but here we can do better. It is easy to compute exact representations
for t and σ from the parameterized equation of m. The plane � is obtained by
rotating σ about t through 90◦. Later we will have to intersect two “neighboring”
rectifying planes. So it seems to be a good idea to gain some additional accuracy
at this point.

Of course, we cannot exhaust the whole parameter range R∪{∞} of the midline
m. Therefore, we need a second, parametrically transformed instance of the class
ParamCurve3d. The transformation u �→ 1

u does a good job:
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Listing from "moebius2.cpp":

class MyMidLine2: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

return MidLine1.CurvePoint( 1 / u ) ;
}
StrL3d Tangent( Real u )
{

return MidLine1.Tangent( 1 / u ) ;
}
Plane OsculatingPlane( Real u )
{

return MidLine1.OsculatingPlane( 1 / u ) ;
}
Plane RectifyingPlane( Real u )
{

return MidLine1.RectifyingPlane( 1 / u ) ;
}

};
MyMidLine2 MidLine2;

Now we define both parts of the curve in Init( ). If we use the parameter interval
[−1, 1] twice, the whole curve will be displayed.

Listing from "moebius2.cpp":

MidLine1.Def( Black, 100, −1, 1 ) ;
MidLine2.Def( Black, 100, −1, 1 ) ;

For the implementation of M we use the Open Geometry class RuledSurface:15

15An analogous surface is defined with the help of MidLine2.



Section 4.5. Advanced Animations 363

Listing from "moebius2.cpp":

class MyMoebiusBand1: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real u )
{

return MidLine1.CurvePoint( u ) ;
}
virtual V3d DirectionVector( Real u )
{

Plane o, r1, r2;
o = MidLine1.OsculatingPlane( u ) ;
o.Translate( o.n( ) ) ;
r1 = MidLine1.RectifyingPlane( u − Eps ) ;
r2 = MidLine1.RectifyingPlane( u + Eps ) ;
P3d P;
if ( o.SectionWithTwoOtherPlanes( r1, r2, P ) )

return V3d( MidLine1.CurvePoint( u ), P ) ;
else

return Origin; // dummy
}

};
MyMoebiusBand1 MoebiusBand1, MoebiusBand2;

The directrix is, of course, the midline. The direction vector �d = �d(u) is parallel
to the intersection of two “neighboring” rectifying planes, and that is exactly how
we compute it. However, we have to take care of the length of �d(u) (we must
ensure that the development of M yields a slip of constant width). Therefore,
we choose its end point in the plane σ: the parallel plane at distance one from
the osculating plane (compare Figure 4.22).

Note that our construction yields an discontinuity in the parameterization of M .
At the value u0 = 0 we have

lim
u→u+

0

�d(u) = − lim
u→u−

0

�d(u).

This is no reason to worry. On the contrary, it is inherent to the topology of the
Möbius band. In order to avoid any trouble in displaying the surface, we split it
in two at the parameter value u0:
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Listing from "moebius2.cpp":

const Real w = 0.35;
MoebiusBand1.Def( Green, 60, 21, −1, −0.001, −w, w ) ;
MoebiusBand2.Def( Green, 60, 21, 0.001, 1, −w, w ) ;
MoebiusBand3.Def( Green, 120, 21, −1, 1, −w, w ) ;

The third part, MoebiusBand3, stems from the second part of the midline. Here,
no splitting is necessary. The final output is displayed in Figure 4.23

Of course, it is now a very tempting task to write an animation of the folding
and unfolding of Wunderlich’s Möbius band. With the help of the preceding
considerations, this is not too difficult.

Basically, we triangulate the surface and perform small rotations about certain
triangle sides until we reach a planar object. This procedure is schematically
displayed in Figure 4.24. We start with a mesh T = {T0, . . . , Tn} of triangles
such that any two consecutive triangles Ti and Ti+1 have a side ai,i+1 in common.
The angles between the supporting planes εi and εj of the triangles Ti and Tj

will be denoted by ϕij . In order to “develop” the mesh T, we rotate Ti+1 about
ai,i+1 through ϕi,i+1 into the plane εi. Then we repeat this step with the axis
ai−1,i and the angle ϕi−1,i, etc. Finally, we get a mesh that lies completely in ε0.

FIGURE 4.24. The basic idea of the unfolding of the Möbius band (left). We trian-
gulate the band and rotate the triangles one by one until they are all coplanar. For
the triangulation we use four patches (right). This allows optimal exploitation of the
object’s symmetry.

The whole idea is realized in "moebius3.cpp". There, we need the paramet-
ric representation of the band as used in "moebius2.cpp". However, the band
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need not be implemented as a parameterized surface. Therefore, we write a
list of functions that return all objects we need (curve point, tangent, oscu-
lating plane, and rectifying plane of the midline). Then we implement a sepa-
rate function SurfacePoint1(Real u, Real v) according to our considerations in
"moebius2.cpp".

Listing from "moebius3.cpp":

P3d SurfacePoint1( Real u, Real v )
{

const Real eps = 1e−4;
Plane o, r1, r2;
o = OsculatingPlane( u ) ;
o.Translate( o.n( ) ) ;
r1 = RectifyingPlane( u − eps ) ;
r2 = RectifyingPlane( u + eps ) ;
P3d P;
if ( o.SectionWithTwoOtherPlanes( r1, r2, P ) )

return CurvePoint( u ) + v ∗ V3d( CurvePoint( u ), P ) ;
else

return Origin; // dummy
}

A second function SurfacePoint2(Real u, Real v) returns the point corresponding
to (1/u, v), and it will be used to display the second half of the band. In fact,
we use four patches this time in order to overcome the difficulties with the
parameterization and to make best use of the object’s symmetry (Figure 4.24).

We decide on a constant integer N and allocate the memory for four arrays of
triangles and two arrays of reals:

Listing from "moebius3.cpp":

const int N = 30;
const int N2 = 2 ∗ N;
const int N3 = N2 − 1;

const int M = 50;

Poly3d Tri [ 4] [N2];

Real Phi [ 2] [N2];
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The constant N will be one-eighth of the total number of triangles, i.e., each
patch consists of N2 = 2N triangles. The constant N3 is just an abbreviation
for a frequently used integer, while M determines the number of frames used for
a complete animation cycle: The band will unfold completely within M frames.
For reasons of symmetry we need only two patches of reals to store the angles
between the supporting planes of two consecutive triangles.

Now we have to fill the arrays with the correct values. In Init( ) we start with
the triangle points:

Listing from "moebius3.cpp":

const Real w = 0.4 ∗ Factor; // width of Moebius band
// compute triangle points
int i;
Real u;
const Real delta = ( 1.0 − 2 ∗ 1e−4 ) / N;
for( i = 0, u = 1e−4; i < N; i++, u += delta )
{

Tri [ 0] [ 2∗i].Def( LightYellow, 3 ) ;
Tri [ 0] [ 2∗i] [ 1] = SurfacePoint1( u, w ) ;
Tri [ 0] [ 2∗i] [ 2] = SurfacePoint1( u + delta, w ) ;
Tri [ 0] [ 2∗i] [ 3] = SurfacePoint1( u, −w ) ;

Tri [ 0] [ 2∗i+1].Def( LightYellow, 3 ) ;
Tri [ 0] [ 2∗i+1] [ 3] = SurfacePoint1( u + delta, −w ) ;
Tri [ 0] [ 2∗i+1] [ 2] = Tri [ 0] [ 2∗i] [ 2];
Tri [ 0] [ 2∗i+1] [ 1] = Tri [ 0] [ 2∗i] [ 3];

Tri [ 2] [ 2∗i].Def( LightYellow, 3 ) ;
Tri [ 2] [ 2∗i] [ 1] = SurfacePoint2( 1 − u, w ) ;
Tri [ 2] [ 2∗i] [ 2] = SurfacePoint2( 1 − u − delta, w ) ;
Tri [ 2] [ 2∗i] [ 3] = SurfacePoint2( 1 − u, −w ) ;

Tri [ 2] [ 2∗i+1].Def( LightYellow, 3 ) ;
Tri [ 2] [ 2∗i+1] [ 3] = SurfacePoint2( 1 − u − delta, −w ) ;
Tri [ 2] [ 2∗i+1] [ 2] = Tri [ 2] [ 2∗i] [ 2];
Tri [ 2] [ 2∗i+1] [ 1] = Tri [ 2] [ 2∗i] [ 3];

}
for ( i = 0; i < N2; i++ )
{

Tri [ 1] [i].Def( LightYellow, 3 ) ;
Tri [ 3] [i].Def( LightYellow, 3 ) ;

}
SetRemainingTriangles( ) ;
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The triangulation of the first and third patches is computed by means of
SurfacePoint1(Real u, Real v). For the remaining triangles we employ the useful
function SetRemainingTriangles( ). It is implemented globally:

Listing from "moebius3.cpp":

P3d MyRotate( const P3d &P )
{

return P3d( −P.x, −P.y, P.z ) ;
}
void SetRemainingTriangles( )
{

int k;
for ( k = 0; k < N2; k++ )
{

Tri [ 1] [k] [ 1] = MyRotate( Tri [ 0] [k] [ 1] ) ;
Tri [ 1] [k] [ 2] = MyRotate( Tri [ 0] [k] [ 2] ) ;
Tri [ 1] [k] [ 3] = MyRotate( Tri [ 0] [k] [ 3] ) ;

Tri [ 3] [k] [ 1] = MyRotate( Tri [ 2] [k] [ 1] ) ;
Tri [ 3] [k] [ 2] = MyRotate( Tri [ 2] [k] [ 2] ) ;
Tri [ 3] [k] [ 3] = MyRotate( Tri [ 2] [k] [ 3] ) ;

}
}

It does nothing but rotate the triangles of the first and third patches about
z through 180◦ but without using trigonometric functions. (This is very fast!)
In Animate( ) we will recalculate the triangulation again and again. Since the
computation of a surface point is quite laborious (we have to intersect two recti-
fying planes of the midline!), it is sensible to save some computing time by using
SetRemainingTriangles( ).

The next step is the computation of the correct angles. It has to be done only
once, in Init( ):

Listing from "moebius3.cpp":

V3d n1, n2;
for ( i = 1; i < N2; i++ )
{

n1 = Tri [ 0] [i−1].GetNormalizedNormal( ) ;
n2 = Tri [ 0] [i].GetNormalizedNormal( ) ;
Phi [ 0] [i] = Deg( n1.Angle( n2, true, false ) ) ;
CheckAngle( 0, i ) ;

n1 = Tri [ 2] [i−1].GetNormalizedNormal( ) ;
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n2 = Tri [ 2] [i].GetNormalizedNormal( ) ;
Phi [ 1] [i] = Deg( n1.Angle( n2, true, false ) ) ;
CheckAngle( 1, i ) ;

Phi [ 0] [i] /= M;
Phi [ 1] [i] /= M;

}
// two exceptional angles
n2 = Tri [ 0] [ 0].GetNormalizedNormal( ) ;
Phi [ 0] [ 0] = Deg( Zdir.Angle( n2, true, false ) ) ;
Phi [ 0] [ 0] /= M;

n1 = Tri [ 0] [N3].GetNormalizedNormal( ) ;
n2 = Tri [ 2] [ 0].GetNormalizedNormal( ) ;
Phi [ 1] [ 0] = Deg( n1.Angle( n2, true, false ) ) ;
Phi [ 1] [ 0] /= M;

We determine the normalized normal vectors of the supporting planes and com-
pute their angles. In order to be sure that we have obtained the correct angle
we check it in CheckAngle( 0, i ) and correct it if necessary. CheckAngle( 0, i )
performs a test rotation and checks whether the new angle is small enough. If
this is not the case, the angle is multiplied by −1.

Listing from "moebius3.cpp":

void CheckAngle( int j, int i )
{

Poly3d poly;
poly.Def( Black, 3 ) ;
poly = Tri [ 2∗j] [i];
StrL3d axis;
axis.Def( Tri [ 2∗j] [i−1] [ 2], Tri [ 2∗j] [i−1] [ 3] ) ;
poly.Rotate( axis, Phi [j] [i] ) ;
V3d n1 = Tri [ 2∗j] [i−1].GetNormalizedNormal( ) ;
V3d n2 = poly.GetNormalizedNormal( ) ;
if( fabs( Deg( n1.Angle( n2, true, false ) ) > 0.01 ) )

Phi [j] [i] ∗= −1;
}

Of course, this is rather cumbersome, but it has to be done only once during the
precalculations. Note that we divide the angle values immediately by M after
the angle check. In each frame we will perform one rotation through the small
increment angles, which results in a completely planar mesh after M frames.

Draw( ) is very simple. We shade only the triangles and draw those sides that
form the borderline of the band in thin black.
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Listing from "moebius3.cpp":

void Scene: :Draw( )
{

int i, j;
for ( i = 0; i < N2; i++ )
{

for ( j = 0; j < 4; j++ )
{

Tri [j] [i].Shade( ) ;
Tri [j] [i].Shade( ) ;
Tri [j] [i].Shade( ) ;
Tri [j] [i].Shade( ) ;

StraightLine3d( Black, Tri [j] [i] [ 1],
Tri [j] [i] [ (i%2)+2], THIN ) ;

}
}
StraightLine3d( Black, Tri [ 2] [N3] [ 2], Tri [ 2] [N3] [ 3], THIN ) ;
StraightLine3d( Black, Tri [ 3] [N3] [ 2], Tri [ 3] [N3] [ 3], THIN ) ;

}

Animate( ) needs more considerations than Draw( ). We use two global variables
to control the folding and undfolding of the Möbius band:

int Count;
Boolean Pause;

They are set to 0 and false, respectively, when we enter Animate( ) for the first
time. In order to give a good overview, we display the whole part at once:

Listing from "moebius3.cpp":

void Scene: :Animate( )
{

if ( !Pause )
{

StrL3d axis;

axis.Def( Tri [ 0] [ 0] [ 1], Tri [ 0] [ 0] [ 3] ) ;
int i;
for ( i = 0; i < N2; i++ )
{

Tri [ 0] [i].Rotate( axis, Phi [ 0] [ 0] ) ;
Tri [ 2] [i].Rotate( axis, Phi [ 0] [ 0] ) ;
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}
for ( i = 1; i < N3; i++ )
{

axis.Def( Tri [ 0] [i−1] [ 2], Tri [ 0] [i−1] [ 3] ) ;
int j;
for( j = i; j < N2; j++ )

Tri [ 0] [j].Rotate( axis, Phi [ 0] [i] ) ;
for( j = 0; j < N2; j++ )

Tri [ 2] [j].Rotate( axis, Phi [ 0] [i] ) ;
}
axis.Def( Tri [ 0] [N3] [ 2], Tri [ 0] [N3] [ 3] ) ;
for ( i = 0; i < N2; i++ )

Tri [ 2] [i].Rotate( axis, Phi [ 1] [ 0] ) ;

for ( i = 1; i < N3; i++ )
{

axis.Def( Tri [ 2] [i−1] [ 2], Tri [ 2] [i−1] [ 3] ) ;
int j;
for ( j = i; j < N2; j++ )

Tri [ 2] [j].Rotate( axis, Phi [ 1] [i] ) ;
}
SetRemainingTriangles( ) ;

}
Count++;

if ( Count == M ) // full animation period complete
{

Pause = true; // wait a little
int i;
for ( i = 0; i < N2; i++ ) // reverse sense of animation
{

Phi [ 0] [i] ∗= −1;
Phi [ 1] [i] ∗= −1;

}
}
if ( Pause ) // check whether break was already

// long enough (50 frames)
{

if ( Count == M + 50 )
{

Count = 0;
Pause = false;

}
}

}
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We have four parts where we rotate triangles. The first and third parts (those
parts with only one count variable i) consist of rotations about one axis only.
They occur at the transition between the different patches and have to be treated
as special cases, since they don’t fit exactly into the scheme of the other rotations.
We rotate only the first and third patches and set the remaining triangle point
“by hand.”

FIGURE 4.25. The folding of the stable form of the original Möbius band.

All of this happens only if the value of Pause is false. Count is increased by one
in each new frame. If Count == M, the band will be completely flat. We set
Pause to true and multiply all angles by −1. After a short delay of 50 frames
everything starts again in the reverse direction. In Figure 4.25 we display a POV-
Ray rendering of the different stages of the animation. ♦

Example 4.11. Caravan of arrows
We have already mentioned that Möbius developed his band as a simple example
of a one-sided surface. By means of a paper model this can easily be verified. On
the computer screen, however, you still need some imagination to see this.

The program "moebius with arrows.cpp" is aimed to help you with that. Ad-
ditionally, it is an example of the use of the Open Geometry class Arrow3d. We
display the band as in Example 4.10 and add an animation of arrows traveling
along the surface. Essentially, we use the methods of "moebius3.cpp" to display
the band. The only (minor) difference is that we introduce a global constant
ScaleFactor for scaling the surface to an appropriate Open Geometry size (in
"moebius3.cpp", this factor is local).

In addition, we must be able to bring an arrow into a certain position with
respect to the Möbius band. We use the following routine to solve that task:
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Listing from "moebius with arrows.cpp":

void SetLocalSystem( Real u, int state, P3d &P, V3d &x, V3d &z,
Real a, Real b )

{
if ( u < 0 )
{

Real t = u + 1;
P = MidLine1.CurvePoint( t ) ;
x = MidLine1.Tangent( t ).GetDir( ) ;
z = MidLine1.RectifyingPlane( t ).n( ) ;

}
else
{

Real t = 1 − u;
P = MidLine2.CurvePoint( t ) ;
x = MidLine2.Tangent( t ).GetDir( ) ;
z = MidLine2.RectifyingPlane( t ).n( ) ;

}
if ( fabs( u ) <= 1 ) // correct orientation of the tangent

x ∗= −1;
V3d y = x ∧ z;
z ∗= b ∗ state;
if ( u > 1 )

z ∗= −1;
P ∗= ScaleFactor;
P.Translate( a ∗ y ) ;
P.Translate( z ) ;

};

SetLocalSystem(. . . ) defines a point P and two vectors x, z that can be used to
determine the position of an arrow according to Figure 4.26. We have to take into
account the splitting of the band (compare Example 4.10) and the orientation
of the curve and curve tangent.

The input parameters a and b determine the distance from the arrow tip to the
rectifying plane � of the midline and from the tangent plane τ of the band to
the corresponding curve point Q. The vector x is parallel to the midline tangent;
z is parallel to the surface normal. The meaning of the input parameters u and
state will become clear after a closer look at the animation part.

Before we can describe what we are doing, we have to describe our intention.
This can best be done by referring the reader to Figure 4.27. You can see a
Möbius band with two pairs of arrows and one with a long “caravan” of arrows.
In "moebius with arrows.cpp" the arrows move around the band, and you can
switch between the two different types. For the animation we use the following
global constants and variables:
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FIGURE 4.26. Assigning an arrow to the Möbius band.

Listing from "moebius with arrows.cpp":

const int N = 18;

const Real U1 = −2;
const Real Delta = (Real) ( − 2 ∗ U1 ) / ( N − 1 ) ;
Real Umax;
Boolean ShowCaravan;

Real U;
int State;

The constant N is half the number of arrows in the caravan case. The animation
parameter U will vary either in [U1,Umax] where Umax = −U1 in the pair mode
or where Umax = U1 + Delta in the caravan mode. The integer State takes the
values ±1. In pair mode, it is used to determine the current side of an arrow.

We globally declare an instance Arrow of class Arrow3d and define it in Init( ):



374 Chapter 4. 3D Graphics II

Listing from "moebius with arrows.cpp":

Arrow.Def( 1 ) ;
Arrow.Scale( 2 ) ;

The integer argument in Arrow.Def( 1 ) determines the arrow type. You have a
choice among four different shapes (compare Chapter 6, page 480). The drawing
routine is, of course, placed in Draw( ) and reads as follows:

Listing from "moebius with arrows.cpp":

P3d P;
V3d x, z;
if ( ShowCaravan )
{

const Real a = 2;
int i;
Real u;
for ( i = 0, u = U; i < N; i++, u += Delta )
{

SetLocalSystem( u, 1, P, x, z, 0, a ) ;
Arrow.ShadeAtPosition( Yellow, P, x, z ) ;
SetLocalSystem( u, −1, P, x, z, 0, a ) ;
Arrow.ShadeAtPosition( Yellow, P, x, z ) ;

}
}
else
{

const Real a = 1, b = 2;
SetLocalSystem( U, State, P, x, z, a, b ) ;
Arrow.ShadeAtPosition( Yellow, P, x, z ) ;
SetLocalSystem( U, State, P, x, z, a, −b ) ;
Arrow.ShadeAtPosition( Red, P, x, z ) ;

SetLocalSystem( U, State, P, x, z, −a, b ) ;
Arrow.ShadeAtPosition( Yellow, P, x, z ) ;
SetLocalSystem( U, State, P, x, z, −a, −b ) ;
Arrow.ShadeAtPosition( Red, P, x, z ) ;

}
PrintString( Black, −17, 15, "P...pair mode" ) ;
PrintString( Black, −17, 14, "C...caravan mode" ) ;
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It consists of several calls to SetLocalSystem(. . . ) and the ShadeAtPosition(. . . )
of Arrow3d. Depending on the value of the Boolean ShowCaravan, the number of
calls as well as the input parameters vary. The last two lines of the above listing
already indicate that you can switch to pair mode and caravan mode by pressing
P and C, respectively:

Listing from "moebius with arrows.cpp":

void Scene: :Animate( )
{

int key = TheKeyPressed( ) ;
if ( key == ’C’ )
{

ShowCaravan = true;
Umax = U1 + Delta;
U = U1;

}
if ( key == ’P’ )
{

ShowCaravan = false;
Umax = −U1;

}

U += 0.05;
if ( U > Umax )
{

U = U1;
State ∗= −1;

}
}

FIGURE 4.27. Two pairs of arrows and a caravan of arrows traveling along a Möbius
band.
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In Animate( ) we check whether P or C has been pressed and change DrawCaravan
and Umax. Furthermore, we reset U in order to prevent a “traffic jam” of arrows.
In the last couple of lines we increase U, reset it to U1 if it is out of range, and,
at the same time, switch State. ♦
Example 4.12. Reflecting oloid
We present another example where the remarkable oloid (“wobbler”) plays an
important part (compare the examples in [14]): An oloid Ω made of a reflecting
material and performing the typical “oloid motion” as displayed in "oloid.cpp"
casts water like caustics on a wall.16

FIGURE 4.28. The caustic curve generated by the reflection on an oloid.

In this example many of Open Geometry’s favored tasks are combined: We
shade a parameterized surface, perform a complex animation, and calculate an
ordinary curve as well as a class curve by direct geometric construction (i.e.,
without using a parameterized equation).

The oloid can be described as the convex hull of two circles in perpendicular
planes such that the center of one circle lies on the circumference of the other.

16The idea for this stems from one of our students. He really built a model of the
mechanism and presented it at an exhibition.
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It is a developable ruled surface (a torse).

This and a few other properties are responsible for the oloid’s technical relevance.
It is used in mixing and stirring devices. There it performs a special “wobbling”
motion that is induced by a relatively simple mechanism. In our example we use
this motion to create water caustics on a wall.

First let us have a quick glance at the geometric background: We start with a
point light source E and a projection plane π. A ray of light s1 emitted from
E hits the oloid Ω in a point R1 and is reflected at the tangent plane ε. The
reflected ray runs through the reflection Eg of E on ε.

Now we know that Ω is a torse; i.e., it consists of straight lines, and the plane
of tangency is constant along each generating line. The reflected rays along a
generating line g lie in the plane �(g) := Eg (Eg is the reflection of E on the
tangent plane τg along g). Intersecting �(g) with the projection plane π yields a
straight line r(g). The one-parameter set r(g) of straight lines envelops a curve
c(E) along which the intensity of the reflected light is maximal: a caustic.

Instead of reflecting the rays through E and τg we can, of course, project g from
Eg. Therefore, the locus o(E) of all points Eg is of interest. It is called the ortho-
nomic of Ω with respect to E. In our first example ("reflecting oloid1.cpp")
we will construct the orthonomic o(E) and the corresponding caustic c(E) for a
given configuration of E, Ω, and π.

We define E and π =: ProjPlane as global constants and take the parameterization
of the oloid from "oloid.cpp". There, the oloid is split into four congruent
quarters. Consequently, we will define and draw four parts of the orthonomic
and four parts of the caustic. We derive four instances Oloid[ i ] of the class
QuarterOloid and define the orthonomic o(E):

Listing from "reflecting oloid1.cpp":

class MyQuarterOrtho: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

P3d P = Eye;
P.Reflect( Oloid [idx].TangentPlane( u, 0 ) ) ;
return P;

}
void Def( Color col, int n, Real umin, Real umax, P3d E, int i )
{

Eye = E;
idx = i;
ParamCurve3d: :Def( col, n, umin, umax ) ;

}
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private:
P3d Eye;
int idx;

};
MyQuarterOrtho Ortho [ 4];

The light source E and the index of the oloid part have to be passed as arguments
to Def(. . . ). The rest is just the geometric construction of the orthonomic. The
caustic’s implementation is slightly trickier.

Listing from "reflecting oloid1.cpp":

class MyQuarterCaustic: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

const Real eps = 1e−3;
Plane p1( Ortho [idx].CurvePoint( u − eps ),

Oloid [idx].SurfacePoint( u − eps, 0 ),
Oloid [idx].SurfacePoint( u − eps, 1 ) ) ;

Plane p2( Ortho [idx].CurvePoint( u + eps ),
Oloid [idx].SurfacePoint( u + eps, 0 ),
Oloid [idx].SurfacePoint( u + eps, 1 ) ) ;

return pi ∗ ( p1 ∗ p2 ) ;
}
void Def( Color col, int n, Real umin, Real umax, Plane p, int i )
{

pi = p;
idx = i;
ParamCurve3d: :Def( col, n, umin, umax ) ;

}
private:

Plane pi;
int idx;

};
MyQuarterCaustic Caustic [ 4];

We intersect the projection plane with the planes through a curve point of o(E)
and two neighboring generators of the corresponding ruling on Ω. In Init( ) we
define the surfaces and curves and we adjust a frame rectangle in the projection
plane. In Draw( ) we will shade this rectangle with opacity in order to produce a
picture similar to Figure 4.28. In "reflecting oloid1.cpp" we do not, however,
draw the straight lines that illustrate the construction of c(E).
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Listing from "reflecting oloid1.cpp":

void Scene: :Init( )
{

int n1 = 50, n2 = 5;
Oloid [ 0].Def( Green, n1, n2, 1, 1 ) ;
Oloid [ 1].Def( Green, n1, n2, −1, 1 ) ;
Oloid [ 2].Def( Green, n1, n2, 1, −1 ) ;
Oloid [ 3].Def( Green, n1, n2, −1, −1 ) ;
int i;
for ( i = 0; i < 4; i++ )
{

Ortho [i].Def( Red, 100, 0, 2 ∗ PI / 3 + 1e−4, E, i ) ;
Caustic [i].Def( Orange, 100, 0, 2 ∗ PI / 3 + 1e−4,

ProjPlane, i ) ;
Oloid [i].PrepareContour( ) ;

}
const Real x = 20, y = 30;
Frame.Def( LightBlue, x, y, FILLED ) ;
Frame.Translate( −0.5 ∗ x, −0.5 ∗ y, 0 ) ;
V3d n = ProjPlane.n( ) ;
StrL3d axis( Origin, n ∧ Zdir ) ;
Frame.Rotate( axis, Deg( n.Angle( Zdir ) ) ) ;
Frame.Translate( ProjPlane.GetPoint( ) ) ;

}

Now we want to add the oloid motion to our program. In the sample file
"reflecting oloid2.cpp" we copy the class QuarterOloid from "oloid.cpp".
In contrast to the previous example it is equipped with a number of methods
in order for it to perform the typical “oloid motion.” We eliminate a few un-
necessary lines from "oloid.cpp" and add the orthonomic and caustic curves.
We must, however, pay attention to the fact that the position of E and the
projection plane π relative to Ω change during the motion. In "oloid.cpp" the
oloid motion is realized through a point transformation by matrix multiplication.
At the beginning of Draw( ) the line MoveAll( 1 ) transforms the oloid to the
current position. At the end of Draw( ) the line MoveAll( −1 ) overwrites all
transformed points plus normal vectors with the points and normals of a stan-
dard oloid (Proto[ 0 ],. . . ,Proto[ 3 ]). The corresponding commands for the point
and vector transformation read as follows:
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Listing from "reflecting oloid2.cpp":

inline void transform( P3d &P )
{

P3d Q = P − LocalOrigin;
Q.Rotate( InvR, P ) ;

}
inline void transform( V3d &P )
{

V3d Q = P;
Q.Rotate( InvR, P ) ;

}

We have to apply the inverse transformation to the light source E and projection
plane π, compute orthonomic and caustic, and transfer them again. For this
task we can use the global rotation matrix R. We introduce the following inline
functions:

Listing from "reflecting oloid2.cpp":

inline void inv transform( P3d &P )
{

P.Rotate( R, P ) ;
P += LocalOrigin;

}
inline void inv transform( V3d &P )
{

V3d Q = P;
Q.Rotate( R, P ) ;

}

Now the curve point functions of MyQuarterOrtho and MyQuarterCaustic need
some changes:
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Listing from "reflecting oloid2.cpp":

P3d CurvePoint( Real u )
{

P3d P = Eye;
inv transform( P ) ;
P.Reflect( Proto [idx].TangentPlane( u, 0 ) ) ;
transform( P ) ;
return P;

}

P3d CurvePoint( Real u )
{

const Real eps = 1e−3;
P3d P = ProjPlane.GetPoint( ) ;
V3d n = ProjPlane.n( ) ;
P3d Q1 = Ortho [idx].CurvePoint( u − eps ) ;
P3d Q2 = Ortho [idx].CurvePoint( u + eps ) ;
inv transform( P ) ;
inv transform( n ) ;
inv transform( Q1 ) ;
inv transform( Q2 ) ;
Plane p( P, n ) ;
Plane p1( Q1, Proto [idx].SurfacePoint( u − eps, 0 ),

Proto [idx].SurfacePoint( u − eps, 1 ) ) ;
StrL3d s = p ∗ p1;
Plane p2( Q2, Proto [idx].SurfacePoint( u + eps, 0 ),

Proto [idx].SurfacePoint( u + eps, 1 ) ) ;
P3d S = p ∗ ( p1 ∗ p2 ) ;
transform( S ) ;
return S;

}

Finally, we move the definition of Ortho[ i ] and Caustic[ i ] to the Draw( ) part in
order to get the animation. ♦
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FIGURE 4.29. A ray of light undergoes multiple reflections inside a hyperbolically
curved fiber. As the number of reflection approaches ∞, the reflection polygon converges
to a geodetic line on the fiber surface.

Example 4.13. Multiple reflection
In technical applications from the field of laser optics and telecommunications
it is an important task to send a ray of light r through a small fiber. The fibers
are made of glass or some other transparent material of high refractive index.
Light traveling inside the fiber center strikes the outside surface at an angle of
incidence greater than the critical angle, so that all the light is reflected toward
the inside of the fiber without loss. Thus, light can be transmitted over long
distances by being reflected inward thousands of times.

Sometimes it is desirable to achieve a high number of inward reflections on a
relatively short distance. For that purpose one can use fibers that have the shape
of a surface of revolution with only hyperbolic surface points.. However, there is a
problem: Certain rays of light will be able to enter the fiber but — after a number
of reflections — are sent back in the direction of their origin. It is desirable to
know in advance (before producing the special fiber) about the critical directions.
Therefore, a computer model is of interest ("mult refl.cpp"). Additionally, we
will be able to demonstrate an interesting effect that occurs when the number
of reflections approaches ∞.

First we have to design the fiber Φ. It is sensible to model a surface of revolution.
Furthermore, we can make good use of an implicit equation F (x, y, z) = 0 of Φ.

Our first task will be to intersect a straight line s . . . �x(t) = �p + t�d with the
surface. We can do this by inserting the coordinates of �x(t) in F (x, y, z) = 0
and solving the resulting equation for t. The smallest positive solution will be
relevant for our purpose because it belongs to the first intersection point P that
is situated on the positive half ray. Having computed P . . . �p = (xp, yp, zp) we
can at once determine the tangent plane of Φ in P , since its normal vector has
direction

(
Fx, Fy, Fz

)
.
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It will be possible to solve the equation F
(
�x(t)

)
= 0 very rapidly and efficiently

if it is algebraic of order four. This is the case if we use a parabola m as meridian
curve. If the y-axis of our coordinate system is the axis of Φ, the necessary
equations are

m . . . z = Ay2 + B, x = 0 and Φ . . . x2 + z2 = (Ay2 + B)2.

With their help we can implement the fiber surface and a function that returns
the tangent plane in a surface point P:

Listing from "mult refl.cpp":

Plane TangentPlane( P3d &P )
{

const Real ny = −4 ∗ A ∗ A ∗ P.y ∗ P.y ∗ P.y −
4 ∗ A ∗ B ∗ P.y;

return Plane( P, V3d( 2 ∗ P.x, ny, 2 ∗ P.z ) ) ;
}

class MyFiber: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real y, Real phi )
{

P3d P( 0, y, A ∗ y ∗ y + B ) ;
P.Rotate( Yaxis, phi ) ;
return P;

}
};
MyFiber Fiber;

Additionally, we need a function to compute the point of reflection P. It needs
some computation to find the coefficients of the resulting equation of order four:

Listing from "mult refl.cpp":

Boolean ReflectionPoint( const StrL3d &s, P3d &P )
{

P3d S = s.GetPoint( ) ;
V3d dir = s.GetDir( ) ;
const Real y2 = S.y ∗ S.y;
const Real d2 = dir.y ∗ dir.y;
const Real f2 = A ∗ A;
Real coeff [ 5];
coeff [ 0] = −pow( A ∗ y2 + B, 2 ) + S.x ∗ S.x + S.z ∗ S.z;
coeff [ 1] = −4 ∗ f2 ∗ y2 ∗ S.y ∗ dir.y − 4 ∗ A ∗ B ∗ S.y ∗ dir.y +
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2 ∗ S.x ∗ dir.x + 2 ∗ S.z ∗ dir.z;
coeff [ 2] = −6 ∗ f2 ∗ y2 ∗ d2 − 2 ∗ A ∗ B ∗ d2 +

dir.x ∗ dir.x + dir.z ∗ dir.z;
coeff [ 3] = −4 ∗ f2 ∗ S.y ∗ d2 ∗ dir.y;
coeff [ 4] = −f2 ∗ d2 ∗ d2;
Real t [ 4];
int n;
n = ZerosOfPoly4( coeff, t ) ;
if ( n )
{

int i;
for ( i = 0; i < n; i++ )
{

if ( t [i] > 1e−4 )
{

P = s.InBetweenPoint( t [i] ) ;
if ( P.y > Y0 − 0.001 && P.y < Y1 + 0.001 )

return true;
}

}
return false;

}
return false;

}

The input parameters are a straight line s and a point P. If a reflection occurs,
the point of reflection will be stored in P and the return value is true. Otherwise,
we return false. Note that we assume s to be a model of an oriented light ray; i.e.,
the light ray starts at the point returned by Open Geometry’s s.GetPoint( )
and has the direction of s.GetDir( ).

We compute the coefficients of the equation of order four and solve it. The
result is stored in the real array t[ 4 ]. It is a very convenient property of
ZerosOfPoly4(. . . ) that the solutions are stored in ascending order. This makes
it easy to determine the relevant value ti. It is the minimal value that is:

• larger than 0 (or a certain small ε > 0) and

• leads to a surface point P with y-coordinate inside a certain interval [Y0, Y1]
that determines the length of the fiber.

A small but important routine is the following:
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Listing from "mult refl.cpp":

Boolean ReflectOnFiber( StrL3d &s, P3d &P )
{

if ( ReflectionPoint( s, P ) )
{

s.Reflect( TangentPlane( P ) ) ;
s.Def( P, s.GetDir( ) ) ;
return true;

}
else

return false;
}

We compute the reflection point and reflect the straight line s at the tangent
plane. Note that it is absolutely necessary to redefine s. If we omit doing this,
the next reflection point will be wrong (usually, it will be P again). The final
reflection routine traces the path of the incoming ray through the fiber, draws
the reflection polygon, and marks the reflection points:

Listing from "mult refl.cpp":

void TraceRay( StrL3d &s )
{

Real count = 0;
P3d P, P old = s.GetPoint( ) ;
P old.Mark( Red, 0.2, 0.1 ) ;
while ( ReflectOnFiber( s, P ) && count < 1000 )
{

StraightLine3d( PureYellow, P old, P, MEDIUM ) ;
P.Mark( DarkBrown, 0.1 ) ;
P old = P;
count++;

}
P old = ScreenPlane ∗ s;
Real param = s.GetParameter( P old ) ;
if ( param > 0 )
{

s.Draw( PureYellow, 0, param, THICK ) ;
P old.Mark( Red, 0.2, 0.1 ) ;

}
s.Draw( PureRed, 0, 20, MEDIUM ) ;

}
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The first part is obvious and easy to understand. In the final lines we intersect
the outgoing ray with a screen plane that is positioned just after the end of the
fiber and mark the intersection point. If the ray is reflected backwards, we do
not intersect it with the screen, and we draw it in pure red. The screen is defined
in Init( ). It consists of a frame rectangle (Screen) and several circles (Cicrcle[ i ]
that will be drawn on the frame:

Listing from "mult refl.cpp":

const Real l = 16, w = 16;
Screen.Def( LightGray, l, w, FILLED ) ;
Screen.Translate( −0.5 ∗ l, −0.5 ∗ w, 0 ) ;
Screen.Rotate( Xaxis, 90 ) ;
Screen.Translate( 0, Y0 − 8, 0 ) ;

ScreenPlane.Def( Screen [ 1], Screen [ 2], Screen [ 3] ) ;

int i;
Real r, phi = Screen [ 1].x / CircNum;
for ( i = 0, r = phi; i < CircNum; i++, r += phi )

Circle [i].Def( DarkGreen, 0.5 ∗ ( Screen [ 1] + Screen [ 3] ), Ydir, r, 50 ) ;

With the help of the above routines (and a small routine to print certain instruc-
tions on the screen) we can write a neat and concise Draw( ) part:

Listing from "mult refl.cpp":

void Scene: :Draw( )
{

Yaxis.LineDotted( Black, −12, 12, 18, MEDIUM ) ;

Fiber.Contour( DarkBlue, MEDIUM ) ;
Fiber.VLines( DarkBlue, 6, THIN ) ;
Fiber.VLines( DarkBlue, 2, MEDIUM ) ;

StrL3d s;
s.Def( Source, Fiber.SurfacePoint( Y, Phi ) ) ;
StraightLine3d( LightYellow, Source, ScreenPlane ∗ s, THIN ) ;
TraceRay( s ) ;

Screen.ShadeWithContour( DarkGreen, THICK ) ;
StraightLine3d( DarkGreen, 0.5 ∗ ( Screen [ 1] + Screen [ 2] ),

0.5 ∗ ( Screen [ 3] + Screen [ 4] ), THIN ) ;
StraightLine3d( DarkGreen, 0.5 ∗ ( Screen [ 1] + Screen [ 4] ),

0.5 ∗ ( Screen [ 2] + Screen [ 3] ), THIN ) ;
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Circ3d circle;
int i, n = 5;
Real r, phi = Screen [ 1].x / n;
for ( i = 0, r = phi; i < n; i++, r += phi )
{

circle.Def( DarkGreen, 0.5 ∗ ( Screen [ 1] + Screen [ 3] ), Ydir, r, 50 ) ;
circle.Draw( THIN ) ;

}

SetOpacity( 0.5 ) ;
Fiber.Shade( SMOOTH, REFLECTING ) ;
SetOpacity( 1 ) ;

PrintText( −20, 10.8 ) ;
}

For the definition of the light ray s we use the global variables

P3d Source;
Real Y, Phi;

Here Y and Phi are the surface coordinates of the first point of reflection. Source
is the point that emits the ray of light. We draw the initial ray until it hits
the screen. This will help to get some orientation concerning its direction. Fur-
thermore, we shade the fiber surface with some transparency because the really
interesting things will be happening inside.

So far we have done enough to get a nice picture. However, it will be useful to
vary Source, Y, and Phi a little. We provide this possibility in Animate( ):

Listing from "mult refl.cpp":

void Scene: :Animate( )
{

int key = TheKeyPressed( ) ;
switch (key )
{
case ’s’:

Source.z −= 0.05;
break;

case ’S’:
Source.z += 0.05;

break;
case ’f’:

Y += 0.2;
break;
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case ’F’:
Y −= 0.2;

break;
case ’j’:

Phi += 1;
break;

case ’J’:
Phi −= 1;

break;
}

}

Because of the rotational symmetry of the frame it is possible to restrict the
light source to [ y, z ]. You can now experiment and vary the incoming ray. It
will either pass through the fiber or be cast back. Usually only a few reflections
occur. However, if the incoming ray intersects the surface in a very small angle,
the number of reflections may rapidly increase (even the maximum number of
1000 reflections as implemented in TraceRay(. . . ) may be exceeded). Perhaps you
can reproduce a situation similar to that displayed in Figure 4.29. As the number
of reflections increases the reflection polygon converges to a certain curve c ⊂ Φ.

It is not difficult to see that c is a geodetic line on Φ: Two consecutive sides of
the reflection polygon are contained in a normal plane ν of Φ. In the passage to
the limit, this plane converges to an osculating plane σ of c. Hence the osculating
planes of c are normal planes of Φ, which is a characterization of geodetic lines.

♦



5

Open Geometry and Some of Its
Target Sciences

With Open Geometry 2.0 it is possible to illustrate concepts from several fields
of geometry. In this chapter we present a few examples from

• Descriptive Geometry,

• Projective Geometry,

• Differential Geometry.

Our list of examples is by far not complete, and many more sample files are
waiting to be written. We intend only to give you an idea of what is possible
with Open Geometry 2.0.

5.1 Open Geometry and Descriptive Geometry
Descriptive geometry is taught in many high school and university courses. Be-
side teaching basic concepts of construction and drawing, a major aim is the
development of spatial thinking. We believe that 3D animations support this
to a great extend. Consequently, the development of short movie sequences for
the classroom with Open Geometry 2.0 is at the center of our interest in the
following. We begin with a very simple example concerning the different views
that are used for technical drawing:
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Example 5.1. Top, front, and side view
In descriptive geometry it is a common technique to work with top, front, and
side views of an object. These views are arranged in a certain position on the
drawing plane (a sheet of paper, the computer screen). There, important dis-
tances or angles can be measured directly. The first to exploit this configuration
of views for constructive purposes in a scientific way was the French mathemati-
cian G. Monge. He explained their genesis in the following way (Figure 5.1):

• Start with three pairwise orthogonal planes π1, π2, and π3 (image planes).

• Project the space points orthogonally onto the plane πi (i = 1, 2, 3).

• Rotate the plane πj about the axis πj ∩π2 through an angle of 90◦ (j = 1, 3).

In the final position the planes π1 and π3 coincide with π2, and we can interpret
this plane as the drawing plane.

PP

PP

x
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z

x
y

z

x
y

z

x
y
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P’

P’’

P’’’

top view

front view

side view

FIGURE 5.1. The genesis of top, front, and side views according to G. Monge.
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The program "views.cpp" yields an animated version of this concept. In the first
stage we project a space point P simultaneously onto the three image planes; in
the second stage we rotate these planes. The third stage consists of a little pause
in order to allow leisurely contemplation of the scene before everything starts
again. The following global variables are needed for the program:

Listing from "views.cpp":

int Count;
const int N1 = 50;
const int N2 = 100;
const int N3 = 50;

const P3d P( 4, 7, 6 ) ;
P3d Q [ 3];
P3d R [ 2];
Sector3d Sector [ 3];

const Real Side = 10;
Rect3d XYframe, YZframe, ZXframe;

The constants N1, N2, and N3 denote the number of frames reserved for each
stage. Count takes values between 0 and N1+N2+N3 and gives the current stage
of the animation, P is the constant space point; Q[0], Q[1], and Q[2] will wander
on the projection rays through P, while R[0] and R[1] are situated on the path
circles of the projected points during the rotation. Finally, we will visualize the
image planes by three rectangular frames. In Init( ) we bring the points Q[ i ] and
R[ i ] into their correct position with respect to P:

Listing from "views.cpp":

void Scene: :Init( )
{

Count = 0;
Q [ 0] = P, Q [ 1] = P, Q [ 2] = P;
R [ 0].Def( P.x, P.y, 0 ) ;
R [ 1].Def( P.x, 0, P.z ) ;

XYframe.Def( Blue, Side, Side, FILLED ) ;
YZframe.Def( Blue, Side, Side, FILLED ) ;
YZframe.Rotate( Yaxis, −90 ) ;
ZXframe.Def( Blue, Side, Side, FILLED ) ;
ZXframe.Rotate( Xaxis, 90 ) ;

AllowRestart( ) ;
}



392 Chapter 5. Open Geometry and Some of Its Target Sciences

In Draw( ) we draw the line segments PQ[ i ], the arcs connecting Q[ i ] with
R[ i ] (during the second and third stages), and additional lines to give some
orientation. The frame rectangles are shaded with opacity. The most important
part of the program is, however, Animate( ):

Listing from "views.cpp":

void Scene: :Animate( )
{

Count++;
Count = Count % ( N1 + N2 + N3 ) ;
if ( Count == 0 )

Restart( ) ;
else if ( Count <= N1 ) // first stage (normal projection)
{

Q [ 0].Translate( 0, 0, −P.z / N1 ) ;
Q [ 1].Translate( 0, −P.y / N1, 0 ) ;
Q [ 2].Translate( −P.x / N1, 0, 0 ) ;

}
else if ( Count <= N1 + N2 ) // second stage (rotation)
{

R [ 0].Rotate( Yaxis, 90.0 / N2 ) ;
XYframe.Rotate( Yaxis, 90.0 / N2 ) ;
R [ 1].Rotate( Zaxis, −90.0 / N2 ) ;
ZXframe.Rotate( Zaxis, −90.0 / N2 ) ;
Sector [ 0].Def( Black, Q [ 0], Yaxis, R [ 0], 50 ) ;
Sector [ 1].Def( Black, Q [ 1], Zaxis, R [ 1], 50 ) ;

}
}

We increase Count and compute its value modulo N1 + N2 + N3. If it is zero, we
use Open Geometry’s restart option to start again. During the first stage we
translate Q[ i ] by a small vector v[ i ]. The length of v[ i ] ensures that Q[ i ] will lie
in the plane πi after exactly N1 steps. During the second stage we treat R[ i ] and
the corresponding frame rectangles in an analogous way and redefine the sectors
connecting Q[ i ] and R[ i ]. ♦
Our next example deals with shades and shadows, a very beautiful field of de-
scriptive geometry.
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Example 5.2. Box shadow
Open Geometry does not support the automatic generation of shades and
shadows. However, for certain special cases one can implement them “by hand.”
In fact, there already exist some simple shadow algorithms in Open Geometry
that you might consider useful. An example can be seen in "box shadow.cpp",
where we display the shadow cast by a cube on a horizontal plane.

The shadow algorithms we have mentioned work only for polyhedra. We can
compute the shadow of a polyhedron on another polyhedron or on a plane. The
plotting of the shadow itself is very simple. We define an instance Cube of the
class Box and transform it into a polyhedron Polyhedron:

Listing from "box shadow.cpp":

Cube.TransformIntoPolyhedron( ) ;
Polyhedron.Def( ∗Cube.Phdr ) ;

FIGURE 5.2. Shade contour on a cube for parallel light.

In computer graphics, general polyhedra are nasty objects, and their generation
is a complex task. Their implementation in Open Geometry is rather tricky
too. It makes extensive use of pointers. Whenever possible you should avoid
defining a polyhedron directly. Instead, you can rely on predefined Open Geo-
metry methods such as TransformIntoPolyhedron( ). This method exists for the
classes Box, RegFrustum, FunctionGraph, and ParamSurface (and, consequently,
for all derived classes as well).

Now, in order to plot the shadow of the polyhedron in light gray on the horizontal
plane z = 0, we simply have to write

Polyhedron.PlotShadowOnHorizontalPlane( LightGray, 0 ) ;
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Note that the shadow polygon is not explicitly determined. Internally, Open
Geometry projects the polyhedron’s faces on the plane z = 0 and paints them
in light gray. This means that we do not have access to the vertices of the shadow
polygon or the shade contour on the box. Because this is not too difficult in
the case of a cube, we will determine them directly. Without these details the
program would lose some of its appeal for, let’s say, a demonstration in the
classroom.

The global constants and variables we use are the following:

Listing from "box shadow.cpp":

Box Base, Cube;
Polyhedron Polyhedron;

Poly3d CubeFace [ 5];

const int Index [ 4] [ 6] = { {2,3,4,8,5,6}, {1,2,3,7,8,5},
{1,4,3,7,6,5}, {1,2,6,7,8,4} };

We have already mentioned the cube and the polyhedron. Base is the object on
which the shadow will be cast, and five faces of the cube will be stored separately
as four-sided polygons. We will use them to paint the faces in the shade in a
different color. Since in our case the top face will never be in the shade, we need
only five faces in the program. The integer array Index[ 4 ][ 6 ] contains the index
sequences for the four different shade contours on the cube that are possible for
parallel light from above (compare Figure 5.2). Box is a successor of O3d, so we
can always address Cube’s vertices by pPoints[ 0 ], pPoints[ 1 ],. . . and need not
store or compute the complete shade contour.

Cube and its faces are defined in Init( ):

Listing from "box shadow.cpp":

const Real a = 1.5;
Cube.Def( LightRed, a, a, a ) ;
Cube.Scale( 2 ) ;
Cube.Translate( −a, −a, −a ) ;

int i;
for ( i = 0; i < 5; i++ )
CubeFace [i].Def( LightGray, 4 ) ;

CubeFace [ 0] [ 1] = Cube.pPoints [ 1];
CubeFace [ 0] [ 2] = Cube.pPoints [ 2];
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CubeFace [ 0] [ 3] = Cube.pPoints [ 3];
CubeFace [ 0] [ 4] = Cube.pPoints [ 4];
...
CubeFace [ 4] [ 1] = Cube.pPoints [ 4];
CubeFace [ 4] [ 2] = Cube.pPoints [ 1];
CubeFace [ 4] [ 3] = Cube.pPoints [ 5];
CubeFace [ 4] [ 4] = Cube.pPoints [ 8];

Cube.Scale( 0.99 ) ;
const Real t = 5;
Cube.Translate( 0, 0, t ) ;
for ( i = 0; i < 5; i++ )

CubeFace [i].Translate( 0, 0, t ) ;

Note the order of the operations: First we center the cube at the origin and use
it for the definition of the faces. Then we scale down a little to get the right
visibility when shading the cube faces, and then we translate everything. If we
scaled the cube after translating it, the bottom face would not be visible.

We determine the direction of the incoming light ray in Draw( ). This means
that we will be able to change the shadow interactively by manipulating the
light source in the Open Geometry window. The four relevant directions can
be distinguished according to the sign of the x and y coordinates of the light
direction vector. It is globally accessible via LightDirection.L.

Listing from "box shadow.cpp":

int i;
if ( LightDirection.L.x >= 0 )
{

if( LightDirection.L.y >= 0 )
i = 0;

else
i = 1;

}
else
{

if( LightDirection.L.y >= 0 )
i = 2;

else
i = 3;

}

Now we can draw light rays from the relevant edges of the cube, paint the shade
and draw the shade contour. We do this only if the incidence angle of the light
rays with respect to the horizontal direction is not too small. The program’s
output is displayed in Figure 5.2.
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Listing from "box shadow.cpp":

if ( LightDirection.L.z > 0.25 )
{

StrL3d proj ray;
P3d P;
int j;
for ( j = 0; j < 6; j++ )
{

proj ray.Def( Cube.pPoints [Index [i] [j]], LightDirection.L ) ;
P = XYplane ∗ proj ray;
StraightLine3d( PureYellow, Cube.pPoints [Index [i] [j]],

P, MEDIUM ) ;
}
Polyhedron.PlotShadowOnHorizontalPlane( LightGray, 0 ) ;

CubeFace [ 0].Shade( ) ;
if ( i == 0 )
{

CubeFace [ 1].Shade( ) ;
CubeFace [ 4].Shade( ) ;

}
if ( i == 1 )
{

CubeFace [ 3].Shade( ) ;
CubeFace [ 4].Shade( ) ;

}
if ( i == 2 )
{

CubeFace [ 1].Shade( ) ;
CubeFace [ 2].Shade( ) ;

}
if ( i == 3 )
{

CubeFace [ 2].Shade( ) ;
CubeFace [ 3].Shade( ) ;

}
for ( j = 0; j < 5; j++ )

StraightLine3d( DarkGray, Cube.pPoints [Index [i] [j]],
Cube.pPoints [Index [i] [j+1]], THIN ) ;

StraightLine3d( DarkGray, Cube.pPoints [Index [i] [ 5]],
Cube.pPoints [Index [i] [ 0]], THIN ) ;

}
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♦
The following example deals with a more advanced topic of descriptive geometry.
a nonlinear projection.

Example 5.3. Net projection
In descriptive geometry there exist several types of projections. The most com-
mon are central projection, parallel projection, and normal projection. From the
point of view of projective geometry, these three types are equivalent: Given an
eye point E (either a finite point or an ideal point) and an image plane π with
E /∈ π, the projection p is defined as

p : P3 \ {E} → π, P �→ [E, P ] ∩ π.

In this formula P3 denotes real projective 3-space. However, there exist other
types of projection: For example, let L be a line congruence (a two-parameter
set of straight lines) such that a generic space point P is incident with only one
line lP ∈ L. We can use the lines of L as projection rays and obtain the map

q : P3 \ D → π, P �→ lP ∩ π.

The set of exceptional points D is of dimension two or even lower. Of course, the
properties of these projections may differ considerably from the ordinary linear
projections. For example, the image of a straight line is usually curved.

We present an example of a projection of that kind: the net projection n. The set
L of projection rays consists of all straight lines that intersect two skew straight
lines f1, f2: the focal lines (Figure 5.3).

FIGURE 5.3. Central projection and net projection.

The projection n is defined for all points P ∈ P3\{f1, f2}. The unique projection
ray through P can be determined by intersecting the planes [P, f1] and [P, f2].
The implementation of the net projection in Open Geometry is quite obvious
("net projection1.cpp"). We write a function NetProject(. . . ) that projects a
space point onto [ x, y ]:
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Listing from "net projection1.cpp":

P3d Project( const P3d &P, const StrL3d &f1,
const StrL3d &f2 )

{
Plane p1( P, f1 ) ;
Plane p2( P, f2 ) ;
StrL3d s = p1 ∗ p2;
return XYplane ∗ s;

}

Now we want to display the net projection n(c) of some space curve c. We
decide on a sine curve drawn on a cylinder of revolution. The curve c has to be
implemented as a parameterized curve.

Listing from "net projection1.cpp":

class MyCurve: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

const Real r = 3;
return P3d( r ∗ cos( u ), r ∗ sin( u ), r ∗ sin( 2 ∗ u ) ) ;

}
};
MyCurve Curve;

The image curve Image = n(c) could be implemented as parameterized curve
as well. But in order to show its generation, we will draw it as PathCurve3d.
Of course, before doing this we must initialize both curves c and n(c) in Init( ).
Additionally, we adjust a frame rectangle in [ x, y ]. The global real variable U
will serve as parameter for the animation.
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Listing from "net projection1.cpp":

void Scene: :Init( )
{

Curve.Def( Red, 150, −PI, PI ) ;
Image.Def( Green, 1000, 0.1 ) ;

U = 1.2;

const Real x = 20, y = 20;
Frame.Def( Blue, x, y, FILLED ) ;
Frame.Translate( −0.5 ∗ x, −0.5 ∗ y, 0 ) ;

}

For the net projection we use two globally constant straight lines with the z-axis
as common normal.

Listing from "net projection1.cpp":

P3d NetProject( const P3d &P, const StrL3d &f1,
const StrL3d &f2 )

{
Plane p1( P, f1 ) ;
Plane p2( P, f2 ) ;
StrL3d s = p1 ∗ p2;
return XYplane ∗ s;

}

In Draw( ) we compute the new curve point of c(n) and draw the part within
the frame rectangle.

Listing from "net projection1.cpp":

P3d C = Curve.CurvePoint( U ) ;
P3d I = NetProject( C, Line1, Line2 ) ;
if ( fabs( I.x ) < Frame [ 3].x && fabs( I.y ) < Frame [ 3].y )

Image.AddPoint( I ) ;
Image.Draw( MEDIUM, STD OFFSET, 2 ) ;
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There are four points of interest on the projection ray through a curve point
C ∈ c: the curve point itself, its image point I, and the intersection points L1
and L2 with the focal lines f1 and f2, respectively. We ensure that the whole line
segment between them is displayed in a medium line style by drawing the three
segments through C. The result can be seen in Figure 5.4. The projection n(c)
of c is an attractive curve with four axes of symmetry.

FIGURE 5.4. The net projection n(c) of a space curve c. The image on the right-hand
side displays a top view.

A net projection does not necessarily need two real focal lines. It is possible for f1
and f2 to be coincident or conjugate complex. The first case leads to a parabolic
net projection, the second to an elliptic net projection. The projection used in
"net projection1.cpp" is called hyperbolic.

In "net projection2.cpp" we use a net of lines that is invariant under the
group of rotations about a fixed axis (nets of rotation). The focal lines of these
nets are necessarily conjugate complex and contain the circular points at infin-
ity I, and Ī, of the planes perpendicular to the axis. This implies, of course,
that we cannot use the constructive approach to the NetProject(. . . ) function of
"net projection1.cpp".

The equations of these special net projections are needed. We describe them in
a Euclidean coordinate system {O;x, y, z}, where [ x, y ] is the projection plane
and z is the net’s axis of rotation. Without loss of generality, we can assume that

x + iy = 0, z = ±D

are the equations of the conjugate complex focal lines. This gives us some idea of
the two-parameter manifold of net rays: Consider the helical motion with pitch
D and axis z. Then the net rays are the tangents of the path curves of the points
in [x, y] (Figure 5.5).

There exists exactly one (real) projection ray through a real space point P ∈
P3 \ {f1, f2} with coordinate vector (px, py, pz)t. It intersects [ x, y ] in a point



Section 5.1. Open Geometry and Descriptive Geometry 401

FIGURE 5.5. The lines of an elliptic congruence with rotational symmetry are tan-
gents of the trajectories of a screw motion.

n(P ) with coordinates

x =
D(Dx + yz)

D2 + z2 , y =
D(Dy − xz)

D2 + z2 .

With these equations we can rewrite the NetProject(. . . ) function:

Listing from "net projection2.cpp":

P3d NetProject( const P3d &P, const Real d )
{

Real denom = d ∗ d + P.z ∗ P.z;
return P3d( d ∗ ( d ∗ P.x + P.y ∗ P.z ) / denom ,

d ∗ ( d ∗ P.y − P.x ∗ P.z ) / denom, 0 ) ;
}

We can then apply it to an arbitrary space curve c. For Figure 5.6 we chose a
circle with axis x in [ y, z ]. Its image b is a lemniscate of Bernoulli.

The surface Π of projection rays through the circle c is quite attractive. It is a
ruled surface of order four, since it consists of all straight lines that intersect the
two focal lines and a circle (you have to sum up the orders of these curves to get
the order of Π: 1 + 1 + 2 = 4). We visualize it in "net projection3.cpp". Its
implementation simply reads as follows:
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FIGURE 5.6. Projecting a circle c by the rays of a net of rotation.

Listing from "net projection3.cpp":

class MyRuledSurface: public RuledSurface
{

virtual P3d DirectrixPoint( Real u )
{

return Curve.CurvePoint( u ) ;
}
virtual V3d DirectionVector( Real u )
{

P3d P = Curve.CurvePoint( u ) ;
return V3d( P, NetProject( P, D ) ) ;

}
};
MyRuledSurface Surface;

Rotating c about z yields a sphere S. If the radius of c is equal to the pitch D
of the helical motion that defines the net rays, the intersection curve of Π and
S splits up into the circle c, the two focal lines f1 and f2, and a space curve d of
order four. We display these curves together with S. The curve d can be obtained
by reflecting the points of c on their respective projection images. Hence, we can
implement it in the following way:
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Listing from "net projection3.cpp":

class MyCurveOfOrder4: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

P3d I = Image.CurvePoint( u ) ;
return I + V3d( Curve.CurvePoint( u ), I ) ;

}
};
MyCurveOfOrder4 CurveOfOrder4;

In order to see what is happening inside, we draw the sphere S with opacity.
The output of the program is displayed in Figure 5.6. ♦

5.2 Open Geometry and Projective Geometry
Projective geometry may be called the mother of geometry (although there are
a few geometries that are not her offspring). It deals with points, straight lines,
planes, and their mutual incidence. Concepts like “distance,” “angle,” “mid-
point,” and “parallel” cannot be defined within pure projective geometry. They
belong to Euclidean geometry or her elder sister, affine geometry.

