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Geometry

Manipulation

The “Geometry Manipulation” section of the book focuses on the ability of graph-
ics processing units (GPUs) to process and generate geometry in exciting ways.

The article “Terrain and Ocean Rendering” looks at the tessellation related
stages of DirectX 11, explains a simple implementation of terrain rendering, and
implements the techniques from the ShaderX6 article “Procedural Ocean Effects”
by László Szécsi and Khashayar Arman.

Jorge Jimenez, Jose I. Echevarria, Christopher Oat, and Diego Gutierrez
present a method to add expressive and animated wrinkles to characters in the
article “Practical and Realistic Facial Wrinkles Animation.” Their system allows
the animator to independently blend multiple wrinkle maps across regions of a
character’s face. When combined with traditional blend-target morphing for fa-
cial animation, this technique can produce very compelling results that enable
virtual characters to be much more expressive in both their actions and dialog.

The article “Procedural Content Generation on GPU,” by Aleksander Netzel
and Pawel Rohleder, demonstrates the generating and rendering of infinite and
deterministic heightmap-based terrain utilizing fractal Brownian noise calculated
in real time on the GPU. Additionally it proposes a random tree distribution
scheme that exploits previously generated terrain information. The authors use
spectral synthesis to accumulate several layers of approximated fractal Brownian
motion. They also show how to simulate erosion in real time.

—Wolfgang Engel
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Terrain and Ocean Rendering
with Hardware Tessellation

Xavier Bonaventura

Currently, one of the biggest challenges in computer graphics is the reproduction
of detail in scenes. To get more realistic scenes you need high-detail models,
which slow the computer. To increase the number of frames per second, you can
use low-detail models; however, that doesn’t seems realistic. The solution is to
combine high-detail models near the camera and low-detail models away from the
camera, but this is not easy.

One of the most popular techniques uses a set of models of different levels of
detail and, in the runtime, changes them depending on their distance from the
camera. This process is done in the CPU and is a problem because the CPU is
not intended for this type of work—a lot of time is wasted sending meshes from
the CPU to the GPU.

In DirectX 10, you could change the detail of meshes into the GPU by per-
forming tessellation into the geometry shader, but it’s not really the best solution.
The output of the geometry shader is limited and is not intended for this type of
serial work.

The best solution for tessellation is the recently developed tessellator stage
in DirectX 11. This stage, together with the hull and the domain shader, al-
lows the programmer to tessellate very quickly into the GPU. With this method
you can send low-level detail meshes to the GPU and generate the missing ge-
ometry to the GPU depending on the camera distance, angle, or whatever you
want.

In this article we will take a look at the new stages in DirectX 11 and how they
work. To do this we will explain a simple implementation of terrain rendering
and an implementation of water rendering as it appeared in ShaderX6 [Szécsi and
Arman 08], but using these tools.

3
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4 I Geometry Manipulation

Figure 1.1. DirectX 11 pipeline.

1.1 DirectX 11 Graphics Pipeline

The DirectX 11 graphics pipeline [Microsoft ] adds three new stages to the Di-
rectX 10: the hull shader stage, tessellator stage, and domain shader stage (see
Figure 1.1). The first and third are programmable and the second is configurable.
These come after the vertex shader and before the geometry shader, and they are
intended to do tessellation into the graphic card.

1.1.1 Hull Shader Stage

The hull shader stage is the first part of the tessellation block. The data used
in it is new in DirectX 11, and it uses a new primitive topology called control
point patch list. As its name suggests, it represents a collection of control points
wherein the number in every patch can go from 1 to 32. These control points are
required to define the mesh.

The output data in this stage is composed of two parts—one is the input
control points that can be modified, and the other is some constant data that
will be used in the tessellator and domain shader stages.



i
i

i
i

i
i

i
i

1. Terrain and Ocean Rendering with Hardware Tessellation 5

To calculate the output data there are two functions. The first is executed
for every patch, and there you can calculate the tessellation factor for every
edge of the patch and inside it. It is defined in the high-level shader language
(HLSL) code and the attribute [patchconstantfunc(‘‘func name’’)] must be
specified.

The other function, the main one, is executed for every control point in
the patch, and there you can manipulate this control point. In both func-
tions, you have the information of all the control points in the patch; in ad-
dition, in the second function, you have the ID of the control point that you are
processing.

An example of a hull shader header is as follows:

HS CONSTANT DATA OUTPUT TerrainConstantHS (
InputPatch<VS CONTROL POINT OUTPUT, INPUT PATCH SIZE> ip ,
u int PatchID : SV PrimitiveID )

[ domain ( ‘ ‘ quad ’ ’ ) ]
[ p a r t i t i o n i n g ( ‘ ‘ i n t ege r ’ ’ ) ]
[ outputtopology ( ‘ ‘ t r i ang l e cw ’ ’ ) ]
[ ou tput con t ro lpo in t s (OUTPUT PATCH SIZE) ]
[ patchconstant func ( ‘ ‘ TerrainConstantHS ’ ’ ) ]
HS OUTPUT hsTerra in (

InputPatch<VS CONTROL POINT OUTPUT, INPUT PATCH SIZE> p ,
u int i : SV OutputControlPointID ,
u int PatchID : SV PrimitiveID )

For this example, we clarify some of the elements.

• HS CONSTANT DATA OUTPUT is a struct and it must contain SV TessFactor

and SV InsideTessFactor. Their types are dependent on [domain(type

str)].

• INPUT PATCH SIZE is an integer and it must match with the control point

primitive.

• [domain(‘‘quad’’)] can be either ‘‘quad’’, ‘‘tri’’, or ‘‘isoline’’.

• [partitioning(‘‘integer’’)] can be either ‘‘fractional odd’’,
‘‘fractional even’’, ‘‘integer’’, or ‘‘pow2’’.

• [outputtopology(‘‘triangle cw’’)] can be either ‘‘line’’, ‘‘triangle
cw’’, or ‘‘triangle ccw’’.

• OUTPUT PATCH SIZE will affect the number of times the main function will
be executed.
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1.1.2 Tessellator Stage

The tessellator stage is a part of the new pipeline wherein the programmer, setting
some values, can change its behavior although he cannot program it. It is executed
once per patch; the input data are the control points and the tessellation factors,
which are the output from the hull shader. This stage is necessary to divide
a quad, triangle, or line among many of them, depending on the tessellation
factor and the type of partitioning defined (Figure 1.2). The tessellation factor
on each edge defines how many divisions you want. The output is UV or UVW
coordinates which go from 0 to 1 and define the position of new vertices relative
to the patch. If the patch is a triangle, then UVW represents the position in
barycentric coordinates. If the patch is a quad, then the UV coordinates are the
position within the quad.

Figure 1.2. Tessellation in a quad domain: to define the tessellation on the edges, we
start on the left edge and then we conitnue counterclockwise. To define the tessellation
inside, first we input the horizontal and then the vertical tessellation factor.
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1.1.3 Domain Shader Stage

The domain shader stage is the last stage of the tessellation. This part is executed
once per UV coordinate generated in the tessellator stage, and it accesses the
information from the hull shader stage output (control points and constant data)
and UV coordinates. In this final stage, the aim is to calculate the final position
of every vertex generated and all the associated information as normal, color,
texture coordinate, etc.

Below is an example of a domain shader header:

[ domain ( ‘ ‘ quad ’ ’ ) ]
DS OUTPUT dsTerra in (

HS CONSTANT DATA OUTPUT input ,
f l o a t 2 UV : SV DomainLocation ,
const OutputPatch<HS OUTPUT, OUTPUT PATCH SIZE> patch )

The type of SV DomainLocation can be different in other domain shaders.
If the [domain( )] is ‘‘quad’’ or ‘‘isoline’’, its type is float2, but if the
domain is ‘‘tri’’, its type is float3.

1.2 Definition of Geometry

To tessellate the terrain and water, we need to define the initial geometry—to
do this, we will divide a big quad into different patches. The tessellation can be

Figure 1.3. Division of the terrain into a grid: Vx and Ex represent vertices and edges,
respectively, in every patch where x is the index to access. Inside 0 and Inside 1 represent
the directions of the tessellation inside a patch.
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Figure 1.4. Lines between patches when tessellation factors are wrong.

applied to a lot of shapes, but we will use the most intuitive shape: a patch with
four points. We will divide the terrain into patches of the same size, like a grid
(Figure 1.3). For every patch, we will have to decide the tessellation factor on
every edge and inside. It’s very important that two patches that share the same
edge have the same tessellation factor, otherwise you will see some lines between
patches (Figure 1.4).

1.2.1 Tessellation Factor

In the tessellator stage you can define different kinds of tessellations
(fractional even, fractional odd, integer, or pow2). In the terrain render-
ing we will use the integer, but in addition we will impose one more restriction:
this value must be a power of two, to avoid a wave effect. This way, when a
new vertex appears it will remain until the tessellation factor decreases again and
its x- and z-values will not change. The only value that will change will be the
y-coordinate, to avoid popping. In the ocean rendering we will not impose the
power-of-two restriction because the ocean is dynamic and the wave effect goes
unnoticed.

The tessellation factor ranges from 1 to 64 when the type of partitioning is
integer, but the user has to define the minimum and the maximum values. We do
not want the minimum of the tessellation factor to be 1 if there are few patches,
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1. Terrain and Ocean Rendering with Hardware Tessellation 9

or the maximum to be 64 if the computer is slow. In the terrain rendering, the
minimum and the maximum value must be powers of two.

We also have to define two distances between the camera and the point where
we want to calculate the tessellation factor: the minimum and the maximum.
When the distance is minimum the tessellation factor is maximum and when the
distance is maximum the tessellation factor is minimum.

The tessellation factor will be 2x where x is a number whose range will be
from log2 MaxTessellation to log2 MinTessellation linearly interpolated between
the minimum and the maximum distance. In terrain rendering, this x will be
rounded to the nearest integer to get a power-of-two tessellation factor (see Equa-
tion (1.1)). In the ocean rendering, x will not be rounded (see Equation (1.2)).

te(d) =


2max(telog 2), for d ≤ min(d),

2round(diff(telog 2)(1− d−min(d)
diff(d)

)+min(telog 2)), for min(d) < d < max(d),

2min(telog 2), for d ≥ max(d).

(1.1)

te(d) =


2max(telog 2), for d ≤ min(d),

2diff(telog 2)(1− d−min(d)
diff(d)

)+min(telog 2), for min(d) < d < max(d),

2min(telog 2), for d ≥ max(d),

(1.2)

where diff(x) = max(x)−min(x) and d is the distance from the point where we
want to calculate the tessellation factor to the camera. The distances defined by
the user are min(d) and max(d) and min(telog2

) and max(telog2
) are the tessella-

tion factors defined by the user. For the tessellation factors, we use the log2 in
order to get a range from 0 to 6 instead of from 1 to 64. The final value te(d) is
calculated five times for every patch, using different distances—four for the edges
and one for inside.

As we said before, when an edge is shared by two patches the tessellation
factor must be the same. To do this we will calculate five different distances in
every patch, one for each edge and one inside. To calculate the tessellation factor
for each edge, we calculate the distance between the camera and the central point
of the edge. This way, in two adjacent patches with the same edge, the distance
at the middle point of this edge will be the same because they share the two
vertices that we use to calculate it. To calculate the tessellation factor inside
the patch in U and V directions, we calculate the distance between the camera
position and the middle point of the patch.
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1.3 Vertex Position, Vertex Normal,
and Texture Coordinates

In the domain shader we have to reconstruct every final vertex and we have to
calculate the position, normal, and texture coordinates. This is the part where
the difference between terrain and ocean rendering is more important.

1.3.1 Terrain

In terrain rendering (see Figure 1.5) we can easy calculate the x- and z-coordinates
with a single interpolation between the position of the vertices of the patch, but
we also need the y-coordinate that represents the height of the terrain at every
point and the texture coordinates. Since we have defined the terrain, to calculate
the texture coordinates, we have only to take the final x- and z-positions and
divide by the size of the terrain. This is because the positions of the terrain
range from 0 to the size of the terrain, and we want values from 0 to 1 to match
all the texture over it.

Once we have the texture coordinates, to get the height and the normal of the
terrain in a vertex, we read the information from a heightmap and a normal map
in world coordinates combined in one texture. To apply this information, we have
to use mipmap levels or we will see some popping when new vertices appear. To
reduce this popping we get the value from a texture in which the concentration
of points is the same compared to the concentration in the area where the vertex
is located. To do this, we linearly interpolate between the minimum and the
maximum mipmap levels depending on the distance (see Equation (1.3)).

Four patches that share a vertex have to use the same mipmap level in that
vertex to be coherent; for this reason, we calculate one mipmap level for each
vertex in a patch. Then, to calculate the mipmap level for the other vertices, we
have only to interpolate between the mipmap levels of the vertices of the patch,
where diff(x) = max(x)−min(x), M = MipmapLevel, and d is the distance from
the point to the camera:

Mipmap(d) =


min(M), for d ≤ min(d),

diff(M)d−min(d)
diff(d) + min(M), for min(d) < d < max(d),

max(M), for d ≥ max(d).

(1.3)

To calculate the minimum and the maximum values for the mipmap level
variables, we use the following equations, where textSize is the size of the texture
that we use for the terrain:

min(MipmapLevel) = log2(textSize)− log2(sqrtNumPatch · 2max(te))

max(MipmapLevel) = log2(textSize)− log2(sqrtNumPatch · 2min(te))
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Figure 1.5. Terrain rendering.

We have to keep in mind that we use only squared textures with a power-of-two
size. If the minimum value is less than 0, we use 0.

1.3.2 Ocean

Calculating the final vertex position in ocean rendering (see Figure 1.6) is more
difficult than calculating terrain rendering. For this, we do not have a heightmap,
and we have to calculate the final position depending on the waves and the posi-
tion in the world coordinate space. To get real motion, we will use the technique
explained in ShaderX6 developed by Szécsi and Arman [Szécsi and Arman 08].

First, we have to imagine a single wave with a wavelength (λ), an amplitude
(a), and a direction (k). Its velocity (v) can be represented by

v =

√
gλ

2π
.

Then the phase (ϕ) at time (t) in a point (p) is

ϕ =
2π

λ
(p · k + vt) .

Finally, the displacement (s) to apply at that point is

s = a[− cosϕ, sinϕ].

An ocean is not a simple wave, and we have to combine all the waves to get
a realistic motion:

pΣ = p+
n∑
i=0

s(p, ai, λi, ki).

All ai, λi, and ki values are stored in a file.
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Figure 1.6. Ocean rendering.

At every vertex, we need to calculate the normal—it’s not necessary to access
a normal texture because it can be calculated by a formula. We have a parametric
function where the parameters are the x- and z-coordinates that we have used
to calculate the position; if we calculate the cross product of the two partial
derivatives, we get the normal vector at that point:

N =
∂pΣ

∂z
× ∂pΣ

∂x
.

1.4 Tessellation Correction Depending on
the Camera Angle

So far we have assumed that the tessellation factor depends only on the distance
from the camera; nevertheless, it’s not the same if you see a patch from one di-
rection or from another. For this reason, we apply a correction to the tessellation
factor that we have calculated previously. This correction will not be applied to
the final tessellation factor because we want the final one to be a power-of-two
value; this correction will be applied to the unrounded value x that we use in 2x

to calculate the final tessellation factor.

The angle to calculate this correction will be the angle between the unit vector
over an edge (ê) and the unit vector that goes from the middle of this edge to
the camera (ĉ).

To calculate the correction, we will use this formula (see Figure 1.7):

π
2 − arccos (|ĉ · ê|)

π
2

rank + 1− rank

2
.
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Figure 1.7. Angle correction.

The rank value is used to decide how important the angle is compared with
the distance. The programmer can decide the value, but is advised to use values
from 0 to 1 to reduce or increase the tessellation factor by 50%. If you decide to
use a rank of 0.4 then the tessellation factor will be multiplied by a value between
0.8 and 1.2, depending on the angle.

To be consistent with this modification, we have to apply the correction to the
value that we use to access the mipmap level in a texture. It is very important to
understand that four patches that share the same vertex have the same mipmap
value at that vertex. To calculate the angle of the camera at this point, we
calculate the mean of the angles between the camera (ĉ) and every vector over

the edges (v̂0, v̂1, v̂2, v̂3) that share the point (see Figure 1.8):

π
2 −

arccos(|ĉ·v̂0|)+arccos(|ĉ·v̂1|)+arccos(|ĉ·v̂2|)+arccos(|ĉ·v̂3|)
4

π
2

rank + 1− rank

2
.

We don’t know the information about the vertex of the other patches for the
hull shader, but these vectors can be calculated in the vertex shader because we
know the size of the terrain and the number of patches.

Figure 1.8. Mipmap angle correction.
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1.5 Conclusions

As we have shown in this article, hardware tessellation is a powerful tool that
reduces the information transfer from the CPU to the GPU. Three new stages
added to the graphic pipeline allow great flexibility to use hardware tessellation
advantageously. We have seen the application in two fields—terrain and water
rendering—but it can be used in similar meshes.

The main point to bear in mind is that we can use other techniques to calculate
the tessellation factor, but we always have to be aware of the tessellation factor
and mipmap levels with all the patches to avoid lines between them.

In addition, we have seen that it is better if we can use functions to represent
a mesh like the ocean, because the resolution can be as high as the tessellation
factor sets. If we use a heightmap, as we do for the terrain, it would be possible
to not have enough information in the texture, and we would have to interpolate
between texels.
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Practical and Realistic
Facial Wrinkles Animation

Jorge Jimenez, Jose I. Echevarria,
Christopher Oat, and Diego Gutierrez

Virtual characters in games are becoming more and more realistic, with recent
advances, for instance, in the techniques of skin rendering [d’Eon and Luebke 07,
Hable et al. 09, Jimenez and Gutierrez 10] or behavior-based animation.1 To
avoid lifeless representations and to make the action more engaging, increasingly
sophisticated algorithms are being devised that capture subtle aspects of the
appearance and motion of these characters. Unfortunately, facial animation and
the emotional aspect of the interaction have not been traditionally pursued with
the same intensity. We believe this is an important aspect missing in games,
especially given the current trend toward story-driven AAA games and their
movie-like, real-time cut scenes.

Without even realizing it, we often depend on the subtleties of facial ex-
pression to give us important contextual cues about what someone is saying,
thinking, or feeling. For example, a wrinkled brow can indicate surprise, while
a furrowed brow may indicate confusion or inquisitiveness. In the mid-1800s, a
French neurologist named Guillaume Duchenne performed experiments that in-
volved applying electric stimulation to his subjects’ facial muscles. Duchenne’s
experiments allowed him to map which facial muscles were used for different fa-
cial expressions. One interesting fact that he discovered was that smiles resulting
from true happiness utilize not only the muscles of the mouth, but also those of
the eyes. It is this subtle but important additional muscle movement that dis-
tinguishes a genuine, happy smile from an inauthentic or sarcastic smile. What
we learn from this is that facial expressions are complex and sometimes subtle,
but extraordinarily important in conveying meaning and intent. In order to allow
artists to create realistic, compelling characters, we must allow them to harness
the power of subtle facial expression.

1Euphoria NaturalMotion technology
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16 I Geometry Manipulation

Figure 2.1. This figure shows our wrinkle system for a complex facial expression com-
posed of multiple, simultaneous blend shapes.

We present a method to add expressive, animated wrinkles to characters’
faces, helping to enrich stories through subtle visual cues. Our system allows
the animator to independently blend multiple wrinkle maps across regions of a
character’s face. We demonstrate how combining our technique with state-of-
the-art, real-time skin rendering can produce stunning results that enhance the
personality and emotional state of a character (see Figures 2.1 and 2.2).

This enhanced realism has little performance impact. In fact, our implementa-
tion has a memory footprint of just 96 KB. Performance wise, the execution time
of our shader is 0.31 ms, 0.1 ms, and 0.09 ms on a low-end GeForce 8600GT, mid-
range GeForce 9800GTX+ and mid-high range GeForce 295GTX, respectively.
Furthermore, it is simple enough to be added easily to existing rendering engines
without requiring drastic changes, even allowing existing bump/normal textures
to be reused, as our technique builds on top of them.
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(a) Without wrinkles (b) With wrinkles

Figure 2.2. The same scene (a) without and (b) with animated facial wrinkles. Adding
them helps to increase visual realism and conveys the mood of the character.

2.1 Background

Bump maps and normal maps are well-known techniques for adding the illusion
of surface features to otherwise coarse, undetailed surfaces. The use of nor-
mal maps to capture the facial detail of human characters has been considered
standard practice for the past several generations of real-time rendering appli-
cations. However, using static normal maps unfortunately does not accurately
represent the dynamic surface of an animated human face. In order to simulate
dynamic wrinkles, one option is to use length-preserving geometric constraints
along with artist-placed wrinkle features to dynamically create wrinkles on ani-
mated meshes [Larboulette and Cani 04]. Since this method actually displaces
geometry, the underlying mesh must be sufficiently tessellated to represent the
finest level of wrinkle detail. A dynamic facial-wrinkle animation scheme pre-
sented recently [Oat 07] employs two wrinkle maps (one for stretch poses and
one for compress poses), and allows them to be blended to independent regions
of the face using artist-animated weights along with a mask texture. We build
upon this technique, demonstrating how to dramatically optimize the memory
requirements. Furthermore, our technique allows us to easily include more than
two wrinkle maps when needed, because we no longer map negative and positive
values to different textures.
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2.2 Our Algorithm

The core idea of this technique is the addition of wrinkle normal maps on top
of the base normal maps and blend shapes (see Figure 2.3 (left) and (center)
for example maps). For each facial expression, wrinkles are selectively applied
by using weighted masks (see Figure 2.3 (right) and Table 2.1 for the mask and
weights used in our examples). This way, the animator is able to manipulate
the wrinkles on a per-blend-shape basis, allowing art-directed blending between
poses and expressions. We store a wrinkle mask per channel of a (RGBA) texture;
hence, we can store up to four zones per texture. As our implementation uses eight
zones, we require storing and accessing only two textures. Note that when the
contribution of multiple blend shapes in a zone exceeds a certain limit, artifacts
can appear in the wrinkles. In order to avoid this problem, we clamp the value
of the summation to the [0, 1] range.

While combining various displacement maps consists of a simple sum, com-
bining normal maps involves complex operations that should be avoided in a
time-constrained environment like a game. Thus, in order to combine the base

Base map Wrinkle map Mask map

Figure 2.3. The wrinkle map is selectively applied on top of the base normal map by
using a wrinkle mask. The use of partial-derivative normal maps reduces this operation
to a simple addition. The yellowish look is due to the encoding and storage in the
R and G channels that this technique employs. Wrinkle-zone colors in the mask do
not represent the actual channels of the mask maps, they are put together just for
visualization purposes.

Red Green Blue Brown Cyan Magenta Orange Gray
Joy 1.0 1.0 0.2 0.2 0.0 0.0 0.0 0.0

Surprise 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0
Fear 0.2 0.2 0.75 0.75 0.3 0.3 0.0 0.6

Anger -0.6 -0.6 -0.8 -0.8 0.8 0.8 1.0 0.0
Disgust 0.0 0.0 -0.1 -0.1 1.0 1.0 1.0 0.5

Sad 0.2 0.2 0.75 0.75 0.0 0.0 0.1 1.0

Table 2.1. Weights used for each expression and zone (see color meaning in the mask
map of Figure 2.3).
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and wrinkle maps, a special encoding is used: partial-derivative normal maps
[Acton 08]. It has two advantages over the conventional normal map encoding:

1. Instead of reconstructing the z-value of a normal, we just have to perform
a vector normalization, saving valuable GPU cycles;

2. More important for our purposes, the combination of various partial-
derivative normal maps is reduced to a simple sum, similar to combining
displacement maps.

f loat3 WrinkledNormal (Texture2D<float2> baseTex ,
Texture2D<float2> wrinkleTex ,
Texture2D maskTex [ 2 ] ,
f loat4 weights [ 2 ] ,
f loat2 texcoord ) {

f loat3 base ;
base . xy = baseTex .Sample( AnisotropicSampler16 , texcoord ) . gr ;
base . xy = −1.0 + 2 .0 ∗ base . xy ;
base . z = 1 . 0 ;

#i fde f WRINKLES
f loat2 wr ink l e s = wrinkleTex .Sample( LinearSampler ,

texcoord ) . gr ;
wr ink l e s = −1.0 + 2 .0 ∗ wr ink l e s ;

f loat4 mask1 = maskTex [ 0 ] . Sample( LinearSampler , texcoord ) ;
f loat4 mask2 = maskTex [ 1 ] . Sample( LinearSampler , texcoord ) ;
mask1 ∗= weights [ 0 ] ;
mask2 ∗= weights [ 1 ] ;

base . xy += mask1 . r ∗ wr ink l e s ;
base . xy += mask1 . g ∗ wr ink l e s ;
base . xy += mask1 . b ∗ wr ink l e s ;
base . xy += mask1 . a ∗ wr ink l e s ;
base . xy += mask2 . r ∗ wr ink l e s ;
base . xy += mask2 . g ∗ wr ink l e s ;
base . xy += mask2 . b ∗ wr ink l e s ;
base . xy += mask2 . a ∗ wr ink l e s ;
#endif

return normalize ( base ) ;
}

Listing 2.1. HLSL code of our technique. We are using a linear instead of an anisotropic
sampler for the wrinkle and mask maps because the low-frequency nature of their infor-
mation does not require higher quality filtering. This code is a more readable version
of the optimized code found in the web material.
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This encoding must be run as a simple preprocess. Converting a conventional
normal n = (nx, ny, nz) to a partial-derivative normal n′ = (n′x, n

′
y, n
′
z) is done

by using the following equations:

n′x =
nx
nz

n′y =
ny
nz
.

Neutral Surprise

Anger Surprise and anger

Figure 2.4. The net result of applying both surprise and anger expressions on top of the
neutral pose is an unwrinkled forehead. In order to accomplish this, we use positive and
negative weights in the forehead wrinkle zones, for the surprise and angry expressions,
respectively.
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In runtime, reconstructing a single partial-derivative normal n′ to a conven-
tional normal n̂ is done as follows:

n = (n′x, n
′
y, 1),

n̂ =
n

‖n‖ .

Note that in the original formulation of partial-derivative normal mapping there
is a minus sign both in the conversion and reconstruction phases; removing it from
both steps allows us to obtain the same result, with the additional advantage of
saving another GPU cycle.

Then, combining different partial-derivative normal maps consists of a simple
summation of their (x, y)-components before the normalization step. As Fig-
ure 2.3 reveals, expression wrinkles are usually low frequency. Thus, we can
reduce map resolution to spare storage and lower bandwidth consumption, with-
out visible loss of quality. Calculating the final normal map is therefore reduced
to a summation of weighted partial-derivative normals (see Listing 2.1).

A problem with facial wrinkle animation is the modeling of compound ex-
pressions, through which wrinkles result from the interactions among the basic
expressions they are built upon. For example, if we are surprised, the frontalis
muscle contracts the skin, producing wrinkles in the forehead. If we then sud-
denly became angry, the corrugator muscles are triggered, expanding the skin in
the forehead, thus causing the wrinkles to disappear. To be able to model these
kinds of interactions, we let mask weights take negative values, allowing them to
cancel each other. Figure 2.4 illustrates this particular situation.

2.2.1 Alternative: Using Normal Map Differences

An alternative to the use of partial-derivative normal maps for combining normal
maps is to store differences between the base and each of the expression wrin-
kle maps (see Figure 2.5 (right)) in a manner similar to the way blend-shape
interpolation is usually performed. As differences may contain negative values,
we perform a scale-and-bias operation so that all values fall in the [0, 1] range,
enabling storage in regular textures:

d(x, y) = 0.5 + 0.5 · (w(x, y)− b(x, y)),

where w(x, y) is the normal at pixel (x, y) of the wrinkle map, and b(x, y) is
the corresponding value from the base normal map. When DXT compression
is used for storing the differences map, it is recommended that the resulting
normal be renormalized after adding the delta, in order to alleviate the arti-
facts caused by the compression scheme (see web material for the corresponding
listing).
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Base map Wrinkle map Difference map

Figure 2.5. We calculate a wrinkle-difference map by subtracting the base normal map
from the wrinkle map. In runtime, the wrinkle-difference map is selectively added on
top of the base normal map by using a wrinkle mask (see Figure 2.3 (right) for the
mask). The grey color of the image on the right is due to the bias and scale introduced
when computing the difference map.

Partial-derivative normal mapping has the following advantages over the dif-
ferences approach:

• It can be a little bit faster because it saves one GPU cycle when recon-
structing the normal, and also allows us to add only two-component nor-
mal derivatives instead of a full (x, y, z) difference; these two-component
additions can be done two at once, in only one cycle. This translates to
a measured performance improvement of 1.12x in the GeForce 8600GT,
whereas we have not observed any performance gain in either the GeForce
9800GTX+ nor in the GeForce 295GTX .

• It requires only two channels to be stored vs. the three channels required
for the differences approach. This provides higher quality because 3Dc can
be used to compress the wrinkle map for the same memory cost.

On the other hand, the differences approach has the following advantages over
the partial-derivative normal mapping approach:

• It uses standard normal maps, which may be important if this cannot be
changed in the production pipeline.

• Partial-derivative normal maps cannot represent anything that falls outside
of a 45◦ cone around (0, 0, 1). Nevertheless, in practice, this problem proved
to have little impact on the quality of our renderings.

The suitability of each approach will depend on both the constraints of the
pipeline and the characteristics of the art assets.
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2.3 Results

For our implementation we used DirectX 10, but the wrinkle-animation shader
itself could be easily ported to DirectX 9. However, to circumvent the limitation
that only four blend shapes can be packed into per-vertex attributes at once, we
used the DirectX 10 stream-out feature, which allows us to apply an unlimited
number of blend shapes using multiple passes [Lorach 07]. The base normal map
has a resolution of 2048 × 2048, whereas the difference wrinkle and mask maps
have a resolution of 256 × 256 and 64 × 64, respectively, as they contain only
low-frequency information. We use 3Dc compression for the base and wrinkle
maps, and DXT for the color and mask maps. The high-quality scanned head
model and textures were kindly provided by XYZRGB, Inc., with the wrinkle
maps created manually, adding the missing touch to the photorealistic look of
the images. We used a mesh resolution of 13063 triangles, mouth included, which
is a little step ahead of current generation games; however, as current high-end
systems become mainstream, it will be more common to see such high polygon
counts, especially in cinematics.

To simulate the subsurface scattering of the skin, we use the recently devel-
oped screen-space approach [Jimenez and Gutierrez 10,Jimenez et al. 10b], which
transfers computations from texture space to screen space by modulating a convo-
lution kernel according to depth information. This way, the simulation is reduced
to a simple post-process, independent of the number of objects in the scene and
easy to integrate in any existing pipeline. Facial-color animation is achieved us-
ing a recently proposed technique [Jimenez et al. 10a], which is based on in vivo
melanin and hemoglobin measurements of real subjects. Another crucial part of
our rendering system is the Kelemen/Szirmay-Kalos model, which provides real-
istic specular reflections in real time [d’Eon and Luebke 07]. Additionally, we use
the recently introduced filmic tone mapper [Hable 10], which yields really crisp
blacks.

Nasalis Frontalis Mentalis

Figure 2.6. Closeups showing the wrinkles produced by nasalis (nose), frontalis (fore-
head), and mentalis (chin) muscles.
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Figure 2.7. Transition between various expressions. Having multiple mask zones for
the forehead wrinkles allows their shape to change according to the animation.
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Shader execution time

GeForce 8600GT 0.31 ms

GeForce 9800GTX+ 0.1 ms

GeForce 295GTX 0.09 ms

Table 2.2. Performance measurements for different GPUs. The times shown correspond
specifically to the execution of the code of the wrinkles shader.

For the head shown in the images, we have not created wrinkles for the
zones corresponding to the cheeks because the model is tessellated enough in
this zone, allowing us to produce geometric deformations directly on the blend
shapes.

Figure 2.6 shows different close-ups that allow appreciating the wrinkles added
in detail. Figure 2.7 depicts a sequential blending between compound expres-
sions, illustrating that adding facial-wrinkle animation boosts realism and adds
mood to the character (frames taken from the movie are included in the web
material).

Table 2.2 shows the performance of our shader using different GPUs, from
the low-end GeForce 8600GT to the high-end GeForce 295GTX. An in-depth
examination of the compiled shader code reveals that the wrinkle shader adds a
per-pixel arithmetic instruction/memory access count of 9/3. Note that animat-
ing wrinkles is useful mostly for near-to-medium distances; for far distances it
can be progressively disabled to save GPU cycles. Besides, when similar charac-
ters share the same (u, v) arrangement, we can reuse the same wrinkles, further
improving the use of memory resources.

2.4 Discussion

From direct observation of real wrinkles, it may be natural to assume that shad-
ing could be enhanced by using techniques like ambient occlusion or parallax
occlusion mapping [Tatarchuk 07]. However, we have found that wrinkles exhibit
very little to no ambient occlusion, unless the parameters used for its generation
are pushed beyond its natural values. Similarly, self-occlusion and self-shadowing
can be thought to be an important feature when dealing with wrinkles, but in
practice we have found that the use of parallax occlusion mapping is most often
unnoticeable in the specific case of facial wrinkles.

Furthermore, our technique allows the incorporation of additional wrinkle
maps, like the lemon pose used in [Oat 07], which allows stretching wrinkles
already found in the neutral pose. However, we have not included them because
they have little effect on the expressions we selected for this particular character
model.
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2.5 Conclusion

Compelling facial animation is an extremely important and challenging aspect of
computer graphics. Both games and animated feature films rely on convincing
characters to help tell a story, and a critical part of character animation is the
character’s ability to use facial expression. We have presented an efficient tech-
nique for achieving animated facial wrinkles for real-time character rendering.
When combined with traditional blend-target morphing for facial animation, our
technique can produce very compelling results that enable virtual characters to
accompany both their actions and dialog with increased facial expression. Our
system requires very little texture memory and is extremely efficient, enabling
true emotional and realistic character renderings using technology available in
widely adopted PC graphics hardware and current generation game consoles.
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Procedural Content Generation
on the GPU

Aleksander Netzel and Pawel Rohleder

3.1 Abstract

This article emphasizes on-the-fly procedural creation of content related to the
video games industry. We demonstrate the generating and rendering of infi-
nite and deterministic heightmap-based terrain utilizing fractal Brownian noise
calculated in real time on a GPU. We take advantage of a thermal erosion algo-
rithm proposed by David Cappola, which greatly improves the level of realism
in heightmap generation. In addition, we propose a random tree distribution al-
gorithm that exploits previously generated terrain information. Combined with
the natural-looking sky model based on Rayleigh and Mie scattering, we achieved
very promising quality results at real-time frame rates. The entire process can
be seen in our DirectX10-based demo application.

3.2 Introduction

Procedural content generation (PCG) refers to the wide process of generating
media algorithmically. Many existing games use PCG techniques to generate
a variety of content, from simple, random object placement over procedurally
generated landscapes to fully automatic creation of weapons, buildings, or AI
enemies. Game worlds tend to be increasingly rich, which requires a lot of ef-
fort that we can minimize by utilizing PCG techniques. One of the basic PCG
techniques in real-time computer graphics applications is the heightmap-based
terrain generation [Olsen 04].

29
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3.3 Terrain Generation and Rendering

Many different real-time, terrain-generation techniques have been developed over
the last few years. Most of them utilize procedurally generated noise for creating
a heightmap. The underlying-noise generation method should be fast enough to
get at least close to real time and generate plausible results. The most interesting
technique simulates 1/f noise (called “pink noise”). Because this kind of noise
occurs widely in nature, it can be easily implemented on modern GPUs and has
good performance/speed ratio. In our work, we decided to use the approximation
of fractal Brownian motion (fBm).

Our implementation uses spectral synthesis, which accumulates several layers
of noise together (see Figure 3.1). The underlying-noise generation algorithm is
simple Perlin noise, which is described in [Green 05]. Although its implementation
relies completely on the GPU, it is not fast enough to be calculated with every
frame because of other procedural generation algorithms. We therefore used a
system in which everything we need is generated on demand. The terrain is
divided into smaller nodes (the number of nodes has to be a divider of heightmap
size, so that there won’t be any glitches after generation), and the camera is
placed in the center of all nodes. Every node that touches the center node has a
bounding box. Whenever collision between the camera and any of the bounding
boxes is detected, a new portion of the heightmap is generated (along with other
procedural content). Based on the direction of the camera collision and the
position of nodes in world space, we determine new UV coordinates for noise

Figure 3.1. Procedurally generated terrain with random tree distribution.
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(a) (b) (c) (d)

Figure 3.2. Red: camera, yellow: AABB, green: different patches in the grid. (a) Cam-
era in the middle. (b) Collision detected with AABB. (c) New generation of procedural
content, new AABB. (d) New row that is generated.

generation. This operation guarantees, with respect to the heightmap generation
algorithm, that terrain will be continuous, endless, and realistic.

We could also optimize processing power by half, knowing that at most there
are two rows of heightmaps that should be regenerated. We simply copy specified
rows or columns and generate one additional row/column via the pixel shader (in
Figure 3.2, all patches with a blue outline). When a camera collision occurs in
the corner where two AABBs overlap, we have to generate a new row and column
of data. To overcome the problem with camera collision and the newly generated
AABB, we have to make the bounding boxes a little bigger or smaller, so there
will be free space between them.

Our algorithm also utilizes a level-of-detail (LOD) system. Since we are as-
sured of the relative positions of all nodes, we can precalculate all variations
(there are only a small number) of index buffers. The center node has to have
the lowest LOD (highest triangle count). Since we know that the camera will
always be placed in the center node, we don’t have to switch index buffers for dif-
ferent terrain LOD because the distance between the patch containing the camera
and other patches is always the same (that’s basically how our system works).

Another natural phenomenon we decided to simulate is erosion. Erosion is
defined as the transporting and depositing of solid materials elsewhere due to
wind, water, gravity, or living organisms. The simplest type of erosion is thermal
erosion [Marak 97], wherein temperature changes cause small portions of the
materials to crumble and pile up at the bottom of an incline. The algorithm
is iterative and is as follows for each iteration: for every terrain point that has
an altitude higher than the given threshold value (called talus angle (T)), some
of its material will be moved to neighboring points. In the case that many of
the neighbors’ heights are above the talus angle, material has to be properly
distributed.

The implementation is fairly simple. We compare every point of the heightmap
with the heights of neighboring points and calculate how much material has
to be moved. Since pixel shader limitation restricts us from scattering data
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(before UAVs in DirectX11), we use an approach proposed by David Cappola
[Capolla 08]. To overcome pixel shader limitation, we need to make two passes.
In the first pass, we evaluate the amount of material that has to be moved from a
given point to its neighbors; in the second pass, we actually accumulate material,
using information provided by the first pass.

To improve the visual quality of our terrain, we generate a normal map, which
is pretty straightforward. We use a given heightmap and apply the Sobel filter
to it. Using the sun position, we can calculate shading (Phong diffuse). Since
we target DX10 and higher we use texture arrays to render terrain with many
textures [Dudask 07].

Collision detection is managed by copying a GPU-generated heightmap onto
an offline surface and reading the height data array. Then we can check for
collision using a standard method on the CPU and determine an accurate position
inside an individual terrain quad using linear interpolation. Or, without involving
the CPU, we could render to a 1 × 1 render target instead; however, since our
tree placement technique is not “CPU free” (more on that later), we need the
possibility of being able to check for height/collision without stressing the GPU.

3.4 Environmental Effects

Since we want to simulate a procedurally-rich natural environment, we have to
be able to render more than just terrain with grass texture—we want plants. In
the natural environment, plant distribution is based on many conditions such as
soil quality, exposure (wind and sun), or the presence of other plants. In our
work, we used a heightmap-based algorithm to determine tree placement along
generated terrain.

Our tree-placement technique consists of two separate steps. First, we gen-
erate a tree-density map, which characterizes tree placement. The next step in-
volves rendering instanced tree meshes. We use a density map to build a stream
with world matrices. The height and slope of the terrain are the most common
factors on which plant growth is dependent; both are easy to calculate in our case
since we already have a heightmap and a normal map.

Using a simple pixel shader, we calculate density for every pixel as a mix of
slope, height, and some arbitrarily chosen parameters. As a result, we get texture
with tree distribution where value 1.0 corresponds to the maximum number of
trees and 0.0 corresponds to no tree. To give an example, we present one of our
versions (we tried many) in Listing 3.1 and the result in Figure 3.3. There are
no strict rules on how to implement the shader. Anything that suits your needs
is acceptable.

When the tree density map is ready to go, we have to build a stream with
world matrices for instancing. Because the tree-density map texel can enclose a
huge range in world space, we cannot simply place one tree per texel because the
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f l o a t p = 0 .0 f ;
// Ca l cu la te s l ope .
f l o a t f s l o p e r a n g e = 0 . 1 7 ;
f l o a t f s l o p e m i n = 1 .0 − f s l o p e r a n g e ;
f l o a t 3 v normal = g Normalmap . Sample ( samClamp , IN .UV ) . xyz ∗ 2 .0

− 1 . 0 ;
f l o a t f h e i g h t = g Heightmap . Sample ( samClamp , IN .UV ) . x ∗ 2 .0

− 1 . 0 ;
f l o a t f s l o p e = dot ( v normal , f l o a t 3 (0 , 1 , 0 ) ) ;
f s l o p e = sa tu ra t e ( f s l o p e − f s l o p e m i n ) ;
f l o a t f s l o p e v a l = smoothstep ( 0 . 0 , f s l o p e r a n g e , f s l o p e ) ;
//Get r e l a t i v e he ight .
f l o a t f r e l h e i g h t t h r e s h o l d = 0 . 0 0 2 ;
f l o a t 4 v h e i g h t s = 0 ;

v h e i g h t s . x = g Heightmap . Sample ( samClamp , IN .UV
+ f l o a t 2 ( −1.0 / f HM size , 0 . 0 ) ) ; // Le f t

v h e i g h t s . y = g Heightmap . Sample ( samClamp , IN .UV
+ f l o a t 2 ( 1 . 0 / f HM size , 0 . 0 ) ) ; // Right

v h e i g h t s . z = g Heightmap . Sample ( samClamp , IN .UV
+ f l o a t 2 ( 0 . 0 , −1.0 / f HM size ) ) ; //Top

v h e i g h t s .w = g Heightmap . Sample ( samClamp , IN .UV
+ f l o a t 2 ( 0 . 0 , 1 . 0 / f HM size ) ) ; //Down

v h e i g h t s = v h e i g h t s ∗ 2 .0 − 1 . 0 ;
v h e i g h t s = abs ( v h e i g h t s − f h e i g h t ) ;
v h e i g h t s = step ( v he ight s , f r e l h e i g h t t ) ;
p = dot ( f s l o p e v a l , v h e i g h t s ) ∗ 0 . 2 5 ;

r e turn p ;

Listing 3.1. Tree-density map pixel shader.

generated forest will be too sparse. To solve this issue, we have to increase the
trees-per-texel ratio; therefore, we need one more placement technique.

We assign each tree type a different radius that determines how much space
this type of tree owns (in world space). It can be compared to the situation in
a real environment when bigger trees take more resources and prevent smaller
trees from growing in their neighborhood. Also, we want our trees to be evenly
but randomly distributed across a patch corresponding to one density map texel.

Our solution is to divide the current patch into a grid wherein each cell size
is determined by the biggest tree radius in the whole patch. The total number
of cells is a mix of the density of the current texel and the space that the texel
encloses in world space. In the center of every grid cell, we place one tree and
move its position using pseudorandom offset within the grid to remove repetitive
patterns.
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(a) (b) (c)

Figure 3.3. (a) Heightmap, (b) normal map, and (c) tree-density map.

Using camera frustum, we process only visible texels to form a density map.
Based on the distance to the camera, the tree’s LOD is determined so that only
trees close to the camera will be rendered with a complete list of faces.

After all these steps, we have a second stream prepared and we are ready to
render all the trees. We also input the maximum number of trees that we are
about to render because there can easily become too many, especially when we
have a large texel-to-world-space ratio. Care has to be taken with this approach
since we cannot simply process a tree-density map row by row; we have to process
texels close to the camera first. If we don’t, we might use all “available” trees
for the farthest patches, and there won’t be any close to the camera. In this
situation, we may use billboards for the farthest trees, or use a smooth transition
into the fog color.

The last part of our procedural generation is the Rayleigh-Mie atmospheric
scattering simulation [West 08,O’Neil 05]. Our implementation follows the tech-
nique described in GPU Gems 2. We first calculate optical depth to use it as a
lookup table for further generating Mie and Rayleigh textures. Mie and Rayleigh
textures are updated in every frame (using rendering to multiple render targets
(MRT)) and are then sampled during sky-dome rendering. This method is effi-
cient, fast, and gives visually pleasing results.

3.5 Putting It All Together

In Figure 3.4 we present what our rendering loop looks like. As described earlier,
we perform only one full generation of procedural content whenever a collision of
the camera with one of the bounding boxes is detected.

When collision is detected, we transform camera position into UV position for
heightmap generation. After generating the heightmap, we calculate the erosion
and the normal map. The last part of this generation step is to calculate new
AABB.
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Figure 3.4. Rendering loop.

The tree-position stream is calculated with each frame since it depends on the
camera orientation (see Figure 3.5).

(a) (b) (c) (d)

Figure 3.5. (a) Heightmap, (b) erosion map, (c) normal map, and (d) tree-density map.

3.6 Conclusions and Future Work

We implemented all of the techniques described in this article using Microsoft
DirectX 10. All parameters controlling algorithm behavior can be changed during
real time. Table 3.1 shows the minimum, maximum, and average number of
frames per second (fps) in our framework, with 200 iterations of the erosion
algorithm.

As we can see, the average number of frames is close to the number of maxi-
mum frames because usually only tree stream is generated. So a decrease of fps
by a factor of 10 in the minimum is due to the generation of procedural content.
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NVIDIA GTX 260 ATI Radeon HD 5900

fps average 351 352

fps minimum 66 179

fps maximum 385 373

Table 3.1. Minimum, maximum, and average number of frames per second.

Therefore, we could procedurally generate content in every frame and keep up
with real time, but our system doesn’t require that.

The obvious optimization is to put the generation of the texture into another
thread. For instance, erosion iterations can be divided into several frames.

Possibilities for developing further procedural generations are almost endless.
We mention the techniques we will be developing in the near future. Tree-density
mapping can be used not only for tree generation but also for other plant seeding
systems like grass and bushes. Since we can assume that bushes can grow close to
the trees, we can place some of them into the grid containing one tree. Of course,
we must take into account that bushes are unlikely to grow directly in a tree’s
shadow. Also, the same density map can be used for grass placement. Since grass
is likely to grow further away (because natural conditions for grass growth are
less strict), we can blur the density map to get a grass density map. Therefore,
without much more processing power, we can generate grass and bushes.

The next step could involve generating rivers and even whole cities, but cities
put some conditions on generated terrain. Terrain under and around a city should
be almost flat. The best solution is to combine artist-made terrain with proce-
dural terrain. The only challenge is to achieve a seamless transition between the
two.

Another interesting idea is to use other types of erosion (i.e., erosion described
in ShaderX7) or different noise generators. For heightmap generation, since every
function that returns height for a given x, y can be used, options are practically
limitless.

For example, one might take advantage of the possibilities provided by the
latest version of DirectX 11 Compute Shaders. It provides many new features
that make procedural generation easier.

In conclusion, PCG offers the possibility to generate virtual worlds in a fast
and efficient way. Many different techniques may be used to create rich en-
vironments, such as terrain with dense vegetation with a very small amount of
artist/level designer work. Our application could be easily extended or integrated
into an existing game editor. Since our techniques offer interactive frame rates
it could be used for current games, like flight simulators or any other open-space
game with a rich environment.
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Rendering

In this section we cover new techniques in the field of real-time rendering. Every
new generation of game or interactive application must push the boundaries of
what is possible to render and simulate in real time in order to remain compet-
itive and engaging. The articles presented here demonstrate some of the latest
advancements in real-time rendering that are being employed in the newest games
and interactive rendering applications.

The first article in the rendering section is “Pre-Integrated Skin Shading,” by
Eric Penner and George Borshukov. This article presents an interesting and very
efficient shading model for rendering realistic skin. It can be evaluated entirely
in a pixel shader and does not require extra rendering passes for blurring, thus
making it a very scalable skin-rendering technique.

Our next article is “Implementing Fur in Deferred Shading,” by Donald Revie.
The popularity of deferred shading has increased dramatically in recent years.
One of the limitations of working in a deferred-rendering engine is that techniques
involving alpha blending, such as fur rendering, become difficult to implement.
In this article we learn a number of tricks that enable fur to be rendered in a
deferred-shading environment.

The third article in the rendering section is “Large-Scale Terrain Rendering
for Outdoor Games,” by Ferenc Pintér. This article presents a host of production-
proven techniques that allow for large, high-quality terrains to be rendered on
resource-constrained platforms such as current-generation consoles. This arti-
cle provides practical tips for all areas of real-time terrain rendering, from the
content-creation pipeline to final rendering.

The fourth article in this section is “Practical Morphological Antialiasing,”
by Jorge Jimenez, Belen Masia, Jose I. Echevarria, Fernando Navarro, and Diego
Gutierrez. The authors take a new, high-quality, antialiasing algorithm and
demonstrate a highly optimized GPU implementation. This implementation is
so efficient that it competes quite successfully with hardware-based antialiasing
schemes in both performance and quality. This technique is particularly power-
ful because it provides a natural way to add antialiasing to a deferred-shading
engine.

We conclude the section with Emil Persson’s “Volume Decals” article. This
is a practical technique to render surface decals without the need to generate
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special geometry for every decal. Instead, the GPU performs the entire projection
operation. The author shows how to use volume textures to render decals on
arbitrary surfaces while avoiding texture stretching and shearing artifacts.

The diversity of the rendering methods described in this section represents the
wide breadth of new work being generated by the real-time rendering community.
As a fan of new and clever interactive rendering algorithms, reading and editing
these articles has been a great joy. I hope you will enjoy reading them and will
find them as useful and relevant as I do.

—Christopher Oat
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Pre-Integrated Skin Shading
Eric Penner and George Borshukov

1.1 Introduction

Rendering realistic skin has always been a challenge in computer graphics. Human
observers are particularly sensitive to the appearance of faces and skin, and skin
exhibits several complex visual characteristics that are difficult to capture with
simple shading models. One of the defining characteristics of skin is the way
light bounces around in the dermis and epidermis layers. When rendering using
a simple diffuse model, the light is assumed to immediately bounce equally in all
directions after striking the surface. While this is very fast to compute, it gives
surfaces a very “thin” and “hard” appearance. In order to make skin look more
“soft” it is necessary to take into account the way light bounces around inside
a surface. This phenomenon is known as subsurface scattering, and substantial
recent effort has been spent on the problem of realistic, real-time rendering with
accurate subsurface scattering.

Current skin-shading techniques usually simulate subsurface scattering during
rendering by either simulating light as it travels through skin, or by gathering
incident light from neighboring locations. In this chapter we discuss a differ-
ent approach to skin shading: rather than gathering neighboring light, we pre-
integrate the effects of scattered light. Pre-integrating allows us to achieve the
nonlocal effects of subsurface scattering using only locally stored information and
a custom shading model. What this means is that our skin shader becomes just
that: a simple pixel shader. No extra passes are required and no blurring is
required, in texture space nor screen space. Therefore, the cost of our algorithm
scales directly with the number of pixels shaded, just like simple shading models
such as Blinn-Phong, and it can be implemented on any hardware, with minimal
programmable shading support.

41



i
i

i
i

i
i

i
i

42 II Rendering

1.2 Background and Previous Work

Several offline and real-time approaches have been based on an approach, taken
from film, called texture-space diffusion (TSD). TSD stores incoming light in
texture space and uses a blurring step to simulate diffusion. The first use of this
technique was by [Borshukov and Lewis 03,Borshukov and Lewis 05] in the Matrix
sequels. They rendered light into a texture-space map and then used a custom
blur kernel to gather scattered light from all directions. Based on extensive
reference to real skin, they used different blur kernels for the red, green, and blue
color channels, since different wavelengths of light scatter differently through
skin. Since the texture-space diffusion approach used texture-blur operations,
it was a very good fit for graphics hardware and was adopted for use in real-
time rendering [Green 04, Gosselin et al. 04]. While TSD approaches achieved
much more realistic results, the simple blurring operations performed in real
time couldn’t initially achieve the same level of quality of the expensive, original,
nonseparable blurs used in film.

A concept that accurately describes how light diffuses in skin and other
translucent materials is known as the diffusion profile. For a highly scattering
translucent material it is assumed that light scatters equally in all directions as
soon as it hits the surface. A diffusion profile can be thought of as a simple plot
of how much of this diffused light exits the surface as a function of the distance
from the point of entry. Diffusion profiles can be calculated using measured scat-
tering parameters via mathematical models known as dipole [Jensen et al. 01] or
multipole [Donner and Jensen 05] diffusion models. The dipole model works for
simpler materials, while the multipole model can simulate the effect of several
layers, each with different scattering parameters.

The work by [d’Eon and Luebke 07] sets the current high bar in real-time
skin rendering, combining the concept of fast Gaussian texture-space diffusion
with the rigor of physically based diffusion profiles. Their approach uses a sum
of Gaussians to approximate a multipole diffusion profile for skin, allowing a very
large diffusion profile to be simulated using several separable Gaussian blurs.
More recent approaches have achieved marked performance improvements. For
example, [Hable et al. 09] have presented an optimized texture-space blur kernel,
while [Jimenez et al. 09] have applied the technique in screen space.

1.3 Pre-Integrating the Effects of Scattering

We have taken a different approach to the problem of subsurface scattering in
skin and have departed from texture-space diffusion (see Figure 1.1). Instead, we
wished to see how far we could push realistic skin rendering while maintaining the
benefits of a local shading model. Local shading models have the advantage of
not requiring additional rendering passes for each object, and scale linearly with
the number of pixels shaded. Therefore, rather than trying to achieve subsur-
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Figure 1.1. Our pre-integrated skin-shading approach uses the same diffusion profiles
as texture-space diffusion, but uses a local shading model. Note how light bleeds over
lighting boundaries and into shadows. (Mesh and textures courtesy of XYZRGB.)

face scattering by gathering incoming light from nearby locations (performing an
integration during runtime), we instead seek to pre-integrate the effects of sub-
surface scattering in skin. Pre-integration is used in many domains and simply
refers to integrating a function in advance, such that calculations that rely on the
function’s integral can be accelerated later. Image convolution and blurring are
just a form of numerical integration.

The obvious caveat of pre-integration is that in order to pre-integrate a func-
tion, we need to know that it won’t change in the future. Since the incident light
on skin can conceivably be almost arbitrary, it seems as though precomputing this
effect will prove difficult, especially for changing surfaces. However, by focusing
only on skin rather than arbitrary materials, and choosing specifically where and
what to pre-integrate, we found what we believe is a happy medium. In total, we
pre-integrate the effect of scattering in three special steps: on the lighting model,
on small surface details, and on occluded light (shadows). By applying all of
these in tandem, we achieve similar results to texture-space diffusion approaches
in a completely local pixel shader, with few additional constraints.

To understand the reasoning behind our approach, it first helps to picture a
completely flat piece of skin under uniform directional light. In this particular
case, no visible scattering will occur because the incident light is the same ev-
erywhere. The only three things that introduce visible scattering are changes in
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the surrounding mesh curvature, bumps in the normal map, and occluded light
(shadows). We deal with each of these phenomena separately.

1.4 Scattering and Diffuse Light

If we take our previously flat surface with no visible scattering and start to make it
a smooth and curvy surface, like skin (we will keep it smooth for now), scattering
will start to become visible. This occurs due to the changes in incident light
across the surface. The Lambert diffuse-lighting model assumes that diffuse light
scatters equally in all directions, and the amount of incident light is proportional
to the cosine of the angle between the surface normal and light direction (N ·L).

Since N · L falloff is a primary cause of changing incident light, and thus
visible scattering, there have been several rendering tricks that attempt to add
the look of scattering by altering the N · L fall-off itself. This involves making
the falloff wrap around the back of objects, or by letting each wavelength of light
(r, g, and b) fall off differently as N · L approaches zero. What we found to
be the big problem with such approaches is that they aren’t based on physical
measurements of real skin-like diffusion profiles; and if you tune them to look
nice for highly curved surfaces, then there will be a massive falloff for almost-flat
surfaces (and vice versa).

To address both issues, we precompute the effect of diffuse light scattering.
We do this in a fashion similar to measured bidirectional reflectance distribution
functions (BRDFs). Measured BRDFs use physically measured data from real
surfaces to map incoming to outgoing light. This is as opposed to analytical
BRDFs such as Blinn-Phong that are analytical approximations for an assumed
micro-facet structure. Typical measured BRDFs don’t incorporate N · L since
N ·L just represents the amount of incoming light and isn’t part of the surface’s
reflectance. We are concerned only with N · L (diffuse light), as this is the light
that contributes to subsurface scattering.

One approach we considered to precompute the effect of scattered light at any
point on a surface, was to simulate lighting from all directions and compress that
data using spherical harmonics. Unfortunately, spherical harmonics can efficiently
represent only very low frequency changes or would require too many coefficients.
Thus, instead of precomputing the effect of scattering at all locations, we chose
to precompute the scattering falloff for a subset of surface shapes and determine
the best falloff during forward rendering. As discussed above, one characteristic
that we can calculate in a shader is surface curvature, which largely determines
the effect of scattering on smooth surfaces.

To measure the effect of surface curvature on scattering, we add curvature
as the second parameter to our measured diffuse falloff. The skin diffusion pro-
files from [d’Eon and Luebke 07] on flat skin can be used to simulate the effect
of scattering on different curvatures. We simply light a spherical surface of a
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given curvature from one direction and measure the accumulated light at each
angle with respect to the light (see Figures 1.2 and 1.3). This results in a two-
dimensional lookup texture that we can use at runtime. More formally, for each
skin curvature and for all angles θ between N and L, we perform the integration
in Equation (1.1):

D(θ, r) =

∫ π
-π

cos(θ + x) ·R(2r sin(x/2))dx∫ π
-π
R(2 sin(x/2))dx

(1.1)

The first thing to note is that we have approximated a spherical integration
with integration on a ring. We found the difference was negligible and the ring
integration fits nicely into a shader that is used to compute the lookup texture.
The variable R() refers to the diffusion profile, for which we used the sum of
Gaussians from [d’Eon and Luebke 07] (see Table 1.1). Rather than performing
an expensive arccos() operation in our shader to calculate the angle, we push
this into the lookup, so our lookup is indexed by N · L directly. This is fine in
our case, as the area where scattering occurs has plenty of space in the lookup.
Figures 1.2 and 1.3 illustrate how to compute and use the diffuse lookup texture.

While this measured skin model can provide some interesting results on its
own, it still has a few major flaws. Primarily, it assumes that all skin resembles
a sphere, when, in fact, skin can have fairly arbitrary topology. Stated another
way, it assumes that scattered light arriving at a given point depends on the
curvature of that point itself. In actuality it depends on the curvature of all of
the surrounding points on the surface. Thus, this approximation will work very
well on smooth surfaces without fast changes in curvature, but breaks down when
curvature changes too quickly. Thankfully, most models of skin are broken up
into two detail levels: smooth surfaces represented using geometry, and surface
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Table 1.1. The weights used by [d’Eon and Luebke 07] for texture-space diffusion.
Although we aren’t limited to the sum of Gaussians approximations, we use the same
profile for comparison.
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Figure 1.2. The graph (left) illustrates the diffusion profile of red, green, and blue light
in skin, using the sum of Gaussians from Table 1.1. The diagram (right) illustrates
how we pre-integrate the effect of scattering into a diffuse BRDF lookup. The diffusion
profile for skin (overlaid radially for one angle) is used to blur a simple diffuse BRDF
for all curvatures of skin.
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Figure 1.3. The diagram (top left) illustrates how we calculate curvature while rendering
using two derivatives. The diffuse BRDF lookup, indexed by curvature (sphere radius)
and N ·L (top right). Spheres of different sized renderings using the new BRDF lookup
(bottom).
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details represented in a normal map. We take advantage of this and let the
measured diffuse falloff be chosen at the smooth geometry level, while adding
another approach to deal with creases and small bumps in normal maps, which
are responsible for quick changes in curvature.

1.5 Scattering and Normal Maps

We now turn to the effect of scattering on small wrinkles and pores that are usu-
ally represented with a normal map. Since the normal from a small crease always
returns to the dominant surface normal, the reflected scattered light coming from
that crease will look very similar to light reflected from a nonscattering surface
with a physically broader (or blurred-out) crease. Coincidentally, one way of ap-
proximating the look of scattered-over small creases and bumps is to simply blur
the creases and bumps themselves! Most important however, this effect will be
different for each wavelength of light, because of their different diffusion profiles.

Interestingly, the inverse of this phenomenon was noted when capturing nor-
mals from a real subject, using image-based lighting. Ma et al. [Ma et al. 07]
noted that, when captured using spherical gradient lighting, normals become
bent toward the dominant-surface normal, depending on the wavelength of light
used to capture them (red was more bent than green, etc.). They also noted that
a local skin-shading model was improved by using all the normals they captured
instead of only one. In this case the image-based normal capture was physically
integrating all the scattered light when determining the best normal to fit the
data. Since we have only one set of normal maps to begin with, we essentially
work in reverse. We assume that our original normal map is the accurate surface
normal map and blur it several times for each wavelength, resulting in a separate
normal map for each color, and for specular reflection. As mentioned by previous
authors [d’Eon and Luebke 07,Hable et al. 09, Jimenez et al. 09], care should be
taken to make sure the original normal map has not been blurred already in an
attempt to get a smoother look.

While it might seem to make sense to simply blur the normal map using the
diffusion profile of skin, this approach is not completely valid since lighting is not a
linear process with regard to the surface normal. What we really want to have is a
representation of the normal which can be linearly filtered, much in the same way
that shadow maps can be filtered linearly using a technique like variance shadow
mapping. Interestingly, there has been some very recent work in linear normal
map filtering. Linear efficient antialiased normal (LEAN) mapping [Olano and
Baker 10] represents the first and second moments of bumps in surface-tangent
space. Olano and Baker focused primarily on representing specular light but
also suggest a diffuse-filtering approximation from [Kilgard 00] which simply uses
the linearly filtered unnormalized normal and standard diffuse lighting. It is
noteworthy that the unnormalized normal is actually a valid approximation when
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a bump self-shadowing and incident/scattered lighting term is constant over the
normal-map filtering region. In that case,

1

n
Σni=1(KdiffuseL ·Ni) = KdiffuseL · (

1

n
Σni=1Ni).

The reason this isn’t always the case is that diffuse lighting incorporates a self-
shadowing term max(0, N · L) instead of simply N · L. This means back-facing
bumps will actually contribute negative light when linearly filtered. Nonetheless,
using the unnormalized normal will still be valid when all bumps are unshadowed
or completely shadowed, and provides a better approximation than the normal-
ized normal in all situations, according to [Kilgard 00].

Although we would prefer a completely robust method of pre-integrating nor-
mal maps that supports even changes in incident/scattered light over the filtering
region, we found that blurring, using diffusion profiles, provided surprisingly good
results (whether or not we renormalize). In addition, since using four normals
would require four transformations into tangent space and four times the mem-
ory, we investigated an approximation using only one mipmapped normal map.
When using this optimization, we sample the specular normal as usual, but also
sample a red normal clamped below a tunable miplevel in another sampler. We
then transform those two normals into tangent space and blend between them
to get green and blue normals. The resulting diffuse-lighting calculations must
then be performed three times instead of once. The geometry normal can even
be used in place of the second normal map sample, if the normal map contains
small details exclusively. If larger curves are present, blue/green artifacts will
appear where the normal map and geometry normal deviate, thus the second
mipmapped sample is required.

We found that this approach to handling normal maps complements our cus-
tom diffuse falloff very well. Since the red normal becomes more heavily blurred,
the surface represented by the blurred normal becomes much more smooth, which
is the primary assumption made in our custom diffuse falloff. Unfortunately, there
is one caveat to using these two approaches together. Since we have separate nor-
mals for each color, we need to perform three diffuse lookups resulting in three
texture fetches per light. We discuss a few approaches to optimizing this in
Section 1.7.

1.6 Shadow Scattering

Although we can now represent scattering due to small- and large-scale features,
we are still missing scattering over occluded light boundaries (shadows). The
effect of light scattering into shadows is one of the most noticeable features of
realistically rendered skin. One would think that scattering from shadows is much
more difficult since they are inherently nonlocal to the surface. However, by using
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Scattering

Original Penumbra  Pre-Integrated Penumbrae New Penumbra
s

1

w

Figure 1.4. Illustration of pre-integrated scattering falloff from shadows. A typical
shadow falloff from a box-filtered shadow map (left). A smaller penumbra that we
pre-integrate against the diffusion profile of skin (right). The lookup maps the first
penumbra into the second but also stores additional scattered light. The lookup is
parameterized by the original shadow value and the width of the penumbra in world
space (center).

a small trick, we found we could pre-integrate the effect of scattering over shadow
boundaries in the same way we represent scattering in our lighting model.

The trick we use for shadows is to think of the results of our shadow map-
ping algorithm as a falloff function rather than directly as a penumbra. When
the falloff is completely black or white, we know we are completely occluded or
unoccluded, respectively. However, we can choose to reinterpret what happens
between those two values. Specifically, if we ensure the penumbra size created
by our shadow map filter is of adequate width to contain most of the diffusion
profile, we can choose a different (smaller) size for the penumbra and use the
rest of the falloff to represent scattering according to the diffusion profile (see
Figure 1.4).

To calculate an accurate falloff, we begin by using the knowledge of the shape
of our shadow mapping blur kernel to pre-integrate a representative shadow
penumbra against the diffusion profile for skin. We define the representative
shadow penumbra P () as a one-dimensional falloff from filtering a straight shadow
edge (a step function) against the shadow mapping blur kernel. Assuming a mono-
tonically decreasing shadow mapping kernel, the representative shadow falloff is
also a monotonically decreasing function and is thus invertible within the penum-
bra. Thus, for a given shadow value we can find the position within the repre-
sentative penumbra using the inverse P−1(). As an example, for the simple case
of a box filter, the shadow will be a linear ramp, for which the inverse is also a
linear ramp. More complicated filters have more complicated inverses and need
to be derived by hand or by using software like Mathematica. Using the inverse,
we can create a lookup texture that maps the original falloff back to its location
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Figure 1.5. Illustration of pre-integrated scattering falloff from shadows. Controlled
scattering based on increased penumbra width, such as a penumbra cast onto a highly
slanted surface (top). Comparison with and without shadow scattering (bottom).

in the penumbra and then to a completely different falloff. Specifically, we can
make the new shadow falloff smaller and use the remainder to represent subsur-
face scattering from the new penumbra. In the end, we are left with a simple
integration to perform that we can use as a lookup during rendering, exactly like
our diffuse falloff.

We should note at this point that we could run into problems if our as-
sumptions from above are invalidated. We found that a two-dimensional shadow
falloff was not noticeably different from a one-dimensional one, but we have also
assumed that all shadow transitions are sharp. For example, if something like
a screen door were to cast a shadow, it might result in a constant penumbra
value between zero and one. In that case, we would assume there is scattering
from a falloff that isn’t there. Additionally, we have assumed projection onto a
flat surface. If the surface is highly slanted, then the true penumbra size will
be much larger than the one we used during pre-integration. For this reason
we add a second dimension to our shadow falloff texture, which represents the
size of the penumbra in world space. This is similar to the way we pre-integrate
lighting against all sphere sizes. In the end, our two-dimensional shadow-lookup
integration is a simple convolution:

PS(s, w) =

∫∞
-∞ P ′(P−1(s) + x)R(x/w)dx∫∞

-∞R(x/w)dx
,
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where P−1() is the inverse of our representative falloff, P ′() is the new, smaller
penumbra, R() is the diffusion profile, and s and w are the shadow value and
penumbra width in world space, respectively. Penumbra width can be detected
using either the angle of the surface with respect to the light, or potentially the
derivative of the shadow value itself. Since creating a large penumbra is expensive
using conventional shadow filtering (although, see the Pixel Quad Amortization
chapter), having the penumbra stretched over a slanted surface provides a larger
space for scattering falloff and thus can actually be desirable if the initial shadow
penumbra isn’t wide enough. In this case the lookup can be clamped to insure
that the falloff fits into the space provided.

1.7 Conclusion and Future Work

We have presented a new local skin-shading approach based on pre-integration
that approximates the same effects found in more expensive TSD-based ap-
proaches. Our approach can be implemented by adding our custom diffuse- and
shadow-falloff textures to a typical skin shader (see Figure 1.6).

Although we found that our approach worked on a large variety of models,
there are still a few drawbacks that should be mentioned. When approximating
curvature using pixel shader derivatives, triangle edges may become visible where
curvature changes quickly. Depending on how the model was created we also
found that curvature could change rapidly or unnaturally in some cases. We are
looking into better approaches to approximating curvature in these cases. This is
much more easily done with geometry shaders that can utilize surface topology.

Pre-Integration Texture Space Diffusion

Figure 1.6. Comparison of our approach with texture-space diffusion using an optimized
blur kernel from [Hable et al. 09]. (Mesh and textures courtesy of XYZRGB.)
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We would also like to look at the effect of using more than one principal axis
of curvature. For models where curvature discontinuities occur, we generate a
curvature map that can be blurred and further edited by hand, similar to a
stretch map in TSD.

Another challenge we would like to meet is to efficiently combine our normal
map and diffuse-lighting approaches. When using three diffuse normals, we cur-
rently need three diffuse-texture lookups. We found we could use fewer lookups
depending on the number of lights and the importance of each light. We have also
found it promising to approximate the diffuse and shadow falloffs using analytical
approximations that can be evaluated without texture lookups.

We would also like to apply our technique to environment mapping. It
should be straightforward to support diffuse-environment mapping via an ar-
ray of diffuse-environment maps that are blurred based on curvature, in the same
manner as our diffuse-falloff texture.

1.8 Appendix A: Lookup Textures

f loat Gaussian ( f loat v , f loat r )
{

return 1 .0/ s q r t ( 2 . 0∗PI∗v ) ∗ exp(−( r ∗ r ) /(2∗v ) ) ;
}

f l o a t 3 Sca t t e r ( f loat r )
{

// C o e f f i c i e n t s from GPU Gems 3 − ‘ ‘ Advanced Skin Rendering
. ’ ’

return Gaussian (0 .0064 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 2 3 3 , 0 . 4 5 5 , 0 . 6 4 9 ) +

Gaussian (0 .0484 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 1 0 0 , 0 . 3 3 6 , 0 . 3 4 4 ) +

Gaussian (0 .1870 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 1 1 8 , 0 . 1 9 8 , 0 . 0 0 0 ) +

Gaussian (0 .5670 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 1 1 3 , 0 . 0 0 7 , 0 . 0 0 7 ) +

Gaussian (1 .9900 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 3 5 8 , 0 . 0 0 4 , 0 . 0 0 0 ) +

Gaussian (7 .4100 ∗ 1 .414 , r ) ∗ f l o a t 3
( 0 . 0 7 8 , 0 . 0 0 0 , 0 . 0 0 0 ) ;

}

f l o a t 3 integrateShadowScat te r ing ( f loat penumbraLocation ,
f loat penumbraWidth )

{
f l o a t 3 tota lWeights = 0 ;
f l o a t 3 t o t a l L i g h t = 0 ;

f loat a= −PROFILE WIDTH;
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while ( a<=PROFILE WIDTH )
while ( a<=PROFILE WIDTH )
{

f loat l i g h t = newPenumbra ( penumbraLocation + a/
penumbraWidth ) ;

f loat sampleDist = abs ( a ) ;
f l o a t 3 weights = Sca t t e r ( sampleDist ) ;
tota lWeights += weights ;
t o t a l L i g h t += l i g h t ∗ weights ;
a+=inc ;

}

return t o t a l L i g h t / tota lWeights ;
}

f l o a t 3 in t eg ra t eD i f fu s eSca t t e r ingOnRing ( f loat cosTheta , f loat
sk inRadius )

{
// Angle from l i g h t i n g d i r e c t i o n .
f loat theta = acos ( cosTheta ) ;
f l o a t 3 tota lWeights = 0 ;
f l o a t 3 t o t a l L i g h t = 0 ;

f loat a= −(PI /2) ;
while ( a<=(PI /2) )
while ( a<=(PI /2) )
{

f loat sampleAngle = theta + a ;
f loat d i f f u s e = sa tu ra t e ( cos ( sampleAngle ) ) ;
f loat sampleDist = abs (2 . 0∗ sk inRadius ∗ s i n ( a ∗0 . 5 ) ) ;

// Distance .
f l o a t 3 weights = Sca t t e r ( sampleDist ) ;

// P r o f i l e Weight .
tota lWeights += weights ;
t o t a l L i g h t += d i f f u s e ∗ weights ;
a+=inc ;

}
return t o t a l L i g h t / tota lWeights ;

}

Listing 1.1. Shader code to precompute skin falloff textures.

1.9 Appendix B: Simplified Skin Shader

f l o a t 3 Sk inD i f f u s e ( f loat curv , f l o a t 3 NdotL )
{

f l o a t 3 lookup = NdotL ∗ 0 .5 + 0 . 5 ;
f l o a t 3 d i f f u s e ;
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d i f f u s e . r = tex2D ( SkinDi f fuseSampler , f l o a t 2 ( lookup . r , curv
) ) . r ;

d i f f u s e . g = tex2D ( SkinDi f fuseSampler , f l o a t 2 ( lookup . g , curv
) ) . g ;

d i f f u s e . b = tex2D ( SkinDi f fuseSampler , f l o a t 2 ( lookup . b , curv
) ) . b ;

return d i f f u s e ;
}

f l o a t 3 SkinShadow ( f loat shad , f loat width )
{

return tex2D ( SkinShadowSampler , f l o a t 2 ( shad , width ) ) . rgb ;
}
. . .
// Simple curvature c a l c u l a t i o n .
f loat curvature = sa tu ra t e ( l ength ( fwidth ( Normal ) ) /

l ength ( fwidth ( WorldPos ) ) ∗ tuneCurvature ) ;
. . .
// Specu lar / D i f f u s e Normals .
f l o a t 4 normMapHigh = tex2D ( NormalSamplerHigh , Uv) ∗ 2 .0 −

1 . 0 ;
f l o a t 4 normMapLow = tex2D ( NormalSamplerLow , Uv) ∗ 2 .0 −

1 . 0 ;
f l o a t 3 N high = mul (normMapHigh . xyz , TangentToWorld ) ;
f l o a t 3 N low = mul (normMapLow . xyz , TangentToWorld ) ;
f l o a t 3 rS = N high ;
f l o a t 3 rN = l e r p ( N high , N low , tuneNormalBlur . r ) ;
f l o a t 3 gN = l e r p ( N high , N low , tuneNormalBlur . g ) ;
f l o a t 3 bN = l e r p ( N high , N low , tuneNormalBlur . b ) ;
. . .
// D i f f u s e l i g h t i n g
f l o a t 3 NdotL = f l o a t 3 ( dot (rN , L) , dot (gN , L) , dot (bN, L) ) ;
f l o a t 3 d i f f u s e = Sk inD i f f u s e ( curvature , NdotL ) ∗ LightColor ∗

SkinShadow ( SampleShadowMap(ShadowUV) ) ;

Listing 1.2. Skin shader example.
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II

Implementing Fur Using
Deferred Shading

Donald Revie

This chapter is concerned with implementing a visually pleasing approximation of
fur using deferred shading rather than attempting to create an accurate physical
simulation. The techniques presented can also be used to create a number of
materials that are traditionally difficult to render in deferred shading.

2.1 Deferred Rendering

For the purposes of this chapter, the term deferred rendering can be extended
to any one of a group of techniques characterized by the separation of light-
ing calculations from the rendering of light-receiving objects within the scene,
including deferred shading [Valient 07], deferred lighting [Mittring 09], inferred
lighting [Kircher 09], and light-prepass rendering [Engel 09]. The fur-rendering
technique being presented has been implemented in deferred shading but should
be applicable to any rendering solution based on one of these techniques.

This separation of light-receiving objects from light sources is achieved by
storing all relevant information about light-receiving objects in the scene as tex-
ture data, collectively referred to as a geometry buffer or G-buffer because it
represents the geometric scene.

When rendering the lights, we can treat the G-buffer as a screen-aligned
quad with per-pixel lighting information. Rendering the G-buffer discards all
occluded geometry, effectively reducing the three-dimensional scene into a con-
tinuous screen-facing surface (Figure 2.1). By using the two-dimensional screen
position, depth, and normal information, a pixel shader can reconstruct any visi-
ble point in the scene from its corresponding pixel. It is this surface information
that is used to calculate lighting values per pixel rather than the original scene
geometry.

57
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Figure 2.1. G-buffer surface.

In deferred rendering the format of the G-buffer (Figure 2.2) defines a standard
interface between all light-receiving materials and all light sources. Each object
assigned a light-receiving material writes a uniform set of data into the G-buffer,
which is then interpreted by each light source with no direct information regarding
the original object. One key advantage to maintaining this interface is that
geometric complexity is decoupled from lighting complexity.

This creates a defined pipeline (Figure 2.3) in which we render all geome-
try to the G-buffer, removing the connection between the geometric data and
individual objects, unless we store this information in the G-buffer. We then
calculate lighting from all sources in the scene using this information, creating
a light-accumulation buffer that again discards all information about individual
lights. We can revisit this information in a material pass, rendering individual
meshes again and using the screen-space coordinates to identify the area of the
light-accumulation buffer and G-buffer representing a specific object. This ma-
terial phase is required in deferred lighting, inferred lighting, and light pre-pass
rendering to complete the lighting process since the G-buffer for these techniques

Figure 2.2. Our G-buffer format.
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Figure 2.3. General deferred rendering pipeline.

does not include surface color. After this, a post-processing phase acts upon the
contents of the composition buffer, again without direct knowledge of individual
lights or objects.

This stratification of the deferred rendering pipeline allows for easy extensi-
bility in the combination of different materials and lights. However, adherence to
the interfaces involved also imposes strict limitations on the types of materials
and lights that can be represented. In particular, deferred rendering solutions
have difficulty representing transparent materials, because information regard-
ing surfaces seen through the material would be discarded. Solutions may also
struggle with materials that reflect light in a nontypical manner, potentially in-
creasing the complexity of all lighting calculations and the amount of information
required within the G-buffer. Choosing the right phases and buffer formats are
key to maximizing the power of deferred rendering solutions.

We describe techniques that address the limitations of rendering such materi-
als while continuing to respect the interfaces imposed by deferred rendering. To
illustrate these techniques and demonstrate ways in which they might be com-
bined to form complex materials, we outline in detail a solution for implementing
fur in deferred shading.

2.2 Fur

Fur has a number of characteristics that make it difficult to represent using the
same information format commonly used to represent geometry in deferred ren-
dering solutions.

Fur is a structured material composed of many fine strands forming a complex
volume rather than a single continuous surface. This structure is far too fine to
describe each strand within the G-buffer on current hardware; the resolution
required would be prohibitive in both video memory and fragment processing.
As this volumetric information cannot be stored in the G-buffer, the fur must
be approximated as a continuous surface when receiving light. We achieve this
by ensuring that the surface exhibits the observed lighting properties that would
normally be created by the structure.
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(a) (b)

Figure 2.4. Fur receiving light from behind (a) without scattering and (b) with scat-
tering approximation.

The diffuse nature of fur causes subsurface scattering; light passing into the
volume of the fur is reflected and partially absorbed before leaving the medium
at a different point. Individual strands are also transparent, allowing light to
pass through them. This is often seen as a halo effect; fur is silhouetted against
a light source that illuminates the fur layer from within, effectively bending light
around the horizon of the surface toward the viewer. This is best seen in fur with
a loose, “fluffy” structure (see Figure 2.4).

The often-uniform, directional nature of fur in combination with the struc-
ture of individual strands creates a natural grain to the surface being lit. The
reflectance properties of the surface are anisotropic, dependent on the grain di-
rection. Anisotropy occurs on surfaces characterized by fine ridges following the
grain of the surface, such as brushed metal, and causes light to reflect according
to the direction of the grain. This anisotropy is most apparent in fur that is
“sleek” with a strong direction and a relatively unbroken surface (see Figure 2.5).

(a) (b)

Figure 2.5. Fur receiving light (a) without anisotropy and (b) with anisotropy approx-
imation.
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2.3 Techniques

We look at each of the characteristics of fur separately so that the solutions dis-
cussed can be reused to represent other materials that share these characteristics
and difficulties when implemented within deferred rendering.

Figure 2.6. Concentric shells.

2.3.1 Volumetric Fur Rendering Using Concentric Shells

It is common to render volumetric structures in real time by rendering dis-
crete slices of volumetric texture data into the scene and using alpha blend-
ing to combine the results, such as light interacting with dust particles in the
air [Mitchell 04]. Provided enough slices are rendered, the cumulative result
gives the appearance of a continuous volume featuring correct perspective, par-
allax, and occlusion.

The concentric shells method of rendering fur [Lengyel 01] represents the
volumetric layer of fur as a series of concentric shells around the base mesh; each
shell is a slice through the layer of fur parallel to the surface. These shells are
constructed by rendering the base mesh again and pushing the vertices out along
the normal of the vertex by a fraction of the fur layer depth; the structure of the
fur is represented by a volume texture containing a repeating section of fur (see
Figure 2.6). By applying an offset parallel to the mesh surface in addition to the
normal we can comb the fur volume (see Figure 2.7, Listing 2.1).

Figure 2.7. Combing.
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// Get s h e l l depth as normal ized d i s t ance between base and
// outer s u r f a c e .
f loat she l lDepth = s h e l l I n d e x ∗ ( 1 . f / numShells ) ;

// Get o f f s e t d i r e c t i o n vec to r
f l o a t 3 d i r = IN . normal . xyz + ( IN . d i r e c t i o n . xyz ∗ she l lDepth ) ;
d i r . xyz = normal ize ( d i r . xyz ) ;

// O f f s e t ver tex p o s i t i o n along fu r d i r e c t i o n .
OUT. p o s i t i o n = IN . p o s i t i o n ;
OUT. p o s i t i o n . xyz = ( d i r . xyz ∗ she l lDepth ∗ furDepth
∗ IN . furLength ) ;

OUT. p o s i t i o n = mul ( worldViewProject ion , OUT. p o s i t i o n ) ;

Listing 2.1. Vertex offsetting.

This method of fur rendering can be further augmented with the addition of
fins, slices perpendicular to the surface of the mesh, which improve the quality of
silhouette edges. However, fin geometry cannot be generated from the base mesh
as part of a vertex program and is therefore omitted here (details on generating
fin geometry can be found in [Lengyel 01]).

This technique cannot be applied in the geometry phase because the structure
of fur is constructed from a large amount of subpixel detail that cannot be stored
in the G-buffer where each pixel must contain values for a discrete surface point.
Therefore, in deferred shading we must apply the concentric shell method in the
material phase, sampling the lighting and color information for each hair from a
single point in the light-accumulation buffer. The coordinates for this point can
be found by transforming the vertex position of the base mesh into screen space
in the same way it was transformed originally in the geometry phase (Listing 2.2).

// Vertex shader .
// See ( L i s t i n g 3 . 1 . 1 ) f o r omitted content .
// Output s c r e en p o s i t i o n o f base mesh ver tex .
OUT. screenPos = mul ( worldViewProject ion , IN . p o s i t i o n ) ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−
// P ixe l shader .
IN . screenPos /= IN . screenPos .w;

// Bring va lue s in to range (0 , 1 ) from (−1 ,1) .
f l o a t 2 screenCoord = ( IN . screenPos . xy + 1 . f . xx ) ∗ 0 .5 f . xx ;

// Sample l i t mesh c o l o r
c o l o r = tex2D ( l ightAccumulat ionTexture , screenCoord ) .

Listing 2.2. Sampling lit objects.
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This sampling of lighting values can cause an issue specific to rendering the
fur. As fur pixels are offset from the surface being sampled, it is possible for the
original point to have been occluded by other geometry and thus be missing from
the G-buffer. In this case the occluding geometry, rather than the base mesh,
would contribute to the coloring of the fur leading to visual artifacts in the fur
(Figure 2.8). We explore a solution to this in Sections 2.3.4 and 2.4.4 of this
article.

Figure 2.8. Occlusion error.

2.3.2 Subsurface Scattering

Scattering occurs in materials wherein light enters the surface at one point, is
transmitted through the medium beneath the surface being reflected and refracted
by internal structures and is partially absorbed, before exiting the surface at a
different point (Figure 2.9). This light exiting the surface softens the appearance
of lighting on the surface by creating a subtle glow.

Much work has been done on the approximation of subsurface scattering prop-
erties in skin that is constructed of discrete layers, each with unique reflectance
properties. One such solution is to apply a weighted blur to the light accumulated
on the surface [Hable 09, Green 04]. In existing forward shaded solutions, this
blurring is typically applied in texture space.

Figure 2.9. Simple subsurface scattering.



i
i

i
i

i
i

i
i

64 II Rendering

Figure 2.10. Rim glow (N.L < 0) (N‘.L > 0).

In deferred rendering, this technique can be applied in both the geometry
phase and the material phase. In the geometry phase the scattering can be
approximated by blurring the surface normals written into the G-buffer or by
recalculating the mesh normals as a weighted sum of neighboring vertex normals
[Patro 07].

Blurring can be performed in the material phase, in texture space, by sampling
the accumulated lighting in the same manner as that used for the fur rendering.
The texture coordinates of the mesh would then be used as vertex positions
to write those values into the mesh’s texture space before applying a blur. Once
blurred, these values are written back into the light-accumulation buffer by revers-
ing the process. Alternatively, the material-phase blurring could be performed in
screen space by orienting the blur kernel to the local surface, using the normals
stored in the G-buffer at each pixel.

