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Preface

Overview

At the beginning of 1999, Springer-Verlag published the book OPEN GEOME-
TRY OPENGL®4+ADVANCED GEOMETRY. There, the authors Georg GLAESER
and Hellmuth STACHEL presented a comprehensive library of geometric meth-
ods based on OPENGL routines. An accompanying CD-ROM provided the source
code and many sample files. Many diverse topics are covered in this book. The
theoretical background is carefully explained, and many examples are given.

Since the publication of OPEN GEOMETRY, the source code has been improved
and many additional features have been added to the program. Contributors from
all over the world have come up up with new ideas, questions, and problems. This
process has continued up to the present and OPEN GEOMETRY is growing from
day to day.

In order to make all of these improvements accessible to the public, and also
in order to give deeper insight into OPEN GEOMETRY, we decided to write this
new HANDBOOK ON OPEN GEOMETRY GL 2.0. It will fill certain gaps of OPEN
GEOMETRY 1.0 and explain new methods, techniques, and examples. On the
accompanying CD-ROM the new source code and the sample files are included.

The HANDBOOK now contains 101 well-documented examples and the reader is
able to learn about OPEN GEOMETRY by working through them. In addition,
we present a compendium of all important OPEN GEOMETRY classes and their
methods.
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However, we did not intend to write a new tutorial for OPEN GEOMETRY. The
HANDBOOK is rather a sequel, written for the readers of the first book and for
advanced programmers. Furthermore, it is a source of creative and good examples
from diverse fields of geometry, computer graphics, and many other related fields
like physics, mathematics, astronomy, biology, and geography.

Organization

In Chapter 1 we explain the philosophy and capacity of OPEN GEOMETRY as
well as the basic structure of an OPEN GEOMETRY program. This is necessary
to make the HANDBOOK readable for advanced programmers who have not read
the first book. Furthermore, it will be helpful to the reader in order to avoid
programming style that might not be compatible with future versions.

Chapter 2 explains the most important 2D classes and provides new examples
of animation and kinematics. We present enhanced methods of parameterized
curves and conic section, and we introduce Béziers and B-spline curves in OPEN
GEOMETRY.

At the beginning of Chapter 3 we present a few basic 3D classes and explain
in detail how to use the camera. In the following we include a wide section on
diverse mathematical surfaces (our archives are full of them). Finally, the concept
of spline surfaces will provide a powerful tool for practical applications.

The chapter on 3D Graphics is split because of our rich collection of new ex-
amples. One of the most important changes is the possibility to get high-quality
views of CAD3D objects and to export them to other programs. We got some
remarkable effects by using POV-Ray, a freeware ray-tracing program.

In Chapter 5 we show cross connections between OPEN GEOMETRY and diverse
geometric fields, such as descriptive geometry, projective geometry and differen-
tial geometry.

In Chapter 6 you can find a compendium of all important OPEN GEOMETRY
classes and all important methods. This has not been done till now, neither in the
first book on OPEN GEOMETRY 1.0 nor anywhere else. Dozens of new examples
will explain the new methods and ideas that have been developed during the last
year.

Guidelines for introducing new classes and good programming style are given in
Chapter 7. Furthermore, we present examples of typical mistakes that weaken
output quality and computing time. Usually these problems can be overcome by
obeying only few simple rules.

The handbook would be useless without an accompanying CD-ROM. It includes
the improved and enlarged source code and the complete listings of the new
sample files. Thus, the reader will be able to visualize all the examples on her/his
computer, and to explore the new possibilities herself/himself.
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The book is intended for anybody interested in computer graphics. Like OPEN
GEOMETRY 1.0, it can be used by students and teachers, both at high school
or university, by scientists from diverse fields (mathematics, physics, computer
graphics), and by people working in artistic fields (architects, designers). Of
course, the reader must be able to write (or be willing to learn how to write)
simple programs in C++.
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Introduction

This section is meant to introduce the gentle reader to the world of OPEN GEO-
METRY. We will talk about OPEN GEOMETRY in general and about its history.
We will explain the use of this handbook and how to start your first program.

The installation procedure of OPEN GEOMETRY is described in Appendix D.
However, there is no need to hurry. Just take your time and read carefully through
the following sections. We will teach you everything you need to know to get
started with OPEN GEOMETRY. Later, in Section 1.4, we will come back to the
installation process.

If you already have some experience with version 1.0 of OPEN GEOMETRY, you
may want to skip this introduction. Of course, we do not recommend this. But
if you really cannot wait to run your first program with the new version you
should at least have a quick look at Section 1.6. It will tell you about the most
important changes and new features of OPEN GEOMETRY 2.0.

What Is Open Geometry?

OPEN GEOMETRY is a geometric programming system: With the help of a C4++
compiler, the user is able to create images and animations with arbitrary geomet-
ric context. The system provides a large library that allows one to fulfill virtually
any geometric task. The OPEN GEOMETRY library itself is based on OPENGL,
a system-independent graphics library that is supported by most compilers and
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hardware systems.!

Additional to the rather basic but very effective OPENGL functions, the OPEN
GEOMETRY library provides the reader with 2D and 3D solutions to:

e the most common intersection and measuring problems,

e the creation of “sweeps” (e.g., path curves and path surfaces, i.e., sweeps of
arbitrary curves),

e the creation of general solids by means of Boolean operations.

OPEN GEOMETRY is a software environment that tries to link theory and practice
of geometric programming. The user is able to realize direct geometrical thinking
without having to care much about implementations. The idea is to write system-
independent and readable graphics programs. Besides the code for the powerful
geometric library, the attached CD contains C++ source code for more than 200
sample programs and executables for several platforms.

Summing up, OPEN GEOMETRY:

e makes elementary and advanced geometric programming easy;

e fully supports the OPENGL standard (z-buffering, smooth shading, texture
mapping, etc.),

e offers an advanced geometry library, with emphasis on kinematics and dif-
ferential geometry;

e supports features like object generation by means of sweeping or Boolean
operations.

OPEN GEOMETRY was written for:

e students who want to get a deeper understanding of geometry;
e scientists who want to create excellent images for their publications;
e programmers who want to develop professional graphics software; and

e all people who love graphics and geometry.

YOPENGL is the premier environment for developing portable, interactive 2D and
3D graphics applications. Since its introduction in 1992, OPENGL has become the in-
dustry’s most widely used and supported 2D and 3D graphics application programming
interface (API), bringing thousands of applications to a wide variety of computer plat-
forms. OPENGL supports a broad set of rendering, texture mapping, special effects,
and other powerful visualization functions.
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The History of Open Geometry

At the end of the eighties, Georg GLAESER and Hellmuth STACHEL started with
the idea of developing environments for geometers in order to allow them to
develop their ideas more efficiently. Working closely together, thet took two dif-
ferent approaches: Hellmuth STACHEL concentrated on writing CAD systems.?
Georg GLAESER developed a programming environment for “geometry program-
mers,” first in Pascal (SUPERGRAPH, [11]), later on in C and C++ ([12]). Addi-
tionally, he wrote a book about fast algorithms for 3D Graphics in C ([13]).

At the end of 1998, OPEN GEOMETRY 1.0 was first published ([14]), being a
mixture of all the experiences made in these years.

In June 1999 Hans-Peter Schrocker began to work intensively with OPEN GEO-
METRY, and it soon turned out that with his help, the programming system
improved amazingly. Thousands of lines of code flew from his “pen.” This is why
he is now coauthor of this book.

A main goal was to support as many systems as possible. The system in which
OPEN GEOMETRY was created initially is WINDOWS NT (or WINDOWS 2000
respectively). It is still the system, in which OPEN GEOMETRY should run more
or less bug-free. WINDOWS 9X is also good, since it has the same user inter-
face. The system was also successfully tested in a LINUX environment. Up-
dates can be found in the Internet. So please, have a look at the web page
http://www.uni-ak.ac.at/opengeom/ every once in a while.

Why Open Geometry?

There are quite a few 2D and 3D software applications on the market. Some of
them are really professional graphics systems, providing excellent methods for
the creation and manipulation of objects, both in 2D and 3D. Others specialize
in the mathematical and geometrical background, and with their help, many
scientific problems can be solved and visualized. In fact, the competition is stiff.
So, why did we try to make another approach?

The thing is that OPEN GEOMETRY is not intended to be “yet another graphics
program.” OPEN GEOMETRY is a programming system that has another phi-
losophy in mind: This philosophy is that the system is “open” and thus not
restricted, since the user has direct access via programming. Menu systems can
be wonderful, and they enable the user to do many things, but still, they are
limited by nature.

OPEN GEOMETRY has now been in development for a couple of years, and though
its “body” has always been under control of a very few people, many program-
mers have contributed ideas and source code to it. These programmers come from

2The first result was the CAD3D system. The DOS version of this system comes
with the CD.
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FIGURE 1.1. A four-bar linkage (left), a catacaustic (right).

various fields and from different educational backgrounds, but they always have
had a strong affinity to geometry, and that is what makes OPEN GEOMETRY so
appropriate for even the most complicated geometrical tasks.

FIGURE 1.2. A rolling snail (logarithmic spiral) and a floating boat.

In the meantime, you can, e.g., easily:

define a four-bar linkage and calculate path curves of arbitrary points con-
nected with it ("fourbar.cpp", Figure 1.1, left),

display a caustic of a curved line both as the envelope of reflected
light rays and as a path curve of the focal point of an osculating conic
("catacaustic.cpp", Figure 1.1, right);

illustrate how a logarithmic spiral rolls down some specially designed stairs
("rolling snail.cpp", Figure 1.2, left);

simulate how a ship floats on a stormy ocean and, hopefully, does not sink
("stormy_ocean.cpp", Figure 1.2, right);

show how a tripod can be moved along a developable surface and, in a second
stage, show conversly how the surface can be moved so that it always touches
a fixed plane ("oloid.cpp", Figure 1.3),
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FIGURE 1.3. A moving tripod and the revolution of a “wobbler” (oloid).

e create a ruled surface as the path surface of a straight line and display its cen-
tral line or even the normal surface along this line ("normal _surfaces.cpp",
Figure 1.4, left),

e let little arrows run around a MOBIUS strip and thus show the surface’s
one-sided character ("moebius_with_arrows.cpp", Figure 1.4, right),

e let all the above programs run in one menu-driven demo that can be executed
in real time on virtually any modern computer ("demol.exe").

FIGURE 1.4. Ruled surface with normal surface (left), one-sided MOBIUS strip
(right).

About This Handbook and How to Use It

This handbook provides the reader with as much information about OPEN GEO-
METRY (OPEN GEOMETRY 2.0) as possible. It is written for both beginners and
advanced OPEN GEOMETRY users. One should be able to use the book without
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having to read one chapter after the other. Nevertheless, it is recommended to
skim over the introductory sections at the beginning.

The CD comes with quite a few executable demo programs. They are located in
the "DEM0OS/" directory and can be executed via mouse click. In general, they are
multi scene applications with mostly about a dozen single applications compiled
together. Before you work through a chapter, it is a good idea to browse through
the corresponding demo programs. Then you have a good idea of what awaits
you and which examples it might be worth focusing on.

An important part of the book is the index, which has automatically been
produced by a self-written program.? In the index and throughout the book,
OPENGL-keywords are written in slanted letters, OPEN GEOMETRY-keywords
are written in italic letters, and C-keywords are written in bold letters.

Our goal at the beginning was to describe every single class including all their
member functions. This turned out to be almost impossible. Therefore, the listing
in Chapter 6 is not complete. Still, we are convinced that we have described all
those classes and functions that an OPEN GEOMETRY user will ever work with.
The residual classes were written only for internal use, and they are never used in
application files. We also know that OPEN GEOMETRY will continue developing,
so that any update will again have undocumented classes.

Even though this book contains quite a lot of information, it no longer covers
those theoretical topics the original one did (e.g., kinematics and Boolean op-
erations). Thus, if you need more theoretical background in this respect, please
refer to [14]. Of course, there are some entirely new topics that you can find in
this book, e.g., sections about projective geometry, fractals or Bézier surfaces,
and B-spline surfaces.

The present book contains lots of information that is not covered in [14]. This
concerns mainly the dozens of new classes and functions that have been im-
plemented since Version 1.0 was published. The sample files are quite different,
which makes the book a useful addition to the first one. In the various subdi-
rectories you can find dozens of new application files. You can view many of
the corresponding executables with the enclosed demo-browser. We also created
hundreds of new images, and the book has again become not only a handbook
about software but also a “geometrical picture book.”

All the applications of version 1.0 are compatible with the new version. Thus,
you need not change anything in your programs written so far. Maybe minor
corrections can be useful to support new features like the restart option or the
multi scene option.

This book is full of source code listings. Usually we will indicate the source file at
the top of the listing. The given path will be relative to OPEN GEOMETRY’s home

3The program “beauty.exe” is documented in [12].
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directory (e.g., "D:/0PENGEOM/") or to the subdirectory "OPENGEOM/HANDBOOK/".
The same is true for all other file names. That is, if you do not find a file in
"OPENGEOM/", you will find it in "OPENGEOM/HANDBOOK/".

A First Program: Learning by Doing

Before we explain everything in detail, we want to get you into the kind of
geometrical thinking that is well supported by OPEN GEOMETRY.

From school, you probably remember the following theorem:

Let A and B be fized points, and C' be an arbitrary third point. The three points
have a well-defined circumcircle. When C' runs on that circle, the angle v in the
triangle ABC will stay constant as long as C stays on the same side of AB.
When C' is on the other side, the angle is 180° — .

Y=65772 y=114228
180° -y =114.228 180°-y =65.772

FIGURE 1.5. The angle at the periphery of a circle.

Now you want to write a little program that shows an animation of this (similar
to Figure 1.5).

Geometrically speaking, you know what to do:

Choose three points A, B, C;

e determine the circumcircle;

calculate the angle v = ZAC B; and finally,

move C along the circle (e.g., by means of a constant rotation about its
center).
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As a programmer, you know that it would be arduous to reinvent the wheel
all the time. Therefore, use a programming system that provides all the basic
tasks for you. You just have to know the commands, and — as you will see soon
— these commands come quite naturally. OPEN GEOMETRY is object-oriented.
This means that the type of a variable is usually a class that not only contains
data but is equipped with member functions (also called methods). Besides such
classes, OPEN GEOMETRY also supports “ordinary functions” that you probably
know from OPENGL.

With this example we will try to get started with OPEN GEOMETRY. We do it
in several steps:

A. The simple program "circumcircle.cpp"

Take a look at the following listing, which you will understand immediately (we
will not go into detail for the time being):

(
Listing of "circumcircle.cpp":

#include "opengeom.h"
#include "defaults2d.h"

P2d A, B, C;
Circ2d CircumCircle;

void Scene::Init( )
{
A(—4,0);
B(4,0);
C(3,5);
CircumCircle.Def( Black, A, B, C );
}

void Scene::Draw( )

{
StraightLine2d( Black, A, B, VERY_THICK );
StraightLine2d( Green, A, C, MEDIUM );
StraightLine2d( Green, B, C, MEDIUM );
CircumCircle.Draw( THIN );
A.Mark( Red, 0.2, 0.1 );
B.Mark( Red, 0.2, 0.1 );
C.Mark( Green, 0.2, 0.1 );
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The program uses two predefined OPEN GEOMETRY classes, P2d (“two-dimen-
sional points”) and Circ2d (circle in 2D). They are declared via "opengeom.h".
There is another file "defaults2d.h" included that initializes a standard 2D
window of “handy” size, which is about the size of the sheet of paper in front
of you when you measure in centimeters, or about the size of your screen when
you measure in inches. Three points and one circle are declared.

In an initializing part, we assign Cartesian coordinates to the points and calcu-
late the circumcircle by means of the member function Def(...) of Circ2d. In
the drawing part, we draw the sides of the triangle ABC and the circumcircle.
StraightLine2d(. ..) is a predefined function; Draw(...) is a member function of
Clirc2d. Note the line styles and the different colors. Finally, we mark the points
by means of the member function Mark(...). The output for the time being is
to be seen in Figure 1.6.

FIGURE 1.6. The output of "circumcircle.cpp".

B. Compiling the program, simple changes in the program

At this stage you should install OPEN GEOMETRY on your computer (if you have
not already done so). Appendix D will tell you how to do this. Furthermore, you
will need to know how to compile and execute the above program.

Here is the recipe for the WINDOWS environment in connection with a Microsoft
Visual C++ compiler.* (If you work on another platform or with another com-
piler, you can still run the executable "circumcircle.exe" on your CD in order
to understand the following.)

1. Load the workspace mfcgl.

2. Open the file "try.cpp".

3. Be sure that except the first two #include statements all other lines are
commented.

4The system is compatible with versions 5.0 and 6.0, where the compiler should not
give any warning even at the highest warning level.
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4. Search for the string "circumcircle.cpp". Remove the comments on this
line.

5. Build and execute the program. A graphics window should appear, similar
to Figure 1.6.

Now, in order to get a feeling for the program, make a minor change:

e Add a fourth point M to the list of points.

e Initialize this point after the definition of the circumcircle:
M = CircumCircle.GetCenter( );

e Add the line
M.Mark( Gray, 0.15, 0.1 );

in the drawing part.

e Recompile and see what happens. (Clearly, the center of the circumcircle is
additionally marked.)

Now you can test what can be done with the executable via menu or keyboard
without any change: You can, e.g., move the image by means of the arrows on
the keyboard, or you can export the image as an EPS or BMP file.

C. The animated program "circumference.cpp"

We now add a few additional commands and then animate the whole pro-
gram. If you find it too bothersome to type everything, just load the file
"circumference.cpp" almost exactly as in B, beginning with Step 3. The listing
of the file is to be found below.

In order to show the angle v, we use the function MarkAngle(. .. ), which — as a
side effect — returns the value of v (in degrees).® Since the sign of the angle is of
no relevance, we take the absolute value of « (fabs(...)). For the information of
the viewer, the angle is written on the screen with the function PrintString(...),
which obviously works in the same way as the well-known C function printf(...).
The Greek letter v is displayed with the string $gamma$.6 Additionally, the
supplementary angle 180° — + is displayed. In order to allow such a sophisticated
output, we need to call the function HiQuality( ) in the Init( ) part. There, we
also find the command AllowRestart( ), which — as the name tells — allows a
restart of the animation at any time.

5In many cases OPEN GEOMETRY prefers to work with degrees instead of arc lengths.
Especially rotation angles are always given in degrees for better understanding.

50n page 562 you will find a more detailed description of how to print special
symbols on the OPEN GEOMETRY screen.
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Listing of "circumference.cpp":
#include "opengeom.h"

// Four points and a circle are global
P2d A, B, C, M;

Cire2d CircumCircle;

void Scene::Init( )

{
A( —4, 0); // points of a triangle
B(4,0);
C(35);
CircumCircle.Def( Black, A, B, C );
M = CircumCircle.GetCenter( ); // center of circle
HiQuality( ); // output allows Greek letters
AllowRestart( ); // restart via menu is possible
}
void Scene: :Draw( )
{
StraightLine2d( Black, A, B, VERY_THICK );
StraightLine2d( Green, A, C, MEDIUM );
StraightLine2d( Green, B, C, MEDIUM );
CircumCircle.Draw( THIN );
Real gamma;
// show the angle gamma as an arc
gamma = fabs( MarkAngle( Blue, A, C, B, 1, 20, THIN ) );
// show the value of the angle on the screen
PrintString( Blue, —3, 8,
"$gamma$=Y%.3f", gamma );
PrintString( Blue, —3, 7,
"180 -$gamma$=%.3f", 180 — gamma );
// mark the points
A.Mark( Red, 0.2, 0.1 );
B.Mark( Red, 0.2, 0.1 );
C.Mark( Green, 0.2, 0.1 );
M.Mark( Gray, 0.15, 0.1 );
}

void Scene::Animate( )

C.Rotate( M, 1 ); // C runs on the circle
}

void Scene::CleanUp( )

{
}
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void Projection:: Def( )
if ( VeryFirstTime( ) ) // Initialization of the drawing window

xyCoordinates( —12.0, 12.0, —8.0, 8.0 );

I |

Do not forget to delete the line that includes "defaults2d.h"! At this stage, of
course, you do not understand everything, and actually you do not have to. The
strategy is “learning by doing”. In general, it is probably a good idea to take a
look at several demo files and compare what is written there with the output.

Since we are now doing something non-trivial (we animate the scene), we had
to copy the contents of "defaults2d.h" into our program and modify them. Do
not worry about this right now. We will explain everything later on. Just see
what is done: The point C is rotated about a point M which is the center of
the circumcircle. The rotation angle is small (only 1°), since the rotation is done
for every new frame. Modern computers are fast enough to run this animation
in real time, i.e., to display at least 20 images per second. The basic graphics
output is done by OPENGL-routines that are invisibly used by the OPEN GEO-
METRY-library.

D. The third dimension — quite easy

Well, you might think, 2D problems are much easier to solve than 3D problems.
Of course, you are right, but it would not be OPEN GEOMETRY if it did not solve
the same tasks in 3D — and that more or less by simply replacing all occurrences
of 2d by 3d. Naturally, points in 3D should be initialized with three coordinates,
and the point C must now rotate about the circle’s axis. Finally, a 3D projection
instead of a 2D window has to be initialized. But that is all in order to create a
new OPEN GEOMETRY-application "circumference3d.cpp"!

E.g., the function StraightLine3d(...) clearly draws a straight line in 3D, and
the function MarkAngle(...) draws an arc in 3D when the parameters are space
points P3d. The member function of the class Scene, DefaultOrthoProj( ), defines
an ortho-projection in given direction.

Take a look at the listing of "circumference3d.cpp". It illustrates that the
theorem of the constant angle at circumference is also true, when C moves on an
arbitrary circle in space that contains A and B.
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Listing of "circumference3d.cpp":

#include "opengeom.h"

P3d A, B, C, M;
Circ8d CircumCircle;

void Scene: :Init( )

{
A( —4, 3, =3 ); // points of a triangle
B( 40 3);
C(3,05);
CircumCircle.Def( Black, A, B, C, 100 );
M = CircumCircle.GetCenter( ); // center of circle
HiQuality( ); // output allows Greek letters
AllowRestart( ); // restart via menu is possible
}
void Scene::Draw( )
{
StraightLine3d( Black, A, B, VERY_THICK );
StraightLine3d( Green, A, C, MEDIUM );
StraightLine3d( Green, B, C, MEDIUM );
CircumCircle.Draw( THIN );
Real gamma;
// show the angle gamma as an arc
gamma = fabs( MarkAngle( Blue, A, C, B, 1, 20, THIN ) );
// show the value of the angle on the screen
PrintString( Blue, —3, 8,
"$gamma$=Y%. 3f", gamma );
PrintString( Blue, —3, 7,
"180 -$gamma$=%.3f", 180 — gamma );
// mark the points
A.Mark( Red, 0.2, 0.1 );
B.Mark( Red, 0.2, 0.1 );
C.Mark( Green, 0.2, 0.1 );
M.Mark( Gray, 0.15, 0.1 );
}

void Scene: :Animate( )

C.Rotate( CircumCircle.GetAxis( ), 1 ); // C runs on the circle

}

void Scene::CleanUp( )

{
}
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void Projection::Def( )
if ( VeryFirstTime( ) ) // Initialization of the drawing window

DefaultOrthoProj( 28, 18, 12 );

}
}

e
N

FIGURE 1.7. Torus as locus of space points with constant angle at circumference.

With only slight modifications, one can illustrate the following theorem by means
of an animation (Figure 1.7):

The locus of all space points from which a line segment AB is seen under constant
angle at circumference v is a torus.

Have a look at the corresponding file "torus_as_locusl.cpp". Since only few
lines differ from "circumference3d.cpp", you will soon understand the code.
Here is the drawing of the meridians of the torus:

[
Listing from "torus_as_locusl.cpp":

StrL3d rot_axis;

rot_axis.Def( A, B );

Circ3d meridian_circle;
meridian_circle.Def( Red, A, C, B, 50 );
int i, n = 30;

for (i=0;i<n;i++)

{
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meridian_circle.Draw( THIN );
meridian_circle.Rotate( rot_axis, 360.0 / n );

Clire3d parallel circle;

parallel_circle.Def( Black, C, rot_axis, 70 );
parallel_circle.Draw( MEDIUM );

Obviously, a new class StrL3d — a straight line in 3D as a geometric object
with member functions like Def(...) — is used. The 3D circle Cire3d can now be
rotated about the axis AB. The axis can also be used to generate a parallel circle
on the torus.

The animation part is adapted slightly so that the point C now runs somehow
on the torus:

Listing from "torus_as_locusl.cpp":

C.Rotate( CircumCircle.GetAxis( ), 2 );
StrL3d axis;

axis.Def( A, B );

C.Rotate( axis, 2 ); // C now runs on a torus

Try out what happens if you change the rotation angles or, e.g., the value of the
variable n in the rotation of the meridian circle.

FIGURE 1.8. The illustration of the theorem about the angle at circumference in
space (output of "torus_as_locus2.cpp").
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Finally, we want to display the described torus in a more sophisticated way
("torus_as_locus2.cpp", Figure 1.8). The surface shall be displayed shaded.
We, therefore, use an appropriate class and declare an instance of that class:

SurfOfRevol Torus;

In the initializing part, the surface is defined

(
Listing from "torus_as_locus2.cpp":

Circ8d meridian_circle;

meridian_circle.Def( Red, A, C, B, 60 );

CubicSpline3d m;

meridian_circle.Copy( m, 15, 52 );

Torus.Def( Yellow, false, 60, m, —140, 125, StrL3d( A, B ) );

I |

Of course, those few lines need some explanation — which will be given when
surfaces of revolution are described in detail”. (You are free to experiment what
happens if you change the parameters). The drawing of the surface, however, is
done extremely simple by means of the single line. Additionally, the axis of the
torus is displayed:

Listing from "torus_as_locus2.cpp":

Torus.Shade( SMOOTH, REFLECTING );
Torus.GetAxis( ).Draw( Black, —3, A.Distance( B ) + 3, MEDIUM );

I |

The torus now appears shaded on the screen®. The scene can automatically be
manipulated via menu or keyboard. E.g., the light source can be rotated, one
can display special projections like the top view, front view or right side view,
zoom in or zoom out, etc.

You might have an ultimate question: Where do the cast shadows in Figure 1.8
come from? The answer is: The scene was exported to POV-Ray and rendered by
this program. More about this new export utility of OPEN GEOMETRY 2.0 can
be found on page 335 in Section 4.2. There, you will find a short introduction to
POV-Ray’s scene description language and how you can use it to render OPEN
GEOMETRY scenes.

“In fact, it is not necessary to declare the torus as a surface of revolution. There
exists an OPEN GEOMETRY class called Torus that can do the same. Not all examples of
this book use the simplest solution of a certain problem — be it for reasons of didactics
or because the more advanced class has not been available when the program was
written. We do not consider this as a drawback. On the contrary, you will get to know
even more of OPEN GEOMETRY’s classes that way.

8“Shaded” usually means: No cast shadows.
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1.5

The Structure of an Open Geometry 2.0 Program

After your first experience with OPEN GEOMETRY in the previous section, we
are going to explain the basic structure of an OPEN GEOMETRY program. We
encourage the beginner to follow our little step by step introduction live on a
computer screen. Experienced OPEN GEOMETRY programmers may skip this
section but perhaps even they will find one or the other useful hint.

We begin with a listing of a minimal OPEN GEOMETRY program for displaying
a 2D scenery ("minimal2d.cpp"). You find it in "USER/TEMPLETS/"Y.

[
Listing from "USER/TEMPLETS/minimal2d.cpp":

#include "opengeom.h"
void Scene::Init( )

{

}

void Scene::Draw( )

{

void Scene::Animate( )
{
}
void Scene::CleanUp( )
{
}
void Projection::Def( )
if ( VeryFirstTime( ) )

xyCoordinates( —12.0, 12.0, —10.0, 10.0 );

9Throughout this book, we will give path names relative to the standard OPEN
GEOMETRY directory. Le., the absolute path of the mentioned directory is something
like "D:/OPENGEOM/USER/TEMPLETS/"
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We suggest that you save this file under a different name (let’s say "simple.cpp"
in the folder "USER/". In order to make it OPEN GEOMETRY’s active file, you
have to include it in "try.cpp" by inserting the line

#include "USER/simple.cpp"
(compare page 9).

Now you can compile and run "simple.cpp". You will see that the code does
nothing but open a window with a background in pure white, a few buttons and
menu items. However, there are already a few things to mention:

e You have to include "opengeom.h" at the top of every OPEN GEOMETRY
file. This is not an absolute must. But you won’t be able to use any of OPEN
GEOMETRY’s classes if you don’t.

e In order to compile the program without errors, you must call the functions
Init( ), Draw( ), Animate( ), CleanUp( ) and Projection::Def( ).

e You have to initialize a drawing window in Projection::Def( ).

If you begin your new program with a templet file from the "USER/TEMPLETS/"
directory, everything will be prepared and you need not bother about those
things. Still, it is important that you know a few basic facts about each part of
the above listing.

Usually it is enough to include "opengeom.h". All other necessary files will be
linked automatically to the OPEN GEOMETRY project. For some tasks, however,
it is necessary to explicitly include an additional header file (e.g., "bezier.h",
"fractal.h", "kinemat.h" or "ruled_surface.h"). Of course, you are free to
write and include your own header files as well.

In Projection::Def( ), you define how the scene is displayed. You can choose
between 2D and 3D views. In the above example you will see a 2D window
that is adjusted in a way that the rectangle with vertices (£12, £10) fits nicely
on the screen. Depending on the shape of your OPEN GEOMETRY window, you
will usually see a little more than that. You can adjust the default window size
by pressing <Ctrl+W> in an active OPEN GEOMETRY window. This opens a
dialogue box where you can set all window parameters.

If you want to see a 3D image, you have to replace Projection::Def( ) by
void Projection::Def( )
if ( VeryFirstTime( ) )

DefaultCamera( 28, 18, 12 );

}
}
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This yields a standard 3D window with eye point at (28,18, 12) The target point
is by default set to (0,0,0). We suggest that you change your Projection::Def( )
to 3D right now. If you compile and run, you will see only small differences. The
scene is still empty but some buttons and menu items are no longer disabled
(Figure 1.9). They concern typical operations with eye point and light source
that only make sense in three dimensions. You can explore them a little later
when we have added objects to our scene.

W Ooen Geometiy - OpenGL + Advanced Geometiy
Program Image  Special viows Camera Light  Help

o] af= w|7¢| +|=| Blstleelp Nl rtelc] Alo] Al | Y &]ETE 2

FIGURE 1.9. The OPEN GEOMETRY button bar.

Note that (theoretically) the difference between 2D and 3D applications can
only be seen in Projection::Def( ). In all other parts you can use both, 2D and
3D objects. Occasionally, this can be quite useful (compare Example 2.24).

Now it is time to add an object to our scene. You can, e.g., visualize OPEN
GEOMETRY’s coordinate system by inserting

ShowAxes3d( Black, 10, 11, 12 );

in the Draw( ) part. This displays the coordinate axes in black color. At their end
points (10,0, 0), (0,11,0) and (0,0, 12) little arrows and the letters “x”, “y” and

z” are attached. Now you can try some of the buttons in the OPEN GEOMETRY
window. Especially those for moving the camera will be of interest.

Adding of other geometric objects is usually very simple. In order to add, e.g.,
a box centered at the origin of the coordinate system to our scene, we just add
the following lines to Draw( ):

Bozx cube;

cube.Def( Red, 8, 8, 8 );
cube.Translate( —4, —4, —4 );
cube.Shade( );

We tell the compiler that cube is an instance of the object Boz. In the next
line we define its color and its dimension in z-, y- and z-direction. Finally, we
translate it by the vector (—4, —4,—4) in order to center it around the origin
and display it on the screen.

So far, so good — there is just one thing: Later, we will make a lot of animations,
i.e., the scene will undergo certain changes. We will have to draw a first frame, a
second frame, a third frame and so on. For every new frame the relevant changes
of the scene must be recomputed.
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For a real-time animation, you will need at least 20 frames per second. This is
no problem with sceneries of little or moderate complexity (as in our example).
If, however, many complicated objects (e.g., a smoothly shaded parameterized
surface with hundreds of triangles and a contour outline) occur, you may soon
reach the limits of your hardware.

An OPEN GEOMETRY program starts by calling Init( ) and Draw( ). If you see
the first frame you can start an animation by either pressing <Ctrl+F> or by
clicking on the button labelled Fps (frames per second). This causes an alternate
calling of Draw( ) and Animate( ) until the user stops the animation or closes the
OPEN GEOMETRY window. Hence, the commands of these two functions have to
be executed every time before a new frame can be displayed. If there are some
tasks that need not be repeatedly performed you can (and should!) place them
somewhere else. It is, e.g., not necessary to define and adjust the box in Draw( ).
A good alternative code would look as follows

#include "opengeom.h"
Box Cube;
void Scene::Init( )

Cube.Def( Red, 8, 8, 8 );
Cube.Translate( —4, —4, —4 );

void Scene::Draw( )

ShowAzes3d( Black, 10, 11, 12 );
Cube.Shade( );

void Scene::Animate( )
{
}
void Scene::CleanUp( )
{
}
void Projection::Def( )
if ( VeryFirstTime( ) )

DefaultCamera( 28, 18, 12 );

}
}
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We define the cube globally before Init( )!°. This means that all following func-
tions such as Init( ), Draw( ), and Animate( )will have access to Cube. In Init( )
we define and translate the cube while only the shading is left to Draw( ). Note
that the definition could also be done by means of a constructor, i.e., together
with the declaration of Cube. However, we do not recommend this in general
(it does not really increase the code’s readability, and, what is more important,
might impede the restarting of the program). Note further that the drawing and
shading has to be done in Draw( ). If you do it somewhere else, you will not get
an error message but you won’t be able to see the object you want to display'.

Finally, we write a small animation and insert
Cube.Rotate( Yaxis, 3 );

into Animate( ). With every new frame the cube will be rotated through 3° about
the y-axis of the coordinate system. You can switch to the next frame by press-
ing <Ctrl+N> in the OPEN GEOMETRY window. Alternatively, you can press
<Ctrl+F> or <Ctrl+R> to start the auto-animation or the auto—animation
plus rotation about the z-axis. There exist menu items and buttons for these
commands as well. You may try to identify them — a wrong guess can’t do any
harm.

Note the fundamental difference between inserting a line like
Cube.Rotate( Xawis, 45 );

in Init( ) and in Animate( ). In the first case, the cube will be rotated only once
about x while, in the second case, it will be rotated with every new frame. The
lines in Animate( ) may as well be written in Draw( ) and sometimes we will do
that (because the part is very short or because we want the start with scene that
has already changed). In general, it is better for a clear and understandable code
to separate drawing and animation.

The only remaining part of an OPEN GEOMETRY program is CleanUp( ). In fact,
this part is not used very frequently. It is called only once at the very end of
the program. Perhaps you need global access to dynamically allocated memory.
Then you can, e.g., free the memory in CleanUp( ). However, this is an advanced
topic and shall be skipped at this place.

Finally, if you only want to do some drawing (no animation, no memory alloca-
tion, no special camera position), you can use the templets
"USER/TEMPLETS/minimal2d.cpp"  or "USER/TEMPLETS/minimal3d.cpp".

0As a general rule, we will write the first letter of a global variable in uppercase
format. Therefore we changed the name from cube to Cube.