The foundations of projective geometry date back very far. As usual, already
the ancient Greeks possessed a certain knowledge about points at infinity and
proved theorems of a projective nature. In the Middle Ages it was mainly the
art of painting and architecture that promoted projective geometry. It is very
useful for the drawing of perspective images in descriptive geometry.

Later, when the theory had developed further, mathematicians and geometers
found that projective geometry permitted very deep insight into certain prob-
lems. Many theorems could be stated in a general and elegant form. Compare, for
example, a very simple theorem of plane affine geometry and the corresponding
projective theorem:

• Two distinct straight lines a and b have exactly one intersection point or are
parallel.

• Two distinct straight lines a and b have exactly one intersection point.
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The difference is even more visible in the generalization of the above theorem
(Bezout’s theorem). Its projective form reads; Any two algebraic curves of order
M and N have either infinitely many or exactly M · N common points.

We will give a short algebraic introduction to the basic concepts of projective
geometry. Afterwards, we will present examples of how Open Geometry can
support these concepts. The difference between two- and three-dimensional pro-
jective geometry is rather small. So we will immediately start with the spatial
case. From time to time we will consider examples from planar geometry as well.

Let E3 be real Euclidean space of dimension three. To us, a point of E3 is a
triple (x, y, z)t of real numbers. We define a map from E3 into the set P3 of
one-dimensional subspaces of R

4:

(x, y, z)t �→ [(1, x, y, z)t].

P3 is already the projective space of dimension three. Its “points” are the one-
dimensional subspaces of R

4. Any point X ∈ P3 is determined by a single,
nonzero vector (x0, x1, x2, x3)t ∈ R

4. Proportional vectors determine the same
point, i.e., only the ratio of the coordinates is of importance. The vector (x0 :x1 :
x2 :x3)t is called the homogeneous coordinate vector of X. The relation between
Euclidean and homogeneous coordinates is expressed in the equations

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
. (1)

The transition from homogeneous coordinates to Euclidean coordinates is, how-
ever, possible only if x0 
= 0. In other words, the projective points described by
x0 = 0 do not correspond to Euclidean points. They are points at infinity or
ideal points. All points at infinity lie in a plane ω, the plane at infinity described
by the equation x0 = 0.

A very lucid geometric interpretation is possible in the planar case. We embed
the Euclidean plane E2 in Euclidean 3-space E3 by mapping (x, y)t to (1, x, y)t

(Figure 5.7). Now we consider a point A(1, ax, ay)t of E2 and draw its connection
line a with O(0, 0, 0). Any direction vector of a gives just the homogeneous
coordinates (1 :ax :ay)t of A.

However, a straight line b through O with direction vector (0, bx, by)t does not
intersect E2 in a finite point. According to our considerations, it belongs to a
point at infinity Bu. In Figure 5.7 we indicate Bu by a straight line and a little
white arrow pointing in its direction.1

How can we perform computations in homogeneous coordinates? It is not diffi-
cult, but there are two important things to remember:

1This geometric interpretation of homogeneous coordinates is closely related to ra-
tional Bézier curves and rational B-spline curves (compare page 130). In fact, ratio-
nal Bézier curves possess integral parametric representations in homogeneous coordi-
nates. Comparing Figure 2.52 in Chapter 2 and Figure 5.7 makes this evident.



Section 5.2. Open Geometry and Projective Geometry 405

FIGURE 5.7. Extending E2 to the projective space P2.

1. The homogeneous coordinates are determined only up to a constant factor;
i.e., (x0 : x1 : x2 : x3)t and (λx0 : λx1 : λx2 : λx3)t describe the same point
X ∈ P3.

2. At least one coordinate must always be different from zero. No point of P3
corresponds to (0:0 :0 :0)t.

We give you a few simple examples in two dimensions. A Euclidean straight line
s is described by an equation of the shape u0 + u1x + u2y = 0. From the 2D
version of equation (1) we find its projective form

u0x0 + u1x1 + u2x2 = 0. (2)

The line at infinity u of P2 is described by x0 = 0. We can easily compute the
intersection point of s with the line at infinity u by inserting x0 = 0 in (2).
The intersection point is Su(0 :u2 :−u1)t – the point at infinity of s. Note that
(u2, −u1)t is the direction vector of s.

For a second example we consider the hyperbola described by

a2b2x2
0 − b2x2

1 + a2x2
2 = 0.

It intersects u in two points (0 :a :±b)t, the points at infinity of its asymptotes.
Things get very strange if we intersect an arbitrary circle

(x − m)2 + (y − n)2 = r2

with the line at infinity. The conjugate complex intersection points are given by
I, Ī(0 :1 :±i)t. They depend neither on the circle’s midpoint nor on its radius, i.e.,
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all circles intersect in two fixed points at infinity . Conversely, any conic section
passing through I and Ī is a circle. For this reason I and Ī are called circular
points at infinity.

The last example shows that projective geometry can be really enlightening to
certain geometric phenomena. Especially the projective theory of conic sections
is of outstanding elegance. We used some aspects of it for the implementation
of the class Conic in Open Geometry. We will not pursue it at this place and
turn to other central concepts of projective geometry. The interested reader is
referred to the section on conics (Section 2.5 on page 110).

The transformations of Euclidean space are characterized by the invariance of
distance. The invariant property of projective transformation is the collinearity
of points. That is, if κ is a projective transformation and X, Y , and Z are
collinear points, then κ(X), κ(Y ) and κ(Z) are collinear as well.2 The group of
projective transformations is very large and general. It contains all Euclidean
transformations and those transformations that belong to the geometries that
are called non-Euclidean nowadays. In homogeneous coordinates a projective
transformation reads

x′
0 = a00x0 + a01x1 + a02x2 + a03x3,

x′
1 = a10x0 + a11x1 + a12x2 + a13x3,

x′
2 = a20x0 + a21x1 + a22x2 + a23x3,

x′
3 = a30x0 + a31x1 + a32x2 + a33x3.

It is bijective (regular) iff the coefficient matrix A = (aij) is regular. With the
help of this matrix and the abbreviations x = (x0 :x1 :x2 :x3)t, x′ = (x′

0 :x′
1 :x′

2 :
x′

3)
t we can rewrite the above transformation as

x′ = Ax.

This simple and general form makes projective transformation useful for com-
puter graphics, and in fact, it arises very often in OpenGL code.

Invariants of projective transformations are of special importance. We already
mentioned the collinearity of points. Another important invariant is the cross
ratio. We consider four values s0, s1, s2, s3 ∈ R := R∪∞ and assign a cross ratio

CR(s0, s1, s2, s3) :=
s0 − s2

s0 − s3
:

s1 − s2

s1 − s3

to them. The cross ratio takes values in R and is well defined if no three of the
values si are identical. A good and stable implementation of the cross ratio in
a computer program has to take care of some special cases. Because of the fun-
damental importance of the cross ratio in projective geometry, it is really worth
the trouble. The following lines stem from Open Geometry’s "proj geom.h"
file:

2For this reason, projective transformations are called collinear maps as well.
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Listing from "H/proj geom.h":

Boolean SetCrossRatio( Real &ratio, const Real q [ 4],
Real eps = 1e−6, Real infinity = 1e6 )

{
Real r [ 4];
int i;
for ( i = 0; i < 4; i++ )
{

r [i] = q [i];
if ( fabs( r [i] ) > infinity )

r [i] = infinity ∗ infinity;
}

int j;
for ( i = 0; i < 4; i++ )
{

for ( j = i + 1; j < 4; j++ )
if ( fabs( r [i] − r [j] ) < eps )
{

int k;
for ( k = j + 1; k < 4; k++ )
{

if ( fabs( r [j] − r [k] ) < eps )
SafeExit( "identical...!" ) ;

}
}

}

if ( fabs( r [ 0] − r [ 3] ) < eps || fabs( r [ 1] − r [ 2] ) < eps )
{

ratio = infinity;
return false;

}
else
{

ratio = ( r [ 0] − r [ 2] ) ∗ ( r [ 1] − r [ 3] )
/ ( r [ 0] − r [ 3] ) / ( r [ 1] − r [ 2] ) ;

if ( fabs( ratio ) > infinity )
{

ratio = infinity;
return false;

}
else

return true;
}

}
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SetCrossRatio(. . . ) returns a value of type Boolean: true if the cross ratio is finite
and false otherwise. The Real variable ratio is set to the actual value of the cross
ratio determined by the input values q[ 0 ],. . . ,q[ 3 ]. In addition, we perform the
necessary checks for (almost) infinite and (almost) identical elements.

The cross ratio can be defined only only for real values but also for four points of
a straight line or conic. We are not even restricted to points: The lines or planes
of a pencil, tangents of a conic, and tangent planes of a cone of second order are
other targets for this universal tool.

We start by defining the cross ratio for points of the fixed straight line s defined by
x2 = x3 = 0. Identifying s with the real projective line P1 = {(x0 :x1)t}, we define
the cross ratio of four points A, B, C, D ∈ P1 with homogeneous coordinates
(a0 :a1)t, . . . , (d0 :d1)t as

CR(A, B, C, D) :=

∣∣∣∣a0 c0
a1 c1

∣∣∣∣∣∣∣∣a0 d0
a1 d1

∣∣∣∣
:

∣∣∣∣b0 c0
b1 c1

∣∣∣∣∣∣∣∣b0 d0
b1 d1

∣∣∣∣
.

Since we have CR(A, B, C, D) = CR(a1/a0, . . . , d1/d0), this definition does not
depend on the special choice of the homogeneous coordinate vector. We can easily
compute the cross ratio of the Euclidean coordinates of the points A, B, C, D. If
one of them is the point at infinity, we have to insert the value ∞.

The cross ratio of four arbitrary points A′, B′, C ′, D′ on a straight line s′ can be
computed in two steps (Figure 5.8):

1. Transform s′ to s by a projective transformation κ.

2. Compute the cross ratio of the transformed points κ(A′), . . . , κ(D′).

It is not difficult to prove that the value of the cross ratio does not depend
on the special choice of κ. The invariance of the cross ratio under projective
transformations is obvious by definition.

Now to the cross ratio for the elements of a pencil of lines Vε(v); V is the vertex,
ε the supporting plane of the pencil. We define the cross ratio of four straight
lines a, b, c, d ∈ Vε with the help of an arbitrary straight line s′ ⊂ ε that does
not contain V :

CR(a, b, c, d) := CR(A′, B′, C ′, D′),

where A′ = a ∩ s′, . . . , D′ = d ∩ s′ (Figure 5.8). The cross ratio of four planes
α, β, γ, δ of a pencil of planes with axis v is defined as the cross ratio of the
four intersection lines with an arbitrary plane ε that does not contain v. In both
cases, the choice of s′ or ε has no influence on the value of the cross ratio.

The implementation of the cross ratio of four collinear points is not difficult.
Consider the following example:
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FIGURE 5.8. The cross ratio of four collinear points, four straight lines of a pencil,
and four planes with common axis.

Listing from "H/proj geom.h":

Boolean SetCrossRatio( Real &ratio, const P3d P [ 4],
Real eps = 1e−6, Real infinity = 1e6 )

{
StrL3d s;
if ( P [ 0].Distance( P [ 1] ) < eps )

s.Def( P [ 0], P [ 2] ) ;
else

s.Def( P [ 0], P [ 1] ) ;
Real r [ 4];
int i;
for ( i = 0; i < 4; i++ )

r [i] = ( s.GetParameter( P [i] ) ) ;
return SetCrossRatio( ratio, r, eps, infinity ) ;

}

The implementation of the cross ratio of four straight lines or planes has to be
either a little tricky or a little “dirty.” We decide on the latter:
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Listing from "H/proj geom.h":

Boolean SetCrossRatio( Real &ratio, const Plane pi [ 4],
Real eps = 1e−6, Real infinity = 1e6 )

{
StrL3d s( P3d( −5.917409748, 2.900873921137, 7.91747412981 ),

V3d( 0.9747938741, −0.77937911138, 0.19387499483 ) ) ;
P3d P [ 4];
int i;
for ( i = 0; i < 4; i++ )

P [i] = pi [i] ∗ s;
return SetCrossRatio( ratio, P, eps, infinity ) ;

}

The cross ratio of four planes is computed as the cross ratio of the intersection
points with a “weird” straight line w. If w intersected the axis of the pencil of
planes, it would not be valid. But this is extremely unlikely. The remaining cross
ratios are implemented in an analogous fashion.

So far, we have not talked about the cross ratio of four points on a conic or four
tangent planes of a cone of second order. The cross ratio of four conic points
A, B, C, D is defined via the cross ratio of four straight lines a, b, c, d of a pencil
V (v) with vertex V on the conic. We simply connect A, . . . , D with V . If V
happens to be one of the four points in question, it corresponds to the conic
tangent in V (Figure 5.9).

FIGURE 5.9. The cross ratio of four points or tangents of a conic.

The cross ratio of four tangents a, b, c, d of a conic is defined as the cross ratio
of the four intersection points A, B, C, D with a fixed tangent v of the conic. If
v is one of the tangents a, b, c, d, the intersection point has to be replaced by the
point of tangency V of v.
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Finally, in order to compute the cross ratio of four tangent planes of a cone of
second order, we intersect the tangent planes and the cone itself with an arbitrary
plane ε that does not contain the cone’s vertex. The four intersection lines and
the intersection conic define the cross ratio.

Hence, we have defined a cross ratio for:

• four points of a straight line or conic,

• four straight lines lying in a pencil or tangent to a conic,

• four planes lying in a pencil or tangent to a cone of second order.

A cross ratio may be defined for further geometric objects as well (pencil of
conics, points on a rational curve,. . . ), but for the time being we shall leave it
at that. If you want to extend the notion of the cross ratio to other objects, you
can always rely on the cross ratio of four numbers in R.

With the help of the cross ratio we can introduce projective coordinates in an
arbitrary set S of geometric objects where a cross ratio is defined for any four
elements of S. For example, S may be the set of tangent planes of a cone of
second order or the set of points on a conic.

Let U , O, and E be three fixed elements of S. We call them element at infinity,
origin, and unit element. You may think of the point at infinity, origin, and unit
point on the real line. Any element X ∈ S defines a cross ratio CR(U, O, E, X)
that, reversed, can be used to identify X unambiguously. In other words, the
triple (U, O, E) is a projective coordinate system or projective scale on S.

Consider the example of the real line. There, the point X at oriented dis-
tance x from the origin O corresponds to the cross ratio CR(U, O, E, X) =
CR(∞, 0, 1, x) = x. Hence, projective coordinates are a generalization of Eu-
clidean coordinates. They make it possible, however, to assign a coordinate to
the point at infinity as well: U belongs (of course) to ∞.

In Open Geometry we implemented the classes ProjScale and ProjScale2d. The
latter applies only to sets of 2D elements with cross ratio (i.e., pencils of points
and lines or points and tangents of conics), while the first can be used for 3D
elements as well. We will describe the implementation of ProjScale2d because it
has fewer cases and is more lucid. The class header is listed below.

Listing from "H/proj geom.h":

class ProjScale2d
{
public:

ProjScale2d( ) ;
ProjScale2d & operator = ( ProjScale2d &other ) ;
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void Def( const P2d &V, StrL2d t [ 3] ) ;
void Def( const StrL2d &l, P2d Q [ 3] ) ;
void Def( Conic &c, P2d Q [ 3] ) ;
void Def( Conic &c, StrL2d t [ 3] ) ;
void Draw( Color col, Real u0, Real u1, ThinOrThick thick ) ;
void Draw( ThinOrThick thick ) ;
void Mark( Color col, Real rad1, Real rad2 = 0 ) ;
void MarkElement( Color col, Real rad1, Real rad2, int i ) ;
void MarkElements( Color col, Real rad1, Real rad2 ) ;
void DrawElement( Color col, Real u0, Real u1,

ThinOrThick thick, int i ) ;
void DrawElements( Color col, Real u0, Real u1,

ThinOrThick thick ) ;
ProjType2d GetType( ) { return Type; }
void SetElement( const StrL2d &t, int i )

{ s [i] = t; ComputeReals( ) ; }
void SetElement( const P2d &Q, int i )

{ P [i] = Q; ComputeReals( ) ; }
P2d GetPoint( int i ) { return P [i]; }
StrL2d GetLine( int i ) { return s [i]; }
P2d PointOfCrossRatio( const Real ratio ) ;
StrL2d LineOfCrossRatio( const Real ratio ) ;
Real CrossRatio( const P2d &A, const Real eps = 1e−6,

const Real infinity = 1e6 ) ;
Real CrossRatio( const StrL2d &a, const Real eps = 1e−6,

const Real infinity = 1e6 ) ;
private:

void ComputeReals( ) ;
StrL2d Line;
P2d Point;
Conic conic;
P2d P [ 4];
StrL2d s [ 4];
Real u [ 4];
ProjType2d Type;

};

To begin with, the private members of the class deserve most interest. We want to
implement a very general and easy to use concept of projective scales. Therefore,
any instance of the class ProjScale2d has the possibility of being either a pencil
of points, a pencil of lines, the set of points on a conic, or the set of tangents of
a conic. The type is stored in Type, a variable of type ProjType2d that is defined
in "proj geom.h" as well:
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Listing from "H/proj geom.h":

enum ProjType2d { PencilOfLines2d, PencilOfPoints2d,
PointsOnConic2d, TangentsOfConic2d };

In any case, ProjScale2d has four member variables of types P2d and StrL2d. For
necessary computations we will need four variables of type Real as well. Each
of the four types corresponds to one of the four defining methods. All private
member variables are set to certain sensible values, regardless of how the instance
of ProjScale2d is defined.

The projective scale is defined by P[ 0 ], P[ 1 ], and P[ 2 ] (or s[ 0 ], s[ 1 ], and s[ 2 ]),
while P[ 3 ] (or s[ 3 ]) will be convenient for the CrossRatio(. . . ) method that will be
described later on. The three real variables u[ 0 ], u[ 1 ], and u[ 2 ] are set to values
that transform the projective scale immediately to the parameter distribution
on Line. That is, we always have an original projective scale and a projective
scale on a straight line. The transformation uses the geometric ideas that we
have explained above. You will immediately recognize this if you have a look at
the next listing:

Listing from "H/proj geom.h":

void ProjScale2d: :ComputeReals( )
{

if ( Type == PencilOfPoints2d )
{

u [ 0] = Line.GetParameter( P [ 0] ) ;
u [ 1] = Line.GetParameter( P [ 1] ) ;
u [ 2] = Line.GetParameter( P [ 2] ) ;

}
else if ( Type == PencilOfLines2d )
{

Line.Def( P2d( −2.1374109387438, 5.008010107416 ),
V2d( 0.9187413872982, −0.791873444447 ) ) ;

u [ 0] = Line.GetParameter( Line ∗ s [ 0] ) ;
u [ 1] = Line.GetParameter( Line ∗ s [ 1] ) ;
u [ 2] = Line.GetParameter( Line ∗ s [ 2] ) ;

}
else if ( Type == PointsOnConic2d )
{

Line.Def( P [ 0], conic.GetPolar( P [ 0] ).GetDir( ) ) ;
u [ 0] = 0;
u [ 1] = Line.GetParameter( conic.GetPolar( P [ 1] ) ∗ Line ) ;
u [ 2] = Line.GetParameter( StrL2d( P [ 1], P [ 2] ) ∗ Line ) ;
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}
else
{

Line = s [ 0];
u [ 0] = Line.GetParameter( conic.GetPole( s [ 0] ) ) ;
u [ 1] = Line.GetParameter( Line ∗ s [ 1] ) ;
u [ 2] = Line.GetParameter( Line ∗ s [ 2] ) ;

}
}

If the projective scale is of type PencilOfLines2d, we initialize Line with “weird”
but sensible values that are not out of range. Then we intersect it with the three
defining elements of the projective scale and store the corresponding parameter
values.

We implemented some standard “getters,” “setters,” “markers,” and “drawers.”
They work correctly only if the type of the projective scale is appropriate. Oth-
erwise, they do nothing. It would be useless, for example, to draw the defining
elements of a pencil of points. The most important task to be performed by Pro-
jScale2d is the computation of a point or line to a given cross ratio. Consider,
for example, the member function PointOfCrossRation(. . . ):

Listing from "H/proj geom.h":

P2d ProjScale2d: :PointOfCrossRatio( const Real ratio )
{

Real v;
if ( fabs( ( u [ 1] − u [ 2] ) ∗ ratio − u [ 0] + u [ 2] ) < 1e−6 )

v = 1e12;
else

v = ( u [ 0] ∗ ( u [ 1] − u [ 2] ) ∗ ratio −
( u [ 0] − u [ 2] ) ∗ u [ 1] ) /
( ( u [ 1] − u [ 2] ) ∗ ratio − u [ 0] + u [ 2] ) ;

P2d V = Line.InBetweenPoint( v ) ;
if ( Type == PencilOfPoints2d )

return V;
else
{

int n;
P2d W;
StrL2d h( P [ 1], V ) ;
n = conic.SectionWithStraightLine( h, V, W ) ;
if ( n )
{

if ( fabs( h.GetParameter( V ) ) <
fabs( h.GetParameter( W ) ) )
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V = W;
return V;

}
else

return P [ 0];
}

}

Here you see the advantage of storing the reals u[ 0 ], u[ 1 ], and u[ 2 ]. At
the beginning of PointOfCrossRatio(. . . ) we compute a real value v such that
CR(u[ 0 ], u[ 1 ], u[ 2 ], v) is the input cross ratio. Then we distinguish two cases.
If the scale is of type PencilOfPoints2d, we can immediately return the point V
on Line that corresponds to v. Otherwise (if the scale is defined on the points
of a conic), we have to project V onto the conic. That is, we have to invert
the transformation of the projective scale onto Line (compare the listing of
ComputeReals( )).

It is high time to give you an example of how all these classes and methods work.
Later, we will go on to describing the remaining methods of importance.

Example 5.4. Projective scales
In "proj scales.cpp" we use four projective scales SP (Scale of Points), SL
(Scale of Lines), SCP (Scale of Conic Points), and SCL (Scale of Conic Lines) of
different type. We define them in Init( ):

Listing from "proj scales.cpp":

void Scene: :Init( )
{

StrL2d s( P2d( 0, −10 ), Xdir2d ) ;
P2d S [ 3];
S [ 0] = s.InBetweenPoint( 0 ) ;
S [ 1] = s.InBetweenPoint( −5 ) ;
S [ 2] = s.InBetweenPoint( 10 ) ;
SP.Def( s, S ) ;

P2d P( 0, −2 ) ;
StrL2d p [ 3];
p [ 0].Def( P, V2d( 0.8, 1 ) ) ;
p [ 1].Def( P, V2d( 0.0, 1 ) ) ;
p [ 2].Def( P, V2d( −0.8, 1 ) ) ;
SL.Def( P, p ) ;

Conic c;
P2d C [ 5];
C [ 0].Def( − 5, 5 ) ;
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C [ 1].Def( −14, 5 ) ;
C [ 2].Def( −10, 2 ) ;
C [ 3].Def( −10, 8 ) ;
C [ 4].Def( − 7, 3 ) ;
c.Def( Blue, 150, C ) ;
SCP.Def( c, C ) ;

StrL2d t [ 5];
int i;
for ( i = 0; i < 5; i++ )
{

t [i] = c.GetPolar( C [i] ) ;
t [i].Def( C [i], t [i].GetDir( ) ) ;
t [i].Reflect( Yaxis2d ) ;

}
t [ 2].Translate( V2d( 0.5, −1 ) ) ;
D.Def( Red, 150, t ) ;
SCL.Def( D, t ) ;

R.Def( 2.5, −0.02, −3.5, 3.5, LINEAR ) ;
}

FIGURE 5.10. Diverse projective scales.

The variable D is of type Conic. We have to declare it globally because we need
it in Draw( ) for the drawing of the conic tangents; R is a pulsing real. It will
give the cross ratio of the fourth point/line to be displayed beside the defining
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elements of the projective scales. Now we can draw and mark the projective
scales. We start with the pencil of points. At the beginning of Draw( ) we write
the following lines:

Listing from "proj scales.cpp":

Real ratio = R.Next( ) ;

SP.Draw( Green, −15, 15, VERY THICK ) ;
SP.MarkElements( Green, 0.35, 0.2 ) ;
P2d Point;
Point = SP.PointOfCrossRatio( ratio ) ;
Point.Mark( Green, 0.45, 0.3 ) ;
Point.Mark( Green, 0.2 ) ;

Similarly, we proceed with the pencil of lines and the points on the conic. We just
have to take care to make the drawing of lines before the marking of points. The
set of conic tangents needs a little trick. We compute the element of given cross
ratio and immediately redefine it in order to draw a line segment symmetric to
the point of tangency on the conic. It is here where we need the conic D already
used in Init( ). In our example, the method GetPole(. . . ) of the class Conic returns
the point of tangency.

Listing from "proj scales.cpp":

SCL.Draw( THICK ) ;
SCL.DrawElements( Red, −5, 5, THICK ) ;
StrL2d Line;
Line = SCL.LineOfCrossRatio( ratio ) ;
Line.Def( D.GetPole( Line ), Line.GetDir( ) ) ;
Line.Draw( Red, −5, 5, VERY THICK ) ;

Now you can start the program and run the animation. You will see four elements
of the same cross ratio (Figure 5.10). As an additional feature we print this
ratio on the screen. This allows you to verify that the defining elements of the
projective scales correspond to the values 0, 1, and ∞, respectively. ♦
The class ProjScale2d on its own is quite useful. However, we designed it rather
to be a member of the class Projectivity2d, which will be described later. For
this purpose three more methods are of importance: The “=” operator and the
two CrossRatio(. . . ) methods. The latter take an input point or line and return
the cross ratio defined by the three base elements of the projective scale. It is
here where we make use of the fourth point, line, or real number of the private
member variables:
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Listing from "H/proj geom.h":

Real ProjScale2d: :CrossRatio( const P2d &A, const Real eps,
const Real infinity )

{
Real ratio = 0;
P [ 3] = A;
if ( Type == PencilOfPoints )
{

if ( !SetCrossRatio( ratio, P, eps, infinity ) )
ratio = infinity;

}
else if ( Type == PointsOnConic )
{

if ( !SetCrossRatio( ratio, conic, P, eps, infinity ) )
ratio = infinity;

}
else

Write( "warning:bad base type!" ) ;
return ratio;

}

Now we have everything to introduce a new class: Projectivity2d. Basically, it
consists of two projective scales. Points that together with the defining elements
of the scales define the same cross ratio correspond in a projective map. Addi-
tionally, we have private members to store the type of the scales and the upper
and lower borders for estimation of 0 and ∞.

Listing from "H/proj geom.h":

class Projectivity2d
{
public:

Projectivity2d( ) ;
void Def( ProjScale2d &InScale1, ProjScale2d &InScale2,

const Real eps = 1e−6, const Real infinity = 1e6 ) ;
P2d MapPointToPoint( const P2d &A ) ;
StrL2d MapPointToLine( const P2d &A ) ;
P2d MapLineToPoint( const StrL2d &a ) ;
StrL2d MapLineToLine( const StrL2d &a ) ;
P2d InvMapPointToPoint( const P2d &A ) ;
StrL2d InvMapPointToLine( const P2d &A ) ;
P2d InvMapLineToPoint( const StrL2d &a ) ;
StrL2d InvMapLineToLine( const StrL2d &a ) ;
void MarkElements( Color col, const Real rad1,

const Real rad2 = 0 ) ;
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void MarkElements( Color col [ 3], const Real rad1,
const Real rad2 = 0 ) ;

void ConnectElements( Color col, ThinOrThick thick ) ;
void ConnectElements( Color col [ 3], ThinOrThick thick ) ;
P2d IntersectLines( Real ratio ) ;
StrL2d ConnectingLine( Real ratio ) ;
ProjType2d GetType1{ return Type1; }
ProjType2d GetType2{ return Type2; }

private:
ProjScale2d Scale1, Scale2;
ProjType2d Type1, Type2;
Real eps, infinity;

};

The class provides methods for transforming points and lines in both directions:
from the first to the second scale and reversed. Depending on the type of the
scales, you have to use the correct transformation method. Otherwise, the re-
sult is unpredictable (however, your system should not crash). Sometimes it is
useful to mark/draw the defining elements or to connect/intersect corresponding
points/lines. We provide methods for that as well.

Example 5.5. Projective map
An example of the use of the class Projectivity2d is "proj map1.cpp". We define
a projectivity between the points of a straight line and a conic section. The
straight lines that connect corresponding points envelop a curve of class three
that is displayed as well. The global variables in use are as follows:

Listing from "proj map1.cpp":

ProjScale2d Scale1, Scale2;
Projectivity2d Proj;
Conic Conic1;
Color Col [ 3] = { Red, Green, Blue };

We refer to the conic Conic1 in both sections Init( ) and Draw( ). So we declare
it as a global variable. It is now really easy to implement the envelope of corre-
sponding lines. We just have to use the Open Geometry class ClassCurve2d:
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Listing from "proj map1.cpp":

class MyClassCurve: public ClassCurve2d
{
public:

StrL2d Tangent( Real t )
{

return Proj.ConnectingLine( tan( t ) ) ;
}

};
MyClassCurve ClassCurve;

The tan(. . . ) function in the argument of ConnectingLine(. . . ) is necessary in
order to transform a finite parameter interval of length π to (−∞,∞). Addition-
ally, it ensures a good distribution of curve tangents. The implementation of the
projectivity is done in Init( ):

Listing from "proj map1.cpp":

P2d P1 [ 3];
P1 [ 0].Def( −5, 6 ) ;
P1 [ 1].Def( 5, 6 ) ;
P1 [ 2].Def( 0, 12 ) ;
Conic1.Def( Black, 150, P1, Origin, Xaxis2d ) ;

P2d P2 [ 5];
P2 [ 0].Def( 15, 0 ) ;
P2 [ 1].Def( −15, 0 ) ;
P2 [ 2].Def( 0, 0 ) ;

Scale1.Def( Conic1, P1 ) ;
Scale2.Def( Xaxis2d, P2 ) ;

Proj.Def( Scale1, Scale2 ) ;

We define the conic section by three points and one point plus tangent. The
three defining points serve for the definition of the projective scale as well. That
is already everything as far as geometry is concerned. We have only to produce
an attractive picture (Figure 5.11) and a little animation.

One global constant and three global variables are used for that:
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FIGURE 5.11. The connecting lines of a projectivity between a conic and a straight
line envelop a curve of class three.

Listing from "proj map1.cpp":

const int N = 100;
StrL2d S [N+1];
int Count;

In Draw( ) we take a straight line through the conic center, rotate it about the
conic center according to the frame number, and determine the two intersection
points A and B. Then we transform the intersection point on the positive half
ray and, while Count is within range, add the straight line AB to the array of
lines. The rest of Draw( ) uses the convenient drawing and marking methods of
ProjScale2d and Projectivity2d.

Listing from "proj map1.cpp":

void Scene: :Draw( )
{

P2d A, B;
StrL2d s;
P2d M = Conic1.GetM( ) ;
s.Def( M, V2d( 1, 0 ) ) ;
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s.Rotate( M, 15 + 4 ∗ FrameNum( ) ) ;
if ( Conic1.SectionWithStraightLine( s, A, B ) )
{

if ( Count < N )
Count++;

if ( s.GetParameter( A ) < s.GetParameter( B ) )
A = B;

B = Proj.MapPointToPoint( A ) ;
StraightLine2d( Black, A, B, THICK ) ;
S [Count].Def( A, B ) ;

}
int i;
for ( i = 0; i <= Count; i++ )

S [i].Draw( LightYellow, −40, 40, THIN ) ;

Scale1.Draw( THICK ) ;
Scale2.Draw( Black, −20, 20, THICK ) ;
Proj.ConnectElements( Col, MEDIUM ) ;
ClassCurve.Draw( MEDIUM, 10 ) ;
Proj.MarkElements( Col, 0.3, 0.2 ) ;
A.Mark( Black, 0.3, 0.2 ) ;
A.Mark( Black, 0.15 ) ;
B.Mark( Black, 0.3, 0.2 ) ;
B.Mark( Black, 0.15 ) ;

}

In a similar way we can use a projectivity between a pencil of lines and the
tangent set of a conic to create a plane curve. The corresponding code does not
differ essentially from "proj map1.cpp" and can be found in "proj map2.cpp".

♦
The implementation of 3D projective scales (ProjScale) and 3D projectivities
(Projectivity) is very similar to the two-dimensional case. Instead of giving de-
tailed explanations, we refer the reader to the file "proj geom.h" for further
information. We will rather discuss another sample file ("twisted cubic.cpp").

Example 5.6. A twisted cubic
Let ai(πi) be three projectively linked pencils of planes (i = 1, 2, 3). “Projectively
linked” means in this context that projective scales are defined in each pencil.
In general, planes π1(t), π2(t), and π3(t) of the same cross ratio t intersect in a
common point P (t). The locus P (t) of these points is a space curve c. If P (t) is
defined for all cross ratios t ∈ R (i.e., if the planes πi(t) have no common straight
line), the generated space curve c is a twisted cubic.

It is easy to construct c with the help of the classes in "proj geom.h". We
use three globally defined projective scales, three triangles that will visualize
corresponding planes of the pencil, and a real variable T for the animation.
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Listing from "twisted cubic.cpp":

ProjScale Scale1, Scale2, Scale3;
Poly3d Tri1, Tri2, Tri3;
Real T;

The twisted cubic can now be implemented as follows:

Listing from "twisted cubic.cpp":

class MyTwistedCubic: public ParamCurve3d
{
public:

P3d CurvePoint( Real t )
{

Real TanT = tan( t ) ;
P3d P;
Plane p [ 3];
p [ 0] = Scale1.PlaneOfCrossRatio( TanT ) ;
p [ 1] = Scale2.PlaneOfCrossRatio( TanT ) ;
p [ 2] = Scale3.PlaneOfCrossRatio( TanT ) ;
if ( p [ 0].SectionWithTwoOtherPlanes( p [ 1], p [ 2], P ) )

return P;
else

return P3d( 1e10, 1e10, 1e10 ) ;
}

};
MyTwistedCubic TwistedCubic;

Note that we transform the parameter once more with the tangent function in
order to compensate the cross ratio’s bad parameter distribution. Before comput-
ing the twisted cubic’s points in Init( ), we must, of course, define the projective
scales:
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Listing from "twisted cubic.cpp":

const Real a = 5;

const P3d P1( a, 0, 0 ) ;
const P3d P2( 0, 0, 0 ) ;
const P3d P3( 0, a, a ) ;

StrL3d axis1, axis2, axis3;
axis1.Def( P1, Zdir ) ;
axis2.Def( P2, Ydir ) ;
axis3.Def( P3, Xdir ) ;

Plane plane1 [ 3], plane2 [ 3], plane3 [ 3];

plane1 [ 0].Def( P3d( 0, 0, 0 ), axis1 ) ;
plane1 [ 1].Def( P3d( 0, a, 0 ), axis1 ) ;
plane1 [ 2].Def( P3d( 0, −a, 0 ), axis1 ) ;

plane2 [ 1].Def( P3d( a, 0, 0 ), axis2 ) ;
plane2 [ 0].Def( P3d( a, 0, 1 ), axis2 ) ;
plane2 [ 2].Def( P3d( a, 0, −1 ), axis2 ) ;

plane3 [ 0].Def( P3d( 0, 0, 0 ), axis3 ) ;
plane3 [ 2].Def( P3d( 0, a, 0 ), axis3 ) ;
plane3 [ 1].Def( P3d( 0, −a, 0 ), axis3 ) ;

Scale1.Def( axis1, plane1 ) ;
Scale2.Def( axis2, plane2 ) ;
Scale3.Def( axis3, plane3 ) ;

const Real t1 = −0.5 ∗ PI, t2 = −t1;
TwistedCubic.Def( Black, 150, t1, t2 ) ;

The axes lie on three pairwise skew edges of a cube. The projective scales are
declared in a way to produce a twisted cubic with only one real point at infinity
(they are more attractive than their colleagues with three ideal points). Now,
in order to display the curve’s generation, we define the three triangles. Two
vertices will always be incident with the axis of a pencil.
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Listing from "twisted cubic.cpp":

Tri1.Def( Red, 3 ) ;
Tri2.Def( Green, 3 ) ;
Tri3.Def( Blue, 3 ) ;

Tri1 [ 1] = P1;
Tri1 [ 2].Def( a, 0, a ) ;
Tri2 [ 1] = P2;
Tri2 [ 2].Def( 0, a, 0 ) ;
Tri3 [ 1] = P3;
Tri3 [ 2].Def( a, a, a ) ;

The common third vertex lies on the cubic. Hence, the triangles lie in planes that
correspond in the projectivities between the three pencils of planes. The following
lines stem from Draw( ). Varying the parameter T yields the animation.

Listing from "twisted cubic.cpp":

Tri1 [ 3] = TwistedCubic.CurvePoint( T ) ;
Tri2 [ 3] = Tri1 [ 3];
Tri3 [ 3] = Tri1 [ 3];
Tri1 [ 3].Mark( Black, 0.3, 0.2 ) ;

Tri1.ShadeWithContour( DarkRed, MEDIUM ) ;
Tri2.ShadeWithContour( DarkGreen, MEDIUM ) ;
Tri3.ShadeWithContour( DarkBlue, MEDIUM ) ;

♦

5.3 Open Geometry and Differential Geometry
Open Geometry puts special emphasis on differential geometric aspects of pro-
gramming. Examples of this can be found throughout this book. In this section
we compiled two sample programs where the differential geometric approach is
evident.

Open Geometry is, of course, not a computer algebra system, i.e., you cannot
perform symbolic calculus operations. You have to approximate the typical lim-
iting processes of differential geometry by discrete models. In general, this is no
problem and the loss of accuracy can be neglected.
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Example 5.7. Osculating quadric
Let Φ be a ruled surface that is free of torsal generators. Any three pairwise skew
generators g0, g1, and g2 of Φ define a unique quadric Ω = Ω(g0, g1, g2) (the set
of straight lines that intersect g0, g1, and g2). If we perform the passage to the
limit g1, g2 → g0, this quadric will converge to a well-defined limit Ω0. It is called
the osculating quadric of Φ in g0 and plays an important role in the theory of
ruled surfaces.

FIGURE 5.12. The osculating quadric of a ruled surface.

It is a very challenging and by far nontrivial task to produce a good and in-
structive picture that displays both, Φ and Ω at the same time. The reason for
this is inherent in the problem. Because of the osculation along g0, the z-buffer
algorithm runs almost inevitably into problems.3 These problems become even
worse because in general, we will not be able to implement Ω0 directly. We will
have to use three “neighboring” generators for that purpose. Still, by using the
right z-buffer settings (and one or another dirty trick) it is possible to overcome
the difficulties.

The osculating quadric is defined by three neighboring generators. For convenient
programming it is necessary to implement a successor class Quadric of RuledSur-
face. The template program for this class is "quadric.cpp". It is rather short,
so we will list it in one piece:

Listing of "quadric.cpp":

#include "opengeom.h"

3Ω0 lies on different sides of Φ in a neighborhood of g0 and at the same time touches
Φ along g0.
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#include "defaults3d.h"
#include "ruled surface.h"

Quadric Q;

StrL3d r [ 3];
void Scene: :Init( )
{

r [ 0].Def( Origin, Xdir ) ;
r [ 1] = r [ 0];
r [ 2] = r [ 0];
r [ 0].Rotate( Zaxis, 30 ) ;
r [ 0].Translate( 0, 0, −5 ) ;
r [ 2].Rotate( Zaxis, −20 ) ;
r [ 2].Rotate( Yaxis, 10 ) ;
r [ 2].Translate( 0, 0, 5 ) ;

Q.Def( Yellow, 50, 50, −5, 5, 0, 1, r ) ;
Q.PrepareContour( ) ;

}

void Scene: :Draw( )
{

Q.Shade( SMOOTH, REFLECTING ) ;
Q.DrawRulings( Black, 7, 7, THIN ) ;
Q.DrawBorderLines( Black, MEDIUM ) ;
Q.Contour( Black, MEDIUM ) ;

}

You see that the use of this class is really very simple. However, you should be
aware of a few facts:

• The instance Q of Quadric is defined in the same way as an ordinary pa-
rameterized surface. The additional input parameter r is an array of three
straight lines.

• The u-parameter range ([−5, 5] in our example) refers to the parameteriza-
tion of r[ 0 ]. If you define r[ 0 ] by a point �p and a direction vector v, this
parameterization is given by �x(t) = �p + t · �v/|�v|.

• The v-parameter range [0, 1] fills the surface region between r[ 0 ] and r[2].

• The v-parameter lines are generators on Q. However, this is not true of the
u-parameter lines. Therefore, the WireFrame(. . . ) method of ParamSurface
may yield unwanted results. If you want to display the surface generators,
you should use the method DrawRulings(. . . ).
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After these preparations we can pass on to our original aim. In the program
"osc quadric.cpp" we display the osculating quadric of a ruled surface. Besides
taking into account the visibility problems, we must carefully choose the ruled
surface. Otherwise, the osculating quadric might have a weird shape. For this
reason we decide to define the ruled surface Φ via two Bézier curves b1 and b2
(or Border1 and Border2 as they are called in "osc quadric.cpp"). That is, we
implement the ruled surface as follows:

Listing from "quadric.cpp":

class MyRuledSurface: public RuledSurface
{
public:

virtual P3d DirectrixPoint( Real u )
{

return Border1.CurvePoint( u ) ;
}
virtual V3d DirectionVector( Real u )
{

return V3d( Border1.CurvePoint( u ),
Border2.CurvePoint( u ) ) ;

}
};
MyRuledSurface RuledSurf;

Compared with a definition via parameterized equations, this approach permits
easy experimenting possibilities and good design control. We change the shape
of the ruled surface by simply changing the control points of the border lines.

Now to the osculating quadric Ω. Locally, the generator of osculation g0 separates
two regions O1, O2 ∈ Ω that lie on different sides of Φ. This causes numeric
problems with the z-buffer algorithm. We can improve the visibility performance
by applying little translations to O1 and O2. Therefore, we have to split Ω into
two parts (v1 and v2 are parameter limits of Φ; U0 is a global constant to
determine the generator of osculation):

Listing from "quadric.cpp":

const Real eps = 1e−8;
Real v;
StrL3d ruling [ 3];
int i;
for ( i = 0; i < 3; i++ )
{

v = 0.5 ∗ ( ( 2 − i ) ∗ v1 + i ∗ v2 ) ;
ruling [i].Def( RuledSurf.SurfacePoint( U0, v ),
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RuledSurf.OscQuadrDir( U0, v, eps ) ) ;
}

const Real u11 = 0, u12 = 3;
const Real u21 = −5, u22 = 0;
OscQuad1.Def( Blue, 41, 41, u11, u12, 0, 1, ruling ) ;
OscQuad2.Def( Blue, 41, 41, u21, u22, 0, 1, ruling ) ;
OscQuad1.PrepareContour( ) ;
OscQuad2.PrepareContour( ) ;

V3d normal1 = RuledSurf.NormalVector( U0, 0.5 ∗ ( v1 + v2 ) ) ;
V3d normal2 = normal1;
normal1 ∗= 0.0004;
normal2 ∗= −0.03;
OscQuad1.Translate( normal1 ) ;
OscQuad2.Translate( normal2 ) ;

We first define three rulings r[ 0 ], r[ 1 ], and r[ 2 ] of Ω with the help of the
OscQuadDir(. . . ) method of the class RuledSurface. This method returns the
direction of the generator of the osculating quadric (or, equivalently, the tangent
of the asymptotic line) in a surface point P = P (u, v) by computing the straight
line through P that intersects two neighboring generators g(u − ε) and g(u + ε)
of the ruled surface.

In our case, the rulings r[ 0 ], r[ 1 ], and r[ 2 ] correspond to the v-values v1, (v1 +
v2)/2, and v2, respectively. With their help we can define both parts O1 and
O2 of Ω. Note that the setting of the respective u-parameter limits is a little
delicate. You may need several tries to find a good choice.

Finally, we translate O1 and O2 in the direction of the surface normal in the mid-
point of the generator of osculation. This seems to be reasonable, but depending
on the special example, other directions may yield better results. The optimal
length of the translation vector has to be found by a trial and error method as
well. Note that all those parameters depend heavily not only on the ruled surface
but also on the projection you use.

In Draw( ) we shade the two surfaces and draw their parameter lines. In doing
so, we occasionally adapt the standard offset. In general, we do not recommend
this,4 but here it improves the visibility computations of straight lines.

4Open Geometry algorithms are optimized for a default value of STD OFFSET=
1e−3.
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Listing from "quadric.cpp":

void Scene: :Draw( )
{

// shade osculating quadrics
OscQuad1.Shade( SMOOTH, REFLECTING ) ;
OscQuad2.Shade( SMOOTH, REFLECTING ) ;

const Real eps = 1e−2;
OscQuad1.DrawRulings( Black, M, N, THIN, eps ) ;
OscQuad2.DrawRulings( Black, M, N, THIN, eps ) ;
OscQuad1.DrawRulings( Black, 2, 2, MEDIUM, eps ) ;
OscQuad2.DrawRulings( Black, 2, 2, MEDIUM, eps ) ;
OscQuad1.Contour( Black, MEDIUM ) ;
OscQuad2.Contour( Black, MEDIUM ) ;

// draw the generator of second-order contact
P3d P = RuledSurf.SurfacePoint( U0, RuledSurf.v1 ) ;
P3d Q = RuledSurf.SurfacePoint( U0, RuledSurf.v2 ) ;
StraightLine3d( Black, P, Q, MEDIUM, 1e−2 ) ;

// draw ruled surface
SetOpacity( 0.7 ) ;
RuledSurf.Shade( SMOOTH, REFLECTING ) ;
RuledSurf.WireFrame( DarkBrown, 10, 13, THIN, 2 ∗ 1e−4 ) ;
SetOpacity( 1 ) ;
RuledSurf.DrawBorderLines( DarkBrown, MEDIUM, true, true, 1e−4 ) ;
RuledSurf.Contour( DarkBrown, MEDIUM ) ;

StrL3d generator = RuledSurf.Generator( U0 ) ;
generator.Draw( Black, −1,

RuledSurf.DirectionVector( U0 ).Length( ) + 1, THICK ) ;
}

So far, you might be satisfied with the output. It is certainly good enough for
a demonstration on your computer screen. However, in order to produce Fig-
ure 5.12 we used one more dirty trick. First, we drew all lines (parameter lines,
border lines, contour outlines) and exported them in EPS format. Then we erased
some lines to get a line graphic with correct visibility. Next, we displayed the
ruled surface and the osculating quadrics without any lines, exported them sepa-
rately to an image-processing program, erased parts of it, and put them together
again. Finally, we placed the EPS line graphic over this picture and got a shaded
surface with parameter lines and absolutely correct visibility. Of course, this
method is quite cumbersome, but the high-quality output should compensate
for that. ♦
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Example 5.8. Focal surfaces of a line congruence
In projective, affine, or Euclidean 3-space one can distinguish three basic ele-
ments of geometry: points, planes, and straight lines. From the theoretical point
of view of projective geometry, the sets of all points and of all planes are com-
pletely equivalent (principle of duality). That is, the planes of projective 3-space
P3 can be regarded as the points of a second projective space P3. Thus, every
point set of P3 corresponds to a set of planes in P3.

FIGURE 5.13. The director surface of a line congruence.

Straight lines, however, have no counterpart. They correspond to themselves and
are called self dual. While the manifolds of all points or planes depend on three
parameters, the manifold of all straight lines is of dimension four. Therefore, the
theory of lines considers one-, two-, and three-parameter sets of straight lines.
They are called ruled surfaces, line congruences, and line complexes, respectively
([27]).

We have already talked a great deal about ruled surfaces. In this place we will
have a closer look at line congruences. Analytically, we can describe a line con-
gruence K with the help of two functions �a,�e : D → R

3 that range in a domain
D ⊂ R2. The point (u1, u2) ∈ D corresponds to the straight line

x(u1, u2) . . . �x(u1, u2, v) = �a(u1, u2) + λ�e(u1, u2), λ ∈ R.

That is, x(u1, u2) is the straight line with direction vector �e(u1, u2) through
�a(u1, u2). The surface A described by �a(u1, u2) is called the director surface of
the congruence (Figure 5.13).

In the theory of line congruences, the focal surfaces play an important role ([27]).
Geometrically speaking, the points of the focal surfaces are the cuspidal points of
torsal generators on ruled surfaces contained in K. Analytically, the focal points
on a straight line �x(u1, u2) ∈ K are given by the solutions to the quadratic
equation

v2 det(�eu1 , �eu2 , �e) + v[det(�eu1 ,�au2 , �e)+
+ det(�au1 , �eu2 , �e)] + det(�au1 ,�au2 , �e) = 0.

(3)
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In general, that is, we get two solutions and therefore two (possibly complex) fo-
cal surfaces. With the help of formula (3) it is no problem to display the focal sur-
faces of a given congruence with Open Geometry ("line congruence.cpp").
First we need the vector functions �a(u1, u2), �e(u1, u2) and their derivatives:

Listing from "line congruence.cpp":

// director surface and derivates
const Real Eps = 1e−8, Eps2 = 0.5 / Eps;
const Real Factor = 0.3;
P3d A( Real u, Real u2 )
{

return P3d( u, u2, Factor ∗ u ∗ u2 ) ;
}
V3d Au1( Real u1, Real u2 )
{

V3d au1 = A( u1 + Eps, u2 ) − A( u1 − Eps, u2 ) ;
au1 ∗= Eps2;
return au1;

}
V3d Au2( Real u1, Real u2 )
{

V3d au2 = A( u1, u2 + Eps ) − A( u1, u2 − Eps ) ;
au2 ∗= Eps2;
return au2;

}

// direction vector and derivates
V3d E( Real u1, Real u2 )
{

return V3d( Factor ∗ u2, Factor ∗ u1, −1 ) ;
}
V3d Eu1( Real u1, Real u2 )
{

V3d eu1 = E( u1 + Eps, u2 ) − E( u1 − Eps, u2 ) ;
eu1 ∗= Eps2;
return eu1;

}
V3d Eu2( Real u1, Real u2 )
{

V3d eu2 = E( u1, u2 + Eps ) − E( u1, u2 − Eps ) ;
eu2 ∗= Eps2;
return eu2;

}



Section 5.3. Open Geometry and Differential Geometry 433

In our case the director surface is a hyperbolic paraboloid ∆. The lines of K meet
∆ orthogonally (i.e., K is the normal congruence of ∆). Of course, the actual
implementation of ∆ is trivial. The SurfPoint(. . . ) function just calls A( u, v ).
For the implementation of the focal surfaces we use two auxiliary functions. The
first simply computes the determinant of three vectors of dimension three:

Listing from "line congruence.cpp":

Real Determinant( V3d v1, V3d v2, V3d v3 )
{

return v1.x ∗ v2.y ∗ v3.z + v1.y ∗ v2.z ∗ v3.x +
v1.z ∗ v2.x ∗ v3.y − v1.z ∗ v2.y ∗ v3.x −
v2.z ∗ v3.y ∗ v1.x − v3.z ∗ v1.y ∗ v2.x;

}

The second sets the parameter values of the focal points on the congruence line
x(u, v). For that purpose we have to solve a quadratic equation. The return value
gives the number of real solutions.

Listing from "line congruence.cpp":

int SetParamValues( const Real u, const Real v, Real &w1, Real &w2 )
{

const Real a = Determinant( Eu1( u, v ), Eu2( u, v ), E( u, v ) ) ;
const Real b = Determinant( Eu1( u, v ), Eu2( u, v ), E( u, v ) )

+ Determinant( Au1( u, v ), Eu2( u, v ), E( u, v ) ) ;
const Real c = Determinant( Au1( u, v ), Au2( u, v ), E( u, v ) ) ;
return QuadrEquation( a, b, c, w1, w2, 1e−8 ) ;

}

The actual implementation of the two focal surfaces reads as follows:

Listing from "line congruence.cpp":

class FocalSurface: public ParamSurface
{
public:

void Def( Color c, int m, int n, Real u1, Real u2,
Real v1, Real v2, Boolean FirstSolution )

{
first solution = FirstSolution;
ParamSurface: :Def( c, m, n, u1, u2, v1, v2 ) ;

}
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virtual P3d SurfacePoint( Real u, Real v )
{

Real w1 = 0, w2 = 0;
if ( SetParamValues( u, v, w1, w2 ) )
{

if ( first solution )
return A( u, v ) + w1 ∗ E( u, v ) ;

else
return A( u, v ) + w2 ∗ E( u, v ) ;

}
else

return Origin;
}

private:
Boolean first solution;

};
FocalSurface FocSurf1, FocSurf2;

Note the additional private member variable first solution of type Boolean. It
decides which solution to the quadratic equation is used to determine the focal
point on x(u, v). It allows us to implement both focal surfaces F1 and F2 in a
unified way.

Additionally, we display the midsurface M of the congruence. Its points are
the midpoints of the focal points on the congruence lines. Therefore, it can be
implemented as follows:

Listing from "line congruence.cpp":

virtual P3d SurfacePoint( Real u, Real v )
{

return 0.5 ∗ ( FocSurf1.SurfacePoint( u, v ) +
FocSurf2.SurfacePoint( u, v ) ) ;

}

In Init( ) we define the four surfaces; in Draw( ) we shade them. Additionally,
we draw a couple of congruence lines in order to get the POV-Ray rendering
displayed in Figure 5.14.
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Listing from "line congruence.cpp":

const int m = 6, n = 6;
const Real u1 = DirSurf.u1, u2 = DirSurf.u2;
const Real v1 = DirSurf.v1, v2 = DirSurf.v2;
const Real du = ( u2 − u1 ) / ( m − 1.0 ) ;
const Real dv = ( v2 − v1 ) / ( n − 1.0 ) ;
Real u, v;
int i, j;
P3d D, F1, F2;
for ( i = 0, u = DirSurf.u1; i < m; i++, u += du )
for ( j = 0, v = DirSurf.v1; j < n; j++, v += dv )
{

D = DirSurf.SurfacePoint( u, v ) ;
F1 = FocSurf1.SurfacePoint( u, v ) ;
F2 = FocSurf2.SurfacePoint( u, v ) ;
StraightLine3d( Black, D, F1, THIN ) ;
StraightLine3d( Black, D, F2, THIN ) ;
D.Mark( DarkBlue, 0.1 ) ;
F1.Mark( DarkRed, 0.1 ) ;
F2.Mark( DarkRed, 0.1 ) ;

}

♦
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FIGURE 5.14. Director surface, focal surfaces, and midsurface of a line congruence.



6

Compendium of Version 2.0

In the following, we give a comprehensive listing of many of Open Geometry’s
classes. Originally, we intended to list all of them, but this turned out to be
impossible because of their sheer number. Many classes have been written for
rather special internal tasks in Open Geometry and are of little interest to
the reader. So we picked out those classes that we believe to be most useful. We
display them together with their relevant operators and methods.

If the code is not self-explanatory, we give a short description. Frequently, we
provide a picture and/or few lines of sample code that show how to use the class.
If the information contained in this chapter is not enough for you, you can find
the corresponding headers in Open Geometry’s "H/"-directory. For each class
the corresponding header file is indicated.

Note that the listings of this chapter are not exact copies of the source code.
Occasionally, we dropped a line, rearranged the methods, or inserted additional
line-breaks or comments. We did this for the sake of simplified reading and not
to obscure things. You are still free to read the original and unabridged source
code in the files of the "H/"-directory.

6.1 Useful 2D Classes and Their Methods
class Arc2d; → declaration in "arc2d.h"

Arc2d describes a segment of a 2D circle. It is a successor of Sector2d
and has only one additional method:
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void Draw( ThinOrThick style ) ;
//This method calls the drawing method of Sector2d
// without the option of drawing the line segments that
// connect the arc center with start and end points, respectively.

class Arrow2d; → declaration in "arrows2d.h"

Arrow2d is a new Open Geometry class for displaying different types
of arrows in two dimensions. It is defined via start and end points.
Additionally, the user can specify its dimensions and choose between
single- and double- pointed arrows (compare the sample code below and
Figure 6.1). The class is derived from ComplexPoly2d and inherits all
drawing and shading methods. Consider also the class BentArrow2d.

Definition:

void Def( Color col,
Boolean left right arrow = false,
const P2d &first point = P2d( −1, 0 ),
const P2d &second point = P2d( 0, 0 ),
Real width = 0.2,
Real relative arrow length = 0.3,
Real arrow slope = 0.4 ) ;

Frequently used methods and operators:

void operator = ( const Arrow2d &other ) ;

Instead of using the class Arrow2d, the user may as well use the function
DrawArrow2d(. . . ) (compare Figure 6.1). Its header can be found in
"arrow2d.h" as well:

void DrawArrow2d( Color col,
const P2d &P, const P2d &Q,
Real arrow size = −1,
Real arrow slope = 0.2,
FilledOrNot fill = EMPTY,
ThinOrThick style = THIN,
Boolean two arrows = false,
int type = 1,
ComplexPoly2d ∗cp = NULL,
Real width = 0.5 ) ;



Section 6.1. Useful 2D Classes and Their Methods 439

Sample code for better understanding :

Arrow2d Arr1, Arr2, Arr3;
Arr1.Def( Black, true ) ;
Arr1.Scale( 6, 8 ) ;
Arr1.Rotate( Origin2d, 45 ) ;
Arr1.Translate( V2d( 0, 2 ) ) ;
P2d p( 3, 2 ), q( 8, 2 ) ;
Arr2.Def( Blue, false, p, q, 0.25, 0.5, 0.3 ) ;
Arr3 = Arr2;
Arr3.Rotate( Origin2d, −20 ) ;
DrawArrow2d( Black, P2d( −2, 2 ), P2d( −5, 5 ) ) ;
Arr1.Shade( ) ;
Arr1.Outline( Black, MEDIUM ) ;
Arr2.Shade( ) ;
Arr3.Outline( Red, THIN ) ;

FIGURE 6.1. Different arrows in 2D.

class BentArrow2d; → declaration in "arrows2d.h"

Class for displaying curved arrows. As with Arrow2d, the user can
choose between double- and single-pointed arrows and can specify the
arrow dimension. The class is derived from ComplexPoly2d and inherits
all drawing and shading methods. Compare also Figure 6.1.

Definition:

void Def( Color col,
Boolean left right arrow,
const P2d &P, const P2d &Q,
Real radius, // signed
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Real width = 0.5,
Real relative arrow length = 0.3,
Real arrow slope = 0.25 ) ;

Frequently used methods and operators:

void operator = ( const BentArrow2d &other ) ;

Sample code for better understanding :

BentArrow2d BArr;
P2d P( 4, −2), Q = P;
Q.Rotate( Origin2d, 60 ) ;
BArr.Def( Magenta, true, P, Q, P.Length( ) ) ;
BArr.Rotate( Origin2d, 90 ) ;
BArr.Outline( Black, MEDIUM ) ;
BArr.Shade( ) ;

class BezierCurve2d; → declaration in "bezier.h"

Describes an integral Bézier curve in 2D by its control polygon. The
curve points are computed by means of DeCasteljau’s algorithm.
We provide methods for manipulating the curve (changing of control
points, degree elevation, splitting). The base class is ParamCurve2d.
Some methods are overwritten. For further information, please consult
Section 2.6. Have a look at page 126 in Chapter 2 for more detailed
information.

Constructors:

BezierCurve2d( ) { B = C = NULL; }
// B and C are dynamically allocated arrays of control points.
// C is needed for DeCasteljau’s algorithm.

Definition:

void Def( Color c, int total size,
int size of control poly, P2d Control [ ] ) ;

void Def( Color c, int total size,
int size of control poly, Coord2dArray Control ) ;

// total size is the number of curve points that will
// be computed, while size of control poly is the number
// of control points to be used.

Frequently used methods and operators:

virtual P2d CurvePoint( Real u ) ;
// Calculate curve point by means of the DeCasteljau algorithm.

virtual StrL2d Tangent( Real u )/∗ const = 0 ∗/;
void DrawControlPolygon( Color col, ThinOrThick thickness ) ;
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void MarkControlPoints( Color col, Real rad1, Real rad0 ) ;
void SetControlPoint( int i, P2d P ) ;

// Redefine control point with index i
P2d GetControlPoint( int i ) { return B [i]; };

// Return control point with index i
int GetPNum( ) { return PNum; }

// PNum is the number of control points
void ElevateDegree( int i ) ; // Elevate the degree by i.
void ReversePolygon( void ) ;

// Reverse the order of the control points
// (useful after having split the curve)

void Split( Real u, Boolean second half ) ;
// Split the Bézier curve at the parameter value u. Depending
// on the value of second half, the new curve is identical to the
// part of the old curve that corresponds to the parameter interval
// [0, u] or [u, 1].

Sample code for better understanding :

BezierCurve2d BezierCurve;
Coord2dArray BasePoints = { {−10, −7}, {−8, 4},

{5, 7}, {10, −7} };
BezierCurve.Def( Black, 200, 4, BasePoints ) ;
BezierCurve.ElevateDegree( 2 ) ;
BezierCurve.Split( 0.5 ) ;
BezierCurve.Draw( VERY THICK ) ;
BezierCurve.DrawControlPolygon( Blue, THICK ) ;
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 ) ;

class Circ2d; → declaration in "circ2d.h"

Derived from O2d, this class describes a circle in 2D. Many new methods
have been added in Open Geometry 2.0. The circle is approximated
by a regular polygon. The number of vertices depends on the circle ra-
dius. Sometimes it is advisable to use an instance of the class RegPoly2d
with a sufficiently high number of vertices instead of a circle (e.g., when
you want to shade the object).