One issue with this solution is that scattering beneath a surface will also allow
light entering the back faces of an object to be transmitted through the medium
and exit the surface facing the viewer. In materials such as skin and fur, which
form a scattering layer over a more solid structure, this transfer of light appears
most often around the silhouette edges of the object. We can adjust for this by
bending normals at the silhouette edge of the mesh to point away from the viewer
and sample lighting from behind the object (see Figure 2.10 and Listing 2.3). In
doing so, these pixels will no longer receive direct lighting correctly; this must
then be accounted for during the blur phase (see Sections 2.3.4 and 2.4.4 for
details of our solution).

// Get normal based f o r back f a c e samples .
// Glow st r ength and f a l l o f f are supp l i ed by mate r i a l va lue s .

h a l f NdotV = sa tu ra t e ( dot ( normal . xyz , −view ) ;
h a l f rimWeight = glowStrenth ∗ pow ( 1 . f − NdotV ) , g l o w F a l l o f f ) ;
normal . xyz += view . xyz ∗ rimWeight ;
normal . xyz = normal ize ( normal . xyz ) ;

Listing 2.3. Pushing edge pixels around edges.
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Figure 2.11. Strand normals.

2.3.3 Anisotropy

Anisotropic light reflection occurs on surfaces where the distribution of surface
normals is dependent on the surface direction; such surfaces are often character-
ized by fine ridges running in a uniform direction across the surface, forming a
“grain.” The individual strands in fur and hair can create a surface that exhibits
this type of lighting [Scheuermann 04].

This distinctive lighting is created because in anisotropic surfaces the ridges
or, in this case, the strands are considered to be infinitely fine lines running
parallel to the grain. These lines do not have a defined surface normal but instead
have an infinite number of possible normals radiating out perpendicularly to their
direction (see Figure 2.11). Therefore, the lighting calculation at any point on the
surface must integrate the lighting for all the normals around the strand. This
is not practical in a pixel shader; the best solution is to choose a single normal
that best represents the lighting at this point [Wyatt 07].

In forward shading, anisotropy is often implemented using a different lighting
calculation from those used to describe other surfaces (Listing 2.4) [Heidrich 98].
This algorithm calculates lighting based on the grain direction of the surface
rather than the normal.

D i f f u s e = s q r t (1 − (< L ,T >)ˆ2)
Specu lar = s q r t (1 − (< L ,T >)ˆ2) s q r t (1 − (< V, T > )ˆ2)

− < L , T > < V, T >

Listing 2.4. Anisotropic light calculation.

In deferred shading we cannot know in the geometry phase the nature of any
light sources that might contribute to the lighting on the surface and are bound
by the interface of the G-buffer to provide a surface normal. Therefore, we define
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Figure 2.12. Normal as tangent to plane.

the most significant normal as the normal that is coplanar with the grain direction
and the eye vector at that point (see Figure 2.12). We calculate the normal of
this plane as the cross product of the eye vector and the grain direction, the
normal for lighting is then the cross product of the plane’s normal and the grain
direction (see Listing 2.5).

// Generate normal from fu r d i r e c t i o n .
IN . d i r e c t i o n = IN . d i r e c t i o n −(dot ( IN . d i r e c t i o n , normal ) ∗ normal ) ;
IN . d i r e c t i o n . xyz = normal ize ( IN . d i r e c t i o n . xyz ) ;
h a l f 3 binorm = c r o s s ( IN . eyeVector , IN . d i r e c t i o n ) ;
h a l f 3 grainNorm = c r o s s ( binorm , IN . d i r e c t i o n ) ;
normal ize ( grainNorm ) ;

Listing 2.5. Anisotropic normal calculation.

(a) (b)

Figure 2.13. (a) Isotropic highlight and (b) anisotropic highlight.

By calculating surface normals in this way we create the effect of curving
the surface around the view position, resulting in the lighting being stretched
perpendicular to the surface grain (Figure 2.13). While this method does not
perfectly emulate the results of the forward-shading solution, it is able to generate
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this characteristic of stretched lighting for all light sources, including image-based
lights.

2.3.4 Stippled Rendering

Stippled rendering is a technique in which only some pixels of an image are
written into the frame buffer, leaving other pixels with their original values. This
technique was originally inspired by the stippled alpha transparencies used in
games before the widespread availability of hardware alpha blending, also referred
to as screen-door transparency [Mulder 98]. The values for the transparent object
are written to only some of the pixels covered by the object so as not to completely
obscure the scene behind it (see Figure 2.14 and Listing 2.6).

(a) (b)

Figure 2.14. Stipple patterns (a) 1 in 2 and (b) 1 in 4.

// Get s c r e en coo rd ina t e s in range (0 , 1 ) .
f l o a t 2 screenCoord = ( ( IN . screenPos . xy/IN . screenPos .w)

+ 1 . f . xx ) ∗ 0 .5 h . xx ;
// Convert coo rd ina t e s i n to p i x e l s .
i n t2 sample = screenCoord . xy ∗ f l o a t 2 (1280 . f , 720 . f ) ;

// I f p i x e l i s not the top l e f t in a 2x2 t i l e d i s ca rd i t .
i n t2 t i l e I n d i c e s = in t2 ( sample . x \% 2 , sample . y \% 2 ) ;
i f ( ( t i l e I n d i c e s . x != 0) | | ( t i l e I n d i c e s . y != 0) )
d i s ca rd ;

Listing 2.6. One in four Stipple pattern generation.

In deferred shading, transparent objects are written into the G-buffer using
a stipple pattern. During the material phase, the values of pixels containing
data for the transparent surface are blended with neighboring pixels containing



i
i

i
i

i
i

i
i

68 II Rendering

information on the scene behind. By varying the density of the stipple pattern,
different resolutions of data can be interleaved, allowing for multiple layers of
transparency. This technique is similar to various interlaced rendering methods
for transparent surfaces [Pangerl 09,Kircher 09].

The concept of stippled rendering can be extended further to blend multiple
definitions of a single surface together. By rendering the same mesh multiple
times but writing distinctly different data in alternating pixels, we can assign
multiple lighting values for each point on the object at a reduced resolution.
During the material phase the object is rendered again, and this information
is deinterlaced and combined to allow for more complex lighting models. For
example, a skin material could write separate values for a subsurface scattering
pass and a specular layer, as interleaved samples. The material pass would then
additively blend the specular values over the blurred result of the diffuse lighting
values.

2.4 Fur Implementation Details

Ease of use and speed of implementation were key considerations when developing
the fur solution. We found that to enable artists to easily apply the fur material
to meshes, it was important to provide flexibility through a fine degree of control,
coupled with real-time feedback. We also wished to ensure minimal changes to
existing assets and work methods. It was also important that the technique have
minimal impact on our rendering framework, and that it work well with our
existing asset-creation pipeline.

To this end, the solution has been implemented with minimal code support;
all shader code is implemented within a single effect file with multiple passes for
the geometry and material phases of rendering. Annotations provide the renderer
with information on when and where to render passes. For real-time feedback,
a separate technique is provided within the effect file that renders the fur in a
forward-shaded fashion suitable for use within various asset-creation packages.

2.4.1 Asset Preparation

Combing direction. The fur solution is applicable to any closed mesh with per-
vertex position, normal, tangent, binormal, and a single set of two-dimensional
texture coordinates. This is a fairly standard vertex format for most asset-
creation packages.

In addition, we require an RGBA color per vertex to define the combing direc-
tion and length of fur at a given vertex (see Figure 2.15). The RGB components
encode combing direction as a three-component vector in the object’s local space
compressing a range of [−1, 1] to [0, 1]; this vector is also used to describe the
surface direction when generating the anisotropic surface normals. The alpha
channel of the color is used to scale the global fur length locally at each vertex.



i
i

i
i

i
i

i
i

2. Implementing Fur Using Deferred Shading 69

Figure 2.15. Fur length (left) and direction (right) encoded as color.

A color set was chosen to encode this data for a number of reasons. First,
many asset-creation tools allow for easy “painting” of vertex colors while viewing
the shaded mesh in real time. This effectively allows the author to choose a
direction represented as a color and then comb sections of the fur appropriately
using the tool, setting an alpha component to the color trims the length of the fur
locally. Second, the approach of encoding direction as color is already familiar to
most authors through the process of generating world- and tangent-space normal
maps. The process has proven to be quite intuitive and easy to use.

As part of the loading process, we transform the vectors encoded in this
color channel from the local space of the mesh into its tangent space and at the
same time orthonormalize them, making them tangential to the mesh surface.
Thus when the mesh is deformed during animation, the combing direction of the
fur will remain constant in relation to the surface orientation. This is the only
engine side code that was required to fully support the fur-rendering technique
(see Listing 2.7).

// Build l o c a l to tangent space matrix .
Matrix tangentSpace ;
tangentSpace . LoadIdent i ty ( ) ;
tangentSpace . SetCol (0 , tangent ) ;
tangentSpace . SetCol (1 , binormal ) ;
tangentSpace . SetCol (2 , normal ) ;
tangentSpace . Transpose ( ) ;

// Convert c o l o r i n to vec to r .
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Vector3 d i r ( pColour [ 0 ] , pColour [ 1 ] , pColour [ 2 ] ) ;
d i r = ( d i r ∗ 2 . f ) − Vector3 ( 1 . f ) ;

// Gram Schmidt or thonorma l i za t i on .
d i r = d i r − ( dot ( d i r , normal ) ∗ normal ) ; d i r . Normalise ( ) ;

// Transform vecto r in to tangent space .
tangentSpace . TransformInPlace ( d i r ) ;

// Convert vec to r in to c o l o r .
d i r = ( d i r + Vector3 ( 1 . f ) ) ∗ 0 . 5 ;
pColour [ 0 ] = d i r . getX ( ) ;
pColour [ 1 ] = d i r . getY ( ) ;
pColour [ 2 ] = d i r . getZ ( ) ;

Listing 2.7. Processing of fur directions.

Texture data. To provide the G-buffer with the necessary surface information, the
material is assigned an RGB albedo map and a lighting map containing per pixel
normal information and specular intensity and exponent at any given pixel. In
addition to this, a second albedo map is provided to describe the changes applied
to lighting as it passes deeper into the fur; over the length of the strands, the
albedo color that is used is blended from this map to the surface color. This
gives the author a high degree of control over how the ambient occlusion term is
applied to fur across the whole surface, allowing for a greater variation.

To represent the fur volume required for the concentric shell rendering, a
heightfield was chosen as an alternative to generating a volumetric data set.
While this solution restricts the types of volume that can be described, it requires
considerably less texture information to be stored and accessed in order to render
the shells. It is more flexible in that it can be sampled using an arbitrary number
of slices without the need to composite slices when undersampling the volume,
and it is far simpler to generate with general-image authoring tools.

2.4.2 Geometry Phase

The geometry phase is split into two passes for the purpose of this technique. The
first pass renders the base mesh to the G-buffer. In the vertex shader the position,
tangent, and normal are transformed into view space and the combing direction
is brought into local space in the range [-1, 1]. The pixel shader generates a new
normal, which is coplanar to the eye and combing vectors to achieve anisotropic
highlights (Figure 2.16).

The second pass renders the top layer of the fur in a stipple pattern, rendering
to one in every four pixels on screen. The vertex shader is identical to the first
pass, but pushes the vertex positions out along the vertex normals offset by the
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Figure 2.16. Geometry pass 1 (depth/normals/albedo).

global fur length scaled by the vertex color alpha. The pixel shader identifies
likely silhouette edges using the dot product of the view vector and the surface
normals; the normals at these points are adjusted by adding the view vector
scaled by this weight value. The unmodified normals are recalculated to use the
anisotropic normals like those of the first pass (Figure 2.17).

This second pass solves the occlusion issue when constructing concentric fur
shells from the light-accumulation buffer, since both samples are unlikely to be
occluded simultaneously while any part of the strand is still visible. The second
pass allows light calculations to be performed for both the surface of the mesh
and also the back faces where light entering the reverse faces may be visible.

In order to avoid incorrect results from screen-space ambient occlusion (SSAO),
edge detection, and similar techniques that rely on discontinuities in the G-buffer,
these should be calculated before the second pass since the stipple pattern will
create artifacts.

Figure 2.17. Geometry pass 2 (depth/normals/albedo).
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2.4.3 Light Phase

During the light phase both the base and stipple samples within the G-buffer
receive lighting in the same manner as all other values in the G-buffer, adherence
to a common interface allows the fur to receive lighting from a wide range of
sources.

Figure 2.18. Light-accumulation buffer.

2.4.4 Material Phase

The material phase of rendering involves reading the values from the light-
accumulation buffer and interpreting these based on specific qualities of the ma-
terial, in this case by constructing shells of fur. In deferred shading, since the
majority of the lighting values are already correct in the light-accumulation buffer,
a copy of these values is required onto which the material phase of the fur can be
composited (see Figure 2.18).

The stipple values, being distributed on the outermost shell of the fur, will
occlude the layers of fur beneath. To correct this, all fur surfaces must be ren-
dered again using the outermost shell, while sampling color values from the light-
accumulation buffer and depth values from the linear depth stored in the G-buffer
(see Figure 2.19). For most pixels, these color and depth values are written di-
rectly into the composition buffer, however, where a stipple value would be sam-
pled the neighboring pixel is used instead, effectively erasing all stipple values
from the light-accumulation and depth buffers.

The buffer now contains the base mesh of the object only, providing a basis on
which to composite the volumetric layer of fur. Rendering of the fur is performed
by a series of passes, each pass rendering a concentric shell by offsetting the vertex
positions. The pass also constructs positions in screen space, from which both
the sample corresponding to the base mesh and the stipple sample corresponding
to the outermost shell can be obtained.



i
i

i
i

i
i

i
i

2. Implementing Fur Using Deferred Shading 73

Figure 2.19. Stipple obliteration pass.

In the pixel shader these two samples are retrieved from the light-accumulation
buffer, their respective linear depths in the G-buffer are also sampled to compare
against the depth of the sample coordinates and thus correct for occlusion errors.
If both samples are valid, the maximum of the two is chosen to allow for the halo
effect of scattering around the edges of the object without darkening edges where
there is no back lighting. The contribution of the albedo map to the accumulated
light values is removed by division and then reapplied as a linear interpolation
of the base and top albedo maps to account for ambient occlusion by the fur.
The heightfield for the fur volume is sampled at a high frequency by applying
an arbitrary scale to the mesh UVs in the material. The smoothstep function is
used to fade out pixels in the current shell as the interpolation factor equals and
exceeds the values stored in the heightfield, thus individual strands of fur fade
out at different rates, creating the impression of subpixel detail (see Figure 2.20).

Figure 2.20. Shell pass (16 shells).
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Figure 2.21. Final image.

2.5 Conclusion

This article has described a series of techniques used to extend the range of
materials that can be presented in a deferred rendering environment, particularly
a combination of these techniques that can be used to render aesthetically pleasing
fur at real-time speeds.
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II

Large-Scale Terrain Rendering
for Outdoor Games

Ferenc Pintér

3.1 Introduction

Visualizing large scale (above 10 km2) landscapes on current generation consoles
is a challenging task, because of the restricted amount of memory and processing
power compared with high-end PCs. This article describes in detail how we
approach both limitations and deal with the different content creation, rendering,
and performance issues. After a short explanation of the decisions and trade-
offs we made, terrain-content generation and rendering methods will follow. We
conclude by listing the pros and cons of our technique, measured implementation
performance, as well as possible extensions.

Figure 3.1. In-game screenshot of a 10 km2 canyon area. ( c© 2010 Digital Reality.)
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A variety of industry solutions exist for both representing terrain geometry
and texturing its surface. Our choices were made with regard to our requirements,
which were: a small memory footprint (<20 MB), good rendering performance
(<6 ms), easy in-editor (re)painting without UV distortions, and large view dis-
tances (>10km), as in Figure 3.1.

3.1.1 Geometry Choice

We opted for mesh-based terrain, which allows for steep, distortion-free slopes and
vastly different resolution levels, with complete artist control (as compared with
heightfields with vertex-texture fetching, or render to vertex buffer (R2VB) [An-
dersson 07]-heightfields, which, however, can provide in-editor/runtime modifi-
able geometry). We also chose to store the compressed vertex and triangle data
instead of performing on-the-fly mesh construction and the caching, which is
sometimes found in planetary rendering engines [Brebion 08, Kemen 08]. Our
scale is smaller, and once again we opted for greater artist flexibility.

3.1.2 Texturing Choice

Our solution is based on per-pixel splatting from tiling atlas texture elements,
thus it reuses texels over the entire surface of the terrain. This is similar to tech-
niques implemented in other games (Battlestations: Pacific [Eidos 08], Figure 3.2,
and Infinity [Brebion 08]), but instead of using just height- and slope-based rules
with additional noise to determine the terrain type at any given pixel, it also re-
lies on precomputed data. This way our artists can paint over the entire terrain,
even on uniquely modeled mesh objects. Since the terrain’s UVs are unique and
relaxed, no distortion appears, even on vertical or slightly overhanging walls.

This method has two main advantages over streaming ultrahigh resolution
maps [van Waveren 09, Mittring 08, Barrett 08, van Rossen 08]. First, the re-
quired storage space is very low (<15 MB). Second, it does not saturate streaming
or bus transfer bandwidth. Instant switching between cameras located far from
each other is also solved due to the runtime evaluation of shading and texturing.
Another advantage is complete artist control of the texturing, which might be
more difficult when relying only on procedural or fractal-based methods [Bre-
bion 08,Kemen 08,Eidos 08]. On the other hand, not using unique texture data
does result in less variance, though we did not find this to be noticeable.

Extending our asset creation and rendering by using procedural techniques
proved to be invaluable. The techniques helped create the basis for various out-
door art assets (foliage, detail object, and terrain texturing) through subtle pa-
rameter changes, thus saving time. They also cut memory and bandwidth usage
too, emphasizing the fact that GPUs are much faster at doing math than fetching
from memory.
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Figure 3.2. Screenshot from Battlestations: Pacific, released on XBOX 360 and PC.
( c© 2008 Square Enix Europe.)

3.2 Content Creation and Editing

3.2.1 Workflow

Our terrain assets originate from multiple DCC tools. Artists create the base
terrain layout and simple mesh objects with which designers can test level func-
tionality. After this first phase is complete, the base terrain model gets greater
morphological and soil-type detail using erosion tools. Artists can iteratively re-
touch the detailed models if needed, and can also bake ambient occlusion (AO)
values to the mesh vertices. Parallel to advancing in geometry, textures repre-
senting different soil-types get authored and used by the terrain shader. The
following steps happen in our in-game editor, after the meshes have been im-
ported from COLLADA format. During this import step, the base terrain gets
split into smaller chunks, and level-of-detail (LOD) levels are generated. We also
use smaller, paintable, and reuseable objects for rock formations, referred to as
mesh objects later on. The next step in content creation is additional manual
painting for both the base terrain and the mesh objects in the game editor. The
finest detail in soil-type information and color tinting is determined in this phase.
Finally, mesh and texture assets go through different compression paths for each
platform. The complete process is illustrated in Figure 3.3.
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Figure 3.3. Terrain content pipeline/art workflow. ( c© 2010 Digital Reality.)

3.2.2 Determining Soil Type

Multiple approaches may be used to decide which soil type to apply to a given
region of the terrain. Since this information does not change during gameplay it
may be precomputed and stored offline.

3.2.3 Procedural Rules Stored in a Lookup Table

A lookup table (LUT) may be used to determine which terrain type shall occur
at different terrain slope and height values. The LUT can be stored as a two-
dimensional texture parameterized by terrain slope and height along the u and v
axes. Addressing the table at runtime requires using slope-height pairs, interpo-
lated data coming from the vertex shader [Eidos 08, Brebion 08]. Its advantage
is fast iteration times, and simple implementation, though it has its drawbacks
too. Because the LUT is applied globally to the terrain, it does not allow the
artists to have local control over the terrain’s texturing. Moreover, because the
LUT is completely decoupled from the position of terrain in the game world, we
cannot store local shading or color-tint information such as local soil types in it.
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We found these drawbacks too restricting, and chose to go with the approaches
listed below.

3.2.4 Procedural and Manual Painting Stored in a UV-Space Tilemap

Alternatively, we can use tile-index texture that covers the entire terrain and can
be sampled using the unique, relaxed UV. In our case, we used a 4-channel map,
encoding a color-tint value in three channels (to break repetitive patterns), and
the terrain-type index in the fourth (see Figure 3.4). This method has multiple
advantages over the first: it can be locally controlled by art needs, separate
regions within the map can be edited concurrently by multiple artists, and it can
also use procedural methods as its basis. The only drawback is that is uses a fixed
resolution for terrain-type data, but this never proved to be a problem for us.

Figure 3.4. Alpha channel of the painted 5122 tilemap, containing terrain-type info.
( c© 2010 Digital Reality.)
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Figure 3.5. Editor-artist interface for painting the tilemap, red ring indicating brush
position. ( c© 2010 Digital Reality.)

Creating the tilemap is very intuitive. Its terrain-index part can be based on
either soil-type maps exported from many commercial terrain-generation/erosion
software programs (though you might need to convert the world-space type values
to relaxed UV space), or global terrain height- and slope-based rules, enhanced
by noise.

The base for the color part can again originate from DCC tools, from shadow
maps, or can be simply desaturated color noise. Over this base, artists can
easily paint or modify the chosen terrain-type values using simple brushes, and
temporary layers. Ray casting is used to determine which tilemap texels the
brush touches. The editor interface (see Figure 3.5) can also support multiple
undo-levels (by caching paint commands), soft brushes, or paint limitations (to
allow painting only over regions within desired height/slope limits).

At runtime, hardware bilinear filtering of the tilemap indices automatically
solves type-blending problems present in the LUT method, and different nearby
tile-index values will get smoothly interpolated over the terrain pixels. We can
also compress the tilemap using DXT5 texture compression. Since this format
compresses the three color channels independently from the alpha channel, we
can keep most of the index resolution while shrinking memory usage.

Note: Suppose we have sand encoded as tile-index value 0, grass as 1, and rock
as 2. Now, due to filtering, rock can never be visible near sand, but only through
an intermediate grass area. This can be avoided by duplicating types with
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different neighbors in the atlas, backed by a bit more complex atlas-sampling
math. We did not need this, however.

3.2.5 Procedural and Manual Painting Stored in Mesh Vertices

We can also detach geometry containing holes, overhangs, twists, or other hard-
to-relax regions from the general terrain mesh, or create any geometry and use it
as a paintable terrain-mesh object. Apart from better fitting into the base terrain,
we can spare quite a lot of texture memory by using shared atlases and a slightly
modified terrain shader here too, instead of unique maps. Artists can UV-map
the meshes using arbitrary methods and DCC tools, producing a nonoverlapping
unique UV, with seams and connections moved to less noticeable areas.

DCC tools do not have direct view of relative asset extents and spatial pro-
portions inside the game. To help artists with UV mapping and proper tiling
factors, we multiply the base UV during editor import with a constant value.
This value is determined by the total geometrical surface of the object divided by
its total UV-space surface. This way, tiling matches perfectly on all objects and
the terrain, no matter how much UV space is used inside the 0 . . . 1 region for
the given object in the DCC tool. Another feature implemented to help artists
is that which allows already-painted mesh objects to reuse their respective paint-
ings if their geometry gets modified again in the DCC tools. This functionality
stores the painting of every object also as a texture that gets saved from the
editor automatically, along with mesh data. It is used only in the editor, and its
texels contain UV and soil-type information, one texel for every vertex. Reapply-
ing paintings is merely finding a UV match between the vertices of the modified
mesh, and the saved texels. If the majority of vertices kept their original UVs
after the DCC mesh modification, most painting information can be reused.

After geometry authoring is done for a mesh, its procedural and manual paint-
ing follows in the editor. Manual painting works similarly to painting the base
terrain (illustrated in Figure 3.6). By using ray casting, we can figure out which
object, thus which shared-mesh vertex buffer to modify, and with a simple vertex-
distance-based spherical three-dimensional brush, artists can encode soil-type in-
formation into the mesh vertices. (This can sometimes be hidden for free in an
unused byte of a compressed vertex, like in the w component of position or normal
data.)

Soil-type continuity where the mesh objects meet the terrain is almost as im-
portant as matching normals near the connection region. Because mesh paintings
are shared between instances of the same object, and terrain painting is unique
due to the tilemap, the latter can be easily retrofitted to match the objects at
the connection region. Also, by using a second pair of diffuse/normal atlases for
the mesh objects, (containing only a few redundant tiles from the main terrain
atlas for connections) greater soil variance can be achieved. Because of complete
UV control, we can use tiles that have dominant directional features too.
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Figure 3.6. Editor-artist interface for painting mesh objects, red sphere indicating brush
volume. ( c© 2010 Digital Reality.)

On the base terrain, UV relaxing causes tiles to be mapped in different direc-
tions based on which side of a hill they are on—UV derivatives change directions
with respect to world-space coordinates—thus tiles with heavy direction depen-
dency might be used properly on only one side of a hill, or by putting multiple
rotated versions in the atlas.

If required, color-tint or luminance information such as AO can also be painted
(or computed in-editor) and baked into mesh vertices.

3.3 Runtime Shading

The base of the runtime rendering solution is texture splatting on a per-pixel
level. Using some per-pixel input data, and a unique, relaxed UV channel, the
shader can sample different tiling-terrain textures, and blend among them.

To reduce the count of textures the shader needs to sample from, these tiling
textures—corresponding to different soil types—can be packed into textures at-
lases (see Figure 3.7), or texture arrays on XBOX 360 and DX10/11 architec-
tures [Brebion 08,Wloka 03]. Care shall be taken when generating miplevels for
the atlas though, as the individual tile-mipmap texels must not get mixed with
their neighbors. Creating the compressed and mipmapped tiles first, and then
packing them to an atlas is one solution. Anisotropic filtering also becomes more
complex when using atlases [van Waveren 09].

If we choose the atlas method, we want the tiling to wrap around in a smaller
UV region (hence this is sometimes referred to as subtiling), say 0 . . . 0.25 if
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Figure 3.7. A packed 20482 diffuse-texture atlas, containing 16 different terrain types.
( c© 2010 Digital Reality.)

we have a 4 × 4 atlas. This also means that we cannot rely on hardware tex-
ture wrapping; this must be performed manually in the shader. As we will see,
this causes problems in hardware miplevel selection (texture arrays do not need
these corrections, however). For this to work correctly, one must know how the
hardware calculates which mip levels to use. GPUs use the first derivatives of
screen-space texture coordinates in any given 2×2 pixel block and the dimensions
of the texture itself to determine the pixel-to-texel projection ratio, and thus find
the appropriate miplevel to use. To access a tile from the atlas for any pixel, we
need to emulate the hardware wrapping for the tile. By using the frac() hlsl
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intrinsic, we break the screenspace UV derivative continuity for the pixel quads
at tile borders. Since the derivatives will be very large, the hardware will pick the
largest miplevel from the chain, which in turn results in a one-pixel-wide seam
whenever the subtiling wraps around. Fortunately, we have many options here:
we can balance the GPU load between texture filtering, arithmetic logic unit
(ALU) cost, shader thread counts, texture stalls, and overall artifact visibility.

The safest but slowest option is to calculate the mip level manually in the
shader, right before sampling from the atlas [Wloka 03,Brebion 08]. This produces
the correct result, but the extra ALU cost is high since we need to issue gradient
instructions that require extra GPU cycles, and textures need to be sampled
with manually specified mip levels, which reduces the sampling rate on many
architectures. As a side effect, texture stalls begin to appear in the pipeline. We
can use multiple methods to shorten these stalls. Some compilers and platforms
allow for explicitly setting the maximum number of general purpose GPU registers
(GPRs) a compiled shader can use. (They try to optimize the shader code to meet
the specified limit, sometimes by issuing more ALUs to move temporary shader
data around with fewer registers.) If a shader uses fewer GPRs, more shading
cores can run it in parallel, thus the number of simultaneous threads increases.
Using more threads means that stalling all of them is less probable. On systems
using unified shader architectures, one can also increase pixel shader GPR count
by reducing the available GPRs for the vertex shader. Some platforms also have
shader instructions that explicitly return the mip level the hardware would use
at a given pixel, thus saving you from having to compute it yourself in a shader.
Using dynamic branching and regular hardware mipmapping on pixel quads far
from the frac() region as speedup might also prove useful.

Branch performance might degrade for faraway fragments though, where tiling
UV values and derivatives vary fast, and pixels in the same GPU-pixel-processing
vector must take different branches. Branching might be disabled for distant
fragments, since stall problems are also most relevant on up close terrain, which
fills most screen area and uses the first few mip levels.

One option for estimating the correct mip level is to construct a texture that
encodes the mip index in the texture itself (for example, the first mip level encodes
“0” in all its texels, the second mip level encodes “1” in all its texels, etc.). This
texture should have the same dimensions as the atlas tile. You can then use a
normal texture fetch to sample this texture and allow the hardware to choose the
appropriate mip level. The value of the texel that is fetched will indicate which
mip level was chosen by the hardware and then can be used to issue a tex2dlod

instruction on the atlas tile. Dynamic branching is a viable option here too.
We chose to go with a third option, which is the fastest, but does result

in some minor artifacts which we deemed acceptable. We simply sample using
regular tex2D, but we generate only the first four mipmaps of the mip chain. This
means that the GPU has to filter a bit more, but our measurements have shown
that only 7–10% of texels fall into the larger miplevels, thus the performance
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Figure 3.8. Screenshot from the canyon, with 100x UV tiling factor (note the lack of
UV distortions on walls). ( c© 2010 Digital Reality.)

impact is considered to be minimal compared to using reduced-speed tex2Dlods.
The visual artifacts are minimized because the seam will always use the fourth
mip level, and colors differ much less between the first and last levels. We also
switched to texture atlases of 1 × 16 dimensions instead of 4 × 4, thus we can
use hardware texture wrapping for one direction, halving mip level errors arising
from using frac(), while also using fewer ALU operations to address the atlases.

At this point, we have diffuse and normal atlases ready to be sampled in
the shader. To improve quality, we blend between two nearby tiles—using the
fractional part of the interpolated tile index—by reading twice from the same
atlas, with respective UV offsets. Shading the terrain and the painted meshes is
identical, and is based on simple per-pixel lambertian diffuse, and hemispherical
ambient terms. Shadow contribution is composed of a lookup into a precomputed
and blurred static-shadow map, cross-fading with a cascaded dynamic and blurred
exponential shadow map (ESM), and AO baked into vertices. There are many
ways to experiment with more complex lighting models, however, correctly set
atmospheric settings, fog, high dynamic range (HDR), fake scattering [Quilez 09],
and soil-type maps can provide a solid impression already. See Figure 3.8 for
reference.

For your convenience, the runtime per-pixel, texture-splatting shader code is
listed in Listing 3.1. Note that editor-mode paint layers, brush-ring-overlay paint
functionality, vertex unpacking, shadows, and fog calculations are omitted for
clarity.
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//Runtime t e r r a i n shader with ti lemap−based per−p i x e l
// s p l a t t i n g us ing a t l a s e s ( tangent−space l i g h t i n g ) .

stat ic const f loat TILEMAP SIZE= 512 .0 f ;
stat ic const f loat TILES IN ROW= 4.0 f ;
stat ic const f loat MAX TILE VALUE= TILES IN ROW∗TILES IN ROW−1;

struct sVSInput
{

f l o a t 4 Pos i t i on : POSITION;
f l o a t 3 Normal : NORMAL;
f l o a t 2 UV : TEXCOORD0;
f l o a t 3 Tangent : TEXCOORD1;

} ;

struct sVSOutput
{

f l o a t 4 ProjPos : POSITION;
f l o a t 2 UV : TEXCOORD0;
f l o a t 3 Normal : TEXCOORD1;
f l o a t 3 TgLightVec : TEXCOORD2;

} ;

f l o a t 4x3 cWorldMatrix ;
f l o a t 4x4 cViewProjMatrix ;
f loat cUVmult ip l ier ; //Terrain−t ex tu re t i l i n g f a c t o r .
f l o a t 3 cCameraPos ;
f l o a t 3 cSunDirect ion ;
f l o a t 3 cSunColor ;

// L ight ing i s in tangent space .
f l o a t 3x3 MakeWorldToTangent ( f l o a t 3 iTangent , f l o a t 3 iNormal )
{

f l o a t 3x3 TangentToLocal=
f l o a t 3x3 ( iTangent , c r o s s ( iNormal , iTangent ) , iNormal ) ;

f l o a t 3x3 TangentToWorld=
mul ( TangentToLocal , ( f l o a t 3x3 ) cWorldMatrix ) ;

f l o a t 3x3 WorldToTangent = transpose (TangentToWorld ) ;

return WorldToTangent ;
}

sVSOutput vpmain ( sVSInput In )
{

sVSOutput Out ;

f l o a t 3 WorldPos= mul ( In . Pos i t ion , cWorldMatrix ) ;
Out . ProjPos= mul ( f l o a t 4 (WorldPos , 1 ) , cViewProjMatrix ) ;

Out . Normal= mul ( In . Normal . xyz , ( f l o a t 3x3 ) cWorldMatrix ) ;

Out .UV= In .UV ∗ cUVmult ip l ier ;



i
i

i
i

i
i

i
i

3. Large-Scale Terrain Rendering for Outdoor Games 89

f l o a t 3x3 WorldToTangent=
MakeWorldToTangent ( In . Tangent , In . Normal ) ;

Out . TgLightVec= mul ( cSunDirect ion . xyz , WorldToTangent ) ;

return Out ;
}

sampler2D Di f fA t l a s ;
sampler2D NormAtlas ;
sampler2D Ti leTable ;

f loat GetMipLevel ( f l o a t 2 iUV , f l o a t 2 iTextureS i z e )
{

f l o a t 2 dx= ddx (iUV ∗ iTex tureS i z e . x ) ;
f l o a t 2 dy= ddy (iUV ∗ iTex tureS i z e . y ) ;
f loat d= max( dot (dx , dx ) , dot (dy , dy ) ) ;
return 0 .5 ∗ l og2 (d ) ;

}

f l o a t 4 fpmain ( sVSOutput In ) : COLOR
{

f l o a t 4 TileMapTex= tex2D ( TileTable , In .UV/ cUVmult ip l ier ) ;
f l o a t 3 ColorTint= TileMapTex . xyz ;
f loat Ti le Index= TileMapTex .w ∗ MAX TILE VALUE;

f loat MIP= GetMipLevel ( In .UV, TILEMAP SIZE . xx ) ;

f l o a t 2 fracUV = f r a c ( In .UV) ;
f l o a t 2 DiffCorrectUV= fracUV /4 .0 f ;

//Blend types and blend r a t i o .
f loat type A = f l o o r ( Ti l e Index ) ;
f loat type B = c e i l ( T i l e Index ) ;
f loat f a c t o r = Ti l e Index − type A ;

f loat tmp = f l o o r ( type A /4 ) ;
f l o a t 2 UV A = DiffCorrectUV + f l o a t 2 ( type A−tmp∗4 ,tmp )/4 ;
tmp = f l o o r ( type B /4 ) ;
f l o a t 2 UV B = DiffCorrectUV + f l o a t 2 ( type B−tmp∗4 ,tmp )/4 ;

// 2 Lookups needed , f o r b lending between l a y e r s .
f l o a t 4 colA= tex2Dlod ( Di f fAt la s , f l o a t 4 (UV A,0 ,MIP) ) ;
f l o a t 4 colB= tex2Dlod ( Di f fAt la s , f l o a t 4 (UV B, 0 ,MIP) ) ;

f l o a t 4 D i f f u s eCo lo r= l e r p ( colA , colB , f a c t o r ) ;

f l o a t 4 normA= tex2Dlod (NormAtlas , f l o a t 4 (UV A,0 ,MIP) ) ;
f l o a t 4 normB= tex2Dlod (NormAtlas , f l o a t 4 (UV B, 0 ,MIP) ) ;

f l o a t 4 normtex= l e r p (normA , normB , f a c t o r ) ;

// Extract normal map .
f l o a t 3 norm= 2∗( normtex . rgb −0 .5 ) ;
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f l o a t 3 tgnormal= normal ize (norm ) ;

f loat NdotL=
sa tu ra t e ( dot ( tgnormal , normal ize ( In . TgLightVec ) ) ) ;

f l o a t 3 SunDi f fuseColor= NdotL ∗ cSunColor ;
f l o a t 3 Albedo= Di f fu s eCo lo r . xyz ∗ ColorTint ∗ 2 ;
f l o a t 3 AmbientColor= 0 . 5 ;

f l o a t 3 LitAlbedo= Albedo ∗ ( AmbientColor + SunDi f fuseColor ) ;
return f l o a t 4 ( LitAlbedo , 1 ) ;

}

Listing 3.1. Simplified runtime shaders including manual mipmap computation.

3.4 Performance

The system load for rendering the base terrain mesh spanning a 10 km2 area,
and consisting of 600 k triangles is 14 MB memory, and 6 ms frame time, on
XBOX 360. This includes geometry vertex and index data, LODs, diffuse, normal,
shadow, and terrain type maps, while not using any streaming bandwidth. To
reach the desired rendering time and memory footprint, a couple of optimizations
are required.

To allow using 16-bit indices in the triangle list, the terrain had to be sliced
into blocks no larger than 65 k vertices, during COLLADA import. Using blocks
with <1 km2 area also helps our static KD-tree based culling. Balancing between
better culling and fewer draw calls can be done by adjusting block count and
block size. LODs are also generated at import time, since they are essential to
reduce vertex load, and also keep the pixel quad efficiency high. If the LODs
are generated by skipping vertices, only index data needs to be extended by
a small amount (say, 33%, if each consecutive level contains a quarter of the
previous version, with regard to triangle count), and each new LOD can refer
to the original, untouched vertex buffer. Keeping silhouettes and vertices at
block boundaries regardless of LOD are important in order to prevent holes from
appearing in places where differed LODs meet. To help pre- and post-transform
vertex and index caches, vertex and index reordering is also done at the import
phase.

Vertex compression is also heavily used to reduce the required amount of
memory and transfer bandwidth. We can store additional information in the
vertices. AO and soil-type indices are valid choices, but color-tint values, shadow
terms, or bent normals for better shading are still possible.

Texture atlases are also compressed. We found atlases of 4 × 4 5122 tiles
to contain enough variation and resolution too. The diffuse atlas can use the
DXT1 format, while the normal atlas can use better, platform-specific 2-channel
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compressed formats where available. The tilemap can also be compressed to
DXT5, keeping most information of the tile indices in the alpha channel, while
heavily compressing color-tint data. The static shadow map can also be com-
pressed to DXT1, or luminance of multiple shadow texels can be packed into one
texel of a two-channel map. (ATI1N (BC4/DXT5A), ATI2N (BC5/3Dc), DXN,
and CTX1 formats are easy choices.) Using floating-point depth buffers and
depth pre-pass for rejecting pixels, and occlusion queries or conditional rendering
to entirely skip draw calls can also prove to be helpful.

3.5 Possible Extensions

Many aspects of the described system can be improved or extended. Some of the
methods listed below are general improvements, some are platform specific, while
some trade flexibility for faster rendering or less resource usage.

Heightmap-based geometry can provide a more compact, though computa-
tionally more expensive representation of the terrain. Representing steep slopes
without texture distortions might be possible if we store three component-position
offsets of vertices of relaxed UV space grid, like mesh textures. More aggres-
sive vertex compression is also still possible, even without using heightmaps.
Using more blocks of terrain with smaller block sizes, or using triplanar map-
ping [Geiss 07] might yield better compression opportunities.

Texturing can be enhanced in multiple ways, though most of them put more
texture fetch and filtering burden on the GPU. Using a large tiling factor can
either result in visible tiling of soil types, or not having the ability to visualize
larger terrain features, originating from the atlas. A solution is to sample the
atlases twice, with two very different tiling factors, and cross fade their color
and normal data. This enhances large details in the far regions, lending unique
character to the terrain, while it provides detail up close where tiling is less visible.
Large details dissolve as the camera moves close, but this is barely noticeable.
Figure 3.9 illustrates the concept.

Another option is reducing the tiling factor, and blending in desaturated detail
textures up close. This allows a choice among different detail maps, based on
the general terrain soil-type. Using noise (defined by interpolated height and
slope data) to perturb the soil-type on per-pixel level in the shader with ALU
instructions is also a possibility to reduce tiling or add up close detail. The
inverse of this method is also viable, and has been the de facto standard for
terrain texturing for many years. We can stream a large, unique, diffuse, and
normal map for far details, and blend in the per-pixel splatting as close-up or
mid-range detail. Transition regions between different soil types can also be
enhanced by using blend maps, which can be efficiently packed into the alpha
channel of the diffuse atlas [Hardy 09]]. Yet another option is to use more soil-
type textures in the atlas to give more variance. Soil-type information can also
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Figure 3.9. Screenshot of a canyon wall, with distance-dependant atlas tiling factor.
( c© 2010 Digital Reality.)

drive collision-particle generation, or procedural placement of detail object and
foliage [Andersson 07].

We can use ambient aperture lighting to give bump maps some shadow-
ing [Persson 06], and image-based ambient and diffuse lighting using bent nor-
mals. Specular reflections can also be added where surfaces are wet, for example,
riverbanks [Geiss 07]. Atmospheric scattering with volumetric light/fog (or fak-
ing it [Quilez 09]) is also an option to enhance realism of the rendered terrain.
Enhancing normal mapping by using more complex parallax effects might also be
feasible.

Finally, caching previously computed fragment data (composed albedo or final
normal data), either in screen space, or around the camera in relaxed UV space
can speed up rendering [Herzog et al. 10].
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Practical Morphological
Antialiasing

Jorge Jimenez, Belen Masia, Jose I. Echevarria,
Fernando Navarro, and Diego Gutierrez

The use of antialiasing techniques is crucial when producing high quality graphics.
Up to now, multisampling antialiasing (MSAA) has remained the most advanced
solution, offering superior results in real time. However, there are important
drawbacks to the use of MSAA in certain scenarios. First, the increase in pro-
cessing time it consumes is not negligible at all. Further, limitations of MSAA
include the impossibility, in a wide range of platforms, of activating multisam-
pling when using multiple render targets (MRT), on which fundamental techniques
such as deferred shading [Shishkovtsov 05, Koonce 07] rely. Even on platforms
where MRT and MSAA can be simultaneously activated (i.e., DirectX 10), imple-
mentation of MSAA is neither trivial nor cost free [Thibieroz 09]. Additionally,
MSAA poses a problem for the current generation of consoles. In the case of the
Xbox 360, memory constraints force the use of CPU-based tiling techniques in
case high-resolution frame buffers need to be used in conjunction with MSAA;
whereas on the PS3 multisampling is usually not even applied. Another drawback
of MSAA is its inability to smooth nongeometric edges, such as those resulting
from the use of alpha testing, frequent when rendering vegetation. As a result,
when using MSAA, vegetation can be antialiased only if alpha to coverage is
used. Finally, multisampling requires extra memory, which is always a valuable
resource, especially on consoles.

In response to the limitations described above, a series of techniques have im-
plemented antialiasing solutions in shader units, the vast majority of them being
based on edge detection and blurring. In S.T.A.L.K.E.R. [Shishkovtsov 05], edge
detection is performed by calculating differences in the eight-neighborhood depth
values and the four-neighborhood normal angles; then, edges are blurred using
a cross-shaped sampling pattern. A similar, improved scheme is used in Tabula
Rasa [Koonce 07], where edge detection uses threshold values that are resolution
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independent, and the full eight-neighborhood of the pixel is considered for dif-
ferences in the normal angles. In Crysis [Sousa 07], edges are detected by using
depth values, and rotated triangle samples are used to perform texture lookups
using bilinear filtering. These solutions alleviate the aliasing problem but do not
mitigate it completely. Finally, in Killzone 2, samples are rendered into a double
horizontal resolution G-buffer. Then, in the lighting pass, two samples of the
G-buffer are queried for each pixel of the final buffer. The resulting samples are
then averaged and stored in the final buffer. However, this necessitates executing
the lighting shader twice per final pixel.

In this article we present an alternative technique that avoids most of the prob-
lems described above. The quality of our results lies between 4x and 8x MSAA
at a fraction of the time and memory consumption. It is based on morphological
antialiasing [Reshetov 09], which relies on detecting certain image patterns to
reduce aliasing. However, the original implementation is designed to be run in a
CPU and requires the use of list structures that are not GPU-amenable.

Since our goal is to achieve real-time practicality in games with current main-
stream hardware, our algorithm implements aggressive optimizations that provide
an optimal trade-off between quality and execution times. Reshetov searches for
specific patterns (U-shaped, Z-shaped, and L-shaped patterns), which are then
decomposed into simpler ones, an approach that would be impractical on a GPU.
We realize that the pattern type, and thus the antialiasing to be performed, de-
pends on only four values, which can be obtained for each edge pixel (edgel) with
only two memory accesses. This way, the original algorithm is transformed so
that it uses texture structures instead of lists (see Figure 4.1). Furthermore, this
approach allows handling of all pattern types in a symmetric way, thus avoiding
the need to decompose them into simpler ones. In addition, precomputation of

Original image Edges texture Blending weights
texture

Antialiased image

Figure 4.1. Starting from an aliased image (left), edges are detected and stored in the
edges texture (center left). The color of each pixel depicts where edges are: green pixels
have an edge at their top boundary, red pixels at their left boundary, and yellow pixels
have edges at both boundaries. The edges texture is then used in conjunction with the
precomputed area texture to produce the blending weights texture (center right) in the
second pass. This texture stores the weights for the pixels at each side of an edgel in the
RGBA channels. In the third pass, blending is performed to obtain the final antialiased
image (right).
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certain values into textures allows for an even faster implementation. Finally,
in order to accelerate calculations, we make extensive use of hardware bilinear
interpolation for smartly fetching multiple values in a single query and provide
means of decoding the fetched values into the original unfiltered values. As a
result, our algorithm can be efficiently executed by a GPU, has a moderate mem-
ory footprint, and can be integrated as part of the standard rendering pipeline of
any game architecture.

Some of the optimizations presented in this work may seem to add complexity
at a conceptual level, but as our results show, their overall contribution makes
them worth including. Our technique yields image quality between 4x and 8x
MSAA, with a typical execution time of 3.79 ms on Xbox 360 and 0.44 ms on a
NVIDIA GeForce 9800 GTX+, for a resolution of 720p. Memory footprint is 2x
the size of the backbuffer on Xbox 360 and 1.5x on the 9800 GTX+. According
to our measurements, 8x MSAA takes an average of 5 ms per image on the same
GPU at the same resolution, that is, our algorithm is 11.80x faster.

In order to show the versatility of our algorithm, we have implemented the
shader both for Xbox 360 and PC, using DirectX 9 and 10 respectively. The code
presented in this article is that of the DirectX 10 version.

4.1 Overview

The algorithm searches for patterns in edges which then allow us to reconstruct
the antialiased lines. This can, in general terms, be seen as a revectorization of
edges. In the following we give a brief overview of our algorithm.

First, edge detection is performed using depth values (alternatively, lumi-
nances can be used to detect edges; this will be further discussed in Section 4.2.1).
We then compute, for each pixel belonging to an edge, the distances in pixels from
it to both ends of the edge to which the edgel belongs. These distances define
the position of the pixel with respect to the line. Depending on the location of
the edgel within the line, it will or will not be affected by the antialiasing pro-
cess. In those edges which have to be modified (those which contain yellow or
green areas in Figure 4.2 (left)) a blending operation is performed according to
Equation (4.1):

cnew = (1− a) · cold + a · copp, (4.1)

where cold is the original color of the pixel, copp is the color of the pixel on the
other side of the line, cnew is the new color of the pixel, and a is the area shown
in yellow in Figure 4.2 (left). The value of a is a function of both the pattern
type of the line and the distances to both ends of the line. The pattern type is
defined by the crossing edges of the line, i.e., edges which are perpendicular to
the line and thus define the ends of it (vertical green lines in Figure 4.2). In order
to save processing time, we precompute this area and store it as a two-channel
texture that can be seen in Figure 4.2 (right) (see Section 4.3.3 for details).
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Figure 4.2. Antialiasing process (left). Color copp bleeds into cold according to the area
a below the blue line. Texture containing the precomputed areas (right). The texture
uses two channels to store areas at each side of the edge, i.e., for a pixel and its opposite
(pixels (1, 1) and (1, 2) on the left). Each 9 × 9 subtexture corresponds to a pattern
type. Inside each of these subtextures, (u, v) coordinates encode distances to the left
and to the right, respectively.

The algorithm is implemented in three passes, which are explained in detail
in the following sections. In the first pass, edge detection is performed, yielding
a texture containing edges (see Figure 4.1 (center left)). In the second pass the
corresponding blending weight1 (that is, value a) for each pixel adjacent to the
edge being smoothed is obtained (see Figure 4.1 (center right)). To do this, we
first detect the pattern types for each line passing through the north and west
boundaries of the pixel and then calculate the distances of each pixel to the
crossing edges; these are then used to query the precomputed area texture. The
third and final pass involves blending each pixel with its four-neighborhood using
the blending weights texture obtained in the previous pass.

The last two passes are performed separately to spare calculations, taking
advantage of the fact that two adjacent pixels share the same edgel. To do this,
in the second pass, pattern detection and the subsequent area calculation are
performed on a per-edgel basis. Finally, in the third pass, the two adjacent pixels
will fetch the same information.

Additionally, using the stencil buffer allows us to perform the second and third
passes only for the pixels which contain an edge, considerably reducing processing
times.

4.2 Detecting Edges

We perform edge detection using the depth buffer (or luminance values if depth
information is not available). For each pixel, the difference in depth with respect
to the pixel on top and on the left is obtained. We can efficiently store the edges

1Throughout the article blending weight and area will be used interchangeably.
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for all the pixels in the image this way, given the fact that two adjacent pixels
have a common boundary. This difference is thresholded to obtain a binary value,
which indicates whether an edge exists in a pixel boundary. This threshold, which
varies with resolution, can be made resolution independent [Koonce 07]. Then,
the left and top edges are stored, respectively, in the red and green channels of
the edges texture, which will be used as input for the next pass.

Whenever using depth-based edge detection, a problem may arise in places
where two planes at different angles meet: the edge will not be detected because
of samples having the same depth. A common solution to this is the addition of
information from normals. However, in our case we found that the improvement
in quality obtained when using normals was not worth the increase in execution
time it implied.

4.2.1 Using Luminance Values for Edge Detection

An alternative to depth-based edge detection is the use of luminance information
to detect image discontinuities. Luminance values are derived from the CIE XYZ
(color space) standard:

L = 0.2126 ·R+ 0.7152 ·G+ 0.0722 ·B.

Then, for each pixel, the difference in luminance with respect to the pixel on top
and on the left is obtained, the implementation being equivalent to that of depth-
based detection. When thresholding to obtain a binary value, we found 0.1 to be
an adequate threshold for most cases. It is important to note that using either
luminance- or depth-based edge detection does not affect the following passes.

Although qualitywise both methods offer similar results, depth-based detec-
tion is more robust, yielding a more reliable edges texture. And, our technique
takes, on average, 10% less time when using depth than when using luminance
values. Luminance values are useful when depth information cannot be accessed
and thus offer a more universal approach. Further, when depth-based detection
is performed, edges in shading will not be detected, whereas luminance-based
detection allows for antialias shading and specular highlights. In general terms,
one could say that luminance-based detection works in a more perceptual way be-
cause it smoothes visible edges. As an example, when dense vegetation is present,
using luminance values is faster than using depth values (around 12% faster for
the particular case shown in Figure 4.5 (bottom row)), since a greater number of
edges are detected when using depth values. Optimal results in terms of quality,
at the cost of a higher execution time, can be obtained by combining luminance,
depth, and normal values.

Listing 4.1 shows the source code of this pass, using depth-based edge detec-
tion. Figure 4.1 (center left) is the resulting image of the edge-detection pass,
in this particular case, using luminance-based detection, as depth information is
not available.
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f loat4 EdgeDetectionPS ( f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat D = depthTex .SampleLevel ( PointSampler ,
texcoord , 0 ) ;

f loat Dle f t = depthTex .SampleLevel ( PointSampler ,
texcoord , 0 , −i n t 2 (1 , 0 ) ) ;

f loat Dtop = depthTex .SampleLevel ( PointSampler ,
texcoord , 0 , −i n t 2 (0 , 1 ) ) ;

// We need these f o r updating the s t e n c i l b u f f e r .
f loat Dright = depthTex .SampleLevel ( PointSampler ,

texcoord , 0 , i n t2 (1 , 0 ) ) ;
f loat Dbottom = depthTex .SampleLevel ( PointSampler ,

texcoord , 0 , i n t2 (0 , 1 ) ) ;

f loat4 d e l t a = abs (D. xxxx −
f loat4 ( Dle f t , Dtop , Dright , Dbottom ) ) ;

f loat4 edges = step ( th r e sho ld . xxxx , d e l t a ) ;

i f (dot ( edges , 1 . 0 ) == 0 . 0 ) {
d i s ca rd ;

}

return edges ;
}

Listing 4.1. Edge detection shader.

4.3 Obtaining Blending Weights

In order to calculate the blending weights we first search for the distances to the
ends of the line the edgel belongs to, using the edges texture obtained in the
previous pass (see Section 4.3.1). Once these distances are known, we can use
them to fetch the crossing edges at both ends of the line (see Section 4.3.2). These
crossing edges indicate the type of pattern we are dealing with. The distances to
the ends of the line and the type of pattern are used to access the precalculated
texture (see Section 4.3.3) in which we store the areas that are used as blending
weights for the final pass.

As mentioned before, to share calculations between adjacent pixels, we take
advantage of the fact that two adjacent pixels share the same boundary, and



i
i

i
i

i
i

i
i

4. Practical Morphological Antialiasing 101

f loat4 BlendingWeightCalculationPS (
f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat4 weights = 0 . 0 ;

f loat2 e = edgesTex .SampleLevel ( PointSampler ,
texcoord , 0 ) . rg ;

[ branch ]
i f ( e . g ) { // Edge at north .

f loat2 d = f loat2 ( SearchXLeft ( texcoord ) ,
SearchXRight ( texcoord ) ) ;

// Ins tead o f sampling between edges , we sample at −0.25 ,
// to be ab le to d i s c e r n what value each edge l has .
f loat4 coords = mad( f loat4 (d . x , −0.25 , d . y + 1 . 0 , −0.25) ,

PIXEL SIZE . xyxy , texcoord . xyxy ) ;
f loat e1 = edgesTex .SampleLevel ( LinearSampler ,

coords . xy , 0 ) . r ;
f loat e2 = edgesTex .SampleLevel ( LinearSampler ,

coords . zw , 0 ) . r ;
weights . rg = Area (abs (d ) , e1 , e2 ) ;

}

[ branch ]
i f ( e . r ) { // Edge at west .

f loat2 d = f loat2 ( SearchYUp ( texcoord ) ,
SearchYDown ( texcoord ) ) ;

f loat4 coords = mad( f loat4 (−0.25 , d . x , −0.25 , d . y + 1 . 0 ) ,
PIXEL SIZE . xyxy , texcoord . xyxy ) ;

f loat e1 = edgesTex .SampleLevel ( LinearSampler ,
coords . xy , 0 ) . g ;

f loat e2 = edgesTex .SampleLevel ( LinearSampler ,
coords . zw , 0 ) . g ;

weights . ba = Area (abs (d ) , e1 , e2 ) ;
}

return weights ;
}

Listing 4.2. Blending weights calculation shader.
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we perform area calculation on a per-edgel basis. However, even though two
adjacent pixels share the same calculation, the resulting a value is different for
each of them: only one has a blending weight a, whereas for the opposite one, a
equals zero (pixels (1, 2) and (1, 1), respectively, in Figure 4.2). The one exception
to this is the case in which the pixel lies at the middle of a line of odd length
(as pixel (2, 1) in Figure 4.2); in this case both the actual pixel and its opposite
have a nonzero value for a. As a consequence, the output of this pass is a texture
which, for each pixel, stores the areas at each side of its corresponding edges
(by the areas at each side we refer to those of the actual pixel and its opposite).
This yields two values for north edges and two values for west edges in the final
blending weights texture. Finally, the weights stored in this texture will be used
in the third pass to perform the final blending. Listing 4.2 shows the source code
of this pass; Figure 4.1 (center right) is the resulting image.

4.3.1 Searching for Distances

The search for distances to the ends of the line is performed using an itera-
tive algorithm, which in each iteration checks whether the end of the line has
been reached. To accelerate this search, we leverage the fact that the informa-
tion stored in the edges texture is binary—it simply encodes whether an edgel
exists—and query from positions between pixels using bilinear filtering for fetch-
ing two pixels at a time (see Figure 4.3). The result of the query can be: a)
0.0, which means that neither pixel contains an edgel, b) 1.0, which implies an
edgel exists in both pixels, or c) 0.5, which is returned when just one of the two
pixels contains an edgel. We stop the search if the returned value is lower than
one.2 By using a simple approach like this, we are introducing two sources of
inaccuracy:

1. We do not stop the search when encountering an edgel perpendicular to the
line we are following, but when the line comes to an end;

2. When the returned value is 0.5 we cannot distinguish which of the two
pixels contains an edgel.

Although an error is introduced in some cases, it is unnoticeable in practice—
the speed-up is considerable since it is possible to jump two pixels per iteration.
Listing 4.3 shows one of the distance search functions.

In order to make the algorithm practical in a game environment, we limit
the search to a certain distance. As expected, the greater the maximum length,
the better the quality of the antialiasing. However, we have found that, for the
majority of cases, distance values between 8 and 12 pixels give a good trade-off
between quality and performance.

2In practice we use 0.9 due to bilinear filtering precision issues.
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Figure 4.3. Hardware bilinear filtering is used when searching for distances from each
pixel to the end of the line. The color of the dot at the center of each pixel represents
the value of that pixel in the edges texture. In the case shown here, distance search of
the left end of the line is performed for the pixel marked with a star. Positions where
the edges texture is accessed, fetching pairs of pixels, are marked with rhombuses. This
allows us to travel twice the distance with the same number of accesses.

In the particular case of the Xbox 360 implementation, we make use of the
tfetch2D assembler instruction, which allows us to specify an offset in pixel
units with respect to the original texture coordinates of the query. This in-
struction is limited to offsets of −8 and 7.5, which constrains the maximum
distance that can be searched. When searching for distances greater than eight
pixels, we cannot use the hardware as efficiently and the performance is affected
negatively.

f loat SearchXLeft ( f loat2 texcoord ) {
texcoord −= f loat2 ( 1 . 5 , 0 . 0 ) ∗ PIXEL SIZE ;
f loat e = 0 . 0 ;
// We o f f s e t by 0 .5 to sample between edges , thus f e t c h i n g
// two in a row .
for ( int i = 0 ; i < maxSearchSteps ; i++) {

e = edgesTex .SampleLevel ( LinearSampler , texcoord , 0 ) . g ;
// We compare with 0 .9 to prevent b i l i n e a r a c c e s s p r e c i s i o n
// problems .
[ f l a t t e n ] i f ( e < 0 . 9 ) break ;
t excoord −= f loat2 ( 2 . 0 , 0 . 0 ) ∗ PIXEL SIZE ;

}
// When we e x i t the loop without f i n d i n g the end , we return
// −2 ∗ maxSearchSteps .
return max(−2.0 ∗ i − 2 .0 ∗ e , −2.0 ∗ maxSearchSteps ) ;

}

Listing 4.3. Distance search function (search in the left direction case).
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0.0 0.25 0.75 1.0

Figure 4.4. Examples of the four possible types of crossing edge and corresponding
value returned by the bilinear query of the edges texture. The color of the dot at
the center of each pixel represents the value of that pixel in the edges texture. The
rhombuses, at a distance of 0.25 from the center of the pixel, indicate the sampling
position, while their color represents the value returned by the bilinear access.

4.3.2 Fetching Crossing Edges

Once the distances to the ends of the line are calculated, they are used to obtain
the crossing edges. A naive approach for fetching the crossing edge of an end of
a line would be to query two edges. A more efficient approach is to use bilinear
filtering for fetching both edges at one time, in a manner similar to the way the
distance search is done. However, in this case we must be able to distinguish
the actual value of each edgel, so we query with an offset of 0.25, allowing us
to distinguish which edgel is equal to 1.0 when only one of the edges is present.
Figure 4.4 shows the crossing edge that corresponds to each of the different values
returned by the bilinear query.

4.3.3 The Precomputed Area Texture

With distance and crossing edges information at hand, we now have all the re-
quired inputs to calculate the area corresponding to the current pixel. As this is
an expensive operation, we opt to precompute it in a four-dimensional table which
is stored in a conventional two-dimensional texture (see Figure 4.2 (right)).3 This
texture is divided into subtextures of size 9× 9, each of them corresponding to a
pattern type (codified by the fetched crossing edges e1 and e2 at each end of the
line). Inside each of these subtextures, (u, v) coordinates correspond to distances
to the ends of the line, eight being the maximum distance reachable. Resolution
can be increased if a higher maximum distance is required. See Listing 4.4 for
details on how the precomputed area texture is accessed.

To query the texture, we first convert the bilinear filtered values e1 and e2 to
an integer value in the range 0..4. Value 2 (which would correspond to value 0.5
for e1 or e2) cannot occur in practice, which is why the corresponding row and
column in the texture are empty. Maintaining those empty spaces in the texture

3The code to generate this texture is available in the web material.
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#define NUM DISTANCES 9
#define AREA SIZE (NUM DISTANCES ∗ 5)

f loat2 Area ( f loat2 di s tance , f loat e1 , f loat e2 ) {
// ∗ By d i v i d i n g by AREA SIZE − 1 .0 below we are
// i m p l i c i t e l y o f f s e t t i n g to always f a l l i n s i d e a p i x e l .
// ∗ Rounding prevents b i l i n e a r a c c e s s p r e c i s i o n problems .

f loat2 pixcoord = NUM DISTANCES ∗
round ( 4 . 0 ∗ f loat2 ( e1 , e2 ) ) + d i s t ance ;

f loat2 texcoord = pixcoord / (AREA SIZE − 1 . 0 ) ;
return areaTex .SampleLevel ( PointSampler , texcoord , 0 ) . rg ;

}

Listing 4.4. Precomputed area texture access function.

allows for a simpler and faster indexing. The round instruction is used to avoid
possible precision problems caused by the bilinear filtering.

Following the same reasoning (explained at the beginning of the section) by
which we store area values for two adjacent pixels in the same pixel of the final
blending weights texture, the precomputed area texture needs to be built on a
per-edgel basis. Thus, each pixel of the texture stores two a values, one for a
pixel and one for its opposite. (Again, a will be zero for one of them in all cases
with the exception of those pixels centered on lines of odd length.)

4.4 Blending with the Four-Neighborhood

In this last pass, the final color of each pixel is obtained by blending the actual
color with its four neighbors, according to the area values stored in the weights
texture obtained in the previous pass. This is achieved by accessing three posi-
tions of the blending weights texture:

1. the current pixel, which gives us the north and west blending weights;

2. the pixel at the south;

3. the pixel at the east.

Once more, to exploit hardware capabilities, we use four bilinear filtered accesses
to blend the current pixel with each of its four neighbors. Finally, as one pixel can
belong to four different lines, we find an average of the contributing lines. List-
ing 4.5 shows the source code of this pass; Figure 4.1 (right) shows the resulting
image.
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f loat4 NeighborhoodBlendingPS (
f loat4 p o s i t i o n : SV POSITION,
f loat2 texcoord : TEXCOORD0) : SVTARGET {

f loat4 topLe f t = blendTex .SampleLevel ( PointSampler ,
texcoord , 0 ) ;

f loat r i g h t = blendTex .SampleLevel ( PointSampler ,
texcoord , 0 ,
i n t2 (0 , 1 ) ) . g ;

f loat bottom = blendTex .SampleLevel ( PointSampler ,
texcoord , 0 ,
i n t2 (1 , 0 ) ) . a ;

f loat4 a = f loat4 ( topLe f t . r , r i ght , topLe f t . b , bottom ) ;

f loat sum = dot ( a , 1 . 0 ) ;

[ branch ]
i f (sum > 0 . 0 ) {

f loat4 o = a ∗ PIXEL SIZE . yyxx ;
f loat4 c o l o r = 0 . 0 ;
c o l o r = mad( colorTex .SampleLevel ( LinearSampler ,

texcoord + f loat2 ( 0 . 0 , −o . r ) , 0 ) , a . r , c o l o r ) ;
c o l o r = mad( colorTex .SampleLevel ( LinearSampler ,

texcoord + f loat2 ( 0 . 0 , o . g ) , 0 ) , a . g , c o l o r ) ;
c o l o r = mad( colorTex .SampleLevel ( LinearSampler ,

texcoord + f loat2 (−o . b , 0 . 0 ) , 0 ) , a . b , c o l o r ) ;
c o l o r = mad( colorTex .SampleLevel ( LinearSampler ,

texcoord + f loat2 ( o . a , 0 . 0 ) , 0 ) , a . a , c o l o r ) ;
return c o l o r / sum ;

} else {
return colorTex .SampleLevel ( LinearSampler , texcoord , 0 ) ;

}
}

Listing 4.5. Four-neighborhood blending shader.

4.5 Results

Qualitywise, our algorithm lies between 4x and 8x MSAA, requiring a memory
consumption of only 1.5x the size of the backbuffer on a PC and of 2x on Xbox
360.4 Figure 4.5 shows a comparison between our algorithm, 8x MSAA, and
no antialiasing at all on images from Unigine Heaven Benchmark. A limitation
of our algorithm with respect to MSAA is the impossibility of recovering subpixel

4The increased memory cost in the Xbox 360 is due to the fact that two-channel render
targets with 8-bit precision cannot be created in the framework we used for that platform,
forcing the usage of a four-channel render target for storing the edges texture.



i
i

i
i

i
i

i
i

4. Practical Morphological Antialiasing 107

Without antialiasing With our algorithm With 8x MSAA

Figure 4.5. Examples of images without antialiasing, processed with our algorithm, and
with 8x MSAA. Our algorithm offers similar results to those of 8x MSAA. A special
case is the handling of alpha textures (bottom row). Note that in the grass shown
here, alpha to coverage is used when MSAA is activated, which provides additional
detail, hence the different look. As the scene is animated, there might be slight changes
in appearance from one image to another. (Images from Unigine Heaven Benchmark
courtesy of Unigine Corporation.)
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Figure 4.6. Images obtained with our algorithm. Insets show close-ups with no
antialiasing at all (left) and processed with our technique (right). (Images from Fable
III courtesy of Lionhead Studios.)
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Figure 4.7. More images showing our technique in action. Insets show close-ups with
no antialiasing at all (left) and processed with our technique (right). (Images from Fable
III courtesy of Lionhead Studios.)
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Xbox 360 GeForce 9800 GTX+
Avg. Std. Dev. Avg. Std. Dev. Speed-up

Assassin’s Creed 4.37 ms 0.61 ms 0.55 ms 0.13 ms 6.31x?

Bioshock 3.44 ms 0.09 ms 0.37 ms 0.00 ms n/a
Crysis 3.92 ms 0.10 ms 0.44 ms 0.02 ms 14.80x

Dead Space 3.65 ms 0.45 ms 0.39 ms 0.03 ms n/a
Devil May Cry 4 3.46 ms 0.34 ms 0.39 ms 0.04 ms 5.75x

GTA IV 4.11 ms 0.23 ms 0.47 ms 0.04 ms n/a
Modern Warfare 2 4.38 ms 0.80 ms 0.57 ms 0.17 ms 2.48x?

NFS Shift 3.54 ms 0.35 ms 0.42 ms 0.04 ms 14.84x
Split/Second 3.85 ms 0.27 ms 0.46 ms 0.05 ms n/a

S.T.A.L.K.E.R. 3.18 ms 0.05 ms 0.36 ms 0.01 ms n/a
Grand Average 3.79 ms 0.33 ms 0.44 ms 0.05 ms 11.80x

Table 4.1. Average times and standard deviations for a set of well-known commercial
games. A column showing the speed-up factor of our algorithm with respect to 8x
MSAA is also included for the PC/DirectX 10 implementation. Values marked with ?

indicate 4x MSAA, since 8x was not available, and the grand average of these includes
values only for 8x MSAA.

features. Further results of our technique, on images from Fable III, are shown
in Figures 4.6 and 4.7. Results of our algorithm in-game are available in the web
material.

As our algorithm works as a post-process, we have run it on a batch of screen-
shots of several commercial games in order to gain insight about its performance
in different scenarios. Given the dependency of the edge detection on image
content, processing times are variable. We have noticed that each game has a
more or less unique “look-and-feel,” so we have taken a representative sample of
five screenshots per game. Screenshots were taken at 1280 × 720 as the typical
case in the current generation of games. We used the slightly more expensive
luminance-based edge detection, since we did not have access to depth informa-
tion. Table 4.1 shows the average time and standard deviation of our algorithm
on different games and platforms (Xbox 360/DirectX 9 and PC/DirectX 10),
as well as the speed-up factor with respect to MSAA. On average, our method
implies a speed-up factor of 11.80x with respect to 8x MSAA.

4.6 Discussion

This section includes a brief compilation of possible alternatives that we tried,
in the hope that it would be useful for programmers employing this algorithm in
the future.

Edges texture compression. This is perhaps the most obvious possible optimiza-
tion, saving memory consumption and bandwidth. We tried two different alterna-
tives: a) using 1 bit per edgel, and b) separating the algorithm into a vertical and
a horizontal pass and storing the edges of four consecutive pixels in the RGBA



i
i

i
i

i
i

i
i

4. Practical Morphological Antialiasing 111

channels of each pixel of the edges texture (vertical and horizontal edges sepa-
rately). This has two advantages: first, the texture uses less memory; second, the
number of texture accesses is lower since several edges are fetched in each query.
However, storing the values and—to a greater extent—querying them later, be-
comes much more complex and time consuming, given that bitwise operations
are not available in all platforms. Nevertheless, the use of bitwise operations in
conjunction with edges texture compression could further optimize our technique
in platforms where they are available, such as DirectX 10.

Storing crossing edges in the edges texture. Instead of storing just the north and
west edges of the actual pixel, we tried storing the crossing edges situated at the
left and at the top of the pixel. The main reason for doing this was that we
could spare one texture access when detecting patterns; but we realized that by
using bilinear filtering we could also spare the access, without the need to store
those additional edges. The other reason for storing the crossing edges was that,
by doing so, when we searched for distances to the ends of the line, we could
stop the search when we encountered a line perpendicular to the one we were
following, which is an inaccuracy of our approach. However, the current solution
yields similar results, requires less memory, and processing time is lower.

Two-pass implementation. As mentioned in Section 4.1, a two-pass implementa-
tion is also possible, joining the last two passes into a single pass. However, this
would be more inefficient because of the repetition of calculations.

Storing distances instead of areas. Our first implementation calculated and stored
only the distances to the ends of the line in the second pass, and they were then
used in the final pass to calculate the corresponding blending weights. However,
directly storing areas in the intermediate pass allows us to spare calculations,
reducing execution time.

4.7 Conclusion

In this chapter, we have presented an algorithm crafted for the computation of
antialiasing. Our method is based on three passes that detect edges, determine
the position of each pixel inside those image features, and produce an antialiased
result that selectively blends the pixel with its neighborhood according to its
relative position within the line it belongs to. We also take advantage of hardware
texture filtering, which allows us to reduce the number of texture fetches by half.

Our technique features execution times that make it usable in actual game
environments, and that are far shorter than those needed for MSAA. The method
presented has a minimal impact on existing rendering pipelines and is entirely
implemented as an image post-process. Resulting images are between 4x and
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8x MSAA in quality, while requiring a fraction of their time and memory con-
sumption. Furthermore, it can antialias transparent textures such as the ones
used in alpha testing for rendering vegetation, whereas MSAA can smooth vege-
tation only when using alpha to coverage. Finally, when using luminance values
to detect edges, our technique can also handle aliasing belonging to shading and
specular highlights.

The method we are presenting solves most of the drawbacks of MSAA, which
is currently the most widely used solution to the problem of aliasing; the pro-
cessing time of our method is one order of magnitude below that of 8x MSAA.
We believe that the quality of the images produced by our algorithm, its speed,
efficiency, and pluggability, make it a good choice for rendering high quality im-
ages in today’s game architectures, including platforms where benefiting from
antialiasing, together with outstanding techniques like deferred shading, was dif-
ficult to achieve. In summary, we present an algorithm which challenges the
current gold standard for solving the aliasing problem in real time.

4.8 Acknowledgments

Jorge would like to dedicate this work to his eternal and most loyal friend Kazán. The

authors would like to thank the colleagues at the lab for their valuable comments, and

Christopher Oat and Wolfgang Engel for their editing efforts and help in obtaining

images. Thanks also to Lionhead Studios and Microsoft Games Studios for granting

permission to use images from Fable III. We are very grateful for the support and

useful suggestions provided by the Fable team during the production of this work. We

would also like to express our gratitude to Unigine Corporation, and Denis Shergin in

particular, for providing us with images and material for the video (available in the web

material) from their Unigine Heaven Benchmark. This research has been funded by a

Marie Curie grant from the 7th Framework Programme (grant agreement no.: 251415),

the Spanish Ministry of Science and Technology (TIN2010-21543) and the Gobierno de

Aragón (projects OTRI 2009/0411 and CTPP05/09). Jorge Jimenez and Belen Masia

are also funded by grants from the Gobierno de Aragón.

Bibliography

[Koonce 07] Rusty Koonce. “Deferred Shading in Tabula Rasa.” In GPU Gems 3,
pp. 429–457. Reading, MA: Addison Wesley, 2007.

[Reshetov 09] Alexander Reshetov. “Morphological Antialiasing.” In HPG ’09: Pro-
ceedings of the Conference on High Performance Graphics 2009, pp. 109–116. New
York: ACM, 2009. Available online (http://visual-computing.intel-research.net/
publications/papers/2009/mlaa/mlaa.pdf).

[Shishkovtsov 05] Oles Shishkovtsov. “Deferred Shading in S.T.A.L.K.E.R.” In GPU
Gems 2, pp. 143–166. Reading, MA: Addison Wesley, 2005.



i
i

i
i

i
i

i
i

4. Practical Morphological Antialiasing 113

[Sousa 07] Tiago Sousa. “Vegetation Procedural Animation and Shading in Crysis.” In
GPU Gems 3, pp. 373–385. Reading, MA: Addison Wesley, 2007.

[Thibieroz 09] Nicolas Thibieroz. “Deferred Shading with Multisampling Anti-Aliasing
in DirectX 10.” In ShaderX7, pp. 225–242. Hingham, MA: Charles River Media,
2009.



i
i

i
i

i
i

i
i

5

II

Volume Decals
Emil Persson

5.1 Introduction

Decals are often implemented as textured quads that are placed on top of the
scene geometry. While this implementation works well enough in many cases,
it can also provide some challenges. Using decals as textured quads can cause
Z-fighting problems. The underlying geometry may not be flat, causing the decal
to cut into the geometry below it. The decal may also overhang an edge, com-
pletely ruining its effect. Dealing with this problem often involves clipping the
decal to the geometry or discarding it entirely upon detecting the issue. Alterna-
tively, very complex code is needed to properly wrap the decal around arbitrary
meshes, and access to vertex data is required. On a PC this could mean that
system-memory copies of geometry are needed to maintain good performance.
Furthermore, disturbing discontinuities can occur, as in the typical case of shoot-
ing a rocket into a corner and finding that only one of the walls got a decal or
that the decals do not match up across the corner. This article proposes a tech-
nique that overcomes all of these challenges by projecting a decal volume onto
the underlying scene geometry, using the depth buffer.

5.2 Decals as Volumes

5.2.1 Finding the Scene Position

The idea behind this technique is to render the decal as a volume around the
selected area. Any convex volume shape can be used, but typical cases would be
spheres and boxes. The fragment shader computes the position of the underlying
geometry by sampling the depth buffer. This can be accomplished as follows:

// texCoord is the pixel’s normalized screen position

float depth = DepthTex.Sample(Filter, texCoord);

float4 scrPos = float4(texCoord, depth, 1.0f);

float4 wPos = mul(scrPos, ScreenToWorld);
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Figure 5.1. Example decal rendering.

float3 pos = wPos.xyz / wPos.w;

// pos now contains pixel position in world space

The ScreenToWorld matrix is a composite matrix of two transformations:
namely the transformation from screen coordinates to clip space and then from
clip space to world space. Transforming from world space to clip space is done
with the regular ViewProjection matrix, so transforming in the other direction
is done with the inverse of this matrix. Clip space ranges from −1 to 1 in x
and y, whereas the provided texture coordinates are in the range of 0 to 1, so
we also need an initial scale-bias operation baked into the matrix. The matrix
construction code could look something like this:

float4 ScaleToWorld = Scale(2, -2, 1) *

Translate(-1, 1, 0) * Inverse(ViewProj);

What we are really interested in, though, is the local position relative to
the decal volume. The local position is used as a texture coordinate used to
sample a volume texture containing a volumetric decal (see Figure 5.1). Since
the decal is a volumetric texture, it properly wraps around nontrivial geometry
with no discontinuities (see Figure 5.2). To give each decal a unique appearance,
a random rotation can also be baked into the matrix for each decal. Since we
do a matrix transformation we do not need to change the shader code other
than to name the matrix more appropriately as ScreenToLocal, which is then
constructed as follows:



i
i

i
i

i
i

i
i

5. Volume Decals 117

Figure 5.2. Proper decal wrapping around nontrivial geometry.

float4 ScreenToLocal = Scale(2, -2, 1) *

Translate(-1, 1, 0) * Inverse(ViewProj) *

DecalTranslation * DecalScale * DecalRotation;

The full fragment shader for this technique is listed below and a sample with
full source code is available in the web materials.

Texture2D <f loat> DepthTex ;
SamplerState DepthFi l te r ;

Texture3D <float4> DecalTex ;
SamplerState D e c a l F i l t e r ;

c b u f f e r Constants
{

float4x4 ScreenToLocal ;
f loat2 P i x e l S i z e ;

} ;

f loat4 main ( PsIn In ) : SV Target
{

// Compute normal ized sc r e en p o s i t i o n
f loat2 texCoord = In . Pos i t i on . xy ∗ P i x e l S i z e ;
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// Compute l o c a l p o s i t i o n o f scene geometry
f loat depth = DepthTex . Sample ( DepthFi l ter , texCoord ) ;
f loat4 scrPos = f loat4 ( texCoord , depth , 1 . 0 f ) ;
f loat4 wPos = mul ( scrPos , ScreenToLocal ) ;

// Sample deca l
f loat3 coord = wPos . xyz / wPos .w;
re turn DecalTex . Sample ( Deca lF i l t e r , coord ) ;

}

Listing 5.1. The full fragment shader.

5.2.2 Implementation and Issues

In a deferred-rendering system [Thibieroz 04] this technique fits perfectly. The
decals can be applied after the geometry buffer (G-buffer) pass and the relevant
attributes, such as diffuse color and specularity, can simply be updated, and then
lighting can be applied as usual. This technique also works well with a light pre-
pass renderer [Engel 09], in which case lighting information is readily available
for use in the decal pass.

In a forward rendering system the decals will be applied after lighting. In
many cases this is effective also, for instance, for burn marks after explosions,
in which case the decals can simply be modulated with the destination buffer.
With more complicated situations, such as blending with alpha, as is typically
the case for bullet holes, for instance, the decal application may have to take
lighting into account. One solution is to store the overall lighting brightness into
alpha while rendering the scene; the decal can then pre-multiply source color
with alpha in the shader and multiply with destination alpha in the blender to
get reasonable lighting. This will not take light color into account, but may look
reasonable if lighting generally is fairly white. Another solution is to simply go
by the attenuation of the closest light and not take any normal into account.
Alternatively, a normal can be computed from the depth buffer, although this is
typically slow and has issues of robustness [Persson 09].

One issue with this technique is that it applies the decal on everything within
the decal volume. This is not a problem for static objects, but if you have a large
decal volume and dynamic objects move into it they will get the decal smeared
onto them, for instance, if you previously blew a bomb in the middle of the road
and a car is passing through at a later time. This problem can be solved by
drawing dynamic objects after the decal pass. A more elaborate solution is to
render decals and dynamic objects in chronological order so that objects that are
moved after the decal is added to the scene will not be affected by the decal. This
will allow dynamic objects to be affected by decals as well. Another solution is to
use object IDs. The decal can store the IDs of objects that intersected the decal
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volume at the time it was added to the scene and cull for discarded pixels that
do not belong to any of those objects.

5.2.3 Optimizations

On platforms where the depth-bounds test is supported, the depth-bounds test
can be used to improve performance. On other platforms, dynamic branching can
be used to emulate this functionality by comparing the sample depth to the depth
bounds. However, given that the shader is relatively short and typically a fairly
large number of fragments survive the test, it is recommended to benchmark to
verify that it actually improves performance. In some cases it may in fact be
faster to not attempt to cull anything.

5.2.4 Variations

In some cases it is desirable to use a two-dimensional texture instead of a volume
decal. Volume textures are difficult to author and consume more memory. Not
all cases translate well from a two-dimensional case to three dimensions. A bullet
hole decal can be swept around to a spherical shape in the three-dimensional
case and can then be used in any orientation, but this is not possible for many
kinds of decals; an obvious example is a decal containing text, such as a logo or
graffiti tag.

An alternate technique is to sample a two-dimensional texture using just the
x, y components of the final coordinates. The z component can be used for fading.
When a volume texture is used, you can get an automatic fade in all directions
by letting the texture alpha fade to zero toward the edges and using a border
color with an alpha of zero. In the 2D case you will have to handle the z direction
yourself.

Two-dimensional decals are not rotation invariant so when placing them in
the scene they must be oriented such that they are projected sensibly over the
underlying geometry. The simplest approach would be to just align the decal
plane with the normal of the geometry at the decal’s center point. Some prob-
lematic cases exist though, such as when wrapping over a corner of a wall. If it is
placed flat against the wall you will get a perpendicular projection on the other
side of the corner with undesirable texture-stretching as a result.

An interesting use of the two-dimensional case is to simulate a blast in a
certain direction. This can be accomplished by using a pyramid or frustum shape
from the point of the blast. When the game hero shoots a monster you place a
frustum from the bullet-impact point on the monster to the wall behind it in the
direction of the bullet and you will get the effect of blood and slime smearing onto
the wall. The projection matrix of this frustum will have to be baked into the
ScreenToLocal matrix to get the proper projection of the texture coordinates.
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The blast technique can also be varied for a cube decal scenario. This would
better simulate the effect of a grenade blast. In this case a cube or sphere would be
rendered around the site of the blast and a cubemap lookup is performed with the
final coordinates. Fading can be effected using the length of the coordinate vector.

To improve the blast effect you can use the normals of underlying geometry
to eliminate the decal on back-facing geometry. For the best results, a shad-
owmapesque technique can be used to make sure only the surfaces closest to the
front get smeared with the decal. This “blast-shadow map” typically has to be
generated only once at the time of the blast and can then be used for the rest
of the life of the decal. Using the blast-shadow map can ensure splatter happens
only in the blast shadow of monsters and other explodable figures, whereas areas
in the blast-shadow map that contain static geometry only get scorched. This
requires storing a tag in the shadow buffer for pixels belonging to monsters, how-
ever. Creative use of the shadow map information also can be used to vary the
blood-splatter intensity over the distance from the blast to the monster and from
the monster to the smeared wall.

5.3 Conclusions

An alternate approach for decal rendering has been shown that suggests solu-
tions to many problems of traditional decal-rendering techniques. Using vol-
umes instead of flat decal geometry allows for continal decals across nontrivial
geometry. It also eliminates potentially expensive buffer locks or the need for
system-memory buffer copies.
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III
Global Illumination

Effects

The good news: global illumination effects (exceeding ambient occlusion) have
found their way into production! The advances in graphics hardware capabilities
in recent years, combined with smart algorithms and phenomenologically well-
motivated—and also well-understood—approximations of light transport, allow
the rendering of ever-increasing numbers of phenomena in real time. This sec-
tion includes four articles describing rendering techniques of global illumination
effects, and all of them are suited for direct rendering applications in real time.

Reprojection caching techniques, introduced about three years ago, can ex-
ploit temporal coherence in rendering and, by this, reduce computation for costly
pixel shaders by reusing results from previous frames. In “Temporal Coherence to
Improve Screen-Space Ambient Occlusion,” Oliver Mattausch, Daniel Scherzer,
and Michael Wimmer adapt temporal coherence for improving the performance
of screen-space ambient occlusion (SSAO) techniques. Their algorithm reuses am-
bient occlusion (AO) sample information from previous frames if available, and
adaptively generates more AO samples as needed. Spatial filtering is applied only
to regions where the AO computation does not yet converge. This improves the
overall quality as well as performance of SSAO.

In “Level-of-Detail and Streaming Optimized Irradiance Normal Mapping,”
Ralf Habel, Anders Nilsson, and Michael Wimmer describe a clever technique for
irradiance normal mapping, which has been successfully used in various games.
They introduce a modified hemispherical basis (hierarchical, in the spirit of spher-
ical harmonics) to represent low-frequency directional irradiance. The key to this
basis is that it contains the traditional light map as one of its coefficients, and
further basis functions provide additional directional information. This enables
shader level-of-detail (LOD) (in which the light map is the lowest LOD), and
streaming of irradiance textures.

“Real-Time One-Bounce Indirect Illumination and Indirect Shadows Using
Ray Tracing,” by Holger Gruen, describes an easy-to-implement technique to
achieve one-bounce indirect illumination, including shadowing of indirect light, in
real time, which is often neglected for fully dynamic scenes. His method consists
of three phases: rendering of indirect light with reflective shadow maps (RSMs),
creating a three-dimensional grid as acceleration structure for ray-triangle inter-
section using the capabilities of Direct3D 11 hardware, and finally computing
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the blocked light using RSMs and ray casting, which is then subtracted from the
result of the first phase.