HyWell, if you want to obscure your ideas, you can do it by calling drawing routines
in Animate( ).
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1.6

There, a file ("defaults2d.h" or "defaults3d.h", respectively) that takes re-
sponsibility for all obligatory function calls except Init( ) and Draw( ) is included.
You yourself need not worry about anything.

What Has Been Changed in the New Version?

Ever since OPEN GEOMETRY has been released, hundreds of minor changes or
corrections and dozens of implementations of new classes have been made. You
will not be told about the minor corrections, but you will find the description
of all the new classes in the “compendium”. The main goal has always been to
stay compatible with the first release.

e A change that has to be mentioned here is the following: In the function
Projection::Def( ) we used to have question

if ( FrameNum()==1) ...
This has been changed to
if ( VeryFirstTime( ) ) ...

for the following reason: When a scene is started and the first frame is
drawn, one can interactively make some non-relevant changes (like rotating
the camera or changing the light source or simply resizing the drawing win-
dow) that actually have nothing to do with the definition of the geometrical
objects. In such a case, when the scene is redrawn, FrameNum( ) will still be
1. So any change of the camera, e.g., would be undone in Projection::Def( ),
which can be nasty.!?

e Some minor changes that shall be mentioned concern the menu system.

The menu item “Program” now has two more sub-items “Program— Restart
program” and “Program—Show source code”, the menu item “Help” a new
sub-item “Help—Display initializing file 'og.ini""
In the status bar you can now see whether you run a 2D application or a
3D application. In the 2D case it is just the hint 2D, in the case of a 3D
application, however, you will see the word Perspective when the eye point
is not infinite or the word Ortho3d when a normal projection is applied.

e Besides those small changes, there are several improvements that count
much more: One of them is that there is now a way to restart a program at
any time, if some rules are obeyed (those rules are explained in Section 7.2).
When you add the line

AllowRestart( );

2Don’t worry, we are still compatible with the old style. But we would be glad, if
you erase it from your templet files and do not use it any longer.
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in the Init( )-part, you can restart the program either via keyboard
(<Crtl+Shift+r>) or the menu item “Program— Restart program” .13

e Another improvement is that you can now export 3D scenes as EPS-files. If
the result was always correct, this would be a real “revolution”, since this
would mean that we can generate 3D images with extremely high resolution.
However, there are some restrictions that decrease the value of this new
feature: The drawing order must be back to front in order to create correct
images. Still, simple 3D scenes can now be stored in the EPS format and
then been manipulated with other professional programs (or a text editor,
if you are a Post Script hacker).

e A change that is really notable, is the possibility of exporting scenes to POV-
Ray. This opens the large world of ray-tracing to scenes that were generated
via OPEN GEOMETRY. Many of the images in this book have been rendered
by POV-Ray.

e One of the major improvements in OPEN GEOMETRY 2.0 is the possibility
of compiling several programs at once (compare Section 7.1). Having done
this, you can leaf through the programs via menu item, or shortcut key.

Imagine, e.g., that you are preparing a public presentation. You write your
sample files, compile them at once and show them to the audience without
any need to compile during your speech. Or perhaps you want to display
OPEN GEOMETRY scenes on a remote computer with no OPEN GEOMETRY
installed. You can compile your scenes, create a single "*.exe" file and run
it wherever you like.

1.7 What to Keep in Mind from the Beginning

How to use Open Geometry

Every OPEN GEOMETRY application is written in C++. This has the advantage
that your application is as good as you are able to tell the computer your geomet-
rical ideas via programming commands. In practice, this means: The more OPEN
GEOMETRY commands and OPEN GEOMETRY classes you know, the quicker you
will get the best results.

It also means, however, that you have to know some basics about C++. In fact,
it is not much you have to know — you will learn more and more by just taking
a look at simple demo files.

13You can automatize this with a single line in the file "og.ini". More about this in
7.3.
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In order to explore OPEN GEOMETRY’s classes, you can have a look at the header-
files in the "H/"-directory. Usually, you should be able to guess the contents from
the filenames. Alternatively, you can search this directory for a string like

"class Sphere".

This will lead you directly to "sphere.h" where you will find all constructors,
operators, methods and member variables of the class Sphere, whether they are
private, protected or public. Most of them are listed in Chapter 6 of this book.
The remaining undocumented classes should hardly be of relevance to you.

If you want to have a look at the implementation of a method, search, e.g., for
the string

"Sphere: :GetContour".

You will find it together with the implementation of the corresponding method
in "C/o.cpp".

The advanced programmer may get a deeper understanding of OPEN GEOME-
TRY by studying the source code. But, please, do not change it! If you want to
use classes of your own, just read on. Very soon, you will be told how to integrate
them in OPEN GEOMETRY.

Programming style

You can, of course, use any programming style that C++ supports. You can
break lines almost wherever you want, use any indent you want, keep space
between braces or brackets or not, etc., etc.

We also do not tell you whether you should write every command into a single
line or not, or how many comments you should add. Nor do we force anyone
to use readable names — though this helps a lot when other persons skim over
the code. Of course, you need not use an initial capital letter for your global
variables as we did throughout the book.

The main thing that counts is to write solid code. We only ask you to keep a few
things in mind before you seriously start to program, in order to
e stay compatible to future versions of OPEN GEOMETRY,

e write applications that can later on be adapted for a multi scene application.

Please read this:

Here are some rules that should be obeyed. Otherwise, you might not stay com-
patible with updates:
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e Please, do not change any of the files you can find in the "C/" directory.
These files with the meaningless names "d.cpp", "e.cpp", "f.cpp", etc., are
only there in order to enable you to compile the system with your personal
C++ compiler. If you find any bug in one of these files, please report it to us,
and we will supply you with the updated code. The same is true, if you have
a good idea of how to expand a given class. In order to add your personal
implementations, please use the (almost empty) file "add_code.cpp" in the
directory "USER/". We will give an example later on.

e Something similar is true for the header files in the "H/"-directory. You are
asked to put new header files into the subdirectory "H/" of the "USER/"
directory. The reason for this is that we unconsciously might have the idea
of giving a future header file the same name as you did, and an update
would overwrite your file.

e Use the variable type Real instead of double. For the time being, this is
no must, at all, since both types are identical in the current version. This
may change, however, when future hardware supports 64-bit floating point
variables.
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2D Graphics

Now that you learned about the basics of OPEN GEOMETRY programming, you
can work trough many new examples and sample files. In order to give a certain
structure to this book, we start with examples from geometry in two dimensions.
Many of OPEN GEOMETRY’s 2D classes and methods will be presented in this
chapter. You will see:

e OPEN GEOMETRY’s basic 2D classes (points, straight and curved lines, cir-
cles, conics, polygons,...);

e simple and complex computer animations of physical concepts and kinemat-
ical devices;

e fractal programming with OPEN GEOMETRY;

e free-form curves (Bézier curves and B-splines);

and much more.

Note that there is no real need to study all the examples, one after the other.
You can skip any of them; cross references and the index always allow you to
find additional information in other parts of this book. If you have a look at
the examples, you will probably agree that many of them are quite interesting
and not trivial at all. We are confident that we shall convince you that OPEN
GEOMETRY is really a versatile geometric programming system.

Additionally, you can find demo executables in the "DEMOS/" directory that allow
one to have a look at the output of the sample programs without compiling them
all.
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2.1

Basic 2D Classes

To begin with, we will give a short introduction to OPEN GEOMETRY’s basic 2D
classes by describing a few rather simple examples. However, we do not give a full
description of the respective class. This is left to Chapter 6, where the reader will
find a header listing and a detailed description of all the important classes and
functions. Usually, we will refer to a certain OPEN GEOMETRY sample program.
Therefore, it is advisable to have your computer turned on while reading the
following pages.

Our starting example already presents many basic classes like points, straight
lines, circles, and conic sections:

Example 2.1. Three planets
In "three_planets.cpp" we display the path curves of three planets (Mercury,
Venus, and Earth) around the sun. We want to give an impression of apparent

distances and circulation periods. So we approximate the real cosmic distances
1

and scale them down to OPEN GEOMETRY size.

AY
FIGURE 2.1. Output of "three_planets.cpp".

The path curves of the planets are ellipses with the sun as common focal point.
Their supporting planes are almost identical (i.e., they have rather small in-
tersection angles). The eccentricity (a measure of the flatness of an ellipse) of
most planet paths is close to zero. For this reason, we will approximate the path
ellipses of Venus and Earth by circles around the sun. Their radii are 108 mil-
lion kilometers and 150 million kilometers, respectively. Only the path curve of
Mercury is visibly an ellipse. Its distance to the sun varies between 46 million
kilometers and 70 million kilometers.

! As a general rule, you should scale all your objects to a size such that they fit in a
standard OPEN GEOMETRY window. The alternative of zooming in or zooming out is
possible as well, but may disturb the z-buffering algorithm in 3D applications.
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The velocity of the planets is determined by KEPLER’s second law and is not
constant (compare Example 2.2). In order to simplify things, we will, however,
assume a constant angular velocity for the revolution around the sun. The cir-
culation periods of Mercury, Venus, and Earth are 88, 225, and 365 Earth days,
respectively.

The global constants in "three_planets.cpp" are as follows:

(
Listing from "three_planets.cpp":

const P2d Sun = Origin2d,
const Real Factor = 0.05;

const Real VenusDistance = 108 * Factor;
const Real EarthDistance = 150 * Factor;

const Real EarthVelocity = 0.25;

const Real VenusVelocity = EarthVelocity / 225 * 365;
const Real MercuryVelocity = EarthVelocity / 88 x 365;

I |

Factor is the zoom factor that adjusts the image to our computer screen. It is not
absolutely necessary to use a constant of our own for the sun (we could use Ori-
gin2d instead), but it will make the code more readable and lucid. Furthermore,
we need three global variables for the animation of the scene: Two points V and
E (the centers of Venus and Earth) and a straight line SunMercury connecting
the sun with the current position of Mercury. Revolving these elements around
the sun will give the animation. We define some starting configuration in Init( ):

( \
Listing from "three_planets.cpp":

void Scene::Init( )
{
V.Def( VenusDistance, 0 );
V.Rotate( Sun, 100 );
E.Def( EarthDistance, 0 );
E.Rotate( Sun, 200 );
SunMercury.Def( Sun, P2d( 17, —24 ) );
AllowRestart( ) ;
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and continue building up the scene in Draw( ). The path curves of Venus and
Earth are circles of given radius with the common center Sun. Apart from that,
we draw a sky circle, i.e., a circle around E. It will serve as a projection line for
the positions of Venus and Mercury. In our program the planets themselves are
small circles. Here, we cannot take into account cosmic dimensions: even a single
pixel would be much too large. Apart from that, we draw a black semicircle for
the dark side of the planets. The entire code for Venus reads thus:

(
Listing from "three_planets.cpp":

const Real rad_v = 0.5;
Circ2d venus;
venus.Def( Gray, V, rad.v, FILLED );

V2d dir;
dir.Def( V.x, Viy );
dir.Normalize( );
dir = V2d( dir.y, —dirx );
P2d X;
X =V + rad_v % dir;
Sector2d venus_shadow;
venus_shadow.Def( Black, X, V, 180, 10, FILLED );
l |

The semicircle is a Sector2d object with a central angle of 180° and 10 points on
its circumference. We determine its starting point by rotating the radius vector
of the Venus circle through 90°.

The path ellipse of Mercury is initialized as follows:

[
Listing from "“three_planets.cpp":

Conic path_of_mercury;
P2d A, B, C;
A.Def( —46, 0 );
B.Def( 70, 0 );
C.Def( 12, 56.745 );
A x= Factor;
B = Factor;
C *= Factor;
path_of_mercury.Def( Black, 50, A, B, C, Sun );
path_of_mercury.Draw( THIN );
l |

From the input data mentioned above we compute three points A, B, and C on
the ellipse’s axes. We scale them with the global zoom factor and define a conic
by these three points and one focal point (Sun). In order to draw the planet
itself, we intersect the straight line SunMercury with the path ellipse:
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Listing from "three_planets.cpp":

int n;
P2d M1, M2;
n = path_of_mercury.SectionWithStraightLine( SunMercury, M1, M2 );
if ( SunMercury.GetParameter( M1 ) < 0 )
M1 = M2;
Circ2d mercury;
const Real rad_-m = 0.5;
mercury.Def( Red, M1, rad_-m, FILLED );
l |

We need not worry about the number n of intersection points. As SunMercury
runs through one focal point of the ellipse, there will always be two of them.
Taking the intersection point on one half-ray avoids surprises that stem from the
order of the two solutions M1, M2. The dark side of Mercury can be determined
in the same way as above.

Now we intersect the straight lines connecting Earth with Venus and Mercury,
respectively, with the sky circle. We take the intersection points closer to Venus
and Mercury, respectively, to define an arc on the sky circle that gives a good
impression of the apparent distance of Venus and Mercury for a viewer on Earth.

( \
Listing from "three_planets.cpp":

StrL2d v;
v.Def( E, V );
P2d Q1, Q2;
n = sky_circle.SectionWithStraightLine( v, Q1l, Q2 );
if ( Q2.Distance( V ) < Q1l.Distance( V ) )
Ql = Q2;

StrL2d m;
m.Def( E, M1 );
P2d R1, R2;
n = sky_circle.SectionWithStraightLine( m, R1, R2 );
if ( R2.Distance( M1 ) < R1.Distance( M1 ) )
R1 = R2;

Sector2d arc;
arc.Def( LightBlue, Q1, E, R1, 15, EMPTY );
arc.Draw( true, THICK );

StraightLine2d( Gray, E, V, THIN );
StraightLine2d( Red, E, M1, THIN );
if ( FrameNum( ) % 10 < 7))

Q1.Mark( Yellow, 0.15 );
R1.Mark( Yellow, 0.15 );

}
|
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We mark the intersection points only in certain frames to get a twinkling effect
(although planets do not really twinkle). In the remaining part of Draw( ) we
simply draw the planets and their dark sides (Figure 2.1). &

The next example, too, stems from the field of astronomy. We parameterize an
ellipse according to KEPLER’s laws.

Example 2.2. Kepler’s law
The planets of our solar system orbit around the sun according to KEPLER's first
and second laws (Figure 2.2):

1. The path curve of a planet P around the sun S is an ellipse with focal
point S.

2. During equal time intervals A the line segment P.S sweeps sectors of equal
area.

FIGURE 2.2. KEPLER's first and second laws (left). The true planet P, the average
planet A, and the eccentric planet E (right).

These two laws are enough to parameterize the path ellipse with the time pa-
rameter t. It is, however, not possible to write down the parameterized equation
using only elementary functions. Still, we can simulate the motion in an OPEN
GEOMETRY program ("keplers_law.cpp").

In order to describe the planet’s motion, KEPLER introduced two “virtual plan-
ets”: The average planet A and the eccentric planet E. The true planet’s path
curve is an ellipse ¢ with midpoint M and semiaxes a and b. The path of A is
the same ellipse c. It revolves around the sun S with constant angular velocity
so that it has the same circulation period as P. The eccentric planet’s path is a
circle around M with radius a. It moves in a way that the straight line EP is
always parallel to the ellipse’s minor axis (Figure 2.2).
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We denote the angle ZSME by t. (eccentric amplitude) and the angle between
the ellipse’s major axis and SA by t, (average amplitude). Now the KEPLER
equation states the relation

te —esint, —tg, =0, (1)

where ¢ is the numeric eccentricity v/a? — b2/a of ¢. In order to find the position
P(t) of the planet, we compute the position A(t) of the average planet and the
angle t,, solve equation (1) for ¢., find E(t) and subsequently P(t). This seems
to be easy, but unfortunately, there exists no elementary solution to (1). We have
to use iteration methods to determine the roots.

For programming purposes, it helps considerably to see that (1) has exactly one
root for any fixed real t,: The left-hand side of the equation takes positive and
negative values, and it is strictly monotonic (its derivative with respect to t. is
always positive).

In "keplers_law.cpp" we decided on the following strategy: We compute a
number of positions of the planets before Draw( ) and store them in an array. In
Draw( ) we do not perform any computation but simply mark the correct points
according to the frame number we use. Besides speeding up the animation a little,
this yields the same computation time for each new frame. As a consequence,
the animation will be smoother.

In the preamble we decide on the number of points and reserve the required
memory for the average planet, eccentric planet, and true planet:

(
Listing from "keplers_law.cpp":

const int N = 150;
const int N2 = 2 % N;
P2d APlanet [N2], EPlanet [N2], TPlanet [N2];

I

Then we write a function returning the value of the KEPLER equation (1):

(
Listing from "keplers_law.cpp":

Real TA;
Real KeplerFunction( Real t )

returnt — E / A xsin(t) — TA;
}
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Note that this function actually depends on two input parameters: the real ¢ and
the global variable TA, where the current parameter value of the average planet
is stored. E is the linear eccentricity va? — b2 of ¢. Using the average amplitude
t, and the eccentric amplitude ¢., we can parameterize the path curves of the
planets as follows:

(
Listing from "keplers_law.cpp":

P2d AveragePlanet( Real ta )

return Sun + B« B / ( Excos( ta ) + A ) %
V2d( cos( ta ), sin( ta ) );

P2d EccentricPlanet( Real te )
{
return P2d( A % cos( te ), A xsin( te ) );

}
P2d TruePlanet( Real te )
{

}

I |

return P2d( A % cos( te ), B xsin( te ) );

In Init( ) we compute the path points in a simple for loop. The OPEN GEOME-
TRY class Function provides a root-finding algorithm for that purpose. We need
not bother about the number of solutions; there exists exactly one. Furthermore,
we can gain half the points by a simple reflection on the z-axis.

(
Listing from "keplers_law.cpp":

int i;

Realdelta =Pl / (N —1);

for (i=0, TA=0.001;i < N;i++, TA += delta )

{
APlanet [i] = AveragePlanet( TA );
Function eccentric( KeplerFunction );
eccentric.CalcZeros( —3.3, 3.3, 50, 1le—3 );
EPlanet [i] = EccentricPlanet( eccentric.Solution( 1) );
TPlanet [i] = TruePlanet( eccentric.Solution( 1) );
APlanet [2«N—1—i].Def( APlanet [i].x, —APlanet[i].y );
EPlanet [2«N—1—i].Def( EPlanet [i].x, —EPlanet [i].y );
TPlanet [2%N—1—i].Def( TPlanet[i].x, —TPlanet[i].y );
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The rest is clear. In Draw( ) we mark the planets and draw their path curves.
The variable Index indicates the current position. It is initialized with zero and
changed in Animate( ):

[
Listing from "keplers_law.cpp":

void Scene::Animate( )

Index++;
Index = Index % N2;
}
|

o

OPEN GEOMETRY is a good tool for illustrating theorems of elementary plane
geometry. As an example, we choose a recent theorem that was published as a
question by J. FUKUTA in 1996 and proved by Z. CERIN in 1998 ([5]). It states
that applying certain operations to a triangle will always result in a regular
hexagon (Figure 2.3).

Example 2.3. Fukuta’s theorem

We start with an arbitrary triangle and divide each side into two fixed affine ratios
A1 and Ag. These new points form a hexagon. To each side of the hexagon we add
a third point to form an equilateral triangle. Three consecutive of these points
define a triangle and the barycenters of these triangles lie on a regular hexagon.
Furthermore, the barycenters of the initial triangle and the final hexagon are
identical.

Now, what can OPEN GEOMETRY do with this theorem? Of course, we can im-
plement the construction of the regular hexagon ("fukutal.cpp"). For frequent
tasks we introduce three auxiliary functions:

[
Listing from "fukutal.cpp":

P2d AffComb( P2d &A, P2d &B, Real lambda )

return P2d( ( 1 — lambda ) % A.x + lambda x B.x,
(1 — lambda ) x A.y + lambda x B.y );

}

void MakeTriangle( const P2d &X, const P2d &Y, Color col,
Poly2d &poly )
P2d Z( 0.5 x X.x + 0.5 % Y.x + sqrt
5

( (3)/2
0.5« Xy + 0.5« Yy +sqrt( 3) /2
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FIGURE 2.3. FUKUTA’s theorem.

poly [1]
poly [2]
poly [3]

}

void DrawMedians( P2d &A, P2d &B, P2d &C, Color c,
ThinOrThick thick )
{

P2d AM = 0.5 % P2d( Bx + C.x, By + C.y ):
P2d BM = 0.5 % P2d( C.x + Ax, C.y + Ay );
P2d CM = 0.5 = P2d( Ax + B.xx, A,y + By );
StraightLine2d( c, A, AM, thick );
StraightLine2d( c, B, BM, thick );
StraightLine2d( ¢, C, CM, thick );

poly.Def( col, 3, FILLED );

X
Y
z
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AffComb(...) gives the intermediate point of a line segment that corresponds to
a given affine ratio lambda, MakeTriangle(. . .) defines a regular triangle with two
given vertices as Poly2d object, and DrawMedians(...) draws the medians of a
triangle.

With the help of these functions it is easy to construct and display all relevant
objects of FUKUTA’s theorem. We draw the initial triangle in the first frame,
add the first hexagon in the second frame, the regular triangles in the third
frame, and so on. This makes the theorem’s contents much more lucid than one
single picture. By switching from frame to frame you will be able to watch the
development of the regular hexagon.

In order to get an attractive image, it is important to choose the line styles and
shading options with care. For this reason, we did not, e.g., shade the triangles
whose barycenters lie on the regular hexagon. Furthermore, it is important to
mark the points after drawing the straight lines passing through them. Otherwise,
they would be covered by the other lines.?. The actual implementation of the
drawing routines is rather lengthy. We do not display it here but you can find
them in "fukutal.cpp"

We can extend the previous program and write an OPEN GEOMETRY animation
of FUKUTA’s theorem. In order to do this, we have only to define the input data
(i.e., the first triangle and the two affine ratios) globally, change their values in
Animate( ), and draw the whole picture in every single frame ("fukuta2.cpp").
The animation comes from redefining the vertices of the initial triangle and the
affine ratios in Animate( ). Run "fukuta2.cpp" and watch it! &

Now we present the first example using a very fundamental 2D class: a pa-
rameterized plane curve (class ParamCurve2d). It is among the most fre-
quently used classes in OPEN GEOMETRY. If you want to display a curve of
your own, we recommend starting with the templet "paramcurve2d.cpp" from
"USER/TEMPLETS/".

Example 2.4. The quadratrix

There are three classic geometric problems that the ancient Greeks tackled but
could not solve. For many centuries thereafter, mathematicians tried to solve
them, but it was not until the development of modern algebra that they were
finally proved to be unsolvable. These classic problems are:

1. the squaring of a circle;
2. the trisection of an arbitrary angle;

3. the doubling of the volume of a cube.

2In 2D mode, the drawing order of the objects determines their visibility relations.
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The Greeks were interested only in geometric solutions that use no other means
than straighedge and compass. Ultimately, everything ends up in the question
of whether certain irrational numbers (e.g., m or v/2) are “constructible” or not
(today we know that they are not).

FIGURE 2.4. Generation of the quadratrix.

The squaring of the circle and the trisection of an arbitrary angle are related to
a special plane curve c. Therefore, ¢ is called either a quadratriz or trisectriz.

We can generate the quadratrix by very simple kinematic methods (Figure 2.4).
Suppose that p and g are two straight lines through a point ¢y with coordinates
(0,1). The line p runs through the origin O of our coordinate system; ¢ is parallel
to the z-axis.

We rotate p about O and translate ¢ in the direction of the y-axis. For both
motions we assume constant velocities so that p and ¢ intersect in Q1(0,—1)
after a half turn of p. The quadratrix is defined as the locus of all intersection
points of p and ¢ during these motions.

Of course, c¢ is not an algebraic curve. An arbitrary line through O intersects ¢
in infinitely many points. The first intersection point X of x and c is of special
interest. Using the parameterized equation

c: F(t) = (1 - 1) (tafigt>

of ¢, we obtain X = lim;_,; #(t) = (2/m,0)*. Thus, ¢ can be used for a graphic
construction of a transcendental number related to m. If it could be constructed
exactly (i.e., if there existed a finite algorithm to determine it with the help of
straightedge and compass only), one would have a solution to the squaring of a
circle.

The trisection problem of an angle o = /2t can also be solved with the help of
the quadratrix. In order to divide « in three equal parts, we draw three horizontal



Section 2.1. Basic 2D Classes 39

lines at distance 4t/3 from the origin and intersect them with ¢ (i = 1,2,3;
Figure 2.4).

In "quadratrix.cpp" we illustrate these properties of the quadratrix. We im-
plement it as a parameterized curve:

(
Listing from "quadratrix.cpp":

class MyQuadratrix: public ParamCurve2d

public:
P2d CurvePoint( Real t )

if (fabs( 1 —t ) > 0.005 )
return P2d( S+ (1 —t)*xtan( 0.5« Plxt),Sx(1—1t));
else
return P2d( 2 xS /Pl, 0);

}

5
MyQuadratrix Quadratrix;

I |

The value S is a globally defined scale factor that we use to fill a standard
OPEN GEOMETRY drawing screen. The CurvePoint(...) function takes care of
the special case t = 1 where Z(¢) is undefined. For the animation we use a global
point P and a global straight line p. They are rotated and translated by constant
increments:

(
Listing from "quadratrix.cpp":

const Real Delta = —0.75;
V2d TranslVec( 0, 2 * S * Delta / 180 );

I |

In order to point out the use of ¢ for the trisection of an arbitrary angle, we use
two points R1 and R3. These points belong to the parameter values ty/3 and
2to/3, respectively, if Q = OPNp is the curve point Z(¢g). In "quadratrix.cpp"
we have to take care of the scale factor S and determine R1 and R3 as follows:
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Listing from "quadratrix.cpp":

if ( fabs( Py ) > 0.02)
Q=p=*aq;
else
Q = Quadratrix.CurvePoint( 1 );
P2d R1 = Quadratrix.CurvePoint( 1 — Q.y /S / 3 );
P2d R2 = R1;
R2.Reflect( Yaxis2d );
P2d R3 = Quadratrix.CurvePoint( 1 — 2%« Qy /S / 3 );
P2d R4 = R3;
R4.Reflect ( Yaxis2d );
l |

The points R2 and R4 are just symmetric points for obtaining a prettier image.
For reasons of symmetry (after all, we are geometers!) we actually print two
quadratrices and move p up and down inside a square. Otherwise, p would soon
leave the range of your computer screen. &

Associated curves

There exist many ways of associating a curve ¢* with a given plane curve c: & =
Z(u) (compare, e.g., http://www.xahlee.org or related sites on the internet).
In the following we will present some of them. In OPEN GEOMETRY 2.0 they
are all implemented as methods of ParamCurve2d. Thus, you can display these
special curves almost immediately on the screen.

Example 2.5. The evolute

An osculating circle o of ¢ is a circle that intersects ¢ in three neighboring points.
The locus of all centers of osculating circles is called the evolute e of c. Alter-
natively, e can be defined as the hull curve of all normals n of c. Figure 2.5
shows the evolute of an ellipse. We have used a slightly modified version of
"get_evolute.cpp" to produce this picture.

The method GetEvolute(...) is a member of ParamCurve2d. Its implementation
in "f.cpp" reads as follows:

Listing from "C/f .cpp":

void ParamCurve2d: :GetEvolute( Real ul, Real u2,
L2d &evolute )
{

int n = evolute.Size( );
const Real eps = le—5;
Realu = ul;
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FIGURE 2.5. Evolutes of an ellipse (left) and an astroid (right).

Realdelta= (u2—-ul ) /(n—-1);
for (inti=1;i <=n;i++, u += delta )
evolute [i] = Normal( u — eps ) * Normal( u + eps );

I |

It needs three arguments: The two real numbers ul and u2 define the parameter
interval [ul,u2] in which the evolute is drawn; the points of the evolute e are
stored in the L2d object evolute.

The code itself is very simple. We get the number n of points in the L2d object
evolute, divide the parameter interval [ul,u2] into n — 1 parts of equal length,
and intersect two “neighboring” normals® of ¢ that correspond to the partition
points.*

By the way, if you want to use all the methods of ParamCurve2d with the
evolute, you can define a second parameterized curve in your OPEN GEOMETRY
program. The virtual function CurvePoint(...) has to be more or less the same
as the code in GetEvolute(...). You have only to specify the curve name before
calling any methods of the base curve (e.g., MyCurve.CurvePoint(...) instead of
CurvePoint(...)). The same holds for all special curves in the following text. {

Example 2.6. The catacaustic

Suppose now that ¢ is a reflecting curve: A ray of light intersecting c is reflected
according to the law of reflection: The normal n of ¢ is bisectriz of the incoming
and outgoing rays (see Figure 2.6).

3By “neighboring” we mean two normals that are sufficiently close; the real con-
stant eps serves to define this term.

4This is more or less a “geometric construction” of the evolute. OPEN GEOME-
TRY’s philosophy aims at avoiding complicated computations. Instead, the user should
immediately transfer geometric ideas to the program file.
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FIGURE 2.6. The law of reflection.

If you reflect the lines of a pencil with vertex E on ¢, the reflected lines are all
tangent to a certain curve c. — the catacaustic of ¢ with respect to the pole E.
In order to implement the method GetCata(...) of the class ParamCurve2d in
OPEN GEOMETRY, we basically did the same as in the previous example: We
intersect two “neighboring” reflected rays:

Listing from "C/f.cpp":

void ParamCurve2d::GetCata( P2d &Pole, Real ul, Real u2,

{

L2d &catacaustic )

int n = catacaustic.Size( );
const Real eps = le—5;
Real u = ul;

Realdelta= (u2 —ul )/ (n—1);
for (inti=1;i <=n;i++, u +=delta )

{

Real u_.a = u — eps, u_b = u + eps;

P2d A = CurvePoint( u.a );
P2d B = CurvePoint( ub );
StrL2d a( Pole, A );

StrL2d b( Pole, B );
a.Reflect( Tangent( u.a ) );
b.Reflect( Tangent( u_b ) );
catacaustic[i] = a * b;

b
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FIGURE 2.7. The catacaustic ¢ of a circle ¢ with respect to the pole E. On the
right-hand side you can see two “real world” caustics in a cup.

Of course Pole is identical to the pole E, while the meaning of the input pa-
rameters ul, u2, and catacaustic is analogous to GetEvolute(...). In order to
produce Figure 2.7, we used the program "get_catacaustic.cpp". You can see
the catacaustic ¢, of a circle ¢ and one reflected ray r being tangent to c.. More
on catacaustics and diacaustics (caustics of refraction) can be found in various
places in this book (see Examples 2.32, 2.43, 2.44, 3.25 and 4.12)). &

Example 2.7. The pedal curve

Things become easier when the points of the associated curve can be constructed
explicitly (and not by intersecting two “neighboring” tangents). This is the case
with the pedal curve c,. The points of ¢, are the pedal points of the pole
on all the tangents of ¢ (Figure 2.8). Since the OPEN GEOMETRY class StrL2d
provides the method NormalProjectionOfPoint(. .. ), the code of GetPedal(...) is
really simple:

\
Listing from "C/f .cpp":

void ParamCurve2d: :GetPedal ( P2d &Pole, Real ul, Real u2, L2d &pedal )
{
int n = pedal.Size( );
Real u = ul;
Realdelta= (u2—ul)/ (n—1);
for (inti=1;i <=n;i++, u += delta )
pedal [i] = Tangent( u ).NormalProjectionOfPoint( Pole );
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FIGURE 2.8. The pedal curve ¢, (left, compare "get_pedal.cpp") and the ortho-
nomic ¢, (right, compare "get_orthonomic.cpp") of a circle c. Both curves are limagons
of Pascal.

Example 2.8. The orthonomic

If you reflect F on all tangents of ¢, you get another special curve: the orthonomic
¢o of ¢ with respect to E (Figure 2.8). By definition, ¢, is homothetic to the pedal
curve ¢, with center E and factor 2. Its implementation in OPEN GEOMETRY
reads as follows

Listing from "C/f.cpp":

void ParamCurve2d::GetOrtho( P2d &Pole, Real ul, Real u2,
L2d &orthonomic )
{

int n = orthonomic.Size( );

Realu = ul;
Realdelta= (u2 —ul )/ (n—1);

for (inti=1;i <=n;i++, u += delta )

P2d P = Pole;
P.Reflect( Tangent( u ) );
orthonomic [i] = P;

I J

In contrast to the method GetPedal(...), we have to take into account that a
point will be changed when reflected on a straight line. Therefore, we copy the
pole to the point P before passing it as an argument. &
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Example 2.9. The antipedal curve and the antiorthonomic

Being given a plane curve c, it is easy to find the antipedal a;, and the antiortho-
nomic a, (i.e., the curves having ¢ as pedal curve or orthonomic, respectively).
Figure 2.9 shows their construction. Their implementation in OPEN GEOMETRY
(methods GetAntiPedal(. ..) and GetAntiOrtho(...)) is just as straightforward, so
we will not display the code at this place.

FIGURE 2.9. Antipedal curve (left, compare "get_anti_pedal.cpp") and the an-
tiorthonomic (right, compare "get_anti_ortho.cpp") of an ellipse c.

¢

Now we turn to another class of associated curves: Sometimes, the associated
curve depends on an additional parameter. That is, there exists a one-parameter
family of associated curves. Our first example of this type is the involute:

Example 2.10. The involute

The involute 7 of ¢ might as well be called the antievolute; i.e., the evolute of i
is ¢. The involute is, however, not uniquely determined. Each point on ¢ is the
start point of its own involute curve, and we need an additional parameter (e.g.,
the curve parameter u) to specify it.

Figure 2.10 shows the geometric construction of the involute ip to a point P =
P(ug) € c. If @ = Q(u) is a second point on ¢, we can find a point Ip of ip on
the tangent tg of ¢ in ). The distance between ) and Ip is equal to the arc
length a between P and ) measured on c.

You can see the following properties of an involute curve:

e All tangents of ¢ are perpendicular to any involute of c.

e The involutes belong to a family of offset curves (compare the following
example).
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FIGURE 2.10. Involutes of a plane curve ¢ (left) and the involute of a circle (right).

e P is a cusp of ip and the curve normal of ¢ in P is the tangent of ip in P.

We implemented a method Getlnvolute(...) in OPEN GEOMETRY that reads as
follows:

Listing from "C/f.cpp":

void ParamCurve2d: : Getlnvolute( Real param_value, Real ul, Real u2,
L2d &involute )
{

int n = involute.Size( );
const int accuracy = 300;
Realu = ul;
Realdelta= (u2—-ul) /(n—-1);
for (inti=1;i <= n;i++, u += delta )
{
StrL2d t = Tangent( u );
int sign = Signum( param_value — u );
Real length = sign * ArcLength( param_value, u, accuracy );
involute [i] = t.InBetweenPoint( length );

I |

The arguments ul, u2 and involute have the usual meaning. But Getlnvolute(. . .)
needs the curve parameter u = param_value as an additional argument to spec-
ify the cusp P = P(u) of the involute. As an example we wrote the program
"get_involute.cpp". Its output, the involute of a circle ¢, can be seen on the
right-hand side of Figure 2.10. &
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Example 2.11. Offset curves

The offset curve oq at distance d of ¢ is well-known in geometry and computer
graphics (d is a real constant). With the help of the unit normal vector 7i(u) it
can be parameterized according to

04 ...Y(u) = Z(u) + dii(u).
The point 7(u) is located on the curve normal through #(u). The distance be-
tween these two points is always d.

This fixed distance is a parameter to determine the offset curve oq. In Fig-
ure 2.11 two offset curves of an astroid at distance +d are displayed (compare
"get_offset.cpp").

FIGURE 2.11. Two offset curves of an astroid c.

Thus, the method GetOffset(...) again needs four arguments.