Constructors:

Circ2d( ) // Default constructor.
Circ2d( Color f, const P2d &Mid, Real r,

FilledOrNot filled = EMPTY ) // Classic definition.
Circ2d( Color f, const P2d &A, const P2d &B, const P2d &C,

FilledOrNot filled = EMPTY ) // Definition by three points.
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Definition:

void Def( Color f, const P2d &M, Real r,
FilledOrNot filled = EMPTY ) // Center plus radius.

void Def( Color f, Real xm, Real ym, Real r,
FilledOrNot filled = EMPTY ) ; // Center coordinates plus radius.

void Def( Color f, const P2d &A, const P2d &B, const P2d &C,
FilledOrNot filled = EMPTY ) ; // Three points.

Additional methods :

P2d Mid( ) const // Return the center.
P2d GetCenter( ) const // Return the center.
Real GetRadius( ) const // Return the radius.

StrL2d GetTangent( const P2d &T ) const;
// Return the polar of T with respect to the circle
// and give a warning if T does not lie on the circle.

StrL2d GetNormal( const P2d &P ) const;
// Return the circle normal through P.

V2d GetTangentVector( const P2d &T ) const;
// Return the normalized direction of the polar of T with respect
// to the circle and give a warning if T does not lie on the circle.

V2d GetNormalVector( const P2d &P ) const;
// Return the normalized vector in direction of

−→
MP, where M is

// the circle center

// Methods to intersect circle with the straight line g. The number of
// real intersection points is either stored in n or returned. The real
// intersection points are stored in S1 and S2.
void SectionWithStraightLine( const StrL2d &g, P23d &S1,

P23d &S2, int &n ) const;
int SectionWithStraightLine( const StrL2d &g, P23d &S1,

P23d &S2 ) const;
// Intersection of two circles. Arguments have meaning as in
// preceding method.
int SectionWithCircle( const Circ2d &k, P23d &S1,

P23d &S2 ) const;

void InvertPoint( P2d &P ) const; // Invert point at circle.
P2d GetPole( const StrL2d &Polar ) const; // Return pole.
StrL2d GetPolar( const P2d &Pole ) const; // Return polar.

// Unique drawing method.
void Draw( ThinOrThick thick = THIN ) const;
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Sample code for better understanding :

Circ2d circle;
circle.Def( Black, P2d( −5, 2 ), 5 ) ;
StrL2d s( P2d( −3, 0 ), V2d( 0.5, 2 ) ) ;
P2d S1, S2;
circle.SectionWithStraightLine( s, S1, S2 ) ;
StrL2d tangent1, tangent2;
tangent1 = circle.GetTangent( S1 ) ;
tangent2 = circle.GetTangent( S2 ) ;
P2d Pole = tangent1 ∗ tangent2;
StrL2d polar = circle.GetPolar( Pole ) ;
if ( !( polar == s ) )

ShowString( "Something is wrong!" ) ;
circle.Draw( THICK ) ;
StraightLine2d( Red, S1, S2, MEDIUM ) ;
StraightLine2d( Black, Pole, S1, MEDIUM ) ;
StraightLine2d( Black, Pole, S2, MEDIUM ) ;
S1.Mark( Black, 0.2, 0.1 ) ;
S2.Mark( Black, 0.2, 0.1 ) ;
Pole.Mark( Red, 0.2, 0.1 ) ;

class ClassCurve2d; → declaration in "lines2d.h"

Describes a plane curve via its tangents rather than via its points.
In order to use this class you have to implement the virtual member
function CurvePoint(. . . ) (similar to the class ParamCurve2d).

Member functions:

virtual StrL2d Tangent( Real u ) = 0;
virtual P2d CurvePoint( Real u ) ;
virtual V2d TangentVector( Real u ) ;

class ComplexL3d; → declaration in "lines3d.h"

Describes a 3D line that, in contrast to L3d, may consist of different
branches. The intersection of two surfaces or polyhedra will, e.g., be
stored as ComplexL3d object. Base class.

Constructors:

ComplexL3d( )// Default constructor.

Definition:

void Def( Color f, int number of branches, int size [ ] ) ;
// number of branches curves (objects of type L3d) of size[ i ]
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// points each.

Operators and methods:

L3d & operator [ ] ( int i ) const. // Return the ith curve.
friend O3d & operator ∗ ( ComplexL3d &w, Plane &e ) ;

// Intersect complex line with plane.

void Draw( Color f, ThinOrThick thick,
Real offset = STD OFFSET ) ;

// Standard drawing routine.
void MarkPoints( Color f, Real r1, Real r2 ) ;

// Mark all points with two small circles of radii r1 and r2.

int PointNum( ) ; // Return the number of points.
void AssignColor( Color f ) ;

// Some geometric transformations.
void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &v ) ;
void Scale( Real kx, Real ky, Real kz ) ;
void Rotate( const StrL3d &a, Real w ) ;
void Copy( ComplexL3d &result ) ;

// Intersection methods.
void SectionWith( ComplexL3d &w, O3d &S ) ;
void SectionWithPlane( Plane &e, O3d &S ) ;

class ComplexPoly2d; → declaration in "complex poly.h"

Closed, non convex polygon with holes (loops) in 2-space. Derived from
Poly2d.

Constructors:

ComplexPoly2d( ) ; // Default constructor.

Definition:

void Def( Color f, int NLoops, Poly2d ∗loop, int oriented = 0 ) ;
// NLoops is the number of loops; loop is an array of polygons,
// i.e., a pointer to the first polygon.

void Def( const ComplexPoly2d &cp ) ; // Copy complex polygon cp.

Additional methods :

void Translate( const V2d &t ) ;
void Rotate( const P2d &center, Real angle in deg ) ;
void Scale( Real kx, Real ky = DUMMY ) ;

void Fill( ) ;
void Shade( ) ; // Does not work in case of intersecting loops!
void Outline( Color col, ThinOrThick style ) ; // Draw the outline.
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FIGURE 6.2. A complex line as intersection curve of two parameterized surfaces.
It was calculated by means of the SectionWithSurface(. . . ) method of ParamSurface.
The algorithm works even if the intersection curve consists of several branches (right).
All branches are objects of type L3d.

Sample code for better understanding :

// The complex polygon will consist of four loops (polygons).
const int nLoops = 4;
Poly2d p [nLoops];
int n = 40;
p [ 0].Def( Gray, n, FILLED ) ;
Real delta = 2 ∗ PI / n, fi = 0;
for ( int i = 1; i <= n; i++, fi += delta )

p [ 0] [i]( 2.5 ∗ cos( fi ) −2.5, 3 ∗ sin( fi ) ) ;
p [ 1] = p [ 0]; p [ 1].Scale( 0.9, 0.6 ) ; p [ 1].Translate( −0.2, 0 ) ;
p [ 2] = p [ 0]; p [ 2].Reflect( Yaxis2d ) ; p [ 2].Scale( 1.2 ) ;
p [ 3] = p [ 1]; p [ 3].Reflect( Yaxis2d ) ; p [ 3].Scale( 1.2 ) ;

// Now combine the four loops to one complex polygon.
ComplexPoly2d complex poly;
complex poly.Def( Gray, nLoops, p ) ;
complex poly.Shade( ) ;
complex poly.Outline( Black, MEDIUM ) ;
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class Conic; → declaration in "conic.h"

Describes a conic in 2-space or in 3-space in the [ x, y ]-plane. Base class.

Constructors:

Conic( ) ; // Default constructor.

Constructors:

Conic & operator = ( Conic &other ) ;

Definition:

Conic & operator = ( Conic &other ) ;
void Def( Color col, int numPoints, const P2d P [ 5] ) ;
// numPoints is the number of points on the approximating
// polygon. Calculations with the conic are not done with these
// approximations but with the exact mathematical equation!
// The conic is defined by five points.
void Def( Color col, int numPoints, const P2d &P,

const P2d &F1, const P2d &F2, TypeOfConic type ) ;
// Point plus two focal points and type of conic;
// type can be either ELLIPSE or HYPERBOLA.
void Def( Color col, int numPoints, const P2d &P,

const P2d &Q, const P2d &R, const P2d &F ) ;
// Definition through three points plus focal point.
void Def( Color col, int numPoints, const StrL2d t [ 5] ) ;
// Definition through five tangents.
void Def( Color col, int numPoints, const P2d P [ 3],

const P2d &T, const StrL2d &t ) ;
// Definition through three points and point plus tangent.
void Def( Color col, int numPoints, const P2d &M,

const P2d &A, const P2d &B ) ;
// Definition through pair of conjugate diameters; possibly
// points of the axes.
void Def( Color col, int numPoints, Real d [ 6] ) ;
// Definition through coefficients of implicit equation.

Frequently used methods and operators:

void Draw( ThinOrThick thick, Real max radius = DUMMY ) ;
TypeOfConic type( ) const;

// Return the type: ELLIPSE, HYPERBOLA,
// PARABOLA, IRREGULAR.

P2d GetCenter( ) { return M; } // Return the center.
P2d GetA( ) const { return A; }
P2d GetB( ) const { return B; }

// A and B are points on the major axis.
P2d GetC( ) const { return C; }
P2d GetD( ) const { return D; }

// C and D are points on the minor axis.
P2d GetM( ) const { return M; } // Returns the center.
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Real DistMA( ) const { return MA; }
Real DistMC( ) const { return MC; }
StrL2d MajorAxis( ) const { return Axis1; }
StrL2d MinorAxis( ) const { return Axis2; }
StrL2d Asymptote1( ) const { return As1; }
StrL2d Asymptote2( ) const { return As2; }
void GetCoefficients( Real c [ 6] ) const;

// The equation of the conic is then
// c[0]x2 + c[1]xy + c[2]y2 + c[3]x + c[4]y + c[5] = 0.

int SectionWithStraightLine( const StrL2d s, P2d &S1, P2d &S2 ) ;
// Return the number of intersection points (≤ 2)
// and calculates the corresponding points S1 and S2.

void ChangeColor( Color c ) ;
Color GetColor( ) { return col; }
int Size( ) { return size; }
int SectionWithConic( const Conic &c, P2d S [ 4] ) const;

// Return the number of intersection points (≤ 4)
// and calculates the corresponding points.

void WriteImplicitEquation( ) const;
// Display the implicit equation
// in a window on the screen.

StrL2d GetPolar( const P2d &Pole ) const;
// Return polar of point.

P2d GetPole( const StrL2d &polar ) const;
// Return pole of straight line.

Real EvaluateImplicitEquation( const P23d &P ) const;
Boolean IsOnConic( const P23d &P, Real tolerance ) const;
Boolean IsTangent( const StrL2d &s ) const;
P2d OscCenter( const P2d &P ) const;

// Return center of osculations in conic point.

Sample code for better understanding :

#include "opengeom.h"
#include "defaults2d.h"

Conic Circ, Hyp;

void Scene: :Init( )
{

Real d [ 6]; // coefficients of implicit equation
d [ 0] = 1, d [ 1] = 0, d [ 2] = 1,
d [ 3] = 0, d [ 4] = 0, d [ 5] = −25;
Circ.Def( Black, 101, d ) ; // circle of radius 5

StrL2d t [ 6]; // six conic tangents
t [ 0].Def( P2d( −1, −1 ), V2d( 0, 1 ) ) ;
t [ 1].Def( P2d( −1, 2 ), V2d( −0.5, 1 ) ) ;
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t [ 2].Def( P2d( −3, −3 ), V2d( 0.5, 1 ) ) ;
t [ 3].Def( P2d( 3, −1 ), V2d( 0, 1 ) ) ;
t [ 4].Def( P2d( 5, 3 ), V2d( 1, 1 ) ) ;
Hyp.Def( Black, 101, t ) ;

}
void Scene: :Draw( )
{

ShowAxes2d( Black, −10, 10, −8, 8 ) ;
Circ.Draw( THICK ) ;
Hyp.Draw( THICK ) ;

P2d S [ 4];
int i, n;
n = Circ.SectionWithConic( Hyp, S ) ;
for ( i = 0; i < n; i++ )

S [i].Mark( Black, 0.2, 0.1 ) ;
}

FIGURE 6.3. Two conics and their points of intersection (compare the above sample
code).

class DiffEquation; → declaration in "diff equation.h"

Describes a differential equation (2D vector field) and provides a solv-
ing method (Runge–Kutta). Abstract class due to the purely virtual
member function TangentVector(. . . ). In order to use it, you must derive
a class of your own from DiffEquation. It is derived from L2d. Thus,
you can immediately plot the solution curve. Requires the inclusion of
"diff equation.h" at the beginning of your file.

Constructor :

DiffEquation( ) ; // Default constructor.

Additional methods :

virtual void Solve( Real t1, Real t2, Real h, const P2d &StartPoint ) ;
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// Solves differential equation by means of RUNGE−KUTTA.
//

virtual V2d TangentVector( Real t, const P2d &P) = 0;
// Virtual function to describe the corresponding 2D vector field.
// Has to be implemented by the user!

Sample code for better understanding :

#include "opengeom.h"
#include "defaults2d.h"
#include "diff equation.h"

class MyDiffEquation: public DiffEquation
{

virtual V2d TangentVector( Real t, const P2d &P )
{

V2d v;
v.Def( 0 ∗ P.x + sin( 0.5 ∗ t ), 3 ∗ cos( 1.5 ∗ t ) ) ;
v ∗= 3.5;
return v;

}
};
MyDiffEquation Curve;

void Scene: :Init( )
{

Curve.Solve( −6.3, 6.3, 0.03, P2d( −1, 1 ) ) ;
Curve.ChangeColor( Blue ) ;

}
void Scene: :Draw( )
{

Curve.Draw( MEDIUM ) ;
}
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FIGURE 6.4. Integral curve of the differential equation from the above sample code.

class FourBarLinkage; → declaration in "kinemat.h"

Class to describe a four-bar linkage. It is equipped with methods for
computing and displaying special positions (compare Figure 6.5 and
[14], Chapter 9). Requires the inclusion of "kinemat.h" at the begin-
ning of the program.

Constructors:

FourBarLinkage( ) // Default constructor.

Definition:

void Def( Real LA, Real AB, Real MB, Real LM,
Real start alpha in deg, Real delta alpha ) ;

// Define mechanims by length of the four bars and starting angle
// (compare Figure 6.5). delta alpha is the angle increment for the
// animation.

void Def( const P2d &L, const P2d &A, const P2d &B,
const P2d &M, Real delta alpha = 1 ) ;

// Define mechanims by position of joints (Figure 6.5).
// delta alpha is the angle increment for the animation.

Methods:

void Draw( Color c, ThinOrThick thick,
Real r1, Real r2, Boolean with names,
Boolean show circles ) ;

// Draw mechanism and marks relevant points with radii r1 and r2.
// If show circles is true, the path circles of A and B will be
// displayed.

P2d CalcPoint( Real AC, Real BC, int side = 1,
Boolean calc N = false ) ;

// Compute the position of a point C that is attached to the
// mechanism (compare Figure 6.5). C will be stored
// as protected member variable of the class.

void DrawTriangle( Color c, Real r1, Real r2 ) ;
// Draw the triangle that connects C with the mechanism
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// and marks its vertices (compare CalcPoint).
void Move( ) ; // Animate the mechanism.
void PutAtPosition( Real x, Real y, Real rot angle in deg ) ;

// Translate mechanism by (x, y) and rotate it about
// the new position of L.

void CalcAlternateMechanisms( FourBarLinkage &Alt1,
FourBarLinkage &Alt2 ) ;

// Compute the two alternate mechanisms according to Roberts.

// Methods to return important points and lengths (Figure 6.5) :
P2d GetL( ) ;
P2d GetM( ) ;
P2d GetA( ) ;
P2d GetB( ) ;
Real GetLM( ) ;
Real GetAB( ) ;
Real GetLA( ) ;
Real GetLB( ) ;
Real Get alpha in deg( ) ; // Return current angle.
Real GetDeltaAlpha( ) ; // Return current angle increment.
void ChangeDeltaAlpha( Real k ) ; // Change current angle.

P2d GetPole( ) ; // Get instantanious pole of the motion.
StrL2d GetPolodeTangent( ) ; // Polode tangent in instantaneous pole.
P2d CenterOfOsculatingCircle( const P2d &C ) ;

// Center of osculation for arbitrary
// point connected with mechanism.

Boolean PathClosed( ) ; // Check whether path is already closed.

Sample code for better understanding :

#include "opengeom.h"
#include "kinemat.h"

FourBarLinkage Mechanism;
PathCurve2d PathC( PureRed ) ;

void Scene: :Init( )
{

Mechanism.Def( 7, 11, 12, 15.7, 0, −1 ) ;
Real rot angle = 90;
V2d trans vector( 0, 0 ) ;
Mechanism.PutAtPosition( trans vector.x, trans vector.y, rot angle ) ;
ScaleLetters( 2 ) ;

}
void Scene: :Draw( )
{

const Real r1 = 0.2, r2 = r1 / 2;
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P2d C = Mechanism.CalcPoint( 8, 9 ) ;
if ( !Mechanism.PathClosed( ) )

PathC.AddPoint( C ) ;
Mechanism.DrawTriangle( Green, 2 ∗ r1, r1 ) ;
Mechanism.Draw( Black, VERY THICK, r1, r2, true, true ) ;
PathC.Draw( THIN ) ;
PathC.MarkPoints( Pink, 0.2, 0, 10 ) ;
C.AttachString( Black, −3 ∗ r1, − 5 ∗r1, "C" ) ;

}
void Scene: :Animate( )
{

Mechanism.Move( ) ;
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

xyCoordinates( −12.0, 12.0, −10.0, 10.0 ) ;
}

}

FIGURE 6.5. A four-bar linkage.

class Function; → declaration in "function2d.h"

Describes a 2D function graph and provides methods for drawing, find-
ing zeros and extremal values, numerical computation of first and sec-
ond derivatives, numerical integration, etc. Requires the inclusion of
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"function2d.h" at the top of the file. Base class. In Section 7.4 you
can see how to add a new method GetMinMax(. . . ) to this class.

Constructors:

Function( void ) ; // Default constructor.
Function( Real (∗function) ( Real ) )

// Needs pointer to a function as argument.

Definition:

void Def( Real (∗function) ( Real ) ) ; // See constructor.

Methods:

void Draw( Color col, Real x1, Real x2, int n,
ThinOrThick style, Real max dist = −1 ) ;

// Draw the function graph between x1 and x2. n is the number
// of points on the approximating polygon; style determines the
// line style to be used. Two points will be connected only if their
// distance is less than max dist.

// Methods for computing the zeros:
int CalcZeros( Real xmin, Real xmax, int n = 100,

Real tolerance = 1e−8 ) ;
// Efficient method to compute a maximum of n zeros in
// [xmin, xmax] with the help of binary search. The return value
// is the number of zeros. They are accessible via Solution[i].

Real ZeroWithNewton( Real x, Real tolerance ) ;
// Compute one zero with Newton iteration.

Real ZeroWithBinarySearch( Real x1, Real x2, Real tolerance ) ;
// Compute one zero with binary search.

Real Solution( int i ) ; // Access the zeros found with CalcZeros(. . . ).
void MarkZeros( Color col, Real r1, Real r2 ) ;

// Mark the zeros found with CalcZeros(. . . ).

Real operator ( ) ( Real x ) ; // Get return value of x.
P2d operator [ ] ( Real x ) ; // Get point (x, y) on function graph.
Real FirstDerivative( Real x ) ; // Return first derivate at x.
Real SecondDerivative( Real x ) ; // Return second derivate at x.
V2d VelocityVector( Real x ) ; // Return vector (1, ḟ(x)).
V2d AccelerationVector( Real x ) ; // Return vector (1, f̈(x)).
void TransformIntoL2d( Color col, Real x1, Real x2, int n, L2d &line ) ;

// Transform function graph between
// x1 and x2 into an object of type L2d.

// Methods for painting and calculating the area
// between function graph and x-axis.
void PaintAreaUnderGraph( Color col, Real x1, Real x2, int n,

Boolean check zeros = false ) ;
Real CalcAreaUnderGraph( Real x1, Real x2, int n ) ;
StrL2d Tangent( Real x ) ; // Return tangent to function graph.
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Sample code for better understanding :

// Compare file "function2d.cpp"!

#include "opengeom.h"
#include "defaults2d.h"
#include "function2d.h"

Real Y( Real x )
{

return sin ( x − PI / 4 ) + cos ( 2 ∗ x ) + 0.1 ∗ x;
}
Function F;

void Scene: :Init( )
{

F.Def( Y ) ;
}
void Scene: :Draw( )
{

const Real xmin = −8, xmax = 8;
F.CalcZeros( xmin, xmax, 100 ) ;

P2d P( F.Solution( 1 ), 0 ) ;
P2d Q = P + 2.5 ∗ F.VelocityVector( P.x ) ;
DrawArrow2d( Blue, P, Q ) ;
Q = P + 2.5 ∗ F.AccelerationVector( P.x ) ;
DrawArrow2d( Green, P, Q ) ;

Real x1 = F.Solution( 5 ), x2 = F.Solution( 6 ) ;
Real area = F.CalcAreaUnderGraph( x1, x2, 100 ) ;
PrintString( Black, 2, −2.3, "shaded area...%2.6f", area ) ;
F.PaintAreaUnderGraph( Gray, x1, x2, 100 ) ;

ShowAxes2d( Black, −9, 10, −3, 5 ) ;
F.Draw( Black, xmin, xmax, 100, MEDIUM ) ;
F.MarkZeros( Red, 0.1, 0.05 ) ;

}
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FIGURE 6.6. A 2D function graph.

class KochFractal; → declaration in "fractal.h"

An abstract class for the generation of fractals of Koch type. The user
has to derive his own class from this class and must implement the
virtual function Generator( ). Each call to Generator( ) will develop the
fractal by one step. Base class.

Constructors:

KochFractal( ) { } // The only default constructor.

Definition:

void Def( int initial size, P2d Q [ ] ) ;
// initial size is the size of the starting teragon Q[ ].

Frequently used methods and operators:

void SetOrder( int order ) ;
// Redefine everything.

P2d GetPoint( int i ) ;
// Return point of current teragon.

void SetPoint( int i, P2d Q ) ;
// Redefine point of teragon.

void Draw( Color color, ThinOrThick thickness ) ;
void MarkPoints( Color color, Real radius1, Real radius0 ) ;

// Mark points of teragon.
int GetStep( void ) ;

// Return current step of development.
void IncreaseStep( void ) ;
virtual void Generator( void ) = NULL;

// Virtual function that is iterated in order to develop
// the fractal. It is applied to one side of the teragon
// and inserts a couple of new teragon points. Must be
// implemented by the user!
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Sample code for better understanding :

class MyFractal: public KochFractal
{
public:

virtual void Generator( void )
{

int n = 3; // Number of new points to each segment.

// Do not change the following!
int n1 = n + 1;
int size1 = Size( ) − 1;
int new size = size1 ∗ n + Size( ) ;
int i, j;

P2d ∗Q = new P2d [Size( ) ];
for ( i = 0; i < Size( ) ; i++ )

Q [i] = GetPoint( i ) ;
O2d: :Def( NoColor, new size ) ;

for ( i = 0, j = 0; i < size1; i++, j += n1 )
{

pPoints [j] = Q [i];
// Here you can write your own function assigning
// n points pPoints[j+1]. . . pPoints[j+n] to the
// segement Q[i]Q[i+1].
V2d v( Q [i], Q [i+1] ) ;
v /= 3;
pPoints [j+1] = pPoints [j] + v;
pPoints [j+3] = pPoints [j+1] + v;
v.Rotate( 60 ) ;
pPoints [j+2] = pPoints [j+1] + v;

}

pPoints [new size−1] = Q [size1];
IncreaseStep( ) ;
delete [ ] Q;

}
};
MyFractal KochCurve;

P2d P [ 2];
P [ 0]( −10, −3 ) ;
P [ 1]( 10, −3 ) ;
KochCurve.Def( 2, P ) ;

Silent( ) ; // To avoid the message
// "warning: more than 30000 points"
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// Develop fractal (five steps) :
int i;
for ( i = 0; i < 5; i++ )

KochCurve.Generator( ) ;
KochCurve.Draw( Red, THIN ) ;

class L2d; → declaration in "lines2d.h"

Describes a line (arbitrary polygon) in 2D. Derived from O2d. Base
class for other frequently used classes (ParamCurve2d, ClassCurve2d,
PathCurve2d).

Constructors:

L2d( ) // Default constructor.
L2d( Color col, int n ) // Specify color and number of points.

Methods::

void Draw( ThinOrThick thick, Real max dist = −1 ) ;
// For max dist > 0 a line segment is drawn only,
// when the two adjacent points have a smaller distance.
// This is useful for the drawing of curves with points at
// infinity (like hyperbolas).

void DrawPartInsideCircle( const P2d &M, Real rad,
ThinOrThick style ) ;

// Draws only part inside circle with center M and radius rad.
V2d Tangent( int i ) ; // Approximates the tangent in the i-th point.
void Close( ) // The curve will be drawn closed.

class NUBS2d; → declaration in "nurbs.h"

Describes an integral B-spline curve in 2D by a control polygon and
a knot vector. The curve points are computed by means of the Cox–
De Boor algorithm. We provide methods for defining and displaying
the curve. Dynamic memory allocation is handled internally. The base
class is ParamCurve2d. Have a look at page 150 in Chapter 2 for more
detailed information.

Constructors:

NUBS2d( ) { T = A = NULL; D = E = NULL; }
// Set all pointers to NULL. T is the knot vector, D the control
// polygon. A and E are used for internal computations.

Definition:

void Def( Color c, int size, int knum, Real K [ ], int pnum, P2d P [ ]) ;
void Def( Color c, int size, int pnum, P2d P [ ], int continuity,

Boolean closed = false ) ;
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The first defining method allows the user to set the knot vector as well
as the control points according to her/his wishes. The second method
set the knot vectors automatically in order to ensure Ck-continuity
(k = continuity). Furthermore, the user can choose between open and
closed B-splines.

Frequently used methods and operators:

virtual P2d CurvePoint( Real u ) { return DeBoor( u ) ; }
// Overwrite the CurvePoint(. . . ) function of ParamCurve2d.
void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot( int i ) {return T [i]; };
P2d GetControlPoint( int i ) { return D [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }

Sample code for better understanding :

NUBS2d Spline;
const int number of control points = 5;

P2d Point [number of control points];
Point [ 0].Def( −10, 0 ) ;
Point [ 1].Def( −6, 6 ) ;
Point [ 2].Def( −2, 0 ) ;
Point [ 3].Def( −2, −6 ) ;
Point [ 4].Def( −5, −6 ) ;

const int total size = 49;
const int continuity class = 2;

Spline.Def( Black, total size, number of control points,
Point, continuity class ) ;

Spline1.Draw( THICK ) ;
Spline1.DrawControlPolygon( Blue, THIN ) ;
Spline1.MarkControlPoints( Blue, 0.2, 0.1 )
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class NURBS2d; → declaration in "nurbs.h"

Describes a rational B-spline curve in 2D by a control polygon, an
array of weights, and a knot vector. The curve points are computed
by applying the Cox–De Boor algorithm in 3D and projecting the
result into a plane. We provide methods for defining and displaying
the curve. Dynamic memory allocation is handled internally. The base
class is ParamCurve2d. Have a look at page 150 in Chapter 2 for more
detailed information.

Constructors:

NURBS2d( ) { T = A = W = X = NULL; D = E = NULL; }
// Set all pointers to NULL. T is the knot vector, D the control
// polygon, W the weight vector. A, X, and E are used for internal
// computations.

Definition:

void Def( Color c, int size, int knum, Real K [ ], int pnum, P2d P [ ],
Real weight [ ] ) ;

void Def( Color c, int size, int pnum, P2d P [ ], Real weight [ ],
int continuity, Boolean closed = false ) ;

The first defining method allows the user to set the knot vector as
well as the control points and weights according to her/his wishes. The
second method sets the knot vectors automatically in order to ensure
Ck-continuity (k = continuity). Furthermore, the user can choose be-
tween open and closed B-splines.

Frequently used methods and operators:

virtual P2d CurvePoint( Real u ) { return DeBoor( u ) ; }
// Overwrite the CurvePoint(. . . ) function of ParamCurve2d.
void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot( int i ) {return T [i]; };
P2d GetControlPoint( int i ) { return D [i]; };
Real GetWeight( int i ) { return W [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }
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Sample code for better understanding :

NURBS2d Spline;
const int number of control points = 5;

P2d Point [number of control points];
Point [ 0].Def( −10, 0 ) ;
Point [ 1].Def( −6, 6 ) ;
Point [ 2].Def( −2, 0 ) ;
Point [ 3].Def( −2, −6 ) ;
Point [ 4].Def( −5, −6 ) ;

Real weight [number of control points];
int i;
for ( i = 0; i < number of control points; i++ )

weight [i] = 1;
weight [ 3] = 5;

const int total size = 49;
const int continuity class = 2;

// create a closed spline curve
Spline.Def( Black, total size, number of control points,

Point, weight, continuity class, true ) ;

Spline.Draw( THICK, 5 ) ;
Spline.DrawControlPolygon( Blue, THIN ) ;
Spline.MarkControlPoints( Blue, 0.2, 0.1 ) ;

class O2d; → declaration in "o2d.h"

Describes a conglomerate of points in 2-space (the points, however, are
stored as 3D points with z = 0). Derived from O23d.

Constructors:

O2d( ) // Default constructor,

Definition:

void Def( Color f, int n)
void Def( Color f, int n, Coord2dArray P )
void SameAs( O2d ∗obj ) ;

Geometric transformations (apply to all objects derived from O2d!):

void Translate( Real dx, Real dy ) ;
void Translate( const V2d &v ) ;
void Scale( Real kx, Real ky = 0 ) ;
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void Rotate( const P23d &center, Real w ) ;
void Rotate( ) ;

// Applies a predefined standard rotation to the object.
// Faster than computing the same rotation matrix for every
// single point (compare Example 4).

void Reflect( const StrL2d &strLine ) ;

Manipulating the element points :

void SetPoint( int i, Real x0, Real y0 ) ;
void AssignVertices( Coord2dArray koord ) ;

class P2d; → declaration in "points.h"

Describes a 2D point (x, y). Inherits the methods and operators of P23d
and thus also those of V23d, V2d and V3d.

Constructors:

// See constructors of the class V2d!

Additional operators:

inline friend P2d operator + ( const P2d &v, const V2d &w )
inline friend P2d operator − ( const P2d &v, const V2d &w )

// Allows to add or subtract vectors to a point.
inline friend P2d operator ∗ ( const Real t, const P2d &v )

// Scaling of a point. Overwrites vector scaling
inline friend V2d operator + ( const P2d &v, const P2d &w )
inline friend V2d operator − ( const P2d &v, const P2d &w )

// Add or subtract points like vectors.
P2d & operator = ( const P2d &P )
P2d & operator = ( const V2d &v )
P2d & operator = ( const P23d &v )

// Make these types compatible.

Additional methods :

void Def( Real x0, Real y0 ) ;
// Set coordinates to (x0, y0)

void Rotate( ) ;
// Apply a predefined 3D rotation in order to speed up
// the code (compare Example 4).

void Rotate( const P2d& center, Real angle in deg ) ;
// Rotate point about a center through an angle given in degrees.

void Translate( Real dx, Real dy ) ;
// Translate point by means of the vector (dx, dy).

void Translate( const V2d &v ) ;
// Translate point by means of the vector v.

void Scale( Real kx, Real ky ) ;
// Scale point in two directions (affine transformation).

void Write( Color col, Real x0, Real y0, char ∗ text, int size ) ;
// This will write the coordinates of the point in color col
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// at the position (x0, y0) in a legible manner:
// ’text(x, y)’ ( 3 digits after the comma).
// Default character size is 1 unit.

void AttachString( Color col, Real dx, Real dy, char ∗ text ) ;
// Write output in color col at the position (x + dx, y + dy).
// You can write almost everything by means of C-syntax.

P2d Center( P23d &P) ;
// Return the center (midpoint) between the
// point and the point P.

Real PolarAngleInDeg( ) const;
// See V2d.

void Reflect( const StrL2d &g ) ;
// Reflect the point at a straight line g.

void MarkPixel( Color f ) const;
// Mark the pixel at the position of the point.

Boolean Collinear( const P2d &P, const P2d &Q,
Real tol = 1e−8 ) const;
// Check whether three points are collinear.
// tol is the accuracy limit.

Real Dist( const StrL2d &s ) const;
// Return the oriented distance to the straight line s.

inline P2d Mid( const P2d P ) ;
// Inline version of Center( ) method.

class ParabolaOfNthOrder; → declaration in "parabola n.h"

For some mathematical calculations, parabolas of n-th order may be
required. It is given by the function of the graph

f(x) = anxn + an−1x
n−1 + · · · + a1x

1 + a0 =
n∑

k=0

akxk

The quadratic parabola was implemented already in version 1. The
class is derived from ParamCurve2d. Apart from the constructor and
the destructor, the class has the following methods that are of interest
for the user:

Definition:

void Def( Color c, int n points, Real umin, Real umax,
int n controls, const Coord2dArray p ) ;

void Def( Color c, int size, Real umin, Real umax,
int n controls, const P2d p [ ] ) ;

A parabola of n-th order is given by n+1 “control points” (either given
by a Coord2dArray or an array of points P2d. Such a curve is a function
graph; the leftmost point stems from the parameter umin, the rightmost
from umax. The parameter size fixes the number of desired points. Since
the class is derived from ParamCurve2d, it inherits all public methods
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of this class. Additionally, the following member functions are imple-
mented:

Frequently used methods and operators:

P2d GetP( int i ) ; // Return the i-th control point.
Real GetCoeff( int i ) ;

// Return the i-th coefficient of the equation.
void GetCoeff( int &i, Real c [ ] ) ;

// Return the i-th coefficient of the equation and the
// corresponding array of coefficients

int GetOrder( ) ; // Return the order.
void MarkGivenPoints( Color c, Real r1, Real r2 ) ;

// Mark control points.
void Delete( ) ; // Free dynamically allocated memory

// (automatically called by the destructor).

Figure 6.7 shows the difference between a cubic spline and a parabola of n-th
order (the figure was created by means of the program "parab nth order.cpp".
The code is so short that we give a listing:

Sample code for better understanding :

ParabolaOfNthOrder Par;
CubicSpline2d Spline;
ShowAxes2d( DarkGray, −3.5, 12, −4, 4 ) ;
Coord2dArray P =

{ {−3, 1}, {−1.5, 0}, {0, 1}, {2, 1}, {4, 3}, {7, −1}, {9, −1} };
Par.Def( Blue, 100, −3.3, 9.3, 7, P ) ;
Par.Draw( MEDIUM ) ;
Spline.Def( Red, 7, P, 8 ) ;
Spline.Draw( THICK ) ;
Par.MarkGivenPoints( Red, 0.17, 0.1 ) ;

FIGURE 6.7. A cubic spline s and a parabola p of n-th order.
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class ParamCurve2d; → declaration in "lines2d.h"

An abstract class for a smooth 2D curve, defined by a parametric rep-
resentation. Derived from O2d and L2d. In order to define a specific
curve, the user has to derive an additional class from this class!

Definition:

void Def ( Color f, int n, Real umin, Real umax ) ;
// umin and umax are the parameter limits for the curve.
// The program will calculate n points on the curve, corresponding
// to evenly distributed parameter values in between.

Additional member variables and methods :

Real u1, u2; // Parameter limits.
virtual P2d CurvePoint( Real u ) = 0; // dummy
virtual V2d TangentVector( Real u ) ;
// Return the approximated tangent vector at parameter u.
virtual V2d NormalVector( Real u ) ;
// Return the approximated normal vector at parameter u.
virtual StrL2d Tangent( Real u ) ;
// Return the approximated tangent at parameter u.
virtual StrL2d Normal( Real u ) ;
// Return the approximated normal at parameter u.
virtual Real RadiusOfCurvature( Real u ) ;
// Return the radius of curvature at parameter u.
virtual void GetOsculatingCircle( Real u, Color col, Circ2d &osc circ ) ;
// Define the osculating circle at parameter u.
virtual Real ArcLength( Real u1, Real u2, int accuracy = 300 ) ;
// Return the arc length

∫ u2

u1

√
ẋ2 + ẏ2 du.

// By default, the curve is interpolated by a 300-sided polygon.

// Methods to compute curves that are associated with the
// parametric curve. The result is stored in the L2d
// argument (compare Section 2.1, page 40).
virtual void GetEvolute( Real u1, Real u2, L2d &evolute ) ;
virtual void GetCata( const P2d &pole, Real u1, Real u2,

L2d &evolute ) ;
virtual void GetPedal( const P2d &pole, Real u1, Real u2,

L2d &pedal ) ;
virtual void GetAntiPedal( const P2d &pole, Real u1, Real u2,

L2d &antipedal ) ;
virtual void GetOrtho( const P2d &pole, Real u1, Real u2,

L2d &orthonomic ) ;
virtual void GetAntiOrtho( const P2d &pole, Real u1, Real u2,

L2d &orthonomic ) ;
virtual void GetOffset( Real distance, Real u1, Real u2,

L2d &offset ) ;
virtual void GetInvolute( Real param value, Real u1, Real u2,

L2d &involute ) ;
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Sample code for better understanding :

// Compare file "USER/TEMPLETS/paramcurve2d.cpp"!

class MyCurve: public ParamCurve2d
{
public:

P2d CurvePoint( Real u )
{

// a circle of radius 5:
const Real r = 5;
return P2d( r ∗ cos( u ), r ∗ sin( u ) ) ;

}
};
MyCurve Curve;
void Scene: :Init( )
{

int number of points = 101;
Real param1 = −PI, param2 = PI;
Curve.Def( Black, number of points, param1, param2 ) ;

}
void Scene: :Draw( )
{

Curve.Draw( THICK ) ;
}

class PathCurve2d; → declaration in "lines2d.h"

A curve of unknown size. Derived from O2d and L2d. Used for the
determination of path curves during kinematic motions or animations.

Constructors and Definition:

PathCurve2d( Color c = Gray, int max points = MAX POLY SIZE,
Real critical distance = 0 ) ;

void Def( Color c = Gray, int max points = MAX POLY SIZE,
Real critical distance = 0 ) ;

// Allows max points on the path curve. Path will be
// considerd to be ‘closed’ when the first and last points have a
// distance less than critical distance.

Additional methods :

void AddPoint( const P2d &P ) ;
// Add point P to the curve.
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class Poly2d; → declaration in "poly2d.h"

Closed, convex polygon in 2-space. Derived from O2d. Parent class for
many other 2D classes (RegPoly2d, Rect2d. . . ). For non convex polygons
use the class ComplexPoly2d.

Constructors:

Poly2d( )
Poly2d( Color col, int numOfPoints, FilledOrNot filled = EMPTY )
Poly2d( Color col, int numOfPoints, Coord2dArray points,

FilledOrNot filled = EMPTY )

Definition:

void Def( Color col, int numOfPoints, FilledOrNot filled = EMPTY ) ;
void Def( Color col, int numOfPoints, Coord2dArray points,

FilledOrNot filled = EMPTY ) ;

Methods and operators :

void Draw( ThinOrThick thick ) ;
// Draw the outline.

void Outline( Color c, ThinOrThick style ) ;
// Draw the outline in the specified color.

void Shade( ) ;
// Plot the filled polygon.

void ShadeWithContour( Color col, ThinOrThick thick,
Real alpha value = 1 ) ;
// A combination of Draw and Shade. Additionally, the color col
// of the outline can be specified.

void ShadeWithTexture( TextureMap &Map,
Real ScaleX = 1, Real ScaleY = 1,
Real RotAngleInDeg = 0,
Real TranslateX = 0, Real TranslateY = 0,
Boolean repeat = true ) ;

// Method to map a texture on the polygon (compare
// Section 4.4).

class Projectivity2d; → declaration in "proj geom.h"

This class consists of two classes of type ProjScale2d and provides meth-
ods to deal with the projectivity between them. Note that some of the
methods make sense only if the projective scales are of the right type
(PencilOfLines2d, PencilOfPoints2d, PointsOnConic2d, TangentsOf-
Conic2d). Base class. For further information, please consult Sec-
tion 5.2.

Constructors:

Projectivity2d( ) ; // Default constructor.
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Definition:

void Def( ProjScale2d &InScale1, ProjScale2d &InScale2,
const Real eps = 1e−6, const Real infinity = 1e6 ) ;

// Cross ratios of absolute value eps or less will
// be treated as zero. Cross ratios of absolute value
// infinity will be set to infinity.

Methods and operators :

P2d MapPointToPoint( const P2d &A ) ;
StrL2d MapPointToLine( const P2d &A ) ;
P2d MapLineToPoint( const StrL2d &a ) ;
StrL2d MapLineToLine( const StrL2d &a ) ;

// Four methods to map elements of the first scale
// to elements of the second scale. The method to be
// used depends on the type of the projective scales.

P2d InvMapPointToPoint( const P2d &A ) ;
StrL2d InvMapPointToLine( const P2d &A ) ;
P2d InvMapLineToPoint( const StrL2d &a ) ;
StrL2d InvMapLineToLine( const StrL2d &a ) ;

// Four methods to map elements of the second scale
// to elements of the first scale. The method to be
// used depends on the type of the projective scales.

void MarkElements( Color col, const Real rad1,
const Real rad2 = 0 ) ;

void MarkElements( Color col [ 3], const Real rad1,
const Real rad2 = 0 ) ;

// Two methods to mark the base points on either of the
// two projective scales, either in one color or in three
// different colors according to the respective kind of point
// (origin, unit “point,” “point” at infinity).

void ConnectElements( Color col, ThinOrThick thick ) ;
void ConnectElements( Color col [ 3], ThinOrThick thick ) ;

// Two methods to connect corresponding base points on the
// two projective scales. The connecting lines will be either
// drawn in one color or in three different colors according
// to the respective kind of point (origin, unit “point”,
// “point” at infinity).

P2d IntersectLines( Real ratio ) ;
// Method to intersect corresponding lines.

StrL2d ConnectingLine( Real ratio ) ;
// Method to connect corresponding points.

ProjType2d GetType1( ) { return Type1; }
ProjType2d GetType2( ) { return Type2; }

// Two methods to return the respective types of the projective
// scales. Possible return values are PencilOfLines2d,
// PencilOfPoints2d, PointsOnConic2d and TangentsOfConic2d.
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Sample code for better understanding :

ProjScale2d Scale1, Scale2;
Projectivity2d Proj;
Conic Conic1;
Color Col [ 3] = { Red, Green, Blue };
P2d P1 [ 3];
P1 [ 0].Def( −5, 6 ), P1 [ 1].Def( 5, 6 ), P1 [ 2].Def( 0, 12 ) ;
Conic1.Def( Black, 150, P1, Origin, Xaxis2d ) ;
P2d P2 [ 5];
P2 [ 0].Def( 15, 0 ), P2 [ 1].Def( −15, 0 ), P2 [ 2].Def( 0, 0 ) ;
Scale1.Def( Conic1, P1 ) ;
Scale2.Def( Xaxis2d, P2 ) ;
Proj.Def( Scale1, Scale2 ) ;

class ProjScale2d; → declaration in "proj geom.h"

Describes a projective scale on either a pencil of points, a pencil of lines,
the point set on a conic, or the tangent set of a conic. The scale consists
of a supporting element (straight line, point, or conic) and a projective
coordinate system (origin, “point” at infinity and unit “point”).1 Base
class. For further information, please consult Section 5.2.

Constructors:

ProjScale2d( ) ; // Default constructor.

Definition:

ProjScale2d & operator = ( ProjScale2d &other ) ;
void Def( const P2d &V, StrL2d t [ 3] ) ; // pencil of lines
void Def( const StrL2d &l, P2d Q [ 3] ) ; // pencil of points
void Def( Conic &c, P2d Q [ 3] ) ; // points on conic
void Def( Conic &c, StrL2d t [ 3] ) ; // tangents of conic

Methods and operators :

void Draw( Color col, Real u0, Real u1, ThinOrThick thick ) ;
// Drawing method for pencil of points.

void Draw( ThinOrThick thick ) ;
// Drawing method for points or tangents of conic.

void Mark( Color col, Real rad1, Real rad2 = 0 ) ;
// Drawing method for pencil of lines.

void MarkElement( Color col, Real rad1, Real rad2, int i ) ;
void MarkElements( Color col, Real rad1, Real rad2 ) ;

1In this context the word “point” means either an actual point or a straight line
(principle of duality).
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// Two methods for marking origin ( i = 0), unit point (i = 1),
// and point at infinity (i = 2) if these elements are points.

void DrawElement( Color col, Real u0, Real u1,
ThinOrThick thick, int i ) ;

void DrawElements( Color col, Real u0, Real u1,
ThinOrThick thick ) ;

// Two methods for drawing origin ( i = 0), unit point (i = 1),
// and point at infinity (i = 2) if these elements are straight lines.

ProjType2d GetType( ) { return Type; }
// Return the type of the projective scale. Possible return values
// are PencilOfLines2d, PencilOfPoints2d, PointsOnConic2d,
// and TangentsOfConic2d.

void SetElement( const StrL2d &t, int i )
{ s [i] = t; ComputeReals( ) ; }

void SetElement( const P2d &Q, int i )
{ P [i] = Q; ComputeReals( ) ; }

// Two methods for redefining the projective scale by setting
// the origin, unit “point” or “point” at infinity.
// ComputeReals( ) is a private method of the class that
// computes some necessary data.

P2d GetPoint( int i ) { return P [i]; }
StrL2d GetLine( int i ) { return s [i]; }

// Two methods for returning origin, unit “point”
// or “point” at infinity.

P2d PointOfCrossRatio( const Real ratio ) ;
StrL2d LineOfCrossRatio( const Real ratio ) ;

// Return the point or straight line, respectively, that
// determines the given cross ratio with respect to the
// projective scale.

Real CrossRatio( const P2d &A, const Real eps = 1e−6,
const Real infinity = 1e6 ) ;

Real CrossRatio( const StrL2d &a, const Real eps = 1e−6,
const Real infinity = 1e6 ) ;

// Return the cross ratio that a given straight line or point
// determines on the projective scale. If its
// absolute value is smaller than eps or larger than infinity,
// the return values will be 0 or infinity itself.
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Sample code for better understanding :

ProjScale2d Scale
StrL2d s( P2d( 0, −10 ), Xdir2d ) ;
P2d S [ 3];
S [ 0] = s.InBetweenPoint( 0 ) ;
S [ 1] = s.InBetweenPoint( −5 ) ;
S [ 2] = s.InBetweenPoint( 10 ) ;
Scale.Def( s, S ) ;
Scale.Draw( Green, −15, 15, VERY THICK ) ;
Scale.MarkElements( Green, 0.2, 0.1 ) ;
P2d Point;
Real ratio = −1;
Point = Scale.PointOfCrossRatio( ratio ) ;
Point.Mark( Red, 0.2, 0.1 ) ;
if ( !( Scale.CrossRatio( Point ) == −1 ) )

Write( "numerical problem" ) ;

class RatBezierCurve2d; → declaration in "bezier.h"

Describes a rational Bézier curve in 2D by its control polygon and its
weights. The curve points are computed by means of DeCasteljau’s
algorithm. We provide methods for manipulating the curve (changing of
control points and weights, degree elevation, splitting). The base class is
ParamCurve2d. Some methods are overwritten. Have a look at page 126
in Chapter 2 for more detailed information.

Constructors:

RatBezierCurve2d( ) { B = NULL; C = NULL; w = NULL; }
// B and C are dynamically allocated arrays of control points,
// w is a dynamically allocated array of reals.

Definition:

void Def( Color c, int total size, int size of control poly,
P2d Control [ ], Real weigth [ ] ) ;

void Def( Color c, int total size, int size of control poly,
Coord2dArray Control, Real weight [ ] ) ;

// total size is the number of curve points that will
// be computed while size of control poly is the number
// of control points to be used.

Frequently used methods and operators:

virtual P2d CurvePoint( Real u ) ;
// Compute curve point by means of DeCasteljau’s algorithm.

virtual StrL2d Tangent( Real u )/∗ const = 0 ∗/;
void DrawControlPolygon( Color col, ThinOrThick thickness ) ;
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void MarkControlPoints( Color col, Real rad1, Real rad0 ) ;
void SetControlPoint( int i, P2d P ) ;

// Redefine control point with index i.
void SetWeight( int i, Real w ) ;

// Redefine weight with index i.
P2d GetControlPoint( int i ) ;

// Return control point with index i.
Real GetWeight( int i ) ;

// Return weight with index i.
int GetPNum( ) { return PNum; }

// PNum is the number of control points
void ElevateDegree( int i ) ; // Elevates the degree by i.
void ReversePolygon( void ) ;

// Reverse the order of the control points
// (useful after splitting of the curve).

void Split( Real u, Boolean second half ) ;
// Split the Bézier curve at the parameter value u.
// Depending on the value of second half, the new
// curve is identical to the part of the old curve that
// corresponds to the parameter interval [0, u] or [u, 1].

Sample code for better understanding :

RatBezierCurve2d BezierCurve;
P2d P [ 3];
P [ 0]( −7, −3 ), P [ 1]( −4, 2 ), P [ 2]( 3, 3 ) ;
Real weight [ 3];
weight [ 0] = 2, weight [ 1] = 1, weight [ 2] = 3;
BezierCurve.Def( Black, 200, 3, BasePoints, weight ) ;
BezierCurve.ElevateDegree( 2 ) ;
BezierCurve.Split( 0.5, true ) ;
BezierCurve.Draw( VERY THICK ) ;
BezierCurve.DrawControlPolygon( Blue, THICK ) ;
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 ) ;
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class Rect2d; → declaration in "poly2d.h"

Rectangle in 2-space. Inherits methods of Poly2d. In the starting po-
sition two rectangle sides lie on the x- and y-axes of the coordinate
system and one vertex coincides with the origin.

Constructors and definition:

Rect2d( ){}
Rect2d( Color c, Real length, Real width,

FilledOrNot filled = EMPTY )
void Def( Color c, Real length, Real width,

FilledOrNot filled = EMPTY ) ;
void Def( Color c, const P2d &LowerLeft, const P2d &UpperRight,

FilledOrNot filled = EMPTY ) ;

class RegPoly2d; → declaration in "poly2d.h"

Closed regular polygon in 2-space. Derived from Poly2d.

Definition:

void Def( Color col, const P2d &FirstElem, const P2d &mid,
int n, FilledOrNot filled = EMPTY ) ;

// Center and a vertex are given.
void Def( Color col, const P2d &mid, Real rad,

int n, FilledOrNot filled = EMPTY ) ;
// Center and radius are given.
// First vertex lies on line parallel to the x-axis through the center.

void Def( Color col, const P2d &vertex1, const P2d &vertex2,
int n, int orientation = 1, FilledOrNot filled = EMPTY ) ;

// Two adjacent vertices and the orientation (+1 or −1) are given.

Methods:

P2d GetCenter( ) const; // Return the center.
Real GetRadius( ) const; // Return the radius.

class Rod2d; → declaration in "poly2d.h"

Describes a rod in 2-space. A rod may be imagined as a polygon with
two vertices or a line segment. It is used mainly for kinematic anima-
tions.

Definition:

void Def( Color col, Real x1, Real y1, Real x2, Real y2 ) ;
void Def( Color col, const P2d &P, const P2d &Q ) ;

Additional methods (see also Poly2d):

void Draw( ThinOrThick thick ) ;
void Dotted( int n, Real rad ) ;
void LineDotted( int n, ThinOrThick thick ) ;



Section 6.1. Useful 2D Classes and Their Methods 473

Sample code for better understanding :

Rod2d rod;
rod.Def( Magenta, −5, 0, 0, 5 ) ;
rod.Draw( THICK ) ;
rod.Rotate( Origin, 45 ) ;
rod.Dotted( 20, 0.05 ) ;

class Sector2d; → declaration in "arc2d.h"

Class for drawing a sector of a 2D circle. It provides various defining
methods and “getters” for objects related to the sector. The sector is
either filled or not, and the user can decide whether to draw the line
segments that connect the center with start and end point (value of
only segment = false or true; compare Figure 6.8). Sector2d is derived
from Sector3d and inherits a few useful methods.

Constructors:

Sector2d( ) { }; // Default constructor.

Definition:

void Def3Points( Color col, const P2d &P, const P2d &Q,
const P2d &R, int size, FilledOrNot filled = EMPTY ) ;
// Define sector via three points. The argument list is identical to
// that of the last Def(. . . ) method. Therefore, the name of
// this method differs a little from standard Open Geometry
// conventions. size is the number of points on the arc that will
// be computed.

void Def( Color col, const P2d &FirstElem, const P2d &Center,
Real central angle in deg, int size, FilledOrNot = EMPTY ) ;
// Define sector via start point, center, and central angle. Note that
// the apex angle will always be less than 180◦!

void Def( Color col, const P2d &FirstElem, const P2d &Center,
const P2d &LastElem, int size, FilledOrNot = EMPTY ) ;
// Define sector via start point, center, and end point.

Frequently used methods and operators:

void Draw( Boolean only segment, ThinOrThick thick ) ;
// If only segment is false, the connecting lines of center
// with start and end point will be displayed.
void Shade( ) ;
// Shades the sector; has the same effect as Draw if the sector has
// been defined as FILLED.
void ShadeWithContour( Color c, ThinOrThick thick,

Real alpha value = 1 ) ;
// The same as Shade; additionally, the contour is displayed.
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// The meaning of the remaining methods should be obvious:
P2d GetCenter( ) ;
P2d GetFirstPoint( ) ;
P2d GetLastPoint( ) ;
P2d GetPointOnBisectrix( ) ;

Sample code for better understanding :

Sector2d Arc1, Arc2, Arc3;
P2d M1, M2;
P2d A;
M1( 0, 5 ) ;
M2( 5, −1 ) ;
Arc1.Def( Red, P2d( −3, 0 ), M1, M2, 30, EMPTY ) ;
A( −20, 0 ) ;
Arc2.Def( Black, Arc1.GetLastPoint( ), M2, A, 30 ) ;
Arc3.Def3Points( Green, Arc1.GetFirstPoint( ), Arc1.GetLastPoint( ),

Arc2.GetLastPoint( ), 30 ) ;
Arc1.Draw( MEDIUM ) ;
Arc2.Draw( MEDIUM ) ;
Arc3.Draw( THIN ) ;
Arc1.GetFirstPoint( ).Mark( Green, 0.2 ) ;
Arc1.GetLastPoint( ).Mark( Orange, 0.2 ) ;
Arc2.GetLastPoint( ).Mark( Blue, 0.2 ) ;
StraightLine2d( Blue, M1, M2, THIN ) ;
M1.Mark( Red, 0.2, 0.12 ) ;
M2.Mark( Black, 0.2, 0.12 ) ;

FIGURE 6.8. Different 2D sectors.

class SliderCrank; → declaration in "kinemat.h"

Class to describe a slider crank. Derived from FourBarLinkage. The
class is equipped with methods for computing and displaying special
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positions (compare Figure 6.9 and [14], Chapter 9). Requires the inclu-
sion of "kinemat.h" at the beginning of the program.

Definition:

void Def( Real LA, Real AB, Real Lb, Real start alpha in deg,
Real delta alpha, Boolean take left = false ) ;

// B runs on straight line b (distance Lb from L)
// delta alpha is the step in the animation.

void Def( const P2d &L, const P2d &A, const P2d &B ) ;

Methods:

void Def( Real LA, Real AB, Real Lb, Real start alpha in deg,
Real delta alpha, Boolean take left = false ) ;

// B runs on straight line b (distance Lb from L)
// delta alpha is the step in the animation.

void Def( const P2d &L, const P2d &A, const P2d &B ) ;

FIGURE 6.9. A slider crank.

class StrL2d; → declaration in "strl2d.h"

StrL2d describes an oriented straight line in 2-space. It has already been
explained in [14], p. 80. However, there are quite a few new methods.

Constructors:

StrL2d( ) ; // Dummy constructor. No initialization
StrL2d( const P23d &P, const V23d &r ) ;

// The line is given by a point and a direction vector.
// The direction vector will be normalized in any case.
// See also method Def( ).

StrL2d( const P2d &P, const P2d &Q ) ;



476 Chapter 6. Compendium of Version 2.0

// The line is given by two points.

Definition:

void Def( const P23d &P, const V23d &r ) ;
// Define line by means of a point and a direction vector:
// �x = �P + λ�r
// The vector need not be normalized (it will be normalized to a
// direction vector �r0 ).
// Internally, the line has the equation �x = �P + t �r0.
// 3D points and 3D vectors are interpreted two-dimensionally.

void Def( const P2d &P, const P2d &Q ) ;
// Define line by means of two points. Internally, the line has
// the equation �x = �P + t �r0 with �r = �Q − �P .

Operators:

friend P2d operator ∗ ( const StrL2d &g1, const StrL2d &g2 ) ;
// Intersection point of two straight lines g1 and g2.
// When the lines are parallel, a “point of infinity” is taken,
// when the lines are identical, the result is an arbitrary point
// on the line. See also method SectionWithStraightLine( )

Boolean operator == ( const StrL2d &other ) const;
// Are two lines identical from the mathematical point of view?

StrL2d & operator = ( const StrL2d &other ) ;
// Applying this operator yields two identical straight lines!

Frequently used methods:

V2d GetDir( ) const;
// Return the normalized direction vector �r0.

void SetDir( const V2d &newdir ) ;
// Change direction vector (newdir need not be normalized)

V2d GetNormalVector( ) const;
// Return the normalized normal vector �n ⊥ �r0.

P2d GetPoint( ) const;
// Return the point that was used for the definition of the line.

Real GetConst( ) const;
// Return the constant c of the straight line nx x + ny y = c.

void SectionWithStraightLine( const StrL2d &g, P23d &P,
Real &t, Boolean &parallel ) const;

// Similar to the ∗ operator. The result, however, is more detailed:
// The parameter t to the point (with respect to the current
// line) is passed by reference, and the flag parallel is set.

Real OrientedDistance( P23d &P) ;
// Return the oriented distance of a point. When the origin of the
// coordinate system is not on the same side of the straight line,
// the distance will be negative.

P2d InBetweenPoint( Real t ) const;
// Return the point �x = �P + t �r0.

StrL2d GetNormal( const P2d &P ) const;
// Return a straight line perpendicular to the current one,
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// coinciding with P.
StrL2d GetParallel( Real dist ) const;

// Return a straight line parallel to the current
// one with distance dist.

P2d NormalProjectionOfPoint( const P2d &P ) const;
// Return the normal projection of the point P onto the line.

Boolean ContainsPoint( const P2d &P, Real tol = 1e−4 ) const;
// Check whether a point coincides with the line, i.e., whether its distance is
// smaller than a given tolerance.

Boolean IsParallel( const StrL2d &other, Real tol = 1e−8 ) const;
// Check whether the lines are parallel. The angle between the direction
// vectors must not differ more than a certain tolerance.

Real GetParameter( const P2d &P ) const;
// Return the parameter t in the vector equation �x = �P + t �r0.

// Some methods for the application of transformations.

void Translate( const V2d &v ) ;
// Translate the line by means of a 2D vector.

void Rotate( const P2d &center, Real angle in deg ) ;
// Rotate the line about a center through a given angle
// (in degrees).

void Reflect( const StrL2d &g ) ;
// Reflect the line at a given line g.

int Refract( const StrL2d &refracting line, Real ior,
StrL2d &refracted line ) const;
// Refract the line at a given line refracting line. ior is the
// index of refraction. In contrast to the Reflect( ) method,
// the result is stored in refracted line. The return value tells
// what has really happened: It is 2 if real refraction occurs,
// 1 for total reflection, and 0 if the incoming straight line has
// a wrong orientation. refracted line will always have the correct
// orientation according to physical models.

// Finally, some drawing methods:

void Draw( Color col, Real t1, Real t2, ThinOrThick thick ) const;
// Draw the line in color col from the point that corresponds
// to the parameter t1 to the point that corresponds to the
// parameter t2. You have to specify the width of the line:
// THIN, MEDIUM, THICK, VERY THICK.

void LineDotted( Color col, Real t1, Real t2, int n,
ThinOrThick thick ) const;

// Similar to the ordinary drawing.
// Draw the line as dotted, with n intervals.

void Dotted( Color col, Real t1, Real t2, int n, Real rad ) const;
// Similar to the ordinary drawing; draws the line dotted
// (n ‘dots’, i.e., small circles with radius rad).

void Dashed( Color col, Real t1, Real t2, int n,
Real f, ThinOrThick thick ) const;
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// Similar to Dotted drawing mode; draws n short dashes.
// The dash length depends on the real f ∈ [1.01, 3]. The bigger
// f is, the shorter the dashes are.

class Trochoid; → declaration in "kinemat.h"

Describes the path curve of a trochoid motion (circle rolling, compare
[14], p. 252 and Figure 6.10). Alternatively, the path curve is generated
by two rods that rotate with constant angular velocity. The class is
derived from L2d and requires the inclusion of "kinemat.h" at the
beginning of the program.