In their article, “Real-Time Approximation of Light Transport in Translu-
cent Homogenous Media,” Colin Barré-Brisebois and Marc Bouchard describe an
amazingly simple method to render plausible translucency effects for a wide range
of objects made of homogeneous materials. Their technique combines precom-
puted, screen-space thickness of objects with local surface variation into a shader
requiring only very few instructions and running in real time on a PC and console
hardware. The authors also discuss scalability issues and the artist friendliness
of their shading technique.

“Real-Time Diffuse Global Illumination with Temporally Coherent Light Prop-
agation Volumes,” by Anton Kaplanyan, Wolfgang Engel, and Carsten Dachs-
bacher, describes the global-illumination approach used in the upcoming game
Crysis 2. The technique consists of four stages: in the first stage all lit surfaces
of the scene are rendered into RSMs. Then a sparse three-dimensional grid of
radiance distribution is initialized with the generated surfels from the first stage.
In the next step, the authors propagate the light in this grid using an iterative
propagation scheme and, in the last stage, the resulting grid is used to illumi-
nate the scene similarly to the irradiance volumes technique described by Natalya
Tatarchuk in the article “Irradiance Volumes for Games.”

—Carsten Dachsbacher
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Temporal Screen-Space
Ambient Occlusion

Oliver Mattausch, Daniel Scherzer,
and Michael Wimmer

1.1 Introduction

Ambient occlusion (AO) is a shading technique that computes how much of the
hemisphere around a surface point is blocked, and modulates the surface color
accordingly. It is heavily used in production and real-time rendering, because it
produces plausible global-illumination effects with relatively low computational
cost. Recently it became feasible to compute AO in real time, mostly in the form
of screen-space ambient occlusion (SSAO). SSAO techniques use the depth buffer
as a discrete scene approximation, thus have a constant overhead and are simple
to implement.

However, to keep the computation feasible in real time, concessions have to be
made regarding the quality of the SSAO solution, and the SSAO evaluation has
to be restricted to a relatively low number of samples. Therefore, the generated
AO is usually prone to surface noise, which can be reduced in a post-processing
step with a discontinuity filter. Depending on the chosen filter settings, we can
either keep sharp features and accept some noise, or get a smooth but blurry
solution due to filtering over the edges (as can be seen in Figure 1.1). Also, for
dynamically moving objects, the noise patterns will sometimes appear to float on
the surfaces, which is a rather distracting effect. To get a solution that is neither
noisy nor blurry, many more samples have to be used. This is where temporal
coherence comes into play.

1.1.1 Exploiting Temporal Coherence

The reverse reprojection technique [Scherzer et al. 07,Nehab et al. 07] allows us to
reuse pixels from previous frames and refine them over time. This allows keeping
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Figure 1.1. SSAO without temporal coherence (23 FPS) with 32 samples per pixel,
with (a) a weak blur, (b) a strong blur. (c) TSSAO (45 FPS), using 8–32 samples per
pixel (initially 32, 8 in a converged state). (d) Reference solution using 480 samples per
frame (2.5 FPS). All images at 1024× 768 resolution and using 32-bit precision render
targets. The scene has 7 M vertices and runs at 62 FPS without SSAO.

the number of samples that are computed in a single frame low, while effectively
accumulating hundreds of samples in a short amount of time. Note that ambient
occlusion has many beneficial properties that make it well suited for temporal
coherence: there is no directional dependence on the light source or the viewer,
AO techniques consider only the geometry in a local neighborhood, and only the
SSAO in a pixel neighborhood is affected by a change in the scene configuration.

In this article, we focus specifically on how to use reverse reprojection to im-
prove the quality of SSAO techniques in a deferred shading pipeline. In particular,
we show how to detect and handle changes to the SSAO caused by moving en-
tities, animated characters, and deformable objects. We demonstrate that these
cases, which are notoriously difficult for temporal coherence methods, can be
significantly improved as well. A comparison of our temporal SSAO (TSSAO)
technique with conventional SSAO and a reference solution in a static scene con-
figuration can be seen in Figure 1.1.

Note that this algorithm is complementary to the method described in the
“Fast Soft Shadows With Temporal Coherence” chapter of this book, which also
provides code fragments that describe the reprojection process.

1.2 Ambient Occlusion

From a physical point of view, AO can be seen as the diffuse illumination due to
the sky [Landis 02]. AO of a surface point p with normal np is computed as [Cook
and Torrance 82]:
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Figure 1.2. This figure compares rendering without (left) and with (right) AO, and
shows that AO allows much better depth perception and feature recognition, without
requiring any additional lighting.

ao(p, np) =
1

π

∫
Ω

V (p, ω)D(|p− ξ|)np · ωdω, (1.1)

where ω denotes all directions on the hemisphere and V is the (inverse) binary
visibility function, with V (p, ω) = 1 if the visibility in this direction is blocked
by an obstacle, 0 otherwise. D is a monotonic decreasing function between 1
and 0 of the distance from p to ξ, the intersection point with the nearest surface.
In the simplest case, D is a step function, considering obstacles within a certain
sampling radius only, although a smooth falloff provides better results, (e.g., as
given by an exp(.) function).

Figure 1.2 demonstrates the visual impact of SSAO for the depth perception
of a scene.

1.2.1 Screen Space Ambient Occlusion

SSAO methods attempt to approximate the original AO integral in screen space.
Several versions of SSAO with different assumptions and trade-offs have been
described. Note that our algorithm can be seen as a general strategy to improve
an underlying SSAO method.

We assume that any SSAO method can be written as an average over contri-
butions C which depend on a series of samples si:

AOn(p) =
1

n

n∑
i=1

C(p, si). (1.2)

In order to approximate Equation (1.1) using the Monte Carlo integration, the
contribution function for SSAO is often chosen as [Ritschel et al. 09]:

C(p, si) = V (p, si)D(|si − p|)max(cos(si − p, np), 0). (1.3)
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In contrast to Equation (1.1), directions have been substituted by actual sample
points around p, and thus V (p, si) is now a binary visibility function that gives
0 if si is visible from p, and 1 otherwise. The method is called “screen-space”
ambient occlusion because V is evaluated by checking whether si is visible in
screen space with respect to the current z-buffer. Note that some SSAO methods
omit the depth test, and the contribution of si depends on distance and incident
angle [Fox and Compton 08].

We assume that the samples si have been precomputed and stored in a tex-
ture, for example, a set of three-dimensional points uniformly distributed in the
hemisphere, which are transformed into the tangent space of p for the evaluation
of C. If this step is omitted and samples on the whole sphere are taken, then the
sample contribution has to be doubled to account for wasted samples that are
not on the upper hemisphere. D(.) is a function of the distance to the sample
point that can be used to modulate the falloff.

1.3 Reverse Reprojection

Reverse reprojection associates image pixels from the current frame with the
pixels from the previous frame that represent the same world-space position. The
technique allows the reuse of pixel content from previous frames for the current
frame. The technique was shown to be useful for a variety of applications, like
shadow mapping, antialiasing, or even motion blur [Rosado 07].

Reprojection techniques use two render targets in ping-pong fashion, one for
the current frame and one representing the cached information from the previous
frames. In our context we cache AO values and therefore denote this buffer as
the ambient-occlusion buffer.

For static geometry, reprojection is constant for the whole frame, and can be
carried out in the pixel shader or in a separate shading pass (in the case of deferred
shading), using the view (V ) and projection (P ) matrices from the previous frame
f − 1 and the current frame f , where t denotes the post-perspective position of
a pixel [Scherzer et al. 07]:

tf−1 = Pf−1Vf−1V
−1
f P−1

f tf . (1.4)

In our deferred shading pipeline, we store eye-linear depth values for the
current frame and the previous frame, and use them to reconstruct the world-
space positions p. In our implementation, because we already store the world-
space positions, we have only to transform the current world-space position pf
with the previous view-projection matrix Pf−1Vf−1 to get tf−1. From tf−1 we
calculate the correct lookup coordinates texf−1 into the AO buffer by applying
the perspective division and scaling the result to the range [0..1] (i.e., texf−1 =
tf−1+1

2 .).
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1.3.1 Dynamic Objects

For dynamic scenes, the simple Equation (1.4) does not work, because repro-
jection depends on the transformations of moving objects. Therefore, it was
proposed to apply the complete vertex transformation twice, once using the cur-
rent transformation parameters (modeling matrix, skinning, etc.), and once using
the parameters of the previous frame [Nehab et al. 07].

In a deferred shading pipeline, the previous position pf needs to be accessed
in a separate shading pass, where information about transformation parameters
is already lost. Therefore, we store the 3D optical flow pf−1 − pf in the frame
buffer as another shading parameter (alongside normal, material, etc.), using a
lower precision for these offset values than for the absolute depth values (16 bit
instead of 32 bit).

1.4 Our Algorithm

In this section, we first describe the SSAO sample accumulation, then the de-
tection and handling of pixels that carry invalid information, and last, some
optimizations to our algorithm.

1.4.1 Refining the SSAO Solution Over Time

The main concept of our algorithm is to spread the computation of AO (Equa-
tion (1.2)) over several frames by using reprojection. Whenever possible, we take
the solution from a previous frame that corresponds to an image pixel and refine
it with the contribution of new samples computed in the current frame. In frame
f , we calculate a new contribution Cf from k new samples:

Cf (p) =
1

k

jf (p)+k∑
i=jf (p)+1

C(p, si), (1.5)

where jf (p) counts the number of unique samples that have already been used
in this solution. We combine the new solution with the previously computed
solution:

AOf (p) =
wf−1(pf−1)AOf−1(pf−1) + kCf (p)

wf−1(p) + k
,

wf (p) = min(wf−1(pf−1) + k,wmax), (1.6)

where the weight wf−1 is the number of samples that have already been accu-
mulated in the solution, or a predefined maximum after convergence has been
reached.
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Theoretically, this approach can use arbitrarily many samples. In practice,
however, this is not advisable: since reprojection is not exact and requires bilin-
ear filtering for reconstruction, each reprojection step introduces an error that
exacerbates over time. This error is noticeable as an increasing amount of blur.
Furthermore, the influence of newly computed samples becomes close to zero,
and previously computed samples never get replaced. Therefore we clamp wf to
a user-defined threshold wmax, which causes the influence of older contributions
to decay over time. Thus,

conv(p) = wf (p)/wmax (1.7)

is an indicator of the state of convergence. Note that for wmax → ∞, accumu-
lating contributions from Equation (1.5) correspond to n→∞ in Equation (1.2)
and would thus converge to the correct value of the desired integration, except
for the blurring discussed above.

Implementation notes. The value wf−1 is stored in a separate channel in the am-
bient occlusion buffer. In order to achieve fast convergence, we use a Halton
sequence, which is known for its low discrepancy [Wang and Hickernell 00], for
sample generation. As a starting index into this sample set, we use jf , which
we also store in the AO-buffer. In summary, the RGBA target of an AO-buffer
stores the following parameters:

• the SSAO solution Cf−1(p)

• the weight of the previous solution wf−1

• the starting index jf−1

• the eye-linear depth df−1.

The current index position is propagated to the next frame by means of reverse
reprojection as with the SSAO values. In order to prevent the index position from
being interpolated by the hardware and introducing a bias into the sequence, it
is important to always fetch the index value from the nearest pixel center in the
AO-buffer. The pixel center can be found using the formula in Equation (1.8),
given the reprojected coordinates texf−1:

pixelcenter =
btexf−1resx,yc+ 0.5

resx,y
, (1.8)

where resx,y is the current frame buffer resolution in x and y.
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1.4.2 Detecting and Dealing with Invalid Pixels

When reprojecting a fragment, we need to check whether the pixel looked up
in the previous frame actually corresponds to the current pixel, i.e., whether
the cached AO value is valid. If it became invalid, we have to invalidate the
previous solution accordingly. In order to detect such invalid pixels, we check if
any one of the following three conditions has occurred: 1.) a disocclusion of the
current fragment [Scherzer et al. 07], 2.) changes in the sample neighborhood of
the fragment, and 3.) a fragment that was previously outside the frame buffer.
Following, we discuss these cases.

Detecting disocclusions. We check for disocclusions by comparing the current
depth of the fragment df to the depth of the cached value at the reprojected
fragment position df−1. In particular, we compare the relative depth differences
of the eye-linear depth values:

|1− df
df−1

| < ε. (1.9)

Equation (1.9) gives stable results for large scenes with a wide depth range,
which are not oversensitive at the near plane and are sufficiently sensitive when
approaching the far-plane regions. In case of a disocclusion, we always discard
the previous solution by resetting wf−1 to 0 and we compute a completely new
AO solution.

Detecting changes in the neighborhood. Testing for disocclusions may be sufficient
for avoiding most temporal-coherence artifacts for methods that affect only the
current pixel, like super sampling, or for SSAO in a purely static scene. However,
shading methods like SSAO gather information from neighboring pixels using a
spatial sampling kernel. Hence, in dynamic environments, we have to take into
account that the shading of the current pixel can be affected by nearby moving
objects, even if no disocclusion of the pixel itself has happened. Consider, for

s2 old

s2s1

s3

s4

p

s2 f-1

s1 f-1

s3 f-1

s4 f-1pf-1

Frame f-1 Frame f

|s
2 f-1 -p

f-1 |

|s
2 -p|

Reproject into
previous frame

Figure 1.3. The distance of p to sample point s2 in the current frame (right) differs
significantly from the distance of pf−1 to s2f−1 in the previous frame (left), so we
assume that a local change of geometry occurred, which affects the shading of P .
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example, a scenario wherein a box is lifted from the floor. The SSAO values of
pixels in the contact-shadow area surrounding the box change, even if there is no
disocclusion of the pixel itself.

The size of the neighborhood to be checked is equivalent to the size of the
sampling kernel used for SSAO. Checking the complete neighborhood of a pixel
would be prohibitively expensive, and therefore we use sampling. Actually, it
turns out that we already have a set of samples, namely the ones used for AO
generation. That means that we effectively use our AO sampling kernel for two
purposes: for computing the current contribution Cf (p), and to test for validity.

Our invalidation scheme is visualized in Figure 1.3. The validity of a sample
si for shading a pixel p can be estimated by computing the change in relative
positions of sample and pixel:

δ(si) = ||si − p| − |sif−1 − pf−1||. (1.10)

The reprojected position sif−1 is computed from the offset vector stored for
si (recall that the first rendering pass stores the offset vectors for all pixels in
the frame buffer for later access by the SSAO-shading pass). Note that, for the
neighborhood test, we use only those samples that lie in front of the tangent
plane of p, since only those samples actually modify the shadow term.

Theoretically we could also check if the angle between surface normal and
vector to the sample point has changed by a significant amount from one frame
to the next, and practical cases are imaginable when the vector length is not
enough. However, this would require more information to be stored (the surface
normal of every pixel in the previous frame), and in all our tests we found it
sufficient to evaluate Equation (1.10).

Note that in order to avoid one costly texture lookup when fetching pf , the
required values for this test and for the AO computation should be stored in a
single render target.

Smooth invalidation. It makes perfect sense to use a binary threshold to detect
disocclusions. In this spirit, for the neighborhood check of a pixel we could
evaluate δ(si) < ε for all samples and discard the previous solution for this pixel
if this condition is violated for any of the samples. However, consider, for example,
a slowly deforming surface, where the AO will also change slowly. In such a case
it is not necessary to fully discard the previous solution. Instead we introduce
a new continuous definition of invalidation that takes a measure of change into
account. This measure of change is given by δ(si) at validation sample position
si, as defined in Equation (1.10). In particular, we compute a confidence value
conf(si) between 0 and 1. It expresses the degree to which the previous SSAO
solution is still valid:

conf(si) = 1− 1

1 + Sδ(si)
.
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Figure 1.4. (a) Confidence function depending on the distance difference δ for smooth-
ing factor S = 5, 15, 30, 50. (b) Visualization of the confidence values computed by
our smooth invalidation technique, showing a rotation (left), a translation (middle),
and an animated (walking) character (right). We use a continuous scale from red
(confidence=0) to white (confidence=1).

The parameter S controls the smoothness of the invalidation, and is set to a value
(15 ≤ S ≤ 30) in our current implementation. As can be seen in Figure 1.4, for
different values of S, the confidence is 1 if the relative distance has not changed
(δ(x) = 0), and approaches 0 for large values of δ(si). The overall confidence of
the previous AO solution is given by

conf(p) = min(conf(s0), .., conf(sk)).

We multiply it with wt to modify the weight of the old solution in Equation (1.6).
Also, in order to prevent flickering artifacts in regions with large changes, we do
not increase the index into the array of samples if the convergence is smaller than
a threshold (e.g., for conv(p) < 0.5) to reuse the same samples.

Figure 1.5 shows the effect of our novel invalidation scheme on a scene with
a translational movement. Checking only disocclusions causes artifacts visible

Figure 1.5. Rotating dragon model using different values for smooth invalidation factor
S. (left) S = 0 (i.e., no invalidation), (middle) S = 100, (right) S = 15. Note that no
invalidation causes a wrong shadow (left), while a too high value causes unwanted noise
in the shadow (middle).
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as wrong contact shadows (left). Additionally, checking the pixel neighborhood
for changes in the AO using our smooth invalidation technique allows for correct
shadows (middle and right). Choosing a too high value for S will remove the
temporal-coherence artifacts, but produces too much noise (middle). On the
other hand, there is much less noise at the transitions between the silhouettes of
moving objects and the background when choosing a proper value for S (right).

Handling of frame-buffer borders. Samples that fall outside of the frame buffer
carry incorrect information that should not be propagated. Hence we check for
each pixel if one or more of the samples have been outside the frame buffer in the
previous frame. In this case, we do not use smooth invalidation, but discard the
previous values completely since they are undefined. In the same spirit, we do
not use samples that fall outside of the frame buffer to compute our confidence
values.

1.4.3 Adaptive Convergence-Aware Spatial Filter

SSAO methods usually apply a spatial-filtering pass after shading computations
in order to prevent noise artifacts caused by insufficient sampling rates. We also
apply spatial filtering, but only as long as the temporal coherence is not sufficient.
Variants of the cross bilateral filter [Eisemann and Durand 04] are typically used,
where filtering over edges is avoided by taking the depth differences into account.
Although this filter is not formally separable, in a real-time setting it is usually
applied separately in x and y directions to make evaluation feasible.

In contrast to previous approaches, we have additional information for this
filter which can greatly reduce noise (i.e., the convergence conv(p) of our AO
values in pixel p (Equation 1.7)). Recently disoccluded pixels (e.g., in a thin
silhouette region) can gather more information from nearby converged pixels than
from other unreliable pixels. Furthermore, we apply the filter kernel directly to
world-space distances. This application automatically takes depth differences
into account, and can detect discontinuities in cases of high depth differences:

AOfilt(p) =
1

K(p)

∑
x∈F

g(|p− x|)conv(x)AO(x),

K(p) =
∑
x∈F

g(|p− x|)conv(x),

where x is the individual filter samples in the screen-space support F of the filter
(e.g., a 9 × 9 pixel region), K(p) is the normalization factor, and g is a spatial-
filter kernel (e.g., a Gaussian). As a pixel becomes more converged, we shrink
the screen-space filter support smoothly, using the shrinking factor s:

s(p) =
max(cadaptive − conv(p), 0)

cadaptive
,
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Figure 1.6. Rotating dragon, closeups of the marked region are shown. TSSAO without
filter (middle) and with our filter (right). Note that the filter is applied only in the noisy
regions, while the rest stays crisp.

so that when convergence has reached cadaptive, we turn off spatial filtering com-
pletely. We found the setting of cadaptive to be perceptually uncritical (e.g., a
value of 0.2 leads to unnoticeable transitions).

The influence of the adaptive convergence-aware filter on the quality of the
TSSAO solution is shown in Figure 1.6.

Adaptive sampling. Though spatial filtering can reduce noise, it is more effec-
tive to provide additional input samples in undersampled regions. Or, to put
it differently, once the AO has reached sufficient convergence, we can just reuse
the computed solution, thus using fewer samples in regions that are not under-
sampled. We adapt the number k of new AO samples per frame as a function
of convergence. Note that these AO samples are completely unrelated to the
screen-space samples used for spatial filtering in the previous section, where the
kernel size is adapted instead of changing the number of samples.

It is necessary to generate at least a minimum number of samples for the same
reasons that we clamp wf (p) in Equation (1.6) (i.e., to avoid blurring artifacts
introduced by bilinear filtering). Furthermore, a certain number of samples is re-
quired for detecting invalid pixels due to changing neighborhoods (Section 1.4.2).
In order to introduce a minimum amount of branching, we chose a simple two-

Parameter name Value

Initial samples k1 32

Converged samples k2 8–16

Threshold cadaptive 0.2

Threshold cspatial 0.3

Threshold crot 0.5

Smooth invalidation factor S 15–30

Maximum weight wmax 500–1500

Filter width F 5x5

Table 1.1. Recommended parameters for the TSSAO algorithm.



i
i

i
i

i
i

i
i

134 III Global Illumination Effects

stage scheme, with k1 samples if conv(p) < cspatial and k2 samples otherwise
(refer to Table 1.1 for a list of parameters actually used in our implementation).

This requires a variable number of iterations of the AO loop in the shader.
Since disoccluded regions are often spatially coherent (as can be seen in Fig-
ure 1.4(b)), the dynamic branching operations in the shader are quite efficient on
today’s graphics hardware.

1.4.4 Optimizations

These optimizations of the core algorithm allow for faster frame rates and better
image quality due to greater precision.

Random noise. As in most AO approaches, we rotate the sampling pattern by
a different random vector for each input pixel. This rotation trades banding
artifacts due to undersampling for noise. However, this leads to a surprisingly
large performance hit, supposedly due to texture-cache thrashing [Smedberg and
Wright 09]. Therefore we turn off the rotation once convergence has reached
a certain threshold crot. Note that this optimization works well in most cases,
but can sometimes cause problems for the neighborhood invalidation, resulting
in some noticeable artifacts.

Local space. In order to avoid precision errors in large scenes, we store our po-
sition values in a local space that is centered at the current view point. These
values can be easily transformed into world-space values by passing the previous
and the current view point as parameters to the shader.

1.5 SSAO Implementation

We implemented and tested our algorithm using the methods of Fox and Comp-
ton [Fox and Compton 08] and Ritschel et al. [Ritschel et al. 09], but it is also
possible to implement one of the many alternatives [Bavoil et al. 08,Mittring 07].
In this section we outline the first two algorithms and give some implementation
hints based on our experience.

Algorithm of Ritschel et al. The SSAO method of Ritschel et al. uses a 3D sampling
kernel, and a depth test to query the sample visibility, thus implementing the
contribution function in Equation (1.3). This is in contrast to the original Crytek
implementation [Mittring 07], which does not use the incident angle to weight the
sample. In order to get a linear SSAO falloff, we use a sample distribution that is
linear in the sampling-sphere radius. Note that we use a constant falloff function
D(x) = 1, in this case—the falloff is caused only by the distribution of the sample
points. The differences to the ray-traced AO are mainly caused by the screen-
space discretization of the scene.
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Algorithm of Fox and Compton. The algorithm of Fox and Compton samples the
depth buffer around the pixel to be shaded and interprets these samples as small
patches, similar to radiosity. While not physically accurate, it often gives a
pleasing visual result because it preserves more small details when using large
kernels for capturing low-frequency AO. On the downside, this method is prone
to reveal the underlying tessellation. As a remedy, we do not count samples at
grazing angles of the hemisphere (i.e., where the cosine is smaller than a given
ε). We used Equation (1.11) to implement the algorithm:

C(p, si) =
max(cos(si − p, np), 0)

max(ε, |si − p|)
. (1.11)

The main difference from other SSAO methods is that each sample is con-
structed on a visible surface, and interpreted as a patch, whereas in Equa-
tion (1.11)), samples are used to evaluate the visibility function. The denom-
inator represents a linear falloff function D(.), where we also guard against zero
sample distance.

The screen-space sampling radius is defined by projecting a user-specified
world-space sampling radius onto the screen, so that samples always cover roughly
similar regions in world space. When the user adjusts the world-space radius, the
intensity of each sample needs to be scaled accordingly in order to maintain a
consistent brightness.

Sample generation. In order to obtain the samples used for SSAO, we first com-
pute a number of random samples ζ in the range [0 . . . 1] using a Halton sequence.
For the method of Fox and Compton, we use 2D (screen-space) samples uniformly
distributed on a disc of user-specified size. These samples are then projected from
screen space into world space by intersecting the corresponding viewing rays with
the depth buffer and computing their world space position. We generate the
screen-space samples si from 2D Halton samples ζx,y using Equation (1.12):

α = 2πζx,

r =
√
ζy,

si = (r cos(α), r sin(α)).

(1.12)

For the method of Ritschel et al., we use 3D hemispherical samples gener-
ated in the tangent space of a surface point. From 3D Halton samples ζx,y,z,
hemispherical samples si are created using

α = 2πζx,

r = ζy,

si = (r cos(α)
√

1− ζz, r sin(α)
√

1− ζz, r
√
ζz).

(1.13)
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This formula uses the variables ζx and ζz to compute a point on the unit sphere
(i.e., a random direction), and ζy to set the sample distance r. Note that in order
to use variance-reducing importance sampling (rather than uniform sampling),
this formula creates a distribution proportional to the cosine-weighted solid angle.
Furthermore, Szirmay-Kalos et al. [Szirmay-Kalos et al. 10] have shown that a
uniform distribution of samples along the distance r corresponds to a linear falloff
function D(.) (refer to Equation (1.1)) of the occluder influence with respect to
r. Using this importance sampling scheme, we simply have to count the numbers
of samples that pass the depth test during SSAO shading.

Maximum allowed sample distance. If the distance from the pixel center to the
intersection point with the depth buffer is too large, a sample is very likely to
cause wrong occlusion (refer to Figure 1.7(a)). However, introducing a maximum
allowed sample radius and setting it to a too small value can cause samples
where valid occlusion is missed (refer to Figure 1.7(b)). This is because they are
projected to a location outside the allowed sample radius. We set the maximum

(a) If the allowed sample distance is unrestricted, shadows are cast from disconnected objects
(1). If it is set equal to the sampling radius, some valid samples are not counted, resulting
in overbright SSAO (2). Allowing 2 times the radius (3) is a good trade-off and closest to a
ray-traced solution (REF).

(b) 2D illustration of the issue arising when setting the maximum allowed
sample distance (shown in blue, sampling radius shown in red) too small.
While the samples (shown in black) which are projected to the disconnected
surface are correctly rejected (left), this configuration also rejects valid sam-
ples (right).

Figure 1.7. The effect of the maximum allowed sample distance (from the shaded pixel
to the depth buffer intersection).
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allowed sample radius to reject those samples where the distance is more than
two times larger than the sampling radius of the SSAO kernel. This trade-off
largely prevents incorrect shadowing of distant and disconnected surfaces caused
by objects in the foreground, while still accounting for correct occlusion in the
vicinity of the current pixel.

Frame buffer borders. A problem inherent in SSAO is the handling of samples that
fall outside the frame buffer borders (requested by fragments near the border).
The simplest solution is to settle for reusing the values at the border by using
clamp-to-edge. To avoid artifacts on the edges of the screen due to the missing
depth information, we can optionally compute a slightly larger image than we
finally display on the screen. It is sufficient to extend about 5–10% on each side
of the screen depending on the size of the SSAO kernel and the near plane.

1.6 Results

We implemented the proposed algorithm in OpenGL using the Cg shading lan-
guage. As test scenes, we used two models of different characteristics (shown
in Figure 1.8): (a) the Sibenik cathedral and (b) the Vienna city model. Both
scenes were populated with several dynamic objects. The walk-through sequences
taken for the performance experiments are shown in the accompanying videos.
Note that most SSAO artifacts caused by image noise are more distracting in an-
imated sequences, hence we point interested readers to these videos which can be
downloaded from http://www.cg.tuwien.ac.at/∼matt/tssao/. For all of our tests
we used an Intel Core 2 processor at 2.66 GHZ (using 1 core) and an NVIDIA
GeForce 280GTX graphics board. To achieve sufficient accuracy in large-scale
scenes like Vienna, we use 32-bit depth precision. Both the ambient occlusion
buffer and the SSAO texture are 32-bit RGBA render targets.

Generally TSSAO provides finer details and fewer noise artifacts. This can
be seen in Figure 1.1 for a static scene (using the method of Fox and Compton),

(a) (b) (c)

Figure 1.8. Used test scenes: (a) Sibenik cathedral (7,013,932 vertices) and (b) Vienna
(21,934,980 vertices) in the streets and (c) from above.
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Figure 1.9. Close-up of a distant dragon in Sibenik cathedral at 1600×1200 resolution:
SSAO using 32 samples at 12 FPS (left close-up); TSSAO using 8–32 samples per frame
at 26 FPS (right close-up).

where we compare TSSAO to SSAO with a weak and a strong blur filter, which
gives a high or low weight, respectively, to discontinuities. Furthermore, we
compare TSSAO to a reference solution using 480 samples per frame, which was
the highest number of samples our shader could compute in a single frame. Notice
that the TSSAO method is visually very close to the reference solution, to which
it converges after a short time.

Figure 1.9 shows that the method also works for high-resolution images. The
TSSAO algorithm provides good quality even for fine details in the background.
Figure 1.10 shows a capture of a deforming cloak of an animated character. Al-
though deforming objects are difficult to handle with temporal coherence, it can
be seen that TSSAO significantly reduces the surface noise. We used the method
of Fox and Compton for Figure 1.9, and the method of Ritschel et al. for Fig-
ure 1.10.

In terms of visual image-quality, TSSAO performs better than SSAO in all
our tests. It corresponds to at least a 32-sample SSAO solution (since 32 samples
are always used for disocclusions), while the converged state takes up to several
hundred samples into account. Note that a similar quality SSAO solution would

Figure 1.10. Close-up of a deforming cloak: SSAO using 32 samples (middle) and
TSSAO using 8–32 samples (right). Notice that the surface noise (causing severe flick-
ering artifacts when animated) is reduced with TSSAO.



i
i

i
i

i
i

i
i

1. Temporal Screen-Space Ambient Occlusion 139

Vienna (fps) Sibenik cathedral (fps)

resolution SSAO TSSAO Deferred SSAO TSSAO Deferred

1600x1200 14 29 73 10 12 38
1024x768 30 51 97 21 25 65
800x600 42 63 102 29 34 67
800x600 h 65 77 47 49

Table 1.2. Average timings for the two walk-through sequences shown in the videos
for 32-bit precision render targets using full and half resolution. We compare standard
SSAO, our method (TSSAO), and deferred shading without SSAO as a baseline. For
SSAO we used 32 samples in all scenes. For TSSAO we used 8 (16)–32 samples in
Vienna (Sibenik cathedral).

be prohibitively slow. In terms of correctness, however, we have to keep in mind
that using a smooth invalidation causes the algorithm to deviate from a correct
solution for the benefit of a better visual impression.

Timings. Table 1.2 shows average timings of our walk-throughs, comparing our
method (TSSAO) with SSAO without temporal coherence and the performance-
baseline method, deferred shading without SSAO. TSSAO uses 8 06 16 samples,
respectively, when converged and 32 otherwise for Vienna and for Sibenik cathe-
dral, whereas SSAO always uses 32 samples. In our tests TSSAO was always
faster than SSAO, for full and for half-resolution SSAO computation. Note that,
after convergence has been reached, TSSAO neither applies spatial filtering nor
the random rotations of the sampling-filter kernel (refer to Section 1.4.4).

Figure 1.11 shows the frame time variations for both walk-throughs. Note
that online occlusion culling [Mattausch et al. 08] is enabled for the large-scale
Vienna model, and thus the frame rate for the baseline deferred shading is quite
high for such a complex model. The frame-rate variations for TSSAO stem from
the fact that the method generates adaptively more samples for recently dis-
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Figure 1.11. Frame times of the Vienna (left) and the Sibenik cathedral walk-through
(right) at resolution 1024× 768, using 32-bit precision render targets.
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occluded regions. The frame times of TSSAO are similar to SSAO for frames
where dynamic objects are large in screen space. For more static parts of the
walk-throughs, TSSAO is significantly faster.

1.7 Discussion and Limitations

In the case of deforming objects, most of the visual improvements compared to
conventional SSAO come from the smooth invalidation (refer to the close-up of
the cloak in Figure 1.10). Carefully adjusting the smooth invalidation factor
is quite important here, and using this optimization too loosely can result in
artifacts such as a noticeable dark trail following moving objects.

There is definitely a limit to exploiting temporal coherence once the objects
are moving or deforming too quickly. In such a case, our algorithm will deteriorate
to the quality of conventional SSAO. Also, invalidation may fail in cases of thin
(with respect to the SSAO kernel size), quickly moving structures, which are
missed by the invalidation algorithm. Likewise, a very large kernel size can also
cause problems with the invalidation, because the sampling could just miss events
that cause changes to the AO.

The main targets of this algorithm are real-time visualization and games.
The adaptive sampling optimization cannot guarantee constantly better frame
times than conventional SSAO, and disturbing fluctuations in the frame time can
happen. However, we have to keep in mind that games usually undergo extensive
play-testing in order to avoid annoying frame rate drops. Faster SSAO in most
frames is useful, because more time for other effects is available.

Also, note that adaptive sampling, which is responsible for frame rate vari-
ations, is a feature of the algorithm that can be disabled, thus falling back to
the speed of conventional SSAO, but still obtaining significantly improved image
quality. Furthermore, the major purpose of this algorithm is to speed up the
standard case of moderate dynamic movements.

1.8 Conclusions

We have presented a screen-space ambient-occlusion algorithm that utilizes re-
projection and temporal coherence to produce high-quality ambient occlusion for
dynamic scenes. Our algorithm reuses available sample information from previ-
ous frames if available, while adaptively generating more samples and applying
spatial filtering only in the regions where insufficient samples have been accumu-
lated. We have shown an efficient new pixel validity test for shading algorithms
that access only the affected pixel neighborhood. Using our method, such shad-
ing methods can benefit from temporal reprojection also in dynamic scenes with
animated objects.
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III

Level-of-Detail and
Streaming Optimized

Irradiance Normal Mapping
Ralf Habel, Anders Nilsson,

and Michael Wimmer

2.1 Introduction

Light mapping and normal mapping are the most successful shading techniques
used in commercial games and applications today, because they require few re-
sources and result in a significant increase in the quality of the rendered image.
While light mapping stores global, low-frequency illumination at sparsely sampled
points in a scene, normal maps provide local, high-frequency shading variation
at a far higher resolution (see Figure 2.1).

The problem with combining the two methods is that light maps store irradi-
ance information for only one normal direction—the geometric surface normal—
and therefore cannot be evaluated using the normals stored in a normal map. To
overcome this problem, the irradiance (i.e., the incoming radiance integrated over
the hemisphere) has to be precalculated for all possible normal map directions
at every sample point. At runtime, this (sparse) directional irradiance signal can
be reconstructed at the (dense) sampling positions of the normal map through
interpolation. The final irradiance is calculated by evaluating the interpolated
directional irradiance using the normal vector from the normal map.

Because such a (hemispherical) directional irradiance signal is low-frequency
in its directionality, it can be well represented by smooth lower-order basis func-
tions. Several bases have been successfully used in games such as spherical har-
monics in Halo 3 [Chen and Liu 08], or the hemispherical Half-Life 2 basis [Mc-
Taggart 04]. It has been shown [Habel and Wimmer 10] that the hemispheri-
cal H-basis provides the overall best representation compared to all other bases
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Figure 2.1. A scene without albedo maps showing the difference between light mapping
(left) and irradiance normal mapping (right).

because it is directly constructed to carry hemispherical directional irradiance
signals and incorporates the same advantages that spherical harmonics have.

However, none of the options to represent the directional irradiance signal
provides an efficient and resource-optimal way to define increments of detail for
shader level-of-detail (LOD) or for streaming of textures. To eliminate those
drawbacks, we introduce a modification to the H-basis that maintains its high
accuracy and fast evaluation. In contrast to any other known basis representa-
tion, the modified H-basis explicitly contains the traditional light map as one
of its coefficients and is therefore an extension of light mapping rather than a
replacement, providing the light map as the lowest shader LOD.

To apply the optimized irradiance normal mapping, we first derive all nec-
essary equations and calculations, after which we discuss implementation issues
such as correct tangent space, color spaces, or compression.

2.2 Calculating Directional Irradiance

The directional irradiance of a surface point ~x is defined as

E(~x, ~n) =

∫
Ω+

L(~x, ~ω) max(0, ~n · ~ω)d~ω (2.1)

and covers all possible surface normals ~n in the upper hemisphere Ω+, with
L being the incoming radiance. Because we do not want to keep track of the
orientation of the hemispheres at every point, the hemispheres are defined in
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tangent space, (i.e., around the interpolated surface normal and (bi)tangent),
which is also the space where the normal maps are defined.

To determine the incoming directional irradiance, we need to calculate the ra-
diance L(~x, ω) in a precomputation step similar to traditional light mapping. Any
method that creates a radiance estimate such as shadow mapping, standard ray
tracing, photon mapping [Jensen 96], final gathering, or path tracing [Kajiya 86]
can be used, and existing renderers or baking software can be applied.

Given the radiance L(~x, ω), calculating E(~x, ~n) (Equation (2.1)) for a point
~x corresponds to filtering L with a diffuse (cut cosine) kernel. Doing this in
Euclidean or spherical coordinates is prohibitively expensive, because we have to
filter a large number of surface points. Instead, we use spherical harmonics as
an intermediate basis in which the filtering can be done much more efficiently.
Spherical harmonics are orthonormal basis functions that can approximate any
spherical function. A comprehensive discussion of spherical harmonics can be
found in [Green 03] and [Sloan 08]. Unfortunately, different definitions exist; to
avoid confusion, we use the definition without the Condon-Shortley phase, as
shown in Appendix A for our calculations.

As shown by [Ramamoorthi and Hanrahan 01], a spherical directional irradi-
ance signal is faithfully represented with three spherical harmonics bands (nine
coefficients per color channel). Therefore, we need only to use spherical harmonics
up to the quadratic band.

First, we rotate the sampled radiance of a surface point into the tangent space
and expand it into spherical harmonics coefficients slm by integrating against the
spherical harmonics basis functions Y lm over the upper hemisphere Ω+:

slm =

∫
Ω+

L(~ω)Y lm(~ω)d~ω.

In almost all cases, the coefficients are calculated using Monte Carlo Integration
[Szirmay-Kalos ]:

slm ≈
2π

N

N∑
i=1

L( ~ωi)Y
l
m( ~ωi),

where N is the number of hemispherical, equally distributed, radiance samples
L( ~ωi). More advanced methods, such as importance sampling, can be applied,
as long as a radiance estimate represented in spherical harmonics is calculated.
The diffuse convolution reduces to an almost trivial step in this representation.
Following [Ramamoorthi and Hanrahan 01], applying the Funk-Hecke-Theorem,
integrating with a cut cosine kernel corresponds to multiplying the coefficients of
each band with a corresponding factor al:

a0 = 1 a1 =
2

3
a2 =

1

4
,



i
i

i
i

i
i

i
i

146 III Global Illumination Effects

to arrive at the final directional irradiance signal represented in spherical har-
monics:

ESH(~n) =
∑
l,m

slmY
l
m(~n). (2.2)

We have built the necessary division by π for the exitant radiance into the diffuse
kernel so we do not have to perform a division at runtime.

By storing nine coefficients (respectively, 27 in the trichromatic case) at each
surface point, in either textures or vertex colors, we can calculate the final result
at runtime by looking up the normal from the normal map and we can calculate
the final irradiance by evaluating Equation (2.2). However, we are not making
the most efficient use of the coefficients since the functions are evaluated only
on the upper hemisphere Ω+, and not the full sphere. The created directional
irradiance signals can be better represented in a hemispherical basis.

2.3 H-Basis

TheH-basis was introduced in [Habel and Wimmer 10] and forms an orthonormal
hemispherical basis. Compared to all other orthonormal hemispherical bases,
such as [Gautron et al. 04] or [Koenderink et al. 96], the H-basis consist of only
polynomial basis functions up to a quadratic degree and therefore shares many
properties with spherical harmonics. Some of the basis functions are actually
the same basis functions as those used in spherical harmonics, but re-normalized
on the hemisphere, which is why the H-basis can be seen as the counterpart of
spherical harmonics on the hemisphere up to the quadratic band.

The basis is explicitly constructed to carry hemispherical directional irradi-
ance signals and can provide a similar accuracy with only six basis functions
compared to nine needed by spherical harmonics, and a higher accuracy than
any other hemispherical basis [Habel and Wimmer 10]. These basis functions
are:

H1 =
1√
2π
,

H2 =

√
3

2π
sinφ sin θ =

√
3

2π
y,

H3 =

√
3

2π
(2 cos θ − 1) =

√
3

2π
(2z − 1),

H4 =

√
3

2π
cosφ sin θ =

√
3

2π
x,
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Figure 2.2. Spherical Harmonics basis functions (left) compared to theH-basis functions
(right). Green are positive and red are negative values.

H5 =
1

2

√
15

2π
sin 2φ sin2 θ =

√
15

2π
xy,

H6 =
1

2

√
15

2π
cos 2φ sin2 θ =

1

2

√
15

2π
(x2 − y2).

Please note that compared to [Habel and Wimmer 10], the negative signs caused
by the Condon-Shortley phase have been removed in the basis functions H2 and
H4 for simplicity and for consistency with the spherical harmonics definitions. A
visual comparison of the spherical harmonics basis functions to the H-basis can
be seen in Figure 2.2.

2.3.1 Modified H-Basis

The band structure of the H-basis (similar to spherical harmonics) provides a
natural way for controlling the level of approximation of the directional irradiance
signal. For example, given a normal from the normal map, we can use only the
first four coefficients (corresponding to the constant and all linear basis functions)
to calculate the irradiance. If a higher accuracy is demanded, we can simply
use the two quadratic functions H5 and H6 in addition to the other four basis
functions.

Another level of detail that is very important, especially for objects that
are far away, is to not use a normal map at all, but to use a standard light
map in order to avoid the loading or streaming of both the used normal map
as well as coefficients for the H-basis. A light map corresponds to irradiance
values calculated for the geometric normal, which is defined in tangent space
as ~ng = (0, 0, 1) (θ = 0 in spherical coordinates), so the light map value is
actually E(~ng). If E is represented in the H-basis, we can see that only H1 and
H3 evaluate to a nonzero value ~ng, so only the corresponding two coefficients
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Figure 2.3. The original basis function H3 (left), and its replacement H3
mod (right). In

contrast to H3, H3
mod is always 0 for ~ng = (0, 0, 1).

are required. But this is still less efficient than standard light mapping, which
requires only one coefficient (i.e., texture). Thus, using the H-basis, we have to
load twice the amount of data in order to arrive at the same result we would
achieve with light mapping. The question arises, can we combine both light
mapping and irradiance normal mapping in one framework?

First, we note that while the H-basis is an orthonormal basis, orthonormality
is not required for representing directional irradiance. Thus we can sacrifice this
property for the sake of another advantage. As we have seen, all but two of the
basis functions always evaluate to 0 when evaluated in the direction of ~ng, but
the optimal case would be to have only one contributing function in this case.
We can achieve this goal by redefining the basis function H3 as

H3
mod =

√
3

2π
(1− cos θ) =

√
3

2π
(1− z),

which is a function that is still linearly independent of the other basis functions,
and depends only on z (cos θ in spherical coordinates) like H3. However, this
function also evaluates to 0 in the direction of the geometric normal ~ng (see
Figure 2.3). Through this modification, the constant basis function H1 now
represents the traditional light map, while we still maintain the high accuracy of
the original H-basis when using all coefficients. Therefore we have constructed a
set of basis functions that extends the standard light map approach rather than
replacing it.

2.3.2 Expansion into the Modified H-Basis

In Section 2.2, we precomputed the directional irradiance in the spherical har-
monics basis as ESH (Equation (2.2)). Transforming ESH into the more efficient,
modified H-basis requires another precomputation step. We calculate a transfor-
mation matrix by projecting the spherical harmonics basis functions into the
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modified H-basis [Sloan 08], resulting in

THmod =



1√
2

0
√

3
2 0 0 0 3

4

√
5
2 0 0

0 1√
2

0 0 0
3
√

5
2

8 0 0 0

0 0 − 1√
2

0 0 0 − 1
2

√
15
2 0 0

0 0 0 1√
2

0 0 0
3
√

5
2

8 0

0 0 0 0 1√
2

0 0 0 0

0 0 0 0 0 0 0 0 1√
2


(2.3)

We arrive at the coefficient vector for the modified H-basis ~h = (h1, h2, .., h6)
by multiplying the serialized spherical harmonics coefficient vector ~s =
(s0

0, s
1
−1, s

1
0, .., s

2
2) with the matrix THmod. This matrix multiplication also auto-

matically extracts the light map into the coefficient for the constant basis function
h1.

2.3.3 Runtime Evaluation

Up to now, we have precomputed the directional irradiance at different surface
points and represented it in the modified H-basis defined in the tangent space
of the surface points. The necessary coefficients are transported either on a per-
vertex basis or using coefficient texture maps. In the trichromatic case, this
results in one color per vertex or one texture per coefficient. As the normal map
is also defined in tangent space, we simply need to evaluate the basis functions in
the direction of the normal map normal (~n) and weight them by the interpolated
coefficients

EHmod(~n) =
n∑
i=1

hiH
i
mod(~n)

for every surface point ~x. Please note that Hi
mod(~n) = Hi(~n) except for the mod-

ified basis function H3
mod. Similar to light mapping, the result can be modulated

by a lookup from an albedo texture and combined with additional shading effects,
such as specular lighting.

2.4 Implementation

In the previous sections, we derived all necessary expressions and equations to
precompute the data and evaluate it at runtime. In the following sections, we
will discuss practical issues that occur in an application of irradiance normal
mapping, such as proper generation, representation, and compression of the data.
In general, more sophisticated methods can be applied to compress and distribute
the coefficient maps [Chen and Liu 08, Sloan et al. 03], but this usually requires
the use of proprietary formats that are beyond this discussion.
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2.4.1 Precomputing Directional Irradiance

Solving the radiance distribution in a full scene is a complex task in itself and is
usually done using commercial renderers or game-engine-native baking software.
In our case, we use the Maya-based [Autodesk 10] rendering and baking plug-in,
Turtle 5.1 [Illuminate Labs 10]. Turtle can be customized to bake into any basis
through LUA scripting. A script implementing the discussed methods is included
in the demo and can also be executed with the trial version of Turtle 5.1.

Because we construct a physically correct representation of the directional
irradiance, we need to take into account that all calculations are performed in
linear color space. Therefore, irradiance normal mapping lends itself to be used
in a linear rendering pipeline using sRGB texture lookups and frame buffers, or
gamma-correct high dynamic range (HDR) tone mapping where necessary. If a
non-gamma-correct pipeline is used, the result simply needs to be exponentiated
with 1/2.2.

Concerning resolutions of coefficient textures, the exact same principles used
in standard light mapping apply, and the chosen resolution directly reflects the
spatial resolution of the lighting that can be represented.

2.4.2 Directional Irradiance Tangent Space

In almost all practical cases that use texture maps, a second set of texture co-
ordinates that create an unambiguous mapping of the surfaces is used to define
the light map, or in our case, coefficient textures. If the unambiguous texture
coordinates are used only for a light map, the orientation of the correspond-
ing tangent spaces spanned by the different texture coordinate sets is irrele-
vant for the light map evaluation. This changes with irradiance normal map-
ping because it may happen that both tangent spaces have different orientations,
and the normal map resides in a different tangent space than the directional
irradiance.

Fortunately, both texture coordinate sets share the same vertices and geomet-
ric normals, as well as interpolation in the rendering pipeline. By simply using
the tangent and bitangent of the normal map tangent space in the directional ir-
radiance texture coordinates during the precomputation, a tangent space for the
directional irradiance texture coordinates is constructed that is correctly oriented
with the normal- and albedo-map tangent space.

Effectively, the directional irradiance texture coordinate set is used only to
define the surface points where it is calculated and stored, while the normal map
tangent space defines the tangent and bitangent for both spaces, resulting in a
correctly aligned irradiance signal relative to the normal map. Turtle provides
the option to use the (bi)tangent of another texture coordinate set in its baking
menu.
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Since both tangent spaces are aligned, when evaluating the directional irradi-
ance at runtime, we need neither the normals nor the (bi)tangents of any tangent
space but solely the texture coordinate sets to define the texture lookups.

2.4.3 Texture Normalization and Range Compression

The output of the precomputations are floating point values which, similar to
spherical harmonics, can also be negative. Though we could use floating point
texture formats to represent the sign and full dynamic range of the directional
irradiance, this option is prohibitively expensive in most cases, though it leads to
the best possible output.

To transport the coefficient textures efficiently, we treat the map containing
h1, which is also the light map, differently, because it can never get negative,
in contrast to the other coefficients. Compared to standard light mapping, we
cannot allow h1 and the other coefficient maps to oversaturate, since this would
lead to color-shifting artifacts. To avoid oversaturation, we can simply choose the
lighting so that h1 stays within the range [0..1], or clamp the calculated radiance
to this range before the spherical harmonics expansion in order to transport h1

with an 8-bit texture.
Additionally, because h1 is a light map, we change the color space from linear

to sRGB by exponentiation with 1/2.2 to avoid quantization artifacts associated
with an 8-bit linear representation. As with standard texture maps, we have to
interpret the texture as sRGB data when evaluating it at runtime.

Figure 2.4. A set of coefficient textures. The coefficient h1 is the standard light map.
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for each s u r f a c e po int do {

c o l o r SHc [ 9 ] //3 bands S p h e r i c a l Harmonics c o e f f i c i e n t s

//Monte−Carlo−I n t e g r a t i o n in tangent space over
// the hemisphere to p r o j e c t i n to SH [ ] b a s i s f u n c t i o n s
for each rad iance sample L( d i r e c t i o n ) in N do {

for each SHc do {
SHc [ ] += L( d i r e c t i o n )∗SH [ ] ( d i r e c t i o n )

}
}
SHc [ ] = (2∗PI/N)∗SHc [ ]

// D i f f u s e convo lut ion
SHc [ 0 ] = SHc [ 0 ]
SHc [ 1 , 2 , 3 ] = 2 . 0/3 . 0∗SHc [ 2 , 3 , 4 ]
SHc [ 4 , 5 , 6 , 7 , 8 ] = 1 . 0/4 . 0∗SHc [ 4 , 5 , 6 , 7 , 8 ]

// Pro j e c t i on in to modi f i ed H−b a s i s
c o l o r modHc [ 6 ] // modi f i ed H−b a s i s c o e f f i c i e n t s

// Transform matrix
for each c o l o r in modHc [ ] do {

modHc [ 0 ] = 0.70711∗SHc [0 ]+1 .2247∗SHc [2 ]+1 .1859∗SHc [ 6 ]
modHc [ 1 ] = 0.70711∗SHc [1 ]+0 .59293∗SHc [ 5 ]
modHc [ 2 ] = −0.70711∗SHc [2 ]−1.3693∗SHc [ 6 ]
modHc [ 3 ] = 0.70711∗SHc [3 ]+0 .59293∗SHc [ 7 ]
modHc [ 4 ] = 0.70711∗SHc [ 4 ]
modHc [ 5 ] = 0.70711∗SHc [ 8 ]

}

// Convert f i r s t c o e f f i c i e n t to sRGB
modHc [ 0 ] = pow(modHc [ 0 ] , 1 / 2 . 2 )

//Range compress r e s t with g l o b a l f a c t o r o f 0 .75
for each modHc [ ] except modHc [ 0 ] do {

modHc [ ] = modHc [ ] + 0 . 7 5 / ( 2∗0 . 7 5 )
}

wr i t e modHc [ ]
}

Listing 2.1. Pseudo-code for calculating the coefficients for the modified H-basis includ-
ing the texture optimizations.
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Because the coefficients h2..6 can be negative, we perform a similar range
compression as done with normal maps, keeping them in linear color space. For a
data-independent range compression, if h1 is in the range [0..1], a rule of thumb
is that the other coefficients do not exceed the range of [− 3

4 ..
3
4 ], resulting in a

range compression

h′2..6 =
h2..6 + 3

4

2 · 3
4

.

The range compression factor of 3
4 may be changed according to the scene and

lighting conditions to further increase the accuracy of the coefficient representa-
tion over a range compression of [−1..1], as used in normal mapping. Figure 2.4
shows a set of coefficient textures resulting from the calculations shown. Pseu-
docode showing all precomputation calculations, including the described opti-
mizations, is given in Listing 2.1.

Optimal range compression. A much better way to represent the coefficients is to
perform a range compression on a per-shape, per-texture, or even per-channel
basis. Calculating both the minimum and maximum value (with negative min-
ima for h2...6) or the maximum absolute range (to replace the previously chosen
3
4 ) and normalizing the data can increase the quality of the representation signif-
icantly. This allows irradiance normal mapping within both standard and HDR
frameworks, using just 8-bit textures. Because directional irradiance is a con-
volved signal, it does not have the extreme values of radiance signals such as
HDR environment maps, so this optimized 8-bit representation may be sufficient.
Besides the exposition of the minimum/maximum or maximum absolute-range
value to the shader, there is almost no overhead since most of the coefficients
need to be transported range compressed anyway.

2.4.4 Texture Compression

In a manner similar to that used for light maps, the coefficient maps can be com-
pressed using DXT texture formats. Since we do not need any alpha information,
DXT1 compression can deliver a compression rate of 6 : 1. Because we have six
coefficient maps, a set of compressed maps therefore requires the same amount
of memory as an uncompressed light map. Since we effectively add up several
DXT compressed textures, compression artifacts may also add up to an intoler-
able level. These artifacts can be counteracted by choosing a higher-coefficient
map resolution or by modulating the result with an albedo map to obfuscate the
color shifts.

2.4.5 Levels of Detail and Streaming

As discussed in Section 2.3.1, the lowest LOD is formed by evaluating only the
constant term h1H

1
mod(~n). As a mid-range LOD, only the first four coefficients,
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Figure 2.5. Detail of a game scene without albedo texturing using four coefficients (left)
and for more accuracy six coefficients (right). The differences can be marginal, though
six coefficients show more detail where the normal map normal is perpendicular to the
geometric normal.

consisting of the constant and the linear basis functions, can be used. This
LOD uses the normal map, so the appearance of a material compared with the
lowest LOD may cause popping artifacts. A small distance-based region where
the middle LOD is blended with the lowest can suppress those artifacts, as can
be seen in the demo.

As highest LOD, a full evaluation using all six coefficient maps can be ap-
plied, though the difference between using four or six coefficients can be marginal,
and four coefficients may already deliver a perceptually accurate result (see Fig-
ure 2.5). Depending on the available resources, the highest LOD can therefore
be skipped if the quality of the middle LOD is sufficient. The reason for this
behavior is that the quadratic basis functions H5

mod and H6
mod mostly contribute

if the normal map normal is perpendicular to the geometric normal.

All levels of details are cumulative, so if textures are streamed, the next higher
LOD uses the same textures as the lower one. Also, due to the linearity of the
basis functions, the coefficient textures can be used simultaneously even if they
are available at different resolutions, switching to an appropriate LOD as soon as
some mip-level of a coefficient texture is available. The HLSL code for evaluat-
ing the modified H-basis is given in Listing 2.2, including range decompression,
gamma-correct color-space lookups, and levels of detail.

f l o a t 3 n = 2∗ tex2D ( normal , texUV)−1; // tangent space normal map

f l o a t 3 i r r =
0.39894∗ tex2D ( h1 , lightUV ) // i s sRGB lookup ( x ˆ2 .2 )
// stop here f o r lowest LOD ( lightmap )
+(2∗0.75∗ tex2D ( h2 , lightUV )−0.75)∗0.69099∗n . y // not sRGB lookup
+(2∗0.75∗ tex2D ( h3 , lightUV )−0.75)∗0.69099∗(1−n . z )
+(2∗0.75∗ tex2D ( h4 , lightUV )−0.75)∗0.69099∗n . x
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// stop here f o r middle LOD
+(2∗0.75∗ tex2D ( h5 , lightUV )−0.75)∗1.54509∗n . x∗n . y
+(2∗0.75∗ tex2D ( h6 , lightUV )−0.75)∗0.77255∗(n . x∗n . x−n . y∗n . y ) ;
// f u l l eva lua t i on

c o l o r = i r r ∗tex2D ( albedo , texUV) // i s sRGB lookup ( x ˆ2 .2 ) ;

// wr i t e c o l o r to sRGB frame b u f f e r ( x ˆ (1/2 . 2 ) )

Listing 2.2. HLSL code for evaluating the modified H-basis, including a modulation
with an albedo map. The different levels of detail are created by stopping the irradiance
calculation at the shown points.

2.5 Results

We have implemented the described approach in the graphics engine OGRE 1.6.5
[OGRE 10]. The accompanying web materials contain the binaries as well as the
full source code of the demo and the Turtle script to bake out coefficient maps
with the described optimizations. All levels of detail and texture formats can
be directly compared and viewed in both low-dynamic as well as high-dynamic
range rendering pipelines with or without albedo textures (see Figure 2.6).

This can act as a reference implementation since any game engine or applica-
tion that supports light mapping and shaders can be easily modified to support
irradiance normal mapping. Besides the precomputation, only several additional
textures need to be exposed to the shader compared to a single texture when
using light mapping. The shader calculations consist only of a few multiply-adds
for range decompression of the textures and to add up the contributions of the
basis functions. Both the data as well as the evaluation are lightweight and sim-
ple, and are therefore also applicable to devices and platforms that have only a
limited set of resources and calculation power.

2.6 Conclusion

We have derived a modification of the H-basis that allows formulating irradiance
normal mapping as an extension of light mapping rather than as a replacement
by containing the light map of the basis function coefficients. We discussed the
efficient calculation and representation of directional irradiance signals in the
modified H-basis using spherical harmonics as an intermediate representation for
efficient filtering. A description of the accompanying implementation was given,
showing the different levels of detail and optimizations for 8-bit textures, such as
optimal color spaces and range compression.
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Figure 2.6. A full scene without (top) and with (bottom) albedo mapping.
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2.7 Appendix A: Spherical Harmonics Basis Functions
without Condon-Shortley Phase

Y 0
0 =

1

2

√
1

π

Y 1
−1 =

1

2

√
3

π
sinφ sin θ =

1

2

√
3

π
y

Y 1
0 =

1

2

√
3

π
cos θ =

1

2

√
3

π
z

Y 1
1 =

1

2

√
3

π
cosφ sin θ =

1

2

√
3

π
x

Y 2
−2 =

1

2

√
15

π
sin 2φ sin2 θ =

1

2

√
15

π
xy

Y 2
−1 =

1

2

√
15

π
sinφ cos θ sin θ =

1

2

√
15

π
yz

Y 2
0 =

1

4

√
5

π
(3 cos2 θ − 1) =

1

4

√
5

π
(3z2 − 1)

Y 2
1 =

1

2

√
15

π
cosφ cos θ sin θ =

1

2

√
15

π
zx

Y 2
2 =

1

4

√
15

π
cos 2φ sin2 θ =

1

4

√
15

π
(x2 − y2)

Bibliography

[Autodesk 10] Autodesk. “Maya. Maya is a registered trademark or trademark of Au-
todesk, Inc. in the USA and other countries.” Available at http://www.autodesk.
com, 2010.

[Chen and Liu 08] Hao Chen and Xinguo Liu. “Lighting and Material of Halo 3.” In
SIGGRAPH ’08: ACM SIGGRAPH 2008 Classes, pp. 1–22. New York: ACM,
2008.

[Gautron et al. 04] Pascal Gautron, Jaroslav Krivánek, Sumanta N. Pattanaik, and
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III

Real-Time One-Bounce Indirect
Illumination and Shadows

using Ray Tracing
Holger Gruen

3.1 Overview

This chapter presents an easily implemented technique for real-time, one-bounce
indirect illumination with support for indirect shadows. Determining if dynamic
scene elements occlude some indirect light and thus cast indirect shadows is a
hard problem to solve. It amounts to being able to answer many point-to-point
or region-to-region visibility queries in real time. The method described in this
chapter separates the computation of the full one-bounce indirect illumination
solution into three phases. The first phase is based on reflective shadow maps
(RSM) [Dachsbacher and Stamminger 05] and is fully Direct3D 9 compliant. It
generates the one-bounce indirect lighting from a kernel of RSM texels without
considering blockers of indirect light. The second phase requires Direct3D 11–
capable hardware and dynamically creates a three-dimensional grid that contains
lists of triangles of the geometry that should act as blockers of indirect light. The
third phase traverses the 3D grid built in phase 2, tracing rays to calculate an
approximation of the indirect light from RSM texels that are blocked by geometry.
Finally, the result of the third phase is subtracted from the result of the first phase
to produce the full indirect illumination approximation.

3.2 Introduction

Real-time indirect illumination techniques for fully dynamic scenes are an active
research topic. There are a number of publications (e.g., [Ritschel et al. 09a,
Wyman and Nichols 09,Kapalanyan 09,Dachsbacher and Stamminger 06,Dachs-
bacher and Stamminger 05]) that describe methods for indirect one-bounce
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illumination for fully dynamic scenes, but they do not account for indirect shad-
ows. Only a handful of methods for indirect illumination have been described
to date that also include support for indirect shadows in the context of fully
dynamic scenes and interactive frame rates (e.g., [Ritschel et al. 08, Ritschel
et al. 09a,Ritschel et al. 09b,Kapalanyan and Dachsbacher 10,Yang et al. 09,Thi-
bieroz and Gruen 10]).

Direct3D 11-capable GPUs allow the concurrent construction of linked lists
using scattering writes and atomic operations (see [Yang et al. 09]). This ca-
pability is used as the basic building block for the solution to real-time indirect
shadowing described in this chapter. Linked lists open the door for a new class
of real-time algorithms to compute indirect shadows for fully dynamic scenes
using ray-triangle intersections. The basic idea behind these techniques is to
dynamically build data structures on the GPU that contain lists of triangles
that represent low level-of-detail (LOD) versions of potential blockers of indi-
rect light. Most game engines already rely on having low LOD versions of
game objects for rendering or simulation purposes. These low LOD objects
can readily be used as the approximate blockers of indirect light, as long as
the LOD is good enough to capture the full topology of objects for proper self-
shadowing.

The data structures containing lists of triangles are traversed using ray trac-
ing to detect if some amount of the indirect light is blocked. Although this
approach could probably be used to implement ray tracing of dynamic scenes
in general, the following discussion considers only the application of linked lists
in the context of the computation of indirect shadows and for low LOD-blocker
geometry.

[Thibieroz and Gruen 10] discuss some of the implementation details of
a proof-of-concept application for the indirect shadowing technique presented
in [Yang et al. 09]. However, the scene used to test the indirect illumination
solver did not contain any dynamic objects. Tests with more complicated dy-
namic scenes and rapidly changing lighting conditions revealed flickering artifacts
that are not acceptable for high-quality interactive applications. The algorithms
presented below address these issues and are able to deliver real-time frame rates
for more complicated dynamic scenes that include moving objects and changing
lighting conditions.

As described in the overview, the techniques explained below separate the
process of computing indirect illumination into three phases. The reason for
specifically separating the computation of indirect light and blocked indirect light
is that it makes it easier to generate the blocked indirect light at a different fidelity
or even at a different resolution than the indirect light. Furthermore, game
developers will find it easier to add just the indirect light part of the technique
if they can’t rely on Direct3D 11-capable hardware for indirect shadowing. The
three phases for computing the full one-bounce illumination approximation are
explained in detail in the following sections.
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3.3 Phase 1: Computing Indirect Illumination
without Indirect Shadows

The approach for one-bounce indirect illumination described in this chapter is
based on “Reflective Shadow Maps” [Dachsbacher and Stamminger 05].

One starts by rendering a G-buffer as seen from the eye and a reflective shadow
map (RSM) as seen from the light. RSMs use the observation that one-bounce
indirect illumination from a light source is caused by surfaces that are visible
from the light’s viewpoint.

As a RSM is also essentially a G-buffer of the scene as seen from the light,
each texel of the RSM can be treated as a virtual point light source (VPL). So
for each screen pixel of the camera-view G-buffer, one accumulates indirect light
from a kernel of RSM texels as shown in Figure 3.1.

Figure 3.1. Accumulating light from a kernel of RSM texels.

The contribution of each VPL is computed as shown in Figure 3.2. If possible
the approximate surface area that each RSM pixel represents should be rendered
to the RSM as well.

[Thibieroz and Gruen 10] use a well-known trick to achieve good quality and
real-time frame rates for a 20×20 kernel of VPLs. They employ a form of bilinear
filtering. This works nicely for a static scene and a low-resolution RSM. It turns
out though, that for dynamic scenes a much higher-resolution RSM (≥ 512×512)
and also a much bigger kernel of RSM pixels (≥ 80×80) are needed. For dynamic
scenes, the techniques described in [Thibieroz and Gruen 10] do not provide real-
time frame rates.

One way to reach good performance for a VPL kernel of, for example, 81 × 81
pixels is to not use a full kernel of VPLs at each screen pixel, but to use a dithered
pattern of VPLs that considers only one out of N × N VPLs. The samples for
each screen pixel are then offset by its 2D pixel position modulo N . This is
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Figure 3.2. Computing the contribution of a VPL.

similar in spirit to [Segovia et al. 09] but does not actually split the G-buffer into
sub-buffers for better memory coherence.

The shader in Listing 3.1 demonstrates how this can be implemented for a
pattern that only uses one out of 6 × 6 VPLs.

// t h i s func t i on eva lua t e s the weight ing f a c t o r
// o f a vpl
f loat evaluateVPLWeightingFac (RSM data d , // data f o r VPL

f l o a t 3 f3CPos , // pos o f pix
f l o a t 3 f4CN , // normal o f pix
)

{
// compute i n d i r e c t l i g h t c on t r i b u t i o n weight
f l o a t 3 f3D = d . f3Pos . xyz − f3CPos . xyz ;
f loat fLen = length ( f3D ) ;
f loat f InvLen = rcp ( fLen ) ;
f loat fDot1 = dot ( f3CN , f3D ) ;
f loat fDot2 = dot ( d . f3N , −f3D ) ;

return s a tu ra t e ( fInvLen ∗ f InvLen ) ∗
s a tu ra t e ( fDot1 ∗ f InvLen ) ∗
s a tu ra t e ( fDot2 ∗ f InvLen ) ;

}

// t h i s func t i on computes the i n d i r e c t l i g h t from a ke rne l o f
// VPLs i n s i d e the RSM.A r e p e t i t i v e s c r e en space pattern i s used
// to do i n t e r l e a v e d shading to reduce the number
// o f samples to look at
f l o a t 3 computeIndi rectL ight (

f l o a t 2 tc , // RSM cords o f g−bug pix
in t2 i2Of f , // ke rne l s t a r t o f f s e t
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f l o a t 3 f3CPos , // g−buf pix pos
f l o a t 3 f3CN // g−buf pix normal )

{
f l o a t 3 f3 IL = ( 0 . 0 f ) . xxx ; // i n i t i n d i r e c t i l l u m i n a t i o n

// loop over VPL ke rne l
for ( f loat row = −LFS ; row <= LFS ; row += 6.0 f )
{

for ( f loat c o l = −LFS ; c o l <= LFS ; c o l += 6 .0 f )
{

// unpack RSM g−b u f f e r data f o r VPL
RSM data d = LoadRSMData( tc , i2Of f , row , c o l ) ;

// accumulate weighted i n d i r e c t l i g h t
f3 IL += d . f3Col ∗

evaluateVPLWeightingFac ( d , f3CPos , f3CN ) ∗
d . Pixe lArea ;

}
}

return f 3 IL ;
}

// i n d i r e c t l i g h t i s computed f o r a h a l f width/ h a l f he ight
// image
f l o a t 4 PS RenderIndi rectLight ( PS SIMPLE INPUT I ) : SV TARGET
{

// compute s c r e en pos f o r RT that i s 2∗w, 2∗h
in t3 tc = in t3 ( i n t2 ( I . vPos . xy ) << 1 , 0 ) ;

// s t a r t o f f s e t o f the VPL ke rne l r epea t s every 6x6 p i x e l s
i n t2 i 2O f f = ( in t2 ( I . vPos . xy ) % (0 x5 ) . xx ) ;

// load g b u f f e r data at the cur rent p i x e l
GBuf data d = LoadGBufData ( tc ) ;

// trans form world space pos to rsm texture space
f l o a t 2 r t c = transform2RSMSpace ( d . f3CPos ) ;

// compute i n d i r e c t l i g h t
f l o a t 3 f3 IL = computeIndi rectL ight ( rtc , i2Of f ,

d . f3CPos , d . f3CN ) ;

return f l o a t 4 ( f3IL , 0 . 0 f ) ;
}

Listing 3.1. Accumulating indirect light over a dithered kernel of VPLs.

Note that the shader assumes that the indirect light is computed at a resolu-
tion that is half as high and half as wide as the screen resolution.

As the dithered result from Listing 3.1 is not smooth, a bilateral blurring step
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Figure 3.3. Demo scene without indirect illumination.

Figure 3.4. Demo scene with indirect illumination.
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(see e.g., [Tomasi and Manduchi 98]) is performed and then the image is sampled
up to the full-screen resolution using bilateral upsampling [Sloan et al. 09]. Both
bilateral filter operations use the differences in normal and light space-depth
between a central G-buffer pixel and samples in the filter footprint.

Figures 3.3 and 3.4 show screenshots of a demo implementing the algorithm
described above. The demo uses a 512× 512 RSM and a dithered 81×81 kernel
of VPLs. The frame rate of the demo is usually above 250 frames per seconds
on an AMD HD5970 at 1280×800, which shows that the technique works fast
enough to be used in interactive applications and computer games.

3.4 Phase 2: Constructing a 3D Grid of Blockers

In order to compute indirect shadows in the context of the RSM-based indirect
illumination described above, one ideally needs to find a way to detect which
VPLs can really be seen from a point in space and which are occluded by blocker
geometry. Conceptually, the most straightforward way to detect occluding ge-
ometry is to trace rays from the position of a G-buffer pixel to the VPLs in the
RSM.

As this has to work for arbitrary and ideally dynamic scenes a method needs
to be found to quickly build a data structure that allows for fast ray tracing
of these scenes. A simple solution to this problem is to dynamically update a
3D grid with the relevant blocker geometry (see e.g., [Thibieroz and Gruen 10]).
Similar in spirit, a 3D grid containing a list of blocker triangles per cell can be
constructed on Direct3D 11 hardware using a scattering compute shader. [Yang
et al. 09] describes how to concurrently build linked lists on a GPU, and the exact
same principles are used to generate a 3D grid with a list of triangles in each grid
cell. Please note that only the triangles of a very low LOD representation of
blocker objects need to be added to the 3D grid. Usually even complex blocker
objects can be approximated sufficiently with only a few hundred triangles in
order to generate reasonable indirect shadows.

A compute shader is used to directly pull triangle data from the index and
vertex buffers of the blocker objects and to perform a rough and conservative
3D rasterization of several hundred blocker triangles in parallel. Each triangle is
added to the list of triangles of each grid cell it touches. This process is depicted in
Figure 3.5 and is run every frame to captures any change in position, orientation,
or animation pose of the blocker geometry.

The simplest rasterization loop that can be implemented is to add a blocker
triangle to all cells its bounding box touches. As intersection tests do carry
out full ray-triangle intersections, this overly conservative rasterization doesn’t
create any false occlusion and will work well if the blocker triangles are not a lot
larger than a cell of the 3D grid. As soon as triangles get more than twice as
big as the grid cells, this form of rasterization becomes inefficient. Similarly, the
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Figure 3.5. Rasterizing blocker triangles into a 3D grid.

effectiveness of the grid for reducing the number of ray-triangle intersections is
reduced if blocker triangles are a lot smaller than the cells of the grid.

The following compute shader implements the simple rasterization just de-
scribed.

//
// Add t r i a n g l e s de f ined by an index and a ver tex b u f f e r i n to
// the l i nked l i s t o f each 3D gr id c e l l they touch
//
// Note : This i s a s i m p l i f i e d 3D r a s t e r i z a t i o n loop as i t
// touches a l l g r i d c e l l s that are touched by the bounding box
// o f the t r i a n g l e and adds the t r i a n g l e to the l i s t o f a l l
// these g r id c e l l s
//
[ numthreads ( GROUPSIZE, 1 , 1 ) ]
void CS AddTrisToGrid ( u int3 Gid : SV GroupID ,

u int3 GTid : SV GroupThreadID ,
u int GI : SV GroupIndex )

{
// compute o f f s e t i n to index b u f f e r from the thread and
// group i d s
u int uOf f s e t = GROUPSIZE ∗ Gid . y + GTid . x ;
u int3 i n d i c e s ;
L inkedTriang le t ;
u int3 s ta r t , stop ;

// only proce s s v a l i d i n d i c e s
i f ( uOf f s e t < g IndexCount ) {

// add s t a r t i n d e x to the o f f s e t
uOf f s e t += g Star t IndexLocat ion ;

// f e t c h three i n d i c e s f o r t r i a n g l e
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I n d i c e s = f e t c h I n d i c e s ( uOf f s e t ) ;

// add base ver tex l o c a t i o n
i n d i c e s += g BaseVertexLocat ion . xxx ;

// compute o f f s e t f o r v e r t i c e s i n to the ver tex b u f f e r
u int3 v o f f s e t = i n d i c e s ∗ g Ver t exSt r ide . xxx +

g VertexStar t . xxx ;

// load ver tex data o f t r i a n g l e−−prepare t r i a n g l e
f l o a t 3 v0 = g b u f V e r t i c e s . Load ( v o f f s e t . x ) . xyz ;
f l o a t 3 v1 = g b u f V e r t i c e s . Load ( v o f f s e t . y ) . xyz ;
f l o a t 3 v2 = g b u f V e r t i c e s . Load ( v o f f s e t . z ) . xyz ;

// now c a l l e . g . , sk inn ing code f o r the v e r t i c e s
// i f the v e r t i c e s belong to a skinned ob j e c t

t . v0 = v0 ;
t . edge1 = v1 − t . v0 ;
t . edge2 = v2 − t . v0 ;

// compute bounding box o f t r i and s t a r t and
// stop address f o r r a s t e r i z a t i o n
computeStartStop ( s ta r t , stop , v0 , v1 , v2 ) ;

// i t e r a t e over c e l l s
for ( u int z i = s t a r t . z ; z i <= stop . z ; ++z i ) {

for ( u int y i = s t a r t . y ; y i <= stop . y ; ++yi ) {
for ( u int x i = s t a r t . x ; x i <= stop . x ; ++xi ) {

// a l l o c new o f f s e t
u int newOffset = LinkedTriGr idBuf fer .

IncrementCounter ( ) ;
u int o l d O f f s e t ;

// update g r id o f f s e t b u f f e r
S t a r t O f f s e t B u f f e r .
Inter lockedExchange ( 4 ∗ ( x i + y i ∗

CELLS XYZ + z i ∗
CELLS XYZ ∗ CELLS XYZ ) ,
newOffset , o l d O f f s e t ) ;

// s t o r e o ld o f f s e t
l t . prev = o l d O f f s e t ;

// add t r i a n g l e to the g r id
LinkedTriGr idBuf fer [ newOffset ] = t ;

} } } } }

Listing 3.2. Rasterizing blocker triangles into a 3D grid of lists.
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3.5 Phase 3: Computing the Blocked Portion
of Indirect Light

Now that the grid has been created, it can be used to detect which VPLs are
occluded and which are not occluded. In a separate rendering pass, the light from
all blocked VPLs is accumulated. The reason for not interleaving this pass with
phase 1 is that this pass generates more flexibility in terms of how many rays are
shot for detecting blocked indirect light. Shooting rays is still a costly operation
and one typically wants to shoot only few.

Listing 3.3 shows the shader code for accumulating blocked indirect light for
a half-width, half-height buffer and a dithered 13 × 13 kernel of indirect light.
As an optimization, rays are shot only if there is some amount of indirect light
at the current pixel.

Note that the demo implementation uses an adapted version of the fast ray-
triangle intersection algorithm presented in [Möller and Trumbore 97].

//
// This func t i on walks the 3D gr id to check f o r i n t e r s e c t i o n s o f
// t r i a n g l e s and the g iven edge
//
f loat traceRayLinkedTris ( f l o a t 3 f3OrgP , f l o a t 3 f3D )
{

f loat f I n t e r s e c t i o n = ( 0 . 0 f ) , f I , fLen ;
f l o a t 3 f3Inc , f3P ;

// setup the march along the ray trough the g r id c e l l s
setupRay ( fLen , f3P , f 3 I n c ) ;

// do the march
for ( f I = 0 .0 f ;

f I <= fLen ;
f I += 1 .0 f , f3P += f 3 In c )

{
// c h e c k f o r i n t e r s e c t i o n walks through the l i s t
// o f t r i s in the cur rent g r id c e l l and computes
// ray t r i a n g l e s i n t e r s e c t i o n s
i f ( c h e c k f o r i n t e r s e c t i o n ( in t3 ( f3P ) , f3P ,

f3OrgP , f3D ) != 0 .0 f ) {
f I n t e r s e c t i o n = 1 .0 f ;
break ;

}
}

return f I n t e r s e c t i o n ;
}

f l o a t 3 computeBlockedIndirectLight ( f l o a t 2 tc , f l o a t 2 fc ,
i n t2 i2Of f , f l o a t 3 f3CPos ,
f l o a t 3 f3CN )
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{
f l o a t 3 f3 IL = ( 0 . 0 f ) . xxx ;

// loop over VPL ke rne l
for ( f loat row = −SFS ; row <= SFS ; row += 6.0 f ) {

for ( f loat c o l = −SFS ; c o l <= SFS ; c o l += 6.0 f ) {
// unpack RSM g−b u f f e r data f o r VPL
RSM data d = LoadRSMData( adr ) ;

// compute weight ing f a c t o r f o r VPL
f loat f = evaluateVPLWeightingFac ( d , f3CPos , f3CN ) ;

i f ( f > 0 .0 f ) {
f 3 IL += traceRayLinkedTris ( f3CPos . xyz , f3D )∗

∗ d . f3Col ∗ f ;

}
}

}

// ampl i fy the accumulated blocked i n d i r e c t l i g h t a b i t
// to make i n d i r e c t shadows more prominent
return 16 .0 f ∗ f 3 IL ;

}

// render s the accumulated c o l o r o f b locked l i g h t us ing a 3D
// gr id o f t r i a n g l e l i s t s to de t e c t occ luded VPLs
f l o a t 4
PS RenderBlockedIndirectLightLinkedTris ( PS SIMPLE INPUT I ) :
SV TARGET
{

i n t 3 tc = in t3 ( i n t2 ( I . vPos . xy ) << 1 , 0 ) ;
i n t2 i 2O f f = ( in t2 ( I . vPos . xy ) % (0 x5 ) . xx ) ;
Gbuf data d = LoadGBufData ( tc ) ;

// trans form world space pos to rsm texture space
f l o a t 2 r t c = transform2RSMSpace ( d . f3CPos ) ;

f l o a t 3 f 3 IS = 0 .0 f ;
f l o a t 3 f3 IL = g t x I n d i r e c t L i g h t . SampleLevel (

g SamplePointClamp , I . vTex . xy , 0 ) . xyz ;

// i s any i n d i r e c t l i g h t ( phase 1) reach ing t h i s p i x e l
[ branch ] i f ( dot ( f3IL , f3 IL ) > 0 .0 f )

f 3 IS = computeBlockedIndirectLight ( rtc , i2Of f ,
d . f3CPos , d . f3CN ) ;

return f l o a t 4 ( f3IS , 0 . 0 f ) ;
}

Listing 3.3. Accumulating blocked indirect light.
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Figure 3.6. Demo scene with indirect illumination and indirect shadows.

Again, the dithered, blocked indirect light is blurred and upsampled using
a bilateral filter. After that, the blocked indirect light is subtracted from the
indirect light, and the result is clamped to make sure that indirect illumination
doesn’t become negative. This generates the full indirect illumination approxi-
mation with indirect shadowing. Finally, indirect illumination is combined with
direct illumination and shadowing to produce the final image as shown in Fig-
ure 3.6.

The performance for rendering the full one-bounce indirect illumination, in-
cluding indirect shadows with tracing nine rays per pixel is at 70–110 fps for a
32×32×32 grid and a resolution of 1280×800 on an AMD HD5970. The number
of blocker triangles that get inserted into the 3D grid in every frame is in the
order of 6000.

3.6 Future Work

There are several future directions for improving the techniques described in this
chapter.

1. The use of a hierarchical grid for speeding up ray-triangle intersections.

2. The insertion of references to a hierarchical structure, for example., a kd-
tree (encoded in a buffer) into the lists of each grid cell. This would allow
for faster ray-tracing of rigid or static scene elements.
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3. The use of a binary 3D grid that could be generated by a scattering pixel
shader and the use of the SM5 instruction for an atomic binary or opera-
tion (InterlockeOr()). Early experiments show that this is feasible and
fast, but the resulting blocked indirect light is not stable for low enough
resolutions of the binary 3D grid.

4. Instead of computing the accumulated contribution of blocked VPLs for
each pixel, it would be possible to compute a spherical harmonics projection
of the blocked indirect light of a distribution of VPLs at the center of each
cell of the 3D grid. For a given screen pixel one could reconstruct a smooth
approximation of the blocked indirect light from the tri-linear interpolation
of eight sets of the spherical harmonics coefficient of the eight relevant grid
cells.
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III

Real-Time Approximation of
Light Transport in Translucent

Homogenous Media
Colin Barré-Brisebois and Marc Bouchard

4.1 Introduction

When reproducing visual elements found in nature, it is crucial to have a mathe-
matical theory that models real-world light transport. In real-time graphics, the
interaction of light and matter is often reduced to local reflection described by
bidirectional reflectance distribution functions (BRDFs), for example, describing
reflectance at the surface of opaque objects [Kurt 09]. In nature, however, many

Figure 4.1. A partially translucent statue of Athena.
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Figure 4.2. The final result.

objects are (partly) translucent: light transport also happens within the surface
(as shown in Figure 4.1).

To simulate light transport inside objects in real time, developers rely on
various complex shading models and algorithms, (e.g., to replicate the intricate
subsurface scattering found in human skin [d’Eon 09,Hable 09].) Conversely, this
article presents a fast real-time approximation of light transport in translucent
homogeneous media, which can be easily implemented on programmable graphics
hardware (PC, as well as video game consoles). In addition, the technique scales
well on fixed and semi-fixed pipeline systems, it is artist friendly, and it provides
results that fool the eyes of most users of real-time graphics products. This
technique’s simplicity also permits fast iterations, a key criteria for achieving
visual success and quality in the competitive video game industry. We discuss
the developmental challenge, its origins, and how it was resolved through an
initial and basic implementation. We then present several scalable variations, or
improvements to the original technique, all of which enhance the final result (see
Figure 4.2).

4.2 In Search of Translucency

First and foremost, the technique we present was originally implemented in the
graphics research pursued for EA Montréal’s Spore Hero video game. In this
game, we wanted to create simple-yet-eerie, translucent, mushroom-like worlds.
Our materials were inspired by the statue in Figure 4.1 and had to demonstrate
convincing diffuse translucency, whereby the amount of light that traveled inside
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Figure 4.3. Lighting vectors.

the shape was influenced by the varying thickness of that same shape. In mathe-
matical terms, this means that the amount of light that penetrates the surface of
the shape (but also the amount of light exiting at the opposite hemisphere to the
BRDF) can be defined with a bidirectional transmittance distribution function
(BTDF). Our current method attempts to phenomenologically replicate inner-
surface diffusion, in which light traveling inside the object is scattered based on
material properties. This phenomena can be described using a bidirectional sur-
face scattering reflectance distribution function (BSSRDF) [Jensen 01]. With this
technique, we wanted to approximate the BSSRDF using minimal available GPU
resources. After careful analysis, we discovered that using distance-attenuated
regular diffuse lighting, combined with the distance-attenuated dot product of
the view vector and an inverted light vector, would simulate basic light transport
inside an object (see Figure 4.3).

Through this research, executed in prototype levels not included with the
final product, we discovered that the technique worked well for numerous simple
shapes. However, the technique did not take thickness into account and we had
to return to the drawing board, seeking a solution that was more effective and
complete.

4.3 The Technique: The Way Out is Through

Using the aforementioned math, it is possible to create a rough simulation of
highly scattering material that works well for very simple objects, such as spheres
and cubes, since most lights used at runtime show radial diffusion properties. In
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Figure 4.4. Local thickness for Hebe.

cases with more complex models, it is necessary to be aware of the thickness,
or rather, the distance traveled by the light inside the shape, in order to prop-
erly compute light transport inside that same shape. As seen in [Dachsbacher
03,Green 04,Ki 09], this thickness can be computed using depth maps. The refer-
ential, as determined by the depth map, allows us to easily compute the distance
traveled by the light from the light source ∆dLight, through the shape ∆dShape,
and to the pixel ∆dViewer (see Figure 4.4).

Despite the fact that this method provides quite convincing results, success-
fully creating a technique that achieves a similar effect on current gaming plat-
forms, without relying on depth maps would be beneficial. It would eliminate the
need for an additional depth rendering pass, wherein the geometry is submitted
a second time (and possibly a third time, in cases where it was already submitted
to a global shadowing solution). The method is acceptable in cases where the
object rendered with translucency uses its own depth map for shadows because
its memory and performance cost are already amortized. Our team wanted to
expand upon this idea to find an alternative, seeking a technique that would scale
well on a variety of programmable and semifixed pipeline graphics hardware with-
out relying on depth maps. In doing so, we wanted to test the limits and avoid
detrimental changes to the runtime. To accomplish this task, our team needed to
find the means to establish object thickness, or rather, areas on the object that
should be translucent or opaque: we define this information as local thickness.
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4.3.1 Variation 1: Computing Local Thickness

As seen in [Sousa 08], it is possible for artists to define a texture in which the
values are approximately representative of the mesh’s thickness; with dark values
for opaque, and bright values for translucent. Effectively demonstrated in Crysis,
this method works well for semiflat surfaces such as tree leaves. Unfortunately, in
cases where the environment has numerous translucent objects, shaped in various
forms, the process of defining which areas on the shape are translucent is a tedious
manual process.