(
Listing from "C/f .cpp":

void ParamCurve2d: : GetOffset ( Real distance, Real ul, Real u2,
L2d &offset )

I |

The parameter to specify the offset curve is the distance distance. Its OPEN GEO-
METRY implementation can be found in "f.cpp". &
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FIGURE 2.12. Two ellipses as general offset curves of an ellipse ¢
("general offset.cpp").

Example 2.12. Generalized offset curves

The concept of offset curves can be generalized a little. The distance d on the
normals of ¢ may depend on the curve parameter u. We did not implement
this special curve as a method of ParamCurve2d, but we wrote a sample file
"general offset.cpp" to present a surprising example of this curve type.

At first, we define an ellipse as base curve ¢ (in fact, you may use any conic
section here). Next, we implement a function OffsetDistance(. .. ):

Listing from "general offset.cpp":
Real OffsetDistance( Real u )

Real rad_of_curvature = Curve.RadiusOfCurvature( u );
return exp( Log( rad_of_curvature ) / 3 );

}
| !

It returns the cube root of the radius of curvature of ¢ in the curve point
P = P(u). Using this function we derive an object of type ParamCurve2d called
GenOffl1:

Listing from "general offset.cpp":

class GeneralOffsetl: public ParamCurve2d

{
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public:
P2d CurvePoint( Real u )

V2d normal = Curve.NormalVector( u );
return Curve.CurvePoint( u ) + OffsetDistance( u ) * normal;

}

b
GeneralOffset1 GenOff1;
l |

In the same way, we define a parameterized curve GenOff2 using the negative
offset distance. The general offset curves are then ellipses themselves (Figure 2.12;
for a proof see [9]). In fact, we can even take an arbitrary distance function
proportional to OffsetDistance( u ) and still will get an ellipse. &

Families of curves

A single curve is a very common object of geometry. But sometimes this is not
enough, and single- or multiple-parametric families of curves are at the center of
interest. In this chapter we present three examples of this.

Example 2.13. Pencil of circles

We start with perhaps the most famous family of curves: the pencil of circles
("pencil _of circles.cpp"). It consists of all circles through two given points
A and B. For the time being, we assume that A and B are real points. We assign
the coordinate vectors (—R, 0)* and (R, 0)*, respectively, to them.

FIGURE 2.13. A pencil of circles and the pencil of its orthogonal circles.

In our program we define those points as global constants, with CO the circle with
diameter AB. It is now very easy to draw members of the pencil of circles P;.



50 Chapter 2. 2D Graphics

We decide on the total number CircNum of circles and on a certain “distance”
Delta. Then we write in Draw( ):

(
Listing from "pencil_of circles.cpp":

Cire2d circ;
P2d C, D;
int i;

Real t;

t = —0.5 * Delta * CircNum;
for (i = 0;i < CircNum; i++, t += Delta )

C.Def( 0, t );
circ.Def( LightRed, A, B, C );
circ.Draw( THIN );

}

t = —0.5 * Delta * CircNum;
for( i = 0; i < CircNum; i++, t += Delta )
{
C.Def( t, 0 );
D =C;
CO.InvertPoint( D );
D.Def( 0.5 x ( C.x + D.x ), 0.5 % ( C.y + D.y ) );
circ.Def( LightGreen, D, D.Distance( C )
circ.Draw( THIN );

3

}
| |

We define a few local variables at the top. In the first loop we do nothing but
vary the point C on the y-axis and draw the circle through A, B, and C in light
red. By the way, the global variable Delta has the value 2R/CircNum. This is just
enough to ensure that no circle is drawn twice.

The second loop looks more interesting. There, we vary C on the z-axis, deter-
mine its inversion D at the fixed circle CO, and draw the circle with diameter CD
in light green. The circles of the second loop belong to a pencil Ps of circles as
well. The base points are, however, imaginary. Their coordinates are (0, £2iR)*.

The most interesting property of Ps is the following: The circles of P2 and P
intersect orthogonally. In order to illustrate this, we draw two circles ¢; € Py
and ¢y € Po in medium thickness and get their intersection points:
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Listing from "pencil_of_circles.cpp":

t = X.Next( );
C.Def( t, 0 );
D=¢;

CO.InvertPoint( D );

D.Def( 0.5 * ( C.x + D.x ), 0.5 % ( C.y + D.y ) );
GreenCircle.Def( Green, D, D.Distance( C ) );
GreenCircle.Draw( MEDIUM );

t = Y.Next( );

C.Def( 0, t );

RedCircle.Def( Red, A, B, C );
RedCircle.Draw( MEDIUM );

i = RedCircle.SectionWithCircle( GreenCircle, C, D );
I |

Here X and Y are objects of type PulsingReal. This type is very useful for small
animations as in the present example. In the following part, we draw the normals
of each circle in the intersection points and mark all relevant points. We need
not worry about the number of intersection points: Any two circles from P,
and Py have exactly two points in common. Figure 2.13 shows the output of
"pencil_of _circles.cpp". &

The circles of the previous example form a net of curves that intersect orthog-
onally. There exists another well-known net of that type: The net of confocal
COMics.

Example 2.14. Confocal conics

Given two points F1, F2 € R?, there exists a one-parametric family £ of ellipses
having F1 and F2 as focal points. Every point of R? that is not situated on the
straight line F1F2 lies on exactly one ellipse from £. Furthermore, there exists a
one-parametric family H of hyperbolas with the analogous properties.

In "confocal_conics.cpp" we display both families, £ and #. We define the
focal points F1, F2 together with their half-distance E (eccentricity) globally,
decide on a certain integer ConicNum, and reserve memory for ConicNum ellipses
and hyperbolas that will be displayed (in red and green, respectively):
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FIGURE 2.14. Families of confocal ellipses and hyperbolas.

Listing from "confocal _conics.cpp":

const Real E = 5;
const P2dF1( —E, 0 ), F2( E, 0 );

const int ConicNum = 15;
Conic Ell [ConicNum], Hyp [ConicNum];

Conic RedConic, GreenConic;
PulsingReal X, Y

I J

The conics RedConic and GreenConic will be used for an animation. Most of these
global variables are initialized in Init( ):

Listing from "confocal_conics.cpp":

void Scene::Init( )
{
// define background hyperbolas
int i, j = ConicNum — 2;
Real delta = E / ( ConicNum — 1 );
Real t = —E + delta;
for (i=0;i<j;i++, t +=delta)
Hyp [i].Def( LightGreen, 200, P2d( t, 0 ),
F1, F2, HYPERBOLA );
Hyp [ConicNum—2].Def( LightGreen, 200, P2d( 0.05 — E, 0 ),
F1, F2, HYPERBOLA );
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I

Hyp [ConicNum—1].Def( LightGreen, 200, P2d( E — 0.05, 0 ),
F1, F2, HYPERBOLA );

// define background ellipses

delta = 1;
t = 0.5 * delta;
for (i=0;i < ConicNum; i++, t += delta )

| =
Ell [i].Def( LightRed, 200, P2d( 0, t ), F1, F2, ELLIPSE );
X.Def( E % 0.11973, 0.05, —E + 0.0001,

E — 0.0001, HARMONIC )
Y.Def( E % 1.22495, 0.05, 0.05, 10, LINEAR );

AllowRestart( );

|

Of course, the appropriate defining method for the conics uses one conic point
and the two common focal points. Additionally, we must specify the respective
conic type (ELLIPSE or HYPERBOLA) in order to avoid ambiguities. In Draw( )
we display these conics. Additionally, we draw the degenerate members (straight
line segments) of each of the families £ and H, define two special conics, and
mark their intersection points:

[

Listing from "confocal_conics.cpp":

Yaxis2d.Draw( LightGreen, —15, 15, THIN );
Xaxis2d.Draw( LightGreen, —15, —E, THIN );
Xaxis2d.Draw( LightGreen, E, 15, THIN );
Xaxis2d.Draw( LightRed, —E, E, THIN );

RedConic.Def( Red, 150, P2d( 0, Y.Next( ) ),
F1, F2, ELLIPSE );

GreenConic.Def( Green, 150, P2d( X.Next( ), 0 ),
F1, F2, HYPERBOLA );

RedConic.Draw( THICK );

GreenConic.Draw( THICK, 15 );

const Real x = RedConic.DistMA( ) * GreenConic.DistMA( ) / E;
const Real y = RedConic.DistMC( ) * GreenConic.DistMC( ) / E;
P2d( x, y ).Mark( Black, 0.2, 0.1 );

P2d( x, —y ).Mark( Black, 0.2, 0.1 );

P2d( — ) Mark( Black, 0.2, 0.1 );

P2d( — ).Mark( Black, 0.2, 0.1 );
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Note that we deliberately avoid the SectionWithConic(...) method of the class
Conic for the computation of the intersection points (last six lines of the above
listing). This method finds the intersection point by solving an algebraic equa-
tion of order four. Our calculation is simpler. Additionally, we avoid numerical
problems that arise from the fact that the conic axes are parallel to the coordi-
nate axes x and y.” &

Example 2.15. Cassini’s oval

In the preceding example we have considered the set of conics with common
focal points F; and F,. Each such conic consists of all points X € R? satisfying
XF) + XFy = 2a. CassINUs oval o (G.D. CAsSINI, 1625-1712) is defined in a
similar way:

0:={XeR? | XF -XF, =a*}, a€R=const.

Actually, there exist many different forms of CASSINI’s ovals. Their shape de-
pends on the ratio e : a, where 2e is the distance between F} and F5. In any case,
o is a quartic curve. Its implicit equations in Cartesian coordinates and polar
coordinates read

0. (2 +9y*)?* —2e%(x? —y?) =at — ¢ (2)

0...17 =¢e*cos 20 + \/at — etsin’ 20, (3)

respectively. For a > e the curve is connected; for a > v/2e it is even convex. For
a = e the origin is a double point, and CASSINI’s oval is identical to BERNOULLI’s
lemniscate. Finally, for a < e the curve splits into two parts symmetric to the
y-axis (compare Figure 2.15).

and

Both equations (2) and (3) are not too good for an OPEN GEOMETRY visual-
ization. The main problem consists in the different shapes of the curve. There
exists no proper parameterized equation of o covering all cases. Thus, we will try
a different approach to the problem. Instead of drawing line segments (as with
an L2d, PathCurve2d, or ParamCurve2d object), we will mark a few hundred
curve points. This turns out to be much faster in an animation that shows the
transition between different shapes of the curve.

In "cassini.cpp" we use three global constants: E (the “focal distance”), Point-
Num (the number of points to be drawn) and Thickness (a real value that deter-
mines the radius of the circles that mark the points). Our only global variable
will be the pulsing real A that occurs in equations (2) and (3). It is defined in
Init( ):

5This leads to zeros of multiplicity g > 1 of the algebraic of order four. Our current
root-solving algorithm is not very stable in this case.
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FIGURE 2.15. Different shapes of Cassini’s oval.

\
Listing from "cassini.cpp":

A.Def( E — 0.059, 0.07, —2.5 x E, 2.5 x E, HARMONIC );
\ |

The weird initial value ensures that o will be more or less a lemniscate in the
first frame. Our strategy is now the following:

1. We start with a straight line s(¢) of direction (cos¢,sinp)? through the
origin.

2. We intersect s(p) with o. The polar coordinates of the up to four solution
points can be computed from (3).

3. We mark the solution points, rotate s(¢) about the origin through a given
small angle §, and start the same procedure again.

This is done in Draw( ):

\
Listing from "cassini.cpp":

const Real E2 = E x E;
const Real E4 = E2 % E2;
const Real a = A.Next( );
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const Real ad = a x a x a * a;
Real phi, delta = 2 % Pl / PointNum, c2, x, r, ¢, s;
for ( phi = 0; phi <= 2 % PI; phi += delta )

{
c2 = cos( 2« phi );
x =E4 % c2 *xc2 + a4 — E4;
if (x>=0)

x =sqrt( x );
if (E2%xc2+x>=10)
{
r=-sqrt( E2 * c2 + x );
¢ = cos( phi ), s =sin( phi );
P2d( r=c, r«s).Mark( Red, Thickness );
P2d( —r x ¢, —r x s ).Mark( Red, Thickness );

r=E2xc2—x;
if (r>=0)
{

r=sqrt( r);
P2d( rxc, rxs ).Mark( Red, Thickness );
P2d( —r % ¢, —r x s ).Mark( Red, Thickness );
}
}
}
}

I |

We start by defining some local constants for frequently used terms. Next, we
define local variables used in the following computation part. In a for-loop we
mark the real solution points of s(¢) in a straightforward computational way.

If there exist four real solutions on one straight line s(pg), the curve consists of
two parts. Then there exist two real tangents ¢; and t2 to o through the origin.
On each tangent ¢; we find two points of tangency 7T; and 7} (Figure 2.15). In
the regions around these points our drawing method yields a bad distribution of
points. Thus, we mark them and two “neighboring” tangent points explicitly in
order to get a better graphical result:
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2.2

Listing from "cassini.cpp":

const Real eps = 0.03 * a;
if (a<E)

x=05%*asin(axa/E2);

r=pow( E4 — a4, 0.25 ) — eps;

for (inti=0;i< 3;i++, r+=eps )

{
P2dP(rxcos(x), rxsin(x) );
P.Mark( Red, Thickness );
P.Reflect( Yaxis2d );
P.Mark( Red, Thickness );
P.Reflect ( Xaxis2d );
P.Mark( Red, Thickness );
P.Reflect( Yaxis2d );
P.Mark( Red, Thickness );

}

}
l |

The real eps depends on the parameter a and ensures a good distance of the
neighboring tangent points. &

Animations

The previous section of this book already contains a few examples of animations
in OPEN GEOMETRY. However, these animations were not the main content of
the respective programs. This section’s examples put a special emphasis on the
animation part and provide many different ways of altering position, shapes, and
relations of objects. You will learn to use them efficiently for the production of
real-time animations with OPEN GEOMETRY 2.0.

Example 2.16. Propagation of waves

An example of a 2D animation of a physical concept is realized in the sample file
"wavefront.cpp". There, we consider a wave source E, (i.e., a point emitting
sound waves or optical waves). According to the laws of acoustics or optics, the
wave will spread to all directions with constant velocity. The set of all points on
the wave belonging to the same time parameter t is called a wave front. If the
wave remains undisturbed, all wave fronts are circles with common center E.

Suppose now that c¢ is a reflecting curve. Each point of a wave front that meets
c is reflected and continues its travel in a new direction with the same constant
velocity. Depending on the shape of ¢ and the position of E relative to ¢, the
wave front’s shape will be changed considerably. It is not difficult to prove the
following theorem (compare Figure 2.16 and [30]):
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After being reflected on a curve c, the wave fronts are offset curves of the ortho-
nomic o of ¢ with respect to E.S

FIGURE 2.16. After the reflection on ¢, the wave fronts are all offset curves of the
orthonomic o of ¢ with respect to F.

In "wavefront.cpp" the reader can find an animation of the physical model.
The reflecting curve c...C(u) is a class of type ParamCurve2d, each wave front
to be displayed is a class of type L2d. We first define a function returning the
point P(u,t) of the wave front (u is the parameter of the corresponding point on
¢, t is the time parameter). Thus, each wave front may be regarded as a u-line
of a curved parameterization of the plane.

(
Listing from "wavefront.cpp":

// Function returning a reflected point. t is the time parameter,
// u is the parameter value of the corresponding point on the
// reflecting curve, (i.e, the u-lines are exactly the wave fronts)
P2d WaveFront( Real t, Real u )

P24 P, Q:
Q = refl_curve.CurvePoint( u );
Vad dir = Q — E;
dir.Normalize( );
P=E +txdir:
if ( t > E.Distance( Q ) )
P.Reflect( refl_curve.Tangent( u ) );
return P;

5The terms offset curve and orthonomic are explained on pages 47 and 44,
respectively.



Section 2.2. Animations 59

Now to the animation. We introduce a few parameters (global constants) to
determine:

The center E of the wave fronts.

The parameter interval [U1,U2] of the reflecting curve (it is necessary to
define U1 and U2 globally, since we must have access to them in the Draw( )
part of our file).

The time interval [T1, T2] during which the wave fronts will be displayed.
Usually we will have T1 = 0; i.e., the wave fronts will be drawn as soon as
they are emitted.

The number M of points on each wave front. Since the wave fronts tend to
get rather long as t approaches the end of the time interval, you may have
to adjust this in order to get “smooth” curves.

The number N of wave fronts to be displayed.

The velocity of the animation (SpeedFactor).

Next, we define the three variables:

[

Listing from "wavefront.cpp":

const Real Step = ( T2 — T1 ) / N; // time interval between

// two wave fronts

Real delta; // the parameter used for the animation
L2d U[NJ; // the N wave fronts to be drawn

I

|

The time interval is divided into equal parts of length Step each, the real Delta
is used in Animate( ), the i-th wave front itself is an L2d-object named U[i]. The
Draw( ) and Animate( ) part of our scene read as follows:

[

Listing from "wavefront.cpp":

void Scene: :Draw( )

{

ShowAzes2d( Green, —10, 10, =7, 7 );

// define and draw N wave fronts with M points each
inti=0,j=0;

for (i=0;i<N;i++)

U [i].Def( Blue, M );
for (j=0;j<=M;j++)
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// to delay the wave fronts at the

// beginning of the animation

if ( FrameNum( ) < i % SpeedFactor )
Uil [i] = E;

else

Realu0=Ul+j*x (U2—-U1)/(M—-1);
Realt0 =T1+ix (T2-T1) /N;
Uil [j] =

WaveFront( t0 + Step * Delta / SpeedFactor, u0 );

}

// only draw the relevant wave fronts
if ( FrameNum( ) > i * SpeedFactor )
U[i].Draw( THIN );

refl_curve.Draw( THICK );
E.Mark( Red, 0.2, 0.1 );

}

void Scene::Animate( )

Delta = FrameNum( ) % SpeedFactor;

}

I |

We divide the “parameter range” of the wave front area into equally distributed
stripes of width (T2 — T1)/2. In each stripe we draw one wave front per frame.
Repeating this in cycles of SpeedFactor frames (compare Animate( )), we produce
the illusion of wave fronts traveling with constant velocity (while in reality, they
move a short distance and jump back again). Note the additional delay of the
i-th wave front during the first frames of the animation.

In "wavefront.cpp" the reflecting curve c is an ellipse, and the wave source E
is one of its focal points. Due to the focal property, the reflected wave fronts are
parts of circles with center F (the other focal point of ¢; see Figure 2.17).
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FIGURE 2.17. Output of the program "wavefront.cpp".

Example 2.17. Rolling snail
The next example concerns one of the most remarkable plane curves: the equian-
gular or logarithmic spiral. In polar coordinates its equation reads

o...r(p) = oeP? ¢ € (—00,00).

The real constants ¢ and p are called the radius and parameter of the curve.
The spiral has a number of beautiful properties. For example, the evolute or the
catacaustic of s is an equiangular spiral again. For our purposes, the following
will be of importance to us: The angle v between the radius vector and the
corresponding curve tangent is constant (Figure 2.18).

We can use this to construct a stair upon which a logarithmic spiral can roll up
and down (right-hand side of Figure 2.18). Our “wheel” consists of the spiral arc
between the parameter values ¢y = 0 and 1 = 27. The length of the stairs equals
the arc length of s in this interval. The stairs themselves are not orthogonally:
we need a little corner for the spiral to fit in. The angles are determined by the
angle ¢ formed by the radius vector and curve tangent.

The corresponding OPEN GEOMETRY program is called "rolling snail.cpp".
In order to draw the spiral, we have to derive a class from ParamCurve2d. We do
this and add some additional — rather special — methods that will be described
in the following.

(
Listing from "rolling snail.cpp":

class EquiangularSpiral: public ParamCurve2d
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FIGURE 2.18. The radius vectors and the tangents of an equiangular spiral intersect
in a constant angle v (left). The spiral can roll steadily on a stair (right).

public:
void Def( Color c, int n, Real radius, Real parameter,
Real t0, Real t1 )
{

rad = radius;

par = parameter;

S.Def( rad, 0 );

E.Def( exp( 2 % par x Pl ) % rad, 0 );
ParamCurve2d: :Def( ¢, n, t0, t1 );

virtual P2d CurvePoint( Realt )

P2d X( cos(t),sin(t) );
X %= rad % exp( par * t );
return X;

}
Real ParamValue( Real t0, Real dist )

return ( 2 x log( rad * sqrt( par x par + 1 ) x
exp( par * t0 ) + dist x par ) —
log( (parsxpar+ 1) *rad=«rad) )/ ( 2x*par);

}

void RotateAndDraw( ThinOrThick thickness, Real dist,
P24V, V2dv )

{

Real tt = ParamValue( 0, dist );

P2d T1 = CurvePoint( tt );

StrL2d normal;

normal.Def( P2d( 0.5 ( Tlx+ V.x ), 0.5 ( TLy +V.y ) ),
V2d(Vy — Tly, Tlx — V.x ) );



Section 2.2. Animations 63

Real angle = v.Angle( TangentVector( tt ), false, true );
Reald = 0.5 % T1.Distance( V );

Realdd = d / tan( 0.5 * angle );

angle = Deg( angle );

P2d C = normal.InBetweenPoint( dd );

Rotate( C, —angle );
S.Rotate( C, —angle );
E.Rotate( C, —angle );
Origin2d.Rotate( C, —angle );

Draw( thickness );
StraightLine2d( col, S, E, thickness );
Origin2d.Mark( Red, 0.2, 0.1 );

Rotate( C, angle );
S.Rotate( C, angle );
E.Rotate( C, angle );
Origin2d.Rotate( C, angle );
}
private:
Real rad;
Real par;
P2dS;
P2d E;
)i
EquiangularSpiral Spiral;
l |

We define the spiral by its parameter and radius. In addition, we set two points
S and E: the start and end point of our arc. The parametric representation in
rectangular coordinates reads

w0 (1) - e (3

and is implemented in CurvePoint(...). The function ParamValue(...) has two
real input parameters t1 and dist. The return parameter t1 is the explicit solution
of the integral equation

/: Va0 T+ 900 = dist.

Geometrically speaking, we can say that the arc length between Z(t0) and Z(t1)
is dist. We need this, of course, to simulate the rolling of the spiral.

For reasons of simplicity, we assume at first that o rolls on one straight line s
only. We assume further that in a starting position the start point S is the point
of contact (the velocity pole of the motion; Figure 2.19).
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A

FIGURE 2.19. Rotating the spiral in the correct position.

In a neighboring position the point of contact belongs to some parameter value
t (computed by ParamValue(...)) that depends on the distance A measured on
s. We have to rotate the spiral to its correct position.

This (and a little more) is done in the rather lengthy function RotateAndDraw(. .. ).
We refer to a fixed spiral, compute the center and angle of the rotation, rotate and

draw all relevant elements. Then we immediately undo the rotation. This proce-

dure is a little complicated but necessary: The CurvePoint(...) and Tangent(...)

functions of ParamCurve2d refer to the parameterized equation and thus re-

turn only the points and tangents of the original position. The rotation is now

defined by two pairs (T,t) and (V,v) of point plus tangent (right-hand side of
Figure 2.19).

Equipped with the class EquiangularSpiral, the rest of the program is easy to
write. We have to adjust the length and angles of the stair with radius and
parameter of the spiral, and we have to write a proper animation. We use the
parameter P of the spiral and the length Length of the stair as global constants.
With the help of some basic calculus we compute the radius of s as well as height
and vertices of the stairs in Init( ) (N is the total number of stairs):

(
Listing from "rolling snail.cpp":

Real r = fabs( Length x P / Sqrt( 1 + P« P ) /
(exp(2*xPl«P)—1));

Real angle = atan( P );

Realh =r x fabs( exp( 2%« P« Pl ) — 1);

Real height = h * cos( angle );

int i;
Real x = 0.5 * h % sin( angle );
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N + 1) % Length +
— i+ 1) % height );

I |

So far, so good. But we still have to animate the whole thing. We use three
global variables for this: T, Delta, and Index. The variable T gives the current
distance of the point of contact from the left vertex of the current stair. Delta is
the increment for T and can change its sign as the snail rolls down and up again,
Index is an integer value that stores the number of the current stair. Thus, in
order to animate the scene, we have to write the simple line

Spiral.RotateAndDraw( THICK, T, Vertex[Index] +
T x Xdir2d, Xdir2d );

in Draw( ). The animation part itself is a little trickier. Still, it is not difficult to
grasp the basic ideas:

(
Listing from "rolling snail.cpp":

void Scene::Animate( )
{

T += Delta;

if ( T > Length )

T = 0;
Index += 2;
if ( Index == N2)

Index —= 2;

Delta x= —1;

T = Length;
¥

)
if (T<0)

T = Length;
Index —= 2;
if (Index == —2)

Index = 0;
Delta = —1;
T = 0;
}
¥

}
|
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FIGURE 2.20. A snail rolls on a stair.

We increase T until we reach the end of a stair. There we reset it and increase
Index by 2 (because each stair consists of two end points, and Index refers to
the index of the first vertex). If we reach the end of the stair, we do everything
just the other way round. In Figure 2.20 we display several positions during the
rolling motion. &

Snails are nice but sometimes a little too slow (if there is no stair to roll on). In
the next examples we will deal with faster animals.

Example 2.18. About cats, dogs, and rabbits

Suppose a dog D is chasing two cats. If it is not too smart, it probably tries to
catch both at the same time. As a result, the cats will always be able to escape.
In this example we are interested in finding the path curve of the hunting dog.

In "cats_and_dogl.cpp" we assume that the cats C; and Cy do nothing but run
on circular paths. We initialize a starting position of D, C7, and Cs, the centers
M1 and M2 of the cat’s circular paths, and their angular velocities VelCatl and
VelCatl, respectively, by random numbers. In Draw( ) we just mark the points and
draw their path curves. The really interesting parts are happening in Animate( )
(Catl = (4, Cat2 = (3 and Dog = D are globally declared variables of type
P2d):

(
Listing from "cats_and_dogl.cpp":

void Scene::Animate( )

V2d dog_dir = Catl + Cat2;
dog_dir —= 2 x Dog;
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if ( dog_dir.Length( ) > VelDog )

dog_dir.Normalize( );
dog_dir x= VelDog;

Dog.Translate( dog_dir );
DogRect.Translate( dog_dir );

Cat1.Rotate( M1, VelCatl );
Cat1Rect. Translate( Catl.x — CatlRect[1].x,
Catl.y — CatlRect[1]y );
Cat2.Rotate( M2, VelCat2 );
Cat2Rect. Translate( Cat2.x — Cat2Rect[1].x,
Cat2.y — Cat2Rect[1].y );
}

I |

At the beginning we compute the instantaneous velocity vector of the dog D. Its
direction is given by DC; + DCs = OCy + OCy — 2(713. If it is not too short,
we normalize it and multiply it by the absolute value of the dog’s velocity. The
rectangles attached to the points D, C1, and Cy are just there to illustrate the
theme of the program. They will be textured with dog and cat bitmaps.

If you run the program you will notice that sooner or later, the dog always follows
a certain curve that seems to be independent of the dog’s starting position and
resembles a trochoid of characteristic VelCatl : VelCat2 (Figure 2.21).

FIGURE 2.21. Some examples of the dog’s path curve. The initial position of the
dog is Dog.

A closer examination reveals the underlying geometric structure. To begin with,
it is clear that the dog at any moment tries to reach the midpoint M of C7 and
Cy (Figure 2.22). If it is fast enough, it can reach it, and it then tries to stay
there. Because of this behavior, we will refer to the path curve m of M as the
attractor curve. Even if C7 and C3 have constant velocity, M will usually not
have. Thus, if M accelerates too much, the dog has to start hunting its imaginary
target again. Have a look at the middle image of Figure 2.21, where the dog’s
velocity was chosen relatively low.
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C,

FIGURE 2.22. The dog D tries to reach the midpoint M of C; and Cs. The path
curve of M is a trochoid.

It is not difficult to see that the attractor is a trochoid (Figure 2.22). Just trans-
late the rotating rod M>C5 through the midpoint O of M; My and M7 C4 through
C5. The midpoint of O and CY is at the same time the midpoint of C7 and Cj.
Thus, the path curve of M is really a trochoid.” Its characteristic w; : wo is given
by the angular velocities of C; and C5. Its dimensions are half the radii of the
path circles of Cy and Cs.

In "cats_and_dog2.cpp" we display the kinematic generation of the path curve
of M. Additionally, we delay the drawing of the dog’s path curve in order to
emphasize its generation.

A variation of the program is "rabbit_and_dogs.cpp". There, two wild dogs are
hunting a poor rabbit. Again, the dogs D; and Dy are not too clever and head
directly for the rabbit R. The rabbit’s direction is determined by the wish to flee
from the dogs and to reach a sheltering cave C. The directions are computed in
Animate( ):

[
Listing from "rabbit_and_dogs.cpp":

void Scene::Animate( )
if ( !Hit && !Save )
V2d dogl_dir = Rabbit — Dog1;

V2d dog2_dir = Rabbit — Dog2;
V2d rabbit_dir = Cave — Rabbit;

"The dog’s path is, of course, not a trochoid in general. It is for example, possible
that D and M are identical only for a while. This shows that the dog’s path is not
analytic in this case and therefore cannot be a trochoid.
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dog1_dir.Normalize( );
dog2_dir.Normalize( );
rabbit_dir.Normalize( );

rabbit_dir = dog1_dir + dog2_dir + 2 * rabbit_dir;
rabbit_dir.Normalize( );

rabbit_dir x= VelRabbit;

Rabbit. Translate( rabbit_dir );
RabbitRect. Translate( rabbit_dir );
dog1_dir x= VelDog1;
Dogl.Translate( dogl_dir );
Dog1Rect. Translate( dogl.dir );
dog2_dir x= VelDog2;
Dog2.Translate( dog2_dir );
Dog2Rect. Translate( dog2_dir );

}
}

I |

Hit and Safe are global variables of type Boolean. They are initialized with false
and can change their value at the end of Draw( ):

[
Listing from "rabbit_and_dogs.cpp":

if ( Dogl.Distance( Rabbit ) < DoubleLimit ||
Dog1.Distance( Rabbit ) < DoubleLimit )

V2d v( Double( ), Double( ) );
Rabbit. Translate( v );
RabbitRect. Translate( v );

}

if ( Dogl.Distance( Rabbit ) < HitLimit ||
Dog2.Distance( Rabbit ) < HitLimit )
Hit = true;

if ( Rabbit.Distance( Cave ) < SafetyLimit )
Save = true;

I |

If the rabbit is close enough to the cave, it is safe. If it comes too close to a dog,
it is lost and Hit is set to true. As the situation is really unfair (two dogs that
run faster than the poor rabbit), we introduce the possibility of doubling. The
rabbit makes a sudden jump in a random direction (Double( ) yields a suitable
random number). Thus, the rabbit will get caught only if it doubles in a bad
random direction. In this case, the animation stops and we enter the following
path in Draw( ):
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(
Listing from "rabbit_and_dogs.cpp":

if ( Hit )

{
Rabbit.AttachString( Red, 0.5, 0.5, "HIT" );
if ( FrameNum( ) % 20 < 10 )

Dogl.Mark( Black, 0.2, 0.1 );
Dog2.Mark( Black, 0.2, 0.1 );
Rabbit.Mark( Red, 0.4 );

}

else
Rabbit.Mark( Blue, 0.2, 0.1 );
Dogl.Mark( Black, 0.2, 0.1 );
Dog2.Mark( Black, 0.2, 0.1 );

}
L
(o]
SAFE

FIGURE 2.23. Two different endings of the rabbit hunt.

This will highlight the rabbit’s position with a blinking red point and attach
the string "HIT" to it. An analogous path exists if the rabbit reaches the cave.
Figure 2.23 shows two typical endings of the hunt: In the image on the left-hand
side the rabbit escapes after doubling twice. In the image on the right-hand side
it is caught near the sheltering cave. &
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oU

R

FIGURE 2.24. (a) The “lucky” comet heads toward planet Py and the system con-
sisting of S and P;. (b) C is turned aside by P, but does not crash into the planet.
(c) All three forces of gravity guide the comet through the solar system. (d) C safely
leaves the solar system.

Example 2.19. A comet passes a solar system

A variation of the theme of the cat and rabbit hunt is to be found in
"comets_fate.cpp": A comet enters a system of planets that orbit around a
sun. Initially, the planet’s velocity is constant, but under the influence of the
sun’s and planets’ forces of gravity, it will change its path. Eventually, it will
either be able to leave the solar system or crash into one of the planets or the
sun. Similar simulations may be applied not only to large objects such as planets
but also to small objects like interacting electrons or a crowd of people heading
in different directions and trying to avoid too close contact.

In "comets_fate.cpp" we decide on a global constant integer N that gives the
number of planets in the solar system. Each planet Planet[i] has its own force of
gravity g;, its circular velocity w;, and its path circle ¢;. The center of ¢; is the
fixed sun S;. According to Newton’s law, the gravity that acts on the comet C
is proportional to the planet’s mass and inversely proportional to the square of
the distance C'P. The comet has a certain starting point and a certain initial
velocity vy. The starting point is on the far right of the screen, and it is no loss
of generality to assume 9 as parallel to the z-axis.
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In Init( ) we initialize the variables with sensible random values; in Draw( ) we
add the comet’s current position to a 2D path curve, draw the path curve and
the circular paths and mark the planets (in a size proportional to their force of
gravity), the sun and the comet.® The part of interest is Animate( ):

(
Listing from "comets_fate.cpp":

void Scene::Animate( )
e

int i;

if (Hit )

// Rotate the planets.
for (i=0;i<N;i++)
Planet [i].Rotate( Sun, Omegai] );

// Compute the distances of comet
// to planets and the sun.
Real Rad, R[N];
Rad = Comet.Distance( Sun );
for (i=0;i<N;it++)
Ri] = Comet.Distance( Planet[i] );

// If comet is too close to sun or other planets
// we consider it as lost in the atmosphere.
if ( GravSun > Rad * Rad * Rad )

Comet = Sun;
Hit = true;

}

for (i=0;i<N;it++)
if ( Grav[i] > R[i] = R[i] * R[] )

Comet = Planet[i];
Hit = true;

}

/ If comet is not too close to sun or other

/ planet it moves under the influence of

/ gravity. The force of gravity is reciprocal

/ to the square of the distance to the planet.
f (Hit)

[t W = N g

80f course, the resulting system of planets cannot be stable! We use random values
and do not describe the situation in a real solar system.
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V2d v = Sun — Comet;

v.Normalize( );

Comet += GravSun / Rad / Rad x* v;
for (i=0;i<N;i++)

v = Planet[i] — Comet;
v.Normalize( );
Comet += Grav|[i] / R[i] / R[i] * v;

}
Comet += CVel;

}
}

else

// If comet hits planet we mark it with

// a blinking red point.

if ( FrameNum( ) % 20 < 10 )
Comet.Mark( Red, 0.4 );

I |

We use a global variable Hit of type Boolean that tells us whether the comet has
crashed into a planet or the sun. If Hit = false, we orbit the planets to their
new position. Then we compute the distances Rad and R[i] of the comet to the
sun and these planets. This is necessary because the force of gravity acting on
C' is proportional to the reciprocal value of the squared distance.

We will translate the comet C' by a vector of length g;/R[i]* in the direction
of the planet P; (and in the direction of the sun as well). But first we have to
decide whether C' has already hit a planet. This part needs some consideration.
Obviously, the crash distance §; (i.e., the distance when we assume that the
comet hit the planet) must depend on the force of gravity. A sensible limit is
0; = ¢/gi. Otherwise, our model would catapult the comet through the planet P;
if it is within the circle of radius §; around F;. In the listing we have used the
equivalent expression g; > R[i]3.