Definition:

void Def( Color c, Real FR, Real RC,
Real deg1, Real deg2, Real delta deg ) ;

// deg1 and deg2 are the inclinations of FR and RC to
// the x-axis (Figure 6.10) ; delta deg is the angle for
// the animation.

void Def( Color c, Real rad1, Real rad2, Real RC,
Real deg1, Real deg2, Real delta deg ) ;

// Alternative: The radii of the Cardan circles are given

Additional methods :

void ShowPoleCurves( Real deg, ThinOrThick linestyle ) ;
// Cardan circles.

void ShowBars( Real deg, ThinOrThick linestyle, Real r = 0,
Boolean attach names = true ) ;

P2d GetF( ) ;
P2d GetR( Real deg ) ;
P2d GetC( Real deg ) ;
P2d GetPole( Real deg ) ;
P2d CenterOfOsculatingCircle( const P2d &C, Real deg ) ;

class V2d; → declaration in "vector.h"

Describes a two-dimensional vector (x, y). Inherits the methods and
operators of V23d (partly overwritten!).

Constructors:

V2d( ) ; // No initialization
V2d( Real x0, Real y0 ) ; // Initialization with (x0, y0)
V2d( const P2d &P, const P2d &Q ) ; // Init. with

−−→
PQ = �q − �p

V2d operator −( ) const; // Scaling with −1.

Additional or overwriting operators :

friend V2d operator + ( const V2d &v, const V2d &w ) ;
// Vector addition �v + �w.

friend V2d operator − ( const V2d &v, const V2d &w ) ;
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FIGURE 6.10. A trochoid.

// Vector subtraction �v − �w.
void operator += ( const V2d &v ) ;

// Analog to += operator of ordinary numbers.
void operator −= ( const V2d &v ) ;

// Analog to −= operator of ordinary numbers.
friend Real operator ∗ ( const V2d &v, const V2d &w ) ;

// Dot product �v �w.
friend V2d operator ∗ ( const Real t, const V2d &v ) ;

// Scale vector with real number: t�v.

Additional or overwriting methods :

Real PolarAngleInDeg( ) const;
// Return the polar angle ϕ of the vector (−180◦ < ϕ ≤ 180◦ ).

V2d NormalVector( ) const;
// Rotate the vector through +90◦

Boolean Collinear( const V2d &v, Real tol = 0 ) const;
// Return true if the vector is collinear with �v, otherwise false.
// If no tolerance is set, a tiny default tolerance is used.

void Reflect( const StrL2d &g ) ;
// Reflect the vector at a straight line g.

void Print( char ∗str = "@" ) const;
// Display the components as a message: ’text = ( x, y )’.

void Rotate( Real angle in deg ) ;
// Rotate the vector through angle (in degrees).

Real Angle( const V2d &v,
Boolean already normalized = false,
Boolean check sign = false ) const;

// Return the angle between two vectors (in arc length!).
// Use Deg( Angle(. . . )) to get the angle in degrees.
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6.2 Useful 3D Classes and Their Methods
class Arc3d; → declaration in "arc3d.h"

Arc3d describes a segment of a 3D circle. It is a successor of Sector3d
and has only one additional method:

void Draw( ThinOrThick style, Real offset = STD OFFSET ) ;

This method calls the drawing method of Sector3d without the option of drawing
the line segments that connect the arc center with start and end point.

class ArrayOfSolids; → declaration in "solid.h"

Describes an array of solids. More or less only for internal use. Better
work with the more general class Cad3Data that is described below!

Constructors:

ArrayOfSolids( ) ; // Default constructor.

Definition:

void Def( int n0 ) ;
// Number of solids.

Operators:

Solid & operator [ ] ( int i ) ;
// Return the i-th solid.

Methods:

int Size( ) ; // Returns number of solids;
// the rest is of no importance for the user.

class Arrow3d; → declaration in "arrows3d.h"

Arrow3d is a new Open Geometry class for displaying different types
of arrows in three dimensions. It is derived from Solid and defined via an
integer value type ∈ {±1,±2,±3,±4}. This produces a certain standard
arrow that can be scaled, rotated, or translated to its desired position.
There exist also special methods for doing that. The arrows of type ±1,
±2, ±3, and ±4 are congruent. They just point in different directions.
The arrows of types 1 and 2 are straight; the arrows of types 3 and 4
are curved (compare Figure 6.11).

Definition:

void Def( int type ) ;
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Frequently used methods and operators:

void Shade( Color col ) ;
void Scale( Real k ) ;
void Scale( Real kx, Real ky, Real kz ) ;
void Translate( Real tx, Real ty, Real tz ) ;
void Translate( const V3d &t ) ;
void Rotate( const StrL3d &axis, Real angle in deg ) ;
void Twist( Real angle in deg ) ; // Rotate arrow about its local axis.
void ShadeAtPosition( Color col, const P3d &apex,

const V3d &local x, const V3d &local z ) ;
// Shade arrow at position specified by &apex, local x and local z.

StrL3d GetLocalAxis( ) ;
void GetLocalSystem( V3d &x, V3d &y, V3d &z ) ;
int GetType( ) { return arrow type; }

Consider also two additional methods for displaying 3D arrows:

Listing from "arrows3d.h":

void RoundArrow( Color c,
const StrL3d &axis,
Real rad, Real height,
Real angle,
Real angle2, Real delta z ) ;

void DrawArrow3d( Color col,
const P3d &P, const P3d &Q, // V3d PQ
Real len of arrow = −1,
Real rad of arrow = −1,
int order = 25,
ThinOrThick style = THIN,
Boolean two arrows = false ) ;

Examples of the use of Arrow3d, RoundArrow(. . . ), and DrawArrow3d(. . . ) are
given in the following listing (compare also Figure 6.11).
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Sample code for better understanding :

Arrow3d Arrow1, Arrow2, BentArrow1, BentArrow2;

void Scene: :Init( )
{

Arrow1.Def( −1 ) ; // type 1, from (−1,0,0) to ( 0,0,0)
Arrow1.Scale( 3 ) ; // magnification
Arrow2.Def( 2 ) ; // type 2, from (+1,0,0) to ( 0,0,0)
Arrow2.Scale( 3, 5, 1 ) ; // different scalings
Arrow2.Rotate( Zaxis, 90 ) ;
Arrow2.Translate( 0, 5, 0 ) ;
Arrow2.Twist( 90 ) ; // rotation about “local axis”
BentArrow1.Def( 3 ) ; // type 3, positive rotation
BentArrow1.Scale( 6 ) ;
BentArrow1.Translate( 0, 0, −3 ) ;
BentArrow2.Def( −4 ) ; // type 4, negative rotation
BentArrow2.Scale( 3 ) ;
BentArrow2.Translate( 0, 0, 4 ) ;

}

void Scene: :Draw( )
{

ShowAxes( Gray, 8 ) ;
DrawArrowV3d( Orange, Origin, P3d( 0, 0, 10 ), −1, −1, 30, THICK ) ;
Arrow1.Shade( Red ) ;
Arrow2.Shade( Blue ) ;
BentArrow1.Shade( Green ) ;
BentArrow2.Shade( Yellow ) ;
RoundArrow( Green, Zaxis, 3, 1, 90, 270, 5 ) ;

}

class BezierCurve3d; → declaration in "bezier.h"

Describes an integral Bézier curve in 3D by its control polygon. The
curve points are computed by means of DeCasteljau’s algorithm.
We provide methods for manipulating the curve (changing of control
points, degree elevation, splitting). The base class is ParamCurve3d.
Some methods are overwritten.

Constructors:

BezierCurve3d( ) { B = C = NULL; }
// B and C are dynamically allocated arrays of control points

Definition:

void Def( Color c, int total size,
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FIGURE 6.11. Different arrows in 3D.

int size of control poly, P3d Control [ ] ) ;
// total size is the number of curve points that will
// be computed while size of control poly is the number
// of control points to be used.

Frequently used methods and operators:

virtual P3d CurvePoint( Real u ) // const
// Calculate curve point by means of the DeCasteljau algorithm.

virtual StrL3d Tangent( Real u )/∗ const = 0 ∗/;
virtual Plane OsculatingPlane( Real u )/∗ const = 0 ∗/;
void DrawControlPolygon( Color col, ThinOrThick thickness ) ;
void MarkControlPoints( Color col, Real rad1, Real rad0 ) ;
void SetControlPoint( int i, P3d P ) ;

// Redefine control point with index i.
P3d GetControlPoint( int i ) { return B [i]; };

// Return control point with index i.
int GetPNum( ) { return PNum; }

// PNum is the number of control points.
void ElevateDegree( int i ) ; // Elevate the degree by i.
void ReversePolygon( void ) ;

// Reverse the order of the control points
// (useful after splitting of the curve).

void Split( Real u, Boolean second half ) ;
// Split the Bézier curve at the parameter value u.
// Depending on the value of second half the new
// curve is identical to the part of the
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// old curve that corresponds to the parameter
// interval [0, u] or [u, 1].

Sample code for better understanding :

BezierCurve3d BezierCurve;
P3d P [ 3];
P [ 0]( 0, 0, 0 ), P [ 1]( 4, 0, 4 ), P [ 2]( 0, 4, 8 ) ;
BezierCurve.Def( Black, 200, 3, P ) ;
BezierCurve.ElevateDegree( 2 ) ;
BezierCurve.Split( 0.5 ) ;
BezierCurve.Draw( VERY THICK ) ;
BezierCurve.DrawControlPolygon( Blue, THICK ) ;
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 ) ;

class BezierSurface; → declaration in "bezier.h"

Describes an integral Bézier surface by its control polygon. The surface
points are computed by means of DeCasteljau’s algorithm. We pro-
vide methods for manipulating the surface (changing of control points,
degree elevation, splitting). The base class is ParamSurface.

Constructors:

BezierSurface( ) { B = C = NULL; }
// B and C are dynamically allocated 2D arrays of control points.
// C is needed for the DeCasteljau algorithm.

Definition:

void Def( Color c, int m, int n, int pnum1, int pnum2,
P3d ∗∗Control ) ;

// m and n determine the number of facets in the u and v directions.
// pnum1 and pnum2 are the dimensions of the control net.

Frequently used methods and operators:

P3d SurfacePoint( Real u, Real v ) { return DeCasteljau( u, v ) ; }
void DrawControlPolygon( Color col, ThinOrThick style,

Real offset = STD OFFSET ) ;
void MarkControlPoints( Color col, Real rad1, Real rad0 = 0 ) ;
P3d GetControlPoint( int i, int j ) { return B [i] [j]; };
void SetControlPoint( int i, int j, P3d P ) ;

// Redefine control point with indices i and j.
int GetPNum1( ) { return PNum1; };
int GetPNum2( ) { return PNum2; };

// Two methods that return the dimension of the control net.
void ElevateDegree( int m, int n ) ;
void ReversePolygon( Boolean u dir, Boolean v dir ) ;
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// Reverse the order of the control net in u and/or v
// direction according to the value of the Boolean arguments.

void SplitU( Real u, Boolean second half ) ;
// Split the Bézier surface at the parameter value u.
// Depending on the value of second half the new
// curve is identical to the part of the old curve that
// corresponds to the parameter interval [0, u] or [u, 1],
// respectively.

void SplitV( Real v, Boolean second half ) ;
// Analogous to SplitU(. . . ).

Sample code for better understanding :

BezierSurface BezSurf;
P3d ∗∗P = NULL;

ALLOC 2D ARRAY( P3d, P, 3, 3, "P" ) ;

P [ 0] [ 0].Def( −8, −8, −4 ) ;
P [ 0] [ 1].Def( −8, 0, 4 ) ;
P [ 0] [ 2].Def( −8, 8, −4 ) ;
P [ 1] [ 0].Def( −2, −8, 5 ) ;
P [ 1] [ 1].Def( −2, 0, 8 ) ;
P [ 1] [ 2].Def( −2, 8, 5 ) ;
P [ 2] [ 0].Def( 2, −8, 5 ) ;
P [ 2] [ 1].Def( 2, 0, 8 ) ;
P [ 2] [ 2].Def( 2, 8, 5 ) ;

BezSurf.Def( Blue, 31, 61, m, n,P ) ;
BezSurf.SplitU( 0.5, true ) ;
BezSurf.SplitV( 0.5, false ) ;
BezSurf.ElevateDegree( 1, 2 ) ;
BezSurf.SetControlPoint( 0, 0, P3d( −12, −8, 3 ) ) ;

FREE 2D ARRAY( P3d, P, m, n, "P" ) ;

BezSurf.Shade( SMOOTH, REFLECTING ) ;
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class Box; → declaration in "box.h"

Describes an ordinary box in 3-space. Inherits methods and operators
from O23d and O3d.

Constructors:

Box( ) ; // Default constructor.
Box( Color col, Real x, Real y, Real z ) ;

// x, y, and z are the box dimensions. In the initial position,
// the three box sides lie on the positive coordinate axes;
// one box corner is at the origin.

Operators:

void operator = ( const Box &b ) ; // Copy operator.

Definition:

void Def( Color col, Real x, Real y, Real z ) ; // Compare constructor.
void Def( Color col, const P3d &min, const P3d &max ) ;

// Define box through opposite vertices. In the initial position,
// the box sides are parallel to the coordinate axes.

Additional methods :

void WireFrame( Boolean remove hidden lines,
ThinOrThick thick, Real offset = STD OFFSET ) ;

// Draw the edges (wire frame).
void Shade( Boolean reflect = true ) ;

// Shade reflecting or matte.
void ShadeBackfaces( Boolean reflect = true ) ;

// Shade only the backfaces (reflecting or matte).
// This is useful for transparent boxes.

void Transform( Polyhedron &P ) ;
void TransformIntoPolyhedron( ) ;

// Two conversion methods for transformation into a polyhedron.
void GetSides( Real &x, Real &y, Real &z ) const; // Side lengths.
P3d GetCenter( ) ; // Return box center.
Real GetDiameter( ) ; // Return box diameter.

class Cad3Data; → declaration in "solid.h"

This class is important for the user (not the above class ArrayOfSolids!).
Describes an arbitrary cluster of solids generated by means of Cad3D.
Whole scenes — even several scenes — can be read from "*.llx" and
"*.llz" data files, manipulated (translated, rotated, scaled), smooth-
shaded and finally exported to POV-Ray.

Constructors:

Cad3Data( int size = 100 ) ;
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Definition:
void Def( int size ) ;

// Maximum number of scenes to be read
// (each scene may still consist of many solids).

void ReadNewMember( const char ∗name, Real scale factor = 0.05 ) ;
// Read new solid or group of solids and scale it at the
// same time. Usually, Cad3D scenes are much too
// large for the optimized Open Geometry range.
// Thus, they are multiplied by a comparatively small factor.

Operators:
ArrayOfSolids & operator [ ] ( int i ) ;

// Return the i-th “scene” (one or several solids) ;
// the k-th solid of this array is called by [ i ][ k ].

Additional methods :
void Shade( FaceMode fmode = ONLY FRONTFACES ) ;

// Display everything smooth−shaded;
// fmode = true speeds up the display.

void WireFrame( Boolean remove hidden lines, ThinOrThick thick,
Real offset = 1e−3 ) ;

// remove hidden lines plots the solids first and then
// adds the wire frame (kind of fast hidden line removal).

void ReadNewMember( const char ∗name, Real scale factor = 0.05 ) ;
// Read single solids ("*.llx") or whole scenes ("*.llz").

void DeleteMember( int i ) ;
// Remove the corresponding scene or solid.

int Size( ) ;
// Return number of members.

void MakeInvisible( int i ) ;
// After this command, the i-th member will not be drawn
// (although it is not removed!).

void MakeVisible( int i ) ;
// Draw again.

void GetBoundingBox( Box &box ) ;
P3d GetCenterOfBoundingBox( ) ;
void ShowBoundingBox( ) ;
void OptimizeView( ) ;

// Fit everything perfectly into an Open Geometry environment.
void SetAllColors( Color c ) ;

// Redefine color for all the members.
void SetRandomColors( ) ;

// Show the different members in different (random) colors.

// Geometric transformations:
void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &t ) ;
void Rotate( const StrL3d &axis, Real angle in deg ) ;
void Rotate( const RotMatrix &R ) ;
void ExportTo POV Ray( const char ∗name ) ;

// For high-quality output.
void Delete( ) ;
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FIGURE 6.12. Output of the sample file for Cad3Data.

Sample code for better understanding :

Cad3Data Data;

void Scene: :Init( )
{

Data.ReadNewMember( "DATA/LLZ/enterprise.llz", 0.08 ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

if ( FrameNum( ) % 2 )
Data.Shade( ) ;

else
Data.WireFrame( true, MEDIUM ) ;

}
void Scene: :Animate( )
{
}
void Scene: :CleanUp( )
{
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( 18, 18, 12 ) ;
Data.OptimizeView( ) ;

}
}
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class Circ3d; → declaration in "circ3d.h"

Describes a circle in 3D. Derived from O3d, Poly3d, and RegPoly3d
(many methods inherited).

Constructors:

Circ3d( ) // Default constructor.
Circ3d( Color col, const P3d &Center, const V3d &Normal,

Real rad, int n, FilledOrNot filled = EMPTY )
// Classical definition via center, axis direction, radius.

Circ3d( Color col, const P3d &FirstElem, const StrL3d &a,
int n, FilledOrNot filled = EMPTY )

// Definition via point on circle and axis.
Circ3d( Color col, const P3d &A, const P3d &B, const P3d &C,

int n, FilledOrNot filled = EMPTY )
// Circle is given by three points.

Definition:

void Def( Color col, const P3d &Center, const V3d &Normal,
Real rad, int n, FilledOrNot filled = EMPTY )

// Classical definition via center, axis direction, radius.
void Def( Color col, const P3d &FirstElem, const StrL3d &a, int n,

FilledOrNot filled = EMPTY )
// Definition via point on circle and axis.

void Def( Color col, const P3d &A, const P3d &B, const P3d &C,
int n, FilledOrNot filled = EMPTY ) ;

// Circle is given by three points.

Additional methods :

int SectionWithPlane( const Plane &e, P3d &S1, P3d &S2 ) ;
// Returns the number of intersection points with a plane and
// stores them in S1 and S2.

P3d P( Real t ) ;
// Returns a point on the parameterized circle (t in arc length).

class ComplexPoly3d; → declaration in "complex poly.h"

Closed non convex polygon with holes (loops) in 3-space. Derived from
Poly3d.

Constructors:

ComplexPoly3d( ) ; // Default constructor.

Definition:

void Def( Color f, int NLoops, Poly3d ∗loop, int oriented = 0 ) ;
void Def( Color f, int NLoops, Poly2d ∗loop, int oriented = 0 ) ;

// NLoops is the number of loops, loop is an array of polygons,
// i.e., a pointer to the first polygon.

void Def( ComplexPoly3d ∗cp ) ; // Copy complex polygon cp.
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void Def( ComplexPoly2d ∗cp ) ; // Copy complex polygon cp.

Additional methods :

void Translate( V3d t ) ;
void Rotate( const StrL3d &a, Real angle in deg ) ;
void Scale( Real kx, Real ky, Real kz ) ;

void Shade( Shininess reflect = REFLECTING ) ;
// Does not work in case of intersecting loops!

void Outline( Color col, ThinOrThick style,
Real offset = STD OFFSET ) ; // Draw the outline.

class Conic3d; → declaration in "conic.h"

Describes a conic in 3-space. Derived from the 2D class Conic. Com-
putations will be performed by projecting everything onto one of the
coordinate planes.

Constructors:

Conic3d( ) { proj dir = 1; } // Default constructor.

Definition:

Conic3d & operator = ( Conic3d &other ) ;
void Def( Color col, int numPoints, P3d P [ 5] ) ;
// numPoints is the number of points on the approximating
// polygon. Calculations with the conic are not done with these
// approximations but with the exact mathematical equation!
// The conic is defined by five points.
void Def( Color col, int numPoints, const StrL3d t [ 5] ) ;
// Definition through five tangents.
void Def( Color col, int numPoints, const P3d P [ 3],

const P3d &T, const StrL3d &t ) ;
// Definition through three points and point plus tangent.
void Def( Color col, int numPoints, const P3d &M,

const P3d &A, const P3d &B ) ;
// Definition through pair of conjugate diameters.
void Def( Color col, int numPoints, const P3d &P,

const P3d &F1, const P3d &F2, TypeOfConic type ) ;
// Definition through point plus two focal points and type of conic;
// type can be either ELLIPSE or HYPERBOLA.

Frequently used methods and operators:

P3d GetCenter( ) { return T2( M ) ; } // Return the center.
P3d GetA( ) const { return T2( A ) ; }
P3d GetB( ) const { return T2( B ) ; }

// A and B are points on the major axis.
P3d GetC( ) const { return T2( C ) ; }
P3d GetD( ) const { return T2( D ) ; }
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// C and D are points on the minor axis.
P3d GetM( ) const { return T2( M ) ; } // returns the center
Real DistMA( ) const { return (GetA( ) − GetM( ) ).Length( ) ; }
Real DistMC( ) const { return (GetC( ) − GetM( ) ).Length( ) ; }
StrL3d MajorAxis( ) const { return T3( Axis1 ) ; }
StrL3d MinorAxis( ) const { return T3( Axis2 ) ; }
StrL3d Asymptote1( ) const { return T3( As1 ) ; }
StrL3d Asymptote2( ) const { return T3( As2 ) ; }
int SectionWithPlane( const Plane s, P3d &S1, P3d &S2 ) ;

// Return the number of intersection points (0, 1, or 2)
// and calculates these points.

Plane GetPlane( ) const { return p; } // Returns the carrier plane.
void Draw( ThinOrThick thick, Real offset = STD OFFSET,

Real max radius = DUMMY ) /∗ const ∗/;
void AssignTo( ComplexL3d &c ) ;

// Assign conic to object of type ComplexL3d.
StrL3d GetPolar( const P3d &Pole ) const;

// Return polar of point P.
P3d GetPole( const StrL3d &polar ) const;

// Return pole of straight line polar.

class DiffEquation3d; → declaration in "diff equation.h"

Describes a differential equation (3D vector field) and provides a solv-
ing method (Runge–Kutta). Abstract class due to the purely virtual
member function TangentVector(. . . ). In order to use it, you must derive
a class of your own from DiffEquation. It is derived from L3d. Thus,
you can immediately plot the solution curve. Requires the inclusion of
"diff equation.h" at the beginning of your file. For a sample code
listing, please refer to the corresponding 2D class DiffEquation.

Constructor :

DiffEquation3d( ) ; // Default constructor.

Additional methods :

virtual void Solve( Real t1, Real t2, Real h, const P3d &StartPoint ) ;
// Solves differential equation by means of RUNGE−KUTTA.

virtual V3d TangentVector( Real t, const P3d &P ) = 0;
// Virtual function to describe the corresponding 3D vector field.
// Has to be implemented by the user!

class FunctionGraph; → declaration in "paramsurface.h"

Abstract class derived from ParamSurface. Describes a function graph
over a parameter rectangle. In order to use it, you have to implement
the purely virtual member function z( Real x, Real y ).
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Methods:

virtual Real z( Real x, Real y ) = 0;
P3d SurfacePoint( Real u, Real v ) ; // Return P3d ( u, v, z( u, v ) ).
V3d Normal( Real x, Real y ) ; // Return normalized normal.
void ShadeSolidBlockUnderGraph( Color c, Real zmin,

ThinOrThick borderLines = MEDIUM ) ;
// Shade the block under the function graph.

void TransformIntoPolyhedron( ) ;
// Transform function graph into polyhedron (useful if you need
// methods of the class Polyhedron).

// Partial derivates of first order:
Real fu( Real u, Real v ) ;
Real fv( Real u, Real v ) ;

// Partial derivates of second order:
Real fuu( Real u, Real v ) ;
Real fuv( Real u, Real v ) ;
Real fvu( Real u, Real v ) ;
Real fvv( Real u, Real v ) ;

virtual int GetIndicatrix( Conic3d &conic, Real u, Real v,
Real scale = 1, int num of points = 120 ) ;

// Compute DUPIN indicatrix and store it in conic.

Sample code for better understanding :

#include "opengeom.h"
#include "defaults3d.h"

class TheSurface: public FunctionGraph
{
public:

virtual Real z( Real x, Real y )
{

x ∗= 0.3; y ∗= 0.3;
x += 0.4∗ y;
return 0.2 ∗ x ∗ x + 0.5 ∗ y ∗ y;

}
};
TheSurface F;
void Scene: :Init( )
{

F.Def( LightYellow, 30, 30, −12, 12, −7, 7 ) ;
F.PrepareContour( ) ;

}
void Scene: :Draw( )
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{
F.WireFrame( Black, 6, 6, MEDIUM ) ;
F.Contour( Black, MEDIUM ) ;
F.Shade( SMOOTH, REFLECTING ) ;
F.ShadeSolidBlockUnderGraph( LightGray, 0 ) ;

}

FIGURE 6.13. A function graph (compare sample code).

class HelicalSurface; → declaration in "revol.h"

Describes a helical surface with axis z. Derived from ParamSurface.

Definition:

void Def( Color c, Real param, int rot number, Spline3d &k,
Real w1, Real w2 ) ;

// The surface is swept by the spline curve k that undergoes
// a helical motion with parameter param and axis z.
// w1 and w2 are the parameter limits (screw angles in degrees).

Sample code for better understanding :

#include "opengeom.h"
#include "defaults3d.h"

HelicalSurface Surf;

void Scene: :Init( )
{

Coord3dArray points = // some points on the generating line
{
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{ 0, 5, 0 },{ 0, 3, 2 }, { 0, 1, 0 }, { 0, 3, −2 }
};
CubicSpline3d m;
m.Def( Red, 4, points, 10 ) ;
const Real H = 6, parameter = H / ( 2 ∗ PI ) ;
Surf.Def( Green, parameter, 200, m, −360, 270 ) ;
Surf.PrepareContour( ) ;

}
void Scene: :Draw( )
{

Zaxis.Draw( Black, −8, 7, THICK ) ;
Surf.Shade( SMOOTH, REFLECTING ) ;
Surf.DrawBorderLines( Black, MEDIUM ) ;
Surf.Contour( Black, MEDIUM ) ;

}

FIGURE 6.14. A helical surface (compare sample code).

class L3d; → declaration in "lines3d.h"

Describes a line (arbitrary polygon) in 3D. Derived from O3d. Equipped
with a number of very powerful methods. Base class for other frequently
used classes (ParamCurve3d, PathCurve3d).

Constructors:

L3d( ) // Default constructor.
L3d( Color f, int numOfPoints )
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// Specify color and number of points.
L3d( Color f, int N, Coord3dArray P)

// Specify color coordinates of points.

Drawing methods:
void Draw( ThinOrThick thick, Real offset = STD OFFSET,

Real max dist of 2 points = −1 ) ;
// Standard drawing method. For max dist of 2 points > 0 a line
// segment is only drawn, when the two adjacent points have a
// smaller distance. This is useful for the drawing of curves with
// points at infinity.

void LineDotted( int n, ThinOrThick thick,
Real offset = STD OFFSET ) ;

// Draw curve line−dotted with n segments.
void DrawPartInsideCircle( const P3d &M, Real rad,

ThinOrThick style, Real offset ) ;
// Draw only part inside circle with center M and radius rad.

void Draw2d( ThinOrThick thick) ;
// Draw the curve in 2D only (ignoring z-coordinates).

void DrawUprightProjCylinder( Real z min, Color lineColor,
ThinOrThick lineStyle, Color surfColor, Boolean shade ) ;

// Method for drawing and shading the projection cylinder
// (cylinder through line with z-parallel rulings).

Methods:
void RotateIntoPlane( const Plane &e, const StrL3d &a,

Boolean curve is plane = false ) ;
// Rotate all element points about the axis a into the plane e.

Plane CarrierPlane( ) ;
// Return the carrier plane of the line (only for plane lines).

Boolean TangentsFromPoint( P3d P, L3d &k ) ;
// Try to find tangents of the line through P. The points of
// tangency are stored in k (only if P and all line elements lie
// in a common plane).

Plane OsculatingPlane( int i ) ;
// Approximate the osculating plane in point with index i.

V3d ApproxTangentVector( int i ) ;
// Approximate the tangent vector in point with index i.

StrL3d ApproxTangent( int i ) ;
// Approximate the tangent in point with index i.

Boolean isClosed( Real tol = 0 ) // Checks whether line is closed
Real Length( ) ; // Return length of line (polygon).
Real ArcLength( int i1, int i2 ) ;

// Return length of line between points with indices i1 and i2.
void SmoothTo( int n, Spline3d &k ) ;

// Compute a spline with n points that interpolates the line.
void DrawPartInsideCircle( const P3d &M, Real rad,

ThinOrThick style, Real offset ) ;
// Draw part inside circle with center M and radius rad.

int SectionWithPlane( const Plane &e, O3d &S ) ;
// Compute the intersection points of the line with the plane e
// and stores them in the O3d object S.
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Sample code for better understanding :

// Compare "smooth spline.cpp" and Figure 6.15.
// Note that we deal with 3D objects but draw in 2D!
L3d Line;
CubicSpline3d Spline;
Coord3dArray P = { { −1, 0, 0 }, { 0, −1.41, 0 },

{ 2, 0, 0 }, { 0, 2.82, 0 }, { −4, 0, 0 }, { 0, −5.64, 0 } };
Line.Def( Black, 6, P ) ;
Line.SmoothTo( 100, Spline ) ;
Spline.ChangeColor( Red ) ;
ShowAxes2d( Gray, 7, 6 ) ;
Line.Draw( MEDIUM ) ;
Spline.Draw( THICK ) ;

FIGURE 6.15. A 2D polygon (object of type L3d) is interpolated by a spline curve.

class NUBS3d; → declaration in "nurbs.h"

Describes an integral B-spline curve in 3D by a control polygon and a
knot vector. The curve points are computed by means of the Cox–De
Boor algorithm. We provide methods for defining and displaying the
curve. Dynamic memory allocation is handled internally. The base class
is ParamCurve3d.
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Constructors:
NUBS3d( ) { T = A = NULL; D = E = NULL; }
// Set all pointers to NULL. T is the knot vector, D the control
// polygon. A and E are used for internal computations.

Definition:
void Def( Color c, int size, int knum, Real K [ ], int pnum, P3d P [ ]) ;
void Def( Color c, int size, int pnum, P2d P [ ], int continuity,

Boolean closed = false ) ;

The first defining method allows the user to set the knot vector as well
as the control points according to her/his wishes. The second method
sets the knot vectors automatically in order to ensure Ck-continuity
(k = continuity). Furthermore, the user can choose between open and
closed B-splines.

Frequently used methods and operators:
virtual P3d CurvePoint( Real u ) { return DeBoor( u ) ; }

// Overwrite the CurvePoint(. . . ) function of ParamCurve3d.
void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot( int i ) {return T [i]; };
P2d GetControlPoint( int i ) { return D [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }

Sample code for better understanding :

NUBS3d Spline;

const int number of control points = 5;

P3d Point [number of control points];
Point [ 0].Def( −10, 0, 0 ) ;
Point [ 1].Def( −6, 6, 5 ) ;
Point [ 2].Def( −2, 0, 0 ) ;
Point [ 3].Def( −2, −6, 5 ) ;
Point [ 4].Def( −5, −6, 0 ) ;

const int total size = 49;
const int continuity class = 2;

// create a closed spline curve
Spline.Def( Black, total size, number of control points,

Point, continuity class, true ) ;

Spline.Draw( THICK ) ;
Spline.DrawControlPolygon( Blue, THIN ) ;
Spline.MarkControlPoints( Blue, 0.2, 0.1 ) ;
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class NUBS Surf; → declaration in "nurbs.h"

Describes an integral B-spline surface by a control net and two knot
vectors. The curve points are computed by means of the Cox–De Boor
algorithm. We provide methods for defining and displaying the surface.
Dynamic memory allocation is handled internally. The base class is
ParamSurface.

Constructors:

NUBS Surf( ) { T1 = T2 = A1 = A2 = NULL; D = NULL;
E1 = E2 = NULL; }

// Set all pointers to NULL. T1 and T2 are the knot vectors.
// D is the control net. The remaining pointers are used for
// internal computations.

Definition:

void Def( Color c, int size1, int size2, int knum1, Real K1 [ ],
int knum2, Real K2 [ ], int pnum1, int pnum2, P3d ∗∗P ) ;

void Def( Color c, int size1, int size2, int pnum1, int pnum2,
P3d ∗∗P, int continuity1, int continuity2,
Boolean closed1 = false, Boolean closed2 = false ) ;

The first defining method allows the user to set the knot vectors as
well as the control net according to her/his wishes. The second method
sets the knot vectors automatically in order to ensure Cki-continuity
(k1 = continuity 1, k2 = continuity 2) of the u- and v-parameter lines,
respectively. Furthermore, the user can choose between open and closed
B-splines in both parameter directions.

Frequently used methods and operators:

virtual P3d SurfacePoint( Real u, Real v ) { return DeBoor( u, v ) ; }
// Overwrite the SurfacePoint(. . . ) function of ParamSurface.

void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot1( int i ) { return T1 [i]; };
Real GetKnot2( int i ) { return T2 [i]; };
P3d GetControlPoint( int i, int j ) { return D [i] [j]; };
int GetKnotNum1( ) { return M1; }
int GetKnotNum2( ) { return M2; }
int GetPointNum1( ) { return N1; }
int GetPointNum2( ) { return N2; }
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Sample code for better understanding :

NUBS Surf Surf;
int pnum1 = 5, pnum2 = 7; // dimension of control nets
P3d ∗∗P = NULL;
ALLOC 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;
int i, j;
for ( i = 0; i < pnum1; i++ )

for ( j = 0; j < pnum2; j++ )
{

P [i] [j].Def( 3, 0, 0 ) ;
P [i] [j].Rotate( Yaxis, i ∗ 360.0 / pnum1 ) ;
P [i] [j].Translate( 10, 0, 0 ) ;
P [i] [j].Rotate( Zaxis, j ∗ 360.0 / pnum2 ) ;

}
// create a spline surface that is closed in one parameter direction
Boolean close u = true;
Boolean close v = false;
Surf.Def( Yellow, 50, 50, pnum1, pnum2, P, 3, 3, close u, close v ) ;
FREE 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;

Surf.Shade( SMOOTH, REFLECTING ) ;
Surf.DrawControlPolygon( Black, MEDIUM ) ;
Surf.MarkControlPoints( Black, 0.25, 0.15 ) ;

class NURBS3d; → declaration in "nurbs.h"

Describes a rational B-spline curve in 3D by a control polygon, an
array of weights and a knot vector. The curve points are computed by
applying the Cox–De Boor algorithm in 4D. We provide methods
for defining and displaying the curve. Dynamic memory allocation is
handled internally. The base class is ParamCurve3d.

Constructors:

NURBS3d( ) { T = A = W = X = NULL; D = E = NULL; }
// Set all pointers to NULL. T is the knot vector, D the control
// polygon. A and E are used for internal computations.

Definition:

void Def( Color c, int size, int knum, Real K [ ], int pnum, P2d P [ ],
Real weight [ ] ) ;

void Def( Color c, int size, int pnum, P2d P [ ], Real weight [ ],
int continuity, Boolean closed = false ) ;

The first defining method allows the user to set the knot vector as well
as the control points according to her/his wishes. The second method
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sets the knot vectors automatically in order to ensure Ck-continuity
(k = continuity). Furthermore, the user can choose between open and
closed B-splines.

Frequently used methods and operators:

virtual P2d CurvePoint( Real u ) { return DeBoor( u ) ; }
// Overwrite the CurvePoint(. . . ) function of ParamCurve3d.

void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot( int i ) {return T [i]; };
P2d GetControlPoint( int i ) { return D [i]; };
Real GetWeight( int i ) { return W [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }

Sample code for better understanding :

NURBS3d Spline;

const int number of control points = 5;

P3d Point [number of control points];
Point [ 0].Def( −10, 0, 0 ) ;
Point [ 1].Def( −6, 6, 5 ) ;
Point [ 2].Def( −2, 0, 0 ) ;
Point [ 3].Def( −2, −6, 5 ) ;
Point [ 4].Def( −5, −6, 0 ) ;

Real weight [number of control points];
int i;
for ( i = 0; i < number of control points; i++ )

weight [i] = 1;
weight [ 3] = 3;

const int total size = 49;
const int continuity class = 3;

Spline.Def( Black, total size, number of control points,
Point, weight, continuity class ) ;

Spline.Draw( THICK ) ;
Spline.DrawControlPolygon( Blue, THIN ) ;
Spline.MarkControlPoints( Blue, 0.2, 0.1 ) ;
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class NURBS Surf; → declaration in "nurbs.h"

Describes a rational B-spline surface by a control net, a 2D array of
weights and two knot vectors. The curve points are computed by means
of the Cox–De Boor algorithm. We provide methods for defining and
displaying the surface. Dynamic memory allocation is handled inter-
nally. The base class is ParamSurface.

Constructors:

NURBS Surf( ) { T1 = T2 = A1 = A2 = NULL; W = NULL;
D = NULL; E1 = E2 = NULL; }

// Set all pointers to NULL. T1 and T2 are the knot vectors, D is the
// control net, W the knot vector. The remaining pointers are used
// for internal computations.

Definition:

void Def( Color c, int size1, int size2, int knum1, Real K1 [ ],
int knum2, Real K2 [ ], int pnum1, int pnum2,
P3d ∗∗P, Real ∗∗Weight ) ;

void Def( Color c, int size1, int size2, int pnum1, int pnum2,
P3d ∗∗P, Real ∗∗Weight, int continuity1, int continuity2,
Boolean closed1 = false, Boolean closed2 = false ) ;

The first defining method allows the user to set the knot vectors as
well as the control net and the weights according to her/his wishes.
The second method sets the knot vectors automatically in order to
ensure Cki-continuity (k1 = continuity1, k2 = continuity2) of the u-
and v-parameter lines, respectively. Furthermore, the user can choose
between open and closed B-splines in both parameter directions.

Frequently used methods and operators:

virtual P3d SurfacePoint( Real u, Real v ) { return DeBoor( u, v ) ; }
// Overwrite the SurfacePoint function of ParamSurface.

void MarkControlPoints( Color c, Real rad1, Real rad0 = 0 ) ;
void DrawControlPolygon( Color c, ThinOrThick style ) ;
Real GetKnot1( int i ) { return T1 [i]; };
Real GetKnot2( int i ) { return T2 [i]; };
P3d GetControlPoint( int i, int j ) { return D [i] [j]; };
int GetKnotNum1( ) { return M1; }
int GetKnotNum2( ) { return M2; }
int GetPointNum1( ) { return N1; }
int GetPointNum2( ) { return N2; }
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Sample code for better understanding :

NURBS Surf Surf;
int pnum1 = 5, pnum2 = 7; // dimension of control nets
P3d ∗∗P = NULL;
Real ∗∗Weight = NULL;
ALLOC 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;
ALLOC 2D ARRAY( Real, Weight, pnum1, pnum2, "Weight" ) ;
int i, j;
for ( i = 0; i < pnum1; i++ )

for ( j = 0; j < pnum2; j++ )
{

P [i] [j].Def( 3, 0, 0 ) ;
P [i] [j].Rotate( Yaxis, i ∗ 360.0 / pnum1 ) ;
P [i] [j].Translate( 10, 0, 0 ) ;
P [i] [j].Rotate( Zaxis, j ∗ 360.0 / pnum2 ) ;
Weight [i] [j] = 1;

}
Weight [ 4] [ 4] = 10;
// create a spline surface that is closed in one parameter direction
Boolean close u = true;
Boolean close v = false;
Surf.Def( Yellow, 50, 50, pnum1, pnum2, P, Weight,

3, 3, close u, close v ) ;
FREE 2D ARRAY( P3d, P, pnum1, pnum2, "P" ) ;

Surf.Shade( SMOOTH, REFLECTING ) ;
Surf.DrawControlPolygon( Black, MEDIUM ) ;
Surf.MarkControlPoints( Black, 0.25, 0.15 ) ;
Surf.GetControlPoint( 4, 4 ).Mark( Red, 0.3 ) ;

class O3d; → declaration in "o3d.h"

Describes a conglomerate of points in 3-space. Derived from O23d and
Prop3d.

Constructors:

O3d( ) // Default constructor.
O3d( Color f, int n ) // Specify color and size.

Definition:

void Def( Color f, int n )
void Def( Color f, int n, Coord3dArray P)
void SameAs( O3d ∗obj ) ;
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Geometric transformations (apply to all objects derived from O3d!):

void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &v ) { Translate( v.x, v.y, v.z ) ; }
void Scale( Real kx, Real ky = 0, Real kz = 0 ) ;
void Rotate( const StrL3d &a, Real w ) ;
void Rotate( const RotMatrix &matrix ) ;

// Define rotation via matrix.
void Screw( const StrL3d &a, Real angle, Real parameter ) ;
void Screw( const HelicalMotion &S ) ;
void MoveGenerally( Real dx, Real dy, Real dz, Real rot1, Real rot2 ) ;

// Rotates the object through rot1◦ about the x-axis, through
// rot2◦ about the z-axis and translates it by the vector (dx, dy, dz)
// (in that order!).

void Reflect( const Plane &e ) ;
void Reflect( const P3d &Center ) ;
void Inversion( const Sphere &sphere ) ;

// Inverts object on sphere.
void FitIntoSphere( Real radius ) ;
void FitIntoSphere( Real radius, P3d &center, Real &scale factor ) ;

// A sometimes useful routine when you import data
// from other systems like 3D Studio Max or Cad3D.

Manipulating the element points :

void SetPoint( int i, Real x0, Real y0, Real z0 ) ;
void AssignVertices( Coord3dArray koord ) ;
P3d GetPoint( int i ) const

class O3dGroup; → declaration in "groups.h"

It is possible to combine several objects of type O3d into an object
group O3dGroup. This is convenient for the creation of a scene that is
made up from different more or less identical subscenes.

Constructors:

O3dGroup( int N = 0 ) ; // N is the number of elements.

Operators:

O3d ∗ operator [ ] ( int i ) ;
// Return an O3d pointer to the i-th element.

Methods:

void Def( int N ) ; // Work with N elements.
int N( ) { return n;} // Return the number of elements.

void AddMember( int i, O3d &obj,
TypeOfObject type = OG DEFAULT OBJECT ) ;
// Add a new object O3d.

void AddChild( int i, O3dGroup &obj ) ; // Add another object group.
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void Elem( int i, int j, Real x, Real y, Real z ) ;
// Set the coordinates of the j-th point of the i-th object.

// Geometric transformations.
void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &v ) { Translate( v.x, v.y, v.z ) ; }
void Scale( Real kx, Real ky, Real kz ) ;
void Scale( Real k ) ;
void Rotate( const StrL3d &a, Real w ) ;
void Screw( const StrL3d &a, Real angle, Real parameter ) ;
void Screw( const HelicalMotion &S ) ;

FIGURE 6.16. An example for the use of O3dGroup can be found in "glider.cpp":
Two gliders are looping the loop and casting shadows on the ground.

class P3d; → declaration in "points.h"

Describes a 3D point (x, y, z). Inherits the methods and operators of
P2d and thus also those of V23d, V2d, V3d, and P23d.

Constructors:

P3d( ) ; // Default constructor; no initialization.
P3d( Real x0, Real y0, Real z0 ) ; // Initialization with (x0, y0, z0).
P3d( V3d &v ) ; // Initialization with a 3D vector.

Additional operators :

inline friend P3d operator + ( const P3d &v, const V3d &w ) ;
inline friend P3d operator + ( const P3d &v, const P3d &w ) ;
inline friend P3d operator + ( const P3d &v, const V2d &w ) ;
inline friend P3d operator − ( const P3d &v, const V3d &w ) ;
inline friend P3d operator − ( const P3d &v, const P3d &w )
inline friend P3d operator ∗ ( const Real t, const P3d &v ) ;



Section 6.2. Useful 3D Classes and Their Methods 505

// Compatibility with the related classes:
P3d & operator = ( const P3d &P ) ;
P3d & operator = ( const P2d &P ) ;
P3d operator = ( const V3d &v ) ;

Additional methods :

void Def( Real x0, Real y0, Real z0 ) ;
void Def( Vector v ) ;

// Two kinds of assigning values to the coordinates.
void Rotate( ) ;

// Apply a predefined 3D rotation (see Rotation3d)
// in order to speed up the code.

void Rotate( const StrL3d &axis, Real angle in deg ) ;
// Rotate the point about an oriented straight line (the axis)
// through the given angle in degrees.

void Screw( const StrL3d &axis, Real angle in deg, Real parameter ) ;
// Apply a helical motion, given by the axis and parameter.

void Screw( const HelicalMotion &S ) ;
// Apply a “screw motion” (helical motion).

void Translate( Real dx, Real dy, Real dz ) ;
// Translate point by means of the vector (dx, dy, dz).

void Translate( const V3d &v ) ;
// Translate point by means of the vector v.

void Scale( Real kx, Real ky, Real kz )
// Apply extended scaling (affine transformation).

P23d Image( ) const;
// Return the intersection point of the projection
// ray with “the image plane”, i.e., a plane orthogonal
// to the main projection ray (and coinciding with the
// target point of the projection).

P3d ReflectedPoint( const Plane &e ) const;
// Return reflection of the point on the plane.

P3d ∗ ClosestPoint( O3d &obj, int &idx, Real &dmin ) ;
// Return the point of obj that is closest to the point.
// Store its index in idx and the minimal distance in dmin.

P3d ∗ ClosestPoint( O3d &obj ) ;
// Return the point of obj that is closest to the point.

void Reflect( const Plane &e ) ;
// Reflect the point on the plane.

void Reflect( const P3d &P ) ;
// Reflect the point on another point.

void MoveGenerally( Real dx, Real dy, Real dz, Real rot1, Real rot2 ) ;
// Apply a translation by (dx, dy, dz) and two rotations.
// The first rotation has axis Xaxis and angle of rotation rot1;
// the second rotation has axis Zaxis and angle of rotation rot2.

Boolean IsInPlane( const Plane &e, Real tol = 1e−4 ) const;
// Check whether the point coincides with the plane
// (default tolerance 1e − 4).

Real DistFromPlane( const Plane &e ) const;
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// Return the oriented distance from the plane.
Real Dist2( P3d &P) const;

// Return the square of the distance to a point.
// Sometimes, this helps to speed up code, since no
// sqrt(. . . ) is needed.

Real Dist in xy projection( P3d &P) const;
// Return the distance to another space point in a top view.

P3d Center( P3d &P) const;
// Midpoint between the point and another point P.

Boolean Collinear( const P3d &P, const P3d &Q,
Real tol = 1e−4 ) const;
// Check whether the point coincides with the straight line PQ
// (default tolerance 1e−4).

void Mark( Color col, Real r1, Real r2 = 0, int Dim = 3 ) const;
// Mark a point in space by means of two circles:
// Outer circle: Radius r1, color col
// Inner circle: Radius r2 (default is 0), color = background color
// The circles are interpreted three-dimensionally!

void MarkPixel( Color col ) const;
// Plot a pixel at the image of the point (see Image( ) )

void AttachString( Color col, Real dx, Real dy, char ∗ text ) const;
// Attach a string to the point (at the “Image” plus a
// 2D vector (dx, dy) in the “image plane”).

void Inversion( const Sphere &sphere ) ;
// Invert the point at a given sphere (see class Sphere).

inline P3d Mid( const P3d &P )
// Inline version of Center( ).

class ParamCurve3d; → declaration in "lines3d.h"

An abstract class for a smooth 3D curve, defined by a parametric rep-
resentation. Derived from O3d and L3d. In order to define a specific
curve, the user has to derive an additional class from this class!

Definition:
void Def ( Color col, int n, Real umin, Real umax ) ;
// umin and umax are the parameter limits for the curve.
// The program will calculate n points on the curve, corresponding
// to evenly distributed parameter values in between.

Additional member variables and methods :
Real u1, u2; // Parameter limits.
virtual P3d CurvePoint( Real u ) = 0; // dummy
virtual V3d TangentVector( Real u ) ;
virtual StrL3d Tangent( Real u ) ;
virtual void GetOsculatingCircle( Real u, Color col,

int numPoints, Circ3d &osc circ ) ;
// Define the osculating circle at parameter u; it will be
// approximated by a regular polygon with numPoints points.
virtual Real ArcLength( Real u1, Real u2, int accuracy = 300 ) ;
// Return the arc length

∫ u2

u1

√
ẋ2 + ẏ2 + ż2 du.

// By default, the curve is interpolated by a 300-sided polygon.
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Sample code for better understanding :

// Compare file "USER/TEMPLETS/paramcurve3d.cpp"!

class MyCurve: public ParamCurve3d
{
public:

P3d CurvePoint( Real u )
{

const Real r = 3, h = r / 6;
return P3d( r ∗ cos( u ), r ∗ sin( u ), h ∗ Tan( u / 2 ) ) ;

}
};
MyCurve CubicCircle;
void Scene: :Init( )
{

int number of points = 101;
Real param1 = −3, param2 = −param1;
CubicCircle.Def( Black, number of points, param1, param2 ) ;

}
void Scene: :Draw( )
{

CubicCircle.Draw( THICK ) ;
Real u0 = 0;
CubicCircle.Tangent( u0 ).Draw( Black, −5, 5, THIN ) ;
Circ3d osc circ;
CubicCircle.GetOsculatingCircle( u0, PureRed, 200, osc circ ) ;
osc circ.Draw( THIN ) ;
CubicCircle.CurvePoint( u0 ).Mark( Red, 0.2, 0.1 ) ;

}

class ParamSurface; → declaration in "paramsurface.h"

ParamSurface is one of the most powerful Open Geometry classes.
It provides a list of methods to perform a number of simple and ad-
vanced tasks with surfaces described by parameterized equations. Large
parts of Section 3.3 are dedicated to this class. Note that ParamSur-
face is an abstract class. That is, in order to use it, you have to derive
a class of your own from it. Several special surface classes (Function-
Graph, SurfWithThickness, PathSurface, SurfOfRevol, HelicalSurface,
RuledSurface) are derived from ParamSurface.

Definition:

void Def( Color f, int m1, int m2,
Real umin, Real umax, Real vmin, Real vmax ) ;

// m1 is the number of v-lines (u = const.),
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// m2 is the number of u-lines (v = const.),
// parameter range: [umin, umax] × [vmin, vmax].
// You have to implement SurfacePoint(. . . )!

void Def( Color f, int m, Real vmin, Real vmax, L3d &k ) ;
// Sweeping of a 3D curve k (m positions).
// You have to implement SweepFunction(. . . )!

Public member variables:

int n1, n2; // Number of facets in u- and v-direction.
Real u1, u2, v1, v2; // Parameter limits.
StrL3d axis; // Some surfaces have an axis (default: z-axis).

Methods for shading and drawing :

void Shade( FlatOrSmooth smooth, Shininess reflecting,
FaceMode modus = ALL FACES, Boolean border lines = false ) ;

// Principal shading method.
// Possible values for smooth: FLAT, SMOOTH,
// possible values for reflecting: MATTE, REFLECTING,
// VERY REFLECTING, SUPER REFLECTING,
// possible values for modus: ALL FACES, ONLY BACKFACES,
// ONLY FRONTFACES.

void ULines( Color c, int n, ThinOrThick style,
Real offset = STD OFFSET ) ;

// Plot approx. n u-lines. The actual number depends on the
// number n2 of surface facets in u-direction as specified in
// Def(. . . ). offset can be used to improve z-buffering.

void VLines( Color c, int n, ThinOrThick style,
Real offset = STD OFFSET ) ;

// Analogous to ULines(. . . ) but in v-direction.
void GetULine( L3d &uline, const Real v0,

Color col = Black, int size = 0 ) ;
// Calculate a specific u-line (v = v0) which is to be passed as
// first parameter. Color and size can be chosen, but default values
// are provided. size = 0 will result in the standard number of
// points in u-direction as specified in Def(. . . ) and returned by
// NumOfULines( ).

void GetVLine( L3d &vline, const Real u0,
Color col = Black, int size = 0 ) ;

// Compare GetULine(. . . ).
int NumOfULines( ) // Return the number of u-lines.
int NumOfVLines( ) // Return the number of v-lines.
void WireFrame( Color c, int n1 = 0, int n2 = 0,

ThinOrThick style = THIN, Real offset = STD OFFSET ) ;
// Analogous to ULines(. . . ) but in both, u- and v-directions.

void DrawBorderLines( Color col, ThinOrThick style,
Boolean b1 = true, Boolean b2 = true,
Real offset = STD OFFSET ) ;

// Draw only the bordering u-lines (if u lines is true) and the
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// bordering v-lines (if v lines is true).
void Contour( Color f, ThinOrThick style, Real offset = 1e-3 ) ;

// Draw the outline (silhouette). Requires the calling of
// PrepareContour( ) in Init( ).

void PrepareContour( ) ;
// Prepare the contour. Has to be called only once in Init( ).

Methods from differential geometry :

V3d NormalVector( Real u, Real v ) ;
// Returns normalized normal vector.

StrL3d Normal( Real u, Real v ) ; // Returns surface normal.
Plane TangentPlane( Real u, Real v ) ; // Returns tangent plane.
virtual int GetIndicatrix( Conic3d &conic, Real u, Real v,

Real scale = 1, int num of points = 120 ) ;
// Computes Dupin indicatrix and stores it in conic.

Intersection methods :

void SectionWithSurface( ComplexL3d &s,
ParamSurface &other,
Boolean show surfaces = false ) ;

// Intersect two parameterized surfaces. The intersection curve may
// consist of several branches. Therefore, it is stored in an instance
// s of the class ComplexL3d. If the last argument is true, a wire frame
// model of both surfaces will be drawn in black and red. This is useful
// for testing the solution but not for drawing or shading the surfaces.
void GetSelfIntersection( ComplexL3d &s,

char uv, // split either in u or v direction.
Real t1, Real t2, Real t3, Real t4, // must be sorted: t1<t2<t3<t4
int accuracy = 20,
Boolean show surfaces = false ) ;

// Method to compute a possible self-intersection of the surface.
// The self-intersecion is stored in the ComplexL3d object s. It may
// consist of several branches. In order to calculate it, you must split
// the surface either in u-direction (uv=’u’) or v-direction (uv=’v’).
// t1,. . . , t4 give the parameter limits for the two surface parts. The
// self-intersection of these two parts will be computed. accuracy allows
// you to set an accuracy limit, while show surfaces = true will draw
// the two surface parts in different colors. This is intended for a quick
// testing of the split parameters t1,. . . , t4.
void GetSelfIntersection( ComplexL3d &s,

int n1, int n2, int n3, int n4, // must be sorted: n1 <. . .<n4
Boolean show surfaces = false ) ;

// Similar to preceding method. Instead of the parameter limits
// the indices of surface facets are passed as arguments.
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Sample code for better understanding :

// Compare "klein bottle.cpp"!

#include "opengeom.h"
#include "defaults3d.h"

class KleinBottle: public ParamSurface
{
public:

P3d SurfacePoint( Real u, Real v )
{

Real r = 5 ∗( 1 − cos( u ) / 2 ) ;
Real x, y, z;
const Real a = 4, b = 15;
if ( u < PI )
{

x = a ∗ cos( u ) ∗ ( 1 + sin( u ) ) + r ∗ cos( u ) ∗ cos( v ) ;
y = b ∗ sin( u ) + r ∗ sin( u ) ∗ cos( v ) ;

}
else
{

x = a ∗ cos( u ) ∗ ( 1 + sin( u ) )
− r ∗ ( 1 − (u − 2 ∗ PI ) ∗ ( u − PI ) / 10 ) ∗ cos( v ) ;

y = b ∗ sin( u ) ;
}
z = r ∗ sin( v ) ;
const Real k = 0.5;
return P3d( k ∗ x, k ∗ z, − k ∗ y ) ;

}
};

KleinBottle Bottle;
ComplexL3d SelfIntersection;

void Scene: :Init( )
{

int n rot circ = 61, n parallel circ = 61;
Real u1 = 0, u2 = u1 + 2 ∗ PI;
Real v1 = −PI, v2 = v1 + 2 ∗ PI;
Bottle.Def( Green, n rot circ, n parallel circ, u1, u2, v1, v2 ) ;
Bottle.PrepareContour( ) ;
ChangePScriptLineWidth( 0.5 ) ;

}

void Scene: :Draw( )
{

Bottle.GetSelfIntersection( SelfIntersection,
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//’u’, 2.5, 4, 4.2, 6.5, 10, true ) ;
’u’, 3, 4, 4.2, 6.5, 10, true ) ; // only part of the curve

return;
SelfIntersection.Draw( Black, THICK, 1e−3 ) ;
// First, the bottle is shaded and equipped with
// contour-lines and parameter lines as usual.
Bottle.Shade( SMOOTH, SUPER REFLECTING ) ;
Bottle.Contour( Black, MEDIUM ) ;
Bottle.WireFrame( Black, 30, 30, THIN ) ;
// Second, we redraw the surface transparently
// (z-buffer deactivated)
SetOpacity( 0.1 ) ;
TheCamera.Zbuffer( false ) ;
Bottle.Shade( SMOOTH, REFLECTING ) ;
Bottle.Contour( Black, THIN ) ;
Bottle.WireFrame( Gray, 12, 12, THIN ) ;
Bottle.ULines( Black, 2, MEDIUM ) ;
// reset defaults
SetOpacity( 1.0 ) ;
TheCamera.Zbuffer( true ) ;

}

Geometric transformations:

void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &v )
void Scale( Real kx, Real ky = 0, Real kz = 0 ) ;
void Rotate( const StrL3d &a, Real w ) ;
void Reflect( const Plane &p ) ;
void Reflect( const P3d &P ) ;
void Screw( const StrL3d &a, Real angle, Real parameter ) ;
void Screw( const HelicalMotion &S ) ;

Purely virtual functions:

virtual P3d SurfacePoint( Real u, Real v ) ; // Purely virtual!
// When you derive a new class from ParamSurface you have to
// implement this function when working with parametric equations.

virtual P3d SweepFunction( Real v, P3d P) ; // Purely virtual!
// When you derive a new class from ParamSurface and you want
// to define the surface as a swept surface, you have to implement
// this virtual function.

class PathCurve3d; → declaration in "lines3d.h"

A curve of unknown size. Derived from O3d and L3d. Usually used for
the determination of path curves during kinematic motions or anima-
tions (compare "torus curves1.cpp" and "torus curves2.cpp").
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Constructors and Definition:

PathCurve3d( Color c = Gray, int max points = 500,
Real critical distance = 0 ) ;

void Def( Color c, int max points, Real critical distance = 0 ) ;
// Allows max points on the path curve. Path will be
// considerd to be “closed” when the first and last points have a
// distance less than critical distance.

Additional methods :

void AddPoint( const P3d &P ) ;
// Add point P to the curve.

class Plane; → declaration in "plane.h"

Describes an oriented plane in 3-space. Besides various constructors, op-
erators, and defining methods, the class is equipped with diverse meth-
ods concerning incidence relations and metric properties. Base class.

Constructors:

Plane( ) { } // Default constructor.
Plane( const P3d &P, const P3d &Q, const P3d &R )

// Three noncollinear points determine a plane.
Plane( const P3d &P, const V3d &n )

// Point plus normal vector.
Plane( const P3d &P, const StrL3d &g )

// Point plus noncoinciding straight line.
Plane( const Rod3d &PQ ) { Def( PQ ) ; }

// The plane is defined as symmetry plane of a rod.

Definition:

void Def( const P3d &P, const P3d &Q, const P3d &R ) ;
void Def( const P3d &P, const V3d &n ) ;
void Def( const P3d &P, const StrL3d &g ) ;
void Def( const Rod3d &PQ ) ;

Operators:

Plane & operator = ( const Plane &p ) ;
// Generate two identical planes

friend P3d operator ∗ ( const Plane &e, const StrL3d &g ) ;
// Intersection of plane and straight line.

friend StrL3d operator ∗ ( const Plane &e, const Plane &f ) ;
// Intersection of two planes.

Frequently used methods:

Real OrientedDistance( const P3d &P) const;
// Return the oriented distance of a point from the plane.

Real Angle( const Plane &e ) const;
// Return the angle between two planes (in arc length!).
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Real AngleInDeg( const Plane &e ) const
// Return the angle between two planes (degrees!).

P3d NormalProj( const P3d &P) const;
// Return the normal projection of a point onto the plane.

void Translate( const V3d &v ) ;
// Translate the plane.

void Rotate( const StrL3d &a, const Real w ) ;
// Rotate the plane.

P3d GetPoint( ) const { return point; }
// Return a point of the plane.

Boolean SectionWithStraightLine( const StrL3d &g,
P3d &S, Real &t ) const;
// Similar to the ∗ operator, but more detailed.

Boolean SectionWithPlane( const Plane &p, StrL3d &s ) const;
// Intersect two planes and store result in s. Return false if
// the two planes are parallel.

Boolean SectionWithTwoOtherPlanes( const Plane &p1,
const Plane &p2, V3d &S ) const;
// Intersect three planes and store result in S. Return false if
// the three planes do not have a unique intersection point.

V3d n( ) const { return normal; }
// Return the normalized normal vector.