To streamline this process we rely on a normal-inverted and color-inverted
computation of ambient occlusion (AO), which can be done offline and stored
in a texture using your favorite modeling software. Since ambient occlusion de-
termines how much environmental light arrives at a surface point, we use this
information for the inside of the shape. Through inverting the surface normal
during the computation, it is possible to find an approximate result that tells us
how much light traveling inside the homogenous media would become occluded
at the point where it exits the shape.

The result is a texture with inverted colors that depict two types of area,
translucent areas in white and opaque areas in black (see Figure 4.5). Con-
versely, in cases where you have a good level of tessellation, it is possible to store
this information in the vertex color. Finally, we can use this information to im-
prove the computation of light transport, where the final result lies between real

Figure 4.5. Local thickness for Hebe.
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subsurface scattering and distance-based attenuation. The inverted AO gives a
feeling of scattering, (i.e., collecting light), while using a single distance value for
distance-based attenuation.

// fL ightAttenuat ion == Light at t enuat ion from d i r e c t l i g h t i n g
// cBRDF == Computed c o l o r f o r BRDF l i g h t i n g
// c D i f f u s e == Light D i f f u s e Color
// cTrans lucent == Light Translucency Color

// Compute the BSSRDF
f loat fLTDot = pow( saturate (dot (vCamera , vLight ) ) , fLTPower ) ;
f loat fLT = fLightAttenuat ion ∗ tex2D( texInvAO , input .vUV) ;
fLT += fLTDot ∗ fL ightAttenuat ion ∗ fLTScale ;

// Compute the f i n a l c o l o r f o r the BSSRDF ( t rans lucency )
f loat3 cBSSRDF = lerp ( cD i f fu s e , cTranslucent , fLT ) ∗ fLT ;

// The f i n a l r e s u l t
return float4 (cBRDF + cBSSRDF, 1 .0 f ) ;

Listing 4.1. The light transfer in HLSL.

4.3.2 Variation 2: Screen-Space Thickness

In cases where you can afford the extra computation, and still be below the cost
of using depth maps, an alternative improvement provided by this new technique
relies on a screen-space representation of thickness. As seen in [Oat 08], per-pixel
thickness can be easily approximated in an additional pass using a blend-mode
trick. Once this alternative to local thickness is computed, it is possible to scale
the simplified light-transport result based on the angle of the camera to the light
source.

This alternative must be used wisely because it is not valid for every scenario.
Given that the information originates from the camera, rather than from the
light, it is possible to know only how thick the foreground surface is. Nonetheless,
this added information allows us to improve the final result and can be used in
conjunction with the local thickness.

There might be game scenarios in which you could use screen-space thickness
as the sole means of achieving convincing translucency, and in which there is
no need for precomputed local thickness. For example, one could imagine a
scenario in which there is a light far in the distance (i.e., in a tunnel) and there
are numerous objects that rotate and flow toward the viewer. This scenario is
one example where screen-space thickness can provide positive results, especially
when applied to arbitrary and animated shapes. As shown in Figure 4.6, screen-
space thickness is also effective in cases where there is a bright hemispheric light
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Figure 4.6. Using screen-space thickness only.

surrounding the objects. Unfortunately, a still image does not do this variation
justice, therefore we recommend viewing the demo on the website..

4.3.3 Variation 3: Improving Local Surface Variation

As a further enhancement, one can distort the inverted light vector (see Fig-
ure 4.3) based on the surface normal to improve the final result by showing local
surface variation. This improvement can also be made using an additional noisy
normal map that is customized for the surface type. A single sample is enough,
however, if more samples are provided, the final result will be improved. This
approach also works quite well if the object’s surface is porous (as shown in
Figure 4.2).

An example of the aforementioned variation is provided on the accompanying
CD. Obviously, it is a quick alternative which does not measure up to the methods
of [d’Eon 09, Hable 09] when simulating realistic human skin. However, it can
certainly be used as a ready substitute for fast subsurface scattering on objects
such as the ears and nose, various animated and static environmental shapes,
and even cartoon/nonhuman characters. Further, the image shown in Figure 4.7
relies only on the distortion, not on precomputed local thickness. Combined, both
variations significantly increase the quality of the final result (see Figure 4.9).

4.4 Performance

The performance numbers for all techniques illustrated in this paper are given
in Table 4.1. Timings are given in frames-per-second (FPS) and the complex-
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Figure 4.7. Without (left) and with (right) normal distortion.

ity is presented in terms of added arithmetic logic unit (ALU) and texture unit
(TEX) shader instructions. These benchmarks were established using an NVIDIA
GeForce GTX260, at a resolution of 1280 × 720, in a scene comprised of several
instances of our Hebe statue, with approximately 200,000 triangles.

Overall, these numbers illustrate that our technique approximates light trans-
port inside translucent homogenous media at a very reasonable cost. This method
also provides significant benefits in cases when developers want a quick impres-
sion of subsurface scattering. In fact, the technique requires only 17 additional
instructions to achieve a significant and convincing effect. Finally, if the option is
financially viable, adding screen-space thickness to the computation will further
improve the final result. The cost of this computation can be managed through
the use of a quarter-sized buffer, with filtering in order to prevent artifacts at
the boundaries. Realistically, one could rely on a lightweight separable-Gaussian

Technique FPS Instructions
(ALU+TEX)

Without Translucency 1100 -

Variation 1: Translucency + Local Thickness 1030 17 (16 + 1)

Variation 2: Translucency + Screen-Space Thick-
ness

740 20 (17 + 3)

Variation 3: Translucency + Normal Distortion 1030 19 (18 + 1)

Table 4.1. Performance numbers.
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blur, and even use a bilateral filter when up-sampling. A blurred result would
definitely complement our diffuse computation.

4.5 Discussion

In the following section we discuss various elements and potential concerns that
were not forgotten but were put aside during the development of this technique
and its variations. These concerns will now be addressed.

4.5.1 Caveat? Best-Case Scenario?

Because this technique is an approximation, some specific instances will not yield
optimal results. Figure 4.8 shows an example in which light travels in and out of
the concave hull at point A, casting a shadow on point B. Though it is possible
to generate local thickness that is aware of the concavity (by changing the param-
eters used for the ambient occlusion computation in Section 4.3.1), this has to be
minimized when demonstrating visually convincing examples of diffuse translu-
cency, as is effectively represented in Figure 4.5 and Figure 4.9. Our technique
works more effectively with convex hulls or hulls with minimal concavity.

Figure 4.8. Concave hull.

4.5.2 Deferred Rendering?

Rendering engines are evolving toward a deferred shading model. Thus, this
technique must be adapted accordingly. Given that deferred implementations
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differ from one project to the next, it is pertinent to provide general hints re-
garding the adaptation of the technique within a deferred context. These hints
are an adequate starting point, leaving clear room for improvement. An example
implementation is provided in the web materials.

The implementation is dependent on available space on the G-buffer. In
cases where a single channel is available, the local thickness can be stored as a
grayscale value: this is done in the same way that it is stored for specular maps.
Subsequently, the light and view-dependent part of the BSSRDF computation
can be processed at the same time as the deferred lighting pass. The final result
can then be combined with the scene at the same time that the diffuse lighting
is computed. In cases where there is no space left for storing the local thickness,
this technique will have to be treated in an additional pass and the translucent
objects will have to be rendered once again. Fortunately, the z-buffer will already
be full and this minimizes the number of affected pixels.

4.6 Conclusion

This article illustrates an artist-friendly, fast and scalable real-time approximation
of light transport in translucent homogenous media. Our technique allows devel-
opers to improve their games’ visuals by simulating translucency with reasonable
and scalable impact on the runtime. Providing such convincing results through

Figure 4.9. The final result, with Hebe.
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simple means is essential in the development of triple-A games. We hope that
this technique will inspire developers in the continuous effort to improve games
by promoting the development of new techniques that carefully blend art and
technology. In the end, our objective is not to focus upon mathematical per-
fection, but to create convincing results that push the visual boundaries of the
gaming industry.

4.7 Demo

The web materials accompanying this book contain an implementation of our
technique and its variations in the form of an AMD RenderMonkey sample. HLSL
code is also provided in a text file and a short video demonstration of the technique
is included.
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III

Diffuse Global Illumination
with Temporally Coherent

Light Propagation Volumes
Anton Kaplanyan, Wolfgang Engel,

and Carsten Dachsbacher

5.1 Introduction

The elusive goal of real-time global illumination in games has been pursued for
more than a decade. The most often applied solution to this problem is to use
precomputed data in lightmaps (e.g., Unreal Engine 3) or precomputed radiance

Figure 5.1. Example of indirect lighting with Light Propagation Volumes in the up-
coming blockbuster Crysis 2.
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transfer (e.g., Halo 3 ). Both techniques increase the complexity and decrease the
efficiency of a game production pipeline and require an expensive infrastructure
(e.g., setting up a cloud for precomputation and incorporating the result into a
build process).

In this chapter we describe the light propagation volumes, a scalable real-time
technique that does not require a preprocess and storing additional data. The
basic idea is to use a lattice storing the light and the geometry in a scene. The
directional distribution of light is represented using low-order spherical harmon-
ics. The surfaces of the scene are sampled using reflective shadow maps and
this information is then used to initialize the lattice for both light propagation
and blocking. A data-parallel light propagation scheme allows us to quickly, and
plausibly, approximate low-frequency direct and indirect lighting including fuzzy
occlusion for indirect light. Our technique is capable of approximating indirect
illumination on a vast majority of existing GPUs and is battle-tested in the pro-
duction process of an AAA game. We also describe recent improvements to the
technique such as improved temporal and spatial coherence. These improvements
enabled us to achieve a time budget of 1 millisecond per frame on average on both
Microsoft Xbox 360 and Sony PlayStation 3 game consoles.1

5.2 Overview

The light propagation volume technique consists of four stages:

• At the first stage we render all directly lit surfaces of the scene into reflective
shadow maps [Dachsbacher and Stamminger 05] (see Figure 5.2).

• Next, a sparse 3D grid of radiance distributions is initialized with the surface
samples generated in the first pass (see Figure 5.3).

Figure 5.2. Reflective Shadow Maps store not only depth, but also information about
surfaces’ normals and reflected flux.

1Crysis 2, Halo 3, and CryENGINE 3 are trademarked. PlayStation 3, Microsoft Xbox 360,
Unreal Engine 3, and Microsoft DirectX are all registered trademarks.
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Figure 5.3. The basic steps of our method: surfaces causing one-bounce indirect illu-
mination are sampled using RSMs, next this information is used to initialize the light
propagation volumes where light is propagated, and finally this information is used to
light the surfaces in the scene.

• Light is propagated in the grid using an iterative propagation scheme.

• Lastly, the scene is illuminated using the resulting grid, similar to using
irradiance volumes [Tatarchuk 04].

Our light propagation volumes (LPV) technique works completely on the GPU
and has very modest GPU requirements.

5.3 Algorithm Detail Description

In this section we recapitulate the core algorithm presented in [Kaplanyan and
Dachsbacher 10] and emphasize several small, yet important, details. Besides the
main steps of the technique we will present an important extension: cascading
the reflective shadow maps. This extension allows our technique to be used in
large scenes while maintaining real time performance. We also describe important
general as well as platform-specific optimizations at the end of this section.

5.3.1 Reflective Shadow Maps

Reflective shadow maps (RSMs) are an extension to regular shadow maps and
store not only a depth buffer, but also a normal buffer and flux buffer (Figure 5.2).
It is a very fast method for sampling directly lit surfaces of a scene on the GPU,
and all pixels of such an RSM can be seen as virtual light sources that generate
the indirect illumination in a scene. This representation allows generating and
storing samples of a scene’s lit surfaces in a very efficient manner.

The size of an RSM should be chosen such that one surface sample (surfel)
represents an area that is much smaller than one cell of the LPV to provide
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Figure 5.4. A reflective shadow map captures the directly lit surfaces of the scene with
a regular sampling from the light’s origin.

sufficient detail in the lighting computation. We recommend an RSM size that is
four times larger than the number of elements along the diagonal of an LPV (e.g.,
for a LPV of 32× 32× 32, an RSM of at least 128× 128 size is recommended).

As in the original approach, we assume indirect lighting from diffuse surfaces
and store reflected flux in the RSM, which accounts for surface albedo as well
as incident lighting (i.e., effects such as a colored projected light can be used
as well).

Note that many techniques developed for shadow maps can be applied to
RSMs. For example, an RSM can be cascaded like cascaded shadow maps to
capture global illumination from a light source such as the sun, or it can be
stored in cube maps similar to which cube shadow maps for point light sources.
Figure 5.4 shows the surfels created from an RSM that is created for a directional
light source.

Temporally stable rasterization. Temporal flickering can occur when an RSM frus-
tum moves, and obviously becomes visible when the resolution of the RSM is
rather low and thus scene surfaces are sampled at a coarser level. A simple
solution to this problem is to move the frustum of the RSM with world-space
positions snapped to the size of one texel in world space. This leads to con-
sistently sampled points during rasterization and largely removes the sampling
problems [Dimitrov 07]. If this is not possible, e.g. for perspective projections,
then higher resolution RSMs are required for consistently sampling surfaces. Ka-
planyan et al. [Kaplanyan 09] proposed downsampling RSMs to reduce the num-
ber of surfels for the injection stage. However, additional experiments showed
that the downsampling if sometimes even slower than injecting the same number
of surfaces directly into the LPV.
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5.4 Injection Stage

The injection stage transforms the reflected flux of the surfels obtained from
the RSMs into an initial light distribution represented using spherical harmonics
(SH) stored into the LPV as spatial discretization. As we assume diffuse surfaces,
the reflected flux of each surfel (neglecting if spatial extend) can be represented
using a cosine lobe and thus using a low-order SH approximation. Note that
we store the energy as directional intensity distribution in the LPV as described
in [Kaplanyan and Dachsbacher 10].

The LPV is stored as a texture on the GPU and thus the SH approximations
of the surfels can be easily accumulated into the LPV using additive blending. At
this point the spatial discretization comes into play as the surfels’ positions are
snapped to the centers of LPV cells (see Figure 5.5). At the end of the injection
stage, each cell of the LPV represents the initial radiant intensity approximated
using spherical harmonics.

Figure 5.5. The reflected intensity distribution of a surfel obtained from an RSM is
approximated using SH and snapped to the center of the closest LPV cell.

Projecting into spherical harmonics. To represent the intensity distribution of a
surfel we use the first two bands of the spherical harmonics basis (i.e., four coeffi-
cients). This proved to be sufficient to represent the mostly low-frequency indirect
lighting in diffuse scenes (Figure 5.6). As previously mentioned, the outgoing in-
tensity distribution of each surfel is a (clamped) cosine lobe centered around its
surface normal that is projected into the SH basis. Given the normal vector of
the surfel, n, we can obtain the SH coefficients c = (c0, c1, c2, c3) as [Sloan 08]:

c0 =

√
π

2
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√
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√
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√
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Figure 5.6. Illustration of the approximation error with 4 SH coefficients and a coarse
lattice. Note that both the analytical result (green) and propagated result (red) are
represented as a final convolved irradiance.

These coefficients are scaled according to the corresponding world-space size and
reflected flux of the surfel, yielding four coefficients per color channel. In order
to simplify the following description, we show only one set of SH coefficients.

Offsetting surfels. As the LPV is a coarse grid, we have to take care when injecting
surfels, as their exact position inside a cell is no longer available after injection. If
a surfel’s normal points away from the cell’s center, its contribution should not be
added to this cell, but rather to the next cell, in order to avoid self-illumination
(see Figure 5.7). For this, we virtually move each VPL by half the cell-size in
the direction of its normal before determining the cell. Note that this shifting
of the surfels still does not guarantee completely avoiding self-illumination and
light bleeding, but largely removes artifacts from the injection stage.

Figure 5.7. Example of a VPL injection causing self-illumination of the thin geometry.
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5.4.1 Propagation

The propagation stage consists of several iterations, where every iteration repre-
sents one step of light propagation. The propagation stage has some similarity to
the SH discrete ordinate method [Chandrasekhar 50,Evans 98]. These techniques
are typically employed for light-propagation simulation in scattering media. Es-
sentially we use the same process; however, we use a different cell-to-cell prop-
agation scheme. The application of this method to light propagation through
vacuum instead of scattering media suffers from the fact that propagation direc-
tions are blurred out. Fortunately, our results show that this is an acceptable
artifact in many application scenarios.

Intensity propagation. The propagation consists of the following steps:

• The input for the first iteration step is the initial LPV obtained from the
injection stage. Each cell stores the intensity as an SH-vector and we prop-
agate the energy to the six neighbors along the axial directions.

• All subsequent propagation steps take the LPV from the previous iteration
as input and propagate as in the first iteration.

The main difference from SHDOM methods is the propagation scheme. In-
stead of transferring energy from a source cell to its 26 neighbor cells in a regular
grid, we propagate to its 6 neighbors only, thus reducing the memory footprint.
To preserve as much directional information as possible, we compute the transfer
to the faces of these neighbor cells and reproject the intensities to the cells’ cen-
ter (see Figure 5.8). This mimics, but is of course not identical to, the use of 30
unique propagation directions. Please see [Kaplanyan and Dachsbacher 10] for
the details. There are two ways to implement this propagation process: scatter-
ing and gathering light. The gathering scheme is more efficient in this case due
to its cache-friendliness.

Figure 5.8. Propagation from one source cell (center) to its neighbor cells. Note that
we compute the light propagation according to the intensity distribution I(ω) to all
yellow-tagged faces of the destination cells (blueish).
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Figure 5.9. Left: Light propagation from the source cell (gray) to the bottom face of
the destination cell (blueish). Right: during propagation we can account for occlusion
by looking up the blocking potential from the geometry volume.

When propagating the light from a source cell to one face of the destination
cell, we compute the incoming flux onto the face using the solid angle ∆ω of the
face and the central direction ωc of the propagation cone (see Figure 5.9). The
flux reaching the face is then computed as

Φf =
∆ω

4π
I(ωc),

where I(ωc) is the intensity of the source cell towards the center of face obtained
by evaluating the SH approximation. Here we assume that the intensity does not
vary over the solid angle of the face.

Reprojection. The flux incident on a face is then reprojected back into the in-
tensity distribution of the destination cell. The reprojection is accomplished by
creating a new virtual surfel at the destination cell’s center, pointing toward the
face and emitting exactly as much flux as the face received from the propaga-
tion (Φf ):

Φl =

∫
Ω

Φf 〈nl, ω〉dω =
Φf
π
.

Similar to the light injection stage, the corresponding clamped cosine lobe is
scaled by Φl and accumulated into SH coefficients of the destination cell. In
other words, we compute the incoming flux for each face of the destination cell
and transform it back into an intensity distribution.

Blocking for indirect shadows. Indirect shadows, i.e., the blocking of indirect light
due to scene geometry, can also be incorporated into the LPVs. In order to add
indirect shadows, we construct a volumetric representation of the scene’s surfaces
(see Section 5.4.2). This so-called geometry volume (GV) is a grid of the same
resolution as the LPV and stores the blocking potential (also represented as SH)
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for every grid cell. The GV is displaced by half the grid size with respect to
the LPV. That is, the cell centers of the GV reside on the corners of the LPV
cells. Whenever we propagate from a source to a destination cell, we obtain the
bilinearly interpolated SH coefficients—at the center of the face through which
we propagate—from the GV, and evaluate the blocking potential for the propa-
gation direction to attenuate the intensity. Note that this occlusion should not be
considered for the very first propagation step after injection, in order to prevent
immediate self-shadowing.

Iterations. The sum of all intermediate results is the final light distribution in the
scene. Thus we accumulate the results of every propagation in the LPV into a
separate 3D grid. The number of required iterations depends on the resolution
of the volume. We recommend using two times the longest dimension of the grid
(when not using a cascaded approach). For example, if the volume has dimensions
of 32× 32× 8, then the light can travel the whole volume in 64 iterations in the
worst case (which is a diagonal of the volume). However, when using a cascaded
approach it is typically sufficient to use a significantly lower number of iterations.

Illustrative example of light propagation process in the Cornell Box–like scene. The
light propagation is shown in Figure 5.10. The top-left image shows the coarse
LPV initialized from the RSM in the injection stage. The noticeable band of
reflected blue and red colors has a width of one cell of LPV. Note that after four
iterations the indirect light is propagated and touches the small white cube. After
eight iterations the indirect light has reached to the opposite wall.

Figure 5.10. Example of the light propagation process in a simple scene.
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Figure 5.11. Light from a small area light source (smaller than the cell size). The
analytical result shows the ground truth solution (left). The light propagation illustrates
the ray effect and an unwanted propagation behind the light source (right).

Limitations. The iterative propagation has three main limitations. First, the
coarse resolution of the grid does not capture fine details and might even cause
light bleeding. Second, due to the SH representation of the intensity distribution
and the propagation process itself, the light strongly diffuses and a strictly di-
rected light propagation is not possible. Consequently, there is also no reasonable
chance of handling glossy surfaces during propagation. Lastly, the propagation
together with the reprojection introduces spatial and directional discretization;
this is called the ray effect and is common to all lattice-based methods (see Fig-
ure 5.11). Note that some of these artifacts can be suppressed to an acceptable
level using cascaded grids to provide finer grids closer to the camera and smart
filtering when looking up the LPV.

5.4.2 Indirect Occlusion (Optional Step for Indirect Shadows)

The geometry volume storing the blocking potential of the scene geometry is
only required when computing indirect shadows. To this end, we again sample
the surfaces using RSMs (and deferred shading buffers, see below) and each texel
represents a small part of a surface. Using this sampled scene information, we
model the occlusion in the spirit of [Sillion 95], using the accumulated blocking
potential of surfels in a grid cell as a probability for blocking light from a certain
direction. In this way we can render soft shadows, but shadows of objects smaller
than the GV’s cell size can of course not be resolved.
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Constructing the geometry volume. The blocking potential of a surfel is approxi-
mated using the first two bands of the SH basis again. The amount of blocking by
one surfel depends on its size and the cosine of the angle between its normal and
the light direction in question. The blocking probability of a single surfel with
area As (computed based on the RSM’s texel size in world space), and normal
ns in a cell of grid size s is

B(ω) =
As〈ns|ω〉

s2
.

Note that we assume that scene objects are closed surfaces. This is important
and allows us to use a clamped cosine lobe for the blocking potential again, as
low-order SH projections of absolute cosine lobes tend to degrade to near isotropic
functions. Similar to the VPL injection, we accumulate the SH projections of the
blocking potential into the GV.

Reusing G-buffers from RSMs and cameras. Aiming at fully dynamic scenes with-
out precomputation requires the creation of the GV—and thus the surface sampling—
on the fly. First of all, we can reuse the sampling of the scene’s surfaces that is
stored in the depth and normal buffers of the camera view (when using a de-
ferred renderer), and in the RSMs that have been created for the light sources.
RSMs are typically created for numerous light sources and thus already represent
a dense sampling of large portions of the scene. It is, at any time, possible to
gather more information about the scene geometry by using depth-peeling for the
RSMs or the camera view.

The injection (i.e., determining the blocking potential of a GV’s cell) has
to be done using separate GVs for every RSM or G-buffer in order to make
sure that the same occluder (surfel) is not injected multiple times from different
inputs. Afterwards, we combine all intermediate GVs into a single final GV. We
experimented using the maximum operator for SH coefficients. Although this is
not correct, it yields plausible result when using 2 SH-bands only and clamping
the evaluation to zero, and thus yields more complete information about light-
blocking surfaces.

5.4.3 Final Scene Illumination

The accumulated results of the propagation steps represent the light distribu-
tion in the scene. In the simplest form we query the intensity by a trilinearly
interpolated lookup of the SH coefficients and compute the reflected radiance
of a surface. We then evaluate the SH-intensity function for the negative nor-
mal of the surface, similar to irradiance volumes [Greger et al. 97], and next
convert it into incident radiance. For this we assume that the cell’s center
(where the intensity is assumed to reside) is half the grid size s away from the
surface.
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Figure 5.12. The interpolation of the intensity stored in the grid induced by the orange
surface between two cells. Note the wrong result of linear interpolation behind the
emitting object itself. Also note that the gradient is opposing in this case.

LPVs and light prepass rendering. In light prepass architecture [Engel 09] of the
CryENGINE 3, the LPV lighting is directly rendered into the diffuse-light-
accumulation buffer on top of multiple ambient passes. This allows us to use
optimizations, such as stencil prepass and depth-bound tests, for this pass as
well. Moreover, it is also possible to compose complex layered lighting.

Improving filtering by using directional derivatives. The trilinear interpolation of
SH coefficients for looking up the LPV can cause serious artifacts such as self-
illumination and light bleeding. We found that a damping factor based on the
directional derivative of the intensity distribution greatly reduces these artifacts.
For a surface location x with normal n, we determine the trilinearly interpo-
lated SH coefficients c and the directional derivative in the normal direction ∇c
(computed via final differencing) (see Figure 5.12):

∇c(x) =
c(x)− c(x+ n)

‖n|| = c(x)− c(x+ n).

Whenever the derivative is large, and c and ∇c are deviating, we damp c before
computing the lighting.

This additional filtering during the final rendering phase yields sharper edges
between lit and shadowed areas.

5.4.4 A Multi-Resolution Approach using
Cascaded Light Propagation Volumes

So far we have considered a single LPV only; however, a regular 3D grid does not
provide enough resolution everywhere in scenes with large extent, or otherwise
requires prohibitively high memory storage and propagation cost. In this section
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Figure 5.13. Cascaded approach. Cascades are nested and attached to the camera; note
that cascades are slightly shifted toward the view direction.

we propose a multi-resolution approach to this problem keeping both memory
consumption and computation cost low, even for large scenes (see Figure 5.13).

Cascaded LPVs. In spirit of the cascaded shadow map (CSM) approach [Engel 05,
Dimitrov 07], we use multiple nested grids, or cascades, for light propagation that
move with the camera. For every cascade, we not only store an LPV, but we also
create a separate RSM for every light source, where the RSM resolution is chosen
proportional to the grid cell sizes as described above. However, unlike CSMs, the
indirect lighting can also be propagated from behind to surfaces in front of the
camera (see Figure 5.14). In practice we use a 20/80 ratio for cascade shifting, i.e.,
the cascades are not centered around the camera but shifted in view directions
such that 20% of their extent is located behind the camera. Usually it is sufficient
to use three nested grids with a respective double size.

Figure 5.14. Indirect light propagated from objects of different sizes in the respective
resolution.
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The idea of LPVs naturally transfers to the multi-resolution approach, and
every cascade requires RSM generation, injection, propagation, and LPV lookup
almost as before. However, before the RSM generation starts, we determine for
every object in the scene to which cascade it belongs, and thus in which RSM it
has to be considered. This ensures that we do not account for the indirect light
contribution of an object multiple times.

Light propagation with cascades. So far we detailed light propagation within a sin-
gle grid, but handling multiple cascades simultaneously imposes new questions:
How do we propagate across different cascades? How do we combine the contri-
butions of different cascades for the final rendering? In this section we propose
two options depending on whether indirect shadows are a required feature or not.

If no indirect shadows are required, we can handle the cascades independent
from each other, and the multi-resolution approach is straightforward to imple-
ment. With indirect shadows, we have to correctly deal with light propagating
across the edges of cascades and, of course, blocking.

Cascaded LPVs without indirect shadows. Assuming that light propagates without
blocking, we can completely decouple the cascades and compute a LPV solution
with the following steps:

• Every RSM for a each cascade should contain unique objects causing in-
direct light. Objects are normally rendered into the RSM for the cascade
for which they have been selected; in RSMs for other cascades they are
rendered with black albedo in order to prevent indirect light contribution,
but correctly rendering direct shadows.

• The propagation is done for each cascade independently.

• The scene is illuminated by the accumulated contribution of all cascades.

In this case, we determine the respective cascade for every object by estimating
its contribution to the indirect illumination, which in turn heavily depends on its
surface area and the distance to the camera. To this end, we account for large
and distant objects in the coarser cascades while injecting smaller, close objects
into the finer grids. Note that this means that distant, small objects might not
be considered during the computation (if they lie outside the finer cascades).
However, the indirect illumination stemming from such objects typically has a
significant contribution only within a certain (small) proximity of the object.

Cascades with indirect shadows. When accounting for light blocking we cannot
decouple the propagation process of the cascades. In this case every object is
injected into the finest grid at its respective location. This also means that
those parts of coarser grids that are overlapped by finer grids are empty and not
used during the propagation. Although we apply the propagation steps to each
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cascade separately, we have to make sure that light leaving one grid can further
propagate in the next grid. This is simple when the grid cell sizes of two cascades
differ by a power-of-two factor. Note that intensity has to be redistributed when
propagating light from a single cell of a coarse grid to multiple cells of a fine grid,
and accumulated when propagating light from multiple fine grid cells to a coarse
grid cell (as intensity already accounts for the surface area).

Stable lighting through snapping. The LPV cascades are oriented along the world
space axes and do not rotate, only translate, with the camera. It is important
to snap the cascade positions in world-space to multiples of the cell sizes. This
ensures that the distribution of surfels in the injection stage is stable and inde-
pendent of the translation of the LPVs.

5.5 Optimizations

5.5.1 General Optimizations

The scene illumination stage with a final LPV is usually a very expensive pass
(see the timing table in Section 5.6.1). It is important to note that the hardware
capability to render into a volume texture tremendously improves performance
at this stage. This simplifies the shader workload as the emulation of a trilinear
filtering in the pixel shader is not necessary. Instead, the hardware unit is utilized
and cache coherency is highly improved due to the optimized memory layout of
a swizzled 3D texture.

Unfortunately, not every platform supports rendering into a 3D texture. How-
ever, it is possible to inject the VPLs directly into the volume texture on consoles.
To do so, the 3D texture should be treated as a horizontally unwrapped 2D render
target; note that this is not possible with the Microsoft DirectX 9.0 API.

Using an 8 bit/channel texture format for the LPV has proven to be sufficient
for diffuse indirect lighting stored in two bands of SH. Note that this detail is
very important because it speeds up the final rendering pass significantly due to
decreased bandwidth and texture-cache misses.

5.5.2 Temporal Coherence

As the diffuse indirect lighting is inherently smooth, the observer is usually quite
unaware of temporally changing smooth gradients. Exploiting this fact, we rec-
ommend caching each resulting LPV and reusing the results across several frames.
The temporal reprojection can easily be done in a straightforward way with ac-
cumulation of the old results and a smooth substitution by the newly propagated
results.

In practice, we perform the full pass of LPV computation (RSM generation,
injection, and propagation) each fifth frame. With the target frame rate of 30
frames/second that means that the refresh rate for the indirect lighting is six
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times/second. This proved to be sufficient in the vast majority of cases. The
workload can be distributed either stage-by-stage across several frames or can
be executed all at once (RSM rendering, injection, and propagation) during one
frame. In CryENGINE 3 we do not spread separate stages; however, we up-
date different cascades in different frames. In addition, we use different update
frequencies for different cascades of cascaded shadow maps. The LPV update
workload is interleaved with updates of shadow map cascades, which ensures
that we have a balanced rendering and consistent performance.

5.5.3 Xbox 360-Specific Optimizations

When doing the injection directly into a 3D texture on the Xbox 360, we recom-
mend redundantly unwrapping this texture vertically as well (so a 32 × 32 × 32
3D texture becomes a 32×1024 2D texture after being aliased as a 2D render tar-
get, but it should additionally be duplicated vertically). This trick significantly
reduces the h/w bank conflicts caused by multiple surfels being written to the
same pixel.

Note that the redundant copies of the texture should be accumulated together
afterwards and added into the final 3D texture. Also, the resolve GPU command
from the EDRAM into a 3D texture has some API issues; a work-around solution
for these issues is proposed in the Appendix of [Kaplanyan 09].

5.5.4 PlayStation 3-Specific Optimizations

The 3D texture is essentially implemented as an array of contiguous 2D textures.
This means that the layout of unwrapped 2D render targets should be vertical
on PlayStation 3 in order to match the memory layout of the 3D texture. Then
the injection goes directly into a 3D texture and can be done by using the simple
memory aliasing of this texture as a 2D render target. The RSX pipeline should
obviously be flushed after the injection rendering in order to make sure that all
the surfels are injected before the propagation is started.

Another suggestion for speeding up the final illumination pass is to alias the
target buffer as a 2× MSAA and do the shading in a half-resolution horizontally.
This is possible only on PlayStation 3 because the layout of samples in the sam-
pling scheme matches the layout of the render target with the same pitch. This
trick can help to reduce the pixel work without noticeable quality degradation,
as the diffuse indirect lighting typically exhibits low frequencies only.

5.6 Results

In this section we provide several example screenshots showing diffuse global
illumination in Crysis 2 (see Figure 5.15). In Crysis 2 we use one to three cascades
depending on the graphics settings, platform, and level specifics.
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Figure 5.15. In Crysis 2 we use from one to three cascades depending on graphics
settings, platform, and level specifics.

5.6.1 Tools and Tweaking Parameters for Artists

Because artists want to have more control over the indirect lighting, it was decided
to expose multiple controlling parameters for the technique:

• Global intensity of indirect lighting. This parameter helps to tweak the
overall composition and can also be tweaked during the game play from the
game logics.

• Per-object indirect color. This parameter affects only the color and the
intensity of indirectly bounced lighting from a specific object. It is mostly
used to amplify or attenuate the contribution of some particular objects
into indirect lighting.

• Propagation attenuation. This parameter is used to tweak the attenuation
of the indirect color.

• Per-object “indirect receiver” parameter for particles. This is mostly used
to tag some particle effects as those illuminated by the indirect lighting
(disabled by default).

These parameters are frequently used by artists to tweak some particular places
and moments in the game. They proved to be particularly important for cut
scenes and some in-game movies.
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5.6.2 Timings

Detailed timings for a single cascade for the Crytek Sponza2 scene are provided
in Table 5.1. Note that the timings for multiple cascades can be estimated by
multiplying the timings for a single cascade by the number of cascades when using
the cascaded approach, as the work is spread across several RSMs.

For all screenshots in this chapter we used the same settings: the size of the
LPV grid is 32 × 32 × 32, the propagation uses 12 iterations and 1 1 cascade,
and the rendering was at 1280 × 720 resolution (no MSAA). The cost of the
final illumination pass obviously depends on the target buffer resolution. The
RSM size is 2562 for the timings with the NVIDIA GTX285 and 1282 for both
consoles. Of course the cost of the RSM rendering also depends on the scene
complexity.

Stage NVIDIA GTX 285 Xbox PlayStation

RSM Rendering 0.16 (2562) 0.5 (1282) 0.8 (1282)

VPL Injection 0.05 0.2 0.4

Propagation (12 iterations) 0.8 0.8 0.7

Final illumination (720p) 2.4 (RGBA16F format) 2.0 1.5

Total (per frame) 1.5 1.1 1.2

Table 5.1. Detailed timings for a single cascade for the Crytek Sponza scene. All
measurements are in milliseconds for the individual stages.

5.7 Conclusion

In this chapter we described a highly parallel production-ready and battle-tested
(diffuse) global illumination method for real-time applications without any pre-
computation. To our knowledge, it is the first technique that employs a light
propagation for diffuse global illumination. It features a very consistent and scal-
able performance, which is crucial for real-time applications such as games. We
also described how to achieve indirect illumination in large-scale scenes using a
multi-resolution light propagation.

We demonstrated our method in various scenes in combination with compre-
hensive real-time rendering techniques. In the future we would like to reduce the
limitations of our method by investigating other grid structures and other adap-
tive schemes, where the compute shaders of DirectX 11 will probably of great
help.

2The Crytek Sponza scene is the original Sponza Atrium scene improved for global illumi-
nation experiments. This scene is granted to the rendering community and can be downloaded
from this link: http://crytek.com/cryengine/cryengine3/downloads.
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IV

Shadows

In Part IV we will cover various algorithms that are used to generate shadow data.
Shadows are the dark companions of lights and although both can exist on their
own, they shouldn’t exist without each other in games. Achieving good visual
results in rendering shadows is still considered one of the particularly difficult
tasks of graphics programmers. One of the trends in this shadow section is the
description of implementations that achieve perceptually correct looking shadows;
in real-time graphics terminology, called soft shadows. Three articles build on
Randy Fernando’s work, “Percentage-Closer Soft Shadows,” that is now—five
years after it was published—still an efficient way to implement soft shadows on
the current generation of hardware.

The first article in this section, “Variance Shadow Maps Light-Bleeding Re-
duction Tricks,” by Wojciech Sterna, covers techniques to reduce light bleeding.
There is also an example application that shows the technique.

Pavlo Turchyn covers fast soft shadows with adaptive shadow maps—as used
in Age of Conan—in his article “Fast Soft Shadows via Adaptive Shadow Maps.”
The article describes the extension of percentage-closer filtering to adaptive shadow
maps that was implemented in the game. Turchyn proposes a multiresolution
filtering method in which three additional, smaller shadow maps with sizes of
1024 × 1024, 512 × 512 and 256 × 256 are created from a 2048 × 2048 shadow
map. The key observation is that the result of the PCF kernel over a 3× 3 area
of a 1024×1024 shadow map is a reasonably accurate approximation for filtering
over a 6× 6 area of a 2048× 2048 shadow map. Similarly, a 3× 3 filter kernel of
a 256 × 256 shadow map approximates a 24 × 24 area of a 2048 × 2048 shadow
map.

The article “Adaptive Volumetric Shadow Maps” by Marco Salvi et al. de-
scribes a new approach for real-time shadows that supports high-quality shad-
owing from dynamic volumetric media such as hair, smoke, and fog. Adaptive
volumetric shadow maps (AVSM) encode the fraction of visible light from the
light source over the interval [0, 1] as a function of depth at each texel. This
transmittance function and the depth value are then stored for each texel and
sorted front-to-back. This is called the AVSM representation. This AVSM rep-
resentation is generated by first rendering all visible transparent fragments in
a linked list (see the article “Order-Independent Transparency Using Per-Pixel
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Linked Lists in DirectX 11” for the description of per-pixel linked lists). In a
subsequent pass, those linked lists are compressed into the AVSM representation,
consisting of the transmittance value and the depth value.

Another article that describes the fast generation of soft shadows is “Fast Soft
Shadows With Temporal Coherence” by Daniel Scherzer et al. The light source
is sampled over multiple frames instead of a single frame, creating only a single
shadow map with each frame. The individual shadow test results are then stored
in a screen-space shadow buffer. This buffer is recreated in each frame using
the shadow buffer from the previous frame as input. This previous frame holds
only shadowing information for pixels that were visible in the previous frame.
Pixels that become newly visible in this frame due to camera or object movement
have no shadowing information stored in this buffer. For these pixels the article
describes a spatial-filtering method to estimate the soft shadow results. In other
words the main idea of the algorithm described in the article is to formulate light-
source area sampling in an iterative manner, evaluating only a single shadow map
per frame.

The last article in the section, “MipMapped Screen Space Soft Shadows,”
by Alberto Aguado et al. uses similar ideas as the other two soft-shadow arti-
cles. Soft shadows are generated with the help of mipmaps to represent multi-
frequency shadows for screen-space filtering. The mipmap has two channels; the
first channel stores the shadow-intensity values and the second channel stores
screen-space penumbra widths. Shadow values are obtained by filtering while
penumbrae widths are propagated by flood filling. After the mipmap is gener-
ated, the penumbrae values are used as indices to the mipmap levels. Thus, we
transform the problem of shadow generation into the problem of selecting levels
in a mipmap. This approach is extended by including layered shadow maps to
improve shadows with multiple occlusions.

—Wolfgang Engel
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Variance Shadow Maps
Light-Bleeding Reduction Tricks

Wojciech Sterna

1.1 Introduction

Variance Shadow Maps (VSMs) were first introduced in [Donnelly and Lau-
ritzen 06] as an alternative to bilinear percentage closer filtering (PCF) to speed
up rendering of smoothed shadows. The algorithm is relatively inexpensive, easy
to implement, and very effective in rendering shadows with large penumbra re-
gions. However, VSM has one major drawback—apparent light-bleeding—which
occurs when two or more shadow casters cover each other in light-space. This ar-
ticle will show techniques that help to reduce the light-bleeding artifacts in VSM.

1.2 VSM Overview

The idea of variance shadow mapping is to store in the shadow map, instead
of a single depth value, a distribution of depth values over some region and to
use elementary statistics to evaluate the shadowing term. This approach makes
it possible to use filtering methods (bilinear, trilinear, blurring) on the shadow
map. A common option is to use Gaussian blur on the shadow map to achieve
soft shadows in O(n) time. This is a great advantage over traditional PCF which
requires O(n2) time to achieve the same effect.

To generate the variance shadow map, two values must be written into it.
The first is simply a distance from a light source to a pixel, as with traditional
shadow mapping (one thing that is important here is that this distance should
have a linear metric). The second component of the shadow map is a square of
the first component.

Once the shadow map has been prepared (it contains both depth and a square
of depth), additional filtering can be applied to it. To achieve good-looking soft
shadows, a separable Gaussian filter with 5× 5 taps can be used.
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To estimate the shadow contribution from such a defined VSM, so-called
Chebyshev’s inequality (one-tailed version) can be used to estimate the shad-
owing term:

P (O ≥ R) ≤ pmax(R) ≡ σ2

σ2 + (R− µ)2
, where µ < R (1.1)

The variable O is an occluder’s depth (shadow map’s texel), R is a receiver’s depth
(distance from a pixel being shaded to a light source), σ2 is the variance and µ is
the mean. The term P (O ≥ R) can roughly be interpreted as a probability of a
point (at distance R) being lit (unshadowed by a point at distance O), which is
the exact value we wish to know, and Chebyshev’s inequality gives us an upper-
bound to this value.

The mean and variance in Equation (1.1) are computed from the first and
second statistical moments:

M1 = E(O)

M2 = E(O2)

µ = M1 = E(O)

σ2 = M2 −M1
2 = E(O2)− E(O)2

In fact, the first moment is what is actually stored in the first channel of the
shadow map, and the second moment in the second channel of the shadow map.
That’s why the shadow map can be additionally prefiltered before its use—the
moments are defined by the expectation operator which is linear and can thus be
linearly filtered.

A sample implementation of standard VSM is shown in Listing 1.1.

f loat VSM( f loat2 projTexCoord , f loat depth , f loat b ia s )
{

f loat2 moments = tex2D ( shadowMap linear , projTexCoord ) . rg ;

i f (moments . x >= depth − b ia s )
return 1 .0 f ;

f loat var iance = moments . y − moments . x∗moments . x ;
f loat d e l t a = depth − moments . x ;
f loat p max = var iance / ( var i ance + de l t a ∗ d e l t a ) ;

return s a tu ra t e ( p max ) ;
}

Listing 1.1. Standard VSM implementation.



i
i

i
i

i
i

i
i

1. Variance Shadow Maps Light-Bleeding Reduction Tricks 209

Note that the given Chebyshev’s inequality (its one-tailed version) is undefined
for cases in which µ ≥ R. Of course, in such a case a point is fully lit, so the
function returns 1.0; otherwise, pmax is returned.

1.3 Light-Bleeding

Light-bleeding (see Figure 1.1) occurs when two or more shadow casters cover
each other in light-space, causing light (these are actually soft edges of shadows
of the objects closest to the light) to bleed onto the shadows of further (from the
light) objects. Figure 1.2 shows this in detail.

As can be seen from the picture in Figure 1.2, object C is lit over a filter
region. The problem is that when estimating the shadow contribution for pixels
of object C over this region, the variance and mean that are used are actually
based on the samples from object A (red line) and visible samples from object B
(green line) (the shadow map consists of pixels colored by red and green lines),
whereas they should be based on samples from object B only (green and blue
lines). Moreover, the greater the ratio of distances ∆x

∆y (see Figure 1.2), the more
apparent the light-bleeding is on object C.

The VSM is not capable of storing more information (about occluded pixels
of object B for instance). This is not even desirable since we want to keep the

Figure 1.1. Light-bleeding.
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Figure 1.2. How light-bleeding occurs.

algorithm simple and don’t want to raise its memory requirements. Fortunately,
the following sections in this chapter will present a few very simple tricks that
can greatly reduce the problem.

1.4 Solutions to the Problem

1.4.1 Cutting the Tail Off

The first way of reducing light-bleeding was simply cutting off the tail of the pmax

function. Put simply, it’s about subtracting some fixed value from the result of
pmax. This way, incorrect penumbra regions will get darker but so will the correct
ones. However, intensities of incorrect penumbra regions never reach 1 (as shown
in [Lauritzen 07]) so the final result can still look good when the cutting value is
chosen wisely.

Figure 1.3 shows a side-by-side comparison of standard VSM implementation
and the same VSM but with pmax cut off by a value of 0.15. Although the
light-bleeding is still present it’s much less obvious.

As we mentioned earlier, the light-bleeding gets more noticeable when the
ratio ∆x

∆y is big. In such a scenario (high depth complexity) it is next to impossible
to eliminate the problem by applying only a cutting value. More sophisticated
methods are necessary.
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Figure 1.3. VSM and VSM with pmax cut off by 0.15.

1.4.2 Applying VSM to Shadow Boundaries

One of the possibilities for reducing the problem of light-bleeding is, simply to
avoid it. The trick is to combine standard depth-comparison shadow mapping
with VSM applied only to regions that really need it—shadow boundaries.

The problem with this idea is that the greater the penumbra region, the
harder it gets to properly detect shadow boundaries, since more samples are
needed. However, if one decides not to blur the shadow map and to rely only
on standard hardware linear (or trilinear) filtering, four samples are enough to
detect shadow boundaries; light-bleeding free VSM is achieved with the resulting
performance comparable to that from standard VSM.

Figure 1.4 shows a side-by-side comparison of standard VSM and the combi-
nation of classic shadow mapping with VSM applied only to shadow boundaries.

Figure 1.4. VSM and VSM applied to shadow boundaries.

1.4.3 Exponential Variance Shadow Maps

EVSM is a combination of two techniques—variance shadow maps and exponen-
tial shadow maps, which were described in [Salvi 08]. The idea was first presented
in [Lauritzen 08] and it is surprising that it is not recognized among developers,
for it is able to almost completely eliminate the light-bleeding.
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Figure 1.5. ESM with the following constants: 10, 50, 90, 200.

ESMs work similarly to VSMs. A very nice feature of ESM is that it requires
only a single-channel shadow map, which stores the first moment. The algorithm
also uses statistical methods to estimate the shadowing term and it does so by
using the so-called Markov inequality (as opposed to VSM which uses Chebyshev’s
inequality):

P (O ≥ R) ≤ E(O)

R
(1.2)

Using Markov inequality as given in Equation (1.2) doesn’t provide a good shadow
approximation; shadows suffer from a sort of global light-bleeding. However,
[Salvi 08] shows that it can be transformed to the following representation:

P (ekO ≥ ekR) ≤ E(ekO)

ekR
(1.3)

Constant k determines how good the approximation is—the greater the value, the
better the approximation. Unfortunately, large values cause precision loss, and
shadow boundaries become sharper, so a compromise must be found. Figure 1.5
shows a comparison of ESM with different values of constant k.

ESM is simpler, faster, and has a tweakable light-bleeding parameter that
makes it more practical than VSM in many cases. However, a very promising
idea is the combination of these two techniques—EVSM. Instead of storing depth
and a square of depth in the shadow map, we store an exponential of depth
and a square of exponential of depth. The exponential function has the effect of
decreasing the ratio ∆x

∆y and thus reduces the VSM-like light-bleeding.
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Figure 1.6. VSM and EVSM with pmax cut off by 0.05 and k = 50.

EVSM suffers from light-bleeding only in cases when both VSM and ESM
fail, which rarely happens. A very important feature of EVSM is that the light-
bleeding can be controlled by two factors: VSM with the tail cut off and ESM
with k constant. Careful adjustment of these two will lead to very pleasing and
accurate soft shadows.

Figure 1.6 shows a side-by-side comparison of standard VSM and EVSM.

1.5 Sample Application

In the web materials accompanying this book there is a demo presenting all of
the techniques described in this chapter.

Here is the key configuration:

• WSAD + mouse—camera movement;

• Shift—speeding up;

• F1 - F5—change of shadowing technique;

• E/Q—turn on/off shadow map Gaussian blurring;

• R/F—increase/decrease VSM tail cut off parameter;

• T/G—increase/decrease ESM constant k.

The core of the demo are two shader files: shadow map.ps and light.ps.
Implementations of all algorithms described here can be found in these files.

1.6 Conclusion

Variance shadow mapping has already proven to be a great way of generating
soft shadows. The algorithm is easy to implement, fast, and utilizes hardware
features of modern GPUs. Despite its advantages, VSM also introduces some
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problems. The worst one is light-bleeding, which was the subject of discussion in
this chapter.
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IV

Fast Soft Shadows via Adaptive
Shadow Maps

Pavlo Turchyn

We describe a percentage-closer filtering (PCF) based extension to an adaptive
shadow maps (ASM) algorithm [Fernando et al. 01]. Our method enables high-
quality rendering of large penumbrae with minimal size of filter-kernel size. It also
offers better image quality compared to other PCF-based soft shadows algorithms,
such as percentage closer soft shadows (PCSS).

2.1 Percentage-Closer Filtering with Large Kernels

Filtering is an important part of every shadow mapping implementation because
it serves multiple goals: it reduces aliasing artifacts and allows the creation of
soft shadows to improve image realism. Aliasing artifacts manifest themselves
when there are either too many shadow map texels per screen area (resulting in
the same type of noise that can be observed on regular color textures without
mipmapping), or there are too few shadow map texels per screen area, so the
shadow map cannot plausibly represent the correct shapes of shadows. However,
filtering alone can reduce only the visual impact of undersampling to a certain
extent.

PCF is a common method of shadow map filtering. Given shadow map coor-
dinates uv, and depth value d, a PCF computes the following weighted sum:

PCF(DepthTexture, uv, d, n) =
n∑
i=1

(
Weight[i] ∗ (tex2D(DepthTexture, uv + Offset[i])).r > d

)
.

The tables Weight and Offset hold weights and the texture coordinates offsets,
respectively. The choice of Weight and Offset defines performance and quality
of rendering. The computationally fastest way is to use constant tables. In more
elaborate schemes, the tables are constructed based on coordinates uv.
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Figure 2.1. Soft shadows in Age of Conan.

The number of samples n is chosen depending on the size of the area over
which the filtering is performed. Summing over the area of m ×m shadow map
texels would require at least n = m2 samples if we want to account for all texels.
However, such a quadratic complexity of the filter makes PCF impractical for
filtering over large areas. For instance, if the size of a shadow map texel’s pro-
jection onto a scene’s geometry is 0.1 m, and the desired penumbra size is about
1.5 meters, then we need to apply PCF over (1.5/0.1)× (1.5/0.1) = 15× 15 area,
which in turn gives n = 225.

It is possible to use PCF with large kernels in time-sensitive applications
by decreasing the number of samples, so that n � m2, and distributing the
samples pseudorandomly over the summation area. Such an approach produces
penumbra with noise artifacts as shown in Figure 2.2. A screen-space low-pass
filtering can be used for suppressing the noise, but such a post-filtering removes all
high-frequency features within penumbra indiscriminately. Moreover, preventing
shadows from bleeding into undesired areas in screen space may require the use
of relatively expensive filters,( e.g., a bilateral filter).

We propose a multiresolution filtering (MRF) method that attempts to al-
leviate the PCF problem described above. The idea is as follows: When we
create the standard shadow map for the scene, we also create versions of it with
progressively lower resolutions. For example, if the shadow map’s resolution is
2048 × 2048, we create three additional shadow maps: 1024 × 1024, 512 × 512,
and 256× 256. The key observation is that the result of PCF over a 3× 3 area of
a 1024 × 1024 shadow map is a reasonably accurate approximation for filtering
over 6×6 area of 2048×2048 map. Similarly, PCF over a 3×3 area of a 256×256
shadow map approximates a 6× 6 filter for a 512× 512 map, a 12× 12 filter for
a 1024× 1024 map, and a 24× 24 filter for a 2048× 2048 map. Thus, in order to
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Figure 2.2. Filtering comparison. From top to bottom: bilinear PCF; 24 × 24 PCF
filter with 32 samples, frame rendering time on Radeon 4870 is 3.1 ms; 24 × 24 PCF
filter with 64 samples, 6.7 ms; 24× 24 MRF filter (3× 3 PCF), 3.1 ms.

approximate PCF with large kernels, we apply PCF with a small kernel size to a
shadow map with reduced resolution.

Approximating arbitrary kernel size. Let us number shadow maps starting with
zero index assigned to the shadow map with the highest resolution

sampler2D shadowMaps[4] = { shadowMap2048x2048,

shadowMap1024x1024, shadowMap512x512, shadowMap256x256 };

Such a numbering is similar to the numbering of mipmaps of color textures.
Suppose we want to approximate an m ×m PCF with an MRF based on nine
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samples of a 3× 3 PCF. The index of the shadow map, which can be used to get
an adequate approximation, is computed as

float shadowMapIndex = log2( max(1.0, m/3.0) );

The value shadowMapIndex is a real number (e.g., the value shadowMapIndex

=2.415 corresponds to a 16 × 16 kernel), so we have to either round it toward
the closest integer, or perform the following interpolation, which is similar to the
one used in standard trilinear filtering:

float shadowIntensity = lerp(

PCF(shadowMaps[ floor(shadowMapIndex) ], uv, d, 9),

PCF(shadowMaps[ ceil(shadowMapIndex) ], uv, d, 9),

frac(shadowMapIndex) );

Pros and cons. MRF enables creating large penumbrae with only a few depth tex-
ture samples. Since it is based on a small number of samples, it allows the com-
putiation of shadow intensities using relatively complex filter kernels, which can
produce continuous values without the noise inherent to plain PCF kernels with a
low number of samples. As a result, MRF does not require any type of postfilter-
ing. Compared to prefiltering methods, (e.g. [Donnelly and Lauritzen 06], [Annen
et al. 07], [Annen et al. 08]), MRF does not introduce approximation-specific ar-
tifacts, such as light leaking, ringing, or precision deficiencies. Moreover, since
MRF is based on a regular PCF, it is possible to utilize existing hardware features,
for example hardware bilinear PCF or double-speed depth-only rendering.

2.2 Application to Adaptive Shadow Maps

Adaptive shadow maps (ASM) is a method that addresses perspective and pro-
jection aliasing that occurs in standard shadow mapping [Fernando et al. 01].
Another notable advantage of ASM is the ability to exploit frame-to-frame co-
herency, which was the main reason for implementing the method in Funcom’s
Age of Conan. The algorithm is shown schematically in Figure 2.3. The major
steps of the algorithm are explained below.

Creating tiles hierarchy. We start by projecting the view frustum onto the near
plane of the light’s frustum. The projected frustum is clipped against a grid
defined on this plane. This grid is view independent and static (does not change
from frame to frame). Each grid cell intersecting with the frustum is called a
tile. If a tile is closer to the projected frustum’s top than a certain threshold
distance, we subdivide it into four equal cells (in a quadtree-like fashion). Each
resulting cell is tested against the frustum, and the cells intersecting with it are
called child tiles. We continue the subdivision process to obtain a hierarchy of
tiles as shown in Figure 2.3. Note that unlike for example, the cascaded shadow
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Figure 2.3. Adaptive Shadow Maps.

maps algorithm, here we do not subdivide the frustum itself; instead we use the
frustum to determine which grid cells it intersects.

Shadow maps rendering. We render a fixed-resolution shadow map (e.g., 256×256)
for every tile. Shadow maps are allocated from the single atlas (we use 4096×2048
depth texture in Age of Conan). Normally, there could be many tiles (about 100
in Age of Conan), but due to frame-to-frame coherency there is a high probability
that a given shadow map was already rendered during previous frames. This is
controlled through a shadow maps cache with LRU caching policy, (i.e., if the
shadow map for a new tile is not present in the cache, then the shadow map
which has not been in use for the largest number of frames will be reassigned to
this tile).

Scene rendering. Since all shadow maps are equal in size, the shadow map sam-
pling function requires knowledge only of the shadow map’s offset within the atlas.
These offsets are stored in a small dynamic index texture (we use a 128 × 128
texture). One can think of index texture as a standard shadow map that covers
the entire view range, but instead of depth values, each texel contains the off-
sets, which are used to locate the actual tile shadow map in the atlas. Shadow
map sampling code is given in Listing 2.1. As one can see, the only difference is
index-texture indirection.

Pros and cons. ASM enables rendering of highly detailed shadows. Similar shadow
mapping quality can be achieved only with standard shadow mapping when using
a shadow map of very high resolution (for example, the resolution of an equiva-
lent shadow map in Age of Conan is 16384×16384). Unlike projection-modifying
approaches, such as [Stamminger and Drettakis 02] or [Martin and Tan 04], ASM
does not suffer from temporal aliasing (since the tile’s shadow map projection
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f loat standardShadowMapSampling ( f l o a t 4 samplePos i t ion )
{

f l o a t 4 shadowMapCoords =
mul ( samplePos i t ion , shadowProject ionMatr ix ) ;

return PCF( shadowMapTexture , shadowMapCoords ) ;
}

f loat shadowMapSamplingASM( f l o a t 4 samplePos i t ion )
{

f l o a t 4 indexCoords =
mul ( samplePos i t ion , shadowProject ionMatr ix ) ;

f l o a t 3 o f f s e t = tex2D ( indexTexture , indexCoords . xy ) ;
f l o a t 2 C = f l o a t 2 ( ti leShadowMapSize / a t l a s S i z e , 1 ) ;
f l o a t 3 shadowMapCoords = indexCoords∗C. xxy + o f f s e t ;
return PCF( at lasTexture , shadowMapCoords ) ;

}

Listing 2.1. Standard shadow map sampling vs ASM sampling.

matrices are view independent) and offers an intuitive control over the shadow
map’s texel distribution.

However, ASM imposes certain restrictions on a scene’s granularity. Even
though such situations do not occur frequently, in some cases we might need to
render a number of shadow maps (we note that in Age of Conan we typically
render one tile per several frames). As an extreme example, consider a scene that
consists of just one huge object; the cost for rendering N shadow maps will be
N times the cost of rendering such a scene. On the other hand, imagine a scene
that consists of objects so small that they always overlap with just one tile; in
this case the cost for rendering N tile shadow maps will be less or equal to the
cost of whole scene. Therefore, a preferred scene should consist of a large number
of lightweight, spatially compact objects rather than a few big and expensive-to-
render geometry chunks.

Provided that granularity of the scene is reasonably fine and there is a certain
frame-to-frame coherency, ASM significantly reduces shadow map rendering costs
compared to standard shadow mapping. In this regard, one can view ASM as a
method for distributing the cost of rendering a single shadow map over multiple
frames.

A fundamental shortcoming of ASM is its inability to handle animated objects
because such objects require updating the shadow map with every frame, while
ASM relies on a shadow maps cache that holds data created over many frames.
Similarly, light’s position or direction cannot be changed on a per-frame basis
because such a change invalidates the cache. In Age of Conan we use a separate
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1024 × 1024 shadow map for rendering dynamic objects. Such a shadow map
normally contains only a few objects, so it is inexpensive to render. Moreover,
one can apply prefiltering techniques, (e.g., variance shadow maps), which may
otherwise be problematic from the viewpoint of performance or quality. MRF
naturally applies to the hierarchy of shadow maps produced with ASM.

2.3 Soft Shadows with Variable Penumbra Size

PCF with a fixed kernel size does not yield realistic shadows because it produces
shadows with fixed penumbrae size, while penumbra in physically correct shadows
usually vary greatly across the scene. The larger the light’s area is, the bigger
the difference should be between shadows from small objects and big objects.
Thus, the kernel sizes in PCF should also vary depending on the estimated sizes
of penumbrae.

One method for estimating penumbra size is proposed in the percentage-closer
soft shadows (PCSS) scheme [Fernando 05]. In this method the size of a PCF
kernel is a linear function of distance between a shaded fragment and its near-
est occluder. The process of estimating the distance, which is called blocker
search, largely resembles PCF; the difference is that instead of averaging results
of depth tests, during blocker search one averages weighted depth values. When
a light’s area is large, the blocker search has to be performed on a large num-
ber of shadow map texels and thus it becomes as expensive as PCF. Attempting
to reduce the number of samples may cause visible discontinuities and noise in
penumbrae.

We use a faster method to estimate the distance to the occluder. A depth
extent map (DEM) is a texture that contains minimum and maximum depth
values computed over a certain region of the shadow map, which is used for
detection of penumbrae regions [Isidoro and Sander 06]. We take the DEM’s
minimum depth value for the depth of the occluder, thus avoiding expensive
blocker search. Since minimum depth value is a noncontinuous function, its use
leads to discontinuities in penumbrae (such as clearly visible curves, along which
shadows are vastly different). We compute the DEM for a low-resolution shadow
map, and then use a single bilinear texture fetch to obtain piecewise-linear depth.
The drawback of such an approach is the additional space required for storing the
DEM. However, the DEM can be stored at a lower resolution than the resolution
of the shadow map.

Occluders fusion. The most outstanding defect of PCF-based soft shadows is in-
correct occluder fusion. The larger the penumbra size is, the more the artifacts
stand out (see e.g., Figure 2.5(a)). The main source of the problem, illustrated in
Figure 2.4, is the inability of a single shadow map to capture information needed
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Figure 2.4. Shadow map layering.

to create shadows from area light. Each texel of a shadow map contains visibil-
ity information for a single light direction only, though light propagates along a
range of directions.

This problem can be reduced relatively easily within the ASM framework.
For a small set of tiles, which are closer to the viewer than a certain threshold
distance, we render two shadow maps instead of one. First we create a regular
shadow map and its corresponding DEM. Let dmax be the shadow map’s range.
Then, we create a layer shadow map, which is identical to the regular one, except
that it is constructed using the fragments with depths within the range [d +
dc, dmax] (fragments with depth outside this range are discarded), where d is the
corresponding minimum depth value from the DEM constructed for the regular
shadow map, and dc is a constant chosen by user. The penumbra over the scene’s
objects located within the range [0; d+dc] will be created using a regular shadow
map only, thus occluder fusion will not be correct. However, one can use a layer
shadow map to correct the penumbra on the objects located beyond d + dc, as
shown in Figure 2.5(b).

Shadow map layering significantly improved image quality in Age of Conan,
removing a vast majority of occluder fusion artifacts. While theoretically one may
utilize more than one layer, in Age of Conan one layer appeared to be sufficient.
Adding more layers did not lead to any noticeable improvements.
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(a) PCSS (from NVIDIA Direct3D SDK 10
Code Samples.)

(b) ASM + MRF + layering.

Figure 2.5. Occluders fusion: PCSS filters out penumbra details, ASM allows keeping
them.

2.4 Results

We implemented our soft shadows algorithm in Funcom’s MMORPG Age of Co-
nan. Figure 2.6 shows in-game benchmark of two shadow mapping methods
tested on Intel Core i7 2.66 MHz and AMD Radeon 4850.

Originally, the shadowing method in the released version of Age of Conan
was standard shadow mapping, and cascaded shadow maps were added a year
later with a patch. As shown in Figure 2.6, standard shadow mapping resulted
in approximately 30% frame rate drop. The cascaded shadow map performance

Figure 2.6. Benchmark: fly-by over a level from Age of Conan.
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(not shown here) was worse. Implementing ASM-based soft shadows provided not
only a substantial increase in image quality, but also a significant performance
boost. We use ASM (with MRF and layering) to create shadows from static
objects, and a separate 1024 × 1024 shadow map for dynamic objects, which is
filtered with a fixed-size 3× 3 PCF kernel.
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Adaptive Volumetric
Shadow Maps

Marco Salvi, Kiril Vidimče, Andrew Lauritzen,
Aaron Lefohn, and Matt Pharr

This chapter describes adaptive volumetric shadow maps (AVSM), a new ap-
proach for real-time shadows that supports high-quality shadowing from dynamic
volumetric media such as hair and smoke. AVSMs compute approximate volu-
metric shadows for real-time applications such as games, for which predictable
performance and a fixed, small memory footprint are required (and for which
approximate solutions are acceptable).

We first introduced AVSM in a paper at the 2010 Eurographics Symposium on
Rendering [Salvi et al. 10]; this chapter reviews the main ideas in the paper and
details how to efficiently implement AVSMs on DX11-class graphics hardware.
AVSMs are practical on today’s high-end GPUs; for example, rendering Figure 3.4
requires 8.6 ms with opacity shadow maps (OSMs) and 12.1 ms with AVSMs—an
incremental cost of 3.5 ms to both build the AVSM data structure and to use it
for final rendering.

3.1 Introduction and Previous Approaches

Realistic lighting of volumetric and participating media such as smoke, fog, or
hair adds significant richness and realism to rendered scenes. Self-shadowing pro-
vides important visual cues that define the shape and structure of such media.
However, in order to compute self-shadowing in volumetric media, it is neces-
sary to accumulate partial occlusion between visible points and light sources in
the scene; doing so requires capturing the effect of all of the volumetric objects
between two points and is generally much more expensive than computing shad-
ows from opaque surfaces. As such, while it is common for offline renderers
(e.g., those used in film rendering) to compute volumetric shadows, the computa-
tion and memory costs required to simulate light transport through participating
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Figure 3.1. This image shows self-shadowing smoke and hair, both seamlessly rendered
into the same adaptive volumetric shadow map. (Hair model courtesy of Cem Yuksel).

media have limited their use in real-time applications. Existing solutions for real-
time volumetric shadowing exhibit slicing artifacts due to nonadaptive sampling,
cover only a limited depth range, or are limited to one type of media (e.g., only
hair, only smoke, etc.).

Adaptive shadow representations such as deep shadow maps have been used
widely in offline rendering [Lokovic and Veach 00, Xie et al. 07]. Deep shadow
maps store an adaptive, lossy-compressed representation of the visibility function
for each light-space texel, though it is not clear how they can be implemented
efficiently enough for real-time performance on today’s graphics hardware, due
to their high costs in term of storage and memory bandwidth.

Many volumetric shadowing techniques have been developed for interactive
rendering. See our paper [Salvi et al. 10] for a detailed discussion of previous
approaches; here,in this chapter, we will highlight the most widely known alter-
natives. A number of approaches discretize space into regularly spaced slices,
for example opacity shadow maps [Kim and Neumann 01]. These methods typ-
ically suffer from aliasing, with variations specialized to handle small particles
that can display view-dependent shadow popping artifacts even with static vol-
umes [Green 08]. Deep opacity maps improve upon opacity shadow maps specif-
ically for hair rendering by warping the sampling positions in the first depth
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layer [Yuksel and Keyser 08]. Occupancy maps also target hair rendering and
use regular sampling, but capture many more depth layers than opacity- or deep-
opacity- shadow maps by using only one bit per layer. However, they are limited
to volumes composed of occluders with identical opacity [Sintorn and Assar-
son 09]. Mertens et al. describe a fixed-memory shadow algorithm for hair that
adaptively places samples based on a k-means clustering estimate of the transmit-
tance function, assuming density is uniformly distributed within a small number
of clusters [Mertens et al. 04]. Recently, Jansen and Bavoil introduced Fourier
opacity mapping, which addresses the problem of banding artifacts, but where
the detail in shadows is limited by the depth range of volume samples along a
ray and may exhibit ringing artifacts [Jansen and Bavoil 10]. Finally, Enderton
et al. [Enderton et al. 10] have introduced a technique for handling all types of
transparent occluders in a fixed amount of storage for both shadow and primary
visibility, generating a stochastically sampled visibility function, though their
approach requires a large number of samples for good results.

AVSM generates an adaptively sampled representation of the volumetric trans-
mittance in a shadow-map-like data structure, where each texel stores a com-
pact approximation of the transmittance curve along the corresponding light
ray. AVSM can capture and combine transmittance data from arbitrary dynamic
occluders, including combining soft media like smoke and well-localized denser
media such as hair. It is thus both a versatile and a robust approach, suitable
for handling volumetric shadows in a variety of situations in practice. The main
innovation introduced by AVSM is a new, streaming lossy compression algorithm
that is capable of building a constant-storage, variable-error representation of
visibility for later use in shadow lookups.

3.2 Algorithm and Implementation

Adaptive volumetric shadow maps encode the fraction of visible light from the
light source over the interval [0, 1] as a function of depth at each texel. This quan-
tity, the transmittance, is the quantity needed for rendering volumetric shadows.
It is defined as

t(z) = e−
∫ z
0
f(x) dx, (3.1)

where f(x) is an attenuation function that represents the amount of light ab-
sorbed or scattered along a light ray (see Figure 3.2).

The AVSM representation stores a fixed-size array of irregularly placed sam-
ples of the transmittance function. Array elements, the nodes of the approx-
imation, are sorted front-to-back, with each node storing a pair of depth and
transmittance values (di, ti). Because we adaptively place the nodes in depth,
we can represent a rich variety of shadow blockers, from soft and transmissive
particles to sharp and opaque occluders. The number of nodes stored per texel
is a user-defined quantity, the only requirement being that we store two or more
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Figure 3.2. AVSM computes a compressed representation of transmittance along a light
ray using an area-based curve simplification scheme. This figure depicts compressing
a 4-node curve to three nodes. The algorithm removes the node that results in the
smallest change in area under the curve, determined by computing the area of the
triangle created between the candidate node and its adjacent neighbors (triangles A
and B). The right figure shows that we remove the second node from the left because
triangle A is smaller than triangle B.

nodes per texel. More nodes allow for a better approximation of transmittance
and higher quality shadows, but at the expense of increased storage and compu-
tational costs. We have found that, in practice, 8–12 nodes (a cost of 64–96 bytes
per texel in the AVSM when full precision is used) give excellent results.

In HLSL code, our AVSM nodes are implemented with a simple structure:

#define AVSM_NODE_COUNT 8

#define AVSM_RT_COUNT (AVSM_NODE_COUNT / 4)

struct AVSMData

{

float4 depth[AVSM_RT_COUNT];

float4 trans[AVSM_RT_COUNT];

};

To simplify our implementation we always store a multiple of four nodes in
the AVSM. A group of four nodes fills two render targets (one for depth and one
for transmittance). This requirement sets a limit of sixteen nodes per texel since
current graphics APIs don’t allow binding of more than eight render targets at
once.

The following sections will describe first how we generate samples of the full
transmittance function, then how these samples are compressed into the AVSM
representation, and finally how they are interpolated at rendering time in shading
calculations.
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3.2.1 Capturing Fragments of Transparent Objects

The first step in the implementation is to render from the light source and capture
a per-pixel linked list of all of the transparent fragments visible from the camera
at each pixel1. A subsequent pass, described in the Section 3.2.3, compresses
these linked lists to the compact AVSM representation.

In a manner similar to that of standard shadow maps, AVSMs are created by
rendering the scene from the light’s viewpoint. AVSM can handle both opaque
objects and objects of varying thickness and density. We need to store all of the
transparent fragments up to the first opaque fragment, as well as the first opaque
fragment itself (if there is one). This information is enough to exactly specify the
transmittance curve as seen from the light source. (Transparent fragments behind
the first opaque one, as well as any subsequent opaque fragments are irrelevant,
since the first opaque fragment immediately drives the transmittance to zero for
all depths behind it.)

While it is not strictly necessary, in order to speed up the creation of a volu-
metric shadow map, we may begin by rendering the opaque objects into a depth
buffer to establish the depth beyond which we don’t need to capture transparent
fragments. We then render a pass that includes the transparent objects, using
the already-computed depth buffer for z-tests (with a less-than-or-equal-to test
mode), but with z-writes disabled. Each fragment that passes this test is added
to a per-pixel linked list of fragments.

The per-pixel linked lists of light-attenuating segments are captured using
DX11’s support for atomic gather/scatter memory operations in pixel shaders
[Yang et al. 10]. The basic idea is that a first r/w buffer is allocated with integer
pixel values, each pixel representing a pointer to the head of a list and initially
storing a “nil” value (e.g., -1.) These pointers encode offsets into a second larger
r/w buffer which stores all lists nodes. A pixel shader then allocates a node
from the second buffer by atomically incrementing a globally shared counter (see
DirectX11 UAV counters) whose value represents a pointer to a new node. It then
inserts at the head of the list the newly allocated node by atomically swapping
the previous head pointer with the new one. The content of the new node is
updated and its next pointer is set to the previous head of the list.

For our test scenes no more than 20 MB of this buffer is typically needed.
Listing 3.1 shows HLSL code for creating these per-pixel linked lists.

1While AVSM is designed to be a streaming compression algorithm, such an implementation
requires support for read-modify-write framebuffer operations in the pixel shader. DirectX11
adds the ability to perform unordered read-modify-write operations on certain buffer types in
the pixel shader; however, for AVSM’s transmittance-curve-simplification algorithm we need
to ensure that each pixel’s framebuffer memory is modified by only one fragment at a time
(per-pixel lock). Because current DX11 HLSL compilers forbid per-pixel locks, we implement
AVSM with variable-memory version that uses the current DX11 rendering pipeline to first
capture all transparent fragments seen from the light and then compressing them into the
AVSM representation.
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#define MAX BUFFER NODES (1<<24)

RWStructuredBuffer<ListTexNode> gListTexSegmentNodesUAV ;
RWTexture2D<uint> gListTexFirstNodeAddrUAV ;

// A l l o ca t e a g e n e r i c node
bool AllocNode ( out u int newNodeAddress )
{

// a l l o c a new node
newNodeAddress = gListTexNodesUAV . IncrementCounter ( ) ;

// running out o f memory?
return newNodeAddress < MAX BUFFER NODES;

}

// I n s e r t a new node at the head o f the l i s t
void InsertNode ( in in t2 screenAddress ,

in u int newNodeAddress ,
in ListTexNode newNode )

{
uint oldNodeAddress ;
Inter lockedExchange ( gListTexFirstNodeAddrUAV [ screenAddress ] ,

newNodeAddress ,
oldNodeAddress ) ;

newNode . next = oldNodeAddress ;
gListTexNodesUAV [ newNodeAddress ] = newNode ;

}

Listing 3.1. Node allocation and insertion code of a generic list (DirectX11/Shader
Model 5).

This process can also be used with transparent objects with finite extent
and uniform density in depth—not just billboards. Each object’s fragment can
store in the list start and end points along the corresponding ray from the light
source to define a segment, along with exit transmittance (entry transmittance
is implicitly assumed to be set to 1). For example, given billboards representing
spherical particles, we insert a segment representing the ray’s traversal through
the particle; for hair we insert a short segment where the light enters and exits
the hair strand; for opaque blockers, we insert a short, dense segment that takes
the transmittance to zero at the exit point.

3.2.2 AVSM Compression

After the relevant fragments have been captured in a list at each pixel, we need to
compute a compressed transmittance curve in a fixed amount of memory. Doing
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so not only saves a considerable amount of storage and bandwidth, but makes
lookups very efficient. In general, the number of transparent fragments at a pixel
will be much larger than the number of AVSM nodes (e.g., Figure 3.6 shows
a transmittance curve with 238 nodes and its 12 nodes counterpart compressed
with AVSM), therefore, we use a streaming compression algorithm that in a single
(post-list-creation) rendering pass approximates the original curve.

Each node of our piecewise transmittance curve maps to an ordered sequence
of pairs (di, ti) that encode node position (depth) along a light ray and its associ-
ated transmittance. AVSMs store the transmittance curve as an array of depth-
transmittance pairs (di, ti) using two single-precision floating-point values2. An
important ramification of our decision to use a fixed, small number of nodes is
that the entire compressed transmittance curve can fit in on-chip memory during
compression. As with classic shadow maps we clear depth to the far plane value,
while transmittance is set to 1 in order to represent empty space.

We insert each new occluding segment by viewing it as a compositing oper-
ation between two transmittance curves, respectively representing the incoming
blocker and the current transmittance curve. Given two light blockers, A and
B, located along the same light ray, we write the density function fAB(x) as
a sum of their density functions fA(x) and fB(x). By simply applying Equa-
tion eqrefeq:transmittance we can compute their total transmittance:

ttot(z) = e−
∫ z
0
fAB(x) dx

= e−
∫ z
0
fA(x) dxe−

∫ z
0
fB(x) dx = tA(z)tB(z). (3.2)

In the absence of lossy compression, the order of composition is not important.
More relevantly, this equation shows that the resulting total transmittance is
given by the product of the two transmittance functions respectively associated
to each light blocker.

Conceptually, our task is to compute a set of nodes that accurately represents
the full transmittance curve.3 For the first few segments in the linked list, up to
the fixed number of AVSM nodes that we are storing, our task is straightforward:
we insert the segment into the AVSM array. We move the nodes with depths
greater than the new ones (a segment maps to two nodes) one element forward,
making an opening at the offset into the array, at which the new nodes should
be added, and creating new transmittance values for each opening by linearly
interpolating neighboring nodes. We then composite this curve with the curve
represented by the incoming segment (see Equation (3.2)). Once the (on-chip)
array of nodes contains more nodes than can be stored in the AVSM texture,

2It’s also possible to use half-precision values for relatively simple scenes without incurring
noticeable image artifacts.

3The problem of approximating a polygonal curve P by a simpler polygonal curve Q is of
interest in many fields and has been studied in cartography, computer graphics, and elsewhere;
see our EGSR paper for more references on this topic.
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we apply a curve simplification algorithm; our method compresses transmittance
data simply by removing the node that contributes the least to the overall trans-
mittance curve shape. In other words, we remove the node, that once removed,
generates the smallest variation to curve integral (see Figure 3.2). Compres-
sion proceeds by removing one node at a time until the maximum node count
is reached. We apply compression only to internal nodes. In practice, this is a
benefit because these uncompressed nodes provide important visual cues such as
transition into a volume or the shadows cast from a volume onto opaque surfaces.

Although transmittance varies exponentially between nodes, like deep shadow
maps, we assume linear variation to simplify area computations. This allows us
to write the transmittance integral It for an N node curve as the sum of N − 1
trapezoidal areas:

It =

N−1∑
i=0

(di+1 − di)(ti + ti+1)

2
.

The removal of an internal ith node affects only the area of the two trapezoids
that share it. Since the rest of the curve is unaffected we compute the variation
of its integral 4ti with a simple, geometrically derived formula:

4ti = |(di+1 − di−1)(ti+1 − ti)− (di+1 − di)(ti+1 − ti−1)|.

In practice, due to the lossy compression, the order in which segments are
inserted can affect the results. In particular, when generating the per-pixel linked
lists in the previous pass, the parallel execution of pixel shaders inserts segments
into the linked lists in an order that may vary per-frame even if the scene and
view are static. Inconsistent ordering can result in visible temporal artifacts,
although they are mostly imperceptible in practice when using eight or more
AVSM nodes or when the volumetric media is moving quickly (e.g., billowing
smoke). In those rare cases when a consistent ordering cannot be preserved and
the number of nodes is not sufficient to hide these artifacts, it is also possible to
sort the captured segments by depth via an insertion sort before inserting them.
We discuss the cost of this sort in Section 3.3.3.

3.2.3 AVSM Sampling

Sampling AVSMs can be seen as a generalization of a standard shadow-map depth
test [Williams 78] of translucent occluders. Instead of a binary depth test, we
evaluate the transmittance function at the receiver depth4.

Due to the irregular and nonlinear nature of the AVSM data, we cannot rely on
texture-filtering hardware, and we implement filtering in programmable shaders.
For a given texel, we perform a search over the entire domain of the curve to find

4It’s also possible to render opaque blockers into an AVSM. In this case AVSM sampling
will behave exactly as the method introduced by [Williams 78].
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the two nodes that bound the shadow receiver of depth d, we then interpolate
the bounding nodes’ transmittance (tl, tr) to intercept the shadow receiver.

In order to locate the two nodes that bound the receiver depth (i.e., a seg-
ment), we use a fast two-level search; since our representation stores a fixed
number of nodes, memory accesses tend to be coherent and local, unlike with
variable-length linked-list traversals necessary with techniques like deep shadow
maps [Lokovic and Veach 00]. In fact, the lookups can be implemented entirely
with compile-time (static) branching and array indexing, allowing the compiler
to keep the entire transmittance curve in registers. Listing 3.3 shows an imple-
mentation of our AVSM segment-finding algorithm specialized for an eight node
visibility curve, which is also used for both segment insertion and sampling/fil-
tering5.

As we do at segment-insertion time, we again assume space between two nodes
to exhibit uniform density, which implies that transmittance varies exponentially
between each depth interval (see Equation (3.1)), although we have found linear
interpolation to be a faster and visually acceptable alternative:

T (d) = tl + (d− dl) ·
tr − tl
dr − dl

This simple procedure is the basis for point filtering. Bilinear filtering is straight-
forward; the transmittance T (d) is evaluated over four neighboring texels and
linearly weighted.

struct AVSMSegment
{

int index ;
f loat depthA ;
f loat depthB ;
f loat transA ;
f loat transB ;

} ;

AVSMSegment FindSegmentAVSM8( in AVSMData data ,
in f loat rece iverDepth )

{
AVSMSegment Output ;
int index ;
f l o a t 4 depth , t rans ;
f loat l e f tDepth , rightDepth , l e f tTrans , r ightTrans ;

5Please see the accompanying demo source code for a generalized implementation that sup-
ports 4-, 8-, 12- and 16-node AVSM textures.
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// We s t a r t by i d e n t i f y i n g the render t a r g e t that . .
// . . conta in s the nodes we are l ook ing f o r . .
i f ( rece iverDepth > data . depth [ 0 ] [ 3 ] ) {

depth = data . depth [ 1 ] ;
t rans = data . t rans [ 1 ] ;
l e f tDepth = data . depth [ 0 ] [ 3 ] ;
l e f t T r a n s = data . t rans [ 0 ] [ 3 ] ;
r ightDepth = data . depth [ 1 ] [ 3 ] ;
r ightTrans = data . t rans [ 1 ] [ 3 ] ;
Output . index = 4 ;

} else {
depth = data . depth [ 0 ] ;
t rans = data . t rans [ 0 ] ;
l e f tDepth = data . depth [ 0 ] [ 0 ] ;
l e f t T r a n s = data . t rans [ 0 ] [ 0 ] ;
r ightDepth = data . depth [ 1 ] [ 0 ] ;
r ightTrans = data . t rans [ 1 ] [ 0 ] ;
Output . index = 0 ;

}
// . . we then look f o r the exact nodes that wrap . .
// . . around the shadow r e c e i v e r .
i f ( rece iverDepth <= depth [ 0 ] ) {

Output . depthA = le f tDepth ;
Output . depthB = depth [ 0 ] ;
Output . transA = l e f t T r a n s ;
Output . transB = trans [ 0 ] ;

} else i f ( rece iverDepth <= depth [ 1 ] ) {
. . . .
. . . .

} else {
Output . index += 4 ;
Output . depthA = depth [ 3 ] ;
Output . depthB = rightDepth ;
Output . transA = trans [ 3 ] ;
Output . transB = rightTrans ;

}
return Output ;

}

Listing 3.3. Segment finding code for 8-node AVSM data.

3.3 Comparisons

We have compared AVSM to a ground-truth result, deep shadow maps (DSM),
Fourier opacity maps (FOM), and opacity shadow maps (OSM). All techniques
were implemented using the DirectX11 rendering and compute APIs.

All results are gathered on an Intel Core i7 quad-core CPU running at 3.33
GHz running Windows 7 (64-bit) and an ATI Radeon 5870 GPU.
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[ u n r o l l ] for ( i = 0 ; i < AVSM NODE COUNT + 2 ; ++i ) {
// Compute render t a r g e t and vec to r element i n d i c e s
const int r t Idx = i >> 2 ;
const int elemIdx = i & 0x3 ;

f loat tempDepth , tempTrans ;
// I n s e r t l a s t segment node
[ f l a t t e n ] i f ( i == postMoveSegmentEndIdx ) {

tempDepth = segmentDepth [ 1 ] ;
tempTrans = newNodesTransOffset [ 1 ] ;

// I n s e r t f i r s t segment node
} else i f ( i == postMoveSegmentStartIdx ) {

tempDepth = segmentDepth [ 0 ] ;
tempTrans = newNodesTransOffset [ 0 ] ;

// Update a l l nodes in between the new two nodes
} else i f ( ( i > postMoveSegmentStartIdx ) &&

( i < postMoveSegmentEndIdx ) ) {
tempDepth = depth [ i −1] ;
tempTrans = trans [ i −1] ;

// Update a l l nodes l o ca t ed behind the new two nodes
} else i f ( ( i > 1) && ( i > postMoveSegmentEndIdx ) ) {

tempDepth = depth [ i −2] ;
tempTrans = trans [ i −2] ;

// Update a l l nodes l o ca t ed in f r o n t the new two nodes
} else {

tempDepth = depth [ i ] ;
tempTrans = trans [ i ] ;

}

// L inea r l y i n t e r p o l a t e s t ransmit tance along the incoming . .
// . . segment and composite i t with the cur rent curve
tempTrans ∗= Inte rp ( segmentDepth [ 0 ] , segmentDepth [ 1 ] ,

FIRST NODE TRANS VALUE,
segmentTransmittance , tempDepth ) ;

// Generate new nodes
newDepth [ r t Idx ] [ elemIdx ] = d ;
newTrans [ r t Idx ] [ elemIdx ] = t ;

}

Listing 3.2. Segment insertion code for AVSMs. Note that there is no dynamic branch-
ing nor dynamic indexing in this implementation, which makes it possible for interme-
diate values to be stored in registers and for efficient GPU execution.



i
i

i
i

i
i

i
i

236 IV Shadows

Figure 3.3. A comparison of smoke added to a scene from a recent game title with AVSM
with 12 nodes (left) and deep shadow maps (right). Rendering the complete frame takes
approximately 32 ms, with AVSM generation and lookups consuming approximately 11
ms of that time. AVSM is 1–2 orders of magnitude faster than a GPU implementation
of deep shadow maps and the uncompressed algorithm, yet produce a nearly identical
result. (Thanks to Valve Corporation for the game scene.)