If the comet is too close to a planet, we set Hit = true and C' = P;. Otherwise, we
apply the translations described above. Of course, we must take into account the
initial velocity ¥y (CVel in our listing) as well. If Hit is true, we will not change
the planet’s position in the next frame. Instead, we mark the crash position with
a gleaming red point. The comet’s chances to survive its travel through the solar
system increase with its initial velocity and decrease with the number of planets.
Figure 2.24 shows the typical fate of a comet. &
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2.3 Kinematics

OPEN GEOMETRY serves very well for computer simulations of rigid 2D mecha-
nisms. In [14] a whole chapter is dedicated to this topic. In addition to this, will
give a few more examples.

Example 2.20. A complex window opener
At first, we present a sample program that is used to develop a manipulator for
performing a complex opening and closing procedure of a window. The manip-
ulator has to meet the following few conditions:

SR

FIGURE 2.25. Four different positions of the window: (a) completely closed, (b) half
open and protecting from the sun, (c) completely open, (d) half open and reflecting the
sun rays inside the room.

e One must be able to reach the four window positions displayed in Fig-
ure 2.25. These positions guarantee optimal usage of the sunlight. A half-
transparent silvered surface either reflects the light inside the room or pre-
vents it from coming through in the half-open positions.

e On the one hand, a transition from position (b) to position (c¢) should be
possible without closing the window completely, i.e., without reaching posi-
tion (a). On the other hand, one should be able to close the window directly
from position (b) or (d).?

e For practical reasons the mechanism should be simple and stable at the
same time. Only standard gearing devices should be used. The essential
joints should all fit into the window frame.

It is a difficult task to find a mechanism of that kind, and OPEN GEOMETRY
cannot do it for you. You rather need a good book on manipulators and a cer-
tain amount of experience. At a certain point, however, an OPEN GEOMETRY
simulation might be quite helpful.

9These are essential elements of design. Without them the mechanism would be of
much less interest from the designer’s point of view.
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FIGURE 2.26. The abstract mechanism of the window manipulator.

Obviously, the problem can be solved in two dimensions only. There, you need a
manipulator providing a two-parameter mobility of freedom in order to meet the
second condition of the above list. The final proposal is the mechanism displayed
in Figure 2.26.

It consists of four arms AD, BE, CD, and DE that are all linked by joints of
revolution. The points The points The points The points The points The points
The points The points The points A, B, and C always lie on a straight line w
(the wall); A is fixed, B and C may still change their position on w. This gives
us the two parameters of freedom we need.

Having decided on the abstract mechanism, another difficult task is ahead: the
design of the mechanism’s dimensions. You must be able to reach the different
positions without crashing the window into the wall and without sweeping off
the flowers from your window sill. And what if one of the manipulator’s arms
is not long enough to reach one of the required positions? In earlier days you
had to make a large number of drawings and build a few models to find a good
solution. Nowadays, you write an OPEN GEOMETRY program ("window.cpp")!

What has to be done? Given the dimensions AD, CD, BE, and DE of the mecha-
nism and the positions of A, B, and C, we have to compute the positions of D and
E. We do this in two almost identical functions called CalcD(...) and CalcE(...).
Only one of them needs to be listed.

[

Listing from "window.cpp":

P2d CalcD( P2d inA, P2dinC)
{
// Two circles with centers A and C. Their radii
// are AD and CD, respectively.
Circ2d a, c;
a.Def( NoColor, inA.x, inA.y, AD );
c.Def( NoColor, inC.x, inC.y, CD );
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// Intersect these circles.

P2d D1, D2;

n = a.SectionWithCircle( ¢, D1, D2 );
if (n == 0) // no real solution

ResetPoints( );
return D_old;

}

else
{
// Take the point that lies closer to the old position of D.
// This will probably be the right choice.
if ( D1.Distance( D-old ) < D2.Distance( D_old ) )
return D1;
else
return D2;

I |

The two arguments of CalcD(...) are the points A and C. We define two circles a
and ¢ around these points with radii AD and CD, respectively. Obviously, D lies
on both circles a and c. So we use the method SectionWithCircle(. . .) of Circ2d to
determine the intersection points D1 and D2 of a and c. Here, the first problems
arise: What happens if D1 and D2 are not real, and which point shall we take
instead?

SectionWithCircle(. ..) returns an integer value n telling us the number of real
solutions. If there is no real solution (n = 0), we return to the previous stage of
our animation by resetting all points and returning the previous position D_old
of D (this will soon be explained in detail). This corresponds perfectly to the
situation in practice: The mechanism simply won’t move in the desired direction.
If two solutions exist, we take the one that lies closer to the previous position
D_old of D. This may yield a wrong solution in some strange constellations, but
for practical purposes it is absolutely sufficient.

It is now easy to draw the whole scene since all relevant points are known. The
Animate( ) part is, however, a bit tricky. Nevertheless, it has simple code:



Section 2.3. Kinematics 77

(
Listing from "window.cpp":

void Scene::Animate( )

{
B_old = B;
Cold =C;
D_old = D;
E_old = E;
B.Translate( 0, Delta B );
Delta_ B = 0;
C.Translate( 0, Delta_C );
Delta_C = 0;
D = CalcD( A, C);
E=CalcE( B, D );

}

l |

We store the current positions of B, C, D, and E, translate B and C by a certain
amount along w, and compute the new positions of D and E. The reason for the
immediate resetting of Delta_B and Delta_C to 0 will soon become clear.

We want to change the window position interactively. In OPEN GEOMETRY this
can be done as follows

1. Write an Animate( ) part that in general, does nothing relevant. In our
example, the value of Delta_B and Delta_C is 0 in most frames.

2. In Draw( ) or Animate( ) ask for the last key that has been pressed and
change some animation variables according to it.

3. Immediately reset these animation variables in Animate( ).

In order to animate the scene interactively, you start a series of identical frames
by pressing <Ctrl + f£> or clicking on the corresponding button. Then you
press one of your specified command keys, and the next frame will yield the
desired changes. The relevant part of "window.cpp" is as follows:

(
Listing from "window.cpp":

int key = TheKeyPressed( ) ;
switch (key )

case k’:
Delta_B = Factor B * 0.1;
break;

case ’j’:
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Delta_B = —Factor B * 0.1;
break;
case ’d’:
Delta_C = Factor_C * 0.1;
break;
case ’f’:
Delta_C = —Factor_C % 0.1;
break;
case ’i’:
Factor B x= 2;
break;
case ’u’:
Factor B x= 0.5;
break;
case ’e’:
Factor_C x= 2;
break;
case ’r’:
Factor_C x= 0.5;
break;

}
| |

The effects of the different command keys are as follows: Pressing k moves the
point B up by a certain increment; pressing j moves it down again. The key i
doubles the increment; u halves it again. Thus, the velocity of B will be increased
or decreased, accordingly.'® Analogous commands are provided for the point C.

Just two more hints:

e Use PrintString(...) to display the meaning of your command keys on the
screen. It will help you and any other user to handle the program correctly.

e Some keys or key combinations are occupied for other purposes, so you can’t
use them. You will find a list of all occupied keys in the “Help” menu of the
OPEN GEOMETRY window.

0This turned out to be necessary, since a constant increment has its drawbacks. If
it is too large, you cannot reach certain positions of the mechanism because you jump
from a good position (two solutions to both D and E) immediately to a bad position
(no solution to either D or E). If the increment is too small, the animation is too slow
to be fun.
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Example 2.21. Mechanical perspective

Our next example is the 2D animation of a perspectograph. This is a mechanical
device to produce perspective figures of a given plane figure F'. Its kinematics
are not too complicated (compare Figure 2.27):

A point M runs along the figure F.

Two lines [; and Iy connect M with two fixed points O; and Os.

l1 and [, intersect a guiding line s parallel to O;05 in two points P; and Ps.
P, and P» are connected to two points R; and Ry on s.

Ry and Ry are two opposite vertices of a rhombus r;. The edges of the
rhombus are connected through joints of revolution.

Ry is the edge of congruent rhombus r5, so that the edges of r; and ro
intersect orthogonally at R;.

With 7o we connect a point N by doubling an edge of ry that does not
contain R;.

The described mechanism provides a two-parameter mobility, and NV is al-
ways located on a figure F’ perspective to F.

We have described the mechanism in a way that is already suitable for an
OPEN GEOMETRY program ("perspectograph.cpp"). There, we start by defin-
ing some global variables that — together with the position of M — determine
the initial position.

[

Listing from "perspectograph.cpp":

const P2d 01( 9, 3 );
const P2d 02( Olx, —7);

const Real Dist = 3.5;
const Real Length = 0.9 % Dist;

const StrL2d S( Origin, V2d( 02, 01 ) );
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FIGURE 2.27. The perspectograph.

Dist is the distance between the points P; and R; (or P, and Rs); Length is
the side length of the rhombi; and S is the guiding line parallel to O105. In the
next step we write a function called ComputeAndMark(...). Its return value is
void; its arguments are a 2D point M and a variable add_point of type Boolean.
It computes and marks all relevant points and lines for the current position of
M. If add_point is true, it adds M and N to two path curves PathM and PathN,
respectively.

We could do everything directly in Draw( ) but — since the code is rather lengthy
— we preferred separating it from Draw( ). It is not worth listing the contents of
ComputeAndMark(. . .) here. There is just one important thing: After computing
P, and P, we check whether their distance is larger than 2 - Length. It is easy to
see that P, P, = Length. Thus, P; P> > 2-Length yields an invalid position of the
mechanism. In this case, we give a warning and do not draw anything.

Now we can define a path for M. In our example we take the parameterized
equation of an astroid.

Listing from "perspectograph.cpp":
P2d PathPoint( Realt )
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Real r = 5;
return P2d( —r x pow( cos(t ), 3 ) — 6,
r«pow(sin(t),3)— 3.2);
}
I

Draw( ) and Animate( ) are simply as follows:

(
Listing from "perspectograph.cpp":

void Scene::Draw( )
P2d X = PathPoint( T );
if ( X.Dist(S ) < 0.3)
Delta = —1;
ComputeAndMark( X, true );

void Scene::Animate( )

T += Delta;

}

I |

Here, T is a globally declared real. We take the path point and check whether
it is too close to the guiding line S. If so, we change the orientation of the path
curve by taking the negative increment. This is desirable for two reasons:

1. In practice, M cannot pass the guiding line due to mechanical reasons.

2. In the computer model there might occur discontinuities in the computation
of the relevant points (The mechanism “jumps” from one position to the
next).

By now, everything should work fine. The output of the program is displayed in
Figure 2.27. ¢
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FIGURE 2.28. A simple pulley block (left) and a sophisticated one (right). If N is
the number of pulleys, the necessary pulling force is just 1/N of the weight.

Example 2.22. Pulley blocks

A pulley block is a well-known mechanical device that allows the lifting of heavy
loads with rather small effort. In fact, there exist different kinds of pulley blocks.
In "pulley blockl.cpp" we present the simplest case (Figure 2.28).

A rope is fixed at a point F and runs over three pulleys with centers M2, M1,
and S. The points M1 and S are fixed, while M2 is suspended on the rope. On
this last pulley a heavy load is attached. Pulling down the end point D of the
rope by a vector ¥ will lift the load by %17. Since the work on both ends has to
be the same, the load seems to have only half of its actual weight.

Now to the animation in "pulley_blockl.cpp". We define F, M2, S, and the
pulley radius Rad as global constants. Since the rest of the drawing is really not
time-critical, we will do it completely in Draw( ). We use a pulsing real L for the
animation. It gives the length M1M2. We initialize it as follows:

Listing from "pulley_blockl.cpp":

L.Def( 0.5 * ( Min + Max ), —0.05, Min, Max, HARMONIC );
| |

Here Min = 3 * Rad and Max = Min + 4.5. This ensures that the pulleys will
never intersect during the animation. The pulleys themselves are objects of type
RegPoly2d, which gives us the possibility of high-quality output on the screen by
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deciding on a relatively high number of vertices.!' The drawing of the pulleys,
the suspensions, and the weight are not really exciting. Let’s have a look at the
drawing of the rope instead. It consists of line and arc segments. Quite often
we have to determine the tangents of a circle through a given point. We use a
function to do this task:

(
Listing from "pulley_blockl.cpp":

int CircleTangents( P2d Mid, Real Rad, const P2d &P, P2d T[2] )
{

Real d = Mid.Distance( P );

if (d < fabs( Rad ) )

return 0;
if (d ==Rad)
T[0]=P;
T[1] =P;
return 1;

Real x = Rad * Rad / d;
Realy = Sqrt( Rad * Rad — x * x );
V2dv =P — Mid;
v.Normalize( );
T[0] =Mid +xxv +y=* V2d( —v.y, v.x );
T[1]=Mid + x*xv —y * V2d( —v.y, v.x );
return 2;
}
l |

The input parameters are the circle’s center and radius, the given point, and
two more points for the points of tangency to be stored. The return value gives
the number of real solutions. With the help of CircleTangents(...) and the OPEN
GEOMETRY class Sector2d, it is not difficult to draw all rope segments:

"The OPEN GEOMETRY class Circ2d automatically adjusts the number of points on
the circumference of the circle. That is, small circles are regular polygons with relatively
few vertices.
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Listing from "pulley_blockl.cpp":

StrL2d s;

P2d D( Sxx + Rad, S.y — 2 %« Max — 2 + 2 x| );
s = Yaxis2d.GetParallel( —D.x );

s.Draw( Black, D.y, S.y, THICK );

s.Def( S, M1 );
s = s.GetParallel( —Rad );
s.Draw( Black, 0, S.Distance( M1 ), THICK );

Sector2d arc;

arc.Def( Black, P2d( S.x + Rad, S.y ), S,
s.InBetweenPoint( 0 ), 10, EMPTY );

arc.Draw( true, THICK );

I |

The remaining segments are implemented similarly. If you just draw the rope, the
pulleys, and the suspension parts, the animation is not too impressive. Because
of this, we draw little line segments on the pulleys that give a better sense of the
rotation. The code for the first pulley reads as follows:

(
Listing from "pulley_blockl.cpp":

V2d dir( cos( | / Rad ), sin( | / Rad ) );
StrL2d s1( M1, dir );
StrL2d s2 = sl;
s2.Rotate( M1, 90 );
s1.Draw( Black, —Rad, Rad, THIN );
s2.Draw( Black, —Rad, Rad, THIN );
l |

Here, | is the current value of the pulsing real L. We transform it to the arc
length on the pulley by dividing it by the radius. Then we define and draw two
straight lines through M1 that correspond to this length. We do the same for
the pulleys around M2 and S. The pulley around M2 rotates, however, with only
half-angular velocity, i.e., the transformation to the arc length reads [ — [/2r.

A slightly more sophisticated pulley block is animated in "pulley_block2.cpp"
(Figure 2.28). There, a series of N pulleys is used. The system of any two consec-
utive pulleys can be seen as a pulley block of the first kind. Thus, the necessary
pulling force is reduced to 1/2N - weight. Of course, the weight will rise only very
slowly if N is too big.

What are the essential programming differences? First, we need more pulleys,
which are initialized in Init( ):
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Listing from "pulley_block2.cpp":

M[0].Def( 0.5« (N + 1) % Rad, 6.5 );

M [1].Def( M[0].x — 2 % Rad, M[0].y — DeltaY );
int i;

for (i=2;i<N;i++)

M ] = M{i-1];
M [i]. Translate( —Rad, —DeltaY );

}
|

In Draw( ) we compute their new position:

Listing from "pulley_block2.cpp":

Real | = L.Next( );
int i;
(i=1;i <N;i++)

M[il.y = M[0].y — i * DeltaY + | / pow( 2,i — 1);

l |

Rad and DeltaY are global constants; L is a pulsing real varying harmonically
between 0 and DeltaY; M[0] is the center of the fixed pulley. The pulley center
M[i] approaches the height of M[0] with constant velocity v/2¢. The visualization
of the pulley rotation is similar to the previous example:

[
Listing from "pulley_block2.cpp":

RegPoly2d Pulley;

StrL2d s;

Vad v;

Real phi;

for (i=0;i<N;i++)

{
Pulley.Def( Col [i%7], M[i], Rad, 30, FILLED );
Pulley.Shade( );
phi =1/ Rad / pow( 2,i—1);
if (i==0)

phi x= —1;

v.Def( cos( phi ), sin( phi ) );
s.Def( MJi], v );
s.Draw( Black, —Rad, Rad, THIN );
s.Rotate( M [i], 90 );
s.Draw( Black, —Rad, Rad, THIN );
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We shade the pulley with a color from a certain pool of seven colors. We compute
the angular velocity (taking into account that the fixed pulley has an inverse
sense of rotation) and draw straight lines to evoke a sense of rotation.

Since there are only half arc segments this time, we do not use the class Sector2d
but an object of type L2d for the drawing of the rope segments. We define it in
Init( ) and translate it to the appropriate position in Draw( ):

(
Listing from "pulley_block2.cpp":

HalfCircle.Def( Black, 20 );

Real t, delta = Pl / 19;

for (i=1,t=0;i <= 20; i++, t += delta )
HalfCircle [i]( Rad * cos( t ), —Rad *sin( t ) );

for (i=1;i<N;i++)
HalfCircle.Translate( M [i].x — HalfCircle[1].x + Rad,
M [i].y — HalfCircle[1].y );
HalfCircle.Draw( THICK );

)

}
|

The semicircle of the fixed pulley needs special treatment:

(
Listing from "pulley_block2.cpp":

HalfCircle.Reflect( Xaxis2d );

HalfCircle. Translate( M [0].x — HalfCircle[1].x + Rad,
M [0].y — HalfCircle[1].y )

HalfCircle.Draw( THICK );

HalfCircle.Reflect ( Xaxis2d );

I |

b

The drawing of the straight line segments, the suspensions, and the weight is not
too difficult, so we do not display it here. &
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‘ i | |
FIGURE 2.29. A mechanism with periods of standstill (“Maltesien gear”).

Example 2.23. Maltesien gear

Sometimes it is necessary to use a mechanism with periods of standstill. An
example of this is the “Maltesien gear” (Figure 2.29). There, a crank rotates with
constant angular velocity. It interacts with a figure of special shape resembling
a Maltesien cross. Transmission occurs only during one quarter of a rotation
period. During the remaining period the Maltesien cross stands still.

Before implementing this mechanism in OPEN GEOMETRY, we need to explore
its geometry. Take a look at the third figure in the top row of Figure 2.29 as base
figure. The basic shape of the Maltesien cross and the crank are a square of side
length 2A and a circle of radius r;. From them we subtract certain circular and
rectangular regions. The dimensions can, however, not be chosen arbitrarily:

The crank and the cross touch each other during three quarters of the motion.
This gives the distance V/2A of their centers and the radius r; of the circular
subtractions at the corners of the cross (Figure 2.30). Now consider the middle
position in the second row of Figure 2.29 and the auxiliary drawing in Figure 2.30.
There, the beginning of the standstill periods is displayed. The dimensions of the
triangle OPC and the law of cosines give a relation between ro and a resulting
in ro = A(v/2 —1). Finally, the circular subtraction of the crank disk is centered
at O and has radius v A2 + b2, where b = A — ry.
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FIGURE 2.30. The mechanism’s dimensions.

The implementation of the mechanism was realized in "maltesian_gear.cpp".
The shape of crank and cross are quite unusual, and their design needs some

consideration. We begin with the crank. It consists of a circular disk of which
another circle is subtracted, a rectangle, and a small circle. The circular disk will
be an object of type ComplexPoly2d.'> We make some definitions in Init( ):

Listing from "maltesian_gear.cpp":

Poly2d p[1];

const int m1 = 7, m2 = 20;

const intn=2x (ml +m2—1);
p [0].Def( NoColor, n, FILLED );

Realrad = sqrt( Ax A+ b *xb );
Real omega = 0.5 * Pl —atan( (A+b )/ (A—-b) );

Real phi, delta = omega / ( m1 — 1 );

for (i =1, phi = 0.5 % Pl; i <= m1; i++, phi —= delta )
p[0][i]( rad * cos( phi ), rad * sin( phi ) );

delta = 0.75 = Pl / m2;

for (i = ml+1, phi = —0.25 * Pl + delta;

123We have to use a complex polygon in order to display the disk’s non convex outline

correctly.
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i <=ml+ m2; i++, phi += delta )
p[O][i]( r1 % cos( phi ), rl = sin( phi ) +sqrt( 2 ) x A );

for (i=2;i<ml+ m2;i++ )
p[O}[n—i+1]( —p[0][i]x, p[O][i]l.y );
p[0][n] = p[O][1];
Crank1.Def( Blue, 1, p );
l J

In the first line we introduce an auxiliary “array” p[1] of one ordinary Poly2d
object. In the last line we define our complex polygon. Its loops consist of the
elements of p (i.e., there exists only one loop, as is indicated by the second
parameter of the defining method). The computation of the points is a little
tricky, and we must pay attention not to get confused with the indices.

It would be even harder to define the cross in the same way. But there is an
alternative to computing the points’ coordinates: We simply draw a rectangle in
red and cover it with a few circles and rectangles filled in pure white.

(
Listing from "maltesian_gear.cpp":

MaltRect1.Def( Red, 2 = A, 2 x A, FILLED );
MaltRect1.Translate( —A, —A );

int i;
for (i=0;i<4;i++)
MaltRect2 [i].Def( PureWhite, A — r2, 2 % r3, FILLED );
MaltRect2 [0]. Translate( —A, —r3 );
MaltRect2 [1].Translate( r2, —r3 );
MaltRect2 [1].Rotate( Origin, 90 );
MaltRect2 [2].Translate( r2, —r3 );
MaltRect2 [3]. Translate( r2, —r3 );
MaltRect2 [3].Rotate( Origin, —90 );

for (i=0;i<4;i++ )
InvMalt1 [i].Def( PureWhite, Origin, r1, FILLED );
InvMalt1 [0].Translate( — A);
InvMalt1 [1].Translate( A, A );
InvMalt1[2].Translate( A, —A );
InvMalt1 [3].Translate( A, A );
0

for (i=0;i<4;i++ )
InvMalt3[i].Def( Pure White, Origin, r3, FILLED );
InvMalt3 [0].Translate( —r2, 0 );

t
0
InvMalt3 [ 1].Translate
2
3

(r2, 0);
InvMalt3 [2].Translate( 0, —r2 );
InvMalt3 [3].Translate( 0, r2 );
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The two remaining parts CrankBar and CrankEnd are a simple rectangle and
circle, respectively. The important thing in Draw( ) is now the drawing order of
the objects in order to get the correct visibility:

Listing from "maltesian_gear.cpp":

void Scene::Draw( )

{

}
|

MaltRect1.Shade( );

int i;

for (i=0;i<4;i++)
MaltRect2 [i].Shade( );

for (i=0;i<4;i++)
InvMalt1 [i].Draw( THIN );

for (i=0;i<4;i++)
InvMalt3[i].Draw( THIN );

Crank1.Shade( );

CrankBar.Shade( );

CrankEnd.Draw( THIN );

J

In Animate( ) we rotate the crank parts through a certain angle increment about
their common center. Then we have to determine the corresponding rotation of
the cross. We use a global real variable Psi_old for that.

[

Listing from "maltesian_gear.cpp":

void Scene::Animate( )

{

Crank1.Rotate( Center, Delta );
CrankEnd.Rotate( Center, Delta );
CrankBar.Rotate( Center, Delta );

Real psi = Deg( atan( CrankEnd.Mid( ).x / CrankEnd.Mid( ).y ) );
int i;
if( Psi_old — psi <=0 )

MaltRect1.Rotate( Origin, Psi_old — psi );

for (i=0;i<4;i++)
MaltRect2 [i].Rotate( Origin, Psi_old — psi );
InvMalt1 [i].Rotate( Origin, Psi_old — psi );
InvMalt3 [i].Rotate( Origin, Psi_old — psi );

Psi_old = psi;
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We compute the new angle denoted by % in Figure 2.30. (In a general position
it is, of course, not equal to 45°.) The previous angle is already stored in Psi_old.
We rotate the cross and the invisible circles and rectangles by Psi_old — psi,
but only if the sense of rotation is negative. Hence, a rotation occurs only for
¥ € [—45°,45°], and that is exactly what we want. O

Now to something different. We will still deal with planar kinematics but from
a more theoretical point of view.

Example 2.24. The kinametic map

A motion in the Euclidean plane R? is a transformation p : R?2 — R? that
leaves both the distance of any two points and the orientation of any triangle
unchanged. In a Euclidean coordinate system it reads

@)= G) e

where M is an orthogonal 2 x 2 matrix of determinant 1, and ¢ is a translation
vector. In general, u is a rotation about a certain center C. If C' is a point at
infinity, the transformation is a pure translation. The manifold of all Euclidean
motions depends on three parameters (the coordinates of the center of rotation
and the rotation angle). Hence, its cardinality is equal to the cardinality of R3.
In other words; it should be possible to map the points of R? bijectively to the
motions of R? in a natural way.

—K

N

o

SN

FIGURE 2.31. The kinematic map.

The first map of that kind was described in works by E. STUDY, W. BLASCHKE,
and J. GRUNWALD and is called a kinematic map. We will denote it by . The
visualization of £ combines some of OPEN GEOMETRY’s favored tasks: 2D kine-
matics, 3D curves, and geometric constructions in space. Hence, we will have a
closer look at it:
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The kinematic map x has a very lucid geometric interpretation. Let 7 be a plane
in R3. We use a Euclidean coordinate system with x,y C 7 and identify R?
with 7. By ¥ we denote the set of straight lines in R? that are not parallel to
m; by II we denote the set of points of m. We choose a real D # 0 and introduce
two planes my ...z =D and 7_ ...z = —D. Then we can define a bijective map

g: T =T x I, s—g(s) =4{S), 5} (4)

in the following way (compare Figure 2.31):

1. Intersect the straight line s with 7 and w_ in order to get two points S
and S_.

2. Let S/ and S’ be the normal projections of S and S_ into 7.

3. Rotate S, and S’ about their midpoint M through an angle of 90°. The
resulting points are S, and 5.

Then, S; and S are called right and left image points of s. In Figure 2.31 we
display the right and left image points of two straight lines s and ¢, respectively.
The straight lines s and ¢ have a point K in common. For this reason, there
exists a rotation about the normal projection K’ of K on w that brings S) to
Sy and T7 to T;. Reversed, pairs {S, S} and {T},7;} of points corresponding
in a rotation always stem from intersecting lines. If we admit points at infinity,
this is not only true for rotations but for translations as well. Hence, we have a
one-to-one correspondence between the motions of R? and the points of R3: the
kinematic map k.

An OPEN GEOMETRY implementation is to be found in "kinematic_mapl.cpp".
There exist formulas to compute the kinematic counter image K = x~!(u) of
a motion p when the center K’ and the rotation angle « of p are given. It is,
however, more convenient to construct K from two pairs of corresponding points.
We use the following function for that task:

Listing from "kinematic_mapl.cpp":

void SetPoints( const P3d Pl, const P3d Pr,
P3d &P _plus, P3d &P_minus )
{

P3dM = 0.5 (Pl + Pr);
StrL3d axis( M, Zdir );
P_plus = PI;

P_minus = Pr;
P_plus.Rotate( axis, 90 );
P_minus.Rotate( axis, 90 );
P_plus.z = D;

P_minus.z = —D;
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SetPoints(. .. ) sets the values of Py and P_ when the pair { P}, P.} of image points
is given, D is a global variable to determine the auxiliary planes 7, 7_...2 =
+D.

Now we need a one-parameter set of planar motions. Here, we can refer to OPEN
GEOMETRY’s large stock of motion classes. In our program we use the motion
induced by a four-bar linkage (“coupler motion”; see [14]). Since everything takes
place in [z, y], it is not even necessary to adapt the class FourBarLinkage for use
in 3D. We define an instance Mechanism of this class and define it in Init( )
according to the examples given in [14].

The four-bar linkage consists of four points L, M, A, and B, where L and M
are fixed points, A rotates about L, B rotates about M, A and B are linked by
a rod of constant length. We denote the initial positions of A and B by A; and
By, respectively. Every new position of the mechanism defines new points A, B;
and a motion p with A — A;, B] — B,. By means of the inverse kinematic map
k™1, we will get a curve & C R? that should be displayed. We store the values of
A and B in global variables and construct the points of k in Draw( ):

(
Listing from "kinematic_mapl.cpp":

Ar.x = Mechanism.GetA( ).x;

Ar.y = Mechanism.GetA( ).y;

Br.x = Mechanism.GetB( ).x;

Br.y = Mechanism.GetB( ).y;

SetPoints( Al, Ar, A_plus, A_minus );

StrL3d a( A_plus, A_minus );

StrL3d b( B_plus, B_minus );

P3d K = a x b;

KinPath.AddPoint( K );

KinPath.Draw( THICK, STD_OFFSET, 10 );

I |

The variables A, and B, are global of type P&d; their z-coordinate, however,
is always set to zero. KinPath is an instance of the class PathCurve3d. In order
to get an attractive picture, we mark important points (including A4, A_, By,
and B_) and draw some connecting lines. In addition, we shade three rectangular
frames that represent [z, y] and the auxiliary planes 7, and m_. We want to be
able to watch everything in [z, y]. So it seems sensible to use opacity. For this
reason, the shading has to be the last thing done in Draw( ).

Figure 2.32 shows the output of the program. It can be proved that if S| remains
fixed while S, varies on a circle, the straight line K~1(S), S;) moves on a regulus.
In our example, this is the case for two pairs {Aj, A, }, {Bi, B;} of points. The
kinematic image k is therefore the intersection of two quadrics and hence a space
curve of order four. Special dimensions of the mechanism may, however, cause a
splitting of k£ into two components.
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L

FIGURE 2.32. The kinematic counter image of a coupler motion is a space curve k
of order four.

We can, of course, proceed in the reverse order as well ("kinematic map2.cpp").
A space curve k defines a one-parameter set of motions in [z, y]. We can use the
kinematic map k to draw the trajectory of a point Py or to construct the polodes
of these motions.

In addition to the SetPoints(...) method of the previous example, we need the
inverse method (i.e., the map g of equation (4)) as well. Given a straight line s,
we want to set the left and right image points P and P;:

Listing from "kinematic_map2.cpp":

void InvSetPoints( const StrL3ds, P3d &Pl, P8d &Pr )
{
Plane pi_plus, pi_minus;
pi_plus.Def( P3d( 0, 0, D ), Zdir );
pi_minus.Def( P3d( 0, 0, =D ), Zdir );
Pl = pi_plus * s;
Pr = pi_minus * s;
Pl.z = 0;
Pr.z = 0;
StrL3d axis( 0.5  ( Pl 4+ Pr ), Zdir );
Pl.Rotate( axis, —90 );
Pr.Rotate( axis, —90 );
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We introduce the counter image k of the motion through a parameterized equa-
tion and call it KinClm (kinematic counter image). In order to transform a point
by the rotation p that corresponds to a point K (kg, ky, k)T € k, we use a little
formula and the following function:

(
Listing from "kinematic_map2.cpp":

P3d TransformPoint( const P3d Pl, Realu )

{
P3d K = KinClm.CurvePoint( u );
Real omega = atan( —D / K.z );
K.z = 0;
P3d Pr = Pl
Pr.Rotate( StrL3d( K, Zdir ), 2 « Deg( omega ) );
return Pr;

}

l |

The center of u is the normal projection of K onto 7. The angle w of the rotation
is given by
D
2w = arctan(——),
k.
where +D are the z-coordinates of the planes 7 and 7_, respectively. Now,
how can we get the polodes of the motion? This is easy, since the following
result holds:

The polodes of a Euclidean motion can be found by applying the map g to the
tangents of the kinematic counter image k of the motion. The set of left image
points is the fixed polode, the set of right image points is the moving polode.

This is easy to implement in OPEN GEOMETRY. We will draw the polodes as
path curves, but we could as well derive parametric representations. In Draw( )
we compute the poles F and M of fixed and moving polodes and add them to the
corresponding path curves (the kinematic counter image k is implemented as a
parameterized curve, and the global real variable U refers to a curve point of k):

[ \

Listing from "kinematic map2.cpp":

InvSetPoints( KinClm.Tangent( U ), F, M );
FixedPolode.AddPoint( F );

MovingPolode.AddPoint( M );

FixedPolode.Draw( MEDIUM, STD_OFFSET, 10 );
MovingPolode.Draw( MEDIUM, STD_OFFSET, 10 );
F.Mark( PureRed, 0.2, 0.1 );

M.Mark( PureGreen, 0.2, 0.1 );
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24

FIGURE 2.33. One trajectory t, the fixed polode p, and the moving polode p’ of the
kinematic image of a cubic circle k.

An example image is displayed in Figure 2.33. We additionally marked a few
points and drew connecting lines in order to make the construction more lucid.

¢

Fractals

Since B. MANDELBROT published his classic “Fractal Geometry of Nature” in
1977 ([23]) fractals have become very popular. They play an important role in
physics, chemistry, biology, astronomy, meteorology, statistics, economy, mathe-
matics, and — last but not least — computer graphics. The definition of a fractal
is, however, controversial. MANDELBROT defines it as a set of fractal dimension
higher than topological dimension. Of course, he has to explain the fractal di-
mension first. The book [7] takes a more intuitive (and less rigorous) point of
view and gives some typical properties of a fractal F:

e F'is finely structured.
e F'is too irregular to be described by traditional geometric means.
e F'is very often self-similar or almost self-similar.

e The fractal dimension of F' (whatever that is) is usually higher than its
topological dimension.

e Very often F can be easily defined (e.g, by a recursive formula).'?

BFor this reason, fractals are usually easy to implement in a computer program!
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These properties will be enough for our task in this book: the programming of a
few fractal images.

Example 2.25. Koch fractals

We start with a very simple but huge class: the Koch fractals. According to
MANDELBROT, we need two things to define a Koch fractal: an initiator and a
generator. The initiator is just a starting teragon (that is what polygons are called
in this context). The generator is a map that takes two points (i.e., a line segment)
as input parameters and returns a sequence of points (a polygon). Both, initiator
and generator, can usually be displayed in a simple graphic (Figure 2.34).

initiator

generator / \
T / N\ T;
M TG
FIGURE 2.34. Same teragons of the Koch curve and its initiator and generator.

In our first example, the initiator is a straight line. The generator divides the
segment into three parts of equal length and returns the vertices of the equiangu-
lar triangle over the middle part. Now we can define a sequence (Tp, Ty, T, ... )
of teragons by

1. applying the generator to each edge of the initiator Ty;

2. building a new teragon 77 of the vertices of Ty and the newly generated
points;

3. repeating the same procedure with the edges of T;.

Figure 2.34 shows the teragons T, 15, T3, and Tg. The fractal F' to this initiator
and generator is defined as

F:= lim T;. (5)

1—00

In our case, F' is the famous Koch curve. Note that Tg is already a very good
approximation for F.
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OPEN GEOMETRY provides the class KochFractal. It is derived directly from
02d and allows the fast and comfortable generation of Koch fractals. Take, e.g.,
a look at "koch_curve.cpp".