Real c( ) const { return constant; }
// Return the constant in equation px + qy + ry = c of plane.

Boolean CarrierPlane( PO3d &o, Real tol = 0 ) const;
// Return the carrier plane of a conglomerate of 3D points.

Real z val( Real x, Real y ) ;
// Project the point (x, y, 0) in z-direction onto the plane and
// returns its z-coordinate.

class Poly3d; → declaration in "poly3d.h"

Closed, convex polygon in 3-space. Derived from O3d. Parent class for
many other 3D classes (RegPoly3d, Rect3d, Circ3d,. . . ). For nonconvex
polygons use the class ComplexPoly3d.

Constructors:

Poly3d( ) { Texture = NULL; interiorAngle = 360; }
Poly3d( Color col, int numOfPoints, FilledOrNot filled = EMPTY )
Poly3d( Color col, int numOfPoints, Coord3dArray points,

FilledOrNot filled = EMPTY )

Definition:

void Def( Color col, int numOfPoints, FilledOrNot filled = EMPTY ) ;
void Def( Color col, int numOfPoints, Coord3dArray points,

FilledOrNot filled = EMPTY ) ;

Methods and operators :

void Draw( ThinOrThick thick, Real offset = STD OFFSET) ;
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// Draw the outline.
void Shade( ) ;

// Plot the filled polygon.
void ShadeWithContour( Color col, ThinOrThick thick,

Real offset = STD OFFSET, Real alpha value = 1 ) ;
// A combination of Draw and Shade. Additionally, the color col
// of the outline can be specified.

void ShadeWithTexture( TextureMap &Map,
Real ScaleX = 1, Real ScaleY = 1,
Real RotAngleInDeg = 0,
Real TranslateX = 0, Real TranslateY = 0,
Boolean repeat = true ) ;

// Method to map a texture on the polygon (compare
// Section 4.4).

void ShadeTransparent( Color interior, Real opacity,
Color border, ThinOrThick style ) ;

// Shade the polygon with transparency and draw outline;
// colors for both interior and outline have to be specified.

V3d GetNormalizedNormal( void ) const;
// Return the normal vector of the supporting plane.

Boolean SectionWithOtherPoly3d( const Poly3d &poly,
P3d &S1, P3d &S2, Real min length = 1e−5 ) ;

// Compute the intersection line segment of two polygons.
// Start and end points of the line segment are stored in S1
// and S2, respectively.

class Polyhedron; → declaration in "polyhedron.h"

Derived from O3d, the class describes a 3D polyhedron in the sense
of [14], Section 7.4. Its internal representation in Open Geometry is
rather complex (lists of pointers to faces, vertices, loops, plus additional
information on the solid to be represented). Therefore, it is quite compli-
cated to define a polyhedron. Actually, there doesn’t even exist a simple
and direct Open Geometry defining method. However, some Open
Geometry classes provide methods such as TransformIntoPolyhedron( )
that automatically generate polyhedra.

Constructors:

Polyhedron( ) ; // Default constructor.

Methods:

void Def( Polyhedron &p ) ; // Define via other polyhedron p.

// Methods for drawing and shading
void WireFrame( int modus = 0 /∗ all edges ∗/,

Boolean RecalcEdges = false,
ThinOrThick linestyle = THIN,
Real offset = STD OFFSET ) ;
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void Shade( Color col, Boolean reflect = true ,
FaceMode modus = ALL FACES ) ;

void ShadeSmoothButKeepEdges( Color col, Boolean reflect = true ,
FaceMode modus = ALL FACES ) ;

// Shade smoothly only if facets intersect in a reasonably small
// angle 0.7 < Global.SmoothLimit < 0.99. The user can directly
// access and change this global variable (compare Figure 6.17).

void ShadeWithTexture( Color col, Boolean reflect, FaceMode modus,
TextureMap &map ) ;

void Contour( Color f, ThinOrThick thick, Real offset = 1e−3 ) ;

// Geometric transformations (overwrite methods of O3d) :
void Rotate( const StrL3d &a, Real w ) ;
void Rotate( const RotMatrix &matrix ) ;
void Reflect( const Plane &p ) ;
void Reflect( const P3d &c ) ;
void Scale( Real kx, Real ky, Real kz ) ;
void Scale ( Real k ) ;
void Translate( const V3d &t ) ;
void Translate( Real x, Real y, Real z ) ;

// Further useful methods:
int nFaces( ) ; // Return the number of faces.
void PlotShadow( /∗ const ∗/ Poly3d &plane, Real offset = 1e−2 ) ;
void PlotShadowOnHorizontalPlane( Color col, Real z ) ;
void GetMinMaxZ( Real &zmin, Real &zmax ) ;

// Calculate minimal and maximal z-coordinate of all vertices.

void SectionWithPlane( Plane &p, ComplexL3d &s ) ;
void SectionWithPolyhedron( ComplexL3d &sextion, Polyhedron &T,

Boolean show = false ) ;
// Calculate the intersection of two polyhedra and store them
// in s. If show is true, wire frame models of both polyhedra will
// be displayed.

void GetSelfIntersection( ComplexL3d &s,
int n1, int n2, int n3, int n4, // must be sorted: n1 <n2<n3<n4
Boolean show surfaces = false ) ;

// Method to compute a possible self-intersection of the polyhedron.
// The self-intersecion is stored in the ComplexL3d object s. It may
// consist of several branches. You have to specify the indices of the
// relevant facets of the polyhedron. If show surfaces = true, the
// corresponding parts of the polyhedron will be drawn in different
// colors. This is intended for a quick testing of the split
// indices n1,. . . , n4.

class Projectivity; → declaration in "proj geom.h"

This class consists of two classes of type ProjScale and provides methods
to deal with the projectivity between them. Note that some of the
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FIGURE 6.17. An ashtray (polyhedron converted from a Cad3D object) is shaded
with different smooth limits s. In case of s = 0.99 (top), all edges are visible. If s = 0.98
(middle), you can see some edges, while, in case of s = 0.94 (bottom), everything is
completely smooth except the intended sharp edges.

methods make sense only if the projective scales are of the right type.
Base class.

Constructors:

Projectivity( ) ; // Default constructor.

Definition:

void Def( ProjScale &InScale1, ProjScale &InScale2,
const Real eps = 1e−6, const Real infinity = 1e6 ) ;

// Cross ratios of absolute value eps or less will
// be treated as zero. Cross ratios of absolute value
// infinity will be set to infinity.

Methods and operators :

P3d MapPointToPoint( const P3d &A ) ;
StrL3d MapPointToLine( const P3d &A ) ;
Plane MapPointToPlane( const P3d &A ) ;
P3d MapLineToPoint( const StrL3d &a ) ;
StrL3d MapLineToLine( const StrL3d &a ) ;
Plane MapLineToPlane( const StrL3d &a ) ;
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P3d MapPlaneToPoint( const Plane &p ) ;
StrL3d MapPlaneToLine( const Plane &p ) ;
Plane MapPlaneToPlane( const Plane &p ) ;

// Nine methods to map elements of the first scale
// to elements of the second scale. The method to be
// used depends on the type of the projective scales.

P3d InvMapPointToPoint( const P3d &A ) ;
StrL3d InvMapPointToLine( const P3d &A ) ;
Plane InvMapPointToPlane( const P3d &A ) ;
P3d InvMapLineToPoint( const StrL3d &a ) ;
StrL3d InvMapLineToLine( const StrL3d &a ) ;
Plane InvMapLineToPlane( const StrL3d &a ) ;
P3d InvMapPlaneToPoint( const Plane &p ) ;
StrL3d InvMapPlaneToLine( const Plane &p ) ;
Plane InvMapPlaneToPlane( const Plane &p ) ;

// Nine methods to map elements of the second scale
// to elements of the first scale. The method to be
// used depends on the type of the projective scales.

void MarkElements( Color col, const Real rad1,
const Real rad2 = 0 ) ;

void MarkElements( Color col [ 3], const Real rad1,
const Real rad2 = 0 ) ;

// Two methods to mark the base points on either of the
// two projective scales, either in one color or in three
// different colors according to the respective kind of point
// (origin, unit “point”, “point” at infinity).

void ConnectElements( Color col, ThinOrThick thick ) ;
void ConnectElements( Color col [ 3], ThinOrThick thick ) ;

// Two methods to connect corresponding base points on the
// two projective scales. The connecting lines will be either
// drawn in one color or in three different colors according
// to the respective kind of point (origin, unit “point”,
// “point” at infinity).

StrL3d IntersectPlanes( Real ratio ) ;
// Method to intersect corresponding planes.

StrL3d ConnectingLine( Real ratio ) ;
// Method to connect corresponding points.

ProjType GetType1( ) { return Type1; }
ProjType GetType2( ) { return Type2; }

// Two methods to return the respective types of the projective
// scales. Possible return values are PencilOfLines,
// PencilOfPoints, PencilOfPlanes, PointsOnConic,
// TangentsOfConic, and TangentPlanesOfCone.

class ProjScale; → declaration in "proj geom.h"

Describes a projective scale on either a pencil of points, a pencil of lines,
a pencil of planes, the point set of a conic, the tangent set of a conic, or
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the set of tangent planes of a cone of second order. The scale consists
of a supporting element (straight line, point, or conic) and a projective
coordinate system (origin, “point” at infinity and unit “point”2). Base
class.

Constructors:

ProjScale( ) ; // Default constructor.

Definition:

ProjScale & operator = ( ProjScale &other ) ;
void Def( const P3d &V, StrL3d t [ 3] ) ; // pencil of lines
void Def( const StrL3d &l, P3d Q [ 3] ) ; // pencil of points
void Def( const StrL3d &l, Plane p [ 3] ) ; // pencil of planes
void Def( Conic3d &c, P3d Q [ 3] ) ; // points on conic
void Def( Conic3d &c, StrL3d t [ 3] ) ; // tangents of conic
void Def( const P3d &V, Conic3d &c, Plane p [ 3] ) ;

// tangent planes of cone of second order

Methods and operators :

void Draw( Color col, Real u0, Real u1, ThinOrThick thick ) ;
// Drawing method for pencil of points.

void Draw( ThinOrThick thick ) ;
// Drawing method for points or tangents of conic and
// for tangent planes of cone of second order.

void Mark( Color col, Real rad1, Real rad2 = 0 ) ;
// Drawing method for pencil of lines.

void MarkElement( Color col, Real rad1, Real rad2, int i ) ;
void MarkElements( Color col, Real rad1, Real rad2 = 0 ) ;

// Two methods for marking origin ( i = 0), unit point (i = 1),
// and point at infinity (i = 2) if these elements are points.

void DrawElement( Color col, Real u0, Real u1,
ThinOrThick thick, int i ) ;

void DrawElements( Color col, Real u0, Real u1, ThinOrThick thick ) ;
// Two methods for drawing origin ( i = 0), unit point (i = 1),
// and point at infinity (i = 2) if these elements are straight lines.

ProjType GetType( ) { return Type; }
// Returns the type of the projective scale. Possible return values
// are PencilOfLines, PencilOfPoints, PencilOfPlanes,
// PointsOnConic, TangentsOfConic, and TangentPlanesOfCone.

void SetElement( const StrL3d &t, int i ) { s [i] = t;
ComputeReals( ) ; }

void SetElement( const P3d &Q, int i ) { P [i] = Q;
ComputeReals( ) ; }

void SetElement( const Plane p, int i ) { plane [i] = p;
ComputeReals( ) ; }

2In this context, the word “point” means either really a point, a straight line, or a
plane.
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// Three methods for redefining the projective scale by setting
// the origin, unit “point” or “point” at infinity.
// ComputeReals( ) is a private method of the class that
// computes some necessary data.

P3d GetPoint( int i ) { return P [i]; }
StrL3d GetLine( int i ) { return s [i]; }
Plane GetPlane( int i ) { return plane [i]; }

// Three methods for returning origin, unit “point”
// or “point” at infinity.

P3d PointOfCrossRatio( const Real ratio ) ;
StrL3d LineOfCrossRatio( const Real ratio ) ;
Plane PlaneOfCrossRatio( const Real ratio ) ;

// Returns the point, straight line, or plane, respectively,
// that determines the given cross ratio with respect to the
// projective scale.

Real CrossRatio( const P3d &A, const Real eps = 1e−6,
const Real infinity = 1e6 ) ;

Real CrossRatio( const StrL3d &a, const Real eps = 1e−6,
const Real infinity = 1e6 ) ;

Real CrossRatio( const Plane &p, const Real eps = 1e−6,
const Real infintiy = 1e6 ) ;

// Returns the cross ratio that a point, straight line, or plane,
// respectively, determines on the projective scale. If its
// absolute value is smaller than eps or larger than infinity,
// the return value will be 0 or infinity itself.

Sample code for better understanding :

ProjScale Scale;
StrL3d axis;
axis.Def( Origin, Zdir ) ;
Plane plane [ 3];
plane [ 0].Def( P3d( 5, 0, 0 ), axis ) ;
plane [ 1].Def( P3d( 0, 5, 0 ), axis ) ;
plane [ 2].Def( P3d( 5, 5, 0 ), axis ) ;
Scale.Def( axis, plane ) ;
Scale.Draw( Black, −15, 15, VERY THICK ) ;
Plane pi;
Real ratio = −1;
pi = Scale.PlaneOfCrossRatio( ratio ) ;
if ( !( Scale.CrossRatio( pi ) == −1 ) )

Write( "numerical problem" ) ;
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class Quadric; → declaration in "ruled surface.h"

Describes a ruled surface of order two (quadric) in 3-space. The quadric
is defined by three pairwise skew straight lines r[0], r[1], and r[2] (gen-
erators of second kind). The generators of first kind are those lines that
intersect r[0], r[1], and r[2]. The class is derived from RuledSurface and
ParamSurface.

Definition:

void Def( Color c, int m, int n, Real u1, Real u2,
Real v1, Real v2, StrL3d r [ 3] ) ;

// u1 and u2 are the parameter limits on r[0];
// v1 = 0 and v2 = 1 yield the part between r[0] and r[2].

Virtual member functions:

virtual P3d DirectrixPoint( Real u ) ;
virtual V3d DirectionVector( Real u ) ;
// DirectrixPoint( u ) equals r[0].InBetweenPoint( u )

Frequently used methods and operators:

StrL3d Ruling1( Real u ) ; // Rulings of first kind.
StrL3d Ruling2( Real v ) ; // Rulings of second kind.
void DrawRulings1( Color c, int n, ThinOrThick thick,

Real offset = STD OFFSET ) ;
void DrawRulings2( Color c, int n, ThinOrThick thick,

Real offset = STD OFFSET ) ;
void DrawRulings( Color c, int m, int n, ThinOrThick thick,

Real offset = STD OFFSET ) ;

class RatBezierCurve3d; → declaration in "bezier.h"

Describes a rational Bézier curve in 3D by its control polygon and its
weights. The curve points are computed by means of DeCasteljau’s
algorithm. We provide methods for manipulating the curve (changing of
control points and weights, degree elevation, splitting). The base class
is ParamCurve3d. Some methods are overwritten.

Constructors:

RatBezierCurve3d( ) { B = NULL; C = NULL; w = NULL; }
// B and C are dynamically allocated arrays of control points,
// w is a dynamically allocated array of reals.

Definition:

void Def( Color c, int total size, int size of control poly,
P3d Control [ ], Real weigth [ ] ) ;

// total size is the number of curve points that will
// be computed, while size of control poly is the number
// of control points to be used.
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Frequently used methods and operators:

virtual P3d CurvePoint( Real u )
{

return DeCasteljau( u ) ;
}
virtual StrL3d Tangent( Real u )/∗ const = 0 ∗/;
virtual Plane OsculatingPlane( Real u )/∗ const = 0 ∗/;
void DrawControlPolygon( Color col, ThinOrThick thickness ) ;
void MarkControlPoints( Color col, Real rad1, Real rad0 ) ;
void SetControlPoint( int i, P3d P ) ;

// Redefine control point with index i.
void SetWeight( int i, Real w ) ;

// Redefine weight with index i.
P3d GetControlPoint( int i ) ;

// Return control point with index i.
Real GetWeight( int i ) ;

// Return weight i.
int GetPNum( ) { return PNum; }

// PNum is the number of control points.
void ElevateDegree( int i ) ; // Elevates the degree by i.
void ReversePolygon( void ) ;

// Reverse the order of the control points
// (useful after splitting of the curve).

void Split( Real u, Boolean second half ) ;
// Split the Bézier curve at the parameter value u.
// Depending on the value of second half, the new
// curve is identical to the part of the old curve that
// corresponds to the parameter interval [0, u] or [u, 1].

Sample code for better understanding :

RatBezierCurve3d BezierCurve;
P3d P [ 3];
P [ 0]( 0, 0, 0 ), P [ 1]( 4, 0, 4 ), P [ 2]( 0, 4, 8 ) ;
Real weight [ 3];
weight [ 0] = 2, weight [ 1] = 1, weight [ 2] = 3;
BezierCurve.Def( Black, 200, 3, BasePoints, weight ) ;
BezierCurve.ElevateDegree( 2 ) ;
BezierCurve.Split( 0.5, true ) ;
BezierCurve.Draw( VERY THICK ) ;
BezierCurve.DrawControlPolygon( Blue, THICK ) ;
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 ) ;
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class RatBezierSurface; → declaration in "bezier.h"

Describes a rational Bézier surface by its control polygon and its
weights. The curve points are computed by means of DeCasteljau’s
algorithm. We provide methods for manipulating the surface (chang-
ing of control points and weights, degree elevation, splitting). The base
class is ParamSurface.

Constructors:

RatBezierSurface( ) { B = BB = NULL; w = ww = NULL; }
// B and BB are dynamically allocated 2D arrays of control points,
// w and ww are dynamically allocated arrays of reals.

Definition:

void Def( Color c, int m, int n, int pnum1, int pnum2,
P3d ∗∗Control, Real ∗∗weight ) ;

// m and n determine the number of facets in u- and v-directions.
// pnum1 and pnum2 are the dimensions of the control net.

Frequently used methods and operators:

P3d SurfacePoint( Real u, Real v ) { return DeCasteljau( u, v ) ; }
void DrawControlPolygon( Color col, ThinOrThick style,

Real offset = STD OFFSET ) ;
void MarkControlPoints( Color col, Real rad1, Real rad0 = 0 ) ;
P3d GetControlPoint( int i, int j ) { return B [i] [j]; };
Real GetWeight( int i, int j ) { return w [i] [j]; };
void SetControlPoint( int i, int j, P3d P ) ;

// Redefine control point with indices i and j.
void SetWeight( int i, int j, Real weight ) ;

// Redefine weight with indices i and j
int GetPNum1( ) { return PNum1; };
int GetPNum2( ) { return PNum2; };

// Two methods that return the dimension of the control net.
void ElevateDegree( int m, int n ) ;
void ReversePolygon( Boolean u dir, Boolean v dir ) ;

// Reverse the order of the control net in u- and/or
// v-direction according to the value of the Boolean arguments.

void SplitU( Real u, Boolean second half ) ;
// Split the Bézier surface at the parameter value u.
// Depending on the value of second half, the new
// curve is identical to the part of the old curve that
// corresponds to the parameter interval [0, u] or [u, 1].

void SplitV( Real v, Boolean second half ) ;
// Analogous to SplitU(. . . ).
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Sample code for better understanding :

RatBezierSurface BezSurf;
P3d ∗∗P = NULL;
Real ∗∗weight = NULL;
ALLOC 2D ARRAY( P3d, P, 3, 3, "P" ) ;
ALLOC 2D ARRAY( Real, weight, 3, 3, "weight" ) ;
P [ 0] [ 0].Def( −8, −8, −4 ) ;
P [ 0] [ 1].Def( −8, 0, 4 ) ;
P [ 0] [ 2].Def( −8, 8, −4 ) ;

P [ 1] [ 0].Def( −2, −8, 5 ) ;
P [ 1] [ 1].Def( −2, 0, 8 ) ;
P [ 1] [ 2].Def( −2, 8, 5 ) ;

P [ 2] [ 0].Def( 2, −8, 5 ) ;
P [ 2] [ 1].Def( 2, 0, 8 ) ;
P [ 2] [ 2].Def( 2, 8, 5 ) ;

int i, j;
for ( i = 0; i < m; i++ )

for ( j = 0; j < n; j++ )
weight [i] [j] = 1;

BezSurf.Def( Blue, 31, 61, 4, 3, P, weight ) ;

BezSurf.SplitU( 0.5, true ) ;
BezSurf.SplitV( 0.5, false ) ;
BezSurf.ElevateDegree( 1, 2 ) ;
BezSurf.SetControlPoint( 0, 0, P3d( −12, −8, 3 ) ) ;
BezSurf.SetWeight( 0, 0, 20 ) ;

FREE 2D ARRAY( P3d, P, m, n, "P" ) ;
FREE 2D ARRAY( Real, weight, m, n, "weight" ) ;

BezSurf.Shade( SMOOTH, REFLECTING ) ;
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class Rect3d; → declaration in "poly3d.h"

Rectangle in 3-space. Inherits methods of Poly3d. In the starting po-
sition two rectangle sides lie on the x- and y-axes of the coordinate
system, and one vertex coincides with the origin.

Constructors and definition:

Rect3d( ) ;
Rect3d( Color col, Real length, Real width,

FilledOrNot filled = EMPTY )
void Def( Color col, Real length, Real width,

FilledOrNot filled = EMPTY ) ;

class RegDodecahedron; → declaration in "dodecahedron.h"

Describes a regular dodecahedron (polyhedron consisting of twelve
regular pentagons) and provides methods for drawing and shading.
Derived from O3d. In order to use this class, you must include
"dodecahedron.h" in your Open Geometry file.

Definition:

void Def( Color c, Real side ) ;

Frequently used methods and operators:

Real GetSide( ) { return a; }
Real GetRadius( ) ;
Real GetThickness( ) ;
P3d GetCenter( ) ;
void WireFrame( Color c, ThinOrThick style ) ;
void Shade( ) ;
void GetCircumSphere( Sphere &s ) ;
void GetEdge( int i, P3d &a, P3d &b ) ;
void GetNeighbors( int i, P3d n [ 3] ) ;
void GetFace( int i, Poly3d &poly ) ;

Sample code for better understanding :

#include "dodecahedron.h"

RegDodecahedron D;
void Scene: :Init( )
{

D.Def( Blue, 3 ) ;
D.Translate( −D.GetCenter( ) ) ;
D.Rotate( Zaxis, 15 ) ;

}
void Scene: :Draw( )
{
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D.WireFrame( Gray, (ThinOrThick) 3 ) ;
Poly3d p;
for ( int i = 1; i <= 6; i++ ) // shade only bottom faces
{

D.GetFace( i, p ) ;
p.Shade( ) ;

}
}

FIGURE 6.18. A regular dodecahedron (compare sample code).

class RegFrustum; → declaration in "frustum.h"

Describes a frustum in 3-space. Inherits the methods and operators
of O23d and O3d. Base class for RegPrism and RegPyramid. A closer
description can be found in [14], pp. 132 ff.

Constructors:

RegFrustum( ) ; // Default constructor.
RegFrustum( Color col, Real r1, Real r2, Real height,

int n, SolidOrNot isSolid = SOLID,
const StrL3d &axis = Zaxis ) ;

// h = height of frustum,
// r1, r2 = radii of base and top circle, respectively,
// n = number of points on polygon that approximates base
// circle; low value of n results in frustums of pyramid.

Definition:

void Def( Color col, Real r1, Real r2, Real height,
int n, SolidOrNot = SOLID, const StrL3d &axis = Zaxis ) ;
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// See constructor.

Additional or overwriting methods and operators :

// Some shading and drawing methods:
void Shade( FlatOrSmooth smooth = SMOOTH,

Boolean reflect = true ) ;
void ShadeBackfaces( FlatOrSmooth smooth = SMOOTH,

Boolean reflect = true ) ;
void WireFrame( Boolean remove hidden lines, ThinOrThick thick,

Real offset = STD OFFSET ) ; /∗ const ∗/
void Outline( Color col, ThinOrThick style,

Real offset = STD OFFSET ) ;
void DrawBottom( Color col, ThinOrThick style,

Real offset = STD OFFSET ) ;
void DrawTop( Color col, ThinOrThick style,

Real offset = STD OFFSET ) ;

// “Getters” and “setters”:
int GetOrder( ) const; // Return the “order” n as specified in Def).
StrL3d GetGeneratingLine( int i ) ; // Return the i-th generating line.
StrL3d GetAxis( ) const; // Return frustum axis.
StrL3d GetAxis( P3d &M1, P3d &M2 ) const;

// Return frustum axis and store centers of
// top and base in M1 and M2, respectively.

void GetRadii( Real &r1, Real &r2 ) const;
// Store radii of top and base in r1 and r2, respectively.

void SetColorOfBaseAndTop( Color c ) ;
// Allow to shade base and top in different color.

// Transformation methods:
void Rotate( const StrL3d &axis, Real angle in deg ) ;
void Scale( Real kx, Real ky, Real kz ) ;
void TranslateTop( const V3d &t ) ;
void RotateTop( const StrL3d &axis, Real angle in deg ) ;

// If you destroy the convexity of the object by the above
// transformations, use one of the following before shading it!

void Transform( Polyhedron &P ) ;
void TransformIntoPolyhedron( ) ;

// Boolean operations for frustums:
friend Solid ∗ operator + ( RegFrustum &One,

RegFrustum &Two ) ;
friend Solid ∗ operator − ( RegFrustum &One,

RegFrustum &Two ) ;

class RegPoly3d; → declaration in "poly3d.h"

Closed regular polygon in 3-space. Derived from Poly3d.
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Definition:

void Def( Color col, const P3d &FirstElem, const StrL3d &axis,
int n, FilledOrNot = EMPTY ) ;

// A vertex and the axis are given.
void Def( Color col, const P3d &mid, const V3d &ax dir, Real r,

int n, FilledOrNot = EMPTY ) ;
// Center, axis direction, and radius are given.
// First vertex lies on a horizontal line through the center.

Public member variables:

StrL3d axis;
Real rad;
P3d Middle;

Methods:

int SectionWithPlane( Plane &e, P3d &S1, P3d &S2 ) ;
// Compute the intersection line segment with a plane. Start
// and end points of the line segment are stored in S1 and S2,
// respectively.

P3d GetCenter( ) const // Return the center.
Real GetRadius( ) const // Return the radius.
StrL3d GetAxis( ) const // Return the axis.
void Rotate( const StrL3d &a, Real w ) ;

// Rotate polygon about axis a through w◦.

class RegPrism; → declaration in "frustum.h"

Describes a regular prism in 3-space. Derived from RegFrustum, it differs
from this class only with respect to constructors and defining methods.

Constructors and Definition:

RegPrism( ) ;
RegPrism( Color col, Real radius, Real height,

int n, SolidOrNot isSolid = SOLID,
const StrL3d &axis = Zaxis ) ;

void Def( Color col, Real radius, Real height,
int n, SolidOrNot = SOLID, const StrL3d &axis = Zaxis ) ;
// n is the number of points on base and top polygon.

class RegPyramid; → declaration in "frustum.h"

Describes a regular pyramid in 3-space. Derived from RegFrustum, it
differs from this class only with respect to constructors and defining
methods.

Constructors and Definition:

RegPyramid( ) ; // Default constructor.
RegPyramid( Color col, Real radius, Real height,
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int n, SolidOrNot isSolid = SOLID,
const StrL3d &axis = Zaxis )

void Def( Color col, Real radius, Real height, int n,
SolidOrNot = SOLID, const StrL3d &axis = Zaxis ) ;

// n is the number of points on base polygon.
P3d Apex( ) ; // Return the apex.

class Rod3d; → declaration in "poly3d.h"

Describes a rod in 3-space. A rod may be imagined as a polygon, two
vertices or a line segment. It is used mainly for kinematic animations
and, sometimes, for the definition of the plane of symmetry of two
points.

Constructors and Definition:

Rod3d( Color f, const P3d &A, const P3d &B )
void Def( Color f, Real x1, Real y1, Real z1,

Real x2, Real y2, Real z2 ) ;
void Def( Color f, const P3d &P, const P3d &Q ) ;

Additional methods (see also Poly3d):

void Dotted( int n ) ;
void LineDotted( int n ) ;
void Draw( ThinOrThick thick, Real offset = STD OFFSET ) ;

class RuledSurface; → declaration in "ruled surface.h"

Describes a ruled surface by means of its directrix curve and direc-
tion vectors. It is an abstract class derived from ParamSurface. In or-
der to define a specific surface, the user has to derive an additional
class from this class! There, the virtual functions DirectrixPoint(. . . )
and DirectionVector(. . . ) have to be implemented.

Constructors:

RuledSurface( ) { } // Default constructor.

Virtual member functions:

virtual P3d DirectrixPoint( Real u ) = NULL;
// Has to be implemented by the user.

virtual V3d DirectionVector( Real u ) = NULL;
// Has to be implemented by the user.

virtual P3d SurfacePoint( Real u, Real v ) ;
// Is already implemented.

Frequently used methods and operators:

void GetDirectrix( L3d &directrix, Color col, int size ) ;
// Assign the directrix curve to an L3d object.

void DrawDirectrix( Color col, int n, ThinOrThick thick,
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Real offset = 1e−3 ) ; // Draws the directrix curve.
StrL3d Generator( Real u ) ;

// Return the generating line at parameter u.
P3d PedalPoint( Real u, P3d Pole ) ;

// Return the normal projection of Pole onto
// the generator at parameter u (pedal point).

void GetPedalLine( L3d &pedal line, P3d Pole, Color col, int size ) ;
// Assign the pedal line of Pole to an L3d object.

void DrawPedalLine( P3d Pole, Color col, int n,
ThinOrThick thick, Real offset = 1e−3 ) ;

// Draw the pedal line of Pole.
P3d CentralPoint( Real u ) ;

// Return the central point (point of striction)
// on the generator at parameter u.

void GetCentralLine( L3d &line, Color col, int size ) ;
// Assign the central line to an L3d object.

void DrawCentralLine( Color col, int n, ThinOrThick thick,
Real offset = 1e−3 ) ; // Draws the central line.

V3d OscQuadrDir( Real u, Real v, Real eps ) ;
// Return the direction of the generator of the osculating quadric
// in the surface point at parameters u and v. It is computed as the
// intersection line of two neighboring generators corresponding to
// u ± eps and can be used to define the osculating quadric as an
// instance of the class Quadric.

class Sector3d; → declaration in "arc3d.h"

Class for drawing a sector of a 3D circle. It provides various defin-
ing methods. The sector is either filled or not and the user can decide
whether to draw the line segments that connect the center with start
and end points (value of only segment = false or true; compare Fig-
ure 6.19). Sector3d is derived from Circ3d.

Constructors:

Sector3d( ) { }; // Default constructor.

Definition:

void Def3Points( Color col, const P3d &P, const P3d &Q,
const P3d &R, int n, FilledOrNot filled = EMPTY ) ;
// Define sector via three points. The method name differs from
// standard Open Geometry conventions in order to be consistent
// with the class Sector2d.

void Def( Color col, const P3d &FirstElem, const StrL3d &a, Real w,
int n, FilledOrNot = EMPTY ) ;
// Define sector via start point, axis, and central angle. Note that
// the apex angle will always be less than 180◦!

void Def( Color col, P3d &FirstElem, StrL3d &a, P3d &LastElem, int n,
FilledOrNot = EMPTY ) ;
// Define sector via start point, axis, and end point.
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Frequently used methods and operators:

void Draw( Boolean only segment /∗= false∗/,
ThinOrThick thick /∗ = false ∗/, Real offset = STD OFFSET ) ;

// If only segment is false, the connecting lines of
// center with start and end points will be displayed.
void Shade( ) ;
// Shades the sector; has the same effect as Draw(. . . ) if the
// sector has been defined as FILLED.
void ShadeWithContour( Color c, ThinOrThick thick,

Real alpha value = 1 ) ;
// The same as Shade( ); additionally, the contour is displayed.

// The meaning of the remaining methods should be obvious:
Real GetCentralAngleInDeg( ) ;
Real GetRadius( ) ;
P3d GetCenter( ) ;
P3d GetFirstPoint( ) ;
P3d GetLastPoint( ) ;
P3d GetPointOnBisectrix( ) ;
void ChangeRadius( Real new radius ) ;

For an example, have a look at the following sample code excerpt from
"two flight routes.cpp". It displays the routes of two airplanes on Earth
and is a nice demonstration for the use of Sector3d (compare also Figure 6.19).

Sample code for better understanding :

#include "opengeom.h"

const Real Rad = 6.37, Height = 0.5 ∗ Rad;
Circ3d R1, R2;
P3d A, B, C, D;
Sphere S;
Sector3d AB, CD;
StrL3d Intersection;

void Scene: :Init( )
{

P3d M = Origin;
S.Def( Blue, M, Rad, 50 ) ;
A( −20, 20, 0 ) ;
B( 90, 20, 70 ) ;
C( 70, 70, 20 ) ;
D( 10, −10, 60 ) ;
Real t = Rad + Height;
A ∗= t / A.Length( ) ;
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B ∗= t / B.Length( ) ;
C ∗= t / C.Length( ) ;
D ∗= t / D.Length( ) ;
t = Rad / t;
P3d A1 = −1.0 ∗ A, C1 = −1.0 ∗ C;
R1.Def( Green, A, B, A1, 100 ) ;
R2.Def( Red, C, D, C1, 100 ) ;
P3d N = 0.5∗(A+B) ;
N ∗= ( Rad + Height ) / N.Length( ) ;
AB.Def3Points( Black, A, N, B, 40, EMPTY ) ;
N = 0.5∗(C+D) ;
N ∗= ( Rad + Height ) / N.Length( ) ;
CD.Def3Points( Black, C, N, D, 40, EMPTY ) ;
Plane e1( A, B, M ), e2( C, D, M ) ;
e1.SectionWithPlane( e2, Intersection ) ;

}
void Scene: :Draw( )
{

Circ3d c;
S.GetContour( c ) ;
c.Draw( MEDIUM ) ;
c.ChangeColor( PureWhite ) ;
c.Shade( ) ;
R1.Draw( THIN, 0 ) ;
R2.Draw( THIN, 0 ) ;
AB.Draw( true, THICK ) ;
CD.Draw( true, THICK ) ;
showCircle( Black, A, B ) ;
showCircle( Black, C, D) ;
showPoint( Green, A ) ;
showPoint( Green, B ) ;
showPoint( Red, C ) ;
showPoint( Red, D ) ;

}
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FIGURE 6.19. Different flight routes on Earth. The corresponding program
"two flight routes.cpp" makes extensive use of the class Sector3d.

class Solid; → declaration in "solid.h"

Describes a solid (and therefore always closed) polyhedron in Cad3D
format. Can be read from data file or generated by Open Geometry
with the help of Boolean operators. Note that the result of a Boolean
operation is a pointer to a Solid called BoolResult. In the sample file
you can see how to work with such pointers.

Constructors:

Solid( ) ; // Default constructor.
// Destricption of the below constructors: see Def(. . . ).
Solid( RegFrustum &frustum ) ;
Solid( Box &box ) ;
Solid( const char ∗name ) ; // Name of a Cad3D−file.
Solid( ParamSurface &ClosedSurf, Boolean IsSurfOfRevol ) ;
Solid( FunctionGraph &Graph ) ; // Solid under a function graph.

Definition:

// The standard way to get a Solid = Cad3D object
void ReadFrom CAD3D File( const char ∗name ) ;
// You can also initialize Solids with given
// Open Geometry objects:
void Def( RegFrustum &frustum ) ;
void Def( Box &box ) ;
void Def( Polyhedron &phdr ) ;
void Def( ParamSurface &ClosedSurf, Boolean IsSurfOfRevol ) ;
void Def( FunctionGraph &Graph ) ;
void Def( const char ∗name ) ;

Operators:

// Boolean operators for “addition”, “difference”, “intersection”:
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friend BoolResult operator + ( const Solid &One,
const Solid &Two ) ;

friend BoolResult operator − ( const Solid &One,
const Solid &Two ) ;

friend BoolResult operator ∗ ( const Solid &One,
const Solid &Two ) ;

friend BoolResult operator ∗ ( const Solid &Total,
const Plane &plane ) ;

Methods:

void Shade( FlatOrSmooth smooth = SMOOTH,
Boolean reflect = REFLECTING,
FaceMode fmode = ONLY FRONTFACES ) ;

void WireFrame( Color c, Boolean remove hidden lines,
ThinOrThick thick, Real offset = STD OFFSET ) ;

// Removal of invisible edges are done by first plotting
// the object in background color

int NoOfPolys( ) ;
// Return number of faces.

void SetColor( Color c, int n1 = 0, int n2 = 0 ) ;
// Change the color of the faces from index n1 to index n2.
// Non-default n1 starts with 1, max. n2 is NoOfPolys.
// The default values change the color of the entire solid
// (same as ChangeColor( )).

void ChangeColor( Color c ) ;

// Geometric transformations:
void Translate( Real x, Real y, Real z ) ;
void Translate( const V3d &t ) ;
void Rotate( const StrL3d &a, Real angle in deg ) ;
void Rotate( const RotMatrix &R ) ;
void Scale( Real sx, Real sy, Real sz ) ;
void Scale( Real s ) ;
void Reflect ( const Plane &p ) ;

// Export:
void SaveAs CAD3D File( const char ∗name ) ;

// Create a Cad3D file
void ExportTo POV Ray( const char ∗name ) ;

// Export to POV-Ray for high-quality output
void Delete( Boolean file = false ) ;

// file = true will delete the data file!
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FIGURE 6.20. Output of the sample file for Solid.

Sample code for better understanding :

#include "opengeom.h"
#include "defaults3d.h"

BoolResult Union, Difference;

void Scene: :Init( )
{

// Define a first solid by means of a cube
Box cube;
cube.Def( Gray, P3d( −3, −3, −3 ), P3d( 3, 3, 3 ) ) ;
Solid FirstSolid( cube ) ;
// Define a second solid by means of a cylinder
RegPrism cyl;
StrL3d axis( Origin, V3d( 1, −1, 1 ) ) ;
cyl.Def( Gray, 3.2, 12, 35, SOLID, axis ) ;
cyl.Translate( −6 ∗ axis.GetDir( ) ) ;
Solid SecondSolid( cyl ) ;
// Now define union and differences
Union = SecondSolid + FirstSolid;
Union−>Translate( 0, −5, 0 ) ;
Difference = FirstSolid − SecondSolid;
Difference−>Translate( 0, 5, 0 ) ;
ChangeSmoothLimit( 0.98 ) ;
TheCamera.SetDepthRange(−15, 15) ;

}
void Scene: :Draw( )
{

Union−>Shade( ) ;
Difference−>Shade( ) ;

}
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class Sphere; → declaration in "sphere.h"

Describes a sphere in 3-space. The class inherits methods from Circ3d
and O3d.

Constructors:

Sphere( ) ; // Default constructor.
Sphere( Color col, P3d &M, Real rad, int n = 100,

int points on meridian = 0, int order = 0 ) ;
// If the number of points on the meridian and the order are not
// specified, the program tries to optimize these numbers.
// In general, one should increase them for larger spheres. The
// same is true for the number of points on the contour (which
// is usually a small circle).

Definitions:

void Def( Color col, const P3d &M, Real rad, int n = 100,
int points on meridian = 0, int order = 0 ) ;

// See constructor.

Additional or overwriting methods and operators :

void Draw( Color col, ThinOrThick thick,
Real offset = STD OFFSET ) ;

// Draw the silhouette, i.e., the image of the contour.
void Shade( Shininess reflect = REFLECTING ) ;

// Ordinary shading.
void WireFrame( Color col, ThinOrThick style,

int n1 = 0, int n2 = 0,
Real offset = STD OFFSET ) ;

// Draw a wire frame with n1 meridians
// and n2 parallel circles.

void Scale( Real k ) ;
// Only one parameter. Other scaling methods are not
// allowed. Ellipsoids can be plotted as parameterized surfaces.

// some congruence transformations
void Translate( const V3d &t ) ;
void Translate( Real x, Real y, Real z ) ;
void Rotate( const StrL3d &axis, Real deg ) ;

P3d GetCenter( ) const{ return Middle; } ;
Real GetRadius( ) const { return radius; };

Plane PolarPlane( P3d &P) const;
// Return the polar plane of a point P.

Boolean SectionWithPlane( const Plane &e, Circ3d &c,
int size of c = 100 ) const;

// Return true if there is a section. The intersection circle c
// is calculated with a default number of 100 points.
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Boolean SectionWithSphere( const Sphere &s, Circ3d &c,
int size of c = 100 ) const;

// Return true if there is a section. The intersection circle c
// is calculated with a default number of 100 points.

int SectionWithStraightLine( const StrL3d &s, P3d &A,
P3d &B ) const;

// Return the number of intersection points with the straight
// line s. The intersection points are stored in A and B.

void GetContour( Circ3d &c ) ;
// Compute the contour for the current projection (a circle)
// and store it in c.

class StrL3d; → declaration in "strl3d.h"

StrL3d describes an oriented straight line in 3-space. It has already
been described in [14], p. 84. However, for your convenience, we list all
methods and operators.

Constructors:

// See also constructors for StrL2d
StrL3d( ) { } // Default constructor.
StrL3d( const P3d &P, const V3d &r ) // Point plus direction.
StrL3d( const P3d &P, const P3d &Q ) // Two points.

Definition:

// First some methods to define the straight line:
void Def( const P3d &P, const V3d &r ) ;

// Point plus direction vector.
void Def( const P3d &P, const P3d &Q )

{ Def( P, (V3d) ( Q − P ) ) ; } // Two points.

Operators:

friend P3d operator ∗ ( const StrL3d &g, const StrL3d &h ) ;
friend P3d operator ∗ ( const Plane &plane, const StrL3d &s ) ;
void operator = ( const StrL3d &other )

{ Def( other.point, other.dir ) ; }
Boolean operator == ( const StrL3d &other ) const;

Frequently used methods:

V3d GetDir( ) const;
// Return the normalized direction vector �r0.

P3d GetPoint( ) const;
// Return the point that was used for the definition of the line.

void SetPoint( const P3d &P ) { point = P; }
// Change point that was used for definition of the line.

void SetDir( const V3d &newdir ) ;
// Change direction vector (newdir need not be normalized)

Real Distance( P3d &P) const;
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// Return the distance of a point (≥ 0)
P3d InBetweenPoint( Real t ) const;

// Return the point �x = �P + t �r0.
Real GetParameter( P3d &P ) const ;

// Return the parameter t in the vector equation �x = �P + t �r0.
P3d NormalProjectionOfPoint( const P3d &P∧ ) const;

// Return the normal projection of the point dist onto the line.
Boolean ContainsPoint( const P3d &P, Real tol = 1e−4 ) const;

// Insert the point P in the defining equation of the line
// and checks whether the result is of absolute value less than tol.

Boolean IsParallel( const StrL3d &other, Real tol = 1e−8 ) const;
// Check whether the lines are parallel. The angle between the direction
// vectors must not differ by more than a certain tolerance.

void NormalProjectionOfPoint( const P3d &p, P3d &fp ) const;
// Project the point p orthogonally onto the line
// and store the result in fp.

void CommonNormal( const StrL3d &g, V3d &dir,
P3d &F, P3d &Fg ) const;

// Determine the common normal of the line and the straight line g.
// F and Fg are the feet of this line; dir is the
// direction of the common normal.

// Some methods for the application of transformations.

void Translate( Real dx, Real dy, Real dz ) ;
// Translate the line by the vector (dx, dy, dz)

void Translate( V3d &v ) ;
// Translate the line by means of a 3D vector

void Scale( Real kx, Real ky = 0, Real kz = 0 ) ;
// Apply a scaling operation

void Rotate( StrL3d &a, Real angle in deg ) ;
// Rotate the line about a 3D axis through a given angle (in deg).

void Screw( const StrL3d &a, Real angle, Real parameter ) ;
// Apply a helical motion defined by axis, angle, and parameter

void Screw( HelicalMotion &S ) ;
// Apply a helical motion.

void Reflect( const Plane &e ) ;
// Reflect at a plane

// Drawing routines

void Draw( Color f, Real t1, Real t2, ThinOrThick thick,
Real offset = STD OFFSET ) const;

// Draw the line in color col from the point that corresponds
// to the parameter t1 to the point that corresponds to the
// parameter t2. You have to specify the width of the line:
// THIN, MEDIUM, THICK, VERY THICK.
// When the line is to be drawn on a polygon, one should
// use an offset (otherwise the z-buffer will have some
// side-effects), which we will describe later on.
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void LineDotted( Color col, Real t1, Real t2, int n,
ThinOrThick thick, Real offset = STD OFFSET ) const;

// Similar to the ordinary drawing;
// line dotting with n intervals.

void Dotted( Color col, Real t1, Real t2, int n, Real rad ) const;
// Similar to the ordinary drawing; draws the line dotted
// (n “dots”, i.e., small circles (pseudo-spheres) with radius rad).

void Dashed( Color c, Real t1, Real t2, int n, Real f,
ThinOrThick thick, Real offset = STD OFFSET ) ;
// Similar to Dotted drawing mode; draws n short dashes.
// The dash length depends on the real f ∈ [1.01, 3]. The bigger f is,
// the shorter the dashes are.

class SurfOfRevol; → declaration in "revol.h"

Describes a surface of revolution. Derived from ParamSurface.

Constructors:

SurfOfRevol( ) ; // Default constructor.
SurfOfRevol( const StrL3d &a ) ; // Specify axis.
SurfOfRevol( Color c, Boolean isSolid, int rot number, Spline3d &k,

Real w1 = 0, Real w2 = 360 ) ;
// Define surface via meridian k.

SurfOfRevol( Color c, Boolean solid, int n vertices,
Coord3dArray points on meridian, int fine, int order,
Real w1 = 0, Real w2 = 360 ) ;

// Define surface via an array of points on meridian.

Definition:

void Def( Color c, Boolean isSolid, int rot number, L3d &basis, int fine,
Real w1 = 0, Real w2 = 360,
const StrL3d &axis = StrL3d(P3d( 0,0,0), V3d( 0,0,1) ) ) ;

// rot number is the number of points on each parallel circle,
// the L3d object basis will be interpolated by a cubic spline
// where the number of points on the spline depends on fine.
// [w1, w2] is the parameter interval for the rotation.

void Def( Color c, Boolean solid, int n vertices,
Coord3dArray points on meridian,
int fine, int order, Real w1 = 0, Real w2 = 360,
const StrL3d &axis = StrL3d(P3d( 0,0,0), V3d( 0,0,1) ) ) ;

// Compare preceding definition. Here, the points of the coordinate
// array will be interpolated.

void Def( Color c, Boolean isSolid, int rot number, Spline3d &k,
Real w1 = 0, Real w2 = 360,
const StrL3d &axis = StrL3d(P3d( 0,0,0), V3d( 0,0,1) ) ) ;

// Define surface directly via passing a meridian spline.

Additional or overwriting methods :

void Shade( FlatOrSmooth smooth, Shininess reflect ) ;
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// Standard shading method

// Geometric transformations
void Translate( Real dx, Real dy, Real dz ) ;
void Translate( const V3d &v )
void Scale( Real kx, Real ky = 0, Real kz = 0 ) ;
void Rotate( const StrL3d &a, Real w ) ;
void Screw( const StrL3d &a, Real angle, Real parameter ) ;
void Screw( const HelicalMotion &S ) ;
void Reflect( const Plane &e ) ;

void BorderingCircles( Circ3d &k1, Circ3d &k2 ) ;
// Calculates the bordering circles and stores them in k1 k2.

void Copy( SurfOfRevol &result ) ; // Copy method.

class SurfWithThickness; → declaration in "paramsurface.h"

Abstract class derived from ParamSurface. Can be used for displaying
a parameterized surface with a certain thickness (compare Figure 6.21).

Constructors:

SurfWithThickness( P3d (∗f0) ( Real, Real ) )
// Constructor needs a pointer to the surface point function.

Methods:

void ShadeWithThickness( Color c, Real thickness,
ThinOrThick outline style,
Boolean contour = true ) ;

// The only additional method of relevance. c refers to the color
// of the (usually) small transition between surface and offset.

Sample code for better understanding :

// Compare "rotoid surf with thickness.cpp".

P3d RotoidSurfacePoint( Real u, Real v )
{

const Real a = 10, Transmission = 3;
const StrL3d axis2( P3d( a, 0, 0 ), Ydir ) ;
P3d P( a + v, 0, 0 ) ;
P.Rotate( axis2, Deg( Transmission ∗ u ) ) ;
P.Rotate( Zaxis, Deg( u ) ) ;
return P;

}
SurfWithThickness Surf( RotoidSurfacePoint ) ;

void Scene: :Init( )
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{
int n = 50;
Real u1, u2, v1, v2;
u1 = 0;
u2 = 2 ∗ PI;
v1 = −8;
v2 = 7;
Surf.Def( Yellow, 4∗n, n, u1, u2, v1, v2 ) ;
Surf.PrepareContour( ) ;

}

void Scene: :Draw( )
{

Surf.ShadeWithThickness( Gray, −0.5, MEDIUM ) ;
}

FIGURE 6.21. Two examples for the use of the class SurfWithThickness.

class Torus; → declaration in "torus.h"

Describes a torus with axis z. Derived from ParamSurface. Requires
inclusion of "torus.h" at the top of your file.

Constructor :

Torus( ) ; // Default constructor.

Definition:

void Def( Color c, int no of parallel circs, int no of rotating circs,
Real radius of mid circ, Real radius of rot circ,
Real phi1 = 0, Real phi2 = 2 ∗ PI,
Real psi1 = 0, Real psi2 = 2 ∗PI ) ;

// Define torus by specifying number of parallel and meridian
// circles, radii of midcircle, and meridian circle and
// parameter limits.
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Additional methods :

Real Get a( ) const; // Return radius of midcircle.
Real Get b( ) const; // Return radius of parallel circle.
void Shade( FlatOrSmooth smooth = SMOOTH,

Shininess reflecting = REFLECTING) ;
// Shade torus.

Sample code for better understanding :

// Compare Figure 6.22.

#include "opengeom.h"
#include "defaults3d.h"
#include "torus.h"

Torus Tube;

void Scene: :Init( )
{

Tube.Def( Yellow, 31, 61, 8, 3, −PI, 0 ) ;
Tube.PrepareContour( ) ;

}
void Scene: :Draw( )
{

Tube.Shade( ) ;
Tube.WireFrame( Black, 10, 10, THIN ) ;
Tube.Contour( Black, MEDIUM ) ;
Tube.DrawBorderLines( Black, MEDIUM, false, true ) ;

}

FIGURE 6.22. A half torus.

class TubSurf; → declaration in "tubular.h"

Describes a tubular surface. Derived from ParamSurface.
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Methods:

void Def( Color c, int n, Coord3dArray P, int fine, Real fi1, Real fi2,
int n1, int n2, Real radius ) ;

// The midline of the surface is a spline through n points defined
// by P. fine determines the number of points on this midline.
// fi1 and fi2 are the parameter limits in direction of the
// characteristic circles. In order to display the complete surface, use
// fi1 = 0 and fi2 = 2 ∗ PI. n1 and n2 are the number of surface
// facets in u and v direction, radius is, of course, the radius of the
// characteristic circles.

CubicSpline3d &Midline( ) ; // Return the midline of the surface.

class V3d; → declaration in "vector.h"

Describes a three-dimensional vector (x, y, z). Inherits the methods and
operators of V23d (partly overwritten!).

Constructors:

V3d( ) ; // No initialization.
V3d( const V2d &v ) ; // Initialization with (x0, y0, 0)

// where v = (x0, y0).
V3d( Real x0, Real y0, Real z0 ) ; // Initialization with (x0, y0, z0).
V3d( const P3d &P, const P3d &Q ) ; // Initialization with

−→
PQ.

Additional or overwriting operators :

V3d operator −( ) const;
// Scale vector with −1.

friend V3d operator + ( const V3d &v, const V3d &w ) ;
// Vector addition v + w.

friend V3d operator − ( const V3d &v, const V3d &w ) ;
// Vector subtraction v − w.

void operator += ( const V3d &v ) ;
// Analog of += operator of ordinary numbers.

void operator −= ( const V3d &v ) ;
// Analog of −= operator of ordinary numbers.

friend V3d operator ∗ ( const Real t, const V3d &v ) ;
// Scaling by a real number.

friend Real operator ∗ ( const V3d &v, const V3d &w ) ;
// Dot product v · w.

friend V3d operator ∧ ( const V3d &v, const V3d &w ) ;
// Vector product v × w.

Additional or overwriting methods :

Real XYLength( ) ;
// Return the length of the projection onto [ x, y ]:

√
x2 + y2.

Real Slope( ) const;
// Return the elevation angle ϕ of the vector in radians
// (−π/2 < ϕ ≤ π/2).
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Real SlopeInDeg( ) const;
// Return the elevation angle ϕ of the vector in degrees
// (−90◦ < ϕ ≤ 90◦ ).

void Cartesian( Real dist, Real azim in deg, Real elev in deg ) ;
// Calculate the Cartesian coordinates of a vector, where the
// spherical coordinates (length, azimuth, and elevation in degrees)
// are given.

void Spherical( Real &length,
Real &azim in deg, Real &elev in deg ) const;

// Calculate the spherical coordinates of a vector (length, azimuth,
// and elevation in degrees) from its Cartesian coordinates x, y, z.

void AssignTo( Vector v ) ;
// Copy vector to an array double [3]

void Rotate( const V3d &a, Real angle in deg ) ;
// Rotate about a vector.

void Rotate( const RotMatrix &m ) ;
// Multiply vector by rotation matrix.

void Reflect( const Plane &e ) ;
// Reflect at a plane.

Boolean Collinear( const V3d &v, Real tol = 1e−4 ) const;
// Check whether vector is collinear with another vector v.
// Default tolerance is 1e−4

void OrthoBase( V3d &unit vec1, V3d &unit vec2 ) ;
// Normalize vector and calculate two unit vectors so that
// the three vectors form an ortho-base and unit vec1 is horizontal.
// Note that the vector is changed!

Real Angle( const V3d &v, Boolean already normalized = false,
Boolean check sign = false ) const;
// Returns the angle between two vectors (in arc length!).
// Use Deg( Angle(. . . )) to get the angle in degree.

6.3 Many More Useful Classes and Routines
class GammaBuffer; → declaration in "gbuffer.h"

Describes a function graph that is given over a rectangular domain.
The graph is given only numerically by z-values over a fine grid of
1024 × 1024 ≈ 1 Million (!) grid points. Thus, the surface is actually a
huge buffer. In fact, it works like z-buffering: It can be changed (“up-
dated”) by buffering polyhedra or other function graphs. The buffer
was implemented for the simulation of NC-milling (Figure 6.24). We
list only a few member functions and give sample code for them (Fig-
ure 6.23). The rest is left to the advanced reader.

Constructors:

GammaBuffer( ) ; // Default constructor.
GammaBuffer( Real x1, Real x2, Real y1, Real y2, Real z1, Real z2 ) ;
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// Define the buffers rectangular domain and extreme z−values

Definition:

void Def( Real x1, Real x2, Real y1, Real y2, Real z1, Real z2 ) ;
// See constructor.

void Def( const Box &bounding box ) ;
// Domain can also be given by an object of type Box.

Methods:

void Clear( ) ; // clear buffer
void PutPolyhedron( Polyhedron &P, int obj idx ) ;

// Buffer an entire polyhedron.
void PutSurface( ParamSurface &P, int obj idx ) ;

// Buffer an entire surface.
void Show( Color col = Gray, Boolean box = true, int delta0 = 16 ) ;

// Display the resulting surface in a single color
// (with or without bounding box).
// Depending on the complexity, delta0 should vary.

void ShowSurf( int delta0 = 16 ) ;
// Show surface (multicolored) ; the more complex
// the surface is, the smaller delta0 must be.

void ShowBox( Color col = Gray ) ;
// Show only the bounding box.

void Delete( ) ;
void StoreInFile( const char ∗name ) ;
void GetFromFile( const char ∗name ) ;

FIGURE 6.23. A typical GammaBuffer, i.e., an arbitrary complex function graph
that is given numerically (output of the given sample code). Left: Buffer after the first
and second update, right: Buffer after the third update.



Section 6.3. Many More Useful Classes and Routines 545

Sample code for better understanding :

#include "opengeom.h"
#include "defaults3d.h"
#include "gbuffer.h"

// define three function graphs
class Graph1: public FunctionGraph
{

Real z( Real x, Real y ) { return 2 + ( x ∗ x + 0.3 ∗ y ∗ y ) / 20; }
};
class Graph2: public FunctionGraph
{

Real z( Real x, Real y ) { return −1 + x ∗ x / 10 + y ∗ y / 10 ; }
};
class Graph3: public FunctionGraph
{

Real z( Real x, Real y ) { return −3 + Sqr( x + 0.2 ∗ y − 1) / 2 ; }
};
Graph1 G1;
Graph2 G2;
Graph3 G3;
GammaBuffer Buffer;
void Scene: :Init( )
{

int n = 30;
Real x1 = −5, x2 = −x1, y1 = −8, y2 = −y1;
G1.Def( Gray, n, n, x1, x2, y1, y2 ) ;
G2.Def( Gray, n, n, x1, x2, y1, y2 ) ;
G3.Def( Gray, n, n, x1, x2, y1, y2 ) ;
// put surfaces into buffer
Buffer.Def( x1, x2, y1, y2, −5, 6 ) ;
Buffer.Clear( ) ;
Buffer.PutPolyhedron( G1, 0 ) ;
Buffer.PutPolyhedron( G2, 1 ) ;
Buffer.PutPolyhedron( G3, 2 ) ;

}
void Scene: :Draw( )
{

Buffer.Show( Gray, true, 4 ) ;
}
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FIGURE 6.24. Another typical GammaBuffer (output of "milling.cpp").

struct IntArray; → declaration in "intarray.h"

“Intelligent” structure3 that consists of an arbitrary number of inte-
gers. This number is accessible as public member variable size, i.e., the
members have indices from 0 to size − 1. The structure handles dy-
namic memory allocation and deletion automatically. CompareSee also
page 600.

Constructors:

IntArray( ) // Default constructor.
IntArray( int n, int init val = DUMMY )
// Defines size and sets all elements to init val.
// DUMMY is some weird integer.

Operators:

int & operator [ ] ( int i ) const
// Access to the i-th element of the structure.
void operator = ( const IntArray &other )
// Assign the values of the integer array other to the structure.

Definition:

void Def( int n, int init val = DUMMY ) ;
// Defines size and set all elements to init val.
// DUMMY is some weird integer.

3A structure in C++ is the same as a class with no private member variables and
member functions.
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Methods:

void Copy( IntArray &f ) const;
// Assign the values of the integer array f to the structure.
void Sort( int i1 = 0, int i2 = −1, int sgn = 1 ) ;
// Sort elements with indices between i1 and i2 in ascending (sgn= 1)
// or descending (sgn= −1) order. If i2 < i1 (default), i2 is set to
// size−1.

// The following methods return minimal, maximal, and average value.
int Max( ) const;
int Min( ) const;
Real Average( ) const;

class LinearSystem; → declaration in "linsyst.h"

Describes a system of n linear equations in n unknowns and provides
methods for its manipulation and solution by means of Gauss elimina-
tion.

Constructors:

LinearSystem( ) ; // Default constructor.
LinearSystem( int n ) // Allocate memory for coefficients.

Definition:

void Def( int n ) ; // See constructor.

Operators and methods:

Real & operator ( ) ( int i, int j ) ;
// Return the coefficient c[i][j].
// Caution: Indices i and j start with 1, not 0!
// The last column (index n + 1) stores the perturbation column.

void SetHorRow( int i, const Real hor [ ] ) ; // Set horizontal row i.
void SetVertRow( int j, const Real vert [ ] ) ; // Set vertical row j.
void SetMatrix( const Real ∗matrix ) ; // Set all coefficients.
Boolean GetSolution( Real ∗result ) ;

// Calculate the solution vector of the system.
// Return true if successul and false if system is singular.
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Sample code for better understanding :

LinearSystem LinSyst;
LinSyst.Def( 2 ) ;
Real hor [ 3];
hor [ 0] = 3, hor [ 1] = 2, hor [ 2] = 2;
LinSyst.SetHorRow( 1, hor ) ;
hor [ 0] = 1, hor [ 1] = 1, hor [ 2] = 2;
LinSyst.SetHorRow( 2, hor ) ;
Real ∗result = NULL;
ALLOC ARRAY( Real, result, 2, "result" ) ;
if ( LinSyst.GetSolution( result ) )
{

char str [ 200];
sprintf( str, "x =%.5f,y =%.5f", result [ 0], result [ 1] ) ;
ShowString( str ) ;

}
FREE ARRAY( Real, result, 2, "result" ) ;

class O23d; → declaration in "o23d.h"

Object of 2D or 3D points. Many of Open Geometry’s geometric
classes are derived from this class. It describes a conglomerate of 3D (or
2D) points and provides a few useful methods that apply to all derived
classes. The classes O2d and O3d are directly derived from O23d. They
are the ancestors of many 2D and 3D classes.

Constructors:

O23d( ) // Default constructor.
O23d( Color f, int numOfPoints ) // Specify color and size.