Figure 3.4. Comparison of AVSM, Fourier opacity maps, and opacity shadow maps to
the ground-truth uncompressed result in a scene with three separate smoke columns
casting shadows on each other: AVSM with eight nodes (top left), ground-truth uncom-
pressed (top right), Fourier opacity maps with 16 expansion terms (bottom left), and
opacity shadow maps with 32 slices (bottom right). Note how closely AVSM matches
the ground-truth image. While the artifacts of the other methods do not appear prob-
lematic in these still images, the artifacts are more apparent when animated. Note that
the differerent images have been enhanced by 4x to make the comparison more clear.
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Figure 3.5. This scene compares (from left to right) AVSM (12 nodes), uncompressed,
opacity shadow maps (32 slices), and Fourier opacity maps (16 expansion terms). Note
that AVSM-12 and uncompressed are nearly identical and the other methods show
substantial artifacts. In particular FOM suffers from severe over-darkening/ringing
problems generated by high-frequency light blockers like hair and by less-than-optimal
depth bounds. Also note that these images use only bilinear shadow filtering. Using a
higher-quality filtering kernel substantially improves the shadow quality.

3.3.1 Qualitative Evaluation

Figure 3.3 shows AVSMs (12 nodes) compared to deep shadow maps (error thresh-
old set to 0.002). There is little perceptible difference between the results, demon-
strating that for this real-time scene, our decision to permit variable error per
texel is not a problem. The accuracy of AVSM is further validated by inspect-
ing the transmittance curves and seeing that even with eight nodes, AVSM very
closely approximates the true transmittance curves. The results for sampling the
uncompressed data also look identical. Our experience is that eight nodes results
in acceptable visual quality for all views and configurations in this scene. All
shadow map sizes in these images are 2562.

Figure 3.4 shows a visual comparison among 8-node AVSM, 16-term Fourier
opacity maps, and 32-slice opacity shadow maps against the ground-truth un-
compressed result for a scene with three smoke columns casting shadows on each
other. Note how much more closely the AVSM matches the ground-truth un-
compressed result. The quality improvements are especially noticeable when
animated. A key benefit of AVSM compared with these other real-time methods
is that AVSM quality is much less affected by the depth range covered by the
volumetric occluders.

3.3.2 Quantitative Evaluation

We validate the AVSM compression algorithm accuracy by inspecting a number
of transmittance curves and comparing to the ground-truth uncompressed data
as well as the deep shadow map compression technique. Overall, we see that
the 4-node AVSM shows significant deviations from the correct result, 8-node
AVSM matches closely with a few noticeable deviations, and 12-node AVSM
often matches almost exactly.

Figure 3.6 shows a transmittance curve from a combination of smoke and hair
(see image in Figure 3.5) with discrete steps for each blonde hair and smooth
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Figure 3.6. Transmittance curves computed for a scene with a mix of smoke and hair
for AVSM (12 nodes) and the ground-truth uncompressed data (238 nodes). The hairs
generate sharp reductions in transmittance, whereas the smoke generates gradually,
decreasing transmittance. AVSM matches the ground-truth data much more closely
than the other real-time methods.

transitions in the smokey regions. Note that the 12-node AVSM matches the
ground-truth data much more closely than the opacity or Fourier shadow map
(both of which use more memory than AVSM to represent shadow data) and
is similar to the deep shadow map but uses less memory and is 1–2 orders of
magnitude faster.

3.3.3 Performance and Memory

AVSM achieves its goal of adaptively sampling volumetric transmittance curves
with performance high enough for real-time rendering throughout the Valve soft-
ware scene (Figure 3.3). Table 3.1 shows the performance results for the view
shown in Figure 3.4 for AVSM compared to opacity shadow maps, Fourier opacity
maps, deep shadow maps, and the uncompressed approach. For this scene, AVSM
compression takes only 0.5–1.5 ms, AVSM lookups take 3–10 ms depending on
the number of AVSM nodes, capturing the segments takes 0.4 ms, and sorting
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AVSM4 AVSM8 AVSM16 OSM32 FOM16 DSM

Compress 0.5 ms 0.7 ms 1.6 ms 1 ms 1.1 ms 193 ms
Filtering 3 ms 5.4 ms 9.5 ms 1.4 ms 8.9 ms 52 ms

Total Time 9.7 ms 12.1 ms 17.43 ms 8.6 ms 15 ms 251 ms

Mem Usage 22(2)MB 24(4)MB 28(8)MB 8 MB 8 MB 40 MB

Table 3.1. Performance and memory results for 2562 resolution, adaptive volumetric
shadow maps (AVSM) with 4, 8 and 16 nodes, opacity shadow maps (OSM) with 32
slices, Fourier opacity maps (FOM) with 16 expansion terms, deep shadow maps (DSM),
and the ground-truth uncompressed data for the scene shown in Figure 3.4. The AVSM
compression algorithm takes 0.5–1.6 ms to build our representation of the transmittance
curve even when there are hundreds of occluders per light ray. The total memory
required for AVSM and DSM implementations on current graphics hardware is the size
of the buffer used to capture the occluding segments plus the size of the compressed
shadow map (shown in parentheses).

the segments (via insertion sort) before compression takes 3 ms6. As discussed
earlier, the errors arising from not sorting are often imperceptible so sorting can
usually be skipped—reducing the AVSM render-time to be nearly identical to
that of opacity and Fourier opacity maps.

There are two key sources to AVSM performance. First is the use of a stream-
ing compression algorithm that permits direct construction of a compressed trans-
mittance representation without first building the full uncompressed transmit-
tance curve. The second is the use of a fixed, small number of nodes such that
the entire representation can fit into on-chip memory. While it may be possible
to create a faster deep shadow map implementation than ours, sampling deep
shadow maps’ variable-length linked lists is costly on today’s GPUs, and it may
result in low SIMD efficiency. In addition, during deep shadow map compression,
it is especially challenging to keep the working set entirely in on-chip memory.

Table 3.1 also shows the memory usage for AVSM, deep shadow maps, and the
uncompressed approach for the smoke scene shown in Figure 3.4. Note that the
memory usage for the variable-memory algorithms shows the amount of memory
allocated, not the amount actually used per frame by the dynamically generated
linked lists.

3.4 Conclusions and Future Work

Adaptive volumetric shadow maps (AVSM) provide an effective, flexible, and ro-
bust volumetric shadowing algorithm for real-time applications. AVSMs achieve
a high level of performance using a curve-simplification compression algorithm

6While the AVSM blockers, insertion, and sampling code have received much attention, we
don’t currently have an optimized list sorting implementation but we expect it is possible to do
significantly better than our current method.
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that supports directly building the compressed transmittance function on-the-fly
while rendering. In addition, AVSM constrains the compressed curves to use a
fixed number of nodes, allowing the curves to stay in on-chip memory during
compression. As the gap between memory bandwidth and compute capability
continues to widen, this characteristic of the algorithm indicates that it is likely
to scale well with future architectures.

One limitation of AVSM is the introduction of variable error per texel in
exchange for the speed and storage benefits of fixed storage and fast compression.
While we show in our test scenes and analysis that this is a valuable trade-off to
make for real-time applications insofar as it affords high performance and rarely
produces perceptible artifacts, offline rendering users that need absolute quality
guarantees may want to continue to use a constant-error compression strategy
such as deep shadow maps.

A second limitation is that implementations using current real-time graphics
pipelines require a potentially unbounded amount of memory to first capture all
occluding segments along all light rays. In addition, the unordered concurrency
in pixel shaders means that when working with a low number of AVSM nodes
per texel the segments may need to be re-sorted after capture to eliminate cer-
tain temporal artifacts. If future graphics pipelines support read-modify-write
memory operations with a stable order, such as ordering by primitive ID, this
limitation will go away.

Moreover, while our implementation requires DirectX11-compliant hardware,
it is interesting to note that sampling and filtering an AVSM requires only
DirectX9-compliant hardware. Moreover, since in many cases volumetric shad-
ows exhibit very low spatial frequency and require low resolution shadow maps,
it should be possible to implement AVSM on a current game console like Sony
PS3 R© by writing a specialized SPU-based software rasterizer for particles/bill-
boards that build AVSMs on-chip and in a single pass, avoiding locks and per-pixel
lists, with AVSM sampling and filtering left to the GPU.
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IV

Fast Soft Shadows with Temporal
Coherence

Daniel Scherzer, Michael Schwärzler
and Oliver Mattausch

4.1 Introduction

In computer graphics applications, soft shadows are usually generated using either
a single shadow map together with some clever filtering method (which is fast,
but inaccurate), or by calculating physically correct soft shadows with light-source
area sampling [Heckbert and Herf 97]. Many shadow maps from random positions
on the light source are created (which is slow) and the average of the resulting
shadow tests is taken (see Figure 4.1).

Figure 4.1. Light sampling with one, two, three and 256 shadow maps (left to right).
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We present a soft shadow algorithm that combines the benefits of these two
approaches by employing temporal coherence: the light source is sampled over
multiple frames instead of a single frame, creating only a single shadow map with
each frame. The individual shadow test results are stored in a screen-space (of the
camera) shadow buffer (see Figure 4.2). Focusing each shadow map on creation
can be done because only fragments in the screen space of the camera remain
stored in the shadow buffer. This buffer is recreated with each frame using
the shadow buffer from the previous frame Bprev as input (ping-pong style).
The input Bprev holds shadowing information only for pixels that were visible
in the previous frame. Pixels that become newly visible in the current frame
due to camera (or object) movement (so-called disocclusions) have no shadowing
information stored in this buffer. For these pixels we use spatial filtering to
estimate the soft shadow results.

Our approach is faster as typical single sample soft shadow approaches like
PCSS, but provides physically accurate results and does not suffer from typical
single-sample artifacts. It also works on moving objects by marking them in the
shadow map and falling back to a standard single-sample approach in these areas.

4.2 Algorithm

The main idea of our algorithm is to formulate light-source area sampling in an
iterative manner, evaluating only a single shadow map per frame. We start by
looking at the math for light-source area sampling: given n shadow maps, we
can calculate the soft-shadow result for a given pixel p by averaging over the
hard-shadow results si calculated for each shadow map. This is given by

ψn(p) =
1

n

n∑
i=1

si(p). (4.1)

We want to evaluate this formula iteratively by adding a new shadow map
at each frame, combining its shadow information with the data from previous
frames that have been stored in a so-called shadow buffer Bprev, and storing it
in a new shadow buffer Bcur. With this approach, the approximated shadow in
the buffer improves from frame to frame and converges to the true soft-shadow
result.

Our approach has the following steps (see also Figure 4.2):

1. Create a shadow map SM from a randomly selected position on the area
light.

2. Create a new shadow buffer Bcur with Bprev and SM as input. For each
screen pixel we do the following steps:

(a) Calculate the hard shadow result from SM (see Listing 4.1).



i
i

i
i

i
i

i
i

4. Fast Soft Shadows with Temporal Coherence 245

(b) Check if the pixel was visible in the last frame and therefore has as-
sociated shadowing information stored in the shadow buffer (see Sec-
tion 4.2.1):

Yes: Combine information from the shadow buffer with SM (see Sec-
tion 4.2.2).

Current FramePrevious Frame

Combine values for 
accurate shadow 

Estimate 
shadow

Hard shadow

Red channel: depth

Green channel: sum 
(# of tests in shadow)

Blue channel: n 
(# of all shadow tests)

α-channel:
Average blocker depth 
(for neighborhood filter)

Check for disocclusions using depth

Yes No

Store updated 
values in Bcur

Camera 
movement

Shadow buffer Bprev

Use soft 
shadow for 

scene 
lighting

Disoccluded?

(4x32 bit texture render target)

SM from random position 
on light source

Figure 4.2. Structure of our algorithm.



i
i

i
i

i
i

i
i

246 IV Shadows

No: Use a depth-aware spatial filtering approach that incorporates
neighboring shadow buffer values to generate an initial soft shadow
estimation for this pixel (see Section 4.2.3).

We will now describe the individual steps of this algorithm in more detail
(including code fragments from our HLSL 4.0 pixel shader). The first step is
straightforward: a random position on the light source is selected. This position is
then used as a point light source from which a shadow map is created. For creating
the shadow map and evaluating the hard shadow results any algorithm can be
used, for instance LiSPSM [Wimmer et al. 04] or silhouette shadow maps [Sen
et al. 03]. Then we start to create the new shadow buffer Bcur by using the
shadow buffer from the previous frame Bprev and SM as input.

//shadow map sampling coo rd ina t e s
const float2 smCoord = texSpace ( input . LightPos ) ;
// Linear depth o f cur r ent p i x e l in l i g h t space
const f loat fragDepth = input . LightPos . z ;
// sample depth in shadow map
const f loat Depth = getSMtexel ( smCoord ) ;
// s t o r e hard shadow t e s t r e s u l t as i n i t i a l sum
f loat ShadowSum = shadowTest ( Depth , fragDepth ) ;

Listing 4.1. Hard shadow test.

4.2.1 Was This Pixel Visible?

We first have to check if the pixel pcur we are looking at was visible in the previous
frame and can therefore be found in Bprev. The process to determine this is called
temporal reprojection [Scherzer et al. 07], We back-project it (thereby accounting
for camera movement) into the coordinate system where Bprev was created. We
transform pcur therefore, from the post-perspective space of the current view
back into the post-perspective space of the previous frame. Since we have the 3D
position of our current pixel, we can simply use the view (V) and projection (P)
matrices and their inverses of the current frame and the previous frame to do the
transformation (see Figure 4.3):

pprev = Pprev ∗Vprev ∗V−1
cur ∗P−1

cur ∗ pcur

To detect pixels that were not visible in the previous frame we first check if
pprev is inside Bprev in the x- and y-direction and then we check the z (i.e., the
depth) difference between pprev and the corresponding entry in Bprev at position
pprev. If this difference exceeds a certain threshold, we conclude that this pixel
was not visible in the previous frame (see Listing 4.2 and 4.3).



i
i

i
i

i
i

i
i

4. Fast Soft Shadows with Temporal Coherence 247

Figure 4.3. Back-projection of a single pixel (left). If we do this for every pixel we
virtually transform the previous frame into the current, except for the pixels that were
not visible in the previous frame (shown in red (right)).

bool outs ideTexture ( f loat2 Tex) {
return any( bool2 (Tex . x < 0 .0 f , Tex . y < 0 .0 f ) )
| | any( bool2 (Tex . x > 1 .0 f , Tex . y > 1 .0 f ) ) ;

}

Listing 4.2. Helper function for checking the validity of texture coordinates.

The obtained position will normally not be at an exact pixel center in Bprev

except in the special case that no movement has occurred. Consequently, texture
filtering should be applied during the lookup in the shadow buffer Bprev. In
practice, the bilinear filtering offered by graphics hardware shows good results.

// prev ious shadow b u f f e r sampling coo rd ina t e s :
const float2 shadowBuffTexC = texSpace ( input . Buf ferPos ) ;
// check i f the p i x e l i s i n s i d e the prev ious shadow b u f f e r :
i f ( ! outs ideTexture ( shadowBuffTexC ) ) {

// i n s i d e o f prev ious data −> we can try to re−use in fo rmat ion !
f loat4 oldData = getShadowBufferTexel ( shadowBuffTexC ) ;
const f loat oldDepth = oldData . x ;
// check i f depths are a l i k e , so we can re−use in fo rmat ion
i f (abs(1− input . Buf ferPos . z/oldDepth ) < EPSILON DEPTH) {

// old data a v a i l a b l e −> use i t , s e e next s e c t i o n
. . .

}
}

Listing 4.3. Test if the data for the current pixel was available in the previous shadow
buffer.
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4.2.2 Using the Shadow Buffer Bprev

In regions where no disocclusions occurred, Bprev holds shadowing information
gathered over all the previous frames. Every new, additionally generated shadow
map SM improves the accuracy of this soft-shadow information, and the current
result has to be combined, therefore, with the already existing data.

SM allows us to calculate hard shadow results for the current frame, and
together with the stored n and sum values in Bprev, the accurate shadow can
easily be computed by (see Listing 4.4)

1. add the current shadow amount to the sum of all shadows,

2. increase the count n by 1,

3. divide the new sum by the new n.

// int roduce b e t t e r names f o r data from prev ious shadow b u f f e r
const f loat oldSum = oldData . y ;
const f loat oldCount = oldData . z ;
//add shadow b u f f e r sum to the cur rent sum
ShadowSum += oldSum ;
// increment n
f loat n = oldCount + 1 ;
// c a l c u l a t e s o f t shadow
f loat softShadow = ShadowSum / n ;

Listing 4.4. Combination of a hard shadow and the data from the shadow buffer.

4.2.3 Soft Shadow Estimation in Disoccluded Areas

If the pixel is not in Bprev, we cannot calculate a soft shadow using Equation 4.1
as described in Section 4.2.2, since we have only one shadow-map test result
of which to calculate the average. We therefore generate an initial soft-shadow
estimation for this pixel by a applying a depth-aware spatial filter (bilateral filter)
(see Listing 4.5), which takes neighboring pixels (distributed on a Poisson disk)
in the shadow buffer Bprev into account if they lie on a similar depth.

f loat ne ighborhoodFi l t e r ( const float2 uv ,
const float2 f i l terRadiusUV ,
const f loat currentDepth ) {

f loat sampleSum = 0 , numSamples = 0 ;
for ( int i = 0 ; i < NUM POISSON SAMPLES; ++i ) {

const float2 o f f s e t = poi s sonDisk [ i ] ∗ f i l t e rRadiusUV ;
const float3 data = getShadowBufferTexel ( uv + o f f s e t ) . xyz ;
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const f loat depth = data . x ;
const f loat sum = data . y ;
const f loat n = data . z ;
i f (abs(1−currentDepth /depth ) < EPSILON DEPTH) {

sampleSum += sum/n ;
numSamples++;

}
}
return numSamples > 0 ? sampleSum/numSamples : −1;

}

Listing 4.5. Soft shadow estimation by filtering the shadow buffer neighborhood.

If these neighboring pixels have not been recently disoccluded, they are very
likely to provide a good approximation of the correct soft-shadow value and will
help to avoid discontinuities between the shadowed pixels.

The filter radius is calculated using the same penumbra estimation as in the
PCSS algorithm [Fernando 05]. The idea is to approximate all occluders in a
search area around the pixel by one planer occluder at depth zavg. Using the
intercept theorem and the relations between pixel depth zreceiver and light source
size wlight an estimation of the penumbra width wpenumbra (see Figure 4.4) is
given by

wpenumbra = wlight
(zreceiver − zavg)

zavg
.

Figure 4.4. The sampling radius of the neighborhood filter depends on the scene depth
and an estimated penumbra size (left). The penumbra width can be approximated by
using the intercept theorem (right).
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The calculation of the average occluder depth is done by searching for potential
blockers in the shadow map, and is therefore a computationally costly step—but
in contrast to PCSS, we have to do this step only in the case of a disocclusion.
Otherwise, we store it in the shadow buffer for further use in consecutive frames
(see Section 4.2.4).

In practice, it has been found useful to assign a weight larger than 1 to this
approximation (for one hard shadow map evaluation), to avoid jittering artifacts
in the first few frames after a disocclusion has occurred. Therefore, we use the
number of Poisson samples from the neighborhood filter as weight.

4.2.4 Putting It All Together

In order to avoid visible discontinuities when switching from the estimate gener-
ated after a disocclusion and the correct result obtained from the shadow buffer
Bprev, the two shadow values are blended. This blended shadow is only used to
improve the visual quality in the first few frames and is not stored in the shadow
buffer. Note that we do not have to estimate the average blocker depth for the
neighborhood filter again, as it has been evaluated and stored in the shadow
buffer directly after the disocclusion! Additionally, this average blocker depth is
refined every frame by adding the additional depth value from the current shadow
map SM (see Listing 4.6).

// load average b locke r depth from the prev ious frame
const f loat oldAvgBlockerDepth = oldData .w;
// i f f i r s t frame a f t e r d i s s o c l u s i o n only one depth i s a v a i l a b l e
i f ( 1 . 0 == ShadowSum) avgBlockerDepth = Depth ;
//Update average b locke r depth
i f ( oldAvgBlockerDepth >= 0.0 f ) {

i f ( avgBlockerDepth >= 0.0 f ) {
f loat sum = oldAvgBlockerDepth ∗(n−1);
sum += avgBlockerDepth ;
avgBlockerDepth = sum/(n ) ;

}
else

avgBlockerDepth = oldAvgBlockerDepth ;
}

Listing 4.6. Iterative refinement of the average blocker depth

To derive a formula for the blending weight we use a statistical approach: we
estimate the standard error s of our sampling-based soft-shadow solution with a
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binomial variance estimator

sn(p) =

√
ψn(p)(1− ψn(p))

n− 1

This formula allows us to estimate the quality of our soft-shadow solution after
taking n shadow maps (for details see [Scherzer et al. 09]). If this standard error is
above a certain user-defined threshold errmax, we use only the approach described
in Section 4.2.3. If the standard error is below a certain second threshold errmin,
we use only the sampling-based soft shadow. Between these bounds, we blend
the two soft shadow results.

// c a l c u l a t e standard e r r o r with binomial var i ance e s t imator
const f loat e r r o r =

n == 1.0 ? 1 .0 : s q r t ( softShadow∗(1− softShadow )/( n−1)) ;
// i f we have r e c e n t l y d i socc luded samples or a l a r g e e r ro r ,
// support the shadow in format ion with an approximation
i f ( e r r o r >= err min && avgBlockerDepth > 0) {

//penumbra e s t imat ion l i k e in PCSS, but with the average
// occ lude r depth from the h i s t o r y b u f f e r
const f loat penumbraEstimation = vLightDimensions [ 0 ] ∗

( ( fragDepth − avgBlockerDepth ) / avgBlockerDepth ) ;
//do s p a t i a l f i l t e r i n g in the shadow b u f f e r ( s c r e en space ) :
const f loat depthFactor = ( nearPlaneDist / input . Depth ) ;
const f loat shadowEstimate = ne ighborhoodF i l t e r (

shadowBuffTexC , vAspectRatio∗depthFactor ∗penumbraEstimation ,
input . Depth ) ;

// i f shadow est imate v a l i d c a l c u l a t e new s o f t shadow
i f ( shadowEstimate > 0 .0 f ) {

i f ( inDisocc ludedRegion ) {
// d i socc luded sample : only est imated shadow
// d e f i n e weight f o r e s t imate
const f loat est imateWeight = NUM POISSON SAMPLES;
ShadowSum = shadowEstimate∗ est imateWeight ;
n = estimateWeight ;
softShadow = shadowEstimate ;

} else {
// blend est imated shadow with accumulated shadow
// us ing the e r r o r as b lending weight
const f loat weight = ( err max−e r r o r )/ ( err max−err min ) ;
softShadow =

shadowEstimate ∗ (1−weight ) + softShadow ∗ weight ;
}

}
}

Listing 4.7. The standard error decides which method is used.
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After having the soft-shadow result evaluated for each displayed pixel, the
final steps are to

• use the calculated result to modify the scene illumination, and output the
shadowed scene on the corresponding render target, and to

• store the current depth, the number of successful shadow tests sum, the
number of samples n, and the average blocker depth in the new shadow
buffer render target Bcur.

output . Col1 = f loat4 ( input . Depth , ShadowSum , n , avgBlockerDepth ) ;
// output the i l l um ina t ed and shadowed image
output . Col0 . rgb = Light ingFunct ion ( . . ) ∗ (1− softShadow ) ;
return output ;

Listing 4.8. Store values in shadow buffer and output rendered image.

4.2.5 Moving Objects

Special care must be taken when it is necessary to handle moving objects, since
they frequently produce disocclusions. Moreover, only the most recently accu-
mulated shadow tests in the shadow buffer provide valid shadow information: as
these shadow-casting objects move on, older shadow tests originate from differ-
ent spatial scene compositions, and reusing them would lead to strong streaking
artifacts.

We therefore identify shadows that are cast by moving objects by storing their
depth in the shadow map SM with a negative sign (generating no additional
memory cost) and checking whether this value is negative during the lookup in
the shadow map. If this is the case (i.e., if we have a shadow that is cast by
a moving object), we reduce the corresponding weight by setting sum and n to
a low value. This allows new shadow tests to have more impact on the result,
and removes the streaking artifacts at the cost of the physical correctness of
the shadow. Please note that an example shader, in which moving objects are
properly handled, is included in the accompanying demo application.

4.3 Comparison and Results

The proposed soft-shadowing algorithm offers a way to render physically accurate,
high quality soft shadows in real-time applications at the same speed as today’s
fastest single-sample methods. Figure 4.5 shows a benchmark that compares our
method to a fast PCSS version using only 16 texture lookups for the blocker
search and 16 texture lookups for the PCF kernel on a 720p viewport.
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Figure 4.5. Speedup of our new algorithm in comparison to PCSS16 on a GeForce
280GTX (top) and a 9600MGT (bottom).

Figure 4.6. The “age” (i.e., the number of reusable shadow tests) of the fragments in
our walkthrough scene.
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Figure 4.7. Overlapping occluders (our method, PCSS 16/16) and bands in big penum-
brae (our method, PCSS 16/16) are known problem cases for single sample approaches
left to right:.

Our algorithm tends to have a slower frame rate in cases of numerous disocclu-
sions, because it has to perform the additional blocker search for the penumbra
estimation. Due to its higher complexity (more ifs), our shader can be slower
than PCSS in such circumstances. As soon as the shadow buffer is exploited and
its values can be reused, our approach can unfold its strength and deliver higher
frame rates, while PCSS still has to do the shadow map lookups. As can be seen
in Figure 4.6, the number of fragments for which buffer data can be reused is
usually high enough to obtain frame rates exceedings those that can be obtained
with PCSS.

In static scenes, the soft shadows generated with our method are physically
accurate and of a significantly better quality than is produced by PCSS, which
suffers from typical single-sample artifacts (see Figure 4.7). For moving objects,
the shadow buffer can hardly be exploited, and we therefore provide a fallback
solution in which spatial neighborhood filtering is applied. Though humans can
hardly perceive the physical incorrectness in such cases, there is room for im-
provement, since some flickering artifacts may remain when dynamic shadows
overlap with static shadows that have large penumbrae.
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IV

Mipmapped Screen-Space
Soft Shadows

Alberto Aguado and Eugenia Montiel

This chapter presents a technique for generating soft shadows based on shadow
maps and screen space image filtering. The main idea is to use a mipmap to rep-
resent multifrequency shadows in screen space. The mipmap has two channels:
the first channel stores the shadow intensity values and the second channel stores
screen-space penumbrae widths. Shadow values are obtained by filtering while
penumbrae widths are propagated by flood filling. After the mipmap is gener-
ated, the penumbrae values are used as indices to the mipmap levels. Thus, we
transform the problem of shadow generation into the problem of selecting levels
in a mipmap. This approach is extended by including layered shadow maps to
improve shadows with multiple occlusions.

As with the standard shadow-map technique, the computations in the tech-
nique presented in this chapter are almost independent of the complexity of the
scene. The use of the shadow’s levels of detail in screen space and flood filling
make this approach computationally attractive for real-time applications. The
overhead computation compared to the standard shadow map is about 0.3 ms
per shadow map on a GeForce 8800GTX.

5.1 Introduction and Previous Work

The shadow map technique is a well-known method for generating real-time shad-
ows [Williams 78]. It is widely used in applications since it is computationally
attractive and it is capable of dealing with complex geometry. The original tech-
nique determines if a point is in a shadow by comparing the distances to the light
and to the camera in two steps. First, the scene is rendered from the camera
view point and the distance of the closest point is stored in the texture defin-
ing the shadow map. In the second step, the position of a point is transformed
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into the camera frame, so its distance to the camera can be compared to the
shadow-map value. This comparison determines if a point is occluded or not;
thus points are either fully shadowed or fully illuminated. The binary nature of
the comparison produces hard shadows, reducing the realism of the scene. As
such, previous works have extended the shadow-map technique to produce soft
shadows.

The technique presented in this chapter filters the result of the shadow map
test. This approach was introduced in the percentage closer filtering (PCF)
[Reeves et al. 87] technique. PCF determines the shadow value of a pixel by
projecting its area into the shadow map. The shadow intensity is defined by the
number of values in the shadow map that are lower than the value at the center
of the projected area. Percentage closer soft shadows (PCSS) [Fernando 05] ex-
tended the PCF technique to include shadows of different widths by replacing the
pixel’s area with a sampling region whose area depends on the distance between
the occluder and the receiver.

The PCSS technique is fast and it provides perceptually accurate soft shadows,
so it has become one of the most often used methods in real-time applications.
However, it has two main issues. First, since it requires sampling a region per
pixel, it can require an excessive number of computations for large penumbrae.
The number of computations can be reduced by using stochastic sampling, but
it requires careful selection of the sampling region in order to avoid artifacts.
Second, to determine the region’s size, it is necessary to estimate an area in
which to search for the blockers. In general, it is difficult to set an optimal
size, since large regions lead to many computations and small regions reduce the
shadows far away from the umbra.

Figure 5.1. The mipmap in image space is built by using the result of the shadow map
test and the distances between the occluder and the receiver.
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In [Gambau et al. 10], instead of filtering by sampling the shadow map, soft
shadows are obtained by filtering the result of the shadow-map comparison in
screen space. The technique in this chapter follows this approach and it intro-
duces a mipmap to represent multiple-frequency shadow details per pixel. As
such, the problem of filtering is solved by selecting a mipmap level for each pixel.
Filtering via mipmapping has been used in previous shadow-map techniques such
as convolution shadow maps [Annen et al. 08] and variance shadow maps [Don-
nelly and Lauritzen 06]. In the technique presented in this chapter, mipmapping
is used to filter screen-space soft shadows. In addition to storing multi-frequency
shadows, the mipmap is exploited to propagate occlusion information obtained
from the occluder and the shadowed surface. Occlusion information is used to
select the shadow frequency as an index to a level in the mipmap. The efficiency
of the mipmap filtering and the screen-space computations make it possible to
create penumbrae covering large areas, expending little computational overhead,
and performing no stratified sampling.

5.2 Penumbra Width

Figure 5.1 illustrates the geometry of the scene, the camera, and the shadow map.
A point P in a surface is mapped to the point p in the image and to the point
p′ in the shadow map by the inverse of the camera and light transformations,
respectively. The shadow map stores the closest distance to any surface from the
light viewpoint. This is the distance denoted as d1 in Figure 5.1. Thus, p will be
in shadow when the distance in the shadow map is lower than the distance to the
point P . That is, the shadow intensity of the pixel p is zero if d1 < d2, and 1
otherwise.

Soft shadows can be generated by filtering the result of the shadow-map com-
parison in a region k(p) in the shadow map. Using PCF, the region is defined
by the projection of the area of the pixel p into the shadow map. With PCSS,
the region is determined based on the estimation of the penumbrae sizes and it is
implemented in two steps. The first step searches for the occluder of the point P
by averaging the values in the shadow map close to p′. In general, there is no way
to determine the size of the search region and it is set as a parameter according
to the scene. Once the distance to the occluder has been determined, the second
step estimates the penumbra width by considering the geometry of the occluder,
the receiver, and the light. This is defined as

w(p) =
d2 (p)− d1 (p)

d1 (p)
L .

Here, the value of L represents the size of the light and it is used to control
the penumbrae; by increasing L, shadows in the scene become softer. Once the
penumbra width is computed, the shadow can be filtered by considering a region
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k(p) whose size is proportional to it. That is, PCSS uses a proportional constant
to map the penumbra width to the shadow map region k(p).

The technique presented in this chapter is based on the PCSS penumbra
estimation, but the values are computed only for the points that pass the shadow-
map test. This is because, for these points, it is not necessary to compute averages
to obtain the occluders’ distances; they can be obtained by fetching the value for
the point p′ in the shadow map. That is, d1 is simply defined by the shadow map
entry. Another difference from PCSS is that the penumbra estimation is not used
to define a filter of the values in the shadow map, but it is used to define a filter
in image space.

5.3 Screen-Space Filter

An estimate of the penumbra width in image space can be obtained by projecting
w(p) into the image plane. That is,

q (p) =
f

z
w (p) .

Here, f is the focal length and z is the depth of the fragment. Thus, f/z accounts
for the perspective scale. The focal length is a constant parameter that defines
the distance between the center of projection and the image plane. In general,
the area will be dependent also on the orientation between the camera and the
surface. However, since we use isotropic filters, we cannot transform the area
using particular directions.

The computation of q(p) can be performed during the shadow map test as
shown in Listing 5.1. In this implementation, the variable “pos” stores the posi-
tion of the fragment in the world space, and it is used to compute the position
in light space. The world-space and light-space positions are then used in the
shadow-map test and in the computation of the penumbra width. The result of
the shadow map is stored in the red channel of the render target and the penum-
bra width is stored in the blue channel. Notice that the implementation does not
compute occlusion values for all the pixels, but some will have the 0×FFFFFFFF
value.

void main (INPUT input , inout OUTPUT output )
{

// Pos i t i on in l i g h t space
f l o a t 4 l i g h t p o s = mul ( pos , l i g h t m a t r i x )

// Shadow map value
f loat shadow map val = tex2D ( shadowmap texture0 , l i g h t p o s ) ;

// Shadow map t e s t
output . c o l o r . r = shadow map val < l i g h t p o s . z − shadow bias ;
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// Penumbra width
output . c o l o r . b = 0xFFFFFFFF;
i f ( output . c o l o r . r == 1 .0 f ) {

f loat d i s t a n c e f a c t o r =
( l i g h t p o s . z / shadow map val ) − 1 .0 f ;

output . c o l o r . b = d i s t a n c e f a c t o r ∗ L ∗ f ∗ A / pos . z ;
}

// Tag the r eg i on f o r r eg i on f i l l i n g
output . c o l o r . g = output . c o l o r . r

}

Listing 5.1. Performing the shadow test and computing the penumbrae widths in two
different texture channels.

Figure 5.2 shows examples of the penumbrae values. The image on the left
shows an example scene. The image in the middle shows the penumbrae widths.
The white pixels are points without penumbrae widths. That is, they are points
without occlusions. The pixels’ intensities represent penumbrae widths and they
show the dependency between the occluder and the receiver positions. Occluders
that are far away from the receiver have lighter values than occluders that are
closer. Lighter values indicate large smooth shadows while dark values indicate
that shadows should have well-delineated borders. The image on the right shows
the result of the shadow-map test computed in Listing 1. The pixels in this image
have just two intensities that define hard shadows.

Notice that the code in Listing 5.1 computes penumbrae estimations only for
pixels in the hard shadow region. However, in order to compute soft shadows, it
is necessary to obtain estimates of the points that will define the umbra of the
shadow. The penumbrae widths for these pixels can be obtained by searching
for the closer occluder. Here, the search is performed by a flood-filling technique
implemented in a mipmap. In this approach, each level of the mipmap is manually

Figure 5.2. Example scene (left). Penumbra widths, light values indicate large penum-
brae (middle). Hard shadows (right).
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created by rendering a single quad. The pixel shader sets as render target the
mipmap level we are computing, and it takes as resource texture the previous
mipmap level. The advantage of this approach is that the reduction in resolution
at each level causes an increase in the search region. Thus, large regions can be
searched with a small number of computations.

The flood-filling implementation requires distinguishing between pixels that
have been filled and pixels that need to be filled. This can be efficiently im-
plemented by using a single bit in a texture. To simplify the presentation, the
implementations in Listing 5.1 and Listing 5.2 use an extra channel on the tex-
ture. In Listing 5.1 the pixels that define the filled region are tagged by setting
the green channel to one. This channel is used, when the mipmap level is created,
as shown in Listing 5.2 to distinguish pixels that should be used during the flood
fill. In Listing 5.2, the value of a pixel is obtained by averaging the values that
form the fill region using a 5 × 5 window in the source texture. The implemen-
tation averages distances so pixels so that are close to several occluders do not
produce sharp shadow discontinuities.

void main (INPUT input , inout OUTPUT output )
{

// The sum of a l l va lue s in the r eg i on
f loat sum = 0.0 f ;

// Number o f po in t s in the r eg i on
f loat num = 0.0 f ;

// Flood f i l l us ing a window 5x5
for ( int i = 0 ; i <5; i++) {

for ( int j = 0 ; j <5; j++) {
f l o a t 4 t = f l o a t 4 ( uv . x − t a r g e t s h i f t . x

∗ (−2.5 f + i ) ,
uv . y − t a r g e t s h i f t . y
∗ (−2.5 f + j ) ,
0 , p r e v i o u s l e v e l ) ;

// Read input l e v e l
f l o a t 4 va l = tex2Dlod (samMipMap , t ) ;

// Flood f i l l averag ing r eg i on p i x e l s only
i f ( va l . g == 1 .0 f ){

sum += val . b ;
num++;

}

}
}

// Output f l o o d f i l l va lue
i f ( num>0.0 f ) {
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// P ixe l should be f l o o d
output . c o l o r . b = sum / num;
output . c o l o r . g = 1 .0 f ;

}
else {

// P ixe l i s not in the f l o o d reg i on
output . c o l o r . b = 0xFFFFFFFF;
output . c o l o r . g = 0 .0 f ;

}
}

Listing 5.2. The mipmap level generation. Flood filling for occlusion values.

Figure 5.3 shows an example of the results of the flood-filling implementation.
At each level the penumbrae widths are propagated, covering large regions in the
image. Since each level has half-resolution, a pixel covers four times the area of
the previous level. Thus, large regions are covered using few levels.

Figure 5.3. Mipmap levels obtained by flood filling. The flood fill propagates informa-
tion from hard shadows to outer regions.

5.4 Filtering Shadows

The penumbrae widths in the mipmap define the filtering that should be applied
to the hard shadows in order to obtain soft shadows. Although it is possible to
apply a filter for each pixel, a more efficient implementation can be obtained by
using a multi-frequency representation. The main advantage is that frequency
filtering can be used to reduce the data, so filters of large regions can be performed
with small kernels applied to few pixels. That is, large filters correspond to small
kernels in low-resolution images.

void main (INPUT input , inout OUTPUT output )
{

// The sum of a l l va lue s in the r eg i on and number o f po in t s
f loat sum = 0.0 f ;
f loat num = 0.0 f ;

// Sto r e s r e s u l t o f f i l t e r
output . c o l o r . b = 0 .0 f ;
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// Evaluate us ing a window 5x5
for ( int i = 0 ; i <5; i++) {

for ( int j = 0 ; j <5; j++) {
f l o a t 4 t = f l o a t 4 ( uv . x − t a r g e t s h i f t . x

∗ (−2.5 f + i ) ,
uv . y − t a r g e t s h i f t . y ∗ (−2.5 f + j ) ,
0 , p r e v i o u s l e v e l ) ;

// Read input l e v e l
f l o a t 4 va l = tex2Dlod (samMipMap , t ) ;

// Flood f i l l averag ing r eg i on p i x e l s only
i f ( va l . g == 1 .0 f ){

sum += val . b ;
num++;

}
// Gaussian f i l t e r
output . c o l o r . b += val . r ∗ ke rne l [ i ] [ j ] ;

}
}
// Output f l o o d f i l l va lue
i f ( num>0.0 f ) {

output . c o l o r . b = sum / num;
output . c o l o r . g = 1 .0 f ;

}
else {

output . c o l o r . b = 0xFFFFFFFF;
output . c o l o r . g = 0 .0 f ;

}
}

Listing 5.3. Mipmap level generation including the filter of the shadow map test values.
The red channel stores the shadow intensity, the blue channel stores the penumbra width
and the green channel is used to tag the filled region.

When creating a multi-frequency representation, it is important to select the
cutoff frequencies to avoid aliasing [Bracewell 00]. Since the resolution of the
mipmap is reduced by half at each level, aliasing is avoided by reducing the
frequency by half. This cutoff frequency is obtained by a Gaussian filter with
standard deviation set to one. In the implementation, the filter is computed
at the same time as the flood-filling in Listing 5.2, but on a different texture
channel. Listing 5.3 includes the filtering to the mipmap level generation shader.
The kernel matrix defines the normalized coefficients of the Gaussian filter.

Figure 5.4 shows an example of the results obtained when applying the filter-
ing. The top row shows the mipmap levels. Notice that high resolutions give fine
detail with well-delineated shadow borders while coarse resolutions have soft bor-
ders. The images in the bottom row were obtained by using the shadows defined
on the corresponding image on the top row. That is, the same filter size is used for
the whole image, so penumbrae have the same widths. This example shows that
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Figure 5.4. Mipmap levels obtained by filtering the result of the shadow map test (top).
Shadows defined at each mipmap level (bottom).

image-space filters can be used to generate shadows with different penumbrae;
however, to obtain compelling shadows in the image, we should select different
frequencies for different pixels. That is, we have changed the problem of shadow
generation into a problem of selecting levels in a mipmap.

5.5 Mipmap Level Selection

The flood-fill and filtering processes create a mipmap with two channels: the first
channel contains shadows filtered with different cutoff frequencies and the second
channel contains penumbrae widths. Small penumbrae widths values indicate
close contact points or close lights, so the shadows should be well delineated.
That is, the pixel should be rendered using the shadows on the first levels of the
mipmap. Large values indicate that the distance between the occluder and the
receiver is significant with respect to the distance and size of the light. Thus,
pixels should use the shadows in the low-resolution levels; the penumbrae width
determines the frequency content in each pixel.

In order to select the mipmap level for each pixel, we relate the penumbrae
widths to filter sizes by considering the fact that since filters are applied at each
resolution, the size of the filter is squared on each level. That is, the width of the
filter at level i is

s = 2i.

Thus, if we consider that the width of the penumbra is defined by the size of the
filter, then a penumbra width will be generated at the level

i = log2 (q (p)) .

Notice that this equation does not give integer levels; we should not be limited by
the values in the mipmap levels, and we can generate shadows for intermediate
values. In the implementation, we use bilinear interpolation to compute the
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shadows between mipmap levels. This generates a variation of shadows and
produces smooth transitions in the penumbrae.

void main (INPUT input , inout OUTPUT output )
{

// I n i t shadow i n t e n s i t y
f loat shadow = 1.0 f ;

// Fetch mipmap l e v e l s
f l o a t 4 va l [ 8 ] ;
for ( int l e v e l =0; l e v e l < 8 ; l e v e l++ ){

va l [ l e v e l ]= tex2Dlod (g samMipMap , f l o a t 4 (uv , 0 , l e v e l ) ;
}

// Find q (p)
f loat q = 0 ;
for ( int l e v e l = 0 ; l e v e l < MAX LEVELS {\&}{\&} q == 0 ;

l e v e l++ ){
i f ( va l [ l e v e l ] . y != 0) q = va l [ l e v e l ] . z ;

}

i f ( q>0.0 f )
{

// Se l e c t ed l e v e l
i f (q<1) q = 1 ;
f loat l = log2 ( q ) ;
i f ( l > MAX LEVELS) l = MAX LEVELS − 0 .1 f ;

// I n t e r p o l a t e l e v e l s
int down = f l o o r ( l ) ;
int up = down + 1 ;
f loat i n t e r p = l−down ;

// Shadow i n t e n s i t y
shadow = ( 1 . 0 f − l e r p ( va l [ down ] . x , va l [ up ] . x , i n t e r p ) ) ;

}
output . c o l o r = shadow ;
}

Listing 5.4. Shadow intensity computation from the mipmap.

The selection of levels implementation is outlined in Listing 5.4. The code
starts by fetching all the levels of the mipmap. The fetching step uses interpo-
lation, so we obtain smooth shadow values. The value of q(p) is obtained by
looking for the first penumbra value in the mipmap levels. This value is then
used to compute the shadow intensity by interpolating a pair of selected levels.

The shadow intensity should be added to the final rendering of the scene.
The way this is performed depends on the rendering type. Figure 5.5 illustrates



i
i

i
i

i
i

i
i

5. Mipmapped Screen-Space Soft Shadows 267

Figure 5.5. Mipmapped shadows implemented using the main scene rendering. Forward
rendering (left). Deferred rendering (right).

how shadows can be added to the scene in forward and deferred rendering. In
forward rendering, as shown in Figure 5.5 (left), hard shadows are computed
during the main rendering of the scene, and they are stored in the bottom level
of the mipmap. Thus, the scene buffer does not contain any shadows. Afterward
the mipmap is constructed and subsequently the scene is shadowed by a shadow
blending post-processing. The post-processing computes the shadow intensities
and it combines the scene buffer and the shadow intensity by rendering a single
quad. In the deferred rendering illustrated in Figure 5.5 (right), hard shadows
are stored in a G-buffer and the shadow map can be used during the lighting
pass.

Figure 5.6 shows some examples of soft shadows generated by using the
mipmap technique. The first two images were obtained by changing the light’s
area, so shadows become smoother. The third image shows a close-up view to
highlight contact shadows. As with any other shadow-map techniques, accurate
shadows at contact point and self-shadows require an appropriate bias in the
shadow map test. The first image in the bottom row shows how shadows change
depending on the distance between the occluder and the receiver. Shadows are
blurred and smooth for distant points whilst they are well delineated close to
contact points. The final two images show the result on textured surfaces.
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Figure 5.6. Examples of soft shadows.

5.6 Multiple Occlusions

In general, shadow-map techniques can suffer from light bleeding. This is because
the shadow map stores a single value that represents the distance to the closest
surface. Thus, when a surface has multiple occluders, the distance to the closest
occluder cannot be computed. This is illustrated in Figure 5.7, which highlights
two points on the receiver; one point has one occluder and the other has two
occluders. For the dark point, the distance to the occluder is determined by
subtracting the distance to the light from the distance in the shadow map (i.e.,
d2 − d1). This gives a good estimate of the occluder’s distance. For the lighter
point, the shadow map stores the distance to the closest occluder (i.e., d′1). Thus,
the occluder’s distance is computed as d2 − d′1 and, consequently, the shadow
will be overestimated. In some cases, as shown in Figure 5.6, the variations
of shadow intensity may not produce notable changes in intensities. However,
in several cases the difference between shadows can be very noticeable. This
problem is more significant for semitransparent objects.

A straightforward approach to computing a better estimate of the distances
between the receiver and the occluders is to perform a ray-tracing search; however,
this will impose important computational constraints. An alternative approach
is to store several values in the shadow map, so we can search for the closest
occluder. A simple implementation of this approach can be developed using
layered shadow maps.
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Figure 5.7. Light bleeding caused by multiple occlusion.

Layered shadow maps define an array of shadow maps that store the distances
to the closest point for slices parallel to the light. In our implementation, each
shadow map is obtained by rendering the scene multiple times, changing the near
clip of the camera to cover the regions illustrated in Figure 5.7 (right). That is,
the first shadow map covers a small region far from the light and the next shadow
maps cover regions that increase in size approaching the camera.

In order to use layered shadow maps, the shadow-map test in Listing 5.1
should be changed to search for occluders in an array of textures. This is imple-
mented in Listing 5.5. Here, the test is performed on each of the layer textures
and the first layer that passes the shadow-map test is used to compute the oc-
cluder distance. It is important to mention that if multiple occluders are close to
each other, then they will be located in the same shadow map. However, if they
are close, then the distance error is low and the shadows are similar. That is,
layers will not guarantee the correct distance computation, but they will mitigate
problems caused by multiple occluders at far distances.

Figure 5.8 shows two examples that compare renderings with and without
layered shadow maps. The images in the top row were obtained with a single
shadow map while the images on the bottom row have eight layers. In the example
shown in the images on the left, there are two multiple occlusions caused by
the brick blocks and containers. Since the distance between the bricks and the
container on the left is small relative to their distance to the light, shadows caused
by both objects merge without causing artifacts. However, the large distance
between the bricks and the container at the right causes a light shadow under
the container. As shown in the image on the bottom row, these problems are
reduced by using layered shadow maps.

void main (INPUT input , inout OUTPUT output )
{
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f l o a t 4 l i g h t p o s = mul ( pos4 , l i g h t m a t r i x )

// For each l a y e r
f l o a t 2 shadow map val [ 8 ]
shadow map val [ 0 ] = GetShadowMap (0 , l i g h t p o s ) ; // :
shadow map val [ 7 ] = GetShadowMap (7 , l i g h t p o s ) ;

// Shadow map t e s t . Look f o r f i r s t occ lude r
output . c o l o r . r = 0 .0 f ;
f loat d i s t ance = 0 .0 f ;

for ( index =0; index <7; index++){
i f ( shadow map val [ index ] . x < l i g h t p o s . z − shadow bias ) {

output . c o l o r . r = shadow map val [ index ] . y ;
d i s t ance = shadow map value [ index ] . x ;
index = 8 ;

}
}

f loat d i s t a n c e f a c t o r =
( l i g h t p o s . z / d i s t ance )−−1.0 f ;

output . c o l o r . b = d i s t a n c e f a c t o r ∗ L ∗ f ∗ A / pos . z ;
}

Listing 5.5. Performing the shadow test and computing the penumbrae widths for
layered shadow maps and transparency.

The example in the top-right image in Figure 5.8 shows light bleeding caused
by a semitransparent object. Shadows for semitransparent objects can be created
by changing the intensity of the shadows according to the transparency value
of the albedo texture of the occluder. This modification can be implemented
during the shadow-map test, so it does not add any significant computational
overhead; it requires changing the shadow-map generation and the shadow-map
test. The shadow-map creation should be modified so that the shadow map keeps
the distance to the closest object and the alpha value of the albedo texture. The
alpha value can then be used as shown in Listing 5.5 to determine the intensity
of the shadow.

The computation of transparency, using values in the shadow map, is compu-
tationally attractive; however it can produce light bleeding for multiple occluders.
This is illustrated in Figure 5.8 (top right). Here, the bin is causing a multiple
occlusion with the bus stop glass. Thus, the shadow cast by the bin uses the
transparency of glass and produces a very weak shadow. This is because a single
shadow map stores only the alpha of the closest object to the light. As shown
in Figure 5.8 (bottom right), layered shadow maps can alleviate this problem.
However, if the occluders are moved close to each other, the layer strategy may
fail to store multiple values and objects can produce incorrect shadows.
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Figure 5.8. Examples of layered shadows. Light bleeding caused by incorrect computa-
tion of the distance between the occluder and the receiver (top). Layered shadow maps
can reduce occluder problems (bottom).

5.7 Discussion

Compared with standard shadow maps, the technique presented in this chapter
uses an extra texture to store the mipmap and one texture for each layer for the
layered version. In terms of processing, it adds a computational overhead caused
by: (i) the computations of the penumbra width during the shadow-map test
(Listing 5.1); (ii) the creation of the mipmap (Listing 5.3); and (iii) the mipmap
lookup during shadow blending (Listing 5.4).

The rendering times of the technique are shown in Table 5.1. The columns in
the table show the frames per second when: rendering without shadows, render-
ing using standard shadow maps, rendering using the mipmap, and when using
layers. The results were obtained for a test scene with 13K faces and by using
a GeForce 8800GTX with a 720 × 480 display resolution. The implementation
used a 512× 512 shadow map and six mipmap levels. The frame time increases
about 0.3 ms when the mipmap is used to generate soft shadows. This increase
is mainly because of the time spent during the generation of the mipmap. In



i
i

i
i

i
i

i
i

272 IV Shadows

No Shadows Standard Mipmap Layered
Shadow Map Shadows Shadow Maps
(hard shadows)

Frame Rate 345 340 305 230

Frame Time 2.89ms 2.94ms 3.27ms 4.34ms

Table 5.1. Frame rate for different implementations.

the layered version, the increase in rendering time is mainly due the multiple
rendering required to create the shadow map for each layer. The time shown in
Table 5.1 was obtained by considering six layers.

The computational load is adequate for real-time applications and the results
show compelling smooth shadows. However, multiple occlusions can produce light
bleeding. This is more evident as the light’s area increases, since shadows with
significantly different intensities can be created. This problem can be mitigated
by saturating the intensity of the shadows or by using layered shadow maps. Nev-
ertheless, when dealing with complex scenes and large-area lights, there still may
be variations of intensities on multiple occlusion zones. As such, the technique
could benefit from more elaborate layer placements or peeling layer strategies.
Finally, it is important to mention that this technique relies on shadow maps,
so it inherits those computational advantages, but it is also prone to inherent
problems such as z-fighting for incorrect depth bias.
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V
Handheld

Devices

This part covers the latest development in programming GPUs of devices that are
portable, such as mobile phones, personal organizers, and portable game consoles.
The latest generation of GPUs for handheld devices comes with a feature set that
is comparable to PC and console GPUs.

The first article, “A Shader-Based eBook Renderer,” by Andrea Bizzotto illus-
trates a vertex-shader-based implementation of the page-peeling effect of a typical
eBook renderer. It covers high-quality procedural antialiasing of the page edges,
as well as some tricks that achieve a polished look. Two pages can be combined
side-by-side to simulate a real book, and additional techniques are introduced
to illustrate how to satisfy additional constraints and meet power-consumption
requirements.

The second article of this part, “Post-Processing Effects on Mobile Devices,”
by Marco Weber and Peter Quayle describes a general approach to implement
post-processing on handheld devices by showing how to implement a bloom effect
with efficient convolution.

Joe Davis and Ken Catterall show in “Shader-Based Water Effects,” how to
render high-quality water effects at a low computational cost. Although there are
many examples of water effects using shaders that are readily available, they are
designed mainly for high-performance graphics chips on desktop platforms. This
article shows how to tailor a technique discussed by Kurt Pelzer (in ShaderX2,
“Advanced Water Effects,” 2004) to mobile platforms.

—Kristof Beets



i
i

i
i

i
i

i
i

1

V

A Shader-Based eBook Renderer
Andrea Bizzotto

Readers of eBooks are becoming increasingly popular. Touch screens and pro-
grammable GPUs, such as the POWERVR SGX Series from Imagination Tech-
nologies, can be combined to implement user-friendly navigation and page flipping
functionality. This chapter illustrates a vertex-shader-based implementation of
the page-peeling effect, and details some techniques that allow high-quality proce-
dural antialiasing of the page edges, as well as some tricks that achieve a polished
look. Two pages can be combined side-by-side to simulate a real book, and addi-
tional techniques are introduced to illustrate how to satisfy additional constraints
and meet power consumption requirements.

1.1 Overview

The chapter is organized as follows: Section 1.2 introduces the mathematical
model which is the basis of a page-peeling simulation, and shows how to use
the vertex shader to render the effect with a tessellated grid on OpenGL ES
2.0 hardware. Section 1.3 discusses the additional constraints that need to be
considered when rendering two pages side-by-side, and Section 1.4 illustrates some
techniques that improve the visual look and deal with antialiasing. An approach
that doesn’t require a tessellated grid is illustrated in Section 1.5 to show how
the technique can be adapted to work on OpenGL ES 1.1 hardware with minimal
vertex overhead. Section 1.6 mentions some practical considerations regarding
performance and power consumption. Finally, Sections 1.7, 1.8, and 1.9 discuss
some aspects that have not been considered or that can be improved.

Throughout the article, points will be represented with a capital bold letter,
vectors with a small bold letter, and scalars in italic. Page, quad, and plane will
be used interchangeably to describe the same entity.
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Figure 1.1. Page-folding effect rendered on screen.

1.2 Page-Peeling Effect

A page can be modeled as a quad. One corner can be selected and pulled in many
directions. The mathematical model assumes that the interaction generates a
bend on the page with a constant radius across the surface. When a page folds,
it wraps around a semicircle by an angle that increases from 0 ◦ (no folding) to
180 ◦ (full semicircle). After that, the surface slides in parallel above the unfolded
part of the page, as illustrated in Figures 1.1 and 1.2.

Since the page can be folded in any chosen direction, the original position of
any arbitrary point on the quad can be modified.

In order to implement this effect on graphics hardware, the page can be rep-
resented as a highly tessellated grid whose vertices represent a discretized version
of the points of the plane. The vertices’ positions are modified in the vertex
shader according to the folding algorithm, and the output values are then inter-
polated between vertices in the rasterization stage. As a smooth-looking bend is
required, the tessellation factor needs to be high enough to simulate the nonlinear
deformation with sufficient accuracy (as illustrated in Figure 1.3).
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Figure 1.2. Page-folding effect: positions of the input vertices on the right of the bending
axis are modified according to the model.

In the following discussion, all vectors can be considered two-dimensional
since the quad initially lies on the plane with equation z = 0. When the page is
folded, the z-coordinate does change, but this is not relevant for most stages of
the algorithm and will be discussed where appropriate.

Some of the steps of the algorithm can be performed on the CPU side, and
the results passed as uniforms to the vertex shader, which will perform only oper-
ations that directly involve the input vertices and will write the output position.

Figure 1.3. Internal representation: a tessellated grid is used as the input. When the
page is not folded, two triangles can be used to render it.
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1.2.1 Pre-Processing Stage

The touch screen can be used to determine the direction d and the amount
(extent) F by which the page is folded.

First, the corner to which the effect applies is calculated as in Equation (1.1)
(the corners of the screen have coordinates (−1,−1), (1, 1)):

C = −sign(d) (1.1)

Then, the axis where the page starts to fold is determined (dotted line in
Figure 1.2). This can be represented geometrically by a point1 and a direction,
which can be calculated as in Equations (1.2) and (1.3).

B = C + F · d (1.2)

t = (−dy, dx) (1.3)

The calculated values B and t are then passed to the vertex shader as uniforms,
together with the direction d and radius R. All the remaining steps of the
algorithm are performed in the vertex shader.

1.2.2 Per-Vertex Stage

The bending axis partitions the plane into two semiplanes. Only vertices in the
right semiplane need to be modified to achieve the page-peeling effect. How is
it possible to determine to which semiplane a vertex belongs, and what is its
distance from the bending axis?

The right-handedness property of the cross product comes in handy: given two
vectors t and v (to which a third component z = 0 is appended), the resulting
vector s = t × v will point upward if t follows v, and downward otherwise.
Additionally, the length of s is given by Equation (1.4), where t is unitary:

|s| = |t||v| sin θtv = |v| sin θtv (1.4)

Since t and v both lie on the same plane z = 0, the scalar value w = sz, which
satisfies |w| = |sz| = |s|, gives all the required information. In fact, the sign of
w represents the direction of the resulting vector s and tells which semiplane the
vertex belongs to, and its absolute value is the distance from the axis.

It can be noticed in Figure 1.2 that the relation w = −d · v also holds since
the dot product calculates the projection of the vector v into d, which can be on
either side of the bending axis. To summarize, both the cross and dot product
can be used to get the required information as Equation (1.5) shows:

|w| = |v| cos θdv = |d · v| = |t× v| = |v| sin θtv = |sz|. (1.5)

1For the purposes of the algorithm, any point on the bending axis can be chosen.
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Figure 1.4. Model for bending effect: For vertices with w > 0 the position needs to to
be recalculated by wrapping it along the curve path.

If a vertex lies on the right semiplane, it needs to be folded as illustrated in
Figure 1.4.

The final vertex position Q needs to be updated according to the folding
direction d and distance from the axis w. First, the projection E of P onto the
bending axis is calculated as in Equation (1.6):

E = B + (v · t) t (1.6)

Figure 1.4 shows that the x-, y- and z-components of the input vertex are up-
dated differently. All the remaining calculations are based on the known distance
w and the direction −d, labeled u for convenience. The angle α = w/R is used,
as well, to update the final position.

If α < π, then the final position of the vertex lies on the semicircle and can
be calculated as in Equation (1.7):

Qxy = E +R · sin α · u. (1.7)

If α ≥ π instead, the updated position will just be parallel to the original
plane as Equation (1.8) states:

Qxy = E− (w − πR)u. (1.8)

As for the depth component, the final z-position is calculated as Qz = −2w/π
if the vertex lies in the semicircle and Qz = −2R otherwise.

Note that the final depth value is always in the range allowed for normal-
ized device coordinates (this is necessary to avoid clipping after the perspective
divide), since the relation in Equation (1.9) holds:

Qz ∈ (−2R, 0) ⊂ (−1, 1) , R < 0.5. (1.9)

The described algorithm can be implemented in the vertex shader as shown
in Listing 1.1. Note that the texture coordinates do not need to be altered since
only the vertex positions change.
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a t t r i b u t e highp vec3 inVertex ;
a t t r i b u t e mediump vec2 inTexCoord ;
uniform highp f loat Radius ;
uniform highp vec2 D i r e c t i on ;
uniform highp vec2 Tangent ;
uniform highp vec2 Point ;
vary ing mediump vec2 TexCoord ;
const highp f loat PI = 3 .141592 ;
const highp f loat INV PI 2 = 2 .0 / PI ;
void main ( )
{

highp vec2 ver tex = inVertex . xy ;
highp vec2 v = vertex − Point ;
// w can equa l l y be c a l c u l a t e d with the c r o s s product
highp f loat w = −dot (v , D i r e c t i on ) ;
i f (w > 0 . 0 )
{

highp vec2 E = Point + dot (v , Tangent ) ∗ Tangent ;
highp f loat ang le = w / Radius ;
i f ( ang le < PI ) {

g l P o s i t i o n . xy = E − Radius ∗ s i n ( ang le ) ∗ Dir e c t i on ;
g l P o s i t i o n . z = −INV PI 2 ∗ w;

}
else {

g l P o s i t i o n . xy = E + (w − PI ∗ Radius ) ∗ Dir e c t i on ;
g l P o s i t i o n . z = −2.0 ∗ Radius ;

}
}
else

g l P o s i t i o n . xyz = vec3 ( vertex , 0 . 0 ) ;

g l P o s i t i o n .w = 1 . 0 ;

TexCoord = inTexCoord ;
}

Listing 1.1. OpenGL ES 2.0 vertex shader for basic page-peeling effect.

1.2.3 Taking Aspect Ratio into Account

The description above assumes that the input quad is a square. Since all de-
vices have a rectangular aspect ratio, applying the basic algorithm will cause the
image to appear stretched along the major axis and the edges of the page to
look nonorthogonal. This can be solved by premultiplying the x-component of
the input vertex by the aspect ratio before applying the algorithm, and divid-
ing the x-component of the final position by the aspect ratio. Additionally, it is
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recommended that the relative tessellation of the input grid matches the screen
aspect ratio, so that the vertices will be spaced equally in the two dimensions,
once stretched to the screen.

1.3 Enabling Two Pages Side-by-Side

The presented approach illustrates the basic page-folding effect, although a rep-
resentative usage case is composed of two pages side-by-side, with the additional
constraint that pages cannot be folded on the inner side. The algorithm can be
extended to take this into account, and only the preprocessing stage needs to be
modified.

More formally, the bending axis can intersect the page either on the top or
bottom edge or both. The x-coordinate of this intersection (the closest to the
inner edge if two intersections are present) represents the amount by which the
page is folded on either the top or bottom edge, and must be smaller than the
width of the page (which is equivalent to the aspect ratio a). Such amount x
depends on the folding value F , direction d, and tangent t as illustrated by
Equation (1.10), which is solved by Equations (1.11) and (1.12):2

Fd + λt =

(
x
0

)
, (1.10)

{
Fdx − λdy = x
Fdy + λdx = 0,

(1.11)

x = Fdx −
(
−F dy

dx

)
dy = F

(
dx +

d2
y

dx

)
= F

d2
x + d2

y

dx
=
F

dx
. (1.12)

If x > a, then F exceeds the maximum value given the direction d, as shown in
Figure 1.5(a). If a different angle is chosen, the page can fold in a direction that
satisfies the constraint, while preserving the same folding value F .

Let θ be the angle corresponding to the direction d. Values of |θ| close to π/2
cause x to approach the limit a quickly, since the page folds almost vertically,3

therefore when x > a it is appropriate to use a new value θ′, where |θ′| < |θ|.
Once the new angle is calculated, all other dependent variables can be updated
and passed to the vertex shader.

2Here the corner is assumed to have coordinates (0, 0) and applying the two vectors Fd and
λt corresponds to a translation of (x, 0)T .

3Since the page can fold upwards or downwards, θ can be positive or negative and the
modulus operator accounts for this.
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Figure 1.5. Angle correction: to prevent page tearing (left), the direction is modified
in order to meet the constraint x ≤ a (right).

The correction θc = θ′ − θ that needs to be applied in order to meet the
constraint is calculated in Equation (1.13):

θc = −sign(dxdy)F
x− a
x

. (1.13)

The term −sign(dxdy) takes into account the fact that θ can be positive or neg-
ative, ensuring that |θ′| < |θ|.4

The absolute value of θc needs to be proportional to F and the difference
(x− a), normalized by a factor 1/x to ensure small corrections for large x values
(this is an heuristic that works well in practice).

bool PageFolded ( theta , newTheta , radius , newRadius ) {
i f ( theta ∗ newTheta < 0) {

newRadius = rad iu s − abs ( newTheta ) ;
newTheta = 0 ;
i f ( newRadius < 0) {

newRadius = 0 ;
return true ; // page complete ly f o l d ed

}
}
return fa l se ; // page not complete ly f o l d ed

}

Listing 1.2. Pseudo-code to enforce the additional constraint on side-by-side pages.

4The term dx in Equation (1.13) is necessary to handle correctly the right page, where the
angle correction needs to be inverted. The full example can be found in the code.
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If F is large enough, it means that the user is dragging a finger across the
whole screen, and the page should fold completely. In order to do this it is
necessary to modify the current model so that once θ′ reaches 0 (condition by
which the page is parallel and almost completely covers the one underneath), the
radius decreases to 0 as well to complete the peel effect. Listing 1.2 illustrates
the final update stage.

Once the angle and radius are updated, all the required uniforms are calcu-
lated and passed to the vertex shader.

1.4 Improving the Look and Antialiasing Edges

Since pages are predominantly white, when a page is folded the edge is not clearly
visible, and it’s therefore useful to add some sort of shading to improve the general
look. A simple technique to achieve this is to use a fade-to-gray gradient on the
edges of the pages. This can be done efficiently by splitting the grid representing
a page into two meshes (as in Figure 1.3), one representing the page content to
be rendered with a standard lookup shader, and a border rendered with a shader
that mixes the color of the page with a gray gradient (since a color mix is done
in the fragment shader and this affects only the border of the page, the simpler
shader can be used when the gradient is not necessary).

The effect highlights the border of the pages as required, but introduces some
noticeable aliasing artifacts on the edges. By adding an external border that can
be rendered with a similar gradient and enabling blending, a shadow-like effect
is made and the aliasing problem is mitigated. Figure 1.6 shows how the borders
can improve the render quality.

Even though aliasing is sensibly reduced by the introduction of the external
border, it is not completely removed in cases where the destination color is not
white. This is noticeable on the black title text in Figure 1.6(c), since, on the
edge, the internal and external fragments have intensity 0.5 and 0.0, respectively,
the latter due to the blend between the black text and the gray border. The
quality can be considered acceptable and further refinements are not considered
here.

Figure 1.6. Antialiasing edges: simple shader (left), internal gradient border (center),
internal and external border (right). The intensity values and widths of the borders can
be tweaked to obtain the desired look.
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In addition to the physical borders of the page, the area where the page
bends includes an edge that can be perceived visually and could be improved by
some form of shading. A gradient-based technique can be used here too, and
the gradient can be calculated as a simple function of the angle α, available in
the vertex shader. Since the folding direction is arbitrary, in this case it’s not
possible to split the original mesh in two, and this results in a more expensive
fragment shader being applied to the whole page. The next section introduces
an alternative rendering technique that, as a side effect, addresses this issue.

1.5 Direction-Aligned Triangle Strip

By using a screen-aligned grid, the tessellation needs to be uniform across the
whole page, even though only a small part of it is folded. While in principle
this can enable more complex deformation effects in the vertex shader, it is not
strictly necessary for a simple page fold. A more efficient approach that exploits
the nature of the problem is to tessellate only the bent part of the page, while two
trapezoids can be used to render the flat areas. Since the fold is one-dimensional
(i.e., it doesn’t vary along the tangent) it is sufficient to generate a triangle strip
aligned with the direction d.

As Figure 1.7 shows, in the general case the page can be split into two trape-
zoids and a triangle strip. The intersection between the first trapezoid and the
strip is delimited by the bending axis, while the length of the strip equals the
length of the semicircle πR. The method in [Sutherland and Hodgman 74] can
be used as a general algorithm to clip the page against the arbitrary bending

Figure 1.7. Direction-aligned strip: by using tessellation on only the curled part of the
page, the overall number of vertices can be sensibly reduced. Additionally, the grid can
be simplified to a triangle strip.
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axis and create the two trapezoids. The triangle strip and the trapezoids can be
generated procedurally on the CPU every time the input changes and can then
be passed to OpenGL for rendering.

If an internal border is used as described in the previous section, the number of
meshes and intersections to be determined further increases. Many subcases can
be envisioned depending on how the bending axis partitions the page, and some
extensive coding is necessary to cover all of them. If needed, the whole geometry
can be preprocessed on the CPU and the page can be submitted already folded
to the graphics renderer, allowing this technique to run on OpenGL ES 1.1-class
hardware. For the purposes of this article only the general idea is presented and
the implementation is left to the reader (though code for the tessellation-grid
approach is included).

Note, separating the input quad into individual meshes further reduces the
overall number of computations performed on the GPU, since a simple lookup
shader can be used for most of the area (flat trapezoids), while the application
of fancier shaders with gradients can be limited to the bent part of the page.

1.6 Performance Optimizations and Power Consumption

To ensure maximum battery life, render-on-demand is implemented by updating
the frame only when the folding value and direction change. Although very simple
to implement, this technique is critical for this kind of application, since expected
battery life for eBook readers is very important. Rendering the same static image
in each frame needlessly drains the battery of the device.

In typical usage the user reads a page, then folds, then reads another page
and so on. Most of the time will be spent idle waiting for the next page to be
folded. Drawing nonfolded pages can be done very cheaply by rendering simple
quads.

When the page is actually folding and a render is required, it is preferable to
use the triangle strip variant instead of the tessellated grid approach, since many
fewer vertices are submitted. The cost difference between the two techniques does
not apply if a page is partially folded but no render is required.

1.7 Putting it Together

The techniques illustrated so far can be used to render two pages side-by-side
and fold them if required. By simply adding two more pages and keeping track
of the textures to be bound to each page, it is possible to simulate a book with
an arbitrary number of pages. Additional coding is necessary to limit the regions
of the screen where the user can interact (pages can be folded only from the
borders) and to handle page unfolding correctly. The two sides of a page can be
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represented by two different textures, and the page can be rendered twice, with
front- and back-face cull. Figure 1.1 shows the final effect rendered on screen.

The available code features a simple eBook application that allows the user to
browse through a predefined set of pages and takes into account some additional
practical conditions not considered in this article.

1.8 Future Work

The article has been presented with the assumption that the pages to be rendered
are stored as textures, and no considerations have been made about the best way
to render text. True-type fonts are common in eBook readers and a better way
to display text could be to render true-type text to textures whose resolutions
match the area on screen that is covered by the pages. More research could be
done to ensure the best mapping of the text on screen even where the page is
folded.

Procedural antialiasing techniques proved to be effective, and tweaking the
blending values and gradients resulted in a neat look. Some additional improve-
ments can be achieved, for example, by procedurally mixing the gradient in the
external border with the contents underneath it, rather than using simple alpha
blending.

Touchscreen interaction has been used mainly to determine the direction in
which the page needs to be folded. A more advanced use could be to enable
zooming and additional features based on multitouch input.

The mathematical model used to enable the page-peeling effect is simple, and
some constraints like parallelism between the unfolded and folded parts of the
page, and constant folding radius across the page could be relaxed. More com-
plex models could investigate how to use multitouch to apply more folds to a
single page or enable more complex types of deformation, where the tessellated-
grid approach would be more suitable than the tailored triangle-strip variant.

1.9 Conclusion

Graphics hardware capable of vertex processing can exploit the problem of folding
a plane in any arbitrary direction by means of a highly tessellated grid. A sample
application for iPad (available in the source code release) has been developed,
and approximately 17,000 faces have been used per-page without any noticeable
degrade in visual quality or performance at 1024× 768 resolution.

The cost per vertex is relatively low, given the optimizations introduced in
this paper, and the fragment shaders are quite simple, generally consisting of a
texture lookup and a sum or mix with a gradient color, making low-end OpenGL
ES 2.0 devices a good target for this kind of application.
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By taking a different approach, it is possible to reduce the input of the graph-
ics renderer to two trapezoids and a triangle strip, which can be rendered on
OpenGL ES 1.1-class hardware, although more coding is required to handle all
the intersection subcases and pregenerate the geometry.

Render-on-demand is central in this design to maximize battery life, and some
expedients can be used to minimize the cost-per-render.
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Post-Processing Effects on
Mobile Devices

Marco Weber and Peter Quayle

Image processing on the GPU, particularly real-time post-processing, is an impor-
tant aspect of modern graphical applications, and has wide and varied uses from
games to user interfaces. Because of the continually improved performance lev-
els of graphics hardware, post-processing effects are now common on the desktop
and in the console space. With the current generation of OpenGL ES 2.0-enabled
embedded GPUs, an increasing number of such effects are also possible on mobile
devices. Bloom effects, for example, can add a vivid glow to a scene; color trans-
forms and distortions can provide a stylistic flair; blur, and depth-of-field effects
can draw attention to areas of interest, or highlight selected elements in a user
interface. Figure 2.1 shows some generic examples of post-processing effects, and
Figure 2.2 demonstrates the use of a blur effect in a user interface.

Post-processing is the modification and manipulation of captured or generated
image data during the last stage of a graphics pipeline, resulting in the final
output picture. Traditionally, these operations were performed by the host system
CPU by reading back the input image data and altering it. This is a very costly
operation and is not suitable for applications that require interactive frame rates
on mobile platforms. Using the processing power of modern graphics hardware
to do the image data manipulation is a more practical and efficient approach.

This chapter describes a general approach to post-processing and provides an
example of a real-time effect that can be implemented on OpenGL ES 2.0-capable
hardware, such as POWERVR SGX.

2.1 Overview

The general idea behind post-processing is to take an image as input and generate
an image as output (see Figure 2.3). You are not limited to only using the
provided input image data, since you can use any available data source (such as
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Figure 2.1. Radial twist, sepia color transformation, depth of field, depth of field and
sepia color transformation combined (clockwise from top left).

Figure 2.2. Post-processing effect on the Samsung Galaxy S. The background of the
user interface is blurred and darkened to draw attention to items in the foreground.
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Figure 2.3. Image input and output.

depth and stencil buffers), as additional input for the post-processing step. The
only requirement is that the end result has to be an image.

One direct advantage of this approach is that, due to the identical basic for-
mat of input and output, it is possible to chain post-processing techniques. As
illustrated in Figure 2.4, the output of the first post-processing step is reused as
input for the second step. This can be repeated with as many post-processing

Figure 2.4. Image input and output chain.
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techniques as required. Some sets of post-processing techniques can be merged
to avoid the overhead of chaining, while others can exploit chaining to achieve a
performance increase, as explained later.

Each step is performed by rendering to a frame buffer object (FBO). The final
output image will be displayed on the screen.

2.2 Technical Details

To generate the first input image we must render our scene to a texture. As
mentioned in the previous section, to do this we use FBOs. There are other ways
to accomplish the same results, such as creating textures by copying data from
the framebuffer, but using FBOs is better for performance (for a more detailed
discussion see [Imagination Technologies 10]).

We will make use of pixel-shader support, as found in the POWERVR SGX
graphics cores, since they provide a great deal of flexibility when developing
post-processing effects. It is possible to implement some basic post-processing
techniques with a fixed-function pipeline, but this is beyond the scope of this
article.

The basic algorithmic steps for a post-processing effect are as follows:

1. Render the scene to a texture.

2. Render a full screen pass using a custom pixel shader, with the texture from
the previous stage as input, to apply the effect.

3. Repeat step two until all effects are processed.

The first step is the most straightforward, because it simply requires setting
a different render target. Instead of rendering to the back buffer, you can create
an FBO of the same dimensions as your frame buffer. In the case that the frame
buffer dimensions are not a power of two (e.g., 128×128, 256×256 etc.), you must
check that the graphics hardware supports non-power-of-two (NPOT) textures.
If there is no support for NPOT textures, you could allocate a power-of-two FBO
that approximates the dimensions of the frame buffer. For some effects it may
be possible to use an FBO far smaller than the frame buffer, as discussed in
Section 2.4.

In step two, the texture acquired during step one can be used as input for the
post-processing. In order to apply the effect, a full-screen quad is drawn using a
post-processing pixel shader to apply the effect to each pixel of the final image.

All of the post-processing is executed within the pixel shader. For example, in
order to apply an image convolution filter, neighboring texels have to be sampled
and modulated to calculate the resulting pixel. Figure 2.5 illustrates the kernel,
which can be seen as a window sliding over each line of the image and evaluating
each pixel at its center by fetching neighboring pixels and combining them.
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Figure 2.5. Gaussian blur filtering.

Step three describes how easy it is to build a chain of post-processing effects
by simply executing one after another, using the output of the previous effect
as the input for the next effect. In order to accomplish this, it is necessary to
allocate more than one frame buffer object as it is not possible to simultaneously
read from and write to the same texture.

Figure 2.6. Post-processing steps and frame buffer IDs.
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Figure 2.6 illustrates the re-use of several frame buffer objects:

• The initial step renders to the frame buffer object with ID 1

• The second step renders to the frame buffer object with ID 2, using the
previous frame buffer object as input.

• The whole procedure is repeated for steps three and four, but instead of
using frame buffer object 2 again for the last step, the back buffer is used
since the final result will be displayed on the screen.

Depending on the individual effect, some of the illustrated passes may be
merged into one pass. This avoids the bandwidth cost associated with processing
the whole image for each effect that is merged, and reduces the total number of
passes required.

2.3 Case Study: Bloom

The whole concept of post-processing, as presented in the previous section, is
suitable for high-performance graphics chips in the desktop domain. In order
to implement post-processing on mobile graphics chipsets, such as POWERVR
SGX graphics cores, it is most important to act with caution. In this section, we
illustrate an actual implementation of the bloom effect tailored for implementa-
tion on an embedded GPU, such as POWERVR SGX, at an interactive frame
rate. The required optimizations and alterations to the original algorithm are
explained throughout the following sections. At the beginning of this section the
effect itself will be explained, followed by the actual implementation and some
optimization strategies.

Figure 2.7. Mask without and with glow applied.
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Figure 2.8. Applying an intensity filter to obtain bright parts.

The bloom effect simulates our perception of bright light by producing a
pronounced glow and a halo around bright objects. Furthermore, it gives the
impression of high dynamic range rendering despite being done in a low dynamic
range. Another useful side effect is that it reduces aliasing artifacts due to the
slight glow at the edges of objects. The whole effect and its intensity can be
controlled by an artist and can be used to attract attention to objects and make
them distinct (see Figure 2.7).

The bloom effect is achieved by intensifying bright parts of the image. In
order to accomplish this, the bright parts of the image have to be identified and
isolated. This can happen either implicitly by applying an intensity filter to the
input image to extract the bright parts (see Figure 2.8), or explicitly by specifying
the glowing parts through a separate data source, (e.g., the alpha channel of the
individual textures).

The intensity filtered texture, which contains the bright parts of the image,
will then be blurred with a convolution kernel in the next step. The weights of the
kernel used in this example are chosen to resemble the weights of the Gaussian
blur kernel. The kernel itself is applied by running a full shader pass over the
whole texture and executing the filter for each texture element. Depending on the
number of blur iterations and the size of the kernel, most of the remaining high
frequencies will be eliminated and a ghostly image will remain (see Figure 2.9).
Furthermore, due to the blurring, the image is consecutively smeared and thus
enlarged, creating the halos when combined with the original image.

The final step is to additively blend the resulting bloom texture over the
original image by doing a full screen pass. This amplifies the bright parts of the
image and produces a halo around glowing objects due to the blurring of the
intensity-filtered texture (see Figure 2.10).

The final amount of bloom can be controlled by changing the blend function
from additive blending to an alpha-based blending function, offering even more
artistic freedom. By animating the alpha value we can vary the amount of bloom
and simulate a pulsing light.
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Figure 2.9. Applying Gaussian blur.

Figure 2.10. Additive blending of original and blurred intensity-filtered image.

2.4 Implementation

The bloom algorithm presented in the previous section describes the general
approach one might implement when processing resources are vast. Two full
screen passes for intensity filtering and final blending and several passes for the
blur filter in the most naive implementation are very demanding even for the
fastest graphics cards.

Due to the nature of mobile platforms, adjustments to the original algorithm
have to be made in order to get it running, even when the hardware is equipped
with a highly efficient POWERVR SGX core.
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The end result has to look convincing and must run at interactive frame rates.
Thus, most of the steps illustrated in Section 2.3 have to be modified in order to
meet the resource constraints.

2.4.1 Resolution

One of the realities of mobile graphics hardware is a need for low power and long
battery life, which demand lower clock frequencies. Although the POWERVR
SGX cores implement a very efficient tile-based deferred rendering approach, it
is still essential to optimize aggressively when implementing full screen post-
processing effects.

In our implementation the resolution of the frame buffer object for the blurred
texture was set to 128 × 128, which has shown to be sufficient for VGA (640 ×
480) displays. Depending on the target device’s screen and the content being
rendered, even 64×64 may be adequate; the trade-off between visual quality and
performance should be inspected by regularly testing the target device. It should
be kept in mind that using half the resolution (e.g., 64× 64 instead of 128× 128)
means a 75% reduction in the number of pixels being processed.

Since the original image data is not being reused because of the reduced reso-
lution, the objects using the bloom effect have to be redrawn. This circumstance
can be exploited for another optimization. As we are drawing only the objects
which are affected by the bloom, it is possible to calculate a bounding box en-
closing these objects that in turn will be reused in the following processing steps
as a kind of scissor mechanism.

When initially drawing the objects to the frame buffer object, one could take
the optimization even further and completely omit texture mapping (see Fig-
ure 2.11). This would mean that the vertex shader would calculate only the

Figure 2.11. Difference between nontextured (left) and textured (right) bloom.
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Figure 2.12. Transforming the brightness scalar by doing a texture lookup in an inten-
sity map.

vertex transformation and the lighting equation, which would reduce the amount
of data being processed in the fragment shader even further, at the expense of
some detail. Each different case should be evaluated to judge whether the per-
formance gain is worth the visual sacrifice.

When omitting texture mapping, the scalar output of the lighting equation
represents the input data for the blur stage, but if we simply used scalar output
for the following steps, the resulting image would be too bright, even in the darker
regions of the input image, which is why the intensity filter has to be applied.
Applying the intensity filter can be achieved by doing a texture lookup into a
1D texture, representing a transformation of the luminance (see Figure 2.12).
This texture can be generated procedurally by specifying a mapping function, or
manually, whereby the amount of bloom can be stylized to meet artistic needs.
The lookup to achieve the intensity filtering can potentially be merged into the
lighting equation. Other parts of the lighting equation could also be computed
via the lookup table, for example, by premultiplying the values in it by a constant
color.

2.4.2 Convolution

Once we’ve rendered our intensity-filtered objects to the frame buffer object, the
resulting image can be used as input for the blur-filtering steps. This section
explains the blur-filtering methods which are depicted in Figure 2.13.

Image convolution is a common operation and can be executed very efficiently
on the GPU. The naive approach is to calculate the texture-coordinate offsets
(e.g., 1/width and 1/height of texture image) and sample the surrounding tex-
els. The next step is to combine these samples by applying either linear filters
(Gaussian, median, etc.) or morphologic operations (dilation, erosion, etc.).
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Figure 2.13. Blurring the input image in a low-resolution render target with a separated
blur filter kernel.

In this case we will apply a Gaussian blur to smooth the image. Depending
on the size of the filter kernel, we have to read a certain amount of texture values,
multiply each of them by a weight, sum the results, and divide by a normalization
factor. In the case of a 3 × 3 kernel this results in nine texture lookups, nine
multiplications, eight additions, and one divide operation, which is a total of 27
operations to filter a single texture element. The normalization can be included
in the weights, reducing the total operation count to 26.

Fortunately, the Gaussian blur is a separable filter, which means that the filter
kernel can be expressed as the outer product of two vectors: 1 2 1

2 4 2
1 2 1

 = (1 2 1)⊗ (1 2 1).

Making use of the associativity,

t · (v · h) = (t · v) · h,

where t represents the texel, v the column, and h the row vector, we can first
apply the vertical filter and, in a second pass, the horizontal filter, or vice versa.
This results in three texture lookups, three multiplications, and two additions per
pass, giving a total of 16 operations when applying both passes. This reduction
in the number of operations is even more dramatic when increasing the kernel
size (e.g., 5× 5, 7× 7, etc.)(see Table 2.1):

Kernel Texture Lookups Muls Adds No. Of Operations
3x3 (standard) 9 9 8 26
3x3 (separated) 6 6 4 16
5x5 (standard) 25 25 24 74
5x5 (separated) 10 10 8 28
9x9 (standard) 81 81 80 242
9x9 (separated) 18 18 17 53

Table 2.1.
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Figure 2.14. Reducing the number of texture lookups by using hardware texture filter-
ing.

In most cases, separating the filter into horizontal and vertical passes results
in a large performance increase. However, the naive single-pass version may be
faster in situations in which bandwidth is severely limited. It is always worth
benchmarking to ensure the best solution for a given platform or scenario.

The number of texture lookups can be decreased again by exploiting hardware
texture filtering. The trick is to replace the texture lookup for the outer weights
with one which is between the outer texels, as shown in Figure 2.14.