In some respects, Koch fractals in OPEN GEOMETRY are similar to parameterized
curves: The class KochFractalis an abstract class due to its purely virtual member
function Generator( ). This means that we have to derive our own class from
KochFractal and write our own Generator( ) function:

Listing from "koch_curve.cpp":
class MyFractal: public KochFractal

public:
virtual void Generator( void )

int n = 3;

int nl =n+ 1;

int sizel = Size( ) — 1;

int new_size = sizel x n + Size( );
int i, j;

P2d *Q = new P2d [Size( )];

for (i=0;i<Size( );i++)
Q[i] = GetPoint( i );

02d::Def( NoColor, new_size );

for (i=0,]j=0;i<sizel; i++,j+=nl)
{
pPoints [j] = Q[il;
vedv( Qlil, Qi+1] );
v /=3;
pPoints [j+1] = pPoints [j] + v;
pPoints [j+3] = pPoints [j+1] + v;
v.Rotate( 60 );
pPoints [j+2] = pPoints [j+1] + v;
}

pPoints [new_size—1] = Q [sizel];
IncreaseStep( );
delete [] Q;

}

MyFractal KochCurve;
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The integer n is the number of new points that are added to each segment of the
initiator. It may vary according to the stage of development of the fractal. Later
we will see examples of this. The following part (until the for loop) should not
be changed by the reader. It allocates new memory for the next teragon.

The for loop is the place to write the actual generator. There the reader has to
describe the new points pPoints[j+1],... ,pPoints[j-+n] in terms of Q[i] and Q[i+1]
(be careful not to mix up the indices!). In our example we build the characteristic
equiangular triangle of the Koch curve.

The generator is called in the animation part of the program. Thus, with each new
frame a new teragon is created. You will notice that the generator is independent
of the initial previous teragon. That is you can change the initiator without
changing the generator. The initiator itself is more or less identical to OPEN
GEOMETRY’s Init( ) part

[

Listing from "koch_curve.cpp":
void Scene::Init( )

P2d P[2];
PO]( =10, =3 );
P[1]( 10, -3 );
KochCurve.Def( 2, P );
}
I I

We get an array P of points and define the Koch fractal. The first integer pa-
rameter of KochFractal::Def(...) is the number of points in P.

Draw( ) is very simple. It reads:

(
Listing from "koch_curve.cpp":

void Scene::Draw( )

Silent( );
KochCurve.Draw( Red, THIN );

}
|
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The Silent( ) command is necessary in order to turn off the OPEN GEOMETRY
message “warning: more than 30000 points!”. Consider our simple example. The
number p,, of points of 7;, can be computed by the recursion

Dn = 4pp_1 — 3.

Thus after 8 steps we exceed the limit of 30000 points for the first time (65537
points). After a few more steps the computing time for each new frame will be
too long for nervous computer programmers. So you had better not start the
auto-animation!'*

Changing the initiator immediately yields different Koch curves. The following
is taken from "koch_snowflake.cpp":

Listing from "koch_snowflake.cpp":

void Scene::Init( )

{

const int m = 3;

P2d P[m+1];

PLO]( 5, 0);

for (inti=1;i<=m;i++)

Pl =P[0]; |
P [i].Rotate( Origin, —360 / m * i );

KochCurve.Def( m + 1, P );

}
| |

The initiator is a regular triangle. Note that it consists of 3 sides and therefore of
4 points. If you calculate the points via a rotation through an angle of +360-i/m,
the orientation of the triangle changes and you will get a different fractal. Both
types are displayed in Figure 2.35.

The generator may vary together with the stage of development of the fractal.
In order to control this, the class KochFractal provides the function GetStep( )
that returns the current step. In "alt_koch_curve.cpp" we used this to build
the equiangular triangles on the left- or right-hand side of the edges according
to the parity of the current step. In "random koch_fractall.cpp" we allowed a
random choice of the side for each new step, in "random _koch _fractal2.cpp" we
changed it for every single edge. We print the essential part of the generator for
the last case (rnd( ) is an instance of RandNum and produces a random number
in [-1,1)).

41f you do it by accident, it will cause no harm to kill the process.
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initiator

generator /\ generator /\
@© ® @© ®

FIGURE 2.35. Two fractals of Koch type. The left fractal is called Koch’s snowflake.

Listing from "random koch fractal2.cpp":

int k =1;
for (i=0,j=0;i<sizel;i++,j+=nl)

if (rd( ) >0)

k=—-1;

pPoints [j] = Q]i];
v2dv( Q[i], Qli+1] );
v /=3;

pPoints [j+ 1] = pPoints [j] + v;
pPoints [j+3] = pPoints [j+1] + v;
v.Rotate( k * 60 );

pPoints [j4+2] = pPoints [j+1] + v;
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initiator

initiator e——

FIGURE 2.36. Two random fractals of Koch type.

Figure 2.36 shows two output examples of this program. &

Now it is up to you! Try different initiators and generators and explore the
astonishing variety of Koch fractals. We will present just a few more examples in
order to demonstrate what is possible. A real classic Koch fractal is the original
PEANO curve: a curve developed by G. PEANO in 1890. He wanted to show how
a curve can fill an object of two dimensions, e.g., a square ("peano_curve.cpp").
The initiator is a square; the generator is displayed in Figure 2.37.

Example 2.26. Autumn leaves

Another interesting example can be found in "dragon filling curve.cpp".
There, the Koch fractal fills another fractal, called “the Dragon”. The initia-
tor is a line segment; the generator is displayed in Figure 2.38. With each new
segment the generator changes the side. That is, the new point lies on the right
side of the first segment, on the left side of the second segment, etc.

Listing from "dragon_filling curve.cpp":

for (i=0,j=0;i<sizel;i++,j +=nl)

{

pPoints [j] = Q[il;
V2dv( Q[il, Q[i+1] ):
v /= 2;
V2dw( vy, —v.x );
if (1%2)

w k= —1;

pPoints [j+1] = pPoints [j] + v + w;
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FIGURE 2.37. Steps 1, 2, and 4 in the development of the original Peano curve.

The Dragon has an interesting property: It can be used to pave the plane. Take
the initiator of a Dragon-filling curve (a line segment) and rotate it three times
about one of its end points through 90°. These initiators will create four Dragons
that pave a certain region of the plane (Figure 2.39). If we take a square lattice of
points and use each vertex four times to develop a Dragon, we can (theoretically)
pave the whole plane.

In "autumn_leaves.cpp" we did this for a lattice of 6 x4 points. The Dragons are
drawn in random colors and create a pattern resembling fallen autumn leaves.
Figure 2.39 is a nice picture, but you really should not miss the opportunity to
watch the development of the Dragon leaves on your computer screen. &

Example 2.27. Newton fractals

Beside fractals of Koch type, there exist quite a few other classes of fractal sets.
We present a popular example: Take an arbitrary polynomial P(z) of degree n
with complex coefficients. In the algebraic sense, it has n zeros (1, ..., (.

By N (P, z) we denote NEWTON’s iteration sequence (zo, 21, 22, . . . ) for the poly-
nomial P with start point z, i.e., the sequence

z0 = 2, Zn4l =2 —

Now we define a map N: C — {(y ... (pn, 00} by

¢ if N(P,z) converges to (;,

oo otherwise.
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FIGURE 2.38. The first and second teragons (dotted) of the Dragon-sweeping curve
and the Dragon.

Thus, N 71(¢;) is the “region” attracted to ¢; by NEWTON’s iteration. We put
the word “region” in quotation marks because, in general, it is a twisted and
torn subset of C; in other words, a fractal.

The two programs we wrote for the visualization of fractals of NEWTON type are
"cubic_newton_fractal.cpp" and "quartic_newton_fractal.cpp". They are
almost identical. Note that P is a cubic polynomial in the first, and a quartic
polynomial in the second program. In this book we will describe the first program
only.

The basic strategy is easy and straightforward: We take a cubic polynomial P
and compute its zeros (y, (1, and (5. To each zero we assign a color ¢;, e.g., yellow
to (o, red to (1, and green to (2. Then we take a complex number z = 2y from
a fine rectangular grid and check whether it is “sufficiently close” to a zero (; of
P. If this is the case, we paint the corresponding pixel in the color ¢;. If zg is not
close enough to a zero of P, we apply NEWTON’s iteration to zg and perform the
same check for the new value z1, etc. After a certain maximum number of futile
attempts, we quit the loop and leave the pixel white.

In "cubic_newton_fractal.cpp" we take the start points z; from the intersec-
tion of the rectangular region [—XO0, Xo] % [—Yo, Y] and the grid {(X0+a - Dx, y0+
b-Dy) | a,b € R}. The distances Dx and Dy of the grid points in the z- and y-
directions depend considerably on the screen resolution: You might adapt them
in the program source or — even better — change the size of the OPEN GEO-
METRY window.

We recommend that you use a rather small and square window. Run an arbi-
trary OPEN GEOMETRY program, press <Ctrl+W> or choose the menu item
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FIGURE 2.40. Two fractals generated by Newton’s iteration.

“Image—Window—Window dimensions” to open a dialogue window and take,
e.g., a width of 300 and an aspect ratio of 1/1. Then the default values in
"cubic_newton _fractal.cpp" will produce a good picture in reasonable com-
puting time.

In Init( ) we set the coefficients of the cubic polynomial Az3 + Bz? 4+ Cz + D and
compute its root. We do not allow quadratic or linear polynomials, since we do
not want to take care of different cases at the cost of computing time (Solution
is a globally defined array of three elements of type Complex).

I
Listing from "cubic _newton_fractal.cpp":

void Scene: :Init( )

{
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ASet( 1,0);
B.Set( 0, 0 );
CSet( 0,0 );
D.Set( —1, 0);

if ( A.Magnitude( ) < le—7)
SafeExit( "Not a a cubic equation!" );

CubicSolve( B/A, C/A, D/A, Solution );

I |

In Draw( ) we write two loops to start with all values of z in question. We copy
z to another complex number w and do the following while count < MaxCount:

[ \
Listing from "cubic_newton_fractal.cpp":

w = Newton( w );
if ( IsRoot( w, Solution[0], Eps ) )

count += MaxCount;
z.MarkPixel( Yellow );

else if ( IsRoot( w, Solution[1], Eps ) )

{

count += MaxCount;
z.MarkPixel ( Red );

else if ( IsRoot( w, Solution[2], Eps ) )

{

count += MaxCount;
z.MarkPixel ( Green );

count+-+;

I |

Of course, Newton(w) is NEWTON's iteration w — w — P(w)/P’(w) for the poly-
nomial P. In addition, we use the IsRoot(...) to check whether the input param-
eter w is sufficiently close to a root of our polynomial. “Sufficiently close” means
that w lies in a disk of radius Eps around the root. We didn’t, however, use the
Euclidean metric but the Manhattan metric to define this disk:
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(
Listing from "cubic _newton_fractal.cpp":

Boolean IsRoot( Complex z, Complex root, Real eps )

return fabs( z.get.re( ) — root.getre( ) ) +
fabs( z.get.im( ) — root.get.im( ) ) < eps;
}
L |

If w is close to a zero, we paint the corresponding pixel in the appropriate color.
The global real Eps can sometimes be chosen rather big, which will considerably
decrease the computation time. In our program we used Eps = 0.8.

Denote by A((;) the region of attraction for the zero (;. Then Eps may be the
supremum of all reals r such that the “Manhattan disk” with radius r and center
¢; completely lies in A((;).

Figure 2.40 shows the output of the programs "cubic_newton fractal.cpp"
and "quartic newton_fractal.cpp". There we use the polynomials

z2—1 and zt4iz® -1,
respectively. %

Example 2.28. The Mandelbrot set
Another real classic is the Mandelbrot set. It can be defined in different ways,
but for computer graphics, the following does the best job:

FIGURE 2.41. The Mandelbrot set M.

Let ¢ € C be a complex number. We define f.(z) := 22 + ¢, f2(z) := f.(2), and
for k € N, fF1(2) := fo f¥(2) (k € N). That is, f*(z) is the k-th iterated
function of f.(z). According to [7], the Mandelbrot set M can now be defined as

M = {c € C| (f¥(0))>1 is limited} .
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This definition gives rise to an easy visualization of M on a computer screen
("mandelbrot_setl.cpp"; Figure 2.41). As in Example 2.27, we consider com-
plex numbers from the intersection I of a rectangle [X0,X1] x [Y0,Y1] and a
rectangular grid {X0 + a-Dx +i(Y0 + b-Dy) | a,b € R}. For each complex
number ¢ € D, we use the function IsInSet(...) to test whether it is in M or not:

\
Listing from "mandelbrot_setl.cpp":

Boolean IsInSet( Complez c, int N, Real R )

t
int i = 0;
Complez c0 = c;
while (i < N)

c=cxc+ c0;

if ( c.Magnitude( ) > R )
return false;

i++;

return true;

}
| !

We compute f¥(0) and return false if its absolute value exceeds a certain limit
R. If this does not happen for any k£ < N, we assume that ¢ € M and return
true. The rest is done in Draw( ) (MaxCount = 100 and MaxRad = 100 are global
constants):

Listing from "mandelbrot_setl.cpp":

void Scene::Draw( )

{
Real x = X0,y = YO0;
Complex z;
while ( x < X1)

while (y < Y1)

z.Set( %,y );

if ( IsInSet( z, MaxCount, MaxRad ) )
z.MarkPixel ( Black );

y += Dy;

y = YO0;
x += Dx;
}
}
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There exists a beautiful alternative visualization of M ("mandelbrot_set2.cpp";
Figure 2.41). Instead of painting the pixels of M, we can paint the pixels corre-
sponding to C \ M. The color depends on the first integer ko for which f%°(0)
exceeds the maximum radius MaxRad. All we have to do is to change the function
IsInSet(...) a little:

[

Listing from "mandelbrot_set2.cpp":

const int C = 5;
const Color Col [C] = { White, Yellow, Green, Blue, Red};

int IsInSet( Complex c, int N, Real R )

}
|

inti = 0;
Compler c0 = c;
while (i < N)

c=c*c+ c0;
if ( c.Magnitude( ) > R)
return i % C;
i++;
return 0;

|

It returns an integer value i € {0,...,C — 1}, where C' is the dimension of an
arbitrary array of colors. The Draw( ) only needs needs a small change:

[

Listing from "mandelbrot_set2.cpp":

void Scene::Draw( )

{

Real x = X0, y = YO0;
Complez z;

int i;

while ( x < X1 )

while (y < Y1)
{

z.Set( x,y);
i = IsInSet( z, MaxCount, MaxRad );
z.MarkPixel ( Col [i] );

y += Dy;

¥
y = YO0;
x += Dx;
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2.0

Conics

Together with points and straight lines, conic sections belong to the most funda-
mental objects of two-dimensional geometry, whether Euclidian, affine, or pro-
jective. They appear in many contexts and despite investigation for 2500 years,
interesting new properties are still being discovered.

The OPEN GEOMETRY classes Conic and Conic3d have been considerably im-
proved and enlarged in OPEN GEOMETRY 2.0. In this chapter we will present
their most important methods in action. For a complete listing the reader is
referred to Chapter 6, page 446 and page 490.

There exist several ways of defining a conic section. Analytically speaking, it is
the locus of all points in a plane that satisfy an equation of the type

(6)

with respect to a Euclidean coordinate system. Each time you define a conic in
OPEN GEOMETRY, the program computes the coefficients ¢; of this equation.
With their help the conic type (ELLIPSE, PARABOLA, HYPERBOLA, or IR-
REGULAR) is determined and the vertices, the center, the axis, the foci, the
asymptotes, and the curve points are computed. Many other methods of Conic
refer to equation (6) as well. It allows efficient, precise, and elegant computations.

122 4 coxy + 3y + c4x + sy + ¢ =0

The original way of implementing a conic in OPEN GEOMETRY is described in
[14], Section 4.6.1° In OPEN GEOMETRY 1.0 it was necessary to specify five conic
points in order to define a conic:

P2d P [5];
P[0].Def( —5, 0 );
P[1].Def( 0, =3 );
P[2].Def( 5, 0 );
P[3].Def( 0, 3 ):
P[4].Def( 4, 1.8 );

Conic conic;

int number_of_points = 150;

conic.Def( Black, number_of_points, P );
conic.Draw( THICK );

In the new version you have more possibilities. You can define a conic section by
1. one point plus two focal points,,

2. three points plus one focal point,

3. five tangents,

5The list of methods of the class Conic given there is no longer up to date! The
new version has much more in store for you.
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4. four points plus one tangent in one of them,
5. the center plus two end points of a pair of conjugate diameters,

6. the coeflicients of the implicit equation (6).

For your convenience, we list the corresponding function headers from "conic.h":

( \
Listing from "H/conic.h":

void Def( Color col, int numPoints, const P2d P [5] );

void Def( Color col, int numPoints, const P2d &P,
const P2d &F1, const P2d &F2, TypeOfConic type );

void Def( Color col, int numPoints, const P2d &P,
const P2d &Q, const P2d &R, const P2d &F );

void Def( Color col, int numPoints, const StrL2d t[5] );

void Def( Color col, int numPoints, const P2d P [3],
const P2d &T, const StrL2d &t );

void Def( Color col, int numPoints, const P2d &M,
const P2d &A, const P2d &B );

void Def( Color col, int numPoints, Real d[6] );

I |

The use of these new defining methods is indicated in a first example. There we
will define a conic section by three points and one focal point.

Example 2.29. Focal points and catacaustic

The sample program "catacaustic.cpp" shows an example of the definition of
a conic section s by three points Py, P;, P> € s and one focal point F of s. There
we want to illustrate the following interesting theorem (compare [4], [25]):

The catacaustic ¢ of a pencil of lines E(e) with respect to a reflecting curve r is
the locus of all focal points F' # E of those conic sections that osculate v and
have E as one focal point.

What needs to be done? We define a global vertex E of the pencil of lines. The
reflecting curve r is a parameterized curve, in our case an ellipse. Furthermore,
we use a global variable T that gives the current parameter of the curve point
on 7. It will be increased by a certain A in Animate( ). That is all we need to
draw the osculating conic in Draw( ):
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Listing from "catacaustic.cpp":

void Scene::Draw( )

{

ShowAzes2d( Black, —5, 10, —8, 8 );
// get three neighboring points of the reflecting . . . conic
const Real eps = 0.001;
P2dP|[3];
int i;
for (i=0;i<3;i++)

P [i] = ReflCurve.CurvePoint( T + (i — 1) *eps );
// ...and define osculating conic section with one focal point E
Conic osc_conic;
osc_conic.Def( Red, 100, P[0], P[1], P[2], E );
osc_conic.Draw( MEDIUM );

// midpoint and second focal point of osc_conic
P2d M = osc_conic.GetM( );

P2dF =M + V2d( E, M );

// the reflex of F on refl_curve

P2d R = ReflCurve.CurvePoint( T );

// draw the axes of osc_conic

Real b = osc_conic.DistMC( );

Reale = 0.5 x E.Distance( F );

Real m = maximum ( osc_conic.DistMA( ), e );
osc_conic.MajorAxis( ).Draw( Red, —1.5 * m, 1.5 x m, THIN );
osc_conic.MinorAxis( ).Draw( Red, —1.5 * b, 1.5 x b, THIN );

// draw the rest and mark the relevant points

StraightLine2d( Gray, E, R, THIN );

StraightLine2d( Gray, R, F, THIN );

// GetCata(...) is a method of the class ParamCurve2d
ReflCurve.GetCata( E, ReflCurve.ul, ReflCurve.u2, Catacaustic );
Catacaustic.Draw( MEDIUM );

ReflCurve.Draw( THICK );

F.Mark( Red, 0.2, 0.1 );

R.Mark( Blue, 0.2, 0.1 );

E.Mark( Red, 0.2, 0.1 );
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FIGURE 2.42. Output of the program "catacaustic.cpp".

It is defined by three neighboring curve points and the focal point E. The rest
of Draw( ) is routine. We make use of several Conic methods in order to get
important conic points and draw important lines. Note that the drawing of the
catacaustic is really very simple. We define and initialize a global variable Cata-
caustic of type L2d and use the GetCata(...) method of ParamCurve2d. &

In projective geometry, the principle of duality is well known. Its 2D version
states that any theorem of projective geometry remains valid if we interchange
the word “point” with “line” and the phrase “lies on” with “intersects.” With
the help of conic sections we can realize this principle. The central notion in this
context is that of polarity.

Let ¢ be a conic section in the projective plane.'6 The outside O(c) of ¢ is defined
as the set of all intersection points of two different and real tangents of ¢. That
is, any point outside c is incident with two real conic tangents.

We consider a point P € O(c). The conic tangents through P are p; and pa,
respectively (Figure 2.43). Their points of tangency span a straight line p that
is called the polar of P with respect to c. Reversed, P is called the pole of the
straight line p.

So far, we can associate a straight line p with each point P € O(c) and a pole
with each straight line that intersects ¢ in two real points. The line p intersects

181f you are not familiar with the basic concepts of projective geometry, you can
refer to Section 5.2 and read our short introduction to that topic, or you can read the
following paragraphs without being too critical as far as range and image of certain
maps are concerned.
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the conic c¢ in two real points. Now we extend this relation between points and
lines to the other points. Let @ be a point in the interior Z(c) := P?\ (O(c)Uc)
of ¢ (Figure 2.43; there, we assumed, without loss of generality, that @ lies on
p)-

The point @ is incident with two straight lines p and ¢ that intersect ¢ in real
points. Their respective poles P and T span a straight line ¢ that will be called
the polar of Q with respect to c.'” Finally, if a point R is located on the conic,
we define its polar as the conic tangent r in R.

Now, the conic ¢ induces a bijection between the point set II and the line set
A of the projective plane P?. This bijection is called the polarity of c. It is a
realization of the principle of duality because of the following theorem:

If three points P, T, and U are situated on a straight line q, their respective
polars are concurrent in the pole Q of q.

FIGURE 2.43. Poles and polars of a conic section c.

We visualize the above considerations in an OPEN GEOMETRY program:

Example 2.30. Pole and polar
In "pole_and polar.cpp" we display a conic section C together with a couple
of straight lines and points that correspond in the polarity on C:

(
Listing from "pole_and _polar.cpp":

#include "opengeom.h"

Conic C;
V2d Dir; // direction vector for animation

174 is well-defined; i.e., it does not depend on the special choice of p and ¢.



Section 2.5. Conics

115

void Scene::Init( )

// define conic through a pair of conjugate diameters.
C.Def( Black, 100, Origin2d, P2d( 5, 0 ), P2d( 0, 3 ) );
Dir.Def( 0, 1 );

void Scene::Draw( )

{

// define point P and determine its polar p
P2d P;

P.Def( 6, 5 );

StrL2d p;

p = C.GetPolar( P );

// determine point on polar and inside conic

// and get its polar

P2dS1, 52

if ( !C.SectionWithStraightLine( p, S1, S2 ) )
SafeExit( "P is outside the conic!" );

const Real f = 0.8;

P2d Q;

Q=f*S1+ (1—-1f)=*S2

StrL2d q;

q = C.GetPolar( Q );

q.Draw( Green, —10, 10, MEDIUM );

// get some line through Q and find its pole T;
// T must be situated on the polar p of P
StrL2d t;

t.Def( Q, Dir );

P2dT;

T = C.GetPole( t );

void Scene::Animate( )

}

Dir.Rotate( 1.2 );
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We use one of OPEN GEOMETRY’s new methods for the definition of the conic
in Init( ): It is given by its center plus end points of a pair conjugate diameters
(in our case, the end points happen to be the conic vertices).

In Draw( ) we define an arbitrary point P € O(C) and determine its polar p by
using the GetPolar(...) method of Conic. We test whether p and C have two real
points in common (they have only if P is located in the outside of C) and store
them in S1 and S2, respectively.

Next, we define the point Q € p N Z(C) and get its polar q by means of
GetPolar(. .. ). It must be incident with P. Furthermore, we determine the pole T
of a straight line t through Q. The direction of t will be changed in Animate( ),
which causes T to travel along the polar q of Q. &

With the help of polarity and/or the principle of duality, one can derive certain
geometric theorems almost immediately. For example, BRIANCHON’s Theorem
(1806) is an immediate consequence of PASCAL’s Theorem (1640):

Example 2.31. Pascal and Brianchon
The theorems of PASCAL and BRIANCHON are both visualized in Figure 2.44.
They can be formulated as follows:

Theorem (Pascal): Let A; and B; be two sets of three points each on a conic
section ¢ (1 = 0,1,2). Then the three intersection points S; := [A;, Bi| N [Ag, B;]
(1,7, k € {0,1,2} pairwise different) are collinear.

Theorem (Brianchon): Let a; and b; be two sets of three tangents each of a

conic section ¢ (i = 0,1,2). Then the three connecting lines s; := [a; Nby, ap Nb;]
(i,7,k € {0,1,2} pairwise different) have a common point.

FIGURE 2.44. The theorems of PASCAL (1640) and BRIANCHON (1806).
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We produced Figure 2.44 with the help of "pascal_brianchon.cpp". There we
globally define a conic C, six of its points, and six of its tangents:

(
Listing from "pascal_brianchon.cpp":

Conic C;
P2d A[3], B[3]; // six points on conic
StrL2d a[3], b[3]; // six tangents of conic

// pulsing reals for animation
PulsingReal Rx[5], Ry [5];

I |

We want to demonstrate both theorems with the help of a little animation.
Therefore, the conic as well as the conic points and tangents will change with
every new frame. In order to achieve this, we use additional instances of the
OPEN GEOMETRY class PulsingReal. Only they can be initialized in Init( ):

( \
Listing from "pascal_brianchon.cpp":

void Scene::Init( )

{

// initialize pulsing reals
Rx[()] Def( —4.5, 0.02, —3.5, —5.5, HARMONIC );
Ry[0].Def( 2, 0.01, 1.5, 4, HARMONIC );

(
Rx [4].Def( 0, 0.02, —2, 1, HARMONIC );
Ry [4].Def( —5, 0.03, —3.5, —6, HARMONIC )

I |

The remaining elements have to be defined in Draw( ) (otherwise, there would
not be any animation). The essential part is this:
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Listing from "pascal_brianchon.cpp":

// define conic
P2d P[5];
int i;
for (i=0;i<5;i++ )
P [i].Def( Rx[i].Next( ), Ry[i].Next( ) );
C.Def( Black, 100, P );

/ / initialize points on conic
A[0] = HA[]—P[],AD]:P[?];

B[0] = P[3], B[1] = P[4];

B[2] = A[2];

B [2].Reflect( C.MajorAxis( ) );

// initialize tangents of conic

for (i=0;i< 3;i++ )

ali] = C.GetPolar( A[i] );
b[i] = C.GetPolar( BJi] );
}

// three points on PASCAL axis

P2d S[3];

S[0] = StrL2d( A[1], B[2] ) = StrL2d( A[2

S[1] = StrL2d( A[0], B[2] ) * StrL2d( A[2 ] B[0]
S[2] = StrL2d( A[1], B[0] ) = StrL2d( A[O

// point of BRIANCHON
P2d T3], U[3];

T[0] =a[l] * b[2], U[0] = a[2] = b[1];
T[1] = a[0] * b[2], U[1] = a[2] = b[0];
T[2] =a[l] * b[0], U[2] = a]0] = b[1];
P2d Q = StrLed( T[0], U[0] ) * StrLed( T[1], U[1] )

C.Draw( THICK );
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We define the conic with the help of five “pulsing” points P[i]. Their definition
ensures that they will slowly wander over the screen during the animation. We
copy them to the points A[i] and B[i], respectively. Only B[2] needs a special
treatment in order to guarantee that it is located on C.

The class Conic does not know a Tangent(...) method. It is not necessary, be-
cause GetPolar(...) does the job. We use this to initialize the conic tangents.
Now we construct the three points S[i] on the PASCAL axis and BRIANCHON’S
point Q as described in the above theorems.

In the remaining part of Draw( ) we plot a large number of straight lines on the
screen and mark important points. It is of little interest, and we do not display
it here. Note, however, a little detail: In order to draw the PASCAL axis, we write
the following lines:

[
Listing from "pascal_brianchon.cpp":

StraightLine2d( Red, S[0], S[1], THICK );
StraightLine2d( Red, S[1], S[2], THICK );

I |

This ensures that, independent of the order of the points S[i] (which may change
during the animation!), exactly the line segment between all three points S[i] will
be displayed. &

Sometimes, it is better to use an instance of ParamCurve2d instead of the class
Conic. The following example illustrates this.

Example 2.32. Conic caustics

We have already talked about caustics of reflection (compare Example 2.6). Re-
flecting the rays of a pencil of lines with vertex E on a plane curve c yields a
hull curve ¢y, the catacaustic (or simply caustic) of ¢ with respect to the pole E.
Of course, a ray of light may be reflected not only once but twice or more often.
The hull curve after n reflections is called catacaustic or caustic of order n.

It is very easy to visualize the caustics of higher order if ¢ is a conic section. The
reason for this is that we can easily compute the reflection of a ray of light on the
conic. In "conic_caustic.cpp" we introduce global constant reals A and B and
a global constant Type that stores the type of the reflecting conic ¢ (ELLIPSE,
PARABOLA, or HYPERBOLA). Then we parameterize c:

[

Listing from "conic_caustic.cpp":

P2d ConicPoint( Realt )

{
if ( Type == ELLIPSE )
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oE

C,

FIGURE 2.45. The caustics of first and second order of an ellipse (left) and the
caustics up to order three of a circle (right). In the second case, the pole E is a point
at infinity.

return P2d( A x cos(t ), Bxsin(t) );
if ( Type == HYPERBOLA )

return P2d( A / cos(t ), Bxtan(t) );
else // parabola

const Real factor = —B — B *x sin( t );
return P2d( A x B x cos( t ) / factor,
2% B=x*B=xsin(t) / factor );

}
}
| |

Note that the suggested parametric representations for parabola and hyperbola
are not standard! Compared to the more frequent parameterized equations

t a cosh(t)
<t2) and (bsinh(t)> ’
respectively, they have the several advantages:
1. They require the same parameter interval [0, 27] for all three conic types,

which is convenient for a program that treats all types equally.

2. Our parameterizations are periodic. This is an advantage if we vary a point
on the conic during the animation.

3. We can parameterize both branches of a hyperbola with a single equation.
Additionally, the distribution of points on parabola and hyperbola is quite
good.
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Of course, the use of two design parameters A and B is redundant in the parabolic
case. We use them for reasons of uniformity. In Init( ) we compute five conic points
and define ¢ = ReflConic:

(
Listing from "conic_caustic.cpp":

void Scene::Init( )

P2d P[5];
int i;
for (i=10;i<5;i++)
P [i] = ConicPoint( i );
ReflConic.Def( Black, 100, P );
}

I |

At first sight, the use of the function ConicPoint(...) seems to be a bit ex-
aggerated, but we will be able to employ it very well in the central part of
"conic_caustic.cpp". This part consists of a function to reflect a straight line
on c¢. The input parameters are the center E of the light rays, the number n of
reflections, and the curve parameter t.

[

Listing from "conic_caustic.cpp":

StrL2d ReflectLine( P2d E, int n, Realt )
t P2d C = ConicPoint( t );
StrL2ds( C, E);
StrL2d ¢ = ReflConic.GetPolar( C );
s.Reflect( ¢ );
int i;
P2dS1, S2;
for (i=1;i<n;it++)
{
ReflConic.SectionWithStraightLine( s, S1, S2 );
%{f (S2==C)

S2
S1

S1;
G

}
s.Def( S1, S2);
¢ = ReflConic.GetPolar( S2 );
s.Reflect( c );
C=52;
}

return s;
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We connect E and a conic point C = C(t) by a straight line s and reflect it on c.
In order to get the tangent of ¢ in C, we use OPEN GEOMETRY’s GetPolar(...)
method of the class Conic. Next, we determine the intersection points S1 and S2
of the reflected ray s and the conic c¢. Actually, s is an oriented straight line, and
we use it to arrange S1 and S2 in a certain order. We reflect s on the tangent of ¢
in S2 and repeat the whole procedure until we reach n reflections. The returned
straight line is a tangent of the caustic ¢, of order n, and we can implement ¢,
as a class curve:

Listing from "conic_caustic.cpp":
class MyCaustic: public ClassCurve2d

public:
StrL2d Tangent( Real t )

return ReflectLine( E, refl_numb, t );

int refl_numb;
void Def( Color ¢, int m, Real umin, Real umax, int n )

refl_numb = n;
ClassCurve2d::Def( ¢, m, umin, umax );

}
b
MyCaustic Caustic [N];

I |

We use a global constant DrawAll of type Boolean to display all caustics ¢; up
to a certain order together in one image or to draw them separately in each new
frame. In Draw( ) we write the following:

(
Listing from "conic_caustic.cpp":

int k = FrameNum( ) % N;
Caustic [k].Def( Col [k%9], k = 200, —PI, PI, k );

if ( DrawAll )
int i;
for (i=0;i<k;i++)
Caustic [i].Draw( THIN, 20 );
}

else
Caustic [k].Draw( THIN, 20 );
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Finally, we mark the eye point E and draw reflecting conic and coordinate axes.
The output of the program can be seen in Figure 2.45. &

Conics in 3-space are described by the OPEN GEOMETRY class Conic3d. Actually,
3D conics are not a good topic for a chapter on 2D graphics, but since Conic3d is
derived from Conic, we will make an exception. Internally, an instance of Conic3d
is determined as follows:

1. From the input data (certain points or lines) we calculate the conic’s sup-
porting plane .18

2. We project the input data orthogonally into one of the coordinate planes
(usually XYplane). If the intersection angle of o and XYplane is too close
to 90°, we take YZplane or XZplane instead.

3. From the projected input data, we compute a 2D conic and project its points
back into o.

Most of the usual conic methods like GetA( ), DistMA( ) and GetPole(...) refer
to the 3D conic. The only exception is WritelmplicitEquation( ): It describes the
projection cylinder.

The final example in this chapter deals with conics in 3-space:

Example 2.33. Focal conics
Two conics ¢; and ¢o in 3-space are called a pair of focal conics if:

1. their supporting planes are orthogonal;

2. the vertices of ¢; are the focal points of ¢y and vice versa.

A pair of focal conics consists of either one ellipse and one hyperbola or
two parabolas. We will display both types in the OPEN GEOMETRY program
"focal_conics.cpp". To begin with, we implement the pair consisting of ellipse
and hyperbola. The Init( ) part reads as follows:

(
Listing from "focal_conics.cpp":

P3d P;

P.Def( 0, —4, 0 );
E1.Def( 4, —9, 0 );
E2.Def( —4, -9, 0 );

8Note that we do not check that all points and lines are really coplanar! The conic’s
supporting plane o is calculated from some input data only. The remaining points and
lines will be projected into o.
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\

\

FIGURE 2.46. Two pairs of focal conics (output of "focal_conics.cpp").

FocalConicl.Def( Red, 100, P, E1, E2, ELLIPSE );

F1
F2

FocalConicl.GetA( );
FocalConicl.GetB( );

V3d v = FocalConicl.GetC( ) — FocalConicl.GetM( );
P = F1 4+ 2 * FocalConic1.DistMC( ) / El.Distance( E2 ) x v;
P.Rotate( StrL3d( E1, E2 ), 90 );

TypeOfConic type2 = ( FocalConicl.type( ) == ELLIPSE ) ?

HYPERBOLA : ELLIPSE;
FocalConic2.Def( Green, 100, P, F1, F2, type2 );

I |

The code is quite straightforward and easy to understand. The focal conics
FocalConicl and FocalConic2 as well as their focal points E1, E2, F1, and F2
are globally declared. We define the first focal conic FocalConicl by its focal
points and a third point P. In order to avoid ambiguities, we must specify the
conic type as well.