Definition:

void Def( Color f, int numOfPoints ) ; // Specify color and size.

Operators:

void operator = ( O23d &other ) // Copy one object to another.
P3d &operator [ ] ( int i )

// By writing ObjectName.pPoints[i] you can directly access any
// member point. This is very useful with many derived classes!
// Note that indexing starts with 1 and ends with nPoints.

Methods (common to all derived classes!):

int Size( ) const // Return the number of points.
void SetSize( int n ) ;

// Set number of objects (only decreasing is permitted).
Color F( Color f ) // Returns the object color.
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Color GetColor( ) const
void ChangeColor( Color new color )
void MarkPoints( Color f, Real r1 = 0.2,

Real r2 = 0, int step = 1 ) ;
// Marking method for object points. A point is marked by a
// circle of color f and radius r1 and a circle of radius r2 in the
// background color. If step = 1, every point is marked,
// if step = 2 every second, etc.

int IsPoint( P3d &X, Real tol = 1e−4 ) ;
// Return 0 if X is not an element of the object. Otherwise, the
// index of the corresponding object point is returned.

P3d ∗ FirstPoint( ) // Return first object point.
P3d ∗ LastPoint( ) // Return last object point.
void Copy( O23d &result, int n1 = −1, int n2 = −1 ) const;

// Copy object points with indices between n1 and n2 to result.
// By default, all object points are copied.

P23d GetBaryCenter( ) const;
// “Barycenter” has average coordinates of all points.
// Works in 2-space and 3-space.

void GetBoundingBox( Box &bbox ) const;
// Bounding box with axis-parallel sides.
// In 2-space, the box is flat.

P3d GetCenterOfBoundingBox( ) const;
// Return the center of the bounding box.

Public member variables:

P3d ∗pPoints; // array of pointers to member points
int nPoints; // number of points
Color col; // color

class P23d; → declaration in "points.h"

Describes a 2D or 3D point. The class inherits the methods and opera-
tors of V23d, V2d and V3d and serves as a base class for P2d and P3d.
It is described in [14], p. 77. Therefore, we simply list its constructors
and methods without further comment.

Constructors and Methods:

P23d( )
P23d( V23d &v )
void Mark( Color f, Real r1, Real r2 = 0, int Dim = 0 ) const;
Real Distance( const P23d &P) const ;
P23d InBetweenPoint( const P23d &other, Real t ) const;

class Projection; → declaration in "camera.h"

Describes a very versatile “virtual camera” in 3-space. This camera
works very much like an ordinary camera, and its methods are named
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similarly. For better understanding, please see Section 3.2. A major
change from version 1.0 is that the member functions are now virtual.
This has no visual effect on the applications; it was, however, necessary
for the implementation of multi scene applications.

Definition:

virtual void Def( ) ;
// This member-function has to be implemented by the user!

virtual void Def( Real eye x, Real eye y, Real eye z,
Real target x, Real target y, Real target z,
Real fovyAngle = 20 ) ;

// fovy = field of vision angle ( 1 < fovy < 65 )
virtual void DefaultCamera( Real eye x, Real eye y, Real eye z ) ;

// Perspective: eye( x, y, z ), target( 0, 0, 0 ),
// fovy = 20 (focus = 50).

virtual void DefaultOrthoProj( Real eye x, Real eye y, Real eye z ) ;
// Works like DefaultCamera( ), but switches to ortho projection.

Methods:

// Change camera lens (zoom in and out with factor k)
virtual void ZoomIn( Real k ) ;

// k = 1 ... no effect; k = 1.05 ... 5% magnification etc.
virtual void ZoomOut( Real k ) ;
virtual void ChangeFocus( Real focus in deg ) ;

// Default is 50 ... ordinary camera lens
// 15 <= focus <= 35 ... wide-angle
// focus >= 70 ... teleobjective lens

// Change eye point:
virtual void ChangePosition( const P3d &NewEye ) ;
virtual void ChangePosition( Real eye x, Real eye y, Real eye z ) ;

// Rotate camera (target unchanged) :
virtual void RotateVertically( Real angle in deg ) ;

// Rotate about z−parallel axis through target point.
virtual void RotateHorizontally( Real angle in deg ) ;
virtual void AutoRotation( Boolean switch on ) ;

// Starts or stops vertical autorotation (1 degree per frame).
// Change target point:

virtual void ChangeTarget( const P3d &NewTarget ) ;
virtual void ChangeTarget( Real target x, Real target y,

Real target z ) ;
// Rotate camera (eye unchanged) :

virtual void TargetLeftRight( Real angle in deg ) ;
virtual void TargetUpDown( Real angle in deg ) ;

// Move camera (change eye and target point) :
virtual void Translate( Real dx, Real dy, Real dz ) ;
virtual void Forward( Real translation ) ;
virtual void Backward( Real translation ) ;
virtual void UpDown( Real translation ) ;
virtual void LeftRight( Real translation ) ;
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// Twist camera:
virtual void Roll( Real angle in deg ) ;
virtual void ChangeTwist( Real angle in deg ) ;

// Special views:
virtual void TopView( ) ;
virtual void FrontView( ) ;
virtual void RightSideView( ) ;
virtual void SpecialView( char c ) ;

// ’1’ = top view, ’2’ = front view, ’3’ = right side view
// ’4’ = bottom view, ’5’ = back view, ’6’ = left side view

// Switch from perspective to orthoprojection and vice versa:
virtual void SwitchProjection( ) ;
virtual void SwitchToNormalProjection( ) ;

// Control depth buffering:
virtual void Zbuffer( Boolean on off ) ;
virtual void ClearZBuffer( ) ;
virtual void SetDepthRange( Real z min, Real z max ) ;

// Get data from class (all angles are returned in degrees) :
virtual Real GetAzim( ) const;
virtual Real GetElev( ) const;
virtual Real GetFocus( ) const;
virtual Real GetFovy( ) const;
virtual Real GetTwist( ) const;
virtual P3d GetPosition( ) const;
virtual P3d GetTarget( ) const;
virtual Plane GetProjPlane( ) const;
virtual Real GetDist( ) const;
virtual Boolean IsActive( ) const;
inline Boolean IsOrthoProj( ) const;
virtual Boolean IsSpecialView( ) const;
virtual void GetDepthRange( Real &z min, Real &z max ) ;

// Save data to file ‘tmp.dat’:
virtual void SaveEyeAndLight( ) ;

// Change Light:
virtual void ParallelLight( Real x, Real y, Real z ) ;
virtual void SetLocalLight( Real x, Real y, Real z ) ;

// Intersection of the proj. ray with the image plane:
virtual P3d ProjectPoint( const P3d &P ) ;

// Pixel coords in the current window:
virtual P3d CoordsInScreenSystem( const P3d &P ) ;

// The z-coord. of the result is a depth value (for z-buffering).
virtual P3d CoordsInProjPlane( const P3d &P ) ;

// Projection ray in direction eye point:
virtual V3d GetProjRay( const P3d &P ) const;
virtual V3d GetNormalizedPrincipalRay( ) const;

// Make light heliocentric instead of geocentric:
virtual void Heliocentric( Boolean on off ) ;

// Save and restore camera temporarily:
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virtual void Save( ) ;
virtual void Restore( ) ;

// Some more member functions:
virtual V3d GetProjDir( ) const;

// Return the normalized projection vector for -orthoprojection.
virtual void Configure( Boolean calc eye ) ;
virtual void SetClipDist( Real clipdist ) ;
virtual Boolean ZbufferIsActive( ) ;
virtual Projection & operator = ( const Projection & ) ;

// Allow to copy to another camera.

class PulsingReal; → declaration in "pulsing.h"

Describes a real number that changes its value from a minimum to
a maximum, starting with some intermediate number. The change is
described by an increment, and it can be LINEAR or HARMONIC.
This class is very useful for animations.

Constructors:

PulsingReal( ) { value = DUMMY; }
There is only the default constructor and only one way of defining an
instance of PulsingReal.

Definition:

void Def( Real init val, // the init value
Real incr, // the first increment
Real max val, // the maximum value
Real min val, // the minimum value
HowToPulse how ) ; // LINEAR or HARMONIC

Methods and operators :

Real operator ( ) ( void ) { return value; }
Real Next( ) ; // Compute next value.
void Scale( Real factor ) ;

Sample code for better understanding :

PulsingReal Pulse;
const Real init val = 5, incr = 0.02, min = 2, max = 8;
Pulse.Def( init val, incr, min, max, HARMONIC ) ;
Real a = Pulse.Next( ) ;
Real b = Pulse( ) ; // a and b have the same value
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class RandNum; → declaration in "randnum.h"

Generates random numbers of type Real. Base class.

Constructors, operators and methods :

RandNum( ) ; // Default constructor.
RandNum( Real min, Real max ) ;

// Generate GAUSS distributed random numbers in [min, max].
void Def( Real min, Real max ) ; // See constructor.
Real operator ( ) ( void ) ; // Operator to get a random number.
Real Next( ) ; // Method to get a random number.

struct RealArray; → declaration in "realarray.h"

“Intelligent” structure that consists of an arbitrary number of reals.
This number is accessible as public member variable size, i.e., the mem-
bers have indices from 0 to size − 1. The structure handles dynamic
memory allocation and deletion automatically. Compare also page 600.

Constructors:

RealArray( ) // Default constructor.
RealArray( int n ) // sets size to n

Operators:

Real & operator [ ] ( int i ) const
// Access to the ith element of the structure.
void operator = ( const RealArray &other )
// Assign the values of the real array other to the structure.

Definition:

void Def( int n, Real init val = DUMMY ) ;
// Define size and set all elements to init val.
// DUMMY is some weird integer.

Methods:

void Copy( RealArray &f ) const;
// Assign the values of the real array f to the structure.
void Sort( int i1 = 0, int i2 = −1, int sgn = 1 ) ;
// Sort elements with indices between i1 and i2 in ascending (sgn= 1)
// or descending (sgn= −1) order. If i2 < i1 (default), i2 is set to
// size−1.

// The following methods return minimal, maximal, and average value.
int Max( ) const;
int Min( ) const;
Real Average( ) const;
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class Scene; → declaration in "scene.h"

A very basic class in Open Geometry. Essentially, every Open Geo-
metry program derives a successor from Scene by implementing the
virtual member functions Init( ), Draw( ), CleanUp( ), and Animate( ).

Virtual member functions:

virtual void Init( ) ;
virtual void Draw( ) ;
virtual void CleanUp( ) ;
virtual void Animate( ) ;

Methods:

void NoOffset( ) ; // Sets the global offset for z-buffering to 0.
void Offset( Real delta = STD OFFSET ) ;

// Sets the global offset for z-buffering to delta.

// Drawing methods for coordinate systems in 2D and 3D:
void ShowAxes3d( Color f, Real sizex,

Real sizey = 0, Real sizez = 0, Boolean show xyz = true ) ;
void ShowAxes( Color f, Real sizex,

Real sizey = 0, Real sizez = 0 ) ;
// Do not use this method in new programs. It is onlyvalid
// only in order to stay compatible with version 1.0.

void ShowAxes3d( Color c,
Real xmin, Real xmax,
Real ymin, Real ymax,
Real zmin, Real zmax, Boolean show xyz = false ) ;

void ShowAxes2d( Color c, Real xlength,
Real ylength = 0, Boolean show xy = true ) ;

void ShowAxes2d( Color c,
Real xmin, Real xmax,
Real ymin, Real ymax, Boolean show xy = false ) ;

void Zbuffer( Boolean on off ) ; // Switch z-buffer on or off.

Methods to be called in Init( ):

void AllowRestart( Boolean yes no = true ) ;
// Allow restart of the program.

void CreateNewPalette( int idx, int size, Real r1, Real g1, Real b1,
Real r2, Real g2, Real b2 ) ;

// Create your own color.

// Define your own background.
void SetBackgroundColor ( Real r, Real g, Real b ) ;
void SetBackgroundTexture( char ∗bitmapName, Real alpha = 1 ) ;
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Methods to be called in Animate( ):
// Export utilities:
void PreparePovRayFile( const char ∗name of file ) ;
int SaveAsPovRayFile( const char ∗filename ) ;
int SaveAsBitmapAnimation( const char ∗path = "BMP",

int start frame = 1,
int increase = 1,
int max files = 50,
int bit depth = 24 ) ;

void Restart( int delay = 0, Boolean restore camera = false ) ;
void FreezeAnimation( ) ;
Boolean RestartPossible( ) ;

// Check whether AllowRestart( ) has been called in Init( ).

class SmartText; → declaration in "smarttext.h"

The class SmartText allows you to position, display, and manipulate
text in an Open Geometry window. It can be used to decorate Open
Geometry presentations with special effects, to display a scrolling text
on the screen, etc. Note, however, that displaying a beautifully format-
ted text slows down the animation. If you do not really need it, you
should consider the function PrintString(. . . ) as well. You must include
"smarttext.h" in order to use SmartText.

Constructors:
SmartText( ) ; // Default constructor.

Definition:
void Def( int n, const P3d &P = Origin,

const Plane &p = XYplane ) ;
// n is the maximum number of lines, P is the upper left corner,
// and p the supporting plane of the text.

Frequently used methods and operators:
void SetLine( int n, Color col, Real size, Real lineskip,
const char ∗txt ) ;

// Insert the character txt in line number n. lineskip determines the
// distance between this line and line number n+1, col the text color,
// and size the text size.

void Display( Real opacity = 1, Boolean TwoD = true ) ;
// Set opacity and decide whether to display text on the 2D
// computer screen or on a 3D plane. The text will be put
// into XYplane and can be transformed by one of the
// following methods:

void Translate( const V3d &v ) ;
void Rotate( Real angle in deg ) ;
void Scale( const Real t ) ;
void SetCorner( const P3d &C ) ;
void ClearText( ) ; // clears all text lines
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Sample code for better understanding :

#include "opengeom.h"
#include "smarttext.h"

SmartText Text;

void Scene: :Init( )
{

Text.Def( 10 ) ; // a maximum of 10 lines
Text.SetCorner( P3d( 0, 10, 0 ) ) ;
Text.SetLine( 1, Red, 3, 2, "Open Geometry") ;
Text.SetLine( 2, Green, 1.5, 1, "This is line 2") ;
Text.SetLine( 3, Black, 1.5, 1, "and this,finally,is line 3") ;
Text.SetLine( 4, Black, 1.5, 1, "We add line 4") ;
Text.SetLine( 5, Black, 1.5, 1, "and line 5 (just in order") ;
Text.SetLine( 6, Black, 1.5, 1, "to see how slow we are)") ;
ScaleLetters( 0.8, 1 ) ;

}
void Scene: :Draw( )
{

ShowAxes( Blue, 10 ) ; // Show the axes
Text.Display( ) ;

}
void Scene: :Animate( )
{

if ( FrameNum( ) % 180 < 90 )
Text.Translate( V3d( 0, −0.05, 0 ) ) ;

else
Text.Rotate( 2 ) ;

}

class V23d; → declaration in "vector.h"

The common ancestor of the classes V2d and V3d (vectors of dimension
two and three, respectively). Besides the operators and methods below,
it has three private member variables x, y and z that can be directly
accessed. It has been described in [14], pp. 73–74. Since only Print( )
has changed, we list its components without further comment.

Constructors:

V23d( ) ;
V23d( Real x0, Real y0, Real z0 = 0 ) ;

Operators:

void operator ( ) ( Real x0, Real y0 )
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void operator ( ) ( Real x0, Real y0, Real z0 )
void operator ∗= ( Real t ) ;
void operator /= ( Real t ) ;
Boolean operator == ( const V23d &v ) const;
Boolean operator != ( const V23d &v ) ;
void operator = ( const V23d &v ) ;
void operator = ( Vector v ) ;
// Note that the operator −( ) const (scaling with −1) no longer
// exists. It has moved to V2d and V3d, respectively.

Methods:

void Print( char ∗str = "@", int dim = 3, int no of digits = 3,
char ∗add str = "\n" ) const;
// Displays the components as a message: ’text = ( x, y, z )’.
// In case of dim = 2 the output is ’text = ( x, y )’,
// no of digits determines the output precision.

void Normalize( V23d &norm ) const;
void Normalize( ) ;

6.4 Useful Functions
Open Geometry 1.0 provided a large number of useful functions concerning
mathematical operations, screen output, changing of global settings, etc. This
library has been enlarged by a few more routines in Open Geometry 2.0. We
list them here together with some comments. Since many of them are described
in [14] or have been given self-explanatory names, we will not always go into
detail.

Some Additional Mathematical Functions

Open Geometry’s mathematical functions enlarge the standard functions of
the C mathematics library. Some are unknown to C; some return the same result
as the corresponding C function but with additional features. For example, Open
Geometry’s Sqrt( x ) returns the square root of x, but unlike sqrt( x ), checks
whether x is nonnegative. Using this function (or others with built-in security
check) can help in avoiding hard-to-find errors (compare Example 6.5)!
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Listing from "H/mathfunc.h":

inline Real Sqr( Real x ) // square of x
inline int Signum( const Real x ) // sign +1, 0 or −1
inline Real Sqrt( Real x ) // square root with security check
inline Real Tan( Real x ) // tangent function with security check
inline Real Log( Real x ) // logarithmic function with security check
inline int Round( Real x ) // closest integer
inline Real Arc( Real degrees ) // arc length of an angle
inline Real Deg( Real arc ) // angle in degrees

// Arc functions with security check:
inline Real ArcSin( Real x )
inline Real ArcCos( Real x )
inline Real ArcTan2( Real y, Real x ) // returns a value in [−PI/2, 3PI/2 [

// Min and Max functions, both for integer and Real variables
inline Real maximum( Real a, Real b )
inline Real minimum( Real a, Real b )
inline int maximum( int a, int b )
inline int minimum( int a, int b )

inline Real CubicRoot( Real x )
Real AreaOfTriangle( const V2d &A, const V2d &B, const V2d &C ) ;

void Tripod( V3d &a, V3d &b, V3d &n ) ;
// Calculate an ortho base with n/|n| as third vector.

Real Integral( Real (∗f) ( Real ), Real t1, Real t2, int n = 100 ) ;
// Compute

∫ t2
t1 f(t)dt by means of the Simpson formula

// Root finders for algebraic equations:
int QuadrEquation( Real a, Real b, Real c, Real &x1,

Real &x2, Real eps = 1e−14 ) ;
int ZerosOfPoly3( const Real coeff [ 4], Real zero [ 3] ) ;
int ZerosOfPoly4( const Real coeff [ 5], Real zero [ 4] ) ;
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Some of the functions need a closer explanation. The line

void Tripod( V3d &a, V3d &b, V3d &n ) ;

is equivalent to n.OrthoBase( h, f ). After this function is called, n will be nor-
malized, a will be a horizontal vector perpendicular to n and b = n × a.

The use of the integral function will be clear after a look at the following sample
code from "simpson.cpp":

Real TestFunction( Real t )
{

return 1 / ( 1 + t ∗ t ) ;
}

int number of nodes = 200;
Real t1 = 0, t2 = 1;
Real pi = 4 ∗ Integral( TestFunction, t1, t2, number of nodes ) ;

QuadrEquation(. . . ) returns the number of real solutions of the equation
ax2 + bx + c = 0. The solutions are stored in ascending order in x1 and x2. If
the solutions are conjugate complex, the real part is stored in x1, the imaginary
part in x2.

The functions ZerosOfPoly3(. . . ) and ZerosOfPoly4(. . . ) calculate all unique non-
imaginary roots of the supplied polynomial. The coefficients of the polynomials
have to be put into the Real array coeff in order of increasing powers. The roots
are stored in the zero array in ascending order; the number of roots is the return
value of the function.

Commands for text output

Sometimes it is useful to open a little message window, informing the user about
a certain action or displaying the content of a variable. Or perhaps you want to
print some text or values directly on the screen. These tasks can be done conve-
niently by means of Open Geometry routines. You will find a comprehensive
listing in "useful.h".

We distinguish between routines that open a message window (alert) and routines
that print their output directly on Open Geometry’s graphcis screen (compare
also [14], p. 66). The following code lines stem from "show string.cpp". All
relevant output methods are used:

char str [ 200];
int n = 20;
Real u = 3;



560 Chapter 6. Compendium of Version 2.0

sprintf( str, "Here is the result:%.5f/%d =%.5f\n"
"An integer division may have weird results:%d/%d=%.5f",
u, n, u / n, (int) u, n, (double) ( (int) u / n ) ) ;

ShowString( str ) ;
ShowInteger( "n =", n ) ;
HiAccuracyOutput( ) ;
ShowReal( "u =", u ) ;
SafeExit( ) ;

You have output utilities for arbitrary strings, for integers and for reals. Start
the program, see how it works, and compare with the code.4

Very useful is the SafeExit( ) function. It can be used to prevent undefined
operations (e.g., division by zero). Note that you may as well specify a user
defined text:

SafeExit( "Division by zero!" )

We frequently use SafeExit( ) for debugging our code. You can tell at once whether
a certain routine is called by inserting a safe exit in its body. Note further that
a transcript of all messages is written to the file "try.log" in Open Geome-
try’s standard output directory. You can change the output directory by editing
"og.ini". This may be necessary if you want to install Open Geometry in a
network: The output directory requires write permission.

The printing of text on the screen relies almost entirely on the function

void PrintString( Color col, Real x, Real y,
char ∗str with possible format controls,
Real var of any type according to format controls = 1,
...
) ;

It allows a character variable to be printed in arbitrary color at an arbitrary
position on the screen. Compare the output of "print string1.cpp" for a test:

Listing from "print string1.cpp":

int n = 20;
Real u = 3;
PrintString( Green, −14, 0, "Here is the result:%.5f/%d =%.5f\n"

"An integer division may have weird results:%d/%d=%.5f",
u, n, u / n, (int) u, n, (double) ( (int) u / n ) ) ;

4There exists a further output method named Write(. . . ). It does the same as
ShowString(. . . ) but provides a few additional features. They are, however, rather spe-
cial, and we believe that you won’t need them.
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In "print string1.cpp" you can watch a little bug: Move the Open Geome-
try window to the right with your arrow keys. Together with the first letter
the whole output vanishes from the screen. Now press <Ctrl+Q> to switch to
high quality output. The text reappears. Zooming in a little, you should be able
to read it. We believe that the bug is not within our reach. Probably, it can be
found somewhere in the OpenGL code.

The combination of PrintString(. . . ) with the following functions yields beauti-
fully formatted text:

void HiQuality( Boolean on off = true ) ;
void ScaleLetters( Real tx, Real ty = 0 ) ;
void InclineLetters( Real degrees ) ;
void RestoreLetters( ) ;

HiQuality( ) is called by the shortcut <Ctrl+Q>. It allows you to switch between
normal output and high-quality output. The high quality letters are not just
simple lines but triangulated letters of a roman font type (Too many of them,
however, will slow down your code!). The letter size and inclination may also
be chosen. If you have ruined the original letters by scaling and inclining, you
can restore them by RestoreLetters( ). A simple file to test these methods is
"print string2.cpp".

A still more advanced output method is WriteNice(. . . ). For 2D drawing this
routine is similar to the PrintString(. . . ) routine. Additionally, it allows one to
rotate the text and to set an α-value for transparency (0 ≤ α ≤ 1, default is
α = 1). In a 3D window it allows you to write text on an arbitrary plane. Its
syntax is

void WriteNice( Color col, char ∗Text,
Real x, Real y, Real rot deg, Real size,
Real opacity = 1, const Plane &TextPlane = XYplane ) ;

The variables x, y, and rot deg determine the position of the text with respect to
a certain coordinate system in the plane. The origin is some point in the plane,
usually the first point mentioned in Def(. . . ) or in the plane constructor. The
x-axis is horizontal; the y-axis is perpendicular to x. A simple example of the
use of WriteNice(. . . ) is "hello world.cpp".

Listing from "hello world.cpp":

#include "opengeom.h"
#include "defaults3d.h"

Plane p;
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void Scene: :Init( )
{

p.Def( P3d( 0, 0, 3 ), V3d( 0, 1, 1 ) ) ;
InclineLetters( 60 ) ;

}
void Scene: :Draw( )
{

WriteNice( Blue, "Open Geometry", −8, 0, 0, 4, 1, p ) ;
}

Note that you can also print special characters such as $ or Greek letters.
You cannot use them directly as arguments but you can insert the following
in WriteNice(. . . ):

$Dollar$, $alpha$, $beta$,$gamma$, $delta$, $eta$, $iota$, $kappa$,

$epsilon$, $mu$, $nu$,$pi$, $theta$, $chi$, $rho$, $sigma$ etc.

They will show as

$, α, β, γ, δ, η, ι, κ, ε, µ, ν, π, θ, χ, � and σ.

Capital Greek letters begin with a capital Latin letter:

$Omega$, $Psi$, $Lambda$, $Xi$, etc.

will produce the output

Ω, Ψ, Λ, and Ξ,

respectively.

How to show text files and source code

A text file can be displayed very simply by means of the command

void ShowTextFile( const char ∗name ) ;

The program then opens a window and displays the contents of the file.

Open Geometry additionally offers the possibility of displaying the source code
of a program. The two routines

void SetSource( const char ∗name, const char ∗first text ) ;
void ShowSource( ) ;

have to be called. You know this from the demo executables in the "DEMOS/"
directory.
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Sample code for better understanding :

#include "opengeom.h"
#include "defaults2d.h"

void Scene: :Init( )
{

SetSource( "HANDBOOK/display code.cpp", "Show source" ) ;
}
void Scene: :Draw( )
{

if ( FrameNum( ) == 1 )
ShowSource( ) ;

}

In the above sample program you would not explicitly have to call the
ShowSource( ) function. When the file name is set with the SetSource(. . . ) func-
tion, the code can be viewed at any time by means of the key combination
<Alt+s> or the menu item “Program→Show source code”.

Methods for drawing and shading

Among the most frequently used functions in Open Geometry are the com-
mands StraightLine2d(. . . ) and StraightLine3d(. . . ). Every time you draw a
straight or curved line one of them is called.5 You may call them according
to the following syntax:

void StraightLine2d( Color c, const P2d &P, const P2d &Q,
ThinOrThick thick )

void StraightLine2d( Color c, Real x1, Real y1, Real x2, Real y2,
ThinOrThick thick )

void StraightLine3d( Color c, const P3d &P, const P3d &Q,
ThinOrThick thick, Real offset )

As a result, a straight line segment in the specified color and line style will be
drawn. It connects the points P and Q (or (x1, y1) and (x2, y2)).

The StraightLine functions have existed for a long time, while another useful
command has been introduced only recently: MarkAngle(. . . ). It draws a circle

5“Curved” lines in Open Geometry consist of a sufficient number of straight line
segments.
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segment to mark the angle between two straight lines. Additionally, it returns
the angle in degrees. Its syntax is

Real MarkAngle( Color c,
const P2d &FirstPoint,
const P2d &CenterOfAngle,
const P2d &LastPoint,
Real radius,
int no of points, ThinOrThick style ) ;

or

Real MarkAngle( Color c,
const P3d &FirstPoint,
const P3d &CenterOfAngle,
const P3d &LastPoint,
Real radius,
int no of points, ThinOrThick style,
Real offset = STD OFFSET ) ;

Note that LastPoint need not really be the arc’s end point. It is enough that it
be situated on the connecting line of center and end point.

Open Geometry allows you to equip any object with a certain transparency.
In order to shade a polygon poly with transparency, you have to insert

SetOpacity( 0.5 )
poly.Shade( );
SetOpacity( 1 ) // restores default opacity

in Draw( ). The argument of SetOpacity(. . . ) (the α-value) may range from 0 to
1, where α = 1 is the default value and means “no transparency,” and α = 0
makes the object completely invisible. You can get the current value by calling
GetOpacity( ).

Be aware that SetOpacity(. . . ) depends on the drawing order! The above code
lines effect transparency only with respect to those objects that were drawn or
shaded before poly. That is, you should put them at the end of Draw( ). Compare
Figure 6.25 and the output of the sample file "opacity.cpp":
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Listing from "opacity.cpp":

Circ3d C [ 3], D [ 3]; const Color Col [ 3] = { Red, Green, Blue }; void

Scene: :Init( )
{

int i;
for ( i = 0; i < 3; i++ )
{

C [i].Def( Col [i], P3d( −6, 0, i ), Zdir, 5, 50, FILLED ) ;
D [i].Def( Col [i], P3d( 6, 0, i ), Zdir, 5, 50, FILLED ) ;

}
}
void Scene: :Draw( )
{

SetOpacity( 0.5 ) ;

// correct drawing order
C [ 0].Draw( THICK ) ;
C [ 1].Draw( THICK ) ;
C [ 2].Draw( THICK ) ;

// wrong drawing order
D [ 2].Draw( THICK ) ;
D [ 1].Draw( THICK ) ;
D [ 0].Draw( THICK ) ;

SetOpacity( 1 ) ;
}

FIGURE 6.25. Correct and incorrect use of SetOpacity(. . . ). The circles on the
right-hand side are drawn with opacity but in incorrect drawing order (output of
"opacity.cpp").

A further method for achieving special output effects is CreateAura(. . . ). A good
example of its usage is "two circles.cpp" (Figure 6.26). Two circles and a cou-
ple of straight lines are displayed. In order to improve the 3D effect of the image,
we create a white aura around certain objects. You have to call CreateAura(. . . )
immediately before the respective drawing routine and you must pass a line
width as parameter:
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Listing from "two circles.cpp":

Circ3d C1, C2;
P3d H;
StrL3d Axis2;

void Scene: :Init( )
{

ScaleLetters( 1.5 ) ;
H( 0, 5, 0 ) ;
C1.Def( Black, H, Zaxis, 200 ) ;
Axis2 = Xaxis;
Axis2.Translate( H ) ;
C2.Def( Black, Origin, Axis2, 200 ) ;

}

void Scene: :Draw( )
{

ShowAxes( Black, 6.5 ) ;
CreateAura( VERY THICK ) ;
Zaxis.LineDotted( Black, −6, 6, 20, MEDIUM ) ;
CreateAura( VERY THICK ) ;
Axis2.LineDotted( Black, −6, 6, 20, MEDIUM ) ;
CreateAura( VERY THICK ) ;
C1.Draw( MEDIUM ) ;
CreateAura( VERY THICK ) ;
C2.Draw( MEDIUM ) ;
Origin.Mark( Black, 0.1, 0.05 ) ;
H.Mark( Black, 0.1, 0.05 ) ;

}

Note that on some (not on all!) engines the use of auras slows down the anima-
tion. You can disable all auras by simply inserting

AllowAura( false );

in Init( ) or Draw( ).

In Figure 6.26 you can see Open Geometry’s standard 3D coordinate system.
In Open Geometry 1.0 this was done by calling

ShowAxes ( Color f, Real xsize, Real ysize= 0, Real zsize= 0 );

This drawing method still exists in Open Geometry 2.0, but we would be
happy if from now on you used the following instead:
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FIGURE 6.26. Using CreateAura(. . . ) for achieving special 3D effects (output of
"two circles.cpp").

Listing from "H/scene.h":

void ShowAxes3d( Color f, Real sizex,
Real sizey = 0, Real sizez = 0, Boolean show xyz = true ) ;

void ShowAxes3d( Color c,
Real xmin, Real xmax,
Real ymin, Real ymax,
Real zmin, Real zmax, Boolean show xyz = false ) ;

void ShowAxes2d( Color c, Real xlength,
Real ylength = 0, Boolean show xy = true ) ;

void ShowAxes2d( Color c,
Real xmin, Real xmax,
Real ymin, Real ymax, Boolean show xy = false ) ;

The meaning of the input parameters is not difficult to understand. In both 2D
and 3D you have two possibilities:

• Starting from the origin, you can draw all axes with a certain length (sizex,
xlength, . . . ). To make it simple, it is permissible to specify only one length,
which will result in equal axis length.

• You can draw all axes in a specified interval ([xmin, xmax], . . . ).

At the positive end of each axis a little arrow will be attached. If you like, you
can also equip them with the letters x, y, and z. To give you an example, the
lines

ShowAxes2d( Black, −5, 5, −1, 5, true ) ;
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ShowAxes2d( Black, 8, 5, false ) ;
ShowAxes3d( Black, 10 ) ;

result in the output displayed in Figure 6.27 (from left to right).

FIGURE 6.27. Different options for displaying coordinate systems in Open Geome-
try 2.0.

In Open Geometry you have a number of predefined colors. You can address
them by a predefined enumeration type named Color (defined in "enums.h").
For your convenience we list them here as well:

White, AlmostWhite, PureWhite, Black

Blue, Brown, Cyan, Gray, Green, Magenta,
Orange, Pink, Red, Yellow

DarkBlue, DarkBrown, DarkCyan, DarkGray, DarkGreen,
DarkMagenta, DarkOrange, DarkPink, DarkRed, DarkYellow

LightBlue, LightBrown, LightCyan, LightGray, LightGreen,
LightMagenta, LightOrange, LightPink, LightRed, LightYellow

// Independent of eye point and illumination,
// pure colors will always be plotted in one hue.
PureBlue, PureBrown, PureCyan, PureGray, PureGreen,
PureMagenta, PureOrange, PurePink, PureRed, PureYellow

// Additional types for special purposes.
NoColor, NotSpecified

When shading a polygon, Open Geometry takes into account the viewpoint
and the light source. Thus, a red polygon may be shaded in different hues ac-
cording to the camera and light settings you choose. If you do not want this you
should use PureRed instead. This color provides only one hue.
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You can, of course, create your own colors as well. In order to do this you have
to insert something like

Color MyColor = NewColor( 1 ) ;

const int palette size = 100;
const int r1 = 0.1, g1 = 0.2, b1 = 0.4;
const int r2 = 0.95, g2 = 0.95, b2 = 1;
CreateNewPalette( MyColor, palette size, r1, g1, b2, r2, g2, b2 ) ;

in Init( ). NewColor(. . . ) is an Open Geometry macro that initializes My-
Color. CreateNewPalette(. . . ) takes eight parameters: It generates a palette of
palette size different hues ranging from the two colors with RGB values (r1, g1, b1)
and (r2, g2, b2). If you want to create a pure color, you can use palette size = 2
and r2 = r1, g2 = g1, b2 = b1. After having created your new palette, you can
use MyColor just as any other Open Geometry color.

6.5 Do’s and Dont’s
This section’s intention is to give you a few hints how to make full use of Open
Geometry’s abilities and to point out typical mistakes. We have already tried to
do this in describing Open Geometry classes, but one thing or the other might
have been forgotten or had only minor impact on the reader’s consciousness.
Some of the blunders stem from reader requests after the publication of [14].
Most of them, however, come from our own experience. We will illustrate them
with various examples and point out the main problems.

Parameterized curves and surfaces

The typical way to display a plane curve c in Open Geometry is the use of the
purely virtual class ParamCurve2d. The mathematical equivalent to this class is
the parametric representation of c, e.g., a function

�x: I ⊂ R → R
2, t �→

(
x(t)
y(t)

)
.

Alternatively, you can define c as the graph of a function f : I ⊂ R → R, e.g.,
the set of all points (x, y) satisfying y = f(x). However, this is just the special
parametric representation �x(t) =

(
t, f(t)

)
.

The parametric representation of c is never uniquely determined. By applying
a regular parametric transformation t = t(t∗), one gets a new parameterization
�x∗(t∗) = �x

(
t(t∗)

)
. For a mathematician, the new function �x∗(t∗) is equivalent

to �x(t). In computer graphics, this is not true! We will demonstrate this in an
example:
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Example 6.1. Bad parametric representation
In "bad par rep.cpp" we display three differently parameterized copies of a
circle catacaustic c (compare Example 2.6).

The best parametric representation uses trigonometric functions and reads

x(ϕ) =
−er

(
r − e(2 sin2 ϕ + 1) cos ϕ

)
r2 − 3er cos ϕ + 2e2 ,

y(ϕ) =
2e2r sin3 ϕ

r2 − 3er cos ϕ + 2e2 .

By ϕ(u) = arccos u, we transform the ϕ-parameter interval [−π, π] to [−r, r] and
get

x(u) =
r4 + 3er2u − 2eu3

r4 − er2(3u − 2e)
,

y(u) =
2e(r2 − u2)3/2

r4 − er2(3u − 2e)
.

By substituting

cos ϕ =
1 − t2

1 + t2
, sin ϕ =

2t

1 + t2
,

or equivalently by transforming ϕ(t) = 2 arctan t, we get a rational parameteri-
zation �x(t) =

(
x(t), y(t)

)t of c. The parameter t varies in (−∞, ∞). Since �x(t) is
rather long, we omit displaying it here.

FIGURE 6.28. Three different parametric representations of the same curve.

The effects of the different parametric representations can be judged by the out-
put of "bad par rep.cpp" (Figure 6.28). The first curve (left) uses the parameter
ϕ and yields a good result. We approximate the curve by a polygon of 200 points.
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The second curve (middle) uses the parameter u. The output quality is satisfac-
tory, but only the upper half of the curve is displayed. This is a result of using
the arccos function. It returns only positive values.

Using the parameter t in the third curve on the right produces more or less a
disastrous result. Again we use 201 points, but their distribution on the curve is
really bad. On the right side of the curve you can see clear edges, and you have
to increase the number of points considerably in order to smooth them.6 ♦
Of course, analogous considerations apply to parameterized surfaces as well.
Sometimes you may, however, wish to use a certain parametric representation
for whatever reasons. Perhaps it is difficult to compute an alternative or you need
the parameter lines of that specific representation. The latter was the case with
the surface Φ produced by "conic section surface1.cpp" (Figure 6.29). It is
an example of a special surface of conic sections (a surface with a one-parameter
set of conic sections on it) investigated in [34].

The parametric curves of the first kind on the surface Φ are the conics. We
want to use a special rational parametric representation for them because the
parameter lines of the second kind are of interest: They belong to a very special
family F of curves on this surface.

• Each curve of F lies in a plane of a fixed pencil of planes a(α).

• The conics on Φ are projectively related by the curves in F .

Furthermore, there exist six straight lines on Φ: the axis a of the pencil of planes
and five additonal straight lines e0, . . . , e4 ∈ F (parametric lines of the second
kind).

In Figure 6.29 two different pictures of Φ are displayed. The image on the left
shows the typical drawbacks of the rational parameterization:

• The distribution of the points on the conic section is very bad. It produces
visible edges (watch the upper right corner of the left image).

• The same is true for the distribution of the parameter lines on the surface.
They all seem to be attracted by a certain area on the surface and hardly
ever occur on the opposite side of Φ.

• The conic sections on the surface are not closed. By enlarging the parameter
interval, we could more or less get rid of this effect but at the cost of in-
creasing the troubles with the distribution of the points and the parameter
lines we have mentioned above.

6We have to mention that the rational parametric representation may be very useful
in some respect. E.g., the order of c can easily be computed from �x = �x(t). It is six if
e �= r and four if e = r (compare [15]).
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FIGURE 6.29. Bad parameterization of a conic section surface (left, compare
"conic section surface2.cpp"). The surface is split in two and each part is parame-
terized separately (right, "conic section surface2.cpp").

If you now watch the image on the right-hand side, you will notice that all the
ugly effects have disappeared. The trick we used is indicated by the two different
shading colors of Φ: We split the surface in two parts and parameterized each
of them separately! It was not necessary to give up the rational parametric
representation. Only a simple parametric transformation was needed.

Example 6.2. Splitting of parameterized curves
We will explain the procedure with a more lucid example from 2D geometry.
The basic idea is, of course, the same, and you will be able to use it in spatial
geometry as well. Take, for example, the following rational parameterization of
a circle c:

c . . . X(t) =
r

1 + t2
(
1 − t2, 2t

)t
.

The theoretical parameter interval is [−∞,∞]. Still, this is not enough to get
the curve point

U(−r, 0)t = lim
t→∞ X(t).

Since we can use only a finite parameter interval I, we will always have a gap
in a neighborhood of U . For the picture on the left-hand side of Figure 6.30 we
chose r = 5 and I = [−12, 12]. The circle is approximated by a polygon of 150
vertices.

Now we are going to split the circle c in two parts c1 and c2 at the highest point
H = X(1) and the lowest point L = X(−1). In order to do this, we have to find
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FIGURE 6.30. Rational parametric representation of a circle c (left). The circle is
split into two parts that are parameterized and drawn separately (right).

a good rational parametric representation X1 = X1(t) of the left part c2 of c. It
is reasonable to claim X1(−1) = L, X1(0) = U , and X1(1) = H. For reasons of
symmetry, this parametric representation is

c2 . . . X2(t) = r
(
−1 − t2

1 + t2
,

2t

1 + t2

)t

.

The same result can, of course, be obtained by calculating the coefficients a, b,
c, and d of a fractional linear map

t �→ at + b

ct + d

that transforms X(t) to X2(t). This approach is more general. We used it, for ex-
ample, for the picture on the right-hand side of Figure 6.29 and in Example 3.18.
A very detailed discussion of this problem will be given in Example 6.3.

In Figure 6.30 you can see the result of the parametric transformation and split-
ting. For the circle on the right-hand side (actually two semi circles) we use again
150 = 2·75 points and a rational parametric representation. This time, the result
is entirely satisfactory. ♦

Finding good parameterized equations

Frequently, the following problem occurs: Given the parameterized equation of a
surface Φ, you want to visualize it on the screen. In principle, this is no problem
with Open Geometry. Still, there are certain things to take into account.

Example 6.3. Roman surface
In [39] we find the parametric representation of a surface Φ which the author
considers to be very beautiful: Kummer’s example of Steiner’s Roman surface
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([21]); a surface of remarkable properties and high symmetry. The suggested
parametric representation for Φ reads

�x(r, ϕ) =
1

r2/2 + 1




√
2(r cos ϕ + cos 2ϕ)√
2(r sin ϕ − sin 2ϕ)

r2 − 1


 .

We immediately implement this:

class MyRomanSurface: public ParamSurface
{
public:

virtual P3d SurfacePoint( Real r, Real phi )
{

Real x, y, z;
x = cos( 2 ∗ phi ) + r ∗ cos( phi ) ;
y = −sin( 2 ∗ phi ) + r ∗ sin( phi ) ;
z = r ∗ r − 1;
const Real sqrt2 = sqrt( 2 ) ;
const Real denom = 0.5 ∗ r ∗ r + 1;
x ∗= sqrt2 / denom;
y ∗= sqrt2 / denom;
z /= denom;
z += 0.5;
const Real factor = 5;
return P3d( factor ∗ x, factor ∗ y, factor ∗ z ) ;

}
};
MyRomanSurface RomanSurface;

FIGURE 6.31. Parameterizing Kummer’s model of the Roman surface.
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Now let us have a look at the result (first picture in Figure 6.31).7 Quite nice,
but still, we do not see all of the surface’s relevant properties: Φ has no real
points at infinity, so we should be able to display a closed surface.

In our first approach we used (r, ϕ) ∈ [0, 1] × [−π, π), but having a look at
the geometric meaning of r and ϕ, we find that r ∈ [0,∞) is the maximal
parameter range. Thus, we will not be able to see the whole surface without a
proper parametric transformation. We can try to increase the parameter range
(r ∈ [0, 10]) but the result is not too good (second picture in Figure 6.31). The
parameter lines and surface facets are unevenly distributed and we have problems
with the contour outline.

Obviously, we have to map the interval [0,∞) to some finite interval [0, α). For
this purpose, a fractional linear parametric transformation seems to be a good
idea:

r �→ f(r) =
ar + b

cr + d
ad − bc 
= 0.

The conditions f(0) = 0 and f(α) = ∞ result in b = 0 and cα + d = 0. After
some trial and error we decide on a = c = 1 and α = 2 as a good choice for our
parameters. We insert

r = r / ( r − 2 ) ;

at the top line of the SurfacePoint(. . . ) function, change the parametric rectangle
to [0, 2]× [−π, π] and get the result displayed in the third picture of Figure 6.31.
That is not too bad. However, if we look at the surface in a bottom view, we
find that the parameter lines of one kind look somehow strange. In fact, there
exists a theoretical borderline in the middle of the geometrically closed surface
Φ, which causes an irritating distribution of the parameter lines.

In this special case (and in many others) it helps to split the surface. That is,
we derive two instances RomanSurface1 and RomanSurface2 of the class MyRo-
manSurface and shade them separately, using ϕ ∈ [−π, 0] and ϕ ∈ [0, π], respec-
tively. After experimenting a little with the number of parameter lines we get the
pictures in the third row of Figure 6.32. The bottom view is entirely satisfactory
this time.

In the last step we want to emphasize the special properties of Φ. It permits the
symmetry operations of a regular tetrahedron. Three double lines are clearly vis-
ible on the surface. Their six end points lie on four circles that touch one another.
Drawing the circles and the double lines will raise the picture’s quality consider-
ably. Some simple spatial trigonometry provides the necessary information, and
we can produce the final output ("roman surface.cpp", Figure 6.32).

7We recommend that you follow our thoughts and implement this param-
eterized surface as well in Open Geometry. You can use the templet file
"USER/TEMPLETS/paramsurf.cpp".
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FIGURE 6.32. The final rendering.

♦

A simple example of diverse techniques

The next example is very simple and rather stupid. We have designed it to
demonstrate a few Open Geometry programming techniques that might be
useful to you. These techniques concern fast rotation of a huge number of objects,
dynamic memory allocation, and the compiler-safe use of count variables in loops.

Example 6.4. Fast rotation
In "quickrot2d.cpp" we apply an ordinary 2D rotation to a huge number of

points. Despite the apparent simplicity, we will be able to give a few nontrivial
hints, and you will learn more about internal procedures of Open Geometry.
Since "quickrot2d.cpp" is not too long, we display a complete listing:

Listing of "quickrot2d.cpp":

#include "opengeom.h"

int NoOfPoints;
P2d ∗P = NULL;
RandNum Rand;

void Scene: :Init( )
{
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// allocate memory for a huge random number of points
Rand.Def( 10, 10000 ) ;
NoOfPoints = (int) Rand.Next( ) ;
ALLOC ARRAY( P2d, P, NoOfPoints, "nPoints" ) ;

// define random points
Rand.Def( 0, 10 ) ;
int i;
for ( i = 0; i < NoOfPoints; i++ )

P [i]( Rand.Next( ), Rand.Next( ) ) ;

AllowRestart( ) ;
}
void Scene: :Draw( )
{

for ( int i = 0; i < NoOfPoints; i++ ) // bad style
P [i].Mark( Magenta, 0.05 ) ;

}
void Scene: :Animate( )
{

int i;
Rotation2d.Def( Origin, 0.8 ) ;
for ( i = 0; i < NoOfPoints; i++ )
{

// slow rotation
P [i].Rotate( Origin2d, 0.8 ) ;
// fast rotation
//P [i].Rotate( ) ;

}
}
void Scene: :CleanUp( )
{

// Dont forget to free the dynamically allocated memory!
if ( P )

FREE ARRAY( P2d, P, NoOfPoints, "nPoints" ) ;
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

xyCoordinates( −10, 10, −10, 10 ) ;
}

}
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We use three global variables: an integer NoOfPoints, a pointer to an object of
type P2d, and a random number Rand. In Init( ) we initialize the random number
and reserve memory for an array of points. This is necessary because NoOfPoints
is not constant. As a consequence, a new random value can be assigned every
time you restart the program.

The use of the Open Geometry macro ALLOC ARRAY is very convenient in
this context. Do not forget to free the memory at the end of the program by
calling FREE ARRAY. The correct position for this task is CleanUp( ).8

After having allocated the memory for the points, we initialize them with random
values in Init( ) and mark them in Draw( ). Note the for-loop in Draw( ). For
our example it is all right, but in general, it is not a good programming style
(even though certain books on C++ tell you something different): Depending on
your compiler, the scope of i will be either the for-loop or the whole Draw( )
part. Problems will arise if you want to use a variable of the same name later in
Draw( ).9 Therefore, we had better use the unambiguous notation

int i;
for ( i = 0; i < NoOfPoints; i++ )

P [i].Mark( Magenta, 0.05 ) ;

The animation consists of a rotation with constant velocity about the center of
the coordinate system. Again, our solution is not the best. The code line

P [i].Rotate( Origin2d, 0.8 ) ;

evokes the computation of the same rotation matrix for every single point we
want to rotate. Thus, our engine has to compute the values of sin(0.8) and
cos(0.8) every single time. It would be much better to compute the rotation
matrix only once. For such cases, Open Geometry provides a global constant
called Global.rotation2d. It is initialized by

Rotation2d.Def( Origin, 0.8 ) ;

Thus, we could achieve the same result much faster by toggling comments in
Animate( ). Of course, you can speed up 3D rotations in an analogous way.

There exists a second way of speeding up the above code: Replace the angle
increment 0.8◦ by an integer value n ∈ {0, . . . , 360} (e.g., by 1◦). This activates

8For the dynamic memory allocation of 2D arrays a similar pair of macros exists:
ALLOC 2D ARRAY and FREE 2D ARRAY.

9Open Geometry 1.0 has been afflicted by this problem. For the new version, we
have corrected all critical code lines.
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internal Open Geometry tables of trigonometric functions and prevents the
repeated computation of sin(1◦) and cos(1◦).

If you run the animation twice with an identical number of points but different
ways of rotation, you will probably not notice the difference in speed. The reason
for this is that the computation of thousands of rotation matrices is still much
faster than the marking of thousands of points in Draw( ). It is there that most
of the time is lost, despite the fact that Open Geometry handles this task very
cleverly.

If you mark one point, Open Geometry does not draw a circle but a little
regular polygon. If you mark a second point, this polygon is not recomputed but
simply translated to the correct position. Furthermore, the number of polygon
vertices depends on its radius: The smaller it is, the fewer vertices are computed.
In our example the circles are approximated by twelve-sided polygons. If you
want more vertices, you can switch to quality mode by inserting

HiQuality( ) ;

in Init( ). This will (among other things) double the number of vertices on circles.
Note that this is not necessary for the production of high-quality "*.eps" files.
There, every circle will really be described as a circle. Thus, you don’t lose any
accuracy. ♦

Accessing object points

Many geometric objects in Open Geometry are derived from the common
base class O2d or O3d. You will find their description on page 460 and page 502,
respectively. These classes describe conglomerates of 2D or 3D points and are
equipped with methods that permit geometric transformations (translation, ro-
tation, scaling,. . . ) and access to the single member points.

These powerful tools apply to many Open Geometry classes even if you do
not find them directly in the corresponding header file. We would like to draw
your special attention to such transformation methods as MoveGenerally(. . . ) and
MatrixMult(. . . ). Without them, advanced animations as in "oloid.cpp" would
be much harder.

Sometimes, it is very useful to directly access the member points of a geometric
object. If the object is derived from O2d or O3d, this is possible. Both classes
have the common ancestor O23d with the public member variables

int nPoints;
P3d ∗pPoints;

The variable nPoints gives the number of stored object points, pPoints is a pointer
to them. You can address a point by means of the [ ] operator, i.e., you may to
write
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P3d P = nPoints[i];

where i ranges in [1, nPoints]. Note that you are even allowed to change the value
of nPoints. Please, don’t do that if you are not really aware of the consequences!
We even recommend addressing nPoints indirectly via Size( ), because we intend
to declare nPoints as private in some future version. Under no circumstances
should you increase nPoints. This would almost immediately result in a compi-
lation error or program crash. In order to avoid these troubles, you should use
the O23d method SetSize(. . . ). It allows only the decreasing of nPoints. This is
permissible and sometimes even sensible.

Numerical errors

Open Geometry provides a few additions to the standard catalogue of C’s
mathematical functions (compare page 557). Some are entirely new; others are
just alternatives to the standard functions. Usually, Open Geometry versions
are equipped with security checks and catch undefined cases. Using them might
prevent your system from crashing and avoid hard-to-find errors. We have a
stunning example of this:

Example 6.5. Buggy kardan
The file "buggy kardan.cpp" is an almost identical copy of "kardan.cpp". Start-
ing it, you will be presented a wire frame model of a kardan joint. Restart the
program immediately by pressing <Ctrl + Shift + R>. This switches to a solid
model of a teaching device: With the help of a little crank, one can drive the
kardan joint. Now, start the animation <Ctrl + F> and wait a little. The angle
between the two axes of rotation will be increased now and then until, suddenly,
something strange happens (somewhere around frame number 240).

Can you find the bug without comparing our sample file to "kardan.cpp"? There
is only one different code line:

Omega = Deg( acos( v ∗ v0 ) );

If you replace this line by

Omega = Deg( ArcCos( v ∗ v0 ) );

everything will be all right. Here v and v0 are 3D vectors. Directly before com-
puting the inverse cosine of their dot product, they are normalized. Still, due to
numerical errors, the inequality −1 ≤ v ∗ v0 ≤ 1 is not guaranteed! You can test
it by inserting

if fabs( ( v ∗ v0 > 1 ) )
SafeExit( );

directly before the line in question. Open Geometry’s ArcCos(. . . ) function
takes care of bad input data; C’s acos(. . . ) does not. As a result, the middle
cross of the model will be hurled to some place in vast 3-space.
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Finding this error was really hard work. One would expect that the dot product
of normalized vectors is within range, but this is not the case. Therefore, it is
really advisable to use frequent security checks. Compared with the computation
of the inverse cosine, the time for the additional check can be neglected. ♦
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7

How to Expand Open Geometry

This chapter is written for advanced Open Geometry users with some pro-
gramming experience. It is not written for C++ beginners! We will deal with
items such as:

• multiple scene programs,

• line scope of variables,

• workspace,

• dynamic memory,

• privacy of classes,

• customizing Open Geometry to your special preferences.

7.1 Multiple Scenes
In Open Geometry 1.0 we could not compile two or more programs at once. We
had to put the old #include line in "try.cpp" in comments before including
the next example. The reason for this is that we are obliged to implement the
virtual functions Init( ), Draw( ), Animate( ), CleanUp( ), and Projection::Def( ),
but we are not allowed to implement them more than once. Essentially, this is
still the case in Open Geometry 2.0. However, we introduced a new possibility
that allows the compilation of several programs at once.
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Example 7.1. Multiple scenes
The production of a multiple scene file needs two steps. First you must prepare
every single program. Make sure that they all compile and yield the desired result.
Then you have to write a nonstandard Open Geometry file. The following
listing shows a sample where seven applications are compiled at once:

Listing from "multiple scenes.cpp":

#include "opengeom.h"

int get scene number( )
{

static int i = 0;
i++;
if ( i > 7 )

i = 1;
return i;

}
#include "scene1.h"
#include "X/SCRIPT/running 3d wave.cpp"

#include "scene2.h"
#include "X/3D/develop.cpp"

#include "scene3.h"
#define F FScene3
#include "X/SCRIPT/f deriv.cpp"
#undef F

#include "scene4.h"
#define N NScene4
#include "X/SCRIPT/gg.cpp"
#undef N

#include "scene5.h"
#define Surf SurfScene5
#include "HANDBOOK/BSPLINE/nubs surf.cpp"
#undef Surf

#include "scene7.h"
#include "X/3D/IMPORT/teapot.cpp"

#include "scene6.h"
#include "BOOK/paramcurve2d.cpp"

#include "multiple scenes.h"
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We call this file “nonstandard” because Init( ), Draw( ), Animate( ), CleanUp( ),
and Projection::Def( ) are missing. In "multiple scenes.cpp" we do three
things:

1. We include "multiple scenes.h" at the bottom of "multiple scenes.cpp".

2. We implement a function get scene number(. . . ) that returns an integer
value 1 ≤ i ≤ 7. The maximum number of scenes to be displayed is 30.
In order to change this number, you have to edit "multiple scenes.h".
We will soon explain this more precisely.

3. We include our different scene files as displayed in the listing. Here, it is
important to redefine every global variable name that occurs in different
included scenes! In our example these are the variables F, N, and Surf.
Don’t worry if you forget to do this; the compiler will tell you. Note that
we deliberately use 2D and 3D scenes. This has no negative effect on the
compilation process.

All three points have an important meaning. Our get scene number(. . . ) func-
tion is not very sophisticated. The return value is increased with every
restart of the program (menu item “Program→Restart Program” or shortcut
<Ctrl+Shift+r>). Thus, you will see scene 1, scene 2,. . . ,scene 7 and then start
again with scene 1. One could as well write a function that reacts to keystrokes
or implement a pulldown menu and choose the scenes via a mouse click.

We have to avoid ambiguous variable names. This is done by redefining them
before the respective #include statements. This solution is not very elegant
but has a big advantage: We do not need to change previously written Open
Geometry programs and can preserve the backward compatibility of your Open
Geometry version.

The first point, inclusion of "multiple scenes.h", is of interest, too. We list
the source code to give you a clue as to what is happening:

Listing from "H/multiple scenes.h":

#undef Scene
#undef Projection

Projection ∗CurCamera;
Scene ∗CurScene;

int CurSceneNumber;

void Scene: :Init( )
{

CurSceneNumber = get scene number( ) ;
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if ( VeryFirstTime( ) )
{

switch ( CurSceneNumber )
{

#ifdef SCENE1
case 1: CurScene = new Scene1; break;

#endif

...

#ifdef SCENE30
case 30: CurScene = new Scene30; break;

#endif
default:

SafeExit( "Wrong number of scene" ) ;
}
TheScene = Global.application = ∗CurScene;
CurScene−>Init( ) ;

}
AllowRestart( ) ;

}
void Scene: :Draw( )
{

CurScene−>Draw( ) ;
}
void Scene: :Animate( )
{

CurScene−>Animate( ) ;
}
void Scene: :CleanUp( )
{

CurScene−>CleanUp( ) ;
}
void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

Projection ∗cam = NULL;
switch ( CurSceneNumber )
{

#ifdef SCENE1
case 1: cam = new Camera1; break;

#endif

...

#ifdef SCENE30
case 30: cam = new Camera30; break;

#endif
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default: SafeExit( "bad number of scene" ) ;
}
CurCamera = Global.camera = cam;
CurCamera−>Init( ) ;

}
CurCamera−>Def( ) ;

}

Probably, you have already wondered what has happened to Init( ), Draw( ),
Animate( ) and CleanUp( ). They have moved to the header file. There, the
pointer CurScene sends them to the respective function of the current scene. In
order to allow this, some major changes to the inner structure of Open Geome-
try were necessary. However, you should not even notice them unless you view
"multiple scenes.h". ♦

7.2 Global and Static Variables
In this section we will talk about the scope of a variable and the impact of a
global variable.

Your Open Geometry program is, in general, relatively short, say two or three
pages on the screen. Everything that is declared outside the four member func-
tions of Scene — Init( ), Draw( ), Animate( ), CleanUp( ) — and Projection::Def( )
is “global” for the rest of the program. If a variable is declared before all these
functions, it can be defined and changed at any position. In the same way, a
function can be used everywhere, as long as its prototype is listed on top of the
program (the implementation can be anywhere else).

If the declaration of the global variable or the function is not protected by the
keyword static, other modules have direct access to this variable by means of
the keyword extern.1

However, as a general rule, please obey the following: Always initialize a global
(nonconstant) variable in the Init( ) part. This is the only safe way to make a
program restartable. Thus, you should not initialize global variables by means of
constructors, although in many cases Open Geometry would allow you to do
so. An example will show you the reason for this step by step: The program

1The library of Open Geometry, of course, uses this feature quite often; it is a
convenient way of “communication” between the modules. Nevertheless, this library
does not use “ordinary” variables: Instead, a single instance named Global of a large
structure called GlobalVariables was introduced. The structure — and with it all global
data — can be initialized, reinitialized, and deleted on demand (e.g., for a restart of
the program). Besides the variable Global, there is only one additional global Boolean
variable, named GlobVarInitialized, which is initialized with false when the program
is started.



588 Chapter 7. How to Expand Open Geometry

#include "opengeom.h"
#include "defaults3d.h"

Box B( Green, 5, 5, 5 ) ; // B is initialized via constructor

void Scene: :Init( )
{
}
void Scene: :Draw( )
{

B.Shade( ) ;
}

displays a cube correctly. Since the cube is never altered, the program even allows
a restart:

#include "opengeom.h"
#include "defaults3d.h"

Box B( Green, 5, 5, 5 ) ; // B is initialized via constructor

void Scene: :Init( )
{

AllowRestart( ) ;
}
void Scene: :Draw( )
{

B.Shade( ) ;
}

This is not trivial: The variable B contains dynamic memory that is deleted when
the destructor is called. When a program is restarted, however, its destructor is
not called automatically (you would have to call the destructor explicitly in
CleanUp( )). Note that a restart will not call the constructor again!

Next, the program

Box B( Green, 5, 5, 5 ) ; // B is initialized via constructor

void Scene: :Init( )
{

B.Translate( 1, 0, 0 ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

B.Shade( ) ;
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}

is no longer restartable: Every restart calls Init( ). There, our box is translated.
With every restart, the cube will appear at another starting position.