The way this works is as follows: when summing the contribution, s, of the
outer texels, t0 and t1, in the unoptimized version, we use

s = t0w0 + t0w1. (2.1)

When we sample between the outer texels with linear filtering enabled we
have

s = t0(1− u) + t1u, (2.2)

where u is the normalized position of the sample point in relation to the two
texels. So by adjusting u we can blend between the two texel values. We want
to blend the texels with a value for u such that the ratio of (1 − u) to u is the
same as the ratio of w0 to w1. We can calculate u using the texel weights

u = w1/ (w0 + w1) . (2.3)

We can then substitute u into Equation (2.2). Because u must be a value
between 0 and 1, we need to multiply s by the sum of the two weights. Our final
equation looks like this:

s = (t0 (1− u) + t1u) (w0 + w1) . (2.4)

Although this appears to contain more operations than Equation (2.1), the
cost of the term in the first set of brackets is negligible because linear texture
filtering is effectively a free operation. In the case of the 5 × 5 filter kernel, the
number of texture lookups can be reduced from ten to six, yielding the identical
number of computation necessary as for the 3× 3 kernel.
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It is important that the texture coordinates are calculated in the vertex shader
and passed to the pixel shader as varyings, rather than being calculated in the
pixel shader. This will prevent dependent texture reads. Although these are
supported, they incur a potentially substantial performance hit. Avoiding de-
pendent texture reads means that the texture-sampling hardware can fetch the
texels sooner and hide the latency of accessing memory.

2.4.3 Blending

The last step is to blend the blurred image over the original image to produce
the final result, as shown in Figure 2.15.

Therefore, the blending modes have to be configured and blending enabled so
that the blurred image is copied on top of the original one. Alternatively, you
could set up an alpha-value-based modulation scheme to control the amount of
bloom in the final image.

In order to increase performance and minimize power consumption, which is
crucial in mobile platforms, it is best that redundant drawing be avoided as much
as possible. The single most important optimization in this stage is to minimize
the blended area as far as possible. Blending is a fill-rate intensive operation,
especially when being done over the whole screen. When the bloom effect is
applied only to a subset of the visible objects, it is possible to optimize the final
blending stage:

• In the initialization stage, calculate a bounding volume for the objects which
are affected.

• During runtime, transform the bounding volume into clip space and cal-
culate a 2D bounding volume, which encompasses the projected bounding
volume. Add a small margin to the bounding box for the glow.

Figure 2.15. Overview of the separate bloom steps.
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Figure 2.16. Bounding box derived rectangle (red) used for final blending.

• Draw the 2D bounding object with appropriate texture coordinates to blend
the blurred texture over the original image.

Figure 2.16 shows the blending rectangle which is derived from the object’s
bounding box. The bounding box in this case is a simple axis-aligned bounding
box which is calculated during the initialization. At runtime, the eight vertices of
the bounding box are transformed into clip space and the minimum and maximum
coordinate components are determined. The blended rectangle is then derived
from these coordinates and the texture coordinates are adapted to the vertex
positions. Depending on the shape of the object, other, more suitable, bounding
volumes might be appropriate (e.g., bounding spheres).

This bounding-box-directed blending can lead to artifacts when the blending
rectangles of two or more objects overlap, resulting in sharp edges and highlights
that are too bright. A work-around for this overlap issue is to use the stencil
buffer:

• Clear the stencil buffer to zero and enable stencil testing.

• Configure the stencil test so that only the pixels with a stencil value of zero
are rendered, and the stencil value is always incremented.

• Draw all bounding volumes and disable stencil test.

Use of this algorithm prevents multiple blend operations on a single pixel and
produces the same result as a single full screen blend. On a tile-based deferred
renderer like POWERVR SGX, stencil operations are low cost.

2.5 Conclusion

We have presented a brief introduction to post-processing, followed by a detailed
case study of a well-known post-processing effect. We have illustrated optimiza-
tion techniques that make it possible to use the effect while achieving interactive
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framerates on mobile hardware. Many of the optimization techniques shown can
be adapted and applied to other post-processing effects.
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V

Shader-Based Water Effects
Joe Davis and Ken Catterall

3.1 Introduction

Generating efficient and detailed water effects can add a great deal of realism
to 3D graphics applications. In this chapter, we highlight techniques that can
be used in software running on POWERVR SGX-enabled platforms to render
high-quality water effects at a relatively low computational cost.

Such effects can be achieved in a variety of ways, but we will focus on the use
of vertex and fragment shaders in OpenGL ES 2.0 to alter the appearance of a
plane to simulate a water effect.

Although there are many examples of water effects using shaders that are
readily available, they are designed mainly for high-performance graphics chips
on desktop platforms. The following sections of this chapter describe how the gen-
eral concepts presented in desktop implementations, in particular the technique
discussed by K. Pelzer [Pelzer 04], can be tailored to run at an interactive frame
rate on even low-cost POWERVR SGX platforms, including the optimizations
that were made to achieve the required performance.

We refer to an example application OGLES2Water that is part of the freely
available POWERVR OpenGL ES 2.0 SDK, which is included in the example
code with this article. Up-to-date SDKs are available from the Imagination Tech-
nologies website.1 Specific performance numbers cited refer to tests run on an
OMAP3530 BeagleBoard2 platform at VGA resolution.

3.2 Techniques

3.2.1 Geometry

In the demonstration, the plane that the water effect is applied to is a horizontal
plane in world space, extending to the boundaries of the view frustum—this is

1http://www.imgtec.com/powervr/insider/powervr-sdk.asp
2http://www.beagleboard.org
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constructed from only four or five points, as a high level of tessellation is not
required. The PVRTools library from the POWERVR SDK contains a function,
PVRTMiscCalculateInfinitePlane(), which obtains these points for a given set
of view parameters. Because the plane is horizontal, certain calculations can be
simplified by assuming the normal of the plane will always lie along the positive
y-axis.

A skybox is used to encapsulate the scene. This is textured with a PVRTC-
compressed 4 bits per-pixel format cubemap using bilinear filtering with near-
est mipmapping to provide a good balance between performance and quality
(for more information, see S. Fenney’s white paper on texture compression [Fe-
neny 03]).

3.2.2 Bump Mapping

To simulate the perturbation of the water’s surface, a normal map is used to
bump the plane. The normal map used in the demo is y-axis major (as opposed
to many other bump maps that are z-axis major). The texture coordinate for
each vertex is calculated in the vertex shader as the x- and z-values of the position
attribute that has been passed into the shader. The water surface is animated
by passing a time-dependent offset to the bump-map coordinates.

Since this offset amounts to a simple linear translation of the bump map,
the effect on its own looks unrealistic because the perturbation travels in a single
direction, rather than rippling as one would expect. For this reason it is suggested
that at least two scaled and translated bump layers are applied to the plane to
make the surface perturbations look much more natural (Figure 3.1).

Figure 3.1. Bump map animation over two frames.
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3.2.3 Reflection Render Pass

Reflection in the program is achieved through an additional render pass before
the main render loop. The purpose of this is to render all of the geometry that
needs to be reflected during the frame and store this information as a texture that
can be applied to the water’s surface during the main render. Before rendering
the scene, the camera needs to be mirrored about the plane to give the correct
view for the reflection.

To mirror the view matrix about the water plane, a custom transformation
is required. The code in Listing 3.1 shows how this matrix is constructed (from
RenderReflectionTexture in our example).

// Mirror the view matrix about the plane .
PVRTMat4 mMirrorCam(PVRTMat4 : : I d e n t i t y ( ) ) ;
mMirrorCam . ptr ( ) [ 1 ] = −m vPlaneWater . x ;
mMirrorCam . ptr ( ) [ 5 ] = −m vPlaneWater . y ;
mMirrorCam . ptr ( ) [ 9 ] = −m vPlaneWater . z ;
mMirrorCam . ptr ( ) [ 1 3 ] = −(2.0 f ∗ m vPlaneWater .w) ;

m mView = m mView ∗ mMirrorCam ;

Listing 3.1. Constructing the view matrix.

As the diagram in Figure 3.2 shows, mirroring the camera is not enough by
itself, because it results in the inclusion of objects below the water’s surface,
which spoils the reflection. This issue can be avoided by utilizing a user-defined
clip plane along the surface of the water to remove all objects below the water
from the render (See Section 3.3.1 for information on how this can be achieved
in OpenGL ES 2.0). Using this inverted camera, the entire reflected scene can
be rendered. Figure 3.3 shows the clipped reflection scene rendered to texture in
the demo.

Figure 3.2. Mirrored camera for reflection.
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Figure 3.3. Reflection stored as a texture.

In the main render pass, where the water plane is drawn, the reflected scene is
sampled using screen-space coordinates, and then is distorted using an animated
bump map normal.

The gl FragCoord variable can be used to retrieve the current fragment’s
coordinate within the viewport, which is then normalized as follows:

myTexCoord = gl_FragCoord.xy * RcpWindowSize;

// where RcpWindowSize is a vec2 containing the reciprocal window

dimensions.

The multiply operation is used in place of a divide operation in order to reduce
the required number of cycles.

To distort the reflection, an offset needs to be subtracted from these coordi-
nates. This offset is calculated using a scaled normal sampled from a bump map.
Figure 3.4 shows the perturbed result achieved from sampling the reflected scene
using these distorted coordinates.

Used alone, this reflection technique results in unrealistically reflective water,
since objects lying beneath the surface or coloring caused by dirt within the body
of water are not considered. There are a number of steps that can be taken at
this stage to improve the quality of the effect. The best option depends on the
required aesthetics and performance of a particular implementation:



i
i

i
i

i
i

i
i

3. Shader-Based Water Effects 311

Figure 3.4. Water effect using only a permutated reflection texture.

• Perform another render pass to create a refraction texture (Section 3.2.4).
This is expensive—reduced the performance of the effect on the develop-
ment hardware by 60%, as was expected due to the extra pixel-render work-
load.

• Mix the color value of the fragment with a constant water color. This is
good for simulating very murky water—reduced the performance by 9%, as
expected due to the extra shader instructions per pixel.

• Alpha blend the water so objects below the water can be seen (Figure 3.5).
This reduces the realism of the effect when rendering deep water because
the edges of submerged objects will still appear sharp—reduced the perfor-
mance by 11%, as expected due to the higher number of visible fragments
per pixel.

It may be worth opting for one of the less intensive solutions if the required
water effect is shallow, since there may be little value applying refraction in these
cases. A mix between the texel color with a water color can be done in one of
two ways, as discussed in Section 3.2.4.

Though introducing a new render pass comes at an additional cost, this can
be reduced by adhering to the following recommendations:

1. Render only what is necessary. The CPU should be used to determine
which objects are above the water plane and, if possible, which objects are
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Figure 3.5. Water effect using a permutated reflection texture and alpha blending.

intersecting the plane since these are the only objects that will be needed
during the render. If this still proves to be too expensive, the pass can be
reduced to just drawing the key objects in the scene, such as a skybox and
terrain.

2. Favor FBO use over reading from the frame buffer. Rather than using
a copy function such as glReadPixels(), a frame buffer object with a
texture bound to it should be used to store the output of the render pass
in a texture [PowerVR 10]. This avoids the need to copy data from one
memory location (the frame buffer) to another (texture memory), which
would cost valuable cycles and bandwidth within the system. Even more
important, it avoids direct access of the frame buffer that can result in a
loss of parallelism, as the CPU would often be stalled, waiting for the GPU
to render.

3. Render to texture at the lowest acceptable resolution. As the reflection
texture is going to be distorted anyway, a lower resolution may be acceptable
for it. A 256 × 256 texture has proven to be effective in the demo when
running at a 640× 480 display resolution, but depending on the maximum
resolution of the screen on the platform being developed, this resolution
could be reduced further. Keep in mind that a drop from 256 × 256 to
128× 128 will result in a 75% lower resolution and workload.
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4. Avoid using discard to perform clipping. Although using the discard key-
word works for clipping techniques, its use decreases the efficiency of early
order-independent depth rejection performance advantages that the POW-
ERVR architecture offers (See Section 3.3.1 for more information).

3.2.4 Refraction Render Pass

In a case where the rendered water should appear to be fairly deep, adding refrac-
tion to the simulation can vastly improve the quality of the effect. To do this, an
approach similar to that taken during the reflection render pass should be used,
in which all objects below the water are rendered out to a texture (Figure 3.6).
Clipping (using the inverse of the water plane) can be assisted by rough culling
on the CPU beforehand. This reduces the GPU workload [PowerVR 10].

If the effect should produce very clear water, all elements of the scene below
the water should be rendered, including the skybox (or similar object) (Fig-
ure 3.7). If a murky water effect is required, a fogging effect can be used to fade
out objects at lower depths (discussed later in this section).

Once the scene has been rendered to a texture, it can then be utilized by
the water’s fragment shader. The screen-space texture coordinates (as used in
Section 3.2.3) are also used to sample the refraction texture. The refraction
sample is then combined with the reflection sample, either at a constant ratio
(e.g., 50/50), or using an equation such as the Fresnel term to provide a dynamic

Figure 3.6. Refraction stored as a texture.
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Figure 3.7. Water effect using only the refraction texture (without fogging).

Figure 3.8. Full water effect, showing edge artifact.
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mixing of color, based on the current viewing angle. Figure 3.8 shows the full
effect of the water, where reflection and refraction textures are mixed using the
Fresnel term.

Fogging. A fogging effect to simulate water depth can be accomplished by setting
a maximum fogging depth (below which objects are no longer visible) and using
the value to perform a linear fade between the object’s original color and the fog
color based on the object’s depth. To do this, the refraction pass must use the fog
color as the clearing color; objects such as the skybox that should appear infinite,
and therefore past the maximum fogging distance, should be omitted from the
render (see Figure 3.9). Alternatively, a different fade can be used to create a
more realistic fogging effect, such as an exponential fade, but this may come at
an additional cost.

As the demo assumes the water plane’s normal will always lie along the pos-
itive y-axis, the w-component of the water plane equation can be negated and
passed into the shader as the water height (displacement from the center of the
world space along the y-axis). The depth value of the vertex is then calculated
in the vertex shader as an offset from this value:

vtx_depth=w-inVertex.y

The fragment shader then calculates the mixing ratio of the fog color and the
object’s color. This ratio is obtained using the following equation:

Ratio=(vtx_depth)/(max_fog_depth)

Figure 3.9. Water effect using only the refraction texture (with fogging).
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(In practice, cycles can be saved by multiplying by the reciprocal of
max fog depth instead of performing a division per vertex). This ratio is clamped
to the range [0, 1] and then is used to determine how much of the fogging color
is applied to the fragment.

On the development hardware, disabling the fogging effect gave a 3.5% in-
crease in performance level.

The max fog depth value can also be used on the CPU to cull geometry below
this depth. This is a good way to decrease the number of objects that need to
be rendered during the refraction pass. As with the reflection pass, this rough
culling reduces the amount of geometry submitted, thus saving bandwidth and
unnecessary computations.

Fresnel term. The Fresnel term is used to determine how much light is reflected
at the boundaries of two semitransparent materials (the rest of which is absorbed
through refraction into the second material). The strongest reflection occurs
when the angle of incidence of the light ray is large, and, conversely, reflection
decreases as the angle of incidence decreases (Figures 3.10 and 3.11). The Fresnel
term provides a ratio of transmitted-to-reflected light for a given incident light
ray.

In practice, this is used to determine the correct mix between the reflected
and refracted textures for any point on the water’s surface from the current view
position. This is the Fresnel principle in reverse, and the ratio can be obtained
using an approximation derived from the same equations.

Figure 3.10. Small angle of Fresnel reflection.
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Figure 3.11. Large angle of Fresnel reflection.

The approximation of the Fresnel term used in the demo is determined using
the following formulae, where n1 and n2 are the indices of refraction for each
material [Pelzer 04]:

R(0) =
(n1 − n2)2

(n1 + n2)2
,

R(α) = (1−R(0))(1− cosα)5 +R(0).

To save computation time, the result of the equation above is calculated outside
of the application, using the values in Table 3.1.

Using these numbers, the constant terms in the formula can be precalculated
(see Table 3.2).

n1 (Air) 1.000293

n2 (Water at room temperature) 1.333333

Table 3.1. Indices of refraction used in Fresnel term.

Fresnel approximation

R(0) 0.02037

1–R(0) 0.97963

Table 3.2. Approximate values in Fresnel calculation.
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The shader code in Listing 3.2 shows this principle in practice; first calculate
the angle between the water normal (obtained from the bump map technique) and
then the water-to-eye vector. These results are then used to calculate the Fresnel
term, which is in turn used to mix the samples of the reflected and refracted
scenes.

The normalization cube map used in the code is an optimization discussed
later in Section 3.3.1. On some hardware this may achieve faster results than
using the built-in normalize() functionality. The water normal here is assumed
to be already normalized, though this may not always be the case.

Using the Fresnel calculation instead of a constant mix on the development
hardware reduces the performance by 22%, but gives a much more realistic out-
put.

// Use norma l i za t i on cube map in s t ead o f normal ize ( )
lowp vec3 vWaterToEyeCube =

textureCube ( NormalisationCubeMap , WaterToEye ) . rgb
∗ 2 .0 − 1 . 0 ;

mediump f loat fEyeToNormalAngle =
clamp ( dot (vWaterToEyeCube , vAccumulatedNormal ) , 0 . 0 , 1 . 0 ) ;

// Use the approximations :
// R(0)−1 $\ sim $= 0.98
// R(0) $\ sim $= 0.02
mediump f loat fAirWaterFresne l = 1 .0 − fEyeToNormalAngle ;
fAirWaterFresne l = pow( fAirWaterFresnel , 5 . 0 ) ;
fAirWaterFresne l = ( 0 . 98 ∗ fAirWaterFresne l ) + 0 . 0 2 ;

// Blend r e f l e c t i o n and r e f r a c t i o n
lowp f loat fTemp = fAirWaterFresne l ;
g l FragCo lor = mix ( vRefract ionColour , vRe f l ec t ionColour , fTemp ) ;

Listing 3.2. Fresnel mix implementation.

3.3 Optimizations

3.3.1 User Defined Clip Planes in OpenGL ES 2.0

Although the programmability of the OpenGL ES 2.0 pipeline provides the flexi-
bility to implement this water effect, there is a drawback in that the API does not
have user-defined clip plane support, which is required to produce good quality
reflections and refractions. Many OpenGL ES 2.0 text books suggest performing
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Figure 3.12. View frustum with n and f planes from original projection.

a render pass that uses a discard in the fragment shader so that fragments beyond
the user-defined clip plane will be ignored. Although this method works and will
produce the required output, using the discard keyword is highly inadvisable
because it means the hardware is unable to perform early depth testing, and in-
stead is forced to perform the full fragment shader pass. This cancels out specific
performance advantages offered by some GPUs, such as those using early Z mech-
anisms or tile-based deferred rendering (TBDR) which include the POWERVR
SGX architecture [PowerVR 10].

To solve this problem, a projection matrix modifying technique can be used
[Lengyel 04]. The projection matrix (M) is used to convert all of the objects in
the scene from view-space coordinates into normalized device coordinates (NDC),
and part of this process is to clip objects that do not fall between the near, far, left,
right, top, and bottom planes of the view frustum (Figure 3.12). By considering
the function of the projection matrix in this way, it becomes apparent that there
is already a built-in mechanism for clipping. Clipping along a user-defined plane
can be achieved by altering the contents of the projection matrix, but this does
introduce a number of problems (which will be discussed later).

The first stage of this technique requires the user-defined clip plane (~P ) to
be converted into view space. This can be done by multiplying the row vector
representing the plane’s coefficients (expressed in world space) by the inverse of
the view matrix:

~C = ~P ×M−1
view = [Cx Cy Cz Cw].
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For this technique to work, the clipping plane must be facing away from the
camera, which requires the Cw component to be negative. This does restrict the
flexibility of the clipping method, but does not pose a problem for the clipping
required for the water effect.

Altering the clipping planes requires operations on the rows of the projection
matrix, which can be defined as

M =


~R1

~R2

~R3

~R4

 .
The near clipping plane (~n) is defined from the projection matrix Mas the third
row plus the fourth row, so these are the values that need to be altered:.

~n = ~R3 + ~R4.

For perspective correction to work, the fourth row must keep the values (0, 0,−1, 0).
For this reason, the third row has to be

~R3 = [Cx Cy Cz + 1 Cw].

On the other hand, the far plane (~f) is calculated using the projection matrix by
subtracting the third row from the fourth

~f = ~R4 − ~R3.

Figure 3.13. Modified view frustum with user-defined n and broken f .
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Figure 3.14. Corrected view frustum with user-defined n and optimized f .

Unfortunately, changing the near plane from its default direction along the pos-
itive z-axis results in a skewed far plane that no longer remains parallel with
the near plane (Figure 3.13). This is due to the way in which the far plane is
calculated in the above formula.

Although this problem cannot be corrected completely, the effect can be min-
imized by scaling the clip plane before the third row is set, which causes the
orientation of the far clipping plane to change. Ideally, this scaling should result
in an optimized far plane that produces the smallest possible view frustum that
can still encapsulate the conventional view frustum (Figure 3.14).

To do this, the point ( ~Q) that lies furthest opposite the near plane within
NDC must be calculated, using the following equation:

~Q = M−1
[

sgn(Cx) sgn(Cy) 1 1
]
.

The result of this calculation can then be used to determine the scaling factor (a)
that should be applied to the camera-space clip plane before it is used to alter
the projection matrix:

a =
2~R4 · ~Q
~C · ~Q

.

The camera-space plane can now be scaled before it is used to alter the projection
matrix, using the following calculation:

~C = a~C.

Although this technique may seem more difficult to understand than the dis-
card method of clipping, it is significantly faster because it allows the graphics
hardware to perform clipping at almost no additional cost.
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3.3.2 #define in GLSL

During production of this demo, it became apparent that using Booleans for
if and if-else statements in vertex and fragment shaders resulted in at least an
extra cycle for each decision point. This quickly became an issue because simple
shaders that were covering large portions of the screen, such as the skybox, were
processing needless cycles. Rolling out the code into a number of nearly identical
shader files would provide a way around this issue, but would cause a lot of code
duplication. To allow single shader files to be used repeatedly for multiple code
paths, the #define preprocessor directive was used with #ifdef and #else in
shader files so that code paths could be specified during compilation-time instead
of at runtime.

The SDK allows this when using the method PVRTShaderLoadFromFile()

by providing inputs for the additional parameters aszDefineArray and
uiDefArraySize, where aszDefineArray is a pointer to an array of strings hold-
ing defines the user wants to append and uiDefArraySize is the number of defines
in the array. This method automatically provides the #define and new-line char-
acter that need to be appended to the source code for each define, so the user
only needs to provide an array of strings for the names, e.g., A USEFUL DEFINE.

Once a number of shaders have been loaded in this way, the shader used for
an object can be changed during runtime to a shader with a different code path.
Although this method creates a shader for each decision path (which uses more
memory, but would also have been done if the code was rolled out in different
files), it allows the performance of shaders to be improved by removing redundant
cycles.

3.3.3 Further Optimizations/Improvements

Normalization cube map. On some hardware, the vector normalize() operation is
costly and a texture lookup may be cheaper. On such platforms, normalization on
a three-dimensional vector can be performed using a lookup to a normalization
cube map. For demonstration purposes, the method of generating the normal
map has been left in the code of this example, but time spent initializing the
application could be saved by loading a preexisting normalization map instead.

The theory behind this method is simple; take a directional vector as the
texture coordinate of the lookup and return the color at that position. This
color represents the normalized value of any directional vector that points to its
position. As the value retrieved using this technique is in texture space [0, 1], a
conversion into normal-space [−1, 1] is required. On the development platform,
this method approximately halved the number of cycles required to normalize a
vector.

Scale water distortion. Without scaling the amount of distortion that is applied
to each fragment, water in the distance can ultimately sample the reflection and



i
i

i
i

i
i

i
i

3. Shader-Based Water Effects 323

refraction textures at too large an offset, which gives water in the distance an un-
realistic degree of distortion. Additionally, the bigger offset for distant fragments
results in a higher amount of texture-read cache misses.

By scaling the amount of distortion that is applied to a given fragment, the
visual quality of the effect can be improved and the number of stall cycles caused
by texture cache misses can be reduced. This is done in the demo by dividing the
wave’s distortion value by the distance between the camera and the fragment’s
position (so fragments further from the camera are distorted less). The extra cycle
cost has a minimal impact on performance (less than 1% on the test hardware)
because, even though the texture-read stalls are reduced, they still account for
the main bottleneck.

Render the water effect to a texture. Because of the heavy use of the fragment
shader to produce the effect, the demo tends to be fragment limited on most
hardware. To reduce this bottleneck, the water effect can be rendered to a texture
at a lower resolution and then applied to the water plane during the final render
pass. This technique benefits the speed of the demonstration by reducing the
number of fragments that are rendered using the water effect. This can be further
reduced (especially on a TBDR) by rendering objects that will obscure areas of
the water in the final render pass, such as the demo’s terrain. Although the
introduction of numerous objects to the render can improve the speed of the
water effect, the inaccuracies caused by mapping the texture to the final water
plane can result in artifacts around the edges of models that were used during
the low-resolution pass. Such artifacts are generally not that noticeable, provided
that the shaders used for the additional objects in the low-resolution pass are the
same as those used in the final render (i.e., rendering geometry without lighting
during the low-resolution pass will cause highlights around dark edges of models
in the final pass, so this should be avoided). One of the best ways to steer
clear of the problems caused by the scaling is to avoid drawing objects that are
very detailed around their edges that overlap the water because this reduces the
likelihood of artifacts occurring. In the demo, the boat is omitted from the water’s
render pass because it is too detailed to be rendered without causing artifacts
and does not afford as great a benefit as the terrain when covering areas of the
water.

When rendering to a texture at a 256 × 256 resolution and performing the
final render pass to a 640 × 480 screen, the reduction in quality is only slightly
noticeable, but on the test hardware the performance level is increased by ∼18%.

Removing artifacts at the water’s edge. One of the biggest problems with shader
effects that perturb texture coordinates is the lack of control over the end texel
that is chosen. Due to the clipping that is implemented in the reflection and
refraction render passes, it is very easy for artifacts to appear along the edges
of objects intersecting the water plane. The occurrence of artifacts occurs when
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Figure 3.15. Full effect using artifact fix.

the sampled texel is taken from behind the object intersecting the water, which
results in the texture sample being either the clear color, or geometry that ought
to be obscured, resulting in visible seams near the water’s edge. The edge artifact
can be seen in Figure 3.8. To compensate, the clip-plane location is set slightly
above the water surface (a small offset along the positive y-axis). In the case of
the refraction render pass, such an offset will cause some of the geometry above
the water to be included in the rendered image, which helps to hide the visible
seams by sampling from this above-the-water geometry.

Although another inaccuracy is introduced because of the deliberately im-
perfect clipping, it is barely noticeable, and the effect of the original artifact is
effectively removed for very little additional computation. The same benefit ap-
plies to the reflected scene, although in this case the offset direction is reversed,
and clipping occurs slightly below the water. Figure 3.15 shows the scene with
the artifact fix in place.

Another way to compensate for the artifacts, and improve the aesthetics of
the effect, is to use fins or particle effects along the edges of objects intersecting
the water to give the appearance of a wake where the water is colliding with the
objects. The drawback of these techniques is that they both require the program
to know where in the scene objects are intersecting the water, which can be very
expensive if the water height is changing or objects in the water are moving
dynamically.
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3.4 Conclusion

We have presented a technique that allows a water effect to be augmented onto
a simple plane, using several render passes, some simple distortion, and texture
mixing in the fragment shader. Additionally, we have presented optimal tech-
niques for user-defined clip planes, normalization, removing artifacts caused by
texture-coordinate perturbation, and have also highlighted the benefits of utiliz-
ing low-resolution render passes to reduce the fragment shader workload. The
result is a high-performance example with extremely compelling visual results.
Though this example targets the current low-cost OpenGL ES 2.0 capable de-
vices, it can be correspondingly scaled to take advantage of higher resolution
displays and increased GPU power.
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3D Engine

Design

In this part, we focus on engine-level optimization techniques useful for modern
games with large and open worlds.

We start with Stephen Hill and Daniel Collin’s article “Practical, Dynamic
Visibility for Games,” in which the authors introduce methods for determining
per-object visibility, taking into account occlusion by other objects. The article
provides invaluable and inspiring experience from published AAA titles, showing
excellent gains that are otherwise lost without this system.

Next, Eric Penner presents “Shader Amortization using Pixel Quad Message
Passing.” In this chapter, Eric analyzes one particular aspect of modern pro-
grammable hardware: the pixel derivative instructions and pixel quad rasteriza-
tion. The article identifies a new level at which optimizations can be performed,
and applies this method to achieve results such as 4×4 percentage closer filtering
(PCF) using only one texture fetch, and 2 × 2 bilateral up-sampling using only
one or two texture fetches.

Finally, on the topic of crowd rendering, the chapter “A Rendering Pipeline
for Real-Time Crowds,” by Benjamin Hernandez and Isaac Rudomin, describes a
detailed system for simulating and rendering large numbers of different characters
on the GPU, making use of optimizations such as culling and LOD-selection to
improve performance of the system.

I hope you find these articles inspiring and enlightening for your rendering
and engine development work.

—Wessam Bahnassi
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VI

Practical, Dynamic Visibility
for Games

Stephen Hill and Daniel Collin

1.1 Introduction
With the complexity and interactivity of game worlds on the rise, the need for
efficient dynamic visibility is becoming increasingly important.

This article covers two complementary approaches to visibility determination
that have shipped in recent AAA titles across Xbox 360, PS3, and PC: Splinter
Cell Conviction and Battlefield: Bad Company 1 & 2.

These solutions should be of broad interest, since they are capable of handling
completely dynamic environments consisting of a large number of objects, with
low overhead, straightforward implementations, and only a modest impact on
asset authoring.

Before we describe our approaches in detail, it is important to understand
what motivated their development, through the lens of existing techniques that
are more commonly employed in games.

1.2 Surveying the Field
Static potentially visible sets (PVSs) is an approach popularized by the Quake
engine [Abrash 96] and is still in common use today, in part because of its low
runtime cost. Put simply, the world is discretized in some way (BSP, grid, etc.)
and the binary visibility from each sector (leaf node, cell, or cluster, respectively)
to all other sectors is precomputed and stored. At runtime, given the current
sector containing the camera, determining the set of potentially visible objects
becomes a simple matter of retrieving the potentially visible sectors (and by
extension, their associated objects) and performing frustum culling.

One major drawback of using PVS by itself is that any destructible or moving
objects (e.g., doors) typically have to be treated as nonoccluding from the per-
spective of visibility determination. This naturally produces over inclusion—in
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addition to that coming from sector-to-sector visibility—and can therefore con-
strain level-design choices in order to avoid pathological situations.

Another disadvantage stems from the fact that a PVS database can be ex-
tremely time consuming to precompute,1 which may in turn disrupt or slow
production.

Portals are another approach that can complement or replace static PVS.
Here, sectors are connected via convex openings or “portals” and the view frustum
is progressively clipped against them [Akenine-Möller et al. 08], while objects are
simultaneously gathered and tested against the active subfrustum.

Since clipping happens at runtime, the state of portals can be modified to
handle a subset of dynamic changes to the world, such as a door closing or
opening. But, even though portals can ameliorate some of the limitations of
a static PVS solution, they are still best suited to indoor environments, with
corridors, windows, and doorways providing natural opportunities to constrain
and clip the view frustum.

Antiportals are a related technique for handling localized or dynamic occlusion
whereby, instead of constraining visibility, convex shapes are used to occlude (cull
away) objects behind them with respect to the player. Though antiportals can be
effective in open areas, one can employ only a limited number in any given frame,
for performance reasons. Similarly, occluder fusion—culling from the combined
effect of several antiportals—is typically not viable, due to the much higher cost
of inclusion testing against concave volumes.

In recent years, hardware occlusion queries (OQs) have become another popu-
lar tool for visibility determination [Soininen 08]. The canonical approach involves
rendering the depth of a subset (or a simplified representation) of the scene—the
occluders—and then rasterizing (without depth writes) the bounds of objects, or
groups of objects. The associated draw calls are bracketed by a query, which
instructs the GPU to count pixels passing the depth test. If a query returns
that no pixels passed, then those objects can be skipped in subsequent rendering
passes for that camera.

This technique has several advantages over those previously discussed: it is
applicable to a wider range of environments, it trivially adapts to changes in the
world (occluders can even deform), and it handles occluder fusion effortlessly,
by nature of z-buffer-based testing. In contrast, whereas both static PVS and
portals can handle dynamic objects, too, via sector relocation, those objects
cannot themselves occlude in general.

1.3 Query Quandaries

On paper OQs are an attractive approach, but personal experience has uncov-
ered a number of severe drawbacks, which render them unsuitable for the afore-

1On the order of 10 hours, in some cases [Hastings 07].
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mentioned titles. We will now outline the problems encountered with occlusion
queries.

1.3.1 Batching

First, though OQs can be batched in the sense that more than one can be issued
at a time [Soininen 08]—thereby avoiding lock-step CPU-GPU synchronization—
one cannot batch several bounds into a single draw call with individual query
counters. This is a pity, since CPU overhead alone can limit the number of tests
to several hundred per frame on current-generation consoles, which may be fine
if OQs are used to supplement another visibility approach [Hastings 07], but is
less than ideal otherwise.

1.3.2 Latency

To overcome latency, and as a general means of scaling OQs up to large envi-
ronments, a hierarchy can be employed [Bittner et al. 09]. By grouping, via a
bounding volume hierarchy (BVH) or octree for instance, tests can be performed
progressively, based on parent results, with sets of objects typically rejected ear-
lier.

However, this dependency chain generally implies more CPU-GPU synchro-
nization within a frame since, at the time of this writing, only the CPU can issue
queries.2 Hiding latency perfectly in this instance can be tricky and may require
overlapping query and real rendering work, which implies redundant state changes
in addition to a more complicated renderer design.

1.3.3 Popping

By compromising on correctness, one can opt instead to defer checking the results
of OQs until the next frame—so called latent queries [Soininen 08]—which prac-
tically eliminates synchronization penalties, while avoiding the potential added
burden of interleaved rendering. Unfortunately, the major downside of this strat-
egy is that it typically leads to objects “popping” due to incorrect visibility clas-
sification [Soininen 08]. Figure 1.1 shows two cases where this can occur. First,
the camera tracks back to reveal object A in Frame 1, but A was classified as
outside of the frustum in Frame 0. Second, object B moves out from behind an
occluder in Frame 1 but was previously occluded in Frame 0.

Such artifacts can be reduced by extruding object-bounding volumes,3 simi-
larly padding the view frustum, or even eroding occluders. However, these fixes
come with their own processing overhead, which can make eliminating all sources
of artifacts practically impossible.

2Predicated rendering is one indirect and limited alternative on Xbox 360.
3A more accurate extrusion should take into account rotational as well as spatial velocity,

as with continuous collision detection [Redon et al. 02].
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Figure 1.1. Camera or object movement can lead to popping with latent queries.

Sudden changes such as camera cuts are also problematic with latent queries,
potentially leading to either a visibility or processing spike [Hastings 07] to avoid
rampant popping. As such, it may be preferable to simply skip rendering for a
frame and only process visibility updates behind the scenes.

1.3.4 GPU Overhead

The GPU is a precious resource and a common bottleneck in games, as we seek
to maximize visual fidelity for a given target frame rate. Therefore, a visibility
solution that relies heavily on GPU processing is less than ideal, particularly
on modern consoles where multiple CPU cores or SPUs are available. While it
is true to say that OQs should be issued only when there is an overall GPU
saving [Soininen 08], this cannot be guaranteed in general and we would ideally
like to dedicate as much GPU muscle as possible to direct rendering.

1.3.5 Variable Costs

A final disadvantage with OQs is that the cost of testing an object is roughly
proportional to its size on screen, which typically does not reflect its true ren-
dering cost. While one can, for instance, choose to always render objects with
high screen-space coverage to avoid this penalty, it is a less viable strategy when
working with a hierarchy.

Even if one develops a more sophisticated oracle [Bittner et al. 09] to nor-
malize performance, this can come at the cost of reduced culling effectiveness.
Furthermore, a hierarchy requires additional CPU overhead when objects move,
or parts become visible or occluded. As with queries, the per-frame update cost
can be bounded by distributing work over multiple frames, but this can similarly
compromise culling.

Ideally we would like to avoid these kinds of unfortunate trade-offs, especially
when major changes to the environment occur; although leveraging coherency
can be a great way to reduce the average per-frame processing time, it should
not exacerbate worst-case performance!
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1.4 Wish List

Ideally we would like to take the strengths of OQs but reduce or eliminate the
negatives. Here is our wish list:

These first items are already taken into account with OQs:

• no precomputation

• general applicability

• cccluder fusion

Here is a list of improvements we would like to achieve:

• low latency

• reduced CPU-GPU dependency

• no reliance on coherency

• bounded, high performance

• simple, unified solution

In summary, we would like to be able to handle a wide range of dynamic scenes
with the minimum of fuss and no less than great performance. Essentially, we
want it all and in the case of Splinter Cell Conviction—as you will now learn—we
wanted it yesterday !

1.5 Conviction Solution

One of the initial technical goals of Splinter Cell Conviction was to support dense
environments with plenty of clutter and where, in some situations, only localized
occlusion could be exploited.

We initially switched from PVS visibility to OQs because of these require-
ments, but having battled for a long time with the drawbacks outlined earlier,
and becoming increasingly frustrated by mounting implementation complexity,
hacks, and failed work-arounds, we started to look for alternatives. Unfortu-
nately, by this point we had little time and few resources to dedicate to switching
solutions yet again.

Luckily for us, [Shopf et al. 08] provided a guiding light, by demonstrating that
the hierarchical Z-buffer (HZB) [Greene et al. 93] could be implemented efficiently
on modern GPUs—albeit via DX10—as part of an AMD demo. The demo largely
validated that the HZB was a viable option for games, whereas we had previously
been skeptical, even with a previous proof of concept by [Décoret 05].

Most importantly, it immediately addressed all of our requirements, partic-
ularly with respect to implementation simplicity and bounded performance. In
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fact, the elegance of this approach cannot be understated, comparing favorably
with the illusory simplicity of OQs, but without any of the associated limitations
or management complexity in practice.

1.5.1 The Process

The steps of the process are detailed here.

Render occluder depth. As with OQs, we first render the depth of a subset of the
scene, this time to a render target texture, which will later be used for visibility
testing, but in a slightly different way than before.

For Conviction, these occluders were typically artist authored4 for perfor-
mance reasons, although any object could be optionally flagged as an occluder
by an artist.

Create a depth hierarchy. The resulting depth buffer is then used to create a
depth hierarchy or z-pyramid, as in [Greene et al. 93]. This step is analogous
to generating a mipmap chain for a texture, but instead of successive, weighted
down-sampling from each level to the next, we take the maximum depth of sets
of four texels to form each new texel, as in Figure 1.2.

This step also takes place on the GPU, as a series of quad passes, reading
from one level and writing to the next. To simplify the process, we restrict
the visibility resolution to a power of two, in order to avoid the additional logic
of [Shopf et al. 08]. Figure 1.3 shows an example HZB generated in this way.

In practice, we render at 512× 256,5 since this seems to strike a good balance
between accuracy and speed. This could theoretically result in false occlusion for
objects of 2× 2 pixels or less at native resolution, but since we contribution-cull
small objects anyway, this has not proven to be a problem for us.

Figure 1.2. Generating successive levels of the HZB.

4These are often a simplified version of the union of several adjoining, structural meshes.
5This is approximately a quarter of the resolution of our main camera in single-player mode.
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Figure 1.3. The resulting depth hierarchy. Note that the sky in the distance increasingly
dominates at coarser levels.

Test object bounds. We pack object bounds (world-space AABBs) into a dynamic
point-list vertex buffer and issue the tests as a single draw call. For each point,
we determine, in the vertex shader, the screen-space extents of the object by
transforming and projecting the bounds (see Figure 1.4). From this, we calculate
the finest mip level of the hierarchy that covers these extents with a fixed number
of texels or fewer and also the minimum, projected depth of the object (see
Listing 1.1).

// Contains the dimensions o f the viewport .
// In t h i s case x = 512 , y = 256
f l o a t 2 cViewport ;

OUTPUT main (INPUT input )
{

OUTPUT output ;

bool v i s i b l e = ! FrustumCull ( input . center , input . ex t ent s ) ;

// Transform/ p r o j e c t AABB to screen−space
f loat min z ;
f l o a t 4 sbox ;
GetScreenBounds ( input . center , input . extents , min z , sbox ) ;

// Ca l cu la te HZB l e v e l
f l o a t 4 sbox vp = sbox∗ cViewport . xyxy ;
f l o a t 2 s i z e = sbox vp . zw − sbox vp . xy ;
f loat l e v e l = c e i l ( l og2 (max( s i z e . x , s i z e . y ) ) ) ;
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output . pos = input . pos ;
output . sbox = sbox ;
output . data = f l o a t 4 ( l e v e l , min z , v i s i b l e , 0 ) ;

return output ;
}

Listing 1.1. HZB query vertex shader.

Figure 1.4. The object’s world-space AABB (blue), screen extents (green) and overlap-
ping HZB texels (orange).

This depth, plus the UVs (sbox is the screen-space AABB) and mip level for
HZB lookup are then passed to the pixel shader. Here we test for visibility by
comparing the depth against the overlapping HZB texels and write out 1 or 0 as
appropriate (see Listing 1.2).

sampler2D sHZB : register ( s0 ) ;

f l o a t 4 main (INPUT input ) : COLOR0
{

f l o a t 4 sbox = input . sbox ;
f loat l e v e l = input . data . x ;
f loat min z = input . data . y ;
bool v i s i b l e = input . data . z ;

f l o a t 4 samples ;
samples . x = tex2Dlod (sHZB , f l o a t 4 ( sbox . xy , 0 , l e v e l ) ) . x ;
samples . y = tex2Dlod (sHZB , f l o a t 4 ( sbox . zy , 0 , l e v e l ) ) . x ;
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samples . z = tex2Dlod (sHZB , f l o a t 4 ( sbox . xw , 0 , l e v e l ) ) . x ;
samples .w = tex2Dlod (sHZB , f l o a t 4 ( sbox . zw , 0 , l e v e l ) ) . x ;

f loat max z = max4( samples ) ;

// Modulate c u l l i n g with depth t e s t r e s u l t
v i s i b l e ∗= min z <= max z ;

return v i s i b l e ;
}

Listing 1.2. HZB query pixel shader.

In practice, we chose to use 4×4 HZB depth comparisons in contrast to the
simpler example code above, since this balanced ALU instructions and texture
lookups on the Xbox 360.

Also note that we perform world-space frustum testing and screen-bound gen-
eration separately. While the two can be combined as in [Blinn 96], we found
that we got better code generation by performing them separately and could add
additional planes to the frustum test when processing visibility for mirrors.

It is also possible to improve on the mip level selection for situations when an
object covers fewer texels.

Process the results. Finally, the results are read back to the CPU via MemExport
on Xbox 360. On PC, under DX9, we instead emulate DX10 stream-out by
rendering with a point size of one to an off-screen render-target, followed by a
copy to system memory via GetRenderTargetData.

1.5.2 Tradeoffs

By using a fixed number of lookups instead of rasterization, the performance of
the visibility tests is highly predictable for a given number of objects. That said,
this bounded performance comes at the cost of reduced accuracy for objects that
are large on screen.

On the other hand, this approach can be viewed as probabilistic: large objects
are, on average, more likely to be visible anyway, so performing more work (in
the form of rasterization with OQs) is counter-productive. Instead, with HZB
testing, accuracy is distributed proportionally. This proved to be a particularly
good fit for us, given that we wanted a lot of relatively small clutter objects, for
which instancing was not appropriate for various reasons.

We also benefited from the high granularity afforded by a query per object,
whereas wholly OQ-based methods require some degree of aggregation in order
to be efficient, leading to reduced accuracy and more variable performance. This
became clear in our own analysis when we switched to HZB visibility from OQs.
We started off with a 2×2 depth-test configuration, and even that out-performed
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hand-placed occlusion query volumes, both in terms of performance and amount
of culling. Essentially, what we lost in terms of occlusion accuracy, we gained
back in being able to test objects individually.

Point rendering with a vertex buffer was chosen primarily for ease of de-
velopment because vertex buffers offered the convenience of heterogeneous data
structures. However, a more efficient option could be to render a single quad and
fetch object information from one or more textures instead. Not only would this
ensure better pixel-quad utilization on some hardware, but it would also play to
the strength of GPUs with a nonunified shader architecture such as the PS3’s
RSX, where the bulk of the shader hardware is dedicated to pixel processing.

1.5.3 Performance

Table 1.1 represents typical numbers seen in PIX on Xbox 360, for a single camera
with around 22000 objects, all of which are processed in each each frame.

Pass Time (ms)

Occlusion 0.06

Resolve 0.04

HZB Generation 0.10

HZB Queries 0.32

Total 0.52

Table 1.1. Performance timings.

1.5.4 Extensions

Once you have a system like this in place, it becomes easy to piggy-back related
work that could otherwise take up significant CPU time compared with the GPU,
which barely breaks a sweat. Contribution fading/culling, texture streaming and
LOD selection, for instance, can all be determined based on each object’s screen
extents,6 with results returned in additional bits.

On Xbox 360, we can also bin objects into multiple tiles ourselves, thereby
avoiding the added complexity and restrictions that come with using the predi-
cated tiling API, not to mention the extra latency and memory overhead when
double-buffering the command buffer.

Finally, there is no reason to limit visibility processing to meshes. We also
test and cull lights, particle systems, ambient occlusion volumes [Hill 10], and
dynamic decals.

6We choose to use the object’s bounding sphere for rotational invariance.



i
i

i
i

i
i

i
i

1. Practical, Dynamic Visibility for Games 339

1.5.5 Shadow Caster Culling

We also extend our system to accelerate shadow-map rendering, with a two-pass
technique initially inspired by [Lloyd et al. 04], but with a more straightforward
approach. For instance, we do not slice up the view frustum and test subregions
as they do. This is primarily because we are not using shadow volumes for
rendering and therefore are not aiming to minimize fill-rate7—only the number
of casters—for CPU and vertex transform savings. Development time and ease
of GPU implementation are also factors.

In the first pass, we test caster visibility from the light’s point of view, in
exactly the same way that we do for a regular camera: via another HZB. If a
given caster is visible, we write out the active shaft bounds, which are formed
from the 2D light-space extents, the caster’s minimum depth, and the maximum
depth from the HZB (see Listing 1.3), otherwise it is culled as before:

float3 shaft_min = float3(input.sbox.xy, min_z)

float3 shaft_max = float3(input.sbox.zw, max_z)

Figure 1.5 shows this in action for a parallel light source. Here, caster C is
fully behind an occluder,8 so it can be culled away since it will not contribute to
the shadow map.

In the second pass, we transform these shafts into camera space and test their
visibility from the player’s point of view via the existing player camera HZB—
again just like regular objects. Here, since the shafts of A and B have been
clamped to the occluder underneath, they are not visible either.

// Use the lower l e v e l i f we only touch <= 2 t e x e l s
// in both dimensions

f loat l e v e l new = max( l e v e l − 1 , 0 ) ;
f l o a t 2 s c a l e = pow(2 , −l e v e l new ) ;

f l o a t 2 a = f l o o r ( sbox vp . xy∗ s c a l e ) ;
f l o a t 2 b = c e i l ( sbox vp . zw∗ s c a l e ) ;

f l o a t 2 dims = b − a ;

i f ( dims . x <= 2 && dims . y <= 2)
l e v e l = l eve l new ;

Listing 1.3. HZB level refinement.

7But we could adapt this type of testing to cull more. See Section 1.7.
8Occluders used for shadow culling always cast shadows.
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Figure 1.5. Two-pass shadow visibility.

Conceptually, we are exploiting the redundancy of shadow-volume overlap
across two viewpoints in order to reduce our set of potential casters.

1.5.6 Summary

To reiterate, this entire process takes place as a series of GPU passes; the CPU is
involved only in dispatching the draw calls and processing the results at the end.

In retrospect, a CPU solution could have also worked well as an alternative,
but we found the small amount of extra GPU processing to be well within our bud-
get. Additionally, we were able to leverage fixed-function rasterization hardware,
stream processing, and a mature HLSL compiler, all with literally man-years of
optimization effort behind them. In contrast to the simple shaders listed earlier,
a hand-optimized VMX software rasterizer would have taken significantly longer
to develop and would have been harder to extend.

If you already have a PVS or portal visibility system, there can still be sig-
nificant benefits to performing HZB processing as an additional step. In the first
place, either system can act as an initial high-level cull, thus reducing the num-
ber of HZB queries. In the case of portals, the “narrow-phase” subfrusta testing
could also be shifted to the GPU. Indeed, from our own experience, moving basic
frustum testing to the GPU alone was a significant performance improvement
over VMX tests on the CPU. Finally, in the case of BSP-based PVS, the faces
could be preconverted to a number of large-scale occluders for direct rendering.

1.6 Battlefield Solution

When developing the game (Battlefield: Bad Company 1) using our new in-house
Frostbite engine for the first time, we knew that we needed a solution for removing
objects occluded by others. We discussed many methods, but it all came down
to a list of things that we wanted the system to have:
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• must be fully dynamic, since the environment—both objects and terrain—
can deform

• low GPU overhead

• results accessible from the CPU, so we can skip updating certain aspects of
occluded objects, such as animation

After reading about Warhawk’s approach [Woodard 07] based on software
rasterization on SPUs, we decided to try a similar approach since we had spare
processing power available on the CPU side. The resulting implementation was
subsequently rolled out across all of our target platforms (PlayStation 3, Xbox
360, and PC), but we will focus in particular on the details of the PS3 version.

At a high level, the steps involved are very similar to those used for Conviction:
a software occlusion rasterizer renders low polygon meshes to a z-buffer, against
which occluders are tested to determine if they are visible or not.

In reality, the work is broken down into a number of stages, which are job-
scheduled in turn across several SPUs. We will now describe these in detail.

1.6.1 The Process

Occluder triangle setup. This stage goes through all occluders in the world space
(a flat array) in preparation for rasterization:

1. Each job grabs a mesh from the array using InterlockedIncrement.

2. The job checks if the mesh is inside the frustum. If it is not, it continues
to the next one (Step 1).

3. If the mesh is fully inside the frustum, its triangles are immediately ap-
pended to an output array (also interlocked and shared between the jobs).

4. If the mesh was not fully inside, its triangles are clipped before being added.

Terrain triangle setup. This is effectively the same as the previous stage, except
that it generates and adds conservative triangles for the terrain9 to the array.

Occluder render. This is the stage that actually rasterizes the triangles. Each
SPU job has its own z-buffer (256 × 114) and grabs 16 triangles at a time from
the triangle array generated previously.

When the jobs are finished getting triangles from the triangle array, they will
each try to lock a shared mutex. The first one will simply DMA its z-buffer to
main memory, unlock the mutex, and exit so that the next job can start running.

As the mutex gets unlocked, the next job will now merge its own buffer with
the one in main memory and send back the result, and so on. (Note: There are

9As the terrain can deform, these must be regenerated.
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several ways to improve on this and make it faster. We could, for example, DMA
directly from each SPU.)

Frustum cull. This stage performs frustum versus sphere/bounding box (BB)
checks on all meshes in the world—typically between 10,000 and 15,000—and
builds an array for the next stage. The implementation traverses a tree of spheres
(prebuilt by our pipeline) and at each leaf we do bounding-box testing if the
sphere is not fully inside.

Occlusion cull. Finally, this is where visibility testing against the z-buffer hap-
pens. We first project the bounding box of the mesh to screen-space and calculate
its 2D area. If this is smaller than a certain value—determined on a per-mesh
basis—it will be immediately discarded (i.e, contribution culled).

Then, for the actual test against the z-buffer, we take the minimum distance
from the camera to the bounding box and compare it against the z-buffer over
the whole screen-space rectangle. This falls somewhere between the approach
of [Woodard 07]—which actually rasterizes occluders—and that of Conviction in
terms of accuracy.

Performance The timings reflect best-case parallelism over five SPUs and were
measured in a typical scene (see Table 1.2). In practice, workloads between SPU
jobs will vary slightly and may be intermixed with other jobs, so the overall time
for visibility processing will be higher in practice.

In this case we rasterized around 6000 occluder triangles (we normally observe
3000 to 5000), and performed around 3000 occlusion tests after frustum and
extent culling.

Stage Time/SPU (ms)

Triangle Setup 0.4

Rasterization 1.0

Frustum Cull 0.6

Occlusion Cull 0.3

Total 2.3

Table 1.2. Performance timings.

1.7 Future Development

1.7.1 Tools

Although artist-authored occluders are generally a good idea for performance
reasons (particularly so with a software rasterizer), we encountered a couple of
notable problems with this strategy on Conviction. First, with a large team and
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therefore a number of people making changes to a particular map, there were
a few cases where modifications to the layout of visual meshes would not be
applied to the associated occluders. Even with the blueprint of a map largely
locked down, cosmetic changes sometimes introduced significant errors and these
tended to occur right at the end of testing when production was most stretched!

Second, some artists had a tendency to think of modeling occluders in the
same way as collision meshes—when, in fact, occluders should always be flush
with, or inside of, the visual meshes they represent—or they did not feel that a
small inaccuracy would be that important. This simply was not the case: time
and again, testers would uncover these problems, particularly in “scope mode”
where the reduced field of view can magnify these subtle differences up to half of
the screen, causing large chunks of the world to disappear.

These errors would also show up as “shadow acne” due to the requirement that
shadow occluders—those used for culling casters during shadow map visibility—
had to cast shadows themselves. Sometimes, it would have made more sense
to have just used these visual meshes directly as occluders, instead of creating
separate occluder meshes.

Though checks can be added in the editor to uncover a lot of these issues,
another option could be to automatically weld together, simplify, and chunk up
existing visual meshes flagged by artists.

At the root of it all, the primary concern is correctness; there is no such thing
as “pretty looking” visibility, so one could argue that it is not the best use of
an artist’s time to be modeling occluders if we can generate them automatically
for the most part, particularly if a human element can introduce errors. This is
definitely something we would like to put to the test, going forward.

1.7.2 Optimizations

One trivial optimization for the GPU solution would be to add a pre-pass, testing
a coarse subdivision of the scene (e.g., regular grid) to perform an earlier, high-
level cull—just like in Battlefield, but using the occlusion system too. We chose
not to do this since performance was already within our budget, but it would cer-
tainly allow the approach to scale up to larger environments (e.g., “open world”).

Additionally, a less accurate object-level pre-pass (for instance, four HZB sam-
ples using the bounding sphere, as with [Shopf et al. 08]) could lead to a speed
up wherever there is a reasonable amount of occlusion (which by necessity is a
common case). Equally, a finer-grained final pass (e.g., 8×8 HZB samples) could
improve culling of larger occluders.

In a similar vein, another easy win for the SPU version would be using a
hierarchical z-buffer either for early rejection or as a replacement for a complete
loop over the screen bounds. As earlier numbers showed, however, the main
hotspot performance-wise is occluder rasterization. In that instance we might
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Figure 1.6. A single screen-space z-value for occluders can lead to conservative accep-
tance in some cases.

gain again, this time from hierarchical rasterization as in [Abrash 09], although
at the cost of increased implementation complexity. Frustum culling could also
be sped up by switching to a different data structure (e.g., grid) to improve load
balancing on SPUs as well as memory access patterns.

Although the accuracy-performance trade-off from the HZB was almost always
beneficial for Conviction, we did encounter a couple of instances where we could
have profited from better culling of large, structural geometry. We believe that
the biggest factor here was the lack of varying z over the occluder (see Figure 1.6)
when testing against the HZB, not the number of tests (beyond 4×4) or the base
resolution.

On Xbox 360, we investigated hardware-rasterizing occluder bounds as a
proof-of-concept for overcoming this, but we ran out of time and there were
some performance pitfalls with MemExport. We hope to pick up where we left
off in the future.

Conviction’s shadow-caster culling proved to be a significant optimization
for cascaded shadow maps. One potential avenue of future development would
be to try to adapt the idea of frustum subdivision coupled with caster-receiver
intersection testing, as presented in [Diamand 10], with similarities to [Lloyd
et al. 04]. [Eisemann and Décoret 06] and [Décoret 05] also build on the latter.

We would also like to extend culling to local shadow lights. As we already
cache casters per shadow light (the cache is updated on object or light movement),
we could directly evaluate shadow visibility for this subset of the scene. This
would avoid the higher fixed overhead of processing all objects in the map as we
do for the main view or shadow cascades, which is important since we can have
up to eight active shadow lights per camera. These updates could happen either
every frame or whenever the list changes.
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1.7.3 Future Hardware

The jury is out on exactly what sort of future we face when it comes to the
convergence of increasingly multi-core CPUs and more programmable GPUs and
when, or indeed if, it will happen. Larrabee is an interesting example, showing
that even fixed-function rasterization hardware is potentially on the way out
[Abrash 09] and, while a CPU solution could be considered a safe long-term bet,
the most efficient method going forward may be closer to the way hardware works
than a traditional scan-line approach.

[Andersson 10] describes two possible future scenarios for visibility processing:
either a progression of the GPU approach we already described, but with lower
latency, or having the ability for the GPU to feed itself commands. A killer
application for the latter could be shadow-map rendering, where visibility (as
earlier) and subsequent draw calls would happen entirely on the GPU, thereby
avoiding any CPU synchronization, processing, and dispatch. This is almost
possible today and potentially so on current consoles, but existing APIs are a
roadblock.

1.7.4 General Observations

In Conviction, although arbitrary occlusion tests could be issued by the main
thread (to accelerate other systems, in much the same way as in Battlefield), we
had to restrict their use in the end due to the need for deterministic behavior
during co-operative play. This was primarily an issue for PC as we could not
ensure matching results between GPUs from different IHVs, or indeed across
generations from the same vendor. For the next title, we hope to find other
applications for exploiting our system so this will not be a problem.

Were we to generate a min/max depth hierarchy, we could also return more
information about the state of occlusion, which may open up more applications.
By testing the z-range of objects, we can determine one or more states: Com-
pletely visible or occluded (all tests pass conclusively), partially occluded (tests
pass conclusively as fully visible or occluded), potentially occluded (some tests
are inclusive, i.e., z-range overlap with the HZB).

1.8 Conclusion

Whatever the future, experimenting with solutions like these is a good invest-
ment; in our experience, we gained significantly from employing these fast yet
straightforward visibility systems, both in development and production terms.

The GPU implementation in particular is trivial to add (demonstrated by the
fact that our initial version was developed and integrated in a matter of days)
and comes with a very reasonable overhead.
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[Bittner et al. 09] Jǐŕı Bittner, Oliver Mattausch, and Michael Wimmer. “Game Engine
Friendly Occlusion Culling.” In ShaderX7, pp. 637–653. Hingham, MA: Charles
River Media, 2009.

[Blinn 96] Jim Blinn. “Calculating Screen Coverage.” IEEE CG&A 16:3 (1996), 84–88.
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VI

Shader Amortization using
Pixel Quad Message Passing

Eric Penner

2.1 Introduction

Algorithmic optimization and level of detail are very pervasive topics in real-time
rendering. With each rendering problem comes the question of the acceptable
amount of approximation error and the quality vs. performance trade-off of in-
creasing or decreasing approximation error. Programmable hardware pipelines
play one of the largest roles in how we optimize rendering algorithms because they
dictate where we can add algorithmic modification via programmable shaders.

In this article we analyze one particular aspect of modern programmable
hardware—the pixel derivative instructions and pixel quad rasterization—and
we identify a new level at which optimizations can be performed. Our work
demonstrates how values calculated in one pixel can be passed to neighboring
pixels in the frame buffer allowing us to amortize the cost of expensive shading
operations. By amortizing costs in this manner we can reduce texture fetches
and/or arithmetic operations by factors of two to sixteen times. Examples in this
article include 4×4 percentage closer filtering (PCF) using only one texture fetch,
and 2 × 2 bilateral upsampling using only one or two texture fetches. Our ap-
proach works using a technique we call pixel quad amortization (PQA). Although
our approach already works on a large set of existing hardware, we propose some
standards and extensions for future hardware pipelines, or software pipelines, to
make it ubiquitous and more efficient.

2.2 Background and Related Work

As the performance of programmable graphics hardware increases exponentially,
there has been a steady increase in the complexity of real-time rendering applica-
tions, often expressed as the number of arithmetic operations and texture accesses
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required to shade each pixel. In response to increasing complexity, much recent
research and development effort has focused on methods to reduce pixel process-
ing workload. This includes techniques for simplifying shaders [Olano et al. 03],
reusing data from previous frames [Zhu et al. 05,Nehab et al. 07] , or by simply
using lower resolutions within a single frame.

One of the first upsampling approaches, known as dynamic video resizing
[Montrym et al. 97], dynamically adjusts resolution based on performance, fol-
lowed by simple bilinear or nearest-neighbor upsampling to a full-resolution frame.
While this is effective for controlling pixel workload, artifacts are very noticeable
in the upsampled frame. More recent techniques apply geometry-aware upsam-
pling such as the joint bilateral filter [Tomasi and Manduchi 98] from either fixed
size [Ren et al. 06] or dynamically resized [Yang et al. 08] frame buffers. What all
of these techniques have in common is the requirement of an extra low-resolution
pass, followed by upsampling. Our approach differs in that we are able to per-
form operations at two separate resolutions natively, in the same pass on existing
hardware.

2.3 Pixel Derivatives and Pixel Quads

Before describing our technique, it is important to understand a few details of
how modern graphics hardware works with respect to texture mapping, and why
the pixel shader partial-derivative instructions exist. The need for partial deriva-
tives arises from the simple problem of texture mapping a triangle. As a triangle
becomes smaller on screen, one screen pixel will cover many texels, resulting in
harsh aliasing unless the texture is adequately sampled. This issue is typically
solved in graphics hardware with mipmapping, but a method is needed to com-
pute which mipmap level to use.

Partial derivatives relate the infinitesimal change in one variable to the in-
finitesimal change in another variable at a particular location. Pixel shader par-
tial derivatives refer to the rate of change of a shader value with respect to
the screen-space x- and y-axes. When applied to texture coordinates, this can
tell us how fast a texture coordinate is changing on the screen, and thus what
mipmap level we should use. Before dependent texture fetches, derivatives could
potentially be computed analytically, based on homogeneous barycentric texture
coordinates calculated from three triangle vertices. However, dependent texture
fetches can depend on arbitrary calculations including data from another texture;
thus, no analytic solution exists for these cases.

The only solution remaining is to compute pixel shader derivatives discretely
by looking at the value of a texture coordinate in neighboring screen pixels and
computing the difference between them. Computing derivatives in this manner
is called forward differencing or backward differencing, depending on whether
you look at the pixel in front of or behind the current pixel, to compute the
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derivative. For example, in a row of pixels p, p[i+ 1]− p[i] is a forward difference
while p[i] − p[i − 1] is a backward difference. Both of these typical schemes fail
for parallel graphics hardware however, as they imply a dependency on the order
in which pixels are computed. To solve this issue, modern hardware rasterizes
triangles in quads, or 2×2 blocks of pixels, and uses custom derivative calculations
that depend only on the values within a quad.

Unfortunately, neither the location of quads, nor derivatives within quads,
nor even the use of pixel quads, is standardized by modern graphics APIs. In-
stead these details are left up to the vendor to implement as long as some form
of derivative is provided. Since no documentation was provided, we turned to
experimentation to determine exactly how derivatives are calculated on modern
hardware. Not surprisingly, the implementations we found were exactly what one
would expect, given the constraints. First and foremost, on all the hardware we
tested, pixel quads have always been stationary in the same locations within the

   Half Resolution 
Forward Derivatives

   Hybrid Forward / 
Backward Derivatives

   Hybrid Derivatives - Each Pixel In The Quad: c
a

d
b

ddx(a)= b-a
ddy(a)= c-a

ddx(a)= d-c
ddy(a)= d-b

ddx(a)= d-c
ddy(a)= c-a

ddx(a)= b-a
ddy(a)= d-a

Top Left Top Right Bottom Left Bottom Right

Figure 2.1. Derivative calculations used in practice in modern hardware. We found
derivatives were either calculated at half-resolution using forward differencing, or using
a hybrid of forward and backward differencing. In the hybrid case we have broken out
each pixel’s derivatives.
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frame buffer; they are essentially double width pixels. Second, we found only
two approaches to computing derivatives within these quads, as illustrated in
Figure 2.1.

Interestingly, Shader Model 5 in Direct3D 11 has both coarse and fine ver-
sions of the derivative instructions, likely exposing the trade-offs of these two
approaches to the developer. Half-resolution derivatives always return the same
value within a quad, allowing for optimized texture sampling in some cases, while
hybrid derivatives have the potential to provide slightly more accurate results.

It is important to note at this point that although derivative instructions
were created to assist with texture mapping, they are not reserved for computing
derivatives of texture coordinates. You can use the derivative instructions to
calculate the derivative of any value in a shader. One obvious question that
arises is, what happens when a triangle does not cover all the pixels in a given
quad, or if some pixels in a quad are rejected by the depth test? Another question
is, how does graphics hardware synchronize all the seemingly independent shader
programs such that derivatives can be calculated anywhere? The answer is that
in the real shader processing core the “loop” over all the pixels in a triangle
is unrolled into blocks of at least four pixels. So all quad pixels are always
calculated in lockstep and in parallel, likely even sharing the same set of real
hardware registers. The shader program will execute for all the pixels in a quad
even if only one pixel is actually needed. In the event that a quad pixel falls
outside of a triangle, the values passed down from the vertices are extrapolated
using the triangle’s homogenous coordinates.

2.4 Pixel Quad Message Passing

Now that we have described pixel quads and why they exist in modern hardware,
we turn to how we use them to our advantage. The obvious question is: Can
some shaders, or some calculations within shaders, execute at the pixel quad level
instead of the pixel level? If a graphics API were to theoretically support a “quad
shader” it would lead to another dilemma for parallelism; we would essentially
need another pipeline stage. For example, if the hardware was optimized for
running 16 shaders in parallel, it would need to cache the output of 16 pixel quad
shaders as input to 64 pixels shaders.

What might be a better compromise, and what we found we can already do
with today’s hardware, is to share values between the pixels in a given quad,
but still execute a shader at the pixel level. If we choose problems that have
inherent symmetries and are divisible into four identical operations, we can ac-
tually use the same pixel shader instructions to perform different “jobs” in each
pixel, and then share the values in the quad. Now it should be clear why the
derivative instructions are so important. They rely on the difference between two
pixels, and thus can be used as a mechanism to share values between pixels, with
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some simple arithmetic. We utilize the derivative instructions as message-passing
instructions.

2.5 PQA Initialization

In the case of hybrid forward- and backward-differencing, each derivative is sim-
ply the positive or negative difference of the current pixel’s value with the verti-
cal/horizontal adjacent pixel. With this knowledge, it is easy to calculate what
an adjacent pixel’s value is. We simply subtract or add the derivative to the
current pixel’s value, based on the pixel’s location in the quad. As an example,
for the pixel in the quad in Figure 2.1(top left), we have

a+ ddx(a) = a+ (b− a) = b.

For the top-right pixel, we have

b− ddx(b) = b− (b− a) = a.

So to generically pass a value v horizontally within a quad and get the hori-
zontal neighbor h, we compute

h = v − signx ∗ ddx(v),

where signx denotes the sign of x in the quadrant of the current pixel within a
quad. Although we can not access the pixel diagonally across from the current
pixel directly, we can determine the horizontal neighbor followed by the vertical
neighbor of that value. An example that computes all three neighbors is as
follows:

// Gather four f l o a t 4 s
void QuadGather2x2 ( f loat4 value ,

out f loat4 horz ,
out f loat4 vert ,
out f loat4 diag )

{
horz = value + ddx ( value ) ∗ QuadVector . z ; // Hor i zonta l
ve r t = value + ddy ( value ) ∗ QuadVector .w; // V e r t i c a l
d iag = ver t + ddx ( ve r t ) ∗ QuadVector . z ; // Diagonal

}

If we need to gather only one or two values instead of a full float4 vector,
we can optimize this calculation down to as little as two MAD instructions and
two derivative instructions:
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// Gather four f l o a t s i n to one f l o a t 4
f loat QuadGather2x2 ( f loat value )
{

f loat4 r = value ;
r . y = r . x + ddx ( r . x ) ∗ QuadVector . z ; // Hor i zonta l
r . zw = r . xy + ddy ( r . xy ) ∗ QuadVector .w; // V e r t i c a l /

Diagonal
return r ;

}

In both of these examples we used the variable QuadVector. Figure 2.2 illus-
trates the value of QuadVector for each pixel in a quad. Most of the optimiza-
tions we perform in this chapter rely on this vector and one other variable called
QuadSelect. QuadVector is used to divide two-dimensional symmetric problems
into four parts, while QuadSelect is used to choose between two values based on
the current pixel’s quadrant.

The following code demonstrates one way to calculate QuadVector and
QuadSelect from a pixel’s screen coordinates. The negated/flipped values are
also useful and are stored in z/w components.

void InitQuad ( f loat2 screenCoord )
{

// This assumes screenCoord conta in s an i n t e g e r p i x e l
coo rd inate

ScreenCoord = screenCoord ;
QuadVector = f r a c ( screenCoord . xy ∗0 . 5 ) . xyxy ;
QuadVector = QuadVector∗ f loat4 (4 ,4 ,−4 ,−4) + f loat4 (−1 ,−1 ,1 ,1)

;
QuadSelect = sa tu ra t e ( QuadVector ) ;

}

While it takes a few instructions to initialize communication within a quad,
this will allow us to amortize the cost of several costly shading operations.
First, however, we will identify a few drawbacks and limitations when using
PQA.

2.6 Limitations of PQA

There are a number of limitations to pixel quad amortization that become im-
mediately apparent. First and foremost, pixel quad message passing works only
on hardware that uses hybrid forward and backward derivatives as illustrated in
Figure 2.2. When half-resolution derivatives are used, the derivative instructions
never touch the bottom-right pixel in the quad. There is no way to communi-
cate that pixel’s value to the other pixels in the quad in that case, thus hybrid
derivative support needs to be detected based on the graphics card. Appendix A
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(0,1) (1,1)

(0,0) (1,0)

(-1, 1) (1, 1)

(-1,-1) (1,-1)

QuadVector QuadSelect

Figure 2.2. To initialize PQA we calculate two simple values for each pixel. QuadVector
contains the x/y sign of the pixel within it’s quad and is used to perform symmetric
operations while QuadSelect is used to choose between values based on the pixel’s
location in the quad.

provides a list of hardware that supports hybrid derivatives at the time this ar-
ticle was written. It is also possible that a hardware vendor could change the
way the derivative instructions work, breaking this functionality. Although this
seems very unlikely, it is easy enough to write a detection routine to test which
type of derivatives are used.

The second problem that becomes immediately apparent is that there is no in-
terpolation between quads as there would be from a pre-rendered half-resolution
buffer. Thus, if we output the same value for an entire quad, it will resemble
unfiltered point sampling from a half-resolution frame buffer. This may be ac-
ceptable in certain situations, but if we want higher quality results, we still need
to compute unique values for each pixel. Our ability to produce pleasing results
really depends on the specific problem.

The third problem is that quad-level calculations work effectively only in the
current triangle’s domain. For example, we can use pixel quad amortization
to accelerate PCF shadow-map sampling in forward rendering, but not nearly
as easily in deferred rendering. This is because in the deferred case the quads
being rendered are not in object space; thus, a pixel quad may straddle a depth
discontinuity, creating a large gap in shadow space. In forward rendering, the
entire quad will project into a contiguous location in shadow space, which is
what we rely on to amortize costs effectively.

Although there are a number of drawbacks to PQA, we found we could solve
these issues for several common graphics problems and still achieve large per-
formance gains. In the following sections we will discuss how to optimize PCF,
bilateral upsampling, and basic convolution and blurring with PQA.
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2.7 Cross Bilateral Sampling

The cross bilateral filter has been popularized as a means to provide geometry-
aware upsampling. If a screen-space buffer is blurred or upsampled using a simple
bilinear filter, the features in the low-resolution buffer will bleed across depth
boundaries, creating artifacts. The basic idea behind the bilateral filter is to
modify the reconstruction kernel to avoid integrating across depth or normal
boundaries in the scene. This is achieved by storing a depth and/or normal for
each low-resolution sample and assigning filter weight according to not only the
distance in screen space to each sample, but also distance in depth and/or normal
space. Bilateral filters usually use Gaussian weighting functions in both depth and
screen space, however [Yang et al. 08] proposed to use a simple tent function in
screen space, mimicking the effect of a bilinear upsample and therefore requiring
only four depth/image samples. No matter what type of weighting function is
used, the filter weight is accumulated such that the sample can be normalized by
the total accumulated weight:

cHi =
ΣcLj f(x̂i, xj)g(|zHi − zLj |)

Σf(x̂i, xj)g(|zHi − zLj |)
In this example f() is the normal linear filtering weight while g() is a Gaussian
falloff based on the difference in depth between the high-resolution and low-
resolution depths. One disadvantage of bilateral upsampling is its cost compared
with simple bilinear filtering. While a bilinear upsample requires only one hard-
ware filtered sample, a bilateral upsample will require at minimum four point
samples and four depth samples. This cost is incurred at the high resolution,
thus it often partially defeats the purpose of performing calculations at a lower
resolution in the first place. Obviously, if the calculation costs less than eight
samples, it will be less expensive to just compute the value at the high resolu-
tion.

The bilateral filter is one example where PQA works without any of the draw-
backs mentioned in the previous section. Since bilateral upsampling occurs in
screen space, we can set up our low-resolution buffer such that all the pixels in
the same high-resolution quad will share the same low-resolution samples. All
that is needed then is to share the samples across the quad and let each pixel
perform the bilateral filter independently. Here is an example for a 2X upsample
of a low-resolution AO texture. To optimize this further to only one sample, the
depth can be packed into extra channels of the AO texture.

// Gather quad h o r i z o n t a l / v e r t i c a l / d iagona l samples
f loat2 AO D, AO D H, AO D V, AO D D;
AO D. x = tex2D ( lowResDepthSampler , coord ) . x ;
AO D. y = tex2D ( lowResAOSampler , coord ) . x ;
QuadGather2x2 ( AO D, AO D H, AO D V, AO D D ) ;
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2X Bilateral Upsample 4X Bilateral Upsample

Texel

Quad

Figure 2.3. Bilateral upsampling from a half-resolution or quarter-resolution buffer. All
quad pixels utilize the same four low-resolution samples. We can therefore perform a
bilateral upsample with only one or two texture fetches and two derivative instructions,
instead of eight texture fetches.

The bilateral upsample can then be performed as usual for each pixel, with
the caveat that tent weights will need to flip to compensate for the samples being
flipped in each pixel. A similar approach can be taken for a 4X upsample, or for
bilateral blurring operations at any resolution. One extra thing to note is that
the low-resolution buffer is shifted half a pixel (see Figure 2.3).

2.8 Convolution and Blurring

Convolution and blurring operations can also be accelerated using PQA. Although
we are performing calculations at the pixel quad level, we would not want our
result to be output at half-resolution or we might as well simply output a truly
half-resolution texture! Thankfully, because we can share results at any point in
the shader, we can customize the message delivered to other pixels in the quad
in order to perform unique blurs for each pixel. The following code illustrates a
3× 3 blur with four samples, while Figure 2.4 illustrates this process for a 5× 5
blur using nine samples:

// Populate messages f o r ne ighbors
f loat4 m = 0 ;
m. rgba+= tex2D ( imageSampler , coord ) . x ;
m. rb += tex2D ( imageSampler , coord+QuadVector∗

f loat2 (TEXEL SIZE . x , 0 ) ) . x ;
m. rg += tex2D ( imageSampler , coord+QuadVector∗

f loat2 (TEXEL SIZE . y , 0 ) ) . x ;
m. r += tex2D ( imageSampler , coord+QuadVector∗

f loat2 (TEXEL SIZE . xy ) ) . x ;
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Figure 2.4. Illustration of a 5 × 5 blur using PQA. The blur kernel footprint of four
pixels in a quad (left). Samples taken by each pixel in the quad (middle). Uniquely
weighted messages from the red pixel to other pixels in the quad (right).

// Gather messages
f loat4 h , v , d ;
QuadGather2x2 ( m, h , v , d ) ;

//Weight r e s u l t s f o r 3x3 b lur
f loat4 r e s u l t = dot ( f loat4 ( 4 , 2 , 2 , 1 ) / 9 .0 ,

f loat4 (m. x , h . g , v . b , d .w) ) ;

Unfortunately, though we can gather more samples, it becomes cumbersome
to apply unique weights for more complicated filters, especially when bilinear fil-
tering is also applied to increase the kernel width. In our example it would also
take several QuadGather operations for a multiple channel texture. While this can
be optimized significantly by separating vertical and horizontal messages, we rec-
ommend this approach primarily for performing nonseparable and/or nonlinear
blurring operations on one or two channel data. In the case that only approxi-
mate results are required, we discuss a gradient approximation to support bilinear
filtering in Section 2.9.

In the case of Direct3D 11 hardware, it should be noted that PQA should
not be used for simple image blurring. In this case DirectCompute or OpenCL
can achieve much better performance by applying the same idea in a compute
shader. For example, one could output in quad-sized groups of pixels, or even
output an entire row of quads in one shader. For this reason PQA should be used
only during geometry rasterization on hardware that supports compute shaders.
PQA will remain a valid technique in these cases since rasterization is only a
semi-parallelizable task.
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2.9 Percentage Closer Filtering

Percentage closer filtering refers to filtering in which a nonlinear operation is
required before the filter can take place. In graphics, PCF usually refers to
shadow-map filtering, where the nonlinear operation is a depth comparison. A
naive N × N PCF filter looks something like this:

for ( int i = 0 ; i < N; i++ )
for ( int j = 0 ; j < N; j++ )
{

shad += ShadowSample (Map, Coord ,
SM TEXEL ∗ f loat2 ( i−(N/2.0−0.5) , j−(N/2.0−0.5)

) ) ;
}
shad /= (N∗N) ;

Many graphics cards support native bilinear PCF filtering, and this section
assumes we have at least bilinear PCF support. Some more recent graphics cards
support fetching four depth values at once, allowing the user to arbitrarily filter
them in the shader. Since utilizing bilinear PCF is more difficult in our case, but
is supported on a much wider set of hardware, we will focus on using bilinear
PCF. Extensions to Gather instructions can further improve results.

Since we cannot access the result of each pixel when using bilinear PCF, we
start by applying an approach from [Sigg and Hadwiger 05, Gruen 10], which
uses bilinear samples to build efficient larger filters. This involves using sample
offsets such that each bilinear sample fetches four uniquely weighted samples. In
the most simple case, where we want equal weights, this simply means placing a
bilinear PCF sample in the middle of the four texels we want:

// Fract ion o f a p i x e l
f loat2 a = f r a c ( Coord . xy ∗ SM SIZE − 0 .5 ) ;

// Negative / P o s i t i v e o f f s e t s to compute equal weights
f loat4 O f f s e t = a . xyxy ∗ −(SM TEXEL) +

f loat4 ( −0 .5 , −0 .5 ,1 .5 ,1 .5 ) ∗SM TEXEL;
f loat4 taps ;

taps . x = ShadowSample ( Map, Coord , O f f s e t . xw ) ;
taps . y = ShadowSample ( Map, Coord , O f f s e t . zw ) ;
taps . z = ShadowSample ( Map, Coord , O f f s e t . xy ) ;
taps .w = ShadowSample ( Map, Coord , O f f s e t . zy ) ;

f loat shadow = dot ( taps , 0 . 2 5 ) ;

This approach can apply to arbitrary separable filters as we will see later,
but for now we will keep things simple. To apply PQA, we replace the offset
calculation with one that uses the quadrant vector, and then take one sample at
each pixel, followed by a quad average:
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One Sample 4x4 PCF

Shadow TexelQuad

Figure 2.5. Half-resolution 4× 4 PCF using quad LOD. The colored pixels correspond
to the projection of one pixel quad into shadow space. Each pixel performs only one
texture fetch, followed by a pixel quad average. The close-up illustrates half-resolution
point sampling artifacts.

// Average coord inate f o r quad
Coord . xy = QuadAve2x2 ( Coord . xy ) ;

// Fract ion o f a p i x e l
f loat2 a = f r a c ( Coord . xy ∗ SM SIZE − 0 .5 ) ;

// Negative or p o s i t i v e o f f s e t to compute equal weights
f loat2 O f f s e t = (−a + 0 .5 + QuadVector . xy ) ∗ SM TEXEL;
f loat tap = ShadowSample ( Map, Coord , O f f s e t ) ;
f loat shadow = QuadAve2x2 ( tap ) ;

We first compute the average texture coordinate for the quad. We then use
the quadrant vector to select only the offset we need. Last, we take one sample
in each pixel and then average the results. This is illustrated in Figure 2.5. Note
that the offset calculation was also reduced from a float4 to float2 calculation.

At this point we are doing a lot of extra work to save only three samples,
but once we extend this to larger kernels it starts to become quite effective. For
example, if we use four samples per pixel we can now achieve 8×8 PCF (64 total
texels) with only four bilinear samples, for a 16X improvement over the naive
approach. The layout of these samples is illustrated in Figure 2.6 (right).

//Low and high o f f s e t s f o r t h i s p i x e l
f loat4 lOhO = (−a . xyxy + QuadVector . xyxy + 0 .5 +

f loat4 (−2 ,−2 ,2 ,2) ) ∗ SM TEXEL;

f loat4 t ;
t . x = ShadowSample ( Map, Coord , lOhO . xy ) ;
t . y = ShadowSample ( Map, Coord , lOhO . xw ) ;
t . z = ShadowSample ( Map, Coord , lOhO . zy ) ;
t .w = ShadowSample ( Map, Coord , lOhO . zw ) ;

f loat shadow = PixelAve2x2 ( dot ( t , 0 . 2 5 ) ) ;
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Figure 2.6. Different sample placements color coded by quad pixel. Simply mirroring
samples is easier but results in samples that are very far apart, which can degrade
cache performance (left). Local mirroring results in samples that are closer together
but offsets can be more difficult to calculate symmetrically (right).

Although we can now sample very large kernels, we are outputting the same
value for each pixel in the quad, resulting in quad-sized point sampling artifacts.
Noncontinuous PCF is also quite undesirable, so it is important to add at least
first-order continuity to our filter. We will now tackle both of these issues.

Higher-order filtering is more complicated since shadow texels are not located
at fixed distances from the sampling location, thus weights need to be calculated
dynamically. The most recent approach [Gruen 10] to achieving higher-order
PCF filtering involves solving a small linear system for each sample to find the
correct weights and offsets. The linear system is based on all the bilinear samples
that would have touched the same texels.

We note that this can be largely simplified by using the work from [Sigg and
Hadwiger 05]. Instead of replicating the weights produced by several bilinear
samples and a grid of weights, we determine the weight for each texel using
an analytic filter kernel. Because the kernel is separable, we can compute the
sample offsets and weights separately for each axis. This is demonstrated using
a full-sampled Gaussian kernel below.

{
#d e f i n e SIGMA (SM TEXEL∗2)
#d e f i n e ONE OVER TWO SIGMA SQ ( 1 . 0 / ( 2 . 0 ∗SIGMA∗SIGMA) )
#d e f i n e GAUSSIAN( v ) ( exp(−(v∗v ) ∗ONE OVER TWO SIGMA SQ) )

f loat4 Gauss ianFi l terWeight ( f loat4 o f f s e t )
{
return GAUSSIAN( o f f s e t ) − GAUSSIAN(4∗SM TEXEL) ;
}

f loat4 l i n s t e p ( f loat4 min , f loat4 max , f loat4 v )
{
return s a tu ra t e ( ( v−min) /(max−min ) ) ;
}
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f loat4 LinearStepFi l t e rWeight ( f loat4 o f f s e t )
{
return l i n s t e p (SM TEXEL∗4 . 0 ,SM TEXEL∗2 . 0 , abs ( o f f s e t ) ) ;
}

f loat4 SmoothStepFilterWeight ( f loat4 o f f s e t )
{
return smoothstep (SM TEXEL∗4 . 0 ,SM TEXEL∗1 . 0 , abs ( o f f s e t ) ) ;
}

f loat4 Fi l te rWeight ( f loat4 o f f s e t , const int f i l t e r T y p e )
{
switch ( f i l t e r T y p e )

{
case 0 :
return LinearStepFi l t e rWeight ( o f f s e t , texelWidth ) ;
case 1 :
return SmoothStepFilterWeight ( o f f s e t , texelWidth ) ;
case 2 :
return Gauss ianFi l terWeight ( o f f s e t , texelWidth ) ;
}

}

f loat Shadow8x8Hlaf ( Texture2D Map, f loat4 Coord , const int
f i l t e r T y p e )

{
//Compute average coord , and f r a c t i o n o f p i x e l
Coord = QuadAve( Coord ) ;
f loat2 a = f r a c ( Coord . xy∗SM SIZE − 0 . 5 ) ;

//Low and high p i x e l c en t e r o f f s e t s ( l o c a l mirrored )
f loat4 o f f s e t s 0 = (−a . xyxy + QuadVector . xyxy + f loat4

(−2 ,−2 ,2 ,2) ) ∗SM TEXEL;
f loat4 o f f s e t s 1 = o f f s e t s 0 + SM TEXEL;

// F i l t e r weights and o f f s e t s
f loat4 g0 = Fi l te rWeight ( o f f s e t s 0 , f i l t e r T y p e ) ;
f loat4 g1 = Fi l te rWeight ( o f f s e t s 1 , f i l t e r T y p e ) ;
f loat4 g01 = g0 = g1 ;
f loat4 b i l i n e a r O f f s e t s = o f f s e t s 0 + ( g1/g01 ) ∗SM TEXEL;

// Gather 64 shadow map t e x e l s with 4 samples
f loat4 taps ;
taps . x = ShadowSample (Map, Coord , b i l i n e a r O f f s e t s . xy ) ;
taps . y = ShadowSample (Map, Coord , b i l i n e a r O f f s e t s . zy ) ;
taps . z = ShadowSample (Map, Coord , b i l i n e a r O f f s e t s . xw) ;
taps .w = ShadowSample (Map, Coord , b i l i n e a r O f f s e t s . zw) ;
f loat4 weights = g01 . xzxz∗g01 . yyww ;

//Sum weights and samples a c r o s s the quad .
f loat4 shadow weight ;
shadow weight . x = dot ( taps , weights ) ;
shadow weight . y = dot (1 , weights ) ;
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shadow weight . xy = QuadAve( shadow weight . xy ) ;

// Normalize our sample weight
f loat shadow = shadow weight . x/ shadow weight . y ;
return shadow ;

}
}

We have shown a few Gaussian filters for both simplicity and readability; in
practice, we prefer to use linear, quadratic, or cubic B-spline kernels. Note that
we do not need to calculate weights for each texel, but rather for each row and
column of texels. Bilinear offsets can then similarly be computed separately and
weights simplified to the product between the sum of X and Y weights. The
same approach can be applied for piecewise polynomial filters such as B-Splines,
or using arbitrary filters with the offsets and weights stored in lookup textures
as in [Sigg and Hadwiger 05].