Here, F1 and F2 are the vertices of the first conic and the focal points of
FocalConic2. All we need is a third point of the second conic. We get it with the
help of a simple formula that requires the first conic’s semiaxis length and eccen-
tricity. The type of FocalConic2 is chosen with respect to the type of FocalConicl.
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Now we continue by implementing the two focal parabolas FocalParabolal and
FocalParabola2 in Init( ). Their focal points are P1 and P2, respectively.

(
Listing from "focal_conics.cpp":

P1.Def( —2, 4, 0);
P2.Def( 2, 4, 0 );

P3d Q[5];

Q[0] = P2;

Real dist = P1.Distance( P2 );
Vad w;

w.Def( 0, 0, 1 );

Q[1] = P1 + 2 = dist * w;
Q[2] = P1 — 2 x dist * w;
v=0.5x*(P2—-P1);
dist = sqrt( 2 );

Q[3] = P1 4+ v + dist * w;
Q[4] = P1 + v — dist % w;

FocalParabolal.Def( Blue, 100, Q );

Plane p;

p.Def( Rod3d( NoColor, P1, P2 ) );

int i;

for (i=0;i<5;i++ )
Q[i].Reflect( p );

FocalParabola2.Def( Yellow, 100, Q );

I |

This time it is convenient to define the conics via five points. We choose them
symmetric with respect to the straight line P1P2. The points of FocalParabola2
are obtained through a reflection on the parabola’s plane of symmetry p.

In Draw( ) we display the four conics together with their axes and focal points
(vertices, respectively). The output of the program is displayed in Figure 2.46.
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2.6

Listing from "focal_conics.cpp":

void Scene::Draw( )

{
FocalConicl.Draw( THICK );
FocalConic2.Draw ( THICK),
FocalConicl.MajorAxis( ).Draw
FocalConicl.MinorAxis( ).Draw
FocalConic2.MinorAxis( ).Draw

( Black, —10, 10, THIN );
( Black, —8, 8, THIN );

( Black, —15, 15, THIN );
);

);

FocalParabolal.Draw( THICK );
FocalParabola2.Draw( THICK );
FocalParabolal.MajorAxis( ).Draw( Black, —10, 10, THIN );

Zbuffer( false );

E1.Mark( Green, 0.2, 0.1 );
E2.Mark( Green, 0.2, 0.1 );
F1.Mark( Red, 0.2, 0.1 );
F2.Mark( Red, 0.2, 0.1 );
P1.Mark( Yellow, 0.2, 0.1 );
P2.Mark( Blue , 0.2, 0.1 );

I |

Focal conics have remarkable properties. For example, if you choose a point
on the first conic and connect it with all points of the second conic, you will
always get a cone of revolution (wouldn’t this be a nice idea for an OPEN GEO-
METRY program?). An interesting relation of focal quadrics is the content of
Example 3.14. &

Splines

Bézier curves

In computer-aided geometric design (CAGD), Bézier curves and Bézier surfaces
play an important role. OPEN GEOMETRY 2.0 provides the six new classes Bezier-
Curve2d, BezierCurve3d, RatBezier Curve2d, BezierCurve3d, BezierSurface, and
RatBezierSurface. In this chapter we are going to talk about BezierCurve2d and
RatBezier Curve2d.

Corresponding 2D and 3D classes are identical in the OPEN GEOMETRY sense.
That is, we implemented the 3D classes by replacing all occurrences of “2d”
by “3d”. Therefore, the classes BezierCurve3d and RatBezierCurve3d are not
explicitly explained in this book. In the following, we will deal with 2D Bézier



Section 2.6. Splines 127

curves only. If you can handle them, you will be able to handle Bézier curves in
three dimensions as well.

A Bézier curve c is usually defined by its control points By, ..., B,. The corre-
sponding polygon P = (By,...,B,) is called the control polygon; the integer n
is the degree of c. In Figure 2.47 you can see why Bézier curves are so popular:
The shape of the control polygon and the Bézier curve are very similar. To be
more accurate, Bézier curves have the following properties:

e The start point S of ¢ is the first vertex of P, the end point F is the last
vertex.

e The first and last edge of P are tangent to c in S and E, respectively.

e The Bézier curve b lies in the convex hull of P (convex hull property; in
Figure 2.47, this area is shaded).

e An arbitrary straight line s intersects P in at least as many points as b
(variation diminishing property).

B

1

FIGURE 2.47. A Bézier curve of order four.

Thus, it is easy to control the shape of a Bézier curve interactively. The user can
simply change certain control points and adapt the curve to his/her needs. In
contrast to spline curves, one must, however, take into account that the position
of a single control point affects all points of c.

Bézier curves have many additional properties that are of importance in CAGD.
We present the most fundamental of them along with the corresponding OPEN
GEOMETRY implementations. The file "bezier_curve.cpp" is a good templet
for reference.

There exists a well-known algorithm to determine a curve point C' of ¢: DE-
CASTELJAU’s algorithm. It works as follows:

1. Choose a real ug € [0,1].19

19Tt is common practice (but not absolutely necessary) to restrict the parameter
interval to [0, 1].
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2. Divide each edge of the control polygon into segments of affine ratio wug:
(1 — up). This yields a polygon P; of n — 1 edges.

3. Proceed in the same way with the polygon P;. This yields a sequence
(Py, Py, ..., P,) of polygons. P, consists of one single point: a curve point
of c.

Figure 2.48 illustrates this process.

0
FIGURE 2.48. The algorithm of DECASTELJAU.

In OPEN GEOMETRY, a Bézier curve is a class derived from ParamCurve2d. The
CurvePoint(...) function calls the private method DeCasteljau(...).2° Thus, in
order to get a Bézier curve in OPEN GEOMETRY, we have to declare a global
variable of type BezierCurve2d and define it in Init( ):

[

Listing from "bezier_curve.cpp":

BezierCurve2d BezierCurve;
void Scene::Init( )

P2d P[4];
PIO]( =10, =7 );
P1]( *8 1)
P[2]( 5, 7 );
P3]( 10, 7);
Be2|erCurve Def( Black, 200, 4, P );

20The mathematical parametric representation of Bézier curves (it uses Bernstein
polynomials) is of no interest to us in this book: we simply do not need it.
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The Bézier curve is of order three, i.e., there exist four control points. Instead
of using an array P of points, you could alternatively use an object of type Co-
ord2dArray for the definition. In Draw( ) we draw the curve and control polygon
and mark the control points:

[

Listing from "bezier_curve.cpp":
void Scene::Draw( )

BezierCurve.Draw( VERY_THICK );
BezierCurve.DrawControlPolygon ( Blue, THICK );
BezierCurve.MarkControlPoints( Blue, 0.15, 0.1 );

}
| |

If we restrict the parameter value to [0, 1], DECASTELJAU’s algorithm is fast and
numerically stable. It is invariant to affine transformation, and it yields a field
of very useful points B;;. In our example, the point B3y is a curve point of ¢,
while Bgg and Bs; determine the tangent of ¢ in Bsg (compare Figure 2.48).

The polygon (Bgo, B1o, B2o, B3o) from DECASTELJAU’s algorithm is the control
polygon of a Bézier curve ¢; that is identical to the part of ¢ between By and Bsg.
The polygon (Bsg, Ba1, Bi2, Bos) determines the part ¢, of ¢ between B3 and
Bos (Figure 2.49). This possibility of splitting a Bézier curve is very important
in practical applications. It is more or less a linear parametric transformation in
terms of control points.

If we apply the same algorithm with a parameter value from R\ [0, 1], we enlarge
the Bézier curve in one direction or the other. This process is illustrated on the
right-hand side of Figure 2.49.

Byy Bis® B
FIGURE 2.49. The splitting (left) and enlarging (right) of a Bézier curve.

The corresponding OPEN GEOMETRY routine is BezierCurve2d::Split( Real u,
Boolean second_half ). For example, the line
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BezierCurve [3].Split( 0.5, true );

redefines the control polygon and the curve itself. As a result, you get the part
belonging to u € [0.5,1] of the original curve. If the second parameter is false
(default value), the part corresponding to [0,0.5] will be drawn. Note that the
order of the control points will be reversed by Split(...) in the first case (i.e.,
the original end point of the Bézier curve will be the new start point). You can
undo this by calling ReverseOrder( ) immediately after splitting the curve.

A Bézier curve of degree n can always be defined as a Bézier curve of degree n+1
or — more generally speaking — of degree n+v (v € N). The construction of the
control points of the degree elevated curve is displayed in Figure 2.50. It involves
the repeated subdivision of the edges into segments of affine ratio k :n — k + 1,
(k=0,...,n+1).

BO BS
FIGURE 2.50. The degree of the Bézier curve is elevated twice.

OPEN GEOMETRY provides the method ElevateDegree(. .. ) to do this. The line

BezierCurve.ElevateDegree( 3 );

will, e.g., elevate the degree of the Bézier curve by 3.

Before presenting a first example we have to mention that rational Bézier curves,
too, are available in OPEN GEOMETRY. In contrast to ordinary (integral) Bézier
curves, rational Bézier curves offer the possibility of assigning weights to the
control points. Figure 2.51 shows an example of this. We display two rational
Bézier curves with identical control polygon but different weights.

Many properties and algorithms of integral Bézier curves remain valid for rational
Bézier curves as well. The reason for this lies in the geometric interpretation of
rational Bézier curves as central projections of integral Bézier curves:
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FIGURE 2.51. An integral and a rational Bézier curve.

Let ¢ be a rational Bézier curve with control points P;(z;,y;) and weights w;.
We can embed them in R? by assigning the z-coordinate 1 to them; i.e., we map
(z,y) to (z,y,1). Furthermore, we introduce the points @; according to

Q; = (Wi, wiys, w;) i w; # 0,
! (xi, Yi, 0) if w; = 0.
The points P; and @Q; are located on a straight line through the origin. The

control points @; define an integral Bézier curve d in 3-space, and c is the central
projection of d from O onto the plane z = 1 (Figure 2.52).

FIGURE 2.52. Rational Bézier curves are obtained as central projections of integral
Bézier curves.

For rational Bézier curves in 3D, an analogous procedure is possible. The auxil-
iary curve d lies, however, in 4-space. This geometric interpretation allows an im-
mediate transformation of DECASTELJAU’s algorithm to rational Bézier curves.
The algorithms for degree elevation and curve splitting work as well.

Note that the family of rational Bézier curves is much vaster than that of integral
Bézier curves. For example, an integral Bézier curve of order two is always a
parabola, while a rational Bézier curve of order two is the central projection of
a parabola, i.e., a conic section.
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In this book, rational Bézier curves will not be described in detail. For infor-
mation on defining methods the reader is referred to page 470 in Chapter 6.
Furthermore, "rat_bezier_curve.cpp" is a good reference if you want to learn
the usage of the class RatBezierCurve2d. Note that only simple modifications
are necessary to make the subsequent examples work for rational Bézier curves
as well.

In diverse applications of Bézier curves it is necessary to compose a curve of
pieces of Bézier arcs. The different parts have to be connected in a “smooth”
way. If two arcs have a common tangent at the end point where they meet, they
are said to be of GC'-continuity.?! If they share the osculating circle as well,
they are of GC?-continuity, etc. In the following example we present a few (rather
simple) algorithms for the construction of transition curves of GC™ continuity.

Example 2.34. Bézier curves of GC"-continuity

We want to show how to construct a transition curve of GC"-continuity to two
given Bézier curves ¢ and d. By &u) and d(u) we will denote the DECASTELJAU
parametric representations of ¢ and d, respectively. The control points of ¢ and d
will be Cy,...,Cy, and Dy, ..., D,, respectively. We want to construct a Bézier

curve s...8(u) that fulfills
&(1) =5(0) and (1) = d:(0)

for some integer k and i = 0, ..., k.2? The higher the integer k is, the “smoother”
the transition will be. The value k& = 0 means that the end point of ¢ and the
starting point of s are identical while £k = 1 yields identical tangents in this
point, k = 2 identical osculating circles, etc. Analogous statements are true of
the end point of s and the starting point of d. In order to solve the problem, we
need the following general result on Bézier curves:

The i-th derivative of a Bézier curve in the start point (end point) depends on
the first (last) i control points only.

Thus, the problem for £ = 1 has a unique solution of degree two. The control
points Sy, S1, and Ss of the transition curve s are determined by

So=Cn, S1=[Cn,Crn-1]N[Do,D1], S2 =Dy

(compare Figure 2.53, the output of "gc_1-continuity.cpp").

In order to ensure GC2-continuity, we need a transition curve of degree 4. The
solution is, however, no longer unique. The osculating circle of ¢ in the start
point Cy does not change if we translate the control point Cs in the direction of
the straight line [Cy, C1] (Figure 2.54).

21The letters “G” and “C” stand for Geometric Continuity.
22In this formula the subscript ¢ denotes the i-th derivative of the vector function.
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G
C
S, EZ;SO C,
S
D,
DS
D

1

FIGURE 2.53. C'-continuous transition curve between two Bézier curves ¢ and d.

There are many possible configurations of the control points Cy, C1, Co that yield
the same curve c. Varying the point Cs as described above gives a whole family
of osculating Bézier curves. Still, we can use this to create GC?-continuations in
a very simple way ("gc_2-continuity.cpp").

In Init( ) we initialize two arbitrary Bézier curves FirstCurve and SecondCurve.
Then we declare two identical local Bézier curves:

Listing from "gc_1-continuity.cpp":

BezierCurve2d first_curve, second_curve;
int n1 = FirstCurve.GetPNum( );

int n2 = SecondCurve.GetPNum( );
first_curve.Def( Green, 200, n1, P );
second_curve.Def( Blue, 200, n2, Q );

I J

We make sure that their degree is at least 3 and “split” them at a parameter
value with absolute value greater than 1.23

Z3Here we have two degrees of freedom. This indicates that the problem doesn’t have
a unique solution.
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FIGURE 2.54. Two Bézier curves with a common osculating circle.

Listing from "gc_1-continuity.cpp":

if (nl<=2)
first_curve.ElevateDegree( 3 — nl );
if (n2<=2)

second_curve.ElevateDegree( 3 — n2 );

first_curve.Split( 2.0 );
second_curve.Split( —2.0 );

I J

The effect is that the curves are actually enlarged in one direction or the other.
Next we split the curves again at the reciprocal parameter value and take the
appropriate half:

(
Listing from "gc_1-continuity.cpp":

first_curve.Split( 0.5, true );

second_curve.Split( 0.5 );
first_curve.ReversePolygon ( );

I |

The local Bézier curves are now GC*—continuations of ¢ and d, respectively (the
second curve only up to a reversal of the order of the control points; Figure 2.55).
This means that we can take the first and last three control points to build a
Bézier curve of GC?—continuity. If we vary the third point as described, we need
only a transition curve of order four:
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Listing from "gc_1-continuity.cpp":

P2dR(5];

R[0] = first_curve.GetControlPoint( 0 );
R[1] = first_curve.GetControlPoint( 1 );
R[3] = second_curve.GetControlPoint( 1 );
R[4] = second_curve.GetControlPoint( 0 );
P2d A, B;

k)

9
A = first_curve.GetControlPoint( 2 );
B = second_curve.GetControlPoint( 2 );
StrL2d s1, s2;
s1.Def( A, V2d( R[0], R[1] ) );
s2.Def( B, V2d( R[3], R[4] ) );
R[2] = sl x s2;
TransitionCurve.Def( Red, 200, 5, R );

G, G, /
FIGURE 2.55. A GC*—transition curve ¢ to ¢ and d.

Of course, we can create GC™ transition curves for an arbitrary n € N as well.
We determine GC* continuations of ¢ and d as above, elevate their degree if
necessary, and take n points from each continuation curve to build the control
polygon of the transition ("c.n-continuity.cpp"). Note, however, that this
algorithm does not produce the solution of lowest degree to the problem. &

A great advantage of Bézier curves is the possible intuitive design of curves. You
start with a control polygon that resembles the shape you want to create. Then
you vary one or the other control point to make some adjustments, and within
a few minutes you have designed the curve you want. For this purpose, it is
convenient to have a program that allows both to watch the Bézier curve and to
change the control points. We wrote a simple sample file that will demonstrate
how to do this in OPEN GEOMETRY("bezier manip.cpp").
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Example 2.35. A manipulator for Bézier curves

At first, we define an ordinary planar Bézier curve ¢. We draw the curve and its
control polygon and mark the control points. For the manipulation we use two
global variables:

Listing from "bezier manip.cpp":

int Index = 0; // index of control point that is to be changed
Real Increment = 0.1; // increment for changing

I |

Index gives the number of the active Bézier point, i.e., the Bézier point that
you want to change. You will be able to translate it in the positive or negative
direction parallel to the z- or y-axis. The translation vector will be of length In-
crement. Both variables can change their values during the animation. In Draw( )
we highlight the active control point in red color. ..

Listing from "bezier manip.cpp":

P2d P = BezierCurve.GetControlPoint ( Index );
P.Mark( Red, 0.3, 0.2 );

I

... before we listen to the user’s keystroke:

Listing from "bezier_manip.cpp":

int key = TheKeyPressed (), n = BezierCurve.GetPNum( );
switch (key )

case ’u’:
P.y += Increment;
BezierCurve.SetControlPoint( Index, P );
break;

case ’d’:
P.y —= Increment;
BezierCurve.SetControlPoint( Index, P );
break;

case ’17:
P.x —= Increment;
BezierCurve.SetControlPoint( Index, P );
break;

case ’r’:
P.x += Increment;
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BezierCurve.SetControlPoint( Index, P );
break;

case '+’
Index++;
Index %= n;
break;

case ’'-’:
Index——;
if (Index == —1))

Index = n—1;

break;

case ’1i’:
Increment x= 0.5;
break;

case *I’:
Increment x= 2;
break;

case ’e’:
BezierCurve.ElevateDegree( 1 );
break;

case ’'p’:
PrintData( );
break;

}

I |

It is intended that the user start the animation by pressing <Ctrl+F> or clicking
on the Fps button in the button bar. Then the computer will check whether a new
user input has arrived with every new frame and — according to the respective
key — perform a certain action. These actions concern the translation of the
active control point, the changing of Index and Increment, the degree elevation
of the Bézier curve, and the output of the control polygon.

The last point is important because you probably want to use the Bézier curve
you have designed for another purpose. We wrote a little routine for that purpose:

( \
Listing from "bezier manip.cpp":

void PrintData( )

{

int i, n = BezierCurve.GetPNum( );
for (i=0;i<n;i++)

BezierCurve.GetControlPoint( i ).Print( );

}
}
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It will write the necessary data to OPEN GEOMETRY’s standard output file
"try.log". If you view this file with an arbitrary text editor, you will see some-
thing like

-10.000, -7.000, 0.000 )
-8.000, 4.000, 0.000 )
5.000, 7.000, 0.000 )
10.000, -7.000, 0.000 )

A~

In order to use this data in another OPEN GEOMETRY program, you have to edit
this file and adapt it to the syntax of C++. Of course, you can use it with other
programs as well. The text output in "try.log" is rather simple. If you want
to use the control polygon data frequently, you should probably write your own
output routine, either with the help of standard C output commands or with
OPEN GEOMETRY’s PrintString(...) (compare page 561).

The program can easily be adapted to Bézier curves in space and to rational
Bézier curves. You will need a few additional command keys, but the basic prin-
ciples remain the same. In any case, you should not forget to print an instruction
on the screen. In "bezier manip.cpp" the corresponding code lines read as fol-
lows:

(
Listing from "bezier manip.cpp":

const Realx = 10.4, y = 0;

PrintString( Black, x, y + 8.5, "Start Animation (Ctrl +’f’)," );
PrintString( Black, x, y + 8,
"then manipulate the control points:" );

PrintString( Green, x + 6,y + 6, "’u’...move up" );
PrintString( Green, x + 6,y + 5.3, "’d’.. .move down" );
PrintString( Green, x + 6,y + 4.6, "I’ .. .move left" );
PrintString( Green, x + 6,y + 3.9, "’r’...move right" );
PrintString( Green, x + 6,y + 2.2, "?+’ .. .index++" );
PrintString( Green, x + 6,y + 1.5, ">—’ .. .index—-" );
PrintString( Green, x + 6,y + 0.8, "’I’...double increment" );
PrintString( Green, x + 6,y + 0.1, "’i’...half increment" );
PrintString( Green, x + 6,y — 0.6, "’e’...elevate degree" );
PrintString( Green, x + 6,y — 1.3, "’p’...print data" );
PrintString( Red, x, y + 6, "index =%2.0£f", Index );
PrintString( Red, x, y + 5.3, "increment =%2.2f", Increment );
PrintString( Red, x, y + 4.6, "P.x =%2.2f", P.x );

PrintString( Red, x, y + 3.9, "P.y =%2.2f", Py );

PrintString( Red, x, y + 3.2, "P.z =%2.2f", P.z );
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We display a list of command keys and show the current value of the important
variables. Additionally, we draw the coordinate axes and a coordinate grid in
order to give some orientation on the screen. &

Example 2.36. Edge-orthogonal Bézier patches

As another example of the use of the class BezierCurve2d, we present the solu-
tion to a problem from the field of technical engineering. In the grid design for
numerical evaluation of supersonic turbines, special pairs of plane Bézier curves
are needed ([10]).

Given an arbitrary Bézier curve b: B(u)...b(u) of order N (in our program
"edge_orthogonal.cpp" it will be called BaseCurve), we are looking for a Bézier
curve e: E(u)...é€(u) of order N with the property that the normal n(u) of
b in B(u) is the straight line through B(u) and E(u). One can imagine b and
E as borderlines of a plane Bézier patch ®: X (u,v)...#(u,v) of order (N,1)
where the v-parameter lines intersect b orthogonally. Thus, one says that b and
e determine an edge-orthogonal Bézier patch (compare [22] and Figure 2.56).

FIGURE 2.56. Two Bézier curves b and e that determine an edge-orthogonal Bézier
patch.

In "edge_orthogonal . cpp" we used two completely different approaches to solve
the problem. In general, there exists a two-parametric variety of exact solutions.
It is clear that for any exact solution the control points Fy and En_1 of e must
lie on the normals n(0) and n(1) of b through start and end point, respectively.
Reversed, any pair (Ey, Enx—_1) of points on n(0) and n(1) uniquely determines
an exact solution. Explicit formulas for the control points are known, and it is
no problem to display the result in OPEN GEOMETRY. We will return to this a
little later.

The second approach is completely different. We are not looking for an exact
solution but for a solution of sufficient accuracy for practical use. In our simple
case this has no advantages compared to the exact solution, but we can generalize
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the concept in different ways: We may look for edge-orthogonal patches in higher
dimensions or for edge-orthogonal patches with a rational control structure (a
weight is assigned to each control point). Furthermore, we will no longer be
restricted to right angles and can ask for an arbitrary angle function along the
base curve. Even some fantasy conditions on the patch may (almost) be fulfilled,
despite the absence of an exact solution!

The basic idea is simple: Given the base curve b, we start with an arbitrary
test curve t: T(u) ... t(u). If a(u) denotes the angle between B(u)T(u) and the
normal of b in B(u), we may use the score

1
s ::/ la(u)| du (7)
0

to judge the quality of ¢. This score is, of course, not the only possibility. We may,
for example, optimize the integral over |a(u)|? or the maximal angle deviation.
In any case, a small score indicates good approximations to an edge-orthogonal
patch. A score equal to 0 characterizes the exact solutions.

Now we replace a control point T; of ¢ by a random point 7% and compute the
new score s*. If s* < s, we accept the change; otherwise, we refuse it. Thus, we
get a sequence (t;) of test curves that induces a monotonical decreasing (and thus
convergent!) sequence (s;) of scores. In the end we can hope to get a satisfying
result. The whole procedure is an application of the well-known Monte Carlo
method.

Before implementing this idea in OPEN GEOMETRY, we have to decide on cer-
tain details of a reasonable strategy. In "edge_orthogonal.cpp" we rely on the
following:

e We create a random vector ¢ of a constant length (e.g., 0.5 units).

e We replace the control point T),(;) of ¢ by T;(Z.) .. .Fn(i) + ¢ and accept or
reject the change according to the criterion described above.

e The sequence (n;) takes the values 1,2,...,. N—2, N—1,N—2,...,1,0 and
continues periodically.?*

Now to the corresponding code. In Init( ) we define three Bézier curves b, t
(TestCurve), and e (ExactSolution).

24This “forward and backward” process takes into account the formal symmetry of
Bézier curves: Reversing the sequence of the control points does not change the curve’s
shape.
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(
Listing from "edge_orthogonal.cpp":

void Scene: :Init( )

{
P2d B[NJ;
B[O]( —10, =6 );
B[1]( =7, =7.5);
2]( —4 -8 );
B[3]( 0, =8 );
B[4]( 2, —6);
BaseCurve Def( Green, 200, N, B );
P24 T [N];
int i;

for(i:l i < N1;i++)
T [i].Def( mdx( ), mdy( ) )3
T[0] =B[0] + 3 x fabs( testx( ) )
* BaseCurve.NormalVector( 0 );
T[N—1] = B[N1] + 3 * fabs( testx( ) )
* BaseCurve.NormalVector( 1 );
TestCurve.Def( Red, 200, N, T );

V2d v [N];

Real alpha = GetAlpha( &BaseCurve, &TestCurve );
Real beta = GetBeta( &BaseCurve, &TestCurve );
P2d E[N];

for (i=1;i<NI;i++ )

v[i]—alpha*l/Nl*(B[|]—B[|_])+.
betax (N1 —1i) /N1« (BJ[i+1] — BJi] );
v[i] = Ved( —vlil.y, v]i].x );

Efil = B[i] + vlil:

}

E[0] = TestCurve.GetControlPoint( 0
E[N1] = TestCurve.GetControlPoint(
ExactSolution.Def( Blue, 200, N, E )

);
N1 );

)
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The global constant N = 5 is the order of our curves, b is defined in the usual
way, while the control points of ¢ are random points from a certain area.?’> The
first and the last control point of ¢ are restricted to the normals n(0) and n(1)
of b.

In the last third of Init( ) we compute the exact solution. First, the mathematical
formulas: We denote the coordinate vectors of the control points of b by b;. Then
the coordinate vectors of the control points €; of e can be computed according
to

& =b; + aiDCZ;A + B———Dd;, (8)

N —3
N N

where

a, € R, J; = 5i+1 — l_);-, and D = ((1) _01> .
In our example we draw the exact solution curve through the start and end points
of the test curve. This allows a comparison of test curve and exact solution. You
will see that they may differ considerably even though score and maximal angle
deviation are very small. We have to compute the corresponding reals a and (3
first. Since we will need this later, we write our own functions for this task:

[ \
Listing from "edge_orthogonal.cpp":

Real GetAlpha( BezierCurve2d xc, BezierCurve2d *d )
{
int m = c—>GetPNum( );
m——;
int n = d—>GetPNum( );
return c—>GetControlPoint( m ).Distance
(d—>GetControlPoint( n — 1) ) /
c—>GetControlPoint( m ).Distance
( c—>GetControlPoint( m — 1) );

I |

The input parameters of GetAlpha( ) are two Bézier curves, in our example
the base curve and the test curve. It returns the value ByTn/BnxBn—1. The
analogous function GetBeta( ) returns BoTy/BoBi, and we can use both to define
the exact solution according to (8).

Now to the approximation process. In Animate( ) we determine the index of the
point to be changed. We initialize a global variable Index of type integer with 1
and change it in Animate( ) according to the following code:

ZPRemember to use global variables Rnd x( ) and Rnd_y( ) of type RandNum! If
Rnd_x( ) and Rnd_y( ) are local, they will not change their value during a fast animation.
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Listing from "edge_orthogonal.cpp":
void Scene::Animate( )

if ( ( FrameNum( ) ) % ( N2 ) < N1)

Index += 1;
else
Index —= 1;

}
| |

Here N1 = N—1 and N2 = 2N—2. This yields the periodic sequence we mentioned
above. In Draw( ) we use two auxiliary functions. The first returns the angle
between the normal n(u) of b and the straight line B(u)T'(u):

[
Listing from "edge_orthogonal .cpp":

Real Angle( BezierCurve2d xc, BezierCurve2d *d, Real u )
return c—>NormalVector( u ).Angle( V2d( c—>CurvePoint( u ),

d—>CurvePoint( u ) ), false, true );

I |

The second computes the score according to (7). Unfortunately, we cannot use
OPEN GEOMETRY’s Integral(...) function, since we need pointers to Bézier
curves as additional input parameters. It is, however, quite easy to adapt the
source code of Integral(...) from "h.cpp" to our needs.

[
Listing from "edge_orthogonal .cpp":

Real CalcScore( BezierCurve2d (xc), BezierCurve2d (xd), int n )

if (n% 2) nt++;
Real area = fabs( Angle( ¢, d, 0) ) + fabs( Angle( ¢, d, 1) );
Real dt = (Real) 1 / n;
Real t = dt;
int i, m = 4;
for (i=1;i<n;it++)
t area += m * fabs( Angle( ¢, d, t) );
m=6—m;
t += dt;

return area *x dt / 3;




144

Chapter 2. 2D Graphics

The input parameters are two pointers to Bézier curves and an integer value n
that determines the number of intervals to be taken for the approximation of the
integral through Simpson’s formula. Now we take our chances by changing the
right control point of the test curve:

(
Listing from "edge_orthogonal.cpp":

P_old = TestCurve.GetControlPoint( Index );
if (! (Index == 0) && ! (Index == N1) )
{

V2d v( Testx( ), Testy( ) );
v.Normalize( );

v x= VectorLength;

P = P_old + v;

else if ( Index == 0 )

{
V2d v = BaseCurve.NormalVector( 0 );

v x= Testx( );
v *= VectorLength;
P = P_old + v;

}
else if ( Index == N1 )
V2d v = BaseCurve.NormalVector( 1 );
v k= Testx( );
v x= VectorLength;
P = P_old + v;
TestCurve.SetControlPoint( Index, P );

I |

The variables P and P_old are global variables of type P3d. We store the old
control point in P_old and create a new random point P simply by adding the
random vector v. If the first or last point of the control polygon is to be changed,
we restrict the change to the normals n(0) and n(1) of b. In a next step, we
compute the score and accept the change if it has improved. Otherwise, we
reject it.
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Listing from "edge_orthogonal.cpp":

Score = CalcScore( &BaseCurve, &TestCurve, 100 );
int i;
if( Score_old < Score )

TestCurve.SetControlPoint( Index, P_old );
PrintString( Black, 7, 3.5, "Score =%2.6£f", Score_old );
}

else

{
PrintString( Black, 7, 3.5, "Score =%2.6£f", Score );
Score_old = Score;

if( (Index == 0) || (Index == N1) )
Real alpha = GetAlpha( &BaseCurve, &TestCurve );
Real beta = GetBeta( &BaseCurve, &TestCurve );

EdgeOrthogonalPatch( alpha, beta,
&BaseCurve, &ExactSolution );
¥
}

I |

In addition, we print the current score on the screen and recompute the exact
solution if Ty or T has changed. For this last task we wrote a function of our
own (EdgeOrthogonalPatch(...)) that more or less reads like the code we used
in Init( ) to initialize e. The main difference is that we have to employ pointers
and dynamic memory allocation, since we use two input Bézier curves.

Now we implement some additional features in order to be able to judge the
quality of the solution. We compute the maximal angle deviation and draw the
angle function. Furthermore, we draw a distance curve to b. The distance function
we use is proportional to the angle error. Thus, you can easily identify the regions
of good and not so good approximation on b.

(
Listing from "edge_orthogonal.cpp":

const int number_of_points = 300;

Real u;

Real delta = (Real) 1 / ( number_of_points — 1 );

Real max_deviation = 0;

Real deg = 0;

for (i =0, u= 0;i < number_of_points; i++, u+= delta )

deg = Angle( &BaseCurve, &TestCurve, u );
max_deviation = max( max_deviation, fabs( Deg( deg ) ) );
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P2dF( 4 % u+ 7, Angle( &BaseCurve, &TestCurve, u ) + 6 );
F.Mark( Black, 0.04 );
P2d E = BaseCurve.CurvePoint( u ) +

Deg( deg )  ErrorFactor x BaseCurve.NormalVector( u );
E.Mark( Yellow, 0.04 );

}
StraightLine2d( Black, P2d( 7, 6 ), P2d( 11, 6 ), THIN );

I |

Finally, we imitate a plane Bézier patch by drawing the connecting lines of
corresponding points B(u) and T'(u) on b and ¢t. We draw the Bézier curves and
their control polygons and print the information of interest on the screen. A
last good thing is the possibility of changing the length of the random vector.
Otherwise, no change would occur after a while, since any random attempt yields
a worse score. We implement this as follows:

(
Listing from "edge_orthogonal .cpp":

int key = TheKeyPressed();
switch (key )

case ’d’:
VectorLength x= 2;
break;

case ’f’:
VectorLength x= 0.5;
break;

score =0.167512 score = 0.019858 score = 0.004286
max. dev. = 21.90° max. dev. = 2.55° max. dev. = 0.74°

FIGURE 2.57. Three steps on the way to finding an edge-orthogonal Bézier patch.
The test curve at the start (left), after 500 frames (middle), and after 1700 frames
(right). At the end there is no visible deviation from the right angle condition.



Section 2.6. Splines 147

We can thus interactively control the length of the random vector. Figure 2.57
shows three steps on the way to an almost exact solution. &

Example 2.37. Bézier approximation

We have mentioned earlier that the Monte Carlo method of the previous ex-
ample can be generalized to many other ideas. So, why not try to approx-
imate arbitrary parameterized curves through Bézier curves? We did this in
"bezier_approx.cpp".

frame number = 1 frame number = 500 frame number = 3000
score = 2.945705 score = 0.090716 score = 0.012613
max. error = 5.284341 max. error 0.328586 max. error = 0.039851

FIGURE 2.58. The test curve converges to the target curve (equiangular spiral).
After 3000 frames the maximal error is almost invisible.

First, we define the target curve t: T(u)...t(u) (i.e., the curve we want to
approximate). It is an object of type ParamCurve2d with one special property.

( \
Listing from "bezier_approx.cpp":

class MyCurve: public ParamCurve2d

public:
P2d CurvePoint( Real u ) const
{
Real u0 = —2, ul = 5;
u=(1—u)*xul+ux*ul;
Realr = exp( 0.3 % u );
return P2d( rxcos( u ), rxsin( u) );

}

;
MyCurve TargetCurve;
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We specify the parameter interval [u0, ul] of ¢ in CurvePoint(...) and transform
it immediately to [0,1]. Hence, we can define the target curve in Init( ):

Listing from "bezier_approx.cpp":
TargetCurve.Def( Green, 200, 0, 1 );

I |

This is necessary, since we want to approximate a parameterized curve through
a Bézier curve b: B(u)...b(u) (i.e., we want to have B(u) ~ T(u)) and the
standard parameter interval for Bézier curves is [0, 1]. In our case, the target
curve is an equiangular spiral, a hard task, since the curvature changes rather
fast along the curve. But you will see that we are able to get satisfying results.

The quality of a solution will be judged by the score function

/0 ' dist(B(w)T(u)) dt.

We implement it in more or less the same way as in "edge_orthogonal.cpp":

[ \
Listing from "bezier_approx.cpp":

Real DistError( ParamCurve2d xtarget, BezierCurve2d stest,
Real u )

return target—>CurvePoint( u ).Distance(
test—>CurvePoint( u ) );

Real CalcScore( ParamCurve2d starget, BezierCurve2d xtest, int n )
{
if (n% 2) nt++;
Real area = DistError( target, test, 0 ) +
DistError ( target, test, 1 );
Real dt = (Real) 1 / n;
Real t = dt;
int i, m = 4;
for (i=1;i<n;i++)
{
area += m x DistError( target, test, t );
m=6—m;
t += dt;

return area x dt / 3;
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Next, we define the first test curve in Init( ). The first and the last points will
be the start and end points of the target curve ¢. The initial degree of t is just
3. We will be able to elevate it interactively during the program.