Here is finally the restartable version: The box is initialized (defined) in Init( ):

Box B; // B is not initialized!

void Scene: :Init( )
{

B.Def( Green, 5, 5, 5 ) ;
B.Translate( 1, 0, 0 ) ;
AllowRestart( ) ;

}
void Scene: :Draw( )
{

B.Shade( ) ;
}

For some reasons, e.g., for a multiple scene application, it may be necessary to
count the number of restarts. With the above, this can be done with the following
code:

int NoOfRestarts = −1;

void Scene: :Init( )
{

NoOfRestarts++;
AllowRestart( ) ;

}
void Scene: :Draw( )
{
}

If we do not need the variable NoOfRestarts globally, we can introduce a “pseudo
global variable” by means of the keyword static as follows:

void Scene: :Init( )
{

static int noOfRestarts = −1;
noOfRestarts++;
AllowRestart( ) ;

}
void Scene: :Draw( )
{
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}

In this case there is no way to have access to noOfRestarts from outside. If we
want to forbid access from other modules to our personal global variables, we
can use the static keyword in its second meaning:

static int NoOfRestarts = −1;

void Scene: :Init( )
{

NoOfRestarts++;
AllowRestart( ) ;

}
void Scene: :Draw( )
{
}

// in some other module...
int no of restarts( )
{

extern int NoOfRestarts;
// only works, if NoOfRestarts is not static

return NoOfRestarts;
}

7.3 The Initializing File “og.ini”
Open Geometry is a programming system that needs a compiler. Once an
application is compiled, it will run with clearly defined parameters. For some
reasons, however, it is useful to be able to change parameters “from outside,”
for example, by means of an initializing file.

Since “learning by doing” is a good method, we give a sample listing of the
initializing file "og.ini":

begin Open Geometry parameters

please change only parameters

AllowRestart no AllowRestart( )

HardwareBug no

NameOfOutputDirectory ./

PathTo BMP Directory ./

PathTo DATA Directory ./
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ChangePovRayLineWidth 1

ChangePScriptLineWidth 1.8

Color Yellow low rgb 0.45 0.25 0.0 high rgb 1 1 0.5

end Open Geometry parameters

In principle, Open Geometry reads this file before the scene’s member function
Init( ) is called. When you write

AllowRestart yes

this has the same effect as using the routine AllowRestart( ) in the Init( ) function.
Note that the predefinition can be overwritten by AllowRestart(false); i.e., the
code in the application has priority.

Analogously, you can predefine line widths of the EPS output or the POV-Ray
output when you do not like the predefined values at all, but you are not willing
to write the corresponding commands into each application file.2

The line

HardwareBug yes

can sometimes help to overcome some hardware bugs: Many video cards sup-
port OpenGL via hardware. Some of them, though, have minor bugs, mostly in
connection with “thick lines,” obviously for speed reasons:

• Some cards cannot display “good-looking” thick lines. The line should ac-
tually be a slim rectangle. However, it appears as a parallelogram either
horizontally or vertically, which is disturbing when a thick line rotates dur-
ing an animation.

• This error is even worse: When a thick line has to be clipped with the screen
on different sides, it is sometimes not drawn at all.

Another useful thing is this: You can change the predefined color palettes ac-
cording to your taste. Say, you do not like the predefined Yellow palette, then
just try out your own palette; by means of

Color Yellow low rgb 0.45 0.25 0.0 high rgb 1 1 0.5

The RGB values have to be between zero and one. By the way, this is a
quick method to create a good-looking palette: No compilation is necessary!

2You could change the code in "h.cpp", where these variables are initialized, but
remember: These changes are undone with every update!
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When you are satisfied, you can initialize the palette with the command
CreateNewPalette(. . . ) (compare page 569).

Finally, a last and important feature: You can change the standard input and
output directory. Say, your disk partition is full and you want to export a huge
file. Then redirect the output to another directory. Do not forget the slash at
the end. The default directory is

NameOfOutputDirectory ./

You can load your bitmap files from another directory or change the "DATA/"
input by writing something like

PathTo BMP Directory c:/temp/

In this directory, however, the files have to be stored in the subdirectory "BMP/"
or "DATA/". This is due to the fact that most Open Geometry applications
include files from subdirectories with these names.3

The latter features can also be used for the following: Your Open Geome-
try “home directory” is somewhere on your disk (say in "D:/OPENGEOM/"), but
you have precompiled demoversions on your desktop. Then put an "og.ini" on
the desktop where the corresponding directories point to your home directory.
Thus, you do not have to copy all your data to the desktop. The corresponding
"og.ini" lines may then look like this:

NameOfOutputDirectory c:/temp/

PathTo BMP Directory d:/opengeom/

PathTo DATA Directory d:/opengeom/

7.4 How to Make Essential Changes
In this section we will show you how to wire in essential changes and class
implementations and still stay compatible with future versions of Open Geo-
metry. This is especially important for people who are willing to contribute
to the development of Open Geometry and/or are working intensively with
Open Geometry.

First of all, we list again the general rules:

• Especially if you intend to write multi scene applications, write programs
that do not leave memory leaks when you quit them. Therefore, when you:

3Of course, you will get the same effect by passing the complete path as parameter.
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– write classes of your own that contain dynamically allocated memory,
you should definitely equip them with a constructor and a destructor.

– work with global dynamic arrays, always check whether they are to be
freed in the CleanUp( ) part.

• Furthermore, you know already from the introductory section that you
should:

– definitely not overwrite the distributed files "d.cpp", "e.cpp",
"f.cpp",. . . of the C directory.

– also better not put your “personal header files” into the directory "H/".
Preferably, put them into the directory "USER/H/".

• A last thing you are asked for (and what at the first sight sounds unusual
to an advanced programmer): Do not add any new files to the workspace!
Every new version will overwrite the workspace. In the following, we will
show you that this is not necessary.

Here is an artificial example of an essential change.

Say, you would like to use the class Function that is declared in the distributed
header File "function2d.h". However, you need an additional member function
that determines extreme points like minima and maxima (and also the saddle
points; Figure 7.1). How can you do this with a minimum of work?

FIGURE 7.1. A function graph with minima, maxima, and a saddle point (output
of both "introduce new class.cpp" and "test funct min max.cpp").

• In the first step you develop a new application "introduce new class.cpp"
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as usual. There you implement a class MyFunction4 that is derived from the
predefined class Function. This class inherits “everything” from the parent
class, and you can additionally implement a new member function.

If you take a look at the listing of "introduce new class.cpp", you can see
what the new class MyFunction can do: It allows the calculation of minima,
maxima and saddle points of an arbitrary function graph. The implemen-
tation of the member function GetMinMax(. . . ) makes use of the member
functions FirstDerivative(. . . ) and SecondDerivative(. . . ) of the parent class.
It passes parameters that are of type PathCurve2d. The size of the respective
path curve is the number of minima/maxima/saddle points, and its points
are the corresponding extreme points of the function graph. After browsing
over the code, you will probably agree that the new feature is worth being
included into the whole system.

Listing of "introduce new class.cpp":

#include "opengeom.h"
#include "defaults2d.h"

#include "function2d.h"
class MyFunction: public Function
{
public:

void GetMinMax( Real x1, Real x2,
PathCurve2d &min,
PathCurve2d &max,
PathCurve2d &saddle,
int n = 800, Real eps = 1e−3 ) ;

};

MyFunction F;

Real f( Real x )
{

return x/2 + sin( x ) + sin( x / 2 ) + Sqr( x − 1 ) / 30.65;
}
void Scene: :Init( )
{

F.Def( f ) ;
}

4Note that the name of the class was not recognized as an Open Geometry class by
our beautifying program. Thus, it is not written in italics, and it was not automatically
put into the index of the book!
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void Scene: :Draw( )
{

ShowAxes2d( DarkGray, −10, 10, −3, 7 ) ;
F.Draw( Green, −10, 10, 150, MEDIUM ) ;
PathCurve2d min, max, saddle;
F.GetMinMax( −10, 10, min, max, saddle, 1000, 1e−2 ) ;
min.MarkPoints( Magenta, 0.15 ) ;
max.MarkPoints( DarkBlue, 0.2, 0.1 ) ;
saddle.MarkPoints( Red, 0.25, 0.15 ) ;

}

// implementation of the member function of MyClass

void MyFunction: :GetMinMax( Real x1, Real x2,
PathCurve2d &min,
PathCurve2d &max,
PathCurve2d &saddle,
int n, Real eps )

{
Real dx = ( x2 − x1 ) / ( n − 1 ) + 1e−12, left x, right x;
Real left y, right y;
for ( left x = x1; left x < x2; left x += dx )
{

right x = left x + dx;
left y = FirstDerivative( left x ) ;
right y = FirstDerivative( right x ) ;
if ( left y ∗ right y < 0 )
{

P2d p( left x, left y ), q( right x, right y ) ;
P2d s = StrL2d( p, q ) ∗ Xaxis2d;
s.y = (∗this) ( s.x ) ;
Real f2 = SecondDerivative( s.x ) ;
if ( fabs( f2 ) < eps )

saddle.AddPoint( s ) ;
else if ( f2 < 0 )

max.AddPoint( s ) ;
else

min.AddPoint( s ) ;
}

}
}
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• The “wire-in phase” is now the second step. It is worth following the recipe
step by step:

1. Create a new header file, e.g., "my function.h", preferably in the
"USER/H/" directory. There, you put the declaration of MyFunction
(see listing below).

2. Implement the class in the already existing file "add code.cpp" in
the directory "USER/" (see listing of "add code.cpp"). This file is
automatically included in the workspace. Do not add other files to the
workspace!

3. Write your application, say "test funct min max.cpp", where you
can use the new class exactly the same way as you are used to (see list-
ing of "test funct min max.cpp"), and enjoy again the output (Fig-
ure 7.1).

4. When you think that you have done a good job and you have imple-
mented a useful feature, contact us and send us the code together with
a short description. We will integrate your work in a future update and
distribute it to other users. For more information, please refer to the
Open Geometry home page

http://www.uni-ak.ac.at/opengeom/

Remember: Open Geometry should remain open to all those who
love geometry.

Listing of "USER/H/my function.h":

#ifndef MYFUNCTION H

#include "function2d.h"
class MyFunction: public Function
{
public:

void GetMinMax( Real x1, Real x2,
PathCurve2d &min,
PathCurve2d &max,
PathCurve2d &saddle,
int n = 300,
Real eps = 1e−3 ) ;

};

#define MYFUNCTION H
#endif
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Listing of "USER/add code.cpp":

#include "USER/H/my function.h"

void MyFunction: :GetMinMax( Real x1, Real x2,
PathCurve2d &min,
PathCurve2d &max,
PathCurve2d &saddle,
int n, Real eps )

{
// see listing of "introduce new class.cpp"

}

Listing of "test funct min max.cpp":

#include "opengeom.h"
#include "defaults2d.h"

#include "USER/H/my function.h"

MyFunction F;

Real f( Real x )
{

return x/2 + sin( x) + sin( x / 2 ) + Sqr( x − 1 ) / 30.65;
}
void Scene: :Init( )
{

F.Def( f ) ;
}

void Scene: :Draw( )
{

ShowAxes2d( DarkGray, −10, 10, −3, 7 ) ;
F.Draw( Green, −10, 10, 150, MEDIUM ) ;
PathCurve2d min, max, saddle;
F.GetMinMax( −10, 10, min, max, saddle, 1000, 1e−2 ) ;
min.MarkPoints( Magenta, 0.15 ) ;
max.MarkPoints( DarkBlue, 0.2, 0.1 ) ;
saddle.MarkPoints( Red, 0.25, 0.15 ) ;

}
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7.5 Dynamic Memory
In several examples we have already talked about dynamic memory allocation.
Beginners tend to avoid this delicate matter, but the longer you work with Open
Geometry, the more you will feel the need to use it. Many of Open Geome-
try’s classes would not be possible without dynamic memory allocation. Usually,
the user need not even be aware of it because allocation and deletion are handled
automatically by the “intelligent” classes.

In the following we will describe how to allocate and free memory dynamically
with the help of Open Geometry. You may need it for one or the other of your
programs, but more likely if you want to create classes of your own. The topic has
already been dealt with in [14], but we consider it of fundamental importance.
Therefore, we will repeat the main ideas.

Allocating and deleting memory

In C++, memory should be allocated by means of the new operator, and it
should be freed by the delete operator, as in the following example:

int ∗x;
x = new int;
∗x = 100;
delete x;

In order to avoid the asterisk ∗ with every call of the above variable x one can
use the following syntax:

int ∗x;
x = new int;
int &y = ∗x;
y = 100;
delete x;

Note that the value of y does not make sense after x has been deleted.

Dynamic arrays (the size of which are calculated at runtime) are allocated as
follows:

int ∗x;
int n = 100;
x = new int [n];
x [ 23] = 100;
delete [ ] x;
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Note the order of the brackets [ ].

The allocating and deleting of memory are some of the most sensitive processes
in computer programming. Thus, Open Geometry provides macros for the
allocation of dynamic arrays that are “safe.” These macros have been tested out
thoroughly, and we recommend that you use them — and only them — unless
you know exactly what you are doing. An example of macros of that kind is
displayed in the following listing:

int ∗x = NULL;
int n = 100;
ALLOC ARRAY( int, x, n, "x" ) ;
x [ 23] = i;
// etc.
FREE ARRAY( int, x, n, "x" ) ;

It is implemented in "alloc mem.h":

Listing from "H/alloc mem.h":

#define ALLOC ARRAY( typ, array, size, str )\
{\

if ( ( size ) == 0 )\
{\

SafeExit( StrCat("0 bytes for new ", str ) ) ;\
}\
else\
{\

if ( array != NULL )
Write( StrCat("set pointer to zero:", str ) ) ;\

array = new typ [ ( size ) ];\
}\

}
#define FREE ARRAY( typ, array, size, str )\
{\

if ( array == NULL )\
{\

Write( StrCat("free NULL pointer:", str ) ) ;\
}
else {\

delete [ ] array;\
array = NULL;\

}\
}
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“Intelligent arrays”

As a very useful application, we now show how to develop C++ classes that
handle arrays perfectly. The idea is that the array itself is hidden as a member
of the class (structure). Inline operators allow the elements of the array to be
read from and written to.

The goal is to write code like the following:

IntArray x( 10000 ), y;

RandNum rnd( −100, 100 ) ;
// initialize a random number in [−100,100]

int i;
for ( i = 0; i < x.size; i++ )

x [i] = rnd( ) ;

y = x; // The = operator has to be overwritten
y.Sort( ) ;
Print( y.Average( ) ) ;

// by the way: in this case, the average value should converge to 0

// etc.

This is the corresponding structure. The constant DUMMY is used in several
other implementations.

Listing from "H/intarray.h":

#ifndef INT ARRAY

struct IntArray
{

int size;
int ∗val;
IntArray( ) { size = 0; val = NULL; }
IntArray( int n, int init val = DUMMY )
{

val = NULL; size = 0;
Def( n, init val ) ;

}
void Def( int n, int init val = DUMMY ) ;
int & operator [ ] ( int i ) const
{

if ( i > size )
Write("IntlArray:idx ", i − size , DUMMY, "too high" ) ;



Section 7.5. Dynamic Memory 601

return val [i];
}
void operator = ( const IntArray &other )
{

other.Copy( ∗this ) ;
}
void Copy( IntArray &f ) const;
void Sort( int i1 = 0, int i2 = −1, int sgn = 1 ) ;
int Max( ) const;
int Min( ) const;
Real Average( ) const;

void Delete( )
{

if ( val )
FREE ARRAY( int, val, size + 1, "cont") ;

}
virtual ˜IntArray( )
{

Delete( ) ;
}

};

#define INT ARRAY
#endif // INT ARRAY

The meaning of the member functions Copy, Sort, Max, Min, and Average is
obvious. An analogous structure is RealArray (defined in "realarray.h").

Higher-dimensional arrays

Sometimes we have to allocate higher-dimensional arrays dynamically. In Open
Geometry this is necessary, for example, for tensor product surfaces that are
defined via a 2D array of control points. However, in order to present the basic
ideas, let us talk about a more abstract case. We want to allocate the two-
dimensional array int x[ n ][m ]. The array has n m elements of type int. The
expression x[ i ][ j ] is turned into ∗(x[ i ] + j) by the compiler. Thus, the computer
needs information about the n pointers x[ i ]. Therefore, the allocation of the array
has to be done in three steps:

1. Allocate the n pointers.

2. Allocate space for the entire array.

3. Initialize the rest of the pointers.
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The array is freed in two steps:

1. Free the space for the entire array.

2. Free the space for the n pointers.

It is fairly complicated to rewrite such code for every new allocation, and there
is always the danger of memory errors. This problem cannot be solved by a
function, because we have to distinguish between different types of variables if
the pointers are to be cast correctly. Once again, a C macro comes in handy:

int ∗∗x = NULL;
int n1 = 1000, n2 = 500;
ALLOC 2D ARRAY( int, x, n1, n2, "x" ) ;
for ( int i = 0; i < n1; i++ )

for ( int j = 0; j < n2; j++ )
x [i] [j] = i + j;

FREE 2D ARRAY( int, x, n1, n2, "x" ) ;

The Open Geometry implementation of the macros is as follows:

Listing from "H/alloc mem.h":

#define ALLOC 2D ARRAY( typ, array, size1, size2, str )\
{\

ALLOC ARRAY( typ ∗, array, size1, str ) ;\
array [ 0] = NULL;\
ALLOC ARRAY( typ, array [ 0], ( size1 ) ∗ ( size2 ), str ) ;\
for ( int i = 1; i < size1; i++ )\

array [i] = array [ i − 1] + size2;\
}
#define FREE 2D ARRAY( typ, array, size1, size2, str )\
{\

if ( array == NULL )\
Write( StrCat("free NULL pointer *:", str ) ) ;\

else\
{\

FREE ARRAY( typ, array [ 0], ( size1 ) ∗ ( size2 ), str ) ;\
FREE ARRAY( typ ∗, array, size1, str ) ;\

}\
}
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7.6 An Example of a Larger Project
In this section several elliptic compasses are studied. For an overview, please
start the multiple-scene application

"elliptic compasses.exe"

and have a look at the different mechanisms. At the end of the section “com-
passes” for the drawing of parabolas and hyperbolas are introduced.

Introduction5

In a workshop on kinematics held at Vienna’s University of Applied Arts a
student presented an interesting mechanism of an elliptic compass (Figure 7.5).
This chapter is based on our attempts to produce an animation of this elliptic
compass (and others as well) with Open Geometry 2.0.

Some of the supplied programs are to be found on the accompanying CD-ROM
in the directories "X/KH/CONIC COMPASS/" and "X/KH/KINE/". Others can be
downloaded from our home page

http://www.uni-ak.ac.at/opengeom/

Instead of constructing a number of ellipse points with ruler and compass or
draw the ellipse with the help of a computer, we can use a technical stencil.
Another, more flexible, possibility is the use of an elliptic compass.

FIGURE 7.2. Elliptic compass of Hoecken.

A very simple way to get an elliptic path curve is to fix a thread on two points
and move a pencil along the stretched thread (Figure 7.3). This is in line with
the proposition that all points with equal sum of distances to two fixed points
lie on an ellipse. Gardeners exchange the pencil with a spade to get an elliptic
flowerbed.

5In this section, G. Karlhuber summarizes his Open Geometry project on elliptic
compasses.
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FIGURE 7.3. The gardener method; CF 1 + CF 2 = const.

The following, more sophisticated, mechanisms of elliptic compasses are based
on planar kinematics and are sorted by theory. At the end we will also discuss
inversion and special trochoid motions for constructing conic compasses.

As already mentioned, the particular programs are stored in "X/KH/KINE/" and
"X/KH/CONIC COMPASS/". The header files are included from "X/KH/H/" and
Cad3D objects are imported from "X/KH/DATA/". In "elliptic compass.h"
you will find the common parts of all the programs:

Listing of "X/KH/H/elliptic compass.h":

void Projection: :Def( )
{

if ( VeryFirstTime( ) )
{

DefaultCamera( 30, 40, 50 ) ;
}

}

#ifndef ELLIPTIC COMPASS

class EC
{
public:

void Init( ) ;

// global hotkeys for interaction
void explain keyboard fix( ) ;
void draw paper sheet( ) ;

// drawing an ellipse
void show ellipse( ) ;
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P3d Pen;
int pen, t, tStop;
RegPyramid penPyramid;
RegPrism penPrism;
Real a, b, da, db; // lengths of the semiaxis
PathCurve3d PathX; // path curve of the ellipse
Boolean Drawing, Visible, Visible2;

};

void EC: :draw paper sheet( )
{

Rect3d paper;
paper.Def( PureWhite, 20 ∗ sqrt( 2 ), 20 ) ;
paper.Translate( −14, −10, 0.0 ) ;
SetOpacity( 0.5 ) ;
paper.Shade( ) ;
SetOpacity( 1.0 ) ;

}
void EC: :explain keyboard fix( )
{

// global hotkeys
PrintString( DarkBlue, −20, 19, "a =%.2f", a ) ;
PrintString( DarkGreen, −20, 17, "b =%.2f", b ) ;
PrintString( Black, 8.5, 19, "press ’Ctrl’+’f’,then" ) ;
PrintString( Black, 8.5, 17, "draw with ’d’" ) ;
PrintString( Black, 8.5, 15, "try also ’c’and ’s’" ) ;

}
void EC: :show ellipse( )
{

// drawing of the ellipse
if ( Drawing )
{

PathX.Draw( MEDIUM ) ;
}

}
void EC: :Init( )
{

Drawing = false;
Visible = true;
Visible2 = false;

PathX.Def( Black, 30000 ) ;
}
#define ELLIPTIC COMPASS
#endif ELLIPTIC COMPASS
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Two-point guidance

FIGURE 7.4. Mechanism using the two-point guidance.

Two linked points C1, C2 glide along two nonparallel straight lines. According
to the theorem of De La Hire, each point on the line C1C2 moves on an
ellipse (special cases are circles and straight lines). The first ellipsographs were
variations of the two-point guidance with perpendicular lines c1 and c2. Let
O = c1 ∩ c2 be the origin of a 2-dimensional Cartesian coordinate system and C
a point of C1C2 (Figure 7.4).

The coordinates of C are

x = a · cos ϕ, y = b · sin ϕ.

This can be transformed to the well-known equation

x2

a2 +
y2

b2 = 1

of an ellipse. The ellipsograph shown in Figure 7.4 is the simplest representative
of this sort. All programs of this mechanisms have a common mask:

Listing of "X/KH/CONIC COMPASS/mask elliptic compass.cpp":

#include "opengeom.h"

// do not change this include file
#include "X/Kh/H/elliptic compass.h"

class EllipticCompass : public EC
{

public:
void Init( ) ;
void ChangeCompass( ) ; // animation
void Draw( ) ;
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private:
// local hotkeys needed in the .h file
void explain keyboard( ) ;

// kinematics of this compass
void get theory( ) ;
// draw kinematic background
void show theory( ) ;

void draw compass( ) ;

// add your variables and methods here
};

EllipticCompass EcDummy;

void Scene: :Init( )
{

EcDummy.Init( ) ;
}

void Scene: :Draw( )
{

EcDummy.Draw( ) ;
}

void Scene: :CleanUp( )
{
}

void Scene: :Animate( )
{

EcDummy.ChangeCompass( ) ;
}

void EllipticCompass: :get theory( )
{

// add the kinematic backgrounds here
}

void EllipticCompass: :show theory( )
{

// do the drawing of kinematic backgrounds here
}

void EllipticCompass: :draw compass( )
{

// do the drawing of your elliptic compass here
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}

void EllipticCompass: :explain keyboard( )
{

// write your local hotkeys here
}

void EllipticCompass: :Draw( )
{

if ( Drawing ) show ellipse( ) ;

// declared in the particular programs
if ( Visible2 ) show theory( ) ;
if ( Visible ) draw compass( ) ;

draw paper sheet( ) ;

explain keyboard fix( ) ;
// declared in the particular programs
explain keyboard( ) ;

}

void EllipticCompass: :ChangeCompass( )
{

// add your animation here

if ( da != 0 || db != 0 )
{

PathX.Def( Black, 30000 ) ;
}

}

void EllipticCompass: :Init( )
{

// initialize everything here

Drawing = true;
Visible = true;
Visible2 = false;

PathX.Def( Black, 30000 ) ; // path curve of the ellipse

// lengths of the semiaxis
a = 6;
b = 2;
da = 0;
db = 0;
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t = 12; // . . . tangle ( degree )
tStop = 30; // t ∗ tStop = 360 !!!
pen = 0; // use this for interactivity: pen++

// if ( pen = tStop ) change the semiaxis !

Pen( a, 0.0, 0.0 ) ;//first point
PathX.AddPoint( Pen ) ;

}

If two circles glide along two straight lines (Figure 7.5), their centers move on
parallel straight lines and therefore satisfy the construction of Figure 7.4 as well.
The small wheel of this ellipsograph fixes the pencil and the two bigger wheels,
which glide on perpendicular lines. Depending on the positions of the wheels,
ellipses, circles, straight lines, or even single points are produced.

FIGURE 7.5. Wheels gliding along straight lines.

The path curve of the midpoint CM of the line C1C2 describes a circle with
center O and radius r = OCM = CMC1 = CMC2. Due to this property, one
slider is replaceable by a crank (Figure 7.6).

FIGURE 7.6. Generation of an ellipse with a slider crank.
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FIGURE 7.7. Inside rolling of two circles.

Planetary motion

The velocity pole P of an arbitrary motion coincides with the normals of the
path curves. In our case, we have P = n1 ∩n2, with n1 and n2 being the normals
of the path curves of C1 and C2. According to OP = C1C2 the fixed polode of
the motion is a circle with center O and radius R = OP. The moving polode is a
circle as well. Its center is the midpoint CM of C1C2 and, according to Thales’
theorem, its radius r equals R/2.

Thus, an ellipse can be generated by rolling a circle inside another circle with
radius ratio R : r = 2 : 1 (a pair of Cardan circles; compare Figure 7.7 and [14],
p. 235).

FIGURE 7.8. Planetary motion of gears.

A variation (Figure 7.8) is the outside rolling of a circle c2 of half the radius
of the fixed circle c1. To get the right orientation of revolution, a third circle of
arbitrary size is put between them. Each point of the diameter rod of c2 describes
an elliptic path curve.

Inverse elliptic motion

Now let the small Cardan circle be the fixed polode q, while the big circle p rolls
outside (Figure 7.9).
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FIGURE 7.9. Inverse elliptic motion (left), limaçon of E. Pascal (right).

The path curve of points C are limaçons of Pascal with equation

r = a + R cos ϕ (1)

in polar coordinates and

(
x2 + y2 − Rx

)2
= a2 (

x2 + y2)

in Cartesian coordinates with x = r cos ϕ, y = r sin ϕ. Here, R is the radius of
the moving polode and a the constant distance of point C to the center N of
the moving polode. The path is either a curtate (a < R), cuspidal (a = R), or
dimpled (a > R) limaçon (Figure 7.9 and Figure 7.10).

Listing from "X/KH/CONIC COMPASS/pascal.cpp":

//Limaçon of Pascal

#include "opengeom.h"

...

void Scene: :Animate( )
{

N.Rotate( M, 1 ) ;
P.Rotate( M, 1 ) ;
n.Def( PureRed, N, 2∗r ) ;
nd.Def( N, O ) ;
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alpha++;
if ( alpha == 720 )

alpha = 0;
phi = alpha / 2;
phi ∗= phi ∗ PI / 180;

//computing a new point of the curve
C( ( a + 2∗r ∗ cos( phi ) ) ∗ cos( phi ),

( a + 2∗r ∗ cos( phi ) ) ∗ sin( phi ) ) ;

if ( phi < 360 )
PathC.AddPoint( C ) ;

}
...

FIGURE 7.10. Dimpled limaçon (left), limaçon with a cusp (cardioid).

Inversor

The mechanism in Figure 7.11 was found by A. Peaucellier (1864) and L. Lip-
kin (1870). Consisting of four links forming the rhomboid CA1C

∗A2 (A1C = d1)
and the links OA1, OA2 (OA1 = OA2 = d2 
= d1), it rotates about the point O.
Consequently the directions A1A2 and CC∗ will always be perpendicular. Thus,
at any position, the points C, C∗, and O lie on a straight line.
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Listing from "X/KH/CONIC COMPASS/InversorPeaucellier.cpp":

#include "opengeom.h"

class InvPeau
{
public:

// Center of inversion; lengths of links
InvPeau( P2d Oin, Real aIn, Real bIn ) ; // constructor
void Init( ) ;
void ChangeInversor( ) ; // animation
void DrawInversor( ) ;
void SetColors( Color col0In, Color col1In,

Color col2In, Color col3In ) ;
private:

void printHotkeys( ) ;
P2d O,A,B, C1, C2;
Real Cx,Cy,c2,r2, a,b, step;
Circ2d cO,cC, ci;
Boolean drawPoint;
PathCurve2d PathC1, PathC2;
Color col [ 4];

};

InvPeau ip( Origin, 5, 7 ) ; // b > a !!!

...

void InvPeau: :ChangeInversor( )
{

int key = TheKeyPressed( ) ;
switch ( key )
{

case ’d’: drawPoint = ( drawPoint ) ? false : true;
break;

case ’j’: if ( ( O.Distance( C1 ) < a + b − 5 ∗ step &&
O.Distance( C1 ) > b − a + 2 ∗ step ) ||

Cx > A.x )
Cx −= step;

break; // left

case ’l’: if ( ( O.Distance( C1 ) < a + b − 5 ∗ step &&
O.Distance( C1 ) > b − a + 2 ∗ step ) ||

Cx < A.x )
Cx += step;

break; // right
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case ’i’: if ( ( O.Distance( C1 ) < a + b − 5 ∗ step &&
O.Distance( C1 ) > b − a + 2 ∗ step ) ||

Cy < A.y )
Cy += step;

break; // up

case ’k’: if ( ( O.Distance( C1 ) < a + b − 5 ∗ step &&
O.Distance( C1 ) > b − a + 2 ∗ step ) ||

Cy > A.y )
Cy −= step;

break; // down
}

cC.Def( Yellow, C1, a ) ;
cO.SectionWithCircle( cC, A, B ) ;
r2 = Cx ∗ Cx + Cy ∗ Cy;
C1( Cx, Cy ) ;
C2( Cx ∗ c2 / r2, Cy ∗ c2 / r2 ) ;

if ( drawPoint )
{

PathC1.AddPoint( C1 ) ;
PathC2.AddPoint( C2 ) ;

}
}

...

FIGURE 7.11. Inversor of Peaucellier (left), ellipse (right).



Section 7.6. An Example of a Larger Project 615

The points C and C∗ lie on the circle with center A1 and radius d1. Thus, we
have

OC · OC∗ = (d2 + d1)(d2 − d1) = c2 . . . constant,

or, in polar coordinates,

r∗ =
c2

r
, (2)

with r = OC and r∗ = OC∗. This condition is called inversion at a circle i with
center O and radius c (Figure 7.11). A mechanism achieving transformation (2)
is called an inversor.

Conic compass

The equation
r =

p

1 + e cos ϕ

describes a conic with O as one focal point and eccentricity e. According to (2),

r∗ =
c2

p
(1 + e cos ϕ)

is the equation of its inverse curve. Comparing with (1), we see that this curve
is a limaçon of Pascal.

Thus, combining mechanisms of inverse elliptic motion and inversion will finally
lead to a conic compass. Figure 7.11 and Figure 7.12 show the results of combin-
ing a slider crank with Peaucellier’s inversor. With d = NC∗ and s = MN ,
the resulting path curve is an ellipse (d > 2s), a parabola (d = 2s), or a hyperbola
(d < 2s).

Listing from "X/KH/H/conic compass.h":

...

#ifndef CONIC COMPASS

class ConicCompass
{

public:
ConicCompass( P2d inO, Real inS, Real inD, Real inRd, Real inRcs ) ;
void ChangeCompass( ) ;
void DrawCompass( ) ;
void SetColors( Color col0In, Color col1In,

Color col2In, Color col3In ) ;
Real GetCSN( ) ;
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Real GetMN( ) ;
private:

P2d C, M, D, CS, N, A1, A2, S1c, S2c,
Cfix, CSfix, Nfix, S1fix, S2fix;

StrL2d nd, ndfix;
Real phi, alpha, rd, rcs, rC, p,
eps, stick, step, s, d;

Circ2d m, cs, cd;
PathCurve2d PathCS, PathC, PathCSimpossible;
Boolean collExit;
Color col [ 4];

};

...

void ConicCompass: :DrawCompass( )
{

...

PathCSimpossible.MarkPoints( col [ 2], 0.03 ) ;
PathCS.MarkPoints( col [ 1], 0.05 ) ;
PathC.MarkPoints( col [ 0], 0.07 ) ;

...
}

void ConicCompass: :ChangeCompass( )
{

S1c = A1;
S2c = A2;
N.Rotate( M, step ) ;
nd.Def( N, D ) ;
alpha += step;
if ( alpha >= 720 ) alpha −= 720;
phi=alpha / 2;
CS( D.x + ( d + 2 ∗ s ∗ cos( phi ∗ PI / 180 ) ) ∗ cos( phi ∗ PI / 180 ),
D.y + ( d + 2 ∗ s ∗ cos( phi ∗ PI / 180 ) ) ∗ sin( phi ∗ PI / 180 ) ) ;

cs.Def( Yellow, CS, rcs ) ;
cd.Def( Yellow, D, rd ) ;

cs.SectionWithCircle( cd, A1, A2 ) ;

rC = p / ( 1 + eps ∗ cos( phi ∗ PI / 180 ) ) ;
C( D.x + rC ∗ cos( phi ∗ PI / 180 ), D.y + rC ∗ sin( phi ∗ PI / 180 ) ) ;

if ( A1 != S1c && phi < 360 )
{
PathC.AddPoint( C ) ;
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PathCS.AddPoint( CS ) ;
collExit = true;
}
else
{

if ( collExit )
{

Cfix = C;
CSfix = CS;
Nfix = N;
S1fix = A1;
S2fix = A2;
ndfix.Def( Nfix, D ) ;

}

PathCSimpossible.AddPoint( CS ) ;
collExit = false;
}

}

ConicCompass: :ConicCompass( P2d inO, Real inS,
Real inD, Real inRd, Real inRcs )

{
...

}

#define CONIC COMPASS
#endif CONIC COMPASS

Listing of "X/KH/CONIC COMPASS/conics.cpp":

#include "opengeom.h"

#include "X/KH/H/conic compass.h"

P2d C1( −2, 5 ), C2( −7, −5 ), C3( 7, −5 ) ;

ConicCompass e( C1, // Center
1.5, // radius s of the circle with center M

5.3, // distance d from CS to N
// d < 2s...hyperbola,
// d = 2s...parabola,
// d > 2s...ellipse

3.3, 5.0) ; // lengths of the links

ConicCompass h( C2, 1.5, 0.7, 3.0, 5.0 ),
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p( C3, 1.5, 3.0, 3.0, 5.0 ) ;

void Scene: :Init( )
{

e.SetColors( Black, Blue, DarkGray, Red ) ;
h.SetColors( Black, Magenta, DarkGray, Red ) ;
p.SetColors( Black, Green, DarkGray, Red ) ;

}

void Scene: :Draw( )
{

e.DrawCompass( ) ;
PrintString( Black, −8.0, 7.0, "MN =%.2f", e.GetMN( ) ) ;
PrintString( Black, −8.0, 8.0, "CsN =%.2f", e.GetCSN( ) ) ;
PrintString( Black, −9.0, 9.0, "ellipse:") ;

h.DrawCompass( ) ;
PrintString( Black, −4.0, −10.0, "MN =%.2f", h.GetMN( ) ) ;
PrintString( Black, −4.0, −9.0, "CsN =%.2f", h.GetCSN( ) ) ;
PrintString( Black, −5.0, −8.0, "hyperbola:") ;

p.DrawCompass( ) ;
PrintString( Black, 11.0, −1.0, "MN =%.2f", p.GetMN( ) ) ;
PrintString( Black, 11.0, 0.0, "CsN =%.2f", p.GetCSN( ) ) ;
PrintString( Black, 10.0, 1.0, "parabola:") ;

}

void Scene: :Animate( )
{

e.ChangeCompass( ) ;
h.ChangeCompass( ) ;
p.ChangeCompass( ) ;

}

void Scene: :CleanUp( )
{
}
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FIGURE 7.12. Mechanism for drawing conic sections (parabola and hyperbola).
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Appendix A

OpenGL Function Reference

The graphics routines of Open Geometry are based on OpenGL. In order to
use Open Geometry you need do not need to know anything about OpenGL,
but still it may be interesting to get a more profound insight in the background
of the Open Geometry class library.

If you want to use Open Geometry for a certain specific task, you might feel
the need to adapt some of its drawing and shading routines. In this case you
will need to know a few basics about OpenGL. Therefore, we give a very short
description of the most important OpenGL functions. Of course, this list is far
from complete. If you need more information, please refer to “pure” OpenGL
books (e.g., [1], [17], or [36]).

We have sorted the routines according to the following groups:

1. Coordinate Transformations
glFrustum, glLoadIdentity, glLoadMatrix, glMatrixMode, glMultMatrix,
glPopMatrix, glPushMatrix, glRotate, glScale, glTranslate

2. Primitives (Lines, Polygons, Points, . . . )
glBegin, glCullFace, glEdgeFlag, glEnd, glFrontFace, glGetPolygonStripple,
glLineStripple, glLineWidth, glPointSize, glPolygonMode, glPolygonStrip-
ple, glVertex

3. Color
glClearColor, glClearIndex, glColor, glColorv, glColorMask, glIndex, glIn-
dexMask, glLogicOp, glShadeModel
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4. Lighting
glColorMaterial, glGetMaterial, glGetLight, glLight, glLightModel, glMate-
rial, glNormal3

5. Texture Mapping
glTexCoord, glTexEnv, glTexGen, glTexImage2D, glTexImage1D, glTexPa-
rameter, glEnable

6. Raster Graphics
glCopyPixels, glDrawPixels, glPixelMap, glPixelStore, glPixelTransfer, glPix-
elZoom, glReadPixels, glRasterPos

A.1 Coordinate Transformations
Whenever you write OpenGL code, it is important to have an understanding
of how coordinate transformations in OpenGL work. In particular, you have to
think about the order of the transformations if you apply several in a row. Always
keep in mind that OpenGL transformations will not change the coordinates
of your objects, whereas many Open Geometry-transformations will actually
change them.

void glFrustum( GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far ) ;

� Multiplies the current matrix by a matrix
� for a perspective-view frustum.

left, right define left and right clipping planes
bottom, top define bottom and top clipping planes
near, far distance to the near and far clipping planes

void glLoadIdentity( void ) ;
� Sets the current matrix to Identity.

void glLoadMatrix<d,f>( const TYPE∗ m ) ;
� Sets the current matrix to the one specified.

m 4×4 matrix

void glMatrixMode( GLenum mode ) ;
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� Specifies the current matrix mode.
mode can be GL MODELVIEW, GL PROJECION, GL TEXTURE

void glMultMatrix<d,f>( TYPE ∗m ) ;
� Multiplies the current matrix by the one specified.

m 4×4 matrix

void glPopMatrix( void ) ;
� Pops the current matrix off the matrix stack.

void glPushMatrix( void ) ;
� Pushes the current matrix onto the matrix stack.

void glRotate<d,f>( TYPE angle, TYPE x, TYPE y, TYPE z ) ;
� Rotates the current matrix by a rotation matrix.

angle specifies the angle of rotation in degrees
x,y,z vector from the origin that is used as the

axis of rotation.

void glScale<d,f>( TYPE x, TYPE y, TYPE z ) ;
� Multiplies the current matrix by a matrix that
� scales an object along the x,y,z axes.

x,y,z Scale factors along the x,y, and z axes

void glTranslate<d,f>( TYPE x, TYPE y, TYPE z ) ;
� Multiplies the current matrix by a matrix that
� translates an object along the axes.

x,y,z translation vector

A.2 Primitives
OpenGL offers only a few geometrical primitives to be drawn: lines, polygons,
and points. The auxiliary libraries provide the programmer with some other
“primitives” like spheres and teapots.



624 Appendix A. OpenGL Function Reference

void glBegin( GLenum mode ) ;
� Sets the beginning of a group of vertices
� that build one or more primitives.

mode type of primitive operation
GL POINTS individual points
GL LINES simple lines
GL LINE STRIP series of connected lines
GL LINE LOOP same as above with first and

last vertices connected
GL TRIANGLES simple triangle
GL TRIANGLES FAN linked fan of triangles
GL TRIANGLES STRIP linked strip of triangles
GL POLYGON convex polygon
GL QUADS four-sided polygon
GL QUAD STRIP linked strip of four-sided polygons

void glCullFace( GLenum mode ) ;
mode GL FRONT, GL BACK, GL FRONT AND BACK;

void glEdgeFlag<v>( GLboolean<const GLboolean ∗>flag ) ;
� Indicates whether a vertex should be considered
� as initializing a boundary edge of a polygon.

flag Sets the edge flag to this value.
GL TRUE (default) or GL FALSE

void glEnd( ) ;
� Terminates a group of vertices specified by glBegin( ).

void glFrontFace( GLenum mode ) ;
� Defines the front and back sides of a polygon.

mode GL CCW faces with counterclockwise orientation
are considered front-facing. (default)

GL CW faces with clockwise orientation
are considered front-facing.

void glGetPolygonStipple( GLubyte ∗mask ) ;
� Returns the stipple pattern of a polygon.
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∗mask Pointer to the polygon stipple pattern.

void glLineStipple( GLint factor, GLushort pattern ) ;
� Specifies the stipple pattern for GL LINE...
� primitive operations. First enable strippling
� by calling glEnable( GL LINE STIPPLE ).

factor The pattern is stretched out by this factor.
pattern Sets the 16-bit long strippling pattern.

void glLineWidth( GLfloat width ) ;
� Sets the current line width.

width width of line in pixels (default is 1.0)

void glPointSize( GLfloat size ) ;
� Sets the current point size.

size size of point (default is 1.0)

void glPolygonMode( GLenum face, GLenum mode ) ;
� Sets the drawing mode for the front faces and back faces of a polygon.

face Specifies which faces are affected by
the mode change.
GL FRONT, GL BACK, GL FRONT AND BACK

mode can be GL POINT, GL LINE, GL FILL

void glPolygonStipple( const GLubyte∗ mask )
� Specifies the stipple pattern used to fill polygons.

∗mask pointer to a 32 * 32-bit array that
contains the stipple pattern.

void glVertex<2,3,4><s,i,f,d><v>( TYPE coords )
� Specifies the 3D coordinates of a vertex.
� Example: glVertex3f( 1.0 , 1.5 , 4.0 ) ;

coords can be 1–4 dimensional (x,y,z,w)
w coordinate for scaling purposes
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(default is 1.0)

void glClearColor( GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha )

� Specifies the current clear color for glClear.

void glClearIndex( GLfloat index ) ;
� Specifies the clearing value for the color index buffer.

index clear color value

void glColor<3,4><b,i,s,u,d,f>( TYPE red, TYPE green,
TYPE blue, TYPE alpha ) ;

� Sets the current drawing color.

void glColor<3,4><b,i,s,u,d,f>v( const TYPE ∗v) ;
� Sets the current drawing color.

v points to an array with four elements

void glColorMask( GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha ) ;

� Defines the current mask used to control
� writing in RGBA mode.

void glIndex<i,s,d,f><v>( TYPE index ) ;
� Sets the current drawing index color.

index color index;

void glIndexMask( GLuint mask ) ;
� Sets the mask used to control writing into the color
� index buffer by protecting individual bits from being set.

mask bit mask;

void glLogicOp( GLenum opcode ) ;
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� Defines the current logical pixel operation for color
� index mode.

opcode can be GL CLEAR, GL COPY (default), GL NOOP,
GL SET, GL COPY INVERTED, GL INVERT, GL AND,
GL OR, GL NOR, GL XOR, GL EQUIV,
GL AND INVERTED, GL OR INVERTED;

void glShadeModel( GLenum mode ) ;
� Specifies the current shade model

mode GL FLAT or GL SMOOTH (default) ;

A.3 Color
OpenGL allows you to set RGB colors. Furthermore, it enables the programmer
to set α-values for transparency.

void glClearColor( GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha )

� Specifies the current clear color for glClear.

void glClearIndex( GLfloat index ) ;
� Specifies the clearing value for the color index buffer.

index clear color value

void glColor<3,4><b,i,s,u,d,f>( TYPE red, TYPE green,
TYPE blue, TYPE alpha ) ;

� Sets the current drawing color.

void glColor<3,4><b,i,s,u,d,f>v( const TYPE ∗v) ;
� Sets the current drawing color.

v points to an array with four elements

void glColorMask( GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha ) ;
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� Defines the current mask used to control
� writing in RGBA mode.

void glIndex<i,s,d,f><v>( TYPE index ) ;
� Sets the current drawing index color.

index color index

void glIndexMask( GLuint mask ) ;
� Sets the mask used to control writing into the color
� index buffer by protecting individual bits from being set.

mask bit mask

void glLogicOp( GLenum opcode ) ;
� Defines the current logical pixel operation for color
� index mode.

opcode can be GL CLEAR, GL COPY (default), GL NOOP,
GL SET, GL COPY INVERTED, GL INVERT, GL AND,
GL OR, GL NOR, GL XOR, GL EQUIV,
GL AND INVERTED, GL OR INVERTED;

void glShadeModel( GLenum mode ) ;
� Specifies the current shade model

mode GL FLAT or GL SMOOTH (default) ;

A.4 Lighting
When it comes to lighting, OpenGL offers a palette of functions that allow
you to use a number of light sources and to provide the objects with physical
properties like shininess, etc. Remember that Open Geometry does not use
those functions by default, and that it is up to the programmer to introduce the
corresponding code.
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void glColorMaterial( GLenum face, GLenum mode ) ;
� Allows material colors to track the color set by glColor.

face GL FRONT, GL BACK or GL FRONT AND BACK
mode GL EMISSION, GL AMBIENT, GL DIFFUSE,

GL SPECULAR or GL AMBIENT AND DIFFUSE

void glGetMaterial<i,f>v( GLenum face, GLenum pname,
TYPE param )

� Returns the current material property settings.

face GL FRONT, GL BACK or GL FRONT AND BACK

pname: param:
GL EMISSION RGBA values
GL AMBIENT RGBA values
GL DIFFUSE RGBA values
GL SPECULAR RGBA values
GL SHININESS specular exponent
GL COLOR INDEXES 3 values ( ambient, diffuse,

specular components )

void glGetLight<i,f>v( GLenum light, GLenum pname,
TYPE ∗params ) ;

� Returns information about the current light source settings.

light light-source GL LIGHT0 to GL LIGHT7
pname specifies which information about the

light source is being queried
params array of integer or floating-point

where the return values are stored

pname: params:
GL AMBIENT RGBA values
GL DIFFUSE RGBA values
GL SPECULAR RGBA values
GL POSITION x,y,z coordinates

of light source
plus one element ( usually 1.0 )

GL SPOT DIRECTION direction vector
for spot light

GL SPOT EXPONENT spot exponent
GL SPOT CUTOFF cutoff angle of

the spot source
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GL SPOT CONSTANT ATTENUATION constant attenuation
GL SPOT LINEAR ATTENUATION linear attenuation
GL SPOT QUADRATIC ATTENUATION quadratic attenuation

void glLight<i,f><v>( GLenum light, GLenum pname,
TYPE param ) ;

� Sets the parameters of a light source.

light light source GL LIGHT0 to GL LIGHT7
pname defines which lighting parameter is

to be set ( see glGetlight-pname )
param one or more values that are required

to set the lighting parameter

void glLightModel<i,f><v>( GLenum pname, TYPE param ) ;
� Sets the lighting model parameters.

pname: params:
model parameter value(s) for model parameter
GL LIGHT MODEL AMBIENT array that points to

four RGBA components
GL LIGHT MODEL LOCAL VIEWER
GL LIGHT MODEL TWO SIDED 0.0 indicates that only fronts

of polygons
are included in illumination calculations

void glMaterial<i,f><v>( GLenum face, GLenum pname, TYPE param ) ;
� Sets the material parameters.

face GL FRONT, GL BACK or
GL FRONT AND BACK

pname: param:
GL EMISSION RGBA values
GL AMBIENT RGBA values
GL DIFFUSE RGBA values
GL SPECULAR RGBA values
GL AMBIENT AND DIFFUSE RGBA values
GL SHININESS specular exponent (1 value)
GL COLOR INDEXES 3 values ( ambient, diffuse,

specular components )
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void glNormal3<b,i,s,d,f>( TYPE nx, TYPE ny, TYPE nz ) ;
� Defines a normal vector whose direction is up and
� perpendicular to the surface of the polygon.

nx, ny, nz x, y, z magnitudes of the normal vector

void glNormal3<b,i,s,d,f>v( const TYPE ∗v ) ;
v array of three elements where

normal vector is stored

A.5 Texture Mapping
Texture mapping is one of the best features that OpenGL offers. If the mapping
is done by hardware, one can produce realistic images in a very short time.

void glTexCoord<1,2,3,4><dfis>( TYPE s , TYPE t ,
TYPE r , TYPE q ) ;

� Specifies the current texture image coordinates (1D–4D)
� for the following vertex of a textured polygon.

s,t x,y coordinates on texture image (0.0 – 1.0)
r texture image depth coordinate
q texture image “time” coordinate

void glTexEnv<f,i,fv,iv> ( GLenum target ,
GLenum pname , TYPE ) ;

� Sets parameters for texture-mapping environment.

target must be GL TEXTURE ENV

pname: param:
GL TEXTURE ENV COLOR param is a pointer to

an RGBA color value.
GL TEXTURE ENV MODE to define type of texture mapping

− GL DECAL texture is directly mapped
− GL BLEND texture is blended

by constant color
− GL MODULATE texture is shaded
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void glTexGen<d,f,i,dv,fv,iv> ( GLenum coord, GLenum pname,
TYPE param ) ;

� Defines parameters for automatic
� texture coordinate generation.

coord must be GL S, GL T, GL R or GL Q

pname: param:
GL TEXTURE GEN MODE − GL OBJECT LINEAR

− GL EYE LINEAR
− GL SPHERE MAP

GL OBJECT PLANE
GL EYE PLANE

void glTexImage2D( GLenum target, GLint level,
GLint components, GLsizei width,
GLsizei height, GLint border, GLenum format,
GLenum type, const GLvoid ∗pixels ) ;

� Describes a two-dimensional texture image

target must be GL TEXTURE 2D
level usually 0 (these are multiple texture

resolutions (mip mapping))
width texture image width

(must be a power of 2 ) + 2*border
height texture image height

(must be a power of 2 ) + 2*border
border width of border (0,1, or 2)
format usually GL RGB(A) or GL COLOR INDEX,

GL RED, GL GREEN, GL BLUE,
GL ALPHA, GL LUMINANCE (grayscale),
GL ALPHA LUMINANCE

type data type of pixel value usually
GL UNSIGNED BYTE, GL BYTE, GL BITMAP,
GL SHORT, GL UNSIGNED SHORT, GL INT,
GL UNSIGNED INT, GL FLOAT

pixels array for pixel data

void glTexImage1D( GLenum target, GLint level, GLint components,
GLsizei width, GLint border, GLenum format,
GLenum type, const GLvoid ∗pixels ) ;

� Describes a one-dimensional texture image

target must be GL TEXTURE 1D
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see glTexImage2D

void glTexParameter<f,fv,i,iv>( GLenum target, GLenum pname,
TYPE param ) ;

� Defines how the texture image is mapped onto the polygon.

target must be GL TEXTURE 1D or GL TEXTURE 2D

pname: param:
mapping parameters
GL TEXTURE WRAP S GL CLAMP to clamp texture
GL TEXTURE WRAP T GL REPEAT repeat texture until

the end of the polygon

GL TEXTURE MAG FILTER GL NEAREST no filtering
GL TEXTURE MIN FILTER GL LINEAR filtering

GL TEXTURE BORDER COLOR RGBA value

for mip mapping use
GL NEAREST<LINEAR> MIPMAP NEAREST <LINEAR>

void glEnable( parameter )
� This enables texture mapping.

parameter GL TEXTURE 2D or GL TEXTURE 1D

A.6 Raster Graphics
Raster graphics are a powerful link between pure mathematical calculations and
the actual drawing window. Nevertheless, we tried to avoid them whenever pos-
sible, namely, because Open Geometry must not rely on the screen resolution:
For example, if we produce a print of an image, the resolution of the printing
device is usually quite different from of the window size.
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void glCopyPixels( GLint x, GLint y, GLsizei width,
GLsizei height, Glenum type ) ;

� Copies a block of pixels into the frame buffer at
� a position defined by glRasterPos.

type GL COLOR to copy color values
GL STENCIL to copy stencil values
GL DEPTH to copy depth values

void glDrawPixels( GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid ∗pixels ) ;

� Draws a block of pixels into the frame buffer
� at a position defined by glRasterPos.

format usually GL RGBA or GL RGB, GL COLOR INDEX,
GL RED, GL GREEN, GL BLUE, GL ALPHA,
GL LUMINANCE (grayscale) , GL ALPHA LUMINANCE

type data type of pixel value
GL UNSIGNED BYTE, GL BYTE, GL BITMAP,
GL SHORT, GL UNSIGNED SHORT, GL INT,
GL UNSIGNED INT, GL FLOAT

void glPixelMap<fv,uiv,usv>( GLenum map, GLint mapsize, TYPE values ) ;
� Sets a lookup table for glCopyPixels, glDrawPixels, glReadPixels,
� glTexImage2D, glTexImage1D. GL MAP COLOR or GL MAP STENCIL
� have to be enabled with glPixelTransfer.

map: Define a lookup table for
GL PIXEL MAP I TO I color indices
GL PIXEL MAP S TO S stencil values
GL PIXEL MAP I TO R color indices to red values
GL PIXEL MAP I TO G color indices to green values
GL PIXEL MAP I TO B color indices to blue values
GL PIXEL MAP I TO A color indices to alpha values
GL PIXEL MAP R TO R red values
GL PIXEL MAP G TO G green values
GL PIXEL MAP B TO B blue values
GL PIXEL MAP A TO A alpha values

mapsize size of lookup table (must be power of 2)
values pointer to lookup table
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void glPixelStore<i,f>( GLenum pname, TYPE param ) ;
� Defines how glDrawPixels, glTexImage1D, glTexImage2D,
� glReadPixels read and store pixel data.

pname: param: result:
bytes are swapped when

GL PACK SWAP BYTES GL TRUE stored in memory
GL UNPACK SWAP BYTES GL TRUE read from memory

leftmost pixel of bitmap
GL PACK LSB FIRST GL FALSE is stored/read in bit 0
GL UNPACK LSB FIRST GL FALSE instead of bit 7
GL PACK ROW LENGTH integer
GL UNPACK ROW LENGTH integer
GL PACK SKIP PIXELS integer
GL UNPACK SKIP PIXELS integer
GL PACK SKIP ROWS integer
GL UNPACK SKIP ROWS integer
GL PACK ALIGNMENT integer
GL UNPACK ALIGNMENT integer

void glPixelTransfer<i,f>( GLenum pname, TYPE param )
� Sets pixel-transfer modes that affect the operations
� of glDrawPixels( ), glReadPixels( ), glCopyPixels( ),
� glTexImage1D( ), glTexImage2D( ) and glGetTexImage( ).

pname GL MAP COLOR, GL MAP STENCIL,
GL INDEX SHIFT, GL INDEX OFFSET,
GL RED SCALE, GL GREEN SCALE,
GL BLUE SCALE, GL ALPHA SCALE,
GL DEPTH SCALE, GL RED BIAS,
GL GREEN BIAS, GL BLUE BIAS,
GL ALPHA BIAS, GL DEPTH BIAS;

param GLint, GLfloat parameter value

void glPixelZoom( GLfloat xfactor, GLfloat yfactor )
� Sets pixel scaling factors for pixel-transfer operations.

xfactor, yfactor pixel scaling factors along the x, y axes

void glReadPixels( GLint x, GLint y, GLsizei width,
GLsizei height, GLenum format,
GLenum type, GLvoid ∗pixels )

� Reads a block of pixel data from the frame buffer
� and stores it in the array pointed to by pixels.
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format indicates the kind of pixel
data elements that are read
GL RGBA, GL RGB, GL COLOR INDEX,
GL RED, GL GREEN, GL BLUE,
GL ALPHA, GL LUMINANCE (grayscale)

or GL ALPHA LUMINANCE;
type indicates the data type of each element

GL UNSIGNED BYTE, GL BYTE, GL BITMAP,
GL SHORT, GL UNSIGNED SHORT, GL INT,
GL UNSIGNED INT, GL FLOAT

pixels pointer to array

void glRasterPos<234><sifd><v>( TYPE x, TYPE y, TYPE z, TYPE w ) ;
� Sets the raster position at the specified coordinates.
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Appendix C

Open Geometry Class List

Open Geometry is an object oriented geometric library. There exist relatively
few base classes that all others are built on. The most important base classes are
certainly O2d and O3d. Roughly speaking, they are used to describe conglomer-
ates of points in two or three dimensions (classes P2d and P3d). Both, O2d and
O3d, are derived from the class O23d that contains of a number of objects of
type P23d, the common ancestor of P2d and P3d.1

As a result of this approach, many Open Geometry classes are automatically
equipped with useful methods concerning object size and color or application of
geometric transformations. Compare the corresponding section on page 579 for
more information.

The knowledge of the hierarchic structure of Open Geometry is of relevance
to the user. It helps finding the appropriate method for a certain programming
task. In addition to the detailed descriptions in Chapter 6 we decided to provide
an online-help in HTML format.

Just open "oghelp.html" with your favorite web browser. It will display three
frames that help you finding Open Geometry’s important classes and methods.
In the leftmost frame, you can see an alphabetic list. Clicking on the desired class
or methods scrolls the big main frame to the corresponding declaration2.

1In fact, O23d contains much more than just a pointer to a point array. It is already
equipped with everything that is necessary for later drawing and shading. In general,
however, not all member variables are really initialized.

2In general, this is a copy of the original declaration in the header-file of the class.
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Note that the main frame contains links to the direct parent class. Scroll, e.g., to
the declaration of Circ3d. You will see that it is derived from RegPoly3d. Click
on the link and you will see the declaration of RegPoly3d.

Finally, the alphabet in the top frame helps you navigating through the class
list in the left frame. The “hierarchy”-link will open an hierarchic class list. The
child classes of a certain level are intended by a constant amount and, again, a
simple mouse click takes you to the declaration. If you want to switch back to
an alphabetic view, just click on an an arbitrary letter in the top frame.

Occasionally, we erased one or the other method that is not intended for public use.
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Installation of Open Geometry

Open Geometry does not come as an executable. Except for some demo files,
you cannot start it directly from a command prompt or by double clicking on
some icon. It is a programming package, and in order to use it, you need a C++
compiler.

The accompanying CD-ROM contains two directories "WINDOWS/" and "LINUX/".
There you find all necessary components for a Windows environment and a
Linux (or Unix) environment:

Windows

Installing Open Geometry in a Windows environment is easy: Just start
"setup.exe" in the "WINDOWS/" directory on the CD-ROM. This will create
a local Open Geometry folder (by default "OPENGEOM/") on your computer.
From this point on, you can follow the steps described in Section 1.4.

Linux

If you are working in a Linux or Unix environment, proceed as follows:

1. Copy the file into your home directory. You need not create an Open Ge-
ometry directory!

2. In order to extract the file "OpenGeometry2.0.tar.gz", please write, e.g.,
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gzip -d *.tar.gz
tar -cf *.tar

This will create a directory "OpenGeometry2.0"

3. Switch to the directory "OpenGeometry2.0"

4. Now you can compile with

make x

It should be easy to compile the source code. When it comes to the linking
process, you might have to install some mesa libraries.

If you run into trouble, please read the file "read.me" on the CD-ROM. If this
does not help, you can contact us via email (open.geometry@uni-ak.ac.at).

Updating Open Geometry 1.0

If you want to update a previous version of Open Geometry, you can simply
overwrite the existing files. If you have changed one of the files in the "C/" di-
rectory, however, we recommend the following procedure:

1. Rename the existing Open Geometry folder (e.g. "OG 10/").

2. Install the new version.

3. Copy your own demo programs into the new "USER/" directory and include
them, as usual, via "try.cpp".

4. In order to integrate your own code in the new version, please, refer to page
24 and read the instructions for user contributions.

Okay. Let’s assume that you have installed Open Geometry correctly on your
system. Then you should try out a demo-executable from the "DEMOS/" directory,
e.g., "demo1.exe". There, you can try different buttons and menu items in order
to get a feeling for a typical Open Geometry application.