At this point we now have very smooth shadows but still have the same value
for all pixels in a quad. To smooth the point-sampled look, it would be optimal to
bound all quad texels in shadow space and create a uniquely weighted kernel for
each pixel, but without Gather() capability that would involve performing four

Half Resolution Gradient Estimation Reference

Figure 2.7. Gradient estimation for 8 × 8 bilinear PCF (four samples). These images
are magnified to illustrate how even very naive gradient estimation can hide most quad
artifacts. If using Shader Model 4 or 5, Gather samples can be used to avoid these
artifacts altogether.
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times the samples. We found that a good compromise when using bilinear PCF
is to compute a simple gradient approximation along with the shadow value.
Rather than using every texel to compute the gradient, we simply reuse the
bilinear-filtered samples as if they had come from a lower-resolution shadow map.
Although this is somewhat of a hack, thankfully it actually works quite well (see
Figure 2.7). The weights for the derivative calculation will depend on the kernel
itself (see Figure 2.8). The following code calculates a 4 × 4 Prewitt gradient
which works well for low-order B-spline filters:

// Gradient e s t imat i on us ing Prewitt 4x4 grad i en t operator
f loat4 s dxdy ;
s dxdy . xy = dot ( taps , weights ) ;
// Prewitt ( x )
s dxdy . z = dot ( taps , f loat4 ( 3 , 3 , 1 , 1 ) ∗ QuadVector . x ) ;
// Prewitt ( y
s dxdy .w = dot ( taps , f loat4 ( 3 , 1 , 3 , 1 ) ∗ QuadVector . y ) ; )
s dxdy = QuadAve( s dxdy ) ∗ 4 ;
f loat shadow = s dxdy . x ;

Figure 2.8. All of the images in Part II, Chapter 1 also make use of PQA for PCF
shadows. This image uses 8 × 8 bilinear PCF filtering (four samples) and half the
original ALU operations. Part of the shadow penumbra is used to mimic scattering
fall-off, thus an inexpensive wide PCF kernel is crucial. Mesh and textures courtesy of
XYZRGB.
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shadow += dot ( ( Coord . xy−rea lCoord ) , s dxdy . zw ) ;
return shadow ;

The last issue that needs to be mentioned is handling anisotropy and mini-
fication. Our gradient estimate works well on close-ups and will handle minifi-
cation up to the size of the kernel used. However, under extreme minification
the distance between the quad pixels in shadow space increases, and the linear
gradient estimate breaks down. There are a number of ways we can deal with
this. Firstly, if using a technique like cascading shadow maps (CSMs) we are
unlikely to experience extreme minification since shadow resolution should be
distributed somewhat equally in screen space. In other cases, one option is to
generate mipmaps of the shadow map, allowing us to increase the kernel size to
fit the footprint of the quad in shadow space. Alternatively, we can also forgo
generating mipmaps and just sparsely sample a larger footprint in the shadow
map. We have found that both of these solutions work adequately. Again, having
Gather() support opens up several more options.

2.10 Discussion

We have demonstrated a new approach for optimizing shaders, by amortizing
costly operations across pixel quads, that is natively supported by a large set of
existing hardware. Our approach has the advantage of not requiring additional
passes over the scene unlike other frame buffer LOD approaches. It also poten-
tially allows for sharing redundant calculations and temporary registers between
pixels, while still performing the final calculation at full resolution. We have
also demonstrated how gradients can be used to generate smooth results within
a quad while still supporting bilinear texture fetches. The primary drawback of
our approach remains the lack of interpolation between neighboring quads that
would be provided with something like bilateral upsampling. Interestingly, how-
ever, our technique can help in either case, since our technique can also accelerate
the bilateral upsampling operation itself.

Should PQA become a popular technique, hardware or software pipelines
could make it much more efficient by exposing the registers of neighboring pixels
directly in the pixel shader. Native API support for sharing registers between
pixels would greatly simplify writing amortized shaders. The current cost of
sharing results via derivative instructions makes it prohibitive in some cases.

We have found that our approach can also be applied to other rendering
problems, such as shadow-contact hardening, ambient occlusion, and global illu-
mination. Although we can not verify this at the time of writing, it also appears
that all future hardware that supports Direct3D 11’s fine derivatives will sup-
port PQA.
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2.11 Appendix A: Hardware Support

At the time of writing we have verified that PQA works on all recent NVIDIA
hardware. We have tested several 8000 and 9000 series cards including mobile
cards in laptops. Unfortunately all the ATI hardware we have tested so far,
including the Xbox 360, do not support PQA as they use half-resolution deriva-
tives. The PlayStation 3 console, on the other hand, does support PQA since it
uses an NVIDIA GPU, making PQA feasible for current console games. Since
Direct3D 11 specifies two types of derivatives, PQA will likely be supported by
all hardware that supports Shader Model 5. At the time of writing we do not
have access to any Intel graphics cards and thus we do not know which form of
derivative Intel graphics cards use.

To detect if message passing works on an arbitrary card, we draw a small rect
with a custom shader and look at (or read back) the results. The custom shader
sets a variable to four in only one quad pixel and zero otherwise. The result of
calling QuadAve() on that variable will be one for all pixels if message passing
worked and something else otherwise. This test is repeated for all quad pixels.
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VI

A Rendering Pipeline for
Real-Time Crowds

Benjaḿın Hernández and Isaac Rudomin

In motion pictures, large crowds of computer-generated characters are usually
included to produce battle scenes of epic proportions. In real-time strategy games,
it is common to find crowds as armies controlled by users (or AI), or crowds made
up of non-player characters (e.g., groups of spectators in a stadium). In virtual
environments, it is common to find crowd simulations that interact with other
characters and with their surrounding environment.

In all cases, optimizations such as level of detail and culling should be per-
formed to render the crowds. In this chapter, we propose a parallel approach
(implemented on the GPU) for level of detail selection and view-frustum culling,
allowing us to render crowds made up of thousands of characters.

3.1 System Overview

Our rendering pipeline is outlined in Figure 3.1. First, all necessary initializa-
tions are performed on the CPU. These include loading information stored on
disk (e.g., animation frames and polygonal meshes) and information generated
as a preprocess (e.g., character positions) or in runtime (e.g., camera parame-
ter updates). This information is used on the GPU to calculate the characters’
new positions, do view-frustum culling, assign a specific level of detail (LOD) for
each character and for level of detail sorting and character rendering. A brief
description of each stage is given here.

• Populating the virtual environment and behavior. In these stages we specify
the initial positions of all the characters, how they will move through the
virtual environment, and how they will interact with each other. The result
is a set of updated character positions.

369



i
i

i
i

i
i

i
i

370 VI 3D Engine Design

Figure 3.1. Rendering pipeline for crowd visualization. Dashed arrows correspond to
data transferred from main memory to GPU memory only once at initialization.

• View-frustum culling and LOD Assignment. In this stage we use the charac-
ters’ positions to identify those that will be culled. Additionally, we assign
a proper LOD identifier to the characters’ positions inside the view frustum
according to their distance to the camera.

• LOD sorting. The output of the view-frustum culling and LOD assignment
stage is a mixture of positions with different LODs. In the LOD sorting
stage we sort each position, according to its LOD identifier, into appropriate
buffers so that all the characters’ positions in any one buffer have the same
level of detail.

• Animation and draw instancing. In this stage we will use each sorted buffer
to draw the appropriate LOD character mesh, using instancing. Instancing
allows us to translate the characters across the virtual environment and add
visual and geometrical variety to the individuals that form the crowd.

In the following sections, we will present a detailed description of how we
implemented these stages.
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3.2 Populating the Virtual Environment and Behavior

For simplicity, our virtual environment is a plane. It is parallel to the plane
formed by the xz-axes. The initial positions of the characters are calculated
randomly and stored into a texture.

For behavior, we implemented finite-state machines (FSMs) as fragment shaders.
A FSM is used to update the characters’ positions following [Rudomı́n et al. 05,
Millán et al. 06], in which a character will consult the value of a labeled world
map and follow a very simple FSM that causes it to move right until it reaches the
right edge of the map, at which point the agent changes state and starts moving
left until it gets to the left also ideal for this pipeline.1

Implementing FSM as fragment shaders needs three kinds of textures: a world-
space texture, an agent texture, and an FSM-table texture. World-space textures
encode values for each location in the virtual environment. This covers many
types of maps: heightmaps, collision maps, interest area maps, or action maps.
We consider these maps as maps labeled with some value on each pixel. Agent
textures have a pixel for each character and encode the state s of the character and
its position (x, z) in the world map. Finally, the finite state machine is represented
as a texture where given a certain state of the character and a certain input, we
can obtain a new state and position of the character following the basic algorithm
shown in Listing 3.1.

given agent i
s t a t e=agent [ i ] . s ; x=agent [ i ] . x ; z=agent [ i ] . z ;
l a b e l=world [ x , z ] ;
agent [ i ] . s=fsm [ s tate , l a b e l ] ;
agent [ i ] . x += fsm [ s tate , l a b e l ] . d e l t a x ;
agent [ i ] . z += fsm [ s tate , l a b e l ] . d e l t a z ;

Listing 3.1. Basic algorithm to implement FSM as fragment shader.

3.3 View-Frustum Culling

View-frustum culling (VFC) consists of eliminating groups of objects outside the
camera’s view frustum. The common approach for VFC is to test the intersection
between the objects and the six view-frustum planes using their plane equations
to determine the visibility of each object. In our case, we implement a simpler

1The reason we recommend methods that use the GPU for behavior, in addition to the fact
that these methods can simulate the behavior of tens of thousand characters efficiently, is that
approaches using the GPU eliminate the overhead of transferring the new characters’ positions
between the CPU and and the GPU on every frame.
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method called radar VFC [Puig Placeres 05]. Radar VFC is based on the camera’s
referential points. The method tests the objects for being in the view range or
not, thus there is no need to calculate the six view-frustum plane equations.

On the other hand, objects tested against the view frustum are usually sim-
plified using points or bounding volumes such as bounding boxes (oriented or
axis-aligned) or spheres. In our case, we use points (the characters’ positions)
together with radar VFC to perform only three tests to determine the characters’
visibility. In addition, to avoid the culling of characters that are partially inside
the view frustum, we increase the view frustum size by ∆ units2 (Figure 3.2).

As mentioned earlier, radar VFC is based on camera referential points. In
other words, the camera has a referential based on the three unit vectors x̂, ŷ,
and ẑ as shown in Figure 3.3, where c is the position of the camera, n is the
center of the near plane, and f is the center of the far plane.

The idea behind radar VFC is that once we have the character’s position p to
be tested against the view frustum, we find the coordinates of p in the referential
and then use this information to find out if the point is inside or outside the view
frustum.

The first step is to find the camera’s referential. Let d be the camera’s view
direction, û the camera’s up vector, then unit vectors x̂, ŷ, and ẑ that form the
referential are calculated using Equations 3.1, 3.2, and 3.3.

ẑ =
d

‖d‖ =
d√

d2
x + d2

y + d2
z

(3.1)

x̂ =
ẑ ⊗ û
‖ẑ ⊗ û‖ (3.2)

ŷ =
x̂⊗ ẑ
‖x̂⊗ ẑ‖ (3.3)

Once we have calculated the referential, the next step is to compute the vector v
that goes from the camera center c to the agent’s position p using Equation 3.4:

v = p− c. (3.4)

Next, the vector v is projected onto the camera referential, i.e., onto the x̂, ŷ,
and ẑ unit vectors.

Radar VFC first tests vector v against ẑ; v is outside the view frustum if
its projection projẑv /∈ ( nearPlane, farPlane). Notice that the projection of a

vector a into a unit vector b̂ is given by the dot product of both vectors, i.e.,
projb̂a = a · b̂.

If projẑv ∈ [nearPlane, farPlane], then vector v is tested against ŷ; v will be
outside the view frustum if its projection projŷv /∈ (−(h/2+∆), h/2+∆) interval,

2The value of ∆ is obtained by visually adjusting the view frustum.
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Figure 3.2. View-frustum culling.

where h is the height of the view frustum at position v and ∆ is the value used to
increase the view-frustum size as shown in Figure 3.2. The height h is calculated
using Equation 3.5, where fov is the field-of-view angle:

h = projẑv × 2× tan
fov

2
: fov ∈ [0, 2π] (3.5)

If projŷv ∈ (−(h/2 + ∆), h/2 + ∆), then vector v is tested against x̂ (i.e., v
is outside the view frustum if its projection projx̂v /∈ (−(w/2 + ∆), w/2 + ∆)
interval) where w is the width of the view frustum, given in Equation 3.6 and
ratio is the aspect ratio value of the view frustum:

w = h× ratio (3.6)

VFC and LOD assignment stages are performed using a geometry shader.
This shader receives as input the agent texture that was updated in the behavior
stage (Section 3.2), and it will emit the positions (x, z) which are inside the view

Figure 3.3. Camera’s referential based on the three unit vectors x, y, and z.
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frustum and a LODid. The resultant triplets (x, y,LODid) are stored in a vertex
buffer object using the OpenGL transform feedback feature. Listing 3.2 shows
the code that performs radar VFC in GLSL.

[ ve r tex program ]
void main (void )
{

gl TexCoord [ 0 ] = gl Mult i texCoord0 ;
g l P o s i t i o n = g l Ver t ex ;

}
[ geometry program ]
#define INSIDE true
#define OUTSIDE f a l s e
uniform sampler2DRect p o s i t i o n ;
uniform f loat nearPlane , farPlane , tang , r a t i o , d e l t a ;
uniform vec3 camPos , X, Y, Z ;

bool pointInFrustum ( vec3 po int )
{

// c a l c u l a t i n g v = p − c
vec3 v = point − camPos ;
// c a l c u l a t i n g the p r o j e c t i o n o f v in to Z uni t vec to r
f loat pcz = dot (v , Z ) ;

// F i r s t t e s t : t e s t aga in s t Z un i t vec to r
i f ( pcz > f a rP lane | | pcz < nearPlane )

return OUTSIDE;

// c a l c u l a t i n g the p r o j e c t i o n o f v in to Y uni t vec to r
f loat pcy = dot (v ,Y) ;
f loat h = pcz ∗ tang ;
h = h + de l t a ;

// Second t e s t : t e s t aga in s t Y uni t vec to r
i f ( pcy > h | | pcy < −h )

return OUTSIDE;

// c a l c u l a t i n g the p r o j e c t i o n o f v in to X uni t vec to r
f loat pcx = dot (v ,X) ;
f loat w = h ∗ r a t i o ;
w = w + d e l t a ;

// Third t e s t : t e s t aga in s t X uni t vec to r
i f ( pcx > w | | pcx < − w )

return OUTSIDE;

return INSIDE ;
}
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void main (void )
{

vec4 pos = texture2DRect ( po s i t i on , gl TexCoordIn [ 0 ] [ 0 ] . s t ) ;
i f ( pointInFrustum ( pos . xyz ) )
{

g l P o s i t i o n = pos ;
EmitVertex ( ) ;
EndPrimitive ( ) ;

}
}

Listing 3.2. Code for radar view frustum culling in GLSL.

3.3.1 Assigning Level of Detail

After determining which positions are inside the view frustum, the next step is to
assign a LODid according to a given metric. In this case, we use discrete LOD3

which consists of creating different LODs for each character as a preprocess. At
runtime, the appropriate character’s LOD is rendered using its LODid.

Metrics for assigning values to LODid can be based on distance to the camera,
model size in screen space, eccentricity of the model with respect to the camera,
or perceptual factors, among others. For performance and simplicity, we are using
the distance to the camera as our metric; we also use visual perception to reduce
the popping effect. The idea behind the distance to the camera metric is to select
(or in our case, assign) the appropriate LOD based on the distance between the
model and the viewpoint (i.e., coarser resolution for distant geometry). Never-
theless, instead of computing the Euclidean distance between the object and the
viewpoint, we define the appropriate LOD as a function of the view range and
the far plane. These values are obtained by the camera referential points.

The camera’s view range is given by unit vector ẑ and it is limited by the
distance between the camera center, c, and the farPlane value. Thus, we test the
projection of v onto ẑ (projẑv), against different fixed intervals of the view range
to assign a value to LODid.

A common approach for manually assigning values to LODid is using if state-
ments as shown in Listing 3.3. Nevertheless, we can reduce GPU branching by
eliminating the if statements and by using a sum of unit step functions instead
(Equation 3.7):

LODid =
n−1∑
i=0

U(projẑv − farPlane× τi) (3.7)

3It has been shown in [Millán et al. 06] that 2D representations, such as impostors, make it
possible to render tens of thousands of similar animated characters, but 2D-representation ap-
proaches need manual tuning and generate a huge amount of data if several animation sequences
are present and/or geometrical variety is considered.
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. . .
i f projZv <= range0 then

LODid = 0
else i f projZv > range0 & projZv <= range1 then

LODid = 1
else i f projZv > range1 & projZv <= range2 then

LODid = 2
. . .

Listing 3.3. Assigning LODid using if statements.

where n is the number of LOD meshes per character, τi ∈ (0, 1), is a threshold
that isotropically or anisotropically divides the view range visually calibrated to
reduce popping effects and U is the unit step function given by:

U(t− t0) =

{
1 if t ≥ t0,
0 if t < t0.

Notice that if n = 3 (three LOD meshes per character), then LODid can
receive three values, 0 when the characters are near the camera (full detail), 1
when the characters are at medium distances from the camera (medium detail)
and 2 when the characters are at distances far from the camera (low detail).

Listing 3.4 shows the changes made in Listing 3.2 to add LODid calculation.

[ geometry shader ]
. . .
bool pointInFrustum ( vec3 point , out f loat l od )
{
. . .

// c a l c u l a t i n g the p r o j e c t i o n o f v in to Z uni t vec to r
f loat pcz = dot (v , Z ) ;

. . .
// For 3 LOD meshes :
lod = step ( fa rP lane ∗ tao0 , pcz ) +

step ( fa rP lane ∗ tao1 , pcz ) +
step ( fa rP lane ∗ tao2 , pcz ) ;

return INSIDE ;
}

void main (void )
{

f loat l od ;
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vec4 pos = texture2DRect ( po s i t i on , gl TexCoordIn [ 0 ] [ 0 ] . s t ) ;
i f ( pointInFrustum ( pos . xyz , lod ) )
{

g l P o s i t i o n = pos ;
g l P o s i t i o n .w = lod ;
EmitVertex ( ) ;
EndPrimitive ( ) ;

}
}

Listing 3.4. Assigning LODid using step functions.

3.4 Level of Detail Sorting

The result of the VFC and LOD assignment stage is that we have filled up a vertex
buffer object (VBO) for all of the characters with positions inside the camera’s
view frustum. IBased on their distances to the camera, we have assigned a LODid

for each position (Figure 3.4(a)). On the other hand, hardware instancing requires
a single LOD mesh to draw several instances of the same mesh, thus we need to
organize these positions according to their LODid in different VBOs.

Following [Park and Han 09], we will sort the output VBO from the VFC
and LOD assignment stage into appropriate VBOs (that we will call VBOsLOD)
such that all of the characters’ positions in a VBO have the same LODid (Fig-
ure 3.4(b)). Since we are using three LODs, we will use three VBOs.

In this case, we use transform feedback to populate each VBOLOD. In total, we
perform three transform feedback passes. In addition, transform feedback allows
us to know how many primitives were written in each VBOLOD. The number of
primitives written will be used when calling the Draw Instanced routine.

Figure 3.4. (a) Output VBO from VFC and LOD assignment stage. (b) Output of
LOD sorting stage.
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For each transform feedback pass, a geometry shader will emit only the ver-
tices of the same LODid. This is shown in Listing 3.5. Notice that the uniform
variable lod is updated each pass. In our case it will be set to 0 for a full-resolution
mesh, 1 for a medium-resolution mesh, and 2 for a low-resolution mesh.

[ geometry shader ]
uniform f loat l od ; // t h i s v a r i a b l e i s updated each pass
void main ( )
{

vec4 pos = g l P o s i t i o n I n [ 0 ] ;
i f ( lod == pos .w )
{

g l P o s i t i o n = pos ;
EmitVertex ( ) ;
EndPrimitive ( ) ;

}
}

Listing 3.5. Geometry shader used to populate each VBOLOD.

Figure 3.5 shows the output of this stage and the VFC and LOD assignment
stage. The characters’ positions are rendered as points. We have assigned a
specific color for each VBOLOD. In this case, red was assigned to VBOLOD0,
green to VBOLOD1, and blue to VBOLOD2.

Figure 3.5. Output of LOD sorting stage, 4096 characters rendered as points. LOD0 is
shown in red, LOD1 in green, and LOD2 in blue. Main camera view (left). Auxiliary
camera view; notice that only positions inside the view frustum are visible (right).
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3.5 Animation and Draw Instanced

As a preprocess, we load all of the character meshes and textures that will form
the crowd. We also define several character groups according to their geometrical
appearance. Animation is performed with a technique that reuses a character’s
“rig” on the other characters of the group. With this method, the animation se-
quence is stored in a texture array in which each layer stores an animation frame.
Animation frames specify the rotation angles of the character’s joints. These an-
gles are used to pose a character, and by interpolating them, we perform character
animation totally on the GPU. However, approaches such as AniTextures [Bah-
nassi 06] and skinned instancing [Dudash 07] can be used as an alternative.

At runtime, for each character group, we render the high-resolution instances
first using the positions stored in VBO LOD0 to world-transform each instance;
then we render the medium-resolution instances using VBO LOD1, and finally
the low-resolution instances using VBO LOD2. In each call, we use the func-
tion glDrawElementsInstanced available in OpenGL. This function generates
a unique instance value called gl InstanceId, which is accessible in a vertex
shader and t is used as an index to access the instance’s specific position, anima-
tion frame, and its visual characteristics.

3.6 Results

We designed two tests to verify the performance of our pipeline. These tests were
performed on Windows Vista using an NVIDIA 9800GX2 card with SLI-disabled
and a viewport size of 900× 900 pixels.

The goal of the first test is to determine the execution time of the behav-
ior, VFC and LOD assignments, and LOD sorting stages.4 The goal of the
second test is to determine the execution time of the complete pipeline. The
first test consisted of incrementing the number of characters from 1K to 1M,
each character with three LODs. Timing information was obtained using timer
queries (GL EXT timer query) which provides a mechanism used to determine
the amount of time (in nanoseconds) it takes to fully complete a set of OpenGL
commands without stalling the rendering pipeline.

Results of this test are shown in the graph in Figure 3.6 (timing values are
in milliseconds). In addition, Figure 3.5 shows a rendering snapshot for 4096
characters rendered as points. Notice that the elapsed time for VFC and LOD
assignments and LOD sorting stages remains almost constant. When performing
transform feedback, we do not need any subsequent pipeline stages, thus rasteri-
zation is disabled.

The second test consists of rendering a crowd of different characters. Each
character has three LODs, the character’s LOD0 mesh is made of 2500 vertices,

4We do not provide the execution time of the animation and draw instanced stage, since
timing results are bigger by several orders of magnitude.
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Figure 3.6. Test 1 results. Notice that timing results are in milliseconds.

the LOD1 mesh 1000 and LOD2 300. The goal of this test is to determine
the execution time of all the stages of our pipeline using two different camera
perspectives. In Perspective A (Figure 3.7), almost all characters are visible,
while in Perspective B (Figure 3.8) almost all characters are culled.

Figure 3.7. Perspective A (8192 characters). Most of the characters are visible.
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Figure 3.8. Perspective B (8192 characters). Most of the characters are culled.

Agents t LOD0 LOD1 LOD2 Vertices Visible Culled

×10−3 ×106 % %

1024 47.62 274 644 54 1.35 95 5
2048 62.11 365 688 397 1.70 71 29
4096 95.60 450 1388 943 2.80 68 32
8192 159.24 483 1438 5085 4.17 86 14
12288 194.93 400 1905 7694 5.21 81 19
16384 261.78 476 2477 10388 6.78 81 19

Figure 3.9. Results obtained in Perspective A.

Agents t LOD0 LOD1 LOD2 Vertices Visible Culled

×10−3 ×106 % %

1024 19.49 161 0 0 0.40 16 84
2048 22.91 204 0 0 0.51 10 90
4096 49.33 412 314 0 1.34 18 82
8192 57.77 503 317 0 1.60 10 90
12288 72.99 471 995 0 2.20 12 88
16384 97.18 541 1546 0 2.90 13 87

Figure 3.10. Results obtained in Perspective B
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These results are shown in Table 3.9 for Perspective A, and in Table 3.10 for
Perspective B. The first column of both tables shows the number of rendered
characters, the second one shows the time, in milliseconds, measured for each
case. Columns three to five show how many characters per level of detail are ren-
dered, and column six shows the total number of vertices, in millions, transformed
by our animation shader. Finally, the last two columns show the percentage of
characters that are visible or culled.

3.7 Conclusions and Future Work

We have shown that optimization techniques such as view-frustum culling and
LOD selection in the GPU result in a very small time penalty. In our practical
case, the stage that took more time to execute was animation and draw instanced,
which was to be expected. Moreover, extra memory requirements do not exceed
the amount needed to store a 32-bit floating texture of 512 × 512 pixels (i.e.,
for sixteen thousand characters we needed to allocate four floating-point vertex-
buffer objects of 128 × 128, one auxiliary vertex-buffer object to store partial
results obtained from the VFC and LOD assignment stage, and three vertex
buffers to store the positions of each level of detail.)

However, performance results can be improved and memory requirements can
be reduced by using the new OpenGL 4.0 characteristic called “multiple trans-
form feedback,” contained in the ARB transform feedback3, ARB gpu shader5

and NV gpu program5 extensions, which allows geometry shaders to direct each
vertex arbitrarily to a specified vertex stream. Therefore, we will require only
one transform feedback call for LODid sorting, and by combining the VFC and
LOD assignment and LOD sorting stages we could dispense with the auxiliary
vertex-buffer object used to store partial results obtained from the VFC and LOD
assignment stage.

This pipeline can be extended by adding an occlusion-culling stage. Complex
scenes such as those in which crowds are needed or those where landscapes are
depicted with indigenous vegetation, human elements, buildings and structures
can be enhanced. One approach is to perform occlusion culling via OpenGL oc-
clusion queries. Nevertheless, the number of queries needed might not be enough
for complex scenes made up of hundreds of thousands of elements. In addition,
it requires synchronizing the CPU and the GPU, which might stall the pipeline.
Another approach is to put extra cameras in the positions of big structures and
perform radar view frustum culling (using the normalized version of the view
frustum) and then take the complement of the visible set. This stage can be per-
formed after the behavior stage and before the VFC and LOD assigment stage.
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GPGPU

With the constant increase in performance and parallelism of GPUs, there is no
doubt that graphic processors have become more general purpose. The introduc-
tion of general compute APIs, such as CUDA, OpenCL, and DirectX 11 Compute
shaders, have made it possible for modern GPUs to go far beyond the standard
processing of triangles and pixels. The latest advances in GPU technologies now
allow the implementation of various parallel algorithms, such as AI or physics.
With the parallel nature of the GPU, such algorithms can generally run orders of
magnitudes faster than their CPU counterparts. This part will cover such general
purpose uses of the GPU.

In the first chapter, “2D Distance Field Generation with the GPU,” Philip
Rideout presents a simple and effective technique to generate distance fields from
an image using the OpenCL API. Distance fields have many applications in image
processing, real-time rendering, and path-finding algorithms. A distance field is
a grayscale bitmap in which each pixel’s intensity represents the distance to the
nearest contour line in a source image. Rideout explains how such distance fields
can be efficiently generated on the GPU and also provides a few examples of how
the resulting distance fields can be used in practical applications.

In the second chapter, “Order-Independent Transparency Using Per-Pixel
Linked Lists in DirectX 11” by Nicolas Thibieroz, a technique is presented which
takes advantage of unordered access views to generate a dynamic link list which
can in turn be used to render order-independent translucency. By storing translu-
cent pixels in such a list, they can be sorted as an after process and therefore
properly render translucencies regardless of their order.

The third chapter, “Simple and Fast Fluids” by Martin Guay, Fabrice Colin,
and Richard Egli, presents a new algorithm that can be used to solve fluid simula-
tions efficiently using compute APIs on the GPU. The article details how the fluid
solver works, discusses boundary conditions for single phase flows, and provides
a few examples of how such solvers can be used in practical scenarios.

Finally, in “A Fast Poisson Solver for OpenCL using Multigrid Methods” by
Sebastien Noury, Samuel Boivin, and Olivier Le Maitre, a novel technique is pre-
sented to allow the solving of Poisson partial differential equations using OpenCL.
The resolution of Poisson partial differential equations is often needed to solve
many techniques in computer graphics, such as fluid dynamics or the merging
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and deformation of complex meshes. This article focuses on the presentation of
an algorithm that allows for the efficient implementation of a Poisson solver using
the GPU.

—Sebastien St-Laurent
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VII

2D Distance Field Generation
with the GPU

Philip Rideout

Distance fields have many applications in image processing, real-time rendering,
and path-finding algorithms. Loosely speaking, a distance field is a grayscale
bitmap in which each pixel’s intensity represents the distance to the nearest
contour line in a source image (see Figure 1.1). The source image often consists
of monochrome vector art or text. Distance fields can also be defined in higher
dimensions—in the 3D case, the value at each voxel represents distance to the
nearest surface. When extended to 3D, many more applications come into play,
including facilitation of ray casting and collision detection.

In this chapter we focus on the 2D case. The flat world is much less daunting
than 3D, and serves as a good starting point for learning about distance fields.
We will focus on the generation of distance fields rather than their application,
but will conclude with a brief overview of some rendering techniques that leverage
distance fields, including one that enables cheap, high-quality antialiasing.

Perhaps the most classic and commonly-used technique for generating distance
fields stems from Per-Erik Danielsson [Danielsson 80]. He describes a method by
which pairs of distances are “swept” through an image using a small grid of

Figure 1.1. Fleur-de-lis seed image (left) and its resulting distance field (right).

387
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weights (which he calls a skeleton). Danielsson’s method is ingenious and much
faster than a brute-force technique; however, his algorithm cannot be conveyed
succinctly, and is difficult to parallelize on present-day GPU architectures.

Some fascinating and efficient methods for 2D distance field generation on the
GPU have been proposed recently [Cao et al. 10] but many of these methods are
complex, requiring cunning tricks such as embedding doubly-linked lists within a
texture. Here, we give an overview of techniques that are GPU-amenable while
still being relatively easy to follow, starting with the simplest (and least accurate)
method, which we’re calling Manhattan grassfire. Although intuitive and easy to
implement with OpenGL, this algorithm does not produce accurate results.

After reviewing Manhattan grassfire, we’ll introduce a new, more accurate,
technique called horizontal-vertical erosion, which is also easy to implement using
OpenGL. Finally, we’ll cover an efficient algorithm proposed by Saito-Toriwaki
[Saito and Toriwaki 94]. The nature of their algorithm is amenable to the GPU
only when using a compute API rather than a graphics-oriented API. We’ll show
how we implemented their method using OpenCL.

1.1 Vocabulary

In the context of distance fields, the definition of distance (also known as the
metric) need not be “distance” in the physical sense that we’re all accustomed to.

• Euclidean metric. This is the classic definition of distance and corresponds
to the physical world.

• Manhattan metric. The sum of the axis-aligned horizontal and vertical
distances between two points. As Pythagoras taught us, city block distance
is not equivalent to Euclidean distance. However, it tends to be much easier
to compute.

• Chessboard metric. Rather than summing the horizontal and vertical dis-
tances, take their maximum. This is the minimum number of moves a king
needs when traveling between two points on a chessboard. Much like the
Manhattan metric, chessboard distance tends to be easier to compute than
true Euclidean distance.

• Squared Euclidean metric. This is a distance field where each value is
squared distance rather than true distance. This is good enough for many
applications, and easier to compute. It also serves as a convenient interme-
diary step when computing true Euclidean distance.

• Seed image. Ordinarily this isn’t thought of as a distance metric; it’s a
binary classification consisting of object pixels and background pixels. In this
article, object pixels are depicted in black and background pixels are white.
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Figure 1.2. Seed image (left), Manhattan distance (middle), Euclidean distance (right).

See Figure 1.2 for an example of a seed image and a comparison of Manhattan
and Euclidean metrics.

It also helps to classify the generation algorithms that are amenable to the
GPU:

• Grassfire. These types of algorithms incrementally flood the boundaries of
the vector art outward, increasing the distance values along the way. Once a
pixel has been set, it never changes. The algorithm’s termination condition
is that all background pixels have been set.

• Erosion. Much like grassfire methods, erosion algorithms iteratively manip-
ulate the entire image. Unlike grassfire, pixel values are constantly read-
justing until an equilibrium state has been reached.

• Scanning. Instead of generating a succession of new images, scanning meth-
ods “sweep” through the seed image, propagating values horizontally or
vertically. Scanning techniques are less amenable to OpenGL, but are often
parallelizable using OpenCL or CUDA.

• Voronoi. Distance fields are closely related to Voronoi maps, which are
classically generated on the GPU by drawing z-aligned cones into the depth
buffer. Alternatively, cone tessellation can be avoided by splatting soft
particles with a blending equation of min(source, dest). Voronoi-based
techniques tend to be raster-heavy, and are more amenable to source images
that contain clouds of discrete points (much like Figure 1.2) rather than
source images that have continuous outlines (like the Fleur-de-Lis shape).
Jump flooding is an interesting Voronoi-based technique presented in [Rong
and Tan 06].

Grassfire and erosion techniques are typically implemented with a graphics
API using an image-processing technique called ping-ponging. The fragment
shader cannot read values back from the render target, so two image surfaces are
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created: surface A and surface B. On even-numbered passes, surface A is used
as a source texture and surface B is used as the render target. On odd-numbered
passes, surface B is the source texture and surface A is the render target.

1.2 Manhattan Grassfire

The following diagram illustrates a well-known method for computing the Man-
hattan metric using a 4 bits-per-pixel surface. The left-most image is the seed
image, and the right-most image contains the final distance field. Blue cells repre-
sent background pixels and contain a value of 0xF. Note that the last two images
are identical; the last pass is intentionally redundant to allow an occlusion query
to signal termination (more on this later).
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The fragment shader (for OpenGL 3.0 and above) used in each rendering pass
is shown in Listing 1.1. This shader assumes that the render target and source
texture have formats that are single-component, 8-bit unsigned integers.

out u int FragColor ;
uniform usampler2D Sampler ;

void main ( )
{

i v e c2 coord = ivec2 ( gl FragCoord . xy ) ;

u int c o l o r = texe lFetch ( Sampler , coord , 0 ) . r ;
i f ( c o l o r != 255u)

d i s ca rd ;

u int n = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 (0 , −1)) . r ;
u int s = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 (0 ,+1) ) . r ;
u int e = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 (+1 ,0 ) ) . r ;
u int w = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 ( −1 ,0)) . r ;

FragColor = min (n , min ( s , min ( e ,w) ) ) ;
i f ( FragColor < 254u)

FragColor++;
}

Listing 1.1. Grassfire fragment shader.



i
i

i
i

i
i

i
i

1. 2D Distance Field Generation with the GPU 391

To summarize the shader: if the current pixel is not a background pixel, it
can be skipped because it has already been filled. Otherwise, find the minimum
value from the neighboring pixels in the four cardinal directions (n, s, e, w). To
enhance this shader to compute a chessboard metric, simply add four new texture
lookups for the diagonal neighbors (ne, nw, se, sw).

The grassfire algorithm is easy to implement, but it’s not obvious how to
detect when a sufficient number of passes has been completed. In the worst case,
the number of passes is max(width, height). In practice, the number of passes
is much fewer.

The occlusion query capabilities in modern graphics hardware can help. In
Listing 1.1, we issue a discard statement for non-background pixels. You might
wonder why we didn’t do this instead:

i f ( c o l o r != 255u) {
FragColor = c o l o r ;
return ;

}

Using discard instead of return is crucial; it allows us to leverage an oc-
clusion query to terminate the image processing loop. If all pixels are discarded,
then no change occurs, and the algorithm is complete.

One consequence of using discard in this way is that some pixels in destina-
tion surface are left uninitialized. To fix this, we need to blit the entire source
texture before running the erosion shader. Luckily this is a fast operation on
modern GPUs. See Listing 1.2 for the complete image processing loop.

bool done = f a l s e ;
int pass = 0 ;
while ( ! done ) {

// Swap the source & d e s t i n a t i o n s u r f a c e s and bind them
Swap( Source , Dest ) ;
g lBindFramebuffer (GL FRAMEBUFFER, Dest . RenderTarget ) ;
glBindTexture (GL TEXTURE 2D, Source . TextureHandle ) ;

// Copy the e n t i r e source image to the t a r g e t
glUseProgram ( BlitProgram ) ;
glDrawArrays (GL TRIANGLE FAN, 0 , 4 ) ;

// Execute the g r a s s f i r e shader and measure the p i x e l count
glUseProgram ( Grass f i reProgram ) ;
glBeginQuery (GL SAMPLES PASSED, QueryObject ) ;
glDrawArrays (GL TRIANGLE FAN, 0 , 4 ) ;
glEndQuery (GL SAMPLES PASSED ) ;

// I f a l l p i x e l s were d iscarded , we ’ re done
GLuint count = 0 ;
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glGetQueryObjectuiv ( QueryObject ,GL QUERY RESULT,& count ) ;
done = ( count == 0) | | ( pass++ > MaxPassCount ) ;

}

Listing 1.2. C algorithm for Manhattan grassfire.

Note that Listing 1.2 also checks against the MaxPassCount constant for loop
termination. This protects against an infinite loop in case an error occurs in the
fragment shader or occlusion query.

1.3 Horizontal-Vertical Erosion

Although intuitive, the method presented in the previous section is only marginally
useful, because it computes distance according to a city block metric. In this sec-
tion, we present a new technique that generates distance according to a squared
Euclidean metric. The algorithm consists of two separate image-processing loops.
The first loop makes a succession of horizontal transformations and the second
loop makes a succession of vertical transformations. At each pass, an odd in-
teger offset is applied to the propagated distance values (β in Figures 1.3 and
1.4, which illustrate the process on a 4-bit surface). This is similar to a parallel
method proposed by [Lotufo and Zampirolli 01].
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Figure 1.3. Horizontal erosion.
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Figure 1.4. Vertical erosion.
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You might be wondering why this is erosion rather than grassfire, according
to our terminology. In Figure 1.4, notice that a 9 changes into an 8 during the
second pass. Since a nonbackground pixel changes its value, this is an erosion-
based method.

The fragment shader for the horizontal stage of processing is shown next.

out u int FragColor ;
uniform usampler2D Sampler ;
uniform uint Beta ;
uniform uint MaxDistance ;

void main ( )
{

i v e c2 coord = ivec2 ( gl FragCoord . xy ) ;

u int A = texe lFetch ( Sampler , coord , 0 ) . r ;
u int e = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 (+1 ,0 ) ) . r ;
u int w = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 ( −1 ,0)) . r ;
u int B = min ( min (A, e+Beta ) ,w+Beta ) ;

i f (A == B | | B > MaxDistance )
d i s ca rd ;

FragColor = B;
}

Listing 1.3. Erosion fragment shader.

Background pixels are initially set to “infinity,” (i.e., the largest possible value
allowed by the bit depth). Since the shader discards pixels greater than the
application-defined MaxDistance constant, it effectively clamps the distance val-
ues. We’ll discuss the implications of clamping later in this chapter.

To create the shader for the vertical pass, simply replace the two East-West
offsets (+1,0) and (-1,0) in Listing 1.3 with North-South offsets (0,+1) and (0,-1).

To give the erosion shaders some context, the C code is shown next.

GLuint program = HorizontalProgram ;
for ( int d = 1 ; d < MaxPassCount ; d++) {

// Swap the source & d e s t i n a t i o n s u r f a c e s and bind them
Swap( Source , Dest ) ;
g lBindFramebuffer (GL FRAMEBUFFER, Dest . RenderTarget ) ;
glBindTexture (GL TEXTURE 2D, Source . TextureHandle ) ;

// Copy the e n t i r e source image to the d e s t i n a t i o n s u r f a c e
glUseProgram ( BlitProgram ) ;
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glDrawArrays (GL TRIANGLE FAN, 0 , 4 ) ;

// Execute the e r o s i o n shader and measure the p i x e l count
glUseProgram ( program ) ;
g lUni form1ui ( Uniforms . Beta , 2∗d−1);
g lUni form1ui ( Uniforms . MaxDistance , 65535) ;
glBeginQuery (GL SAMPLES PASSED, QueryObject ) ;
glDrawArrays (GL TRIANGLE FAN, 0 , 4 ) ;
glEndQuery (GL SAMPLES PASSED ) ;

// I f a l l p i x e l s were d iscarded , we ’ re done with t h i s s tage
GLuint count = 0 ;
glGetQueryObjectuiv ( QueryObject ,GL QUERY RESULT,& count ) ;
i f ( count == 0) {

i f ( program == HorizontalProgram ) {
program = Vert icalProgram ;
d = 0 ;

} else {
break ;

}
}

}

Listing 1.4. C algorithm for horizontal-vertical erosion.

Applying odd-numbered offsets at each pass might seem less intuitive than
the Manhattan technique, but the mathematical explanation is simple. Recall
that the image contains squared distance, d2. At every iteration, the algorithm
fills in new distance values by adding an offset value β to the previous distance.
Expressing this in the form of an equation, we have

d2 = (d− 1)2 + β.

Solving for β is simple algebra:

β = 2 ∗ d− 1;

therefore, β iterates through the odd integers.

1.4 Saito-Toriwaki Scanning with OpenCL

Saito and Toriwaki developed another technique that consists of a horizontal stage
of processing followed by a vertical stage [Saito and Toriwaki 94]. Interestingly,
the horizontal stage of processing is not erosion-based and is actually O(n). Their
method is perhaps one of the best ways to generate squared Euclidean distance
on the CPU, because it’s fast and simple to implement. Their algorithm is also
fairly amenable to the GPU, but only when using a compute API such as OpenCL
rather than a purely graphics-oriented API.
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Several researchers have improved the worst-case efficiency of the Saito-Toriwaki
algorithm, but their methods often require additional data structures, such as a
stack, and their complexity makes them less amenable to the GPU. (For an ex-
cellent survey of techniques, see [Fabbri et al. 08].) We found the original Saito-
Toriwaki algorithm to be easy to implement and parallelize. At a high level, their
method can be summarized in two steps:

1. Find the one-dimensional distance field of each row. This can be performed
efficiently in two passes as follows:

• First, crawl rightward and increment a counter along the way, resetting
the counter every time you cross a contour line. Write the counter’s
value into the destination image along the way. After the entire row
is processed, the seed image can be discarded.

• Next, crawl leftward, similarly incrementing a counter along the way
and writing the values into the destination image. When encountering
an existing value in the destination image that’s less than the current
counter, reset the counter to that value.

In code, the operations performed on a single row can be expressed as
follows:

// Rightward Pass
d = 0 ;
for ( x = 0 ; x < Width ; x++) {

d = seed [ x ] ? 0 : d+1;
d e s t i n a t i o n [ x ] = d ;

}

// Leftward Pass
d = 0 ;
for ( x = Width−1; x >= 0 ; x−−) {

d = min (d+1, d e s t i n a t i o n [ x ] ) ;
d e s t i n a t i o n [ x ] = d ;

}

2. In each vertical column, find the minimum squared distance of each pixel,
using only the values computed in Step 1 as input. A brute-force way of
doing this would be as follows:

for ( y1 = 0 ; y1 < he ight ; y1++) {
minDist = INFINITY ;
for ( y2 = 0 ; y2 < he ight ; y2++) {

d = d e s t i n a t i o n [ y2 ] ;
d = ( y1 − y2 ) ∗ ( y1 − y2 ) + d∗d ;
minDist = min ( minDist , d ) ;

}
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d e s t i n a t i o n [ y1 ] = minDist ;
}

Note the expensive multiplications in the vertical pass. They can be optimized
in several ways:

• The d ∗ d operation can be pulled out and performed as a separate pass on
the entire image, potentially making better use of GPU parallelization.

• The d ∗ d operation can be eliminated completely by leveraging the β trick
that we described in our erosion-based method. In this way, the horizontal
pass would track squared distance from the very beginning.

• The (y1 − y2)2 operation can be replaced with a lookup table because
|y1− y2| is a member of a relatively small set of integers.

In practice, we found that these multiplications were not very damaging since
GPUs tend to be extremely fast at multiplication.

For us, the most fruitful optimization to the vertical pass was splitting it
into downward and upward passes. Saito and Toriwaki describe this in detail,
showing how it limits the range of the inner loop to a small region of interest.

Figure 1.5. Seed image, rightward, leftward, downward, upward (top to bottom).
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This optimization doesn’t help much in worst-case scenarios, but it provides a
substantial boost for most images. To see how to split up the vertical pass, see
the accompanying sample code. The step-by-step process of the Saito-Toriwaki
transformation is depicted in Figure 1.5.

In reviewing the OpenCL implementation of the Saito-Toriwaki algorithm,
we first present a naive but straightforward approach. We then optimize our
implementation by reducing the number of global memory accesses and changing
the topology of the OpenCL kernels.

1.4.1 OpenCL Setup Code

Before going over the kernel source, let’s first show how the CPU-side code sets
up the OpenCL work items and launches them. For the sake of brevity, we’ve
omitted much of the error-checking that would be expected in production code
(see Listing 1.5).

void RunKernels ( c l u c h a r ∗ inputImage , c l u s h o r t ∗ outputImage ,
c l p l a t f o r m i d plat formId , const char∗ source )

{
s i z e t horizWorkSize [ ] = {IMAGE HEIGHT} ;
s i z e t vertWorkSize [ ] = {IMAGE WIDTH} ;
c l c o n t e x t context ;
cl mem inBuf f e r , outBuf fer , s c r a t c h B u f f e r ;
c l program program ;
c l k e r n e l hor izKerne l , ve r tKerne l ;
cl command queue commandQueue ;
c l d e v i c e i d dev i c e Id ;

// Create the OpenCL context
c lGetDeviceIDs ( plat formId , CL DEVICE TYPE GPU, 1 ,

&device Id , 0 ) ;
context = clCreateContext (0 , 1 , &device Id , 0 , 0 , 0 ) ;

// Create memory o b j e c t s
i n B u f f e r = c lCr ea t eBu f f e r ( context ,

CL MEM READ ONLY | CL MEM COPY HOST PTR,
IMAGE WIDTH ∗ IMAGE HEIGHT, inputImage , 0 ) ;

outBuf f e r = c lC r ea t eBu f f e r ( context , CL MEM READ WRITE,
IMAGE WIDTH ∗ IMAGE HEIGHT ∗ 2 , 0 , 0 ) ;

// Load and compile the ke rne l source
program = clCreateProgramWithSource ( context , 1 ,

&source , 0 , 0 ) ;
clBuildProgram ( program , 0 , 0 , "-cl -fast -relaxed -math" , 0 , 0 ) ;

// Set up the ke rne l ob j e c t f o r the h o r i z o n t a l pass
hor i zKerne l = c lCreateKerne l ( program , "horizontal" , 0 ) ;
c lSetKerne lArg ( hor izKerne l , 0 , s izeof ( cl mem ) , &i n B u f f e r ) ;
c lSetKerne lArg ( hor izKerne l , 1 , s izeof ( cl mem ) , &outBuf f e r ) ;
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// Set up the ke rne l ob j e c t f o r the v e r t i c a l pass
ver tKerne l = c lCreateKerne l ( program , "vertical" , 0 ) ;
c lSetKerne lArg ( vertKerne l , 0 , s izeof ( cl mem ) , &outBuf f e r ) ;

// Execute the k e r n e l s and read back the r e s u l t s
commandQueue = clCreateCommandQueue ( context , dev ice Id , 0 , 0 ) ;
clEnqueueNDRangeKernel (commandQueue , hor izKerne l , 1 , 0 ,

horizWorkSize , 0 , 0 , 0 , 0 ) ;
clEnqueueNDRangeKernel (commandQueue , vertKerne l , 1 , 0 ,

vertWorkSize , 0 , 0 , 0 , 0 ) ;
clEnqueueReadBuffer (commandQueue , outBuf fer , CL TRUE, 0 ,

IMAGE WIDTH ∗ IMAGE HEIGHT ∗ 2 ,
outputImage , 0 , 0 , 0 ) ;

}

Listing 1.5. OpenCL Saito -Toriwaki algorithm.

Listing 1.5 uses OpenCL memory buffers rather than OpenCL image objects.
This makes the kernel code a bit easier to follow for someone coming from a CPU
background. Since we’re not leveraging the texture filtering capabilities of GPUs
anyway, this is probably fine in practice.

Also note that we’re using a seed image that consists of 8-bit unsigned integers,
but our target image is 16 bits. Since we’re generating squared distance, using
only 8 bits would result in very poor precision. If desired, a final pass could be
tacked on that takes the square root of each pixel and generates an 8-bit image
from that.

1.4.2 Distance Clamping

The finite bit depth of the target surface leads to an important detail in our
implementation of the Saito-Toriwaki algorithm: distance clamping. Rather than
blindly incrementing the internal distance counter as it marches horizontally, our
implementation keeps the distance clamped to a maximum value like this:

ushort nextDistance = min(254u , d i s t anc e ) + 1u

Even though the target is 16 bit, we clamp it to 255 during the horizontal
scan because it gets squared in a later step. Note that distance clamping results
in an interesting property:

If distances are clamped to a maximum value of x, then any two seed pixels
further apart than x have no effect on each other in the final distance field.

We’ll leverage this property later. For some applications, it’s perfectly fine
to clamp distances to a very small value. This can dramatically speed up the
generation algorithm, as we’ll see later.
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1.4.3 OpenCL Kernels: Näıve and Optimized Approaches

Listing 1.6 is the complete listing of the horizontal kernel used in our naive
implementation. For simplicity, this kernel operates on a fixed-width image. In
practice, you’ll want to pass in the width as an argument to the kernel.

ke rne l void h o r i z o n t a l ( g l o b a l const uchar∗ indata ,
g l o b a l ushort ∗ outdata )

{
const int y = g e t g l o b a l i d ( 0 ) ;
g l o b a l const uchar∗ source = indata + y ∗ IMAGE WIDTH;
g l o b a l ushort ∗ t a r g e t = outdata + y ∗ IMAGE WIDTH;
u int d ;

// Rightward pass
d = 0 ;
for ( int x = 0 ; x < IMAGE WIDTH; x++) {

ushort next = min(254u , d) + 1u ;
d = source [ x ] ? 0u : next ;
t a r g e t [ x ] = d ;

}

// Leftward pass
d = 0 ;
for ( int x = IMAGE WIDTH − 1 ; x >= 0 ; x−−) {

ushort next = min(254u , d) + 1u ;
d = min ( next , t a r g e t [ x ] ) ;
t a r g e t [ x ] = d ;

}

// Square the d i s t a n c e s
for ( int x = 0 ; x < IMAGE WIDTH; x++) {

t a r g e t [ x ] = t a r g e t [ x ] ∗ t a r g e t [ x ] ;
}

}

Listing 1.6. Näıve horizontal kernel.

The biggest issue with the code in Listing 1.6 is the numerous accesses to
shared memory. Specifically, the number of reads and writes to the target pointer
should be reduced. On present-day GPU architectures, each access to global
memory incurs a huge performance hit.

The obvious way to reduce these high-latency accesses is to change the kernel
so that it copies the entire row into local memory and performs all the necessary
processing locally. As a final step, the kernel copies the results back out to the
shared memory. This strategy would require enough local memory to accommo-
date an entire row in the image, which in our case exceeds the hardware cache
size.
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. . . . . .

Figure 1.6. OpenCL work item for the horizontal pass (blue), with two overlapping
neighbors (yellow).

To reduce the need for generous amounts of local storage, we can break up
each row into multiple sections, thus shrinking the size of each OpenCL work
item. Unfortunately, operating on a narrow section of the image can produce
incorrect results, since contour lines outside the section are ignored.

This is where we leverage the fact that far-apart pixels have no effect on each
other when clamping the distance field. The middle part of each work item will
produce correct results since it’s far away from neighboring work items. We’ll use
the term margin to label the incorrect regions of each work item. By overlapping
the work items and skipping writes for the values in the margin, the incorrect
regions of each work item are effectively ignored (see Figures 1.6 and 1.7). Note
that tighter distance clamping allows for smaller margin size, resulting in better
parallelization.

Figure 1.7. OpenCL topology for the horizontal and vertical kernels.

We now need to set up the work groups for the horizontal pass using a two-
dimensional arrangement (see Listing 1.7); changed lines are highlighted. The
SPAN constant refers to the length of each work item, not including the throw-
away margins.

void RunKernels ( c l u c h a r ∗ inputImage , c l u s h o r t ∗ outputImage ,
c l p l a t f o r m i d plat formId ,
const char∗ kerne lSource )

{
size_t horizWorkSize[] = {IMAGE_WIDTH / SPAN, IMAGE_HEIGHT};

s i z e t vertWorkSize [ ] = {IMAGE WIDTH} ;
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// func t i on body i s same as be f o r e −− s ee Listing 1.5

// Execute the k e r n e l s and read back the r e s u l t s
commandQueue = clCreateCommandQueue ( context , dev ice Id , 0 , 0 ) ;
clEnqueueNDRangeKernel(commandQueue, horizKernel, 2, 0,}

horizWorkSize, 0, 0, 0, 0);}

clEnqueueNDRangeKernel (commandQueue , vertKerne l , 1 , 0 ,
vertWorkSize , 0 , 0 , 0 , 0 ) ;

clEnqueueReadBuffer (commandQueue , outBuf fer , CL TRUE, 0 ,
IMAGE WIDTH ∗ IMAGE HEIGHT ∗ 2 ,
outputImage , 0 , 0 , 0 ) ;

}

Listing 1.7. Optimized Saito-Toriwaki algorithm.

Listing 1.8 is the listing for the new kernel code. Instead of looping between
0 and WIDTH, we now perform processing between Left and Right, which are
determined from the value returned by get global id(0). You’ll also notice the
InnerLeft and InnerRight constants; these mark the portion of the work item
that actually gets written out.

ke rne l void h o r i z o n t a l ( g l o b a l const uchar∗ indata ,
g l o b a l ushort ∗ outdata )

{
const int y = g e t g l o b a l i d ( 1 ) ;
g l o b a l const uchar∗ source = indata + y ∗ IMAGE WIDTH;
g l o b a l ushort ∗ t a r g e t = outdata + y ∗ IMAGE WIDTH;
uchar s c ra t ch [MARGIN + SPAN + MARGIN] ;
u int d ;

const int Inne rLe f t = SPAN ∗ g e t g l o b a l i d ( 0 ) ;
const int InnerRight = min (IMAGE WIDTH, Inne rLe f t + SPAN) ;
const int Le f t = max(0 , Inne rLe f t − MARGIN) ;
const int Right = min (IMAGE WIDTH, InnerRight + MARGIN) ;

// Rightward pass
d = 0 ;
for ( int x = Lef t ; x < Right ; x++) {

ushort next = min(254u , d) + 1u ;
d = source [ x ] ? 0u : next ;
s c ra t ch [ x − Le f t ] = d ;

}

// Leftward pass
d = 0 ;
for ( int x = Right − 1 ; x >= Lef t ; x−−) {

ushort next = min(254u , d) + 1u ;
d = min ( next , ( ushort ) s c ra t ch [ x − Le f t ] ) ;
s c r a t ch [ x − Le f t ] = d ;
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}

// Square the d i s t a n c e s and wr i t e them out to shared memory
for ( int x = Inne rLe f t ; x < InnerRight ; x++) {

t a r g e t [ x ] = sc ra t ch [ x − Le f t ] ∗ s c ra t ch [ x − Le f t ] ;
}

}

Listing 1.8. Optimized horizontal kernel.

The only remaining piece is the kernel for the vertical pass. Recall the code
snippet we presented earlier that described an O(n2) algorithm to find the min-
imum distances in a column. By splitting the algorithm into downward and
upward passes, Saito and Toriwaki show that the search area of the inner loop
can be narrowed to a small region of interest, thus greatly improving the best-
case efficiency. See this book’s companion source code for the full listing of the
vertical kernel.

Due to the high variability from one type of GPU to the next, we recommend
that readers experiment to find the optimal OpenCL kernel code and topology
for their particular hardware.

Readers may also want to experiment with the image’s data type (floats versus
integers). We chose integers for this article because squared distance in a grid
is, intuitively speaking, never fractional. However, keep in mind that GPUs are
floating-point monsters! Floats and half-floats may provide better results with
certain architectures. It suffices to say that the implementation presented in this
article is by no means the best approach in every circumstance.

1.5 Signed Distance with Two Color Channels

Regardless of which generation algorithm is used, or which distance metric is
employed, a choice exists of generating signed distance or unsigned distance. The

Figure 1.8. Signed distance in two color channels.
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former generates distances for object pixels in addition to background pixels. Ob-
ject pixels have negative distance while background pixels have positive distance.

It’s easy to extend any technique to account for signed distance by simply
inverting the seed image and applying the algorithm a second time. We found it
convenient to use an unsigned, integer-based texture format, and added a second
color channel to the image for the negative values. In Figure 1.8, we depict a
signed distance field where the red channel contains positive distance and the
green channel contains negative distance.

In the case of the horizontal-vertical erosion technique presented earlier, we
can modify the fragment shader to operate on two color channels simultaneously,
thus avoiding a second set of passes through the image for negative distance.
Listing 1.9 shows the new fragment shader.

out uvec2 FragColor ;
uniform usampler2D Sampler ;
uniform uint Beta ;

void main ( )
{

i v e c2 coord = ivec2 ( gl FragCoord . xy ) ;

uvec2 A = texe lFe tch ( Sampler , coord , 0 ) . rg ;
uvec2 e = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 (+1 ,0 ) ) . rg ;
uvec2 w = t e x e l F e t c h O f f s e t ( Sampler , coord , 0 , i v e c2 ( −1 ,0)) . rg ;
uvec2 B = min( min (A, e+Beta ) ,w+Beta ) ;

i f (A == B)
d i s ca rd ;

FragColor = B;
}

Listing 1.9. Erosion fragment shader for signed distance.

For most applications it’s desirable to make a final transformation that nor-
malizes the two-channel distance into a simple grayscale image. The final square-
root transformation can also be performed at this time. The following fragment
shader makes this final pass:

varying vec2 TexCoord ;
uniform sampler2D Sampler ;
uniform f loat Sca l e ;

void main ( )
{

vec2 D = s q r t ( texture2D ( Sampler , TexCoord ) . rg ) ;
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f loat L = 0.5 + Sca l e ∗ (D. r − D. g ) ;
g l FragCo lor = vec4 (L ) ;

}

If a distance field is normalized in this way, a value of 0.5 indicates the center
of a contour in the seed image.

1.6 Distance Field Applications

Several interesting uses of distance fields for 2D rendering have been popularized
by Chris Green of Valve software [Green 07], who builds on work by [Qin et al. 06].
Leveraging alpha testing (as opposed to alpha blending) in conjunction with dis-
tance fields enables high-quality magnification of vector art. This is useful on
low-end hardware that doesn’t support shaders, or when using a fixed-function
graphics API like OpenGL ES 1.1.

If shaders are supported, then high-quality anisotropic antialiasing can be
achieved using inexpensive bilinear filtering against a low-resolution distance field.
(This assumes that the shading language supports derivatives.) Additionally,
special effects are easily rendered, including outlines, drop shadows, and glow
effects. We’ll briefly cover some of these effects in the following sections, using
fragment shaders written for OpenGL 3.0.

1.6.1 Antialiasing

Both of the source textures in Figure 1.9 are only 128 × 32; it’s obvious that
rendering with the aid of a distance field can provide much better results.

Because the gradient vector at a certain pixel in the distance field gives the
direction of maximum change, it can be used as the basis for antialiasing. The
fwidth function in GLSL provides a convenient way to obtain the rate of change
of the input value at the current pixel. In our case, large values returned from
fwidth indicate a far-off camera, while small values indicate large magnification.

Recall that a lookup value of 0.5 represents the location of the contour line.
We compute the best alpha value for smoothing by testing how far the current
pixel is from the contour line. See Listing 1.10 for our antialiasing shader.

Figure 1.9. Bilinear filtering (left). Magnification using a distance field (right).
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in vec2 TexCoord ;
out vec4 FragColor ;
uniform sampler2D Sampler ;
void main ( )
{

f loat D = texture ( Sampler , TexCoord ) . x ;
f loat width = fwidth (D) ;
f loat A = 1.0 − smoothstep ( 0 . 5 − width , 0 . 5 + width , D) ;
FragColor = vec4 (0 , 0 , 0 , A) ;

}

Listing 1.10. Fragment shader for antialiasing with a distance field.

Figure 1.10. Outline effect

1.6.2 Outlining

Creating an outline effect such as the one depicted in Figure 1.10 is quite simple
when using a signed distance field for input. Note that there are two color
transitions that we now wish to antialias: the transition from the fill color to
the outline color, and the transition from the outline color to the background
color. The following fragment shader shows how to achieve this; the Thickness

uniform is the desired width of the outline.

in vec2 TexCoord ;
out vec4 FragColor ;
uniform sampler2D Sampler ;
uniform f loat Thickness ;

void main ( )
{

f loat D = texture ( Sampler , TexCoord ) . x ;
f loat W = fwidth (D) ;
f loat T0 = 0.5 − Thickness ;
f loat T1 = 0.5 + Thickness ;
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i f (D < T0) {
f loat A = 1.0 − smoothstep (T0−W, T0 , D) ;
FragColor = vec4 (A, A, A, 1 ) ;

} else i f (D < T1) {
FragColor = vec4 (0 , 0 , 0 , 1 ) ;

} else {
f loat A = 1.0 − smoothstep (T1 , T1+W, D) ;
FragColor = vec4 (0 , 0 , 0 , A) ;

}
}

1.6.3 Psychedelic Effect

We conclude the chapter with a fun (but less practical) two-dimensional effect
(see Figure 1.11). This effect is simple to achieve by mapping distance to hue,
and performing HSV-to-RGB conversion in the fragment shader. Animating an
offset value (the Animation uniform) creates a trippy 70’s effect.

in vec2 TexCoord ;
out vec4 FragColor ;
uniform sampler2D Sampler ;
uniform f loat Animation ;

void main ( )
{

f loat D = texture ( Sampler , TexCoord ) . x ;
f loat W = fwidth (D) ;
f loat H = 2.0 ∗ f loat (D − 0 . 5 ) ;
f loat A = smoothstep ( 0 . 5 − W, 0 .5 + W, D) ;
hue = f r a c t (H + Animation ) ;
FragColor = vec4 (A ∗ HsvToRgb(H, 1 . 0 , 1 . 0 ) , 1 . 0 ) ;

}

Figure 1.11. Psychedelic effect
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VII

Order-Independent Transparency
using Per-Pixel Linked Lists

Nicolas Thibieroz

2.1 Introduction

Order-independent transparency (OIT) has been an active area of research in
real-time computer graphics for a number of years. The main area of research
has focused on how to effect fast and efficient back-to-front sorting and render-
ing of translucent fragments to ensure visual correctness when order-dependent
blending modes are employed. The complexity of the task is such that many real-
time applications have chosen to forfeit this step altogether in favor of simpler and
faster alternative methods such as sorting per object or per triangle, or simply
falling back to order-independent blending modes (e.g., additive blending) that
don’t require any sorting [Thibieroz 08]. Different OIT techniques have previously
been described (e.g., [Everitt 01], [Myers 07]) and although those techniques suc-
ceed in achieving correct ordering of translucent fragments, they usually come
with performance, complexity, or compatibility shortcomings that make their use
difficult for real-time gaming scenarios.

This chapter presents an OIT implementation relying on the new features
of the DirectX 11 API from Microsoft.1 An overview of the algorithm will be
presented first, after which each phase of the method will be explained in detail.
Sorting, blending, multisampling, anti-aliasing support, and optimizations will
be treated in separate sections before concluding with remarks concerning the
attractiveness and future of the technique.

2.2 Algorithm Overview

The OIT algorithm presented in this chapter shares some similarities with the
A-buffer algorithm [Carpenter 84], whereby translucent fragments are stored in

1“Microsoft DirectX” is a registered trademark.
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buffers for later rendering. Our method uses linked lists [Yang 10] to store a list
of translucent fragments for each pixel. Therefore, every screen coordinate in the
render viewport will contain an entry to a unique per-pixel linked list containing
all translucent fragments at that particular location.

Prior to rendering translucent geometry, all opaque and transparent (alpha-
tested) models are rendered onto the render target viewport as desired. Then the
OIT algorithm can be invoked to render corrected-ordered translucent fragments.

The algorithm relies on a two-step process.

1. The first step is the creation of per-pixel linked lists whereby the translucent
contribution to the scene is entirely captured into a pair of buffers containing
the head pointers and linked lists nodes for all translucent pixels.

2. The second step is the traversal of per-pixel linked lists to fetch, sort, blend
and finally render all pixels in the correct order onto the destination render
viewport.

2.3 DirectX 11 Features Requisites

DirectX 11 has introduced new features that finally make it possible to create
and parse concurrent linked lists on the GPU.

2.3.1 Unordered Access Views

Unordered access view (UAV) is a special type of resource view that can be bound
as output to a pixel or compute shader to allow the programmer to write data at
arbitrary locations. The algorithm uses a pair of UAVs to store per-pixel linked
lists nodes and head pointers.

2.3.2 Atomic Operations

The creation of per-pixel linked lists also requires a way to avoid any contention
when multiple pixel shader invocations perform memory operations into a buffer.
Indeed such read/modify/write operations must be guaranteed to occur atom-
ically for the algorithm to work as intended. DirectX 11 supports a set of
Interlocked*() Shader Model 5.0 instructions that fulfill this purpose. Such
atomic operation will be used to keep track of the head pointer address when
creating the per-pixel linked lists.

2.3.3 Hardware Counter Support on UAV

A less well-known feature of DirectX 11 allows the creation of a built-in hardware
counter on buffer UAVs. This counter is declared by specifying the
D3D11 BUFFER UAV FLAG COUNTER flag when generating a UAV for the intended
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buffer. The programmer is given control of the counter via the following two
Shader Model 5.0 methods:

uint <Buffer >. IncrementCounter ( ) ;
u int <Buffer >.DecrementCounter ( ) ;

Hardware counter support is used to keep track of the offset at which to store
the next linked list node.

While hardware counter support is not strictly required for the algorithm to
work, it enables considerable performance improvement compared to manually
keeping track of a counter via a single-element buffer UAV.

2.3.4 Early Depth/Stencil Rejection

Graphics APIs like OpenGL and Direct3D specify that the depth/stencil test
be executed after the pixel shader stage in the graphics pipeline. A problem
arises when the pixel shader outputs to UAVs because UAVs may be written
into the shader even though the subsequent depth/stencil test actually discards
the pixel, which may not be the intended behavior of the algorithm. Shader
Model 5.0 allows the [earlydepthstencil] keyword to be declared in front of
a pixel shader function to indicate that the depth/stencil test is to be explicitly
performed before the pixel shader stage, allowing UAV writes to be carried out
only if the depth/ stencil test succeeds first. This functionality is important for
the algorithm presented in this chapter, since only visible translucent fragments
need storing into the per-pixel linked lists.

2.3.5 SV COVERAGE Pixel Shader Input

DirectX 11 allows SV COVERAGE to be declared as an input to the pixel shader
stage. SV COVERAGE contains a bit mask of all samples that are covered by the
current primitive. This information is used by this OIT technique when multi-
sampling antialiasing (MSAA) is enabled.

2.3.6 Per-sample Pixel Shader Execution

DirectX 11 allows the pixel shader stage to execute per sample (as opposed to
per pixel) when MSAA is enabled. This functionality will be exploited to allow
MSAA support with our OIT technique.

2.4 Head Pointer and Nodes Buffers

The algorithm builds a reverse linked list for each pixel location in the target
viewport. The linked list head pointer is the address of the first element in the
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linked list. The linked list nodes are the individual elements of the linked list
that contain fragment data as well as the address of the next node.

2.4.1 Head Pointer Buffer

The algorithm allocates a screen-sized buffer of type DXGI FORMAT R32 UINT that
contains the address of the head pointer for every 2D coordinate on the screen.

Despite the resource having the same dimensions as the render viewport,
the declaration must employ the buffer type because atomic operations are not
supported on Texture2D resources. Therefore an extra step will be required in
the shader wherein a 2D screen-coordinate location is converted to a byte-linear
address:

uint uLinearAddressInBytes = 4 ∗ ( ScreenPos . y∗RENDERWIDTH +
ScreenPos . x ) ;

The head pointer buffer is initialized to a “magic” value of 0xFFFFFFFF, in-
dicating that the linked list is empty to start with. In effect, an address of
0xFFFFFFFF indicates that no more nodes are available (i.e., the end of the list
has been reached).

The term reverse linked list is used because the head pointer is dynamically
updated at construction time to receive the address of the latest linked list node
written out at each pixel location. Once construction is complete, the head
pointer value effectively contains the address of the last node written out, with
this last node sequentially pointing to the nodes previously stored for the same
pixel location.

2.4.2 Nodes Buffer

The nodes buffer stores the nodes of all per-pixel linked lists. We cannot allocate
individual nodes buffers for every linked list since the render viewport dimensions
guarantee that a huge number of them will be required (one for each pixel in
the render viewport). Therefore the nodes buffer must be allocated with enough
memory to accommodate all possible translucent fragments in the scene. It is the
responsibility of the programmer to define this upper limit. A good heuristic to
use is to base the allocation size on the render viewport dimensions multiplied by
the average translucent overdraw expected. Certainly the size of the nodes buffer
is likely to be very large, and may place an unreasonable burden on the video
memory requirements of the OIT technique. Section 2.9 introduces a significant
optimization to dramatically reduce the memory requirements of this algorithm.

The UAV for the nodes buffer is created with a built-in hardware counter
initialized to zero as a way to keep track of how many fragments have been
stored in the buffer.
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2.4.3 Fragment Data

Each linked list node stores fragment data as well as the address of the next
node. The address of the next node is stored as a uint while the type and size
of the fragment data depends on the needs of the application. Typically the
fragment structure includes fragment depth and color but other variables may be
stored as needed (e.g., normal, blending mode id, etc.). Fragment depth is an
essential component of the fragment structure since it will be required at linked
list traversal time to correctly sort fragments prior to rendering.

It is important to point out that any additional structure member will increase
the total size of the nodes buffer and therefore the total memory requirement of
the OIT solution. It is therefore desirable to economize the size of the fragment
structure. The implementation presented in this chapter packs the fragment color
into a single uint type and uses the following node data structure for a total of
12 bytes per fragment:

struct NodeData STRUCT
{

uint uColor ; // Fragment c o l o r packed as RGBA
uint uDepth ; // Fragment depth
u int uNext ; // Address o f next l i nked l i s t node

} ;

2.5 Per-Pixel Linked List Creation

The algorithm presented does not use DirectCompute; instead, the storing of
translucent fragments into linked lists is done via a pixel shader writing to the
head pointer and nodes buffers UAVs. Earlier shader stages in the pipeline are
enabled (vertex shader, but also hull shader, domain shader and geometry shader
if needed) in order to turn incoming triangles into fragments that can be stored
into per-pixel linked lists.

No color render target is bound at this stage although a depth buffer is still
required to ensure that only translucent fragments that pass the depth/stencil
test are stored in the per-pixel linked lists. Binding a depth buffer avoids the
need to store translucent fragments that would result in being completely hidden
by previously-rendered opaque or alpha-tested geometry.

2.5.1 Algorithm Description

A description of the algorithm used to build per-pixel linked lists follows.

• For each frame

– Clear head pointer buffer to 0xFFFFFFFF (−1). This indicates that
the per-pixel linked lists are all empty to start with.
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– For (each translucent fragment)

∗ Compute and store fragment color and depth into node structure.
Calculate the fragment color as normal using lighting, texturing
etc. and store it in node data structure. Pixel depth can be
directly obtained from the z member of the SV POSITION input.

∗ Retrieve current counter value of nodes buffer and increment
counter. The current counter value tells us how many nodes have
been written into the nodes buffer. We will use this value as the
offset at which to store the new node entry.

∗ Atomically exchange head pointer for this screen location with
counter value. The previous head pointer for the current screen
coordinates is retrieved and set as the “next” member of the node
structure. The node structure being prepared therefore points to
the previous node that was written out at this pixel location. The
new head pointer receives the current value of the counter as it
will represent the latest node written out.

∗ Store node structure into node buffer at offset specified by counter
value. The node structure containing fragment data and next node
pointer is written out to the nodes buffer at the offset specified by
the current counter value. This is the latest node to be written
out to the nodes buffer for these pixel coordinates; this is why the
counter offset was also set as the new head pointer in the previous
step.

Figure 2.1 illustrates the contents of the head pointer and nodes buffers after
three translucent triangles go through the per-pixel linked list creation step.

The single pixel occupied by the orange triangle stores the current nodes
buffer counter value (0) into location [1, 1] in the Head Pointer Buffer and sets
the previous Head Pointer value (−1) as the “next” node pointer in the node
structure before writing it to the nodes buffer at offset 0.

The two pixels occupied by the green triangle are processed sequentially; they
store the current nodes buffer counter values (1 and 2) into locations [3, 4] and
[4, 4] in the head pointer buffer and set the previous head pointer values (−1 and
−1) as the “next” node pointers in the two node structures before writing them
to the nodes buffer at offset 1 and 2.

The left-most pixel of the yellow triangle is due to be rendered at the same
location as the orange fragment already stored. The current counter value (3)
replaces the previous value (0) in the head pointer buffer at location [1, 1] and
the previous value is now set as the “next” node pointer in the fragment node
before writing it to offset 3 in the nodes buffer.

The second pixel of the yellow triangle stores the current counter value (4)
into location [2, 1] and sets the previous value (−1) as the “next” node pointer
before writing the node to the nodes buffer at offset 4.
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Figure 2.1. Head pointer and nodes buffers contents after rendering five translucent
pixels (3 triangles) for a 6× 6 render target viewport.

2.5.2 Pixel Shader Code

The pixel shader code for creating per-pixel linked lists can be found in Listing 2.1.

// P ixe l shader input s t r u c t u r e
struct PS INPUT
{

f l o a t 3 vNormal : NORMAL; // P ixe l normal
f l o a t 2 vTex : TEXCOORD; // Texture coo rd ina t e s
f l o a t 4 vPos : SV POSITION ; // Screen coo rd ina t e s

} ;

// Node data s t r u c t u r e
struct NodeData STRUCT
{

uint uColor ; // Fragment c o l o r packed as RGBA
uint uDepth ; // Fragment depth
u int uNext ; // Address o f next l i nked l i s t node

} ;

// UAV d e c l a r a t i o n s
RWByteAddressBuffer HeadPointerBuf fer : register ( u1 ) ;
RWStructuredBuffer<NodeData STRUCT> NodesBuffer : register ( u2 ) ;

// P ixe l shader f o r wr i t i ng per−p i x e l l i nked l i s t s
[ e a r l y d e p t h s t e n c i l ]
f loat PS StoreFragments (PS INPUT input ) : SV Target
{

NodeData STRUCT Node ;
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// Ca lcu la te fragment c o l o r from p i x e l input data
Node . uColor = PackFloat4IntoUint ( ComputeFragmentColor ( input ) ) ;

// Store p i x e l depth in packed format
Node . uDepth = PackDepthIntoUint ( input . vPos . z ) ;

// Ret r i eve cur rent p i x e l count and i n c r e a s e counter
u int uPixelCount = NodesBuffer . IncrementCounter ( ) ;

// Convert p i x e l 2D coo rd ina t e s to byte l i n e a r address
u int2 vScreenPos = uint ( input . vPos . xy ) ;
u int uLinearAddressInBytes = 4 ∗ ( vScreenPos . y∗RENDERWIDTH +

vScreenPos . x ) ;

// Exchange o f f s e t s in Head Pointer b u f f e r
// Node . uNext w i l l r e c e i v e the prev ious head po in t e r
HeadPointerBuf fer . Inter lockedExchange (

uLinearAddressInBytes , uPixelCount , Node . uNext ) ;

// Add new fragment entry in Nodes Buf f e r
NodesBuffer [ uPixelCount ] = Node ;

// No RT bound so t h i s w i l l have no e f f e c t
return f l o a t 4 ( 0 , 0 , 0 , 0 ) ;

}

Listing 2.1. Pixel shader for creating per-pixel linked lists.

2.6 Per-Pixel Linked Lists Traversal

Once the head pointer and nodes buffers have been filled with data, the second
phase of the algorithm can proceed: traversing the per-pixel linked lists and
rendering translucent pixels in the correct order.

The traversal code needs to be executed once per pixel; we therefore render a
fullscreen quad (or triangle) covering the render viewport with a pixel shader that
will parse all stored fragments for every pixel location. Each fragment from the
corresponding per-pixel linked list will be fetched and then sorted with other frag-
ments before a manual back-to-front blending operation will take place, starting
with the color from the current render target.

2.6.1 Pixel Shader Inputs and Outputs

The head pointer and nodes buffers are now bound as pixel shader inputs, since
the traversal step will exclusively be reading from them. We will also need a copy
of the render target onto which opaque and alpha-tested geometry have previously



i
i

i
i

i
i

i
i

2. Order-Independent Transparency using Per-Pixel Linked Lists 417

been rendered. This copy is needed to start the manual blending operation in
the pixel shader.

The current render target viewport (onto which opaque and alpha-tested ge-
ometry has previously been rendered) is set as output, and the depth buffer that
was used to render previous geometry is bound with Z-Writes disabled (the use of
the depth buffer for the traversal step is explained in the Optimizations section).

2.6.2 Algorithm Description

A description of the algorithm used to parse per-pixel linked lists and render from
them follows.

• For (each frame)

– Copy current render target contents into a background texture. This
copy is required to perform the manual blending process.

– For (each pixel)

∗ Fetch head pointer for corresponding pixel coordinates and set it as
current node pointer. The screen coordinates of the current pixel
are converted to a linear address used to fetch the head pointer
from the head pointer buffer. The head pointer is therefore the
first node address pointing to the list of all translucent fragments
occupying this pixel location.

∗ While (end of linked list not reached)

· Fetch current fragment from nodes buffer using current node
pointer. The current node pointer indicates where the next
fragment is stored in the nodes buffer for the current pixel
location.

· Sort fragment with previously collected fragments in front-to-
back order. The current fragment is inserted into the last
position of a temporary array. The fragment is then sorted
on-the-fly with previous fragments stored in the array.

· Set current node pointer to “next” node pointer from current
node. The current fragment has been processed; we therefore
proceed to the next fragment in the list by setting the cur-
rent node pointer to the “next” pointer of the current node.
Fragment parsing will stop once the “next” pointer equals
0xFFFFFFFF, as this value indicates the end of the list.

∗ The background color is fetched from the background texture and
set as the current color. Back-to-front blending requires the fur-
thermost color value to be processed first, hence the need to obtain
the current value of the render target to start the blending process.
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∗ For (each fragment fetched from sorted list in reverse order)

· Perform manual back-to-front blending of current color with
fragment color. The latest entry in the front-to-back sorted
array is fetched, unpacked from a uint to a float4, and blended
manually with the current color.

∗ The final blended color is returned from the pixel shader. This
color is the correctly-ordered translucent contribution for this pixel.

2.6.3 Sorting Fragments

The algorithm used to sort fragments for correct ordering can be arbitrary because
it typically has no dependencies with the OIT algorithm described in this chapter.

The implementation presented here declares a temporary array of uint2 for-
mat containing fragment color and depth. At parsing time each fragment ex-
tracted from the per-pixel linked list is directly stored as the last entry in the
array, and sorted with previous array elements using a standard insertion-sort
algorithm. This approach requires an array of a fixed size, which unfortunately
limits the maximum number of fragments that can be processed with this tech-
nique. The alternative option of parsing and sorting the linked list “in place”
resulted in much lower performance due to repeated accesses to memory, and
was also subject to limitations of the DirectX Shader Compiler regarding loop
terminating conditions being dependent on the result of a UAV fetch. For those
reasons, sorting via a temporary array was chosen. In general the smaller the ar-
ray the better the performance since temporary arrays consume precious general
purpose registers (GPRs) that affect the performance of the shader. The pro-
grammer should therefore declare the array size as an estimate of the maximum
translucent overdraw that can be expected in the scene.

2.6.4 Blending Fragments

The blending process takes place once all fragments for the current pixel coordi-
nates have been parsed and sorted in the temporary array. The blending oper-
ation used in this implementation uses the same SRCALPHA-INVSRCALPHA blend
mode for all translucent fragments. The blending process starts with the back-
ground color and then iteratively blends the current color with each fragment
color in a back-to-front order. Because the blending is performed “manually” in
the pixel shader, actual hardware color/alpha blending is disabled.

A different approach that would avoid the need for copying the render target
contents to a texture prior to rendering translucent fragments would be to use
underblending [Bavoil 08]. Underblending allows fragments to be blended in a
front-to-back order, hence avoiding the need to access the background color as
a texture (the background color will be blended with the result of the manually
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underblended result via actual hardware blending). However, this method im-
poses restrictions on the variety of per-fragment blend modes that can be used,
and did not noticeably affect performance.

It is quite straightforward to modify the algorithm so that per-fragment blend
modes are specified instead of adopting a blend mode common to all fragments.
This modification allows translucent geometry of different types (particles, win-
dows, smoke etc.) to be stored and processed together. In this case a bit field
containing the blend mode id of each fragment is stored in the node structure
(along with pixel color and depth) in the per-pixel linked list creation step. Only
a few bits are required (this depends on how many different blend modes are
specified— typically this shouldn’t be more than a handful) and therefore the bit
field could be appended to the existing color or depth member of the node struc-
ture by modifying the packing function accordingly. When the per-pixel linked
lists are parsed for rendering, the blending part of the algorithm is modified so
that a different code path (ideally based on pure arithmetic instructions to avoid
the need for actual code divergence) is executed based on the fragment’s blend
mode id.

2.6.5 Pixel Shader Code

The pixel shader code for linked list traversal and rendering is given in in List-
ing 2.2.

// P ixe l shader input s t r u c t u r e f o r f u l l s c r e e n quad render ing
struct PS SIMPLE INPUT
{

f l o a t 2 vTex : TEXCOORD; // Texture coo rd ina t e s
f l o a t 4 vPos : SV POSITION ; // Screen coo rd ina t e s

} ;

// Fragment s o r t i n g array
#define MAX SORTED FRAGMENTS 18
stat ic uint2 SortedFragments [MAX SORTED FRAGMENTS+1] ;

// SRV d e c l a r a t i o n s
Buffer<uint> HeadPointerBufferSRV : register ( t0 ) ;
St ructuredBuf f e r<NodeData STRUCT> NodesBufferSRV : register ( t1 ) ;
Texture2D BackgroundTexture : register ( t3 ) ;

// P ixe l shader f o r par s ing per−p i x e l l i nked l i s t s
f l o a t 4 PS RenderFragments ( PS SIMPLE INPUT input ) : SV Target
{

// Convert p i x e l 2D coo rd ina t e s to l i n e a r address
u int2 vScreenPos = uint ( input . vPos . xy ) ;
u int uLinearAddress = vScreenPos . y∗RENDERWIDTH + vScreenPos . x ;
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// Fetch o f f s e t o f f i r s t fragment f o r cur rent p i x e l
u int uOf f s e t = HeadPointerBufferSRV [ uLinearAddress ] ;

// Loop through each node s to r ed f o r t h i s p i x e l l o c a t i o n
int nNumFragments = 0 ;
while ( uOf f s e t != 0xFFFFFFFF)
{

// Ret r i eve fragment at cur rent o f f s e t
NodeData STRUCT Node = NodesBufferSRV [ uOf f s e t ] ;

// Copy fragment c o l o r and depth in to s o r t i n g array
SortedFragments [ nNumFragments ] =
uint2 (Node . uColor , Node . uDepth ) ;

// Sort fragments f r o n t to back us ing i n s e r t i o n s o r t i n g
int j = nNumFragments ;
[ loop ] while ( ( j>0) &&

( SortedFragments [ max( j −1, 0 ) ] . y >
SortedFragments [ j ] . y ) )

{

// Swap requ i r ed
int jminusone = max( j −1, 0 ) ;
u int2 Tmp = SortedFragments [ j ] ;
SortedFragments [ j ] = SortedFragments [ jminusone ] ;
SortedFragments [ jminusone ] = Tmp;
j−−;

}

// I n c r e a s e number o f fragment i f under the l i m i t
nNumFragments = min (nNumFragments+1,
MAX SORTED FRAGMENTS) ;

// Ret r i eve next o f f s e t
uOf f s e t = Element . uNext ;

}

// Ret r i eve cur rent c o l o r from background c o l o r
f l o a t 4 vCurrentColor =
BackgroundTexture . Load ( in t3 ( input . vPos . xy , 0 ) ) ;

// Render so r t ed fragments us ing SRCALPHA−INVSRCALPHA
// blend ing
for ( int k=nNumFragments−1; k>=0; k−−)
{

f l o a t 4 vColor = UnpackUintIntoFloat4
( SortedFragments [ k ] . x ) ;
vCurrentColor . xyz = l e r p ( vCurrentColor . xyz , vColor . xyz ,

vColor .w) ;
}
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// Return manually−blended c o l o r
return vCurrentColor ;

}

Listing 2.2. Pixel shader for parsing per-pixel linked lists.