[
Listing from "bezier_approx.cpp":

P2d T3]

T[0] = TargetCurve.CurvePoint( 0 );

T[1].Def( rndx( ), rnd_y( ) );
t(1);
)

T [2] = TargetCurve.CurvePoin
TestCurve.Def( Red, 200, 3, T );
I |

The next steps are analogous to those in "edge_orthogonal.cpp". We apply
a random change to a control point of the test curve, compute the new score,
and accept the change only if the score has improved. A little difference is the
sequence of indices of control points. We do not need to change the first and last
points, so this sequence takes the values (1,2,...,n—2,n—1,n—1,...,2,1...)
and continues periodically. We implement it in Animate( ) as follows:

(
Listing from "bezier_approx.cpp":

Index = FrameNum( ) % ( N2 );
if ( Index > N3 )
Index = N2 — Index;
else
Index++;
l |

A very important feature is the possibility of elevating the degree of the test
curve during the random process. We can do this in the same way as we control
the length of the random vector. At the end of Draw( ) we write the following
lines:

(
Listing from "bezier_approx.cpp":

int key = TheKeyPressed();
switch (key )
{

case ’d’:
VectorLength x= 2;
break;

case 'f’:
VectorLength x= 0.5;
break;

case ’s’:
ElevateDeg = true;
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ElevateDeg is a global variable of type Boolean. If it is true, we elevate the degree
of the test curve and adapt two global variables in Animate( ):

Listing from "bezier_approx.cpp":

if ( ElevateDeg )
{

TestCurve.ElevateDegree( 1 );

N-++;
N2 =2x% N — 4;
N3 =N — 3;

ElevateDeg = false;

}
| |

If you run the program, you will see the target curve and a random Bézier curve
of degree 2 through start and end points of the target curve. Press <Ctrl + F>
and use the keys s, d, and f for interactive control of the random process. We
recommend the following strategy for fast convergence:

e Reduce the vector length until the score changes rather quickly.
e If the score does no longer improve considerably, increase the vector length.

e Elevate the degree of the test curve and start again by reducing the vector
length step by step.

Figure 2.58 shows the convergence of the test curve. &

B-spline curves

So far, we have extensively dealt with Bézier curves and their useful properties
for CAGD. However, they have two serious disadvantages that must not be
forgotten:

1. If you want to display a complex shape, you need a very high number of
control points.

2. The changing of a single control point or a single weight will affect the whole
curve.

The common technique to overcome these difficulties is the use of spline curves:
One combines different parts of integral or rational Bézier curves. An appropriate
choice of the control polygons of adjacent curves guarantees GC*-continuity or
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C*-continuity, i.e., the different curve segments will form a smooth curve. We
have shown how to do this in Example 2.34.

The curve segments are the spline segments; the whole curve is called a Bézier
spline. However, the most frequent spline technique does not use Bézier splines
but B-splines. Theoretically, there is no essential difference between Bézier
splines and B-splines: Both approaches yield the same class of curves. But the
storage of the control data is more efficient with B-splines.

The theoretic description of B-spline curves is more complex than the description
of Bézier curves.?6 Their base functions NF are recursively defined via a knot
vector T = (to, .-« tn—1,tny tntls -, tnik) Witht; € Rand tg <t < -+ < tpip.
We start by setting

NE(t) := (9)

1 fort; <t< tit1
0 otherwise

and define recursively for k£ > 1,

t—t; _ tivk — 1t _
——— N} (t) + —E——NE ). (10)

N»’“(t) =
tivk — tiv1

tivk—1—t;

The B-spline base functions have the following properties (compare [18] and
Figure 2.59):

1. NF(t)>0fort; <t <t

2. NE(t)=0fortg <t <t;and t; ) <t <t,ip

n

3. ) NF(t)=1fort € [te1,tns1].
=0

4. For t; < t; < t;11 the base functions N;k(t) are C*~2-continuous at the
knots ;.

Points 1 and 2 guarantee that the influence of each base function is limited to
a certain well-defined supporting interval. Point 3 is responsible for the affine
invariance of curve and control polygon, and point 4 allows one to control the
degree of continuity via the integer k.

Note that coinciding knots ¢; = ¢;41 = - - - = t;4; are allowed. In fact, some basic
B-spline techniques rely on these multiple knots.

26Tt would be a miracle if this were not the case. We have to describe a sequence of
spline segments with a control structure and additional information about the degree
of continuity, not just a single curve.
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FIGURE 2.59. Six B-spline functions over the knot vector T = (o, ..., ts5).

Example 2.38. B-spline base functions

It is a nice and interesting task to write a program to display the B-spline base
function ("base_functions.cpp"): We will use a recursive function call, and
overwriting some methods, we derive a successor class of ParamCurve2d. At
first, we declare global constants for the knot vector T, the colors, and the scale
factors in the x and y directions.??

(
Listing from "base_functions.cpp":

const int M = §;

const Real T[M] ={ —4, —=2.5, -1, 0.2, 1.1, 2, 2.9, 4 };

const int K = 8; // maximal order of the B—spline base functions

const Color Col [10] = { Brown, Red, Yellow, Green, Blue, Orange,
Cyan, Pink, Magenta, LightYellow };

const Real ScaleX = 3, ScaleY = 8;

I |

Then we define a recursive function SplineN(...) according to equation (10):

2TThe B-spline base functions are too small to fit in a standard OPEN GEOMETRY
window.
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(
Listing from "base_functions.cpp":

Real SplineN( Real t, int i, int k )

{ if (k==1)
return ( (t<=TIJ[i] ) || (T[i+1] <t))?0:1;
else
return (t — T[i] ) / ( T[i+k=1] = T[i] ) =
SplineN( t, i, k — 1) +
(Tli+k] —t) / (T[i+k] = T[i+1] ) =
SplineN(t,i+ 1, k—1);

I J

With the help of this family of functions we define the base functions as param-
eterized curves. We use two private member variables and overwrite the defining
method and drawing method (taking into account the respective supporting in-
terval). If K =1 or K = 2, the B-spline base functions consist of line segments,
and we draw them directly.

[
Listing from "base_functions.cpp":

class BSplineBase: public ParamCurve2d { public:
void Def( Color c, int PointNum, int i, int k )

I =i, K=k;
ParamCurve2d: :Def( ¢, PointNum,
min( 0, T[] ), min( T[M=1], T[I4+K] ) );

virtual P2d CurvePoint( Real u )
return P2d( ScaleX # u, ScaleY  SplineN( u, I, K) );
void Draw( ThinOrThick style, Real max_dist = —1 )

if (1>0)
StraightLine2d( col, P2d( ScaleX = T[0], 0 ),
P2d( ScaleX =« T[l], 0), style );
i (1+K<M-1)
StraightLine2d( col, P2d( ScaleX « T [I4+K], 0 ),
P2d( ScaleX x T[M—1], 0 ), style );
if(K==1&&I<M—1)

StraightLine2d( col, P2d( ScaleX = T[l], 0 ),
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P2d( ScaleX x T[], ScaleY ), style );
StraightLine2d( col, P2d( ScaleX % T[l], ScaleY ),
P2d( ScaleX  T[I+1], ScaleY ), style );
StraightLine2d( col, P2d( ScaleX T [I41], ScaleY ),
P2d( ScaleX = T[I+1], 0 ), style );

elseif ( K==2&& I <M - 2)

StraightLine2d( col, P2d( ScaleX « T[I], 0 ),
P2d( ScaleX x T[I+1], ScaleY ), style );
StraightLine2d( col, P2d( ScaleX x T [I4+1], ScaleY ),
P2d( ScaleX « T[I+2], 0 ), style );
}
else
ParamCurve2d: :Draw ( style, max_dist );
}

private:
int I, K;
}

I |

Next, we declare a 2D array of instances of class BaseF and define it in Init( ):

( \
Listing from "base_functions.cpp":

BSplineBase BaseF [M] [K];

void Scene::Init( ) {
int i, k;
for ( k=1; k < K; k++ )
for (i=0;i<M —k;it++ )
BaseF [i] [k].Def( Col [k], 61, i, k );
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In Draw( ) we repeat this loop with a draw command and display the coordinate
axes plus a scale indicating the knots (on the z-axis) and the unit (on the y-axis).
With small adaptations this program was used to produce Figure 2.59. &

Now we proceed with the introduction to B-spline curves. A B-spline is a piece-
wise polynomial curve whose segments are of continuity class C* (k > 0). We
choose a knot vector T = (to,...,tn,tnt1,.-.,tntr) and a sequence of control
points JE), . ,CZ;L in R? or R3. A B-spline curve b of order k with control points
J; and knot vector T is defined as

b... &(t) = zn:ci;zvf(t). (11)
=0

The parameter interval is usually restricted to [tx—1,tn4+1] because only there
is the full range of B-spline base functions available. Of course, this does not
mean that the knots tg,...,tx—2 and ¢, 49, ..., th+x have no effect on the shape
of the B-spline. Chosen in an appropriate way, they can guarantee certain nice
properties of the curve (we shall see examples of this later in this chapter).

In general, a B-spline curve is of C*~2-continuity: The (k—2)-nd derivative Z(*~2)

is still continuous, while #(*~1) is not. If, however, a knot is of multiplicity { (i.e.,
it occurs [-times in the knot vector T), the continuity class reduces to C*~~1,

In Figure 2.60 (left-hand side) we display a C-continuous B-spline curve with
six control points d; and a uniform knot vector T = (0,1,...,9) (i.e., n =5 and

k = 4). The connection between curve and control polygon is not as obvious as
in the case of Bézier curves.

d; ds
FIGURE 2.60. Two B-spline curves with the same control polygon but different knot
vectors: T = (0,1,2,3,4,5,6,7,8,9) for the left and T = (0,0,0,0,1,2,3,3,3,3) for
the right curve.

This changes if we consider the B-spline curve with the same control polygon
but knot vector T = (0,0,0,0,1,2,3,3,3,3) (right-hand side of Figure 2.60). The
first and the last knot have multiplicity &, which results in a behavior we already
know from Bézier curves: JQ) and d_:r) are start and end points of the B-spline, the
first and the last side of the control polygon are curve tangents in these points.
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These properties are key features for any application of B-splines in CAGD, and
it will be useful to have a defining method that already cares for the correct
choice of the knot vector. But first, we must have a look at the implementation
of B-splines in OPEN GEOMETRY 2.0.

We provide four classes of B-spline curves: NUBS2d, NUBS3d, NURBS2d, and
NURBS38d. “NUBS” stands for “Non Uniformal B-Spline” and means that the
knot vector need not consist of evenly distributed elements. “NURBS” means
“Non Uniformal Rational B-Spline.” It is defined in analogy to ordinary (integral)
B-splines. However, as with rational Bézier curves, we can assign weights to the
control points.28

In the following we will describe only the class NUBS2d. The remaining classes
have been implemented in a similar way.?"

NUBS2d is to successor of ParamCurve2d. Like all other B-spline classes, it is
defined in "nurbs.h". The header reads as follows:

Listing from "H/nurbs.h":
class NUBS2d: public ParamCurve2d

public:
NUBS2d( ) { T=A=NULL; D =E = NULL; }
void Def( Color ¢, int size, int knum, Real K[], int pnum,
P2dPI]);
void Def( Color c, int size, int pnum, P2d P[], int continuity,
Boolean closed = false );
"NUBS2d( ) { AllocMemory( 0, 0 ); }
virtual P2d CurvePoint( Realu ) { return DeBoor( u ); }
void MarkControlPoints( Color ¢, Real radl, Real rad0 = 0 );
void DrawControlPolygon ( Color ¢, ThinOrThick style );
Real GetKnot( int i ) {return T[i]; };
P2d GetControlPoint( int i ) { return D [i]; };
int GetKnotNum( ) { return M; }
int GetPointNum( ) { return N; }
private:
int n, k, N, M;
Real T, xA;
P2d «D, xE;
void AllocMemory( int knum, int pnum );
P2d DeBoor( Real u ) const;
int Computelnterval( Real u ) const;

28This is completely analogous to the case of rational Bézier curves (compare
page 130).

29We have prepared sample files that demonstrate the use of each of the mentioned
classes ("nubs2d.cpp", "nubs3d.cpp", "nurbs2d.cpp", "nurbs3d.cpp").
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Boolean Closed;

I |

The class provides a constructor and a destructor, two defining methods, and a
few “getters.” The CurvePoint(...) function is overwritten and calls the private
member function DeBoor(. .. ). The control points are stored in the P2d array D;
the knots are stored in the Real array T. The arrays A and E are used for the
computation of curve points in DeBoor(. .. ).

The memory allocation for control points and knots must be dynamic. The
corresponding OPEN GEOMETRY macros are hidden in AllocMemory(...). This
method is also called by the destructor.

We could compute the curve points directly via equations (10) and (11). However,
there exists a more efficient way of doing this: the subdivision algorithm of Cox—
DE BOOR. In [18] it is described as follows:

1. Given a B-spline curve b defined by a sequence (CZE),?J;J of control
points and its knot vector T = (to,...,tn,tntls---rtnik) (n > k= 1),
we want to compute the curve point corresponding to the parameter value
t* e [tk—latn—t—l}-

2. Determine the index r with ¢, < t* < t,yq1; for t* =t,,41 use r :=n.

3. For j=r—k+2,...,7r compute

t—t - -
1 J 7 1 1
L= — d d,:: 1— . d~7 .d».
% tivk—1—1; o =) dimto;d;
4. Forl=2,....k—land j=r—k+1+1,...,r compute
t* —t;

l J 7 Iy ji—1 1 gl-1

o = and di=1—-a)d 5 +a;d; .

J tivk—1 —t; J ( J) J—1 737

5. The curve point in question is d*~!.

In the NUBS2d member function DeBoor(...) we follow this algorithm. With
a minor adaptation we can avoid the allocation of 2D arrays for the reals o
and the points Jg . We use the one-dimensional arrays A and E for that purpose.
Step 2 is done by calling the private member function Computelnterval(...).

The preceeding listing shows two defining methods for a NUBS2d object. The
first method leaves all responsibility to the user. The control points as well as
the knots must be defined. The second method needs only the control points, an
integer to define the class of differentiability, and a Boolean variable to decide
whether the curve should be closed or not. This is a very convenient way, and
unless you are absolutely sure of what you are doing, we recommend using the
second method. We display a listing to show what happens:
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(
Listing from "H/nurbs.h":

void NUBS2d::Def( Color c, int size, int pnum, P2d P[],
int continuity, Boolean closed )

Closed = closed;

f ( Closed )
N = pnum + continuity + 1, n =N — 1;
k = min( continuity + 2, N )
M=k + N;
if (N<k)

SafeExit( "wrong index" );
AllocMemory( M, N );

int i;
for(':O;l pnum; i++ )
" DIi) = P[i);
int j;
for (i =pnum;i< N;i++)
j=1% pnum;
DIi] = P[i];
for (i=0;i<M;it++)
T[] = i;
ParamCurve2d: :Def( c, size, T [k—1], T [n+1] );
¥
else
{
N = pnum, n =N — 1;
k = min (contan|ty+2 N );
M=k + N;
'f(N<k)

SafeExit( "wrong index" );
AllocMemory( M, N );

int i;
for (i=0;i<N;it++)
i = P[]
for (i=0;i<k;i++)
T[i] = 0;
for(i:n+1;i<M;i++)
Tli]=n—k+ 2;
for(i:k;i<:n;i++)
Tl =i—k+ 1;
ParamCurve2d: :Def( c, size, T [k—1], T [n+1] );
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2.7

Let’s have a look at the else-branch first. There, the B-spline is not closed,
and we already know what should happen: We want to produce a curve as on
the right-hand side of Figure 2.60. We simply copy the control points and assign
values to the knots so that tg = --- =ty =0and t,41 = - =tpspr =n—k+2
are k-fold knots.

The second option in this defining method sets closed to true. The output is a
closed B-spline curve, which is quite useful for certain applications. In order to
achieve this goal, we continue the sequence of control points periodically. The
knot vector has no multiple knots.

If you want a special distribution of the knots, you can modify the described
defining methods and adapt them to your needs. This is interesting if you
deal with interpolating splines (so far we have talked only about approzimat-
ing splines). Then it may, for example, be necessary to approximate the knot
distance by the distance of the control points.

In Figure 2.61 we display a test series for open and closed B-spline curves with
varying degree k of continuity. In the case k = 0, the “curve” is identical with
its control polygon, if k = 1, the sides of the control polygon are tangents of
the B-spline. The curve in the upper right corner is a Bézier curve; it is even of
differentiability class C*°.

SN NN

FIGURE 2.61. Different B-spline curves.

B-splines in 3D and rational B-splines work in more or less the same way. Sample
code and description can be found in Chapter 6.

Further Examples

Example 2.39. Minimize distance
With a little imagination, it is easy to find many practical applications of the
following abstract geometrical problem: Given a finite set F := {Fy,..., F,} of



160

Chapter 2. 2D Graphics

points, we want to find a point P that lies “as close as possible” to all points
F;. The meaning of the phrase “as close as possible” needs, of course, a more
precise explanation. It seems sensible to minimize either the sum of distances
PF; or the maximal distance. Perhaps, the barycenter B of F is a good choice
as well. The best choice depends, of course, on the given practical problem. We
will consider three approaches:

1. The distance sum d(P) := Y.\, PF; is minimized.
2. The sum of squared distances s(P) := "', PF; is minimized.
3. The maximal distance m(P) := max{PF; | i =0,...,n} is minimized.

The functions d(P), s(P), and m(P) will be called score functions. The solutions
to the problem will be denoted by D (distance sum), S (squared distance sum),
and M (maximal distance), respectively.’C In general, these three approaches
result in different solutions. The main difference is their behavior with respect
to points that are far off from the main point cloud (Figure 2.62). Suppose, for
example, that the points F; are data points of a physical experiment. Then the
exceptional point F5 was probably just the result of a bad survey. One would
prefer the solution D in this case. If one is not sure whether to take D or M one
can decide on S. Its reaction to exceptional points lies somewhere between the
two extreme cases D and M. By the way; S is always the barycenter of F.

@) Fe®

FIGURE 2.62. Three different approaches to the optimization problem. The distant
point F3 has different impact on the position of D, S, and M.

In our OPEN GEOMETRY program "minimize_distance.cpp" we use a Monte
Carlo method to determine D, S, and M (compare Examples 2.36 and 2.37!).
We start with an arbitrary point D = Dy and apply a small random translation
to it. Then we compare the distance sums of the old and the new point. If it
has improved, we accept the change; otherwise we refuse it. This results in a
sequence (Dg, D1, ...) and a strictly monotonically decreasing sequence (d(D;)).
Analogous procedures yield good approximations for S and M.

In "minimize distance.cpp" we use the three functions to compute the values
of the score functions d(P), s(P), and m(P) (the points F; are defined globally):

30Tt is quite easy to see that there always exists a solution, but it is not obvious that
it is unique.
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Listing from "minimize distance.cpp":

Real DistSum( P2d &P )
{
int i;
Real sum;
for (i=0,sum = 0;i< N;i++)
sum += P.Distance( F[i] );
return sum;

}

Real SquareSum ( P2d &P )
{
int i;
Real sum;
for (i=0,sum = 0;i< N;i++)
sum += Sqr( P.Distance( F[i] ) );
return sum;

}

Real MaxDist( P2d &P )
{
int i;
Real dist = 0;
for (i=0;i<N;i++)
dist = max( dist, P.Distance( F[i] ) );
return dist;

I J

After initializing all points with sensible random values (of course, you can set
the points F; manually as well), we compute their scores and store them in
ScoreD, ScoreS, and ScoreM, respectively. In Animate( ) we make analogous ran-
dom attempts for D, S, and M. Here are the code lines for D:
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Listing from "minimize distance.cpp":

Real new_score;
Vad v;

P2d D_new = D;

v.Def( RndVX( ), RndVY( ) );
D_new += ChangeFactor * v;
new_score = DistSum( D_new );
if ( new_score < ScoreD )

D = D_new;
ScoreD = new_score;

}

I |

After starting the program, the user has to press <Ctrl+F> to start the ani-
mation. The new random points will be computed and tested. The convergence
of the point sequence is very fast at the beginning but soon slows down. The
reason for this is that the random vectors are too large. That is why we use a
change factor that determines the maximal length of the random vector. It can
interactively be changed by pressing f or d during the animation. &

Example 2.40. The isoptic

Let ¢ be an arbitrary conic and w € [0,180] an arbitrary fixed angle. Then the
isoptic curve i(c,w) is defined as the locus of all points from which ¢ is seen
under an angle of w. That is, the tangents of ¢ through P form an angle of w.
One usually considers the isoptics i(c,w) and i(c, 180 —w) as parts of one and the
same curve, because they satisfy the same algebraic equation. It is problematic
to derive a parameterized equation for the isoptic. But we can rely on a simple
geometric construction (Figure 2.63):

We assume that ¢ is an ellipse (an analogous construction is possible for the
hyperbola). By F1 and F2 we denote its focal points, by a the half-length of the
major axis. Let d be the circle with radius a centered at the ellipse’s center. Now
we take two straight lines through F2 that form an angle of w. They intersect
d in four points 1, 1/, 2, and 2’. The normals of F1 and F11’ through 1 and 1’
are tangents ¢; and t] of c. In the same way, we get tangents to and t}. The
vertices of the parallelogram t;¢]tot}, are four points of i(c,w) or i(c, 180 — w),
respectively.

It is now immediately clear how to implement the isoptic in OPEN GEOMETRY
("isoptic.cpp"). We do not compute anything; we simply perform the above
construction:
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FIGURE 2.63. The construction of the isoptic curve of an ellipse.

Listing from "isoptic.cpp":

class MyFirstlsoptic: public ParamCurve2d

public:
P2d CurvePoint( Real u )

{

}
}s

StrL2d s1, s2;
s1.Def( F2, V2d( cos( u ),sin(u) ) );
s2 =sl1;
s2.Rotate( F2, Omega );
P2d X1, X2;
int n;
n = Circle.SectionWithStraightLine( s1, X1, X2 );
if ( s1.GetParameter( X1 ) > 0)
s1.Rotate( X1, 90 );
else
s1.Rotate( X2, 90 );
n = Circle.SectionWithStraightLine( s2, X1, X2 );
if ( s2.GetParameter( X1 ) > 0 )
s2.Rotate( X1, 90 );
else
s2.Rotate( X2, 90 );
return sl x s2;

MyFirstlsoptic Isopticl;

I
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When intersecting a straight line through F1 with the circle d, we do not need
to check whether there exist real intersection points, since n will always take
the value 2. We choose the intersection point on the positive half-ray to avoid
discontinuities that stem from the order of the solution points. Note that this
construction actually gives the points of i(c, 180 — w). In order to get i(c,w), we
implement a second isoptic where we replace the first occurrence of “>” by “<”.
In the remaining parts we just define, draw, and mark relevant elements. We do
not consider it necessary to display them here. &

Sometimes it is convenient or even necessary to regard a plane curve c as a set of
straight lines (its tangents) rather than a set of points (its points of tangency).
The principle of duality of projective geometry guarantees that both points of
view are equivalent (in the sense of projective geometry), though the latter is
much more frequent. The dual curve of a standard plane curve is called a class
curve.

Example 2.41. Class curve
It is no problem to use a class curve in OPEN GEOMETRY. Version 2.0 provides
a successor class of ParamCurve2d that has all relevant methods:

Listing from "H/lines2d.h":
class ClassCurve2d: public ParamCurve2d

public:
virtual StrL2d Tangent( Realu ) = 0;
virtual P2d CurvePoint( Real u )

{

return Tangent( u — le—6 ) * Tangent( u + le—6 );

virtual V2d TangentVector( Real u )

{

return Tangent( u ).GetDir( );

}
}s

I |

We overwrite the Tangent(...), CurvePoint(...), and TangentVector(...) func-
tions of ParamCurve2d. Note that ClassCurve2d is a purely virtual function. In
order to use it we have to derive a successor and must implement the Tangent(. . .)
function. We did this in "class_curvel.cpp" (R1 and R2 are positive reals):
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Listing from "class_curvel.cpp":
class MyClassCurve: public ClassCurve2d

public:

StrL2d Tangent( Realt )

{
P2dP( Rl*cos(t), RLxsin(t));
P2dQ = P;
Q *= R2 / R1;
Q.Rotate( Origin2d, Phi );
Q.Translate( Dir );
return StrL2d( P, Q );

}

MyClassCurve ClassCurve;

I J

We connect two points P(t) and Q(t). The point P(t) lies on a circle ¢; centered at
the origin with radius R1, Q(t) is derived from P(t) through a scaling, rotating,
and translating operation. Therefore Q(t) lies on a circle ¢o of radius R2 and
corresponds to P(t) in a homothety 7 that does not depend on t. Thus, we might
say that our class curve c is generated by two homothetic circles. In Draw( ) we
connect the corresponding points:

[

Listing from "class_curvel.cpp":

int i, n = 40;
Real t, delta = 2 x Pl / n;
P2d P, Q;
for (i=0,t=0;i<n;i++, t +=delta)
{
P.Def( R1 % cos(t ), Rl *sin(t) );
Q=P;
Q *= R2 / R1;

Q.Rotate( Origin2d, Phi );
Q.Translate( Dir );
StraightLine2d( Yellow, P, Q, THIN );

}

.(-:.IassCurve.Def( Blue, 150, —PI, P1);
ClassCurve.Draw( MEDIUM, 100 );
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The class curve c itself is defined and displayed in Draw( ) as well. We have to
define it in Draw( ) because we want to animate the image. In Animate( ) we will
change the values of the rotation angle Phi and the translation vector Dir.

Listing from "class_curvel.cpp":

void Scene::Animate( )
Phi += 1;

Dir.Def( PulseX.Next( ), PulseY.Next( ) );
}

I |

If you start the animation, you will immediately notice that the generated class
curve ¢ is always a conic section (Figure 2.64). It is well known that two pro-
jectively linked conics generate a curve of class four in general (correspondence
principle of CHASLES). With each fixed point of the projectivity the class is re-
duced by one. In our case, the circular points at infinity remain fixed, and c is
always of class two, i.e., a conic section.

FIGURE 2.64. Two homothetic circles ¢; and c2 generate a conic section c.

If you want to see a curve of class four, you must not use circles. In
"class_curve2.cpp" we have replaced them by congruent ellipses e; and es.
Using two global constants A and B and a global variable Y of type Real, the
corresponding instance of ClassCurve2d is implemented as follows:

(
Listing from "class_curve2.cpp":

class MyClassCurve: public ClassCurve2d

public:
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StrL2d Tangent( Real u )

P2dP( Axcos(u),Bxsin(u));
P2d Q(Bxcos(u),Axsin(u) —Y);
return StrL2d( P, Q );

}

I\/inIassCurve ClassCurve;
l |

Varying Y means translating the second ellipse e, along the y-axis. We use a
pulsing real PulseY that swings harmonically between A — B and B — A to
control this motion:

(
Listing from "class_curve2.cpp":

void Scene::Draw( )

{
Xaxis2d.Draw( Black, —15, 15, THIN );

)

Yaxis2d.Draw( Black, —15, 15, THIN );

ClassCurve.Def( Blue, 100, —PI, Pl );
ClassCurve.Draw( THICK );

ENl1.Draw( MEDIUM );
Y = PulseY .Next( );
Ell2.Def( Green, 100, P2d( 0, =Y ),
P2d( B, —Y ), P2d( 0, A ~Y ) );
EN2.Draw( MEDIUM )

}
| !

We redefine the class curve c¢ and the ellipse e2 in each new frame and get a
nice animation. As visualized in Figure 2.65, ¢ changes its shape from an astroid
(Y = 0) to STEINER’s cycloid (Y = £A F B). In the latter case, there exists
exactly one fixed point of the projectivity between e; and es, and the class of ¢
is only three. &

Example 2.42. Angle stretch

Let 7 = r(u), ¢ = ¢(u) be the parametric representation of a plane curve ¢ in
polar coordinates. We can associate the angle-stretched curve c* of factor f with
c. Tt is defined by the parametric representation 7*(u) = r(u), ¢* = f - o(u).
With the help of some of OPEN GEOMETRY’s predefined 2D operations, we can
easily visualize ¢*, even if we do not have the parametric representation of ¢ in
polar coordinates.

In "angle_stretch.cpp" we display the angle-stretched curve of a straight line.
This task is just as difficult as drawing the angle-stretched curve of an arbitrary
parameterized curve. We define the straight line as a global constant and can
immediately derive the parameterized equation of the angle stretched curve:
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FIGURE 2.65. In general, two congruent ellipses e; and es generate a curve of class
four (left, middle). The class curve on the right-hand side (Steiner’s cycloid) is of class
three only, since there is one fixed point of the projective relation between e; and es.

Listing from "angle_stretch.cpp":
const StrL2d Line( P2d( 3,0 ), V2d( 0, 1) );

// the angle stretched straight line
class MyAngleStretch: public ParamCurve2d

public:
void Def( Color ¢, int n, Real ul, Real u2, Real factor )

Factor = factor;
ParamCurve2d: :Def( ¢, n, ul, u2 );

}
P2d CurvePoint( Real u )

V2d v = Line.InBetweenPoint( tan( u ) );
Real alpha = v.PolarAnglelnDeg( );
alpha x= Factor;
v.Rotate( alpha );
return P2d( 0 + v.x, 0 + vy );

}

private:
Real Factor;

I\/iyAngIeStretch AngleStretch;

I |

We want to write an animated program. Therefore, the stretch factor of ¢* is an
input parameter of the curves’s Def(...) function. We use a pulsing real Factor
for that purpose and define ¢* with every single new frame:
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FIGURE 2.66. c* is an angle-stretched curve to the straight line c.

(
Listing from "angle_stretch.cpp":

void Scene::Draw( )

// Define the angle—stretched curve. The bigger the stretch
// factor, the more inbetween points are necessary.

int n = ( int ) fabs( 70 x Factor( ) );

AngleStretch.Def( Red, n + 50, —PI_2, PI_2, Factor( ) );

// Draw everything and..
ShowAzes2d( Black, —10, 10, —8, 8 );
AngleStretch.Draw( THIN, 20 );
Line.Draw( Black, —10, 10, THICK );

//...print current stretch factor on the screen.
PrintString( Black, 7, —5.3, "stretch factor...%2.2f",
Factor( ) );

I |

Note that the arc length as well as the curvature of ¢* increase with the absolute
value of the stretch factor. Therefore, the number n of curve points has to be
chosen with respect to this value. In order to compare it with the output curve,
we print the input value Factor on the screen. Finally, we do not forget to insert

Factor.Next( );

in Animate( ) before we watch the interesting spiral effect of the program on the
computer screen (Figure 2.66). &



170

Chapter 2. 2D Graphics

Refractions

Refractions are to be seen everywhere in daily life. Diving in the sea or watch-
ing fish in an aquarium produces remarkable optical effects. Refractions play
an important role in technical applications as well: eyeglasses, optical lenses,
underwater photography, etc. Mathematicians have been interested in refrac-
tion phenomena for quite a while, and today their geometric properties are well
known:

We consider a refracting plane g. It may be imagined as the surface of a calm pool
of water. Light propagates with speed c¢; through the air (on one side of p) and
with speed co through the water (other side of ). The real number r := ¢;/co
is called the refraction ratio or index of refraction. A straight line a; (incidence
angle o to the normal n of p) is refracted into a straight line as through a; N o
with incidence angle s according to Snell’s law (Figure 2.67);

sin orp

=r. (12)

sin aip

That is, a3 > a9 iff r > 1. Though in principle we have a1,y € [—7/2,7/2],
there is a restriction on either o or as: For r» > 1, the refracted ray will have
a maximum angle of |a3®*| < arcsinr~!; for r < 1 rays are refracted only
when |ay| < arcsinr. For example, for r &~ 0.75 (water—air) we have |ay| <
off®* = 48.5°. Refraction is always accompanied by (partial or total) reflection:
The smaller the angle ay is, the less reflection occurs. For |a;| > of®*, we have
total reflection on s.

Eye

partial o
Ay reflection ) 1

total
reflection

FIGURE 2.67. Snell’s law (the law of refraction).

Both reflection and refraction are geometric phenomena in two dimensions only.
In fact, reflection is a special case of refraction (r = 1). There is, however, a
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small difference: While the incoming and reflected rays lie on the same side of
o, this is not the case with the incoming and refracted rays. Given «; and r,
equation (12) has two theoretic solutions o and 7/2 — aJ. Only one of them
is relevant for practical purposes, and a good implementation of a refraction
function in a computer program has to consider this. In the following listing you
can see the implementation of the Refract(...) method of StrL2d.

(
Listing from "C/o.cpp":

int StrL2d::Refract( const StrL2d &refracting_line, Real ior,
StrL2d &refracted_line ) const
{
P2d A;
Real lambda;
Boolean parallel;
SectionWithStraightLine ( refracting_line, A, lambda, parallel );
// no refraction if straight line has wrong
// orientation or is parallel to refracting line.
if ( lambda < 0 || parallel )

refracted_line.Def( point, dir );
return 0;

}

// compute angle of outgoing ray

// according to Snell’s law

V2d dir = GetDir( );

V2d n = refracting_line.GetNormalVector ( );

Real alphal = dir.Angle( n, true, true );
Real alpha2 = sin( alphal ) / ior;

if ( fabs( alpha2 ) > 1)

refracted_line.Def( A, dir );
refracted_line.Reflect ( refracting_line );
return 1;

}

else

if ( GetPoint( ).Dist( refracting_line ) < 0 )
{
alpha2 x= —1;
alpha2 = asin( alpha2 );
n.Rotate( Deg( alpha2 ) );
refracted_line.Def( A, n );
return 2;
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else

{
alpha2 = asin( alpha2 );
n.Rotate( Deg( alpha2 ) );
refracted_line.Def( A, —n );
return 2;

I J

The input parameters are the refracting line, the index of refraction ior, and
a straight line where the refracted line will be stored. The return value is 2
if refraction occurs. It is 1 if the straight line is totally reflected and 0 if the
incoming ray does not intersect the reflecting line at all (i.e., if it is oriented
in a wrong direction). In order to find this ray, we check at first whether the
intersection point A with the refracting line has a positive parameter value. If
not, we assume that the ray points away from the refracting line. The straight
line remains unchanged, and we return 0.

In the next step we compute the angles a; and ag of the incoming and the out-
going rays. If total reflection occurs, we reflect the straight line on the refracting
line and return 1. Otherwise, we rotate the normal vector of the refracting line
through as and define the refracted ray. Here we must pay attention to the ori-
entation of the refracting line in order to produce the only solution of practical
relevance. Ultimately, the solution will already have the correct orientation.

Example 2.43. Refraction on a straight line
The StrL2d method Refract(. .. ) can be used in many ways. For the next program
("refraction_on line.cpp") we set ourselves the following goals:

e Refract the members of a pencil of lines on a refracting line 7.

e Draw the envelope d of the refracted rays (this curve is called the diacaustic
of the pencil of lines).

e Visualize the fact that the diacaustic is the evolute of a conic section (com-

pare, e.g., [16])

Everything will be implemented in a way that a varying index of refraction yields
an animated image. With the help of a few global constants and variables. . .
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FIGURE 2.68. The diacaustic d of a pencil of lines and the characteristic conic c.