If everything works correctly, the first thing you will see is a welcome message
informing you that a default file "og.ini" will be created. There you can set
some of Open Geometry’s default parameters (compare Section 7.3). However,
for the time being you need not care about it. Just learn how to write an Open
Geometry application of your own.
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478
kinematic map1.cpp, 92, 93
kinematic map2.cpp, 94, 95
klein bottle.cpp, 228, 229,

510
koch curve.cpp, 98, 99
koch snowflake.cpp, 100
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line congruence.cpp, 432–
435

lines2d.h, 443, 457, 464, 465
lines3d.h, 443, 494, 506, 511
lines of curvature.cpp, 225–

227
linsyst.h, 547

maltesian gear.cpp, 88–90
mandelbrot set1.cpp, 108
mandelbrot set2.cpp, 109
manipulate camera1.cpp, 187,

188
manipulate camera2.cpp, 190
manipulate camera3.cpp, 190
manipulate camera4.cpp, 191
manipulate camera5.cpp, 192
map onto cyl.cpp, 350–352
marielas building.cpp, 259
mask.pov, 336, 338, 339
milling.cpp, 546
minding1.cpp, 293, 294
minding2.cpp, 294
minimal.cpp, 231
minimal2d.cpp, 17, 21
minimal3d.cpp, 21
minimize distance.cpp, 160–

162
moebius1.cpp, 358
moebius2.cpp, 360, 362–365
moebius3.cpp, 364–369, 371
moebius with arrows.cpp, 5,

371–375
mult refl.cpp, 382, 383, 385–

387
multiple scenes.cpp, 584, 585
multiple scenes.h, 585, 587
my function.h, 596

net projection1.cpp, 397–
400

net projection2.cpp, 400, 401
net projection3.cpp, 401–

403
normal surface.cpp, 210

normal surfaces.cpp, 5, 207–
211

nubs2d.cpp, 156
nubs3d.cpp, 156
nubs surf.cpp, 275–277
nurbs.h, 156, 457, 459, 496,

498, 499, 501
nurbs2d.cpp, 156
nurbs3d.cpp, 156
nurbs surf.cpp, 275

o.cpp, 24
o23d.h, 548
o2d.h, 460
o3d.h, 502
og.ini, 23, 198, 331, 335,

340, 560, 590, 592,
644

oghelp.html, 641
oloid.cpp, 4, 376, 377, 379,

579
opacity.cpp, 564, 565
opengeom.h, 9, 18
OpenGeometry2.0.tar.gz, 643
order three surface.cpp, 214,

215
osc quadric.cpp, 428
osculating curves.cpp, 261,

264

parab nth order.cpp, 463
parabola n.h, 462
paramcurve2d.cpp, 37
paramsurf.cpp, 575
paramsurface.h, 491, 507,

539
pascal brianchon.cpp, 117–

119
peano curve.cpp, 102
pencil of circles.cpp, 49–

51
perspectograph.cpp, 79–81
plane.h, 512
planet path.cpp, 277–279
pluecker1.cpp, 234, 235
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pluecker2.cpp, 235–237, 242
pluecker3.cpp, 237, 238
pluecker4.cpp, 238–241
pluecker5.cpp, 242, 243
pluecker6.cpp, 244–246
pluecker7.cpp, 247
points.h, 461, 504, 549
pole and polar.cpp, 114
poly2d.h, 466, 472
poly3d.h, 513, 524, 526, 528
polyhedron.h, 514
print string1.cpp, 560, 561
print string2.cpp, 561
proj geom.h, 406, 412, 422,

466, 468, 515, 517
proj map1.cpp, 419–422
proj map2.cpp, 422
proj scales.cpp, 415, 417
pulley block1.cpp, 82–84
pulley block2.cpp, 84–86
pulsing.h, 552

quadratrix.cpp, 39, 40
quadric.cpp, 426, 428, 430
quartic newton fractal.cpp,

104, 107
quickrot2d.cpp, 576

r6-mechanism.cpp, 305, 306,
308

rabbit and dogs.cpp, 68–70
rainbow.cpp, 176, 178
randnum.h, 553
random koch fractal1.cpp, 100
random koch fractal2.cpp, 100,

101
rat bezier curve.cpp, 132
rat bezier surf.cpp, 268
rat bezier surface.cpp, 267,

268
read.me, 644
realarray.h, 553, 601
reconstruction.cpp, 200
reflect on corner.cpp, 333,

334

reflecting cylinder.cpp, 280–
284

reflecting oloid1.cpp, 377–
379

reflecting oloid2.cpp, 379–
381

refraction on circle.cpp, 179
refraction on line.cpp, 172–

175
reichstag.cpp, 259
revol.h, 493, 538
right helicoid.cpp, 212, 213
rocking horse.cpp, 194, 196
rolling circle.cpp, 310–313
rolling cone.cpp, 318–321
rolling cylinder.cpp, 315–

319, 321
rolling hyperboloid.cpp, 323
rolling hyperboloids.cpp,

321–323
rolling snail.cpp, 4, 61, 64,

65
roman surface.cpp, 575
rotoid surf with thickness.cpp,

539
ruled surface.h, 18, 520, 528

scene.h, 331, 554
setup.exe, 643
show string.cpp, 559
simple.cpp, 18
simpson.cpp, 559
smarttext.h, 555
smooth spline.cpp, 496
snail with self..., 230
solid.h, 480, 486, 532
some objects.cpp, 185
sphere.h, 24, 535
spiral stove.cpp, 263–265
spiric lines.cpp, 297
stones.inc, 339
stormy ocean.cpp, 4
strl2d.h, 475
strl3d.h, 536
supercyclide1.cpp, 249–252
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supercyclide2.cpp, 252, 253
supercyclide3.cpp, 254, 255
surf x surf.cpp, 223
surface.inc, 339
surface of parabolas.cpp, 222

test funct min max.cpp, 593,
596, 597

three planes.cpp, 182–184
three planets.cpp, 28–31
tmp.dat, 197
torse.cpp, 219–221
torus.h, 540
torus as locus1.cpp, 14, 15
torus as locus2.cpp, 15, 16
torus curves1.cpp, 295, 296,

511
torus curves2.cpp, 298, 299,

511
tread.cpp, 353, 355–357
tribar.cpp, 198, 199
try.cpp, 9, 18, 583, 644
try.log, 138, 274, 560
tubular.h, 541
twisted cubic.cpp, 422–425
two circles.cpp, 565–567
two flight routes.cpp, 530,

532

useful.h, 559

vector.h, 478, 542, 556
views.cpp, 391, 392

wavefront.cpp, 57–61
window.cpp, 75, 77
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24-bit color resolution, 330
2D, 22, 181
2D application, 22
2D classes

basic, 28–57
2D window, 9, 12
3D, 12, 181
3D Studio Max, 331, 503
3D animation, 357
3D application, 22
3D projection, 12
3D-CAD system, 345
4-byte real, 348
6-byte real, 348
64-bit floating point variables,

25
8-bit color resolution, 330
8-byte real, 348

abstract class, 98, 448, 455,
464, 491, 506, 507,
528, 539

accessing object points, 579–
580

acos(. . . ), 580

affine
geometry, 110, 403
invariance, 151
ratio, 35, 37, 128, 130
transformation, 129

Akeley, vii
algebraic

curve, 38, 246, 295, 404
equation, 54, 162, 305,

383
surface, 214, 219

algorithm, 34, 129–131, 196,
266

ALL FACES, 195, 508, 515
ALLOC 2D ARRAY, 275, 578
ALLOC ARRAY, 233, 578
AllowAura(. . . ), 566
AllowRestart, 591
AllowRestart( ), 10, 22, 590,

591
AlmostWhite, 334, 568
α-value, 564, 627
Anger, viii
angle at circumference, 12, 14
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angle-stretched curve, 167–
169

animation, 7, 10, 12, 14, 350–
357

2D, 57–73
3D, 277–299, 357–388
advanced, 357–388
simple, 277–299

animation part, 15
anti development, 315, 318
antievolute, 45
antiorthonomic, 45
antipedal, 45
apple-paring, 309–314
approximating polyhedron, 223
approximating splines, 159
approximation, 139–150
arc, 12

2D, 437
3D, 480

arc length, 193
Arc2d, 437
Arc3d, 480
ArcCos(. . . ), 580
ArrayOfSolids, 480, 486, 487
arrow, 371

2D, 438
3D, 480
double pointed, 438

Arrow2d, 438, 439
Arrow3d, 325, 371, 373, 375,

480–482
associated curves, 40–49
astroid, 41, 47, 80, 167
asymptote, 110, 405
asymptotic line, 429
aura, 565–566

B-spline curve, vi, 150–159,
496

base functions, 152–155
closed, 159, 497, 500
rational, 150–159

B-spline surface, 6, 274, 277
closed, 275–277, 498, 501

back to front, 23
backface, 352
background, 18, 338, 350
barycenter, 35, 37, 160, 352
Bayer, viii
Beeson, vii
BentArrow2d, 438, 439
Bernoulli, 54, 401
Bernoulli’s lemniscate, 54, 401
Bézier approximation, 147–

150
Bézier curve, vi, 126–150, 428
Bézier spline, 151
Bézier surface, 6, 266–274
BezierCurve2d, 126, 128, 133,

139, 142, 143, 148,
440, 441

BezierCurve3d, 126, 482, 484
BezierSurface, 126, 266, 267,

484, 485
Bezout, 404
Bezout’s theorem, 404
bitmap, 330–331

animation, 331
file, 350, 592

Black, 8, 11, 13, 15, 16, 19,
20, 30, 53, 70, 84–
86, 108, 110, 112,
115, 118, 121, 126,
128, 138, 145, 146,
167, 169, 174, 178–
180, 184, 211, 213,
215, 221, 222, 224,
227, 235, 237, 241,
243, 244, 246, 253,
255, 270, 271, 274,
277, 279, 285, 292,
306, 307, 311, 314,
334, 335, 348, 362,
368, 369, 374, 386,
392, 420, 422, 424,
425, 427, 430, 435,
439–441, 443, 445,
447, 448, 452, 454,
458, 460, 465, 468,
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471, 474, 484, 493,
494, 496, 497, 499,
500, 502, 507, 508,
511, 519, 521, 531,
541, 556, 566–568,
605, 608, 618

Blaschke, 91
Blue, 11, 13, 59, 70, 89, 109,

112, 125, 126, 129,
133, 141, 152, 165,
167, 175, 182, 186,
203, 215, 262, 265,
267, 268, 278, 284,
290, 306, 311, 314,
326, 356, 391, 399,
416, 419, 425, 429,
439, 441, 449, 454,
458, 460, 463, 468,
471, 474, 482, 484,
485, 497, 500, 521,
523, 524, 530, 556,
562, 565, 568, 618

BMP, 330–331
DXF, 331
bold letters, 6
Boolean, 73, 80, 107, 108,

150, 156–158, 171,
187, 194, 196, 205,
216, 233, 276, 318,
319, 325, 326, 351,
352, 369, 373, 375,
383, 385, 407, 409,
410, 433, 434, 438,
439, 441, 447, 450,
451, 453, 457, 459,
462, 466, 471, 473,
475–479, 481, 483–
487, 495, 497–499,
501, 502, 505, 506,
508, 509, 513–515,
521, 522, 526, 530,
532, 533, 535–539,
543, 544, 547, 550–
552, 554, 555, 557,
561, 567, 605, 613,

616
Boolean operations, 2, 6, 301,

345–349
Boolean operators, 532
BoolResult, 348, 349, 532–534
border line, 206, 223, 266, 428
Box, 19, 20, 185, 187, 192,

393, 394, 486, 487,
532, 534, 544, 549,
588, 589

braces, 24
brackets, 24
Brianchon

theorem of, 116
Brianchon, 116, 119
Bricard, 302
Brown, 152, 195, 259, 277,

568
Buck, viii
button, 18, 19

bar, 19

C directory, 25, 593
CAD system, 3, 345, 348
Cad3D, vi, vii, 3, 201, 258,

259, 325, 327, 329,
330, 340, 341, 345,
348, 486, 487, 503,
516, 532, 533, 604

Cad3Data, 187, 194, 259, 480,
486, 488

CAGD, 126, 127, 150, 156,
248, 274

Cardan circle, 610
cardioid, 612
Carson, viii
Cartesian coordinates, 9, 54,

256, 304, 319, 354,
606, 611

Cassini, 54–57
Cassini’s oval, 54–57
cast shadows, 16
catacaustic, 41–43, 280
catenoid, 230
caustic, 280, 376–380, 570
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Center( ), 462
centimeter, 9
central projection, 397
Čerin, 35
ChangeDefaultOffset( ), 196
ChangePovRayLineWidth, 591
ChangePScriptLineWidth, 591
characteristic conic, 175
Chasles, 166
Circ2d, 8, 9, 11, 30, 31, 50,

75, 76, 83, 176, 441–
443, 464, 613, 616

Circ3d, 13–16, 182, 244, 262,
295, 298, 299, 387,
489, 506, 507, 513,
529–531, 535, 536,
539, 565, 566, 642

circle in space, 12, 489
circular points at infinity, 166,

400, 406
circumcircle, 7, 9, 10, 12
class, 8, 16
class curve, 122, 164–167, 173,

376, 419, 443
class hierarchy, 641
class implementation, 592
ClassCurve2d, 164, 166, 173,

419, 443, 457
clipped, 196
closed B-splines, 458, 459
cluster of solids, 486
collinear map, 406
Collins, viii
Color, 35, 36, 62, 109, 111,

122, 152, 153, 156,
158, 168, 174, 179,
182, 185, 247, 281,
283, 288, 293, 310,
326, 377, 378, 412,
418, 419, 433, 438–
444, 446, 447, 450,
453, 455, 457–473,
477, 478, 481–484,
486, 487, 489, 490,
492–495, 497–502, 506–

509, 512–515, 517,
518, 520–522, 524–
530, 533, 535, 537–
540, 542, 544, 548,
549, 554, 555, 560,
561, 563–565, 567–
569, 613, 615, 616

color, 568, 569
create new, 569

color palette, 569, 591
comments, 10
common normal, 209, 216,

242, 244, 245, 305,
306, 308, 399

CommonNormal(. . . ), 209
compass, 187
compiler, vii, 1, 9, 19, 25, 578,

585, 590, 601
compiler-safe, 576
Complex, 105, 108, 109
complex animation, 301
complex line, 223
ComplexL3d, 223, 224, 226,

228, 443, 444, 491,
509, 510, 515

ComplexPoly2d, 88, 438, 439,
444, 445, 466, 490

ComplexPoly3d, 203, 489, 513
ComputeReals( ), 415
confocal conics, 51–54
confocal quadrics, 225–227
Conic, 30, 52, 54, 110, 112–

114, 117, 119, 122,
123, 173, 246, 406,
412, 415–417, 419,
446, 447, 468, 490

conic, 110–126, 420, 446, 490
conic compass, 603–618
conic section, 110–126
Conic3d, 110, 123, 252–255,

490, 492, 509, 518
ConnectingLine(. . . ), 420
constructor, 21, 24, 157, 462,

512, 527, 549, 552,
561, 587, 588, 593
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contour, 183, 206, 228, 252,
314

outline, 20, 210, 222, 223,
233, 358, 430, 575

Contour(. . . ), 196
control net, 266, 267, 275,

276, 498, 501
control point, 127, 129–137,

139, 149, 150, 155–
157, 159, 261, 262,
266–270, 274, 275,
428, 440, 458, 459,
470, 482, 484, 497,
499, 520, 522

control polygon, 127–130, 135–
138, 144, 150, 151,
155, 159, 266, 274,
440, 457, 459, 470,
482, 484, 496, 499,
520, 522

Coord2dArray, 129, 440, 441,
460–463, 466, 470

Coord3dArray, 493, 495, 496,
502, 503, 513, 538,
542

coordinate
axes, 19
system, 19

count variables, 576
in loops, 576

coupler motion, 93
Cox–De Boor, 275, 457,

459, 496, 498, 499,
501

CPU time, 181, 194
CreateAura, 566
CreateAura(. . . ), 565, 567
CreateNewPalette, 554, 569
CreateNewPalette(. . . ), 569,

592
cross ratio, 406, 408–411, 414–

418, 422, 423
CrossRatio(. . . ), 413, 417
cube, 185
CubicSpline2d, 463

CubicSpline3d, 16, 494, 496,
542

CurScene, 587
CurvePoint(. . . ), 39, 41, 63,

64, 128, 148, 157,
164, 283, 284, 443,
458, 459

customizing Open Geometry,
590–592

Cyan, 152, 568
cylinder of revolution, 185,

222, 235–238, 241,
281, 315, 340, 350,
398

cylindrical coordinates, 256

Daily, viii
DarkBlue, 205, 206, 241, 243,

296, 386, 425, 435,
568, 595, 597, 605

DarkBrown, 385, 430, 568
DarkCyan, 568
DarkGray, 174, 233, 396, 463,

568, 595, 597, 618
DarkGreen, 386, 387, 425, 568,

605
DarkMagenta, 179, 568
DarkOrange, 568
DarkPink, 568
DarkRed, 568
DarkYellow, 568
De La Hire

theorem of, 606
DeCasteljau, 127–129, 131,

132, 266, 440, 470,
482–484, 520, 522

DeCasteljau(. . . ), 128
default

camera, 197
depth range, 196
PostScript line width, 335
POV-Ray line width, 340

DefaultCamera( ), 550
DefaultOrthoProj( ), 12
Degen, viii
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degree elevation, 131, 137,
440, 522

Demlow, viii
demo

executable, 562
files, 643
program, 6

depth range, 196
depth-buffering, 196
descriptive geometry, vi, 389–

403
destructor, 157, 462, 588, 593
determination of intersection

curves, 223
developable surface, 4, 218,

290, 315, 377
diacaustic, 43, 172–175
DiffEquation, 448, 449, 491
DiffEquation3d, 491
differential equation, 448, 450,

491
differential geometry, vi, 425–

435
Dilger, viii
DirectionVector(. . . ), 214, 220,

288, 528
director plane, 286
director surface, 431, 433, 436
DirectrixPoint(. . . ), 288, 528
display lists, 194
DistMA( ), 123
dodecahedron, 190, 524, 525
DOS version, 345
double, 25
double hyperbola, 219, 221,

222
double point, 225
Dragon, 102–105
Draw(. . . ), 196, 223
DrawArrow2d(. . . ), 438
DrawArrow3d(. . . ), 481
DrawDirectrix(. . . ), 213
Drawing Exchange Format,

331–332

drawing order, 23, 37, 202,
332, 335, 564, 565

drawing part, 9, 10
DrawRulings(. . . ), 427
Dreger, vii
Duffy, vii
DUMMY, 600
Dupin indicatrix, 509
DXF, 332
dynamic memory, 583

allocation, 21, 233, 576,
593, 598

eccentricity, 28, 51, 124, 615
linear, 34
numeric, 33

edge of regression, 218, 222
edge-orthogonal, 139–147
ElevateDegree(. . . ), 130
ELLIPSE, 53, 110, 119, 124,

175, 446, 490
ellipse, 48, 49, 51, 52, 120,

123, 162, 163, 175,
615

ellipsograph, 606, 609
ellipsoid, 225
elliptic compass, 603–618
elliptic net projection, 400
EMPTY, 31, 84, 178, 296,

298, 299, 438, 441,
442, 466, 472–474,
489, 513, 524, 527,
529, 531

Encapsulated PostScript, 332–
335

end of the program, 21
energy spiral, 256
Engelhart, 280
Enzmann, viii
EPS, 332–335
*.eps, 335, 579
equations

system of linear, 547
equiangular spiral, 61, 62, 147,

148
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equiangular triangle, 97, 99,
100

equilateral triangle, 35
error message, 21
Escher, 302, 309
Escher kaleidocycle, 302
essential changes, 592
Euclidean geometry, 110, 403
evolute, 40–41, 45, 61, 172,

175
*.exe, 23
executable, 9, 10
export, 10, 23, 329–344

BMP, 330–331
DXF, 331–332
EPS, 332–335
POV-Ray, 335–344
3D scenes, 23

extern, 587
extremum of a function, 593
eye point, 19, 22, 123, 175,

196, 200, 201, 203,
205, 344, 397

fabs(. . . ), 10
families of curves, 49–57
Farmer, viii
fast

algorithms, 3
rotation, 576
transformations, 576

Feng-Shui, 256
FILLED, 30, 31, 36, 85, 88,

89, 179, 203, 215,
244, 293, 311, 379,
386, 391, 399, 445,
565

FilledOrNot, 438, 441, 442,
466, 472, 473, 489,
513, 524, 527, 529

FirstDerivative(. . . ), 594
fixed plane, 4
FLAT, 508
FlatOrSmooth, 508, 526, 533,

538, 541

floating boat, 4
focal

conics, 123–126
distance, 54
line, 397, 400–402
parabolas, 125
point, 4, 28, 30–32, 51,

53, 54, 60, 110, 111,
113, 123–125, 162,
175, 431, 433, 434,
615

quadrics, 126
surface, 431–434, 436

four-bar linkage, 4, 93
FourBarLinkage, 93, 450, 451,

474
fractal, 6, 96–109, 455
frame, 19
FrameNum( ), 22
FREE 2D ARRAY, 578
FREE ARRAY, 233, 578
front view, 16, 192
frontface, 352
Fukuta, 35–37
Function, 34, 452, 454, 593,

594, 596
function graph, 452, 455, 462,

491, 493, 543, 544,
594

FunctionGraph, 393, 491, 492,
507, 532, 545

future hardware, 25

γ, 10
GammaBuffer, 543, 544, 546
Gauss, 547
Gauss elimination, 547
GCn-continuity, 132–135
general ellipsoid, 225
generating line, 211
generator, 97, 100, 102, 211,

217, 218, 311, 312
Generator(. . . ), 235
Generator( ), 98, 455
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geodetic line, 311, 312, 359,
382, 388

geometric primitives, 185
geometrical thinking, 7
GetA( ), 123
GetAntiOrtho(. . . ), 45
GetAntiPedal(. . . ), 45
GetCata(. . . ), 42, 113
GetEvolute(. . . ), 40, 41, 43
GetInvolute(. . . ), 46
GetMinMax(. . . ), 453, 594
GetOffset(. . . ), 47, 273
GetOpacity( ), 564
GetPedal(. . . ), 43, 44
GetPolar(. . . ), 116, 119, 122
GetPole(. . . ), 123, 417
GetSelfIntersection(. . . ), 221,

229
GetStep( ), 100
GetULine(. . . ), 222
GL ALPHA, 632, 634, 636
GL ALPHA BIAS, 635
GL ALPHA LUMINANCE, 632,

634, 636
GL ALPHA SCALE, 635
GL AMBIENT, 629, 630
GL AMBIENT AND DIFFUSE,

629, 630
GL AND, 627, 628
GL AND INVERTED, 627, 628
GL BACK, 624, 625, 629, 630
GL BITMAP, 632, 634, 636
GL BLEND, 631
GL BLUE, 632, 634, 636
GL BLUE BIAS, 635
GL BLUE SCALE, 635
GL BYTE, 632, 634, 636
GL CCW, 624
GL CLAMP, 633
GL CLEAR, 627, 628
GL COLOR, 634
GL COLOR INDEX, 632, 634,

636
GL COLOR INDEXES, 629,

630

GL COMPILE AND EXECUTE,
195

GL COPY, 627, 628
GL COPY INVERTED, 627,

628
GL CW, 624
GL DECAL, 631
GL DEPTH, 634
GL DEPTH BIAS, 635
GL DEPTH SCALE, 635
GL DEPTH TEST, 196
GL DIFFUSE, 629, 630
GL EMISSION, 629, 630
GL EQUIV, 627, 628
GL EYE LINEAR, 632
GL EYE PLANE, 632
GL FILL, 625
GL FLAT, 627, 628
GL FLOAT, 632, 634, 636
GL FRONT, 624, 625, 629,

630
GL FRONT AND BACK, 624,

625, 629, 630
GL GREEN, 632, 634, 636
GL GREEN BIAS, 635
GL GREEN SCALE, 635
GL INDEX OFFSET, 635
GL INDEX SHIFT, 635
GL INT, 632, 634, 636
GL INVERT, 627, 628
GL LEQUAL, 196
GL LIGHT0, 629, 630
GL LIGHT7, 629, 630
GL LIGHT MODEL AMBIENT,

630
GL LIGHT MODEL LOCAL VIEWER,

630
GL LIGHT MODEL TWO SIDED,

630
GL LINE, 625
GL LINE LOOP, 624
GL LINE STIPPLE, 625
GL LINE STRIP, 624
GL LINEAR, 633
GL LINES, 624
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GL LUMINANCE, 632, 634,
636

GL MAP COLOR, 634, 635
GL MAP STENCIL, 634, 635
GL MODELVIEW, 195, 623
GL MODULATE, 631
GL NEAREST, 633
GL NOOP, 627, 628
GL NOR, 627, 628
GL OBJECT LINEAR, 632
GL OBJECT PLANE, 632
GL OR, 627, 628
GL OR INVERTED, 627, 628
GL PACK ALIGNMENT, 635
GL PACK LSB FIRST, 635
GL PACK ROW LENGTH, 635
GL PACK SKIP PIXELS, 635
GL PACK SKIP ROWS, 635
GL PACK SWAP BYTES, 635
GL PIXEL MAP A TO A, 634
GL PIXEL MAP B TO B, 634
GL PIXEL MAP G TO G, 634
GL PIXEL MAP I TO A, 634
GL PIXEL MAP I TO B, 634
GL PIXEL MAP I TO G, 634
GL PIXEL MAP I TO I, 634
GL PIXEL MAP I TO R, 634
GL PIXEL MAP R TO R, 634
GL PIXEL MAP S TO S, 634
GL POINT, 625
GL POINTS, 624
GL POLYGON, 624
GL POSITION, 629
GL Q, 632
GL QUAD STRIP, 624
GL QUADS, 624
GL R, 632
GL RED, 632, 634, 636
GL RED BIAS, 635
GL RED SCALE, 635
GL REPEAT, 633
GL RGB, 632, 634, 636
GL RGBA, 634, 636
GL S, 632
GL SET, 627, 628

GL SHININESS, 629, 630
GL SHORT, 632, 634, 636
GL SMOOTH, 627, 628
GL SPECULAR, 629, 630
GL SPHERE MAP, 632
GL SPOT CONSTANT ATTENUATION,

630
GL SPOT CUTOFF, 629
GL SPOT DIRECTION, 629
GL SPOT EXPONENT, 629
GL SPOT LINEAR ATTENUATION,

630
GL SPOT QUADRATIC ATTENUATION,

630
GL STENCIL, 634
GL T, 632
GL TEXTURE 1D, 632, 633
GL TEXTURE 2D, 632, 633
GL TEXTURE BORDER COLOR,

633
GL TEXTURE ENV, 631
GL TEXTURE ENV COLOR,

631
GL TEXTURE GEN MODE,

632
GL TEXTURE MAG FILTER,

633
GL TEXTURE MIN FILTER,

633
GL TEXTURE WRAP S, 633
GL TEXTURE WRAP T, 633
GL TRIANGLES, 624
GL TRIANGLES FAN, 624
GL TRIANGLES STRIP, 624
GL TRUE, 624, 635
GL UNPACK ALIGNMENT,

635
GL UNPACK LSB FIRST, 635
GL UNPACK ROW LENGTH,

635
GL UNPACK SKIP PIXELS,

635
GL UNPACK SKIP ROWS, 635
GL UNPACK SWAP BYTES,

635
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GL UNSIGNED BYTE, 632,
634, 636

GL UNSIGNED INT, 632, 634,
636

GL UNSIGNED SHORT, 632,
634, 636

GL XOR, 627, 628
Glaeser, v, 3, 345
Glazier, vii
glBegin, 624
GLboolean, 624, 626, 627
glCallList( ), 194
GLclampf, 626, 627
glClearColor, 626, 627
glClearIndex, 626, 627
glColor, 626, 627
glColorMask, 626, 627
glColorMaterial, 629
glCopyPixels, 634, 635
glCullFace, 624
glDepthFunc, 196
glDepthRange, 196
glDisable, 196
GLdouble, 622
glDrawPixels, 634, 635
glEdgeFlag, 624
glEnable, 196, 625, 633
glEnd, 624
glEndList( ), 194
GLenum, 622, 624–635
GLfloat, 625–627, 635
glFrontFace, 624
glFrustum, 622
glGetLight, 629
glGetMaterial, 629
glGetPolygonStipple, 624
glIndex, 626, 628
glIndexMask, 626, 628
GLint, 625, 632, 634, 635
glLight, 630
glLightModel, 630
glLineStipple, 625
glLineWidth, 625
glLoadIdentity, 622
glLoadMatrix, 622

glLogicOp, 626, 628
glMaterial, 630
glMatrixMode, 195, 622
glMatrixMode( ), 194
glMultMatrix, 623
glNewList( ), 194
glNormal3, 631
Global, 587
global and static variables,

587
global variable, 21, 189, 195,

350
Global.camera, 189
Global.rotation2d, 578
GlobalVariables, 587
GlobVarInitialized, 587
glPixelMap, 634
glPixelStore, 635
glPixelTransfer, 634, 635
glPixelZoom, 635
glPointSize, 625
glPolygonMode, 625
glPolygonStipple, 625
glPopMatrix, 195, 623
glPopMatrix( ), 194
glPushMatrix, 195, 623
glPushMatrix( ), 194
glRasterPos, 636
glReadPixels, 634, 635
glRotate, 623
glRotated, 195
glRotated( ), 194
glScale, 623
glShadeModel, 627, 628
GLsizei, 632, 634, 635
glTexCoord, 631
glTexEnv, 631
glTexGen, 632
glTexImage1D, 632, 634, 635
glTexImage2D, 632–635
glTexParameter, 633
glTranslate, 623
glTranslated, 195
glTranslated( ), 194
GLubyte, 624, 625
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GLuint, 626, 628
GLushort, 625
GLvoid, 632, 634, 635
Grünwald, 91
graphics engine, 196
graphics output, 12
graphics window, 10
Gray, 11, 13, 30, 31, 112, 186,

192, 227, 326, 328,
349, 445, 454, 465,
482, 496, 511, 512,
525, 534, 540, 544,
545, 568

Greek letter, 10, 562
Green, 8, 11, 13, 51, 53, 59,

106, 109, 115, 124,
126, 133, 138, 141,
148, 152, 167, 186,
190, 191, 240, 241,
243, 244, 265, 274,
279, 290, 292, 307,
311, 315, 319, 326,
356, 364, 379, 399,
417, 419, 425, 452,
454, 468, 470, 474,
482, 494, 510, 531,
556, 560, 565, 568,
588, 589, 595, 597,
618

Grohser, vii

H-directory, 24, 25, 437, 593
Halmer, vii
handbook

how to use, 5–7
Harada, vii
hardware bug, 591
HardwareBug, 590, 591
HARMONIC, 552
Hartley, vii
header file, 18, 25, 437, 579,

593, 596, 604
helical

motion, 257, 400
torse, 290

HelicalMotion, 503–505, 511,
537, 539

HelicalSurface, 493, 507
helicoid, 230
helispiral, 262–264
hemissphere, 263
Hickman, vii
hidden line removal, 487
hierarchy, 641
high resolution, 23
high-quality output, 487, 533
higher-dimensional arrays, 601
HiQuality( ), 10, 561
HOLLOW, 284, 311, 319
home directory, 592
homogeneous

coordinate vector, 248,
404, 408

coordinates, 248, 249, 359,
404–406, 408

human imagination, 223
HYPERBOLA, 52, 53, 110,

119, 120, 124, 175,
446, 490

hyperbola, 51, 52, 120, 123,
162, 175, 254, 405,
615, 619

hyperbolic
net projection, 400
paraboloid, 433
surface point, 382

hyperboloid, 225, 321–323, 345,
347

of revolution, 345
two-sheeted, 225

ideal point, 397, 404, 424
images per second, 12
implementation

personal, 25
import, 329–344

and export, 301, 329–
344

impossible cube, 201
impossibles, 198–201
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*.inc, 339
inch, 9
index, 6
inherit, 594
initializing file, 590
initializing part, 16
initiator, 97, 99, 100, 102, 103
input directory, 592
instance of a class, 16
IntArray, 546, 547, 600, 601
Integral(. . . ), 143
interpolating splines, 159
intersection of surfaces, 223
inversion, 50, 604, 615
inversor, 612, 615

of Peaucellier, 614, 615
involute, 45–46
IRREGULAR, 110, 446
irrelevant change, 189
isoptic, 162–164
italic letters, 6

kaleidocycle, 302–309
kardan joint, 187, 324–329,

580
Karlhuber, vii, 603
Karlton, vii
Kepler, 29, 32, 33
Kepler equation, 33
keyboard, 10, 16
keystroke, 136, 585
keywords, 6
kinematics, 6

2D, 74–96
3D, 301–329

Kitsemetry, vii
Klein bottle, 228–230
Koch fractal, 97–102, 455
KochFractal, 98–100, 455, 456
Kruppa, 292
Kummer, 573

L2d, 40–44, 46, 47, 54, 58, 59,
86, 113, 448, 453,
457, 464, 465, 478

L3d, 196, 221, 222, 238, 245,
247, 254, 255, 443–
445, 491, 494–496,
506, 508, 511, 528,
529, 538

learning by doing, 12
lemniscate, 54, 55, 295, 401
light source, 16, 19, 22, 187,

197, 280, 283, 335,
338, 378, 380, 388,
395, 568

LightBlue, 31, 179, 205, 206,
226, 240, 379, 568

LightBrown, 568
LightCyan, 179, 212, 568
LightDirection, 395
LightGray, 253, 386, 393, 394,

396, 493, 568
LightGreen, 50, 52, 53, 179,

226, 568
LightMagenta, 568
LightOrange, 224, 568
LightPink, 568
LightRed, 50, 53, 210, 394,

568
LightYellow, 152, 366, 386,

422, 492, 568
limaçon of Pascal, 43, 610,

615
line at infinity, 215, 286, 405
line complex, 431
line congruence, 431–436
line style, 9, 37, 400, 563
LINEAR, 552
LinearSystem, 547
LineDotted(. . . ), 196
lines of curvature, 225
lines of steepest slope, 222
Linux, vii, 3, 643
Linux version, vii
Lipkin, 612
List, vii
*.llx, 345, 348, 486, 487
*.llz, 345, 348, 486, 487
logarithmic spiral, 4, 61
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Möbius, 5, 228, 358, 371
Mac version, vii
Magenta, 152, 186, 440, 473,

568, 577, 578, 595,
597, 618

main projection ray, 352
Maltesien cross, 87
Mandelbrot, 96, 97
Mandelbrot set, 107–109
MarkAngle(. . . ), 10, 12, 563
matrix

definition of, 193
MatrixMult(. . . ), 579
MATTE, 508
maximum of a function, 593
MEDIUM, 8, 11, 13, 15, 16,

51, 95, 112, 115, 165,
167, 175, 179, 180,
205, 206, 213, 222,
224, 227, 243, 244,
253, 277, 279, 281,
283, 292, 296, 306,
307, 312, 334, 385,
386, 396, 399, 422,
425, 427, 430, 439,
440, 443, 445, 449,
454, 463, 474, 488,
492–494, 496, 499,
502, 511, 531, 540,
541, 566, 595, 597,
605

member function, 8, 9, 15,
593, 594

memory leaks, 592
menu, 10, 16

item, 18, 19
system, 22

meridian, 14, 295
circle, 15, 298, 299
curve, 383

mesh object, 341, 344
method, 8
Michalski, viii
Microsoft Visual C++, 9
midcurve, 263, 265

midsurface, 434, 436
milling, 274

tool, 273, 274
Minding

isometric, 292
problem, 292

Minding, 292
minimal surface, 230, 231
minimum of a function, 593
Monge, 390
Monte Carlo method, 140,

147, 160
MoveGenerally(. . . ), 579
moving the camera, 19
multi scene application, 6, 24,

550, 592
multi scene option, 6
multiple light sources, 342
multiple reflection, 382–388
multiple scenes, vii, 583–587,

589
MyFunction, 594

NameOfOutputDirectory, 590,
592

NC-milling, 543
nephroid, 218–220, 222
net of rotation, 400, 402
net projection, 397–403
network, 560

installation, 198, 560
new application, 593
NewColor, 569
Newton, 103, 104, 106
Newton fractal, 103–107
Newton iteration, 106
NoColor, 75, 88, 98, 125, 204,

216, 262, 279, 456,
568

non-Euclidean, 406
normal

congruence, 433
projection, 22, 397
surface, 5, 208–210
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NormalProjectionOfPoint(. . . ),
43

NormalVector(. . . ), 209
NotSpecified, 568
nPoints, 580
NUBS2d, 156–158, 457, 458
NUBS3d, 156, 496, 497
NUBS Surf, 275, 498, 499
numerical errors, 580–581
numerical problem, 54, 210,

235, 296, 305
NURBS, 274–277
NURBS2d, 156, 459, 460
NURBS3d, 156, 499, 500
NURBS Surf, 275, 501, 502

O23d, 460, 486, 502, 525, 548,
549, 579, 641

O2d, 98, 441, 456, 457, 460,
464–466, 548, 579,
641

O3d, 187, 394, 444, 486, 489,
494, 495, 502, 503,
505, 506, 511, 513,
514, 524, 525, 535,
548, 579, 641

O3dGroup, 503, 504
object-oriented, 8
offset, 196
offset curve, 47, 58

generalized, 48–49
OffsetDistance(. . . ), 48
oloid, 5, 376–381

reflection on, 376–381
oloid motion, 379
one-sided surface, 228, 358
ONLY BACKFACES, 508
ONLY FRONTFACES, 487,

508, 533
opacity, 564–565
Open Geometry

button bar, 19
changes in the new ver-

sion, 22–23
class list, 641–642

customizing, 590–592
history, 3
installation, 643–644
network installation, 198,

560
structure of a program,

17–22
updating, 644
what, 1–2
why, 3–5

Open Geometry parameters,
591

OpenGL, v, vii, 1, 2, 6, 8, 12,
193, 194, 196, 350,
351, 353, 357, 406,
561, 591, 621–623,
627, 628, 631

optimal view, 197
optimize the view, 197
Orange, 152, 179, 186, 244,

379, 474, 482, 568
Origin, 79, 89, 90, 100, 186,

203, 215, 217, 221,
236, 271, 278, 279,
307, 311, 313, 334,
352, 363, 365, 379,
420, 427, 434, 468,
473, 482, 519, 530,
534, 555, 566, 577,
578, 613

Origin2d, 29, 115, 165, 439,
440, 577, 578

ortho projection, 187
Ortho3d, 22
orthonomic, 44, 45, 58, 377–

380
OscQuadDir(. . . ), 429
osculating

Bézier curves, 133
circle, 40, 132, 134, 261–

263
conic, 4, 111
plane, 262, 360, 361, 363,

365, 388
quadric, 426–430
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output directory, 560, 592

P23d, 442, 447, 461, 462, 475,
476, 504, 505, 549,
641

P2d, 8, 9, 11, 29–31, 33–36,
39, 40, 42–44, 49,
50, 52, 53, 56–58,
62, 63, 66, 75, 76,
79–81, 83, 84, 98–
100, 110–112, 115,
117–121, 128, 135,
136, 141, 146, 147,
149, 153, 154, 156–
158, 161–165, 167,
168, 171, 173–175,
177–180, 243, 274,
297, 412–415, 417–
421, 438–444, 446–
465, 467–478, 497,
499, 500, 504, 505,
549, 563, 564, 576–
578, 595, 613, 615–
617, 641

P3d, 12, 13, 92–95, 123, 125,
144, 182–184, 188,
192, 200, 207–212,
214–221, 224, 231,
235–240, 243–247, 249–
253, 262–265, 267,
268, 270, 271, 275,
276, 278–280, 282,
284, 288, 289, 291,
294, 296, 298, 299,
306, 307, 310, 312–
314, 317, 318, 320,
322, 325, 328, 333,
334, 346, 352, 353,
360–363, 365, 367,
372, 374, 377, 378,
380, 381, 383, 385,
387, 391, 396, 398,
399, 401–403, 409,
410, 423, 424, 428,
430, 432, 434, 435,

481–487, 489–492, 495,
497–507, 510–524, 526–
531, 534–539, 542,
548–551, 555, 556,
562–566, 574, 605,
641

PARABOLA, 110, 119, 446
parabola, 120, 123, 125, 131,

383, 615, 619
ParabolaOfNthOrder, 462, 463
parabolic net projection, 400
parallel circle, 15
parallel projection, 397
ParamCurve2d, 37, 39, 40,

42–44, 46–48, 54, 58,
61, 62, 64, 113, 119,
147, 148, 152–154,
156, 163, 164, 168,
273, 440, 443, 457–
459, 462, 464, 465,
470

ParamCurve3d, 209, 242, 261,
262, 280–283, 360–
362, 377, 378, 398,
403, 423, 482, 494,
496, 497, 499, 500,
506, 507, 520

parameterized curve, vi, 39,
41, 49, 95, 98, 147,
148, 153, 167, 206,
242, 258, 261, 398,
569

parameterized surface, 20, 569
parametric representation, 63,

120, 132, 167, 207,
222, 237, 248, 257,
258, 260, 281, 282,
364, 569, 571, 573,
574

bad, 570–571
homogeneous, 248, 249,

404
of Bézier curve, 128
rational, 571–573
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parametric transformation, 573,
575

fractional linear, 575
linear, 129

ParamSurface, 196, 207–211,
220–222, 224, 233,
236, 238–240, 251,
271, 278, 322, 346,
383, 393, 427, 433,
445, 484, 491, 493,
498, 501, 507, 509,
510, 520, 522, 528,
532, 538–541, 544,
574

Pascal
theorem of, 116

Pascal, 116, 119, 611, 615
path curve, 2, 4
path names, 17
path surface, 2
PathCurve2d, 54, 451, 457,

465, 594–597, 613,
616

PathCurve3d, 93, 245, 296,
310, 311, 317, 398,
494, 511, 512, 605

PathSurface, 507
PathTo BMP Directory, 590,

592
PathTo DATA Directory, 590,

592
Paukowitsch, vii
Peano, 102
Peano curve, 102
Peaucellier, 612, 614, 615
pedal curve, 43, 246, 247
pencil of circles, 49
PencilOfLines, 517, 518
PencilOfLines2d, 413, 414, 466,

467, 469
PencilOfPlanes, 517, 518
PencilOfPoints, 517, 518
PencilOfPoints2d, 413–415, 466,

467, 469
Perseus, 295

Persistance of Vision Ray-
tracer, 335

personal implementation, 25
Perspective, 22
perspective, 192
perspectograph, 79
Peters, vii
photorealistic rendering, 335
Pink, 152, 182, 326, 452, 568
Plücker, 196, 234
Plücker conoid, 196, 234, 235,

238, 241, 242, 245,
247

Plane, 94, 125, 182, 214, 221,
236, 240, 244, 262,
271, 282, 295, 298,
299, 320, 328, 333,
352, 361–363, 365,
378, 381, 383, 398,
399, 410, 423, 424,
444, 483, 489, 491,
495, 503, 505, 509,
511–513, 515–519, 521,
527, 531, 533, 535–
537, 539, 543, 551,
555, 561

planetary motion, 610
platform, 9
point at infinity, 91, 120, 249,

280, 404–406, 408,
411, 424, 468, 518,
575

pointer variable, 189, 349
PointOfCrossRatio(. . . ), 415
PointsOnConic, 418, 517, 518
PointsOnConic2d, 413, 466,

467, 469
polar, 113, 114, 116
polar coordinates, 54, 55, 61,

167, 611, 615
polarity, 113, 114, 116
pole, 42–44, 95, 113, 114, 116,

119, 120, 247
Poly2d, 35, 37, 88, 89, 444,

445, 466, 472, 489
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Poly3d, 182, 204, 252, 255,
293, 309, 350, 357,
365, 368, 394, 423,
489, 513–515, 524–
526

Polyhedron, 196, 393, 394,
396, 486, 514, 515,
526, 532, 544

Pottmann, viii
*.pov, 336, 340
POV-Ray, vi, viii, 16, 23, 185,

187, 207, 329, 330,
335–346, 371, 434,
486, 533, 591, 657,
659

PrepareContour( ), 223
PreparePovRayFile(. . . ), 339
principal ray, 196
principle of duality, 113, 114,

116, 164, 431, 468
printf(. . . ), 10
PrintString(. . . ), 10, 138, 555,

561
privacy of classes, 583
private, 24
programming style, 24
Projection, 549
projection plane, 196
projective

coordinate system, 411,
468, 518

coordinates, 411
geometry, vi, 6, 110, 113,

164, 248, 389, 397,
403–425, 431

scale, 411–415, 417, 418,
420, 422–424, 466,
468, 516, 517

transformation, 406, 408
Projectivity, 422, 515, 516
Projectivity2d, 417–419, 421,

466, 468
ProjScale, 411, 422, 423, 515–

519

ProjScale2d, 411–414, 417–419,
421, 466–468, 470

ProjType, 517, 518
ProjType2d, 412, 413, 419,

467, 469
Prop3d, 502
protected, 24
public, 24
public member variable, 579
pulley block, 82–86
pulsing real, 54, 82, 84, 85,

167, 168, 175, 178,
238, 253, 289, 295,
316, 416

PulsingReal, 51, 52, 117, 194,
195, 295, 552

PureBlue, 568
PureBrown, 568
PureCyan, 568
PureGray, 568
PureGreen, 95, 568
PureMagenta, 568
PureOrange, 568
PurePink, 568
PureRed, 95, 385, 451, 507,

568, 611
PureWhite, 89, 204, 351, 357,

531, 568, 605
PureYellow, 385, 396, 568
Puyol, vii

quadratrix, 37–40
QuadrEquation(. . . ), 559
Quadric, 426, 427, 520, 529
quadric, 426–430, 520
quality mode, 579

R6 mechanism, 305, 309
RandNum, 100, 142, 275, 553,

576, 600
random

change, 149
color, 103
fractal, 102
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number, 66, 69, 100, 201,
553, 578

process, 149, 150
vector, 140, 144, 146, 147,

149, 162
RatBezierCurve2d, 126, 132,

470, 471
RatBezierCurve3d, 126, 520
RatBezierSurface, 126, 266,

268, 522, 523
rational B-spline curve, 404
rational B-spline surface, 274,

277
rational Bézier curve, 130–

132, 404
rational Bézier surface, 266–

274
ray-tracing, 23, 283, 335–344
Real, 11, 13, 25, 29–31, 33–35,

39–44, 46–50, 52, 53,
55–60, 62–64, 72, 79–
81, 83, 85, 86, 88,
90, 95, 107–109, 111,
112, 115, 119–122,
125, 136, 138, 141–
143, 145, 147, 148,
152, 153, 156, 157,
161–165, 167, 168,
171, 173, 174, 177–
179, 185, 195, 196,
200, 203, 204, 207–
212, 214–216, 218–
222, 224, 226, 231,
232, 235–241, 243,
245–247, 249–255, 262–
264, 268, 271, 273,
274, 278, 280–283,
286–291, 294, 295,
297–299, 305, 306,
310–314, 316, 319,
320, 322, 325–327,
329, 333, 334, 346,
349, 351–353, 355–
357, 360–366, 372–
374, 377–379, 381,

383–387, 391, 394,
395, 398, 399, 401–
403, 407, 409, 410,
412, 414, 417–420,
423, 424, 428–430,
432–435, 438–451, 453–
455, 457–473, 475–
481, 483–487, 489–
495, 497–530, 533,
535–545, 547–561, 563,
564, 567, 574, 594–
597, 601, 605, 613,
615–617

real time, 5, 12, 194, 207, 336,
344, 346

real-time animation, 20, 57,
193, 201

RealArray, 553, 601
Rect2d, 173, 466, 472
Rect3d, 214, 391, 513, 524,

605
rectangle, 18, 67, 88–91, 108,

175, 214–216, 253,
254, 285, 287, 288,
295, 299, 351, 354,
357, 358, 378, 386,
392, 398, 399, 472,
491, 524, 575, 591

rectifying plane, 359–361, 363,
365, 367, 372

rectifying torse, 360
Red, 8, 11, 13, 14, 16, 19, 20,

31, 51, 53, 56, 57,
60, 63, 70, 73, 89,
99, 106, 109, 112,
119, 124, 126, 135,
136, 138, 141, 149,
152, 169, 174, 179,
238, 240, 241, 244,
247, 278, 283, 284,
296, 298, 299, 307,
311, 314, 334, 374,
379, 385, 399, 416,
417, 419, 425, 439,
443, 454, 457, 463,
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468, 470, 474, 482,
494, 496, 502, 507,
531, 556, 565, 568,
595, 597, 618

REFLECTING, 16, 213, 224,
227, 243, 259, 261,
277, 284, 348, 387,
427, 430, 485, 490,
493, 494, 499, 502,
508, 511, 523, 533,
535, 541

reflection, 34, 58, 119, 121,
122, 125, 170, 175,
178, 198, 201, 202,
260, 280–283, 333,
335, 336, 341, 376,
377, 382–385, 387,
388

law of, 41
multiple, 201, 382
partial, 170
total, 170, 172, 178

Refract(. . . ), 171
refraction, 170–180, 382

index of, 172, 175–178,
180

on a circle, 176–180
on a straight line, 172–

175
RegDodecahedron, 190, 191,

524
RegFrustum, 185, 187, 310,

393, 525–527, 532
RegPoly2d, 82, 85, 441, 466,

472
RegPoly3d, 182, 310, 333, 489,

513, 526, 642
RegPrism, 185, 349, 353, 525,

527, 534, 605
RegPyramid, 525, 527, 605
regular

frustum, 187, 311
hexagon, 35, 37
pentagons, 524

polygon, 441, 472, 526,
579

prism, 350, 527
pyramid, 527
tetrahedron, 575
triangle, 37

Reichstag building, 258
relevant changes of the scene,

19
removal of hidden surfaces,

196
restart, 10, 22, 23, 324, 578,

585, 587–589
restart option, 6, 392
restartable, 587, 589
RestoreLetters( ), 561
return, 229
ReverseOrder( ), 130
RGB colors, 627
RGB value, 340, 350, 351,

569, 591
right conoid, 285, 286
right helicoid, 212
right rotoid helicoid, 358
right side view, 16
Roberts, 451
rocking horse, 194
Rod2d, 472, 473
Rod3d, 125, 328, 512, 528
rolling snail, 4
roman font type, 561
Roman surface, 573
rotation matrix, 193
RotMatrix, 190, 193, 487, 503,

515, 533, 543
RoundArrow(. . . ), 481
ruled surface, 5, 211–222, 426,

428, 431
RuledSurface, 207–209, 211,

212, 216, 218, 219,
235, 245, 246, 288,
289, 313, 362, 363,
402, 426, 428, 429,
507, 520, 528
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ruling, 211, 219–221, 244, 286,
290, 292, 315, 378,
429

Runge–Kutta, 448, 491

saddle point, 593, 594
Sadowsky, 358
SafeExit( ), 560
SaveAsBitmapAnimation(. . . ),

331, 339
Scene, 11–13, 59, 60, 72, 81,

105, 108, 109, 112,
166, 169, 178, 179,
183, 186–188, 192–
195, 212, 224, 228,
231, 268, 272, 326,
327, 331, 333, 347,
369, 386, 387, 430,
447, 448, 454, 465,
482, 488, 492–494,
507, 510, 534, 554,
556, 563, 576, 577,
585–587, 590, 594,
595, 607, 611, 618

scope of variables, 583
SecondDerivative(. . . ), 594
SectionWithCircle(. . . ), 76
SectionWithConic(. . . ), 54
SectionWithOtherPoly3d(. . . ),

184
SectionWithStraightLine(. . . ), 279
SectionWithSurface(. . . ), 445
SectionWithTwoOtherPlanes(. . . ),

183
Sector2d, 30, 83, 86, 437, 438,

473, 529
Sector3d, 473, 480, 529, 530,

532
Segal, vii
segment of a circle, 437
self-intersection, 223, 228–230
SetColor, 533
SetCrossRatio, 407–410, 418
SetDepthRange(. . . ), 196
SetOpacity(. . . ), 564

SetSource(. . . ), 563
shade, 393–397
shade contour, 393–397
shaded surface, 16
ShadeWithTexture(. . . ), 352
shading algorithm, 294
shadow, 393–397
ShowAxes, 482, 554, 556, 566
ShowAxes2d, 59, 112, 169,

448, 454, 463, 496,
554, 567, 568, 595,
597

ShowAxes3d, 19, 20, 554, 567,
568

ShowSource( ), 563
ShowV3d(. . . ), 335
sides of the triangle, 9
Silent( ), 100
Silicon Graphics, vii
sinking ship, 4
sky sphere, 278, 279, 338, 339
slanted letters, 6
SliderCrank, 474
SmartText, 555, 556
Smith, vii
SMOOTH, 16, 213, 224, 227,

243, 259, 261, 277,
284, 348, 387, 427,
430, 485, 493, 494,
499, 502, 508, 511,
523, 526, 533, 541

smooth-shaded, 329, 332, 341,
346, 486

SOLID, 185, 315, 356, 525,
527, 528, 534

Solid, 480, 526, 532–534
solid code, 24
sophisticated output, 10
spatial kinematics, 301
special characters, 562
special projection, 16
Sphere, 24, 185, 216, 279,

503, 506, 524, 530,
535, 536
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sphere, 176, 185, 202, 203,
205, 216, 230, 233,
234, 258, 277, 309,
312, 339, 340, 402,
403, 535

spiral, 169, 256, 258, 312
spiral stove, 263
spiral surface, 258, 264
spiric line, 295–297
spline, 150
spline surface, vi, 266
Spline3d, 493, 495, 538
Split(. . . ), 130
SplitU(. . . ), 267
SplitV(. . . ), 267
Sqrt( x ), 557
sqrt( x ), 557
Stachel, v, vii, 3, 345
StaightLine3d(. . . ), 196
standard output directory, 198,

560
static, 587, 589, 590
status bar, 22
STD OFFSET, 93, 95, 196,

399, 429, 444, 480,
484, 486, 490, 491,
495, 508, 513, 514,
520, 522, 526, 528,
530, 533, 535, 537,
538, 554, 564

Steiner, 167, 573
Steiner’s cycloid, 167, 168
straighedge and compass, 38
straight line, 12, 15
StraightLine2d, 8, 11, 31, 36,

63, 112, 119, 146,
153, 154, 165, 175,
179, 422, 443, 474

StraightLine3d, 13, 184, 215,
237, 244, 253, 255,
279, 284, 296, 306,
307, 369, 385, 386,
396, 430, 435

StrL2d, 31, 42, 43, 46, 62,
79, 84, 85, 111, 115,

117, 118, 121, 122,
135, 163–165, 167,
168, 171–174, 176,
177, 179, 412–421,
440, 442, 443, 446,
447, 451, 453, 461,
462, 464, 467–470,
475–477, 479, 536,
595, 616

StrL3d, 14–16, 92–95, 124,
182, 185, 196, 209,
211, 214–216, 220,
221, 235, 236, 238,
240, 244, 245, 271,
279, 282–284, 291,
310, 312, 313, 322,
325, 333–335, 353,
361, 362, 368, 369,
379, 381, 383, 385,
386, 396, 398, 399,
409, 410, 424, 427,
428, 430, 444, 481,
483, 487, 489–491,
495, 503–506, 508,
509, 511–513, 515–
521, 525–530, 533–
539, 566

structure, 546, 553, 587, 600,
601

Study, 91
suffix, 181, 345
SUPER REFLECTING, 508,

511
supercyclide, 234, 248–255
SuperGraph, 3
supplementary angle, 10
surface of conic sections, 248,

571
surface of revolution, 16, 258,

382
SurfacePoint(. . . ), 575
SurfOfRevol, 16, 507, 538
SurfWithThickness, 230–232,

507, 539
sweep curve, 2
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sweep surface, 2

Tangent(. . . ), 64, 164
TangentPlanesOfCone, 517, 518
TangentsOfConic, 517, 518
TangentsOfConic2d, 413, 466,

467, 469
TangentVector(. . . ), 164, 448,

491
target point, 196, 200
templet file, 18
teragon, 97, 99, 104
tetrahedron, 185, 187, 303,

308, 309, 575
texture, 67, 187, 207, 302,

309, 338–342, 353,
354, 356

texture mapping, 2, 301, 336,
350–357

with Open Geometry, 350–
357

textured polygons, 351
TextureMap, 350, 466, 514,

515
Thales, 610
TheCamera, 189
theorem of Brianchon, 116
theorem of De La Hire, 606
theorem of Pascal, 116
THICK, 31, 53, 60, 65, 84, 86,

93, 110, 112, 118,
119, 126, 129, 167,
169, 174, 184, 211,
215, 235, 237, 243,
244, 247, 253, 255,
279, 307, 314, 385,
386, 417, 422, 430,
441, 443, 448, 458,
460, 463, 465, 471,
473, 482, 484, 494,
496, 497, 500, 507,
511, 521, 531, 565

THIN, 8, 11, 13, 15, 30, 31,
50, 53, 60, 84, 85,
90, 99, 112, 122, 126,

146, 165, 167, 169,
175, 179, 213, 222,
233, 243, 255, 277,
284, 292, 306, 307,
348, 369, 386, 387,
396, 422, 427, 430,
435, 438, 439, 442,
452, 457, 458, 460,
474, 481, 497, 500,
507, 508, 511, 514,
531, 541

ThinOrThick, 36, 62, 153, 156,
335, 412, 419, 438,
440, 442, 444, 446,
450, 453, 455, 457–
459, 466–470, 472,
473, 477, 478, 480,
481, 483, 484, 486,
487, 490–492, 495,
497, 498, 500, 501,
508, 509, 513–515,
517, 518, 520–522,
524–526, 528–530, 533,
535, 537–539, 563,
564

top view, 16, 190, 191, 203,
218, 235, 242, 247,
400

torse, 218, 219, 222, 313, 314,
358, 359, 377

Torus, 16, 185, 540
torus, 14–16, 185, 294, 298
TransformIntoPolyhedron( ), 393,

514
Translate(. . . ), 187
transparency, 203, 205, 241,

278, 332, 340, 350,
351, 387, 561, 564–
565

tripod, 4
Trochoid, 478
trochoid, 67, 68, 218, 280, 479
trochoid motion, 478, 604
TubSurf, 541
tubular surface, 258
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twisted cubic, 422
two-dimensional array, 601
two-point guidance, 606
type of a variable, 8
TypeOfConic, 111, 124, 446,

490

understandable code, 21
undocumented classes, 6
University of Applied Arts,

603
Unix, 643
update, 596
updating Open Geometry 1.0,

644
uppercase format, 21

V23d, 461, 475, 476, 478, 504,
542, 549, 556, 557

V2d, 30, 34, 39, 49, 58, 62,
66, 68, 69, 73, 79,
83–85, 98, 101, 102,
112, 114, 135, 141,
143, 144, 162–164,
168, 171, 173, 179,
352, 413, 415, 416,
421, 439, 442–444,
447–449, 451, 453,
456, 457, 460–462,
464, 476–479, 504,
542, 549, 556, 558

V3d, 124, 125, 200, 209–212,
214–216, 218–221, 235,
243, 245, 253, 262,
271, 282, 284, 288,
289, 294, 296, 298,
299, 307, 311, 313,
316, 322, 326–328,
334, 335, 352, 363,
365, 367, 368, 372,
374, 379–381, 383,
402, 403, 410, 428,
429, 432, 433, 444,
461, 481, 487, 489–
492, 495, 503–506,

509, 511–515, 520,
526–529, 533–539, 542,
543, 549, 551, 552,
555, 556, 558, 559,
562

Vector, 505, 543, 557
velocity pole, 63, 610
Vertex, 65
VERY REFLECTING, 508
VERY THICK, 8, 11, 13, 129,

417, 441, 452, 470,
471, 484, 519, 521,
566

VeryFirstTime( ), 22
video card, 591
Villarceau, 298, 299
Villarceau circles, 299
virtual camera, 187, 549
virtual member function, 491
VLines, 222

Wallner, vii, viii
wave fronts, 57
Wegner, viii
White, 109, 343, 568
white color, 350
Windows, 9, 345, 643

9x, 3
2000, 3
NT, 3

wire frame, 206, 229, 230,
252, 324, 327

WireFrame(. . . ), 196, 222, 427
wobbler, 376–381
workspace, 9, 583, 593, 596
WriteImplicitEquation( ), 123
WriteNice(. . . ), 561, 562
Wunderlich, 309, 358–360,

364

Xaxis, 21, 183, 192, 203, 224,
227, 231, 270, 299,
319, 349, 386, 391,
566



676 Index

Xdir, 188, 193, 271, 326, 333,
424, 427

XYplane, 123, 180, 220, 240,
241, 259, 296, 333,
396, 398, 399, 555,
561

XZplane, 123, 221, 333

Yaxis, 21, 183, 227, 276, 278,
315, 349, 356, 383,
386, 391, 392, 427,
499, 502

Ydir, 326, 333, 353, 386, 387,
424, 539

Yellow, 16, 31, 106, 109, 125,
126, 146, 152, 165,
179, 182, 186, 188,
203, 232, 276, 278,
281, 284, 311, 312,
326, 347, 374, 427,
482, 499, 502, 540,
541, 568, 591, 614,
616

Yen, vii
Young, viii
YZplane, 123, 246, 270, 296,

333

z-buffer, 426, 428, 554
z-buffering, 2, 28, 181, 184,

196, 329, 508, 543,
550, 554

Zaxis, 183, 185, 188–190, 192,
203, 204, 211, 220,
227, 231, 237, 240,
241, 243, 244, 260,
270, 276, 278, 279,
284, 306, 307, 311,
313, 319, 321, 326,
329, 346, 349, 352,
392, 427, 482, 494,
499, 502, 524, 525,
527, 528, 539, 566

Zbuffer( ), 196
Zdir, 92, 94, 95, 193, 236, 240,

244, 245, 326, 333,

368, 379, 424, 519,
565

ZerosOfPoly3(. . . ), 306, 559
ZerosOfPoly4(. . . ), 384, 559
zoom in, 16
zoom out, 16