2.7 Multisampling Antialiasing Support

Multisampling antialiasing (MSAA) is supported by the OIT algorithm presented
in this chapter via a couple of minor modifications to the technique. MSAA works
by performing the depth test at multiple pixel sample locations and outputting
the result of the pixel shader stage (evaluated at centroid location) to all samples
that passed the depth test.

2.7.1 Per-pixel Linked Lists Creation

Directly storing translucent samples into per-pixel linked lists would rapidly be-
come prohibitive from both a memory and performance perspective due to the
sheer amount of samples to store. Instead the algorithm adapted to MSAA can
simply store fragment data into per-pixel linked nodes as usual, but including
sample coverage data in the node structure.

Sample coverage is an input provided by the pixel shader stage that specifies
whether samples are covered by the input primitive. Sample coverage is a bit field
containing as many useful bits as the number of samples, and is passed down to
the pixel shader stage via the DirectX 11-specific SV COVERAGE input (Figure 2.2
illustrates the concept of sample coverage on a single pixel.):

// P ixe l shader input s t r u c t u r e
struct PS INPUT
{

f l o a t 3 vNormal : NORMAL; // P ixe l normal
f l o a t 2 vTex : TEXCOORD; // Texture coo rd ina t e s
f l o a t 4 vPos : SV POSITION ; // Screen coo rd ina t e s
u int uCoverage : SV COVERAGE; // P ixe l coverage

} ;

Only a few bits are required for sample coverage; we therefore pack it onto
the depth member of the node structure using a 24:8 bit arrangement (24 bits
for depth, 8 bits for sample coverage). This avoids the need for extra stor-
age and leaves enough precision for encoding depth. The node structure thus
becomes:
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Figure 2.2. Sample coverage example on a single pixel. The blue triangle covers the
third sample in a standard MSAA 4x arrangement. The input coverage to the pixel
shader will therefore be equal to 0x04 (0100 in binary).

struct NodeData STRUCT
{

uint uColor ; // Fragment c o l o r packed as RGBA
uint uDepthAndCoverage ; // Fragment depth and coverage
u int uNext ; // Address o f next l i nked l i s t node

} ;

The pixel shader to create per-pixel linked lists is modified so that depth and
coverage are now packed together and stored in the node structure:

// Store p i x e l depth and coverage in packed format
Node . uDepthAndCoverage = PackDepthAndCoverageIntoUint (

input . vPos . z , input . uCoverage ) ;

2.7.2 Per-pixel Linked Lists Traversal

The traversal of per-pixel linked lists needs to occur at sample frequency when
outputting into a multisampled render target. This is because fragments stored
in the per-pixel linked lists may affect only some samples at a given pixel location.
Therefore both fragment sorting and blending must be performed per sample to
ensure that translucent geometry gets correctly antialiased.

As in the non-multisampled case, a fullscreen quad is rendered to ensure that
every pixel location in the destination render target is covered; one notable differ-
ence is that the pixel shader input for this pass now declares the SV SAMPLEINDEX

system value in order to force the pixel shader to execute at sample frequency.
This value specifies the index of the sample at which the pixel shader currently
executes.
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When parsing per-pixel linked lists for rendering, the sample coverage in the
current node is compared with the index of the sample being shaded: if the
index is included in the sample coverage, then this pixel node contributes to the
current sample and is therefore copied to the temporary array for sorting and
later blending.

One further modification to the blending portion of the code is that the back-
ground texture representing the scene data prior to any translucent contribution
is multisampled, thus the declaration and the fetch instruction are modified ac-
cordingly.

After the fullscreen quad is rendered, the multisampled render target will
contain the sample-accurate translucent contribution to the scene.

2.7.3 Pixel Shader Code

The pixel shader code for parsing and rendering from per-pixel linked lists with
MSAA enabled can be found in Listing 2.3. Code specific to MSAA is highlighted.
Note that the shader can easily cater to both MSAA and non-MSAA cases by
the use of a few well-placed #define statements.

// P ixe l shader input s t r u c t u r e f o r f u l l s c r e e n quad render ing
// with MSAA enabled
struct PS SIMPLE INPUT
{

f l o a t 2 vTex : TEXCOORD; // Texture coo rd ina t e s
f l o a t 4 vPos : SV POSITION ; // Screen coo rd ina t e s
uint uSample : SV_SAMPLEINDEX; // Sample index
} ;

// Fragment s o r t i n g array
#define MAX SORTED FRAGMENTS 18
stat ic uint2 SortedFragments [MAX SORTED FRAGMENTS+1] ;

// SRV d e c l a r a t i o n s
Buffer<uint> HeadPointerBufferSRV : register ( t0 ) ;
St ructuredBuf f e r<NodeData STRUCT> NodesBufferSRV : register ( t1 ) ;
Texture2DMS <float4, NUM_SAMPLES BackgroundTexture : register(t3);

// P ixe l shader f o r par s ing per−p i x e l l i nked l i s t s with MSAA
f l o a t 4 PS RenderFragments ( PS SIMPLE INPUT input ) : SV Target
{

// Convert p i x e l 2D coo rd ina t e s to l i n e a r address
u int2 vScreenPos = uint ( input . vPos . xy ) ;
u int uLinearAddress = vScreenPos . y∗RENDERWIDTH

+ vScreenPos . x ;

// Fetch o f f s e t o f f i r s t fragment f o r cur rent p i x e l
u int uOf f s e t = HeadPointerBufferSRV [ uLinearAddress ] ;
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// Loop through each node s to r ed f o r t h i s p i x e l l o c a t i o n
int nNumFragments = 0 ;
while ( uOf f s e t != 0xFFFFFFFF)
{

// Ret r i eve fragment at cur rent o f f s e t
NodeData STRUCT Node = NodesBufferSRV [ uOf f s e t ] ;
// Only inc lude fragment in so r t ed l i s t i f coverage mask
// i n c l u d e s the sample c u r r e n t l y being rendered }
uintuCoverage =

UnpackCoverageIntoUint(Node.uDepthAndCoverage);
if ( uCoverage & (1<<input.uSample) )}

{

// Copy fragment c o l o r and depth in to s o r t i n g array
SortedFragments [ nNumFragments ] =

uint2 (Node . uColor , Node . uDepth ) ;

// Sort fragments f r o n t to back us ing
// i n s e r t i o n s o r t i n g
int j = nNumFragments ;
[ loop ] while ( ( j>0) &&

( SortedFragments [ max( j −1, 0 ) ] . y >
SortedFragments [ j ] . y ) )

{
// Swap requ i r ed
int jminusone = max( j −1, 0 ) ;
u int2 Tmp = SortedFragments [ j ] ;
SortedFragments [ j ] = SortedFragments [ jminusone ] ;
SortedFragments [ jminusone ] = Tmp;
j−−;

}

// I n c r e a s e number o f fragment i f under the l i m i t
nNumFragments=min (nNumFragments+1,

MAX SORTED FRAGMENTS) ;
}

// Ret r i eve next o f f s e t
uOf f s e t = Element . uNext ;

}

// Ret r i eve cur rent sample c o l o r from background tex ture
float4 vCurrentColor =

BackgroundTexture.Load(int3(input.vPos.xy, 0),

input.uSample);}

// Render so r t ed fragments us ing SRCALPHA−INVSRCALPHA
// blend ing
for ( int k=nNumFragments−1; k>=0; k−−)
{

f l o a t 4 vColor =
UnpackUintIntoFloat4 ( SortedFragments [ k ] . x ) ;
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vCurrentColor . xyz = l e r p ( vCurrentColor . xyz , vColor . xyz ,
vColor .w) ;

}

// Return manually−blended c o l o r
return vCurrentColor ;

}

Listing 2.3. Pixel Shader for parsing per-pixel linked lists when MSAA is enabled

2.8 Optimizations

2.8.1 Node Structure Packing

As previously mentioned in this chapter, the size of the node structure has a direct
impact on the amount of memory declared for the nodes buffer. Incidentally,
the smaller the size of the node structure, the better the performance, since
fewer memory accesses will be performed. It therefore pays to aggressively pack
data inside the node structure, even if it adds to the cost of packing/unpacking
instructions in the shaders used.

The default node structure presented in previous paragraphs is three uint in
size whereby one uint is used for packed RGBA color, one uint is used for depth
and coverage, and the last uint is used for the next pointer. Some circumstances
may allow further reduction of the structure for a performance/memory benefit;
for instance, color and depth could be packed into a single uint (e.g., by encoding
RGB color as 565 and depth as a 16-bit value (such a reduction in depth precision
may need some scaling and biasing to avoid precision issues)). The “next” pointer
could be encoded with 24 bits, leaving 8 bits for a combination of sample coverage
and/or blend id. Such a scheme would reduce the node structure size to two uint

(8 bytes), which is a desirable goal if the scene circumstances allow it.

2.8.2 Early Stencil Rejection in Parsing Phase

The second pass of the OIT algorithm can be accelerated by ensuring that only
screen locations that have received at least one translucent fragment entry are
processed. This would avoid the need for “empty” parsing of the per-pixel linked
lists, improving performance in the process.

To achieve this goal, the linked lists creation phase is set up so that the
stencil buffer is incremented for each fragment that passes the depth test. Once
this phase is completed, the stencil buffer will contain translucent overdraw for
each pixel in the scene, leaving the stencil clear value at 0 for pixel locations that
haven’t received any translucent fragment (i.e., for which the head pointer buffer
is still 0xFFFFFFFF).
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When per-pixel linked lists are parsed for rendering the stencil buffer is set
up to pass if the stencil value is above 0. Early stencil rejection ensures that only
pixel locations that have been touched by translucent fragments will be processed,
saving on performance in the process.

2.8.3 MSAA: Fragment Resolve during Parsing

Executing the pixel shader at sample frequency is a significant performance cost
compared to per-pixel execution. It is possible to replace per-sample execution
for per-pixel execution for the fragment parsing and rendering pass in MSAA
mode if fragments are “resolved” at the same time they are processed. Resolving
fragments is a term that refers to the process of converting pixel samples into a
single pixel color value that gets written onto a single-sample render target. The
most common resolve function is a straight average of all samples belonging to a
pixel but some variations exist (e.g., HDR-correct resolves).

To resolve fragments in the OIT rendering phase a non-multisampled render
target has to be bound as an output. Doing so will prevent any further ren-
dering operation requiring access to multisampled data, so it is important that
this optimization is considered only if such access is no longer required. Should
this condition be fulfilled, the performance improvements enabled by fragment
resolving can be dramatic (up to a 50% increase was observed on a Radeon 5870
at 1024×768 with 4x MSAA) so this is certainly an optimization to consider. Be-
cause the render target bound is no longer multisampled the depth stencil buffer
that was bound when storing fragments can no longer be used for early stencil
rejection in the fragment parsing phase. Still, the performance boost obtained
via fragment resolving outweighs the benefit of this previous optimization.

To restore per-pixel shader execution, the pixel shader input structure no
longer declares SV SAMPLEINDEX. Only the blending section of the per-pixel linked
list parsing shader needs further code modification to enable fragment resolving.
After fragments have been fetched and sorted in the temporary array, the al-
gorithm needs to determine the blending contribution for each sample in the
destination pixel. Hence the next node picked from the sorted list will add its
blending contribution to a sample only if its pixel coverage includes the sam-
ple currently being processed. Once the blending contribution for all samples
has been determined, the final average (resolve) operation takes place and the
resulting color is output to the destination render target.

The blending portion of the per-pixel linked list parsing shader that imple-
ments fragment resolve in MSAA mode can be found in Listing 2.4.

// Ret r i eve c o l o r o f each sample in the background tex ture
f l o a t 3 vCurrentColorSample [NUM SAMPLES ] ;
[ u n r o l l ] for ( u int uSample=0; uSample<NUM SAMPLES; uSample++)
{
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vCurrentColorSample [ uSample ] =
BackgroundTexture . Load ( in t3 ( input . vPos . xy , 0 ) , uSample ) ;

}

// Render fragments us ing SRCALPHA−INVSRCALPHA blending
for ( int k=nNumFragments−1; k>=0; k−−)
{

// Ret r i eve fragment c o l o r
f l o a t 4 vFragmentColor=

UnpackUintIntoFloat4 ( SortedFragments [ k ] . x ) ;

// Ret r i eve sample coverage
u int uCoverage =

UnpackCoverageIntoUint ( SortedFragments [ k ] . y ) ;

// Loop through each sample
[ u n r o l l ] for ( u int uSample=0; uSample<NUM SAMPLES; uSample++)
{

// Determine i f sample i s covered by sample coverage
f loat f IsSampleCovered= ( uCoverage & (1<<uSample ) ) ?

1 .0 : 0 . 0 ;

// Blend cur rent c o l o r sample with fragment c o l o r
// i f covered . I f the sample i s not covered the c o l o r
// w i l l be unchanged
vCurrentColorSample [ uSample ] . xyz = l e r p (

vCurrentColorSample [ uSample ] . xyz ,
vFragmentColor . xyz ,
vFragmentColor .w ∗ f IsSampleCovered ) ;

}
}

// Resolve samples in to a s i n g l e c o l o r
f l o a t 4 vCurrentColor = f l o a t 4 ( 0 , 0 , 0 , 1 ) ;
[ u n r o l l ] for ( u int uSample=0; uSample<NUM SAMPLES; uSample++)
{

vCurrentColor . xyz += vCurrentColorSample [ uSample ] ;
}
vCurrentColor . xyz ∗= (1 . 0 /NUM SAMPLES) ;

// Return manually−blended c o l o r
return vCurrentColor ;

Listing 2.4. Blending and resolving fragments

2.9 Tiling
2.9.1 Tiling as a Memory Optimization

Tiling is a pure memory optimization that considerably reduces the amount of
video memory required for the nodes buffer (and to a lesser extent the head



i
i

i
i

i
i

i
i

428 VII GPGPU

Figure 2.3. Opaque contents of render target prior to any OIT contribution.

pointer buffer). Without tiling, the memory occupied by both buffers can rapidly
become huge when fullscreen render target resolutions are used. As an example
a standard HD resolution of 1280 × 720 with an estimated average translucent
overdraw of eight would occupy a total of 1280×720×8×sizeof(node structure size)
bytes for the nodes buffer only, which equates to more than 168 megabytes with
a standard node structure containing 3 units (color, depth and next pointer).

Instead of allocating buffers for the full-size render target, a single, smaller
rectangular region (the “tile”) is used. This tile represents the extent of the

Figure 2.4. Translucent contribution to the scene is added to the render target via
regular tiling. Each rectangular area stores fragments in the tile-sized head pointer
and nodes buffers and then parses those buffers to add correctly ordered translucency
information to the same rectangle area. In this example the tile size is 1/15 of the
render target size, and a total of 15 rectangles are processed.
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area being processed for OIT in a given pass. Since the tile is typically smaller
than the render size, this means multiple passes are needed to calculate the
full-size translucent contributions to the scene. The creation of per-pixel linked
lists is therefore performed on a per-tile basis, after which the traversal phase
fetches nodes from the tile-sized head pointer and nodes buffers to finally output
the resulting color values onto the rectangular region corresponding to the tile
being processed in the destination render target. As an example, a standard HD
resolution of 1280× 720 would take 15 passes with a tile size of 256× 240 for the
screen to be fully covered. Figure 2.3 shows a scene with translucent contributions
yet to be factored in. Figure 2.4 shows the same scene with translucency rendered
on top using a set of tile-sized rectangular regions covering the whole render area.

2.9.2 Transformation Overhead

Because multiple passes are required, any objects crossing tile boundaries has
to be transformed more than once (once for each tile-sized screen region they
contribute to), which can impact performance when objects with higher transfor-
mation costs (complex vertex skinning, advanced tessellation algorithms, use of
long geometry shaders, etc.) are employed. Ideally, translucent geometry should
be decomposed into subobjects to minimize transformation overlap between tile
regions. Smaller objects such as particles will particularly benefit from the tiling
approach, since overlap between tile regions is likely to be minimal (unless the
tiles themselves are small), and boundaries between particles belonging to differ-
ent rectangle regions are well defined.

2.9.3 Tile Size

Tile size can be arbitrary; it may be a multiple of the render target dimensions,
but this is not a strict requirement. Typically tile size will be dictated by the
amount of free video memory available for OIT, since larger dimensions will lead
once again to significant amounts of memory being consumed. There is also a
direct correlation between tile size and performance, since the smaller the tile
size, the higher the number of passes required to cover the render area. Thus, it
is generally better to allocate a larger tile size if memory can be spared for this
purpose.

2.9.4 Minimum Rectangle Optimization

It is not necessary to cover the full render target area with multipass tiling.
Instead one needs to cover only the minimum rectangle area of the render target
that will actually receive translucent contributions. This minimum rectangle
area can be determined by using bounding volumes transformed to screen space
in order to retrieve the 2D screen coordinates extents of all translucent geometry.
Once the bounding volumes of all translucent meshes have been transformed,
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Figure 2.5. Translucent contribution to the scene is added to the render target via op-
timized tiling. Only tiles enclosing the bounding geometry of the translucent characters
are processed. The bounding boxes of translucent geometry are transformed to screen
space and the combined extents of the resulting coordinates define the minimum rect-
angle area that will be processed. This minimum rectangle area is covered by as many
tile-sized rectangular regions as required (six in this example). Each of those regions
performs fragment storing and rendering using a single pair of tile-sized head pointers
and nodes buffers.

the minimum and maximum dimensions (in X and Y ) of the combined set will
define the rectangle area of translucent contributions. The minimum rectangle
optimization typically allows a reduction in the number of tiles to process when
parsing and rendering fragments from linked lists. In order to render a minimum
number of tiles, it is desirable to ensure that the bounding geometry used is as
tight as possible; for example, axis-aligned bounding boxes are likely to be less
effective than arbitrary-aligned bounding boxes or a set of bounding volumes with
a close fit to the meshes involved.

Because this optimization covers only a portion of the screen, the previous
contents of the render target will need to be copied to the destination render
target, at least for those regions that do not include translucent contribution.
This copy can be a full-size copy performed before the OIT step, or stencil-based
marking can be used to transfer only the rectangle regions that did not contain
any translucency.

Figure 2.5 illustrates the optimized covering of tiles to cover only the 2D
extents of translucent contributions to the scene.

2.10 Conclusion

The OIT algorithm presented in this chapter allows significant performance sav-
ings compared to other existing techniques. The technique is also robust, allowing
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different types of translucent materials to be used as well as supporting hardware
multisampling antialiasing. Although video memory requirements can become
unreasonable when larger viewports are employed, the use of tile optimizations
allows a trade-off between memory and performance while still retaining the
inherent advantages of this technique. The use of per-pixel linked lists can be
adapted to techniques other than order-independent transparency, because they
can store a variety of per-pixel data for arbitrary purposes: see Part III, Chapter
3 in this volume for an example.
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VII

Simple and Fast Fluids
Martin Guay, Fabrice Colin, and Richard Egli

3.1 Introduction

In this chapter, we present a simple and efficient algorithm for the simulation
of fluid flow directly on the GPU using a single pixel shader. By temporarily
relaxing the incompressibility condition, we are able to solve the full Navier-
Stokes equations over the domain in a single pass.

3.1.1 Simplicity and Speed

Solving the equations in an explicit finite difference scheme is extremely simple.
We believe that anybody who can write the code for a blur post-process can
implement this algorithm and simulate fluid flow efficiently on the GPU. The code
holds is less then 40 lines and is so simple we actually had the solver running in
FxComposer (see FxComposer demo). Solving every fluid cell (texel) locally in a
single pass is not only simple, but also quite fast. In fact, the implementation of

Figure 3.1. 3D simulation with 100k particles visualization.
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this algorithm on the GPU is at least 100 times faster than on the CPU.1 In this
chapter, we show how to couple the two equations of the classical Navier-Stokes
equations into a single-phase process; a detailed explanation of the algorithm
along with example code follows.

3.2 Fluid Modeling

The greatest feature of physics-based modeling in computer graphics is the abil-
ity of a model to cope with its environment and produce realistic motion and
behavior. Attempting to animate fluids nonphysically is, in our experience, a
nontrivial task. In order to physically model the motion of fluids, the simplified
classical Navier-Stokes equations for incompressible fluids are a good description
of such mechanics, and a solver based on this model is capable of simulating a
large class of fluid-like phenomena. Fortunately a deep understanding of the par-
tial differential equations involved is not required in order to implement such a
solver.

3.2.1 Navier-Stokes Equations

The Navier-Stokes equations, widely used in numerous areas of fluid dynamics,
are derived from two very simple and intuitive principles of mechanics: the con-
servation of momentum (Equation (3.1)) and the conservation of mass (Equation
(3.2)).

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + ρg + µ∇2u, (3.1)

where u is a velocity vector, g is the gravitational acceleration vector, µ the
viscosity, P the pressure and ∇2 stands for the Laplacian operator ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2.

∂ρ

∂t
+∇ · (ρu) = 0, (3.2)

where ∇· represents the divergence operator. These equations also have to be
supplemented with boundary conditions of Dirichlet, Neumann, or even of Robin
type. Usually, the incompressibility condition (see Equation (3.3)) is imposed on
the fluid by assuming that its density ρ remains constant over time. Using the
latter assumption, Equation (3.2) simplifies to

∇ · u = 0. (3.3)

1The simulation runs on the CPU at 8.5 fps with 4 threads on an Intel Core 2 Quad at 2.66
GHz simulating only the velocity field over a 256 × 256 grid. Keeping the same grid size, the
simulation of both velocity and density fields runs at more than 2500 fps on a Geforce 9800
GT using 32-bit floating point render targets. Note that 16-bit floating point is sufficient to
represent velocities.
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Now one of the main features of the formulation of the Navier-Stokes equations
illustrated here, is the possibility, when working with regular grid domains, to
use classical finite differences schemes.

3.2.2 Density-Invariance Algorithm

Unfortunately, a direct application of Equation (3.1) results in a nonzero diver-
gence field u (i.e. (3.3) is no longer satisfied by the vector field u). A lot of
popular methods for simulating fluids consist of two main steps. First some tem-
porary compressibility is allowed when Equation (3.1) is solved, and second, a
correction is applied to the vector field obtained, in order to fulfill the incom-
pressibility condition. This correction can be done by considering a projection
of the resulting vector w field onto its divergence-free part [Stam 99]. The latter
projection can also be performed in the spirit of the smoothed particle hydrody-
namics (SPH) method (see for instance [Colin et al. 06]). Another way to deal
with this incompressibility problem is to take advantage of the relation between
the divergence of the vector field and the local density given by Equation (3.2),
by trying to enforce a density invariance (see among others, [Premože et al. 03]).
Recently, some techniques combining the two preceding approaches were stud-
ied (for an exhaustive study of all the previous techniques in the SPH context,
see [Xu et al. 09]).

We choose an approach based on density invariance. It is interesting to note
that an algorithm based on the previous approach has proven to be stable for
the SPH method [Premože et al. 03]. First, observe that Equation (3.2) can be
rewritten as

∂ρ

∂t
= −∇ρ · u− ρ∇ · u,

clearly illustrating the link between the divergence of the vector field and the
variation of the local density. After solving the above equation for density, a
corrective pressure field could simply be given as

P = K(ρn − ρ0), (3.5)

where ρ0 is the rest (initial) density and where the constant K is often cho-
sen according to the gas-state equation (see [Desbrun and Cani 96] or [Muller
et al. 03]).

The corrective field P (a density-invariant field) could be interpreted as an
internal pressure whose gradient corrects the original velocity field to get a null
divergence vector field. Since we are interested only in its derivative, there is no
need to retain the P variable and the corresponding correction to be applied is
simply given by

∇P = K∇ρ.

Now before jumping directly to code, we first need to discretize the formulation.
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3.2.3 From Math to Code: Numerical Scheme

One of the main features of the formulation used in this chapter is the ability to
use, along a regular grid, simple finite differences. Since the texture is the default
data structure on a GPU, a regular grid holding four values per cell is a natural
choice for the spatial discretization of the domain. Also, since this is an Eulerian
formulation, the spatial discretization stays fixed throughout the simulation and
the neighborhood of an element, the elements (in our case, the texels) around it,
will always remain the same, greatly simplifying the solver’s code.

The simplicity of finite differences along a one-phase coupling of both momen-
tum and mass conservation equations through a density-invariant field enables the
elaboration of a very simple algorithm to solve fluid flow in a single step. Note
that other grid-based methods on the GPU exist and the interested reader can
refer to [Crane et al. 07] for a multistep but unconditionally stable simulation or
to [Li et al. 03] (also available in GPU Gems 2 ) for a lattice-based simulation.

3.3 Solver’s Algorithm

A solution to the Navier-Stokes equations is a vector-valued function u and a
scalar-valued function ρ which satisfies the momentum and mass conservation
equations. These functions are spatially discretized on a texture where quantities
u and ρ are stored at the texel’s center. In order to update a solution u and ρ
from time tn to time tn+1, we traverse the grid once and solve every texel in the
following manner:

1. Solve the mass conservation equation for density by computing the differ-
ential operators with central finite differences and integrating the solution
with the forward euler method.

2. Solve the momentum conservation equation for velocity in two conceptual
steps:

(a) Solve the transport equation using the semi-Lagrangian scheme.

(b) Solve the rest of the momentum conservation equation using the same
framework as in Step 1.

3. Impose Neumann boundary conditions.

3.3.1 Conservation of Mass

In order to compute the right-hand side of the mass conservation equation, we
need to evaluate a gradient operator ∇ for a scalar-valued function ρ and a di-
vergence operator ∇· for a vector-valued function u both, respectively, expressed
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using central finite differences as follows:

∇ρni,j,k =

(
ρni+1,j,k − ρni−1,j,k

2∆x
,
ρni,j+1,k − ρni,j−1,k

2∆y
,
ρni,j,k+1 − ρni,j,k−1

2∆z

)
,

∇ · uni,j,k =
uni+1,j,k − uni−1,j,k

2∆x
+
vni,j+1,k − vni,j−1,k

2∆y
+
wni,j,k+1 − wni,j,k−1

2∆z
.

And finally, an integration is performed using forward Euler over a time step
∆t:

ρn+1
i,j,k = ρni,j,k + ∆t(−∇ρni,j,k · uni,j,k − ρni,j,k∇ · uni,j,k).

Indeed, there exist other finite difference schemes. For instance, one could use
upwinding for the transport term or literally semi-Lagrangian advection. Unfor-
tunately, the latter results in much numerical dissipation; an issue covered in
Section 3.3.2.

3.3.2 Conservation of Momentum

We solve the momentum conservation equation for velocity u in two conceptual
steps. The first consists of solving the transport equation ∂u

∂t = −u · ∇u with
a semi-Lagrangian scheme, then solving the rest of the momentum conservation
equation (∂u∂t = −∇Pρ + g + µ

ρ∇2u) with central finite differences and forward
Euler integration.

Semi-Lagrangian scheme. First introduced to computer graphics by Jos Stam in
the paper Stable Fluids [Stam 99], the following scheme is quite useful for solving
the generic transport equation given by

∂φ

∂t
= −u · ∇φ, (3.8)

at the current texel’s position xi,j,k with

φn+1
i,j,k(xi,j,k) = φn(xi,j,k −∆tuni,j,k). (3.9)

The idea is to solve the transport equation from a Lagrangian viewpoint where
the spatial discretization element holding quantities (e.g., a particle) moves along
the flow of the fluid, and answer the following question: where was this element
at the previous time step if it has been transported by a field u and ends up
at the current texel’s center at the present time? Finally, we use the sampled
quantity to set it as the new value of the current texel.

Now when solving the transport equation for velocity, Equation (3.8) becomes
∂u
∂t = −u · ∇u and is solved with

un+1
i,j,k(xi,j,k) = un(xi,j,k −∆tuni,j,k).



i
i

i
i

i
i

i
i

438 VII GPGPU

This method is not only straightforward to implement on the GPU with linear
samplers, but is also unconditionally stable. Unfortunately, quantities advected
in this fashion suffer from dramatic numerical diffusion and higher-order schemes
exist to avoid this issue, such as McCormack schemes discussed in [Selle et al. 08].
These schemes are especially useful when advecting visual densities as mentioned
in Section 3.5.

Density invariance and diffusion forces. After solving the transport term, the rest
of the momentum conservation equation is solved with central finite differences.
Here is a quick reminder of the part of Equation (3.1) which is not yet solved:

∂u

∂t
= −∇P

ρ
+ g +

µ

ρ
∇2u.

As mentioned earlier, the gradient of the density-invariant field ∇P is equivalent
to the density gradient ∇ρ, i.e. ∇P ' K∇ρ. Since we already computed the den-
sity gradient ∇ρni,j,k when solving the mass conservation equation with Equation
(3.3.1), we need only to scale by K in order to compute the “pressure”” gradient
∇P . As for the diffusion term, a Laplacian ∇2 must be computed. This operator
is now expressed using a second-order central finite difference scheme:

∇2uni,j,k = (L(u), L(v), L(w)),

where

L(f) =

(
fni+1,j,k − 2fni,j,k + fni−1,j,k

(∆x)2
+
fni,j+1,k − 2fni,j,k + fni,j−1,k

(∆y)2

+
fni,j,k+1 − 2fni,j,k + fni,j,k−1

(∆z)2

)
,

for every twice continuously differentiable function f . Finally, an integration is
performed using forward Euler over a time step ∆t:

un+1
i,j,k = uni,j,k + ∆t(−S∇ρni,j,k + g + ν∇2un

i,j,k).

Since the density ρ value should not vary much from ρ0, we can interpret the 1
ρ

scale as a constant held by ν := µ
ρ0

and S := K (∆x)2

∆tρ0
. One can see how we also

scale by (∆x)2

∆t which seems to give better results (we found (∆x)2 while testing
over a 2D simulation) and a sound justification has still to be found and will be
the subject of future work.

Up to now we solved the equations without considering boundary conditions
(obstacles) or numerical stability. These two topics will be covered in the next
two sections.
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3.3.3 Boundary Conditions

Boundary conditions are specified at the boundary (surface) of the fluid in order
for the fluid to satisfy specific behaviors. They are essential for the interactions
between the fluid and the different types of matter such as solids (obstacles)
in the domain. Neumann boundary conditions are considered for fluid-solid in-
teractions. Our method does not provide free surface boundaries for fluid-fluid
interactions such as liquid and air interactions necessary for water animations.
When simulating smoke or fire, for instance, it is possible to consider the air and
gas as a single fluid. Therefore, only Neumann boundary conditions are required.
Hence in the proposed implementation, computational cells are tagged as either
fluid or boundary cells. Note velocities and densities are defined on all cell types.
Before discussing in-depth Neumann boundary conditions, it is convenient to first
consider the most simple boundary condition: the Dirichlet boundary condition
that means “to set directly.” Hence, one could set the border cells to null ve-
locities and densities to an initial value and make sure the simulation works well
before introducing obstacles.

Neumann boundary conditions. Computational cells are either tagged as fluid or
boundary cells. Note velocities and densities are defined on all cell types. The
treatment of obstacles requires the use of boundary conditions on the solution
u and are usually of Neumann type. The simplest boundary condition is the
Dirichlet boundary condition, which specifies the value the solution needs to
take on the boundary; hence, one could set the border cells to null velocities
and densities to an initial value and make sure the simulation works well before
considering obstacles.

The Neumann boundary condition is a type of boundary condition that spec-
ifies the values of the derivative in the direction of the outward normal vector
at the boundary. To keep the fluid from entering obstacles, this condition would
result in having the obstacle’s corresponding boundary cells fulfill ∂f

∂n = 0 for
every component f ∈ {u, v, w} of the vector function u; therefore, the fluid
cells around a boundary cell need to be correctly adjusted in order to satisfy this
condition. The derivative in the normal direction at such a boundary cell is quite

Figure 3.2. Neumann boundary conditions.
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trivial when assuming that the walls of an obstacle are always coincident with the
face of a computational cell (i.e., obstacles would completely fill computational
cells). With this assumption, the derivative ∂f

∂n is either given by ±∂u∂x , ±∂v∂y , or

±∂w∂z for u, v, and w, respectively. As an example, one can see how the fluid
cell Fi−1,j is adjusted according to the derivative of the boundary cell Bi,j in
Figure 3.2.

The true difficulty is the actual tracking of obstacles, specifically when working
with dynamic 3D scenes in which objects must first be voxelized in order to be
treated by the algorithm. See [Crane et al. 07] for a possible voxelization method.

3.3.4 Stability Conditions

Explicit integration is very simple from both analytical and programmatic points
of view, but is only conditionally stable; meaning the time step value ∆t has
an upper bound defined by a ratio relative to the spatial resolution ∆x over the
function’s range u:

∆t < max

{∣∣∣∣∆xu
∣∣∣∣ , ∣∣∣∣∆yv

∣∣∣∣ , ∣∣∣∣∆zw
∣∣∣∣} .

This condition must be satisfied everywhere in the domain.

3.4 Code

Short and simple code for the 2D solver is presented in this section. In two
dimensions, the x- and y-components hold velocities and the z-component holds
the density. Setting ∆x = ∆y = 1 greatly simplifies the code. A 3D demo is also
available on accompanying web materials (K ' 0.2,∆t = 0.15).

///< Centra l F i n i t e D i f f e r e n c e s Sca l e .
f l o a t 2 CScale = 1 .0 f /2 .0 f ;

f loat S=K/dt ;

f l o a t 4 FC = tex2D ( FieldSampler ,UV) ;
f l o a t 3 FR = tex2D ( FieldSampler ,UV+f l o a t 2 ( Step . x , 0 ) ) ;
f l o a t 3 FL = tex2D ( FieldSampler ,UV−f l o a t 2 ( Step . x , 0 ) ) ;
f l o a t 3 FT = tex2D ( FieldSampler ,UV+f l o a t 2 (0 , Step . y ) ) ;
f l o a t 3 FD = tex2D ( FieldSampler ,UV−f l o a t 2 (0 , Step . y ) ) ;

f l o a t 4 x 3 FieldMat = {FR, FL,FT,FD} ;

//du/dx , du/dy
f l o a t 3 UdX = f l o a t 3 ( FieldMat [0]−FieldMat [ 1 ] ) ∗ CScale ;
f l o a t 3 UdY = f l o a t 3 ( FieldMat [2]−FieldMat [ 3 ] ) ∗ CScale ;

f loat Udiv = UdX. x+UdY. y ;
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f l o a t 2 DdX = f l o a t 2 (UdX. z ,UdY. z ) ;

///<
///< Solve f o r dens i ty .
///<
FC. z −= dt∗dot ( f l o a t 3 (DdX, Udiv ) ,FC. xyz ) ;
///< Related to s t a b i l i t y
FC. z = clamp (FC. z , 0 . 5 f , 3 . 0 f ) ;

///<
///< Solve f o r v e l o c i t y .
///<
f l o a t 2 PdX = S∗DdX;
f l o a t 2 Laplac ian = mul ( ( f l o a t 4 ) 1 , ( f l o a t 4 x 2 ) FieldMat )−4.0 f ∗FC. xy ;
f l o a t 2 V i s co s i tyForce = v∗Laplac ian ;

///< Semi−Lagrangian advect ion .
f l o a t 2 Was = UV − dt∗FC. xy∗Step ;
FC. xy = tex2D ( Fie ldLinearSampler ,Was ) . xy ;

FC. xy += dt ∗( V i s co s i tyForc e − PdX + Externa lForces ) ;

///< Boundary c o n d i t i o n s .
for ( int i =0; i <4; ++i )
{
i f ( IsBoundary (UV+Step∗D i r e c t i o n s [ i ] ) )
{
f l o a t 2 SetToZero = (1−abs ( D i r e c t i o n s [ i ] ) ) ;
FC. xy ∗= SetToZero ;
}
}
return FC;

Listing 3.1. 2D solver, Shader model 2 a.

3.5 Visualization

One of the disadvantages of the Eulerian formulation is the lack of geometric
information about the fluid. So far, we have captured its motion with the velocity
field, but we still don’t know its shape. Nevertheless, there are many ways to
visualize a fluid. In this section we briefly discuss two simple techniques. The first
consists of advecting particles under the computed velocity field and the second,
of advecting a scalar density field.

3.5.1 Particles

Using particles in a one-way interaction with the fluid is by far the most simple
and efficient technique for visualizing a fluid. Since the velocity field is computed
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on the GPU, the whole system can run independently with very few interactions
with the CPU. Once the particles are initialized, we sample only the velocity field
in order to update their positions as illustrated in the following code:

v = Fie ld . SampleLevel ( LinearSampler , PosToUV( P a r t i c l e . Pos ) , 0 ) ;
P a r t i c l e . Pos += dt∗v . xyz ;

3.5.2 Smoke-Fire Density Field

It is possible to simulate smoke and fire by iteratively solving the convection-
diffusion equation for a scalar density field (see Figures 3.3 and 3.4). Rendering
such a scalar field in 2D is quite simple since only a texture holding the density
field needs to be rendered. As for 3D fields, a volume rendering technique is
required. Here are the governing equations for both smoke (Equation (3.13)) and
fire (Equation (3.14)), respectively:

∂φ

∂t
= u · ∇φ+ k∇2φ, (3.13)

∂φ

∂t
= u · ∇φ+ k∇2φ− c, (3.14)

where φ is a scalar density, k a diffusion coefficient and c a reaction constant for
fire.

Numerical schemes to solve this equation are abundant, and the one which
maps best to the GPU is the semi-Lagrangian method (see Equation (3.9)) but
unfortunately, the solution loses much detail as dissipation occurs from this nu-
merical scheme—which in turn enables the omission of the diffusion term from
the equation. To address this problem and achieve more compelling visual re-
sults, we strongly suggest using the three-pass MacCormack method described
in [Selle et al. 08]. This scheme has second-order precision both in space and time,
therefore keeping the density from losing its small scale features and numerically
dissipating its quantity as drastically as with the first-order semi-Lagrangian
method. To add more detail to the simulation, one could also amplify the vortic-
ity of the flow (the velocity field) with vorticity confinement, a method discussed
in the context of visual smoke simulation in [Fedkiw et al. 01].

3.6 Conclusion

Many algorithms could be generated from this one-phase coupling of both equa-
tions through a density-invariant field. We hope the one illustrated here serves
as a good basis for developers seeking to make use of interactive fluids in their
applications.
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Figure 3.3. Smoke density over a 512× 512 density and 256× 256 fluid simulation grid.

Figure 3.4. Fire density over a 512× 512 density and 256× 256 fluid simulation grid.
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VII

A Fast Poisson Solver for
OpenCL using Multigrid Methods

Sebastien Noury, Samuel Boivin,
and Olivier Le Mâıtre

4.1 Introduction

Many techniques in computer graphics are based on mathematical models to
realistically simulate physical phenomena, such as fluid dynamics [Stam 99], or
to deform and merge complex object meshes together [Yu et al. 04].

Many of these mathematical models involve the solution of Poisson partial
differential equations, or more general elliptic equations, making the availabil-
ity of efficient Poisson solvers crucial, particularly for real-time simulation. For
example, the simulation of incompressible fluid flows often relies on projection-
correction techniques where the pressure fields are solutions of a Poisson equation.
Solving this equation is important, not only to obtain realistic flow dynamics, but
also for the stability of the simulation. In fact, many efforts have been dedicated
to the development of fast and stable fluid solvers [Stam 99]; the solution of
the Poisson pressure equation constitutes the most time-consuming part of these
algorithms.

This chapter presents an implementation of various iterative methods for the
resolution of Poisson equations on heterogeneous parallel computers. Currently,
most fast Poisson solvers implement the simple Jacobi method. After reviewing
Jacobi iterative methods and variants in Section 4.3, we introduce more advanced
iterative techniques based on multiscale iterations on a set of embedded grids,
namely the so-called multigrid methods in Section 4.4. For all of these methods,
we provide some theoretical background and discuss their efficiency and com-
plexity with regard to their implementation. We particularly detail the multi-
grid method which involves several operators whose implementation is critical
to efficiency. In Section 4.5, we provide a tutorial for the OpenCL implementa-
tion of the various algorithms, which are subsequently tested and compared in
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Section 4.6. We end the chapter with a discussion of the efficiency of the methods
in Section 4.7. Specifically, we show that although more complex to implement,
the multigrid method allows for a significant reduction of both the number of
iterations and the length of computation time compared with the simpler fixed-
grid iterative methods. Hasty developers can skip directly to the implementation
in (Section 4.5) and refer later to the theoretical background in Section 4.2.

4.2 Poisson Equation and Finite Volume Method

In this section, we introduce the Poisson equation, the resolution of which is the
focus of the present chapter. We then describe the finite volume discretization
of the Poisson equation and, finally, discuss the boundary conditions. These
materials are introduced to ease the understanding of the iterative techniques
and implementation constraints encountered in the sections that follow.

4.2.1 The Poisson Equation

We wish to solve the Poisson equation on a d-dimensional domain Ω with bound-
ary ∂Ω. Denoting u as the solution of the Poisson equation, it satisfies

∇ · (∇u) = ∇2u = −f on Ω ⊂ Rd, (4.1)

where ∇2 is the Laplacian operator and f is given. The Laplacian operator
applied to u is defined as the divergence (∇·) of the gradient of u (∇u). It
can be expressed as the sum of the second partial derivatives of u along each
dimension d:

∇2 =

d∑
i=1

∂2

∂x2
i

, with x = (x1, x2, ..., xd)
T ∈ Ω. (4.2)

The elliptic equation (Equation (4.1)) calls for boundary conditions which can be
of Neumann type:

∂u

∂n
= g(x), x ∈ ∂ΩN , (4.3)

where ∂u/∂n := ∇u · n is the normal derivative at the boundary ∂ΩN with n
pointing outside of the domain, or of Dirichlet type:

u = uD(x), x ∈ ∂ΩD, (4.4)

where ∂ΩN and ∂ΩD are distinct portions of ∂Ω such that ∂Ω = ∂ΩN ∪ ∂ΩD.
This problem is represented schematically in Figure 4.1. In this chapter, we focus
on Neumann-type boundary conditions. Other types of boundary conditions are
discussed in Section 4.7.
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Figure 4.1. Poisson problem (Equation 4.1) on a 2D domain Ω with a boundary ∂Ω.
The vector n is normal to the boundary and points outside of the domain.

Note that for well-posed problems, when δΩD = ∅, the data f needs to satisfy
the compatibility condition ∫

Ω

f(x)dx =

∫
δΩ

g(x)dx.

4.2.2 Finite Volume Discretization

In practice, Equation (4.1) has no close-form solution for general right-hand-sides
f and domains Ω. In these cases, one has to rely on a numerical technique where
an approximation of the solution u is sought in a finite-dimensional approxima-
tion space, by means of a discretization method, leading to a finite—although
eventually large—set of equations. Classically, this discretization proceeds from
a partition of the computational domain Ω into a finite number of control nodes,
volumes, or elements. While several methods exist for the discretization of the
Poisson equation, we select here the finite-volume (FV) method. Indeed, be-
side their intuitive nature and easy physical interpretation, the FV method is
widely used in both computational fluid dynamics (CFD) and computer graphics
communities, where correspondence between voxels and averages over FV cells
is immediate. The popularity of the FV method also makes the availability of
efficient solvers important, since the resolution of Poisson-like equations is a key
ingredient of many CFD codes.

Roughly speaking, FV relies on the approximation of the average of the func-
tion u over the mesh cells (Figure 4.2). Specifically, the FV mesh is made of a
set T of non-overlapping cells Ci covering Ω:

Ω =
⋃
i∈T

Ci, Ci ∩ Cj = ∅, ∀i 6= j ∈ T , (4.5)
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Figure 4.2. Cell values are computed by averaging the 1D function u with a FV method
(left). The reconstruction of uh by linear interpolation over the cell averages (right).

and we denote by uhi the computed average of u over the cell with index i:

uhi ≈
1

|Ci|

∫
Ci

u dV. (4.6)

The superscript h refers here to the discretized nature of the solution, h being
related to the size of the cells.

Different types of meshes can be considered; we restrict ourselves to structured
Cartesian grids made of cells with equal edge size h in all directions (the cell
volume is hd). For a sufficiently refined grid (i.e., small enough h), uhi can be
identified with the value of u at the center xi of cell Ci. In addition, such
structured grids greatly simplify the reconstruction of the smooth approximate
uh from the averages arising from the multilinear interpolation between the cell
centers. This reconstruction is schematically illustrated in Figure 4.2 (right).

Once the computational domain has been discretized into finite volumes, the
objective is to derive a system of equations relating the values uhi for i ∈ T .
This is achieved by making use of Stokes’ theorem [Spivak 71], which consists in
replacing the integral of the Poisson equation over a cell by the integral of the
normal flux (∂u/∂n) over the cell’s boundaries. Specifically,∫

Ci

∇ · (∇u) dx =

∫
∂Ci

∇u · n dx = −
∫
Ci

f dx ' −f(xi) |Ci| . (4.7)

Since ∇u · n is the projection of the gradient of u in the normal direction n at a
cell boundary, it reduces to the normal derivative ∂u/∂n, where n takes value in
{±xi; i = 1, . . . , d}, owing to the Cartesian structure of the mesh. Therefore, in
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one dimension, for instance, Equation (4.7) reduces to

∂u

∂x

∣∣∣∣
xi−h/2

− ∂u

∂x

∣∣∣∣
xi+h/2

= hfhi , (4.8)

where xi ± h/2 are the locations of the cell interfaces and we have denoted
fhi = f(xi). The FV system is finally obtained by substituting the fluxes ∇u·n by
their reconstructions from the set of averaged values

{
uhi ; i ∈ T

}
. Again, different

reconstruction strategies can be used, and we adopt the second-order reconstruc-
tion, where the normal flux is based on the difference between the averages at
the two cells Ci and Cj having in common an interface ∂Cij :

∂u

∂n

∣∣∣∣
∂Cij

≈
uhi − uhj
|xi − xj |

. (4.9)

Inserting this approximation in the one-dimensional case of Equation (4.8), it
becomes

uhi − uhi−1

h
− uhi+1 − uhi

h
=

2uhi − uhi−1 − uhi+1

h
≈ hfhi . (4.10)

Similar expression can be immediately derived for higher-dimensional problems
through tensorization, owing to the Cartesian nature of the grid. We only provide
the case for d = 3, which corresponds to the discretization used in all subsequent
development. In 3D, the cells are indexed by 3 subscripts (i, j, k) referring to the
location of Ci,j,k in the Cartesian grid (Ci,j,k and Ci,j,k+1 are thus two neighboring
cells in the third spatial direction). With this notation, the FV approximation of
the Poisson equation over cell Ci,j,k can be expressed as

6uhi,j,k − uhi−1,j,k − uhi+1,j,k . . .

· · · − uhi,j−1,k − uhi,j+1,k . . .

· · · − uhi,j,k−1 − uhi,j,k+1 = −h2fhi,j,k (4.11)

The discrete equation for cell Ci,j,k involves the (unknown) averages over the
cell and its six neighbors having a face in common (see Figure 4.3).

Writing this equation for all cells of the mesh, eventually using modified re-
constructions of the flux for the cells neighboring ∂Ω (see discussion below), one
ends with a system of N = Nx ×Ny ×Nz equations for the cell averages uhi,j,k,
1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz. This system can be rewritten in a
matrix form as

Au = f , (4.12)

where A ∈ RN×N is a sparse matrix, u ∈ RN is the vector containing the cell
averages and f gathers the corresponding right-hand sides of Equation (4.11).
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Figure 4.3. Enlarged view of the 3D Laplace stencil, the left-hand-side in Equation
(4.11).

The sparsity of A arises from the fact that the fluxes are reconstructed from the
immediate neighboring cells, such that each row of A has only seven nonzero
entries as seen from Equation (4.11). As a result, the memory allocation for A is
less than 7N (due to the treatment of the boundary conditions). An example of
matrix A is shown in Figure 4.4 for Nx = Ny = Nz = 3, before reduction, due to
boundary conditions.



6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 6 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 -1 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 -1 6 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 6 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 -1 6 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 -1 6 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 -1 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 -1 6 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 -1 0 0 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 -1 0 -1 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 0 0 -1 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 6 -1 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 -1 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 6 -1 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 6 -1 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 6 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 6 -1 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 -1 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 6 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 6


Figure 4.4. Example matrix A for a 3× 3× 3 discretization grid (N = 27) composed of
272 elements, where less than 7× 27 of them are nonzero. This matrix results from the
Laplace equation (Equation (4.11)), instantiated for each cell of T .
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4.2.3 Boundary Conditions (BC)

We choose for simplicity, the homogeneous Neumann condition (Equation (4.3))
on u along the domain boundary ∂Ω,

∂u

∂n
= 0, for x ∈ ∂Ω. (4.13)

This condition states that the flux (or normal derivative) of u is zero everywhere
on ∂Ω. In the context of potential flows, where u is the flow potential, this
corresponds to no-through flow BC. For instance, in the classical projection-
correction methods for solving the incompressible Navier-Stokes equations (see
[Chorin 68]), such potential flow is used to enforce the divergence-free constraint
on the velocity field.

In practice, ghost-cell techniques are commonly used to implement the ho-
mogeneous Neumann BC. It consists of creating a virtual layer of cells along the
boundary, with values that mirror the inside domain. One of the interesting fea-
tures of this ghost-cell approach is that it immediately extends to other types of
BC (nonhomogeneous, Dirichlet, Fourier, periodic domains, etc.) making them
very attractive in terms of general code implementation. Indeed, after defining
the ghost-cells values (eventually updated at each iteration), the same stencil can
be used for all the inner cells of the computational domain. In the case of the
homogeneous Neumann BC, a ghost cell is taken equal to the inner domain cell
sharing a face with it. Therefore, the flux between the two cells is zero (see Equa-
tion (4.9)). Other types of BC follow a similar procedure whereby the ghost-cell
values are defined from their respective (inner domain) neighboring cell value (see
discussion in [Patankar 80]).

4.3 Iterative Methods

Unless otherwise specified, the edge size of a cell is h. We also drop the cell index
to alleviate the notation when representing the iteration number α as a subscript.

The sparse matrix A has important properties that can be exploited. First, A
is symmetric, due to the symmetric definition of the fluxes between two neighbor-
ing cells (the flux going from a cell i to its neighbor j is the same as the flux from
j to i); this symmetry also implies the conservative nature of the FV scheme.
Second, A is positive definite. These properties make A invertible with a unique
solution

u = A−1f . (4.14)

For small N , the matrix A can be inverted using a direct method, for example,
Gaussian elimination or LU decomposition [Cormen et al. 01]. These classical
methods are common but not very efficient because of their O(N3) complexity
(recall that N is the number of unknowns to be solved in the system). In addition,
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direct inversion methods consume a good deal of memory, because even if A is
sparse, its inverse is usually full. As an example, the amount of memory required
to compute and store A−1 for a medium-sized domain discretization, N = 643,
in IEEE 754 single-precision floats would be superior to the capacity of current
hardware: (643)2 × sizeof(float) = 256 GB.

Iterative methods have been developed to address this issue, because they can
work with a matrix-free representation of the linear system. In these techniques,
an approximation of the solution u is iteratively constructed through a sequence
of vectors {vα, α = 0, 1, . . .} that converges to A−1f ,

lim
α→∞

vα = u = A−1f . (4.15)

4.3.1 Simple Preconditioned Iterations

An immediate way to construct a convergent series of approximations is to rely
on simple preconditioned iterations. Let P be an appropriate preconditioner of
A (see examples below), such that P−1A has a lower condition number (stability
to numerical operations) than A.

Let P be a preconditioner in the linear system Au = f , we can write

Pu = (P −A)u + f ⇔ u = (I − P−1A)u + P−1f . (4.16)

The smoothing iteration, derived from Equation (4.16), is the core of iterative
methods and computes a new approximation vα+1 from vα at iteration α,

vα+1 = (I − P−1A)vα + P−1f . (4.17)

Let eα = u − vα be the error. We can subtract Equation (4.17) from (4.16)
to obtain the error reduction at iteration α:

eα+1 = (I − P−1A)eα = Meα thus ek = Mke0, (4.18)

where the iteration matrix M is multiplied with eα until a convergence condition
|eα| < ε is met (typical values for a L2 norm are taken below 10−3).

A wide range of preconditioners is available. Equation (4.18) shows that a
good preconditioner should be such that P−1A ' I. On the other hand, Equation
(4.17) shows that, to be applied, the iteration needs the calculation of the effect of
P−1 on vectors: P should be easily inverted. These two concurrent features lead
to the extreme preconditioners, P = A, which results in an exact error reduction
in just one iteration, and P = I, which allows for trivial inversion, but may result
in poor error reduction with the iterations (if converging at all).

To construct classical preconditioners, it is convenient to split the square
matrix A into three parts:

A = L+D + U, (4.19)

where L is the lower-triangular part of A, D its diagonal, and U the upper-
triangular part of A, as illustrated in Figure 4.5.
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Figure 4.5. Decomposition of the matrix A into its lower-triangular part L, diagonal
D, and upper-triangular part U , used in the construction of the preconditioners.

4.3.2 Jacobi Method

The first preconditioner PJ that we introduce is used in the pure iterative Jacobi
method. It is defined as the diagonal part of A with PJ = D. Introducing PJ
into Equation (4.17) gives the following Jacobi iteration:

vα+1 = (I −D−1A)vα +D−1f . (4.20)

In the case of the 3D Laplace matrix (Figure 4.4), we observe that the diagonal
is equal to 6 for the inner domain, therefore we can write D = 6I. Using this
simplified form D−1 = 1/6 I, the Jacobi iteration (4.20) becomes

vα+1 = (I − 1

6
A)vα +

1

6
f . (4.21)

This method is also called the method of simultaneous displacements. As
observed in the visual representation of the Jacobi iteration in Figure 4.6, all

Figure 4.6. Visual representation of the Jacobi iteration. Note that the central cell of
the stencil on vα is provided only as a visual cue and does not intervene in this equation
because the diagonal of M is nullified (I − 1/6D = 0I).



i
i

i
i

i
i

i
i

454 VII GPGPU

Figure 4.7. Result of several Jacobi iterations on a 1D error function. The high spa-
tial frequency components, sharp edges of e0, are efficiently smoothed out after a few
iterations while the low frequency components remain almost unchanged.

unknowns of vα+1 can be simultaneously computed as each equation is indepen-
dent and requires knowledge of only vα and f .

The computational cost of one iteration is low, and the Jacobi method is
straightforward to implement using two separate ping-pong buffers for vα and
vα+1. This method quickly suppresses the local components of e (with high
spatial frequency) after a small number of iterations. Unfortunately, it does a
poor job at suppressing the low-frequency components (global features of e spread
across a distance wider than two consecutive cells) as illustrated on a 1D example
in Figure 4.7.

The Jacobi method is widely used in the computer graphics community
[Stam 99,Crane et al. 07] as it is easy to understand and implement. Despite its
popularity, its cost of O(N2) iterations to reduce the error by a constant factor
makes it impractical for problems requiring a good accuracy.

Section 4.5.2 covers the implementation of the Jacobi method using OpenCL.

4.3.3 Gauss-Seidel Method

Instead of considering only the diagonal of A, the Gauss-Seidel preconditioner
PGS is composed of its diagonal and lower-triangular part, PGS = L + D. This
makes PGS closer to A than Jacobi’s PJ , yet still easy to work with numerically.
Introducing PGS into Equation (4.17) gives the Gauss-Seidel iteration:

vα+1 = (I − (L+D)−1A)vα + (L+D)−1f . (4.22)
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Figure 4.8. Red-black labeling of the grid cells for the Gauss-Seidel method. We observe
that all neighbors of a red cell are painted in black and vice-versa, in order to prevent
concurrent read and write access by two threads on the same cell.

The inclusion of the lower-triangular part L results in a dependency relation
between unknowns in the linear system. The values for grid index (i, j, k) are
thus being updated with new values coming from vα+1 instead of vα, for their
neighbors numbered with lower indices (i−1, j, k), (i, j−1, k) and (i, j, k−1). This
intuitively leads to an improvement in the error reduction with the iteration. In
practice, about half the number of Jacobi iterations is needed for a given reduction
of the error.

This method is also called method of successive displacements because of the
dependency between the updated neighbor cells. From an implementation point
of view, the Gauss-Seidel method requires a single buffer to represent old and
new values of v during an iteration, which leads to a concurrency problem when
neighbor cells are read and written at the same time by different threads. A simple
solution is to use a red-black ordering of the cells where each cell is affected by a
color just like on a 3D checkerboard [Strang 07], as illustrated in Figure 4.8.

Figure 4.9. Visual representation of the second half of the Gauss-Seidel iteration. Please
note that the black neighbors of the red cell have already been computed during the
first half iteration on black cells.
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The Gauss-Seidel iteration is then split into two steps where the black cells
are updated first because they do not have any face in common, and the red cells
are updated using the newly computed values of the black cells, as illustrated in
Figure 4.9.

Section 4.5.3 covers the implementation of the Gauss-Seidel method using
red-black ordering with OpenCL.

4.3.4 Successive Over-Relaxation (SOR)

Observing the limitations of the two previous preconditioners and their O(N2)
computational complexity, one wonders if it is possible to over-correct the er-
ror and reduce the low-frequency features by extrapolating the local correction
provided by each iteration.

We introduce the weighting factor ω to control the amount of overshooting
applied to the previous preconditioners. When combined with the Gauss-Seidel
preconditioner, this method is called SOR and can be written as

vα+1 = (D + ωL)−1(ωf − (ωU + (ω − 1)D)vα). (4.23)

This preconditioner is proven to converge when ω takes value between 0 and
2, but we are more interested in a fast convergence rather than just convergence.
Using a weight factor of 1 is equivalent to the standard Gauss-Seidel method,
while factors greater than 1 lead to an over-relaxation of the smoothing correction,
which results in a faster propagation of low-frequency error components on the
grid. The optimal factor ωopt, for which the convergence speed is the fastest,
depends on the spectral radius ρ of the iteration matrix M , or the maximum
absolute of the eigenvalues λ of this matrix,

ρ(M) = max |λ(M)|, ωopt =
2

1 +
√

(1− ρ2(M))
.

Finding the maximal eigenvalue of M has the same complexity as computing
A−1, which is why good values of ω are often empirically determined. The value
2/3 is a safe estimation for ω on small domains, while optimal values tend to
asymptotically get closer to 2 when the solution domain grows (see Chapter 6.2 of
[Strang 07]). Taking a value higher than ωopt usually results in bad performance,
because the approximation convergence tends to oscillate.

Section 4.5.4 covers the implementation of the SOR method based on forward
Gauss-Seidel with OpenCL.

Other preconditioners do exist and become more efficient as they grow in
numerical and understanding complexity. In the next section, instead of an ex-
haustive review of preconditioners, we address the inherent problem of iterative
methods, which is the reduction of the low spatial frequency components. A
comprehensive review with a deeper mathematical analysis of preconditioners is
available in Saad’s and Strang’s reference books [Saad 03,Strang 07].
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Figure 4.10. Sampling of a smooth function at different resolution levels h (left), 2h
(center), and 4h (right). We observe that the low-frequency component represented on
the finest level (h) becomes rougher as the grid gets coarser (2h, 4h).

4.4 Multigrid Methods (MG)

We have observed the good performance of pure iterative methods to smooth out
high-frequency components, where error features are spread over a 1h distance.
Unfortunately, after few iterations, the error reduction per iteration decreases
because the remaining error now contains only low frequencies that cannot be
efficiently smoothed out.

Southwell [Southwell 35] introduced a method where a second grid helps to
maintain a fast convergence: the problem is discretized a second time on a grid
with cells of 2h edge size in order to smooth out the high frequencies (now spread
over a 2h distance) using existing preconditioners, as illustrated in Figure 4.10.
This concept was later generalized to a new class of multiscale iterative methods
where the initial problem is solved on grids of different resolutions.

4.4.1 Multigrid Correction Scheme

The MG correction scheme (CS) method is the most appropriate MG method
available to solve partial differential equations with linear coefficients as in the
Poisson equation discretized with FV on a uniform grid. Like most MG methods,
the smoothing iterations reduce the high-frequency error. The CS accelerates the
reduction of the lower frequencies by rescaling the error on a coarser grid.

A typical CS iteration is shaped into a recursive V-cycle, illustrated in Fig-
ure 4.11, which can be divided into substeps relying on five different operators:

smoothing iteration,

residual computation,

fine to coarse projection,

coarse to fine interpolation,

approximation correction.
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Figure 4.11. Three-level CS MG V-cycle illustrating the connection between the
smoothing, residual, projection, interpolation, and correction operators.

Let us illustrate this process by walking through the different steps of a CS
iteration.

Any smoothing iteration from pure iterative methods can be used and is
consecutively applied µpre times to begin the V-cycle. Its role is not to solve the
problem, but to smooth the error until its high-frequency components are almost
suppressed. This leads to an error ehα composed only of features spread across
more than two consecutive cells of size h. Computing the correction term to
remove all the remaining components for the error would require the knowledge
of the unknown solution ehα = uh − vhα. Instead, we can compute the residual of

vhα using :

rhα = fh −Ahvhα (4.24)

Reorganizing Equation (4.24) leads to the residual Poisson problem,

Ahehα = rhα. (4.25)

Knowing that we almost suppressed all the high frequencies from rhα, we ob-
serve that the remaining smooth function can be represented on a coarser grid
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(where the edge size becomes 2h) without losing important information. The

projection operator transfers rhα from a fine -h-spaced- grid to a coarser—2h-
spaced—grid producing a rougher function f2h

α . This projection actually leads to
a new Poisson problem defined on a coarser grid, where all remaining frequencies
are a bit higher. The approximated solution to this problem v2h

α is not a pro-
jection of vhα, but the correction term required to reduce higher error frequencies
on vhα:

A2hv2h
α = f2h

α . (4.26)

The smoothing-residual-projection step is then repeated to transfer the prob-
lem to coarser grids and reduce lowest frequency components. The descent is
stopped when the resulting domain grid is coarse enough for the problem to be
directly solved, using, for example, a standard elimination method. As the grid

is particularly coarse and small at this point, we later choose to apply several
times to reduce the remaining (fairly high) frequencies.

Once Equation (4.25) has been solved on the coarsest grid, the resulting solu-
tion e2zh

α is the complement to the correction term required to suppress the lowest
spatial frequency error components. It can then be added to the approximation of
the finer resolution v2z−1h

α , in order to correct both the lowest and second-lowest
frequency errors. This ascending step of the V-cycle is then recursively applied
until the approximation vhα is reached on the finest grid. The interpolation op-

erator is used to transport this correction term from a coarse grid to a finer

one. This operator is coupled with the correction operator , a simple vector
subtraction on the finer level:

v2z−1h
α+1 = v2z−1h

α − I2z−1h
2zh v2zh

α , (4.27)

where I2z−1h
2zh is the matrix of , interpolating a vector of 2zh-width cells to a

vector of 2z−1h-width cells.

By solving the residual Poisson equation on the coarsest grid, we obtain the
error correction term that we need to apply to the vhα approximation in order
to minimize the lowest frequency of the residual on the finer grid. In order to
reduce the residual on the finer grids, we recursively interpolate and correct these

terms by chaining and on finer grids. This process corrects the current
approximation for the finer grid, but also adds higher-frequency components due
to small information loss during the projection. In order to reduce these, we

apply µpost times.

While many projection and interpolation schemes exist to transport discretized
functions between grids of different resolution, we choose trilinear interpolation
as it remains consistent with FV methods (see Figure 4.12). As we later observe
during the implementation, it is also one of the most computationally efficient
schemes using OpenCL’s hardware-accelerated multilinear filtering.
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Figure 4.12. Trilinear interpolation process approximating the FV average, used in the
OpenCL projection kernel.

Smoothing iterations at coarser grid levels (where N is recursively divided
by eight for each projection) are computationally cheaper than iterations on the
finest grid. In our implementation, we decide not to use a simple V-cycle but
a multi-W-cycle. In that case, the first interpolation ascent is stopped before
reaching the finest level and descends again toward the coarsest level to further
reduce low-frequency errors with minimal computational cost. After a few of
these intermediate cycles, the correction is finally interpolated to the finest level.
In fact, we increase up to four subcycles to take advantage of this property, to
achieve a faster convergence rate without increasing the computational cost too
significantly. Finally, CS MG iterations are repeated until a convergence criterion
(|eα| < ε) is met.

An extended overview of other MG methods and their applications can be
found in McCormick’s and Briggs’ reference books [McCormick 88,Briggs et al. 00].

4.5 OpenCL Implementation

4.5.1 Overview

OpenCL is an open standard framework for programming heterogeneous parallel
computers like multicore CPUs and GPUs. Like OpenGL, its specification is man-
aged by the Khronos Group, which is composed of hardware and software industry
leaders. The last revision of the OpenCL 1.0 specification [Khronos Group 09]
is available online on the OpenCL registry website (http://www.khronos.org/
registry/cl), along with C++ host bindings (cl.hpp) which greatly simplify the
host API setup and communication calls.

The OpenCL framework is split into two parts. First, a host API, running on
the CPU to initializes the devices and memory buffers, controls the execution of
compute kernels and enqueues buffer exchanges between the host and devices, in
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the same way as the traditional OpenGL/GLSL shader and texture setup. Sec-
ond, compute kernels written in the OpenCL C language, are programs executed
in parallel on the devices in the same way as traditional vertex or pixel shaders
but with greater flexibility to address broader problems.

The OpenCL API specifies two kinds of memory objects: buffers and images.
Buffers are contiguous arrays of memory indexed by 1D coordinates and com-
posed of any available type (int, float, half, double, int2, int3, int4,

float2, ...). These can either be allocated in global, local or constant memory.
Global memory can be shared between the host and the devices by enqueuing
read or write commands to exchange these data; it is abundant but it has a high
latency and must be used with caution, while local memory is faster but has a
very limited size. Coalesced memory accesses can reduce the latency, but when
memory read and write patterns are random, images can be used to mitigate
this latency. Images share many similarities with textures: they support an au-
tomatic caching mechanism, their access can be filtered through a sampler with
multilinear interpolation, and out of bounds access behavior can be configured.

We make use of images whenever possible because of two reasons. First, our
memory access patterns are mostly random. Second, the sampler filtering can
greatly reduce the computational costs of certain operations such as multilinear
interpolation in the projection operator, or automatic clamping of image coordi-
nates to handle ghost cells with a homogeneous boundary condition.

Finally, parallelization is achieved by enqueueing the execution of compute
kernels over work-groups or ranges of threads organized in 1, 2, or 3D. Each
work-group is composed of work-items, or threads indexed by a unique 1, 2, or
3D identifier inside the global work-group range.

Initializing the compute devices is straightforward using the C++ host bind-
ings. We first initialize the platform to access the underlying compute devices
and select either CPU devices, GPU devices, or both types. Then we create a
context and a command queue in order to execute compute kernels and enqueue
memory transfers.

// f e t c h a l l GPU de v i c e s on the f i r s t OpenCL plat form
std : : vector<c l : : Platform> p lat fo rms ;
std : : vector<c l : : Device> d ev i c e s ;
c l : : Platform : : get (&plat fo rms ) ;
p la t fo rms . at ( 0 ) . ge tDev ice s (CL DEVICE TYPE GPU, &d e v i c e s ) ;

// setup a context and a command queue f o r the f i r s t dev i c e
c l : : Context context ( d ev i c e s ) ;
c l : : CommandQueue queue ( context , d ev i c e s . at ( 0 ) ) ;

Finally, compute kernels are loaded and compiled from OpenCL source:

// load an OpenCL source f i l e i n to a std : : s t r i n g
std : : i f s t r e a m s r c f i l e ( "kernels.cl" ) ;
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std : : s t r i n g s r c ( std : : i s t r e a m b u f i t e r a t o r<char>( s r c f i l e ) ,
s td : : i s t r e a m b u f i t e r a t o r<char> (0 ) ) ;

// compi le the dev i c e program and load the ” zero ” ke rne l
c l : : Program program ( context , c l : : Program : : Sources (1 ,

std : : make pair ( s r c . c s t r ( ) , s r c . s i z e ( ) ) ) ) ;
program . bu i ld ( dev ices , "-Werror" ) ;
c l : : Kernel kzero = c l : : Kernel ( program , "zero" ) ;

This zero compute kernel is later used to clear global memory buffers on the
device. With OpenCL’s C language, it is written as follow:

kernel void zero ( global f loat ∗vh )
{

// id conta in s the 3D index o f the cur rent c e l l
const float4 id = ( f loat4 ) ( g e t g l o b a l i d ( 0 ) ,

g e t g l o b a l i d ( 1 ) , g e t g l o b a l i d ( 2 ) , 0 ) ;

// sz conta in s the b u f f e r s t r i d e along each 3D a x i s
const float4 sz = ( f loat4 ) ( 1 , g e t g l o b a l s i z e ( 0 ) ,

g e t g l o b a l s i z e (0 ) ∗ g e t g l o b a l s i z e ( 1 ) , 0 ) ; // s t r i d e s

// vh i s a g l o b a l b u f f e r used to wr i t e the zero output
vh [ ( int ) dot ( id , sz ) ] = 0 ; // vh [ id . x+id . y∗ sz . y+id . z∗ sz . z ]

}

This kernel must be launched with a global work-size equal to the number
of elements in the input buffer vh so that each element is written by exactly
one work-item (or thread). The id and sz variables are initialized with the 3D
work-item identifier and work-size stride so that their dot product directly gives
the corresponding memory location in the 1D buffer (i.e., id.x + id.y*sz.y +

id.z*sz.z).

In order to run this compute kernel, we need to allocate a memory buffer on
the device and create the global (computational domain) and local (concurrent
work-items) work-size ranges:

// i n i t i a l i z e a read−only b u f f e r f o r 64ˆ3 4−bytes f l o a t s ,
// t h i s b u f f e r can not be update by the host , only read from
c l : : Bu f f e r b u f f e r ( context , CL MEM READ ONLY, 64∗64∗64 ∗ 4 ) ;

// prepare the work−s i z e ranges and ke rne l arguments
c l : : NDRange gndr (64 , 64 , 64) , lndr (8 , 8 , 8 ) ;
ze ro . setArg (0 , b u f f e r ) ; // bind the b u f f e r to vh

// enqueue the ke rne l and wait f o r i t to f i n i s h i t s task
queue . enqueueNDRangeKernel ( zero , c l : : NullRange , gndr , lndr ) ;
queue . enqueueBarr ie r ( ) ;
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Finally, data can be retrieved on the host by enqueueing a read command to
the command queue,

f loat data [64 ∗ 64 ∗ 6 4 ] ;

// b lock ing read o f the b u f f e r from 0 to 64∗64∗64 in to data
queue . enqueueReadBuffer ( bu f f e r , CL TRUE, 0 , 64∗64∗64 , data ) ;

Three-dimensional images are allocated in almost the same way as buffers.
They require additional knowledge of the data type (int, float, ...) for in-
terpolation and x-, y-, and z-extents for spatial caching,

// one−component f l o a t image format
c l : : ImageFormat fmt (CL R , CL FLOAT) ;
c l : : Image3D img ( context , CL MEM READ ONLY, fmt , 64 , 64 , 6 4 ) ;

Before implementing iterative solvers with OpenCL, we define a structure
to contain the required elements of a Poisson problem (size, input function f ,
approximation v, and residual r):

typedef struct {
c l : : s i z e t <3> s i z e ; // 3D s i z e o f the problem
c l : : Image3D fh // d i s c r e t i z e d f func t i on
c l : : Image3D vh ; // s o l u t i o n approximation
c l : : Image3D rh ; // r e s i d u a l

} Problem ;

4.5.2 Jacobi Method

In the Jacobi method, each line of the linear system is computed independently
from the others. This results in an easy parallelization of the code. In theory, the
cost of this advantage is the need to allocate two buffers to store v: one is used
as an input for the smoothing iteration Equation (4.20), vα, and the other to
write the result vα+1. In practice, we use a scratch buffer for all kernel outputs
leading to no overhead, compared with other methods.

Because we have to access the neighbors of each cell (Figure 4.3), coalescent
memory access is not achievable using the device’s global memory. In order
to overcome this limitation, we use OpenCL images which are in many ways
similar to textures in classical GPU programming. Furthermore, 3D images have
an automatic caching mechanism which greatly accelerates the memory access
pattern encountered in smoothing iterations.

In order to satisfy homogeneous conditions on the boundary of the solution
domain, access to the value of neighbors located on ghost cells outside of the
domain is clamped to the edge of the boundary (and therefore of the image) in
order to automatically copy the corresponding value on the inside.
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First, we define offsets in each dimension to access the cells’ neighbors,

#define dx ( f loat4 ) ( 1 , 0 , 0 , 0)
#define dy ( f loat4 ) ( 0 , 1 , 0 , 0)
#define dz ( f loat4 ) ( 0 , 0 , 1 , 0)

The fourth dimension of the float4 struct is never used here but is required
to specify image sampling coordinates. The Jacobi compute kernel for the device
is then implemented as follows:

// fh and vh are input images conta in ing the f and v values ,
// vvh i s an output b u f f e r where the new value o f v i s
// wr i t t en and h2 i s the c e l l width h squared
kernel void j a c o b i ( read only image3d t fh ,

read only image3d t vh ,
global f loat ∗vvh , f loat h2 )

{
const float4 id = ( f loat4 ) ( g e t g l o b a l i d ( 0 ) ,

g e t g l o b a l i d ( 1 ) , g e t g l o b a l i d ( 2 ) , 0 ) ;
const float4 sz = ( f loat4 ) ( 1 , g e t g l o b a l s i z e ( 0 ) ,

g e t g l o b a l s i z e (0 ) ∗ g e t g l o b a l s i z e ( 1 ) , 0 ) ;

// sampler f o r a c c e s s i n g the vh and fh images ,
// out o f bounds a c c e s s e s are clamped to the domain edges
const sampler t sampler = CLK ADDRESS CLAMP TO EDGE;

const f loat s =
( read image f (vh , sampler , id−dx ) . x +

read image f (vh , sampler , id+dx ) . x +
read image f (vh , sampler , id−dy ) . x +
read image f (vh , sampler , id+dy ) . x +
read image f (vh , sampler , id−dz ) . x +
read image f (vh , sampler , id+dz ) . x −
h2 ∗ read image f ( fh , sampler , id ) . x ) / 6 .0 f ;

vvh [ ( int ) dot ( id , sz ) ] = s ;
}

The function read imagef is a built-in function which accesses a read only

image through a sampler at a specific coordinate, passed as a float4 vector, and
returns a float4 vector containing the result. Since we initialize fh and vh as
one component image, only the first component (x) of the result is meaningful.

This kernel is launched with a global work size equal to the 3D extents of
the domain grid. The local work size depends on the capabilities of the OpenCL
compute device and must be a divider of the global work-group size along each
dimension. Experience shows that a cubic size (and in particular (8, 8, 8) for cur-
rent GPUs) is an optimal work-group configuration because it leads to a minimal
spatial scattering of memory accesses, thus fully exploiting the images cache. Af-
ter each iteration, the output buffer is copied back to the vh image to be reused,
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using the host API:

// o f f s e t and sz are s i z e t [ 3 ] , o f f s e t conta in s z e r o s
// and sz conta in s the Problem s i z e or 3D image extent s
queue . enqueueCopyBufferToImage ( bu f f e r , image , 0 , o f f s e t , sz ) ;
queue . enqueueBarr ie r ( ) ;

Once every few iterations, the approximation error of vα is tested on the host
to decide wether to continue refining or not by computing the L2 norm of the
residual on the host and comparing it against an ε value:

// compute the r e s i d u a l f o r the cur rent Problem p
r e s i d u a l (p . fh , p . vh , p . rh , p . s i z e , h2 ) ;
queue . enqueueReadImage (p . rh , CL TRUE, nu l l s z ,

p . s i z e , 0 , 0 , &r [ 0 ] ) ;
f loat rnorm = L2Norm( r , f i n e . s i z e ) ; // s q r t (sum( r ∗ r ) )

// break the s o l v e r loop
i f ( rnorm < e p s i l o n ) break ;

4.5.3 Red-Black Gauss-Seidel Method

This kernel is very similar to the Jacobi kernel, the only remarkable difference in
this implementation being the red-black ordering, which accelerates the theoret-
ical convergence rate by a factor of two, where red is set to either one or zero,
respectively with the current red-black pass type.

kernel void rbgs ( read only image3d t fh ,
read only image3d t vh ,
global f loat ∗vvh ,
f loat h2 , int red )

{
// the x c e l l i d e n t i f i e r i s m u l t i p l i e d by two
// only work on e i t h e r red or black c e l l s
f loat4 id = ( f loat4 ) ( g e t g l o b a l i d (0 ) << 1 ,

g e t g l o b a l i d ( 1 ) , g e t g l o b a l i d ( 2 ) , 0 ) ;
const float4 sz = ( f loat4 ) ( 1 , g e t g l o b a l s i z e ( 0 ) ,

g e t g l o b a l s i z e (0)∗ g e t g l o b a l s i z e ( 1 ) , 0 ) ;
const sampler t sampler = CLK ADDRESS CLAMP TO EDGE;

// the i n i t i a l x c e l l i d e n t i f i e r o f f s e t depends on the
// pa r i t y o f id . y+id . z and on the cur rent pass c o l o r
id . x += ( ( int ) ( id . y + id . z + red ) & 1 ) ;

. . . // compute s ( s ee Jacobi )

vvh [ ( int ) dot ( id , sz ) ] = s ;
}
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This kernel is launched twice to perform a full Gauss-Seidel iteration, each
time with a global work size equal to the solution domain grid extents but halved
on the first dimension to account for the red-black interleaving computed in id

so that only half of the cells are accessed. As in the Jacobi implementation, the
output buffer is copied to the image after each kernel call or half-iteration.

4.5.4 Successive Over-Relaxation

Implementation of SOR is a trivial addition to the Gauss-Seidel kernel, the only
difference being the specification of ω, used as a weight factor for error over-
correction to accelerate the convergence rate by reducing lower frequency error
components faster than the two previous methods.

kernel void rbso r ( . . . , f loat w) // weight ing f a c t o r w
{

. . . // compute id and sz ( s ee Red−Black Gauss−S e i d e l )

vvh [ ( int ) dot ( id , sz ) ] =
(1 − w) ∗ read image f (vh , sampler , id ) . x + w ∗ s ;

}

4.5.5 Multigrid Correction Scheme

The host part of the MG CS method exactly mirrors the V-cycle presented in
Figure 4.11. It is split into three steps. First, we have a descending step: high

frequencies are reduced with iterations of , then the residual is computed

using and projected to the next coarser grid using until the coarsest grid
is reached. Second, the coarsest grid is solved by applying multiple iterations

during until the coarsest problem (83) is almost solved. Finally, during the

ascending step, the correction is interpolated back ( + ) and smoothed on

the finer grids using until the finest level is reached again. Actual calls to
the respective compute kernels are encapsulated into helper functions, which take
care of buffer and range initializations for simplicity purposes.

std : : vector<Problem> p ; // a l l o c a t e a Problem f o r each l e v e l
i n i t p r o b l e m s ( ) ; // and reduce i t s s i z e a c co rd ing ly u n t i l

// the c o a r s e s t l e v e l i s reached

// V−c y c l e descending step , from f i n e s t to c o a r s e s t l e v e l
for ( k = 0 ; k < int (p . s i z e ()−1) ; ++k )
{

rbso r (p [ k ] . fh , p [ k ] . vh , p [ k ] . s i z e , h2 , 0 .75 f , preSteps ) ;
r e s i d u a l (p [ k ] . fh , p [ k ] . vh , p [ k ] . rh , p [ k ] . s i z e , h2 ) ;
p r o j e c t (p [ k ] . rh , p [ k +1] . fh , p [ k +1] . s i z e ) ;
ze ro (p [ k +1] . vh , p [ k +1] . s i z e ) ;

}
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// ” Di rec t ” s o l v i n g on the c o a r s e s t l e v e l
rbso r (p [ k ] . fh , p [ k ] . vh , p [ k ] . s i z e , h2 , 1 . 5 f , d i r e c t S t e p s ) ;

// V−c y c l e ascending step , from c o a r s e s t to f i n e s t l e v e l
for(−−k ; k >= 0 ; −−k )
{

i n t e r p o l a t e c o r r e c t (p [ k +1] . vh , p [ k ] . vh , p [ k ] . s i z e ) ;
rb so r (p [ k ] . fh , p [ k ] . vh , p [ k ] . s i z e , h2 , 1 .25 f , postSteps ) ;

}

The W-cycle is a direct extension of this code, adding an inner loop for kmax >
k > 0 in order to repeat the subcycle several times before finally reaching the
finest level. Experimentations show that choosing two pre-smoothing passes,
four post-smoothing at each level, and 32 direct-smoothing iterations for the
coarsest level leads to the best measured convergence rate. Additionally, using
four subcycles greatly reduces the overall computation time and seems to be the
best configuration for medium to large grid sizes (≥ 643).

4.5.6 Residual, Projection and Interpolation Operators

In the same fashion as the smoothing operator, the residual operator is a
direct translation of the residual equation (Equation (4.24)) into parallel code.
Input images are fh and uh, and rh is an output buffer to be later copied into an
image in order to be projected using multilinear interpolation.

void kernel r e s i d u a l ( read only image3d t fh ,
read only image3d t vh ,
global f loat ∗ rh )

{
. . . // compute id and sz ( s ee Jacobi )
const sampler t sampler = CLK ADDRESS CLAMP TO EDGE;

rh [ ( int ) dot ( id , sz ) ] =
− read image f ( fh , sampler , id ) . x −

(6 ∗ read image f (vh , sampler , id ) . x −
( read image f (vh , sampler , id−dx ) . x +

read image f (vh , sampler , id+dx ) . x +
read image f (vh , sampler , id−dy ) . x +
read image f (vh , sampler , id+dy ) . x +
read image f (vh , sampler , id−dz ) . x +
read image f (vh , sampler , id+dz ) . x ) ) / h2 ;

}

To implement the projection operator, , we take advantage of the image-
filtering capabilities offered by OpenCL, resulting in a tremendous computation
acceleration when dedicated hardware is present, like texture units on GPUs. We
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use trilinear interpolation (Figure 4.12) to average eight cells on the fine level into
one cell on the coarser level by enabling linear filtering and taking a sample at
the center of the eight fine cells:

kernel void p r o j e c t ( read only image3d t rh ,
global f loat ∗ f2h )

{
. . . // compute id and sz ( s ee Jacobi )

// f i l t e r images with t r i l i n e a r i n t e r p o l a t i o n :
// c e l l c e n t e r s index ing beg ins at 0 . 5 so that
// i n t e g e r va lue s are automat i ca l l y i n t e r p o l a t e d
const sampler t sampler = CLK FILTER LINEAR ;

// make the image coord inate at the ver tex shared
// between the e i gh t f i n e r g r id ( s ee f i g . 1 . 1 1 )
// then mult ip ly by 4 f o r coar s en ing : (2h)ˆ2 = 4 hˆ2
f2h [ ( int ) dot ( id , sz ) ] =

read image f ( rh , sampler , id ∗ 2 + dx+dy+dz ) . x ∗ 4 ;

}

In order to avoid redundant copying of buffers to images, we decide to combine

the interpolation and correction operators into one kernel, where the
interpolated correction is directly added to the finer grid level in one pass:

// i n t e r p o l a t e v2h and c o r r e c t vh to reduce low f r e q s .
kernel void i n t e r p o l a t e c o r r e c t ( read only image3d t v2h ,

read only image3d t vh ,
global f loat ∗vh )

{
. . . // compute id and sz ( s ee Jacobi )
const sampler t sampler = 0 ;

vh [ ( int ) dot ( id , sz ) ] = read image f (vh , sampler , id ) . x −
read image f ( v2h , sampler , id / 2 ) . x ;

}

4.6 Benchmarks

As expected, we can observe in Figure 4.13 an exponential number of iterations re-
quired for the Jacobi as its complexity reaches O(N3). The Gauss-Seidel method
has the same complexity but requires fewer iterations as the constant complexity
factor is halved.

The SOR method dramatically reduces this factor by over correcting the local
error, but its complexity is still exponential. Fortunately, the CSMG method
is confirmed to have a linear complexity of O(N), where N is the number of
unknowns or cells.
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Figure 4.13. Iterations per method for cubic domains until |eα| < 10−3. The X-
axis represents the domain size (cubed) and the Y-axis shows the number of iterations
required to converge to ε = 10−3.

Although its iterations have a higher computational cost, the multigrid cor-
rection scheme method shows a clear advantage over the pure iterative methods
in terms of computation time per unknown in Figure 4.14. The setup cost of
the CSMG method makes it more efficient for large problems than smaller ones
(< 323) where the SOR method should be preferred.

Figure 4.14. Computation time (µs) per cell for cubic domains on a GPU. The X-axis
represents the domain size (cubed) and the y-axis shows the computation time per cell
to converge to ε = 10−3.
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Figure 4.15. Time profiling of the execution of four CSMG 4W-cycles for a 1283 com-
putational domain, running on a Nvidia GTX-285 GPU. More than half of the time is
spent either copying buffers into images (memcpyDtoAasync) or transfering the residual
to the host (memcpyAtoHasync) to test the convergence.

4.7 Discussion

We introduced the theoretical background and implementation framework for a
fast OpenCL solver for the 3D Poisson equation with Neumann external boundary
condition. This is by no means a generic solver, but it can be extended to
address other problems such as different boundary conditions or the discretization
method.

In particular, writing to OpenCL images results in a significant computation-
time decrease; for the current implementation, half of the time is spent copying
output buffers back into images (see Figure 4.15). Unfortunately, this extension
would alienate most of the current OpenCL hardware because writing to 3D
images is an extension supported by very few devices as of the writing of this
book.

Finally, using a parallel reduction on the OpenCL device to compute the
residual norm would also result in a significant performance boost. Indeed, it
would require transfering only one float value instead of the whole residual grid
to test convergence on the host and decide whether or not to continue refining
the solution approximation.
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