Listing from "refraction_on_line.cpp":

const P2d Eye( 0, —2 );
const StrL2d RefrLine( P2d( Eye.x, Eyey — 3 ), V2d( 1,0) );
const Real E = Eye.Dist( RefrLine ), Tmax = 5;

PulsingReal I0R;
Conic CharConic;
Rect2d Water;
| J

...and the OPEN GEOMETRY class ClassCurve2d, it is easy to implement the
diacaustic d:

Listing from "refraction_on_line.cpp":
class MyDiacaustic: public ClassCurve2d

public:
StrL2d Tangent( Realt )

StrL2d s( Eye, V2d( cos(t),sin(t) ) );
StrL2d refr;
if ( s.Refract( RefrLine, IOR( ),s ) )
return s;
else
return RefrLine; // dummy
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}
I

MyDiacaustic Diacaustic;
l |

Just for safety reasons, we return a dummy if no real refraction occurs. In fact,
we will avoid this case by choosing an appropriate parameter interval in Draw( ):

( \
Listing from "refraction_on_line.cpp":

// HIOR < 1 we draw only the lines
// that are not reflected totally.

Real t1, alpha_max;

if (IOR( ) < 1)

alpha_max = asin( IOR( ) );
tl = E * tan( alpha_max );

}

else

alpha_max = PI_2;
tl = Tmax;

Real t0 = —t1;

DrawlLineCongruence( t0, t1, Black, DarkGray, 20, IOR( ) );
// compute and draw diacaustic

Diacaustic.Def( Red, 50, —alpha_max—PI_2, alpha_max—PIl_2 );
Diacaustic.Draw( THICK, 100 );

I |

We compute the right parameter limit t1 from formula (12) and the drawing at
the right-hand side of Figure 2.67. If t1 is not restricted by physical laws, we set
it to a globally declared maximal value. Then, we call a function to draw the
lines of the pencil and their refraction images, define the diacaustic, and draw
it. DrawLineCongruence(. . .) is listed below:

Listing from “"refraction_on_line.cpp":

void DrawLineCongruence( Real t0, Real t1, Color coll, Color col2, int n,
Real ior )
{
const Realdelta= (t1 —t0) / (n—1);
P24 P;
StrL2d r;
Real t;
int i;
for (i=0,t=1t0;i<n;it++,t+=delta)
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P = RefrLine.InBetweenPoint( t );
StraightLine2d( coll, Eye, P, THIN );
r.Def( Eye, P );
int n = r.Refract( RefrLine, ior, r );
if (n

r.Draw( col2, —20, 5, THIN );
else

P = r x RefrLine;
r.Draw( col2, r.GetParameter( P ), 10, THIN );
}
}
}

I |

We announced earlier that we want to visualize the fact that the diacaustic is
the evolute (actually one half of the evolute) of a characteristic conic c. This
means that the refracted rays are all normals of the characteristic conic. All we
have to know is that the eye point E is a focal point and that its semiaxis is of
length a = er, where e is the distance from eye point to refracting line and 7 is
the current index of refraction. For » < 1 the characteristic conic is an ellipse,
for r > 1 it is a hyperbola, and for » = 1 (reflection) it is not defined. We can
implement this rather comfortably in Draw( ):

(
Listing from "refraction_on_line.cpp":

i{f (fabs( IOR( ) — 1) > 0.25)

P2d F = Eye;
F.Reflect ( RefrLine );
P24 P;
P=05%xEx(1+I0R() ) x*Eye+

0.5%«xE* (1—10R() ) *F;
CharConic.Def( Blue, 100, P, Eye, F,

(10R( ) > 1? HYPERBOLA : ELLIPSE ) );

CharConic.Draw( MEDIUM );

}
| |

We define the characteristic conic by two focal points Eye and F and one point
P on the main axis. The construction is a little unstable in the neighborhood
of r = 1. Therefore, we do not draw the conic within a (rather large) epsilon
interval.

Finally, we implement some extra features: We change the value of the pulsing
real IOR in Animate( ), print its current value on the screen, and draw a blue
rectangle to symbolize the water (Figure 2.68). &
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Example 2.44. Rainbow

Now to another program. We want to explain the genesis of a rainbow. After a
shower of rain, the air is filled with small drops of water that reflect and refract
the sun rays. In a certain configuration a viewer on Earth has the impression of
seeing a perfect circular arc in seven colors ranging from magenta to red. The
highest point of this arc is always seen under an angle of about 42°.

In order to explain the physics behind this phenomenon, we may consider the
small drops of water in the air as spheres (compare Figure 2.69). A ray of light r
entering a sphere is refracted (ray r1), partially reflected on the inside (ray 7o)
and refracted again as it leaves the sphere. Note that different indices of refraction
apply to light of different wavelengths. Therefore, the incoming ray splits up in
multiple rays whenever it is refracted.3!

FIGURE 2.69. A ray of light ry is refracted and reflected in a drop of water.

In order to understand the genesis of a rainbow, we must consider the angle ~
between incoming ray r and outgoing ray r3. It turns out that there exists a
maximum value of  if r changes its position but not its direction. This is the
case for sun rays; they are almost parallel.

Figure 2.70 illustrates that the maximal angle is near 42°, which confirms our
observations. In this direction the intensity of light is maximal, and we see a
rainbow. Inside the rainbow the sky seems to be brighter because of all the other
reflected and refracted rays.

In "rainbow.cpp" you will find an animation that is perhaps even more lucid
than Figure 2.70. There we use the following function for the refraction on a
circle:

Listing from "rainbow.cpp":

int RefractOnCircle( const StrL2d &r, const Circ2d &circ,

31This is the reason for the colors of the rainbow.
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FIGURE 2.70. The maximal angle of the light rays that leave the drop of water is
about 42°. In this direction the light intensity is maximal, and we can see a rainbow.
The different colors are due to different indices of refraction of light rays of different
wavelengths.

Real ior, StrL2d &refr_line )

P2d S1, 52;
if ( lcirc.SectionWithStraightLine( r, S1, 52 ) )

refr_line = r;
return 0;

}

else

{

if ( r.GetParameter( S1 ) > r.GetParameter( S2 ) )

// swap S1 and S2 without using additional memory

S1=S51-52;

S$2 =S1 + S2;

S1=S52 - S1;
StrL2d tangent;

if ( fabs( r.GetParameter( S1 ) ) < 1le—3)
tangent = circ.GetTangent( S2 );
else
tangent = circ.GetTangent( S1 );
return r.Refract( tangent, ior, refr_line );
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I |

Its input and output parameters are similar to those of StrL2d::Refract(...). We
refract r on circ. Here, IOR is the index of refraction, and the result is stored
in refr_line. The return value tells whether no reflection, total reflection, or real
refraction occurs (0, 1,that and 2, respectively).

If real intersection points of r and circ exist, we arrange them in order of ascend-
ing parameter values. Then we compute the tangent in the relevant intersection
point and use StrL2d::Refract(...). This function takes care of the correct re-
turn value as well. Note a little detail: If the first intersection point S1 has the
parameter value 0 (or almost 0), we will always refract on the tangent in the
second intersection point S2. This is important when two refractions occur. The
new line will be defined by its direction vector and the point of refraction.

Now to the program itself. We use one circle Circle, a point L1, three straight
lines Linel, Line2, Line3 and a pulsing real Phi as global constants or variables.
During the whole animation Linel will contain the fixed point L1. The circle and
the pulsing real are defined in Init( ):

(
Listing from "rainbow.cpp":

void Scene::Init( )
{
const Real rad = 5;
const P2d center( 0, 0 );
Circle.Def( Black, center, rad, EMPTY );
Real phi = asin( rad / L1.Distance( center ) );
phi x= —1.001;
Phi.Def( —PlI, phi / 800, —PI — phi, —PI + phi, HARMONIC );
ScaleLetters( 0.7, 1 );

I |

Phi is initialized in a way that the straight line through L1 and direction
(cos phi, sin phi) will always intersect the circle (phi is the current value of Phi).
A very important part is Draw( ):
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(
Listing from "refraction_on_circle.cpp":

void Scene::Draw( )
{
Line1.Def( L1, V2d( cos( Phi( ) ), sin( Phi( ) ) ) );
StrL2d normal;
Real delta = 0.0018;
int j;
Real ior = 0.75 — 1.2 % delta;
Color col [7] = { DarkMagenta, LightBlue, LightCyan, LightGreen,
Yellow, Orange, Red };
// seven colors of the rainbow

for (j=0;j<7;j++)

if ( RefractOnCircle( Linel, Circle, 1/ior, Line2 ) )

{
P2d P = Linel % Line2;
if (j==0)
{

normal.Def( P, V2d( P — Circle.GetCenter( ) ) );
P2d H = Linel.InBetweenPoint( Linel.GetParameter( P )—5 );
DrawArrow2d( Black, H, P, 1, 0.2, FILLED, MEDIUM );

// mark incoming ray

}
if ( RefractOnCircle( Line2, Circle, ior, Line3 ) )
{
P = Line2 % Line3;
P2d Q = Line2.GetPoint( );
StraightLine2d( col [j], Q, P, MEDIUM );
normal.Def( P, P2d(Circle.GetCenter( )) );
P2dR = Q:
R.Reflect( normal );
StrL2dr( P, V2d(R — P ) );
P2d S1, S2;
Circle.SectionWithStraightLine( r, S1, S2 );
if ( S1.Distance( R ) > S2.Distance( R ) )

// different way of swapping points
P2d tmp;
SwapElements( S1, S2, tmp );

}
StraightLine2d( col [j], R, S2, THIN );
StrL2d s;
if ( RefractOnCircle( r, Circle, ior, s ) )
s.Draw( col [j], 0, 5, THIN );
if (j==0]|j==6) // print angle of outgoing ray
// on the screen
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P2d H = s.InBetweenPoint( 5 );
char str[16];
sprintf( str, "%4.1£", —s.GetDir().PolarAnglelnDeg( ) );
WriteNice( Black, str, H.x, Hy — 0.06%(j—1),
0, 0.6, 1, XYplane );
}

}
}

else
Linel.Draw( Black, 0, 1000, MEDIUM );
ior += delta;

}
Circle.Draw( MEDIUM );
}

I |

We distinguish seven different cases according to the wavelength of the light
(different color and different index of refraction). The incoming ray of light is
successively refracted (or reflected) on the circle, and the respective line segments
are drawn. Furthermore, we display the current angles of the outgoing rays on
the screen. &
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In OPEN GEOMETRY, the main difference between many classes and methods in
planar and spatial geometry is the suffix “3d” instead of “2d.” Of course, you
should know a little more than this about OPEN GEOMETRY’s 3D classes before
you start writing programs of your own. On the one hand, geometry in three
dimensions provides many more objects of interest. On the other hand, they are
much harder to deal with.

As far as programming is concerned, an important difference between 2D and
3D is the velocity of animations: Numerous visibility decisions by means of z-
buffering cost some CPU time. Therefore, you should use your computer’s re-
sources with care. Occasionally, we will point out examples of this.

Because of the mass of examples, we have split the chapter on 3D graphics into
two parts. This part deals with the more fundamental concepts such as:

OPEN GEOMETRY’s basic 3D classes,

manipulation of the camera,
e parameterized surfaces,
o free-form surfaces (Bézier surfaces and NURBS),

e simple 3D animations.

The second part is dedicated to more complex topics.
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3.1

Basic 3D Classes

In this introductory chapter we will present a few very fundamental 3D classes
of OPEN GEOMETRY: points (class P3d), straight lines (class StrL3d), planes
(class Plane), circles (class Circ3d), and polygons (class Poly3d). With the help
of simple sample files you will see them in action and learn how to use them.

Example 3.1. Three planes

We consider a triangle and two circles in 3-space. They mutually intersect and
define a unique intersection point and three line segments that we would like
to display (Figure 3.1). In order to determine the intersection point and line
segments, we will use the triangle’s and circles’ supporting planes.

FIGURE 3.1. The mutual intersection of two circles and a triangle (compare file
"three_planes.cpp").

The source code of this example can be found in "three_planes.cpp". We use
three global variables and one global constant:

\
Listing from "three_planes.cpp":

RegPoly3d R[3]; // Three regular polygons,
Plane Eps|3]; // their supporting planes,
P3d S; // and their intersection point.

// array of colors for the three polygons
const Color Col [3] = { Yellow, Blue, Pink };

The triangle and the two circles will be objects of type RegPoly3d. We could
as well use the class Circ3d. It would not make any difference, since it is a
successor of RegPoly3d, and we do not need its advanced features. Furthermore,
we use three planes (the polygons’ supporting planes) and a 3D point S (their
intersection point) as well. All elements are defined in Init( ):



Section 3.1. Basic 3D Classes 183

(
Listing from "three_planes.cpp":

void Scene: :Init( )

{
// Define the three polygons...
int n[3] = { 3, 100, 100 };
for (inti=0;i< 3;i++)

R[i].Def( Col [i], P3d(16 — 3 =i ,0,0), Zaxis, n[i] );
RI[i]. Translate( —3, 3, 1 );

// ...and bring them in a good position:
R[O] Translate( 4, —6, 0 );
R[1].Rotate( Zaxis, 30 );

R[1].Rotate
R[2].
R{2].

( Xazis, 70 );
Rotate( Zawzis, —50 );
Rotate( Yazis, —55 );

// Define the supporting planes of the polygons...
for (i=0;i<3;i++)
Eps[i].Def( R[i] [1], R[i][2], R[i][3] );

// and intersect them:

if ( 'Eps[2].SectionWithTwoOtherPlanes( Eps[0], Eps[1], S ) )
Write( "no common point" );

I |

At first, we define the three polygons by their color, some vertex point, their axis
(OPEN GEOMETRY’s global constant Zazis), and the number of vertex points.
The two circles are approximated by polygons of 100 sides. Subsequently, we
bring them into a good relative position by certain translations and rotations
about the coordinate axes.

The supporting planes are defined via three polygon vertices. We can access the
vertex point by means of the [] operator. The intersection point is computed by
a new method of the class Plane: SectionWithTwoOtherPlanes(. .. ) returns true
if a unique intersection point exists and stores it in the global variable S. If S is
not uniquely determined, we give an alert by opening a little window with the
warning “no common point.”

In Draw( ) we shade the three polygons in their respective colors and with a
thick black contour:
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Listing from "three_planes.cpp":

void Scene::Draw( )

{

int i, j;

// Shade the polygons...
for (i=0;i<3;i++)

Ri].ShadeWithContour( Black, THICK );
}

// ...determine the end points of their mutual intersecting
// line segments:
P3dS1, S2;
for (i=0;i<2;i++)
{
for (j=i+1; j<3;j++)

if ( R[i].SectionWithOtherPoly3d( R[j], S1, S2 ) )
StraightLine3d( Black, S1, S2, THICK, 1le—2 );
}
}

// Mark their intersection point. Zbuffer ( false )
// guarantees that it is always visible.

Zbuffer( false );

S.Mark( Black, 0.3, 0.15 );

Zbuffer( true );

I J

Then we have to determine the mutual intersection line segments of the polygons.
For that purpose the SectionWithOtherPoly3d(. .. ) method of RegPoly3d is very
convenient. It returns true if an intersection occurs and stores the end points of
the line segment in S1 and S2. The OPEN GEOMETRY command StraightLine3d
connects them by a thick black line.

The last argument of StraightLine3d is not mandatory. It gives a critical offset
distance for OPEN GEOMETRY’s visibility algorithm (z-buffering). In our example
it is larger than the default offset of 1e—3. As a consequence, the straight lines
will clearly stand out. A similar trick is used for the marking of the intersection
point S. It will never be concealed by any other object.

We recommend that you experiment a bit with these visibility options: Change
the offset in StraightLine3d or mark S with active z-buffer and watch the different
outputs. Note that the final output depends on your graphics card, too. For the
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production of Figure 3.1 we used OPEN GEOMETRY’s export option to POV-Ray.
It should look a little different from your screen output, but that is all right.

More about OPEN GEOMETRY’s camera option can be found in Section 3.2. The
export to POV-Ray is described in Section 4.2 on page 335. &

Example 3.2. Some objects

OPEN GEOMETRY knows a number of geometric primitives that can be displayed
with very little effort. The simple sample file "some_objects.cpp" is a simple
sample file that demonstrates how to do this. We display a cube, a sphere, a
cylinder of revolution, a tetrahedron, and a torus in aesthetic arrangement.

FIGURE 3.2. Geometric primitives created in OPEN GEOMETRY 2.0 and rendered
with POV-Ray.

Listing from "some_objects.cpp":

#include "opengeom.h"
#include "torus.h" // needed for the class "Torus"

Torus T;
Sphere S;

Boz B;
RegPrism Base;
RegPrism C;

class RegTetrahedron: public RegFrustum

public:
void Def( Color ¢, Real side, const StrL3d &axis = Zaxis )

RegPrustum: :Def( c, side/sqrt(3), 0, sidexsqrt(2/3),
3, SOLID, axis );
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}

RegTetrahedron H;

void Scene: :Init( )
{
Base.Def( Gray, 9, 0.2, 100 );
// regular prism of radius = 9, height = 0.2;
// it has 100 sides, i.e., it approximates a cylindrical tray
Base.Translate( 0, 0, —=0.2 );

C.Def( Magenta, 2, 4, 40 );
// approximate a cylinder by a prism of 40 sides
C.Translate( 0, —5.5, 0 );

B.Def( Green, 4, 4, 4 ); // cube of side length 4

B.Translate( —7, =2, 0 );

S.Def( Orange, Origin, 2 ); // sphere of radius = 2, centered at origin
S.Translate( 0, 0, 2 );

T.Def( Blue, 20, 40, 2, 1 );
// torus with 20 parallel circles and 40 meridian circles (radius = 1 );
// the radius of the midcircle equals 2

T.Translate( 6, 0, 1 );

H.Def( Yellow, 6 ); // regular tetrahedron of side length = 6
H.Translate( 0, 5, 0 );

void Scene::Draw( )

{
Base.Shade( );

C. Shade( ;
);
)
);
);
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3.2

At the top of the file we declare a few global variables that describe instances of
OPEN GEOMETRY primitives. An OPEN GEOMETRY class RegTetrahedron does
not yet exists. Therefore, we derive it from the already existing class RegFrustum.
A tetrahedron can be interpreted as a regular frustum of three sides where the
top polygon is of radius 0. Furthermore, the side length side of the base polygon
and the height height have to satisfy the relation side : height = 1/1/3 : m

Perhaps you feel that the class RegTetrahedron is useful enough to belong to
OPEN GEOMETRY’s standard classes. Almost certainly it will in a future version.
For the time being you may implement it yourself. Section 7.4 tells you how to
proceed. However, if you are a beginner, you should not worry about this more
advanced topic.

In the Init( ) part we define the primitives and translate them to a good position.
Note that methods for geometric transformations (Translate(...)) are available
for all of the primitives we have used, even for RegTetrahedron. They inherit it
from their common ancestor class O3d.

Figure 3.2 shows a POV-Ray rendering of the scene. We used two different light
sources and assigned reflecting textures to some of the objects. &

Manipulation of the Camera

In this section we show how to work with the member functions of the “virtual
camera.” In a first example we demonstrate how the camera can be initialized
and later on changed easily in the function Projection::Def( ), which has to be
implemented by the user anyway. Figure 3.3 shows the output. The code is easy
to comprehend. When the program is started and the animation is run, a compass
is displayed from different views. When the program is restarted, a kardan joint
is loaded from a file and displayed in various ortho projections.

(
Listing of "manipulate_cameral.cpp":

#include "opengeom.h"

Cad3Data Obj;
Boz B;
Boolean UseOrthoProj = true;

void Scene: :Init( )
{
UseOrthoProj = !UseOrthoProj;
Obj.Delete( );
Obj.Def( 10 );
if ( UseOrthoProj )
{
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FIGURE 3.3. Different views of a scene (left: perspective, right: normal projection).
Output of "manipulate_cameral.cpp"

Obj.ReadNewMember( "DATA/LLZ/kardan_complete.llz",
0.08 );
Obj.Translate( —5 % Xdir );

}

else

Obj.ReadNewMember( "DATA/LLZ/compass.11z", 0.08 );
Obj.Rotate( Zawis, 75 );

I

Obj.Translate( 6, —2, 0.5 );

B.Def( Yellow, P3d( —8, —4, —0.5), P3d( 8,4, 0) );
AllowRestart( );

void Scene::Draw( )

B.Shade( );
Obj.Shade( );

void Scene::Animate( )

{

void Scene: :CleanUp( )

{
}
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void Projection: :Def( )
if ( VeryFirstTime( ) )

if ( UseOrthoProj )
DefaultOrthoProj( 18, 18, 12 );
else
DefaultCamera( 18, 18, 12 );
ZoomlIn( 1.3 );
ParallelLight( 1, 2, 3 );
}

else

int f = ( FrameNum( ) — 1) % 120;
if (f<60)
RotateHorizontally( 2 );
elseif (f< 70)
RotateVertically( 2 );
else if ( f < 80)
Zoomln( 1.02 );
else if (f< 90)
ZoomOut( 1.02 );
else if ( f < 100 )
RotateVertically( —2 );
else
LightDirection.Rotate( Zaxis, 5 );

I |

If you are a bit advanced, you already know that animations should be made
only in the animation part. Thus, the manipulation of the camera should be
moved to Animate( ).! There, however, you have to call the camera-functions —
as anywhere else in your code — with the help of the global variable TheCamera.?

'Tf you leave the code in Projection::Def( ), the following might happen: You move
to the 10-th frame and then resize the window or make some other irrelevant change
that will not increase the frame number. Then the change of the camera that belongs
to frame 10 will be called more than once, and this may lead to slightly different results
after the animation.

2 Actually, TheCamera is a macro that replaces the word by (*Global.camera); the
global variable Global.camera is obviously a pointer variable, but don’t worry about it.
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Listing from "manipulate_camera?2.cpp":

void Scene::Animate( )

int f = ( FrameNum( ) — 1) % 120;
if (f<60)
TheCamera.RotateHorizontally( 2 );
elseif (f< 70)
TheCamera.RotateVertically( 2 );
else if ( f < 80 )
TheCamera.ZoomlIn( 1.02 );
else if ( f < 90 )
TheCamera.ZoomOut( 1.02 );
else if ( f < 100 )
TheCamera.RotateVertically( —2 );
else
LightDirection.Rotate( Zaxis, 5 );

Object transformations, matrix operations

This is a good opportunity to talk about the difference between rotations of
the camera and rotation of the object. When there is one single object in the
scene and you want to create a certain view of it, it does not matter whether you
rotate the object or the camera. The following two programs would produce very
similar output. In the first program, the object (a dodecahedron) is rotated by
means of a matrix so that it appears in a top view. Note that OPEN GEOMETRY
really changes the coordinates of the object! If you want to undo the rotation,
you have to rotate the object by means of the inverse matrix!

(
Listing of "manipulate_camera3.cpp":

#include "opengeom.h"
#include "dodecahedron.h"

RegDodecahedron D;
void Scene::Init( )

D.Def( Green, 4 );

RotMatrix r;

r.Def( TheCamera.GetPosition( ) );
D.MatrixMult( r );
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I

void Scene::Draw( )
D.Shade( );

void Scene::Animate( )

{

void Scene::CleanUp( )
{

void Projection::Def( )
if ( VeryFirstTime( ) )

DefaultOrthoProj( 28, 18, 12 );

}
}

|

The second program is much easier to read: It creates a top view of the object
without rotating it. Clearly, for this task the second solution is the better one:

[

\
Listing of "manipulate_camera4.cpp":

#include "opengeom.h"
#include "dodecahedron.h"

RegDodecahedron D
void Scene::Init( )

D.Def( Green, 4 );
void Scene::Draw( )
D.Shade( );

void Scene::Animate( )

{
void Scene::CleanUp( )

void Projection: :Def( )
if ( VeryFirstTime( ) )

DefaultOrthoProj( 0, 0, 35 ); // Top view

}
}
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However, it happens quite often that you have to apply more complex rotations
to a single object. This is necessary, for example, in order to let the predefined
teddy touch the floor in three distinct points (Figure 3.4). The solution was
found by playing around with several angles.

FIGURE 3.4. The teddy has to be rotated and translated to get it in the correct posi-
tion with respect to the floor (output of "manipulate_camera5.cpp"). Left: front view,
right: perspective. Note that the shadows would immediately show a wrong position.

Listing of "manipulate_camerab.cpp":
#include "opengeom.h"

Cad3Data Teddy;
Bozx B;

void Scene: :Init( )

{
Teddy.Delete( );
Teddy.Def( 10 );
Teddy.ReadNewMember( "DATA/LLZ/teddy.11z", 0.08 );
Teddy.Rotate( Zaxis, 60 )
Teddy.Rotate( Xaxis, 97 );
Teddy.Rotate( Zaxis, 50 );
Teddy. Translate( —1, 0, 1.61 )
B.Def( Gray, P3d( —6, —4, —
AllowRestart( );

b

6.5), P3d( 4,4,0));

void Scene::Draw( )

B.Shade( );
Teddy.Shade( );
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void Scene::Animate( )

{

void Scene: :CleanUp( )
{
}
void Projection::Def( )
if ( VeryFirstTime( ) )
DefaultCamera( 18, 18, 12 );

Zoomln( 1.3 );
ParallelLight( 1, 2, 3 );

I |

Remember that the coordinates are manipulated with every rotation. So when
you have an object with 10000 vertices and you apply three rotations, it is
definitely faster to create one single rotation matrix:

Teddy.ReadNewMember( "DATA/LLZ/teddy.11z", 0.08 );
RotMatrix z1, x, z2;

z1.Def( Arc( 60 ), Zdir );

x.Def( Arc( 97 ), Xdir );

22.Def( Arc( 50 ), Zdir );

Teddy.MatrixMult( z1 * x % z2 );

Note that the definition of a matrix requires the angle in arc length, which is
a bit different from our usual conventions, but these definitions are used quite
often internally, and since the computer calculates in arc lengths, this speeds up
the code a bit.

Speeding up time-critical code with OPENGL display lists

Speaking of speed and speaking of rotation matrices we can assert that both
are strength of OPENGL. So, for some applications, you can use these OPENGL
features in order to get a real-time animation done.



194 Chapter 3. 3D Graphics I

Example 3.3. Rocking horse

As an example, we want a rocking horse (Figure 3.5) to “rock realistically.” The
object is stored in a file, and it has a few thousand vertices. It has to be rotated
about a general axis and, additionally, to be translated for each new frame. If
you do this with the OPEN GEOMETRY routines, this costs a great deal of CPU
time. Additionally, the changes have to be undone after the drawing. In such a
case, a classical OPENGL solution is to be preferred: We use the matrix calculus
with its functions glMatrixMode( ), glPushMatrix( ), and glPopMatrix( ). The
general rotation is done with a combination of glTranslated( ) and glRotated( ),
and the ordinary translation again with glTranslated( ). The changes are applied
only to the OPENGL projection and not to the object coordinates. Thus, they
are undone when we reactivate the previous matrix. Additionally, the speed is
increased when we use display lists that are embedded in the gINewList( )—
glEndList( ) block. With glCallList( ) they are redisplayed with respect to the
actual matrix. Here is the complete listing of the corresponding program:

FIGURE 3.5. Rocking horse, animated in real time via OPENGL. Output of
"rocking horse.cpp"

Listing of "rocking horse.cpp":
#include "opengeom.h"
Cad3Data Horse;

PulsingReal Angle;

Boolean FirstTime;

void Scene: :Init( )

FirstTime = true;
Horse.ReadNewMember( "data/1lz/rocking horse.1llz" );
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Horse.SetAllColors( Brown );
Angle.Def( 0, 2, 25, —25, HARMONIC );
AllowRestart( );

void Scene::Draw( )
{
Real t = Angle( );
gIMatrixMode( GL_.MODELVIEW );
glPushMatrix( );
glTranslated( 0, 0, —1 );
glRotated( t, 0, 1, 0 );
ngransIated( 1.0 %« Arc(t ), 0, 0.0006 * t *t );
if ( FirstTime )

1

gINewList( 1, GL.COMPILE_AND_EXECUTE );

Horse.Shade( ALL_FACES );
glEndList( );
FirstTime = false;

}

else
glCallList( 1 );
glPopMatrix( );
void Scene: :CleanUp( )
{
}
void Scene::Animate( )
Angle.Next( );
void Projection::Def( )

if ( VeryFirstTime() )

DefaultOrthoProj( 7, 9, 5 );
SetDepthRange( —4,4);
ParallelLight( 3, 5, 3 );

I

|

The global variable Angle of type PulsingReal is a perfect tool for the creation of
a harmonic movement. Note the other global variable FirstTime, which enables

us to build and redisplay the list.

¢
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Optimize OPENGL’s hidden surface algorithm

In Projection::Def( ) of "rocking horse.cpp" we used the camera’s member
function SetDepthRange(...), which has influence on the image quality. Its pa-
rameters should — in the optimal case — be the minimal and maximal distance
from the projection plane. (This plane is perpendicular to the principal ray and
contains the target point.) Everything closer to the eye point or further away is
clipped by the OPENGL “graphics engine”.

OPENGL uses the method of depth-buffering (or z-buffering) for the fast removal
of hidden surfaces. In pure OPENGL code you would enable and disable the buffer
with the following lines:

glEnable( GL.DEPTH_TEST );
glDepthFunc( GL_.LEQUAL );
glDepthRange( 0, 1 );

glDisable( GL_DEPTH.TEST )

In OPEN GEOMETRY, this is done by the scene’s member function Zbuffer( ) with
a Boolean parameter on_off. You do not need to know the algorithm in detail,
but you should know that the closer its ranges are adapted to the depth range
of the actual scene the better it works. And this is what SetDepthRange(...)
does for you. When your scene has a diameter of 0.5 units and you set the range
from —1000 to +1000, the output will be poor. Typical OPEN GEOMETRY scenes
have a diameter of 5 to 20 units, — like the objects on the sketch on your drawing
paper. Therefore, the default depth range is from —40 to +40, which turns out
to be a good average depth range.

All OPEN GEOMETRY routines are optimized for the default depth range. For
example, lines on a surface are by default drawn with a tiny offset in the di-
rection to the eye point. This offset can generally be changed, when you add
an additional Real offset number at the end of OPEN GEOMETRY functions like
StaightLine3d(. . .), StrL3d::Draw(. .. ), StrL3d::.LineDotted(. .. ), L3d::Draw(. .. ),
ParamSurface::WireFrame(. .. ), Polyhedron::Contour(...), etc. The default value
for offset is the value STD_OFFSET = 0.001. For extreme cases, you can
choose a value offset = 10 * STD_OFFSET or so for large scenes, or offset = 0.1
* STD_OFFSET for tiny scenes. You can let OPEN GEOMETRY do the work for
you when you use the scene’s member function ChangeDefaultOffset( ). For ex-
ample, a parameter value 2 doubles the value of STD_OFFSET. In the rare case
that you deal with surface parts that have almost zero distance, the algorithm
will cause problems in any case.

For the production of Figure 3.6 we used OPEN GEOMETRY’s default depth
range and offset. The two surfaces (PLUCKER conoids; compare Example 3.17)
are apparently identical. However, for the picture on the left-hand side we zoomed
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in on a very small surface (diameter of 1 to 2 drawing units). You can see the
bad visibility performance in the regions around the surface axis. The object on
the right-hand side has a diameter of about 20 drawing units. There, the hidden
line algorithm works well.

FIGURE 3.6. Too small surfaces without additional settings of default offset and
depth range may cause visibility problems. The surface on the left-hand side has a
diameter of about 1 to 2 drawing units; the surface on the right-hand side has good
OPEN GEOMETRY dimensions

How to find the optimal view and lighting quickly

As a final point, we want to explain how you can quickly optimize the view and
the light direction for your application: You first make a guess (say, take the
default camera from "defaults3d.h"). Then you start the program and — via
keyboard shortcuts or menu — change the camera and the light source. When
you are satisfied with the output, save the settings via menu or the shortcut
<Ctrl + 1>. This creates a file "tmp.dat" that looks like this:

// The following changes have been made interactively
// Insert this code into ’*Projection::Def( )’
if ( VeryFirstTime( ) )

DefaultCamera( 42.76, 13.35, 21.40 );
ChangeTarget( 7.93, —1.20, 3.90 );
ChangeFocus( 70.0 );
SwitchToNormalProjection( );
SetDepthRange( —10.4, 10.4 );
ParallelLight( 0.27, —0.53, 0.80 );

Just insert the contents of this file into your application file in your implementa-
tion of Projection::Def( ). The file "tmp.dat" is written to OPEN GEOMETRY’S
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standard output directory as specified in "og.ini". If you want to change this
value, you can edit this file and insert a path of your choice.?

Impossibles

This chapter’s concern is how to display 3D objects on a 2D medium like the
screen of your computer or a sheet of paper coming out of your printer, a very
common task indeed. However, it can be a bit tricky. For the transition from
space to plane, we always pay with a loss of information: Theoretically, it is
impossible to reconstruct a 3D object from a single image in 2D.

When we watch real-life objects, this problem usually does not occur. We have
two images as input data (we watch with two eyes), and we get additional infor-
mation by walking around the object, turning our head or rolling our eye-balls.
Furthermore, we consider phenomena of illumination and reflection, and last but
not least, we have a certain notion of the object we watch.

Reversed, all of this can be used to create illusions on your computer screen.
It is you who determines what the user will see. You can play with the user’s
imagination and make her/him believe to be seeing something that is not really
there. This is, however, not just a joke. Deceiving images may be used to create
sensible impressions. We will present a few (not too serious) examples of optical
illusions in the following.

Example 3.4. Tribar

Start the program "tribar.cpp". You will see three lengthy boxes connected
in a way to form three right angles. Of course, this is not possible, and you
can immediately discover the trick by (literally) taking a different point of view
(Figure 3.7).

FIGURE 3.7. The impossible tribar.

3This may turn out to be necessary in case of a network installation of OPEN GEO-
METRY.



Section 3.2. Manipulation of the Camera 199

zZ' z"
Y [TH X
T T
Tl
y
E
X’ E T

FIGURE 3.8. The arrangement of the boxes and the position of eye and target point.

The corresponding code is very easy. We arrange three boxes parallel to the
coordinate axes in the way that is displayed in Figure 3.8.* The boxes are of a
certain dimension B x B x H. Thus, the points £ and T that — seemingly —
coincide in Figure 3.7 have coordinates (h, b, 0)* and (0, h—b, 2b—h)*, respectively.
Now we have only to find the right projection.

(
Listing from "tribar.cpp":

void Projection::Def( )
if ( VeryFirstTime( ) )

DefaultCamera( H, B, 0.5 x H );

ChangeTarget( 0, H—B, -H + 2+ B + 0.5 xH );
ChangeFocus( 30 );

SwitchToNormalProjection( );

ParallelLight( 0.72, 0.35, 0.60 );

“You can probably imagine the scene after a short look at the right-hand side of
Figure 3.7. This is, however, possible only because you automatically assume boxes
with edges parallel to the coordinate axes. Otherwise, the reconstruction problem has
no unique solution.
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We choose E and T as eye point and target point, change the focus, and switch to
normal projection.® This yields projection rays parallel to ET and ensures that
these points have coinciding images. It is important to use normal projection.
Otherwise, the different distortions of the boxes would immediately give the clue
to the solution. O

Example 3.5. Reconstruction

Another example of a misleading 2D image of a 3D object can be found in
"reconstruction.cpp". In the first frame you will see an object that you would
probably interpret as the image of a wire 